
                                                                                                                            

 

Merging of the Senses 

Interactions between Auditory and Proprioceptive modalities 

 

 

Von der Philosophischen Fakultät 

der Gottfried Wilhelm Leibniz Universitat Hannover 

 

 

zur Erlangung des akademischen Grades  

Doktor der Philosophie Dr. phil 

 

 

 

genehmigte Dissertation von 

 

 

Shashank Ghai, MSpLS 

 

2019 

 

  



                                                                                                                            

 

Referent: Prof. Dr. Alfred O. Effenberg, Institut für Sportwissenschaft, Leibniy Universität 

Hannover, Germany 

Korreferent: Prof. Dr. Norbert Hagemann, Institut für Sport und Sportwissenschaft, 

Universität Kassel, Germany 

Prof. Dr. Norbert Massen, Institut für Sportmedizin, Medizinische Hochschule Hannover, 

Germany  

Tag der Promotion: 20.02.2019 



                                                                                                                            

 

Declaration 

I, hereby, declare that this dissertation is my own personal effort. Any assistance or 

collaborative work has been duly acknowledged in the dissertation. Moreover, I would 

like to confirm that this dissertation has not been used as an examination paper 

elsewhere. I also declare that this present work is original, and, to the best of my 

knowledge, does not breach any copyright law, and has not been taken from other 

sources except where such work has been cited and acknowledged within the text. 

 

 

Shashank Ghai 

Hannover, 18.02.2018 



                                                                                                                            

 

 

Acknowledgement 

I am grateful for the immense support and guidance provided by my doctoral supervisor Prof. 

Dr. Alfred Effenberg during my research. I am also thankful to Dr. Gerd Schmitz, Mr. Tong-

Hun Hwang for their assistance during my research work. Moreover, sincere gratitude to 

student assistants Mr. Pascal Mozynski, Mr. Phil Westendorf and Ms. Hannah Asmus for 

their timely assistance during my research work. I am also thankful to all the participants who 

volunteered to take part in our studies. 

A very special gratitude to European Commission H2020-FETPROACT-2014 No. 641321 

for funding parts of my work.  I’d also like to sincerely thank the support by the Technische 

Informationsbibliothek, Leibniz University Hannover for providing generous funding for all 

the open access published articles.  

Finally, I’d like to thank my brother Dr. Ishan Ghai for being a strong motivator, critique, and 

collaborator. I’d also like to thank my girlfriend, Esther Brunvarlet for providing strong and 

unconditional support. I also appreciate sincere gratitude towards my parents (my family) for 

everything. 

 

Shashank Ghai 

  



                                                                                                                            

 

Abstract 

This doctoral work reports the influence of self-generated auditory feedback i.e. movement 

sofication on motor control, learning and imagery. In its structure, this research work 

incorporates a detailed literature review, meta-analyses followed by three experimental 

studies and two futurized perspective articles.  

Initially, a total of seven systematic reviews and dose-response meta-analyses were 

performed to evaluate the influence of music-based auditory stimulation therapies i.e. 

rhythmic auditory cueing, patterned sensory enhancement and movement-sonification on gait 

rehabilitation, postural stability, movement kinematics in healthy population groups and in 

individuals affected from neurological disorders such as, Cerebral palsy, Parkinson’s disease, 

Multiple Sclerosis, and Stroke. The systematic review and meta-analyses adhered to the 

PRISMA guidelines. In total, 200 studies including 6,164 participants were included in the 

review studies. The findings from all of these studies were used to understand the efficacy of 

auditory-motor training interventions and their underlying neurophysiological mechanisms. 

The findings from these reviews comprehensively demonstrated efficient, cost-effective 

benefits of music-based auditory stimulation therapies in recovering motor, cognitive and 

sensory functioning in both healthy and neurologically affected population groups. Moreover, 

the studies also reported effective auditory-motor training dosages that could be applicable to 

attain maximum benefits during an intervention. The findings from these review studies were 

also utilized to derive research questions and hypotheses for the experimental studies 

performed in this doctoral research work. 

In the following three experimental studies, our group demonstrated the intricate relationship 

between auditory-proprioceptive modalities and demonstrated the beneficial influence of self-

generated real-time auditory feedback (movement sonification) to facilitate active knee-joint 

proprioceptive perceptions. Firstly, our group demonstrated the beneficial effects of direct 

application of sonification on knee re-positioning accuracy. Moreover, in the same 

experiment we also demonstrated the intricate auditory-proprioceptive interaction during a 

subliminal step-wise transposition of the auditory feedback’s pitch (±2.6 Hz). Here, 

subliminal transposition during the performance of a knee re-positioning task led to goal-

directed modulation of proprioceptive perceptions in the opposite direction of transposition. 

Further, in the second experiment, our group demonstrated that an intensive bilateral training 

with self-produced auditory feedback led to robust enhancements in knee proprioceptive  



                                                                                                                            

 

accuracy after 25-30 minutes of training. The enhancements in proprioceptive perceptions 

were both retainable (without auditory feedback after 15 minutes and 24 hours) and 

transferrable (on untrained target angles). This experiment for the first time demonstrated the 

beneficial influence of auditory on intermodal learning. In the third experiment, our group 

elucidated the influence of self-generated auditory feedback on motor imagery. Here, we 

demonstrated that performing auditory-guided mental imagery after an auditory-motor 

training led to enhanced knee-proprioceptive perception as compared to conventional mental 

imagery i.e. imagining movements without any auditory feedback. Again, the enhancements 

observed in knee-joint proprioception were both retainable and transferred to untrained 

angles in the absence of auditory feedback. The findings from these experiments are novel 

and have immense practicality for application in both musculoskeletal and neurological 

rehabilitation protocols.  

Finally, two future perspective articles were included in this dissertation that propose possible 

applications of different auditory feedback based training regimens in patients undergoing 

neurotoxic oncologic therapies and patients under minimal conscious states. The prospective 

influences of auditory feedback proposed in these perspective articles are derived from the 

findings of both the review and research studies performed in this doctoral research work. 

In conclusion, this doctoral work demonstrates the intricate relationship between the auditory 

and proprioceptive modalities that could be utilized to develop efficient training and 

rehabilitative interventions. This research work for the first time developed a state of the art 

knowledge from the existing literature for the influence of auditory-motor training 

interventions. This novel work also  demonstrates how self-generated auditory stimulations 

could be effectively used to facilitate proprioceptive perceptions i.e. an integral component of 

motor control and performance. 

Key words: Sonification, motor control, motor learning, rehabilitation, joint position sense 



                                                                                                                            

 

Abstract  

Diese Doktorarbeit berichtet über den Einfluss von selbst generiertem auditorischem 

Feedback, d.h. Bewegungssonifikation, auf die motorische Steuerung, das Lernen und die 

Bildsprache. In seiner Struktur beinhaltet diese Forschungsarbeit eine detaillierte 

Literaturübersicht, Metaanalysen, gefolgt von drei experimentellen Studien und zwei 

futurisierten perspektivischen Artikeln.  

Zunächst wurden insgesamt sieben systematische Übersichtsarbeiten und Dosis-Wirkungs-

Meta-Analysen durchgeführt, um den Einfluss musikbasierter auditorischer 

Stimulationstherapien zu bewerten, d.h. rhythmisches Cueing, musterhafte sensorische 

Verbesserung und Bewegungssondierung auf die Gangrehabilitation, Haltungsstabilität, 

Bewegungskinematik in gesunden Bevölkerungsgruppen und bei Personen, die von 

neurologischen Störungen wie Cerebralparese, Parkinson, Multiple Sklerose und Schlaganfall 

betroffen sind. Die systematische Überprüfung und Meta-Analysen orientierten sich an den 

PRISMA-Richtlinien. Insgesamt wurden 200 Studien mit 6.164 Teilnehmern in die 

Übersichtsstudien einbezogen. Die Ergebnisse all dieser Studien wurden genutzt, um die 

Wirksamkeit von Interventionen des auditorisch-motorischen Trainings und die zugrunde 

liegenden neurophysiologischen Mechanismen zu verstehen. Die Ergebnisse dieser 

Übersichtsarbeiten zeigten umfassend den effizienten, kostengünstigen Nutzen 

musikbasierter auditorischer Stimulationstherapien bei der Wiederherstellung der 

motorischen, kognitiven und sensorischen Funktionsfähigkeit sowohl bei gesunden als auch 

bei neurologisch betroffenen Bevölkerungsgruppen. Darüber hinaus berichteten die Studien 

auch über effektive auditorisch-motorische Trainingsdosen, die anwendbar sein könnten, um 

den maximalen Nutzen während einer Intervention zu erzielen. Die Ergebnisse dieser 

Übersichtsstudien wurden auch genutzt, um Forschungsfragen und Hypothesen für die in 

dieser Doktorarbeit durchgeführten experimentellen Studien abzuleiten. 

In den folgenden drei experimentellen Studien zeigte unsere Gruppe den komplizierten 

Zusammenhang zwischen auditorisch-propriozeptiven Modalitäten und den positiven 

Einfluss von selbst generiertem Echtzeit-Audit (Bewegungssonifikation), um aktive 

kniegelenkbezogene propriozeptive Wahrnehmungen zu ermöglichen. Erstens zeigte unsere 

Gruppe die positiven Auswirkungen der direkten Anwendung der Sonifikation auf die 

Genauigkeit der Neupositionierung des Knies. Darüber hinaus haben wir im selben 

Experiment auch die komplizierte auditorisch-propriozeptive Interaktion während einer  



                                                                                                                            

 

unterschwelligen schrittweisen Transposition der Tonhöhe des auditorischen Feedbacks (±2,6 

Hz) gezeigt. Hier führte die unterschwellige Transposition während der Durchführung einer 

Knie-Repositionierungsaufgabe zu einer zielgerichteten Modulation propriozeptiver 

Wahrnehmungen in die entgegengesetzte Richtung der Transposition. Weiterhin zeigte 

unsere Gruppe im zweiten Experiment, dass ein intensives bilaterales Training mit 

selbstproduziertem auditorischem Feedback nach 25-30 Minuten Training zu einer robusten 

Verbesserung der propriozeptiven Genauigkeit des Knies führte. Die Verbesserungen der 

propriozeptiven Wahrnehmungen waren sowohl beibehalten (ohne auditorisches Feedback 

nach 15 Minuten und 24 Stunden) als auch übertragbar (bei untrainierten Zielwinkeln). 

Dieses Experiment zeigte zum ersten Mal den positiven Einfluss des Gehörs auf das 

intermodale Lernen. Im dritten Experiment hat unsere Gruppe den Einfluss von selbst 

generiertem akustischem Feedback auf die motorische Bildgebung aufgeklärt. Hier haben wir 

gezeigt, dass die Durchführung von auditorisch geführten mentalen Bildern nach einem 

auditorisch-motorischen Training zu einer verbesserten kniepropriozeptiven Wahrnehmung 

im Vergleich zu herkömmlichen mentalen Bildern führte, d.h. die Vorstellung von 

Bewegungen ohne auditorisches Feedback. Auch hier waren die bei der 

Kniegelenkpropriozeption beobachteten Verbesserungen sowohl haltbar als auch in 

Abwesenheit von auditorischem Feedback auf untrainierte Winkel übertragbar. Die 

Ergebnisse dieser Experimente sind neuartig und haben eine immense Zweckmäßigkeit für 

die Anwendung in den Protokollen der Rehabilitation des Bewegungsapparates und der 

Neurologie.  

Schließlich wurden zwei zukünftige perspektivische Artikel in diese Dissertation 

aufgenommen, die mögliche Anwendungen verschiedener auditorischer Feedback-basierter 

Trainingsprogramme bei Patienten mit neurotoxischen onkologischen Therapien und 

Patienten mit minimalem Bewusstsein vorschlagen. Die prospektiven Einflüsse des 

auditorischen Feedbacks, die in diesen perspektivischen Artikeln vorgeschlagen werden, 

ergeben sich aus den Ergebnissen der Review- und Forschungsarbeiten, die in dieser 

Doktorarbeit durchgeführt wurden. 

Abschließend zeigt diese Doktorarbeit den komplizierten Zusammenhang zwischen den 

auditiven und propriozeptiven Modalitäten, die zur Entwicklung effizienter Trainings- und 

Rehabilitationsmaßnahmen genutzt werden könnten. Diese Forschungsarbeit entwickelte 

erstmals einen Stand der Technik aus der vorhandenen Literatur zum Einfluss von 

auditorisch-motorischen Trainingsmaßnahmen. Diese neuartige Arbeit zeigt auch, wie selbst  



                                                                                                                            

 

erzeugte auditorische Stimulationen effektiv genutzt werden können, um propriozeptive 

Wahrnehmungen zu erleichtern, d.h. ein integraler Bestandteil der motorischen Steuerung 

und Leistung. 

Schlüsselwörter: Sonifikation, motorische Steuerung, motorisches Lernen, Rehabilitation, 

Gelenkslageerkennung 
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Background 

The sense of body ownership feels to be intrinsic, stable and absolute. The development of this 

combined sense depends upon the joint processing of sensory and motor signals that 

accompany an activity (Tsakiris, Longo, et al., 2010). Moreover, the perception of owning 

one’s own body is adaptive and relates to correctly identifying oneself in an environment 

(Damasio, 1999; Tamar R Makin et al., 2008; Northoff et al., 2006). Research has suggested 

that multisensory integration of different sensory afferents might necessarily contribute 

towards attribution of the different body parts (Botvinick & Cohen, 1998; Tsakiris, Carpenter, 

et al., 2010), and also in the development of self-consciousness (Maravita et al., 2003). This 

joint multisensory integration of our senses helps in promoting the localized schematics for the 

perception of our body scheme, and the surrounding peripersonal space (Holmes & Spence, 

2004). 

According to Haggard and Wolpert (2005), our brain constitutes multiple representations of 

our body. The signals from proprioceptive receptors such as mechanoreceptors, muscle 

spindles, Golgi tendon organs, tactile receptors, interoceptors etc constantly project afferent 

signals to map the body segments, structure and surface in the primary somatosensory cortex. 

This information is then used to process and construct a higher order cognitive representation 

of the "body scheme". Here, the body scheme can be defined as a central representation of the 

spatial orientation of the body parts i.e. length, shape, configuration and hierarchical 

arrangement of limbs. This representation is not always incorporated in the conscious 

awareness and plays a major role in both the spatial and temporal organization of any 

performed bodily activity. Together, this central sensorimotor representation of the body 

schematics provides an adaptable, updated, supramodal, coherent representation of the body 

and its related activities (for a detailed explanation see (Haggard & Wolpert, 2005)).   

Recent empirical evidence has supported this notion from a range of studies. For instance, 

findings from single neuron recordings in primates (Iriki et al., 2001; Umiltà et al., 2008), 

neuroimaging studies in humans (Chaminade et al., 2005; Meredith, 2002), behavioural studies 

in healthy population groups (Maravita et al., 2002), and lesion specific injuries in humans i.e. 

post traumatic neurological injuries (Berti & Frassinetti, 2000; Maravita & Iriki, 2004) have 

conclusively supported this notion of joint integration of multiple sensory information to 

develop the body scheme in the brain (for detailed neural substrate meta-analysis see Di Vita 

et al. (2016)).  Moreover, research has pointed out the presence of a causal relationship between 
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the sensory modalities for the development of an ultimate perceptuomotor representation 

(Driver & Spence, 1998). This causal relationship between the sensory modalities can be best 

explained in the classic medical case of peripheral deafferentation i.e. lack of proprioceptive 

afferent in patient I.W (Gallagher & Cole, 1995). The patient I.W was completely deafferented 

below the neck for tactile and proprioceptive perceptions due to a virulent disease. The patient 

had no additional motor paralysis symptoms. The authors Gallagher and Cole (1995) revealed 

that although the patient retained a high level of motor control post training. This increment in 

performance, however, was strongly dependent upon the concomitant visual feedback, and 

conscious attention from the patient. I.W needed to explicitly monitor his body segments 

visually to identify their specific locations and often failed to properly execute motor tasks 

under higher information processing constraints induced for instance, in a dual-task setting 

(Gallagher, 1995; Gallagher & Cole, 1995). Therefore, the authors suggested that the 

importance of other sensory modalities such as, proprioceptive and tactile afferents for the 

development of body scheme and for computing and anticipating its actions (Gentilucci et al., 

1994; Sarlegna & Sainburg, 2009; Touzalin-Chretien et al., 2010). Furthermore, affirmations 

can also be drawn from blind population groups where learning and performing a motor action 

is generally automatic, even in the absence of vision, and under a dual-task setting 

(Limanowski & Blankenburg, 2016; Sarlegna & Sainburg, 2009).  

Based on the current state of literature, proprioceptive afferent information is considered to be 

a predominant modality required in formulating the sensorimotor representations of the body 

schematics. Having said that, the role of other congruent perceptual information i.e. vision, 

audition etc is also substantial (Cappagli et al., 2017; Harris et al., 2015; Liu & Medina, 2017). 

For instance, it has been presumed that coherent sensorimotor interaction of sensory input, such 

as, visual, auditory afferents with proprioceptive inputs together are also imperative in 

developing body schematics (Samad et al., 2015). Further, research concerning "body schema" 

during the past decades has asserted the predominant role of inert perceptuomotor 

representation for the computation and development of “neural models” for envisaging (Head 

& Holmes, 1911; Sekiyama, 2006). 

Additionally, in terms of aiding motor performance, the current state of evidence suggests a 

substantial role of this coherent, multisensory integration process for evaluating the 

peripersonal space (Cléry et al., 2015; di Pellegrino & Làdavas, 2015; Tamar R. Makin et al., 

2007). Here, this the term peripersonal space can be referred to as the relative position of body 

segments in association with the nearby objects and environment i.e. (di Pellegrino & Làdavas, 
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2015; Schicke, 2007). The neural substrates of the peripersonal space are preserved in the 

interconnected parietal and frontal regions of the brain (Cléry et al., 2015; di Pellegrino & 

Làdavas, 2015; Schicke, 2007). Moreover, the primary role of the peripersonal space can be 

pivotal in the sensory guidance of the motor behaviour, allowing a person to mediate 

interactions with surrounding objects and other people (Cléry et al., 2015; di Pellegrino & 

Làdavas, 2015). Primarily the literature suggests the exclusive role of this computation of 

peripersonal space schematics as a primordial defence mechanism for survival (Roncone et al., 

2016). However, recent literature suggests that this computational framework could also 

account for a fine-tuned motor execution of voluntary actions in the environment (Brozzoli et 

al., 2010; Tamar R. Makin et al., 2007; Murray & Wallace, 2011; Schicke, 2007). 

Together, the importance of this internally integrated sensorimotor representation of the body 

scheme, movements, the peripersonal space during motor control can be affirmed from 

literature suggesting its predominant role during the development of neural planning models 

(Avanzino et al., 2016; Dreher & Grafman, 2002; Emken & Reinkensmeyer, 2005; Flanagan 

& Wing, 1997; Fujiwara et al., 2016; Imamizu et al., 2003; Thoroughman & Shadmehr, 1999; 

Daniel M Wolpert et al., 1995; D. M. Wolpert & Miall, 1996). According to Daniel M Wolpert 

et al. (2011), the process of internal representation involves establishment of associations 

between motor and sensory variables i.e. internal models, which can represent features of 

movement, and/or environment. Here, the central nervous system computes the development 

of neural models for motor commands on the basis of information from past movement 

experiences. Initially, the internal perceptuomotor representation of the body, movements and 

the environment are used to compute sets of motor commands that will execute a task. In this 

process, two main types of neural models govern the aspects of motor functioning (Daniel M 

Wolpert et al., 2011). Firstly, the feed-forward models generate sensory consequences expected 

from a movement i.e. the model converts motor commands and estimates outcomes in terms 

of sensory afference information. After this, the computations from this model in terms of its 

accuracy can determine whether the motor task will accomplish its goal or will have to be 

adjusted for attaining the desired goal. Secondly, the inverse or feedback model after the 

movement is concluded allows the predictive sensory model to be updated by actual feedback 

information (van Beers et al., 2002; Daniel M Wolpert et al., 2011; Daniel M Wolpert et al., 

1995; D. M. Wolpert & Miall, 1996). Research from computational models, neuroimaging, 

behavioural and neuropsychological studies have conclusively supported the existence of such 

neural models for developing efficient motor commands (Boisgontier & Nougier, 2013; Dean 
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et al., 2009; Flanagan & Wing, 1997; Miall & King, 2008), and ultimately facilitating motor 

performance. 

Deficits in body scheme representation 

Studies have suggested that the deficits in internal sensorimotor representation of the body 

scheme can account for a wide array of deficits during the execution of voluntary motor 

activities (Avanzino et al., 2016; Blanke et al., 2004; Boisgontier & Nougier, 2013; Haswell et 

al., 2009; Thaler, 2002). The discrepancies in the sensorimotor integration of information can 

lead to some wide range pathologies in sensory inputs, spatial organization of body segments, 

segmentation, and bodily coherence (Boisgontier & Nougier, 2013; Corbett & Shah, 1996; 

Haggard & Wolpert, 2005). As mentioned before, the updating of the body schematics is 

dependent the upon constant integration of sensory afferents and motor commands. Here, a 

disruption in the integration of these two sources of information for instance due to deficits in 

sensory afferent information or incongruence between sensory and motor information could 

affect the development, resolution of the sensorimotor representations. Thereby, affecting the 

development of efficient motor planning, anticipation, and impacting motor control and 

coordination processes of the body. 

Thaler (2002) for instance proposed that a decline in the available state of sensory information 

might affect the state of a system and its response. Here, affirmations can be drawn from 

literature suggesting a neurological deficit associated decline in functioning of sensory systems 

(Bolognini et al., 2016; Ghai & Ghai, 2018; Ghai et al., 2017; S. Ghai et al., 2018; Ghai, et al., 

2018). Neurological patients with sensorimotor deficits have also been reported to have 

disrupted sensorimotor representations concerning the body schematics which further affects 

motor planning and execution. For instance, among the aged population groups (Boisgontier 

& Nougier, 2013), patients affected from stroke (Bolognini et al., 2016; Murphy et al., 2017), 

traumatic neurological injuries (Puopolo et al., 2013), Parkinson’s disease (Avanzino et al., 

2013; Sharpe et al., 1983), multiple sclerosis (Fling et al., 2014), have been documented with 

profound deficits in sensory and motor domains.  

Predominantly, a mismatch incongruency of sensorimotor information or a decrease in the 

quality of perceptual information can promote sensorimotor deficits concerning the spatio-

temporal components of the body schematics which further affects motor planning and 

execution (Boisgontier & Nougier, 2013; Skoura et al., 2005). Moreover, the sensorimotor 

discrepancies are supposedly thought to adversely impact the repertoire of the neural models, 
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thereby affecting the efficient development of the motor commands which might limit the 

system’s ability to perform fine-tuned adjustments during voluntary activities. Furthermore, 

these sensorimotor deficits can account for a wide range of motor symptoms ranging from pain 

(Brun et al., 2017), fatigue (Chumacero et al.; Kuppuswamy et al., 2015), stiffness, inefficient 

movement patterns (Meyer et al., 2014) and more (for a detailed review see (Levit-Binnun et 

al., 2013)).  

Interventions 

Several interventions have been incorporated as rehabilitation strategies to facilitate the 

development of these sensorimotor representations. For instance, external sensory stimulations 

(Kalisch et al., 2008; Thaut, 2005), biofeedback (Bisson et al., 2007; Hasegawa et al., 2017; 

Sterman et al., 1974), mental imagery (Toppi et al., 2014), physiotherapy (Chen & Shaw, 

2014), augmented reality (Adamovich et al., 2009; Yen et al., 2011), electrical stimulations 

(Jack et al., 2009; Vuckovic et al., 2015), physical therapy (McCaskey et al., 2018), and more 

(Makino et al., 2016).  Nevertheless, recently a lot of emphases has been laid on mediating the 

sensory deficits together with motor rehabilitation by applying external sensory stimulation as 

a neuroprosthetic (Ghai et al., 2017; Ghai, et al., 2018; Hatem et al., 2016; Lam et al., 2008; 

Scholz et al., 2016a; Urra et al., 2015). The external sensory information has been reported to 

facilitate the saliency of the deficit internal sensory pathways and facilitate the spatiotemporal 

components of the sensorimotor representations of the motor tasks in the brain (Huang et al., 

2006; Schmitz et al., 2013). This then might allow in an enhanced representation of the body 

schematics, the peripersonal space and support the development of predictive neural models. 

Thereby, assisting in the development of stable internal feedback and feedforward loop of 

motor planning (Effenberg, 2005; Effenberg et al., 2016; Effenberg & Schmitz, 2018; 

Effenberg et al., 2015; Ghai et al., 2017; Ghai,  et al., 2018; Ghai, et al., 2018; Schmitz et al., 

2013).  

Recent research in the field of sensory neuroprosthetics have analyzed the effects of different 

sensory stimuli in auditory, visual and tactile domain on motor performance (Hatem et al., 

2016; Lam et al., 2008; Urra et al., 2015). However, the literature predominantly supports the 

beneficial role of auditory stimuli (Ghai et al., 2017; Spaulding et al., 2013;  Thaut & Abiru, 

2010). The main reasons which underlie the beneficial effects are thought to be multifaceted. 

Firstly, rich neuroanatomical interconnectivity has been reported between auditory and motor 

cortex (Ermolaeva & Borgest, 1980; Felix et al., 2011; Thaut et al., 2014). Here, an inference 
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can be drawn from literature evaluating auditory startle reflex on animal models (Mirjany et 

al., 2011; Nodal & López, 2003). Studies using Double-labelling experiments have revealed 

that cochlear root neurons in the auditory nerve can project bilaterally to sensorimotor paths, 

including synapsing on reticulospinal neurons (de la Mothe et al., 2006; Ermolaeva & Borgest, 

1980; Nodal & López, 2003). Likewise, patterns of thalamocortical and corticocortical inputs 

unique to auditory cortex have also been reported (for a detailed review see (Read et al., 2002)). 

In humans, neuroimaging data confirms the presence of cortico-subcortical network involving 

putamen, supplementary motor area, premotor cortex and the auditory cortex especially for 

perceiving and processing rhythmic auditory stimuli (Chen et al., 2006; Giovannelli et al., 

2012; Grahn & Rowe, 2009; Tecchio et al., 2000). Secondly, the human auditory system can 

consistently perceive auditory cues 20-50ms faster as compared to its visual and tactile 

counterparts (Nombela et al., 2013; Spidalieri et al., 1983; Thaut et al., 1999). Thirdly, the 

auditory system has a strong bias to identify temporal patterns of periodicity and structure as 

compared to other sensory-perceptual systems (Grahn, 2012; Repp & Su, 2013; Thaut et al., 

1999). For instance, auditory rhythmic perception has been reported to exist well beyond the 

limits of temporal resolution of visual modalities i.e. when periodicities are presented at a rate 

of approximately 300-900 ms (Grahn, 2012; Noorden & Moelants, 1999).  

Furthermore, the external auditory stimulations which when presented in a coherent 

multimodal context can enhance the activation in areas associated with biological motion 

perception i.e. the action observation system and in sub-cortical structures involving striatal-

thalamic frontal motor loop (Brock et al., 2012; Scheef et al., 2009). This then might improve 

perceptual analysis of a movement i.e. movement and body schematics, ultimately resulting in 

efficient motor planning and execution (Schmitz et al., 2013). Although, several studies have 

provided substantial evidence concerning the beneficial effects of external auditory 

stimulations, such as patterned sensory enhancement, rhythmic auditory cueing, movement 

sonification etc. None of the studies, till date and to the best of my knowledge have elucidated 

the contextual relationship concerning the merging of afferent sensory inputs i.e. especially 

between auditory and proprioceptive modality (both of which are substantially involved in the 

development of body schematics). Therefore, I believe that analysing the contextual 

relationship between the auditory and proprioceptive sensory modalities is strongly warranted. 

Addressing these contextual relationships between the auditory and proprioceptive modalities 

will not only assist in the development of effective rehabilitation protocols but also would 

extend our understanding of how these sensory modalities converge to develop the effective 
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body scheme. Moreover, certain studies have also supported the notion of the application of 

external sensory stimulations as a rehabilitation intervention because of their viability and cost-

effectiveness (Wright et al., 2016; Young et al., 2016). 

This present thesis attempts to elucidate these questions, in three distinct parts i.e. literature 

review, experimental studies, and future perspectives and directions. The main aim of the initial 

literature review for this thesis was to undermine how external auditory stimulations might 

influence proprioception. However, to the best of my knowledge, no study could be identified 

that analysed how the auditory stimulations could influence proprioception. Therefore, the 

initial literature review attempted to focus on the influence of external auditory stimulations on 

the motor outcomes in terms of gait performance, arm’s reach, postural stability, and kinematic 

changes. These effects were studies in a range of systematic reviews and meta-analyses on 

population groups which were healthy, affected from neurological disorders such as, 

Parkinson’s disease, Stroke, Multiple Sclerosis, and Cerebral Palsy. The outcomes from the 

literature reviews allowed in development of three distinct experimental studies where the 

influence of external auditory stimulations on proprioception was studied. Finally, a futurized 

implementation of such external auditory stimulation has been suggested in the field of 

rehabilitation medicine. The following section briefly outlines the structure and the main 

outcomes of the present thesis. 

Thesis structure 

In the first chapter, a systematic review and meta-analyses analysed the influence of rhythmic 

auditory stimulations on spatiotemporal parameters of gait in healthy population across 

different age groups. Here, a systematic review of 34 studies (PEDro score 4.7 i.e. "fair 

quality") involving 854 participants i.e. 499 young and 355 elderly participants revealed a 

beneficial effect of rhythmic auditory stimulations on the spatiotemporal parameters of gait 

such as gait velocity, stride length, and cadence. A meta-analysis of the included studies 

revealed a positive large effect of rhythmic auditory cueing on gait velocity i.e. Hedge's g: 

0.85, and cadence g: 1.1. A medium positive effect size on stride length g: 0.61 and a small 

positive effect on the coefficient of variability on stride time g: 0.41. Additionally, this meta-

analysis also revealed the beneficial effects of rhythmic auditory stimulations to counteract 

higher information processing constraints induced during a dual-task scenario. For instance, a 

large positive effect size for gait velocity was observed for young participants performing a 

dual-task with instructions to walk fast g: 0.81, and for elderly g: 0.58. This review for the first 
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time evaluated the influence of rhythmic auditory cueing in population groups across aging. 

Moreover, this review provides an important insight on how rhythmic auditory stimulations 

could be incorporated in training interventions for healthy population groups to promote 

auditory motor entrainment and to reduce higher cognitive constrains that promote fall related 

injuries. 

In the second chapter, A systematic review and meta-analyses were carried out to analyse the 

influence of rhythmic auditory stimulations on spatiotemporal parameters of gait in patients 

affected by Parkinson's disease. Here, a systematic review of 50 studies (PEDro score 5.4 i.e. 

"fair quality") involving 1892 participants revealed a beneficial effect of rhythmic auditory 

stimulations on spatiotemporal parameters of gait such as gait velocity, stride length, and 

cadence. A meta-analysis of the included studies revealed a small effect of rhythmic auditory 

cueing on gait velocity i.e. Hedge's g: 0.23, and a medium positive effect on stride length g: 

0.42, double limb support phase g: 0.5. Moreover, a negligible small reduction in cadence g: -

0.05, and a large reduction in turn time g: 2.2 were reported. This review for the first tie 

demonstrated that training with rhythmic auditory stimulations promoted a stabilizing ait for 

patients with Parkinson's disease i.e. cadence which usually increases during a shuffling gait 

in patients with Parkinson’s disease was reduced. The article predominantly reviewed and 

reported the neurophysiological mechanisms underlying "kinesia paradoxica" which utilize the 

preserved structures of the brain to bypass the deficit internal timing circuitry involving the 

basal ganglia, and thalamus. Furthermore, the article also for the first time reported the specific 

training dosages that can be incorporated with the application of rhythmic auditory stimulations 

i.e. a minimal training of 20-45 minutes per session for three to five days a week. Moreover, 

this review provides important insights into how auditory stimulations could be incorporated 

in training interventions for patients with Parkinson’s disease to promote auditory-motor 

interactions for reducing higher cognitive constraints that promote fall-related injuries. 

In the third chapter, a systematic review and meta-analyses were carried out to analyse the 

influence of rhythmic auditory stimulations on spatiotemporal parameters of gait in patients 

affected from stroke. Here, a systematic review of 37 studies (PEDro score 5.7 i.e. "fair 

quality") involving 938 participants revealed a beneficial effect of rhythmic auditory 

stimulations on spatiotemporal parameters of gait such as gait velocity, stride length, and 

cadence. A meta-analysis of the included studies revealed a medium effect of rhythmic auditory 

cueing on gait velocity i.e. Hedge's g: 0.73, stride length g: 0.58, and cadence: 0.75. Moreover, 

enhancements in dynamic postural stability were demonstrated by a large effect size reduction 
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in timed up and go test g: -0.76. This review overcame the limitations of the previously 

published systematic reviews and meta-analysis and demonstrated that training with rhythmic 

auditory stimulations promoted a stabilizing gait for patients with stroke. Furthermore, the 

article also for the first time reported the specific training dosages that can be incorporated with 

the application of rhythmic auditory stimulations i.e. a minimal training of 20-45 minutes per 

session for three to five days a week. This review provides important implications for 

developing essential training interventions by modifying auditory signal characteristics for 

enhancing the saliency of sensory information. Further, this might ultimately support the 

development of perceptuomotor representations and enhance motor performance and learning. 

In the fourth chapter, a systematic review and meta-analyses were carried out to analyse the 

influence of rhythmic auditory stimulations, real-time auditory feedback on arm recovery 

following stroke. Here, a systematic review of 23 studies (PEDro score 5.7 i.e. "fair quality") 

involving 585 participants revealed a beneficial effect of rhythmic auditory stimulations on 

arm recovery parameters such as Fugl-Meyer assessment, elbow range of motion, Wolf motor 

function test, and stroke impact scale. A meta-analysis of the included studies revealed a large 

effect of the auditory stimulation strategies on Fugl-Meyer assessment g: 0.79, stroke impact 

scale g: 0.95, a medium positive effect on elbow range of motion g: 0.37. A negative medium 

effect was observed in wolf motor function time test g: -0.55. In a novel aspect, the review for 

the first time synthesized the data for the influence of real-time auditory feedback or 

sonification on arm recovery. Here, the beneficial effects of real-time auditory feedback were 

demonstrated on Fugl-Meyer scores as compared to rhythmic auditory stimulations i.e. g: 1.3 

as compared to 0.6 observed with rhythmic auditory cueing, respectively.  Furthermore, the 

article also for the first time reported a specific auditory-motor training dosage that can be 

incorporated with the application of rhythmic auditory stimulations i.e. a minimal training of 

30 minutes to 1 hour per session for three to five days a week. This review provides important 

implications for developing essential training interventions by modifying auditory signal 

characteristics for enhancing the saliency of sensory information. Moreover, the article also 

provides important implications of incorporating bilateral training interventions with rhythmic 

auditory cueing. This article in depth focusses on the shared and distinct neurophysiological 

mechanisms between the rhythmic auditory stimulations and real-time kinematic auditory 

feedback i.e. sonification strategies. 

In the fifth chapter, a systematic review and meta-analyses were carried out to analyse the 

influence of rhythmic auditory stimulations on gait performance in people with cerebral palsy. 
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Here, a systematic review of nine studies (PEDro score 5.7 i.e "fair quality") involving 227 

participants i.e. 108 children and 119 adults revealed a beneficial effect of rhythmic auditory 

stimulations on spatiotemporal, kinematic parameters of gait in people with cerebral palsy. A 

meta-analysis of the included studies revealed a large effect of rhythmic auditory cueing on 

gait velocity Hedge's g: 1.1. A medium positive effect was observed on stride length g: 0.50, 

and cadence g: 0.30. Moreover, enhancements in dynamic gait stability were demonstrated by 

a joint kinematic analysis of lower limb demonstrated in gait dynamic index. Here, a large 

effect size in positive domain in g: 0.90 indicated beneficial effects of rhythmic auditory cueing 

on kinematic parameters of gait. This review for the first time demonstrated that training with 

rhythmic auditory stimulations promoted a stabilizing gait for people with cerebral palsy. 

Furthermore, the article also for the first time reported the applicability of tainting intervention 

with auditory cueing as a home based, cost-effective rehabilitation intervention. 

In the sixth chapter, a systematic review and meta-analyses were carried out to analyse the 

influence of rhythmic auditory stimulations on gait performance in patients with multiple 

sclerosis. Here, a systematic review of five studies (PEDro score 5.2 i.e. "fair quality") 

involving 188 participants revealed a beneficial effect of rhythmic auditory stimulations on 

spatiotemporal parameters of gait in people with cerebral palsy. A meta-analysis of the 

included studies revealed a large positive effect of rhythmic auditor stimulations on cadence 

Hedge's g: 1.0, a medium positive effect on gait velocity Hedge's g: 0.67 and stride length g: 

0.7. Moreover, enhancement in dynamic gait, postural stability was demonstrated by a small 

effect size reduction in the Timed 25 feet walking test g: -0.17. This review revealed novel 

outcomes from neuroimaging studies suggesting the incidences of white matter plasticity with 

musical training. Moreover, this review suggests the implications of home-based interventions 

with rhythmic auditory cueing and mental imagery to promote enhancements in spatiotemporal 

gait parameters. 

In the seventh chapter, a systematic review and a meta-analysis evaluated the influence of 

information processing constraints induced by dual-tasks on postural stability in population 

groups across aging, and neurological disorders such as stroke, and multiple sclerosis. 

Furthermore, the secondary analysis involved elucidating the influence of training with a 

cognitive-motor dual-task i.e. dual-task training. The reason why this analysis was performed 

was to study how information processing cognitive constraints might play a key role in 

influencing the autonomic functioning i.e. proprioception needed to maintain postural stability. 

Here, a systematic review of 42 studies (PEDro score 4.7 i.e. "fair quality") involving 1480 
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participants revealed a beneficial effect of dual-task training for enhancing postural stability. 

Moreover, an inverse relationship between the complexity of dual-task and postural stability 

was also reported in the review. Firstly, the meta-analysis report revealed that performing a 

dual-task training resulted in enhanced postural stability with a large effect size i.e. a positive 

effect in Berg Balance Scale Score Hedge's g: 1.63. Here, as a novel finding, the analysis 

revealed that a variable priority ensured during a training intervention allows enhanced 

performance in postural stability as compared to a fixed priority regimen. Moreover, these 

outcomes bore practical applications that helped in the development of efficient audio-motor 

training protocols in the experiments performed in this thesis. For instance, evaluation of 

variable priority parameter allowed us to develop our instructions in the following experimental 

designs as to not explicitly ask the participant to focus specifically on either the proprioceptive 

task or the auditory feedback. The meta-analysis also revealed an age-related decline in 

cognitive performance. Finally, as a novel aspect, this review for the first time demonstrated 

the neurophysiological mechanisms suggesting an increased complexity with the verbal 

component of a dual-task. Outcomes from this systematic review and meta-analysis can allow 

future studies to develop effective rehabilitation protocols to facilitate cognitive performance 

and reduce falls. 

These chapters concluded the literature review section of the thesis. Hereon, interpretations 

from the literature review assisted in the development of research hypothesis for the thesis to 

elucidate the contextual relationship between auditory and proprioceptive modalities. Here, the 

studies were designed to critically analyse the influence of external auditory stimulations i.e 

real-time kinematic auditory feedback (sonification) on proprioceptive perceptions, intermodal 

learning and its joint influence during internal motor simulation of movements. 

The predominant role of real-time auditory feedback has been emphasized in rehabilitation by 

several studies (Aman et al., 2014; Gay et al., 2010; Laskowski et al., 2000; Lephart et al., 

1997; Ribeiro & Oliveira, 2007; Rosenkranz et al., 2009). Therefore, in this present thesis, I 

believe that exploring the possible influences of concurrent auditory feedback on 

proprioception might provide multifaceted benefits. First and foremost, the outcomes might 

provide a better understanding of intervention designs in rehabilitation, and sports settings with 

auditory feedback. Moreover, the evaluation of audio-proprioceptive coupling during an 

arbitrary action (knee-joint proprioception) might allow a better understanding of the 

transmodal activity of auditory and motor domains beyond music and language (Altenmüller 

et al., 2009). Finally, a better comprehensive understanding might be developed to support the 
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psychophysical (Butler et al., 2012), neurophysiological (Ishikawa et al., 2015), studies 

analyzing the multisensory and cross-modal integration between auditory and proprioceptive 

domains. Till this date, only a handful of researchers have attempted to answer the possible 

effects of real-time auditory feedback on proprioception (Danna & Velay, 2017; Dyer et al., 

2017; Ghez et al., 2000; Scholz et al., 2016b). However, their interpretations of proprioceptive-

auditory substitution are mostly speculative. For instance, none of the performed studies 

excluded vision during the performance of the motor task. As a result, possible influences from 

the visual modality during multisensory or cross-modal integration processes can be expected 

(Lonn et al., 2000; Plooy et al., 1998; Verschueren et al., 1998). Research indicates the 

importance of isolating inputs from specific sensorimotor structures to provide a better 

understanding of direct influence over proprioception (Gay et al., 2010). Therefore, in the 

following studies, our group analysed the contextual relationship between the auditory and 

proprioceptive modality. 

In the eighth chapter, fifty healthy participants were randomly allocated to control (n=15), and 

experimental group I (15), and experimental group II (20). This experiment was performed in 

two steps. Firstly, the control group and experimental group I performed an active knee-

repositioning task using their dominant leg, with/without additional real-time auditory 

feedback where the frequency was mapped in a convergent manner to two different target 

angles (40° and 75°). Statistical analysis revealed significant enhancement in knee re-

positioning accuracy for the constant and absolute error with real-time auditory feedback, 

within and across the groups. Besides this convergent condition, we established a second 

divergent condition. Here, a step-wise transposition of frequency was performed to explore 

whether a systematic tuning between auditory-proprioceptive repositioning exists. No 

significant effects were identified in this divergent auditory feedback condition.  

After the first experiment, the experimental group II (n=20) was further included to better 

understand the relationship between subliminal pitch transposition and proprioceptive 

perceptions. Here, we investigated the influence of a larger magnitude and directional change 

of step-wise transposition of the frequency. In a first step, results confirm the findings of 

experiment I i.e. auditory feedback enhanced knee proprioceptive repositioning “transiently”. 

Moreover, significant effects on knee auditory-proprioception repositioning were evident when 

divergent auditory feedback was applied. During the step-wise transposition, participants 

showed systematic modulation of knee movements in the opposite direction of transposition. 

The results from this study provide evidence of the intricate relationship between the auditory 
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and proprioceptive modality. The experiment concludes that providing real-time auditory 

feedback can enhance knee repositioning accuracy in a transient manner. 

In the ninth chapter, thirty healthy participants were randomly allocated to control (n=15), and 

experimental groups (15). Participants performed an active knee-repositioning task, bilaterally, 

with/without additional real-time auditory feedback. Here, the frequency of the auditory 

feedback was mapped to four target angles (20°, 40°, 60° and 80°). Retention measurements 

were performed on the same four angles, without auditory feedback, after 15 minutes, 24 hours 

of the final proprioceptive test. Thereafter, a “generalized” knee proprioceptive test was 

performed to assess motor skill transfer on three untrained angles (15°, 35°, 55°). Statistical 

analysis revealed significant enhancement in knee proprioception with real-time auditory 

feedback. This enhancement in proprioception was also evident in tests performed between the 

auditory-motor training blocks i.e. 5th and 6th blocks (without auditory feedback) in the 

experimental group. Enhancement in proprioception also remained stable during delayed 

retention measurements (post 15-minute, 24-hour). Similarly, enhancement in the 

“generalized” proprioceptive accuracy on untrained angles was evident in the experimental 

group as compared to the control group. This study extends the results of the previous 

experiment and demonstrates beneficial effects of real-time auditory feedback to facilitate 

intermodal learning by enhancing knee proprioception in a retainable and a generalized 

manner.  

In the tenth chapter, forty-two healthy participants were randomly allocated into three training 

groups. This study aimed to primarily extend the findings of the previous study i.e. chapter ten. 

All the groups initially trained bilaterally at the knee joints with real-time auditory feedback 

for four target angles (20°, 40°, 60° and 80°). Thereafter, training was performed with/without 

mental practice, and with/without auditory guided mental practice. During mental imagery 

condition, the participants were verbally instructed to imagine the knee position at the trained 

four angles whenever instructed. Retention measurements were performed after the training 

blocks i.e. after 15 minutes and 24 hours of the final test. A generalized proprioceptive test 

assessed the unspecific transfer of proprioception on four different angles (10°, 30°, 50° and 

70°). Statistical analysis revealed significant enhancement in proprioceptive accuracy for the 

auditory guided mental practice group as compared to the group performing mental practice 

without auditory guidance, and the group performing no mental practice. All the groups 

demonstrated an enhancement in proprioception during a generalized unspecific proprioceptive 

test. Further, a strong correlation was reported for enhanced levels of attention for auditory 
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guided mental practice group as compared to unguided mental practice group. This study, for 

the first time demonstrates beneficial effects of auditorily guided mental imagery on knee 

proprioception and a suggests strong correlation with attention. This trial was registered in the 

German Clinical Trial Registry DRKS00014244. 

In conclusion, these experimental studies demonstrate the potential of the such a spatial-

temporally congruent auditory feedback for enhancing motor perception and mediating 

intermodal learning. In the second and the third experimental studies, I was also able to 

substantiate the findings of the meta-analyses which suggested a shorter auditory-motor 

training duration i.e. 20-45 minutes, which could effectively establish robust motor learning 

parameters. Moreover, the third experiment demonstrates novel findings of the joint application 

of auditory-motor training with an internal motor simulation of movements to possibly extend 

the benefits of physical training. Nevertheless, each chapter outlines detailed steps that could 

be implemented in future studies to address the limitations in the current and the future state of 

literature. 

In the eleventh chapter, a novel rehabilitation intervention as a futuristic perspective was 

published. Here, a rehabilitation strategy has been mentioned while jointly incorporating 

multimodal feedback augmenting strategies for instance, real-time auditory feedback and 

virtual reality. This perspective proposes how a sensory stimulus could be associated with 

emotion such as, fear to facilitate rehabilitation in patients with higher cortical dysfunctions. 

In this chapter possible scenarios are discussed during which memory consolidation might be 

instigated habitually (implicitly) and might also promote internal simulation of movements 

independent of the cortical structures. This perspective suggests delivery of subliminal, 

aversive and kinematic audio-visual stimuli via neuroprosthetics in patients with neocortical 

dysfunctions. Moreover, possible scenarios are suggested by which these stimuli might bypass 

damaged neocortical structures and possibly assisting in motor relearning. Anticipated 

neurophysiological mechanisms and methodological scenarios have been discussed in this 

perspective. This approach introduces novel perspectives into neuropsychology as to how 

subcortical pathways might be used to induce motor re-learning. 

In the twelfth chapter, a perspective is presented to portray the influence of external auditory 

stimulations on rehabilitation in patients with cancer. Typically, patients undergoing 

chemotherapy, radiotherapy and immunotherapy are subjected to neurotoxicity in the central 

and peripheral nervous system. These neurotoxic changes promote joint adverse effects in 
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motor, sensory and cognitive domains, further predisposing the patients towards fall related 

morbidity and mortality. Based on the findings of our literature review and experimental 

studies this chapter as a perspective discusses the possible underlying mechanisms by which 

external auditory stimulations might influence motor performance in patients subjected to 

neurotoxic changes due to cancer treatment.  

Taken together, the current thesis demonstrates the strong influence of auditory system over 

the motor domain modality. In the group of systematic reviews and meta-analyses the 

synthesized published literature conclusively suggests the effects of auditory stimulations on 

motor control. Furthermore, the experimental evidence from chapter nine, ten and eleven 

provide evidence of the contextual, intricate relationship between the auditory and 

proprioceptive modalities. Here, the evidence suggests that high level of spatiotemporal 

congruency between the sensory modalities i.e. auditory and proprioceptive modality can 

provide a concomitant increase in the sensory perception of proprioception and its intermodal 

learning. Finally, in the range of experiments, we demonstrated the strong influence of 

kinematic real-time auditory feedback on motor perception, intermodal learning and its joint 

effects with internal motion simulation. The clinical implications of the auditory modality in 

modern rehabilitation settings i.e. musculoskeletal and neurological conditions have been 

discussed in detail in the current thesis. 
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Main findings & interpretations 

This literature review was conducted to develop a state of knowledge concerning the 

influence of auditory stimulations, dual-tasks on motor recovery in both healthy and 

population groups with neurological disorders. The main findings and the limitations in the 

scientific literature are as follows: 

Findings: 

1. Auditory stimulations can facilitate motor recovery in both healthy and population 

groups with neurological disorders.  

2. Auditory stimulations facilitate motor recovery effectively as compared to 

conventional rehabilitation approaches for instance, electrical stimulation, virtual 

reality, physiotherapy, hydrotherapy etc.  

3. The findings from the dose-response meta-analysis contradict conventional approach 

of thought that states more training is beneficial for recovery. The findings however 

suggest that a small training duration on an average ranging from 25-45 minutes 

lasting for 3-5 times a week can yield maximum increments in motor performance.  

4. Training with auditory feedback can reduce incidence of cognitive overload and 

prevent movement re-investment i.e. conscious control of movement, prevent 

movement failure i.e. falls.  

5. Auditory stimulations can facilitate recovery by acting on several mechanisms. For 

instance, facilitating activations in neurological pathways, instigating plasticity, 

smoothening musculoskeletal activation and more. 

6. Rehabilitation approaches incorporating auditory stimulations are extremely cost-

effective and follow best-practice principles in rehabilitation. Therefore, their 

application is highly plausible especially in developing countries where morbidity and 

mortality associated with movement disorders is high.  

Limitations: 

1. Joint proprioception: In the conducted literature review that evaluated a total of 6,147 

studies. No study reported the direct influence of auditory stimulations on joint 

proprioception. Although, several studies speculated the beneficial influence on joint 

proprioception, no clinical evaluation has been performed till date. This lack of 

knowledge inhibits the interpretation concerning how auditory and proprioceptive 

modalities might converge to facilitate motor control and performance. 
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2. Lack of sonification research: In the literature review only few studies were identified 

that analyzed the influence of real-time kinematic auditory feedback on motor 

recovery. One of the review studies reported substantial enhancements in arm 

recovery (Fugl Meyer assessment: Sonification 1.3 vs Rhythmic auditory cueing 0.6) 

in stroke patients. Therefore, expanding the research concerning the beneficial 

influence of real-time auditory feedback on motor control and learning is a topic that 

warrants immediate research. 

3. A training dosage of rhythmic auditory cueing has been comprehensively evaluated in 

the published literature. However, no study till date has evaluated the amount of 

training essential with real-time auditory feedback i.e. sonification. 

 

The main findings from the literature allowed in a better understanding of the mechanisms by 

which auditory stimulations allowed enhancements in motor performance. Thereby, helping 

in development of efficient experimental protocols. Moreover, the gaps identified in the 

current state of literature will provide a clearer perspective of what specific aspects strongly 

warrant clinical research.
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Abstract 

Motor imagery training has been realized in sports and motor rehabilitation successfully. 

With decreased ability of physical training due to limitations of cognition or physiology 

mental training is of increasing relevance. A new kind of auditory self-guided motor 

imagery training (ASG-MIT) is introduced and applied here, using individual acoustical 

models created by one’s own movement kinematics in the physical training session in 

advance to ASG-MIT. Results demonstrate enhanced efficiency of ASG-MIT on a knee 

angle repositioning-task compared to conventional motor imagery and control groups. 

ASG-MIT seems to lead towards more specific allocations of sensory-motor 

representations resulting in more precise internal simulations during imagery. ASG-MIT is 

applicable on performance optimization in sports as well as in motor rehabilitation in 

future: On Polyneuropathy or stroke induced hemiparesis etc. Especially on Parkinson 

patients therapeutic use of established ASG-MIT in combination with real-time movement 

sonification on movement therapy is a promising approach.  (WHO 

Trial:DRKS00014244)     
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Introduction 

Proprioception is integral during motor planning, control and learning (Collins, 2009). 

Literature reports that deficits in proprioception are strongly correlated with higher 

predisposition to injuries and movement disorders (Fridén, Roberts, Ageberg, Waldén, & 

Zätterström, 2001; Lephart, Kocher, Fu, Borsa, & Harner, 1992). Deficits in 

proprioceptive afferents might affect the development of perceptuomotor representations 

and exacerbate motor deficits (Meyer, Karttunen, Thijs, Feys, & Verheyden, 2014; Sober 

& Sabes, 2003). Research indicates that augmented auditory knowledge of performance 

enhances the performance in a dynamic balance task (Hasegawa, Takeda, Sakuma, Mani, 

Maejima, & Asaka, 2017). Nevertheless, recent studies have reported that this deficit can 

be supplemented by a native sensory modality which might share high level of 

spatiotemporal congruency with the proprioceptive modality during skill acquisition 

(Dyer, Stapleton, & Rodger, 2017; Effenberg & Schmitz, 2018; Sigrist, Rauter, Marchal-

Crespo, Riener, & Wolf, 2015). More recently Ghai, Schmitz, Hwang, and Effenberg 

(2018a), too reported beneficial effects of real-time auditory feedback on knee-

proprioceptive accuracy. The authors suggested that high spatiotemporal congruency 

between the auditory and proprioceptive inputs might induce a cross-modal exchange of 

inputs and thereby enhancing knee-proprioception subsequently. Schmitz, Mohammadi, 

Hammer, Heldmann, Samii, Münte et al. (2013)  in an fMRI study reported that mere 

observation of a congruent audio-visual stimuli amplified the activation in the human 

action observation system including the cortical and sub-cortical structures of the motor 

loop.  

Likewise, research by Ghai, Schmitz, Hwang, and Effenberg (2018b) reported that these 

beneficial effects of auditory feedback on proprioception are not limited to a cross-modal 

exchange of information. On the contrary, the auditory feedback can also be utilized in a 

training regimen being based on the principles of multisensory integration. (Ghai, 

Schmitz, et al., 2018b; Viswanathan, Fritz, & Grafton, 2012), demonstrated that knee-

proprioceptive learning can be facilitated in a sustainable manner with self-generated real-

time auditory feedback. The authors demonstrated that this modification in the auditory 

motor training regimen allowed enhancements in proprioceptive accuracy after 30-40 

minutes of auditory motor training. In the current research we aim to extend the findings 

of this research by elucidating the joint influence of self-auditory guided motor imagery 

(ASG-MIT) on knee proprioception. Mental imagery is an established training strategy 
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that plays a critical role in enhancing motor performance by working on the motor 

planning phase of a movement (Shenton, Schwoebel, & Coslett, 2004; Willems, Hagoort, 

& Casasanto, 2010). Literature reports that imagined and executed movement share a high 

level of spatio-temporal congruence (Heremans, Helsen, De Poel, Alaerts, Meyns, & Feys, 

2009), are bound by the same motor laws , and lead to similar autonomic changes in the 

body (Pinto, Ramos, Lemos, Vargas, & Imbiriba, 2017). Previous studies have confirmed 

that disruptions in sensory afferent information can disrupt motor imagery (McCormick, 

Zalucki, Hudson, & Lorimer Moseley, 2007). Therefore, it can be expected that externally 

supplementing the sensory information might also support the motor imagery of the 

simulated movement.  

Previously,  demonstrated that external sensory cueing can facilitate the vividness, spatio-

temporal resolution of the motor imagery. The participants in this study 

performed/imagined cyclic wrist movements in the presence/absence of auditory cues. The 

authors reported that movement related auditory cues facilitated motor imagery as 

demonstrated for higher scores in vividness and temporal congruence with the application 

of external auditory cueing. Similarly, beneficial effects of auditory cued motor imagery 

have been reported to facilitate gait recovery in patients with neurological disorders (Ghai 

& Ghai, 2018; Seebacher, Kuisma, Glynn, & Berger, 2016). Based on the findings of 

(Ghai, Schmitz, et al., 2018b), we expected that modifying the experimental paradigm by 

inducing mental imagery with concurrent auditory guidance might even enhance the 

perceptuomotor representations of the movement i.e. during mental imagery. Here, the 

intricate auditory-motor interfaced mapping after the auditory-motor training could further 

allow additional enhancements in feedforward and feedback information that in turn can 

facilitate proprioception. Therefore, we deduced three hypotheses for the current 

experiment.  

Efficiency of multimodal training 

1) According to our previous findings , we expect auditory-motor training to enhance knee-

proprioception persistently. 

Efficiency of multimodal training 

2) ASG-MIT enhances knee-proprioception compared to conventional mental imagery or 

no mental imagery persistently. 
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Specific vs. Generalization 

3) Effects of  auditory-motor training and auditory guided mental imagery are not limited 

to the trained angles but are given for the whole trained range of motion. 

Methods 

Experimental Design 

Forty-two participants were randomly placed in equal numbers to control group (CT, 

n=14), experimental group performing conventional mental imagery without auditory 

guidance (EXP MP, n=14) and experimental group performing mental imagery with 

auditory guidance (EXP ASG-MIT, n=14). All the groups initially trained identically with 

auditory feedback. Thereafter, the interventions in the groups differed. For instance, CT 

group performed no mental imagery at all, instead they were asked to solve mathematical 

equations in a non-verbal manner. The EXP MP group performed mental imagery without 

any guided auditory feedback i.e. they heard ocean waves as “shame acoustics” during the 

mental imagery phase. The EXP ASG-MIT group performed mental imagery with self-

recorded auditory feedback. In each group, participants executed a verbally instructed, 

active (knee-joint) repositioning task, bilaterally for four different angles 20°, 40°, 60° and 

80°. The experiment consisted of nine treatment blocks, which were preceded by a knee 

repositioning test (pre-test). Re-positioning tasks on four angles i.e. 20°, 40°, 60°, and 80° 

without any auditory feedback were performed on 1st, 3rd, 5th, 7th, 8th and 9th block. Here, 

the 8th and 9th block represented retention measurements post 15 minutes and 24 hours 

respectively. Auditory feedback was provided in the 2nd, 4th, 6th and 8th block. Post 

retention measurement, proprioceptive accuracy was tested in a generalized knee 

proprioception test i.e. G-test for four untrained target angles i.e. 10°, 30°, 50° and 70. 

This study was registered at the German Clinical Trian Registry and WHO International 

Clinical Trials Registry Platform (DRKS ID: DRKS00014244). 
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Figure 1 Experimental schematics for each block performed by three groups. Green blocks 

represent active training phase with real-time auditory feedback (R-AF1, R-AF2), and 

mental imagery (MP1, MP2) blue blocks represent initial and further re-positioning blocks 

(PPT-1, PPT-2… PPT-Final) and retention measurements (RET 15min, RET 24 hrs) 

without auditory feedback. (Pre-test: Initial proprioceptive test, PPT 1: verbal re-

positioning test without auditory feedback, R-AF: Training block with real-time auditory 

feedback, MP: Mental imagery blocks, RET 15min: 15 min retention, RET 24hrs: 24 

hours retention test, G-test: Generalized knee-proprioception test, VI: Verbal instructions, 

PR: Passive repositioning) 

Participants 

Forty-two students from Leibniz Universität Hannover volunteered to participate in this 

study. The participants were randomly divided into three groups. The participants were 

initially subjected to the Movement Imagery Questionnaire-3. This scale is a 12-item 

questionnaire that quantifies a participant's ability to imagine four different activities 

internally, externally and kinesthetically (Williams, Cumming, Ntoumanis, Nordin-Bates, 

Ramsey, & Hall, 2012) (see Figure 2). Here, the groups CT (6 females/8 males; mean ± 

SD (age): 25.6 ± 1.8 years, MIQ3: First person perspective (FPP): 5.8 ± 0.9, External 

perspective (EP): 5.4 ± 0.4, Kinesthetic imagery (KI): 5.4 ± 1.3), EXP MP (8 females/4 
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males; 26.3 ± 1.9 years, FPP: 5.3 ± 0.6, EP: 5.3 ± 0.8, KI: 5.1 ± 0.5) and EXP ASG-MIT 

(7 females/5 males; 25.3 ± 2.3 years, FPP: 5.5 ± 1.2, EP: 5.8 ± 0.8, KI: 5.0 ± 0.9) were all 

self-reported healthy participants with no history of significant hip, knee or back injury. 

After the conclusion of the experiment participants were asked to report their attention 

levels on a 10-point Likert scale during mental imagery blocks. Written informed consent 

was obtained from each participant, and ethical approval was obtained from the Ethics 

Committee of the Leibniz University Hannover. All the participants underwent a baseline 

auditory test (HTTS Audiometry). The participants received 20 Euros as compensation for 

their participation. 

 

Figure 2 Illustration of mean and standard error for MIQ-3 questionnaire scores across the 

three groups (Scores mentioned for: Internal: First person perspective, External: Third 

person perspective, Kinaesthetic: Feeling the movement, CT: no mental imagery performed, 

EXP MP: Conventional mental imagery without auditory guidance, EXP ASG-MIT: mental 

imagery with auditory guidance) 

Procedure 

During the initial phase of the experimental procedure i.e. Block 1-5, real-time auditory 

feedback and kinematic analysis components were identical to (Ghai, Schmitz, et al., 

2018b). 
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Participants were comfortably seated with their feet in the air, their back resting against a 

wall, and their pelvis stabilized (Ghai, Schmitz, et al., 2018a). During the sitting position, 

the knee joint was maintained at the right angle (Supplementary Figure 1). This position of 

the knee joint was considered as 0° and further extension from this position onwards was 

referred as positive change in the angular values. Participants wore wireless headphones 

(MM450, Sennheiser, Wedemark, Germany), and were blindfolded to eliminate visual 

perception. Initially, a familiarization session was performed to accustom the participants 

with the four target angles (20°, 40°, 60° and 80°) they had to perform during the 

experiment. Here, the experimenter passively moved the dominant leg to previously 

identified target angles  in an open kinetic chain and held at each target angle for two 

seconds to allow the participant to memorize the position. This process was repeated again 

on the non-dominant leg. The experimenter asked the participants to memorize each target 

position as angle 1: 20°, angle 2: 40°, angle 3: 60° and angle 4: 80°, on both legs. 

Participants received no feedback of result concerning their performance. 

After the familiarization session, a passive knee-re-positioning test was performed for all 

the four angles 1, 2, 3 and 4 (20°, 40°, 60° and 80°), bilaterally. Here, the experimenter 

passively positioned the leg at one of the four angles and held it for five seconds. The 

experimenter confirmed the target angle by visualizing the joint angle values represented 

on a screen. Thereafter, the experimenter returned the leg at the initial 0° position. 

Thereafter, the participants were instructed to actively re-position their leg at the specific 

instructed angle, five times consecutively. This was repeated for all the four target angles, 

bilaterally (see Pre-test, Figure 1).  

Further, in the 1st block of the experimental set-up (see PPT 1, Figure 1) participants were 

verbally instructed by the experimenter to perform the same four target angles (angle 1: 

20°, angle 2: 40°, angle 3: 60°, angle 4: 80°), without any auditory feedback, and without 

any prior passive knee re-positioning instruction. The verbal instructions for the 

performance of angles were randomized i.e. right leg angle 1, right leg angle 4, right leg 

angle 3 and so on. A total of 32 repetitions were performed by the right leg. This process 

was again repeated on the left leg. A total of 64 repetitions were performed in this block of 

about 8-10 minutes duration. Furthermore, before the commencement of the 2nd block, 

participants were introduced to the auditory feedback. The group EXP MP was introduced 

to ocean wave noise. For both groups the experimenter first passively repositioned the legs 

at the four angles, bilaterally with the auditory feedback. This was performed to ensure 
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that the participants could associate the target angles i.e. angle 1: 20°, angle 2: 40°, angle 

3:  60° and angle 4: 80° with their respective sounds (Supplementary File 2). After that, 

the participants were verbally instructed to reposition their knee joints by themselves, in 

the presence of auditory feedback (see R-AF 1, Figure 1). Here as well, the verbal 

instructions for the performance of angles were randomized i.e. right leg angle 4, right leg 

angle 3, right leg angle 1 and so on. This process was again repeated on the left leg. A 

total of 96 repetitions were performed in this block (48 right + 48 left). The duration of the 

training blocks with real-time auditory feedback lasted for 15-20 minutes.  

After this, the 3rd block analyzed proprioceptive accuracy without any auditory feedback 

(See PPT 2, Figure 1). Like the 1st block the participants were verbally instructed by the 

experimenter to actively reposition their knee joints at the four target angles (20°, 40°, 60° 

and 80°) in a randomized order. The procedure, number of repetitions, and duration were 

identical to the 1st block. The 4th block was an auditory-motor training block (See R-AF 2, 

Figure 1). Here, auditory feedback was present. Like the 2nd block the experimenter 

initially repositioned the participant’s knee passively with the auditory feedback. 

Thereafter, the participants were verbally instructed, in a randomized order to reposition 

their knee joints. The procedure, number of repetitions, and duration was identical to the 

2nd block. The 5th block analyzed proprioceptive accuracy without any auditory feedback 

(See PPT 3, Figure 1). Like the 1st and 3rd block the participants were verbally instructed, 

in a randomized order to actively reposition their knee joints at the four angles (20°, 40°, 

60° and 80°). The procedure, number of repetitions, and duration were identical to the 1st 

and 3rd block.  

Thereafter, the 6th block was an ASG-MIT block (See MP1, Figure 1). As mental training 

was to be performed in this block, no initial passive re-positioning was initiated by the 

therapist. The experimental group EXP ASG-MIT was randomly instructed to feel the 

knee joint at the instructed angles for the same number of repetitions as in block 2 and 4. 

Moreover, experimental group EXP ASG-MIT heard the recorded auditory feedback of 

the own performance from 4th block. The experimental group EXP MP heard ocean waves 

in addition to the verbal instructions to feel the re-positioning of the own knee. The control 

group CT was asked to perform visual arithmetic equations, for example 641+547. The 

participants in CT group were asked to calculate non-verbally, and with their eyes open. 

They were then asked to report the correct answer to the experimenter. The experimenter 

instructed the angles to be performed in a similar way to that of the 4th auditory-motor 
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training block. The number of repetitions, and duration were identical to the 2nd and 4th 

block.  The 7th block analyzed the proprioceptive accuracy without any auditory feedback 

(See PPT 4, Figure 1). Like the 1st, 3rd and 4th block the participants were verbally 

instructed, in a randomized order to actively reposition their knee joints at the four target 

angles (20°, 40°, 60° and 80°). The procedure, number of repetitions, and duration were 

identical to the 1st, 3rd and 5th block. Thereafter, the 8th block again was an ASG-MIT 

block (See MP2, Figure 1). The entire procedure was identical to the 6th block. The 

duration as well was similar to the 2nd, 4th and 6th block for all three groups. After this, a 

final proprioceptive test (PPT-Final) analyzed the proprioceptive accuracy without any 

auditory feedback. Like the 1st, 3rd, 5th and 7th block the participants were verbally 

instructed, in a randomized order to actively reposition their knee joints at the four target 

angles (20°, 40°, 60° and 80°). The procedure, number of repetitions, and duration were 

identical to the 1st, 3rd, 5th and 7th block. 

Thereafter, the 9th block analyzed the retention of performance after 15 minutes of 

completion of the 8th block (PPT Final), without any auditory feedback (See RET 15min, 

Figure 1). Like the 1st, 3rd 5th, 7th and 8th block the participants were verbally instructed, in 

a randomized order to actively reposition their knee joints at the four target angles (20°, 

40°, 60° and 80°). The procedure, number of repetitions, and duration were identical to the 

1st, 3rd, 5th, 7th and 8th block. The 10th block analyzed the retention of performance 24 

hours after the completion of the 7th block, without any auditory feedback (see RET 24hrs, 

Figure 1). Like the 1st, 3rd, 5th, 7th, 8th and 9th block the participants were verbally 

instructed, in a randomized order to actively reposition their knee joints at the four target 

angles (20°, 40°, 60° and 80°). The procedure, number of repetitions, and duration were 

identical to the 1st, 3rd, 5th, 7th, 8th and 9th block. 

Finally, after the completion of the 24-hour retention measurement, generalized knee 

proprioception was analyzed. Here, the participants performance on three completely 

untrained angles (10°, 30°, 50° and 70°) was tested (see G-test, Figure 1). Like the pre-

test, the experimenter first passively repositioned the knee at one of the target angles and 

held the position for five seconds. Thereafter, the participants were instructed to actively 

re-position their leg at the specific angle. This process was repeated for all the three target 

angles (10°, 30°, 50° and 70°) bilaterally. Figure 1 illustrates the entire experimental 

procedure. The experimental protocol lasted approximately for 140-150 minutes. 
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The auditory feedback used in this experiment was identical to that used by Ghai, Schmitz, 

et al. (2018a). Using Csound 6.0 with Python 2.7, sound is synthesized by a band-limited 

oscillator and lowpass filters. Pitch and amplitude are mapped onto the angular 

displacement and velocity of the knee joint. The angular position changes between 0° and 

90° (full knee-extension) was mapped to audio frequency range between 120 Hz and 300 

Hz. The amplitude is a function of an angular velocity squared and a cosine with angular 

displacement. A sample of auditory feedback is provided as Supplementary File 2. The 

mapping functions as a mathematical equation have been mentioned by Ghai, Schmitz, et 

al. (2018a).  

Kinematic analysis 

XSENS MVN Biomech (XSENS Technologies B.V, Netherlands) was used in this present 

study to assess knee joint angles. In a lower body configuration mode, seven wireless inertial 

measurement units (IMU) were positioned by the experimenter on the participants using 

Velcro straps. The IMUs were positioned on sacrum, lateral side of femoral shaft, medial 

surface of tibia and tarus. With the wireless data transmission, kinematic motion was 

recorded in a 3-dimensional representation at a 60 Hz sampling frequency. The knee joint 

angle data are analyzed by a software (MVN Studio), which records the kinematic data with 

MVN file format. Thereafter, the re-positioning data for each trial were matched with MVN 

recording files and were extracted manually by two researchers. Absolute and constant 

errors were calculated to quantify the magnitude and direction of the re-positioning error 

(Ghai, Driller, & Masters, 2018). Studies have reported high reliability and validity of 

XSENS motion capture system for the measurement of joint angles (Zhang, Novak, 

Brouwer, & Li, 2013). 

Statistical Analysis 

The sample size was calculated with G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 

2007), based on the data from (Ghai, Schmitz, et al., 2018b). This study had applied nearly 

the same experimental protocol as the present study. Considering a medium effect size 

(f=0.25), a correlation among repeated measures of 0.12, a nonsphericity correction 

according to the Huynh-Feldt procedure with ɛ=0.88, seven repeated measures (PPT-

PPT24), a power of 80% and a significance level of 5%, a total sample size of 42 is 

suggested. Statistical analyses were performed using Statistica (V. 12. StatSoft, Hamburg, 

Germany). Firstly, the initial MIQ-3 questionnaire performance was evaluated between 

groups with a one-way ANOVA. Thereafter, the changes of proprioceptive accuracy over 
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time induced by auditory feedback training i.e. from Block 1-5 were evaluated. Therefore, 

the re-positioning errors (the dependent measure) were analysed by a two-way ANOVA 

with the between-subject factor group (EXP ASG-MIT/EXP MP/CT) and the within-

subject factor block (PPT 1, R-AF 1, PPT 2, R-AF 2, PPT 3). Thereafter, effects of mental 

imagery were analyzed by normalizing the data by subtracting on the individual mean of 

block PPT3. Here, a 2-way ANOVA with the between-subject factor group (EXP ASG-

MIT/EXP MP/CT) and the within-subject factor block (PPT4, PPT Final, RET 15 min, 

RET 24 hrs) was realized. Thereafter, the generalized transfer of knee-proprioceptive 

performance was analyzed by a two-way ANOVA with the between-subject factor group 

and the within-subject factor test (pre-test, G-Test).  The sphericity assumption was tested 

with Mauchley’s test. If significant, the Greenhouse-Geisser correction was applied. Post-

hoc-comparisons were performed with Tukey’s post hoc test. The rating of self-reported 

attentional performance during mental imagery was compared between groups EXP and 

CT (MP) by Mann-Whitney-U-Test.  

Results 

Vividness of mental imagery as assessed by MIQ-3 questionnaire (Figure 2) did not differ 

a priori between groups (F(2,39)=0.76, p=0.470, ɳp
2=0.04). The results of the initial 

passive repositioning task are illustrated in Figure 3. The groups did not differ 

significantly from each other as confirmed by a one-way ANOVA, indicating that all 

groups started from the same level (F(2,39)=0.14, p=0.861, ɳp
2=0.01).  
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Figure 3 Illustration of mean and standard error for groups performance in initial Pre-test 

(CT: no mental imagery performed, EXP MP: Conventional mental imagery without 

auditory guidance, EXP ASG-MIT: mental imagery with auditory guidance) 

Subsequent training with real-time auditory feedback enhanced the repositioning 

performance significantly (Figure 4). All three groups started at the same proprioceptive 

level and their performances during the following five training blocks was not different. 

An ANOVA yielded significance for the main effects for (block: F(4,156)=63.03, 

p<0.001, ɳp
2=0.61) but not for group: F(2,39)=1.20, p=0.309, ɳp

2=0.05; block*group: 

F(8,156)=0.58, p=0.718, ɳp
2=0.02). Tukey HSD post-hoc comparisons revealed significant 

better proprioceptive performance in blocks R-AF1, R-AF2 and PPT-3 as compared to 

PPT-1 and PPT-2 for all the three groups (all p<0.001). Differences between PPT-1 and 

PPT-2 were not significant (p= 0.242). 
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Figure 4 Illustration of mean and standard error for the course of auditory motor training 

and mental imagery across the three groups across blocks 1-9 (CT: no mental imagery 

performed, EXP MP: Conventional mental imagery without auditory guidance, EXP ASG-

MIT: mental imagery with auditory guidance) 
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Figure 5 Illustration of normalized data for the mean and standard error for the course of 

mental imagery blocks i.e. blocks 6-9 across the three groups (CT: no mental imagery 

performed, EXP MP: Conventional mental imagery without auditory guidance, EXP ASG-

MIT: mental imagery with auditory guidance) 

To analyze the effect of mental training, performance of blocks 6 to 9 was compared 

across groups (normalized values mentioned in Figure 5). Thereafter, the groups 

performed mental training differently i.e. EXP ASG-MIT trained with auditory guidance, 

EXP MP trained without any auditory feedback, and CT did not perform training at all. 

The group performances from block PPT-4 diverged. Here, an ANOVA confirmed a main 

effect for the group (F(2,39)=2.39, p=0.001, ɳp
2=0.27), whereas block (F(3,117)=1.68, 

p=0.173, ɳp
2=0.04) and the interaction block*group (F(6,117)=0.41, p=0.868, ɳp

2=0.02) 

were not significant. Tukey HSD post-hoc comparisons revealed significantly better 

performance in group EXP ASG-MIT as compared to EXP MP, and CT (p<0.05). 
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Figure 6 Illustration of mean and standard error of mean for three groups during generalized 

knee-proprioceptive test for pre-test (20°, 40°, 60° and 80°) and G-test (10º, 30º, 50º and 

70º) 

Repositioning errors of the pre-test and the generalization test (G-test) are illustrated in 

Figure 6. An ANOVA confirmed a main effect for test (F(1,39)=74.78, p<0.001, 

ɳp2=0.66). Differences between groups were not significant (group: F(1,39)=1.88, 

p=0.165, ɳp2=0.09; test*group: F(2,39)=1.73, p=0.190, ɳp2=0.08). Therefore, generalized 

enhancement in knee proprioception was significant in all the groups i.e. EXP ASG-MIT, 

EXP MP, CT, but did not differ across groups. 

The ANOVA on the self-reported attention scores on Likert scale also demonstrated a 

significant effect. Subjects of groups EXP MP (5.5±1.1) and EXP ASG-MIT (6.6±1.1) 

rated their performance during mental imagery a posteriori significantly different from 

each other (Box & whisker plot, Figure 7). The participants from group EXP reported 

significantly higher attention rates than the participants of group CTMP (Z=2.27, 

p=0.018).  
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Figure 7 Illustration of Box and whisker plots for the self-reported attention levels in both 

mental training groups (EXP MP: Conventional mental imagery without auditory guidance, 

EXP ASG-MIT: mental imagery with auditory guidance) 

Discussion 

The main findings of this study confirm our main hypotheses. 

a) Auditory-motor training significantly enhanced knee proprioception. 

b) ASG-MIT significantly enhanced knee proprioception. 

c) Auditory-motor training resulted in generalized enhancement in knee proprioception on 

untrained angles.  

In agreement with our previous findings, enhancement in knee proprioception were 

observed in the presence of continuous real-time auditory feedback i.e. R-AF 1, R-AF 2. 

Here, several mechanisms could have allowed these benefits in proprioceptively controlled 

actions. For instance, the auditory feedback could have provided external guidance to 

effectively reposition the knee joint, enhanced congruent multisensory integration, 

amplified sensorimotor representations, and more (for a detailed discussion see (Ghai, 

Schmitz, et al., 2018a)). Moreover, in agreement with our second research enhancements 

in knee proprioception were also evident without auditory feedback i.e. after 30-40 
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minutes of training PPT-3. Here as well, the enhancements in knee proprioception could 

be attributed to two main aspects i.e. prolonged auditory motor training and variability in 

the training (Ghai, Schmitz, et al., 2018b). 

The novelty of the present study lies in terms of the beneficial effects of auditory guided 

mental imagery as compared to conventional mental imagery. Previous studies have 

demonstrated that combining physical training with mental imagery can be beneficial in 

enhancing performance related outcomes as compared to only physical or mental training 

alone (Brouziyne & Molinaro, 2005; Butler & Page, 2006; Overdorf, Page, Schweighardt, 

& McGrath, 2004). Therefore, in the present experiment we modified our previous 

auditory motor training regime by incorporating auditory-guided mental imagery. Here, 

performance in mental imagery blocks clearly demonstrate, as to how self-generated 

auditory feedback guidance during mental imagery resulted in enhanced knee 

proprioception as\compared to its counterparts. These enhancements in knee 

proprioceptive accuracy could be affirmed to multiple reasons. Firstly, the proprioceptive 

performance could have been facilitated due to the auditory guidance by self-triggered 

movements (Jenkins, Jahanshahi, Jueptner, Passingham, & Brooks, 2000). In the present 

experiment, the auditory feedback that was used to guide a participant’s mental imagery 

was a recording of participants’ own movement sonification in the 4th block i.e. R-AF2. 

According to Jenkins et al. (2000), higher activations have been reported in dorsolateral 

pre-frontal cortex (area 9, 10 & 46), parietal cortex (area 40), left primary sensorimotor 

cortex, anterior cingulate cortex, rostral and caudal supplementary motor area during 

perception of self-generated movements as compared to externally triggered stimuli. The 

authors stated these higher activations correlate with enhancements in movement 

timings/selection, motor learning, and attention. Secondly, enhancements in the guided 

mental imagery group can be derived from MIIMS (Motor imagery integrative model) 

model (Guillot & Collet, 2008; Schuster, Hilfiker, Amft, Scheidhauer, Andrews, Butler et 

al., 2011). This model suggest that performing the mental imagery in an ecologically 

identical environment could enhance the quality of imagery and performance outcomes. 

Similarly, in the present experiment, auditory guidance could have enhanced the 

performance by aiding the mental representation of the knee movement in a more action 

relevant or ecological manner.  

Additionally, an aspect to consider here is the spatial and temporal aspect of motor 

imagery. Studies have reported that the imagined movements share a high level of 
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proximity in terms of timing, accuracy and spatial positioning to that of the real 

movements (Guillot, Moschberger, & Collet, 2013; Papaxanthis, Paizis, White, Pozzo, & 

Stucchi, 2012). Heremans et al. (2009) stipulated the same reasons for the enhancements 

observed in motor performance in their study. Here, the authors externally cued 

(auditory/visual) mental imagery and reported significant enhancements in spatial and 

temporal accuracy of the eye movements (Heremans et al., 2009; Heremans, Nieuwboer, 

Spildooren, De Bondt, D'hooge, Helsen et al., 2012). The authors suggested that external 

auditory cueing could have facilitated activation in preserved neural pathways i.e. 

cerebellar-thalamic-cortical circuitry as in patients with Parkinson’s disease to enhance 

performance. Likewise, Hovington and Brouwer (2010) also utilized sensory cues to guide 

motor imagery and reported considerable enhancements in corticomotor excitability. 

Interestingly, the authors reported enhancements in corticomotor excitability, which was 

not global but rather specified to specific target muscles of the imagined movements. In 

the present study, a continuous self-generated feedback was utilized as compared to 

discrete stimuli utilized in previous research. Such type of an auditory feedback has been 

reported to extend the benefits of discrete rhythmic auditory cueing stimuli Effenberg, 

Fehse, Schmitz, Krueger, and Mechling (2016). The authors suggest that the continuous 

flow of additional auditory sensory information allows a participant to better perceive their 

movement amplitudes and positioning, thereby resulting in a more efficient development 

of motor commands governing both feedback and feed-forward models (Effenberg et al., 

2016). Moreover, by allowing additional influence over the action observation system the 

real-time auditory stimuli might also enrich the internal stimulation of the executed 

movement (Effenberg et al., 2016; Schmitz et al., 2013). Although in the present research 

we did not compare the guidance effects of external auditory cueing and real-time auditory 

feedback, we recommend future research to elucidate these aspects.  

Furthermore, we would like to draw the reader’s attention towards the proprioceptive 

enhancements observed in retention measurements (post 15-min and 24-hour) for the 

trained four angles across the three groups. On comparison with our previous study where 

retention was analyzed after physical auditory motor training important implications could 

be drawn. Here, retention measurements are subjectively better in the auditory guided 

mental imagery group for both the 15 minutes (Mº ±S.Dº: current vs previous study 

1.66±1.04 vs 1.99±1.20) and 24 hours (1.50±0.99 vs 1.96±1.02) retention measurements. 

We presume that in the current instance, the auditory feedback guiding during the mental 
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imagery could have additionally facilitated the motor components without physical 

execution. The auditory feedback could have facilitated intermodal learning by avoiding 

the onset of fatigue, which is inversely proportional to proprioceptive accuracy (Van 

Tiggelen, Coorevits, & Witvrouw, 2008).  

As an additional aspect we also included a self-reported assessment of the level of 

attention (10-pont Likert scale) during the mental imagination condition. Typically, mental 

imagery is associated with high instances of mind wandering and inattention (Morrison, 

Goolsarran, Rogers, & Jha, 2014). The main aim of including this factor in the study was 

to observe if auditory guidance could have influence the attentive levels of participants. 

We observed a strong correlation of the attentional levels in the auditory guided mental 

training group as compared to the conventional mental training group suggesting that the 

participants were much efficiently able to focus on specific movements during mental 

imagination. These findings seem quite plausible from a point of view that the auditory 

feedback guiding the mental imagery was a performer’s own recording. Here, additional 

inference can also be drawn from the neuroimaging study by Ronsse, Puttemans, Coxon, 

Goble, Wagemans, Wenderoth et al. (2011). The authors demonstrated that training with 

auditory feedback resulted in an enhanced prefrontal cortex activation i.e. “increased 

attention to action”. This in our opinion might have served as a major aspect for enhanced 

proprioceptive performance in auditory guided mental imagery group. 

Lastly, contrary to our initial hypotheses, we observed no significant differences between 

the groups during the generalized proprioceptive tests. Here, we presume that since all 

three groups initially performed auditory-motor training, they possibly could have 

developed an interfaced mapping between the auditory and proprioceptive systems. 

Therefore, in the generalized proprioceptive test, they could have utilized the components 

of this interfaced auditory motor mapping (Bangert, Peschel, Schlaug, Rotte, Drescher, 

Hinrichs et al., 2006).  

Finally, we presume that in this particular experiment the auditory system’s high-

resolution capability of pitch differences and temporal features could have supplemented 

the comparably lower resolution proprioceptive system in both domains via intermodal 

referencing. Taken together, the results of the present experiment provide foundational 

evidence for developing rehabilitation protocols in neurological disorders where 

physiological fatigue affects the prognosis of a patient (Schmitz, Kroeger, & Effenberg, 

2014).  
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Table 1 Individual Pedro scores for studies (1: point awarded, 0: no point awarded) 

Study 

Eligibility 

criteria 

Random 

allocatio

n 

Conceale

d 

allocation 

Baseline 

comparabilit

y 

Blind 

subject

s 

Blind 

therapist

s 

Blind 

assessor

s 

Adequat

e 

follow-

up 

Intentio

n to 

treat 

Between 

group 

compariso

n 

Point 

estimates 

& 

variabilit

y 

PEDr

o 

score 

Kobinata, et al. 1 
1 0 0 1 0 0 0 1 0 1 1 5 

Ko, et al. 2 
1 0 0 1 0 0 0 1 0 1 1 5 

Fouad and 

Mousa 3 
1 0 0 0 0 0 0 1 0 1 1 4 

Song and Ryu 4 
1 0 0 1 0 0 0 1 1 1 1 6 

Park and Chung 

5 
1 1 1 1 0 0 0 1 1 1 1 8 

Yang, et al. 6 
1 0 0 0 0 0 0 1 0 1 1 4 

Yoon and Kang 7 
1 1 0 1 0 0 0 1 1 1 1 7 

Brasileiro, et al. 

8 
1 0 0 1 0 0 0 1 1 1 1 6 

Shin, et al. 9 
1 0 0 1 0 0 0 1 0 1 1 5 
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Ki, et al. 10 
1 0 0 1 0 0 0 1 1 1 1 6 

Jung, et al. 11 
1 0 0 1 0 0 0 1 0 1 1 5 

Yoon and Kang 

12 
1 0 0 1 0 0 0 1 1 1 1 6 

Park, et al. 13 
1 0 0 1 0 0 0 1 0 1 1 5 

Oh, et al. 14 
1 1 0 1 0 0 0 1 1 1 1 7 

Hashiguchi, et 

al. 15 
1 1 0 1 0 0 0 1 1 1 1 7 

Cha, et al. 16 
1 1 0 1 0 0 0 1 1 1 1 7 

Suh, et al. 17 
1 1 0 1 0 0 0 1 1 1 1 7 

Cha, et al. 18 
1 1 0 1 0 0 0 1 0 1 1 6 

Wright, et al. 19 
1 0 0 0 0 0 0 1 0 1 1 4 

Lee, et al. 20 
1 1 1 1 0 0 0 1 1 1 1 8 

Chouhan and 

Kumar 21 
1 1 0 1 0 0 0 1 0 1 1 6 

Muto, et al. 22 
1 0 0 1 0 0 0 1 0 1 1 5 
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Jung-Hee, et al. 

23 
1 1 0 1 0 0 0 1 1 1 1 7 

Kim and Oh 24 
1 1 0 1 0 0 0 1 1 1 1 7 

Jung, et al. 25 
1 0 1 1 0 0 0 1 0 1 1 6 

Johannsen, et al. 

26 
1 0 0 1 0 0 0 1 0 1 1 5 

Park, et al. 27 
1 0 0 1 0 0 0 1 0 1 1 5 

Pelton, et al. 28 
1 1 0 1 0 0 0 1 0 1 1 6 

Roerdink, et al. 

29 
1 1 0 1 0 0 0 1 1 1 1 7 

Hayden, et al. 30 
1 0 0 1 0 0 0 1 0 1 1 5 

Roerdink, et al. 

31 
1 0 0 1 0 0 0 1 0 1 1 5 

Argstatter, et al. 

32 
1 0 0 0 0 0 0 1 0 1 1 4 

Thaut, et al. 33 
1 1 0 1 0 0 0 1 1 1 1 7 

Schauer and 

Mauritz 34 
1 0 0 0 0 0 0 1 0 1 1 4 
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Thaut, et al. 35 
1 0 0 0 0 0 0 1 0 1 1 4 

Prassas, et al. 36 
1 0 0 1 0 0 0 1 0 1 1 5 

Thaut, et al. 37 
1 0 0 1 0 0 0 1 0 1 1 5 
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Table 2 Effects of rhythmic auditory cueing on gait and postural stability in stroke patients 

Author Research 

question(

s)/ 

hypothesi

s 

Sample 

descriptio

n, age: 

(M ± S.D) 

PEDr

o  

Disease 

duratio

n 

Assessment 

tools 

Research design Auditory 

characteristics 

Conclusion 

Kobinata, 

et al. 1 

Effects of 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

Lesion 

site: 

Cerebellu

m 5F, 

15M 

(71.3±9.5) 

Pons & 

medulla: 

5F, 21M 

(67.4±10.

9) 

Thalamus: 

4F, 18M 

(64±9.2) 

5 Cerebell

um: 

40.8± 

30.6 

days 

Pons & 

medulla: 

38.4± 

22.8 

days 

Thalamu

s: 61± 

33 days 

Gait velocity & 

stride length 

 

Pre-test, gait training 

with gradually 

enhanced frequency to 

achieve increased 

cadence, rhythm, post-

test 

Rhythmic metronome 

cueing (drum or 

autoharp) at preferred 

cadence 

 

Significant enhancement in gait 

velocity, stride length in patients with 

lesion sites at cerebellum, pons & 

medulla, thalamus after auditory 

training. 

Enhancement in gait velocity, stride 

length in patients with lesion sites at 

putamen, corona radiata after auditory 

training. 
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Putamen: 

7F, 11M 

(64.3±13.

4) 

Corona 

radiata: 

7F, 12M 

(72.8±9.4) 

Putamen

: 42.7± 

19.5 

days 

Corona 

radiata: 

39.2± 

23.2 

days 

Sangita 

and 

Remya 38 

Effects of 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

Exp: 15 

Ct: 15 

4 - 10-metre walk 

test, cadence 

3-week training Rhythmic metronome 

cueing at preferred 

cadence 

 

Significant enhancement in 10-metre 

walk test performance and cadence in 

Exp as compared to Ct. 

Ko, et al. 

2 

Effects of 

auditory 

cueing on 

4F, 11M 

(56±7.4) 

5 81.9± 

87.8 

months 

Gait speed, 

cadence, stride 

length, gait 

Pre-test/7 min of gait 

training, with 

rhythmic auditory 

(C-E-G, C-F-A, A-D-G, 

clap, click, gun & robot 

sound) at -10%, -5%, 

Significant enhancement in cadence, 

step-length, 10MWT & DGI post 
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gait in 

patients 

affected 

from 

stroke 

cycle duration, 

step length 

affected & 

unaffected side 

& symmetry 

ratio 

cueing at -10%, -5%, 

0%, +5%, +10% of 

patient’s preferred 

pace “applied 

randomly” /post-test 

0%, +5%, +10% of 

patient’s preferred pace 

training with auditory cueing as 

compared to Ct group. 

Fouad 

and 

Mousa 3 

Effect of 

rhythmic 

auditory 

cueing on 

treadmill 

gait in 

patients 

affected 

from 

stroke 

30 stroke 

patients 

Exp: 15 

Ct: 15 

4 - Stride length Pre-test, treadmill 

training with 

(Exp)/without (Ct) 

rhythmic auditory 

cueing for 6 weeks, 

post-test 

Rhythmic auditory 

cueing 

Significant enhancement in stride length 

for both the affected & non-affected 

side for Exp as compared to Ct. 

Song and 

Ryu 4 

Effects of 

auditory 

cueing on 

gait in 

patients 

Exp: 8F, 

12M 

(57.1±7.8) 

6 Exp: 

12.3± 

3.4 

months 

Cadence, step 

length, 10 

metres walking 

Pre-test, Gait training 

with/without rhythmic 

auditory cueing for 30 

minutes session, 5 

times a week for 4 

Rhythmic auditory 

cueing 

Significant enhancement in cadence, 

step-length, 10MWT & DGI post 

training with auditory cueing as 

compared to Ct group. 



                                                                                                                            

285 
 

affected 

from 

stroke 

Ct: 11F, 

9M 

(60.1±6.8) 

Ct: 

14.7± 6 

months 

test & Dynamic 

gait index 

weeks with 

rehabilitation/post-test 

Park and 

Chung 5 

Effects of 

auditory 

cueing on 

robot-

assisted 

gait in 

patients 

affected 

from 

stroke 

Visual 

cueing: 

2F, 3M 

(52.4±12) 

Auditory 

cueing: 

2F, 3M 

(55±5) 

Ct: 3F, 

2M 

(57.2±11.

5) 

8 Visual: 

9.2± 1.3 

months 

Auditory

: 9.2± 

2.2 

Ct: 9.0± 

1.5 

Berg balance 

scale, time-up & 

go test & 10 

metres walking 

test 

Pre-post intervention 

with robot assisted 

gait training (40-50% 

weight supported) for 

45 min, 3 times a 

week for 2 weeks. 

Rhythmic auditory cues 

generated per preferred 

speed of patients. 

Significantly enhanced performance in 

BBS, TUG, & 10 MWT when 

participants received auditory cueing as 

compared to Ct. 

 

Yang, et 

al. 6 

Effects of 

real-time 

auditory 

cueing on 

gait & 

Exp: 2F, 

9M 

(51.9±13.

3) 

4 Exp: 

11.1± 

3.6 

months 

Gait speed, 

cadence, step 

length, stride 

length, single 

limb support, 

Pre-test, gait on 

treadmill training for 

30 minutes/ session, 3 

sessions/week for 4 

weeks with real-time 

Rhythmic auditory 

cueing at preferred 

cadence, tempo modified 

in two sounds of 

different pitch, reduced 

Significant enhancement in gait speed, 

cadence, step length, stride length, 

single limb support in Exp as compared 
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balance in 

patients 

affected 

from 

stroke 

Ct: 2F, 

9M 

(55.8±13.

5) 

Ct: 

11.9± 

3.5 

months 

gait asymmetry, 

average 

perturbation 

velocity, 

average total 

perturbation 

distance & time 

up & go test 

auditory cueing at 0% 

& 5% input from 

preferred cadence, 

post-test  

 

speed by half of averaged 

gait speed from initial 

contact of 6th phase of 

gait cycle at 0% & 5%. 

to Ct. Significant reduction in gait 

asymmetry in Exp. 

Significant reduction in average 

perturbation velocity (eye open only), 

average total permutation distance & 

time up & go test duration in Exp as 

compared to Ct with both eyes closed 

and open performance. 

Yoon and 

Kang 7 

Effects of 

auditory 

cueing on 

gait 

performan

ce on 

treadmill, 

postural 

stability 

in patients 

affected 

Exp: 4F, 

6M 

(50.8±14.

4) 

Ct I: 3F, 

6M 

(56.3±7.1) 

Ct II: 4F, 

5M 

(61.2±13)   

 

7 Exp: 

16.4± 

10.3 

months 

Ct I: 

13.6± 

8.5 

months 

Ct II: 

17.1± 

Time up & go 

test, berg 

balance score, 

6-minute 

walking test 

time, gait speed, 

cadence, single 

leg stance & 

symmetry 

index. 

 

Pre-test, treadmill 

training at (5% incline, 

preferred cadence) 

initially, followed by 

(10% incline, +5% 

speed) in 2nd & 3rd 

weeks, rhythmic 

auditory cueing for 

Exp, no auditory 

cueing for Ct I & Ct II 

(normal treadmill 

training), training for 

30 minutes’ session, 5 

Rhythmic metronome 

cueing at 0% & +5% of 

preferred cadence 

Significant enhancement in berg 

balance score, gait speed, cadence, 

single leg stance & symmetry index 

after training with auditory cueing 

Significant reduction in time up & go 

test, 6-minute walking test time after 

training with auditory cueing 

Significant effects on time up & go test, 

berg balance score, 6-minute walking 

test time, gait speed & symmetry index 

in Exp as compared to Ct I, Ct II. 
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from 

stroke 

8.4 

months  

times/ week, for 4 

weeks, post-test 

Brasileiro

, et al. 8 

Effect of 

auditory 

cueing on 

treadmill 

gait in 

patients 

affected 

from 

stroke 

 

12F, 18M 

Exp: 10 

(58.8±7.9) 

Ct: 10 

(57.9±4.9)  

Ct I: 10 

(52.3±5.9) 

 

6 Exp: 

34.1±20.

2 

months 

Ct I: 

37.8± 

21.5 

Ct: 

27.4± 

17.4 

months 

Gait speed, 

stride length, 

cadence, paretic 

stance time, 

symmetry ratio, 

maximum hip 

extension 

(stance), 

maximum hip 

flexion (swing), 

hip range of 

motion, knee 

angle initial 

contact, 

maximum knee 

flexion (swing), 

knee range of 

motion, ankle 

range of motion 

Pre-test, treadmill 

training with 30% of 

supported body weight 

with/without rhythmic 

auditory cueing at 

+15% of preferred 

cadence (Exp), visual 

cueing (Ct I) for 20 

minutes’ session, post-

test 

 

Rhythmic auditory 

cueing at +15% of 

preferred cadence 

 

Significant enhancement in gait speed, 

stride length, hip & ankle range of 

motion after training with rhythmic 

auditory cueing. No differences 

between Exp, Ct I & Ct II. 
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& ankle angle at 

initial contact, 

toe off. 

Shin, et 

al. 9 

Effects of 

real-time 

auditory 

cueing on 

gait in 

patients 

affected 

from 

hemiplegi

a 

(stroke/ce

rebral 

palsy) 

Cerebral 

palsy: 4F, 

3M 

(30.1±4.1) 

Stroke: 

4F, 7M 

(44.2±7) 

5 Stroke 

patients: 

3.5±2.2 

years 

Cadence, gait 

speed, stride 

length, stride 

time, step time, 

single/double 

support time, 

stance/swing 

phase (temporo-

spatial deviation 

& side to side 

comparison), 

pelvis, hip, 

knee, ankle, foot 

kinematics & 

gait deviation 

index 

 

Pre-test, gait training 

with rhythmic auditory 

cueing for 30 minutes/ 

session, 3 sessions/ 

week for 4 weeks, 

post-test 

 

Rhythmic auditory 

cueing by four-chord 

progression with 

metronome beat on 

keyboard 

 

Significantly reduced ankle plantar 

flexion at initial contact & push off. 

Reduced anterior pelvic tilt in sagittal 

plane after training with auditory 

cueing. 

Significantly enhanced kinematic 

improvements in stroke patients as 

compared to cerebral palsy. 

Significant enhancement in gait 

deviation index & kinematics for 

patients affected from sub-acute stroke 

as compared to chronic stroke. 

No effect on gait parameters after 

training from auditory cueing. 

Enhanced side to side symmetry after 

training from auditory cueing. 
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Significant enhancement in gait 

deviation index, hip adduction in mid 

stance, maximal knee flexion in mid 

swing, ankle dorsiflexion in terminal 

stance after training from rhythmic 

auditory cueing. 

Ki, et al. 

10 

Effects of 

rhythmic 

auditory 

on weight 

bearing 

phase in 

gait 

training 

and 

dynamic 

posture 

for 

patients 

affected 

Exp: 4F, 

8M 

(55.3±9.2) 

Ct: 2F, 

11M 

(60.1±12.

3)  

7 Exp: 

19.1± 

8.2 

months 

Ct: 22± 

9.9 

months 

Gait parameters 

(double limb 

stance, single 

limb stance 

phase), time up 

and go test 

Pre (4 weeks training 

i.e. 

neurodevelopmental- 

with/without auditory 

cueing) post-test 

analysis 

 

Auditory cueing engaged 

by pressure gauge when 

more than 50% weight 

procured on the healthy. 

Significant enhancements in double leg, 

single leg stance phase and time up & 

go tests with auditory cueing as 

compared to control group. 
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from 

stroke 

Jung, et 

al. 11 

Effect of 

auditory 

cueing by 

cane 

pressure 

during 

gait in 

patients 

affected 

from 

stroke 

 

Exp: 4F, 

7M 

(56.4±11.

1) 

Ct: 3F, 

7M 

(56.3±17.

1) 

 

7 Exp: 

6.2± 2.5 

months 

Ct: 7.0± 

2.5 

months 

Vertical peak 

force of cane, 

electromyograp

hip activity of 

gluteus medius, 

vastus medialis 

oblique, single 

support phase of 

gait, gait 

velocity 

 

Pre-test, assisted gait 

training with/without 

auditory cueing 

(calculated by dividing 

peak vertical force by 

patients' body weight) 

with -10% threshold 

reduction/week, for 30 

minutes’ session/day, 

5 times/week for 4 

weeks, post-test 

 

Real-time auditory 

cueing at initial threshold 

of 60% of level of 

dependency, -10% every 

week (if comfortable 

with patient) 

 

Significant enhancement in gait 

velocity, electromyographic activity of 

gluteus medius, vastus medialis oblique, 

single support phase of gait in Exp as 

compared to Ct. 

Significant reduction in vertical peak 

force of cane in Exp as compared to Ct. 

Yoon and 

Kang 12 

Effects of 

auditory 

cueing on 

gait 

performan

ce on 

Exp: 3F, 

2M 

(60.6±9) 

5 Exp: 

10.4± 

2.4 

months 

Ct I: 

9.8± 

Time up & go 

test, berg 

balance score, 

6-minute 

walking test 

time, gait speed, 

Pre-test, incline 

treadmill training with 

rhythmic auditory 

cueing for Exp, no 

auditory cueing for Ct 

I & Ct II (normal 

Rhythmic metronome 

cueing at preferred 

cadence 

Significant enhancement in berg 

balance score, gait speed, cadence, 

single leg stance & symmetry index 

after training with auditory cueing 
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treadmill, 

postural 

stability 

in patients 

affected 

from 

stroke 

Ct I: 2F, 

3M 

(57.6±5.5) 

Ct II: 2F, 

3M 

(52.8±5.6)   

 

3.11 

months 

Ct II: 

11.8± 

4.3 

months 

cadence, single 

leg stance & 

symmetry 

index. 

 

treadmill training), 

training for 30 

minutes’ session, 5 

times/ week, for 3 

weeks, post-test 

Significant reduction in time up & go 

test, 6-minute walking test time after 

training with auditory cueing 

Park, et 

al. 13 

Effect of 

rhythmic 

auditory 

cueing & 

treadmill 

training 

on gait in 

patients 

affected 

from 

stroke 

Exp I: 5F, 

4M 

(51.8±12.

5) 

Exp II: 

4F, 6M 

(55±9.8) 

 

6 

 

Exp I: 

10.3± 

3.3 

months 

Exp II: 

12.5± 

4.2 

months 

Gait speed, step 

cycle, step 

length 

(affected/unaffe

cted side), 

coefficient of 

variation of gait 

cycle 

(affected/unaffe

cted side), 

functional gait 

assessment, 6-

minute walking 

Pre-test, gait training 

with treadmill (Exp I), 

normal ground 

walking (Exp II) with 

rhythmic auditory 

cueing progressing at -

10% (1st week), 0% 

(2nd week), +10% 

(3rd week) of 

preferred cadence, for 

30 minutes’ session, 5 

times/week for 3 

weeks, post-test 

Rhythmic metronome 

cueing at -10%, 0%, 

+10% of preferred 

cadence  

 

Significant reduction in coefficient of 

variation of gait cycle 

(affected/unaffected side), step cycle in 

Exp I & Exp II. 

Significant enhancement in functional 

gait assessment, 6-minute walking 

distance test, gait speed, step length 

(affected/unaffected side) in Exp I & 

Exp II. 

Reduction in time up & go test time in 

Exp I & Exp II. 
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distance test & 

timed up & go 

test 

 

Oh, et al. 

14 

Effects of 

auditory 

cueing on 

gait, 

postural 

stability 

in patients 

affected 

from 

stroke 

Exp I: 8F, 

6M 

(55.8±8) 

Exp II: 

7F, 7M 

(57.4±8) 

 

5 Exp I: 

8.3± 2.3 

months 

Exp II: 

8.9± 1.9 

months 

Gait velocity, 

cadence, stride 

length, double 

limb support, 

time up & go 

test, functional 

gait assessment 

& centre of 

body sway 

angle (x, y, z 

axis) 

 

Pre-test, gait training 

with rhythmic auditory 

cueing (Exp I: music, 

Exp II: metronome) at 

preferred cadence for 

first week followed by 

+10% for the second 

& third week, training 

for 30 minutes’ 

session, 5 times/ week, 

for 3 weeks, post-test 

Exp I: Rhythmic auditory 

cueing on music (2/4 & 

4/4-time signature) 

Exp II: Rhythmic 

metronome cueing 

 

Significant enhancement in Gait 

velocity, cadence, stride length, 

functional gait assessment 

(music>metronome) after training with 

auditory cueing. 

Significant reduction in time up & go 

test (music> metronome), centre of 

body sway, double limb support after 

training with auditory cueing 

Hashiguc

hi, et al. 

15 

Effect of 

rhythmic 

auditory 

cueing on 

gait & 

14 

patients 

 

4 - Gait velocity, 

coefficient of 

variation for 

stride time, 

coefficient of 

Pre-test, gait 

performance with 

rhythmic auditory 

cueing at 0%, +10% of 

preferred cadence, 

Rhythmic auditory 

cueing at 0%, +10% of 

preferred cadence, 

adjusted for stride-to-

Significant enhancement in gait 

velocity, electromyographic activity of 

gastrocnemius with rhythmic auditory 

cueing at +10% of preferred cadence as 

compared to baseline. 
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muscle 

activity in 

patients 

affected 

from 

stroke 

variation of 

duration time, 

electromyograp

hic activity of 

gastrocnemius 

& tibialis 

anterior 

 

adjusted for stride-to-

stride tempo for 

paretic/non-paretic 

limb, post-test 

 

stride tempo for 

paretic/non-paretic limb 

 

Significant reduction in coefficient of 

variation of stride time, coefficient of 

variation of duration time with rhythmic 

auditory cueing at +10% of preferred 

cadence as compared to baseline. 

Cha, et al. 

16 

Effect of 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

17F, 24M 

(60.8±19.

8) 

7 8.68± 

2.35 

months 

Patients walked 

at preferred 

speed followed 

by rhythmic 

auditory cueing 

applied 

randomly at -

10%, 0%, 

+10%, +20% of 

basic tempo 

while 

performing gait. 

Gait velocity, cadence, 

stride length, double 

limb support, double 

single limb support 

Gait symmetry ratio 

-10%, 0%, +10%, +20% 

of basic tempo for 

metronome adjusted at 

patients preferred pace. 

Significantly reduced gait velocity, 

cadence & stride length with -10% of 

rhythmic auditory stimuli as compared 

to 0% 

Significant enhancement of gait 

symmetry with normalized auditory 

stimulus.  

Significant enhancement in gait velocity 

& cadence in +10% & +20% auditory 

stimuli. However reduced gait 

symmetry as compared to 0% condition. 
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Suh, et al. 

17 

Effect of 

auditory 

cueing on 

gait & 

balance in 

patients 

affected 

from 

stroke 

Exp: 5F, 

3M 

(61±14.4) 

Ct: 5F, 

3M 

(70.6±12.

4) 

6 Exp: 

386.3± 

283.2 

days 

Ct: 

224.2± 

213 days 

Cadence, gait 

velocity, stride 

length, overall 

stability index 

& anterior-

posterior, 

mediolateral 

stability index 

Pre-test, gait training 

with rhythmic auditory 

cueing at 0%, +5%, 

+10% of preferred 

cadence for 30 

minutes/day, 5 times a 

week for 3 weeks, 

post-test 

Rhythmic tone cueing, 

with single tone series in 

4/4-time signature, 60dB, 

40-100bpm, at 0%, +5% 

& +10% of preferred 

cadence 

 

Significant enhancement in gait 

velocity, overall stability index & 

anterior-posterior, mediolateral stability 

index after training in Exp as compared 

to before training & Ct. 

Enhancement in cadenceafter training in 

Exp as compared to before training & 

Ct. 

No effect on stride length. 

Cha, et al. 

18 

Effects of 

rhythmic 

auditory 

cueing on 

gait & 

posture in 

patients 

affected 

from 

stroke 

Exp: 4F, 

6M 

(59.8±11.

7) 

Ct: 4F, 

6M 

(631±4.1) 

7 Exp: 

14.5± 

5.5 

Ct: 

14.7± 

5.4 

Berg balance 

scale, gait 

velocity, 

cadence, stride 

length 

(affected/unaffe

cted side), 

double stance 

period 

(affected/unaffe

cted side), 

Pre-test, gait training 

with rhythmic auditory 

cueing at 0% of 

preferred cadence for 

30 minutes/session, 5 

times/week, for 6 

weeks (+5% of 

preferred cadence on 

3rd & 5th week), post-

test 

Rhythmic auditory 

cueing, metronome 

superimposed on music 

at 0%, +5% of preferred 

cadence 

 

Significant enhancement in berg 

balance score, gait velocity, cadence, 

stride length (affected/unaffected side), 

stroke specific quality of life scale after 

training with rhythmic auditory cueing, 

in Exp as compared to Ct. 

Significant reduction in double stance 

period (affected/unaffected side) after 

training with rhythmic auditory cueing, 

in Exp as compared to Ct. 
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stroke specific 

quality of life 

scale 

 

 

Wright, et 

al. 19 

Effect of 

rhythmic 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

4F, 6M 

(61±16) 

6 6± 2 

years 

Step time 

asymmetry, 

paretic step time 

variability, 

nonparetic step 

time variability 

& time up & go 

test 

Pre-test, gait 

performance 

with/without rhythmic 

auditory cueing of 

single & dual tones 

(randomized) 

Rhythmic metronome 

cueing at single tone 

(700Hz) 

Rhythmic metronome 

cueing at dual tone 

(700Hz & 1400Hz) 

Significant reduction in step time 

asymmetry (single tone only) & paretic 

step time variability with both single & 

dual tone rhythmic auditory cueing. 

Reduction in non-paretic step time 

variability with both single & dual tone 

rhythmic auditory cueing. 

Lee, et al. 

20 

Effect of 

auditory 

cueing on 

gait & in 

patients 

affected 

11F, 14M 

(64.3±8.2) 

 

8 12.8± 

7.5 

months 

Gait velocity, 

cadence, 

symmetry 

index, 

symmetry ratio 

& gait 

asymmetry 

Gait performance with 

rhythmic auditory 

cueing at preferred 

cadence, paretic/non-

paretic leg footfall 

with auditory cueing 

at preferred cadence, 

Rhythmic metronome 

cueing at 0% & ±30% of 

preferred cadence 

 

Significant enhancement in gait 

velocity, symmetry & cadence when 

auditory cueing was directed at paretic 

limb at 0% & ±30% of preferred 

cadence. 
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from 

stroke 

 ±30% of preferred 

cadence 

Chouhan 

and 

Kumar 21 

Effect of 

rhythmic 

auditory 

cueing on 

gait & 

arm 

reaching 

in patients 

affected 

from 

stroke 

 

Exp: 3F, 

12M 

(56.7±5.9) 

Ct I: 3F, 

12M 

(58.1±4.1) 

Ct II: 3F, 

12M 

(57.3±5.5) 

 

6 - Dynamic gait 

index & Fugyl 

meyer motor 

scale score 

 

Pre-test, gait, reaching 

task training with 

rhythmic auditory 

cueing (0% of 

preferred cadence 

initially, increased by 

+10% every week if 

comfortable for 

patient: for gait) (Exp) 

or visual cueing (Ct I) 

for 2 hours training, 3 

time/week session for 

3 weeks, post-tests at 

7, 14, 21, 28 days 

Rhythmic auditory 

cueing at 0% & +10% on 

following weeks of 

preferred cadence 

 

Significant enhancements in dynamic 

gait index & Fugyl meyer motor scale 

(14, 21, 28 days only) after 7, 14, 21, 28 

days of training with rhythmic auditory 

cueing & in Exp as compared to Ct II. 

Muto, et 

al. 22 

Effect of 

rhythmic 

auditory 

cueing in 

gait for 

Exp: 3F, 

5M 

(57.5±12.

6) 

5 Exp: 

11.8± 

14.3 

months 

Left-right phase 

difference (gait 

asymmetry), 

(fluctuation in 

gait tempo) 

Gait training for 9 

sessions with rhythmic 

auditory cueing at 

+5% of preferred 

cadence(Ct), walk-

Walkmate auditory 

cueing (real-time): 

Continuous rhythmic 

Significant reduction gait asymmetry in 

Exp during training with walk-mate 

auditory cueing, improvements not 

retained after training. 



                                                                                                                            

297 
 

patients 

affected 

from 

stroke 

Ct: 3F, 

5M 

(57.1±15.

6) 

Ct: 

15.1± 

18.8 

months 

standard 

deviation of 

ground contact 

period during 

leg motion 

mate (rhythmic real-

time auditory cueing) 

(Ct), pre-test & post-

tests at the beginning 

& end of 9 sessions 

auditory cueing 

according to gait pattern 

Stable phase difference 

computed with gait 

pattern 

Internal model modulates 

frequency by target phase 

difference to adapt to 

changing gait pattern 

Rhythmic auditory 

cueing (dual-dynamics 

model) +5% of preferred 

cadence  

No effect on gait asymmetry with 

rhythmic auditory cueing at +5% of 

preferred cadence. 

Significant reduction in fluctuation in 

gait tempo for for Exp during>after 

walk-mate auditory training. 

Significant reduction in fluctuation in 

gait tempo for Ct during gait training 

with rhythmic auditory cueing at +5% 

of preferred cadence. 

Jung-Hee, 

et al. 23 

Effect of 

auditory 

cueing on 

gait & 

postural 

stability 

in patients 

Exp: 4F, 

6M 

(58.3±11.

8) 

Ct: 3F, 

7M 

7 Exp: 

5.68± 

1.04 

months 

Activities 

specific balance 

confidence 

scale, dynamic 

gait index, four 

square step 

tests, functional 

Pre-test, functional 

gait training with 

rhythmic auditory 

cueing for 30 minutes 

training session, 3 

Rhythmic metronome 

cueing at +5% for normal 

preferred cadence (-20% 

when gait was 

unmatched with given 

Significant enhancement in gait 

velocity, activities specific balance 

confidence scale, dynamic gait index, 

cadence, functional ambulation category 

score, stride length (affected & 
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affected 

from 

stroke 

(51.8±13.

7) 

 

Ct: 

4.76± 

2.65 

ambulation 

category score, 

timed up & go 

test, stair up & 

down steps/sec 

gait velocity, 

stride length, 

gait cycle time 

& cadence 

 

times per week for 5 

weeks, post-test 

 

rhythmic auditory 

cueing) 

 

unaffected side) after training with 

auditory cueing. 

Significant reduction in gait cycle time 

on unaffected side, four square step test, 

time up & go test, stair up & down 

steps/sec after training with auditory 

cueing. 

Significantly enhanced performance in 

activities specific balance confidence 

scale, dynamic gait index & timed up & 

go test in Exp as compared to Ct. 

Reduction in gait cycle time on affected 

side after training with auditory cueing. 

Kim and 

Oh 24 

Effect of 

rhythmic 

auditory 

cueing on 

gait in 

patients 

affected 

Exp: 10 

(65.2±6.8) 

Ct: 10 

(64.5±8.1) 

 

7 Exp: 

15.2± 

2.3 

months 

Stride length 

(affected/unaffe

cted side), stride 

length ratio, 

support time 

(affected/unaffe

cted side), 

Pre-test, gait training 

for 10 minutes’ 

session, 3 times/week 

for 6 weeks with 

rhythmic auditory 

cueing at 20, 40, 60, 

80, & 100 bpm 

Rhythmic metronome 

cueing at 20, 40, 60, 80, 

& 100 bpm 

 

Significant enhancement in stride length 

(affected/unaffected side), support time 

(affected/unaffected side) & gait 

velocity in Exp as compared to Ct. 
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from 

stroke 

Ct: 

15.3± 3 

months 

single support 

time ratio & gait 

velocity 

 

incremented at 0, 2, 4, 

6 & 8 minutes of 

training, post-test 

Significant reduction in single support 

time ratio & stride length ratio in Exp as 

compared to Ct. 

Jung, et 

al. 25 

Effect of 

rhythmic 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

5F, 7M 

(52.5±12.

4) 

 

6 15.5± 

8.5 

months 

Gait velocity, 

cadence, stride 

length & step 

length 

 

Gait performance with 

visual & rhythmic 

auditory cueing at 0%, 

±50% of preferred 

cadence 

 

Rhythmic auditory 

cueing at 0%, ±50% of 

preferred cadence 

Significant effect of combined visual-

auditory cueing on gait velocity i.e. 

reduced gait parameters with reduced 

cueing (-50% cueing of preferred 

cadence) & vice versa for enhanced 

cueing (+50% cueing of preferred 

cadence) 

Johannse

n, et al. 26 

Effect of 

rhythmic 

auditory 

cueing on 

arm 

reaching 

& gait in 

Exp I: 3F, 

8M 

(59.513.4) 

Exp II: 

3F, 7M 

(68.110.1) 

7 62.5± 

50.9 

months 

Fugyl meyer 

motor 

assessment 

(upper/lower 

extremity), 10-

meter walking 

test, treadmill 

Pre-test, bilateral 

(arm: Exp I/leg: Exp 

II) training with 

rhythmic auditory 

cueing for 45 minutes’ 

session, 2 times/week 

for 5 weeks, post-test, 

Rhythmic auditory 

cueing at preferred pace 

of physical activity 

(increased at patient’s 

preference) 

bilateral leg training with 

rhythmic auditory 

Significant enhancement in treadmill 

step length on both paretic & non-

paretic side after bilateral leg training in 

Exp II as compared to Exp I (no 

effects), during immediate follow-up 

test. No effects in follow up post-test. 



                                                                                                                            

300 
 

patients 

affected 

from 

stroke 

 

 (step length), 

repetitive 

foot/hand 

aiming task 

 

follow up post-test 

after 18 weeks 

 

cueing: increased during 

training from 36.7±6.5-

45.9±9.5 

bilateral arm training 

with rhythmic auditory 

cueing: increased during 

training from 39.8±5.6-

46.3±5.9 

 

Enhancement in fugl meyer motor test 

for lower extremity in Exp II> Exp I at 

post-test. No enhancements in follow up 

post-test 

Enhancement in fugl meyer motor test 

for upper extremity in Exp I> Exp II at 

post-test. No enhancements in follow up 

post-test 

Enhancement in treadmill step length on 

both paretic & non-paretic side after 

bilateral arm training in Exp I as 

compared to Exp II during 18 week 

follow up post-test. 

Enhancement in repetitive foot & arm 

aiming task on both paretic & non-

paretic side after bilateral leg training in 

Exp II during immediate post-tests. No 

effects on follow up post-tests. 
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Park, et 

al. 27 

Effects of 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

Exp: 5F, 

8M 

(59.2±11) 

Ct: 4F, 

8M 

(52.9±13) 

7 Exp: 

15.5± 5 

months 

Ct: 14± 

8 

months 

Gait speed, 

number of steps 

& Wisconsin 

gait scale 

 

Pre-test, gait training 

with rhythmic auditory 

cueing at 30 minutes’ 

session, twice a day, 5 

days/week, for 2 

weeks, post-test 

Rhythmic auditory 

cueing (120 bpm) 

embedded in music 

 

Significant enhancement in gait speed 

in Exp as compared to Ct. 

Significant reduction in number of steps 

& Wisconsin gait scale in Exp as 

compared to Ct. 

Pelton, et 

al. 28 

Effects of 

auditory 

cueing on 

treadmill 

gait in 

patients 

affected 

from 

stroke 

3F, 5M 

(70±12) 

5 41.5± 

32.2 

months 

Baseline 

asynchrony, 

percentage 

proportional 

error in period 

control, limb 

symmetry, 

correction 

parameter & 

relative 

asymptope 

Gait performance with 

20 metronome pulses 

without phase shift, 

followed by 80 pulses 

with random 1 phase 

shift (counterbalanced 

for paretic & non-

paretic limb) i.e. 

delayed metronome 

cueing 

Rhythmic metronome 

cueing, 1 phase shift: 

20% of inter pulse 

interval i.e. 36º of gait 

cycle 

Significant reduced correction for phase 

shifts when error occurred on 

nonparetic limb (correction required on 

paretic side) as compared to paretic 

limb, vice versa with rhythmic auditory 

cueing (with phase shifts) 
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Roerdink, 

et al. 29 

Effects of 

auditory 

stimuli on 

gait 

performan

ce in 

patients 

affected 

from 

stroke 

Exp: 4F, 

7M 60 

(42-71) 

Ct 

(healthy): 

4F, 6M 

60(46-79) 

5 Exp: 

18.5± 

17.5 

months 

Mean phase 

relation between 

footfall & 

acoustic stimuli, 

step width, 

spatial-temporal 

gait asymmetry, 

variability of 

relative timing 

between footfall 

& metronome 

beat 

Patients performed 

gait with/without 

auditory pacing input 

for single (paretic/non-

paretic limb), double 

(both limbs) 

metronome, thereafter 

gait performed and 

auditory input 

delivered off-time & 

patients synchronized 

with tone.  

Single & double paced 

rhythmic auditory 

cueing, sampled at 

1000Hz. 

Significantly enhanced auditory-motor 

synchronization in condition of double 

as compared to single-metronome 

condition. 

Patients had slower step response to 

restore synchronization when auditory 

stimuli were presented later as 

compared to before. Ct group had better 

& faster step response as compared to 

Exp. 

Step width increased with acoustic 

pacing for both Exp & Ct. 

Hayden, 

et al. 30 

Effects of 

auditory 

cueing on 

gait & 

postural 

stability 

in patients 

affected 

Exp I: 1F, 

4M (55-72 

years) 

Exp II: 

4F, 1M 

(55-72 

years) 

5 - One limb 

stance, cadence, 

gait velocity, 

stride length, 

timed up & go 

test, functional 

reach test & 

postural 

Pre-test, Gait training 

for (Exp I: 30 sessions 

with auditory cueing, 

Exp II: 20 sessions 

with auditory cueing, 

Exp III: 10 sessions 

with auditory cueing) 

8-10minutes day 1, 

Rhythmic auditory 

“music” cueing at 

preferred cadence & 

increased by 1-3 bpm 

(when patient 

comfortable) 

Significant improvements for the timed 

up and go test and the functional reach 

test.  

Significantly enhanced one-limb stance 

and cadence with earlier 

implementations of rhythmic auditory 

cueing in treatment protocol 
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from 

stroke 

Exp III: 

3F, 2M 

(55-72 

years) 

 

 

changes by head 

tilt 

measurement 

after 10 sessions, after 

20 sessions, post-tests 

at 1st, 11th, 21st & 

30th session 

Roerdink, 

et al. 31 

Effect of 

rhythmic 

auditory 

cueing on 

treadmill 

gait in 

patients 

affected 

from 

stroke 

 

Exp: 2F, 

8M (63, 

46-78) 

Ct 

(healthy): 

5F, 4M 

(69, 60-

78) 

 

5 Exp: 

37.7± 

32.6 

months 

Stride 

frequency, 

stride length, 

step length 

(paretic, 

nonparetic side), 

spatial 

asymmetry, 

stride time, step 

time (paretic, 

nonparetic side), 

step width, 

interlimb 

coordination 

Gait performance on 

treadmill with 

(Exp)/without (Ct) 

with rhythmic auditory 

cueing at 0%, ±10% of 

preferred cadence 

 

Rhythmic auditory 

cueing (0%, ±10% of 

preferred cadence) on 

alternate left & right ear 

 

Significant effect of rhythmic auditory 

cueing on stride frequency (enhanced: 

+10%, reduced: -10%), stride length 

(reduced: +10%, enhanced: -10%), step 

length (paretic, non-paretic side: 

reduced: +10%, enhanced: -10%), stride 

time (reduced: +10%, enhanced: -10%), 

step time (paretic, non-paretic side: 

reduced: +10%, enhanced: -10%) & 

step width (reduced: +10%, enhanced: -

10%)with rhythmic auditory cueing at 

0% & 10% of preferred cadence for 

Exp. 
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(relative phase 

difference, 

relative phase 

variability) 

Significant enhancement in relative 

phase difference with pacing stimuli for 

Exp with rhythmic auditory cueing. 

Significant reduction in spatial 

asymmetry, temporal asymmetry with 

pacing rhythmic auditory cueing for 

Exp. 

Argstatter

, et al. 32 

Effects of 

rhythmic 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

Exp: 9F, 

11M 

(69.3±10.

2) 

Ct: 8F, 

12M 

(69.2±9.5) 

 

4 Exp: 

20.7±0.2 

days 

Ct: 

24.2± 

5.3 days 

 

Gait velocity, 

stride length, 

cadence, gait 

cycle, gait 

symmetry, 

Barthel index, 

Fugl meyer 

motor 

assessment, 

functional 

independence 

measure 

Pre-test, gait training 

with (Exp)/without 

(Ct) rhythmic auditory 

cueing at preferred 

cadence for a 30 

minutes’ session/day 

for 3 weeks, post-test 

Rhythmic auditory 

cueing at preferred 

cadence (autoharp) with 

tempo changed according 

to patient’s performance 

(2/4 pattern) 

Significant enhancement in barthel 

index score, functional independence 

measure (no difference between Exp & 

Ct) in Exp after training with rhythmic 

auditory cueing & as compared to Ct. 

Significant enhancement in gait 

velocity, cadence, stride length in Exp 

after training with rhythmic auditory 

cueing, no difference with Ct. 

Enhancement in Fugyl meyer motor 

test, gait symmetry in Exp after training 

with rhythmic auditory cueing. 
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Reduction in gait cycle in Exp after 

training with rhythmic auditory cueing. 

Thaut, et 

al. 33 

Effects of 

auditory 

stimuli on 

gait 

performan

ce in 

patients 

affected 

from 

stroke 

Exp: 21F, 

22M 

(69.2±11) 

Ct: 16F, 

19M 

(69.7±11) 

7 Exp: 

21.3± 11 

days 

Ct: 

22.2± 12 

days 

Gait velocity, 

stride length, 

cadence, 

symmetry 

(swing ratio) 

Pre-test, training with 

repeated auditory 

input for Exp & 

neurodevelopmental 

therapy/Bobath 

therapy for Ct for 30 

min/5 times a week for 

3 weeks, test after 3 

weeks, 6-week post-

test. 

Exp auditory input: 

Phases: 1st: preferred 

pace, 2nd: +5%, 3rd: 

ramp & step training, 

4th fading auditory 

input. 

Metronome input at 

preferred pace, +5%. 

Significant enhancement in Gait 

velocity, stride length, cadence, 

symmetry as compared to Ct after 3 & 6 

week training. 
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Schauer 

and 

Mauritz 34 

Effects of 

auditory 

cueing on 

gait in 

patients 

affected 

from 

stroke 

23 

patients 

Exp: 

(59±12) 

Ct: 

(61±12) 

4 Exp: 53 

days 

Ct: 67 

days 

Gait velocity, 

stride length, 

cadence, 

symmetry 

deviation, stride 

frequency & 

heel on-toe-off 

distance 

Pre-test, gait training 

with music motor 

cueing for 20 min 

session, 5 days/week, 

15 total sessions.  

Music motor cueing 

adjusted for preferred 

cadence by time interval 

adjusted between 

consecutive heel strikes 

Significant enhancement in gait 

velocity, stride length, heel on-toe-off 

distance. 

Significantly reduced symmetry 

deviation. 

Enhanced cadence with auditory cueing. 

 

Thaut, et 

al. 35 

Effects of 

auditory 

cueing on 

gait & 

muscle 

activity in 

patients 

affected 

from 

stroke 

Exp: 5F, 

5M 

(73±7)  

Ct: 5F, 

5M 

(72±8) 

4 - Gait velocity, 

stride length, 

gait symmetry 

cadence, 

Electromyogra

m amplitude 

variability 

(Gastrocnemius) 

Pre-test/ training for 

60 minutes with 

rhythmic auditory 

input/ post-tests 

Increased rhythmic 

auditory cueing by 

+5%, +10% of 

preferred cadence in 

the later stage of 

training. 

Rhythmic metronome 

cueing superimposed on 

music for rhythmic input 

at 0%, +5%, +10% of 

preferred cadence, 

subdivided basic meter in 

ratios 1:2, 1:4. 

Significant enhancement in gait 

velocity, stride length gait symmetry & 

cadence in Exp. 

Significant reduction in 

electromyogram amplitude variability 

of gastrocnemius in Exp. 
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Prassas, 

et al. 36 

Effects of 

auditory 

cueing on 

gait & 

muscle 

activity in 

patients 

affected 

from 

stroke 

1F, 7M 

(69.6±11) 

5 7.75± 

7.24 

months 

Stride length, 

knee, hip joint 

range of motion, 

trunk angle, 

pelvic tilt, 

centre of mass 

displacement 

for vertical & 

lateral mass, 

centre of mass 

horizontal 

velocity & 

Electromyogra

m amplitude 

variability 

(Gastrocnemius) 

Gait performance 

tested with/without 

rhythmic auditory 

cueing 

Rhythmic auditory 

cueing at preferred 

cadence (original music 

composition allowed 

accentuation of 1st & 3rd 

beats) 

Significant enhancement in stride length 

symmetry & symmetry of hip joint 

range of motion on both affected & 

non-affected side with rhythmic 

auditory cueing 

Significant reduction in centre of mass 

vertical displacement with rhythmic 

auditory cueing 

Thaut, et 

al. 37 

Effects of 

auditory 

cueing on 

gait & 

muscle 

2F, 8M 

(70.4±10.

4) 

5 6.5± 

6.91 

months 

Stride variation, 

symmetry, 

weight bearing 

during stance, 

Electromyogra

Gait performance 

tested with/without 

rhythmic auditory 

cueing 3 times for 5 

weeks 

Rhythmic auditory 

cueing at 4/4-time 

signature (1st & 3rd beat 

accentuated by 

Significant enhancement in weight 

bearing stance time on affected side & 

stride symmetry when rhythmic 

auditory cueing was received. 
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activity in 

patients 

affected 

from 

stroke 

m amplitude 

variability 

(Gastrocnemius) 

tambourine beat) at 

preferred cadence 

Significant enhancement of magnitude 

of muscle activation during 

midstance/push-off on affected side & 

reduced on un-affected side. 

Significant reduction in 

electromyographic variability during 

swing phase on affected side (correlated 

with enhancement in stride symmetry). 

Significant reduction in variability of 

integrated amplitude ratios during 

midstance/push-off phase on affected 

side. 
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Figure 1 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing on gait velocity amongst post stroke patients with treadmill. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors 

for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative 

effect size indicated reduction in gait velocity; a positive effect size indicated enhancement in 

gait velocity.  (T: Treadmill) 

 

Figure 2 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with training on gait velocity amongst post-stroke patients. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors 

for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative 

effect size indicated reduction in gait velocity; a positive effect size indicated enhancement in 

gait velocity. (CB: Cerebellum, P&M: Pons & medulla, TH: Thalamus, PU: Putamen, CR: 

Corona radiata, T: Treadmill) 
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Figure 3 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with no training on gait velocity amongst post-stroke patients. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors 

for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative 

effect size indicated reduction in gait velocity; a positive effect size indicated enhancement in 

gait velocity. (CB: Cerebellum, P&M: Pons & medulla, TH: Thalamus, PU: Putamen, CR: 

Corona radiata, T: Treadmill) 

 

Figure 4 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with treadmill on stride length amongst post-stroke patients with treadmill. Weighted 

effect sizes; Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating 

repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 

95% CI. A negative effect size indicated reduction in stride length; a positive effect size 

indicated enhancement in stride length. (T: Treadmill) 
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Figure 5 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with training on stride length amongst post-stroke patients. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors 

for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative 

effect size indicated reduction in stride length; a positive effect size indicated enhancement in 

stride length. (CB: Cerebellum, P&M: Pons & medulla, TH: Thalamus, PU: Putamen, CR: 

Corona radiata, T: Treadmill) 

 

Figure 6 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with no training on stride length amongst post-stroke patients. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors 
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for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative 

effect size indicated reduction in stride length; a positive effect size indicated enhancement in 

stride length. (CB: Cerebellum, P&M: Pons & medulla, TH: Thalamus, PU: Putamen, CR: 

Corona radiata, T: Treadmill) 

 

Figure 7 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing, on cadence amongst post stroke patients with treadmill. Weighted effect sizes; Hedge’s 

g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for 

individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect 

size indicated reduction in cadence; a positive effect size indicated enhancement in cadence. 

(T: Treadmill) 

 

Figure 8 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with training on cadence amongst post-stroke patients. Weighted effect sizes; Hedge’s 

g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for 

individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect 
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size indicated reduction in cadence; a positive effect size indicated enhancement in cadence. 

(T: Treadmill) 

 

Figure 9 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing with no training on cadence amongst post-stroke patients. Weighted effect sizes; 

Hedge’s g (boxes) and 95% C.I (whiskers) are presented. The (Diamond) represents pooled 

effect sizes and 95% CI. A negative effect size indicated reduction in cadence; a positive effect 

size indicated enhancement in cadence. (T: Treadmill) 

 

 

 

 

Figure 10 Forest plot illustrating individual studies evaluating the effects of rhythmic auditory 

cueing, on time up and go test amongst post-stroke patients. Weighted effect sizes; Hedge’s g 

(boxes) and 95% C.I (whiskers) are presented. The (Diamond) represents pooled effect sizes 

and 95% CI. A negative effect size indicated reduction in time up and go test (enhanced postural 

stability); a positive effect size indicated enhancement in time up and go test (reduced stability).  
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Table 3 PRISMA Checklist (From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 ) 

Section/topic  # Checklist item  
Reported 

on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study 

eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; 

limitations; conclusions and implications of key findings; systematic review registration number.  

2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  3-6 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, 

comparisons, outcomes, and study design (PICOS).  

6 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, 

provide registration information including registration number.  

- 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 

considered, language, publication status) used as criteria for eligibility, giving rationale.  

6-7 
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Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to 

identify additional studies) in the search and date last searched.  

8-9 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could 

be repeated.  

Table 1, 6 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 

applicable, included in the meta-analysis).  

8-10 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 

processes for obtaining and confirming data from investigators.  

Table 1, 6 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any 

assumptions and simplifications made.  

6-7 

Risk of bias in individual 

studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether 

this was done at the study or outcome level), and how this information is to be used in any data synthesis.  

7 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  7-8 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of 

consistency (e.g., I2) for each meta-analysis.  

7-8 

 

Page 1 of 2  

Section/topic  # Checklist item  
Reported on 

page #  
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Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, 

selective reporting within studies).  

7-8 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if 

done, indicating which were pre-specified.  

7-8 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 

exclusions at each stage, ideally with a flow diagram.  

Figure 1, 2, 8 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up 

period) and provide the citations.  

Supplementary 

Table 2, 8-10 

Risk of bias within 

studies  

19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  Figure 2-3, 9-

10 

Results of individual 

studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for 

each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

11-16 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  11-16 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  Supplementary 

Table 1, 9 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see 

Item 16]).  

11-16 

DISCUSSION   
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Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their 

relevance to key groups (e.g., healthcare providers, users, and policy makers).  

17-23 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete 

retrieval of identified research, reporting bias).  

22 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for 

future research.  

23 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of 

funders for the systematic review.  

- 

 

For more information, visit: www.prisma-statement.org. 
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Chapter 9: Auditory Proprioceptive Integration: Effects of Real-Time Kinematic 

Auditory Feedback on Knee Proprioception 
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For a sample auditory feedback please visit: 

https://www.frontiersin.org/articles/10.3389/fnins.2018.00142/full#supplementary-material 

https://www.frontiersin.org/articles/10.3389/fnins.2018.00142/full#supplementary-material
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Chapter 10: Training proprioception with sound: Effects of real-time auditory feedback 

on intermodal learning 
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Chapter 11: Auditory guidance of imagined movements: Effects of real-time auditory 

feedback (sonification) guided mental imagery on knee proprioception 
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