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Abstract

QMA is the complexity class of computational problems that are efficiently verifiable
by a quantum algorithm with the help of a witness in contrast to the smaller class BQP
of problems efficiently solvable by a quantum algorithm without a witness. Like their
classical counterparts NP and P, the class QMA is believed to be strictly larger than
BQP, but the definitive answer remains one of the most fundamental open problems of
complexity theory. An equality of QMA and BQP would imply that quantum computers
can solve many physically and logically relevant problems efficiently, including the
Local Hamiltonian problem and the Satisfiability problem for Boolean formulas. New
approaches to gain more insight into the structure of BQP and QMA as well as which
witness forms are sufficient for QMA are hence worth pursuing.

This thesis comprises three research focuses: Firstly, we extend the uniform diagonal-
ization theorem to complexity classes of promise problems in order to construct strictly
intermediate problems between QMA and BQP under the assumption that these classes
are unequal. The existence of strictly intermediate problems motivates our definition of
noisy QMA classes, which form hierarchies of intermediate classes between QMA and
BQP by restricting the witnesses to outputs of certain quantum channels.

In our second research focus we apply the tool of concatenated coding to prove a bound
on the witness noise up to which QMA stays robust. Besides a bound for general i.i.d.
channels, we can prove that QMA stays robust if each witness qubit is disturbed by 18%
depolarizing or 27% dephasing noise, while for complete depolarization or dephasing
the noisy class obviously collapses to BQP and QCMA, respectively.

In the third research focus we interpret the famous QPCP conjecture as robustness of
the class QMA against high witness disturbance. Moreover, we consider a multiprover
protocol by Fitzsimons and Vidick that constitutes a first step towards an important
alternative formulation of the QPCP conjecture and achieve a reduction of the number
of provers and an improvement of the acceptance probability for this protocol.
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Notation

[n] set of all natural numbers from 1 to n
Σ∗ set of all strings over Σ = {0, 1}
L(Cd) set of all linear operators on the Hilbert space Cd
D(Cd) set of all density operators on the Hilbert space Cd
U(Cd) set of all unitary operators on the Hilbert space Cd
Id identity channel of arbitrary dimension
‖A‖♦ diamond norm of superoperator A
‖A‖1 trace norm of operator or superoperator A
trR(ρ) partial trace of ρ discarding register R
(A)R operator or superoperator A acting on register R
Πacc projection of the first qubit of a quantum circuit onto |1〉 〈1|
I, X, Y, Z single qubit Pauli operators
PN Pauli group on N qubits
P⊗N Pauli operator on N qubits (without prefactor in contrast to PN)
(N,K, δ)d code of distance δ encoding K orthonormal states into N qudits
[N,k, δ] stabilizer code of distance δ encoding k qubits into N qubits
PC projection onto the code space of the code C
VC code space of the code C
VS code space of the stabilizer code with stabilizer group S
N(S) normalizer of the stabilizer group S
A ∼S± B A = σB for a σ ∈ {ps | p ∈ {±1,± i}, s ∈ S} and a stabilizer group S
|0̄〉, σ̄ logical |0〉 state and logical Pauli σ operator
P[A] probability of event A
6P

m Karp reduction
6P

T Cook reduction
C-cm Karp-complete problems of the complexity class C
C-cT Cook-complete problems of the complexity class C
A⊕ B marked union of the problems A and B
O(f(n)) set of all real functions g with limn→∞ g(n)

f(n) 6 C for a constant C
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Introduction

Complexity theory is a well established field of classical computer science. It catego-
rizes computational problems into so-called complexity classes depending on their
“difficulty”, which is reflected by the ressources that a classical computer needs to find a
solution. Quantum complexity theory is about a similar categorization according to the
quantum computing model. In both classical and quantum complexity theory, the two
most important complexity classes are the class of efficiently solvable problems (called
P in the classical and BQP in the quantum case) and the broader class of efficiently
verifiable problems (called NP in the classical and QMA in the quantum case).

For an efficiently solvable problem there exists an algorithm whose runtime is upper
bounded by a polynomial in the input length. A polynomial scaling has the advantage
that the runtime only increases modestly with the input length, which is a relevant
criteria for feasibility independent of the processor speed. In contrary, a non-polynomial
runtime quickly reaches practically infeasible absolute values for only slightly longer
inputs. Luckily, many standard problems of linear algebra, list manipulation or data
processing can be solved in polynomial time on a classical computer.

Still, there exist important problems that are only known to be efficiently verifiable, i.e.
efficiently solvable given extra information, the so-called witness. The witness has a
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1 Introduction

specific property that can be verified efficiently if and only if the answer to the problem
instance is positive. An exemplary problem in the class NP which is not known to lie
in P is the question of whether a graph possesses a path covering each vertex exactly
once. In this case the witness is supposed to describe such a path if existent, since
the property of covering each vertex exactly once can obviously be checked efficiently.
Famous problems in QMA that are not known to lie in BQP are the estimation of the
ground state energy of local Hamiltonians, non-equality checks of unitary circuits and
checking if local density matrices are consistent with a global quantum state.

Despite the relevance of efficiently solvable and efficiently verifiable problems, it
surprisingly remains unproven if NP and QMA really consist of strictly more problems
than P and BQP, respectively. The question if P = NP is of such fundamental interest
that in the year 2000 the Clay Mathematics Institute announced it as one of the seven
millenium problems with a prize of 1 million dollars for its solution.

While clearly P ⊆ BQP and NP ⊆ QMA, the relationship between NP and BQP remains
unclear as well. Yet, it is a big motivation for the development of quantum computers
that at least some nontrivial NP problems have been shown to lie in BQP. The most
famous example is the problem of integer factorization for which no efficient classical
algorithm is known but which can be solved efficiently on a quantum computer by
Shor’s algorithm [1].

Studying the complexity classes BQP and QMA is hence of large interest from different
perspectives. The prevailing belief among complexity theorists is that these classes
like their classical counterparts are unequal (see the survey in [2]). Assuming this, one
might wonder if the problems in QMA can only have one of two extreme complexities
(either in BQP or QMA-complete, i.e. belonging to the most difficult problems in QMA)
or if QMA also contains problems of intermediate complexity. The latter possibility is
suggested by several QMA problems of high physical relevance that are not known to
be QMA-complete. Some problems essentially define their own complexity classes like
QCMA, StoqMA or TIM, but their strict intermediateness remains unproven.

After providing introductionary material in chapters 2 – 4, in chapter 5 we prove the
existence of strictly QMA-intermediate problems by extending the uniform diagonaliza-
tion theorem, which originally shows intermediate problems for NP and other classical
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complexity classes. Since the constructed intermediate problems are rather abstract
and lack physical relevance, in chapter 6 we pursue a more physical approach and
define hierarchies of intermediate classes by restricting the form of the witness for a
verifying protocol. This is an obvious idea since within this framework the standard
classes QMA, QCMA and BQP can be expressed as special cases with a witness of
trivial, classical and maximal restriction.

A reasonable choice for expressing restriction is the disturbance by a physical quantum
channel. This mathematical concept is easy to work with and gives the “noisy QMA”
classes a physical meaning. By considering parameter-dependent channels such as the
partly depolarizing or partly dephasing channel, which interpolate between QMA –
BQP and QMA – QCMA, respectively, we hope to gain some new insight into these
standard complexity classes.

In capter 7 we will study under which small disturbances QMA is invariant. For this
we exploit the tool of concatenated coding from the theory of fault tolerance to make
the information carried by the witness robust against the channel noise. We will derive
a bound for general physical channels as well as for the specific cases of the partly
depolarizing and dephasing channel.

Instead of formulating collapse criteria for the high error side, in chapter 8 we will study
the interpretation of the famous QPCP conjecture within our noisy QMA framework.
This widely believed but open conjecture states that QMA stays invariant even if
the verifying protocol only has access to constantly many witness qubits, which can
be interpreted as a high disturbance. After the quantum analogue of the P ?

= NP
question, the QPCP conjecture is the second most important open problem of quantum
complexity theory and would prove that QMA tolerates a highly disturbed witness.

Progress on the QPCP conjecture involves finding alternative formulations similar
to those existing for the proven classical PCP theorem. One step towards a relevant
equivalent formulation is accomplished by a multiprover protocol of Fitzsimons and
Vidick [3] deciding the Local Hamiltonian problem. The work horse for this protocol
are quantum codes. After a discussion of the right formulation of the QPCP conjecture,
we will use coding tools to reduce the number of provers and improve the acceptance
probability gap of this protocol.
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Introduction to quantum computing

2.1 Quantum circuits

The concept of quantum information outlined in this chapter arises from the axioms of
quantum mechanics and can be looked up in any standard textbook, e.g. [4].

Quantum information is stored in quantum states, which are normalized elements of a
Hilbert space. A Hilbert space is a real or complex complete vector space whose norm
is induced by a scalar product. Quantum computation is usually realized in finite-
dimensional complex Hilbert spaces, which are isomorphic to Cd with the Euclidean
scalar product. Hence, this thesis will restrict to the Hilbert spaces Cd. We denote an
orthonormal basis of this space by |0〉, |1〉, . . . |d− 1〉 and associate

|0〉 =



1
0
0
...
0


, |1〉 =



0
1
0
...
0


, . . . |d− 1〉 =



0
0
0
...
1


.
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2 Introduction to quantum computing

|0〉, |1〉, . . . , |d− 1〉 is also called the computational basis and represents classical data, since
only orthonormal states can be distinguished perfectly by a quantum measurement.
Since it can store d distinct classical states, we call Cd a qudit system. Like in classical
computation it is common to restrict to binary systems and hence consider

C2n = C2 ⊗ C2 ⊗ . . .C2︸ ︷︷ ︸
n-times

as an n-qubit system and denote the computational basis by {|x〉}x∈{0,1}n .

A composite system is mathematically realized via the tensor product. Regarding a
certain partition into registers, a state can either be a product state or entangled, i.e. a
superposition of different product states.

We will use the terminology “state” also for density matrices ρ ∈ D(Cd) ⊂ L(Cd) to
express the probabilistic mixture ρ =

∑
i∈[t] pi |φi〉 〈φi| of the pure states {|φi〉}i∈[t]. A

linear operator ρ ∈ L(Cd) is a valid density matrix iff it is positive semi-definite and of
trace 1. It is pure iff tr(ρ2) = 1.

The most general transformation of quantum states is described by quantum channels,
which will be discussed in section 2.4. Since the action of a quantum channel is
equivalent to a unitary transformation on an extended Hilbert space, a standard
quantum computing model is provided by unitary quantum circuits in analogue to
classical Boolean circuits.

Definition 2.1. A quantum circuit on n qubits is a sequence of unitary operators U1, U2,
. . .UL ∈ G from a fixed gate set G ⊆ U(C2n) with each gate applied to a subset of the n qubits.
L is called the length of the circuit.

Like in figure 2.1 a circuit is represented graphically by drawing a horizontal wire for
each qubit and indicating the gates by boxes on the affected qubits.

The gates of the set G should be simple enough to allow an easy physical implementation
and hence deserve the interpretation of elementary operations, while on the other
hand they should be able to approximate any unitary to allow universal quantum

6



2.1 Quantum circuits

computation. The accuracy ε−1 of an approximation Ũ for an operator U is defined by
‖U− Ũ‖ = ε with

‖A‖ := sup
|φ〉∈Cd,
‖|φ〉‖=1

‖A |φ〉‖

denoting the operator norm of A ∈ L(Cd).

A gate set which fulfills these requirements and which we hence assume as canonical
gate set for quantum circuits in this thesis is G = {T, H, CNOT} with

T :=

(
1 0
0 ei

π
4

)
= |0〉 〈0|+ ei

π
4 |1〉 〈1| ,

H :=
1√
2

(
1 1
1 −1

)
=

|0〉+ |1〉√
2
〈0|+ |0〉− |1〉√

2
〈1| ,

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = |0〉 〈0|⊗ I+ |1〉 〈1|⊗ X,

X :=

(
0 1
1 0

)
= |1〉 〈0|+ |0〉 〈1| .

H is called the Hadamard gate; CNOT the controlled-NOT gate. This name is self-
explanatory, since the first qubit obviously serves as control qubit while the second
serves as target qubit, to which the NOT operation X is applied iff the first qubit is in

|0〉 T H

|0〉 H • T •

|0〉 H •

Figure 2.1: A quantum circuit.
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2 Introduction to quantum computing

the state |1〉. When drawing a quantum circuit the control qubit of a CNOT operation
is usually indicated by a solid dot and the target qubit by a circle like in figure 2.1.

Theorem 2.2. Any unitary on n qubits can be decomposed into CNOT operations and single
qubit unitaries. Single qubit unitaries can be approximated to arbitrary finite accuracy by
sequences of T- and H-gates.

Proof. [4, §4.5].

The famous Solovay-Kitaev theorem [5] states that the length of the gate sequence
necessary to approximate a unitary scales polylogarithmically with the accuracy for
any universal gate set containing inverse gates (note that CNOT and H are their
own inverses and T 7 is the inverse of T ). Thus, only polynomially many gates are
necessary to approximate a unitary on a constant number of qubits to exponential
accuracy. Since a polynomial runtime overhead and an inverse exponentially small
error – even occuring polynomiallly many times successively – is usually acceptable in
quantum computation (e.g. it does not change the complexity class BQP of problems
efficiently solvable by a quantum algorithm), constantly sized unitaries are usually not
decomposed into elementary gates when describing a quantum algorithm.

Yet, from a complexity theoretic viewpoint it is also important to note that for any
finite gate set a simple covering argument of the unitary group reveals unitaries on n
qubits that can only be approximated by gate sequences of length exponentially in n [4,
§4.5.4]. Consequently, not all quantum transformations on n qubits can be realized by
a quantum circuit of polynomial length.

2.2 Quantum measurements

A quantum computation usually ends with a measurement to obtain a classical, prob-
abilistic output. In figure 2.1 a final measurement of the first qubit is represented by
the meter symbol at the end of the illustrated circuit. A quantum measurement is
described by measurement operators Mi ∈ L(Cd), i ∈ [t], fulfilling the completeness

8



2.2 Quantum measurements

relation
∑
i∈[t]M

†
iMi = I with I denoting the identity operator. For a state ρ ∈ D(Cd)

the outcome i ∈ [t] is measured with probability

tr(MiρM
†
i)

and the state afterwards equals

MiρM
†
i

tr(MiρM
†
i)

.

For pure states |ψ〉 the probability simplifies to

tr(Mi |φ〉 〈φ|M†i) = 〈φ|M
†
iMi |φ〉 = ‖Mi |φ〉‖2

and the state afterwards equals

Mi |φ〉
‖Mi |φ〉‖

.

Since the trace is multiplicative with respect to the tensor product, it is clear why
discarding a system register A is realized by the partial trace trA(ρ), which is defined via
trA(ρA ⊗ ρB) = tr(ρA)ρB and linearity. This operation does not influence the following
quantum computation on the remaining registers with regard to a final measurement.

A measurement is called projective, iff the measurement operators are projection, i.e.
M2
i =Mi. Often we will measure an n-qubit system in the computational basis. In this

case the measurement operators equal the projections {|x〉 〈x|}x∈{0,1}n and the respective
post-measurement states are the computational basis states {|x〉}x∈{0,1}n .

Physical quantities, such as energy, spin, occupation number etc., are expressed via
an observable A, which is a hermitian operator on the Hilbert space Cd. Let Pi, i ∈ [l],
be the projections onto the different eigenspaces of A to the l distinct eigenvalues λi.
Measuring with regard to the observable A refers to the projective measurement {Pi}i∈[l]
with respective measurement outcomes λi. Given a system in the quantum state ρ, the
expectation value of the physical quantity described by the observable A is hence given

9



2 Introduction to quantum computing

by

tr(Aρ).

It is convenient to allow quantum measurements and the classical evaluation of their
outcomes at any time of a quantum algorithm and not just at its end. The next lemma
adapted from [4][§2.2.8] shows how such an algorithm can be simulated by a unitary
quantum circuit with one final measurement. From a complexity theoretic piont of view
it is important to note that this substitution requires not more than polynomially many
gates for simple measurements such as measurements in the computational basis.

Lemma 2.3. Consider a measurement with measurement operators {Mi}
t−1
i=0 followed by a

unitary Um depending on the outcome m. The same probability distribution of output states is
realized by adding an ancilla register of dimension t initialized in the state |0〉 to the system,
applying a unitary UM with

UM (|ψ〉 ⊗ |0〉) =
t−1∑
i=0

Mi |ψ〉 ⊗ |i〉 ,

followed by the controlled unitary

U =

t−1∑
i=0

Ui ⊗ |i〉 〈i|

and discarding the ancilla after having it measured in the computational basis with outcome m.

Proof. Note that a unitary UM fulfilling the above equation exists, since the complete-
ness relation

∑t−1
i=0 M

†
iMi = I ensures that the above equation is consistent with UM

preserving the scalar product:

(
〈φ|⊗ 〈0|

)
U
†
MUM

(
|ψ〉 ⊗ |0〉

)
= 〈φ|ψ〉 .

In the original setting we measure the output m given a state |ψ〉 with probability

pm := 〈ψ|M†mMm |ψ〉

10



2.3 Pauli group

and obtain after the application of Um the state

|ψm〉 :=
UmMm |ψ〉
√
pm

.

The state in our alternative setting before the ancilla measurement equals

|ψpre〉 :=UUM |ψ〉 ⊗ |0〉 =
t−1∑
i=0

UiMi |ψ〉 ⊗ |i〉 .

It is easy to see that a measurement of the ancilla in the computational basis gives
output m with probability pm and that the post-measurement state reduced by the
ancilla system equals |ψm〉.

2.3 Pauli group

Definition 2.4. A Pauli operator is any tensor product of the single qubit Pauli operators

{I,X, Y,Z} =: P

with the matrix representation

X :=

(
0 1
1 0

)
, Y :=

(
0 − i
i 0

)
, Z :=

(
1 0
0 −1

)
.

It is easy to check that all Pauli operators are unitary and hermitian. Pauli operators
are frequently used in quantum computation due to the following important fact:

Lemma 2.5. The Pauli operators {I,X, Y,Z} form a basis for the complex 2x2 matrices, i.e.
every operator ρ ∈ L(C2) can be written in the form

ρ =
1
2
(r0 I+~r · ~σ)

with ~σ = (X, Y,Z)T and r0 ∈ C, ~r ∈ C3.

11



2 Introduction to quantum computing

The following equivalences hold:

1. ρ is hermitian⇐⇒ (r0,~r) is real.

2. ρ is positive semi-definite⇐⇒ |~r| 6 r0.

3. tr(ρ) = 1⇐⇒ r0 = 1.

4. ρ is a pure state of the Hilbert space C2 ⇐⇒ |~r| = 1.

Proof. [6, §2.1].

The above lemma allows to represent a quantum state via the vector ~r in the so-called
Bloch sphere, a unit sphere in R3 with the axes X, Y and Z (see e.g. figure 7.2). Since
|~r| 6 1 and equality holds iff ρ is pure, all states lie within the sphere with the pure
states on the surface.

Like the single qubit Pauli operators form a basis for L(C2), the N-fold tensor products
of single qubit Pauli operators obviously form a basis for L(C2N). Since

XY = iZ, YZ = iX, ZX = iY,

the N-qubit Pauli operators with a prefactor of {±1,± i} form a group.

Definition 2.6. The Pauli group on N qubits is defined as

PN :=
{
c · σ | c ∈ {±1,±i}, σ ∈ P⊗N

}
.

Definition 2.7. The number of the Pauli operator σ ∈ P appearing in the tensor product of a
Pauli group element µ ∈ PN is called the the σ-weight of µ and denoted by wσ(µ). The total
number of non-identity operators in the tensor product is called the weight of µ and denoted by
w(µ).

Since two elements of PN either commute or anticommute, we introduce the following
η-function:

12



2.4 Quantum channels

Definition 2.8. For any two elements µ,ν ∈ PN we write

η(µ,ν) =

+1 if µ and ν commute

−1 if µ and ν anticommute.

2.4 Quantum channels

Definition 2.9. A superoperator is a linear map from L(Cd) to L(Cd ′).

A superoperator N is completely positive iff N ⊗ Id preserves positive semi-definiteness with
Id denoting the identity channel for any dimension.

A quantum channel is a completely positive, trace-preserving (cpt) superoperator.

Quantum channels offer the most general transformation of quantum states. The
properties of complete positivity and trace-preservation are necessary and sufficient
requirements to ensure that a superoperator N and its trivial extensions N ⊗ Id map
density matrices to density matrices. Since these properties are not always easy to
check for a given superoperator, the following equivalent conditions are useful:

Theorem 2.10. The following statement are equivalent for N : L(Cd)→ L(Cd ′):

1. N is a quantum channel.

2. There exist so-called Kraus operators or operation elements {Ni}i∈[t] ⊂ L(Cd,Cd ′)
with

∑
i∈[t]N

†
iNi = I and

N(ρ) =
∑
i∈[t]

NiρN
†
i .

3. (Stinespring dilation) There exists a unitary U ∈ U
(
Cd ⊗ C(d ′)2)

such that

N(ρ) = trCdd ′
(
U
(
ρ⊗ |0〉 〈0|⊗(d

′)2
)
U†
)

.

Proof. [7, §2.2].

13



2 Introduction to quantum computing

Obviously, Kraus operators of quantum channels fulfill the same requirement as mea-
surement operators. Hence, a quantum channel with Kraus operators {Ni}i∈[t] outputs
the probabilistic mixture of post-measurement states with regard to the measurement
operators {Ni}i∈[t].

Note that the set of Kraus operators for a quantum channel is not unique:

Lemma 2.11. Given a set {Ni}i∈[t] of Kraus operators for a quantum channel N all other valid
sets of Kraus operators are exactly those of the form {Mi}i∈[t] with

Mi =
∑
k∈[t]

UkiNk

for a unitary U ∈ U(Ct). Note that the sets {Ni}i∈[t] and {Mi}i∈[t] can be assumed to be of
same size by padding the eventually smaller with zero operators.

Proof. [4, §8.2.4].

We end this section by introducing some common single qubit quantum channels. Their
Kraus operators can be read off easily from the following definition for arbitrary linear
operators. Yet, the physical meaning of the partly depolarizing and erasing channel
is better reflected by the special form they take for quantum states presented in the
subsequent lemma.

Definition 2.12. The partly dephasing channel T : L(C2)→ L(C2) is defined as

T
deph
ε (ρ) := (1 − ε)ρ+ ε

ρ+ ZρZ

2
.

The partly depolarizing channel T : L(C2)→ L(C2) is defined as

T
depol
ε (ρ) = (1 − ε)ρ+ ε

I ρ I+XρX+ YρY + ZρZ

4
.

The partly erasing channel T : L(C2)→ L(C22
) is defined as

T eras
ε (ρ) = (1 − ε)ρ⊗ |0〉 〈0|+ εI ρ I+XρX+ YρY + ZρZ

4
⊗ |1〉 〈1| .

14
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Lemma 2.13. For density matrices ρ ∈ D(C2) the output of the partly depolarizing channel
equals

T
depol
ε (ρ) = (1 − ε)ρ+ ε

I
2

and the output of the partly erasing channel

T eras
ε (ρ) = (1 − ε)ρ⊗ |0〉 〈0|+ ε I

2
⊗ |1〉 〈1| .

Proof. By using the qubit representation ρ = I
2 +~r · ~σ of lemma 2.5 and the relations

XY = iZ, YZ = iX and ZX = iY one can easily show that

1
4
(I ρ I+XρX+ YρY + ZρZ) =

I
2

.

In all three channels above ε can be interpreted as error parameter. With probabiltiy 1−ε
the input state remains invariant, while with probabiltiy ε the state is disturbed. In case
of dephasing disturbance means that a superposition ρ = (α |0〉+β |1〉)(α∗ 〈0|+β∗ 〈1|) is
replaced by the mixture |α|2 |0〉 〈0|+ |β|2 |1〉 〈1|. Hence, the completely dephasing channel
only outputs mixtures of the classical states |0〉 and |1〉. In case of depolarizing and
erasing disturbance means that the input state is replaced by the completely mixed state
I
2 . This state does not carry any information about the input and is the equal mixture
of all basis states for any orthonormal basis. The partly erasing channel indicates the
disturbance moreover by an additional flag qubit.

2.5 Norms on operators and superoperators

The operator norm ‖A‖ is not the only useful norm for operators A ∈ L(Cd). This
section introduces some additional frequently used norms on operators and superoper-
ators.

Definition 2.14. The trace norm of an operator A ∈ L(Cd) is defined as

‖A‖1 := tr
√
A†A.

15



2 Introduction to quantum computing

‖A− B‖1 is called the trace distance between the operators A and B ∈ L(Cd).

Lemma 2.15. The trace norm is a valid norm and fulfills the following properties for all
operators A, B ∈ L(Cd):

1. ‖A‖1 = supB∈L(Cd)
B 6=0

| tr(AB)|
‖B‖ .

2. ‖AB‖1, ‖BA‖1 6 ‖A‖‖B‖1.

3. ‖T(A)‖1 6 ‖A‖1 for all quantum channels T : L(Cd)→ L(Cd ′).

Proof. Property 3 is shown in [8, proposition 4.1]; the other properties in [9, §5.2].

Lemma 2.16. For any hermitian operator ω ∈ L(Cd) and states ρ, σ ∈ D(Cd) it holds that

‖ω‖1 = max
−I6Λ6I

tr [Λω] ,

‖ρ− σ‖1 = 2 max
06Λ6I

tr [Λ(ρ− σ)]

with the maximization over hermitian operators Λ ∈ L(Cd) with all eigenvalues in the interval
[−1, 1] and [0, 1], respectively.

Proof. [10, exercise 9.1.4] and [10, lemma 9.1.1].

For a norm on superoperators the first choice is to consider the norm induced by the
trace norm on operators:

Definition 2.17. The trace norm of a superoperator T : L(Cd)→ L(Cd ′) is defined as

‖T‖1 := sup
A∈L(Cd)
‖A‖1=1

‖T(A)‖1.

Unfortunately, the trace norm on superoperator does not always stay invariant if the
superoperator is tensored with the identity [9, §5.3]. This disadvantage is overcome by
the stabilized version of the trace norm, the so-called diamond norm. Note that we state
here the definition of [11, §18.2.2], which is equivalent to the one in [9, §5.3]:
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Definition 2.18. The diamond norm of a superoperator T : L(Cd)→ L(Cd ′) is defined as

‖T‖♦ := ‖T ⊗ IdCd ‖1.

Lemma 2.19. The following holds for any superoperators T , T1, T2, T ′1 , T ′2 and any linear
operator A of suitable dimensions:

1. ‖T‖♦ > ‖T‖1.

2. ‖T(A)‖♦ 6 ‖T‖♦‖A‖1.

3. ‖T1 ◦ T2‖♦ 6 ‖T1‖♦‖T2‖♦.

4. ‖T1 ⊗ T2‖♦ = ‖T2‖♦‖T2‖♦.

5. T cpt =⇒ ‖T‖♦ = 1.

6. If T1, T2, T ′1 and T ′2 are of norm at most 1 and ‖T ′1 − T1‖ 6 ε1 and ‖T ′2 − T2‖ 6 ε2, then
‖T ′2 ◦ T ′1 − T2 ◦ T1‖ 6 ε1 + ε2.

Proof. Properties 1 – 5 correspond to [9, lemma 12]; property 6 to [9, lemma 13].
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Introduction to classical and quantum complexity theory

3.1 The classical computing model

In this chapter we present foundations of complexity theory that are covered by
standard textbooks such as [12], [13] or [14]. As a reference for quantum complexity
theory consider the book by [15] and the review by [16].

Definition 3.1. A promise problem, or briefly problem, is a tuple A = (Ayes,Ano) with

Ayes ∩Ano = ∅,

Ayes ∪Ano ⊆ Σ∗

with Σ∗ denoting the set of all strings over the binary alphabet Σ := {0, 1}.

Ayes∪Ano is called the promise. Problems with Ayes∪Ano = Σ∗ are called decision probems.

Without stating it each time explicitely, we will denote the problem instance inputted
to a protocol always by the variable x ∈ Σn and its length by the variable n. When
using functional terminology in the description of protocols, such as “polynomially
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3 Introduction to classical and quantum complexity theory

/ exponentially many bits / steps / gates” etc., the input length n is considered as
function variable.

Informally, problems are often defined as a partition of other objects than binary
strings such as Boolean formulas, graphs, local Hamiltonians or density matrices. We
then assume that these objects are represented via a natural binary encoding. Binary
strings that do not correspond to a valid encoding according to such a scheme can be
considered as no-instances by default.

Theoretical computer science mainly deals with two kinds of computational tasks:

1. Computing a function Σ∗ → Σ∗.

2. Deciding a bipartite question in form of a problem A = (Ayes,Ano).

The fundamental computational model for both is the deterministic Turing machine.

Definition 3.2. A (deterministic) Turing machine (DTM) M is defined by a finite set of
states S = {si}

l
i=0 ∪ {sf} and a transition function

δ : S× {0, 1,�}→ S× {0, 1,�}× {L,R,N}.

A Turing machine carries out its computation on an endless tape initialized with the input
x ∈ Σ∗ padded by infinitely many blank symbols � on both sides. The Turing machine starts
with the initial state s0 and a reading / writing head located on the first symbol of the input. A
computational step of the machine is described by the transition function. If δ(si,a) = (sj,b,X)
and the machine is in the state si and reads the symbol a at the head position, it transfers into
the state sj, overwrites the symbol by b and moves the head left, right or neutral depending
whether X = L, X = R or X = N, respectively.

If the final state sf is reached, the machine halts and outputs the string that is written between
the head position and the next blank symbol.

For an input x for that the machine halts we consider the total number of executed steps as
runtime of the machine and denote the output byM(x). For a multipartite input x1, x2, . . . ∈ Σ∗,
which is written onto the tape successivly separated by blank symbols, we denote the output
accordingly by M(x1, x2, . . . ).

20



3.1 The classical computing model

Figure 3.1: Action of a Turing machine with transition rule δ(s0, 1) = (s1, 0,R).

Figure 3.1 illustrates a Turing machine that carries out its first head movement on the
input x = 110 . . . 1 according to a transition function δ with δ(s0, 1) = (s1, 0,R).

A Turing machine can be represented by its Gödel number, a binary encoding of its
transition function. Note that a finite encoding is possible since the transition function
is determined by finitely many transition rules due to the state set being finite. If a
binary number does not have the form of a valid Gödel number it is interpreted as the
encoding of a trivial machine that always outputs 0. If we state in this paper that “a
Turing machine is given” we mean that the Gödel number of the machine is supplied.
Analogously, a computable function is given via the Gödel number of the machine that
computes it.

Definition 3.3. A function f : Σ∗ → Σ∗ is called computable iff there exists a DTM that for
every input x ∈ Σ∗ outputs f(x).

A function f : N0 → Σ∗ is called computable iff there exists a DTM that for every input of
length n outputs f(n).

A function of one of the above kinds is called polynomial-time computable iff the runtime of
the DTM is bounded by a polynomial in the input length.

Like for problems, we informally allow other sets as function ranges than Σ∗, while
strictly speaking they are considered via a binary encoding. When we later speak
of computable functions that obviously map to the complex or real plane, such as
computable completeness and soundness functions of complexity theoretic protocols,
we assume that their range is restricted to algebraic numbers represented by a binary
encoding of their minimal rational polynomial and an isolating rational interval. The
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work of [17] shows how algebraic standard operations such as addition, substraction
multiplication, division and powering can be realized in polynomial time in this
representation. Moreover, there exists a DTM that for input 1n and an algebraic number
b can compute the n-th digit of the real and imaginary part of b in time polynomial in
n and the representation length of b.

The largest subset of complex numbers for that a reasonable definition of computability
is possible consists of all numbers for that there exists a DTM M outputting the n-th
digit of the real and imaginary part for an input of length n. Such a number could
be represented simply by the Gödel number of M. Polynomial-time computability of
a function mapping to this number would require then that the runtime of M is also
upper bounded by a polynomial.

Still, we assume in this thesis that computable functions are limited to algebraic
numbers. These are sufficient for all purposes and moreover, their representation by
a minimal rational polynomial and an isolating rational interval has the advantage
that equality of two algebraic numbers is decidable in polynomial time, while this
is undecidable for two complex numbers represented by general Turing machines
computing their digits.

While the function range can be handled very informally, one needs to strictly distin-
guish the two different options for the domain in the above definition. For the property
of polynomial-time computability is makes a huge difference if a function is considered
to be defined on N0 or on Σ∗. The former is computed within a runtime upper bounded
by a polynomial in n, the latter – when the input is interpreted as a binary encoding of
a natural number n – within a runtime upper bounded by a polynomial in log(n).

Definition 3.4. A function f : N0 → N0 is called time-constructible, iff there exists a DTM
that for each input of length n halts after exactly f(n) steps.

Lemma 3.5. The following is true for any function f : N0 → N0:

1. f is time-constructible⇒ f is computable.

2. f is computable⇒ ∃ time-constructible f ′ > f.

Proof.
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3.1 The classical computing model

1. Let Mtime
f be a DTM that time-constructs f. Then Mtime

f with the following
adaption computes f: Interrupt after each original computational step by changing
into a new “interruption state”, let the head run to the end of the written tape
and increment a counter there starting at 0. Note that it is easily feasible to shift
the counter whenever a new blank cell at the end of the written tape is supposed
to be overwritten.

If the originally following state is the final state, let the head remain on the
beginning of the counter and change into the final state, i.e. output the counter.
Otherwise, let the head run back to its original position and change into the
following state.

2. Let Mf be a DTM that computes f. If the output of Mf is changed into the unary
representation 1f(n) before changing into the final state, the Turing machine needs
at least time f(n) and hence time-constructs a function f ′ with f ′ > f.

With the definition of computability for functions we specified the first computational
task stated at the beginning of the section. It remains to specify the sencond task, the
decidability of problems:

Definition 3.6. A problem A = (Ayes,Ano) is decidable iff there exists a DTM M such that

∀x ∈ Ayes M(x) = 1 (“M accepts input x”),

∀x ∈ Ano M(x) = 0 (“M rejects input x”).

It is possible to define problems that are undecidable. The most famous one is the Halt-
ing problem, whose undecidability proof works via a simple contradiction argument.

Definition 3.7. The Halting problem (Ayes,Ano) is defined via

Ayes = {x | the DTM with Gödel number x halts for input x},

Ano = {x | the DTM with Gödel number x does not halt for input x}.

Lemma 3.8. The Halting problem is undecidable.
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Proof. Assume the Halting problem (Ayes,Ano) is decidable via the DTM M. Let x be
the Gödel number of the DTM M ′ that simulates M and halts iff M outputs 0. Then

x ∈ Ayes ⇔M outputs 1 for input x

⇔M ′ does not halt for input x

⇔ x ∈ Ano.

This is a contradiction. Hence, our initial assumption was wrong and the Halting
problem is undecidable.

3.2 Randomized and quantum computing models

Besides the deterministic Turing machine theoretical computer science developed al-
ternative computational models, but so far all models, including quantum computing,
proved to be equivalent to the concept of deterministic Turing machines. The Church-
Turing thesis asserts that this is the only possibility. The extended Church-Turing thesis
moreover asserts that any model can simulate another one only with a polynomial run-
time overhead, which is relevant since any polynomially bounded runtime corresponds
to a practically feasible runtime.

Until today no definitive contradiction of the extended Church-Turing thesis has been
found, although it is widely believed that quantum computing violates it. An indication
is Shor’s polynomial-time quantum algorithm [1] for factorization, since no classical
algorithm of polynomial runtime for this problem has been found yet.

Before defining the quantum computing model, we introduce the intermediate concept
of classical, randomized computing via the probabilistic Turing machine.

Definition 3.9. A probabilistic Turing machine extends the model of the deterministic Turing
machine by allowing a binary probabilistic branching at every computational step, which is
mathematically reflected by a transition function of the form

δ : S× {0, 1,�}→
(
S× {0, 1,�}× {L,R,N}

)×2.
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The two transitions possible in the state si with a read tape symbol a correspond to the two
3-tuple described by δ(si,a) and each occur with probability 1

2 .

The runtime of a PTM for an input x is the longest runtime over all execution branches.

A PTM accepts and rejects a problem input x probabilistically. The acceptance probability
corresponds to the fraction of accepting branches and the rejection probability to the fraction of
rejecting branches.

We will use all terminology introduced for deterministic Turing machines and the
formalism of Gödel numbers accordingly for probabilistic Turing machines. It is an
open question, if probabilistic Turing machines with reasonable output probabilities
and a polynomial runtime already violate the extended Church-Turing thesis.

In section 2.1 we introduced the concept of quantum circuits. Since a circuit acts on a
fixed number of qubits, it cannot describe an algorithm for variable input length. For
this a whole family of quantum circuits (Vx)x∈Σ∗ is needed. Constructing the circuit
Vx for an input x needs nothing else than an algorithm. For a reasonable quantum
computing model we therefore require the existence of a Turing machine that computes
the quantum circuit Vx given input x.

As discussed before “computing” something like a quantum circuit strictly means
computing a natural binary representation of it. Since quantum circuits can be assumed
to be restricted to the finite gate set {T, H, CNOT}, it is easy to fix a simple binary
description scheme for them, e.g. by concatenating respective gate numbers and affected
qubit numbers in unary encoding separated by zeros. We will assume in the following
that such a sequential, efficient Gödel scheme for quantum circuits is fixed. A binary
number not corresponding to a valid circuit according to this scheme is interpreted as
trivial circuit without gates.

Since quantum gates allow the realization of the classical universal operations NOT (¬),
AND (∧) and OR (∨) as well as the equal mixture of the classical states |0〉 and |1〉, the
quantum computing model does not only cover classical preprocessing but possesses
the ability for classical and randomized subroutines at any time of the circuit.
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Definition 3.10. We call the Turing machine M computing a quantum circuit family V =

(Vx)x∈Σ∗ , also the generating Turing machine of V .

The quantum circuit family V is polynomial-time generated iff the runtime of M is upper
bounded by a polynomial.

The quantum circuit family V accepts an input x ∈ Σ∗ with probability

Pacc(x) = tr
(
ΠaccVx |0〉 〈0|⊗z V†x

)
and Πacc = |1〉 〈1|⊗ I⊗z−1 denoting the projection of the first of the z circuit qubits onto the |1〉
state.

Note that later we will use the terminology of acceptance and rejection also for quantum
circuit families for that complexity class specifications require a different input state
than |0〉⊗z.

As an alternative to the above definition some literature describes the quantum com-
puting model by a computable circuit family (Un)n∈N0 that just depends on the length
n of the computational input x, but therefore obtains |x〉 ⊗ |0〉⊗z as circuit input instead
of the all zero state. For a polynomial runtime of the generating Turing machine
these circuit families are usually called uniform. A uniform quantum circuit family
(Un)n∈N0 can easily be transformed into a polynomial-time generated family (Vx)x∈Σ∗

by prepending X gates to the circuit on the qubits that correspond to a 1 in the input
string x. A family of quantum circuits (Vx)x∈Σ∗ generated in polynomial-time by a
Turing machine M on the other hand corresponds to the uniform family (Un)n∈N0 with
the Turing machine that outputs the quantum circuit that first measures the input state
in the computational basis, simulates M on the classical measurement outcome x and
then carries out the quantum gates described by M(x).

3.3 Standard complexity classes

A complexity class is a set of problems. Usually it comprises all problems decidable by
a certain machine model, which attributes the problems a similar “complexity”. We
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will list here the definitions of the most important complexity classes, namely those
of efficiently solvable and efficiently verifiable problems with regard to the classical,
randomized and quantum computing model.

Definition 3.11. The complexity class P (“polynomial time”) is the set of all decision problems
that can be decided by a deterministic Turing machine of polynomial runtime.

Definition 3.12. The complexity class NP (“non-deterministic polynomial time”) is the set of
all decision problems A = (Ayes,Ano) for that there exists a deterministic Turing machine M of
polynomial runtime and a polynomial nw such that

∀x ∈ Ayes ∃y ∈ Σnw :M(x,y) = 1,

∀x ∈ Ano ∀y ∈ Σnw :M(x,y) = 0.

Definition 3.13. The complexity class PromiseBPP(c, s) (BPP(c, s)) (“bounded error proba-
bilistic polynomial time”) is the set of all (decision) problems A = (Ayes,Ano) for that there
exists a probabilistic Turing machine M of polynomial runtime such that

∀x ∈ Ayes : P[M(x) = 1] > c,

∀x ∈ Ano : P[M(x) = 1] 6 s.

Definition 3.14. The complexity class PromiseMA(c, s) (MA(c, s)) (“Merlin-Arthur”) is
the set of all (decision) problems A = (Ayes,Ano) for that there exists a probabilistic Turing
machine M of polynomial runtime and a polynomial nw such that

∀x ∈ Ayes ∃y ∈ Σnw : P[M(x,y) = 1] > c,

∀x ∈ Ano ∀y ∈ Σnw : P[M(x,y) = 1] 6 s.

Definition 3.15. The complexity class BQP(c, s) (“bounded error quantum polynomial time”)
is the set of all problems A = (Ayes,Ano) for that there exists a polynomial-time generated
familiy of quantum circuits V = (Vx)x∈Σ∗ on z qubits with z polynomial such that

∀x ∈ Ayes : tr
(
ΠaccVx |0〉 〈0|⊗z V†x

)
> c,

∀x ∈ Ano : tr
(
ΠaccVx |0〉 〈0|⊗z V†x

)
6 s.

Definition 3.16. The complexity class QCMA(c, s) (“quantum-classical Merlin-Arthur”) is
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the set of all problems A = (Ayes,Ano) for that there exists a polynomial-time generated familiy
of quantum circuits V = (Vx)x∈Σ∗ on z+ nw qubits with z and nw polynomial such that

∀x ∈ Ayes ∃y ∈ Σnw : tr
(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ |y〉 〈y|

)
V†x

)
> c,

∀x ∈ Ano ∀y ∈ Σnw : tr
(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ |y〉 〈y|

)
V†x

)
6 s.

Definition 3.17. The complexity class QMA(c, s) (“quantum Merlin-Arthur”) is the set of all
problems A = (Ayes,Ano) for that there exists a polynomial-time generated familiy of quantum
circuits V = (Vx)x∈Σ∗ on z+ nw qubits with z and nw polynomial such that

∀x ∈ Ayes ∃ρ ∈ D(C2nw
) : tr

(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ ρ

)
V†x

)
> c,

∀x ∈ Ano ∀ρ ∈ D(C2nw
) : tr

(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ ρ

)
V†x

)
6 s.

Definition 3.18. In the definitions of PromiseBPP, BPP, PromiseMA, MA, BQP, QCMA
and QMA the parameter c is called completeness; the parameter s soundness. When the
parameters are omitted, the default values c = 2

3 and s = 1
3 are assumed.

Running a protocol for a yes-instance is accordingly called the completeness case; running it
for a no-instance the soundness case.

P

BPP

NP

MA

PromiseBPP

BQP PromiseMA

QCMA

QMA

Figure 3.2: Hierarchy of complexity classes (classes contain those connected below).
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The introduced complexity classes form the hierarchy depicted in figure 3.2.

We will later use the notion “C-protocol” for any Turing machine or quantum circuit
family obeying the requirements for one of the above introduced complexity classes
C. In extension of the notion “decidability” we say that the “C-protocol V decides the
problem A” if V is the protocol for that the membership A ∈ C is proven. Note that the
runtime of a PromiseBPP-, PromiseMA-, BQP-, QCMA- and QMA-protocol also has to
be polynomially bounded for non-promised inputs. Weakening this requirement would
not change the complexity class, but the specification is important for the structural
studies in chapter 5.

The binary string y in the definitions of NP, PromiseMA, MA and QCMA and the
quantum state ρ in the definition of QMA are called the witness that the protocol – in
this case also called the verifier – receives. The difference between QCMA and QMA
is that a QCMA verifier receives a classical witness y and a QMA verifier a quantum
witness ρ. Note, that the definition of QMA remains unchanged if the witness is
restricted to pure states.

The verifier owes its name to the fact that he can decide a problem instance by simply
“verifying” a condition that the witness only obeys for yes-instances. Considering for
example the NP-problem Satisfiability of Boolean formulas, the verifier checks if the
witness, interpreted as assigment, satisfies the Boolean formula. Such an assignment
exists in case of a yes-instance, while for a no-instance no assigment has this property.

The quantifier expression with the witness allows to interpret a verifying protocol as
a game in that an adversary party, historically called Merlin or prover, supplies the
witness in order to convince the verifier, called Arthur, that the input is a yes-instance.
In the completeness case we call Merlin therefore honest, in the soundness case malicious.
The terminology of honest and malicious Merlins is also adapted for other suitable
complexity classes like the multiprover classes in chapter 8.

It is conventional to consider the classical classes P and NP as sets of decision problems
and the quantum classes BQP, QCMA and QMA as sets of promise problems. There is
no need to extend P and NP to promise problems, since P- and NP-protocols split the set
of all binary strings into yes- and no-instances according to their two possible outputs.
On the contrary, for the respective quantum protocols there often exist instances that
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3 Introduction to classical and quantum complexity theory

do neither fulfill the yes- nor the no-instance condition on the acceptance probability.
In order to not rule out too many logically and physically interesting problems from
these complexity classes, they are defined as sets of promise problems.

Historically, the randomized classes BPP and MA are defined restricted to decision
problems like their non-randomized counterparts P and NP. But latest with the
upcoming of quantum complexity theory with its strong analogies, the debate started if
these classes should be broadened to promise problems. Since the difference is relevant
for structural studies like in chapter 5, we call the classes restricted to decision problems
BPP and MA and extended to promise problems PromiseBPP and PromiseMA.

3.4 Amplification

The mean of the binomial distribution with m tosses of success probability p equals
mp. Chernoff bound is a useful tool to bound the tails of the binomial distribution:

Lemma 3.19 (Chernoff bound). Let p ∈ [0, 1] and m, k ∈ N with k 6 mp. Then it holds

k∑
i=0

(
m

i

)
pi(1 − p)m−i 6 e−

(mp−k)2
2mp .

For k ∈ N with mp 6 k 6 m we have equivalently that

m∑
i=k

(
m

i

)
pi(1 − p)m−i 6 e−

(mp−k)2
2mp .

Lemma 3.20 (Amplification). For all polynomial-time computable functions c and s with
e−q 6 s, c 6 1 − e−q, gap c− s > 1/q and q polynomial it holds that

BPP(c, s) = BPP MA(c, s) = MA

PromiseBPP(c, s) = PromiseBPP PromiseMA(c, s) = PromiseMA

BQP(c, s) = BQP QCMA(c, s) = QCMA .
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3.4 Amplification

Proof. For the proof of the statement it is sufficient to show that any completeness and
soundness parameters c and s obeying the above restrictions can be amplified to 1−e−r

and e−r for an arbitrary polynomial r.

Let V be a C(c, s) protocol for a problem A and C any of the complexity classes BPP,
MA, PromiseBPP, PromiseMA, BQP or QCMA. The following is a C(1 − e−r, e−r)
protocol for A:

1. Simulate m := 8q2r copies of V .

2. If more than k := m(c+ s)/2 original protocol executions lead to acceptance then
accept, otherwise reject.

Note that for the simulation in step 1 a possible witness has to be copied initially
m-times. In lemma 2.3 we discussed how the final acceptance measurement of a BQP
or QCMA protocol can be simulated unitarily.

Completeness: Let c ′ > c denote the acceptance probability of the protocol V . The new
protocol rejects iff at most k measurements in step 2 output acceptance, which occurs
with probability

Prej =

bkc∑
i=0

(
m

i

)
(c ′)i(1 − c ′)m−i.

Since k 6 mc− m
2q is smaller than the mean mc ′ of the binomial distribution, the tail

becomes larger by shifting the mean to the smaller value mc. This tail can then be
bounded by Chernoff bound:

Prej 6
bkc∑
i=0

(
m

i

)
ci(1 − c)m−i

6 exp
(
−
(mc− k)2

2cm

)
6 exp

(
−

1
c

m

2(2q)2

)
6 e−r.
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3 Introduction to classical and quantum complexity theory

Soundness: Let s ′ 6 s denote the acceptance probability of the protocol V . Since
k > ms+ m

2q we can bound the acceptance probability Pacc of the new protocol by the
same argumentation as before:

Pacc 6
m∑

i=dke

(
m

i

)
(s ′)i(1 − s ′)m−i

6
m∑

i=dke

(
m

i

)
si(1 − s)m−i

6 exp
(
−
(ms− k)2

2sm

)
6 e−r.

Amplification via repetition according to the above lemma works for MA, PromiseMA
and QCMA protocols, since their witness can simply be copied. For general quantum
states this is however not possible. The no-cloning theorem shows that copying arbitrary
quantum states contradicts unitarity (see e.g. [4, §12.1.1]). An easy workaround to make
amplification also work QMA is to expect as new witness polynomially many copies
of the original witness. In the proof we then only have to deal with the possibility of
receiving an entangled witness:

Lemma 3.21. [Weak amplification] For all polynomial-time computable functions c and s with
e−q 6 s, c 6 1 − e−q, gap c− s > 1/q and q polynomial it holds that

QMA(c, s) = QMA .

Proof. Assume that we carry out m copies of a given QMA(c, s) protocol as in lemma
3.20 with the difference that the length of the received witness is increased by a factor
m and interpreted as m copies of original witness. Clearly, the the new protocol has
completeness at least 1 − e−r, since this acceptance probability can be achieved by an
m-fold tensor product of the original witness.

To prove a soundness value of e−r as in lemma 3.20 we have to rule out that entan-
glement between the m blocks of the witness increases the acceptance probability
and that the new worst case witness is indeed a product state (and hence clearly the
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3.5 Reductions and complete problems

m-fold tensor product of the original worst case witness). To see this, note that each of
the m protocol simulations can be run on distinct registers. For a witness ρ the final
measurement of any simulation block i has hence the same probability distribution
as if the other registers were ignored and just the partial witness tr[m]\{i}(ρ) supplied.
Consequently, any witness ρ achieves the same acceptance probability as the product
witness

tr2,3,...,m(ρ)⊗ tr1,3,...m(ρ)⊗ · · · ⊗ tr1,2,...,m−1(ρ).

Note that there also exists the tool of strong amplification [18] for QMA which avoids
a lengthening of the witness compared to the above presented weak amplification via
parallel repetition. The strong amplification method bases on the fact that the final
acceptance measurement changes the output state of the circuit only slightly because it
is promised to be either close to an acceptance or a rejection state. The polynomially
many simulations of the original protocol necessary for weak amplification can therefore
simply be replaced by polynomially loops of circuit unitary, final measurement, inverse
circuit unitary and initialization measurement, which only require one witness register
of original size.

3.5 Reductions and complete problems

Complexity classes give a coarse categorization of problems’ complexity. Reduction
notions are a useful tool for a finer and also complexity class independent comparision
of complexity. A problem A reducible onto a problem B is considered simpler as B
since it can be decided easily having knowledge about B.

Definition 3.22. A problem A is Karp- or m-reducible to a problem B (notation: A 6P
m B)

iff there exists a polynomial-time computable function f : Σ∗ → Σ∗ such that

x ∈ Ayes ⇒ f(x) ∈ Byes,

x ∈ Ano ⇒ f(x) ∈ Bno.
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3 Introduction to classical and quantum complexity theory

Definition 3.23. A promise problem A is Cook- or T-reducible to a promise problem B

(notation: A 6P
T B) iff A can be decided by a DTM of polynomial runtime with oracle B (the

DTM has access to an oracle state that upon entering replaces every x�, x ∈ Byes, at the head
position instantaneously by 1 and every x�, x ∈ Bno, by 0).

Note that an oracle is only allowed to be queried for elements of Byes and Bno. In the
case of promise problems one has to ensure that the DTM does not query the oracle for
any non-promised inputs of B.

Lemma 3.24. A 6P
m B⇒ A 6P

T B.

Proof. Let f be the polynomial-time computable function that reduces A to B. Then A
can also be solved by a polynomial-time DTM first simulating the computation of f and
then querying the B-oracle on the function output.

Both introduced reduction notions form a pre-order obeying reflexivity and transitivity
on the set of problems. For being a partial order the antisymmetric property is missing:
Problems that can be reduced onto each other can still be different.

A special role is assumed by those problems that are the most difficult ones in a
complexity class:

Definition 3.25. A promise problem A is called m-hard (T -hard) for a complexity class C iff
all problems in C can be Karp-reduced (Cook-reduced) to A. If A is a problem of C itself, A is
called m-complete (T-complete) for the complexity class C.

We denote the set of all m- and T-complete problems for C by C-cm and C-cT, respectively.

Lemma 3.26. Let C be any of the complexity classes PromiseBPP, PromiseMA, BQP, QCMA
or QMA (P, NP, BPP or MA).

If B ∈ C and A 6P
m B for a (decision) problem A, then A ∈ C.

Proof. A C-protocol for A is easily obtained by first computing the polynomial-time
reduction function from A to B and then simulating the C-protocol for B on the function
output.
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3.5 Reductions and complete problems

The above statement also holds for Cook reducibility and the complexity class P. But
for other complexity classes we do not know an analogous result. For example the
validity of the implication A 6P

T B ∈ NP⇒ A ∈ NP for decision problems A and B is
considered as unlikely, since it would directly imply NP = co-NP and hence a collapse
of the famous polynomial hierarchy. For an introduction to the polynomial hierarchy –
a multiquantifier extension of the P-NP hierarchy – see any standard textbook such as
[14, §3.2].

The above lemma is the reason why Karp reducibility is considered as standard
reduction notion for complexity classes above P. When refering to a problem simply
as “reducible” or “complete” this is meant with regard to Karp reducibility. Even for
quantum complexity classes, for which it seems natural to allow a broader reduction
notion of quantum polynomial time, it is usual to work with Karp complete problems
as representatives of the classes. Exploiting the capability of quantum polynomial time
reductions like in the equivalence proof of QPCP formulations in proposition 8.9 is
rather the exception than the rule.

Actually, to our knowledge, this thesis contains the only other application of a quantum
polynomial time reduction: In section 6.2 we show that the strictly QMA-intermediate
problems of chapter 5 are complete under quantum polynomial time reductions for a
so-called noisy QMA class. This is the reason why we give here a formal definition of
quantum polynomial time computability for reduction functions. Similar to the error
bound of BQP we require that the correct function output is obtained by an efficient
quantum protocol with probability at least 2

3 :

Definition 3.27. A function f : Σ∗ → Σ∗ is quantum polynomial-time computable iff there
exists a polynomial-time generated family of quantum circuits (Vx)x∈Σ∗ on z > |f(x)| qubits
with z polynomial such that a final measurement of the state Vx |0〉⊗z in the computational
basis gives the output 0 . . . 0f(x) with probability at least 2

3 .

Definition 3.28. A problem A is quantum polynomial-time reducible to a problem B

(notation: A 6QP
m B) iff there exists a quantum polynomial-time computable function f : Σ∗ →

Σ∗ such that

x ∈ Ayes ⇒ f(x) ∈ Byes,

x ∈ Ano ⇒ f(x) ∈ Bno.
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3 Introduction to classical and quantum complexity theory

Class Complete problem Reference

P all problems with at least one yes- and no-instance

NP k-Satisfiability with k > 3 [19]

BPP ?

MA ?

PromiseBPP Acceptance Ratio of PTMs (canonical) [20]

PromiseMA Stoquastic 6-Satisfiability [21]

BQP Quadratically Signed Weight Enumerator [22]

QCMA Ground State Connectivity [23]

QMA k-Local Hamiltonian with k > 2 [24, 25]

Table 3.1: Karp-complete problems for standard complexity classes.

Lemma 3.29. If B ∈ C and A 6QP
m B, then A ∈ C for any class C ∈ {BQP, QCMA, QMA}.

Proof. Let V = (Vx)x∈Σ∗ be a C
(8

9 , 1
9

)
-protocol for the problem B. The C-protocol that

first simulates the quantum polynomial time algorithm for f(x) including the final
measurement and then simulates Vy for the measured function value y decides A with
completeness 2

3 ·
8
9 = 16

27 and soundness 2
3 ·

1
9 + 1

3 = 12
27 . These values can be amplified to

the usual values of 2
3 and 1

3 .

The previous lemma is the analogue of lemma 3.26 and hence the reason why quantum
polynomial time reductions can be considered as an equally good canonical reduction
notion for quantum complexity classes above BQP as Karp reductions. However, up
to this day Karp reducibility is still the prevailing reduction notion even in quantum
complexity theory.

Table 3.1 lists complete problems for the standard complexity classes introduced
in section 3.3. The table just contains one examplary complete problem for each
complexity class, though usually several complete problems are known. For QMA these
are meanwhile several dozens; for NP several thousands. Remarkably, no complete
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3.6 The Satisfiability and the Local Hamiltonian problem

(decision) problems are known for BPP and MA. This is one of the reasons why some
computer scientists believe that BPP = P and MA = NP. Moreover, this justifies why
rather PromiseBPP and PromiseMA should be considered as the proper randomized
analogues of P and NP.

Let us close this section by mentioning that some problems A have such high logical
or physical relevance that it is worth defining all problems reducible to A as new
complexity class with an own name. The complexity class TIM ⊆ QMA is such an
example [26], which consists of all problems reducible to a restricted Local Hamiltonian
problem of transverse Ising model form. The notion of completeness hence allows an
alternative, non-computing-model based approach to define complexity classes.

3.6 The Satisfiability and the Local Hamiltonian problem

In this section we briefly introduce the two most important complete problems of
NP and QMA: the Satisfiability problem of Boolean formulas (SAT) and the Local
Hamiltonian problem (LH). They are considered as the canonical complete problems of
NP and QMA, respectively, since they were the first discovered and the completeness
of all other complete problems known today is usually proven via a reduction from
SAT and LH.

A Boolean formula φ is a logical expression in binary variables xi connected via the
logical operations NOT (¬), AND (∧, conjunction) and OR (∨, disjunction), e.g.

φ = (x1 ∨ x2)∧
(
(x3 ∧ ¬x1)∨ (¬x2 ∧ x3)

)
.

A literal is a variable xi or a negated variable ¬xi. An assignment of binary values to the
variables xi for that the Boolean formula evaluates to 1, is called a satisfying assignment,
e.g. {x1 → 1, x2 → 0, x3 → 1} is a satisfying assignment for the above formula φ.

A Boolean formula is of k-conjunctive normal form (k-CNF), iff it is a conjunction of
clauses, each corresponding to a disjunction of at most k literals. By applying the
distributive and de Morgan’s laws it is possible to transform any Boolean formula into
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3 Introduction to classical and quantum complexity theory

an equivalent formula in 3-CNF. For example,

(x1 ∨ x2)∧ (¬x1 ∨ ¬x2)∧ x3

is a formula in 3-CNF equivalent to the above defined formula φ. For general Boolean
formuls this conversion needs exponential time. However, it is also possible to convert
a general Boolean formula φ in polynomial-time into a formula in 3-CNF that is
satisfiable iff φ is satisfiable.

Definition 3.30. The Satisfiability problem (SAT) is the decision problem whose yes-instances
are the satisfiable Boolean formulas.

The problem k-SAT is the decision problem whose yes-instances are the satisfiable Boolean
formulas in k-CNF.

Theorem 3.31 (Cook / Cook-Levin Theorem). SAT and hence 3-SAT are NP-complete.

Proof. Original proof by S. A. Cook in 1971 [19]. Independent proof by L. Levin in 1973
with English translation in [27].

The NP-membership of SAT and hence 3-SAT is trivial, since a Boolean formula can
be evaluated in polynomial-time given an assignment as witness. The hardness proof
instead is very sophisticated, since it has to map each tuple of NP protocol and input
into a Boolean formula which is satisfiable iff the Turing machine accepts the input.

The natural QMA-complete problem and analogue of k-SAT is the so-called Local
Hamiltonian problem (with this shortened terminology we refer to the special k-LHa,b

problem that is QMA-complete according to the proof of the quantum Cook-Levin
theorem 3.34).

A Hamiltonian H is a hermitian operator representing the energy observable of a
quantum system, i.e. a quantum system in state ρ has energy

tr(Hρ).
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3.6 The Satisfiability and the Local Hamiltonian problem

The state with the lowest energy, i.e. the eigenstate of H with the lowest eigenvalue λ0,
is called the ground state of H; λ0 the ground state energy. Eigenstates to higher energy
eigenvalues are called excited states.

A Hamiltonian on n qubits is k-local iff it equals a sum of hermitian interaction terms that
act non-trivially only on a register S of k qubits, i.e. are of the form (A)S ⊗ (I⊗n−k)S̄
for a k-qubit operator A.

For quantitatively comparable energy discussions we assume in this thesis that the form
of k-local Hamiltonians always fulfills the promise of the following k-LHa,b problem.
Note that a general k-local Hamiltonian can be brought into this form by a simple offset
and rescaling.

Definition 3.32. The k-Local Hamiltonian problem with low energy value a and high energy
value b > a (k-LHa,b) is a promise problem with the promise that yes- and no-instances are
local Hamiltonians

H =
∑
S∈C

HS

on n qubits whose interaction terms HS described by polynomially many digits are positive
semi-definite, obey ‖HS‖ 6 1 and act non-trivially only on k qubits described by the set S ⊆ [n].

The ground state energy equals for yes-instances at most a; for no-instances at least b.

The difference a− b is called the absolute energy gap. The absolute energy gap divided by the
number of interaction terms |C| is called the relative energy gap.

Note that in slight abuse of our previous convention, we use the variable n in the
context of k-local Hamiltonians to denote the number of qubits on that the Hamiltonian
is defined instead of the length of its binary encoding. But this is irrelevant for any
polynomially related quantities, since the Hamiltonian description is bounded by a
polynomial in n and hence all quantities bounded by a polynomial in the input length
are also bounded by a polynomial in the number of Hamiltonian qubits.

The classical k-SAT problem can be considered as a special k-LH0,1 problem whose
interaction terms are projections onto computational basis states. HS = (|y〉 〈y|)S
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represents the clause CS on the (qu)bits of S with y ∈ Σk as unique non-satisfying
assignment:

HS = (|y〉 〈y|)S ←→ CS =
∨
i∈S

(¬)yixi.

Analogously to the Cook-Levin proof establishing k-SAT as natural NP-complete
problem, a k-Local Hamiltonian problem with inverse polynomial energy gap can be
proven to be QMA-complete. The reduction proof of Alexei Kitaev has been written
down neatly by [24] and is usually called the quantum Cook Levin proof. We will
not repeat the whole reduction proof here, but restrict ourselves to show the QMA-
membership for k-Local Hamiltonian problems with inverse polynomial energy gap
using the ground state as witness:

Proposition 3.33. The k-Local Hamiltonian problem with low energy value a and high energy
value b such that a− b > 1/q for a polynomial q is in QMA.

Proof. For a promised input H =
∑
S∈CHS denote by (|φSj 〉)j∈[2k] the orthonormal

eigenvectors of the 2k-dimensional operator HS with eigenvalues αSj . Let βSj be the
coefficients such that we can express the ground state |η〉 as

|η〉 =
∑
j∈[2k]

βSj (|φ
S
j 〉)S ⊗ (|ψSj 〉)S̄

for normalized states |ψSj 〉.

For every S ∈ C we can compute efficiently a finite-dimensional unitary TS that maps
the orthonormal states |φSj 〉 ⊗ |0〉 to the orthonormal states

|φSj 〉 ⊗
(√

αSj |0〉+
√

1 − αSj |1〉
)

.

Consider now the QMA protocol that first picks an interaction term HS of the input
Hamiltonian H uniformly at random, then applies TS to the qubits of S and an ancilla
qubit |0〉 and finally measures the ancilla qubit in the computational basis and accepts iff
|1〉 is measured. We can show that this decides the k-LHa,b problem with completeness
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1 − a
m and soundness 1 − b

m , m = |C| ∈ O(nk), and that hence k-LHa,b ∈ QMA by
amplification:

Having picked a specific S ∈ C, the state before the final measurement of the above
described protocol equals∑

j∈[2k]

TS(|η〉 ⊗ |0〉) =
∑
j∈[2k]

βSj (|φ
S
j 〉)S ⊗ (|ψSj 〉)S̄

(√
αSj |0〉+

√
1 − αSj |1〉

)
.

Hence, the average acceptance probability equals

Pacc = 1 −
1
m

∑
S∈C

∑
j∈[2k]

|βSj |
2αSj

= 1 −
1
m

∑
S∈C
〈η|HS |η〉 .

Theorem 3.34 (Quantum Cook-Levin theorem). There exist a and b with a− b > 1/q for
a polynomial q such that the k-Local Hamiltonian problem with low energy value a and high
energy value b is QMA-hard.

Proof. Original proof for 5-LHa,b in [24]. Improvement to 2-LHa,b in [25].

Although we do not present the proof of the Quantum Cook-Levin theorem, we want to
describe at least the form of the reduction Hamiltonian and its ground state according
to the original proof [24] to give an intuition how a QMA verifier is mapped to a 5-local
Hamiltonian. Let V = (Vx)x∈Σ∗ be the QMA(1 − e−n, e−n) verifier for an arbitrary
QMA problem and let Vx be a circuit on z ancilla and nw witness qubits with 1- and
2-local gates V1

x,V2
x, . . .VTx . The quantum Cook-Levin proof reduces a problem instance

x onto the Hamiltonian H acting on a first register of z+ nw qubit and a second clock
register with

H := Hin +Hout +

T∑
t=1

Hprop(t),

Hin := (|1〉 〈1|)⊗z ⊗ I⊗ |0〉 〈0| ,

Hout := (I−Πacc)⊗ I⊗ |T〉 〈T | ,
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Hprop(t) :=
1
2
(
I⊗ |t〉 〈t|+ I⊗ |t− 1〉 〈t− 1|− Vtx ⊗ |t〉 〈t− 1|− (Vtx)

† ⊗ |t− 1〉 〈t|
)
.

The Hamiltonian is 5-local since the gates Vtx are at most 2-local and a unary encoding
of the clock realizes the transformations |t− 1〉 〈t|, |t〉 〈t| and |t〉 〈t− 1| as 3-local. The
reduction Hamiltonian has ground state energy at most a = 1

T 10 if x is a yes-instance
and at least b = 1

4(T+1)3 if x is a no instance.

The witness in the completeness case is the so-called history state

|η〉 := 1√
T + 1

T∑
t=0

VtxV
t−1
x . . .V1

x |0〉
⊗z ⊗ |ψ〉 ⊗ |t〉

with |ψ〉 the witness for that V accepts x.

As the canonical QMA-complete problem much research has been conducted into the
Local Hamiltonian problem and its variants. So far the authors of [26] conducted the
probably most extensive study of variants of the Local Hamiltonian problem and their
complexity class classifications.
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Introduction to quantum coding

4.1 Quantum coding

This chapter summarizes mainly standard textbook material such as [4, §10].

Quantum codes allow to recover quantum information from disturbances by represent-
ing it in a robust form. Although nowadays the definition of a code is sometimes used
in a wider sense, this section introduces the original concept of Knill and Laflamme [28]
which is illustrated in figure 4.1 and demands a lossless forth and back transformation
between the original state and its robust, encoded form. This implies that the encoding
E is an isometric transformation (which is equivalent to a unitary transformation on the
input and an ancilla). Only then a quantum channel and coisometric transformation D,
the decoding, exists such that D ◦ E = Id. The encoding maps states of an input Hilbert
space into a so-called code space which is a subspace within a larger Hilbert space. This
ensures that certain disturbances, which kick an encoded state out of the code space,
can be detected and fixed by an error correction channel.

A bit counter-intuitively a quantum code is normally not defined via an en- and
decoding but only via a code space. The reason is that the specific en- and decoding
is irrelevant for the question if a code space can be corrected from a given noise. But
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Error correction R (cpt)

Encoding

E
(isometric)

Noise

N
(cpt)

Us

Decoding

D
(cpt &

coisometric)

•
syndrome s

Figure 4.1: Concept of coding according to Knill and Laflamme.

note that the specific en- and decoding plays a role when we relieve the demand for
perfect error correction in chapter 7 and study instead how much the concatenation of
encoding, noise, error correction and decoding deviates from the identity channel.

Definition 4.1. A quantum code C is defined by a code space VC that is a subspace of a
larger Hilbert space Cd ′ . The code space projection is denoted by PC.

Definition 4.2. Let VC, Cd and Cd ′ be Hilbert spaces such that Cd ' VC ⊆ Cd
′
. A map

E : L(Cd)→ L(Cd ′) with

E(ρ) = EρE†

for all ρ ∈ L(Cd) and an isometry E is called an encoding of the quantum code C. The adjoint
operation D(ρ) := E†ρE is called the corresponding decoding.

Definition 4.3. Given an encoding E : L(Cd)→ L(Cd ′) we write

|φ̄〉 〈φ̄| := E(|φ〉 〈φ|)

for the encoding of a state |φ〉 ∈ Cd ′ and call |φ̄〉 the logical |φ〉-state.

For qubit codes (Cd = C2k and Cd ′ = C2N) we denote analogously a specific operator that
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behaves on the code space like the Pauli operator σ ∈ P⊗k on the original space by σ̄ and call it
the respective logical Pauli operator:

σ̄E(ρ)σ̄† = E
(
σρσ†

)
∀ρ ∈ L(Cd).

Note that a choice of logical Pauli operators {σ̄ | σ ∈ P⊗k} fixes the encoding of a qubit
code, because every state equals a unique linear combination of Pauli operators. If we
choose instead an initial encoding, we may still have a true choice for the logical Pauli
operators. In the case of stabilizer codes for example, which will be discussed in section
4.5, the degree of freedom in choosing logical Pauli operators is the multiplication by
stabilizer operators.

4.2 Quantum error correction

Definition 4.4. A noise channel N acting on a code space VC is called correctable for the
quantum code C, iff there exists an error correction channel R that reverses the action of N
on the code space, i.e.

R
(
N(|ψ〉 〈ψ|)

)
= |ψ〉 〈ψ| ∀ |ψ〉 ∈ VC.

The error correction theorem 4.8, originally phrased by Knill and Laflamme [28], will
provide an easy check for the existence of an error correction channel as well a an
explicit candidate in the case of existence. The explicit form shows that we can restrict
our consideration to standard error correction channels which consist of a projective
measurement followed by a unitary recovery operation conditioned on the measurement
outcome called the error syndrome. The standard error correction channel is pictured in
figure 4.1.

Definition 4.5. A standard error correction channel R is defined via

R(ρ) =
∑
i∈[r]

RiPiρPiR
†
i

with a projective measurement {Pi}i∈[r] and a set of unitary recovery operators {Ri}i∈[r].
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4 Introduction to quantum coding

Before proving the actual theorem, we recall the polar decomposition of linear operators
and give a helpful equivalence for the later error correction condition.

Lemma 4.6 (Polar decomposition). Every operator A ∈ L(C2) can be written in the form

A = UJ = KU

with U unitary and J and K unique positive semi-definite operators defined by J =
√
A†A and

K =
√
AA†. If A is invertible, U is unique, too.

Proof. [4, theorem 2.3].

Lemma 4.7. Let N be a quantum channel on a Hilbert space Cd and P ∈ L(Cd). The following
statements are equivalent:

1. For every set {Ni}i∈[t] of Kraus operators for N there is a hermitian operator H ∈ L(Cd)
such that PN†iNjP = HijP.

2. There is a set {Ni}i∈[t] of Kraus operators for N such that PN†iNjP = HijP for a
hermitian operator H ∈ L(Cd).

3. There is a set {Ni}i∈[t] of Kraus operators for N such that PN†iNjP = DijP for a diagonal
operator D ∈ L(Cd).

Proof. The equivalences are a simple consequence from the unitary freedom auf Kraus
operators stated in lemma 2.11: Given a set {Ni}i∈[t] of Kraus operators for a quantum
channel N all other valid sets, possibly padded by zero operators, are exactly those of
the form {Mi}i∈[t] with Mi =

∑
k∈[t]UkiNk for a unitary U ∈ U(Cd).

Let the operator set {Ni}i∈[t] fulfill the condition PN
†
kNlP = Hkl for a hermitian

H ∈ L(Cd). Then the operators from the set {Mi}i∈[t] fulfill:

PM
†
iMjP =

∑
k,l∈[t]

UljU
∗
kiPN

†
kNlP

=
∑
k,l∈[t]

Ulj(U
†)ikHklP

= (U†HU)ijP.
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The equivalences hold since U†HU is always hermitian and even diagonal for U the
diagonalizing unitary of H.

Theorem 4.8 (Error correction theorem). A noise channel N is correctable for a quantum
code C iff it has a set of Kraus operators {Ni}i∈[t] such that

PCN
†
iNjPC = DijPC ∀i, j ∈ [t]

for a diagonal operator D.

For i ∈ [t] let R†i be the unitary from a polar decomposition of NiPC and Pi := R
†
iPCRi. Extend

the sets {Ri}i∈[r] and {Pi}i∈[r] by arbitrary unitaries and projections such that the completeness
relation

∑
i∈[r] Pi = I is fulfilled. Then error correction is achieved by the standard error

correction channel R with recovery operators {Ri}i∈[r] and projection operators {Pi}i∈[r].

R also corrects any channel whose Kraus operators are linear combinations of the {Ni}i∈[t].

Proof. “=⇒”. To prove necessity assume that R is a valid quantum channel with Kraus
operators {Vi}i∈[r] correcting the channel N with Kraus operators {Mj}j∈[t] on all states
of the code space, i.e. for all quantum states ρ∑

k∈[r]

∑
j∈[t]

VkMjPCρPCM
†
jV
†
k = PCρPC.

Hence, the quantum operation given by the Kraus operators {VkMjPC}k∈[r], j∈[t] is
identical to the one given by the single Kraus operator PC. Lemma 2.11 on the unitary
equivalence of Kraus operators implies therefore the existence of complex numbers ckj
such that VkMjPC = ckjPC. With this

PCM
†
iMjPC =

∑
k∈[r]

PCM
†
iV
†
kVkMjPC

=
∑
k∈[r]

c∗kickjPC

= HijPC

with Hij :=
∑
k∈[r] c

∗
kickj the matrix elements of a hermitian operator. According to

lemma 4.7 this relation is equivalent to the desired diagonal relation.
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4 Introduction to quantum coding

“⇐=”. To show sufficiency assume that PCN
†
iNjPC = DijP is fulfilled for a diagonal

operator D and a set {Ni}i∈[t] of Kraus operators for N. With the help of the polar de-

composition we can simplify NiPC = R†i

√
PCN

†
iNiPC =

√
DiiR

†
iPC. The consequence

NiPCN
†
i = DiiR

†
iPCRi

shows us that the transformation of the code space projector PC by Ni is proportional
to the transformation by the unitary R†i . Hence, depending on Ni the code space is
transformed into subspaces characterized by the projections Pi = R

†
iPCRi fulfilling

PiPj ∝ Ni
(
PCN

†
iNjPC

)
N
†
j ∝ δijNiPCN

†
j .

Since the subspaces are orthogonal, we can distinguish them by a syndrome measure-
ment described by projection operators {Pi}i∈[r] with Pi for i ∈ [r]\[t] choosen such that
the completeness relation

∑
i∈[r] Pi is satisfied. After the subspace check recovery is

carried out by Ri, hence the desired recovery operation has the explicit form:

R(ρ) =
∑
i∈[r]

RiPiρPiR
†
i

with Ri arbitrary unitaries for i ∈ [r]\[t].

Extended correction: It remains to prove that the quantum channel R also corrects a
quantum channel M with Kraus operators {Mi}i∈[m] that equal linear combinations

Mi =
∑
j∈[t]

aijNj, aij ∈ C.

Using previously derived equalities and the error correction condition we first simplify

RkPkMiPC =
(
RkPkR

†
k

)
RkMiPC

=
∑
j∈[t]

aij(PCRk)NjPC

=
∑
j∈[t]

aij
1√
Dkk

PCN
†
kNjPC

= aik
√
DkkPC.
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4.3 Quantum error detection

Now it is easy to check that R also corrects M acting on the code space:

R (M(PCρPC)) =
∑
k∈[r]

∑
i∈[m]

(
RkPkMiPC

)
ρ
(
PCM

†
iPkR

†
k

)

=

∑
k∈[r]

∑
i∈[m]

|aik|
2Dkk

PCρPC
= PCρPC

with the coefficient equalling 1 due to trace-preservation of R and M.

4.3 Quantum error detection

The next definition states what we operationally understand by error detection:

Definition 4.9. A noise channel N : L(Cd) → L(Cd) is detectable by a quantum code C
with VC ⊆ Cd, iff there exists an error detection channel R : L(Cd)→ L(Cd ⊗C2) that for
all |ψ〉 ∈ VC fulfills

〈0| R(|ψ〉 〈ψ|) |0〉 = |ψ〉 〈ψ| ,

〈0| R
(
N(|ψ〉 〈ψ|)

)
|0〉 ∼ |ψ〉 〈ψ|

with the projection 〈0| . . . |0〉 applying to the additional flag qubit.

An error detection channel introduces an additional flag qubit that indicates an error
when found in state |1〉. In this case we impose no condition on the code register while
we require it to contain the original code state if the flag qubit indicates no error by |0〉.
To avoid that the trivial channel outputting the flag |1〉 with certainty is a valid error
detection channel, the first equation in definition 4.9 requires additionally that the error
detection channel has to output the no error flag |0〉, if the noise channel did not act on
the code state.

Note that for an error correction channel we do not require any specific behaviour if the
identity channel acts instead of the noise channel. That is also the reason why strictly
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4 Introduction to quantum coding

speaking there exist noise channels which are correctable but not detectable for a given
code, namely any noise that equals a single logical operation on the code space.

The next theorem shows that our definition of error detectibility is equivalent to the
usual error detection condition used e.g. in [29]:

Theorem 4.10 (Error detection theorem). A noise channel N with Kraus operators {Ni}i∈[t]
is detectable for a quantum code C iff there exist di ∈ C such that

PCNiPC = diPC

or, equivalently, iff for every choice of orthogonal code states {ci}i∈[K] we have that

〈ck|Ni |cl〉 = diδkl.

Error detection can be achieved by the channel R consisting of the projective measurement
{PC, I − PC} and an additional flag qubit that stores the measurement outcome by |0〉 or |1〉,
respectively. This error detection channel also detects any noise channel whose Kraus operators
are linear combinations of the operators {Ni}i∈[t].

Proof. The equivalence of the two conditions can easily be seen by sandwiching the
first equation by 〈ck| . . . |cl〉.

“=⇒”: Assume there exists an error detection channel R for the code C and the noise N.
Moreover, assume there exist j and k 6= l sucht that α := 〈ck|Nj |cl〉 6= 0.

Then the two properties of error detection will contradict each other: R ◦N followed by
the zero flag projection should rescale |cl〉 〈cl|, while on the other hand |ck〉 〈ck| – into
which |cl〉 〈cl| is partially turned by N – should stay invariant under application of R
followed by the zero flag projection. Mathematically, this contradition simply results by
linearity and trace-preservation of R:

〈0| R
(
N(|cl〉 〈cl|)

)
|0〉 = 〈0| R

(
|α|2 |ck〉 〈ck|+ terms of non-negative trace

)
|0〉

= |α|2 |ck〉 〈ck|+ terms of non-negative trace

� |cl〉 〈cl| .
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4.3 Quantum error detection

Hence, our assumption was wrong and 〈ck|Ni |cl〉 = dilδkl.

It remains to prove that dil is independent of l. For this assume dik 6= dil. Replace the
orthonormal basis states |ck〉 and |cl〉 by

|c ′k〉 :=
1√
2
(|ck〉+ |cl〉)

|c ′l〉 :=
1√
2
(|ck〉− |cl〉).

Then

〈c ′k|Ni |c ′l〉 = 〈c ′k|
(
dik − dil

2
|c ′k〉+

dik + dil
2

|c ′l〉
)
6= 0

contradicts the already proven fact 〈c ′k|Ni |c ′l〉 = 0. Hence, our assumption was wrong
and dil is in fact independent of l.

“⇐=”: Assume PCNiPC = diPC for all i ∈ [t]. Let R be the error detection channel
defined in the theorem. Then clearly, 〈0| R(|ψ〉 〈ψ|) |0〉 = |ψ〉 〈ψ| for all |ψ〉 ∈ VC and

〈0| R
(
N(|ck〉 〈cl|)

)
|0〉 =

∑
i∈[t]

PCNi |ck〉 〈cl|N†iPC

=
∑
i∈[t]

|di|
2 |ck〉 〈cl|

for all k, l ∈ [t]. Since the prefactor
∑
i∈[t] |di|

2 is independent of k and l and R and
the flag qubit projection are linear operations, it follows that

〈0| R
(
N(|ψ〉 〈ψ|)

)
|0〉 ∼ |ψ〉 〈ψ| ∀ |ψ〉 ∈ VC.

Extended detection: R also detects any channel M with Kraus operators {Mi}i∈[m],
Mi =

∑
j∈[t] aijNj, aij ∈ C, because for all k, l ∈ [t] we have that

〈0| R
(
M(|ck〉 〈cl|)

)
|0〉 =

∑
i∈[m]

∑
s,p∈[t]

αisα
∗
ipPCNs |ck〉 〈cl|N†pPC

= β |ck〉 〈cl|
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4 Introduction to quantum coding

with the prefactor

β :=

∑
i∈[m]

∑
s,p∈[t]

αisα
∗
ipdsd

∗
p


being independent of k and l.

4.4 Error sets, code distance and performance bounds

Due to the fact that the error correction channel of theorem 4.8 and the error detection
channel of theorem 4.10 also correct and detect any error channel whose Kraus oper-
ators are linear combinations of the original elements, it is sufficient to consider the
correctibility and detectability of so-called error sets:

Definition 4.11. A set {Ni}i=[t] of linear operators L(Cd) is called a correctable (detectable)
error set for a code C with VC ⊆ Cd iff the operators {Ni}i∈[t] fulfill the error correction
condition of theorem 4.8 (error detection condition of theorem 4.10).

Corollary 4.12. An error set is correctable (detectable) by a quantum code C iff each channel
whose Kraus operators equal linear combinations of the errors is correctable (detectable) by C.

Lemma 4.13. An error set {Ni}i∈[t] is correctable iff the error set {N†jNi}i,j∈[t] is detectable.

Proof. Since PCN
†
iNjPC = HijPC for a complex matrix H implies directly that H is

hermitian, the error correction condition of theorem 4.8 for {Ni}i∈[t] becomes equivalent
to the error detection condition of theorem 4.10 for {N†jNi}i,j∈[t].

Often we are seeking for qudit codes (PC ⊆ Cd
N

) that are capable of correcting or
detecting any error that only affects up to a certain number of qudits. This property is
expressed by the notion of the code distance:

Definition 4.14. The distance δ of a qudit quantum code C with VC ⊆ Cd
N

is the minimum
number of qudits on that an operator Ni ∈ L(CdN) acts non-trivially that does not fulfill the
quantum error detection condition of theorem 4.10.
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4.4 Error sets, code distance and performance bounds

A quantum code of distance δ encoding K orthogonal states into N qudits is called an

(N,K, δ)d code.

For qubit codes we omit the dimension index d.

Lemma 4.15. For a quantum code of distance δ there exists an error correction (detection)
channel that can correct bδ−1

2 c (detect δ− 1) arbitrary qudit errors but none that can correct
(detect) more arbitrary qudit errors.

Proof. The (non)-existence of error detection channels is a straightforward consequence
from the definition of the distance. The statement about error correction follows by the
argument of lemma 4.13.

Due to the linearity of correctable and detectable errors, determining the code distance
only requires checking the error correction and detection condition for basis operators
of limited weight. Recall for example that the Pauli operators P = {I,X, Y,Z} form an
orthonormal basis of the single qubit operators. Consequently, a qubit code has at
least distance δ iff the Pauli operators of weight less than δ fulfill the error detection
condition 4.10.

After having introduced the notion of distance, it is natural to ask for the minimum
number of physical qubits N for that there exists a code of distance δ capable of
encoding K orthogonal states. This question cannot be answered exactly, but already a
simple counting argument [30] leads to a lower, so-called quantum Hamming bound as
well as an upper, so-called quantum Gilbert-Varshamov bound:

K

b δ−1
2 c∑
j=0

3j
(
N

j

)
6 2N 6 K

δ−1∑
j=0

3j
(
N

j

)
.

The simplicity of the derivation limits the validity of the bounds to pure codes. A
code of distance δ is called pure iff distinct Pauli operators of weight at most bδ−1

2 c
map each code state to orthogonal states [31]. This property is generally stricter than
non-degeneracy which only requires that such distinct Pauli operators map each code
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4 Introduction to quantum coding

state to linearly independent states. Note, that for the later introduced stabilizer codes
the notions of purity and non-degeneracy are equivalent due to lemma 4.34.

Regarding the Gilbert-Varshamov bound the restriction to pure codes can be seen as
irrelevant, since it only gives us the additional information that the existing (N,K, δ)
code fulfilling the bound is a pure one. It might just be the case that there exists an
impure code with an even lower number of physical qubits. The quantum Hamming
bound, on contrast, bears indeed the problem that it could be violated by impure codes,
although such codes have not been discovered yet.

Fortunately, this shortcoming is overcome by another lower bound, the quantum Single-
ton bound, which holds for all quantum codes.

Lemma 4.16 (Quantum Singleton bound). For an (N,K, δ)d quantum code it holds that

N > 2(δ− 1) + logd K.

Proof. Originally proven for qubits by [28]; adapted for qudits by [32].

The quantum Singleton bound proves that any qubit code encoding one logical qubit
and capable of correcting any single qubit error (i.e. of distance at least 3) needs at
least 2(δ− 1) + 1 = 5 physical qubits. A code meeting this bound is the famous 5-qubit
stablizer code presented in section 4.5.5.

We quoted the higher dimensional version of the quantum Singleton bound, since for
the construction in section 8.6 we require a code with a partition of the physical qubits
into equally sized blocks such that each error constrained to a block has to be detectable.
If we consider a block of r qubits simply as a qudit with d = 2r, this translates into
the search of a qudit code of distance 2 encoding at least K = 2 states. The quantum
Singleton bound then tells us that we need at least N = 3 blocks.
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4.5 Stabilizer codes

4.5 Stabilizer codes

4.5.1 Definition and stabilizer groups

Stabilizer codes form the most famous class of quantum codes since they provide a
strong algebraic structure that allows a simple and straightforward analysis. The crucial
ingredient is the focus on the Pauli group as operator basis. A stabilizer code is defined
via a subgroup of the Pauli group with pairwise commuting elements. Commuting
hermitian operators have the advantage of having a common eigenvector basis.

Definition 4.17. A stabilizer group S ⊆ PN consists of commuting operators not including
−I. It defines a stabilizer code C(S) via the code space VS given by the common +1 eigenspace
of all elements of S.

Some literature allows the element −I in a stabilizer group, but this would lead to the
trivial empty code space. Hence we restrict the definition of a stabilizer group to the
one above. Moreover this saves us a lot of case differentiations and we can derive some
useful properties like the following:

Lemma 4.18. All elements Si of a stabilizer group S are of the form ±p for a p ∈ P⊗N and
hence hermitian.

Proof. Assume S has an element Sj of the form Sj = ±ip for a p ∈ P⊗N. Then S†j = −Sj.
But this leads to the contradiction (S†j)

2 = −SjS
†
j = −I ∈ S.

Often it is useful to work just with a set of generators for the stabilizer group. Generators
are elements of a group such that the group is given by all possible products between
them. Remember from linear algebra that a set of m generators is called independent if
no subset of m− 1 elements is sufficient to generate the group.

Independent generators allow a simple characterization of the whole stabilizer group:

Proposition 4.19. The stabilizer group S generated by m independent generators {gi}i∈[m]

contains 2m elements, which correspond to the 2m distinct, non-multiple, ordered products of
generators.

55



4 Introduction to quantum coding

Proof. Since generators commute and square to identity, any product of them can
be written ordered according to their indices and without double appearances. An
ordered, non-multiple product of generators cannot be proportional to another one,
because otherwise one generator can be expressed as a product of other generators and
is therefore not independent. Hence, the cardinality of the stabilizer group equals the
number of 2m ordered, non-multiple products of generators.

Corollary 4.20. The code space projector of a stabilizer code C(S) with independent generators
{gi}i∈[m] is given by

PC =
1

2m
∑
Si∈S

Si =
1

2m
∏
i∈[m]

(I+ gi).

4.5.2 Check matrix representation and syndrome spaces

To compute the dimension of a stabilizer code space, it is convenient to represent
Pauli group elements in a vector form omitting their prefactors and just indicating the
positions of X-, Y- and Z-operators in their tensor product:

Definition 4.21. The vector representation of a Pauli group element p ∈ PN is a row vector
~pT of length 2N over the field Z2 with a 1 in position j iff p contains a Pauli X- or Y-operator
in the corresponding tensor product position and a 1 in position N+ j iff p contains a Pauli Z-
or Y-operator in the j-th tensor product position.

p = iXYIZZ ~pT = (1 1 0 0 0 | 0 1 0 1 1)

Figure 4.2: Vector representation of a Pauli group element p.

Lemma 4.22. Two elements p1,p2 ∈ PN commute iff ~pT1Λ~p2 = 0 with

Λ =

(
0 I
I 0

)
.
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Proof. When multiplying out ~pT1Λ~p2, the sum contains a summand of 1 for each position
j 6 N in which the two Pauli group elements p1 and p2 contain different, non-identity
and hence anti-commuting Pauli operators.

Definition 4.23. The check matrix of a generator set {gi}i∈[m] for a stabilizer group on
N qubits is the m × 2n matrix over Z2 whose rows equal the vector representations of the
generators.

Lemma 4.24. Generators are independent iff the rows of their check matrix are linearly
independent.

Proof. This holds, since multiplying two Pauli group elements corresponds to adding
their vector representations modulo 2.

The previous lemma offers the possibility to extract a set of independent generators
from any generating set of a stabilizer group by Gaussian elimination of the check
matrix. By elimation steps, omitting zero rows and renumbering qubits (swapping
columns) it is furthermore always possible to obtain a check matrix of independent
generators in the so-called normal form [4, §10.5.7]:

r (N−k−r) k r (N−k−r) k columns

r rows

(N−k−r) rows

(
I A1 A2 B 0 C

0 0 0 D I E

)
.

Later we will see that the independent generators {gi}i∈[m] of a stabilizer group S
play an important role in the error correction for the stabilizer code C(S) since their
simultaneous measurement, i.e. the projective measurement in the common eigenvector
basis, will correspond to the projective measurement in their standard error correction
procedure. The states that are common eigenvectors of all generators gi to eigenvalues
ji form the syndrome space to the generator syndrome j1 . . . jm.

Lemma 4.25. Consider a stabilizer code C(S) on N qubits and an arbitary syndrome j ∈
{−1, 1}m for the independent generators {gi}i∈[m] of the stabilizer group. Then there exists an
operator Ej ∈ PN such that EjPCE

†
j equals the projection onto the j-th syndrome space.
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Proof. Let ~x ∈ (Z2)
m be such that (−1)xi = ji. Since the rows of the check matrix G

are linearly independent there exists a vector ~Ej ∈ (Z2)
2N with GΛ~Ej = ~x. According

to lemma 4.22 the Pauli operator Ej corresponding to the vector representation ~ETi
commutes with generator gi iff xi = 0. Consequently, the projection Pj onto the j-th
syndrom space can be written as

Pj =
1

2m
∏
i∈[m]

(I+ jigi) = EjPCE†j .

Lemma 4.26. The projection onto the j-th syndrome space for a stabilizer code C(S) with
independent generators {gi}i∈[m] is given by

Pj =
1

2m
∏
i∈[m]

(I+ jigi) =
1

2m
∑
Si∈S

η(Ej,Si)Si

with Ej ∈ PN such that Pj = EjPCE
†
j .

Proof. According to proposition 4.19 every stabilizer corresponds to an ordered, non-
multiple product of the generators {gi}i∈[m]. For k ∈ {−1, 1}m let Sk denote the product
of the generators gi and Jk the product of the ji for that ki = 1. Multipliying out leads
to
∏
i∈[m](I + jigi) =

∑
k∈{−1,1}m JkSk. Every Sk either commutes or anticommutes

with Ej. Since Ei |ψ〉, |ψ〉 ∈ VS, is an eigenstate of Pj to the eigenvalue 1, it holdd that
JkSkEj = EjSk, i.e. η(Ej,Sk) = Jk.

Proposition 4.27. Let S be a stabilizer group on N qubits with m independent generators
{gi}i∈[m]. Then dim(VS) = 2N−m.

Proof. Every generator syndrome space has the same dimension since for every syn-
drome j there exists a unitary Ej ∈ PN such that EjPCE

†
j = Pj according to lemma

4.25. Different Pj are furthermore orthogonal and add up to the identity I =
∑
j Pj.

Consequently 2N = 2m dim(VS).

Knowledge the above expression for the code space dimension it is easy to prove that a
stabilizer group is maximal in that sense that there is no larger group stabilizing the
same code space:
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Lemma 4.28. Let p ∈ PN be an operator for which all elements of a stabilizer code space VS
are eigenstates to the eigenvalue 1. Then p ∈ S.

Proof. Let dim(VS) = 2N−m. Then the set S◦ ⊆ PN of all operators for which elements
of VS are eigenstates to the eigenvalue 1, has to be a group of cardinality at most 2m.
Since it has to contain S, it equals S.

Since a stabilizer code space has a dimension of a power of 2, it can be considered as
qubit space. The following notation is common in literature:

Definition 4.29. A stabilizer code C of distance δ encoding k qubits into N qubits is called an

[N,k, δ] code.

The notation is also used without stating the distance.

4.5.3 Normalizer

Definition 4.30. The normalizer N(S) of a subgroup S ⊆ PN ist defined as the set of all
elements p ∈ PN such that psp† ∈ S for all s ∈ S.

Lemma 4.31. S ⊆ N(S) for any subgroup S ⊆ PN.

Proof. Since S is a group, it contains s1s2s
−1
1 = s1s2s

†
1 for all s1, s2 ∈ S.

Definition 4.32. The centralizer Z(S) of a subgroup S ⊆ PN is defined as the set of all
elements p ∈ PN such that psp† = s for all s ∈ S.

Lemma 4.33. N(S) = Z(S) for a stabilizer group S ⊆ PN.

Proof. Trivially, Z(S) ⊆ N(S). An element p ∈ N(S) either commutes or anti-commutes
with any element Si ∈ S. Hence pSip† = ±Si ∈ S. Since −I /∈ S, it only remains the
option pSip† = Si and hence p ∈ Z(S).

Lemma 4.34. Normalizer elements of a stabilizer code map code states to code states while any
non-normalizer Pauli operator maps the code space to the orthogonal space.
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Proof. Since N ∈ N(S) commutes with all stabilizers, recalling corollary 4.20 leads to

PCNPC =

 1
2m

∏
k∈[m]

(I+ gk)

N = N

 1
2m

∏
k∈[m]

(I+ gk)

 = NPC,

while N ∈ PN\N(S) implies that N anticommutes with at least one generator gl of the
code space resulting in

PCNPC = PCN

 1
2m

∏
k∈[m]

(I+ gk)

 = PC(I− gl)︸ ︷︷ ︸
=0

N

 1
2m

∏
k∈[m],
i 6=l

(I+ gk)

 = 0.

Since two errors differing by a normalizer element cannot be distinguished by an error
correction procedure, the normalizer will play a central role in the stabilizer version of
the error correction theorem 4.36 and will provide us with an easy expression for the
code distance in corollary 4.37.

Usually normalizer elements obeying the respective commutation relations are chosen
as logical Pauli operators for a stabilizer code. Clearly, stabilizer multiplication is a
degree of freedom for the choice of logical Pauli operators that does not change the
encoding of the code. Having a choice fixed, a product of stabilizer and logical Pauli
operator is unique:

Lemma 4.35. Let C(S) be an [N,k] stabilizer code with a fixed set of logical Pauli operators
{σ̄ | σ ∈ P⊗k} ⊆ N(S). Then a product sσ̄ uniquely determines σ̄ with σ ∈ P⊗k and s ∈ S±

with S± := {sSi|s ∈ {±1,±i},Si ∈ S}.

Proof. Assume s1σ̄1 = s2σ̄2 with s1, s2 ∈ S± and σ ∈ P⊗k. Then s†2s1 = σ̄2σ̄
†
1. The right

hand side equals a logical operator times a prefactor. But the only logical operator that
is an element of S± is the identity, hence, σ̄2 = σ̄1 and consequently s1 = s2.
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4.5 Stabilizer codes

4.5.4 Error correction in the stabilizer formalism

The whole power of stabilizer codes shows off in the adaption of the error correction
theorem 4.8. As discussed in section 4.4, the check if a code can correct arbitrary noise
on t qubits can be restricted to Pauli errors on t qubits. In the case of stabilizer codes
we will profit from their strength in handling Pauli operators to derive a simplified
version of the error correction theorem.

Note that in literature the condition E
†
iEj /∈ N(S)\S± of the following theorem is

often sloppily written as E†iEj /∈ N(S)\S or justified by just providing the sufficiency
statement.

Theorem 4.36 (Error correction for stabilizer codes). An error set {Ei}i∈[t] ⊆ PN is
correctable for a stabilizer code C(S) iff

E
†
iEj /∈ N(S)\S± ∀i, j ∈ [t].

Let {gi}i∈[m] denote a set of independent generators of S. Error correction for any noise
channel with linear combinations of the operators {Ei}i∈[d] as Kraus operators is achieved by a
standard error correction channel with the syndrome measurement provided by the simultaneous
measurement of the generators {gi}i∈[m] followed by the recovery operation E†i with EiPCE

†
i

equaling the projection onto the respective syndrome space. (If such an error does not exist, the
respective syndrome will not occur and the recovery operation can be defined arbitrarily).

Proof. “=⇒”: Assume the error set {Ei}i∈[t] ⊆ PN is correctable for a stabilizer code
C(S) and E†iEj ∈ N(S) for an i, j ∈ [t]. Since E†iEj commutes with all stabilizers, it also
commutes with the code space projector PC and according to theorem 4.8 and lemma
4.7 it holds for all |ψ〉 ∈ VC that

E
†
iEj |ψ〉 = PCE

†
iEjPC |ψ〉 = Hij |ψ〉

for a hermitian operator H. In other words, all code space states are eigenstates of
H
†
ijE
†
iEj to the eigenvalue 1 with Hij ∈ {±1,±i}. According to lemma 4.28 this implies

E
†
iEj ∈ S

±.
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“⇐=”: Consider a stabilizer code C(S) and an error set {Ei}i∈[t] with E†iEj /∈ N(S)\S±

for all i, j ∈ [t]. For E†iEj ∈ S
± it holds that PCE

†
iEjPC = HijPC with Hij ∈ {±1,±i} and

Hij = H
∗
ji, while for E†iEj /∈ N(S) it holds that PCE

†
iEjPC = 0 according to lemma 4.34.

Hence, the error correction condition of theorem 4.8 is fulfilled.

Error correction channel: If we reformulate the original error correction channel R of
theorem 4.8 for the noise channel with Kraus operators {Ei/

√
t}i∈[t] (note that for Pauli

group elements Ei these define indeed a valid channel), we obtain an error correction
channel that can correct any channel whose Kraus operators are linear combinations of
the errors {Ei}i∈[t].

Since EiPC/
√
t already corresponds to a product of a unitary and a positive semi-

definite operator, we can choose R†i = Ei for the unitary of the polar decomposition.
After having measured that the disturbed code state lies in the support of one of the
orthogonal projections Pi = EiPCE

†
i for i ∈ [t] we thus apply Ri for recovery.

Let the string ji ∈ {−1, 1}m indicate in position k if Ei anticommutes or commutes with
the k-th generator. Then

Pi = EiPCE
†
i = Ei

 1
2m

∏
k∈[m]

(I+ gk)

E†i = 1
2m

∏
k∈[m]

(I+ (ji)kgk) = Pji ,

the projection onto the generator syndrome space with the syndrome ji.

The extended set {Pi}i∈[2m], comprising the projections onto all 2m generator syndrome
spaces, hence fulfills the specification for the projection operators of a standard error
correction channel according to theorem 4.8. The remaining recovery operators Ri with
i ∈ [2m]\[t], can be chosen arbitrarily.

According to definition 4.14 the distance of a code equals the minimum weight of an
operator contradicting the error detection condition. Since we can restrict the minimum
to the weight of Pauli operators we obtain:

Corollary 4.37. The distance of a stabilizer code C(S) equals the minimum weight over all
elements of N(S)\S±.
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4.5 Stabilizer codes

4.5.5 Examples of common stabilizer codes

Table 4.1 comprises three famous [N, 1, 3] stabilizer codes, i.e. these codes encode one
logical qubit into N physical qubits while being capable of correcting any single qubit
error. The number of one logical qubit follows from the fact that the codes are defined
by N − 1 independent generators (recall proposition 4.27). The distance of 3 can be
computed after having determined the respective normalizers (recall corollary 4.37).
The listed recovery operators are exactly those that achieve correction of any single
qubit error.

By listing additionally a choice of logical X̄ and Z̄ operators the table also fixes the
standard encoding for the codes. As mentioned before, the choice of encoding be-
comes relevant for the performance of the code in a noise setting beyond its perfect
correctibility, e.g. in the setting of chapter 7 where concatenated coding is applied
against probabilistic noise.

5-qubit code Steane 7-qubit code Shor code

Independent X Z Z X I I I IX X X X Z Z I I I I I I I
generators IX Z Z X IX X I IX X IZ Z I I I I I I

X IX Z Z X IX IX IX I I IZ Z I I I I
Z X IX Z I I IZ Z Z Z I I I IZ Z I I I

IZ Z I IZ Z I I I I I IZ Z I
Z IZ IZ IZ I I I I I I IZ Z

X X X X X X I I I
I I IX X X X X X

X̄ X X X X X X X X X X X X X X X X X X X X X

Z̄ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

Recovery I, Xi, Yi, Zi I, Xi, Zj, XiZj {I, X1, X2, X3} · {I, X4, X5, X6}

operators 1 6 i 6 5 1 6 i 6 7 ·{I, X7, X8, X9}

·{I, Z1Z2Z3, Z4Z5Z6, Z7Z8Z9}

Table 4.1: Common stabilizer codes.

63



4 Introduction to quantum coding

The three listed stabilizer codes are each famous for a particular reason. The number
N of physical qubits of the 5-qubit code matches the minimum number necessary
for an [N, 1, 3] code according to the quantum Singleton bound stated in lemma 4.16.
The Steane 7-qubit code has the nice structure of a self-dual CSS code [4, §10.4.2]. A
self-dual CSS code is defined by a classical linear code and inherits its error correction
ability. Lastly, the Shor code can be regarded as concatenation of a bit flip and a phase
flip code and hence has a very intuitive encoding and error correction algorithm [4,
§10.2].

4.5.6 Encoding and decoding of stabilizer codes

Another advantage of stabilizer codes besides their structured form and simple error
correction properties is their efficient en- and decoding. The standard network for
encoding and decoding is described in [33, §4]. For an [N,k] stabilizer code this
network needs N qubits and not more than N− k single qubit gates (Hadamard and
Pauli operations) and N(N− k) two qubit gates (controlled Pauli operations). Notice,
that these parameters scale indeed efficiently in the number of logical and physical
qubits.

For our purposes this is rather irrelevant, since in the applications of this thesis N qubits
will always be encoded seperatedly by the same stabilizer code, e.g. the 5 qubit code.
In this case the en- and decoding is efficient anyways, since we simply have to apply N
times the same constant size decoding scheme. Furthermore, for the purposes of this
thesis only a decoding scheme is needed. We present here the alternative decoding
method by [33, §4], which only needs up to 2k(N− k+ 1) one- and two-qubit gates and
k ancilla qubits initialized in |0〉⊗k which can store the decoded state:

Assume w.l.o.g. that the logical Z̄i operations, i ∈ [k], are tensor products of {I,Z}. From
the normal form one can see that this is always possible by stabilizer multiplication
(note that the Z̄ operators of the codes in table 4.1 also have this form). Clearly, the
following equivalences hold:

the i-th logical qubit is in the state |1̄〉

⇔ the encoded state is an eigenstate of Z̄i with eigenvalue − 1
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4.5 Stabilizer codes

⇔ the encoded state is a computational basis state with an odd number of qubits

for that Z̄i contains a Z operator in the state |1〉.

Therefore, a logical CNOT targeted at ancilla qubit i from the logical qubit i is imple-
mented by the collection of CNOTs from every physical qubit j for that Z̄i contains a
Z operator. If we apply afterwards a controlled X̄i on the encoded state controlled on
the ancilla qubit, we turn the first logical qubit into the logical |0̄〉 state. Applying this
procedure for every logical qubit will give us the decoded state in the ancilla register
disentangled from the logical |0k〉 state in the code register.

We now also see why encoding needs some additional work. In principle, we can apply
the above described circuit backwards for encoding, but for this an initial preparation
of the logical |0k〉 state is necessary.
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Existence of intermediate problems

5.1 Introduction

Despite being the most studied classes in quantum complexity theory it is still unkown
if QMA is strictly larger than BQP or perhaps equal to it like it is unknown for the
analogous classical pair NP and P. For an equality proof it is sufficient to focus on
complete problems of the larger class while inequality implies the possibility that also
so-called intermediate problems exist. These problems lie outside the smaller within the
larger class but are not complete for it.

Studying intermediate problems may lead to a better understanding of the structure
and relationship between complexity classes. Moreover, some intermediate problems
have high practice relevance. Many cryptography schemes for example are based on
NP-intermediate problems and not, as one may assume, on NP-complete problems,
since those usually possess a too large ratio of easily solvable instances. One (probably)
NP-intermediate problem used in cryptography is Factoring, which is also famous for
being in BQP due to Shor’s algorithm [1]. The word “probably” indicates that Factoring
is only believed to be NP-intermediate due to a missing completeness proof.
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5 Existence of intermediate problems

The practically relevant problem Graph Isomorphism can instead be proven to be
NP-intermediate under the condition that the polynomial hierarchy does not collapse to
the second level. The reason is that the complement problem Graph Nonisomorphism
is contained in the class AM (for a protocol see [34]), which is the highest class in the
collapsing Arthur-Merlin hierarchy [35] and which can be placed within the second
level Π2 of the polynomial hierarchy (analogously to the Sipser-Gacs-Lautemann proof
[36]).

Quantum complexity theory also offers some natural candidates for QMA-intermediate
problems. Some are so natural that own class definitions have been introduced for
them: the problem of transverse Ising model Hamiltonians defining the class TIM
[26], the problem of Stoquastic Hamiltonians defining the class StoqMA [21], and of
course the complete problems for QCMA such as Ground State Connectivity [23]. Note
that there is no formal proof for the intermediateness of these problems, not even
under a condition like in the case of Graph Isomorphism. Finding a “natural” QMA-
intermediate problem under such a condition is an interesting open task. Note that the
quantum Arthur Merlin hierarchy collapses as well (though to the third level QMAM
[18] instead of the second level AM classically) and that recently the first approach
towards a reasonable definition of a quantum polynomial hierarchy was made [37].

For both cases, quantum and classical, the question remains if the existence of interme-
diate probems can be proven without any condition besides QMA 6= BQP and NP 6= P,
respectively. The positive answer for the classical case was given by Ladner’s theorem [38]
in the seventies. Actually, Ladner proves a whole hierachy of intermediate problems by
constructing for every problem outside P a new problem that is strictly simpler but still
outside P. Ladner formulates this as “there is no minimal problem above P”.

About the same time as Ladner’s result, Schaefer’s dichotomy theorem [39] revealed the
sligthly contrary fact that every naturally restricted SAT problem is either in P or NP-
complete. Both statements are correct, since Ladner’s intermediate problems simply do
not have the form of Schaefer’s “naturally” restricted SAT problems. In fact, Ladner’s
intermediate problems are rather unnatural and based on the specific binary encodings
chosen for Boolean formulas and Turing machines whose large degrees of freedom are
not reflected in any reasonable logical structure.
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5.1 Introduction

In quantum complexity theory the categorization of variants of the Local Hamiltonian
problem by [26] can be regarded as a quantum analogue of Schaefer’s dichotomy result.
In contrast to this, no quantum version of Ladner’s theorem has been formulated
before our work [40], which we will cover in this chapter. Ladner’s theorem has been
generalized before, but only to complexity classes of decision problems including classes
below P by an adapted reduction notion [41, 42, 43]. Moreover, the extension of the
statement to two complexity classes and two problems, known as uniform diagonalization
theorem [44, 45], implies besides Ladner’s result also the undecidiability if a problem of
the larger class is contained in the smaller class.

Unfortunately, also the formulation of the uniform diagonalization theorem only covers
classes of decision problems, whereas quantum complexity classes such as BQP and
QMA as well as their classical randomized counterparts PromiseBPP and PromiseMA
are defined to contain promise problems. The main purpose of the promise is to
guarantee that an algorithm of reasonable runtime can differentiate yes- and no-
instances well enough, i.e. adheres the probabilistic error allowed by the definition of
the complexity class. When restricting to decision problems without promises neither
PromiseBPP, PromiseMA, BQP nor QMA are known to possess a complete problem.
But in table 3.1 we saw that all these classes contain complete promise problems of
physical or logical relevance.

In the beginning of complexity theory the concept of promise problems did not offer
much advantage in studying classical, non-randomized classes such as P and NP.
Because of this and due to the “untotal” property that algorithms for promise problems
can have an arbitrary behaviour on some inputs, complexity theory avoided and
therefore neglected promise problems for a long time. But with the introduction
of randomized complexity classes and at the latest with the upcoming of quantum
computing the concept of promise problems clearly deserves more respect.

The adaption of the uniform diagonalization theorem to randomized and quantum
complexity classes requires two steps: In section 5.2 we first extend some necessary
terminology originally defined in the context of decision problems to the context of
promise problems like (total) decidability and recursive (re-)presentation and show that
these properties are obeyed by standard randomized and quantum complexity classes.
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5 Existence of intermediate problems

Afterwards we can adapt the proof of the uniform diagonalization theorem to promise
problems and their complexity classes in section 5.3.

In the final section 5.4 we present the standard implications of the uniform diagonal-
ization theorem in terms of intermediate problems and undecidability results, which
now also hold for a large variety of promise problem classes. Note that the results
hold for any combinations of these classes, e.g. they also prove the existence of an
infinite hierarchy of intermediate problems between BQP and PromiseBPP assuming
BQP 6= PromiseBPP.

5.2 A framework for promise problems

5.2.1 Extremal problems and closure properties of complexity classes

The uniform diagonalization theorem allows statements about the structure of protocol
sets and not directly of problems. Since protocols of decision problem classes such as P
and NP correspond to exactly one decision problem, this sublety is irrelevant, but it
becomes relevant for classes of promise problems which are usually defined to consist
of all subproblems decidable by a certain protocol type.

Definition 5.1. A complexity class C that for every promise problem (Ayes,Ano) ∈ C also
contains every subproblem (A ′yes,A ′no) with

A ′yes ⊆ Ayes

A ′no ⊆ Ano

is called closed under promise restriction.

Clearly, the standard complexity classes of

C := {PromiseBPP, PromiseMA, BQP, QCMA, QMA}

are closed under promise restriction.
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Definition 5.2. We call the problem with the smallest promise decided by a DTM or a C-protocol
M, C ∈ C, the extremal problem of M and denote it by P(M).

Accordingly, we call the decision problem decided by a P- or NP-protocolM extremal and denote
it by P(M).

Definition 5.3. We denote by C∗, C ∈ C, the restriction of a complexity class C to its extremal
problems.

One might wonder why C∗, C ∈ C, is not used as the proper definition for the
according randomized or quantum complexity class. Indeed, logically there is no
reason to artificially demand a larger promise from a problem than necessary, but
practically one usually starts by defining a logically or physically interesting problem
and then aims at proving membership for this problem in a certain complexity class.
These proofs often involve many implication arguments and approximations to finally
show that an algorithm accepts with a sufficiently high or low probability. But this
does usually not rule out that the algorithm also accepts some other, non-promised
instances with the same high or low probability.

Even in the case of the Local Hamiltonian problem, in which the fundamental algo-
rithm accepts with a probability that trivially relates to the promise on the energy
gap (recall proposition 3.33), the final amplification in order to achieve the standard
completeness and soundness parameters involves Chernoff bound. Hence, even the
Local Hamiltonian problem is probably not an extremal problem according to its usual
definition. But the advantage of its usual definition is that the promise on the ground
state energy is simply physically describable.

We end this subsection by defining another closure property that applies to all standard
complexity classes irrespective whether they consist of promise or decision problems:
the closure under finite variations. The property bases on the notion of the symmetric
difference of two problems. We see two reasonable possibilities to extend the existing
definition for decision problems [45] to promise problem. We decide to define closure
under finite variations via the wider notion of the two, the total symmetric difference,
since this will become the relevant notion in the proof of the uniform diagonalization
theorem.
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5 Existence of intermediate problems

Definition 5.4. For promise problems A and B we define

ANB := {Ayes ∩ Bno} ∪ {Ano ∩ Byes} (symmetric difference)

A\B := {Ayes\Byes} ∪ {Ano\Bno} (difference)

A4B := (A\B) ∪ (B\A) (total symmetric difference).

We say “A equals B almost everywhere (a.e.)” iff A4B is finite.

Note that the right side of the above expressions equals a set despite the fact that the
problem on the left side corresponds to a pair of sets.

Obviously, for decision problems it holds that

ANB = A\B = B\A = A4B,

while for general promise problems A\B 6= B\A and the symmetric difference ANB is
only a subset of the total symmetric difference A4B as displayed in figure 5.1.

Definition 5.5. A complexity class C (of decision problems) is closed under finite variations
(c.f.v.) iff A ∈ C implies B ∈ C for every (decision) problem B that equals A almost everywhere.

ANB

A\B B\A

A4B

Figure 5.1: Subset relations between the difference notions for promise problems.

5.2.2 Total decidability

Some standard literature such as [12] uses the notion of decidability only for decision
problems. Those who use the notion in the context of promise problems (e.g. [13, 14]),
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agree on the one we gave in definition 3.6. The disadvantage of this definition is the
arbitrary behaviour of the protocol on non-promised inputs. It is therefore reasonable
to introduce a stricter version of decidability that we call total decidability:

Definition 5.6. A promise problem A = (Ayes,Ano) is totally decidable iff there exists a
DTM M such that

∀x ∈ Ayes M(x) = 1

∀x ∈ Ano M(x) = 0

∀x ∈ Σ∗\(Ayes ∪Ano)M(x) = 10.

Obviously total decidability implies decidability and the two notions are identical
in the case of decision problems. There are reasonable examples for both promise
problems that are totally decidable and promise problems that are decidable but not
totally decidable:

Example 5.7. The promise problem A = (Ayes,Ano) with

Ayes := {M | the DTM M has even runtime for its Gödel number as input}

Ano := {M | the DTM M has odd runtime for its Gödel number as input}

is decidable but not totally decidable.

Proof. Clearly, A is decidable by simply counting the runtime of the given machine.

The set of non-promised inputs consists of exactly those DTMs that do not halt on their
own Gödel number as input. If A was totally decidable, one could hence decide the
Halting problem.

The purpose of the promise for the above problem is to avoid undecidable instances,
which prevents the problem from being totally decidable. However, the original purpose
of promise problems is to exclude instances for that a property check with a certain
accuracy would exceed the runtime restriction of a complexity class. Take for example
the Local Hamiltonian problem: In the standard protocol described in proposition 3.33
the promised gap on the ground state energy of the Hamiltonian directly relates to the
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acceptance probability or – if this is improved to obey the standard completeness and
soundness parameter – to the runtime overhead caused by amplification.

Luckily we do not care about runtime when asking for total decidability, hence, the
extremal problems of most standard complexity classes are totally decidable.

Lemma 5.8. The extremal problem of a PromiseBPP or PromiseMA protocol is totally decid-
able.

Proof. The extremal problem of a PromiseBPP-machine is totally decided by a DTM
that simulates all branches of the PTM (which always halt per definition) and checks
the fraction of accepting branches. In case of a PromiseMA-machine this algorithm
simply has to be repeated for each of the possible 2nw witnesses.

The above proof also holds for complexity classes based on a PTM with different
requirements on the runtime r and completeness and soundness values c and s, as
long as they are computable functions. Since the acceptance probability of a halting
PTM is always an exactly computable rational number, the statement even holds for
classes without a gap between completeness and soundness such as PP, where yes-
instances are accepted with probability at least 1

2 and no-instances with probability less
1
2 . These generalizations of runtime, completeness and soundness are also possible for
the quantum analogue of the lemma, which we prove next.

Lemma 5.9. The extremal problem of a BQP, QCMA or QMA protocol is totally decidable.

Proof. By simulating the circuit generating DTM we obtain the Gödel number of a
quantum circuit Vx on z ancilla and – in case of QCMA or QMA – on nw witness
qubits. We have to differentiate if the acceptance probability Pacc is at most s, at least c
or in between with s := 1

3 , c := 2
3 and

Pacc := 〈0z|V†xΠaccVx |0z〉

in the case of BQP,

Pacc := max
y∈Σnw

(〈0z|⊗ 〈y|)V†xΠaccVx (|0z〉 ⊗ |y〉)
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in the case of QCMA and

Pacc := highest eigenvalue of Q := 〈0z|V†xΠaccVx |0z〉

in the case of QMA.

We recall that the generated quantum circuit just consists of H-, T- and CNOT-gates. In
case of BQP the acceptance probability Pacc equals hence a sum of products of elements
from the field

Q
(

1√
2

, i
)

(notice that the phase eiπ/4 of the T-gate can be written as 1√
2
(1 + i)).

This finite field extension can be handled as 4-dimensional vector space W over the
rational numbers with the abstract basis vectors

1,
1√
2

, i,
i√
2

.

A DTM can compute operations on the coefficients exactly by storing two integers
and a sign for each rational number and it can carry out the finitely many different
products of basis vectors abstractly. There is consequently a DTM that can compute
Pacc as a rational linear combination of the abstract vectors 1 and 1√

2
(the imaginary

vectors obviously vanish in the acceptance probability).

If the coefficient of the 1√
2
-vector vanishes and the coefficient of the 1-vector equals

c or s, the DTM can accept or reject directly. Otherwise, the DTM can compute a
monotonously decreasing upper bound and a monotonously increasing lower bound
of the acceptance probability by approximating the square root with the babylonian
/ Heron method until two of the three cases Pacc < s, Pacc > c and Pacc ∈ ]s, c[ can be
disclosed.

To totally decide the extremal problem of a QCMA circuit family the above algorithm
simply has to be run for all possible witnesses y ∈ Σnw .
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In case of a QMA-problem the following equivalences hold:

s I−Q positive semi-definite ⇐⇒ Pacc 6 s

c I−Q not positive definite ⇐⇒ Pacc > c

and consequently Pacc ∈ ]s, c[ if none of the two conditions holds. Consequently, we
have to argue that the positive semi-definiteness of s I−Q and the positive definiteness
of c I−Q are decidable. Sylvester’s criterion states the positive definiteness of a matrix
is equivalent to the positivity of all its principal minors and positive semi-definiteness
to the non-negativity of all its leading principal minors. It is simple to decide the
positivity and non-negativity of minors (determinants of submatrices) by computing
improving bounds in the vector space W as described above.

As before the above lemma still holds when runtime, completeness and soundness of
the complexity classes are changed to different computable functions. Recall from the
discussion about the computability definition 3.3 that we restrict computable functions
to algebraic number, since these do not only allow the computability of standard
algebraic operations but also the comparision of two numbers, which is important for
the above proof. The above proof also remains valid if the gate set is extended to any
gates with algebraic matrix elements.

One case in which a complexity class crucially changes with the form of the gate set is
a one-sided complexity class such as QMA1 which equals QMA with c := 1. To achieve
the perfect completeness a QMA1 verifier is usually informally allowed to contain gates
with matrix element from the field the problem is formulated in. But if one naively
thought to allow any field that can be “described by words”, one could construct a
circuit whose extremal problem is not decidable at all. Consider e.g. a field containing a
Chaitin’s number whose i-th digit equals 1 if i is a yes-instance of the Halting problem
and 0 otherwise. This is the reason why the authors of [46] advocate the algebraic
numbers as largest reasonable field on which the matrix elements of gates in QMA1

protocols should be defined. With this formal definition the extremal problem of a
QMA1 protocol is also totally decidable.
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5.2.3 Recursive (re)presentation

The terminology “uniform diagonalization theorem” originates from the fact that the
proof of the theorem constructs a problem outside two complexity classes similar to
Cantor’s diagonal argument, i.e. by running over all inputs and all protocols of the
two classes to construct a problem outside. The theorem will therefore only apply
to complexity classes whose protocols are enumerable and the respective extremal
problems totally decidable. These two properties together define a class as recursively
(re)presentable, which we introduce below as an extension of the well-known notion for
decision problems [45, 44]. In order not to overload the proofs we will show recursive
(re)presentability again only for the classes P, NP, PromiseBPP, PromiseMA, BQP,
QCMA and QMA, but the argumentation is adaptable to many natural complexity
classes including those without completeness-soundness gap, different time- or space-
restrictions or an interactive or multi-witness extension, but not necessarily to all. We
will discuss below that BPP and MA are not known to be recursively presentable.
The same holds for QMIP∗, the class of quantum multiprover interactive proofs with
unlimited entanglement, since it might even contain undecidable problems as we will
discuss in section 8.5.

Definition 5.10. A complexity class C is recursively presentable, iff it consists of all problems
that are totally decidable by a DTM Mi from a computable series M0,M1,M2 . . . of halting
DTMs.

We call a class C ′ recursively representable iff it equals the closure of a recursively presentable
class C under promise restriction.

Computability of the series M0,M1,M2, . . . means of course the computability of the
function i → Mi. Expressing it as a series just reflects better the enummerability
property.

The property of recursive representability can obviously only be held by complexity
classes of promise problems, since classes of decision problems are not closed under
promise restriction by definition. Reversely, recursive presentability can not only apply
to classes of decision problems but also to classes of promise problems, especially to
those that are restricted to extremal problems.
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5 Existence of intermediate problems

Lemma 5.11. The complexity classes P, NP and any C∗ with C ∈ C are recursively presentable.

Proof. The polynomials over N0 form a computable series (pi)i∈N0 , since polynomials
of a fixed degree and coefficient sum form a finite set and these sets are obviously
enummerable. Hence, one can define a computable series (Mi)i∈N0 for all P protocols
with Mi – i interpreted as pair (j,k) – the P protocol simulating the DTM with Gödel
number j up to runtime pk and returning a default value if the DTM does not halt on 0
or 1 within this time.

A computable series (Mi)i∈N0 of all DTMs that decide NP problems is realized by
defining Mi, i interpreted as tuple (j,k, l), as the DTM that checks if the DTM with
Gödel number j limited to time pk accepts any witness of length pl.

By interpreting Gödel numbers as encodings of probabilistic or quantum circuit gener-
ating Turing machines we can construct in the same manner a computable series of all
C-protocols, C ∈ C. Since the extremal problems of these protocols are totally decidable
according to lemmata 5.8 and 5.9, we obtain a recursive presentation of the complexity
class C∗ by replacing the C-protocol in these series by the DTMs that totally decide the
respective extremal problem.

Corollary 5.12. The complexity classes of C are recursively representable.

Note that we do not know how to recursively present BPP and MA. Running over
all polynomial-time PTMs is not conducive since we do not know how to decide if
their extremal problems are decision problems. Another way to recursively present a
class is via a complete problem as we see in the next lemma, but unfortunately also no
complete problems for BPP and MA are known.

The next lemma allows to prove recursive (re)presentation for complexity classes that
are defined via a complete problem like TIM, independently from a computing-model
based definition. Hence, it is also irrelevant that we have no proper extremality
definition for TIM problems.

Lemma 5.13. For a decidable decision problem A the set

A>Pm := {decision problem B |B 6P
m A}
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is recursively presentable and for a totally decidable promise problem A that is not a decision
problem the set

A>Pm := {promise problem B |B 6P
m A}

is recursively representable.

Proof. Similarly to the proof of lemma 5.11 we can define a computable series (fi)i∈N0

of all polynomial-time computable functions Σ∗ → Σ∗ by defining fi as the function
computed by the DTM Mi – i interpreted as pair (j,k) – simulating the DTM with
Gödel number j up to runtime pk and returning a default value if the DTM does not
halt within this time.

Let MA be the DTM that totally decides A. Then (Mi)i∈N0 with Mi(x) :=MA

(
fi(x)

)
is

a recursive representation (presentation) of all (decision) problems B that are reducible
to the (decision) problem A.

The enumerability of reduction functions as well as of polynomial time DTMs with
oracle state can also be used to prove a result the other way around: all problems of
standard complexity classes that are more difficult than a problem A are also recursively
presentable. The proof resembles the proof for Cook-complete decision problems by
[44].

Lemma 5.14. Let C be a recursively presentable complexity class c.f.v. and A ∈ C be totally
decidable. Then

A
6P

m
C : = {B ∈ C |A 6P

m B},

A
6P

T
C : = {B ∈ C |A 6P

T B}

are recursively presentable.

Proof. Let (Mi)i∈N0 be a recursive presentation of C, (fi)i∈N0 the computable series of
all polynomial-time computable functions Σ∗ → Σ∗ and (Oi)i∈N0 the computable series
of all polynomial time DTMs with oracle state. Let MA be the DTM that totally decides
A.
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5 Existence of intermediate problems

For the recursive presentation of the set A6P
m
C we define the DTM Ni, i = (j,k), that

checks for input x if all y ∈ Σ∗ with |y| 6 |x| fulfill

y ∈ Ayes ⇒ fj(y) ∈ P(Mk)yes

y ∈ Ano ⇒ fj(y) ∈ P(Mk)no.

If yes, it outputs Mk(x), otherwise MA(x).

For the recursive presentation of the set A6P
T
C we define the DTM Ni, i = (j,k), that

checks for input x if all y ∈ Σ∗ with |y| 6 |x| fulfill

y ∈ Ayes ⇒ Oj with oracle P(Mk) on input y only queries the oracle

for promised inputs and accepts

y ∈ Ano ⇒ Oj with oracle P(Mk) on input y only queries the oracle

for promised inputs and rejects.

If yes, it outputs Mk(x), otherwise MA(x).

(Ni)i∈N0 is a recursive presentation of A6P
m
C (A6P

T
C ) since P(Ni) = P(Mk) if P(Mk) for

i = (j,k) is a problem of C on that A can be m-reduced (T -reduced) while otherwise
P(Ni) = A almost everywhere.

Corollary 5.15. Let C be a recursively presentable complexity class c.f.v. with at least one
totally decidable m-complete (T-complete) problem. Then C-cm (C-cT) is recursively presentable.

5.3 An extended uniform diagonalization theorem

Definition 5.16. The marked union A⊕A ′ of two promise problems A and A ′ is defined as
the promise problem D with

Dyes := {0x|x ∈ Ayes} ∪ {1x|x ∈ A ′yes}

Dno := {0x|x ∈ Ano} ∪ {1x|x ∈ A ′no}.

80



5.3 An extended uniform diagonalization theorem

The uniform diagonalization theorem constructs for two complexity classes C and C ′

and two problems A /∈ C and A ′ /∈ C ′ another problem B which inherits the property
not to belong to any of the two complexity classes while still being reducible to the
marked union of A and A ′. Note that the complexity bound on B is crucial, since just
finding a problem outside two complexity classes is clearly trivial if it can be chosen
arbitrarily more difficult.

For an efficient problem A such as the constant-no problem and a more diffcult problem
A ′ such as k-LH, the marked union implies that B is reducible to the more difficult one.
In the implication section 5.4 this choice together with C := QMA-cm and C ′ := BQP
will give us the extended Ladner theorem revealing B a QMA-intermediate problem.

Before we actually prove the uniform diagonalization theorem we first give the def-
inition and an efficiency condition for the so-called gap language G[r], which allows
us later to mix the two problems stated in the uniform diagonalization theorem by
restricting them to alternating intervals:

Definition 5.17. Let r : N0 → N0 be a computable function with r(n) > n for all n ∈ N0. The
gap language generated by r is defined as the set

G[r] := {x ∈ Σ∗ | rm(0) 6 |x| < rm+1(0) for m even}

with rm denoting the m-fold concatenation of r.

Lemma 5.18. If r : N0 → N0 with r(n) > n is time-constructible, then (G[r],G[r]) ∈ P.

Proof. Compute iteratively r(0), r2(0), r3(0) ... like in the proof for time-constructible
functions in lemma 3.5. Abort the iteration if the counter during the computation of
rk(0) reaches |x|. Accept if k− 1 = n is even, otherwise reject. Clearly, the computation
of r(n) is efficient in r(n) and so is an aborted simulation in the final counter. Hence
every iteration step is efficient in |x|. Since rm(0) > m, the number of iteration steps
is limited by |x| + 1 and the above algorithm is an efficient decision algorithm for
(G[r],G[r]).

With the extended definitions and new notations introduced in the last section the
following proof of the extended uniform diagonalization theorem resembles the original
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5 Existence of intermediate problems

one limited to decision problems [45, 44].

Theorem 5.19 (Uniform diagonalization theorem). Let C, C ′ be complexity classes closed
unter finite variations of which each is recursively presentable or recursively representable. Let
A /∈ C, A ′ /∈ C ′ be totally decidable promise problems. Then there exists a totally decidable
promise problem B such that

B /∈ C ∪ C ′ and B 6P
m A⊕A ′.

If A and A ′ are decision problems or extremal for one of the complexity classes from C, then so
is B.

Proof. Let M0,M1,M2, . . . and M ′0,M ′1,M ′2, . . . be recursive representations (presenta-
tions) for the complexity classes C and C ′, respectively. Due to A /∈ C, every Mi does
not (totally) decide correctly some instance of the problem A. The same holds for C ′

and A ′. The construction idea for the new problem B is to mix A and A ′ such that B
inherits such an instance for each Mi and M ′i.

To define a valid promise problem we mix A and A ′ by restricting them to alternating
intervals via the previously defined gap language, i.e.

Byes := (G[r] ∩Ayes) ∪ (G[r] ∩A ′yes)

Bno := (G[r] ∩Ano) ∪ (G[r] ∩A ′no).

We want to define the function r such that the even intervals G[r] contain for each Mi

an incorrectly (totally) decided instance of A and the odd intervals G[r] for each M ′i an
incorrectly (totally) decided instance of A ′ (see figure 5.2).

We achieve this by defining the function q : N0 → N0,

q(n) := max
i6n

{|zi,n|}+ 1

with zi,n ∈ Σ∗ the first string in the usual binary order such that |zi,n| > n and

zi,n ∈

A\P(Mi) if C is recursively representable

A4P(Mi) if C is recursively presentable.
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5.3 An extended uniform diagonalization theorem

Figure 5.2: Mixture of the problems A and A ′ covering all necessary elements to place
the resulting problem B outside C and C ′.

Notice that zi,n always exists. Otherwise,

A ⊆ P(Mi) a.e. if C is recursively representable

A = P(Mi) a.e. if C is recursively presentable

and since C is closed under promise restriction in the first case and under finite
variations in both cases this implies A ∈ C, which contradicts the hypothesis of the
theorem.

The total decidability of A and the existence of zi,n imply the computability of q.
Analogously, the function

q ′(n) := max
i6n

{|z ′i,n|}+ 1

is computable with z ′i,n ∈ Σ∗ defined accordingly for A ′ and M ′i.

We now choose our desired function r as the time-constructible function

r(n) > max{q(n),q ′(n)}
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5 Existence of intermediate problems

that exists according to lemma 3.5. The definitions of q(n) and q ′(n) imply r(n) > n.
Hence, the gap language G[r] is well-defined. And since it is decidable, B is totally
decidable.

Since (G[r],G[r]) ∈ P according to lemma 5.18, the function f : Σ∗ → Σ∗ with

f(x) :=

0x if x ∈ G[r]

1x if x ∈ G[r]

is a valid Karp-reduction from B to A⊕A ′.

G[r] ∈ P also implies that B is extremal if A and A ′ are extremal for a complexity class
C ∈ C, since every class C ∈ C is capable of performing the polynomial-time decision
algorithm for G[r] as initial subroutine before simulating the algorithm for A or A ′.

It only remains to show rigorously that indeed B /∈ C ∪ C ′. For this assume B ∈ C.
Then there exists an i ∈ N0 such that

B\P(Mi) = ∅ if C recursively representable

B4P(Mi) = ∅ if C recursively presentable.

Let m be an even integer such that n := rm(0) > i. Then there exists zi,n with
|zi,n| ∈ [rm(0), rm+1(0)[ with zi,n ∈ A\P(Mi) (zi,n ∈ A4P(Mi)). Since zi,n ∈ G[r],
this implies zi,n ∈ B\P(Mi) (zi,n ∈ B4P(Mi)) which is impossible. Hence, our initial
assumption is wrong and B /∈ C. Analogously, it can be proven that B /∈ C ′.

Notice that the most important step of the proof is indeed to choose the time-constructible
function r instead of q and q ′ for defining the interval jumps of the gap language. If we
had chosen the interval jumps at q(n) and q ′(n), i.e. exactly at the highest necessarily
contained instance, the determination of the interval that contains the input x could be
far from efficient. One would have to compute all necessarily contained instances which
requires a simulation of all machines Mi with i 6 n for which we cannot fix a general
polynomial runtime bound. Recalling the proof of lemma 3.5 we see that r(n) is instead
defined larger than the maximum of all necessarily contained instances and the runtime
that it needs to compute them. So usually r(n)� q(n) and the crosses indicating the
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necessarily contained instances in figure 5.2 should be drawn cumulated at the lower
interval limits. This is also the reason why the proof technique is sometimes referred
to as “delayed diagonalization” [47]. The check if the next interval limit lies above
the input x can thus not only be answered positively by the output of the iterative
computation of the necessarily contained instances but also when this computation
exceeds a runtime of |x|, which is obviously efficient.

Note that it would actually be sufficient if each interval [rm(0), rm+1(0)[ only covered
incorrectly (totally) decided instances of A (A ′) for the machines Mi (M ′i) with i from
rm(0) down to rm−2(0) + 1, the lowest index that was not covered by the previous
interval of same parity. But then the definition of the function r would get slightly
more complicated, since the right interval bound rm+1(0) would not only depend on
the left interval bound rm(0) but also on another previous interval bound.

5.4 Implications

This section briefly lists the most important implications of the uniform diagonalization
theorem formulated for the classes QMA and BQP. This list is far from being compre-
hensive. While QMA and BQP can be substituted by many other pairs of recursively
(re)presentable classes, we like to stress again that these implication are not known to
hold for BPP and MA due to lacking knowledge about their recursive presentability
and complete problems.

We first use the uniform diagonalization theorem to prove that the difference of
standard complexity classes is not recursively presentable which then implies some
undecidiability results.

Corollary 5.20. The class QMA∗ \BQP∗ is not recursively presentable.

Proof. If BQP∗ = QMA∗, then QMA∗ \BQP∗ is empty and therefore by definition
not recursively presentable. Let us hence consider the case BQP∗ ( QMA∗. Then
there exists a problem A ′ ∈ QMA∗ \BQP∗. Assume that QMA∗ \BQP∗ is recursively
presentable. Clearly, A := (∅,Σ∗), A ′, C := QMA∗ \BQP∗ and C ′ := BQP∗ fulfill the
hypothesis of the uniform diagonalization theorem. The problem B constructed in the
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5 Existence of intermediate problems

uniform diagonalization theorem is Karp-reducible to A⊕A ′ and hence in QMA∗. On
the other hand, the uniform diagonalization theorem tells us that B /∈ C ∪ C ′ = QMA∗

which is a contradiction. Hence, QMA∗ \BQP∗ is not recursively presentable.

Corollary 5.21. The classes QMA∗ \QMA∗-cm and QMA∗ \QMA∗-cT are not recursively
presentable under the assumption that QMA does not equal P closed under promise restriction.

Proof. This follows analogously to the proof of corollary 5.20 by substituting the
problem A ′ := LH∗ (the extremal problem of the QMA protocol that decides the LH
problem) and the respective complexity classes

C := QMA∗ -cm C ′ := QMA∗ \QMA∗ -cm,

C := QMA∗ -cT C ′ := QMA∗ \QMA∗ -cT.

Notice that QMA∗-cm and QMA∗-cT are recursively presentable by corollary 5.15 and
closed under finite variations since all m- and T-complete problems have infinitely
many yes- and no-instances due to the assumption that QMA is strictly more powerful
than the closure of P under promise restriction.

The above results on their own might not seem very intriguing, but they reveal their
whole power in the following two implications:

Corollary 5.22. Given a QMA protocol it is undecidable if its extremal problem is in BQP
assuming BQP ( QMA.

Proof. Assume BQP ( QMA and that it is decidable if the extremal problem of a QMA
protocol is in BQP.

Consider the procedure of lemma 5.11 that constructs a recursive presentation of QMA∗

by replacing each QMA protocol in the computable series of all QMA protocols by
the DTM that totally decides its extremal problem. Before replacing it by a DTM
decide if the extremal problem of a QMA protocol is in BQP. If this is the case, then
first replace it by the QMA protocol deciding the LH∗ problem. This way we obtain
a recursive presentation of QMA∗ \BQP∗ which is a contradiction to corollary 5.20.
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Hence, our assumption was wrong and it is undecidable if the extremal problem of a
QMA protocol is in BQP.

Corollary 5.23. Given a QMA protocol it is undecidable if its extremal problem is m-complete
(T-complete) under the assumption that QMA does not equal P closed under under promise
restriction.

Proof. Analogously.

Originally [44] proved the above corollaries for combinations of the complexity classes
NP P, PSPACE and PH as well as complement classes such as co-NP. We omit a corre-
sponding version here, since complements are not very common to consider for classes
of promise problems. One reason might be that many structural consequences that hold
for complement classes of decision problems do not hold for promise problems. For
example, a co-NP problem that turned out to be NP-complete under Cook reductions
would imply NP = co-NP [48, 14] and hence the collapse of the polynomial hierarchy,
whereas no analogous implication is known if a co-QMA problem turned out to be
QMA-complete under Cook reductions.

Undecidability results form one branch of implications of the uniform diagonalization
theorem. The second branch of implications – proving the existence of intermediate
problems – is established by Ladner’s simplification of the theorem:

Theorem 5.24 (Extended Ladner theorem). Let A be a problem in QMA∗ \BQP∗. Then
there exists a problem B ∈ QMA∗ \BQP∗ with B 6P

m A and A �P
T B.

Proof. C := BQP∗ is recursively presentable according to lemma 5.11 and so is C ′ :=
{D ∈ QMA∗ |A 6P

T D) according to lemma 5.14. These complexity classes and A

and A ′ := (∅,Σ∗) hence fulfill the hypothesis of the uniform diagonalization theorem.
Moreover, A and A ′ are extremal for QMA.

Consequently, there exists a problem B ∈ QMA∗ \BQP∗, A �P
T B and B 6P

m A ⊕ A ′.
The last condition simplifies to B 6P

m A, since the previous reduction function can be
concatenated by the polynomial-time computable function that maps every string with
an initial 0x to x and every 1 to a default no-instance of A (which has to exist due to
A /∈ BQP∗).
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5 Existence of intermediate problems

Corollary 5.25. If BQP ( QMA, then there exists an infinite hierarchy of intermediate
problems between QMA∗ and BQP∗ (regarding both Karp- and Cook-reductions).

The reader might tend to replace BQP∗ and QMA∗ in the extended Ladner theorem
5.24 and corollary 5.25 by BQP and QMA and indeed, the uniform diagonalization
theorem allows this. But this statement could be meaningless, since we cannot rule out
that the problem B equals the problem A up to some additional promise which makes
it simpler, but such that the only QMA protocols deciding B are also those deciding A.
Hence, thinking about it twice, it becomes clear that the above statements in terms of
the “protocol classes” BQP∗ and QMA∗ are actually those that we pursued initially.

The extended Ladner theorem constructs the problem B as a mixture of the respective
problem A and the constant-no problem A ′. Thus, the hierarchy of intermediate
problems between QMA and BQP constructed from the LH∗ problem are variants of
the Local Hamiltonian problem with more and more yes-instances turned into no-
instances. This is why Ladner’s original proof for NP and the LH∗ analogue SAT is
also called the method of “blowing holes into SAT” [47].

Does this descriptive property of the intermediate problems tell us something about the
difficulty of specific Local Hamiltonian instances? Unfortunately, the criteria of kicking
certain Local Hamiltonian instances out of the set of yes-instances is far from having
any physical meaning. If a yes-instance of the Local Hamiltonian problem remains a
yes-instance of the intermediate problem depends on the behaviour of specific Turing
machines on specific inputs, determined by the chosen Gödel numbering for Turing
machines and the chosen encoding for Local Hamiltonian instances. Due to the
large degree of freedom in both encoding schemes, the holes blown into the Local
Hamiltonian problem are rather artificial than physically meaningful.

We close by noting that the implications in this sections hold accordingly for other
complexity classes:

Corollary 5.26. The above corollaries 5.20, 5.22, 5.25 and the extended Ladner theorem 5.24
hold accordingly for every pair of the complexity classes P, NP, PromiseBPP, PromiseMA,
BQP, QCMA and QMA.

Corollaries 5.21 and 5.23 also hold for any of the these classes instead of QMA.
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QMA with noisy witness

6.1 Definition

In the last chapter we proved the existence of an infinite hierarchy of intermediate
problems and therefore intermediate classes between QMA and BQP assuming QMA 6=
BQP. Unfortunately, the constructed intermediate classes are very abstract. Seeking
a more physical approach, we observe that we can interpret the classes QCMA and
BQP as a QMA variant with restricted access to the witness (QCMA: classical, BQP:
none). It is therefore persuasive to generalize this restricted witness accesss and to
define intermediate classes by introducing arbitrary noise channels on the witness.

We first define the most general case of such a noisy QMA class. The next section will
show that this definition also covers classes for which the strictly QMA-intermediate
problems of last chapter are complete under quantum polynomial time reductions. In
section 6.3 and chapter 7 we will then concentrate on the more physical model of i.i.d.
noise which is sufficient to express an infinite parameter interpolation between QMA
– BQP and QMA – QCMA with the drawback that these noisy classes lack a proof of
strict QMA-intermediateness.
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6 QMA with noisy witness

Definition 6.1. Let T = (Tnw)nw∈N0 be a family of quantum circuits

Tnw : L(C2nw
)→ L(C2n

′
w
)

with n ′w polynomial in nw. The complexity class QMAT(c, s) is the set of all problems
A = (Ayes,Ano) for that there exists a polynomial-time generated familiy of quantum circuits
V = (Vx)x∈Σ∗ on z+ n ′w qubits with z polynomial and nw = Ana for an A, a ∈ N such that

∀x ∈ Ayes ∃ρ ∈ D(C2nw
) : tr

(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ Tnw(ρ)

)
V†x

)
> c,

∀x ∈ Ano ∀ρ ∈ D(C2nw
) : tr

(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ Tnw(ρ)

)
V†x

)
6 s.

We will use standard QMA terminology accordingly for QMAT protocols. The variable
nw always denotes the number of witness qubits before the channel application.

Despite the general definition above we will soon restrict to classes with more physical
noise channels of i.i.d. form (independently and identically distributed), i.e. every witness
qubit will be disturbed by the same single qubit channel T . Note that the next definition
allows a dependence of the channel T on the number of witness qubits nw. One can
argue that only those channels T are really physical that are not influenced by the
number of witness qubits. But the broader definition turns out to be useful for a
first robustness and amplification result in section 6.3, for a formulation of the QPCP
conjecture in chapter 8 and for the next chapter 7, in which the effective channels of
concatenated coding will exhibit a dependence on nw.

Definition 6.2. For a single qubit channel T : L(C2)→ L(C2l) we use the shortened notation

QMAT := QMA(Tnw)nw∈N0

for the the i.i.d. noise channels Tnw := T⊗nw .

The single qubit channel T is allowed to depend on the number nw of witness qubits.

Definition 6.3. We define QMAT := QMAT(2/3, 1/3) and QMAT := QMAT (2/3, 1/3).

In the chosen definition of noisy QMA the witness undergoes the channel in both the
completeness and soundness case. We call this the non-suspicious definition of noisy
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QMA, since the verifier can even trust in the soundness case that he receives a valid
channel output. This definition allows a physical interpretation and a rephrasing of the
famous QPCP conjecture in chapter 8 in terms of noisy QMA. But clearly, one could as
well define noisy QMA in a suspicious manner in that the soundness performance has to
hold for arbitrary witnesses. The following suspicious definition has been introduced
in [49] and our own work [50]:

Definition 6.4. The suspicous noisy QMA class QMAs
T is defined like the complexity class

QMAT in definition 6.1 with the change that in case of a no-instance not just channel outputs
but all witnesses on n ′w qubits fulfill the soundness condition, i.e.

∀x ∈ Ano ∀ρ ∈ D
(
C2n

′
w
)
: tr

(
ΠaccVx

(
|0〉 〈0|⊗z ⊗ ρ

)
V†x

)
6 s.

Note that the robustness results of QMA against decreasing noise in section 6.3 and
against constant noise in chapter 7 would not be affected if we worked with the
suspicious instead of the non-suspicious definition of noisy QMA.

The main advantage of the suspicious class QMAs
T is that it is a subset of QMA per

definition, whereas this is unclear for general QMAT classes due to the weaker condition
imposed on the verifier in the soundness case. But this does not prevent us to work
with the non-suspicious variant as our main definition of noisy QMA, since all channel
families we consider ensure the subset relation to QMA nevertheless due to their
efficient simulability:

Lemma 6.5. QMA(Tnw)nw∈N0
(c, s) ⊆ QMA(c, s) if there exists a polynomial time Turing

machine that for input 1nw outputs a quantum circuit Unw on z + nw > n ′w qubits, z
polynomial, that simulates Tnw , i.e. for all ρ ∈ D

(
C2nw

)
Tnw(ρ) = tr[nw+z−n ′w]

(
Unw

(
(|0〉 〈0|)⊗z ⊗ ρ

)
U†nw

)
.

Proof. Let (Vx)x∈Σ∗ be a QMA(Tnw)nw∈N0
(c, s) verifier of a problem A. Then A can

be decided by the QMA(c, s) verifier whose generating Turing machine outputs the
concatenation of the circuits Unw and Vx with distinct ancilla qubits and the last n ′w
qubits of Unw serving as witness register for Vx.
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We end this section with some closing remarks on complete problems. Clearly, each
complexity class QMA(Tnw)nw∈N0

(c, s) with Tnw : L(C2nw
) → L(C2n

′
w ) has a trivial

complete problem:

Given a polynomial-time generated family of quantum circuits (Vx)x∈Σ∗

on z + n ′w qubits, z polynomial, and an input x ∈ Σ∗, decide whether
there exists a state ρ ∈ D(C2nw

) such that Vx accepts |0〉 〈0|⊗z ⊗ Tnw(ρ) with
probability at least c (yes-instance) or if for all ρ ∈ D(C2nw

) Vx accepts
|0〉 〈0|⊗z ⊗ Tnw(ρ) with probability at most s (no-instance).

One might wonder if besides this problem there exists a more sophisticated complete
problem for noisy QMA classes. The most obvious idea is to study adaptions of QMA-
complete problems, for example the variant of the Local Hamiltonian problem restricted
to the question if there exists a channel output of high or low energy. This is a physically
relevant problem and lies indeed in the respective noisy QMA class and unlikely in
BQP for non-trivial channel families. Still, we cannot prove its QMAT-hardness, since
the witnesss in the reduction proof – the history state mentioned in section 3.6 – obeys
a structure that is not reflected by the channel output (the channel would also disturbs
the clock register).

For most QMA-complete problems a QMAT adaption fails in the hardness proof. One
exception is the problem Non-Identity Check (sometimes also called misleadingly
Identity Check) [51]. This QMA-complete problem is about deciding if a given unitary
behaves far from identity on at least one state (yes-instance) or if it works almost as
identity on all states (no-instance). A restriction of the question to computational basis
states is a QCMA-complete problem [52]. It is not hard to see that the reduction proof
works analogously for “Non-Identity Check on Channel Output States” as long as the
channel family is able to output one pure state which is needed to represent the ancilla
of a quantum circuit.

Unfortunately, for this problem we cannot show membership in QMAT . For the QMA-
complete problem Non-Identity Check and the QCMA-complete problem Non-Identity
Check on Basis States the membership proof works by comparing the doubly supplied
witness state with the respective state after the application of the unitary. Unfortunately,
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6.2 Applicability of the UDT and intermediateness of noisy QMA classes

the SWAP test [53] needed to compare quantum states only works for pure states, but
not for mixed states usually outputted by channels.

Hence, it remains an open qustion if there exists an interesting, non-trivial QMAT-
problem for a reasonable large range of channel families T.

6.2 Applicability of the uniform diagonalization theorem and

intermediateness of noisy QMA classes

We use the definition 5.2 of extremal problems and the notation QMA∗T of definition
5.3 accordingly for noisy QMA classes. In analogy to section 5.2 we briefly argue
in this section that extremal problems of QMAT machines are totally decidable and
that the class QMA∗T is recursively presentable for almost all channel families T. As a
consequence the uniform diagonalization theorem is applicable to these noisy QMA
classes.

Furthermore, it can be shown that the class defined by all problems quantum polynomial-
time reducible onto a QMAT-intermediate problem with regard to BQP constructed
by the extended Ladner theorem is again a noisy QMA class. Hence, as additional
comment to the discussion at the end of last section, we stress that at least some
noisy QMA classes have a complete problem besides the canonical one. Yet, these
problems are rather artifical and complete only with regard to quantum polynomial
time reductions. Note that up to our knowledge this is the only other occurence of
quantum polynomial time reducibility in complexity theory besides the equivalence
proof of standard QPCP formulations in proposition 8.9.

Lemma 6.6. The extremal problem of a QMA(Tnw)nw∈N0
protocol is totally decidable if Tnw

can be simulated by the quantum circuit Unw of a computable family (Unw)nw∈N0 .

Proof. Given a QMA(Tnw)nw∈N0
protocol (Vx)x∈Σ∗ , its extremal problem can be totally

decided by a DTM similar to the one for QMA protocols defined in the proof of lemma
5.9 by simply assuming that the circuit Vx is preceded by the gates of Unw with distinct
ancilla qubits and such that the channel output register of Unw is the witness register
of Vx.
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6 QMA with noisy witness

Corollary 6.7. The complexity class QMA∗T , T = (Tnw)nw∈N0 , is recursively presentable and
QMAT hence recursively representable if Tnw can be simulated by the quantum circuit Unw of
a computable family (Unw)nw∈N0 .

Due to the above lemma and corollary and the existence of an extremal trivial complete
problem, QMAT with T having the above stated simulability property fulfills the
requirements of the uniform diagonalization theorem 5.19. Hence, also the implications
of section 5.4 are applicable to these QMAT classes.

We end this section by proving that the intermediate problem between a class QMAT

and BQP constructed by the extended Ladner theorem is quantum polynomial time
complete for another noisy class QMAT̃. Expressing the intermediate problem as
element of QMAT̃ is possible since the decision if a yes-instance of the QMAT complete
problem is turned into a no-instance in Ladner’s construction just depends on its length
n and hence directly on the length nw = Cnc of the witness which can be reflected in
the structure of the channel family T̃.

Lemma 6.8. Let QMAT with T = (Tnw)nw∈N0 be such that Tnw can be simulated by the
quantum circuit Unw of a computable family (Unw)nw∈N0 . Then there exists a problem
B ∈ QMA∗T \BQP that is not QMAT-complete but complete under quantum polynomial time
reductions for the class QMA∗

T̃
, T̃ = (T̃nw)nw∈N0 with

T̃nw(ρ) :=

Tnw(ρ) if n ∈ G[r]( I
2

)⊗n ′w if n ∈ G[r]

and G[r] the gap language from the proof of the uniform diagonalization theorem 5.19 with
C := BQP∗, C ′ := QMA∗T -cm, A the trivial complete problem for QMAT and A ′ := (∅,Σ∗).

Proof. Membership: The problem B constructed in the proof of the uniform diagonaliza-
tion theorem for the above choices of classes and problems lies in QMA∗T \BQP, but is
not QMAT-complete. The QMA∗T protocol for B that first decides efficiently if the input
lies in G[r] or G[r] to carry out then the QMA∗T protocol for A or to reject immediately,
can obviously also be regarded as valid QMA∗

T̃
protocol for B.
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6.3 Interpolation of standard complexity classes by physical witness noise

Hardness: Since B /∈ BQP, it has to contain at least one yes-instance byes and one
no-instance bno. For every problem D = (Dyes,Dno) ∈ QMAT̃ ⊆ QMAT there exists
a polynomial-time computable function f : Σ∗ → Σ∗ reducing D to A. The function
f ′ : Σ∗ → Σ∗ with

f ′(x) :=


f(x) if |x| ∈ G[r]

byes if |x| ∈ G[r] and x ∈ Dyes

bno if |x| ∈ G[r] and x ∈ Dno

then reduces D to B.

The function f ′ is quantum polynomial-time computable, since (G[r],G[r]) ∈ P and the

simulation of the QMAT̃ protocol for D on the witness state
(

Id
2

)⊗n ′w
is a valid BQP

algorithm that for |x| ∈ G[r] decides if x ∈ Dyes or x ∈ Dno.

6.3 Interpolation of standard complexity classes by physical

witness noise

We introduced the concept of noisy QMA classes with the motivation to express
intermediate classes between the standard classes QMA, QCMA and BQP. For this it is
sufficient to consider noisy QMA classes with i.i.d. noise channels T⊗nw for which we
introduced the shortened notation QMAT in definition 6.2.

We can “interpolate” between the complexity classes QMA – BQP and QMA – QCMA
for example by changing the error parameter ε of the partly depolarizing channel

T
depol
ε (ρ) = (1 − ε)ρ+ ε

I
2

and the partly dephasing channel

T
deph
ε (ρ) = (1 − ε)ρ+ ε

ρ+ ZρZ

2
,
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6 QMA with noisy witness

Figure 6.1: Attacking complexity class separations by disturbed witnesses.

respectively. Clearly, QMA
T

depol
0

= QMA
T

deph
0

= QMA on the one hand andQMA
T

depol
1

=

BQP and QMA
T

deph
1

= QCMA on the other hand.

Note that it is not clear if the error parameters of these channels offer a smooth
interpolation it that sense that they allows to represent infinite many intermediate
classes like Ladner’s theorem does. The noisy classes might also jump at some value
directly from QMA to BQP or QCMA.

In the next chapter we will see that a quite high constant value of ε allows that the
respective noisy QMA class still equals QMA. Besides deriving concrete upper bounds
on the error parameter ε for the partly depolarizing and the partly dephasing channel
we will also derive an upper bound for the noise of a general single qubit channel.
As a general noise quantity of a channel one can consider the diamond norm on its
deviation from the identity channel. This is compatible with the consideration of ε as
noise parameter for the channels T = T

depol
ε or T = T

deph
ε , since it holds ‖T − Id ‖♦ = Cε

for C in a constant range according to lemma 7.28.

The basis for deriving constant error bounds up to which QMA is robust, is that QMA

96



6.3 Interpolation of standard complexity classes by physical witness noise

can at least resist some small, i.e. decreasing noise. The next proposition shows that
QMAT = QMA is true if the noise of T decreases with the witness length due to
amplification and simple norm inequalities.

Proposition 6.9. QMAT = QMA for every constant δ > 0 and every quantum channel T
with

‖T − Id ‖♦ 6
2(1 − δ)

nw
.

Furthermore, QMAT (c, s) = QMAT for the above channels and for all polynomial time
computable functions c and s with e−q 6 s, c 6 1 − e−q, gap c− s > 1/q and q polynomial.

Proof. Since QMAT ⊆ QMA is trivial, we only have to prove the opposite subset
relation. For this consider a QMA (1 − e−p, e−p) verifier V = (Vx)x∈Σ∗ , p polynomial,
for a problem A as QMAT verifier. The soundness value obviously remains unchanged.

To compute the completeness probability of the QMAT protocol let Πx := V†xΠaccVx de-
note the projection operator for the final output measurement preceded by the verifier’s
circuit. Since projective measurement operators are included in the maximizing set
of lemma 2.16, the difference in the acceptance probabilities supplied an undisturbed
witness ρ compared to the disturbed witness T⊗nw(ρ) can be estimated as follows:∣∣∣ tr [Πx( |0〉 〈0|⊗z ⊗ (T⊗nw(ρ) − ρ)

)]∣∣∣
2.16
6

1
2
‖ |0〉 〈0|⊗z ⊗ (T⊗nw(ρ) − ρ)‖1

2.17
6

1
2
‖ Id⊗z⊗(T⊗nw − Id⊗nw)‖1

2.19
6

1
2
‖T⊗nw − Id⊗nw ‖♦

=
1
2
‖(T ⊗ Id⊗ Id⊗ . . . ) ◦ (Id⊗T ⊗ Id⊗ . . . ) ◦ · · ·− Id⊗nw ‖♦

2.19
6

1
2
nw‖T − Id ‖♦

6 1 − δ.
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6 QMA with noisy witness

The completeness probability might hence decrease to δ− e−p. Assume w.l.o.g. that
V outputs the correct answer deterministically for small inputs with e−p > δ

4 . Then
V is a QMAT (c ′, e−p) verifier for the problem A with c ′ − e−p > δ

2 . The statement
QMA ⊆ QMAT

(2
3 , 1

3

)
is implied by amplification which we show next.

Amplification is shown if we can construct a QMAT (1 − e−r, e−r) protocol for any
problem A ∈ QMAT (c, s) and polynomial r with c and s obeying the restrictions of the
theorem. This works by parallelization as in the proof of lemma 3.21. We only have
to take the detour QMAT (c, s) ⊆ QMA (1 − e−p, e−p) and make a sufficient m-fold
parallelization of the existing QMA(1−e−p, e−p) verifier for A that is a QMAT (c ′, e−p)
verfier at the same time. Define T̃nw := Tmnw with the lower indices denoting the
parameter of the channels which we normally do not spell out. The sublety that each
of the verifiers in parallel receives a witness disturbed by T̃ i.i.d. noise instead of T
i.i.d. noise due to the increased witness length is now irrelevant, since the verifier still
possesses a completeness probability of c ′ and soundness probability of e−p due to

‖T̃ − Id ‖♦ 6
2(1 − δ)

mnw
6

2(1 − δ)

nw

and the same argumentation as before.

Since the noise T in the above amplification proof changes with the parallelization of
the witness, one might favor a variant of strong amplification [18] that works for QMA
without lengthening of the witness. Unfortunately, this method achieves the desired
completeness probability by a specific pure witness state which is not generally known
to be a valid channel output.

In the next chapter we will use the tool of concatenated coding to turn channels T
of small constant noise into effective channels T ′ whose noise decreases with the
witness length. With the argument from the previous proposition this implies that
QMAT = QMA for small constant noise T .

This thesis does not comprise a comprehensive study of noisy QMA classes for high
noise. Clearly, QMAT should become strictly weaker than QMA if the noise of the
channel T is so disturbant that it prevents any transmission of quantum information.
A standard quantity for expressing the amount of transmitted quantum information
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6.3 Interpolation of standard complexity classes by physical witness noise

is the quantum capacity of a channel (see e.g. [10]). Unfortunately, this well-studied
quantity from quantum Shannon theory is not suitable for any collapse argument of
noisy QMA, since its definition as limes of transmitted qubits per number of channel
uses does note rule out the possibility that states of nw qubits can be transmitted via
polynomially many channels uses despite a vanishing quantum capacity.

The 50-50-erasure channel

T eras
1
2

(ρ) =
1
2
(ρ⊗ |0〉) + 1

2

(
I
2
⊗ |1〉

)
for example has zero quantum capacity [54], but can nevertheless transmit – at least
with some average error – states of nw qubits via Θ(n2

w) channel uses [55, 56]. If addi-
tionally, the extraction of the nw qubits from the channel output can be accomplished
efficiently (this is unclear since the necessary code is not known explicitly) and the
error on the actual witness state does not deviate to much from the average error to
allow compensation by amplification, then it holds that QMAT eras

1/2
= QMA. Although

ultimately this knowledge is missing, the 50-50-erasure channel is a strong indication
for the existence of channels without quantum capacity that do not diminish the power
of QMA.

Regarding the quantum erasure channel one might very well even believe in QMAT eras
p

=

QMA for increasing p = 1 − k
nw

, k constant, as section 8.4 will reveal this as equivalent
to the famous QPCP conjecture.
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Robustness of QMA against constant witness noise

7.1 Introduction

In the last chapter we introduced QMA classes with disturbed witnesses. At the
end we concentrated on physically realistic noise channels that disturb each qubit
independently and equally. Channels of this form are sufficient to interpolate between
standard complexity classes such as QMA, QCMA and BQP. The last chapter ended
with the proof that QMA stays invariant if the noise on each single qubit decreases
with the witness length. This was a simple consequence of amplification by parallel
repetition.

In this chapter we will improve this result and show that QMA even stays invariant if
each qubit is affected by a quantum channel T of small constant noise. We will derive a
general bound on the single qubit noise in terms of the diamond norm ‖T − Id ‖♦ and
an improved bound on the error parameter ε 6 ‖T − Id ‖♦ for the partly depolarizing
channel

T
depol
ε (ρ) = (1 − ε)ρ+ ε

I
2
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7 Robustness of QMA against constant witness noise

that interpolates between QMA and BQP and the partly dephasing channel

T
deph
ε (ρ) = (1 − ε)ρ+ ε

ρ+ ZρZ

2

that interpolates between QMA and QCMA. This work was published in [50] around
the same time as [49] stated a similar existence statement without explicit proof and
calculation of conrete bounds.

The tool to prove robustness of QMA against constantly disturbed witness qubits is
provided by concatenated coding. Instead of an undisturbed witness the noisy QMA
protocol expects to receive a disturbed, encoded witness. By first applying an error
correction and decoding procedure, the protocol can remove enough noise to simulate
afterwards the original QMA algorithm with a sufficiently close outcome. Note that
no code will be capable of removing the noise completely, because i.i.d. noise includes
the possibility that all witness qubits are non-trivially disturbed at the same time, e.g.
with probability εnw for the two channels stated above. In such a setting the specific
encoding, error correction and decoding chosen along with the code becomes relevant
for its performance. Since these operations are not fixed in the original definition 4.1 of
a quantum code, we agree on the following convention for this chapter:

Definition 7.1. In this chapter every quantum code encodes 1 qubit into N qubits via a specific
encoding E. Furthermore, specific logical Pauli operators Ī, X̄, Ȳ, Z̄, a specific decoding D and a
specific standard error correction channel R with projective measurement {Pj}j∈[l] and recovery
operators {Rj}j∈[l] is assumed.

The idea of concatenated coding is not to encode each qubit only once, but to consider
the combination of encoding, noise, error correction and decoding as a new effective
noise channel for that another layer of coding is applied (see figure 4.1). After k levels of
coding against the single qubit noise T the effective channel T (k) hence equals

T (0) = T ,

T (k) = D ◦ R ◦
(
T (k−1)

)⊗N
◦ E.

The proof technique of concatenated coding led 1999 to the theorem of quantum fault
tolerance [57]. This theorem depicts a milestone of quantum computation by promising
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Figure 7.1: 3-fold concatenation of a (2, 2) code against the i.i.d. noise channel T .

its physical feasibility. The construction introduces a polynomial overhead of gates into
any quantum circuit with the result that constant noise below a non-trivial threshold
on each single gate only results in an exponentially small output error.

We revisit this technique now for our scenario in which each witness qubit is affected
by constant noise. If we only worked with a fixed number of coding layers the effective
channel T (k) would simply equal another constant noise and the error on the witness
state would increase with the number of witness qubits nw (recall the optimal bound
‖(T (k))⊗nw − Id⊗nw ‖♦ 6 nw‖T (k) − Id ‖♦ from lemma 2.19). Hence, the centerpiece of
concatenated coding is that the number of coding levels depends on the length of the
input state. The simple structure of concatenated single qubit codes against i.id. qubit
noise will allow us a feasible analysis with the result that the overall error decreases
super-exponentially with the number of coding levels if the constant single qubit noise
lies below a non-trivial threshold. Note that the decreasing of the error has to be at
least exponentially in the number of coding levels for our purpose since an efficient
protocol can decode only logarithmically many levels.

The analysis breaks down into studying the fixed points and convergence behaviour
of the coding map which describes the transformation of a noise channel T into the
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7 Robustness of QMA against constant witness noise

respective effective channel after one coding level:

Definition 7.2. The coding map ΩC for an (N, 2) code C is defined via

ΩC : L
(
L(C2)

)
→ L

(
L(C2)

)
ΩC(T) = D ◦ R ◦ T⊗N ◦ E.

Notice that we can regard an effective channel as new noise for another coding level
only because our initial assumption of i.i.d. noise ensures that after k coding levels
each of the Nk physical qubits for an original qubit is still disturbed by the same noise
T . If this assumption was dropped, we would need knowledge about how the noise
extends to larger systems and could not simply reduce our study to the fixed point
analysis of the coding map ΩC.

In the following two sections 7.2 and 7.3 we derive an expression for the coding map of
general single qubit codes and stabilizer codes. These expressions were first formulated
by [58]. The fixed point analysis of these coding maps in sections 7.5 and 7.6 is based
on the work by [59].

7.2 Concatenation of general codes

Definition 7.3. We use the following notation for the different stages an initial operator
ρ0 ∈ L(C2) runs through while passing one level of coding:

E

T

R D

T

ρ0
ρC0

= E(ρ0)
T

ρC

= T⊗N(ρC0 )

ρCf

= R(ρC)

ρf

= D(ρCf )
T

T

Given the initial and final operator we denote the expectation values of the Pauli operators σ ∈ P

by 〈σ〉0 = tr(σρ0) and 〈σ〉f = tr(σρf), respectively.
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7.2 Concatenation of general codes

Note that we use the above notation not only for valid density matrices but for any
operator ρ ∈ L(C2). Since an operator in L(C2) can be written as a linear combination
of Pauli operators, a superoperator T ∈ L

(
L(C2)

)
is fully described by its Stokes

parametrization: a complex 4 × 4 matrix with the matrix entry Tσσ ′ representing the
prefactor of σ ∈ P in the output operator given the input operator σ ′ ∈ P. Observe that
the prefactor of σ given the linear combination ρ ∈ L(C2) equals exactly half of the
expectation value of σ:

ρ =
1
2

∑
σ∈P
〈σ〉σ.

Consequently, the matrix element Tσσ ′ can also be considered as the expectation value
of the Pauli operator σ given the operator T

(1
2σ
′):

Tσσ ′ = tr
(
σT

(
1
2
σ ′
))

.

We will be able to derive an expression for the coding map with the help of two simple
expressions relating the initial and final expectation values 〈σ〉0 and 〈σ〉f to the so-called
en- and decoding operators of the code. One might find the terminology “decoding
operators” a bit misleading since the operators rather describe the action of the error
correction channel than the actual decoding. However, we stick to this terminology to
stay consistent with the literature [58] from which we adapted the following definitions
and theorem 7.8.

Definition 7.4. The encoding operators Eσ, σ ∈ P, for a quantum code C are defined via

Eσ :=
1
2
PCσ̄.

Since encoding operators act like the respective logical Pauli operators times 1/2 on the
codespace and vanish on the orthogonal space, an encoded state can be expressed as
following:

Corollary 7.5. A quantum code C encodes an initial operator ρ0 into

ρC0 =
∑
σ∈P
〈σ〉0Eσ.
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7 Robustness of QMA against constant witness noise

Definition 7.6. The decoding operators Dσ, σ ∈ P, of a quantum code C are defined via

Dσ := 2
∑
j∈[l]

P
†
jR
†
jEσRjPj.

Corollary 7.7. The Pauli expectation values of the output operator ρf for a quantum code C
are given by

〈σ〉f = tr
(
Dσρ

C
)

.

Theorem 7.8. Consider a quantum code C with encoding and decoding operators

Eσ ′ =
∑
µ∈P⊗N

ασ
′
µ

(
1
2
µ1

)
⊗ · · · ⊗

(
1
2
µN

)
Dσ =

∑
ν∈P⊗N

βσνν1 ⊗ · · · ⊗ νN.

Then a coding level transforms a single qubit superoperator T into to the effective superoperator
T̃ = ΩC(T) with

T̃σσ ′ =
∑

µ,ν∈P⊗N
βσνα

σ ′
µ

∏
j∈[N]

Tνjµj .

Proof. The matrix element T̃σσ ′ equals the final expectation value 〈σ〉f given the initial
operator ρ0 = 1

2σ
′. Hence we obtain:

T̃σσ ′ = 〈σ〉f
7.7
= tr(DσρC)

= tr
(
DσT

⊗N(ρC0 )
)

7.5
= tr

(
DσT

⊗N(Eσ ′)
)

=
∑

µ,ν∈P⊗N
βσνα

σ ′
µ

∏
j∈[N]

tr
(
νjT

(
1
2
µj

))
=

∑
µ,ν∈P⊗N

βσνα
σ ′
µ

∏
j∈[N]

Tνjµj .
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The previous theorem shows that the matrix elements of the efficient channel T̃ are
polynomials of degree N in the matrix entries of T . A smaller physical qubit number N
of the chosen code might hence simplify the analysis of concatenated quantum coding.
However, in many cases simplification is rather achieved by codes preserving a specific
structure of the effective channels. Concatenated stabilizer codes provide for example
the advantage to be diagonality preserving as we will see in the next section.

7.3 Concatenation of stabilizer codes

In this section we adapt the results of the previous section for stabilizer codes. With
the following notation the expressions for decoding operators and coding map get
particularly simple:

Definition 7.9. In this chapter the stabilizer group of a code C(S) is denoted by S = {Si}
2m
i=1

and its independent generators by {gi}
m
i=1.

The stabilizer code is always provided with a standard error correction channel as described in
theorem 4.36, i.e. the projection operators {Pj}j∈[2m] project onto the generator syndrome spaces
and the recovery operators {Rj}j∈[2m] are Pauli group elements turning the syndrome spaces
into the codespace.

We characterize the en- and decoding operators by coefficients ασ
′
µ and βσν as in theorem 7.8.

We write |µ| for the Pauli operator equalling µ ∈ PN without prefactor and |µ|k to refer to the
single qubit Pauli operator in the k-th tensor product position of µ.

We can derive a short expression for the decoding operators of a stabilizer code making
use of the η-function introduced in definition 2.8 indicating the commutation relation
of two Pauli group elements:

Definition 7.10. For a stabilizer code C(S) we define for all i ∈ [2m] and σ ∈ P the f-coeffcient

fiσ :=
∑
j∈[2m]

η(Rj,Si)η(Rj, σ̄).
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7 Robustness of QMA against constant witness noise

Lemma 7.11. The decoding operators of a stabilizer code can be written as

Dσ =
1
|S|

∑
i∈[2m]

fiσSiσ̄.

Proof. Since the code space projection for stabilizer codes equals PC = 1
|S|

∑
i∈[2m] Si

we can insert Eσ = 1
2|S|
∑
i∈[2m] Siσ̄ into the expression for the decoding operators by

definition 7.6:

Dσ =
1
|S|

∑
i∈[2m]

∑
j∈[2m]

PjR
†
jSiσ̄RjPj

=
1
|S|

∑
i∈[2m]

∑
j∈[2m]

Pjη(Rj,Si)η(Rj, σ̄)Siσ̄Pj.

According to lemma 4.26 the syndrome space projections Pj equal 1
|S|

∑
i∈[2m] η(Rj,Si)Si.

Since the Pj furthermore commute with all stabilizers and logical operators we obtain

Dσ =
1
|S|

∑
i∈[2m]

∑
j∈[2m]

η(Rj,Si)η(Rj, σ̄)Siσ̄

=
1
|S|

∑
i∈[2m]

fiσSiσ̄.

Lemma 7.12. The coefficients of the en- and decoding operators of a stabilizer code fulfill

ασµ =

±1 if µ = |Siσ̄|

0 otherwise,

βσµ =


fiσ
|S|α

σ
µ if µ = |Siσ̄|

0 otherwise.

Proof. From the expression

Eσ =
1

2|S|

∑
i∈[2m]

Siσ̄

it is clear that ασµ = 0 if µ 6= |Siσ̄| for all stabilizers Si ∈ S.
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Let’s now consider the case µ = |Siσ̄|. First it is important to observe that the stabilizer
Si and the Pauli operator σ are uniquely determined by the product |Siσ̄| according to
lemma 4.35.

Since stabilizers and logical operators are hermitian and commute, Siσ̄ is hermitian,
too. As a consequence each summand in the encoding operator Eσ equals a distinct
tensor product of Pauli operators with prefactor ± 1

2N and thus ασ
|Siσ̄|

= ±1.

The expression for βσµ follows directly from the coefficient comparision of Eσ and

Dσ =
1
|S|

∑
i∈[2m]

fiσSiσ̄.

The above properties of the α and β coefficients allow an easy computation of the
coding map based on the expression by theorem 7.8. The expression gets even simpler
if the original superoperator T is diagonal in the Stokes representation. Due to trace
preservation these channels are fully described by the notation

T = [TXX, TYY , TZZ].

The next theorem, adapted from [58], shows that concatenated stabilizer codes preserve
the diagonality of superoperators. Note that the arXiv publication of [58] contains
wrong exponents.

Theorem 7.13. A stabilizer codeC(S) transforms a single qubit superoperator T = diag(e, x,y, z)
into the effective superoperator T̃ = ΩC(T) with

T̃σσ ′ = δσσ ′
1
|S|

∑
Si∈S

fiσe
wI(Siσ̄)xwX(Siσ̄)ywY(Siσ̄)zwZ(Siσ̄).

Proof. Due to the diagonality of T the statement of theorem 7.8 simplifies to

T̃σσ ′ =
∑
µ∈P⊗n

βσµα
σ ′
µ

∏
j∈[N]

Tµjµj

=
∑
µ∈P⊗n

βσµα
σ ′
µ e

wI(µ)xwX(µ)ywY(µ)zwZ(µ).
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7 Robustness of QMA against constant witness noise

Lemma 7.12 allows us to replace the β coefficients and reduce the summation to
operators µ ∈ P⊗n of the form |Siσ̄|:

T̃σσ ′ =
1
|S|

∑
Si∈S

fiσα
σ
|Siσ̄|

ασ
′

|Siσ̄|
ewI(Siσ̄)xwX(Siσ̄)ywY(Siσ̄)zwZ(Siσ̄)

= δσσ ′
1
|S|

∑
Si∈S

fiσe
wI(Siσ̄)xwX(Siσ̄)ywY(Siσ̄)zwZ(Siσ̄).

7.4 Channel properties in Stokes representation

Before studying how the effective channel series generated by concatenated coding
converges, this section provides a short overview of channel properties in Stokes
representation. Note that a superoperator T is called unital iff T(I) = I and that
self-adjointness is meant with respect to the Hilbert-Schmidt inner product, i.e.

tr
(
ρ†T(ρ ′)

)
= tr

(
T(ρ)ρ ′

)
for all ρ, ρ ′ ∈ L(C2).

Lemma 7.14. The following correspondances hold between a superoperator T ∈ L
(
L(C2)

)
and

its Stokes matrix representation

T =

(
z s

t A

)

with A a complex 3x3 matrix and s and t row and column vector of length 3, respectively:

linear function on L(C2) Stokes representation

hermiticity preserving real

trace preserving (z, s) = (1, 0, 0, 0)

self-adjoint hermitian

unital t = (0, 0, 0)T
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7.4 Channel properties in Stokes representation

Proof. [6, §2.1].

Lemma 7.15. For a valid quantum channel T and all σ ∈ {X, Y,Z} it holds that

1. T 2
σX + T 2

σY + T 2
σZ 6 (1 − |TσI|)

2,

2. T 2
Xσ + T 2

Yσ + T 2
Zσ 6 1 − T 2

XI − T
2
YI − T

2
ZI.

Proof. [59, lemma 5.1].

Corollary 7.16. Tσσ ′ ∈ [−1, 1] for all matrix entries of a valid quantum channel T .

Proof. First, we note that all matrix entries of T are real according to lemma 7.14, since
complete positivity also implies that quantum channels preserve hermiticity. Moreover,
the completely mixed state is only mapped to a valid quantum state if the entries of
the first column of T lie within the interval [−1, 1]. The first property of lemma 7.15
implies then that all matrix entries are of norm at most 1.

An even stricter range is provable for the matrix entries of diagonal channels. It allows
us later to prove convergence of a diagonal channel towards identity by only showing
the convergence towards 1 of two out of the three matrix entries TXX, TYY and TZZ:

Lemma 7.17. A diagonal quantum channel T = [TX X, TY Y, TZ Z] fulfills

|TX X ± TY Y| 6 |1± TZ Z|,

i.e. the point (TX X, TY Y, TZ Z) lies within the tetrahedron ∆ defined by the corners (1, 1, 1),
(1,−1,−1), (−1, 1,−1) and (−1,−1, 1).

Proof. [6, Appendix B].

Lemma 7.18. A quantum channel T is a Pauli channel, i.e.

T(ρ) = (1 − pX − pY − pZ)ρ+ pXXρX+ pYYρY + pZZρZ
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7 Robustness of QMA against constant witness noise

iff T is diagonal with

T = [1 − 2(pY + pZ), 1 − 2(pX + pZ), 1 − 2(pX + pY)].

Proof. [59, §II].

We end this section with another result by [59, theorem 6.2] showing that every single
qubit channel corresponds to a channel with a simplified Stokes representation padded
by unitary channels:

Lemma 7.19 (SVD standard form of channels). For every single qubit channel T there exist
unitary single qubit channels U1 and U2 such that all off-diagonal, unital entries of U2 ◦ T ◦ U1

vanish.

Proof. Consider an arbitrary single qubit channel

T =

(
1 0 0 0

t A

)
,

t ∈ R3, A ∈ R3,3, and the singluar value decomposition A = O
†
2DO

†
1. Then A =

R
†
2(±D)R†1 with Ri a rotation because an orthogonal operator Oi can always be written

as Oi = ±Ri.

Since a rotation in the Bloch sphere corresponds to a unitary operator on the state in its
C2-representation

Ui =

(
1 0

0 Ri

)

is a valid unitary channel.

We obtain the SVD standard form

U2 ◦ T ◦ U1 =

(
1 0 0 0

R2t ±D

)
.
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7.5 Convergence of diagonal noise

7.5 Convergence of diagonal noise

The motivation for studying concatenated coding is the idea that the effective channel
gets less noisy with every coding level and eventually converges to the identity. But
of course this will only happen if both the code and the initial noise fulfill certain
minimum requirements. Mathematically speaking, the question is if the identity is an
attracting fixed point of the coding map and if the initial noise lies within its basin of
attraction.

In this section we restrict our studies to the convergence of diagonal, trace-preserving
superoperators T under diagonality preserving codes. For such superoperators the
coding map is fully described by its diagonal-reduced coding map variant

ΩCd : R3 → R3

ΩCd
(
[TXX, TYY , TZZ]

)
:= [T̃XX, T̃YY , T̃ZZ]

with T̃ = ΩC(T).

With the next definition we introduce some standard analysis vocabulary for functions
Rk → Rk with an arbitrary choice of norm on Rk.

Definition 7.20. Let f : Rk → Rk.

◦ A point p = f(p) is called a fixed point of f.

◦ The orbit of a point x ∈ Rk is the series
(
x, f(x), f2(x), f3(x), . . .

)
with fn indicating the

n-times concatenation of f.

◦ A fixed point p is called locally attracting iff it has a neighborhood U ⊆ Rk such that
the orbit of every x ∈ U converges towards p.

◦ The basin of attraction B(p) of an attracting fixed point p is its largest neighborhood
such that the orbit of every point in B(p) converges towards p.
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7 Robustness of QMA against constant witness noise

We write ‖Df(p)‖ to denote the induced norm of the Jacobian matrix Df of a differen-
tiable function f : Rk → Rk in the point p:

∥∥Df(p)∥∥ = sup
{∥∥(Df(p))r∥∥ ∣∣∣ r ∈ Rk, ‖r‖ 6 1

}
.

Theorem 7.8 tells us that the diagonal-reduced coding map ΩCd : R3 → R3 maps to
a vector of polynomials and is therefore a C1-function, i.e. its Jacobian exists and is
continuous. This allows us to apply a standard result from analysis giving a sufficient
condition for a fixed point p to be attracting:

Lemma 7.21. Let f : Rk → Rk be a C1-function with fixed point p. If λ0 := ‖Df(p)‖ < 1
then p is locally attracting.

Proof. Choose a λ with λ0 < λ < 1. Since Df(x) is continuous there exists a neighbour-
hood U of p such that ‖Df(x)‖ 6 λ for all x ∈ U. By the mean value theorem the orbits
of all x ∈ U converge to p = fn(p):

lim
n→∞ ‖fn(x) − fn(p)‖ 6 lim

n→∞ λn‖x− p‖ = 0.

The next proposition corresponding to [59, theorem 3.3] shows that ‖DΩCd
(
[1, 1, 1]

)
‖ = 0

for codes with a certain minimum error-correction capability. With the above lemma this
indeed reveals the identity channel as an attracting fixed point of the diagonal-reduced
coding map.

Proposition 7.22. Let C be a diagonality-preserving quantum code correcting any single qubit
error. Then the Jacobian of the diagonal-reduced coding map ΩCd vanishes at [1, 1, 1], exposing
it as an attracting fixed point.

Proof. Consider the single qubit noise T = [1, 1 − 2ε, 1 − 2ε] which imposes an X-error
with probability ε and no error otherwise according to lemma 7.18. Since C can correct
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7.6 Convergence of general noise under stabilizer coding

any single qubit error the probability that a coding level on the product noise T⊗N

returns the identity channel is 1 − O(ε2). Hence

ΩCd (T) = [1 − O(ε2), 1 − O(ε2), 1 − O(ε2)].

Because the effective channel does not contain a first order term in ε, the derivative in
the direction of vX = [0,−2,−2] vanishes:

DΩCd
(
[1, 1, 1]

)
· vx =

d

dε
ΩCd
(
[1, 1, 1] + εvX︸ ︷︷ ︸

=T

)
|ε=0

= [0, 0, 0].

The argument runs analogously for vY = [−2, 0,−2] and vZ = [−2,−2, 0]. As vX, vY , vZ
are linearly independent it follows that DΩCd

(
[1, 1, 1]

)
= 0.

Notice that the above proposition only states that small diagonal noise will converge
towards the identity by suitable concatenated coding. This can be concluded from the
derivative of the restricted function ΩCd , because the starting point is assumed to be
diagonal and diagonality of the channel series is preserved. It is important to stress
that so far the proposition does not allow any conclusion for non-diagonal noise. In
such a case the derivative of the full coding map ΩC has to be checked. So far it is
neither clear that this full derivative vanishes for the identity channel nor that its norm
is at all smaller than 1. But restricting to stabilizer codes of distance at least 3 in the
next section, we can prove directly that the identity channel is indeed an attracting
fixed point of their full coding map.

7.6 Convergence of general noise under stabilizer coding

In this section we extend our convergence study to non-diagonal noise but under
the restriction of concatenated stabilizer codes. Since the minimum weight over all
non-identity stabilizers will turn out to be one of the parameters determining the
convergence behaviour, we introduce the following definition:
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7 Robustness of QMA against constant witness noise

Definition 7.23. We call a stabilizer code C(S) an [N,k, δ,w] code if it is an [N,k, δ] code
with

w := min
Si∈S\{I}

w(Si).

In the following theorems often an [N, 1, δ,w] code with distance δ > 3 and w > 2 is
assumed. Notice that such codes exists, e.g. the 5-qubit code, the Steane 7-qubit code
and the Shor code have these parameters.

Stabilizer codes have the advantage that noise channels with small off-diagonal terms
almost behave like diagonal channels as the next theorem adapted from [59, theorem
5.5] shows:

Theorem 7.24. Consider coding with an [N, 1, δ,w] stabilizer code against a noise channel
T = D+εF, |Fσσ ′ | 6 1 for all σ,σ ′ ∈ P, withD containing the diagonal and εF the off-diagonal
elements in Stokes representation. Then

∣∣(ΩC(T) −ΩC(D)
)
σσ ′

∣∣ 6
cFεδ if σ 6= σ ′

cFε
w if σ = σ ′

with 2m 6 cF := 2mmaxσ∈P
∑
Si∈S

∣∣∣βσ|Siσ̄|∣∣∣ 6 4m.

Proof. The off-diagonal elements can be bounded by

∣∣(ΩC(T))
σσ ′

∣∣ 7.8
=

∣∣∣∣∣∣
∑

µ,ν∈P⊗N
βσνα

σ ′
µ

∏
k∈[N]

Tνkµk

∣∣∣∣∣∣
7.12
6

∑
Si,Sj∈S

∣∣∣βσ|Siσ̄|∣∣∣
∣∣∣∣∣∣
∏
k∈[N]

T|Siσ̄|k|Sjσ̄ ′|k

∣∣∣∣∣∣
6 2m

∑
Si∈S

∣∣∣βσ|Siσ̄|∣∣∣ εδ
6 cFε

δ.
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7.6 Convergence of general noise under stabilizer coding

The third line follows from the second line, since |Siσ̄| and |Sjσ̄
′| are multiplicative

related by an element from N(S)\S± and hence differ in at least δ qubit positions. Thus
the product contains at least δ off-diagonal matrix entries of T while the remaining
factors are upper-bounded by 1 according to corollary 7.16.

For the diagonal elements we first derive analogously

∣∣(ΩC(T) −ΩC(D)
)
σσ

∣∣ 7.8
=

∣∣∣∣∣∣
∑

µ,ν∈P⊗N
βσνα

σ
µ

 ∏
k∈[N]

Tνkµk −
∏
k∈[N]

Dνkµk

∣∣∣∣∣∣
7.12
6

∑
Si,Sj∈S

∣∣∣βσ|Siσ̄|∣∣∣
∣∣∣∣∣∣
∏
k∈[N]

T|Siσ̄|k|Sjσ̄|k −
∏
k∈[N]

D|Siσ̄|k|Sjσ̄|k

∣∣∣∣∣∣ .
Since the two products are the same and cancel if Si = Sj, we can restrict the sum to
Si 6= Sj. Given this condition the second product vanishes since it contains at least one
off-diagonal factor. Recalling finally that Siσ̄ and Sjσ̄ are multiplicative related by a
non-identity stabilizer whose weight is greater or equal to w, it follows that

∣∣(ΩC(T) −ΩC(D)
)
σσ

∣∣ 6 ∑
Si,Sj∈S
Si 6=Sj

∣∣∣βσ|Siσ̄|∣∣∣
∣∣∣∣∣∣
∏
k∈[N]

T|Siσ̄|k|Sjσ̄|k

∣∣∣∣∣∣
6 2m

∑
Si∈S

∣∣∣βσ(Siσ̄)∣∣∣ εw
6 cFε

w.

It remains to prove the bounds on the constant cF. Lemma 7.12 shows
∣∣∣βσ|Siσ̄|∣∣∣ 6 1 for

all Si ∈ S and σ ∈ P. Together with
∣∣βII∣∣ = 1 it follows directly that

2m 6 cF = 2mmax
σ∈P

∑
Si∈S

∣∣∣βσ|Siσ̄|∣∣∣ 6 4m.

The previous theorem tells us how a non-diagonal noise channel converges towards a
diagonal channel under suitable concatenated stabilizer coding. But we are interested
particularly in the convergence towards a specific diagonal channel, namely the identity.
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7 Robustness of QMA against constant witness noise

For the off-diagonal elements the previous theorem already provides a bound, but for
the diagonal elements we have to combine the above result via triangle inequality with
our knowledge from theorem 7.22 about the convergence of diagonal superoperators
towards the identity.

Theorem 7.25. Consider coding with an [N, 1, δ,w] stabilizer code with distance δ > 3 and
w > 2 against a noise channel T obeying |(T − Id)σσ ′ | 6 ε 6 1 for all σ,σ ′ ∈ P. Then there
exists a constant c such that

∣∣(ΩC(T) − Id
)
σσ ′

∣∣ 6 cε2 ∀σ,σ ′ ∈ P.

Proof. Due to theorem 7.24 and the triviality of the case σ = σ ′ = I, it only remains to
show the statement for the cases σ = σ ′ ∈ {X, Y,Z}. For this write

T = Id+εM+ εF

with D := Id+εM just containing the diagonal and εF the off-diagonal entries.

From theorem 7.22 we know that the Jacobian of the diagonal-reduced coding map
ΩCd vanishes at the point [1, 1, 1] and that hence the Taylor series expansion of (ΩCd )σ
around this point does not contain a linear term. Since the Taylor series is finite and
ε 6 1, there exists a constant cM such that

∣∣(ΩC(D) − Id
)
σσ

∣∣ = ∣∣(ΩCd )σ(D) − 1
∣∣ 6 cMε2.

Triangle inequality and the previous theorem 7.24 then lead to

∣∣(ΩC(T) − Id
)
σσ

∣∣ 6 ∣∣(ΩC(T) −ΩC(D)
)
σσ

∣∣+ ∣∣(ΩC(D) − Id
)
σσ

∣∣
6 (cF + cM)ε2.

So far we derived an expression for how noise decreases by one level of coding.
Complete induction helps us to derive a non-recursive bound on the noise that remains
after k levels of concatenated coding:
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7.7 Robustness results

Lemma 7.26. The recursive series εk+1 = αε2
k has the explicit form

εk =
1
α
(αε0)

2k .

Proof. The statement is proven by complete induction. For k = 0 the statement is
obviously fulfilled. Now assume the statement is true for a specific k. Then

εk+1 = αε2
k

i.h.
= α

(
1
α
(αε0)

2k
)2

=
1
α
(αε0)

2k+1
.

Corollary 7.27. Consider the setting of theorem 7.25 and denote by T (k) the effective channel
after k levels of concatenated coding against the noise channel T = T (0). Then∣∣∣(T (k) − Id

)
σσ ′

∣∣∣ 6 1
c
(cε)2k ∀σ,σ ′ ∈ P.

7.7 Robustness results

In this section we combine the previous results to prove that QMAT = QMA even for
channels T of constant noise. The central idea is to verify a QMA problem by a QMAT
protocol receiving a disturbed encoded version of the witness that the QMA protocol
would receive. The QMAT protocol carries out error correction and decoding to
extract the original witness and then simulates the original QMA protocol. Despite the
efficiency restriction to maximally polylogarithmic many levels of coding the extracted
witness will be sufficiently close to the original witness to guarantee any acceptance
probability in the usual range.

The main theorem is preceded by a lemma allowing us to convert between the bound on
the diamond norm of T−Id and bounds on the matrix entries in Stokes representation.
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7 Robustness of QMA against constant witness noise

Lemma 7.28. For all superoperators T and all σ,σ ′ ∈ P it holds that

1
16c♦

‖T − Id ‖♦ 6 |(T − Id)σσ ′ | 6 ‖T − Id‖♦

with c♦ the maximum diamond norm over all superoperators whose matrix entries in Stokes
representation all vanish except from one entry equalling 1.

Proof. The first inequality is derived simply by applying the triangle inequality to the
16 matrix entries of T − Id in Stokes representation. Observe, that for trace-preserving
T the number 16 can be replaced by 12 and that the constant c♦ can be easily computed
via semi-definite programming [60]. For our purposes the actual value of the positive
constant is not important. Of course, c♦ 6= 0, since ‖ · ‖♦ is a valid norm.

The second inequality follows from

‖T − Id ‖♦
2.19
> ‖T − Id ‖1

2.17
>

1
2
‖(T − Id)(σ ′)‖1

=
1
2

∥∥∥∥∥∑
σ ′′∈P

(T − Id)σ ′′σ ′σ ′′
∥∥∥∥∥

1

2.16
=

1
2

max
−I6Λ6I

tr

[
Λ

(∑
σ ′′∈P

(T − Id)σ ′′σ ′σ ′′
)]

> |(T − Id)σσ ′ |

with the last line implied by the previous one since the maximizing set comprises the
operators Λ = ±σ.

Theorem 7.29. There is a constant ε♦ > 0 such that QMAT = QMA for every quantum
channel T with ‖T − Id ‖♦ 6 ε♦.

Furthermore, QMAT (c, s) = QMAT for a channel T with the above property and for all
polynomial-time computable functions c and s with e−q 6 s, c 6 1 − e−q, gap c− s > 1/q
and q polynomial.
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7.7 Robustness results

Proof. To prove the equality statement and amplification at the same time, we show
that QMA ⊆ QMAT (1 − e−r, e−r) for an arbitrary polynomial r.

Assume the setting of concatenated coding against the noise channel T as in proposition
7.25 and corollary 7.27. Since |(T − Id)σσ ′ | 6 ε♦ according to lemma 7.28, choosing
ε♦ < min{1, c−1} ensures that the matrix entries decrease superexponentially with the
number of coding levels k:

|(T (k) − Id)σσ ′ | 6
1
c
(cε♦)

2k ∀σ,σ ′ ∈ P.

Now let A be a problem in QMA and V a QMA(1 − 1
2e

−r, e−r) verifier for it. Let V ′

be the verifier V preceded by k levels of error correction and decoding. Clearly, the
soundness value of V ′ does not increase over the soundness of V . Let Πx := (Vx)

†ΠaccVx

be the final projective measurement preceded by the circuit Vx. The completeness c ′

of V ′ can be lower bounded analogously to the derivation in proposition 6.9 with the
help of the witness ρ of length nw that achieves the highest acceptance probability for
protocol V :

c ′ > tr
[
Πx

(
|0〉 〈0|⊗z ⊗

(
T (k)

)⊗nw(ρ)
)]

> c−
∣∣∣tr [Πx (|0〉 〈0|⊗z ⊗ ((T (k))⊗nw(ρ) − ρ

))]∣∣∣
2.16
> c−

1
2

∥∥∥|0〉 〈0|⊗z ⊗ ((T (k))⊗nw(ρ) − ρ
)∥∥∥

1
2.17
> c−

1
2

∥∥∥Id⊗z⊗
((
T (k)

)⊗nw − Id⊗nw
)∥∥∥

1
2.19
> c−

1
2

∥∥∥(T (k))⊗nw − Id⊗nw
∥∥∥
♦

= c−
1
2

∥∥∥((T (k))⊗ Id⊗ Id⊗ . . .
)
◦
(

Id⊗
(
T (k)

)
⊗ Id⊗ . . .

)
◦ · · ·− Id⊗nw

∥∥∥
♦

2.19
> c−

1
2
nw

∥∥∥T (k) − Id
∥∥∥
♦

> 1 −
1
2
e−r −

8c♦
c
nw (cε♦)

2k .

Clearly, k := logn implies c ′ > 1 − e−r for large enough input lengths n. For smaller
input lengths redefine V ′ to give the correct outputs deterministically. Each of the
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7 Robustness of QMA against constant witness noise

polynomially many identical error correction and decoding operations of the [N, 1]
stabilizer code can be realized by constantly many gates. Therefore the overall error
correction and decoding can be accomplished efficiently and V ′ is a valid QMAT (1 −

e−r, e−r) verifier for A.

Note that the superexponential decreasing ∝ (cε)2k of the effective single qubit noise
achieved by our specific concatenated stabilizer coding is even more than needed for
the proof. An exponential decrease ‖T (k) − Id ‖♦ 6 αk for a constant α ∈ [0, 1[ would
already be sufficient to achieve a completeness of c ′ = c − 1

2na with arbitrary a for
the QMAT protocol chosing k =

log(nwn
a)

log 1/α coding levels. Afterwards amplification via
parallel repetition can improve the completeness to a function inverse exponentially
close to 1.

We mention this, since one might want to consider more general codes with a dif-
ferent convergence behaviour, when aiming at optimizing the noise value tolerable
for QMAT = QMA. Regarding stabilizer codes it is also possible to extend the con-
sideration to codes with w = 1, if the off-diagonal elements of the noise channel are
smaller than the square of the diagonal elements, since then the proofs of theorem
7.25 and corollary 7.27 still hold. Moreover, the SVD standard form from lemma 7.19
allows to restrict to noise channels with few or – in case of unital channels - even none
off-diagonal entries, since a verifier can apply the respective finite dimensional unitaries
between the decoding layers. All these ideas are worth considering when optimizing
the bound on the noise for that QMAT = QMA.

We will spend the rest of this section on computing (suboptimal) bounds for general
channels and for the partly depolarizing and dephasing channel. Recall that these chan-
nels are of special interest since they lead to the complexity classes BQP = QMA

T
depol
1

and QCMA = QMA
T

deph
1

for the highest error parameter ε = 1. Rewritten in Stokes
representation the partly depolarizing and the partly dephasing channel are diagonal
and equal

T
depol
ε = [1 − ε, 1 − ε, 1 − ε],

T
deph
ε = [1 − ε, 1 − ε, 1].
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7.7 Robustness results

Our derived noise bounds are probably far off from optimal, since we only compare
the performances of the 5-qubit, the Steane 7-qubit and the Shor code. Thanks to the
structure of these codes some of the diagonal coding map entries separate. This reduces
our task to computing a convergence region around the attractive fixed point 1 for
continous, one-dimensional functions.

Theorem 7.30. QMAT = QMA if T is diagonal in Stokes representation and ‖T−Id ‖♦ 6 0.18
or if T is arbitrary and ‖T − Id ‖♦ 6 0.014.

Proof. The values can be derived using the 5-qubit code as specified in table 4.1. The
diagonal-reduced coding map of the 5-qubit code is

ΩCd ([x,y, z]) = [f(x,y, z), f(y, z, x), f(z, x,y)]

f(x,y, z) = −
1
4
x5 +

5
4
xy2 +

5
4
xz2 −

5
4
xy2z2.

For the partly depolarizing channel with x = y = z the function f simpifies to the
one-dimensional function

f1D(x) := f(x, x, x) =
5
2
x3 −

3
2
x5

whose next fixed point below 1 turns out to equal 1 − ε1 with ε1 := 1 −
√

2
3 > 0.18.

Since f is continuous and maps valid channels to valid channel matrix elements, it
holds x < f(x) 6 1 for all x ∈ ]1 − ε1, 1[. Hence, any depolarizing channel Tdepol

ε with
ε < ε1 will converge towards the identity under concatenated 5-qubit codes.

Regarding the convergence speed, we know by corollary 7.27 that there exists an ε0 > 0
such that an effective channel series of Tdepol

ε with ε 6 ε0 converges superexponentially
towards the identity channel, which is sufficient for theorem 7.29 to prove QMA

T
depol
ε

=

QMA. A channel Tdepol
ε with ε ∈ ]ε0, ε1[ is turned by constantly many coding layers

into an effective channel Tdepol
ε ′ with ε ′ 6 ε0.

Regarding an arbitrary diagonal, trace preserving superoperator T with elements within
the interval [1 − ε, 1] for any ε < ε1, it is important to observe that f guarantees

(
ΩC(T

depol
ε )

)
σσ
6
(
ΩC(T)

)
σσ
6 1 ∀σ ∈ P.
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7 Robustness of QMA against constant witness noise

Figure 7.2: Bloch sphere representation of 18% depolarizing noise (left) and 27% de-
phasing noise (right), which does not diminish the power of QMA when
applied to each witness qubit.

Hence, QMAT = QMA for every diagonal channel T with |(T − Id)σσ| < ε1. According
to theorem 7.25 this is also true for every non-diagonal channel T with |(T − Id)σσ| 6
0.014 < (cF + ε

−1
1 )−1 with the constant cF 6 64 of theorem 7.24.

The bounds on the diamond norm follow by |(T − Id)σσ| 6 ‖T − Id ‖♦.

Theorem 7.31.

QMA
T

depol
ε

=

QMA for ε 6 0.18

BQP for ε = 1

QMA
T

deph
ε

=

QMA for ε 6 0.27

QCMA for ε = 1.

Proof. The bound on ε guaranteeing QMA
T

depol
ε

= QMA has already been derived via
the 5-qubit code in the proof of theorem 7.30.

The higher bound on ε guaranteeing QMA
T

deph
ε

= QMA can be derived by the Shor code
with interchanged logical X̄ and Z̄ operation compared to table 4.1. Its diagonal-reduced
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7.7 Robustness results

coding map is of the form

ΩCd ([x,y, z]) = [f(x),g(x,y, z),h(z)]

f(x) =

(
3x
2

−
x3

2

)3

.

The next fixed point below 1 of the function f is slightly below 0.73. Furthermore, we
already start at the attracting point 1 of the function h with the dephasing channel
T

deph
ε = [1−ε, 1−ε, 1]. By lemma 7.18 the convergence of two diagonal channel elements

towards 1 is a sufficient criterion for all three converging towards 1. With the same ar-
gumentation as before a channel Tdeph

ε with ε < 0.27 therefore converges superexponen-
tially towards the identity under concatenated Shor codes, proving QMA

T
deph
ε

= QMA
via theorem 7.29.
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7 Robustness of QMA against constant witness noise
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QPCP and a 3-prover protocol for the Local Hamiltonian
problem

8.1 Introduction

The intention behind the introduction of the noisy QMA framework was to study
the significance of the witness for verification protocols. The famous concept of PCP
(“probabilistically checkable proofs”) can also be phrased in these terms: How well can
a problem be verified if only a certain number of (qu)bits of the witness are accessed
probabilistically? Clearly, the problems SAT and k-LH can be verified probabilistically
by simply evaluating one clause or one interaction term, respectively. The probability
gap between completeness and soundness scales inverse polynomially with the input
length in this case. What is extremely surprising is that SAT – and hence any NP
problem – can be verified even with a constant probability gap by accessing only
constantly many witness bits! This is the statement of the famous PCP theorem which
was proven after a long line of work in the 90s by Arora and Safra [61] and reproven
with a new ansatz in 2007 by Irit Dinur [62].

What about an analogous result for QMA, the quantum analogue of NP? In 2006 the
well-known complexity theorist Scott Aaronson first raised the question about the
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

existence of a quantum PCP theorem on his blog [63]:

“I’m 99% sure that this theorem (alright, conjecture) or something close to
it is true. I’m 95% sure that the proof will require a difficult adaptation
of classical PCP machinery (whether Iritean or pre-Iritean), in much the
same way that the Quantum Fault-Tolerance theorem required a difficult
adaptation of classical fault-tolerance machinery. I’m 85% sure that the proof
is achievable in a year or so, should enough people make it a priority. I’m
75% sure that the proof, once achieved, will open up heretofore undreamt-of
vistas of understanding and insight. I’m 0.01% sure that I can prove it. And
that is why I hereby bequeath the actual proving part to you, my readers.”

Now, over a decade later, it is clear that the proof of a QPCP theorem did not take a
year; despite much effort, it is still open until today. Many steps in the two proofs of the
classical PCP theorem seem difficult or even impossible to quantize, as also Aaronson
commented later on his own blog entry:

“I’m quite certain that a Quantum PCP theorem will require significant new
ideas. Recently I spent a day or two studying Irit’s proof of the classical
PCP theorem (which I hadn’t done before), and I found about 20 violations
of the No-Cloning theorem on every page.”

We can fomulate the QPCP conjecture as QMA = QMAT with T the channel family
that erases all but constantly many random witness qubits. We will soon see that one
can also equivalently consider the situation in that every witness qubit is disturbed
independently by identical erasure channels with error parameter 1 − k

nw
. In this

situation only the expected number of undisturbed qubits equals the constant k. This
formulation fits nicely into our line of arguments according to which QMA remains
invariant

with decreasing error parameter k
nw

due to amplifcation,

with non-trivial constant error parameter due to concatenated coding and

with increasing error parameter 1 − k
nw

due to QPCP.
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8.2 The classical PCP theorem

Note that, if the QPCP conjecture holds, a QMAeraa
ε class cannot be QMA-intermediate

unless the error parameter ε increases faster than 1 − k
nw

. We know by theorem 7.31
that the constant error parameter of erasure noise up to which QMA remains invariant
due to concatenated coding equals at least 18% since the erasure channel transforms
into the depolarizing channel when discarding the flag qubits.

The reason why researchers pretty much agree on the correct formulation of the
QPCP conjecture [64, 65] is its equivalence to the important statement that a k-Local
Hamiltonian problem with a constant relative energy gap a−b

m is still QMA-complete.
This stands in strong analogy to the classical PCP conjecture, which is equivalent to the
NP-completeness of the simplified 3-SAT problem with the promise that either all or at
most a constant fraction (e.g. 90%) of the clauses is satisfiable. We call this statement
the constraint satisfaction variant of the PCP theorem.

There also exists a third equivalent formulation of the classical PCP theorem in terms
of multiprover protocols, which has not been proven for the quantum PCP conjecture
yet. Fitzsimons and Vidick [3] made the first approach in this direction and provided a
multiprover protocol for the k-Local Hamiltonian problem. Yet, this protocol does not
prove the implication of a reasonable multiprover QPCP statement due to an additional
inverse polynomial in the probability gap.

In the first sections of this chapter we will present and prove the equivalences of
the different formulations of the PCP theorem and the QPCP conjecture, including
the noisy QMA version. Afterwards, we will revisit the multiprover protocol for the
Local Hamiltonian problem by Fitzsimons and Vidick [3] for two purposes: Firstly, by
adapting the underlying quantum code we reduce the original number of 5 provers to
the minimum possible number of 3 for this protocol structure. Secondly, we manage
to decrease the polynomial that determines the probability gap, although a remaining
term still prevents that the QPCP conjecture implies a reasonable multiprover variant.

8.2 The classical PCP theorem

Definition 8.1. A problem is in the complexity class PCP(r,q, c, s) (“probabilistically checkable
proof”) iff it has a probabilistic polynomial time verifier of completeness c and soundness s that
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

uses at most O (r(n)) coin tosses and reads at most O (q(n)) witness bits (precisely, this means
the verifier can use O (q(n)) queries to an oracle tape which returns the value of the i-th witness
bit for query i).

Note that in the above definition the verifier can choose adaptively which witness bits he
wants to read, i.e. the choice of the witness bit i is allowed to depend on the values of
the previously read witness bits 1, . . . , i− 1. Of course, it is also conceivable to demand
a non-adaptive choice of witness bits, i.e. the verifier has to decide on all witness
bits he wants to read before reading the value of the first. Most literature uses the
above definition for PCP(r,q, c, s), but some literature, e.g. [13], demands non-adaptive
choices. Notice that a protocol reading q witness bits adaptively can easily be changed
into a protocol reading

q ′ =
∑
i∈[q]

2i−1 = 2q − 1

witness bits non-adaptively. Hence, the question of allowing adaptive or demanding
non-adaptive choices of the witness bits in the PCP definition is actually irrelevant for
the formulation of the PCP theorem which only demands that q is a constant.

Theorem 8.2 (PCP theorem). ∃ constant s ∈]0, 1[ such that NP ⊆ PCP(log, 1, 1, s).

For the other two equivalent formulations of the PCP theorem we need the following
definitions:

Definition 8.3. We define the problem 3-SAT(t) as 3-SAT with the additional promise that
either all or at most a fraction t of the clauses is satisfiable.

Definition 8.4. An MIP(l, r) verifier (“multiprover interactive protocol”) is a probabilistic poly-
nomial time algorithm that has l rounds of communication with each of r non-communicating
provers. The i-th round of communication with prover j starts with the verifier writing a question
q
j
i from a question set Qji onto a prover specific message tape upon which the prover overwrites

it with the answer fji(q
j
1,qj2, . . . ,qji) according to an answer function fji : Q

j
1× · · · ×Q

j
i → A

j
i,

which depends implicitly on the input x. A specific collection of answer functions (fji)i∈[l],j∈[r]
is called a strategy of the provers.
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8.2 The classical PCP theorem

A problem A = (Ayes,Ano) lies in the complexity class MIP(l, r, c, s) iff there exists an
MIP(l, r) verifier V such that

◦ ∀x ∈ Ayes there exists a strategy of the provers such that V accepts with probability at
least c (completeness),

◦ ∀x ∈ Ano and for all provers’ strategies V accepts with probability at most s (soundness).

A strategy is the best or optimal one for an input x iff it leads to the highest possible acceptance
probability.

Definition 8.5. MIP(l, r, c, s)log,const equals the complexity class MIP(l, r, c, s) with the re-
striction that at most logarithmically many coins are tossed and that the answers of the provers
have constant size.

Proposition 8.6. The following statements are equivalent:

1. (PCP version). ∃ constant s ∈ ]0, 1[ such that NP = PCP(log, 1, 1, s).

2. (CSP version). ∃ constant t ∈ ]0, 1[ such that 3-SAT(t) is NP-complete.

3. (Multiprover version). ∃ constant s ∈ ]0, 1[ such that NP ⊆MIP(2, 1, 1, s)log,const.

Proof. (1⇒ 2). Assume there exists a constant s ∈ ]0, 1[ such that NP = PCP(log, 1, 1, s).
Let V be the PCP(log, 1, 1, s) verifier for 3-SAT that, for input x of length n, tosses
r(n) ∈ O(logn) random coins with outcome R and reads q ∈ O(1) many bits Qx,R from
the witness. Since the verifier can thus access maximally q2r(n) different witness bits,
we can assume w.l.o.g. that the witness is of polynomial length.

Let VR denote the NP verifier that equals V up to the fact that the random coin outcomes
are replaced by the fixed assignment R. The efficient Cook-Levin construction provides
us with a Boolean formula φx,R (w.l.o.g. in 3-CNF) in the variables {yi}i∈Qx,R which is
satisfiable iff there exists a witness such that VR accepts input x.

Consequently, if V accepts input x with certainty, the conjunction formula φx :=∧
R∈Σr(|x|) φx,R is satisfiable.

If, on the other hand, V accepts input x only with probability at most s, then any
witness maximally satisfies a fraction s of the φx,R. Each φx,R can consist of several
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

clauses, but the maximal number of clauses l is a constant, since φx,R only contains
constantly many variables. Consequently, if at most a fraction s of the φx,R is satisfied,
this implies that at most a constant fraction t := s+ (1 − s)(1 − 1

l ) ∈ ]0, 1[ of the clauses
of φx is satisfied.

Let A ∈ NP be arbitrary and f its Karp reduction onto 3-SAT. Then x→ φf(x) is a valid
Karp reduction from A to 3-SAT(t).

(2⇒ 3). Assume ∃ constant ε ∈ ]0, 1[ such that 3-SAT(1, 1 − ε) is NP-complete. We will
show that the following is a valid MIP(2, 1, 1, 1 − ε

3 )log,const protocol for 3-SAT(1, 1 − ε):

◦ Given a Boolean formula in 3-CNF, choose a clause at random and afterwards a
variable of that clause at random.

◦ Ask prover 1 for an assignment of the clause and prover 2 for an assignment of
the variable.

◦ Accept iff the two answers are consistent and the clause is satisfied by the
assignment.

Clearly, if a Boolean formula is satisfiable, then the provers can simply supply answers
according to the satisfying assignment and the above protocol accepts with certainty.

Assume, on the other hand, that at most (1 − ε) of the clauses of a Boolean formula in
3-CNF can be satisfied. Then also the assignment composed of the second prover’s best
strategy answers can satisfy at most (1 − ε) of the clauses. The acceptance probability
of the above protocol is consequently at most (1 − ε) + ε2

3 = 1 − ε
3 .

(3⇒ 1). Consider an MIP(2, 1, 1, s)log,const protocol. LetQ1,Q2 be the polynomially sized
sets of questions that prover 1 and 2 can be asked and A1, A2 be the respective constant
sized answer sets. The protocol can easily be transformed into a PCP(log, 1, 1, s)
protocol by expecting the witness to consist of all the answers according to the best
strategy for questions from Q1 and Q2, tossing the logarithmically many coins and
checking the respective constantly many witness bits.

We did not specify the constants for which the statements of proposition 8.6 hold. In fact,
the PCP and multiprover version hold for any constant soundness 0 < s < 1, since it
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8.3 The quantum PCP conjecture

can be decreased to another arbitrary constant soundness 0 < s ′ < s by carrying out the
PCP or MIP protocol with perfect completeness constantly many times and accepting
iff all repetitions accept. Clearly, for i repetitions the soundness of a PCP(log, 1, 1, s)
protocols goes down to s ′ = si.

For MIP(2, 1, 1, s) the analogous assumption is wrong as the counter example of Feige’s
NA game (“Noninteractive Agreement”) shows [66]. The critical issue is that by
keeping the protocol a single round game the provers can exploit their knowledge of
all questions before answering. Still, Raz [67] proved by his parallel repetition theorem
that the soundness of any MIP(2, 1, 1, s) goes down exponentially with the number of
parallel repetitions, just the basis of the scaling might be different. For the NA game,

which has soundness 1
2 , the soundness decreases for example to

(
1√
2

)2i
for 2i protocol

rounds instead of the naively expected
(1

2

)2i
[66].

The CSP formulation of the PCP conjecture holds for any constant t > 7
8 as Håstad

proved [68]. Interestingly, 7
8 is exactly the fraction of clauses of a 3-SAT formula that

any assignement at least satisfies. Consequently, 3-SAT (t) is already trivially in P for
t < 7

8 .

8.3 The quantum PCP conjecture

In analogy to the classical complexity class we can define a class for quantumly
probabilistically checkable proofs [64, 65]:

Definition 8.7. A problem (Ayes,Ano) lies in the complexity class QPCP(q, c, s) iff it has a
quantum polynomial time verifier of completeness c and soundness s that has only uniformly
random access to O(q) out of polynomially many witness qubits (precisely, this means that the
generating Turing machine has as additional input a set S of O(q) uniformly random witness
indices and outputs a quantum circuit VSx that only acts on the witness qubits from S).

In contrast to a classical PCP verifier, a quantum PCP verifier cannot decide himself
which witness qubits to access upon some random coin tosses. Instead, he is restricted
to a uniformly random access. Any other definition usually results in some kind of
unnatural classical-quantum mixture regarding the witness access. A disadvantage
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

of the random witness access is that standard amplification by parallel repetition gets
more complicated.

An advantage on the other hand is that an equivalence between a probabilistically
checkable proof version and a constraint satisfaction version of a natural quantum PCP
conjecture holds. The following equivalence proof relies upon the sketch of [65] and
the more detailed lecture notes by [69].

Conjecture 8.8 (Quantum PCP conjecture).

1. (PCP version). ∃c, ∃s with c− s > 0 constant such that QMA = QPCP(1, c, s).

2. (CSP version). ∃k constant, ∃a and ∃t > 0 constant such that the problem of deciding if
a k-local Hamiltonian with m interaction terms has ground state energy at most a (yes
instance) or at least a+ tm (no instance) is QMA-compete under quantum polynomial
time reductions.

Proposition 8.9. The two versions of the QPCP conjecture 8.8 are equivalent.

Proof. (1⇒ 2). Assume ∃c, ∃s with c− s > 0 constant such that QMA = QPCP(1, c, s).
Let (VSx )

S⊆[nw], |S|=q
x∈Σ∗ be the QPCP(1, c, s) verifier for the QMA-complete problem k-LH

working on z ancilla qubits and q ∈ O(1) qubits from the witness of polynomial length
p. We want to map a k-LH instance x onto the q-local Hamiltonian H that consists of
the positive semi-definite m =

(
p
q

)
interaction terms

HS := 〈0z| (VSx )†Π0V
S
x |0z〉

of norm ‖HS‖ 6 1. Clearly, H has ground state energy at most sm for a yes-instance
and at least cm for a no-instance. Hence, to prove the CSP version with k := q, a := s

and t := c− s it only remains to show that HS can be computed in quantum polynomial
time.

The approach is a variant of quantum process tomography [4, §8.4.2]: Simulating VSx
and the output measurement on the fixed zero ancilla and q witness qubits corresponds
exactly to measuring the observable HS with regard to the witness state reduced to the
constantly sized register S. Hence, polynomially many such simulations for a reduced
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8.3 The quantum PCP conjecture

witness state |n〉, n ∈ Σ2q , lead to an approximation of the diagonal matrix element
〈n|HS |n〉 within arbitrary polynomial accuracy according to the central limit theorem.

Off-diagonal matrix elements 〈n|HS |m〉 can simply be computed via four diagonal
elements:

〈n|HS |m〉 =
〈n|+ 〈m|√

2
HS

|n〉+ |m〉√
2

+ i
〈n|+ i 〈m|√

2
HS

|n〉− i |m〉√
2

−
1 + i

2
〈n|HS |n〉−

1 + i
2
〈m|HS |m〉 .

(2 ⇒ 1). Assume there exists a constant k, an a and a constant t > 0 such that
the problem of deciding whether a k-local Hamiltonian with m interaction terms
has ground state energy at most a (yes-instance) or at least a + tm (no-instance) is
QMA-complete under quantum polynomial time reductions.

The QMA protocol with completeness c := 1 − a
m and soundness s := 1 − a

m − t for this
k-LH problem described in section 3.5 is basically equivalent to a QPCP(1, c, s) protocol;
the verifier’s uniformly random choice of the witness qubits is simply replaced by the
QPCP protocol’s inherent choice.

It appears unusual, but not necessarily wrong, that the construction of the above
q-Local Hamiltonian from the QPCP(1, c, s) protocol for the LH problem requires a
quantum instead of a classical polynomial time reduction. The reason is that a quantum
algorithm can simulate the circuit VSx efficiently whereas a classical algorithm cannot
apply the exponentially sized matrix efficiently.

Although the above equivalence shows a strong analogy to the classical PCP theorem
the goal of proving or disproving it seems far off. Works on the QPCP conjecture so far
mainly succeeded in restricting the form of the Hamiltonian family for which the CSP
version can hold. The following is one result of this kind to which we will return in
sections 8.6 and 8.7:

Theorem 8.10. Assuming NP 6= QMA, the CSP version of the QPCP conjecture 8.8 can be
restricted to 2-Local Hamiltonians of constant degree, i.e. each qubit is involved non-trivially in
only constantly many interaction terms.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

Proof. The theorem is a conclusion of two works: [70] provide for every ε > 0 an
efficient mapping from any k-local Hamiltonian on n qubits to a 2-local Hamiltonian
by introducing an error of O(εn) to the ground state energy. Hence, a constant
relative energy gap of the Hamiltonian persists. Moreover, by studying product state
approximations of ground states, [71, corollary 5] proved that the problem of deciding
whether a 2-local Hamiltonian of degree D has at most energy a or at least energy
a+ tm with m the number of interaction terms is in NP for any constant t > 0 and D
above some constant.

8.4 Noisy QMA version of the quantum PCP conjecture

A QPCP(1, c, s) protocol can easily be understood as a noisy QMA protocol that destroys
and indicates all but k = O(1) witness qubits uniformly at random. For the equivalence
of the two classes we hence need to consider the channel

Tnw =

(
nw

k

)−1 ∑
s∈{0,1}nw ,
w(s)=k

⊗
i∈[nw]

(
(T eras

0 )si + (T eras
1 )1−si

)
i

which is the equal mixture of all channels that are composed of the non-erasing channel
on exactly k qubits and the maximal erasing channel on the remaining nw qubits.

Note that the equivalence would not hold for the suspicious class QMAs
T, since its

malicious prover could send a state with specific n− k erased witness qubits leading
to an acceptance probability above the soundness value of the QPCP(1, c, s) protocol
which only has to be attained for randomly erased states.

Unfortunately, the channel Tnw is not of i.i.d. form. A reasonable alternative for the
QPCP conjecture is to demand the equivalence of QMA to the noisy QMA class with
i.i.d. erasure noise T eras

ε such that the expected number of undisturbed qubits equals a
constant k. Since the probability that exactly i witness qubits are not erased is given by
the binomial distribution

(
nw
i

)
(1 − ε)iεnw−i with with mean value (1 − ε)nw, this is

accomplished by the channel T eras
ε with ε = 1 − k

nw
.
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8.4 Noisy QMA version of the quantum PCP conjecture

Requiring a constant expectation number of accessible qubits is in a certain way weaker
than requiring exactly k accessible qubits. Still we can show in the proposition below
that both conjectures are equivalent by applying Chernoff bound. Hence, the robustness
of QMA against ε = 1 − k

nw
increasing i.i.d. erasure noise constitutes a third physically

interesting, equivalent formulation of the prevailing QPCP conjecture.

A stronger conjecture for that an equivalence is not obvious is obtained by eliminating
the flag qubits and conjecture QMA = QMA

T
depol
ε

(c, s) for the depolarizing channel

T
depol
ε with ε = 1 − k

nw
. One might favor this conjecture over the prevailing QPCP

conjecture, since the depolarizing channel is a thoroughly quantum channel which
is liberated from the classical feature of marking the accessible witness qubits. We
propose QMA = QMA

T
depol
p

(c, s) with ε = 1 − k
nw

for a constant k and c and s such
that c − s > 0 constant as a reasonable and thouroughly quantum alternative for a
QPCP conjecture. Unfortunately, we are missing evidences for expressing a profound
intuition about its possible validity or invalidity.

Conjecture 8.11 (Noisy QMA Quantum PCP conjectures).

1. (Non-i.i.d. erasure noise version). ∃k constant, ∃c, ∃s with c− s > 0 constant such that
QMA = QMAT(c, s) with T = (Tnw)nw∈N0 the channel family defined for nw > k by

Tnw =

(
nw

k

)−1 ∑
s∈{0,1}nw ,
w(s)=k

⊗
i∈[nw]

(
(T eras

0 )si + (T eras
1 )1−si

)
i
.

2. (I.i.d. erasure noise version). ∃k constant, ∃c, ∃s with c − s > 0 constant such that
QMA = QMAT eras

ε
(c, s) with ε = 1 − k

nw
.

3. (I.i.d. depolarizing noise version). ∃k constant, ∃c, ∃s with c− s > 0 constant such that
QMA = QMA

T
depol
ε

(c, s) with ε = 1 − k
nw

.

Proposition 8.12. The non-i.i.d. erasure noise version of the QPCP conjecture 8.11 is equivalent
to the QPCP conjecture 8.8.

Proof. “=⇒”. Since the output of a channel Tnw equals a mixture of states with flag
qubits in the computational basis, we can assume without changing the acceptance
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

probability that each QMAT(c, s) protocol initially measures the flag qubits of the
witness in the computational basis and that the following circuit, denoted by VSx , just
accesses the input witness qubits measured with flag |0〉 defining the set S. Instead
of acting on the witness qubits measured with flag |1〉 the circuit can act on auxillary
qubits initialized in the completely mixed state. Because each k-tuple S is measured
with equal probability, (VSx )

S⊆[n], |S|=k
x∈Σ∗ is clearly a proper QPCP(1, c, s) verifier with k

accessible qubits.

“⇐=”. If QMA = QPCP(1, c, s), any QPCP(1, c, s) protocol can be simulated by a
QPCP(1, c, s) protocol with the number of accessible qubits restricted to the number k of
accessible qubits needed for verifying the Local Hamiltonian problem. A QPCP(1, c, s)
protocol VSx with k accessible qubits can clearly be transformed into a QMAT(c, s)
protocol by first measuring the flag qubits and then applying VSx with S the set of the k
input qubits measured with flag |0〉.

Proposition 8.13. The i.i.d. erasure noise version of the QPCP conjecture 8.11 is equivalent to
the QPCP conjecture 8.8.

Proof. “=⇒”. Assume QMA = QMAT eras
ε

(c, s) with ε = 1 − k
nw

for a constant k and a c
and a s such that c− s > 0 constant. Choose δ > 0 small enough such that c− δ− s is
still lower bounded by positive constant. Define k ′ := αk with a constant α > 1 chosen

large enough such that e−
(α−1)2k

2 6 δ.

Let (Vx)x∈Σ∗ be the QMAT eras
ε

(c, s) verifier for an arbitrary QMA problem A. Consider
the following QPCP protocol V = (VS

′
x )
S ′⊆[n], |S ′|=k ′
x∈Σ∗ with k ′ accessible qubits for the

problem A:

◦ Toss nw biased coins (value 0 with probability ε) with outcome string c.

◦ If w(c) > k ′, reject. Otherwise, choose a set S of w(c) witness qubits out of the
set S ′ of k ′ accessible qubits uniformly at random.

◦ Construct a “noisy witness” by tensoring each witness qubit from S by a flag
qubit |0〉, interleaved with qubit pairs I

2 ⊗ |1〉 〈1| at the nw −w(c) positions [nw]\S.

◦ Simulate Vx on this noisy witness.
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8.4 Noisy QMA version of the quantum PCP conjecture

The above protocol constructs a specific noisy witness with s 6 k ′ undisturbed qubits
with the same probability as the erasure channel family leaves these qubits undisturbed:

P[VS
′
x chooses a specific set A of s 6 k ′ qubits]

= P[w(c) = s] · P[A ⊆ S ′] · P[s specific qubits are chosen from S ′]

=

(
nw

s

)
(1 − ε)sεnw−s ·

(
nw−s
k ′−s

)(
nw
k ′

) · 1(
k ′

s

)
= (1 − ε)sεnw−s.

Hence, while the soundness of V is at most s, its completeness is lower bounded by
c− P[w(c) > k ′]. Using Chernoff bound 3.19 and q := k

nw
we can bound

P[w(c) > k ′] =
nw∑

i=k ′+1

(
nw

i

)
qi(1 − q)nw−i

6 e−
(k ′−k)2

2k

6 e−
(α−1)2k

2

6 δ.

Hence, V is a valid QPCP(1, c− δ, s) verifier for A and QMA = QPCP(1, c− δ, s).

“⇐=”. Assume QMA = QPCP(1, c, s) for a c and a s such that c− s > 0 constant. Let
(VSx )

S⊆[n], |S|=k
x∈Σ∗ be the QPCP(1, c, s) verifier with k accessible witness qubits for the

Local Hamiltonian problem. Choose δ > 0 small enough such that c − δ − s is still
larger than a positive constant. Define k ′ := αk with a constant α > 2 chosen large
enough such that e−

(α−1)k
4 6 δ.

Consider the following QMAT eras
ε

protocol V = (Vx)x∈Σ∗ with ε = 1 − k ′

nw
for the Local

Hamiltonian problem:

◦ Measure the flag qubits to determine the set S ′ of non-erased witness qubits.

◦ If |S ′| < k, reject. Otherwise, choose a set S of k witness qubits out of the set S ′

uniformly at random.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

◦ Simulate VSx on the witness after discarding the flag qubits.

Clearly, the probability that the above protocol determines a specific set S is the same
for all k-tuple sets. Apart from the case |S ′| < k, Vx simulates hence VSx with uniformly
random S. Consequently, the soundness of V is at most s while its completeness is at
least c− P[|S ′| < k]. Using Chernoff bound 3.19 and q = k ′

nw
we can bound again

P[|S ′| < k] =
k−1∑
i=0

(
nw

i

)
qi(1 − q)nw−i

6 e−
(k ′−k)2

2k ′

6 e−
(α−1)2k

2α

6 e−
(α−1)k

4

6 δ.

Hence, V is a valid QMAT eras
ε

(c− δ, s) verifier for the Local Hamiltonian problem and
QMA = QMAT eras

ε
(c− δ, s).

Proposition 8.14. The i.i.d. depolarizing noise version of the QPCP conjecture 8.11 implies
the i.i.d. erasure noise version.

Proof. This is trivial, since the erasure channel equals the depolarizing channel when
ignoring the flag qubits.

8.5 A multiprover version of the quantum PCP conjecture

In section 8.3 we showed that the prevailing QPCP conjecture possesses a PCP and
a CSP variant, but an equivalent multiprover variant like in the classical case has
not been found until today. Already formulating a one round multiprover protocol
with constantly sized answers for the Local Hamiltonian problem obeying an inverse
polynomial gap for the acceptance probability is highly non-trivial. Such a protocol was
not found until 2014 by [3]. Before presenting this protocol, we introduce the quantum
classes of multiprover interactive protocols:
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8.5 A multiprover version of the quantum PCP conjecture

Definition 8.15. The complexity class QMIP(l, r, c, s) equals the complexity class MIP(l, r, c, s)
with the difference that verifier and provers are quantum, i.e. each prover possesses a private
register initialized in the all zero state and a prover’s action corresponds to a unitary operator
applied to his private and his personal message register. A strategy hence equals a set of
unitary operators (Ur

′

l ′ )l ′∈[l],r ′∈[r]. (Of course, the operators also depend on the input x, but
for readability we neglect this index from now on.)

QMIPle(l, r, c, s) equals QMIP(l, r, c, s) with polynomially sized parts of the provers’ private
registers initialized in an entangled state |ψ〉 (“limited entanglement”). A strategy is hence the
tuple (Ur

′

l ′ , |ψ〉)l ′∈[l],r ′∈[r].

QMIP∗(l, r, c, s) equals QMIPle(l, r, c, s) without the limitation on the size of the entangled
state shared by the provers.

MIP∗(l, r, c, s) equals MIP(l, r, c, s) with quantum provers sharing unlimited entanglement
but returning classical answers.

We use the short forms QMIP, QMIPle, QMIP∗, MIP and MIP∗ for the union of the respective
multiprover classes with a polynomial number of provers and rounds, completeness 2

3 and
soundness 1

3 .

Theorem 8.16. QMIPle ⊆ QMIP = MIP = NEXP ⊆ QMIP∗ = MIP∗.

Proof. The containments are a result of the work in [72] proving QMIPle ⊆ QMIP =

NEXP, [73] proving MIP = NEXP, [74] proving NEXP ⊆ MIP∗ and [75] proving
MIP∗ = QMIP∗.

Interestingly, the above containment results show that allowing limited entanglement
to the provers weakens the class of quantum multiprover protocols while unlimited
entanglement seems to strengthen it. Limited entanglement gives provers an additional
possibility to cheat, while unlimited entanglement can be exploited by the verifier for
his benefit. It is worth mentioning that no upper bound on the complexity classes
QMIP∗ = MIP∗ is known. Up to current knowledge, they might even comprise
undecidable problems.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

The work in [72, 73] also shows that MIP, QMIP and QMIPle protocols can be reduced
and amplified to 2 provers, 1 round, perfect completeness and exponentially small
soundness (by the cost of increasing the question and answer sizes). For the classes
MIP∗ and QMIP∗ of unlimited entanglement, on the contrary, no amplification results
are known yet.

Let us study how to build a multiprover protocol for the k-Local Hamiltonian problem
with one round and constantly sized answers. In the classical protocol for 3-SAT
presented in the proof of proposition 8.6 one prover is asked for a random clause
and the other one for a bit from that clause, followed by a consistency check and the
evaluation of the clause. Clauses correspond to interaction terms of the LH instance,
but unfortunately, the states for one interaction term and a single qubit will usually be
mixed states for which we cannot check equality. The well-known SWAP test [53] for
comparing quantum states just works for pure states.

A workaround for this problem could be to replace the quantum answers of constantly
many qubits by classical descriptions which are comparable. Unfortunately, a remaining
problem is that the provers could send answers of reduced density matrices and single
qubits that pass a comparision test perfectly but which do not form a global quantum
state. In fact, checking if several reduced states are consistent with a global state is
itself a QMA-complete problem under randomized Turing reduction [76]. This is a
thoroughly quantum obstacle that does not exist in the classical case of 3-SAT.

We realize that a straightforward quantum adaption of the multiprover protocol for
3-SAT is not possible for k-LH. In 2014 Fitzsimons and Vidick [3] presented a different
approach for a multiprover protocol based on the idea that the provers share an
encoding of the ground state and are asked probabilistically for their share of a logical
qubit or interaction term. Each prover possesses one physical qubit for each logical
qubit and since the applied code can correct any single qubit error the verifier is able to
detect any single cheating prover. Similarly to the classical 3-SAT protocol, the verifier
either evaluates an interaction term, i.e. measures the energy with respect to that
interaction term, or carries out a consistency check in terms of a code space check.
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8.5 A multiprover version of the quantum PCP conjecture

Input: A k-local Hamiltonian H =
∑
S∈CHS with HS positive semi-definite,

‖HS‖ 6 1 and S ⊆ [n] indicating the k qubits on that HS acts non-trivially.

Expect r provers to share the ground state of H encoded by a code with the properties of
table 8.2 such that prover t possesses for each logical qubit the physical qubits indicated
by the set Λt (the prover’s share).

Apply with probability 1
2 each:

Test A Choose an interaction term HS uniformly at random and ask each prover
for their share of the qubits in S. Error correct and decode the received state.
Measure the resulting state with regard to the obversable HS like in the
QMA membership protocol of proposition 3.33. Accept iff |1〉 is measured,
otherwise reject.

Test B Choose a qubit i ∈ [n] uniformly at random and afterwards a set S ∈ Q

containing i uniformly at random with Q := C∪ {{i} | i ∈ [n]}. Ask a random
prover for his share of the qubits in S and the remaining provers for their
share of qubit i. Reject iff a code space check on the logical qubit i fails.

Accept.

Table 8.1: Multiprover protocol for the k-Local Hamiltonian problem based on the
protocol by Fitzsimons and Vidick.

The original protocol equals the protocol of table 8.1 with an addtional limitation on
the code (Λt = {t}, ρt = I

2 and detectibility is strengthened to correctibility) and the
difference that the question for a single qubit {i} is posed with probability 50% in test B,
while in test B of table 8.1 the question {i} is chosen with the same probability as any
interaction term involving i. This difference is irrelevant for the performance of the
protocol, but avoids a case differentiation in the soundness proof.

Studying the protocol it becomes clear that the obfuscation for the provers which test is
applied is achieved by asking one of the provers for a whole interaction term in test
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

B, although the verifier only needs the value of a single qubit i (see figure 8.1). Thus,
if a prover is asked for an interaction term, he cannot adapt his answer to minimize
the energy of that interaction term to achieve a higher acceptance probability in test A,
since he has to consider the possibility that test B is running in which the other provers
are not aware of the term information and cannot adapt their answers consistently.

Since the smallest code that fulfills the requirements of the original paper [3] is the
5-qubit code, the paper establishes a 5-prover protocol:

Theorem 8.17. There exists a QMIPle

(
1, 5, 1 − a

2m , 1 − Cb
mn2(nk)c

)
protocol with logarithmi-

cally sized classical questions, constantly sized answers and C and c constants just depending
on k that decides if a k-local Hamiltonian with m interaction terms has ground state energy at
most a (yes-instance) or at least b (no-instance).

Conjecture 8.18 (Multiprover QPCP conjecture). Any QMA problem can be solved by
a QMIP∗(1, r, c, s) protocol with a constant number of provers r, a constant probability gap
c− s > 0, logarithmically sized questions and constant sized answers.

Note that no implication between the above conjecture 8.18 and the original QPCP
conjecture 8.8 is known. A QMIP∗(1, r, c, s) protocol cannot be transformed as easily
into a QPCP(1, c, s) protocol as it works for the classical analogue in proposition 8.6.
Regarding the classical multiprover protocol for 3-SAT one can imagine that each prover
possesses a string representing all his possible answers of which he only sends certain
bits depending on the question they receive. These provers’ strings together can be
considered as witness for a PCP(log, 1, c, s) protocol. For the quantum case this concept
does not work since the question one prover is asked might influence the answer of the
other provers due to the operation on the shared entangled state.

Proving the opposite implication direction (CSP variant of QPCP conjecture 8.8 =⇒
multiprover QPCP conjecture 8.18) via the multiprover protocol of table 8.1 is prevented
by the high soundness term in theorem 8.17. The additional polynomial n2(nk)c causes
an inverse polynomial probability gap even for Hamiltonians with a constant relative
energy gap (note, moreover, that in the current situation, the low energy value a has to
be smaller than 2Cb

n2(nk)c
for completeness and soundness being separated at all). If the

soundness in theorem 8.17 could be upper bounded by 1 − b
2m , then indeed, we knew

that conjecture 8.18 was weaker than the original QPCP conjecture 8.8.
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Encoding
(e.g. 1 logical qubit into 2 physical qubits per prover)

Ground state
. . .

Prover 1 Prover 2 Prover 3
. . .. . . . . .

Test A (50%)
Measuring energy of HS

Test B (50%)
Consistency (code space)

check of qubit i

S? S? S?

S? i? i?

Figure 8.1: Questions posed to the (randomly labelled) provers by protocol 8.1.

8.6 Improving the multiprover protocol

The only improvement of the multiprover protocol by [3] was accomplished in 2016 by
[77]. The author succeeds in restricting the protocol to four entangled provers with clas-
sical, constantly sized answers by keeping the protocol of 1 round and logarithmically
sized questions. The answers can be made classical by playing a so-called stabilizer
game with the provers which originates from the method of delegated quantum com-
putation [75].

That the protocol of [3] can be restriced to classical answers in such a way does not
follow directly from QMIP∗ = MIP∗ by theorem 8.16, because the proof of this equality
[75] introduces an inverse polynomial error into the acceptance probability that would
close the gap between completeness and soundness. This could be avoided by initial
amplification of the completeness and soundness parameter – which is possible since
the protocol is actually of QMIPle type – but this would blow up the question and
answer sizes to a polynomial.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

1. The logical qubits of the code are partitioned into r blocks Λt: [N] =
⋃r
t=1Λ

t.

2. Every error restricted to one block is detectable.

3. The partial trace over all but one block is independent of the code state, i.e.

∀t ∈ [r] ∃ρt ∈ D(C2|Λ
t|
) ∀ |ψ〉 ∈ VC : tr[N]\Λt(|ψ〉 〈ψ|) = ρt.

Table 8.2: Conditions on the (N, 2) code required by the multiprover protocol.

The reduction from 5 to 4 provers by [77] is accomplished by simply substituting the
5-qubit code by the [4, 1, 2] code of [78], since the protocol by [3] just makes use of
the error detection property of the code and does not actually need the tool of error
correction. Studying the protocol in detail, we can relax the code properties even
further: Firstly, a prover can possess more than one qubit as long as every error on his
share is detectable. Secondly, the reduced density matrix onto a prover’s share does
not necessarily have to equal the completely mixed state, it only has to be independent
of the code state. In summary, we require the code properties listed in table 8.2.

Can we reduce the number of provers needed for the protocol even further with these
relaxations of the code properties? The next two lemmata give an answer to this.

Lemma 8.19. A code with properties 1 and 2 of table 8.2 is partitioned into at least 3 blocks.

Proof. Assume a code with properties 1 and 2 of table 8.2 and a partition into m blocks
such that block i comprises si qubits. Clearly, the blocks can be padded by additional
qubits in the state |0〉 until they contain the same number of qubits s := maxi∈[m] si

while keeping the ability to detect any block error (for detection first carry out a
projection of the additional qubits onto the all zero state and then the original error
detection procedure).

Hence we can restrict our proof to the case that each of the r blocks comprises exactly s
qubits, which we consider as a qudit of dimension d = 2s. The detectibility of every
block error is equivalent to the detectibility of every single qudit error. Hence in the
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8.6 Improving the multiprover protocol

qudit formulation, the code is of distance δ > 2 encoding K = 2 orthonormal states on
r qudits. The quantum Singleton bound from the end of section 4.4 tells us

r > 2(δ− 1) + logd K > 2.

Lemma 8.20. The code with code states

|0̄〉 := 1
2
(|00 00 00〉+ |01 01 01〉+ |10 10 10〉+ |11 11 11〉)

|1̄〉 := 1
2
(|00 01 10〉+ |01 10 11〉+ |10 11 00〉+ |11 00 01〉)

fulfills the conditions of table 8.2 with the partition Λ1 = {1, 2}, Λ2 = {3, 4} and Λ3 = {5, 6}.

Proof. This code can detect any error restricted to a single block Λt of qubits, since
〈c|Ei |c ′〉 = 0 for any any c, c ′ ∈ {0̄, 1̄} and any non-identity Pauli operator Ei that acts
non-trivially only on the qubits of a set Λt.

The third property is fulfilled, since for every prover t ∈ {1, 2, 3}

tr[6]\Λt(|0̄〉 〈0̄|) = tr[6]\Λt(|1̄〉 〈1̄|) =
I I
4

.

The above code allows us to reduce the multiprover protocol to 3 provers which is
the minimum possible by code adaption (the adapted proof is contained in the next
section). But it is unclear if these provers can also be restricted to classical answers,
since the code is not a stabilizer code which is necessary for the techniques of [77]. But
note that the slightly changed code

|0̄〉 := 1√
3
(|00 00 00〉+ |01 01 01〉+ |10 10 10〉)

|1̄〉 := 1√
3
(|00 01 10〉+ |01 10 00〉+ |10 00 01〉)

fulfills the condition of table 8.2 as well and equals a qubit implemention of the qutrit
stabilizer code of [79, A2] (|00〉 → |0〉, |01〉 → |1〉 and |10〉 → |2〉). Hence, it is worth
checking if the techniques of [77] nevertheless work for this code and even prove the
existence of a 3-prover protocol with classical answers.

147



8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

Besides a reduction of the provers we would like to improve the soundness of the
protocol. As we saw at the end of the last section, the additional polynomial n2(nk)c

in the soundness term of theorem 8.17 prevents to prove that the standard QPCP
conjecture 8.8 implies the multiprover QPCP conjecture 8.18 (note that of course the
constant C also plays a role depending on the values of a and b). A weaker conjecture
could be a good starting point to make progress on the standard QPCP conjecture.

For a general k-local Hamiltonian we find one improvable point in the original proof,
which reduces the factor n2 in the polynomial to n. We wrote the polynomial in the
denominator of the soundness term on purpose in the form n2(nk)c, since the term nk

has a different origin and is related to the number of possible questions and hence to
the number of interaction terms. It is therefore not surprising that for Hamiltonians of
degree d this term can be reduced from nk to nd (the constant c in theorems 8.17 and
8.21 is indeed the same). This is interesting since theorem 8.10 states that the QPCP
conjecture can be restricted to 2-LH with constant degree.

Unfortunately, the remaining polynomial n(nd)c still prevents that the multiprover
QPCP conjecture 8.18 is implied by the standard QPCP conjecture 8.8. The first factor n
is accumulated in proposition 8.33 by changing the order of extracted qubits that allow
the construction of a low energy state in case of high acceptance and seems inevitable.
The term nd originates from the argument in lemma 8.28 that a failure with probability
ε of test B with its O(nd) different probabilistic branches covers the case that a single
probabilistic branch can fail with probability up to O(ndε) while most other branches
rarely fail. If we could ensure instead that each branch fails with a similar probability,
i.e. of order O(ε), the soundness of the protocol got rid of this problematic polynomial.
This seems like a difficult if not impossible task; most conceivable is a proof in the
style of [71] that argues that the ground state energy problem for Hamiltonian families
without this property is simple (e.g. contained in NP).

Note that classically a single consistency check either fails with probability 1 or 0.
Hence, that each consistency check fails with a probability close to the average can only
occur in the quantum protocol where a single consistency check is itself probabilistic.

The reason why the provers should apply a strategy that makes a consistency check
fail can only be an energetic advantage in test A. The current proof of the relevant
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8.6 Improving the multiprover protocol

lemma 8.28 works without any energy argument; a proof for a more limited failure
probability of each B branch clearly needs to connect the performances of test A and B.
A rather even distribution of the failure probability over the B branches requires from
the Hamiltonian family that small changes across many interaction terms decrease the
ground state energy more than large changes of few interaction terms. A difficult point
is that quantifying the amount of the “change” involves the combination of Hamiltonian
and chosen code, since it refers to the extent to that an encoded low energy state is
pushed outside the code space by a partial change of the physical qubits.

We can summarize the currently possible improvements of theorem 8.17 to:

Theorem 8.21. There exists a QMIPle

(
1, 3, 1 − a

2m , 1 − Cb
mnpc

)
protocol with logarithmically

sized classical questions, constant sized answers, p = nd according to lemma 8.28 and C and
c constants just depending on k that decides if a k-local Hamiltonian of degree d either has
ground state energy at most a (yes-instance) or at least b (no-instance).

The improved theorem still bases on the protocol of table 8.1 but with a different
code, some different bounding techniques and by considering the degree d of the
Hamiltonian. The completeness of the protocol of table 8.1 is clearly 1 − a

2m , since
for a yes-instance and provers answering honestly according to the ground state, the
protocol accepts with probability 1 − a

m for test A and with certainty for test B. In the
next section we will discuss the adaptions of the original soundness proof by [3] that
are needed due to the new code and our improved bounds.

Note that we keep stating the protocol performance for general k and d. This has
two reasons. First, as long as the QPCP conjecture is not proven, one might want to
consider the protocol for k-local Hamiltonians whose relative energy gap scales inverse
polynomially. Although these Hamiltonians can be transformed into 2-local Hamiltoni-
ans of constant degree, a formulation of the protocol for the original Hamiltonians is
useful, since the transformation [80] changes the scaling of the energy gap. Secondly,
even if the QPCP was proven and although we know that it can be restricted to 2-local
Hamiltonians of constant degree, we do not know if it can be restricted to energy
values at most a or at least b obeying a < 2Cb

n(nd)c . But this is necessary to separate
completeness and soundness of the multiprover protocol as long as the additional
polynomial n(nd)c and the small constant C remain in the soundness term.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

8.7 Adaption of the soundness proof

8.7.1 Sketch of the extraction protocol for a low energy state σ

In this section we adapt the soundness proof of [3] (note that the full proof is only
contained in the long arXiv version of the paper and not in the journal version) to prove
theorem 8.21. We assume H =

∑
S∈CHS to be a k-local Hamiltonian of degree d with S

indicating the qubits on that the interaction term HS acts non-trivially. Moreover, we
assume C to be a code with the properties and definitions of table 8.2.

Definition 8.22. The superoperator DEC : L(C2n)→ L(C2),

DEC(ρ) := D(PCρPC) + tr
(
(I−PC)ρ

)
|0〉 〈0| ,

maps code states via the decoding map D to their logical qubit and states orthogonal to the code
space to the default state |0〉.

The soundness proof for theorem 8.21 works via contraposition, i.e. one proves the
existence of a low energy state σ for the case that the protocol of table 8.1 accepts with
high probability.

Since the questions are classical we can avoid considering a question register and
denote the strategy of the provers by

(
UtS, |ψ〉 〈ψ|

)
with t ∈ [r] indicating the prover

and S ∈ Q := C ∪ {{i} | i ∈ [n]} indicating the question which equals a set of 1 or k
logical qubits. We can assume w.l.o.g. that the register Pt on that a prover t ∈ [r] acts is
composed of a private register St and the answer registers Qti , each comprising |Λt|

qubits for the prover’s share of the logical qubit i ∈ [n]. Note that throughout this
section an upper index t always indicates the prover and a lower index i the logical
qubit.

The idea for the construction algorithm of the low energy state σ is to apply an
operation Ut

{i} to the strategy state |ψ〉 for all t, swap the answers into an extraction
register by substituting ρt and undoing the operation Ut

{i}. Since a single prover cannot
differentiate his share of a logical qubit from ρt, this action rarely influences further
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answers of the provers and we can distill the encoding of the low energy state σ into
the extraction register by repeating the procedure for all i ∈ [n].

Picture 8.2 depicts the registers that the extraction algorithm needs for each prover.
The collection of registers St and Qti , t ∈ [r], i ∈ [n], is initialized in |ψ〉 (a prover’s
operation UtS is later always applied to these registers without explicitely marking this
by an index). Each extraction register Rti has the same size as Qti and the size of R̄ti is
chosen such that Rti ∪ R̄ti can be initialized in a pure state |ηt〉 with trR̄ti (|η

t〉) = ρt. The
purification registers R̄ti are irrelevant for the protocol, but they will save some writing
by avoiding mixed states.

PtProver register
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Extraction registers
for logical qubits

Auxillary registers
for purification

Rt1
...
Rti
...
Rtn
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R̄t1
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R̄ti
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R̄tn
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...

Figure 8.2: Registers of the extraction algorithm for each prover t ∈ [r].
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Definition 8.23. If we write a (super)operator in brackets with a lower index, the lower index
denotes the register the (super)operator acts on within a larger system.

Replacing an index of a register by a set of indices denotes the union over this set of indices.
Neglecting the index denotes the union over the whole range of this index.

According to the previous definition we write for example QtU :=
⋃
i∈UQ

t
i , P :=⋃

t∈[r] P
t and Q :=

⋃
t∈[r]

⋃
i∈[n]Q

t
i .

Definition 8.24. Given a strategy (UtS, |ψ〉 〈ψ|) we define for all i ∈ S ∈ Q

Dti,S := (UtS)
† SWAPQti ,Rti U

t
S

Dti,S(ρ) := D
t
i,Sρ(D

t
i,S)
†

with SWAPQti ,Rti the operator swapping the qubits of the register Qti with those in Rti .

Moreover, for every set I ⊆ [n] of l elements i1 < i2 < · · · < il and any choice of Si ∈ Q

containing i ∈ I we use the convention

©
i∈I

Dti,Si := Dtil,Sl ◦ · · · ◦D
t
i2,S2
◦Dti1,S1

Definition 8.25. For the strategy (UtS, |ψ〉 〈ψ|) we define the states

|ψ̃〉 := (|ψ〉)P ⊗
⊗
t∈[r]

⊗
i∈[n]

(|ηt〉)Rti∪R̄ti

ρ̃ := |ψ̃〉 〈ψ̃|

τ :=

⊗
t∈[r]

©
i∈[n]

Dti,{i}

 (ρ̃)

σ := DECR
(

trR̄∪P (τ)
)
.

If the protocol of table 8.1 accepts with probability 1 − ε, it will turn out by theorem
8.34 that there exists a constant C such that σ has energy at most mnp

cε
C with p = nd.

Equivalently stated, there exists a constant C such that, if the protocol accepts with
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St

Qt1
...
Qti

...
Qtn

Rt1
...
Rti
...
Rtn

UtS (UtS)†

S
W
A
P

Figure 8.3: The operation Dti,S.

probability greater than 1 − Cb
mnpc , σ has energy less than b and hence at most a due to

the promise. This establishes the soundness proof.

8.7.2 Closeness of the extraction operators Dti,S and Dti,{i}

The first step in the soundness proof is to show that the extraction operators Dti,S
and Dti,{i} for i ∈ S ∈ Q almost act the same on any state |φ〉 if ρ = trR∪R̄(|φ〉 〈φ|) is a
strategy state that leads to high acceptance. In this subsection we revisit this first step
(claim 8 in the original paper [3]) in detail for several reasons:

◦ lemma 8.27 makes use of the error detection abilities of our adapted code,

◦ the necessity for the additional lemma 8.31 occured due to a small bug in the
original work,

◦ we study the origin of the additional polynomial in the soundness term and
express it in terms of the Hamiltonian degree.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

Definition 8.26. Let Wt,σ
i,S,S ′ , σ ∈ P⊗|Λ

t|, i ∈ S∩ S ′ ∈ Q, be the operators on register Pt such
that

Dti,S
(
Dti,S ′

)†
=
∑

σ∈P⊗|Λt|
(σ)Rti ⊗W

t,σ
i,S,S ′ .

Moreover, we define for i ∈ S ∈ Q and a state |φ〉 on all registers of the extraction protocol:

|φti,S〉 := Dti,S
⊗

t ′∈[r]\{t}

Dt
′

i,{i} |φ〉

|φt,suc
i,S 〉 := (PC)Ri |φ

t
i,S〉

|φt,fail
i,S 〉 :=

(
I−(PC)Ri

)
|φti,S〉 .

The indices of |φti,S〉 indicate that prover t is asked question S while all other provers are
only asked for qubit i and the actions are reversed after the logical qubit i is extracted.
We want to show closeness of the states |φti,S〉 and |φti,S ′〉. The next lemma provides a
first step to express |φti,S〉 as |φti,S ′〉 plus small failure terms:

Lemma 8.27. For any i ∈ S ∩ S ′ with S,S ′ ∈ Q we have that

|φti,S〉 = |φt,fail
i,S 〉+ (PC)Ri

(
Dti,S

(
Dti,S ′

)†)
|φt,fail
i,S ′ 〉+ (PC)RiW

t,I
i,S,S ′ |φ

t
i,S ′〉 .

Proof.

|φti,S〉 = |φt,fail
i,S 〉+ (PC)Ri

(
Dti,S

(
Dti,S ′

)†)
|φti,S ′〉

= |φt,fail
i,S 〉+ (PC)Ri

(
Dti,S

(
Dti,S ′

)†)
|φt,fail
i,S ′ 〉

+ (PC)RiW
t,I
i,S,S ′ |φ

t
i,S ′〉+ (PC)Ri

∑
σ∈P⊗|Λt|\{I}

(
(σ)Rti ⊗W

t,σ
i,S,S ′

)
|φt,suc
i,S ′ 〉

with the last summand vanishing since the non-identy Pauli operator σ on register
Rti turns the code state |φt,suc

i,S ′ 〉 orthogonal to the code space according to the error
detection abilities of the code.

154



8.7 Adaption of the soundness proof

For the closeness of |φti,S〉 and |φti,S ′〉 we have to show that the failure states have a
small norm and that Wt,Id

i,S,S ′ almost acts like the identity on |φti,S ′〉. The next lemma
proves the first fact:

Lemma 8.28. If a strategy (UtS, ρ) with ρ = trR∪R̄(|φ〉 〈φ|) succeeds in test B with probability
at least 1 − ε, then

‖ |φt,fail
i,S 〉 ‖

2 = O(pε)

for all i ∈ S with S ∈ Q and p = nd.

Proof. Considering (PC)Qi = SWAPQi,Ri(PC)Ri SWAPQi,Ri and that any prover oper-
ation UtS commutes with the projection (PC)Ri of the register Ri, we can express the
probability that test B is passed as

P[test B passed] =
1
r

∑
t∈[r]

1
n

∑
i∈[n]

1
|{S | i ∈ S ∈ Q}|

∑
S∈Q
i∈S

‖(PC)Ri |φ
t
i,S〉 ‖2 > 1 − ε.

Hence, the average failure state can be bounded by

1
r

∑
t∈[r]

1
n

∑
i∈[n]

1
|{S | i ∈ S ∈ Q}|

∑
S∈Q
i∈S

‖ |φt,fail
i,S 〉 ‖

2 6 ε.

Since the probability that a specific tuple (i,S) is picked by the protocol is lower
bounded by 1

rn(d+1) , it holds for all i ∈ S ∈ Q that

‖ |φt,fail
i,S 〉 ‖

2 = O (ndε) .

Note that at this point we acquired an additional n dependence of the soundness value
that prevents the probability gap of the multiprover protocol from scaling like the
relative energy gap of the Hamiltonian.

Corollary 8.29. If a strategy (UtS, ρ) with ρ = trR∪R̄(|φ〉 〈φ|) succeeds in test B with proba-
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

bility at least 1 − ε, then ∥∥∥Wt,I
i,S,S ′ |φ

t
i,S ′〉

∥∥∥2
= 1 − O(pε)

for all i ∈ S ∩ S ′ with S, S ′ ∈ Q and p = nd according to lemma 8.28.

Proof. Rearranging the equation of lemma 8.27 allows to bound (PC)RTW
t,I
i,S,S ′ |φ

t,suc
i,S ′ 〉

by triangle equality. Inserting the bound of the failure states by lemma 8.28 and noting
that the projection (PC)Ri does not increase the norm leads to the desired statement.

The above corollary already states that Wt,I
i,S,S ′ rarely changes the norm of |φti,S ′〉. We

want to get one step further and show that it even acts almost as the idenity on this state.
The authors of [3] claim that Wt,I

T ,S,S ′ = I with the reason that trRti (U
t
S) = trRti (U

t
S ′) = Id.

The counter example Wt,I
{i},S,S ′ = 0 for UtS = (X)Qti and UtS ′ = (Z)Qti for any i ∈ S ∩ S ′

reveals this as a misconception. In email discussions with the authors the workaround
of lemma 8.31 was found, proving at least that Wt,I

T ,S,S ′ acts almost as the identity on
|φti,S ′〉.

Lemma 8.30. The swap operator can be written in the form

SWAP =
1
2
(I I+XX+ YY + ZZ).

Proof. Writing SWAP as a linear combination of Pauli operators µ⊗ ν ∈ {Id,X, Y,Z}⊗2

and computing their prefactors via 1
4 tr
(
SWAPµ† ⊗ ν†

)
shows that the only non-zero

prefactors equal 1
2 for µ = ν.

Lemma 8.31. If a strategy (UtS, ρ) with ρ = trR∪R̄(|φ〉 〈φ|) succeeds in test B with probability
at least 1 − ε, then

Wt,I
i,S,S ′ |φi,S ′〉 = |φti,S ′〉+ |φt,err

i,S,S ′〉 ,∥∥∥|φt,err
T ,S,S ′〉

∥∥∥2
= O(pε)

for all i ⊆ S ∩ S ′ with S, S ′ ∈ Q and p = nd according to lemma 8.28.
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8.7 Adaption of the soundness proof

Proof. With the SWAP expression from lemma 8.30 and the definition

Dti,S,σ := (UtS)
†(σ)QtiU

t
S

for all i ∈ S ∈ Q and all σ ∈ P⊗|Λ
t| we can rewrite

Dti,S = (UtS)
† SWAPQti ,Rti U

t
S

=
1

2|Λt|
∑

σ∈P⊗|Λt|
Dti,S,σ ⊗ (σ)Rti

Wt,I
i,S,S ′ =

1
2|Λt|

trRti

(
Dti,S(D

t
i,S ′)

†
)

=
1

22|Λt|

∑
σ∈P⊗|Λt|

Dti,S,σ(D
t
i,S ′,σ)

†.

This allows us to interpret Wt,I
i,S,S ′ |φ

t
i,S ′〉 with i ∈ S ∩ S ′ and S, S ′ ∈ Q as the average of

the c := 22|Λt| many vectors

|φti,S,S ′,σ〉 := Dti,S,σ(D
t
i,S ′,σ)

† |φti,S ′〉 .

Since the operators Dti,S,σ are unitary, the states |φti,S,S ′,σ〉 are normalized and have to
be almost the same in order to average to a state of norm almost one (recall corollary
8.29). Since |φti,S,S ′,Id〉 = |φti,S ′〉, we prove that each |φti,S,S ′,σ〉 ≈ |φti,S ′〉 by splitting

|φti,S,S ′,σ〉 =
√

1 − δσ |φ
t
i,S ′〉+

√
δσ |φ

t,⊥
i,S,S ′,σ〉

with the normalized state |φt,⊥i,S,S ′,σ〉 orthogonal to |φti,S ′〉. We can derive δσ ∈ O(ndε)

via the norm result of corollary 8.29 and the inequality
√

1 − δσ 6 1 − δσ
2 by assuming

the worst case that all but one |φti,S,S ′,σ〉 are equal to |φti,S ′〉:

O(pε) = 1 −
∥∥∥Wt,I

i,S,S ′ |φi,S ′〉
∥∥∥2

> 1 −

((
1 −

1
c
+

√
1 − δσ
c

)
+

(√
δσ

c

)2
)

>

(
1
2c

−
1
c2

)
δσ.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

Consequently,

Wt,I
i,S,S ′ |φ

t
i,S ′〉 = |φti,S ′〉+ |φt,err

i,S,S ′〉

with

|φt,err
i,S,S ′〉 =

1
c

∑
σ∈P⊗|Λt|

(√
1 − δσ − 1

)
|φti,S ′〉+

√
δσ |φ

t,⊥
i,S,S ′,σ〉∥∥∥|φt,err

T ,S,S ′,R〉
∥∥∥2

= O(pε).

We can finally prove the desired result of this subsection:

Proposition 8.32. If a strategy (UtS, ρ) with ρ = trR∪R̄(|φ〉 〈φ|) succeeds in test B with
probability at least 1 − ε, then

‖(Dti,S −Dti,{i}) |φ〉 ‖
2 = O(pε)

for all i ⊆ S with S ∈ Q and p = nd according to lemma 8.28.

Proof. The statement is proven if we can show that ‖ |φti,S〉− |φtT ,S ′〉 ‖2 = O(pε), since
the unitary

⊗
t ′∈[r]\{t}D

t ′

i,{i} leaves the norm invariant. One can see that this is indeed
the case by taking the norm of the expression in lemma 8.27 and using the inequality
(a+ b+ c)2 6 3(a2 + b2 + c2):

‖ |φti,S〉− |φti,S ′〉 ‖2

6
(
‖ |φt,fail

i,S 〉 ‖+ ‖ |φ
t,fail
i,S ′ 〉 ‖+ ‖(PC)RTW

t,I
i,S,S ′ |φ

t
i,S ′〉− |φti,S ′〉 ‖

)2

6
(
‖ |φt,fail

i,S 〉 ‖+ 2‖ |φt,fail
i,S ′ 〉 ‖+ ‖ |φ

t,err
i,S,S ′〉 ‖

)2

= O(pε).

8.7.3 Energy of the extraction state σ

In the first step of the proof it was shown that the extraction operators Dti,{i} and Dti,S
almost act the same on a high acceptance state. By several induction arguments it
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8.7 Adaption of the soundness proof

is possible to extent this statement to a series of extraction operators with one series
asking for each single qubit successively leading to τ =

(⊗
t∈[r]©i∈[n]D

t
i,{i}

)
(ρ̃) and

the other series asking for an interaction term S and then for all other single qubits
successively:

Proposition 8.33. For a provers’ strategy (UtS, |φ〉 〈φ|) that passes test B with probability
1 − ε there exists a constant c depending on k only such that∥∥∥∥∥∥trQS̄∪R̄S̄ [τ] − trQS̄∪R̄S̄

⊗
t∈[r]

©
i∈S̄

Dti,{i}

 ◦
⊗
t∈[r]

DtS,S

 (ρ̃)

∥∥∥∥∥∥
1

= O(npcε)

for all S ∈ C with S̄ := [n]\S and p = nd according to lemma 8.28.

Proof. This statement equals equation (25) of the original paper [3].

The step from equation (21) to equation (22) in the original proof [3] is the only one
that makes use of the fact that each code state reduced to a single prover register t is
equal to the state ρt from the extraction register Rti . Since the actual value of the state
is irrelevant for the argument, this step and the remaining proof remain valid.

The additional factor n in the above proposition accumulates by pulling the operators
Dti,{i} for i ∈ S past all operators with lower index i to express τ.

In the next theorem we can finally formulate the main statement about the low energy
of σ. This statement ressembles claim (12) in [3]. By slightly different bounding tools
we can avoid an additional factor of n in comparision to the original paper [3].

Theorem 8.34. Let (UtS, |ψ〉 〈ψ|) be a provers’ strategy that passes test A with probability
1 − δ and test B with probability 1 − ε. Then there exists a constant c depending on k only
such that

1
m

tr
(
Hσ
)
= O(δ+ npcε)

with p = nd according to lemma 8.28.
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8 QPCP and a 3-prover protocol for the Local Hamiltonian problem

Proof. For any S ∈ C and for (DEC)RS :=
⊗
i∈S(DEC)Ri it holds that

O(npcε) >‖HS‖

∥∥∥∥∥(DEC)RS

(
trQS̄∪R̄S̄ [τ]

)
− (DEC)RS

(
trQS̄∪R̄S̄

[( ⊗
t∈[r]

©
i∈S̄

Dti,{i}

)
◦

( ⊗
t∈[r]

DtS,S

)
(ρ̃)

])∥∥∥∥∥
1

>

∥∥∥∥∥ trQS̄∪R̄S̄ [(HS)R(DEC)RS(τ)]

− trQS̄∪R̄S̄

[
(HS)R(DEC)RS ◦

( ⊗
t∈[r]

©
i∈S̄

Dti,{i}

)
◦

( ⊗
t∈[r]

DtS,S

)
(ρ̃)

]∥∥∥∥∥
1

>

∣∣∣∣∣ ∥∥∥trQS̄∪R̄S̄ [(HS)R(DEC)RS(τ)]
∥∥∥

1

−

∥∥∥∥∥ trQS̄∪R̄S̄

[
(HS)R(DEC)RS ◦

( ⊗
t∈[r]

©
i∈S̄

Dti,{i}

)
◦

( ⊗
t∈[r]

DtS,S

)
(ρ̃)

]∥∥∥∥∥
1

∣∣∣∣∣
with

1. the first inequality sign based on the expression of proposition 8.33, ‖HS‖ 6 1
and the contractivity of the trace norm under the cpt map (DEC)RS by lemma
2.15,

2. the second inequality sign based on the property ‖Hj‖‖B‖1 > ‖HjB‖1 by lemma
2.15 and the fact that RS and QS̄RS̄ are distinct registers and

3. the third inequality sign based on triangle inequality.

Since the trace norm of a positive semidefinite operator equals the trace and stays
invariant under the unitary map

⊗
t∈[r]©i∈S̄Dti,{i} which does not act on registers RS,

we obtain

O(npcε) >

∣∣∣∣∣∣tr[HSσ] − tr

(HS)R(DEC)RS ◦

⊗
t∈[r]

DtS,S

 (ρ̃)

∣∣∣∣∣∣ .
The second term equals the probability that test A fails for clause S. Averaging over
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8.7 Adaption of the soundness proof

all clauses, using triangle inequality and the fact that test A fails on average with
probability δ leads to the desired result

1
m

tr[Hσ] 6 O(δ+ npcε).
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Conclusion

The first research focus of this thesis was an extension of the uniform diagonalization
theorem in chapter 5 to make it applicable to quantum complexity classes such as
QMA and BQP. Assuming BQP 6= QMA the construction proves the existence of
QMA-intermediate problems and the undecidability of BQP membership for QMA
problems. The former motivated us in the following chapters to study hierarchies of
QMA-intermediate classes by restricting the witness of the class QMA.

The necessity for the extension of the uniform diagonalization theorem arose from
the fact that quantum complexity classes such as QMA and BQP consist of promise
problems, while the original formulation of the theorem only covered decision problems.
The extended uniform diagonalization theorem now applies to a whole variety of
standard complexity classes including quantum and classically randomized classes.
Still, there exist classes, such as QMIP∗ or the decision problem classes MA and BPP,
that are not known to fulfill the prerequisites of the theorem. Broadening the classical
randomized classes MA and BPP to promise problems, the theorem applies again. This
and the lack of complete decision problems for MA and BPP are an indication for
us that classical randomized classes should – like their quantum counterparts – be
considered as sets of promise problems.
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9 Conclusion

Intermediate problems are not just interesting from a theoretical but also from a
practical perspective. In the current era of NISQ (“noisy intermediate scale quantum
computation”) the first quantum computing devices have been delevoped, but are
still far off from offering fault-tolerant, universal quantum computing. Intermediate
problems of the complexity classes BQP and NP (both with regard towards P) are
therefore attractive candidates to demonstrate the advantages and usefulness of NISQ
devices over classical computers. Unfortunately, the strictly intermediate problems
constructed by the uniform diagonalization theorem lack practical relevance and do
not owe their intermediateness to an obviously simplified circuit structure. They are
therefore less suitable candidates for applications of NISQ devices and more serve as
theoretical motivation for a further structural study of QMA.

This further study was pursued in chapters 6 and 7 by introducing noisy QMA classes
which differ from QMA by restricting the witness to outputs of quantum channels. For
specific non-uniform channels the noisy QMA classes are strictly QMA-intermediate
under quantum polynomial time reductions, since they consist of all problems quantum
polynomial-time reducible onto the previously constructed, strictly QMA-intermediate
problems. For more physical channels, such as the partly depolarizing and partly
dephasing channel, the noisy QMA classes loose the proof of strict intermediateness
but allow a simple interpolation between the complexity classes QMA – BQP and QMA
– QCMA, respectively.

After showing that QMA remains invariant for quantum channels whose noise de-
creases with the witness length due to amplification, we were able to show the same
result for small constant i.i.d. noise by the tool of concatenated coding. Besides a bound
for general i.i.d. noise we derived improved bounds for the error parameter of the
partly depolarizing and partly dephasing channel, which tell us that QMA keeps its
power even if each witness qubit is affected by 18% depolarizing or 27% dephasing
noise. Better bounds may be achieved by optimizing the applied codes.

For the partly erasing channel, which also interpolates between QMA and BQP, QMA
might even stay invariant for all constant error parameters below 1. This would at
least be implied by the QPCP conjecture as we saw in chapter 8. Quantum complexity
theorists believe in this conjecture as an analogue of the classical PCP theorem. Accord-
ing to the prevailing QPCP formulation QMA remains unchanged even if the verifier
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with constant acceptance probability gap can access only constantly many random
witness qubits. We proved the equivalence to the scenario in which only the expected
number of accessible qubits is constant due to equally partly erased witness qubits.
As a thoroughly quantum alternative for the QPCP conjecture we propose the same
statement with partly depolarizing instead of erasing channels. This statement is clearly
stronger, but we find it hard to take up a position for its validity or invalidity.

Assuming at least the validity of the prevailing QPCP conjecture we can summarize the
noisy QMA results of this thesis as follows: The complexity class QMA stays invariant
if each of its nw witnes qubits is disturbed by a noise channel

with decreasing error parameter k
nw

due to amplifcation,

with constant error parameter k due to concatenated coding

and, in case of erasure, with increasing error parameter 1 − k
nw

due to QPCP.

Last but not least robustness of QMA against maximal erasure would imply the collapse
QMA = BQP and presumably reward the prover with 1 million dollars for solving the
quantum analogue of the open millenmium problem NP ?

= P.

The second half of chapter 8 dealt with a possible multiprover formulation of the QPCP
conjecture, which had not been found before now despite its classical analogue. After
an overview of the different classes of classical and quantum multiprover interactive
proof systems, we improved a multiprover protocol for the local Hamiltonian problem
by Fitzsimons and Vidick [3]. We slightly expanded the acceptance probability gap that
prevents the establishment of a reasonable multiprover QPCP conjecture and reduced
the number of provers to the minimum possible by preserving the characteristic protocol
structure of energy and code space check.

The following interesting open tasks emerge from the studied topics in this thesis:

◦ Find a physically relevant problem that is QMA-intermediate under reasonable
complexity theoretic assumptions, like Graph Isomorphism is for NP (recall the
discussion in section 5.1).

◦ Find non-trivial, interesting complete problems for noisy QMA classes.
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9 Conclusion

◦ Improve the upper bounds on the witness noise up to which QMA remains
invariant by optimizing the applied concatenated codes.

◦ Find an upper robustness bound on the witness noise by a Shannon theoretic
argument similar to the discussion at the end of section 6.3.

◦ Find a lower bound on the witness noise for which QMA collapses to the classes
QCMA or BQP.

◦ Either disprove the possibly stronger QPCP conjecture in terms of i.i.d. depolariz-
ing noise or show its equivalence to the prevailing QPCP conjecture.

◦ Find a multiprover protocol for the Local Hamiltonian problem allowing a rea-
sonable equivalent multiprover QPCP conjecture.

◦ Prove that the three necessary provers for the presented multiprover protocol can
be assumed to be classical by adapting the techniques of [77].

And, of course, prove BQP 6= QMA and the QPCP conjecture!
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