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Abstract

This thesis is devoted to stochastic mortality modelling. The first part considers the popular family of
GAPC models and identifies several conceptual difficulties of most well-established models. The
GAPC models are embedded in the framework of generalized linear models. However, the vast
majority of the literature only considers the canonical link function and by that omits an important
modelling factor. In our study, we also incorporate a non-canonical link function and demonstrate
its advantages on the fitting performance. While the first part focuses on the static component of the
modelling approach, where the main objective is to identify the influencing factors that drive the
mortality structure, the second part is devoted to the dynamical part of the modelling approach. For
the proposed model we identify appropriate multivariate stochastic processes for the dynamics of
the involved stochastic factors. We study cointegration relations between the individual components
and compare the forecasting performance with the common GAPC approach. The last part of this
thesis can be considered independently of the previous content. There, we provide an extensive
characterization of the lifetime distribution which is induced by logistic-type hazard rates of the
proposed Kannisto model. Furthermore, we reveal multiple connections to other well-known lifetime
distributions.

Keywords: stochastic mortality modelling, cointegrated vector autoregressive processes, logistic
hazard rate functions
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Kurzfassung

Die vorliegende Dissertation behandelt stochastische Mortalitdtsmodelle. Im ersten Teil werden
zunichst die Familie der GAPC-Modelle vorgestellt und anschlieflend einige konzeptionelle Probleme
der in der Literatur und Praxis etablierten Modelle herausgestellt. Die GAPC-Modelle sind im
Rahmen von generalisierten linearen Modellen formuliert. Der Grof3teil der Literatur vernachldssigt
jedoch einen wichtigen Freiheitsgrad der Modellierung, indem nur kanonische Link-Funktionen
betrachtet werden. Unsere Analyse schliefit eine nicht kanonische Link-Funktion ein, welche in
vielen Fdllen zu einer verbesserten Giite der Regression fithrt. Wahrend sich der erste Teil der Arbeit
mit der statischen Komponente des Modellierungsansatzes beschiftigt, in dem der Fokus darauf
liegt, die Haupteinflussfaktoren fiir die Struktur der Mortalitét zu identifizieren, beschéftigt sich
der zweite Teil der Arbeit mit deren dynamischen Entwicklungen. Fiir das von uns vorgeschlagene
Modell analysieren wir, welche multivariaten Prozesse sich eignen, um die Charakteristiken der
Dynamik abzubilden. Dazu wird eine Kointegrationsanalyse durchgefiihrt, um eventuelle langfristige
Beziehungen zwischen den einzelnen Faktoren aufzudecken. Der abschlieflende Teil der Arbeit
kann unabhéngig von dem Vorhergehenden betrachtet werden. In diesem dritten Teil wird eine
umfangreiche Charakterisierung der Lebenszeit-Verteilung durchgefiihrt, die durch logistische
Hazard-Raten des vorgeschlagenen Kannisto Models impliziert wird. Dariiber hinaus werden
mehrere Verbindungen zu weiteren bekannten Verteilungen hergestellt.

Schlagworter: stochastische Mortalitditsmodelle, kointegrierte vektorautoregressive Prozesse, logisti-
sche Hazard-Raten-Modelle
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Thesis Structure

In the first part of this dissertation, we study stochastic mortality models in the framework of Gener-
alized Age-Period-Cohort (GAPC) models. These models are represented in terms of generalized
linear models and decompose the mortality across the dimensions age, period, and cohort. We
give a review on well-established models and provide a comparative case study to highlight the
strengths and weaknesses of various model predictors. While some of the GAPC models provide a
good fitting accuracy to historical data, almost all of them share the same conceptional issues, which
are mainly implied by imposed constraints on their parameters to ensure identifiability or some
structural properties. We identify these issues and offer a detailed discussion of their implications. In
the second case study, we investigate how a non-canonical link function impacts the quality-of-fit.
This particular degree of freedom is mostly ignored in the literature. By drawing conclusions from
both case studies, we propose a model which does not suffer from the common identifiability issues
and employs a non-canonical link. We denote this model as the Kannisto model since it implies
logistic-type growth of mortality rates, originally studied by the Finnish demographer Kannisto. We
compare the fitting performance to the well-established models and demonstrate the advantages of
the Kannisto model.

In the second part of the thesis, we focus on multivariate dynamics of the system of Kannisto
variables. The objective is to identify an appropriate discrete time stochastic process which is
capable of capturing the characteristics of the underlying stochastic factors that determine the
mortality structure. We will investigate the presence of cointegration relations between the individual
components. Furthermore, we demonstrate that, through the ability of capturing common trends,
vector error correction models (VECMs) are better suited to model the dynamics of those factors
compared to the standard choice of a random walk with drift.

The third chapter, on the field of survival analysis, is largely independent of the previous content.
There, we provide an extensive characterization of the Kannisto lifetime distribution and its generaliza-
tion, the so-called extended exponential distribution, which are both specified by logistic-type hazard
rate functions as proposed by the Kannisto model of Section 1.9. We study the connections of these
distributions to other well-known life and non-life distributions and prove further characterizing
properties.

The individual chapters of this thesis are self-contained and organized as follows.

Chapter 1| GAPC Models

Throughout Sections 1.1 to 1.3, we give a brief introduction to some basic concepts of mortality
modelling and provide a review of the historical evolution of human mortality. In Section 1.4, we
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formally introduce the family of GAPC mortality models, where we first review their building
blocks and subsequently present several well-established models. In Section 1.5, we discuss the
Newton-Raphson and Fisher Scoring algorithms for parameter estimation of GAPC models and in
Section 1.6, we provide a brief introduction to common statistical tests for model assessment and
validation. Then, we provide two quantitative case studies with the focus on elderly populations in
Section 1.7. First, we compare various predictors and then analyze the influence of a non-canonical
link on the fitting accuracy. In Section 1.8 we identify several common issues of GAPC models which
emerge due to the imposed parameter constraints. Based on the conclusions of the case studies,
we propose a model family in Section 1.9.1, which still belongs to the GAPC family, but does not
share the common problematic properties. Subsequently, a goodness-of-fit analysis is provided for
the proposed Kannisto models, and we employ the standard GAPC approach for forecasting. An
important observation which provides the connection to the second part of the thesis is that the
estimated parameter trajectories suggest that there might be common stochastic trends between the
factors of the Kannisto models. Conclusions on this chapter are given in Section 1.10.

Chapter 2 | Cointegration Analysis for the Kannisto Model

In order to identify an appropriate multivariate time series model for the dynamics of the Kannisto
factors, we first provide an overview of some concepts of discrete multivariate stochastic processes
in Section 2.2. In Section 2.3, we offer a detailed discussion on the specification procedure for
VAR/VECM time series models. This includes methods for lag order selection, unit root and station-
arity tests, parameter estimation under rank restrictions, cointegration tests, and residual tests for
model diagnostics. In Section 2.4, we employ the VECM specification procedure on the Kannisto
models and prove the existence of cointegration relations between their components. This implies
that a VECM process, which is capable of capturing these relations, is an appropriate modelling
approach. In Section 2.5 VECM driven projections of the Kannisto models are conducted and
compared to the standard GAPC approach. Conclusions on this chapter are given in Section 2.6.

Chapter 3 | Characterization of the Kannisto and the Extended Exponential Distribution

This chapter can be considered independently of the previous content. The connection to the previous
content is that the proposed Kannisto model implies a logistic-type hazard rate. Equivalently to
density functions, hazard rate functions are representatives of distributions. However, the resulting
continuous lifetime distribution, which is based on the logistic-type hazard rate, remained widely
uncharacterized in the literature. In Section 3.2.1, we first provide an introduction to central concepts
of survival analysis by considering different representatives of lifetime distributions and reviewing
their properties. In Section 3.3, we reveal several connections of the Kannisto distribution and its
generalization, the so-called extended exponential distribution, to other well-known distributions. In
Section 3.5, we provide an extensive characterization of the Kannisto and the extended exponential
distribution by deriving analytic expressions for the mean residual life function, moment generating
function, central moments, Fisher information matrix, and Kullback-Leibler divergence. Section 3.6
gives a conclusion.
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Contributions of the Thesis

The following provides a summary of the individual contributions made in this thesis. In Chapter 1, we
investigate the GAPC family of stochastic mortality models. This popular and well-established class
of models decomposes mortality across the dimensions age, period, and cohort, and has been widely
studied by, e.g., Alai and Sherris (2014), Aro and Pennanen (2011), Berkum, Antonio and Vellekoop
(2014), Borger, Fleischer and Kuksin (2014), Cairns, Blake and Dowd (2006), Cairns, Blake, Dowd
et al. (2009), Haberman and Renshaw (2009), Lee and Carter (1992), Lovasz (2011), O'Hare and Y. Li
(2012), Plat (2009) and Renshaw and Haberman (2003, 2006). Recent articles, see, e.g., Currie (2016),
Hunt and Blake (2014) and Villegas, Kaishev and Millossovich (2015) showed that the GAPC models
can be embedded in the framework of generalized linear models, as introduced by the seminal paper
of McCullagh and Nelder (1989). This conceptional generalization extends the classical modelling
approaches with a feature which has been widely ignored in the literature. Our contribution in
Section 1.7.2, shows that a non-canonical link function can improve the quality-of-fit for a variety
of predictors. A similar conclusion has also been obtained by Currie (2016). An improved fitting
accuracy is demonstrated, in particular, for populations aged above 60. The fact that a non-canonical
logit link (with Poisson distributed response variable) performs better than the canonical logarithmic
link implies that for high ages the historical age-related mortalities obey a logistic-type growth rather
than an exponential.

Another main contribution of the first chapter is the analysis of several conceptional issues of
GAPC models. The vast majority of GAPC models, especially those with a higher fitting performance,
have an underdetermined predictor function. Thus, further parameter constraints are required to
ensure parameter identification. This implies that the estimated parameters do not solely depend on
the underlying data, but also on arbitrarily imposed constraints. Hence, particular patterns in the
paths of the parameters may only occur due to those constraints. Related studies on the impact of
the constraints can be found in, e.g., Hunt and Villegas (2015). Apart from parameter interpretability,
the lack of identifiability also implies further issues. In particular, we demonstrate that the cohort
term fails to serve its intended purpose to capture or reveal cohort effects, although it increases
the quality-of-fit. Another point of criticism is that for forecasting purposes, the cohort term is
usually assumed to be independent of periodic terms, which appears to be highly questionable, see
also Currie (2012). Another contribution of this chapter is the significance analysis of individual
parameters, which, to our knowledge, is considered for the first time for GAPC models. The surprising
result of the Wald-type tests shows that one of the best performing models on our reference dataset
has only about 6% (26 of 428) individually significant parameters.

Based on the conclusions of the conducted case studies we propose a mortality model with
identifiable parameters and a non-canonical Poisson link. The so-called Kannisto model family
implies a logistic-type growth of the age-related mortality rates and contains only parametric age-
modulation terms in order to reflect the regular mortality structure of elderly populations. We
provide a comparative analysis and highlight several advantages of the model.

In the second part of the thesis, we switch our focus to the dynamics of the stochastic factors that
drive the mortality structure. In Chapter 2, we treat the period-related parameters of GAPC models
as components of multivariate time series. The objective is to identify appropriate processes which
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are able to capture essential features of these time series. In the literature, the standard modelling
approach for the period factors has been a random walk with drift, see, e.g., Cairns, Blake and
Dowd (2006), Cairns, Blake, Dowd et al. (2009), Dowd, Cairns, Blake et al. (2010a,b) and Haberman
and Renshaw (2011). This approach is motivated by the fact that the corresponding time series are
non-stationary, and thus, a random walk is one of the most elementary potential candidates. However,
the observation of the obtained time series from the proposed Kannisto model indicates long-run
dependencies between the components. An appropriate framework to capture these dependencies
is given by cointegrated processes as proposed by Engle and Granger (1987) and Granger (1981).
Cointegration methods in the context of mortality modelling have been applied by orthogonal
approaches in, e.g., Gaille and Sherris (2012), Lazar and Denuit (2009) and Salhi and Loisel (2011).
The contribution of Chapter 2 is to provide statistical evidence for the existence of cointegration
relations by using the tests proposed by Johansen (1988, 1995) and Johansen and Juselius (1990). In
our analysis, we find cointegration relations for all proposed Kannisto predictors. Consequently, the
individual periodic terms follow long-run equilibrium relations that cannot be represented by a
random walk process, which is only capable to capture dependencies as instantaneous correlations.
We provide an analysis of the forecasting performance, comparing the standard random walk
approach with cointegrated VECM processes, after proper specification and validation procedures.
The results show that by using VECM processes, we obtain forecasts which are more consistent
with previous developments in terms of central forecasts and prediction intervals. We show that
the framework of cointegration can be successfully applied to stochastic mortality modelling by
using more sophisticated time series processes for the periodic terms. This result is not limited to the
Kannisto predictor and can be applied to other predictors with multiple periodic terms, see, e.g.,
Gaille and Sherris (2011).

The contribution of the third part of the thesis is an extensive characterization of the distribution
which is induced by a logistic-type hazard rate function, as proposed in the first part. Logistic-type
hazard rate functions have been originally studied by Kannisto (1992) and Thatcher, Kannisto and
Vaupel (1998). However, the primary objective of these studies was to find a parametric function which
minimizes the Euclidean distance to empirical age-related mortalities. The authors did not consider
the properties of the lifetime distribution which is induced by the corresponding logistic-type hazard
function. Therefore, despite the practical importance of logistic-type hazard rates for mortality
modelling of elderly populations, the implied distribution remained widely uncharacterized. A few
specific contributions can be found in Marshall and Olkin (2007) and Missov (2013). In Chapter 3, we
study the relations of the Kannisto distribution and its three-parameter generalization, the so-called
extended exponential distribution, as proposed by Marshall and Olkin (2007). We show several
connections to other well-known life and non-life distributions. Furthermore, we derive analytic
expressions for the mean residual life function, moment generating function, central moments,
Fisher information matrix, and Kullback-Leibler divergence. Moreover, we prove that the extended
exponential and the Kannisto distribution belong to the minimum domain of attraction of the
Weibull distribution, and to the maximum domain of attraction of the Gumbel distribution. The
obtained contributions provide deeper insights to parametric hazard rate models for higher ages,
which hopefully will find beneficial applications in actuarial science or life insurance industry.
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1.1 | Motivation

The development of human mortality rates has shown continuing improvements over the past
centuries. The life expectancy, as well as the maximum lifespan, have strongly increased. As mentioned
in Wilmoth (1997), demographic studies do not indicate certain biologic imposed bounds of the
lifetime. The life expectancy at birth has experienced substantial gains and has almost tripled over the
human history. These improvements are mainly based on general enhancements of living standards
and medical developments. The continuous increase of the life expectancy can be attributed to
significant improvements of infant and child mortalities at the beginning of the 20th century as well
as to the reduction of mortality rates of the elderly population due to improved medical diagnostics
methods, treatments of cardiovascular diseases and cancer (see Wilmoth (2000) for more details).
As Oeppen and Vaupel (2002) point out, the female life expectancy at birth in the record-holding
country has increased for 160 years at a steady pace of almost 3 months per year.

Extrapolative methods for projections of mortality rates have been used by actuaries for centuries.
Traditionally, deterministic modelling approaches have been used by life insurers for the calculation of
premiums and reserves. The risk of a deviation between forecasted mortality rates and the eventually
realized mortality rates has been assumed to be diversified over time and individuals. As historical
data of the past century shows, mortality rates improved quite unpredictable under classic models,
so that the mortality risk remained undiversified. Traditional deterministic approaches appeared to
be inadequate since the projections made by these models showed a substantial underestimation
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of the life expectancy trend. The world’s oldest insurance company, the Equitable Life, which was
established in 1762, declared bankruptcy in 2000, as a result of overestimated mortality rates and
falling interest rates, see Roberts (2012).

Mortality modelling has a long history, see, e.g., Gompertz (1825) and Moivre (1725). However,
significant developments of mathematical methods were achieved only recently, see Booth (2006) and
Booth and Tickle (2008) for detailed reviews of the methodological developments of demographic
forecasting since 1980. Reviews on different approaches to mortality modelling and forecasting
methods can be found in Pitacco, Denuit, Haberman and Olivieri (2009), Pollard, Benjamin and
Soliman (1987), Tabeau, Berg Jeths and Heathcote (2001), Tuljapurkar and Boe (1998) and Wong-
Fupuy and Haberman (2004).

Historical lifetime data shows clearly that mortality rates decrease over time. However, the reduction
differs for different ages and there are also variations among various cohorts. In the past two decades,
enormous efforts have been made to explore stochastic models with the objective to describe the
dynamics of human mortalities and to develop pricing tools for classical and modern mortality-
linked securities. The increasing amount of academic attention was substantially triggered by the life
insurance industry and their new challenges in risk management and internal models brought by
Solvency 2.

Research with the focus on the impact of mortality decrease on mortality linked securities such as
annuities and life insurance can be found among others in Ballotta and Haberman (2003), Gatzert and
Wesker (2014) and Olivieri (2001). For valuations of mortality-contingent claims, see, e.g., Ballotta
and Haberman (2006) and Milevsky and Promislow (2001). Publications on stochastic forward
mortality models, inspired by modelling approaches of interest rates in finance, can be found in, e.g.,
Bauer, Benth and Kiesel (2012), Biffis (2005), Biffis and Millossovich (2006), Dahl (2004), Dahl and
Moller (2006), Norberg (2010) and Tappe and Weber (2014).

Before we provide an introduction to basic concepts for mortality models, we first bring clarity in
different types of involved mortality-related risks. We follow the conventions of Cairns, Blake and
Dowd (2006) to distinguish between the following risks.

» The term mortality risk covers all forms of uncertainty about the future mortality rates, including
increases or decreases of mortality rates.

» The term longevity risk encompasses the uncertainty in the long-term trend of mortality rates
and indicates that future survival rates turn out to be higher than anticipated.

» The term short-term or catastrophic mortality risk covers the risk of catastrophic events leading
to significantly higher mortality rates. These include, in particular, influenza pandemics such
as the Spanish flu in 1918 or the recent swine flu pandemic and also all kinds of natural
catastrophes such as the earthquake at the west coast of Sumatra and the resulting tsunami in
December 2004.

The remarkable evolution of mortality improvements beyond previously anticipated limits has
shown the need for sophisticated mortality models. The main advantage of the development of
stochastic mortality modelling is that they produce forecasts in terms of probability distributions
rather than deterministic point forecasts and thus allowing quantification of the forecast uncertainty.
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Thus, the focus of this thesis is to provide additional methods for the quantification of mortality and
longevity risks. Both risks are not only generally important for life insurers, but they are also used for
the determination of the Solvency Capital Requirement (SCR) as requested by Solvency 2.

The following content of this chapter is organized as follows. In Sections 1.2 and 1.3, we give a brief
introduction to elementary concepts of mortality modelling and review the historical evolution of
human mortality. In Section 1.4, we formally introduce the family of GAPC mortality models, where
we first introduce their building blocks and subsequently present several well-established models. In
Section 1.5, we discuss the Newton-Raphson and Fisher Scoring algorithms for parameter estimation
of GAPC models in the framework of generalized linear models, and in Section 1.6, we provide a brief
introduction to common statistical tests for model assessment and validation. The comprehensive
surveys in Sections 1.4 to 1.6 serve as preparations, and for the most part, do not contain any original
research. After the theoretical foundations of stochastic mortality models, parameter estimations for
GLMs, and statistical tests for model comparison, we provide two quantitative case studies with the
focus on elderly populations in Section 1.7. In the first case study, we compare various predictors,
and subsequently, analyze the influence of a non-canonical link function on the fitting accuracy. In
Section 1.8 we identify several common issues of GAPC models which emerge due to the imposed
parameter constraints. Based on the conclusions of the case studies, we propose a model family, the
so-called Kannisto model, in Section 1.9.1. Subsequently, a goodness-of-fit analysis for the proposed
model is provided. In Section 1.9.4 we consider the standard GAPC approach for forecasting which
will be used as a reference for a more sophisticated time series approach that will be introduced in
Chapter 2. Conclusions and an outlook are provided in Section 1.10.

1.2 | Basic Concepts and Source of Data

To identify patterns and trends in human mortality a precise and reliable data source over an extended
period is required. For comparative studies, the data should also be available for several groups,
distinguished by country and gender. For most developed countries mortality data is collected by
official authorities or population registers. To facilitate research on human mortality the Human
Mortality Database (HMD) was initiated aiming to provide continuous collections and aggregations
of mortality data. HMD is a joint project of the Department of Demography at the University of
California, Berkeley, USA, and the Max Planck Institute for Demographic Research in Rostock,
Germany. Detailed population and mortality data is freely available for researchers at www.mortality.
org. Currently, the HMD database offers life tables for 38 countries. These tables represent an
empirical record of mortality-related quantities with data grouped by countries, gender, periods
or cohorts. The data covers the ages from 0 to 110 for each country with yearly increments in age
and time. The most extensive collection of life data, which starts from the year 1751, is provided
for Sweden. This particular dataset will serve as our reference mortality dataset for the illustration
of the historical changes in human mortality, as will be provided in Section 1.3, and also for the
case studies of Generalized Age-Period-Cohort models in Section 1.7. We took that particular set of
data, firstly because it covers the longest available period and on the other hand, we focused on the
female population, since they were not strongly involved in military conflicts. In general, mortality
data of male populations show substantial distortions in times of wars. Thus, to highlight long-term
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effects, male data is mostly excluded from the demonstrations. Further illustrations of mortality
improvements, that clearly show the dramatic impact of epidemic diseases and wars on human life
over the last century, can be found in Appendix A.2.

Initially, we provide some notes on how HMD life tables are structured. The concept of life tables
belongs to the most established tools in the empirical survival analysis. One of the first documented
developments of a life table goes back to the well-known astronomer Edmund Halley, see Halley
(1693). Estimation methods for hazard rates, survival functions, and other lifetime representatives
(see Section 3.2.1) are designed for situations, where a large sample size is available, but the exact
times of the events are unknown, see, e.g., Rinne (2014). That means that generally, life tables do not
contain information on the level of individuals. Mortality rates are rather aggregated population-wise
and grouped by ages and periods. Thus, in a discrete setting, a person of age x has an exact age in the
interval [x,x + 1). Similarly, an event that occurs in year ¢, takes place at some time in the interval
[t,t + 1). For each calendar year t and age x the quantities included in life tables are:

» It , the number of individuals aged x during the year t. Note that in life tables I; ¢ is usually
normalized to a particular value (e.g., 10°), the so-called radix.

» d;, the number of deaths occurred during the year ¢ at age x.

» Dtx> the conditional probability at the calendar year ¢ of surviving to age x + 1 given the
survival to age x.

» g x> the conditional probability at time ¢ for an individual of age x not surviving up to age
x + 1. Note that g¢, =1 — p¢ .

» e, the expectation of remaining life at age x in calendar year ¢.

Detailed information on the methods used to create HMD life tables can be found in Wilmoth,
Andreev, Jdanov et al. (2007).

1.2.1 | Real Cohorts vs. Synthetic Cohorts

In the following, we will distinguish between the concepts of real cohorts and synthetic cohorts and
also introduce a slightly more general meaning of the term cohort.

In the usual sense, a cohort T is a group of individuals with the same year of birth, namely T, or in
other words, a group of individuals aged 0 in the period T. We will use the tuple (7,0)* to denote
the real birth cohorts. A group of people of the same birth cohort will turn the same age in future
periods in case of survival. The subgroup of individuals of the birth cohort (T, 0)*, that survive y
years, such that in year T + y their age is y, will be denoted as (T + y, y)* and called a generalized
real cohort or simply real cohort. For instance, the (1950,0)* and the (2015, 65) real cohorts are
both groups of people with the birth year 1950, but the later cohort contains only the subgroup of
individuals who survived up to age 65 in 2015. This conceptual distinction of real cohorts will be
used later.

Next, we introduce an artificial cohort type, the so-called synthetic cohort. Synthetic cohorts are
groups of people aged x at a reference period T and which, at every further age throughout their
life, experience the age-specific death/survival rates of that period T (cf., Mokyr, 2003). Synthetic
cohorts will be denoted by (T, x).
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Table 1.1: An illustration of mortality rates referring to real and synthetic cohorts. The columns of the
table contain age-specific mortality rates for fixed periods and the rows contain mortality rates for fixed
ages at different periods, respectively. The essential difference between a real and a synthetic cohort is
the assumption which age-specific mortality rates a group of individuals will experience during their
lives. Mortality rates of real cohorts are arranged on diagonals, see the orange marked entries of the real
cohort (2006,60)*. Mortality rates of synthetic cohorts are arranged on verticals, see the blue marked
entries of the synthetic cohort (2006,60).

d2006,110  42007,110  42008,110  42009,110  §2010,110  §2011,110  2012,110  42013,110  42014,110 ¢
42006,75 q2007,75 q2008,75 q2009,75 q2010,75 q2011,75 q2012,75 q2013,75 201475 ¢
42006,74  92007,74 q2008,74 4200974 4201074  q2011,74 9201274 4201374 201474 ¢
q2006,73 q2007,73 q2008,73 q2009,73 q2010,73 q2011,73 q2012,73 q2013,73 q2014,73 ¢
q2006,72 q2007,72 q2008,72 q2009,72 q2010,72 q2011,72 q2012,72 q2013,72 Q201472 ¢
q2006,71 q2007,71 q2008,71 q2009,71 q2010,71 q2011,71 q2012,71 q2013,71 4201471 ¢
q2006,70 q2007,70 q2008,70 q2009,70 q2010,70 q2011,70 q2012,70 q2013,70 q201470 ¢
q2006,69 q2007,69 q2008,69 q2009,69 q2010,69 q2011,69 q2012,69 q2013,69 q2014,69
42006,68 q42007,68 q2008,68 q2009,68 42010,68  92011,68 q2012,68 q2013,68 g
q42006,67 q2007,67 q2008,67 q2009,67 q2010,67 q2011,67 q2012,67 q201467 ¢
q2006,66 q2007,66 q2008,66 q2009,66 q2010,66 q2011,66 q2013,66 q201466 ¢
q2006,65 q2007,65 q2008,65 q2009,65 42010,65 q2012,65 q2013,65 q2014,65 ¢
42006,64  92007,64 q2008,64  42009,64 201164 9201264  q2013,64 201464 ¢
q2006,63 q2007,63 q2008,63 q2010,63 q2011,63 q2012,63 q2013,63 q201463 ¢
42006,62 q2007,62 q2009,62 q2010,62 q2011,62 q2012,62 q2013,62 Q201462 ¢
q2006,61 q2008,61 q2009,61 q2010,61 q2011,61 q2012,61 q2013,61 201461 ¢
?

q42007,60 q2008,60 q2009,60 q2010,60 q2011,60 q2012,60 q2013,60 q2014,60

To make the above definitions more precise, we consider an array of mortality rates g, as
illustrated in Table 1.1. The columns of the table contain age-specific mortality rates for fixed periods,
and the rows contain the mortality rates for fixed ages at different periods. Mortality rates can be
grouped according to different arrangements, cf., e.g., Liu (2008).

» A diagonal arrangement

{qr,x’ qt+1,x+1>+++> Qt+n,x+n} >

corresponds to a sequence of mortality rates of individuals with the same year of birth ¢ — x.
For instance, the orange marked entries {¢2006,60- - - - » 2014,68 } of Table 1.1 correspond to a
real cohort born in t — x = 1946. We can alternatively define a real cohort (T, x)* as a group of
individuals, which experience the diagonal-arranged age-specific mortality rates g7 x, g7+1,x+1
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qT+2,x+2> - - - » QT+c,x+c> for some integer ¢ such that x + ¢ is the highest available age of the life
table.

» A vertical arrangement,

{Qt,xa t,x+1>+ > Qt,x+n} ,

corresponds to a sequence of age-specific mortality rates at some fixed period ¢. The column
entries contain mortality rates corresponding to distinct real cohorts, see the blue marked
entries of Table 1.1. By the above definition, a synthetic cohort (T, x) is a fictive group of
individuals with age x in T, which experience the vertical-arranged age-specific mortality rates
of the period T, i.e., 4T x> T x+1>GT.x+2> - - - » T,x+c> fOr some integer ¢, such that x + ¢ is the
highest available age of the life table. Synthetic cohorts are auxiliary constructions and are often
used when the actual mortality rates needed for statements on real cohort are not available.
The most popular example is the life expectancy at birth. In order to provide the life expectancy
of, say a newborn in 2015, one would need future mortality rates g2015,0, §2016,1> - - - » §2015+¢,c-
These are obviously not available at present time. To avoid the problem of missing data, one
can make the assumption, that a newborn will experience the same age-specific mortality rate
in year 2015 + y like individuals aged y in 2015. This is equivalently to the assumption that the
newborn belongs to the synthetic cohort (2015,0).

» A horizontal arrangement

{Qt,x: Qt+1,x> e )Qt+n,x}

corresponds to a time series of mortality rates referring to a given age x.

As a concluding remark, note that a synthetic cohort is an auxiliary construction and due to
mortality changes over time, a real cohort (T,y)* will not experience the same mortality rates as
those of the synthetic cohort (T,y). In the further course of the thesis, we will estimate parametric
hazard rates for fixed periods. The advantage of considering mortality rates of synthetic cohorts over
real cohorts is that observations exist on the entire age range for any given reference time. For real
cohorts on the other side, only a few observations might be available. The non-linear structure of
mortality rates makes the estimation on shorter ranges less reliable. Thus, projections of life tables
are often based on modelling mortalities of synthetic cohorts rather than of real cohorts. However,
projections based on synthetic cohorts can be used to obtain forecasts for real cohorts, see, e.g.,
Section 2.5.5.

1.3 | Historical Evolution of Human Mortality

The objective of this section is to present an empirical study on the evolution of human mortalities
that have experienced significant changes over the past century.

We will demonstrate several aspects of historical mortality improvements based on some lifetime
characteristics, as the life expectancy, and lifetime representatives, as survival functions and the
hazard rate functions (see Section 3.2.1). The survival functions and life expectancies will be illustrated
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for both, real and synthetic cohorts. For the following presentation, we use our reference HMD of
the Swedish female population. For a comparative study of the Swedish male population, see, e.g.,
Liu (2008).

Figure 1.1 illustrates the death counts d  for the full available age range x € {0, ...,109} and the
periods t € {1860,1910,1960, 2010 }. Note that the total numbers are normalized to 10° and that for
the periods 1860 and 1910 the infant mortalities are out of plot range. The data show that in 1860
nearly 20% of the children did not survive until the age of 5, whereas in 1910 this number decreased
to almost 10%, while present rates are below 0.3%. Qualitatively, one can observe that the modes of
the curves move towards higher ages, while the dispersion around the modes decreases. Wilmoth
(2000) terms this behaviour as the compression of mortality because not only the level of longevity
has increased but also the certainty about the timing of death.

Figure 1.2 illustrates empirical survival functions, i.e., the probability to survive up to a particular
age, for several real birth cohorts (dashed lines) and synthetic cohorts (solid lines). Note, there
would be no difference between survival functions of real cohorts (T,0)* and those of synthetic
cohorts (T,0) if the age-specific mortality rates would remain unchanged. Since the age-specific
mortality rates have generally shown a decreasing trend, the values of the survival functions for
recent cohorts turn out to be higher. In the perspective of survival functions, the effect of mortality
compression is often referred to as the rectangularization of the survival function. By comparing
the survival curves of the real (1910,0)*-cohort (orange dashed) and the synthetic (1910,0)-cohort
(orange), we can make another important observation, which is, that mortalities at different ages
changed at different extents. Another observation, which demonstrates the magnitude of the overall
improvements, can be made by comparing quantiles of ancient and recent cohorts. For instance,
the empirical 0.2 quantile of the (1860,0)-cohort is, due to high infant mortalities, only the age of 5,
whereas the corresponding quantile of (2010,0)-cohort is the age of 76.

In Figures 1.3 and 1.4 historical hazard rates, alternatively called the force of mortality curves, are
illustrated. Hazard rates will be covered in detail in Section 3.2. For now, they should be understood
as the instantaneous risk of dying associated with a particular age. Qualitatively, hazard rates show
the same pattern as the mortality curves. In actuarial science, the hazard rates belong to the mainly
preferred representations of the lifetime, since they illustrate the age-based risk profile experienced
by individuals.

Figure 1.3 illustrates, on a logarithmic scale, the smoothed mortality rates of the Swedish female
population for the reference periods t € {1860,1910,1960,2010}. Each of the presented periods
shows a relatively high infant mortality risk followed by an initial decrease. After reaching the lowest
values around the age of 10, the values eventually increase. Note that newborns in 1910 subjected the
same age-specific mortality risk, as individuals around the age of 70 at the same period. Exactly one
century later, in 2010, the infant hazard rates were reduced by approximately a factor of 30. However,
it is still as high as of individuals aged around 50 in 2010. Moreover, the illustration shows that for
each period the hazard rates are roughly linear for ages above 60, which means that on a linear scale
the risk is exponentially increasing in age. However, the slopes of the hazard rates tend to decrease
for ages above 80, which indicates a sub-exponential age-specific growth. Studies on mortalities
at very high ages are available in, e.g., Himes, Preston and Condran (1994), Kannisto (1992) and
Thatcher, Kannisto and Vaupel (1998). Figure 1.3 also shows that the general decay in mortalities
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Figure 1.1: Empirical number of deaths d,; at age x € {0,...,109} for the periods ¢t ¢
{1860,1910,1960, 2010} of Swedish female population. Note, the total numbers are normalized to 10°.
The dotted curves represent the age-specific death numbers of real birth cohorts, e.g., 1860 (blue), 1910
(orange) and 1960 (green). For the 1860 and 1910 birth cohorts, there is a clear shift of the mode to higher
ages compared to periodic data.

is affected by catastrophic events as in 1918. The outbreak of an influenza pandemic, known as the
Spanish flu in 1918, is considered as the deadliest natural disaster in human history, and is responsible
for more than 50 million deaths, see Taubenberger and Morens (2006). Figure 1.3 shows that in
contrast to other influenzas, primary the young and healthy part of the population were affected.
Notice, in particular, the spread of the 1910 curve (orange) and the 1918 curve (blue) between the ages
10 up to 40. The spread between the hazard rate in 1910 and that of the time of the largest pandemic
in human history also stresses out how remarkable the mortality improvements have been in the
course of the past 100 years.

Figure 1.4 shows the hazard rates for all periods since 1850. Here, one can observe the continuous
changes of the age-specific instantaneous mortality risk, experienced by the Swedish female popula-
tion. Figure 1.5 shows the post-age 60 hazard rates on a linear scale. Note that the rates appear highly
regular. We will focus on this particular age range in the further course of the thesis and provide a
comparative analysis between models with logistic-type hazard rates and exponential increasing
hazard rates.

In the actuarial literature, there are essentially two different approaches to quantify mortality
improvements. The first is, to choose a reference period, say for example the period 1910, and consider
the ratio of the hazard rates of that particular period and a second period of interest, say the period
2010. This approach allows a quantification of mortality changes for widely separated periods by
considering the hazard ratios.

Through the thesis, we will use an alternative definition of mortality improvements. The rigorous
definition will be provided in Section 2.5.4. Descriptive spoken, the alternative approach characterizes
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Figure 1.2: Survival functions of Swedish female population. The dashed curves S} represent sur-
vival functions of the birth cohorts 1860, 1910 and 1960 and the solid lines the survival functions
ST, i.e., the survival probabilities up to age x, of the synthetic cohorts from the reference periods
T € {1860,1910,1960,2010}.

mortality improvements j;(x) as the infinitesimal relative changes of the hazard rate in time. For
discrete data, as provided by life tables, this approach corresponds to the following expression:

() = hea (%)
Jt(x) - ht—l(x) :

The minus sign is a convention to express that for decreasing mortality rates the improvements
considered to be positive, and for increasing mortality rates the improvements are negative. The
historical annual mortality improvements of the Swedish female or male population are shown
in Figures 1.7 and 1.8. The figures illustrate the mortality improvements, in the sense of relative
changes of the hazard rates, for the periods 1900-2010 and ages 25-100. Note, these representations
are obtained by applying two-dimensional B-spline smoothing methods to raw data. For additional
details on B-spline smoothing with focus on mortality modelling see, Currie, Durban and Eilers
(2004). B-spline smoothing yields data with reduced fluctuations and reveals local periodic patterns
as well as cohort effects. Without smoothing, these patterns would be covered by high fluctuations
especially at younger ages.

Figures 1.7 and 1.8 can be read as follows. Blue areas imply that mortality is deteriorating. Green
regions represent almost unchanged mortality rates. Yellow parts imply smaller rates of improvement,
orange and red state for stronger rates of improvement. For example, the influenza pandemic of 1918
and the corresponding affected ages are clearly noticeable by those representation. Another example
for a negative development can be observed for the male population at ages around 40 in 1965 of
Figure 1.8. The local increase of the mortality can be attributed to a rise in cardiovascular mortality
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Figure 1.3: Smoothed hazard rates (force of mortality) of Sweden’s female population for the reference
periods ¢ € {1910, 1918,1960, 2010}.

among industrial workers, cf., Diderichsen and Hallqvist (1997). High mortality improvements can
be registered for both genders up to the age of 60 immediately after the ending of the Second World
War. That fact can be primarily attributed to the discovery of penicillin and further antibiotics and
vaccines.

For more examples of local deviations of the positive trend, see Figures 1.9 and 1.10 for the mortality
improvements of the UK-Wales population, where one can clearly observe the impacts of both
World Wars on the male population. Noticeable as well, is the increased mortality for the male
population around 1990 for ages about 30. This increase in mortality occurred mainly due to the
sexually transmitted human immunodeficiency virus infection (HIV).

Cohort effects can also be observed more clearly for the UK-Wales population compared to
the Swedish population. For instance, notice the diagonal-arranged patterns of annual mortality
improvements above 3%. These improvements can be attributed to birth cohorts centred around the
year 1935. For more insights and explanations why these cohorts experienced higher improvements
in mortality than other generations, see Willets (2004).

Further illustrations of mortality improvements of other countries can be found in Appendix A.2,
where similar trends of mortality improvements and local effects can be detected. For an outlining
country-specific behaviour, see the mortality improvements of Russia on page 246. Russia has
experienced a negative development of the life expectancy due to social disruptions and instability
resulted by the collapse of the Soviet Union.

Finally, we demonstrate in Figures 1.11 and 1.12 the time evolution of the life expectancy for
synthetic and real Swedish female cohorts. Figure 1.11 illustrates the life expectancy at age x, denoted
by er .. The following characteristics are worth mentioning: compared to the life expectancies of
higher ages, the life expectancy at birth made the largest progress, from values around 45 in 1850’s to
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Figure 1.4: Hazard rates of Swedish female population on a logarithmic scale.

almost the age of 84 for the most recent periodic data. The down peaks at 1918, resulted due to the flu
pandemic, are noticeable for the life expectancies at birth and at age 20. Note also, the life expectancy
at birth in 2011 is 83.9 years, whereas at age 60 the expectancy is with 85.7 years only slightly larger.
The progress of the curves emphases the fact, the mortality improvements had a higher impact on
younger ages.

The characteristics of the life expectancy for real cohorts are illustrated in Figure 1.12. Note that the
life expectancy of real cohorts is only fully observable after all individuals of that cohort have passed
away. Since we do not include projected mortality values in our presentation, the paths terminate at
the beginning of the 20th century. Projections of the life expectancy of real cohorts can be found in
Figure 2.19.

In summary, we have presented the empirical changes in the human mortality based on several
lifetime representatives. Chapter 3 will contain a deeper discussion of those representatives including
their connections. The next section will review several stochastic mortality models which have been
successfully applied on empirical data.
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Figure 1.5: Post-age-60 hazard rates (force of mortality) of Sweden’s female population for the reference
periods ¢ € {1860,1910, 1960, 2010} on a linear scale. Note that data show a highly regular structure. We
will use that fact to propose a parametric logistic-type hazard rate model.
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Figure 1.6: Logit transformed post-age-60 hazard rates of Sweden’s female population for the reference
periods t € {1860, 1910, 1960, 2010}. Notice that data show a highly regular linear structure. Thus, we
will use that fact to propose a parametric logistic-type hazard rate model, which linearizes under the

logit transformation.



1.3 Historical Evolution of Human Mortality

90

age

e

1980

1940 1960 2000

year

1900 1920

Figure 1.7: Annual mortality improvements of the Swedish female population.

90 -

75 |

age

60 |-

,

1960
year

"

| |
1900 1920 1980 2000

1940
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Figure 1.9: Annual mortality improvements of the UK-Wales female population.
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Figure 1.10: Annual mortality improvements of the UK-Wales male population.
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Figure 1.11: Life expectancy at birth, age 20, 40, 60, and 80 of Swedish females (synthetic cohorts) from
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1.4 | Stochastic Mortality Models

The development of human mortality, as presented in the previous section, has triggered a lot of
academic attention. Thus, a vast of mortality models have been developed over the last 25 years. In
this section, an overview of well-established and recently proposed mortality models is given.

1.4.1 | Model Quality Criteria

Before presenting some modelling approaches, we first provide a list of criteria which can be used to
evaluate and compare different models. The following collection of criteria has been proposed and
thoroughly discussed by Cairns, Blake and Dowd (2008, p. 87). Their requirements for a good model
are:

» Mortality rates should be positive.

» The model should be consistent with historical data.

» Long-term dynamics under the model should be biologically reasonable.

» Parameter estimates should be robust relative to the period of data and range of ages employed.
» Model forecasts should be robust relative to the period of data and range of ages employed.

» Forecast levels of uncertainty and central trajectories should be plausible and consistent with
historical trends and variability in mortality data.

» The model should be straightforward to implement using analytical methods or fast numerical
algorithms.

» The model should be relatively parsimonious.

» It should be possible to use the model to generate sample paths and calculate prediction
intervals.

» The structure of the model should make it possible to incorporate parameter uncertainty in
simulations.

» At least for some countries, the model should incorporate a stochastic cohort effect.

» The model should have a non-trivial correlation structure, i.e., the mortality improvements
should not be perfectly correlated for all ages.

Most of the provided criteria are self-explanatory and reasonable. For some criteria, a subjective
interpretation remains, such as for a biologically reasonable long-term behaviour. Other points have
contrary objectives and require trade-offs, such as the criteria for model parsimoniousness and
accuracy. Plat (2009) points out that the existing models meet most of the listed criteria, but none of
the models fulfils all of them.

1.4.2 | Review of Stochastic Mortality Models

In the following, we introduce the notation and common components of stochastic mortality models.
Stochastic mortality models are either focusing on central death rates m; , or initial death rates g »
as measures of mortality.
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Let the random variable D; , denote the number of deaths of a population group at age x during
the calendar year t. Moreover, let d; , denote the observed death count, Ef , the central exposed to
risk, i.e., the average population size aged x in calendar year ¢, and E?’x the initial number exposed
to risk. In this notation, the one-year initial mortality rate g, . is defined as the ratio q; x = Dy x /Eﬂx
and can be estimated by §; x = dy «/E} . Alternatively, the central mortality rate m; x is defined as
My = Dy x[Ef ,, with the empirical estimate #i1; x = dy x/E; . If the underlying population data only
contains the initial exposures, one usually uses an approximation of the central exposures as the
mean of the initial exposures of two consecutive years t and ¢ + 1, i.e.,

_E +E) EQ +EY —dy, 1

t+1, s , > 0
;,x ~ 5 % = ) = Et,x - Edt,x- (L1)

Consistently to Brouhns, Denuit and Vermunt (2002), we assume for the following that the number
of deaths Dy is Poisson distributed

Dt,x ~ Poi(mt,fo’x). (12)

with mean m; ,E; ... Despite the fact that human hazard rates follow complicated structures, they
vary slowly during a period of one year. A common simplification is therefore that individuals with
the same age x at year t experience the same piecewise hazard rates p .. By that assumption, the
central mortalities provide decent approximations of the hazard rates y; . Moreover, we have the
following relation between the two mortality measures

mi,x

Grx=1-¢e

The random variable of the death counts D, , in terms of the initial mortality rate g; , follows a
binomial distribution, i.e.,

Dy ~ Bin(qyx. E7,), (L3)

see, Currie (2016). The maximum likelihood estimates of m;, and g, derived from eqs. (1.2)
and (1.3), are given by (Rinne, 2014, Section 5.1)

"ht x = gtc,x >
t,x

qA _ dt,x
t,x E(t),x

Therefore, the central or initial death rates are sometimes directly defined as the maximum likelihood
estimators of the hazard rate, which is assumed to be constant on small intervals of time and age.
Models based on egs. (1.2) and (1.3) are therefore called Poisson or binomial regression models,
respectively. The choice of the mortality measure is primarily affected by the available data. The
Poisson model requires central exposures to risk Ej ,, which are more common (e.g., in Human
Mortality Database) than the initial exposures to risk E ..
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1.4.3 | Generalized Age-Period-Cohort Models

The vast majority of stochastic mortality models decompose mortality rates or other mortality
measures across the dimensions of age, period, and cohort. Recent contributions, for instance, Hunt
and Blake (2014), Currie (2016) and Villegas, Kaishev and Millossovich (2015) showed that many
proposed stochastic mortality models are covered by the family of the Generalized Age-Period-
Cohort (GAPC) mortality models which can be expressed in the framework of generalized linear
and non-linear models (see, e.g., McCullagh and Nelder, 1989)). The framework of the following
section is known and largely based on the contributions of Currie (2016), Hunt and Blake (2014) and
Villegas, Kaishev and Millossovich (2015). We start with an introduction to the GAPC model class
and its building blocks and subsequently review some popular models which have been proposed in
the literature.

Following the definition of Villegas, Kaishev and Millossovich (2015), a GAPC model is composed
of four components:

(a) The random component encompasses a distribution assumption on the death count Dy ,. A
common assumption is that the number of deaths D, , follow a Poisson distribution or a
binomial distribution, i.e.,

Dt,x ~ POi([/‘t,xE;x) (1.4)
or
Dy ~Bin(qx, EY ) (1.5)

with expectations E[ Dy «/E{ ] = ps.x and E[D;/E} ] = q,x, respectively. More precisely,
one assumes that conditionally on p x, or similarly on g x, the random variables D , are
independent and follow Poisson or binomial distributions, respectively. Note, in more general
settings, as for GLMs, for some response variable Y and predictor variable X, the conditional
expectation [E[Y | X], is a member of the exponential family distribution. This conditional
factor structure of the GAPC models will be discussed in more detail in Section 1.5.

(b) The systematic component captures the effects of the dimensions age x, calendar year ¢, and
cohort ¢ = t — x through a linear or bilinear predictor function 1, , of the form

Utx—“x"‘Zﬁ;(c)Kg) (O))’ —x-

The predictor contains the following components:

» The first term a, is called the static age function, aiming to capture the general shape of
the corresponding mortality measure.

» The second part contains a set of N > 0 bilinear age/periodic terms ﬁxi K(i) fori =

(i

.,N, where the perlod functions «; ) determine the mortality change through time,

and the age functions ﬁx serve as modulations of periodic trends across the ages.
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» The last term y;_, is the cohort term aiming to capture mortality effects based on the
year of birth. These effects can include age-specific modifications through the term [5,((0) .

As we will see later by reviewing the proposed models of recent decades, the age-specific
modulating term [39(;), i =0,1,...,N, can either be a specific analytic function, i.e., ﬁ,(ci) =
f (1) (x) or non-parametric without any pre-specified structure. A key assumption of the GAPC
family is that the periodic terms «; and the cohort terms y;_ are all model factors for each
period t and cohort t — x, rather than smooth functions of time or cohort (cf,, e.g., Villegas,
Kaishev and Millossovich, 2015). This assumption enables stochastic projections of mortality
rates by applying time series methods for the estimated coefficients of those factors. This
approach leads to probabilistic rather than to deterministic forecasts. It is important to point
out that B-Spline models do not belong to GAPC family since they impose a polynomial
functional form for the periodic terms.

(c) The link function g provides a connection between the random component and the systematic
predictor. The link is a monotone and differentiable function that describes how the mean of
the regression objective depends on the linear predictor, i.e.,

Dtx
E - = .
g( [Et’x]) ﬂt,x

For the Poisson model, the canonical choice for the link function is the logarithmic function

and for the binomial model the logit function, respectively. One of the requirements for an
appropriate link function is that the transformed data are approximately linear (or multiplicative
bilinear) since they are passed to a linear regressor. In Section 1.7, we will demonstrate that for
high ages the logit link function leads to be fit than the canonical Poisson link, for the vast
majority of stochastic mortality models.

(d) A set of parameter constraints to ensure model identification. An important characteristic of
the most proposed stochastic mortality models is that their parameters are only identifiable
up to transformations, i.e., the model parameters

i o O 00

can be transformed by a map v to equivalent parameters
o(8) = 0= (a0 B0, B, ED, B, B0 5.,

such that the predictor 7, remains unchanged. The implications and drawbacks of required
parameter constraints will be discussed later.

Many proposed mortality models can be expressed within the GAPC modelling framework. Some
models assume Poisson distributed death counts with a log link function, for instance, the model
proposed by Lee and Carter (1992) and the extensions proposed by Renshaw and Haberman (2003,
2006). Other models assume binomial distributed death counts and a logit link to target the logit
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transformed initial death rates as the regression objective, see, e.g., Cairns, Blake and Dowd (2006)
and the extensions in Cairns, Blake, Dowd et al. (2009), and also Aro and Pennanen (2011). Further
models of the GAPC family can be found in Alai and Sherris (2014), Berkum, Antonio and Vellekoop
(2014), Borger, Fleischer and Kuksin (2014), Haberman and Renshaw (2009), Lovasz (2011), O'Hare
and Y. Li (2012) and Plat (2009).

Some examples of proposed mortality models, which do not belong to the GAPC family, can be
found in Currie, Durban and Eilers (2004), Renshaw, Haberman and Hatzopoulos (1996) and Sithole,
Haberman and Verrall (2000). As Hunt and Blake (2014) point out, the models assume the periodic
functions K§ ) to be cubic B/P- splines or Legendre polynomials, respectively. Projections based on
these models are obtained by extrapolation of deterministic functions. Thus, the application of these
models is restricted to short-term forecasts. On the other hand, the P-splines approach of Currie,
Durban and Eilers (2004) proved to be very useful for smoothing and data regulation to identify
general trends of mortality change, as well as, reveal cohort effects, which are difficult to detect with
crude mortality rates. An application of P-spline smoothing is shown in Figures 1.7 to 1.10.

In the following, we describe some established GAPC models which have received considerable
attention from the scientific community. The review on proposed models is based on the survey
articles of Hunt and Blake (2014) and Villegas, Kaishev and Millossovich (2015). The second paper
introduces an R package called StMoMo', which provides an excellent tool for parameter estimation
of GAPC models, assessing their goodness-of-fit, and performing projections using ARIMA models.

The Lee-Carter Model

The Lee-Carter (LC) model was one of the first stochastic mortality models and still remains widely
used. The LC model in the original form, as proposed by Lee and Carter (1992), does not fit into the
GAPC family, since it misses a random component. Thus, we use the implementation of Brouhns,
Denuit and Vermunt (2002), which assumes Poisson distributed death counts, the log link function
to target the force of mortality y; x, and the original predictor function with a static age function a,
( )

one non-parametric age-periodic term ﬁ p , and no cohort effect. More precisely, the predictor is

given by
Ntx = Oy + [)’,(CI)KEI). (1.6)

The LC model belongs to the simplest GAPC models. As we will see later, it forms a basis for further
model extensions. One key property of that model, and therefore also for all generalizations, is that
the parameters are not identifiable without additional constraints, i.e., the model response variable
remains unchanged under the parameter transformation v, with

1
v (Oéx,ﬁ,(cl),Kgl)) (oc +C1/3(1) ﬁ(l) 2 (K(l) cl)), (1.7)

1  The acronym stands for Stochastic Mortality Modelling. The source code is available at https://github.com/amvillegas/
StMoMo.
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for arbitrary real constants c; and ¢, # 0. To overcome the identification issue, Lee and Carter suggest
to impose the following two parameter constraints

Zﬁ,(cl) =1, ngl) = 0. (1.8)
X t

These constraints can be achieved by

1
Sy =YY

t

C1 =

in the transformation of eq. (1.7). LC model forecasts are attained by using ARIMA processes for the
time index Kgl). A common choice proposed in the literature, is to use a random walk with drift, i.e.,

D=5k 18, &N (00),

with & being the drift parameter and &; a Gaussian white noise process with variance oy. The strength
of the LC model and its extensions is their flexibility to capture age-specific mortality pattern over
large ranges of ages. However, one of the disadvantages of the LC model is that it only allows a trivial
correlation structure of the projected mortality rates, i.e., the changes in the mortality are perfectly
correlated across all ages (cf., Cairns, Blake and Dowd, 2006).

The Cairns-Black-Dowd Model

To overcome the issue of a single age-period factor with trivial correlated projected mortality rates,
Cairns, Blake and Dowd (2006) proposed a model with two age-periodic terms and parametric
age-modulations [)’,(Cl) =1and ﬁiz) = x — X, where X denotes the average age in the underlying data.
The model does not include an age-specific function a,, nor a cohort function y;_. The predictor
function of the Cairns-Black-Dowd (CBD) model is given by

Nex = Kfl) +(x - J_C)Kfz). (19)
The absence of a static age function and the assumption of parametric age-modulations, results in
a more parsimonious model compared to the LC model. The CBD assumption of approximately
linear log-transformed mortality rates on the entire age range restricts the application of the model
to high ages only. The key characteristics of the CBD model, and the unique property across other
models covered here, is that the model does not require any parameter constraints to be identifiable.
The original approach of Cairns, Blake and Dowd (2006) used ordinary least squares parameter
estimation targeting the logit transformed initial death rates q; . Haberman and Renshaw (2011) used
the original predictor function and the assumption of binomial distributed death counts with a logit
link function, to adapt the model to the framework of generalized linear models. In order to obtain
forecasts of mortality rates, Cairns, Blake and Dowd (2006) employed a two-dimensional random

walk for the periodic terms Kt(l) and ng). Empirical studies have shown that the obtained time series

(kM

intervals of the forecasts. In Chapter 2, we will propose an approach, which uses cointegration

,Kt(z)) are not stationary. Using a two-dimensional random walk leads to diverging prediction
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relations between the components of time series to obtain smaller prediction intervals.

The Renshaw and Haberman Model

Renshaw and Haberman (2006) proposed an extension of the Lee-Carter model by an incorporation
of an additional cohort term to the LC predictor in eq. (1.6). The predictor of the (generalized)
Renshaw-Haberman (RH) model satisfies the equation

Mo = oy + P + g0y, (110)

The predictor is invariant under the following transformation

1 1
y (ax’/gil),xtl) ﬁ;(co)ﬁ’t x) . ((Xx i 61/33(61) e /3(1) ﬁ(l) e (K(l) ¢l )xaﬁi())’@l()’tfx —Cz))>
(1.11)

with real constants ¢y, ¢3, c3 # 0 and ¢4 # 0. The suggested parameter constraints by Cairns, Blake,
Dowd et al. (2009) in order to ensure model identification are

th—X1

2/3(1) 1, ZK(I) 0, Zﬁ(o) Z ye = 0.

c=t1—Xx

These can be imposed by the following choice of parameters

1
NS R YL

nt c=t1—xk

in the transformation of eq. (1.11), where n denotes the number of periods and k the number of ages
covered in the mortality data.

The RH model has been criticized for its slow convergence and the lack of robustness due to high
sensitivity to the choice of the initial parameters, see, e.g., Cairns, Blake, Dowd et al. (2011, 2009) and
Hunt and Villegas (2015). Since the RH model generalizes the LC model, Currie (2016) suggested
using the estimated parameters of the LC model as starting values to overcome convergence issues
which have been also encountered by, e.g., Macdonald, Gallop, Miller et al. (2007). Renshaw and
Haberman (2006) also considered nested models obtained by restricting the age modulating terms

ﬁx , i = 0,1 to constants. Of particular interest, is the submodel
Mox = ax + BN 4y, (112)

which resolves some stability problems due to the simplification /)’,(CO) =11in eq. (1.10), see Hunt and
Villegas (2015) for a deeper discussion on robustness and convergence issues of RH models. The
restricted model with the predictor given in eq. (1.12) will be referred to as the RH model in the
further course of the thesis. Mortality projections of the RH model are obtained by assuming that the
(1)

age-specific effects o, and /3,(C ) remain constant over time, whereas x, ’ and y;_, are modelled by
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univariate ARIMA processes, under the assumption of independence between periodic and cohort
effects. The independence assumption is common in the literature of GAPC models. However, it is
questionable and has been criticized by, e.g., Currie (2012).

Extensions of the predictor function in eq. (1.10) have been proposed in Berkum, Antonio and
Vellekoop (2014) by postulating a predictor of the form

Nex = Ox + /)’,(Cl)xgl) + ,8(2) ) + Prox- (1.13)

Further extensions to multiple cohort terms with predictors of the type
M
Mex = Ox +Z/3() D, 5 pyD
j=N+1

have been considered by Hatzopoulos and Haberman (2011). According to Hunt and Blake (2014),
there was no evidence found in practice for the demand of multiple cohort terms.

The Classic Age-Period-Cohort Model
Another nested model of the generalized RH model, with predictor given in eq. (1.10), is the model
obtained by restricting both age-specific effects to /a’fco) = (1) = 1. This leads to the predictor

Ntx = Ox + KEI) + Vt-x- (1.14)

As Hunt and Blake (2014) and Villegas, Kaishev and Millossovich (2015) point out, despite the fact
that the model of the APC type has been traditionally used by, e.g., Clayton and Schifflers (1987) and
Hobcraft, Menken and Preston (1985), it was Currie (2006) who introduced the particular model
type to the actuarial science. One can show that the response variable #; , is invariant under the
parameter transformations

7% ((xx,KEI),yt_x) > (cxx +¢1 — dox, Kt ) 4 Got, Prx — b1 — ¢2(t—x))
and
Ve (ocx, KEl),yt_x) > (ocx + cl,xgl) - cl,yt_x) , (1.15)

with real constants c;, ¢; and ¢,. One possible set of parameter constraints to ensure identification is

(1) t,/,*xl ty,*xl
Z K 0, > ye=0, > ey =0, (1.16)
c=t;—xg c=t1 =X

where the last two constraints are employed to obtain a cohort effect with zero mean and no linear
trend. To impose the two constraints on the cohort term Haberman and Renshaw (2011) suggest to
use the transformation vy with constants ¢1, ¢, obtained by the regression

Viex = G1+ G2(t — X) + &1y,
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with i.i.d. &, ~ N(0,0?%). Subsequently, the first constraint in eq. (1.16) can be achieved by using
the transformation of eq. (1.15) with

I
Cl—n;Kt .

Comparing the parameter estimation of the RH model and the APC model, which only differ by
the functional restriction of the age-specific term of the latter model to ,(Cl) = 1, we observe a
significant difference of the running time. The convergence time of the parameter estimation for the
RH model is 2 order of magnitudes larger than the parameter estimation time of the APC model.
These convergence difficulties combined with robustness issues make the RH model less appealing

for practical use.

M7 Model

The M7 model is an extended CBD model with additional quadratic age effect and a cohort term
proposed by Cairns, Blake, Dowd et al. (2009). The predictor of the model is given by

Nix = KEI) +(x - 3?)1(52) + ((x -x)* - 65) K§3) + Vx> (1.17)
where X denotes the mean age and 62 = 1/k ¥, (x — X)?, with k being the number of considered ages.

The extension of the CBD predictor leads to additional parameter constraints to ensure identification.
The M7 predictor is invariant under the transformation

v (1 Dk p) o (xt“) + 1+ da(t-X) + s ((1-%)2+62), 67 = ¢ — 263 (1 - %),

Kt(3)+¢3’Yt—x_¢l_¢2(t_x)_¢3(t_x)2)’ (1'18)

where ¢1, ¢, and ¢3 are real constants. Cairns, Blake, Dowd et al. (2009) suggest imposing the
following set of constraints

th—x1 tn—X1 In—x1 )
> ye=0, > ey =0, > Fye=0, (1.19)
c=t1—xi c=t1—xg c=t1—xg

on the cohort term to achieve parameter identification. The intention of the given constraints is to
obtain a cohort term with zero mean and no linear or quadratic trends. Following Haberman and
Renshaw (2011), this can be achieved by the transformation of eq. (1.18) using the coefficients of the
regression of y;_, on t — x and (¢ — x)?% i.e,

Viox = G1+ a(t —x) + §3(t = x)* + &1y,

with i.i.d. error term &;_, ~ A/(0,0%). Note, the first constraint of the set given in eq. (1.19) is sufficient
to reduce the degrees of freedom and already ensures identifiability. Further constraints impose
additional structures on the cohort term y;_, with the purpose to obtain desirable properties, such
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that the resulted series of parameter estimates might be able to be projected using stationary processes.
Cairns, Blake, Dowd et al. (2009) also investigate simpler predictors such as

Hix = KEI) +(x - 5c)x£2) + Piox (1.20)

and

Nix = KEI) +(x - Q_C)KEZ) + (Xe = X)Pi-x> (1.21)
where x, is a parameter which has to be estimated. The predictor of egs. (1.20) and (1.21) are referred
to as the models M6 and M8, respectively. Comparing the predictors of egs. (1.17) and (1.20) reveals
that the model M7 nests the model M6, i.e., M6 is a submodel of M7,

Plat Model

The model proposed by Plat (2009) attempts to combine the features of previous models. Similar
to the Lee-Carter model, it incorporates a static age function a,, which makes it applicable to
larger age ranges. Furthermore, it uses a cohort term with a pre-specified age-modulation ﬂ,(co),
like the APC model, and it uses three age-modulating parameters ﬂ,(cl) =1, ﬂ,(cz) = (x-x),and

;(43) = (X - x)* = max0,(x — x). The predictor function, which will be referred to as the general
PLAT model, is given by

(1)

Mo = o+ 60+ (% - 1)+ (- 2) 5 + s (1.22)

The original model of Plat (2009) targets the mortality rate y , using a log link function as the
canonical link and Poisson distributed death counts D; .. Like many other mortality models, the
PLAT model is not identifiable. The predictor is invariant under the transformations

Vg ((xx, Kt(l), KSZ), x£3), ft_x) > (cxx +¢1— dox + (/>3x2, KEI) + ot + ¢3(t2 - 2Xt),

KEZ) +2¢3t, K§3), Viex — 1 - ¢2(t - x) - ¢3(t - x)z)(l.23)

and

v (cxx, Kt(l), KEZ), K£3), yt_x) > (cxx +e+a(x-x)+ca(x-x)",

KEI) —C1, K§2) — (2, K§3) - C3, Yt—x),

for some real constants ¢y, ¢3, €3, ¢1, ¢2, and ¢3. Parameter identification can be ensured by imposing
the following constraints

th—x1 th—Xx1 th—x1

Zt: Kgl) =0, Z KEZ) =0, zt: K£3) =0, Z Ye =0, Z cy: =0, Z czyc =0.

t c=t1—X c=t1—x c=t1—xk
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The constraints on the cohort term y;_, can be achieved by using the transformation v4 given in
eq. (1.23) with coefficients ¢;, for i € {1,2,3}, obtained by the regression

Viox = @1+ G2 (t = x) + §3(t = x)* + &1y,

with an i.i.d. error &_, ~ N'(0,0%). Note, not all imposed constraints are necessary for identification.
The rationale behind the constraints on y;_y is to ensure that the fitted process will fluctuate around
zero with no linear or quadratic trend. This approach aims to force the process y;_, only to capture
the cohort effects and not just to be a compensation for the deficiency of the age-period terms, see
Plat (2009). The normalization constraints on the period terms Kti), for i € {1,2,3}, can be enforced
by the transformation v, using the constants

Plat (2009) suggests a more parsimonious model if only older ages (above 60) are considered. In that
particular case, Plat suggests that the third periodic factor can be excluded from the predictor. Thus,
Nix = Oy + KEI) +(x - x)ng) + Vx>
is the resulted predictor of that nested model, which is essentially the M6 model with an additional
static age term «a. Since we are interested in mortality modelling of the elderly population, we will

use the reduced predictor in the case studies on Section 1.7.
A modification of the general Plat model, with particular interest of the application to younger
ages, has been investigated by O’'Hare and Y. Li (2012). The paper suggests the following predictor

Mo = @+ 10+ (7= 0x? + (@ -2+ (F-0)) 6D+ pices

where the third age-modulation ((X — x)*)? serves as the PLAT model modification.

We conclude the description of popular GAPC models by providing an overview of the predictors
together with references to the original papers in Table 1.2. In Table 1.3, we give an overview of
suggested parameter constraints associated to these models. Note, the provided approaches to ensure
identifiability are not necessarily unique or minimal. In some cases, there are additional constraints
on the parameter terms in order to employ stationary processes for forecasting. Figure 1.13 provides
an illustration of a structural classification scheme for the introduced mortality models, where the
distinct classification layers emerge by structural forms of the predictor terms, cf., Hunt and Blake
(2014).

Forecasting Procedure of GAPC Mortality Models

Following the presentation of Villegas, Millossovich and Kaishev (2016), we recall that forecasts of
(i)
t >
i =1,...,N, and the cohort term y;_,. The following two-stage procedure has emerged in the

GAPC mortality models are obtained by applying time series methods on the period terms «
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literature. The initial step is to fit a GAPC model and then treat the estimates of period or cohort

terms as time series. The final step is to choose an appropriate time discrete process and estimate its

parameters. This process is then used for forecasting.

kD k™) is to empl Itivari-
PSRRI ploy a multivari

ate random walk with drift. The particular assumption for the dynamics of ; is

The standard time series approach for period terms #; = (

Ke=0+K +Eg], & ~N(0,X), (1.25)

where § denotes the drift term and X the variance-covariance matrix of the multivariate white noise
€}. The approach of eq. (1.25) has been used among others in studies of, e.g., Cairns, Blake and Dowd
(2006), Cairns, Blake, Dowd et al. (2011) and Haberman and Renshaw (2011). For the dynamics of the
cohort term, univariate autoregressive integrated moving average processes have been considered, see,
e.g., Cairns, Blake, Dowd et al. (2011) and Renshaw and Haberman (2006). The common approach
for the cohort y. is an ARIMA( p,q,d) process of the form

Adyc =0 + (/)lAdyc,l + ot qspAdyc,p +ec+ 0181+ + Ogecyg,

where A“ is the difference operator of order d, ¢1,...,¢ » are the autoregressive coefficients and
01, ...,84 the moving average coefficients. §; denotes the drift parameter and ¢ the Gaussian white
noise process with variance o, which is independent of &;. Some concrete approaches for the cohort
dynamics include an ARIMA(1,1,0) for the APC and the RH model and an ARIMA(2,0,0) for the
M?7 and PLAT predictor types, see Villegas, Millossovich and Kaishev (2016). In Section 1.8, we will
examine the cohort estimates on a reference dataset in order to determine whether the assumption
of ARIMA type time series is indeed justified.
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Table 1.2: Overview of proposed predictor specifications in the recent literature.

Model  Predictor Original paper

LC Nix = Ox + ,8,(‘1)1(?) Lee and Carter (1992)

LC2 Nx = Ox + ﬁ,(cl)xt(l) + ﬁ,(cz)xt(z) Renshaw and Haberman (2003)
LC24C  fpx = ax + ﬁ(l)KEI) + ﬁ(z)K(z) + Yix van Berkum et al. (2014)

RH Nix = Ox + ﬁ(l) t(l) + ﬁ(o) Renshaw and Haberman (2006)
APC Nex = Ox + KE ) 4 Vi-x Currie (2006)

CBD Nex = E )+ (x - x)K(Z) Cairns, Blake and Dowd (2006)
M6 Hix = (1) +(x - x);c + Pix Cairns, Blake, Dowd et al. (2009)
M7 Nex = )4 (x —E)xt ((x x)? -6 ) Kf )+ yi—x  Cairns, Blake, Dowd et al. (2009)
M8 Nix = KEI) +(x- E)K(z) + (xc = X)Pi-x Cairns, Blake, Dowd et al. (2009)

PLAT  my=ay+ ) + (- x)xP + (x-x)'.® +y,_,  Plat (2009)

Nex = Oy + K( )4 (x - x)K(z)

> (E-2)*+(E=0) 6+

O’Hare and Y. Li (2012)

Table 1.3: Overview of the suggested parameter constraints to ensure parameter identification.

Model Constraints

G s g _ 5, kD

2 oy, pW - 7o) = >, Y = zox =

Lc+c ¥, pY = Tpia) = =B = Tpie = Sectox Ve =0
RH %, p0 = Skt = S BV =1 Seye=0

PN JO Y Sectx¥e=0 T xCpe=0

CBD -

Mé Yemt-x¥e=0 Xt xcpc=0

M7 Veotx¥e=0  Veopx e =0 Yooy x ye=0

M8 Ye=t-xYc =0

PLAT  ¥,x =0 Yeotex¥e=0  Velpxpe=0 Ty Pyc=0

OL Zt (3) Zc:t—x yt =0 Zc:t—x C)’c =0
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1.5 | Parameter Estimation for Generalized Linear Models

Currie (2016) noticed that many mortality models, in particular, the GAPC models, can be expressed
as generalized linear models or generalized non-linear models. In this section, we provide the
framework for parameter estimation of GAPC models for a general class of distributions, namely the
exponential distribution family. As conducted by the seminal publication of McCullagh and Nelder
(1989) and Nelder and Wedderburn (1972), if the dependent variable of the regression belongs to the
exponential distribution family, then there is a unified procedure to cover those models.

1.5.1 | Exponential Family and its Properties

Suppose Y1, ..., Yy are independent random variables. Let fy. (y; | 0;,¢) denote either the probability
density function or the probability mass function of the random variable Y;. The distribution of Y;
belongs to the exponential family if fy,(y; | 0;,¢) can be written in the form

yifi — b(0;)
ai(¢$)

for some fixed parameter ¢, called the dispersion parameter, and 6;, called the canonical parameter

fri(yi | 01,9) =€XP( +C(yi,</>)), (1.26)

since it primarily determines the expectation. The functions a;(-), b(-) and c(-,-) are functions
specifying distinct members of the exponential family, see, e.g., Table 1.4 for some examples. The
function b is also referred to as the cumulant since it determines the moments as will be shown by
egs. (1.36) and (1.37). The primary purpose of the function c is normalization. For many distributions
!the function a;(¢) has the form

(=2
a,((p) = Wi’
where w; is called the prior weight. Thus, eq. (1.26) takes the form
i0; — b(0;
fri(pi | 0i,¢,w;) = eXp(—y 5 ( )Wi + C(y,',</>,w,-)). (1.27)

Many distributions like the normal, Poisson, and binomial distribution belong to the family of
exponential distributions. For instance, for a Poisson distributed Y; ~ P(A;) the probability mass
function can be written as

Yi
fr.(yilAi) = y—l_,el" = exp (yiln(Ai) - Ai —In(yi!)).
il

For binomial Y; ~ B(n;,p;), we have

i i ni—yi
fr.(yi | nipi) = (y_)P,y (1=pi)"™

1 For example, the Poisson, binomial, proportional binomial, and normal distribution, see Table 1.4
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= exp (y,-ln(lfip’) +n;In(1 - p;) +ln(zl:)),

and for normally distributed Y; ~ N'(y;,0) the density can be written as

N (yi — i)
in(yz | Vz’O') = 702 €Xp (_ 202
2

Hi
Yii—5 1
= exp(% - Eln(Zn(p) - §—¢)

The canonical parameter 6, the dispersion parameter ¢ and the functions a(-), b(+), c(-) for the above
examples are compiled in Table 1.4. Often, the parameters 6; are not of primary interest since for the
intended application, Y; will represent the death counts and there will be as many 6; as observations.
Having as many parameters as observations would lead to a saturated model (see Section 1.6.2).
Instead, one is interested in a lower dimensional parameter space, of parameters Sy, . . .,fk, where
K < N. Let y; denote the mean of Y}, i.e,,

pi=E[Y; | xi],

then the key assumption of generalized linear models, as introduced by Nelder and Wedderburn
(1972), is that the mean y; of the response variable Y; (member of the exponential family) is coupled
to a linear predictor # through a monotone and differentiable link function g, i.e.,

g(ui) = Prxir + ...+ PrXik = 1. (1.28)

Different predictor types of the GAPC family were introduced Section 1.4.2. For mortality models,
the response variable Y; usually represents either the death counts D . or the ratio Dy ,/E; , and
B1,...,Bk represent a combination of static age, periodic or cohort parameters, while x;;, . .. ,x;x are
the corresponding common factors age and period. The expression in eq. (1.28) can be abbreviated
by using a vector notation which leads to

g(ui) = x/ B, (1.29)

where x; is the i-th column of the model design matrix X and g = (f1,...,B8k)T, such that the
model takes the form

n=g(p)=g(E[Y|X])=XB, (1.30)

with i = (11, ... ,qN)T, pu=(pi-.. ,yN)T and Y = (Y1,...,Yy)T. Some models, like the Poisson
model for the death counts, use a slightly more general setting that extends the relation of eq. (1.29)
to

g(pi) = x,Tﬁ + offset;.
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The offset term of the Poisson model, as introduced in eq. (1.4), is the central exposure to risk, i.e., the
average population number of particular age and period of interest. Note also that for the binomial
model, as defined by the random component given in eq. (1.5), the regression is referred to the mean
of the distribution Y; := Xi/n,, with X; ~ Bin(p;,n;). In the mortality modelling setting, X; represents
the death counts and n; the initial exposure to risk. In that particular case of a proportional binomial
random variable Y;, we have [E[Y;] = p; and V[Y;] = M. Furthermore, Y; does also belong to
the exponential family since we have ’

P(Y; = )’i) = ( )P?iyi(l _Pi)ni_niyi

n;
niyi

exp(yiln(lp_}')ﬂn(lpi) +ln( 5 ))

1
niyi

The above expression of the probability mass function satisfies the form of the exponential family
as given in eq. (1.27), with the canonical parameter 0; = In (?i/1 - p;). The other terms are w; = n;,
b(6;) =In(1+e%) and c(y;,¢,w;) = In (W”f}’}l) Note that n; are known (number of exposures to
risk). To distinguish the binomial model from the proportional binomial model these prior weights
are required to be specified while using a software implementation for parameter estimation such

as the R packages stats and gnm. For more details see R Core Team (2015) and Turner and Firth (2015).

The following part provides an introduction to established computational approaches of maximum
likelihood estimation for generalized linear models. The forthcoming presentation is largely based
on the standard reference for GLMs by McCullagh and Nelder (1989) and the books of Dobson and
Barnett (2008) and Hardin and Hilbe (2012).

Before we present the maximum-likelihood estimation algorithm, we observe some properties
of the exponential family and begin with the log-likelihood function. The log-likelihood function
L(6;,¢ | yi) of Y; with density fy,(yi | 0i,¢), as given in eq. (1.26), has the form

L(8| y:) = ”(—259)

where £(0;,¢ | yi) =In fy,(yi | 6i,¢). Under suitable regularity conditions, such that the order of
integration and differentiation can be interchanged, i.e.,

Felyod), ()

0 0
YN -iei’di:f_-iei)di,
5 | P 009)dyi= [ 25yl 0ug)dy
D D
where D is the domain of fy,(y; | 6;,¢), one can show that

E [ai&z(ei,¢ | y,-)] ~0 (132)
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Table 1.4: Parametrization of some distributions from the exponential family. Note that the exponential
family also contains the Bernoulli, Geometric, negative binomial, exponential, gamma, Pareto, Weibull,
Laplace, and the inverse Gaussian distribution.

Distribution 0 ) a(¢) b(0) c(y,9)
normal N(uo) u o? ) %2 ~1In(27¢) - %
Poisson P(A) In(A) 1 1 e’ —In(y!)
binomial B(n,p) ln(%) 1 1 nln(1+e%) In (;)
prop. binomial B(n,p)/n In (%) 1 1 In(1+e%) In (n"y)
and
E [a—zﬁ(ei’ﬁb | )’i)- =-E [(iﬁ(eiﬁb | )’i))z] : (1.33)
262 | 20,
Using egs. (1.31) to (1.33), we can conclude
l—Yi ~ab(0)] =0 (134)
ai(¢) |

and

— 2 () Y- -2b(60)\
_002 AT - 00 A7
]E[ ai(9) ] ]E( a(9) 139

Rearranging egs. (1.34) and (1.35) leads to the following expressions for the mean and variance of Y;
E[Y;]=b"(6) = i, (1.36)
and
V[Yi] = b"(0:)ai(¢). (1.37)

Note that the expectation depends only on the canonical parameter 6;. The second derivative b” (6;)
in eq. (1.37) is usually referred to as the variance function of the GLM and is denoted by V' (u;), since
it can be expressed as a function of the mean y;. From eq. (1.36), we have

8(4,-

30, - V(i) (1.38)

For the forthcoming discussion of different computational approaches, it will be important to
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distinguish between canonical and non-canonical link functions. We say that the GLM has a canonical
link function if

71i = 61‘,

holds, i.e., if the canonical parameter 6; coincides with the predictor #;. Alternatively, one could
define the canonical link as

g=(v")".
This is indeed equivalent, since
ni = g(pi) = g(b'(6:)) = 0;.

Thus, from Table 1.4 we can conclude that for a Poisson distributed response variable the canonical
link corresponds to g = In, and for a normally distributed response, we have g = id, i.e., the identity
function as the canonical link. The canonical link of the proportional binomial response variable,
with b(6) = In(1 + e?), is g = logit, i.e.,

g:yiHln( ad )
1—‘[4,'

The exponential family has the useful property that the log-likelihood function £ is concave

in the canonical parameter 6. This guarantees the uniqueness of a maximum likelihood estimate.
Note that the concavity in the canonical parameter 6 does not imply concavity in the parameters
B1,...,Pk. One advantage of using the canonical link functions, where 6 =  and 7 is linear in 3,
is that the canonical link preserves concavity of the log-likelihood function for the parameters of
interest. GLMs with non-canonical link functions are therefore computationally more challenging.

The choice of the link function as part of a GLM is not limited to the canonical case. In the
further course, we will demonstrate that a non-canonical link, such as the logit link for a Poisson
response variable, might lead to a better model fit. The objective of the next part is to present two
computational approaches for parameter estimation for GLMs. These approaches are both based
on the Newton-Raphson (NR) method. However, the algorithms involve different matrices in the
iterative scheme. One uses the Hessian matrix, which is closely related to the observed information
matrix, while the other involves the Fisher information matrix. These both approaches turn out to be
equivalent for a canonical link, as will be shown below.

We begin by assuming independent random variables Y, ...,Yy from the exponential family of
the same distribution type. Our objective here is to estimate the parameters of the linear predictor
B1,...,Pk, rather than the parameters of the exponential family 61, ... ,0x. The joint probability
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density function of Yy, ...,Yy is given by

yifli —b(6;)
ai(¢$)

The log-likelihood function based on the independent observations y;,...,yy is thus given by

N
fr(y16.8) = fri,..vy(y1 - yn | 01, .,08,¢) = HeXP( + C(J’i,</>))-

i=1

L£(0,0|y1,....yn) =Infy(y1,....yn | 0,¢)

N
= Zlnfyi (il 0i,¢)

5o (2i0:i-06)
_1-=1( ai(¢) " U“‘“)- (1.39)

The above expression is the sum of the individual log-likelihood functions as given in eq. (1.31).
To obtain the maximum likelihood estimates of the parameters 8 = (B1,...,Bx) ", the GLM log-
likelihood function needs to be maximized with respect to 8 given the observation samples y;, ..., yn.
Due to egs. (1.30) and (1.36), the log-likelihood of the GLM is a function of B. The first derivative of
the log-likelihood function is called Fisher’s score function or simply the score function and is denoted

by

T
oL oL ) (1.40)

(m_ﬂ GE”ﬁ@

To obtain the maximum likelihood estimator of 8, we need to solve the score function, i.e., we wish
to find some [3 such that s( ﬁ ) = 0 holds. The standard algorithmic approaches for ML estimation
are Newton-Raphson type algorithms that use the first terms of the Taylor series to successively
approximate the roots of the score function. Taylor series expansion of the score function at  — 8 ©)
is given by

0=5(Bi”B)

K 9s(p (0) /3(0)) ©
+Z aﬁ] (Bj - ﬁ )

=1
Lo $ 8 ) © )
D e CRURICET

1 K& E P, ) ) ) 0)
+§lekzuzl 0p;9Bxk asz (Bi=B; " )(Br =By )(Bi—=py ")+

By discarding all super-linear Taylor terms, we obtain the following approximation

0~ s(B©) + (’; BY) (5 g,
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Rewriting that expression leads to

This approximation may be used iteratively, i.e.,
-1
as(/s“’))
(r+1) _g(r) _ | 222/} ¢g(n) ,
B B ( 26T (B")

for r € N and reasonable starting vector ﬁ(o), see Hardin and Hilbe (2012). The partial derivative in
the iterative expression is the Hessian matrix of the log-likelihood function £ which is related to the
observed information matrix, denoted by 7 (), through

as(p) _ L) _

==-J(B) (1.41)
287~ 9papT (B)
or in matrix component notation, through
0*L
Jik ===
0B

1.5.2 | Newton-Raphson and Fisher Scoring Algorithm

Analytical solutions of GLM likelihood equations are not available in general. Therefore, they have
to be obtained by iterative algorithms. Let (") be the estimate of 8 after r iteration steps, then the
r + 1 update B*1) of the Newton-Raphson method is defined by

B -4 (90 55, 0

The Newton-Raphson algorithm, which depends on the observed information matrix can face
some difficulties. As discussed in Hardin and Hilbe (2012) a problem appears if for some r € IN
the matrix of second partial derivatives J ( ﬁ(r)) is not positive definite. This can be avoided by
replacing the observed information matrix 7 (f8 ) by its expectation. That particular variation of
the Newton-Raphson method was first suggested by Fisher (1935) and is known as the Fisher scoring
method. The expected information, or the Fisher information, is defined as the second moment of
the score function. Under some regularity conditions ! on the log-likelihood function, the Fisher

1 If fy(y | 0) is twice differentiable in 6 € © for all y € supp(f) almost everywhere and % I fr(y| 0)dy =
2
I o5 fr (v 1 0)dy.
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information can be expressed as

e
opop

Given that expression and eq. (1.41), we have the relation

Z(B) =E[T(B)]

between the Fisher information and the observed information. As indicated above, contrary to the
observed information, the Fisher information Z() is positive semidefinite on the entire parameter
space. The Fisher scoring, as a variation of the iterative approximation, takes the form

B = g0 (E [j(lgm)])‘l S(BO)
= PO+ (Z(B)) 7 (), (143)

In the following, we verify that the Newton-Raphson method and the Fisher scoring method
coincide for GLMs with a canonical link function and derive an alternative representation of egs. (1.42)
and (1.43), known as iteratively reweighted least squares algorithm (IRLS), see, e.g., Charnes, Frome
and Yu (1976). Following Hardin and Hilbe (2012), we start by the calculation of the partial derivative
using the chain rule for differentiation. Thus, we have

(50) () ) G5

yi—b'(0;) 1 dui
( ai(¢) ) (V(#i)) (a_r],) (xij) (1.44)

ac
aﬂj i

=

Il
—

e

l
—

1

N
Yi— Ui a‘uz
_ “Hi (1.45)
; ai( )V(I/‘ ) 371,
xij
_ (1.46)
; a:(¢)V(Mz) g (i)’
where eq. (1.44) follows since
aﬁ,- eq. (131) 0 )’igi - b(@l) ) Vi b'(@,)
o (M o) <2
% 1 eq. (1.38) 1
ST V(wY
ou; B_g, V(i)
01 eq
OMi eq. (128) (Bixin + ... + BrxiK) = Xij. (1.47)

dB; 8[3]
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Equation (1.45) is obtained by substitution of eq. (1.36) in eq. (1.44) and for eq. (1.46) we used the
following relation between the predictor #; and the mean y;

=g (), (1.48)
such that
i _ 1
oni  g'(wi)

Note, for the canonical link, i.e., #; = 0;, we have a simplification of the chain rule

90; (9ms) _ (90:) (9m) _
oui J\on; | \oui J\o6;)

or alternatively,

1
Vi(ui) = :
7 g (i)
Thus, eq. (1.46) simplifies to
oL Xoyi—u
—_ = xl
9B, ; ai(¢) "’

We continue with the derivation of the observed information matrix by using eqs. (1.45) and (1.47)
and applying the chain and the Leibniz rule.

PL
9P9Px

I N Mzau ]
B ;ai(@ aﬁk)[V(M on;

(Gaalil iz
a1(¢) oui on; P ) | V(ui) o V(%) oni B ) L oni ]|

Sl )
= ai(¢) | \omi a#z V() |V oz ) |7

Ty =~

|
= :Mz

o 1 ou; BV(/A) 1 0% u; -
+(ﬂt yl)(V(yi)z (ai’li) a//li V(#i) ( 811% ))]X:]’Qk (1.49)
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Using that result, we can conclude that for GLM with a canonical link we have

__32£(l;):_ 0’ L(B) _
J(B) = 9pop” ]E[aﬁE)ﬁT] Z(B), (1.50)

i.e., the Newton-Raphson method and the Fisher scoring coincide. This can be obtained by the
following. First, for the right-hand side, we have

L
=

eq. (1.49) N ; 1 oui 2
_EEM@L((%)

1 oui \_ oV (u; ) 1 0% u;
+M( V(pi)? (3’71‘) opi V(i) ( on; ))xijxik]

=0
N 1 ( ou; )
S XiiXik- (1.51)
; 1(¢)V(xu ) on; g
For the left-hand side of eq. (1.50) and the canonical case where 6; = 7;, we have
ol 3#1 q. (138)
— Vi(u;). 1.52

Thus, the last term in eq. (1.49) vanishes, i.e.,

\2 . 2,
V(ui)* \oni)  ouwi V(i) \ on
This follows by using eq. (1.52) and the substitution of
82 i 0 0 i 0 A% i 0 i oV i
Thi L 000 9y M) Ot OV,
n; 817,- 817,- 817,- a[/lz a7’]1 a.“z

in eq. (1.53). Therefore, we conclude that for a canonical link eq. (1.49) simplifies to

™M=

Il
—

TS a(@)V(u) \oni ) TR

1
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and therefore both iterative methods of egs. (1.42) and (1.43) are equivalent. To obtain the iterative
weighted least squares representation of the Fisher scoring algorithm, recall that using the iteration
of eq. (1.43), the Fisher information matrix is evaluated at the previous estimate. Let B(’) be the
estimate of B after r iterations and

i = (B =g (<10)

the corresponding estimate of the mean y; = [E[Y;]. Furthermore, recall that the involved Fisher
information matrix evaluated at 8, with components given in eq. (1.51), has the form

T

N X;x;
Z(B) = — . 1.54
=2 V() &) (154
Moreover, using eq. (1.46), the score function s(f) can be expressed as
N
yi — #i(B) Xi
= . 1.55
)= 2 oV B (B (159
A slide transformation of the Fisher scoring equation of eq. (1.43) to
IR = (BT +5(B), (156)

and a subsequential substitution of the expressions of eqgs. (1.54) and (1.55), leads to
I(ﬁ‘(r) )ﬁ(r%—l) _ XT W(r)Xlg(r+l) ,

where X is the design matrix with dimensions N x K and W) isan N x N diagonal matrix with

(r) _ 1 (g_;)z

elements

n
e ) )y VT v
For the right-hand side of eq. (1.56) we get
Z(BBD + (M) = xTwz("), (1.58)
where Z(") is a vector called the working variable with components
20 =B+ g () - ") (159)

=0+ & (@) (i - a)

fori=1,...,N. Combination of egs. (1.58) and (1.59), and a rearrangement of the expression for
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B+ leads to

. -1
BU = (x"wix)  xTwnz(), (160)

Note that eq. (1.60) has the form of the normal equation of a weighted least squares regression.
In other words, the r + 1 iterative estimate 3"*!) minimizes the weighted least squares objective
function

N 2

5wl (2075
For a consistent proof of the equivalence of the Fisher scoring and the iterative weighted least squares
algorithm, see McCullagh and Nelder (1989). The R package StMoMo which we employ to estimate
the parameters of generalized age-period-cohort models, includes a method of the gnm package,
which contains an implementation of the iterative weighted least squares eq. (1.60).

For the ML estimation, the iterative updating procedure of eq. (1.60) continues until a termination

criterion is met. This can be the relative changes of the estimates

-0
o] =

or the ratio of the score function and the estimated standard deviation of the coefficients

B _ s
\/ Zii (3(r))

foralli=1,...,K, which is the default criterion of the gnm package.

Remark 1.5.1 (Weight matrix W and working variable Z for the Poisson model with canonical and
non-canonical link function). In the following course of the thesis, we will estimate GAPC models in a
Poisson setting. We therefore derive the precise forms of the weight matrix W (") and working variable
Z(") for the canonical link function g = In and a non-canonical link function g = logit, respectively.
Recall, in the Poisson setting, we have Y; ~ P(u;) and E[Y;] = V[Y;] = p;. Moreover, a;(¢) = 1
and for the variance function we have V = id. The canonical link g = In yields g’(y;) = 1/u;. Thus,
from eq. (1.57) we can conclude

W - ! 5 = "
ai(o)v (a”) (¢ ("))

and

27 =5l B0+ ¢ (1) - 7))

TR0 2y
! ~ (1)
Ui
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Switching from the GLM notation to the notation of mortality models leads to wi(l.r) = d l.(r) and

Zi(r) = xl.T/?(’) +d;f di(r) — 1, where d; are the observed death counts and cii(r) are the fitted death
counts after r iterations. For the non-canonical link g = logit, the corresponding weight matrix is
given by

wi) =" - 1), (L61)

since
1

g(#i)=—#i(1_#i)-

For the working variable Z (r), we obtain

Vi —#Er)

w1 -

Using the notation of GAPC models and the relation of eq. (1.48), then eqs. (1.61) and (1.62) can be
rewritten as

Z0 = TP+ (1.62)

5 di”

w. = —->
T (et

and

Z,(r) =x{ B + (1 + e"iTﬁ(r)) (;(li) - 1) .

Remark 1.5.2 (Newton-Raphson versus Fisher Scoring). Summarizing the above discussion on the
iterative algorithms, it can be noted that the Fisher scoring algorithm is a modification of the Newton-
Raphson algorithm, where the observed Fisher information 7 () is replaced by the expected
Fisher information Z (). The crucial difference between those algorithms is that, in general, 7 ()
depends on the observation. Unlike for the expected Fisher information Z(f), the dependence on
the observation might not ensure 7 (f) to be positive definite. Knight (2000) points out that it is
difficult to make general statements about the performance of both algorithms. However, according
to Knight, the Newton-Raphson algorithm often converges faster if both algorithms converge, but
the radius of convergence of the Fisher scoring algorithm is often larger. As illustrated above, the
Newton-Raphson algorithm and the Fisher scoring algorithm coincide for generalized linear models
with a canonical link function. For non-canonical link functions the concavity property of the
GLM log-likelihood function does no longer hold in general. In that case, there is no guarantee
for numerical methods to converge to the global maximum. Therefore, further techniques, e.g.,
perturbations of the starting points are required to get initial estimates sufficiently close to the global
maximum. We have also illustrated above that solving the Fisher scoring algorithm is equivalent
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to solving a sequence of weighted least squares problems. For a detailed discussion on the choice
between the Newton-Raphson algorithm and the Fisher scoring, we refer to Efron and Hinkley
(1978).

1.5.3 | Asymptotic Properties of MLEs

Under quite general regularity conditions, we have strong consistency and asymptotic normality of
the maximum likelihood estimator f of B, i.e.,

Py = B
and
VN(By-B) = Nc(0.27'(B)), (163)

where N is the sample size. For proofs on consistency and asymptotic normality and more details on
conditions, in particular, for the GLM framework with canonical or non-canonical link functions,
we refer to Fahrmeir and Kaufmann (1985). The asymptotic covariance matrix for the estimator in
eq. (1.63) is the inverse Fisher information

Z(B) = Cov(s(B)) = E [MM]

op  op”

Note that Z(f) depends on the unknown parameters . Common practice is to replace the unknown
P by the estimated value 8 and using

XijXik

. N
Z,;(Bn,N) = L ; (1.64)

NS ao)v (i) (g (1))

as the approximated covariance matrix of the estimator. Substituting the weight components of
eq. (1.57), reduces eq. (1.64) to matrix expression

7=xTWXx.

The asymptotic standard error estimator se(3;) for parameter f8; can be obtained as the square root
of the corresponding diagonal element of the inverse Fisher matrix, i.e.,

se(Bi) = /I =/ (XTWx) ',

using the estimated weight matrix of the final iteration step of the IRLS procedure W, with components
w; given by eq. (1.57). Note, in the special case of a GLM with a multivariate normally distributed
response variable and the canonical link (identity function), the weight matrix is constant and
coincides with the identity matrix. Furthermore, the working variable Z; coincides with the original
response variable Y; and the IRLS converges after the first iteration step. The asymptotic distribution
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5 . .. . . . -1 .
of B is multivariate normal with the covariance matrix o (X X ) . This is a well-known result for
standard linear regressions with normally distributed response variables.

1.6 | Hypothesis Tests, Goodness-of-fit Measures and Model Selection Criteria

In this section, we provide a brief introduction to some common tests of statistical hypothesis
and goodness-of-fit measures which will be used in the forthcoming case studies to assess and
compare different GAPC models. First, we will consider the Wald test, the likelihood ratio test,
and the Lagrange multiplier test for hypothesis testing. Then, we will discuss the deviance statistic
as goodness-of-fit measure and provide the concrete forms for Poisson and binomial distributed
response variables. Finally, we briefly present information bases criteria for model selection and
discuss different types of residuals, which are used to detect model misspecifications and are therefore
of key importance for model assessment.

The following presentation is based on Liitkepohl (2007) and Rodriguez (2008). More details and
proofs of the asymptotic properties of the involved statistics can be found in Knight (2000).

1.6.1 | Wald Test

Generally, regression modelling encompasses several procedures for model selection and validation.
In particular, one is interested in determining the significance of particular parameters by performing
statistical tests. By omitting non-significant coeflicients from the regression one obtains a more
parsimonious model. Consider a hypothesis test of the form

Ho:B=P, vs. Ha:B;#P,

for some fixed B, and an asymptotically normal estimator B = (B1,....fx), then the Wald statistic,
defined by

Tvzv = (l; - ﬁo)T%}l(l? - ﬁo))

is approximately chi-squared distributed with K degrees of freedom, where X jis the non-singular

asymptotic covariance matrix of f. If the objective is to test the significance of a single parameter, say
B, with the hypothesis pair

H():ﬂjzo VS. HAIﬂj¢0,

then commonly the Wald statistic T%, is replaced by its square root. This leads to the statistic given
by the ratio

A

w = b
se(B;)
Remark 1.6.1 (t-value & z-value). In statistical software, the test value of the Wald statistic is either
denoted as the t-value or z-value. The reason for the different notations is the following. For ordinary

, (1.65)
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Gaussian regression, the standard error of §;

5 -1
A _ 2 T
se(fi) =1/0°(X'X) ..
(B -/ (xx)’
depends on an unknown variance o2. In practice, o

based on the residual sum of squares, see Rodriguez (2008). Under the null hypothesis, the resulting
statistic then follows asymptotically a Student-t distribution with N — K degrees of freedom. In the

is replaced by an unbiased estimator ¢ which is

other case, where o2 is known, the statistic Ty follows asymptotically a normal distribution, if the
null hypothesis holds. This is also the case for the Poisson and binomial regression models, where
the variance is a function of the expectation which does not depend on an additional free parameter.
Thus, when the Wald statistic is normally distributed, then the test value is denoted by the z-value,
and in the other case, where the statistic is Student-t distributed, the test value is denoted by the
t-value. In order to decide whether to reject the hypothesis Hy at the level a € (0,1), we need to
compare the absolute value of the test with the (1 — «/2)-quantile of the corresponding limiting
distribution. For the Poisson, binomial, or Gaussian regression with a known variance, a size « Wald
test rejects Hy when |Tw| > z,_q/5, Where z;_,, is the 1 — «/2-quantile of the standard normal
distribution. For the ordinary Gaussian regression with an unknown variance, the « Wald test rejects
Ho when |Ty| > t,_y 5 N—k> Where t;_y 5 y_k is the 1 — a/2-quantile of the Student-¢ distribution
with N — K degrees of freedom.

In summary, whether a t-test or z-test is used for testing significance of individual parameters of
a GLM depends on whether the dispersion parameter of the exponential family is known or has
to be estimated. For large sample sizes, the inference of both tests tends to correspond since the
Student-¢ distribution is asymptotically normal with growing number of degrees of freedom. The
Wald statistic can also be used to express the confidence interval for j- The following interval

C=[Bj—21_as25e(B)).Bj + 21-as2 Se(B))] (1.66)

contains the true parameter f3; with the confidence level of 100(1 — a)%. As Wasserman (2013)
points out, the size « Wald test rejects Hy : 8; = 3; versus Hy : 8; # ; if and only if ; ¢ C, where
the interval C is given in eq. (1.66). Thus, testing the hypothesis is equivalent to checking whether
the confidence interval contains the null value. Finally, it should be noted that the Wald test can
also be used for testing joint significance of model parameters, i.e., testing Hy : B; = 8; = f; = 0, or
jointly multiple hypotheses, e.g., testing M hypotheses on K parameters by Hy : M = m versus
Hy : MB + m, for some M x K matrix M and M-dimensional vector m. If Hy : M = m is true and
if 3 P the consistent estimator of the covariance matrix, is invertible, then the corresponding Wald
statistic
N(Mpy - m)" (MEMT) " (MBy - m) >

follows asymptotically a chi-squared distribution with M degrees of freedom. For more details on
this topic, see, e.g., Harrell (2015).
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Remark 1.6.2 (p-value). Checking the test statistic T of an « sized test with critical values ¢, gives
only a binary type information, which is, either to reject Hy or to retain Hy. If a test rejects Hy at
level a, it will also reject Hy for all higher levels & € («,1). The smallest level at which Hy is rejected
based on the available observation (x1,...,xy) is also known as the p-value, i.e.,

p-value = inf{a : T(x1,...,x5) € Ry}

where R, is the rejection region of the test of size a. As Wasserman (2013) points out, for a size « test
of the form

reject Hy: 0 € @9 ifandonlyif T(Xi,...,Xn) > ca»

the p-value coincides with the probability, under Hy, of observing a test value more extreme than for
the available observation. More precisely,

p-value = sup Py [T(X,...,Xn) > T(x1,...,%n)].
96@0

The p-value can be seen as a measure of evidence against the null hypothesis. The smaller the p-value,
the stronger the evidence against Hy. On the other hand, a large p-value does not necessarily support
the null hypothesis, since it can also occur if Hy does not hold, but the power of the test is too low to
detect that.

1.6.2 | Likelihood Ratio Test

Another important type of statistical tests is the so-called likelihood ratio test (LR). The idea of the
LR test is based on the comparison of the maximized likelihoods of nested models, these are models,
where one model can be obtained from the other by imposing some constraints on the parameters.
For instance, let ©, be the parameter state space of the restricted model (submodel) and ® the state
space of the larger model, i.e., ®, c ®. The simplest example of nested models is where the submodel
emerges from the larger model by restricting some parameters to zero. In the following, we consider
tests of the form

Hy:0€0, VS. Hp : 0p € O\0,. (1.67)
Let y = (y1,...,yn) be a sample of size N and

sup L(0,y) = L(0e,.y) (1.68)
0<O,

be the maximized likelihood function of the submodel, where é@)r denotes MLE of 0, under the
restrictions stated by the null hypothesis. Let further

supL(0,y) = L(06,y) (1.69)
0c®
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be the maximized likelihood function of the unconstrained model with the MLE 6. For the ratio of
egs. (1.68) and (1.69)

A — L(é(ar’y)
L(0e.y)

we have A € [0,1). The lower bound of the interval follows from the non-negativity of likelihood
functions, and the upper from the fact that for nested models the maximized likelihood of the
submodel is always smaller than the maximized likelihood of the full model. Note that a low A
indicates that the observation of a particular sample is far less likely under the submodel than under
the full model. Whereas, A ~ 1 indicates that the observation under the submodel is almost as likely
as under the full model. The likelihood ratio test is based on the statistic A{r defined by

ALR :=-2InA.
Thus, we have

Mg =2InL(6g) -2InL(0e,)
=2(L(6e) - L(b6,)) (1.70)

where £ denotes the log-likelihood function. Under Hy, as stated in eq. (1.67), and some suitable
regularity conditions (see, e.g., Knight, 2000, Theorem 7.5), we have

D
Mg = Mr(Y1, -5 YN) = X (L71)
where the number of degrees of freedom, , is the difference of the state space dimensions, i.e.,
x = dim(®) — dim(®,). Usually, submodels are constructed in that way that the number of degrees
of freedom is simply the difference of the number of parameters. The likelihood ratio test rejects the
null Hypothesis on level « when

MR(Y15-5IN) > Xei-a (1.72)

where y% | _, denotes the 1 — a quantile of the chi-squared distribution with x degrees of freedom.
In terms of number of parameters, there are two extreme cases of statistical models. The first is the
so-called saturated model, which has as many parameters as observations. On the other side the
null model in regression analysis includes only one parameter corresponding to a constant factor.
The main purpose of considering the null model is to dismiss the null hypothesis that all regression
parameters but one are zero, which would imply that the best description of the data is obtained
by the mean. Considering the saturated model on the other hand, with as many parameters as
observations, does not yield any simplification. However, the concept of a saturated model as the
largest reasonable model is useful for goodness-of-fit analysis of any model of interest.
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1.6.3 | Lagrange Multiplier / Score Test

Another statistic for hypothesis tests is based on the score function and is therefore called the Score
Test, or alternatively the Lagrange multiplier test (LM). The LM test statistic for testing a hypothesis
of the form as in eq. (1.67) is given by the quadratic form

Ay =s(0e,)"Z(86,) "s(b6,),

where s(-) denotes the score function (see eq. (1.40)), Z(-) the information matrix and 0A®r the
maximum likelihood estimate under the restricted model ®,. Under the null hypothesis Hy : 0 € ©,
and some regularity conditions, the Ay statistic is asymptotically x% distributed, see Liitkepohl
(2007).

Note that although the three introduced tests have equivalent asymptotic distributions under
the null hypothesis, they might have different small sample properties, see, e.g., Liitkepohl (2007).
Our choice among the tests will be based on the objective of the application. For the comparison of
nested GAPC models that differ by categorical effects, e.g., models with a cohort effect vs. restricted
models without a cohort effect, we will use the LR statistic. For significance tests of particular ages,
cohorts or other predictors, we employ the Wald test.

1.6.4 | Deviance Statistic for the Exponential Family

A special case of the likelihood ratio statistic, as provided in eq. (1.70), is to consider the saturated
model as the unrestricted model and compare it to the model of interest in order to determine how
appropriate the proposed model fits the data. In that particular case, the likelihood ratio statistic Ar g
is called the deviance and is denoted by D.

The objective of the following is to derive the deviance statistic for the exponential family and to
show how the likelihood ratio criterion for the comparison of nested models can be expressed in
terms of the deviance. Let ® denote the model of interest and @ the saturated model. Further, let
éi denote the estimated canonical parameters and jI; the fitted values under the model ®, where
pi= b’(éi) (see eq. (1.36)). Alternatively, let éi and /i; denote the corresponding estimates under the
saturated model @;. Recall, the log-likelihood function for the exponential family is given by

_ N ini—b(Gi)
E(el’(p’y’) ai((/))

Thus, the likelihood ratio criterion applied to those models leads to

+c(yir$).

AMr=2(L(0)-L(0))

_ zi yi(0; - 0:) - b(6;) + b(é,-).

1.73
a($) (173)

As noted before in Section 1.5, for the distributions of interest, we have a;(¢) = ¢/w; with known
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prior weights w;. Using that simplification, we can rewrite eq. (1.73) as
N ~ A ~ A
$pAir =2 wi (yi(6i - 0;) - b(8:) + b(6))) - (1.74)
i=1

The right-hand side of this expression is called the deviance and is denoted by D(y, ). The deviance
can be seen as the generalization of the residual sum of squares. With Table 1.4, it can be easily
verified that the deviance for the normal distributed response variables is indeed given by D(y,f) =
YN (yi - f1i)?. Since GAPC stochastic mortality models employ Poisson and binomial distributed
response variables, the corresponding deviances are derived in the following. Recall that for the
Poisson distribution we have, 8; = In u;, b(6;) = €%, a;(¢) = ¢ with ¢ = 1 and prior weights w; = 1.
Thus, the deviance is given by

N
D(y.p) =2;wi (yi(6: - 0;) - b(0:) +b(6))) (1.75)

Note that for the saturated model, the means y; = b(8;) are estimated by the corresponding
observations y;. Alternatively, for the binomial distribution, we have b(8) = nln(1 + ¢?) and
a(¢) = 1, such that 6; = (b’)"!(y;) and 0; = (b') ' (&), and thus

u ] ni —Yi
D(y.@) =2Z(yi1n(%)+(”i—yi)ln(n 4 ))

i=1 i i T M

1 1

For both, the Poisson and the binomial distribution, the dispersion parameter is ¢ = 1 and therefore
we can conclude from egs. (1.71) and (1.74) that for large sample sizes the deviance is approximately
chi-squared distributed with N — K — 1 degrees of freedom, where N is the number of observations
and K the number of parameters of the proposed model ©.

To see that the likelihood ratio test can be expressed in terms of the deviance, observe that for the
increasing model setting, e.g., ®, c ® c Og, we have

Mr(©,,0) =2(L(8e) - L(b6,))
=2(L(8o,) - L(8o,)) ~2(L(80,) - L(66))

_ D(y.pe,) - D()’yﬁ@)‘
¢

In the forthcoming numerical case studies, we will only consider distributions where ¢ is known,

like the Poisson or the binomial distribution (¢ = 1). Thus, in order to test Hy : § € ®, versus
Hy : 0 € ©\0,, we follow the condition of eq. (1.72) and compare the difference of the deviances to
a corresponding quantile of a chi-squared distribution.
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1.6.5 | Information based Criteria for Model Selection

As we have seen above, the likelihood ratio test provides a method for model selection of nested models.
The LR method is based on the asymptotic distribution of the test statistic and does not directly
account model complexity. Alternative approaches for model selection, of not necessarily nested
models, are established in terms of penalized likelihood functions. A well-known representative of
that class is the Akaike’s information criterion (see, Akaike, 1973)

AIC = -2L(jie | y) + 2K (1.76)

The criterion is based on the maximum likelihood estimate under model ® and an additional
complexity penalizing term of 2K, where K = dim(®). Another penalized maximum likelihood-
based measure of goodness-of-fit is the Bayesian information criterion (see, Schwarz, 1978)

BIC = -2L(fig | y) + KInN, (1.77)

where the penalization term incorporates both, the model complexity K and sample size N. Equa-
tion (1.77) shows, that for N > 8, the Bayesian information criterion penalizes the model complexity
higher than the Akaike’s information criterion. Both criteria are used for comparison of competing
statistical models, where models with lower values are preferable over those with larger values. Other
information based criteria will be introduced in Section 2.3.1.

1.6.6 | GLM Residuals

Residuals are important for GLM assessment and diagnostic purposes. The accuracy of the model
fit can be analysed with respect to all components of a GLM, namely, the choice of the response
variable distribution, the linear predictor, and the link function. Possible weaknesses of a model
can be identified through residual patterns. In general, residuals measure the deviation between
the observed and the fitted values. In the following part, we will present the definition of deviance
residuals which are a generalization of raw response residuals used for Linear Models, see Pierce and
Schafer (1986) for more details and an overview of further alternative approaches to residuals for
GLMs.

The raw response residuals are primarily used for diagnostics of LMs and are defined as the
difference between the observation and the fitted value

In GLMs, however, the variance of Y; depends on the covariates x;. Therefore, the raw response
residual R would be an inappropriate choice since it does not cover heterogeneous variance structures.
That issue can be avoided by using Pearson residuals

PP YT B i=1,....N,

LV

as scaled modifications of the response residuals, where V (-) is the variance function of the GLM
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(see eq. (1.38)). In the forthcoming case studies we will employ deviance residuals which are usually
preferred over Pearson residuals due to their properties (see Hardin and Hilbe (2012)). The deviance
residuals are defined by

r? = sign(y; — ﬁi)\/&a/,-, i=1,...,N, (1.78)

where dev; corresponds to the partial deviation of the i-th observation. By using eq. (1.75), we have
&e\V,' = Wi (yl(é,—é,)—b(é,)-‘rb(é,)) (1.79)

as individual contributions to the deviance for a response variable from the exponential family. From
the definition of eq. (1.78), we see that the total deviance satisfies

D) - 3 (1F) - L e

i=1

For Poisson distributed response variables, we conclude from eq. (1.79) and Table 1.4 that

T o |2 ifyi=0
ev; = z(yiln(%)—(yi—ﬁi)) otherwise.

For the particular forms of (Te\vi for the binomial and other distributions, we refer to Hardin and
Hilbe (2012, Table A.11).

The StMoMo package, which will be used for a comparative case study of several GAPC models
(see Figures 1.16 to 1.24), employs a standardized form of the deviance residuals. These standardized
deviance residuals are defined as

. ‘ N - K) dev;
ry = sign(yi — fu;) (N _K) dev; D(y')ﬁ') , (1.80)

where D(y;,4;) is the total deviance, N the number of observations and K the number of model
parameters. The standardized deviance residuals are the most commonly used residuals for GLM
assessment. It is worth noting that for normally distributed response variables, the introduced
generalizations, such as the Poisson and the deviance residuals, coincide with the raw response
residuals rX.

1.6.7 | Notations for GAPC Models under the GLM Framework

In this section, we leave the general notation of the previous sections and consider the concrete
quantities which are required for stochastic mortality modelling. As presented in Section 1.4.3, the
key quantity of interest in mortality modelling is the death count D; , at period t and individuals
aged x. As in Villegas, Kaishev and Millossovich (2015), the first component of the GAPC model
determines the distribution of the discrete random variable Dy ., which takes the role of the response
variable within the GLM framework. As previously presented, some plausible distributions for Dy,
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which have been primarily considered in the literature, are the Poisson and the binomial distribution,
ie., Dyy ~ Poi(pexEf ) or Dy ~ Bin(gex, Ey ), where Ef , or EJ . denote the known central or
initial exposures to I'lSk, respectively. The aim of the GAPC models is to regress a particular function
of the expected death count on some linear combination of covariates, such as age, period, and cohort
terms. In case of a Poisson distributed death counts, the force of mortality y; x, as the unknown term
of E[D; ,] = psxEf , is modelled by

x=gum0=g(EU%A),

c
Et,x

where g denotes the link function and 7, a general age-period-cohort predictor function of form

_%+Z@%@ By, . (1.81)

The terms ay, B in eq. (1.81) account age-related effects, whereas «;, y¢_ represent periodic and
cohort effects, respectively. An overview of popular predictor functions is provided in Table 1.2. The
form of the log-likelihood function for the Poisson and the binomial model follows directly from the
general exponential family log-likelihood function, as given in eq. (1.39). Thus, we have

ﬁ(dAt,x | dt,x) = Z (dt,x In ﬁt,x - Cit,x —In (dt,x!)) (182)
t,x

for Poisson distributed death counts, and

dt E?,x _dt,x Eo’x
E(dtx|dtx) Z(dtxln(E X)+(E dt’x)ln(To)x +(d:,x) )

t,x

for binomial distributed death counts, where d, , denotes the observed death counts of individuals
aged x at period ¢, and d, , denotes the model prediction obtained by MLE. The predicted numbers
of deaths d, , are related to the estimated model parameters through

N . .
e 5 s 00495,
in the Poisson case, and through
j a0 2(D) , 40)
drx = Epelrn = Elcg” (a + 2B+ By y)
i=1

in the binomial case, where ¢! denotes the inverse of the link function g. For goodness-of-fit and
misspecification analysis of GAPC models, standardized deviance residuals will be used. Rewriting
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the general notion of standardized deviance residuals, as provided in eq. (1.80), leads to

[(N - K) dev(t,x)
D(dt,xadt,x)

rEx = Sign(dt,x - fjt,x) > (1.83)

where the individual contributions dev(¢,x) to the total deviance D(dy ,d; ) = Yix dev(t,x) are
given as

2dt,x ifdt,x =0

dev(t,x) = des \ ,
2|d;x1In ) - (dix —diyx)]| otherwise,

(1.84)

in the Poisson case, and as

0 EY. .
2Et,x 11'1 m lfdt’x =0
Tox, _ di x 0 E?,x_df,x . 0
dev(t,x) = Zdt,x In b + Z(Et,x - dt,x) In W if 0 < dt,x < Et,x
tx tx—Atx
0 EY. : 0
2E;,In n ifdsx = Ef

d

for the binomial random component, respectively. The deviance statistic, standardized deviance
residuals and information criteria, such as the Akaike’s (AIC) and Bayesian (BIC), will be employed
in the following section for a goodness-of-fit analysis of some GAPC stochastic mortality models as
presented in Section 1.4.3.

1.7 | GAPC Case Study

In the following section, we provide a comparative analysis of some GAPC stochastic mortality
models as introduced in Section 1.4.2. The objective of the case study is in the first place to assess the
ability of the models to reflect the observed mortality rates and to capture the effects of the time
evolution. In the second place, we will analyse how suitable these models are to obtain forecasts of
future rates and identify the advantages and disadvantages of the distinct models. For a composition
of the distinct predictor functions of the models, see Table 1.2. Parameter estimation for GAPC
models is obtained by maximization of the log-likelihood function which is achieved by numerical
methods as introduced in Section 1.5. In the following section, we first provide an analysis comparing
the accuracy of some GAPC models from Section 1.4.3 using a Poisson random component and
the canonical link function. Subsequently, we continue our analysis with likelihood ratio tests for
nested model pairs to determine the significance of periodic or cohort-related effects. Afterwards, in
Section 1.7.2, we analyse how these models compare to models with the same random component
and same predictor function but a non-canonical link function. Subsequently, in Section 1.8, we
provide an in-depth discussion on common weaknesses of widely used GAPC models.
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Reference Dataset

For the following comparative analysis, we use the annual central mortality rates of the Swedish
female population as our reference dataset. The analysis is restricted to the periods between 1900
and 2014, and ages between 60 and 106. The observed mortality rates of the corresponding dataset
are visualized in Figure 1.14 on a linear scale and in Figure 1.15 on a logarithmic scale. From these
illustrations one can observe that for each period the mortality rates are strongly increasing with the
age. Moreover, the growth of the mortality rates for fixed periods shows high regularity, see also
Figures 1.5 and 1.6. This indicates that models with parametric age-related effects )(Ci) might perform
well, while having the advantage of being more parsimonious. Another observation is that despite
the fluctuation in time there is a general decline in the mortality rate across all ages. However, the
decline is not constant and is higher for lower ages (60-80) compared to higher ages (90+). GAPC
models aim to capture these effects by age-periodic terms ﬁii)xgi). Cohort-related effects are usually
not detectable from plots containing crude mortality rates. Hence, one has to use relative changes in
the mortality in time to reveal these effects. As already reviewed in Section 1.3, Figure 1.7 shows
the mortality improvements of the Swedish females (see Section 2.5.4 for the definition). From
that illustration, cohort effects are not clearly detectable as they are for the males or the UK-Wales
population as shown in Figures 1.8 to 1.10. In the upcoming analysis, likelihood ratio tests are used to
determine whether general models with a cohort effect y,_, are favourable over nested models with

no cohort term.

Software Considerations

The fitting methodology of Section 1.5.2 will be applied to several GAPC models. The computational
analysis is performed within the R software environment. In particular, we use the demography
package to obtain the corresponding dataset from the Human Mortality Database, and the packages
StMoMo and gnm for parameter estimation. The StMoMo package accommodates a great collection
of functions and routines which are useful for model design and validation of stochastic mortality
models. It provides a very comfortable way for model specification, and handles the connection of
the model, the historical data, and the routines of gnm package. The gnm package itself does the
heavy workload estimating several hundred parameters by using an implementation of the Fisher
scoring algorithm (see Section 1.5.2). The results of the iterative estimation scheme are then again
passed to the routines of StMoMo package, which ensure a proper representation of the estimates
and also provides some relevant statistics for goodness-of-fit analysis. For the following quantitative
analysis of several GAPC models, we use our own modification of the StMoMo package in order to

employ non-canonical link functions. !

1.7.1 | GAPC Model Analysis (Setting 1)

The primary objective of the following analysis is to investigate the fitting performance for distinct
predictor types and study the significance of age, period, and cohort terms on the quality-of-fit.

1 At the time of writing, the current version StMoMo v0.3.1 can only handle canonical link functions.
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Figure 1.14: Historical central mortality rates of the Swedish female population aged 60 to 106 during
the periods between 1900 and 2014.

Specifications for the first Case Study

For the first part of our quantitative analysis of several commonly used mortality models, we choose
the following GAPC specification. The random component follows a Poisson distribution with mean
pixEf o> i.e, Dyx ~ Poi(psxEf ). For the systematic components, the predictor functions of the
types LC, LC2, CBD, APC, RH, M6, M7, and PLAT will be used, see Table 1.2 for an overview of the
distinct functions." The canonical Poisson link function g = In will be used as well as the parameter
constraints from Table 1.3 to ensure identification. These four components provide an unambiguous
specification of a GAPC model. These models are compared on our reference dataset of Swedish
females aged 60-106 in the periods between 1900 and 2014.

The estimates of the model coefficients «a,, ,(Ci), Kfi) and y,_, are obtained by maximizing the
Poisson type log-likelihood function of eq. (1.82) using the iterative Fisher scoring algorithm.
Subsequently the corresponding transformations on the estimates are applied to satisfy the imposed
parameter constraints.

1 Originally, the predictor functions of CBD, M6, and M7 were applied to the initial mortality rates g; » and not as
specified here to the central mortality rates y, .. In order to model g, ,, an adaption from central E; , to initial
exposures E{ . is required. Since the mortality database does typically not provide both exposures, the initial exposure
rates E{ . are then generated using the approximation of eq. (1.1). However, this transformation generates a new
dataset. By doing that, we are no longer capable to compare different models for the dataset, but rather different
models for different datasets. To avoid that circumstance and provide an even comparison, we apply all predictor
functions to the central mortality rates.
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Figure 1.15: Historical central mortality rates of the Swedish female population aged 60 to 106 during
the periods between 1900 and 2014 (logarithmic scale).

Fitting Results and Goodness-of-fit Analysis

The estimation results of the specified set of candidate models are provided in Table 1.5. The table
contains the number of used parameters, the maximum value of the likelihood function, the total
deviance, as well as the information criteria AIC and BIC. The total deviance for the Poisson case
can be obtained by using eq. (1.84) which provides a measure fitting accuracy between the observed
d, , and the fitted deaths counts ﬁt’x. Boldface numbers indicate the most favourable models across
the measures: deviance, AIC, and BIC. The best fit according to the total deviance is achieved by
the M7 predictor. Note that M7 predictor with 3 periodic terms Kfl), ng), Kgs) and a cohort y,_,
requires 498 parameters for the overall 5103 degrees of freedom of the underlying dataset, which is
almost a ratio of 1/10. The PLAT:3 model, which is the second according to the deviance ranking,
has a slightly higher deviance despite the fact that it incorporates even more parameters through
the additional age-specific term a,. The LC, APC, and the CBD predictor types are least favourable

according to the deviance ranking.

To provide a comparison of the fitting performance relative to the number of used parameters,
information criteria are employed. To avoid over-parametrization the AIC and BIC criteria are
considered to provide a trade-off between fit accuracy and model parsimoniousness. Recall from
egs. (1.76) and (1.77) that models with a lower AIC or BIC value are preferable over the models
with higher values. The M7 model turns out to be the most favourable also according to the AIC
ranking. Regardless the penalizing term of the AIC criterion, the models with more parameters (M7,
PLAT:2, PLAT:3) tend to dominate the models with lower number of parameters. Using the Bayesian
information criterion for model selection, which has a higher penalization for more parameters,
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Table 1.5: Number of parameters, log-likelihood, deviance, AIC, and BIC for the specified set of candidate
models fitted to the Sweden’s female population for ages 60-106 and the periods between 1900 and 2014
(5103 available observations). PLAT:2 and PLAT:3 denote the PLAT model (see eq. (1.22)) with 2 or 3
periodic terms, respectively. For predictor functions of the corresponding models, see Table 1.2.

Model  # of parm. InL Deviance AIC BIC

LC 207 —24516 9535 49446 50799
LC2 365 —22538 5579 45806 48193
CBD 230 —27543 15589 55546 57050
APC 315 —24884 10270 50397 52456
RH 362 —22726 5954 46175 48542
M6 384 —24674 9850 50115 52626
M7 498 —22157 4817 45310 48566
PLAT:2 428 -22257 5018 45371 48169
PLAT:3 542 -22168 4839 45420 48964

leads to the PLAT:2 model as the best performing model. The most favourable candidates, M7 and
PLAT:2, have in common that both incorporate a cohort term y,_, and parametric age-related effects
2.

Before we address the significance of the cohort term, as well as its interpretability, we provide a
better insight into the fitting performance of these models by inspecting the standardized deviance
residuals, as defined in eq. (1.83). The lack of the ability to describe essential features of the dataset will
be indicated by regular residual patterns. Figures 1.16 to 1.24 illustrate heat plots of the standardized
deviance residuals, plotted versus calendar year and age. Note, the reddish areas (positive residuals)
on the heat maps indicate an underestimation of the death counts by the particular model, whereas
bluish regions (negative residuals) indicate an overestimation of the death counts, compared to the
actual observations. From Figures 1.16, 1.18, 1.19 and 1.21, we see that the models LC, CBD, APC, and
M6 display significant residual patterns, whereas the models LC2, M7, and the both PLAT models, in
Figures 1.17 and 1.22 to 1.24, appear quite random. The residual plot of the APC model in Figure 1.19
indicates the lack of the model to capture non-uniform age-related improvements, since this is the
only model without any age-adaptive terms ﬁ,(ci) . The CBD and the M6 show both strong clustering
across particular age bands. That might indicate a missing non-linear modulation term f ,(62) in order
to capture the progressive curvature of the mortality rates, as illustrated in Figure 1.6. None of the
residual plots shows sharp diagonal patterns which would indicate the inability to capture the cohort
effect. The absence of diagonal patterns for models without cohort terms is an indication that there
are no substantial cohort effects in the corresponding dataset. This is in accordance with the inference
from the mortality improvements, as shown in Figure 1.7, which also do not provide an indication of
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cohort effects.

In the following part of our quantitative analysis, we explore whether certain extensions of the
predictor function are justified. Note that some proposed models are nested within other models,
for instance, the APC model is a submodel of the more general PLAT models. The APC predictor
function of eq. (1.14) emerges from the PLAT type predictor function, as defined in eq. (1.22), by
imposing the setting KEZ) = K§3) = 0. For nested models, likelihood ratio tests (see Section 1.6.2) are
more appropriate for model assessment than the information criteria AIC and BIC. In the following,
we use the LR test to check the null hypothesis that the parameters lie in the subspace of the nested
model against the alternative that the more general parameter space is required. In other words,
whether the restricted model can be rejected in favour of the more general one or not. Recall from
egs. (1.70) and (1.72), that the null hypothesis is rejected if the test statistic A;r exceeds the 1 — «
quantile of the chi-squared distribution with x degrees of freedom, where « is the significance level
and « is the number of the additional parameters incorporated in the general model.

For the likelihood ratio tests, we consider the nine models from the previous analysis (see Table 1.5)
joined by a LC2+C type predictor function, which was given in eq. (1.13), and a reduced M7 model
without a cohort term. This collection of models leads to 13 nested pairs. The testing results are
presented in Table 1.6, where the columns contain the submodel, the full model, the corresponding
restriction, followed by the test value, the degrees of freedom, and the p-value. As the results show,
for all nested pairs the null hypothesis is rejected in favour of the full model on any reasonable level.
! As the p-value column shows, there is a clear statistical evidence for the justification of additional
terms for each nested pair. For instance, the rejection of null hypothesis for the pairs LC vs. RH,
LC2 vs. LC2+C, CBD vs. M6, and M7:sub vs. M7, justifies the existence of cohort term. Consequently,
there is an indication for cohort-related mortality effects in the corresponding dataset. However, in
Section 1.8.2, we will discuss the validity of that implication by analysing whether the cohort term
truly captures the cohort effects of the dataset.

Other consequences of the previous analysis are that the rejection of the null hypothesis for
the pairs APC vs. PLAT:2 and APC vs. PLAT:3, indicates the presence of a non-trivial correlation
structure. This is coherent with the observation of age-related mortality improvements as illustrated
in Figures 1.7 and 1.15.

Conclusions for the GAPC Model Analysis (Setting 1)

In the previous analysis of various GAPC models, we have investigated the fitting performance for
distinct predictor types. The primary objective was to provide better insights on the impacts of the age,
period, and cohort terms on the quality-of-fit. The fitting results, as summarized in Table 1.5, suggest
that the models M7 and PLAT:2 provide the most favourable predictor structures to describe the
essential features of our reference dataset. The overall conclusion of significance tests, as depicted in
Table 1.6, is that model selection based on the likelihood ratio tests would justify additional terms in
favour of a less parsimonious model, even though, the larger model contains up to several hundreds
more parameters. Note that the LR test checks the significance for the entire parameter groups such

1 For any significance level « > 0.001.
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Figure 1.16: Standardized deviance residuals of the Poisson LC model with log link function.
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Figure 1.17: Standardized deviance residuals of the Poisson LC2 model with log link function.
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Figure 1.18: Standardized deviance residuals of the Poisson CBD model with log link function.
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Figure 1.19: Deviance residuals of the Poisson APC model with log link function.
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Figure 1.20: Standardized deviance residuals of the Poisson RH model with log link function.
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Figure 1.21: Standardized deviance residuals of the Poisson M6 model with log link function.
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Figure 1.22: Standardized deviance residuals of the Poisson M7 model with log link function.
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Figure 1.23: Standardized deviance residuals of the Poisson PLAT:2 model with log link function.
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Figure 1.24: Standardized deviance residuals of the Poisson PLAT:3 model with log link function.
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Table 1.6: Results of the likelihood ratio tests for various pairs of general and restricted models. The
columns A;r and d.f. contain the LR test statistic and the degrees of freedom. The latter is equal to
the difference in the dimensionality of the general and the restricted model. For all test pairs, the null
hypothesis is rejected at any reasonable significance level in favour of the general model. Predictor
functions of these models can be found in Table 1.2.

Hj (nested) Hj (general) Restriction AR df.  p-value
LC RH Yiex =0 3580 155 < 0.0001
LC LC2 Bk =0 3956 158 < 0.0001
LC LC2+C BPxD =y, =0 5000 313 <0.0001
LC2 LC2+C Yiox =0 1045 155 < 0.0001
CBD M6 Yiex =0 5738 154 < 0.0001
CBD M7 k) =y, = 10772 268 < 0.0001
CBD PLAT?2 ty = Yooy = 0 10572 198 < 0.0001
CBD PLAT:3 ay =k =y =0 10750 312 <0.0001
APC PLAT:2 ) =0 5254 113 <0.0001
APC PLAT:3 kP =3 =0 5432 227 <0.0001
M6 M7 x> =0 5034 114 < 0.0001
M7:sub M7 Vix =0 7148 153 < 0.0001
PLAT:2 PLAT:3 x> =0 178 114 0.00012

as cohort effects or period-related effects. Before we continue with an analysis on the significance of
individual elements of these categorical groups in Section 1.8, we investigate how the accuracy of the
fit changes by using an alternative link function.

1.7.2 | GAPC Model Analysis (Setting 2)

Many of the predictor types of the previous analysis were proposed before it become aware that these
mortality modelling approaches could be unified by the GLM framework. The GLM framework has
an additional degree of freedom, which can be utilized for modelling, and, for traditional reasons,
has been mostly ignored in the actuary literature. Apart from a few exceptions (see, e.g., (Currie,
2016)), most GAPC models only use the canonical link function. In the following case study, we
demonstrate the impact of a non-canonical link function to the quality-of-fit.

Specification for the second Case Study

For the second quantitative analysis of GAPC model, the distribution type of the response variable,
the predictor functions, and the imposed parameter constraints remain the same as in the first case
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study of Section 1.7.1. The only modified component is the link function, where in addition to the
Poisson canonical (g = In), alogit link (g = logit) is considered. In Remark 1.5.1, we have provided
the explicit forms of the weighting matrix W and working variable Z for the IRLS algorithm, which
are employed here for parameter estimation. Note, to apply the logit link to a Poisson distributed
response variable, we have to ensure that the underlying data is within the domain of the logit
function, which is the interval (0,1). However, for the human mortalities, 0 < ¢ < 1 holds even for
very high ages.

To examine whether this setting leads to a higher quality fit, we provide an analysis based on 6
datasets including the female mortality rates of the countries Denmark, Finland, France, Sweden,
Switzerland, and UK-Wales. The data from HMD are considered on the same periods from 1900
to 2014 and ages from 60 to 106, as in the first setting. The objective of the upcoming analysis is to
conclude whether the non-canonical logit link is preferable for a set of different predictors.

Goodness-of-fit Analysis of Canonical Poisson Link versus Logit Link

Tables 1.7 to 1.12 summarize the fitting results of both link functions. Note that despite taking the
same period and the same age range, the number of observations differs for individual countries.
The discrepancy in the number comes due to missing data points in the HMD, which are present,
in particular, at higher ages at the first part of the 20th century. The results of Tables 1.7 to 1.9, 1.11
and 1.12 lead to the conclusion, that for all countries, the logit link function provides a better fit for
the LC, CBD, APC, M7, and PLAT models, with Denmark being the only exception for the CBD
model. The only model which shows a different behaviour, favouring the canonical link, is the RH
model. This exception might be the result of the already discussed convergence issues of the RH
predictor, see Section 1.4.3, and Hunt and Villegas (2015) and Macdonald, Gallop, Miller et al. (2007).
As pointed out in Section 1.5.1, in addition to the already problematic behaviour for the canonical
case, using the logit link, leads to a not necessarily concave function. Thus further complications can
potentially arise since numerical approximation of the estimates might converge to a local and not to
the global maximum.

The accumulation of the results in Tables 1.7 to 1.12 shows that for our reference dataset the
predictor preference is mostly preserved across the used link functions. For instance, similar to
Sweden, we observe the preference of the M7 and the PLAT models for Denmark, Finland, France,
Switzerland, and UK-Wales. For poorly performing predictors there are a few changes in the predictor
rankings, see, e.g., the models LC and CBD for Denmark.

Conclusions for the GAPC Model Analysis (Setting 2)

As we have demonstrated, a non-canonical link function can have a positive impact on the quality-of-
fit. It is important to stress out that most mortality studies within the GAPC framework have been
conducted using only the canonical choice, see among others, e.g., Cairns, Blake, Dowd et al. (2009).
Since, from the GLM perspective, there is no a priori reason for omitting this degree of freedom
for model selection, we assume that this issue arises due to the inability to handle alternative link
functions in current software environments. For further results, advocating the application of non-
canonical link functions see, Currie (2016), who also demonstrated the advantage of non-canonical
link functions for the binomial random component.
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Table 1.7: Number of observations, number of parameters, and the total deviance for the Poisson LC
model with log and logit link functions. The lower deviance is shown in bold.

Country # of obs. # of parm. Dev(g=1In)  Dev (g =logit)
Denmark 4958 207 8529 8433
Finland 4757 205 9143 8955
France 5176 206 43594 39120
Sweden 5103 207 9533 9334
Switzerland 4774 204 8173 7646
UK-Wales 5273 206 40450 38872

Table 1.8: Number of observations, number of parameters, and the total deviance for the Poisson CBD
model with log and logit link functions. The lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g=1In)  Dev (g =logit)
Denmark 4958 230 8215 10573
Finland 4757 226 11765 9151
France 5176 228 96433 88916
Sweden 5103 230 15637 14901
Switzerland 4774 224 12743 12130
UK-Wales 5273 228 52628 43405

Table 1.9: Number of observations, number of parameters, and the total deviance for the Poisson APC
model with log and logit link functions. The lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g=1In)  Dev (g = logit)
Denmark 4958 314 7866 6324
Finland 4757 308 7450 6840
France 5176 316 46454 32602
Sweden 5103 315 10282 8799
Switzerland 4774 305 8782 7417
UK-Wales 5273 316 37037 27956

Table 1.10: Number of observations, number of parameters, and the total deviance for the Poisson RH
model with log and logit link functions. The lower deviance is shown in bold.

Country # of obs. # of parm. Dev(g=1In)  Dev (g = logit)
Denmark 4958 361 4992 5051
Finland 4757 355 6040 6200
France 5176 363 13729 15307
Sweden 5103 362 5953 6475
Switzerland 4774 352 4870 5061

UK-Wales 5273 363 16299 16398
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Table 1.11: Number of observations, number of parameters, and the total deviance for the Poisson M7
model with log and logit link functions. The lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g=1In)  Dev (g = logit)
Denmark 4958 497 4248 4087
Finland 4757 487 4893 4882
France 5176 497 10096 9483
Sweden 5103 498 4817 4709
Switzerland 4774 482 4562 4439
UK-Wales 5273 497 15285 14446

Table 1.12: Number of observations, number of parameters, and the total deviance for the Poisson PLAT:2
model with log and logit link functions. The lower deviance is shown in bold.

Country # of obs. # of parm. Dev(g=1In)  Dev (g = logit)
Denmark 4958 427 4280 4239
Finland 4757 419 5049 5015
France 5176 428 11809 10310
Sweden 5103 428 5013 4788
Switzerland 4774 415 4798 4543
UK-Wales 5273 428 12114 11781

The fact that models with a logit link function perform better than their competitors with a
logarithmic link indicates that human mortality rates for higher ages (60-106) obey a logistic-type
growth rather than an exponential. Note that the logit function is the inverse of a logistic function.
The summarized results in Tables 1.7 to 1.12 lead to the conclusion that the logit-transformed mortality
rates appear more linear compared to the log-transformed case.

1.8 | Common Issues and Problematic Properties of GAPC Models

In this section, we provide a critical reflection on GAPC models based on their general properties
and the case studies of Sections 1.71 and 1.7.2. The discussion with respect to the quality criteria for
mortality models by Cairns, Blake and Dowd (2008), as listed on page 20, also aims to examine to
which extent the best explanatory models are also well-suited for forecasting purposes.

In the following, we identify and discuss some areas of main difficulties related to GAPC models.
Section 1.8.1 focuses on issues which arise due to additional parameter constraints in order to ensure
model identification. In Section 1.8.2, we discuss the weaknesses of the cohort term and its ability
to capture or reveal cohort effects. Subsequently, in Section 1.8.3, we focus on the significance test
of individual parameters in contrast to the analysis on whole categorical terms, as considered in
Section 1.7.2.
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1.8.1 | Identification Issues and the Implication on Robustness, Interpretability, and Internal
Dependencies

First, we start with the issue of parameter identification, which was already discussed in Section 1.4.3.
Recall, that except the CBD, all predictor types require additional parameter constraints to ensure
identification and that these constraints can be chosen arbitrarily. This has versatile implications on
the concepts of interpretation, comparability, and robustness.

First, in Figure 1.25, we illustrate how different constraints influence the parameter estimates.
The figure depicts the estimates for the LC predictor for three distinct constraints. In the first case
we use the suggested constraints, i.e., >, fx = 1 and Y, x, = 0 (see eq. (1.8)). Next, we consider
two constraint modifications of the periodic term, namely, «o = 0 and «,, = 0. Figure 1.25 clearly
shows that the parameter estimates obey some structural changes, only due to arbitrarily chosen
constraints. Note that all pairs of estimates (blue, orange, green) in Figure 1.25 lead to the same
model predictor and thus describe the same mortality structure. The different behaviour of the term
a, for high ages is only the result of different constraints and not an indicator of particular mortality
effects in the dataset. The LC model is one of the simplest models within the GAPC family. However,
as the observation from above demonstrates, the paths of the estimates are difficult to interpret.
Neither the absolute level, as shown in Figure 1.25(b), nor the trend changing behaviour, as shown in
Figure 1.25(a), are solely caused by the underlying data. The decision whether the path behaviour is
purely data-driven or artificial is a challenging task. For related studies on how different identifiability
constraints lead to different patterns in the estimates, we refer to Hunt and Villegas (2015).

To highlight further problematic behaviour of the most GAPC models, we refer to Figures 1.26
and 1.27, where the parameter estimates of the most favourable models from Section 1.7.1 are presented.

Figure 1.26 illustrates the estimates of the periodic terms Kfl), KEZ), K§3) and the cohort term y;_y

of the M7 model. Figure 1.27 shows the estimates of ay, Kt(l), ng) and y;_, of the PLAT:2 model.
The solid lines present the estimates on the full reference dataset of Swedish females aged 60-106 in
between 1900 to 2014, whereas the dashed lines show the estimates on the reduced dataset, omitting
the period 1900-1949. Several effects are apparent in these illustrations. Apparently, omitting the first
part of the dataset, influences the estimates not only at the beginning of the period, around the 50s,
but also in very recent periods. That means, that the representation of the mortality in the year 2014
depends not only on the data from that year but also on the mortality data from decades ago. This is
common for models which require additional parameter constraints.

Furthermore, it is important to underline that in order to represent the mortality of, e.g., 2014
for the ages 60-106, it requires 96 parameters for the PLAT:2 model. This is indeed more than the
degrees of freedom of these observations. This appears to be paradoxical, however, we have 47
observations dyg14,605 - - - »d2014,106> Which are explained by the PLAT:2 predictor (see eq. (1.22)) with
47 age terms o, - - - ,&106, 2 periodic terms Kg(l)h, Kg(z)h, and 47 cohort terms Y1908, . . . ,¥1954. The M7
model requires 50 parameters (3 periodic and 47 cohort variables) to explain the 47 observations. The
reason that these over-parameterized models do not explain the observations perfectly is of course
that the same parameter terms as a, or y;_, are also intended to explain the mortality for various
years. The CBD is the only model which does not share this behaviour. To explain the mortality

of a given year ¢ it requires only 2 parameters KEI) and ng). The CBD model, however, showed a
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Figure 1.25: Estimated parameters «, and x; of the LC model under different identification constraints.
The blue lines represent the standard choice of the Lee Carter model, i.e., }_; x; = 0. The orange lines
represent the estimates obtained by the constraint x, = 0. The green lines represent the estimates for
xn = 0. Note, while the k; estimates only differ up to affine linear transformation, the static age functions
o, however, differ by a non-linear transformation.

relatively poor quality-of-fit, as emerged in the case studies of Sections 1.71 and 1.7.2.

According to the mentioned quality criteria (see page 20) for mortality models, the parameter
estimates should be robust relative to the period of data and range of ages employed. As we have
noticed, models which require parameter constraints are not robust since the range of data has an
influence on the constraints and those have direct impact on the estimates. For instance, simple
dataset updates, such as adding the most recent period of mortality data, changes the values of
any previously estimated parameters. From that perspective, most GAPC models do not show any
robustness.

Furthermore, we would like to draw the attention to the dependence structure of the estimates. In
contrast to the estimates of the CBD model, where Kfl), KEZ) only depend on data of period t and
not on estimates of other parameters, the situation for all other models is much more complicated.
Non-parametric age or cohort terms and additional parameter constraints lead to an entanglement
of these parameters. As we discussed above, a parameter which is indexed by ¢ or x does not only rely
on the mortality data from the particular period or age, but also on the data of other periods or ages.
Thus, there is an internal complex connection between the estimates. This dependence structure
appears to be too difficult to be modelled by a simple random walk process, as commonly assumed in
the literature, see, e.g., Cairns, Blake, Dowd et al. (2009). Even more questionable appears to be the
standard assumption of the independence of the cohort term and the period terms. From Figure 1.26,
we see that the regularity of the estimates (KEI) ,KEZ) ,K?)) of model M7 can hardly be explained by a
three-dimensional random walk. It is quite challenging to find an appropriate time series process to
capture the behaviour of the period terms of the illustrated models. Based on the estimated paths,
random walk processes are hardly suitable to express the progress of the shown paths Kt(l) and Kﬁz).
Further results on the assumption of independence between the predictor terms and the role of the

constraints on the estimation can be found in Currie (2012).
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Figure 1.26: Parameter estimates of the M7 model fitted to the Sweden’s female population for ages
60-106 and the periods between 1900 and 2014 in solid lines. The dotted lines show the estimates of the
same model for the periods between 1950 and 2014.

1.8.2 | Issues and Weaknesses of the Cohort Term

The second part of the critical assessment is devoted to the modelling approach of the cohort effect.
Recall from Section 1.4.3 that all considered approaches use a non-parametric cohort term y;_,.
Moreover, additional to identifiability constraints some structural constraints are imposed on the
cohort term. The purpose of these postulations is mainly to obtain desirable properties, such that the
resulted time series of parameter estimates might be modelled by stationary processes. For instance,
the constraints of eq. (1.19) for the M7 model, ensure that the cohort term vary around zero with no
linear or quadratic trends. The idea behind this proposal is to obtain a cohort effect which is coherent
with the intuition regarding some desired properties of the cohort effect. According to Hunt and
Blake (2014), these properties include, e.g., the absence of any systematic trends in value or variability.
Furthermore, averaged across all cohorts, the effect should be zero and represent deviations from a
reference level, rather than compensate discrepancies of other terms. Finally, the effect should be
mean reverting and show positive autocorrelation across successive cohorts.

The bottom right panels of Figures 1.26 and 1.27 show the parameter estimates of the cohort term
of the models M7 and PLAT:2 from the case study of Section 1.7.1. Recall that models with a cohort
term outperformed their competitors, see the goodness-of-fit results in Table 1.5 and the likelihood
ratio tests in Table 1.6. From the paths of the estimates, we see that the most desired property does
not occur. The paths do not show deviations from a reference level for particular cohorts, indicating
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Figure 1.27: Parameter estimates of the PLAT:2 model fitted to the Sweden’s female population for ages
60-106 and the periods between 1900 and 2014 in solid lines. The dotted lines show the parameter
estimates of the same model on the periods between 1950 and 2014.

higher or lower cohort-related mortality effects, but rather reveal that the paths structures are mainly
determined by constraints of eqs. (1.19) and (1.24). As already criticized above, the patterns of the
paths are not only data-driven but also heavily influenced by the imposed constraints. Even though
the cohort terms improve the accuracy of the fit, it is challenging to ensure interpretability of these
parameters and attribute cohort effects to the values of the cohort term.

To underline the lack of parameters interpretability, we provide another example. The mortality
data of the UK-Wales females often serves as a prime example for the cohort effects. The mortality
improvements of UK-Wales females, which are provided in Figure 1.10 on page 18, clearly show the
impact of the “golden generations” born around the year 1935. To detect whether this considerable
effect is captured by the cohort term, we fit several models to the UK-Wales female population aged
60-106 in the period 1900 to 2014. Figure 1.28 illustrates the parameter estimates of the cohort term
using the predictors of the models APC, RH, M6, M7, and PLAT. The results reveal that none of these
models is able to provide evidence of the observed cohort effect. As for the Swedish females, the
patterns of the paths are primary dominated by the imposed constraints. Furthermore, the regularity
of the paths in Figure 1.28 and the examples of Figures 1.26 and 1.27 does not justify the common
assumption that the cohort term follows a stationary ARIMA process.

For another example, which demonstrates that the GAPC cohort term misses the intended purpose,
we consider a comparison of the reduced M7:sub (y;_, = 0) and the full M7 predictor. As shown
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Figure 1.28: Estimated cohort parameters of the models APC, RH, M6, M7, and PLAT for UK-Wales
female population. The annual mortality improvements, as visualized in Figure 1.10, demonstrate a clear

effect of cohort-related mortality improvements around the 1935 birth cohorts. None of these models is
able to provide evidence of this cohort effect.

in Table 1.6, the null hypothesis Hy : y;—x = 0 is rejected in favour of the full M7 model. Thus, the
fitting performance of the full models justifies the cohort term. As introduced in Section 1.4.3 the
purpose of the cohort term is to reveal the cohort-related features of the dataset rather than capture
the fitting discrepancies of the remaining period or age-related terms. Figures 1.29 and 1.30 show
scatter plots of the standardized deviance residuals by age, period, and cohort for the M7:sub and the
M7 models. For the reduced M7:sub model Figure 1.29(a) reveals the difficulties of the model to
capture age-related mortality effects. This is recognizable by the appearance of systematic patterns
of the residuals when plotted against the involved ages. For instance, we observe some systematic
underestimations of the death counts for ages around 60-65 and 85-90 and some overestimations of
the death counts for ages around 75-80 and 100-105. The residuals plotted versus period and cohort,
as illustrated in Figures 1.29(b) and 1.29(c), do not show substantial systematic deviations. Adding
the cohort term and considering the residuals scatter plots of the full M7 model in Figure 1.30, shows
that the age-related systematic deviations have disappeared. The direct comparison of Figures 1.29(a)
and 1.30(a) illustrates that the cohort term of the full model does increase the fitting performance.
However, this is achieved by the compensation of the fitting discrepancy across ages rather than
cohorts. The conclusion of this analysis and the results from both case studies are, that the cohort
term is indeed useful, in terms of providing additional degrees of freedom, but it does not serve the
intended purpose to explain or reveal cohort effects.

1.8.3 | Significance of Individual GAPC Parameters

In Section 1.7.2 likelihood ratio tests have been considered to examine whether age, period, or cohort
terms provide significant improvements of the quality-of-fit. In the following section, we focus on
the significance of individual parameters from these categorical groups, since we have not found
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Figure 1.29: Scatter plots of deviance residuals r, for the Poisson model with log link and a reduced
M7 predictor function (y,_, = 0) fitted to Swedish female population for ages 60-106 and the periods
between 1900 and 2014.
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Figure 1.30: Scatter plots of deviance residuals r¢, for the Poisson model with log link and M7 predictor
function fitted to Swedish female population for ages 60-106 and the period 1900-2014.
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any other considerations on this topic in the literature. Commonly, the fitting procedure of linear
or generalized linear models always includes a significance analysis of the model coefficients to
determine which predictors have a statistically relevant influence on the response variable. For GAPC
models this analysis is rather done for whole parameter groups (ay, By, kx, yt—x) since it is not a
priori clear why certain ages, periods or cohorts should be included in the model while others can be
removed. We do not intend to criticize this approach, since we consider that to be reasonable to treat
these factors equally, however, we want to stress out our findings on the significance of individual
GAPC model parameters.

To determine the significance of individual model parameters, we consider Wald type tests as
introduced in Section 1.6.1. More specifically, we intend to test the hypothesis Hy : § = 0 versus
Hy : 6 # 0, for 6 being one parameter of the corresponding set of model parameters. For instance,
taking the APC model and the setting of the first case study, we have

0 € {060, - - - ,0106>K1900> - - - K2014>)1800> - - - »}'1952 }»

i.e., § is one of the 315 APC parameters. Table B.1 on page 259 shows the results of the regression
analysis for the APC predictor with the canonical link. The columns contain the coefficient names,
the estimates, the standard errors, the test values, the p-values and the standardized significance
codes for better readability. Recall from eq. (1.65), that the z-value denotes the test value of the Wald
test, which is given by

)
se(8)

Tw

Recall also that the p-value is the probability (under Hy) of obtaining a test value equal to or even
more extreme than the observed test value. Thus, the p-value is the smallest level at which Hy can be
rejected. For instance, for p < 0.01, we have a very strong evidence against Hy, which means, we
have a strong evidence to suggest that the corresponding parameter is not zero. Table B.1 shows
that for the APC model only 143 of 315 parameters (~ 45%) are significant at the 5% level. For the
other 172 parameters, the evidence is not strong to reject the null hypothesis at the 5% level. Among
them are 12 of 47 from the «, term, 102 of 114 from the «; term and 58 of 154 from the y;_, term.
Despite the fact, that the APC model is relatively parsimonious, about 55% of its parameters are
not individually significant at the 5% level. From the modelling perspective, it appears not to be
justifiable to include that amount of non-significant parameters.

This observation is not unique as we point out in the following. Recall from Section 1.7.1 that the
PLAT:2 model turned out to be among the most favourable models. Furthermore, likelihood ratio
tests of the pairs CBD vs. PLAT:2 and APC vs. PLAT:2 showed that the parameter groups a, or
y¢—x contribute significantly to the fitting accuracy in the first case and the parameter group Kt(z)
leads to a significant improvement compared to the APC model, see Table 1.6. Significance analysis
for the PLAT:2 parameters on the individual level can be found in Table B.2. The results show that
even fewer parameters are significant on the individual level. Only 26 of the 428 parameters (~ 6%)

showed significance at the 5% level. The null hypothesis could not be rejected for all y;_, and ng)
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parameters and for all but one ;ct(l) parameters.

The fact that the whole parameter group is significant, but none of the individual parameters
is, could be an indicator for over-parametrization. It certainly shows that due to the complicated
dependence structure among the parameters, imposed by identifiability constraints, it appears to be
difficult to identify the most influencing factors.

Not all models share this behaviour of too many non-significant parameters. For instance, the
M7 model, with results reported in Table B.3, show a better ratio of significant parameters. The null
hypothesis was rejected for 438 of 498 parameters of the 5% level. Subsequently, we will see that this
ratio can even be improved by considering predictors which do not have any identifiability issues.
The simplest of our proposed models in Section 1.9, will only have significant parameters.

1.8.4 | Summary of the Identified Issues Related to GAPC Models

In Sections 1.8.1 to 1.8.3, we stressed out many fundamental issues and conceptional difficulties of the
well-established GAPC mortality modelling family. As pointed out in Section 1.8.1, many of these
issues are direct consequences of non-identifiable predictor functions and corresponding parameter
constraints. For a better overview, we provide a summary of the identified problems.

poor interpretability of parameters: Due to non-identifiable parameters, it is difficult to determine,
whether particular patterns in the parameter paths are solely data-driven or artificial due to
the imposed constraints. Modifications of the arbitrarily chosen constraints yield alternative
representations of the same mortality structure.

excessive number of parameters: To describe the observed age-related mortality of a particular
period, most models typically require more parameters than the actual degrees of freedom in
the observation.

poor robustness: Simple database updates, such as adding the most recent period or omitting the
oldest, leads to changes in all parameter estimates.

complex dependence structure: Despite a very complicated dependency structure between the
parameters due to their entanglement, the common assumption, for forecasting purposes, is
independence between period terms and the cohort term.

meaningless cohort term: The cohort term provides additional degrees of freedom, which often
improve the quality-of-fit, but it does not serve the intended purpose to capture or reveal
cohort effects. Path structures of the cohort estimates are heavily influenced by the imposed
constraints. Moreover, given the obtained estimates, the assumption of ARIMA driven cohort
terms is questionable.

poor significance of individual parameters: Wald type tests revealed that some models have only a
few parameters (6% for PLAT) that are significant at the individual level. There are instances
where likelihood ratio tests for nested models showed that a particular group of parameters is
significant, however, none of the individual parameters of this group appeared to be significant.

Regarding the quality criteria for stochastic mortality models by Cairns, Blake and Dowd (2008),
as listed on page 20, we can draw the following conclusion. All GAPC models produce positive
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mortality rates which are consistent with historical data. The fitting accuracy tends to increase with
predictor complexity. Likelihood ratio tests also showed that relatively parsimonious models were
less preferable. All models with identifiability issues are to some extent not robust against changes
of the employed periods or ages. The numerical implementation is straightforward since these
models fall in the GLM framework. There are further criteria mentioned by Cairns, Blake and Dowd
(2008). However, they involve model forecasts, which cannot be assessed here since we have not
considered model forecasts yet. As we will see later, the common modelling approach of random
walk driven coefficient series does not lead to desirable forecasts in terms of the level of uncertainty
and consistency with historical developments. We will therefore study more sophisticated time
series approaches in Chapter 2, which involve long-run dependencies, called cointegration relations,
between the components of multivariate time series.

1.9 | Kannisto Model

In the previous Section 1.8, we reviewed the GAPC class of well-established stochastic mortality
models, and revealed several problematic properties and fundamental issues of these models. The
case studies of Section 1.7 showed that models with more extensive predictors (e.g., M7 or PLAT)
performed well in describing historical observations. However, this came at the cost of parameter
identifiability. That means, all predictors, except the CBD predictor, require additional parameter
constraints that cause many further issues.

In the following section, we propose a family of stochastic mortality models, which also belongs to
the GAPC class, but avoids the identified disadvantages, as highlighted in Section 1.8.4. Furthermore,
the new model family incorporates the key conclusion of the second case study Section 1.7.2, which
showed that for various predictors a non-canonical link often leads to a better fit than the canonical
link, in particular, for mortality rates of high ages (60+). The proposed models will be called the
Kannisto family. Our choice of that name relies on the fact that in the simplest form, the model has a
parametric logistic-type hazard rate. This form has been originally considered by the demographer
Viin6 Kannisto in 1992. Kannisto studied historical mortality rates with a focus on higher ages,
see Kannisto (1992) and Thatcher, Kannisto and Vaupel (1998). However, similar to the Lee-Carter
model, the authors did not consider their model within the broader framework of generalized linear
models, but rather used the ordinary least squares fitting method on logit transformed mortality
rates.

Recent contributions addressing the Kannisto model can be found be in Pitacco (2016) and
Pitacco and Rroji (2016). Based on a semi-parametric bootstrap technique Pitacco and Rroji (2016)
investigates the impact of uncertainty in parameter estimation for the Gompertz and Kannisto-
type mortality rates. In contrast to our model, their approach uses the canonical link function
for both predictor functions. Furthermore, projections of future mortality rates are obtained by
bootstrapped ARIMA processes, rather then a multidimensional cointegrated processes, as will be
proposed in Section 2.4. Pitacco (2016) provides an overview of parametric models representing the
age-specific of mortality. The main focus of Pitacco (2016) lies on mortality of high ages, in particular,
on the observed effect of decelerated mortality increase in the age-pattern. Pitacco (2016) provides
various hypothesis for the main causes of a sub-exponential increase of the age-specific mortality (cf.,
Section 1.3). The proposed explanations include heterogeneity of populations as well as of individuals.
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This connection to frailty models and mixtures of distributions will be discussed in the upcoming
Chapter 3 in Proposition 3.3.7 and Remark 3.3.8.

1.9.1 | Specification of the Kannisto Model Family

For the specification of the Kannisto model we combine the insights from empirical observations and
the case studies from Sections 1.3 and 1.7. The primary objective of the following specification is to
obtain a model with no identification issues. Secondly, we employ a non-canonical link function and,
finally, we utilize the fact of strong regularities in the mortalities of elderly populations by including
parametric age terms.

GAPC Components of the Kannisto Model Family

As stated in Section 1.4.3, the specification of a GAPC model requires 4 components. For the Kannisto
model, we consider a Poisson distributed response variable, i.e.,

Dy ~ Poi(p<E; ).

The systematic component of the Kannisto model of order p is defined by the predictor function

Loy iy & 1 (i)
Ntx = Zﬁx K, = Z(X - xmin)l Ky~ (1.85)
i=1 i=1

The connection of the random component and the predictor is established by the logit link function
g ie,

g py > In| =), (1.86)
1- Ue,x

This non-canonical choice for a Poisson distributed response is based on the results of the second
case study of Section 1.7.2. Since the parameters of the Kannisto predictor in eq. (1.85) are entirely
identifiable, the set of the required parameter constraints is empty.

Remarks on the Kannisto Model

The form of the Kannisto predictors in eq. (1.85) shows that the Kannisto family neither incorporate
a static age function a, nor a cohort term y,_,. Since we focus on mortality modelling of the elderly
population, a static age function is expendable, considering the regular structure of the mortality
rates, as shown in Figures 1.5 and 1.6. A cohort term is not incorporated in eq. (1.85) for two reasons.
Firstly, to ensure identifiability without additional parameter constraints and, secondly because our
case studies showed that the cohort term misses its actual purpose, see Section 1.8.2. Note that the
Kannisto predictor has parametric age-modulation terms ﬁfci) =(x- xmin)i’l, where xn,i, denotes
the lower bound of the considered ages. To ensure comparability to the previous case studies, we
will consider xpin = 60 in the further course. In contrast to other predictors, such as those of the
models LC, LC2, LC2+C, and RH (see, Table 1.2) the age, as a whole, is a model factor. For models
with non-parametric age-modulation terms, each individual age of the considered range is a model
factor. This conceptual difference causes an extensive amount of parameters in latter case.
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In the further course, we will consider 3 models of the Kannisto family. These are characterized by
the polynomial order of the age-modulating term [3,(('). The predictor

Mtx = KEI) +(x - xmin)”EZ)

will be denoted as the KAN predictor. Models with a Kannisto predictor that incorporates quadratic
or cubic terms will be referred to as the KAN:2 and KAN:3 models.

Kannisto Model in the context of Logistic Hazard Rate Models

In the following, we provide some remarks on how the Kannisto model is related to logistic hazard
rate models. Recall that in generalized linear models the expectation of the variables of interest
(death counts Dy ), is connected to a linear predictor #; , through a link function g. Thus, with a
logit link and the Kannisto predictor, we have the relation

Kt(l)+x§2) (X—=Xmin )

5 . (1.87)
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where the mortality rates p , are logistic functions in the age x. Note that the logistic function is the

inverse of the logit function.

exp(x)

logit™" (x) = logistic(x) = Tt exp(x)
exp(x

Therefore, postulating the KAN model is equivalent to proposing a logistic-type growth of the
mortality rates. Hazard rate models, which will be introduced in Chapter 3, provide a conceptual
extension from a discrete to a continuous setting.

Distinction of the Kannisto and the CBD Model (Logistic vs. Exponential Growth)

Note that the CBD predictor, as defined in eq. (1.9) is very similar to the KAN predictor. The difference
between the models lies not only in the shifting term (x vs. xmin) of the £1) term but also in the
link function. The CBD model uses a canonical link and the KAN model a non-canonical logit
link. A similar consideration for the CBD model as in eq. (1.87), shows that mortality rates in the
CBD model follow an exponential growth. An exponential type hazard rate corresponds to the
so-called Gompertz lifetime distribution as will be introduced in Section 3.2.7. The key conceptional
distinction of those models is therefore, how age-related mortalities increase. For the Kannisto
model, the rates increase logistically (saturated growth), while for the Gompertz model, the rates

grow exponentially.

1.9.2 | Kannisto Model Parameter Estimation and Goodness-of-fit Analysis

The following section provides the estimation results and goodness-of-fit analysis for the Kannisto
models. To ensure comparability with the other models, we consider the same reference dataset, as
for the first two case studies of Sections 1.7.1 and 1.7.2. This means, we consider the dataset of the
Swedish female population on the age range 60 to 106 and the periods between 1900 and 2014.
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Kannisto Fitting Accuracy in terms of Deviance, AIC, and BIC

The fitting results of the KAN, KAN:2 and KAN:3 models are presented in Table 1.13. The table
presents the deviance as a measure of quality-of-fit and the values of AIC and BIC information
criteria. The first column shows the total number of parameters of the corresponding model. Note,
to represent the mortality for a given period, the Kannisto models require only 2-4 parameters,
depending on the polynomial order of the predictor. Recall, that for other model predictors the
number of parameters exceeded the actual degrees of freedom, as discussed in Section 1.8. Since
we consider nested models, the deviance is declining by the incorporation of higher polynomial
terms in the predictor. Note that the simplest KAN model has a better fitting accuracy by having
lower deviance, AIC, and BIC values, compared to the CBD model, which has the same number of
parameters (see Table 1.5). The comparison with the best performing models of the first case study
shows that the KAN:3 model has a 8% higher deviance than the M7 model (498 parameters), or a
4% higher deviance compared to the PLAT:2 (428 parameters) model. This slightly higher model fit
discrepancy of the Kannisto model is the trade-off for having identifiable parameters, where the
estimates depend only on the data and not on arbitrarily imposed constraints.

Likelihood Ratio Tests for Nested Kannisto Pairs

Table 1.14 summarizes the results of the likelihood ratio test for the nested Kannisto pairs. The LR
tests check whether extensions to higher polynomial age-modulation terms are justified. Similar
to the results of the first case study, as shown Table 1.6, for all nested pairs the null hypothesis is
rejected. Consequently, additional age-modulation terms provide significant improvements of the
quality-of-fit. Nevertheless, as we will demonstrate below, even the simplest KAN predictor provides
a very good approximation of the lifetime characteristic.

Residuals Analysis of the Kannisto Predictors

Figures 1.31 to 1.33 illustrate the standardized deviance residuals, as defined in eq. (1.83), plotted
against the calendar year and age. The reddish regions (positive residuals) on the heat maps indicate an
underestimation of the death counts by the particular model, whereas bluish areas (negative residuals)
indicate an overestimation of the death counts compared to the actual observations. Figure 1.31
displays substantial residual patterns for the simplest Kannisto model. There is a clear evidence that
the KAN model is not capable to capture non-linear age-modulation effects of the dataset, since
there is a considerable reduction of the residual patterns for the predictors with additional quadratic
and cubic Sy terms, as displayed in Figures 1.32 and 1.33. The patterns for the KAN:3 model are
qualitatively very similar to those of the M7 and PLAT models as illustrated in Figures 1.22 to 1.24.

Significance of Individual Kannisto Parameters

In Section 1.8.3, we have criticized that some traditional GAPC models have too many non-significant
parameters. For instance, in the first case study, only 45% of the 315 parameters of the APC predictor
were individually significant at a 5% level (see Table B.1). The PLAT:2 model, which was one of
the most favourable models, was even less satisfying with a significance for only 6% of the 428
parameters at the 5% level (see Table B.2). Significance analysis for the parameters of the Kannisto
model family can be found in Tables B.4 to B.6. For the simplest KAN model with 2 parameters for
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Figure 1.31: Standardized deviance residuals of the KAN model.
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Figure 1.32: Standardized deviance residuals of the KAN:2 model.
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Figure 1.33: Standardized deviance residuals of the KAN:3 model.
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Table 1.13: Number of parameters, log-likelihood, deviance, AIC, and BIC for the Kannisto models fitted
to the Swedish female population for ages 60-106 and the period between 1900 and 2014 (5103 available
observations).

Model  # of parm. InL Deviance AIC BIC

KAN 230 —27200 14903 54860 56364
KAN:2 345 -23075 6654 46841 49096
KAN:3 460 —22358 5219 45636 48643

Table 1.14: Results of the likelihood ratio test for the Kannisto models. The columns A and d.f. contain
the LR test statistic and the degrees of freedom.

Hj (nested) Hj (general) Restriction ALR df.  p-value
KAN KAN:2 x? =0 8250 115 < 0.0001
KAN:2 KAN:3 k) =0 1434 115 < 0.0001
KAN KAN:3 P =x® =0 9684 230 < 0.0001

each period, Wald type tests showed that all 230 parameters are significant at the 5% level. For KAN:2,
the model with a quadratic age-modulation term, we obtain that 92% of parameters are individually
significant at the 5% level. Some parameters associated to the quadratic term in the middle of the
past century are not significant, see Table B.5. As pointed out in Section 1.8.3, most of the traditional
GAPC models need an excessive number of parameters to represent the mortality structure of a
certain period. However, here we have a simple 3 parameters model, where the non-significance of
some quadratic terms can easily be explained by a sufficient linear structure of the logit transformed
mortality rates, see Figure 1.6 for an illustration. For the KAN:3 model the Wald tests show that 84%
of all parameters are individually significant at the 5% level, see Table B.6. Similar to the KAN:2
model, we can explain the non-significance of some parameters of higher polynomial terms by
observing that the logit transformed mortality rates are sufficient linear. Conclusively, we can point
out, that not only the Kannisto models do have a better significance rate of their parameters, but
throughout the uncomplicated and identifiable model structure we can also explain why certain
parameters turn out to be non-significant.

Fitting Accuracy in Terms of Lifetime Characteristics

The deviance is a common measure of the fitting discrepancy for GLMs and the deviance residual
plots are eligible for identifying particular domains where the models fail to describe the essential
teatures of the dataset. However, they are not suitable to assess the impact of the discrepancy on
relevant actuarial quantities such as the life expectancy. The objective of the following exploration is
to show that even the simplest KAN model provides a remarkably good approximation of the lifetime
characteristics. A lifetime is a continuous non-negative random variable modelling the time to death
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of individuals of particular groups. A rigorous focus on the topic of survival analysis is provided in
Chapter 3. For the current purpose it is sufficient to know, that the age-specific mortality rates y, ,
are representatives of the lifetime distribution. Equivalently to probability densities, distributions
can be represented by hazard rates, which are continuous versions of discrete central mortality rates.
A positive continuous random variable, with a 2 parameter logistic hazard rate function of the type

ea,+/3tx
m(xX) = g (1.88)
will be defined to be the Kannisto distribution and denoted be IC(ay,f3;) (see Section 3.2.7), where
o € R and 3 € R, are distribution parameters at the period ¢. Note that the hazard rates in eq. (1.88)
are of the same type as in eq. (1.87), where we showed that the mortality rates obey a logistical
function given the GLM setting with a KAN predictor and a logit link function. For the benefit of a
simpler notation, we will alternatively denote the periodic terms KEI) ,KEZ) ,Kt(3) ,K§4)
predictor as a; (constant term), 3 (linear term), y; (quadratic term), &; (cubic term).

in the Kannisto

To provide a better insight on the fitting performance of the KAN model regarding lifetime related
characteristics, we present a comparison between some empirical quantities and the corresponding
quantities derived from the estimated lifetime distributions. Table 1.15 shows parameter estimates,
the mean, the standard deviation, the skewness and the kurtosis of both the empirical data and the
Kannisto distribution using the estimates of the KAN model. Note that in this context, the empirical
mean and the expectation of the lifetime distribution correspond to the expected remaining lifetime
of individuals. Since we investigate the mortality rates on the age range 60-106, the remaining lifetime
has to be added to the starting age of 60 to obtain the life expectancy of the underlying population
group. Note furthermore, since the HMD does not contain the exact times of death events, but rather
just their total numbers, we set the occurrence of the events to the middle of the corresponding
period in order to calculate the empirical moments. To summarize the results of Table 1.15, we point
out that the accuracy of the KAN model fit on several actuarial relevant quantities is remarkably good.
For instance, between 1900 and 2014, the relative error of the mean (remaining life expectancy) is on
average about 0.1%. In absolute values, this is a discrepancy of about only 9 days on the remaining
lifetimes with values reaching between 17 to 26 years. The relativ error of the standard deviation
is about 0.5% and for the kurtosis about 1.4% on average. The absolute error of the skewness is
on average about 0.05. Overall, we observe a very good approximation of the empirical lifetime
characteristics by the Kannisto distribution by using the estimated parameters of the KAN model.
An illustration of the time evolution of the discussed characteristics is provided in Figure A.1.

Another way to demonstrate the great fitting capabilities of the Kannisto model is provided
via a series of quantile-quantile-plots (Q-Q-plots) in Figure 1.34. In a Q-Q-plot quantiles of two
distributions are plotted against each other to compare these distributions visually. For our purpose,
we plot the empirical quantiles (abscissa) against the quantiles of the estimated Kannisto distribution,
denoted by theoretical quantiles (ordinate). Each plot of Figure 1.34 shows different periods ranging
from 1940 to 2010 with 10 years apart. The dashed orange lines in each plot represent the identity
function, where the empirical quantiles coincide with the estimated Kannisto quantiles. For values
below the identity, there is an overestimation of the survival probability by the KC(a;,f;) distribution
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Table 1.15: Distribution characteristics of the empirical vs. the estimated Kannisto distribution for
Swedish females with age above 60 between 1902 and 2014.

year  est. parameter mean stand. deviation skewness kurtosis

& B data K(&p) data K(&p) data  K(&p) data K(&p)
1902 -4.210 0.107 16.98 17.00 8.45 8.42 0.007 0.054 2.329 2.372
1906 -4.277 0.106 17.59 17.61 8.66 8.63 -0.024 0.035 2.303 2.371
1910 -4.291 0.109 17.37 17.39 8.50 8.44 -0.032 0.022 2.324  2.377
1914 -4.288 0.110 17.28 17.30 8.45 8.39 -0.020 0.021 2.336 2.378
1918 -4.145 0.102 17.01 17.03 8.67 8.63 0.040 0.089 2.290 2.367
1922 -4.247 0.112 16.85 16.86 8.27 8.23 -0.010 0.031 2.343 2.378
1926 -4.302 0.108 17.52 17.53 8.53 8.50 -0.009 0.020 2.345 2.376
1930 -4.294 0.108 17.51 17.52 8.57 8.52 -0.008 0.024 2.321 2.375
1934 -4.337 0.110 17.61 17.64 8.51 8.47 -0.037 0.005 2.329 2.380
1938 -4.323 0.111 17.44 17.45 8.40 8.39 -0.014 0.008 2.371 2.381
1942 -4.479 0.110 18.60 18.60 8.68 8.68 -0.069 -0.042 2.379 2.394
1946 -4.466 0.116 17.96 17.96 8.34 8.32 -0.076 -0.049 2.400 2.403
1950 -4.531 0.119 18.11 18.11 8.25 8.25 -0.086 -0.075 2.429 2.418
1954 -4.629 0.120 18.71 18.71 8.35 8.34 -0.122 -0.107 2.452 2.436
1958 -4.727 0.122 19.24 19.23 8.39 8.39 -0.140 -0.139 2.488 2.459
1962 -4.841 0.126 19.55 19.55 8.27 8.28 -0.175 -0.179  2.526 2.496
1966 -4.932 0.125 20.30 20.30 8.46 8.46 -0.200 -0.204 2.551 2.517
1970 -4.983 0.122 21.03 21.03 8.72 8.71 -0.221 -0.213  2.562 2.522
1974 -5.055 0.122 21.46 21.47 8.76 8.76 -0.245 -0.234 2.561 2.544
1978 -5.151 0.124 21.97 21.98 8.79 8.78 -0.273 -0.263 2.626 2.579
1982 -5.216 0.123 22.50 22.53 8.91 8.90 -0.331 -0.279  2.620 2.597
1986 -5.329 0.126 22.93 22,97  8.88 8.83 -0.378 -0.313 2.674  2.645
1990 -5.420 0.128 23.26 23.33 8.87 8.78 -0.417 -0.339 2.705 2.686
1994 -5.523 0.128 23.97 24.05 9.00 8.88 —-0.462 -0.365 2.767  2.725
1998 -5.591 0.130 24.25 24.34 8.99 8.85 -0.489 -0.382  2.790 2.757
2002 -5.682 0.134 24.30 24.39 8.85 8.66 -0.530 -0.408 2.832 2.808
2006 -5.743 0.132 24.99 25.02 8.97 8.80 -0.575 -0.421 2.899 2.829
2010 -5.787 0.133 25.33 25.33 8.98 8.83 -0.601 -0.431 2.936 2.848

2014 -5.896 0.134 2585 2585 8.98 8.81 -0.626 -0.457 2983  2.901
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Figure 1.34: Empirical quantiles vs. theoretical quantiles of the Kannisto distribution
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with estimated parameters (ay,[3;). Values above the dashed line indicate an underestimation of
survival probability of the theoretical distribution compared to the empirical distribution. As the
Q-Q-plots in Figure 1.34 show, there is a very close correspondence of the empirical distribution
and the Kannisto distribution. For the periods 2000 and 2010, there is a slight overestimation of the
survival probabilities by the Kannisto distribution between the ages 60-75 and above 100. However,
these quantile deviations have only marginal influences on the moments as Table 1.15 shows.

As a concluding remark, we point out that although the elementary KAN predictor has in terms of
the deviance measure the highest fitting discrepancy among the Kannisto model family, it captures
the empirical properties of the lifetime very well, which from a practitioner’s perspective might be a
better scale for model assessment.

1.9.3 | Interpretability and Comparability of the Kannisto Parameters

In Section 1.8.1, we stressed out some interpretability and comparability challenges of many GAPC
models with identifiability issues. Recall, that due to additional imposed parameter constraints,
required to achieve identifiability, the parameter estimates do not only depend on the observed data
anymore but also on those constraints, see, for instance, the illustration in Figure 1.25. Moreover,
adding recent or removing old mortality data, does change all estimates, not only those of the
corresponding periods, see the examples in Figures 1.26 and 1.27.

In the following application-oriented example, we demonstrate how practitioners benefit, in the
sense of model interpretability & comparability, by considering predictors with no identifiability
issues. In Figure 1.35, we display trajectories of the KAN parameter estimates («y,f3;) for the periods
t € {1900, ...,2011} of the female populations for Sweden (magenta), Switzerland (green) and France
(cyan). These parameter trajectories are embedded in a contour plot illustrating constant slices of the
expected remaining lifetime as a function of estimated Kannisto parameters. The trajectories of all
countries show a general trend towards a higher life expectancy. The given plot provides a possibility
of comparing mortalities of different populations either for fixed time frames or for particular
parameter regions. For instance, in 1989 the parameter values of Switzerland and France almost
coincide and indicate high similarities of the population’s mortality at this time. The path of Sweden
parameters reaches this region with a delay of 10 years. The delay of the mortality improvements for
Sweden appears to increase. The region of parameter values, which has been obtained by France
and Switzerland in 1977, was reached four years later by Sweden. From 1990 the paths of France and
Switzerland drift apart. The remaining life expectancy at age 60 of France in 2011 is 27.4 years and is
0.8 years higher compared to Switzerland. Note that for 2011 the « values for France and Switzerland
almost coincide, while the  values of France and Sweden almost coincide in 2011. In the first case,
we have aby, ~ aStl and Bi& | < BSEL . From this situation, we can conclude that the higher life
expectancy of France compared to Switzerland is mainly due to lower mortality rates for higher ages.
In the second case, where S5 | ~ B5E | and aff; < a35,,, the higher remaining life expectancy of
France, in comparison to Sweden, benefits from the overall lower mortality rates, especially at ages
60-95.

Consequently, by having identifiable parameters, we gain the ability for a meaningful interpretation
of the estimates, and compare mortalities based on these value. That holds, since other than for non-
identifiable models, the parameters depend only on the underlying data, rather than on additional
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constraints.

1.9.4 | Kannisto Model Forecasts obtained by a Multivariate Random Walk with Drift

In Section 1.4.3, we gave a brief introduction to the standard forecasting approach of GAPC models.
In the upcoming section, we follow this approach of modelling the periodic x; components by a
multivariate random walk with drift, illustrate the forecasting results, and also reveal the limitations
of the underlying concept.

Figures 1.36 to 1.38 illustrate the trajectories of the estimates « for the Kannisto predictors KAN,
KAN:2, and KAN:3, which will be used to calibrate a random walk with drift. Note, in the illustration,
we use an alternative notation for the components of «;, namely, a, B+, y;, and 0, for the constant,
linear, quadratic, and the cubic term. Note that a stochastic process is called stationary if its first and
second moments are time invariant, see Definition 2.2.2 or Liitkepohl (2007). A visual inspection
of the trajectories reveals that all paths show global or local trends. Therefore, only non-stationary
processes appear to be eligible to model the underlying periodic terms. A random walk with drift is
an integrated process of order one (see Definition 2.2.7) and is the standard modelling approach in
the GAPC literature, see, e.g., Cairns, Blake and Dowd (2006), Cairns, Blake, Dowd et al. (2011) and
Haberman and Renshaw (2011). In order to provide comparability to a later proposed alternative
modelling approach which will utilize cointegration relations between the components, we initially
demonstrate the standard modelling approach.

Let x4, with t = 0,1,2, ... ,ty, denote a multivariate time series of estimated parameters. We now
assume that x; follows a multivariate random walk with drift, i.e.,

Kt =K1+ o+ &) (189)

where 4 is the drift vector and &; a white noise process (see the explanations of Definition 2.2.2) with
variance X. Let y, := Ax; = k; — k;_ denote the time series of the first-order differences. Substituting
y, in eq. (1.89) yields

Y = o+ &t. (190)

Following Haberman and Renshaw (2011), the estimates of the drift components can be obtained by
v 1T 1
0 = N ;)’i,j = N(Ki,N —Ki)- (1.91)

With & =ri = (i — 8,-), the estimator of the white noise covariance matrix is given by

2o rit DTt 2 T1,eT3e
2
$ - Anl 1 et 2t X 223
= ——§€& = —— > . (1.92)
N-1 N-1 Zt 13,71t Zt r3,t172,t Zt T3¢

The right-hand side of the above expression is the sample covariance matrix of Ax; which is an
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Figure 1.35: Trajectories of the KAN model parameters (ay,f3;) for ¢ € {1900, ...,2011} of the female
population of Sweden (magenta), Switzerland (green) and France (cyan).

unbiased estimator of the white noise covariance matrix £ = [E[¢.&}]. Notice, that successive
substitution for lagged x; terms in eq. (1.89) leads to

Kiytj =Ky + O+ Eryrj+ Egrjo1 + .o+ Ergyle (1.93)
Taking the expectation of eq. (1.93) and using the white noise property [E[&;] = 0, for all ¢, yields
Kiy (]) = IE[KtN+]'] =Kiy t ]8, (194)

where «;, (j) denotes the j-step ahead forecast of &+ j at origin ty. To obtain prediction intervals
of the forecast, notice that

Kiy+j— KtN(j) S€jtEppj1 Tt Es

and thus, the j-step forecast mean squared error (MSE), a quantity which reflects the forecast
uncertainty, takes the form

2 () 1= MSE[sr, ()] = B [ (i = iy (1)) (1 = %0 ()] = 7,
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Figure 1.37: Parameters for the KAN:2 model fitted to the Sweden’s female population aged 60-106 the
periods between 1900 and 2014.

since [E[&:&;] = X and [E[¢,€]] = 0 for t # s. Thus, using the fact that the forecast errors of the
individual components are normally distributed, an (1 — «)100% forecast prediction interval (PL.), j
periods ahead is given by

(161,65 (7) = Z(aj2)0i (1)s ity (7) + Z(aj2)0i ()] » (1.95)

where 0;(j) is the square root of the i-th diagonal element of X,(j) and z,/, is the &/2 quantile of
the standard normal distribution, see Liitkepohl (2007).
Using egs. (1.91) and (1.92), we obtain the following estimates

+ [-1.495-1072
1.973-107*

-1.544-107°
6.534-107°

1.498-1073

= L.
[—1.544-10—5 (1.96)

for the drift and the covariance matrix of the two-dimensional random walk which drives the period
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Figure 1.38: Parameters for the KAN:3 model fitted to the Sweden’s female population aged 60-106 the
periods between 1900 and 2014.

terms of the KAN model. An estimation for the KAN:2 time series yields

-1.209-1072 2.008-1073 -1.072-107* 3.047-107°
0=|-8521-10"° $=[-1.072-10* 2273-107°> -5243-1077|. (1.97)
5.081-107° 3.047-107% -5.243-1077 1.692-1078

In the same way, we obtain the estimates for the KAN:3 model as

-1.180-1072 2.658-107% -3.301-107* 1.882-107> -3.132-107

§o -1.055-107* $_ -3.301-107*  9.448-107° -5517-107% 9.752-1078

2.876-107° 1.882-10™> -5.517-10"° 3.667-1077 -6.859-107°

1.002-1077 -3.132-1077  9.752-107% -6.859-107° 1.347-1071°
(1.98)

Figures 1.39 to 1.41 illustrate the parameter estimates of the models KAN, KAN:2 and KAN:3 along
with the corresponding central forecasts #2014 (36) and their 95% prediction intervals. The 36 years
ahead central forecasts (until 2050) are obtained by eq. (1.94) using random walks with drift and
covariance matrices as in egs. (1.96) to (1.98). Prediction intervals are obtained by a consecutive
application of eq. (1.95).

In Figure 1.39(c), we illustrate the historical and the projected remaining life expectancy for the
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Figure 1.39: Projections of the KAN model coefficients with 95% prediction intervals.
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Figure 1.40: Random walk driven projections of the KAN:2 coefficients. Dashed lines represent the

central forecasts and dotted lines show the 95% prediction intervals.
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Figure 1.41: Random walk driven projections of the KAN:3 coefficients. Dashed lines represent the
central forecasts and dotted lines show the 95% prediction intervals.

Swedish female population at the age of 60. The projections of the remaining life expectancy and
the corresponding prediction intervals are simulated using the Monte Carlo method with a sample
size of 10°, by first sampling from the fitted random walk and then calculating the remaining life
expectancy based on the sampled mortality structure. The projected life expectancy is an important
actuarial quantity and also serves here as a plausibility assessment since it is modelled indirectly
through the parameters of the KAN model. Large deviations from the historical experience in values
or slope would raise doubts in the quality of the underlying model.

The 36 years ahead forecast of the KAN model shows an average increase of the remaining life
expectancy of about one month (29.17 days) per year. The overall increase until 2050 is about 3 years,
raising from 25.85 to 28.79 years. The width of the 95% prediction interval at the period 2050 is
about 10.5 years, ranging from 24 to 34.5 years. Notice, that the slope of the forecast in Figure 1.39(c)
is slightly lower than the historical value. The observed averaged increase of the remaining life
expectancy over the previous 36 years is 38.12 days per year. It is also worth mentioning that, based
on the historical trajectories, the 95% prediction intervals appear to be wider than anticipated. For
instance, the lower 95% prediction interval is located below the current value. A decrease of the life
expectancy or an increase of almost 9 years until 2050 appears to be not plausible, even for a 95%
prediction interval.

For the sake of completeness, we add that the forecasts of the remaining life expectancy for
the models KAN:2 and KAN:3 are almost identical to those of the KAN model, as illustrated in
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Figure 1.39(c). We observe a relative discrepancy below 0.1% for both, the central projections and the
prediction intervals.

To conclude, the standard approach of treating the periodic term &, as a multivariate random walk
with drift does lead to decent central forecasts. However, the forecasts have unsatisfying prediction
uncertainties. These properties are inherited by the deduced actuarial quantities, such as remaining
life expectancy. As demonstrated, the central forecasts of the life expectancy are plausible, but the
uncertainty levels are difficult to work with in real-world applications. Mortality based contracts
priced according to that level of uncertainty might not be competitive.

1.9.5 | Indications for the Presence of Cointegration Relations between the Periodic Components
x; of the Kannisto Model

As illustrated in Figures 1.39 to 1.41, the forecasts of the periodic components of the Kannisto model
show that the prediction intervals increase for further-reaching forecasts. This is typical for integrated
processes where the MSEs are generally unbounded over time. This implies that, as the forecast
horizon increases the forecast uncertainty also increases, see Liitkepohl and Kratzig (2004). For
stationary processes, however, the MSEs are bounded, such that the forecast uncertainty does not
become arbitrarily large. From that perspective, stationary processes do have better properties.
However, as suggested in Figures 1.36 to 1.38 the time series of the estimated Kannisto parameters,
taken individually, are likely non-stationary and therefore cannot be modelled directly by stationary
processes on an individual level. However, even if individual variables are non-stationary, there
might be a linear combination which leads to stationarity. This topic is presented in the seminal
papers by Engle and Granger (1987) and Granger (1981), who formalized the concept of cointegration.
According to the authors, two integrated processes are called cointegrated if there exists a linear
combination of them which is stationary. This concept has become very important in research on
equilibrium relationships between economic variables and their long-run trends. The contributions
by Engle and Granger have been awarded the Nobel Prize in 2003.

To demonstrate some indications on the existence of cointegration relations between the individual
components of the Kannisto model, we refer to Figure 1.42, where every sub-figure displays a pair of
components, plotted on two different scales. For instance, Figure 1.42(a) illustrates the estimated
components «; and f; of the KAN model. We can observe the following similarities between the
trajectories. In the first part, where a; holds a certain level, f; also does. However, as soon a; starts
trending downwards f; starts showing an upward trend. The visual impression of the trajectories is
that a linear combination of them might lead to a trajectory without trends. This observation is even
more valid for other coefficient pairs as illustrated in Figures 1.42(b) to 1.42(d). The paths of ; and
y¢ of the KAN:2 model demonstrate the contradictory behaviour of those components, not only
globally but also locally, where positive increments of f3; are reflected as negative increments of y;
and vice verse. For all presented pairs of coefficients, there is some evidence that particular linear
combinations might be non-trending and that it is worth checking these variables for cointegration
relations, which will be done in Chapter 2. Note that although it is possible to model non-stationary
variables by first differencing them and using an appropriate stationary process afterwards, however,
this procedure might not be optimal since differencing can distort the relationship between the
original variables if cointegration relations exist, see Liitkepohl (2007). The loss of the long-run
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equilibrium relations, caused by differencing, can negatively affect the modelling capabilities.

Further evidence for existing cointegration relations can also be found Figure 1.35, where the
trajectories of the KAN model for three different countries show a long-term linear relation between
them. We made this observation not only for the countries shown in that example, but also in many
other cases which are presented Figures A.16 to A.27 in Appendix A.3.
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Figure 1.42: Evidence on cointegration relations between Kannisto coefficients.

1.10 | Conclusion and Outlook

This chapter presents an important class of stochastic mortality models. The key aspect of the
Generalized Age-Period-Cohort model family is that mortality rates are decomposed across the
dimensions of age, period, and cohort. Even though this modelling approach was followed by
practitioners and actuarial researchers for more than two decades, recent contributions showed that
most Age-Period-Cohort mortality models can be expressed in the framework of generalized linear
and non-linear models.

Throughout this chapter, we introduce the building blocks of GAPC models, provide an overview
of the most popular mortality models and review numerical methods for parameter estimation. To
assess various mortality models, we review some model selection criteria and common statistical
tests. A quantitative analysis, with the focus on elderly populations, is provided for distinct predictor
functions to compare their abilities to capture historical mortality changes. The results identify the
M8 and the PLAT model as the most favourable models. In general, less parsimonious models are
preferred over their sub-models as likelihood ratio tests demonstrate. In the second case study, we
show that by using a non-canonical link function we obtain, for all but one predictor function, a
better fitting performance. This is an important observation since the vast majority of the literature
does not consider this particular degree of freedom, which is a key component of generalized linear
models.

In the further course, we stress out many issues of the most popular GAPC models which are
direct consequences of the imposed parameter constraints in order to ensure identifiability. The
central points of criticisms are presented in Section 1.8. Considering the results of the case studies
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and the identified issues of current models, we propose a model class which is using a non-canonical
logit link and a predictor function which does not require additional constraints for parameters to
be identifiable. Our proposed model class is named after the demographer Vdiné Kannisto who
originally studied logistic hazard rate models. In a further case study, we provide a goodness-of-fit
analysis to show how the Kannisto models compare to the established models and demonstrate its
accuracy to reflect main characteristics of the lifetime distribution.

For forecasting purposes, the common approach of GAPC models is to treat periodic and cohort
parameters as stochastic factors and use discrete multivariate stochastic processes to model the
dynamics of those parameters. This approach uses a multivariate random walk with drift which we
employ here in order to have a comparison to a more sophisticated modelling approach, which will
be provided in Chapter 2. The observation of the Kannisto trajectories suggests that the individual
components do not move independently but rather follow common patterns. An alternative modelling
approach is to use particular vector autoregressive processes, which are capable of capturing long-run
equilibrium relations between the individual components. An analysis of cointegration relations
between the Kannisto coeflicients is covered by the following chapter.

While Chapter 2 describes the dynamic part of our proposed stochastic mortality model, Chapter 3
is largely independent of the previous. It is dedicated to an extensive characterization of the distribu-
tion, implied by a logistic hazard rate function, as proposed by the KAN predictor. We will study the
properties of the Kannisto distribution and show its relation to other well-known distributions.
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2.1 | Introduction

The historical evolution of human mortality, as presented in Section 1.3, shows that improvements
of mortality rates are driven by many factors. The GAPC family of mortality models, which is
formulated in the framework of generalized linear models, aims to capture relevant changes by a
decomposition of the mortality across the dimensions of age, period, and cohort. Many models
of this class introduce multiple factors that allow to capture mortality changes at different ages to
different extents. As Gaille and Sherris (2011) point out, the consequence of that approach is that
several factors of the model often follow common stochastic trends.

In the following chapter, we focus on the dynamics of the system of Kannisto variables. Recall that
the Kannisto model, as proposed in Section 1.9, is a parametric logistic-type model for age-related
mortality rates, including two, three or four periodic terms. In the following, we treat the Kannisto
parameters as stochastic factors and model their dynamics by a multivariate process. Based on the
time series of Kannisto parameters, we aim to find an appropriate discrete time stochastic process
which is able to capture their characteristics.

A VAR (vector autoregressive) process is considered to be a popular approach for modelling
dynamic interactions between multivariate variables. This process is capable of capturing dependen-
cies through time and between variables. However, without further restrictions, it cannot capture
long-run relations between the components. In the case of common stochastic trends between the
variables, a VECM (vector error correction model) is a better suited time series model.

In the following chapter, a cointegration analysis is performed for the Kannisto model family. The
result will reveal whether common stochastic trends are present in the considered time series. The
analysis will provide deeper insights in the relations between those factors that drive the structure of
mortality. By comparing the more sophisticated VECM/VAR models with the standard choice of a
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random walk, we demonstrate the impact of common trends on the forecasting performance. The
implementation of these methods by practitioners in the life insurance industry might beneficially
affect the risk managing strategies.

First, we provide a short overview of other related mortality modelling approaches that involve
cointegration methods. Subsequently, in Sections 2.2 and 2.3, we provide a brief introduction to the
theoretical background of multivariate time series and the specification procedure for VECM/VAR
processes. Note that these sections serve as preparation and are largely based on Johansen (1995),
Liitkepohl (2007) and Pfaff (2008). They do not contain original research. Our contribution continues
in Section 2.4, where we apply the described methods to the multivariate series of Kannisto parameters.
In Section 2.5, we consider projections of the Kannisto parameters under VECMs and compare them
to the standard approach, as discussed in Section 1.9.4. Section 2.6 concludes.

Related Studies on Mortality Modelling with Cointegration Methods

The cointegration approach for stochastic mortality models has been considered in several academic
studies. Among others, see, e.g., Salhi and Loisel (2011) for a study on long-run equilibrium relations
between mortality rates of the insured and the total national population. See also Lazar and Denuit
(2009) for an analysis of cointegration relations between the mortality rates of multiple age ranges.
The study of Gaille and Sherris (2012) reveals long-run equilibrium relations between the five main
causes of death.

H. Li and Lu (2017) proposes a first order spatial-temporal autoregressive model for the mortality
surface, where the mortality rates of each age depend on their historical values and, in addition, on
the rates of the neighbouring ages. Their approach implies co-integrated mortality rates at different
ages and thus prevents the long run divergence of the mortality forecast at different ages, which
is a common issue, such as for the Lee-Carter model. Furthermore, the approach by H. Li and Lu
(2017) also captures the cohort effect without imposing additional identification constraints on
the parameters. In particular, the proposed model avoids a widespread issue of arbitrarily chosen
constraints, as discussed in Section 1.8. In contrast to our model, which will be specified in Section 2.4,
the model by H. Li and Lu (2017) is non-parametric, where the smoothness of the mortality surface
is achieved by penalized least square estimation. In comparison, the non-parametric model is less
parsimonious than ours, however, it can be applied to wider age ranges. A further distinction is that
in H. Li and Lu (2017) the autoregressive model is applied to logarithmic transformed mortality
rates, where in our approach we consider a logistic-type transformation, which is, in particular, more
suitable for higher ages.

The closest consideration to our approach is the study of Gaille and Sherris (2011), where the
authors use a parametric mortality rate model as introduced by Heligman and Pollard (1980). The
so-called Heligman-Pollard model attempts to cover the mortality effects on the entire age range
using nine terms for each year. The study of Gaille and Sherris (2011) identifies common stochastic
trends between the Heligman-Pollard model parameters.

2.2 | Basic Concepts of Multivariate Time Series Analysis

We start by providing some basic definitions and useful terminologies for the subsequent sections.
The presented material is standard and is based on Liitkepohl (2007). The books of Hamilton (1994)
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and Brockwell and Davis (2013) are further standard references on time series.

Definition 2.2.1 (Multivariate Stochastic Process). Let (Q,F,IP) be a probability space and Z a count-
able index set, such as Z or INy. A K-dimensional (discrete) multivariate stochastic process is a
map

y:ZxQ—>IRK,

where, for each fixed t € Z, y(t,-) is a K-dimensional random vector. In other words, a multivariate
stochastic process is a parameterized collection y = (;)cz of random vectors y; : Q — RX. To keep
the notation simple, it is common to denote the stochastic process by y;.

For a fixed w € Q the map Z — RX with ¢ — y,(w) is called a realization or path of a stochastic
process. A time series is regarded as a finite part of a realization, i.e., as a set of values

y1(@),....yr(w@).

Since in practice the stochastic process which generates the underlying set of observations is generally
unknown, the process itself is referred to as the data generation process (DGP). A time series generated
by y; will usually be denoted by yi,...,yr, where T is called the sample size.

Definition 2.2.2 (Stationary Process). A stochastic process y; is said to be stationary if

(@) E[|yi*] < oo forallteZ,
(b) E[y¢]=u foralteZ,
(©) E[(y: = u)(ye—n — )] =T, (h) =T,(=h)" forallte Zand h = N,.

The first condition states that all first and second moments are finite. The second condition
states that all random vectors y; have the same constant mean. The last condition requires that the
autocovariance, defined by T, only depends on the distance / between two variables and not on t.
Note that the last condition also ensures that the covariance matrices are invariant under ¢. If the
stochastic process is not stationary, it is said to be non-stationary. The above concept of stationarity
must not be confused with a stricter form of stationarity, where a process y; is said to be strictly
stationary if

W

()’tw---))’tn) (yt1+h’~~~a}’t,,+h)»

foralln e N and forall t1,...,t,,h € Z, ie, if the joint distribution of n consecutive vectors is time
invariant for all n. Strict stationarity implies stationarity but not the other way around. A stochastic
process u; is called a white noise process if the conditions E[u,] = 0 for all ¢, E[uu;] = £,, and
E[usul] = 0 for t # s are satisfied. If not stated otherwise, the covariance matrix %, is assumed to be
non-singular. If, in addition, u; is assumed to be normally distributed, i.e., u; ~ N'(0,Z,), then the
process is called a Gaussian white noise.
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Definition 2.2.3 (Trend Stationary Process). A stochastic process y; is said to be trend stationary if it
has the following decomposition

ye=f(t) +z

where z; is a stationary process according to Definition 2.2.2 and f(¢) is a deterministic trend
function with values in RX. We will mainly consider stationarity around a linear trend, such that the
trend function will have the form f(t) = a + bt for some fixed parameters a and b.

Definition 2.2.4 (Vector Autoregressive Process (VAR)). A K-dimensional vector autoregressive process
of order p, denoted by VAR(p), is defined by

Yt = Alyt—l + et Ap}’t—p + CDt + Uy, (21)

where the A; are (K x K) coeflicient matrices for i = 1,...,p, C is the (K x M) coefficient matrix of
potentially included deterministic terms, which are represented by a (M x 1) vector Dy, and u; is a
K-dimensional white noise process.

Thus, a VAR(p) process describes the evolution of K endogenous variables as a regression on a
deterministic term as well as on p of their own lags perturbed by a white noise process. An important
property of a VAR(p) process is stability, which is the subject of the next definition.

Definition 2.2.5 (Stable Process). A K-dimensional VAR(p) process is said to be stable if the condition
det(llK—Alz—...—Apzp)th for |z|<1. (2.2)

is satisfied. Thus, the process is stable if the polynomial of VAR coefficient matrices has no roots in
and on the complex circle. The condition of eq. (2.2) is also referred to as the stability condition and
the polynomial as the reverse characteristic polynomial of a VAR(p) process (see Liitkepohl (2007)).

Realizations of stable processes differ qualitatively from realizations of unstable processes. While
stable processes generate trajectories which typically fluctuate around constant means with time-
invariant variance, trajectories of unstable processes usually show trends or strong seasonal fluctua-
tions. See Liitkepohl (2007) for a detailed discussion on that topic.

Proposition 2.2.6 (Stationarity Condition). A stable VAR(p) process of the form
Ye=v+A1y 1+ Apyiptuy, forteZ

is stationary.

Proof. The result can be obtained by the moving average representation of the VAR process, see
Litkepohl, 2007, Proposition 2.1. O

The previous result states that stability of a VAR(p) process, which has been initiated in the infinite
past, implies stationarity. See Liitkepohl (2007) for possible generalizations of this result for VAR(p)
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processes starting at some finite time fy. In preparation for the next definition, we introduce the
notation of the lag operator L which shifts the index of the process by one period, i.e., Ly; = y;—; and
the difference operator A such that Ay; = (1 - L)y, = y; — y,1. Consequently, A%y, = (1 - L)y,
will denote the difference of order d.

Definition 2.2.7 (Integrated & Cointegrated Stochastic Processes; Liitkepohl (2007)). A K-dimensional
stochastic process y; is called integrated of order d, denoted by y; ~ I(d), if A%y, is stable and A%~ y,
is not stable. An integrated process is sometimes also called a unit root process. An I(d) process y; is
said to be cointegrated if there exists a linear combination B’y; with B # 0 which is integrated of
order less than d. The vector B is called the cointegrating vector.

In the following, we will only consider processes that are at most integrated of order one. Thus,
cointegration relations are necessarily stationary or trend stationary, i.e., for a K-dimensional process
y¢ and cointegrating vector 8, we have

B’y =Piyke + - + B yke = 2t (2.3)

where z; is stationary or trend stationary. The process z; in eq. (2.3) is considered to be a deviation
from the long-run equilibrium B'y;.

Definition 2.2.8 (Random Walk with Drift). The process y; is called a random walk with drift if it has
the form

Yt =Vt Y1t Uy, (2.4)

where v is a non-zero constant vector and u; is a white noise process. For v = 0, the process is simply
called a random walk.

A random walk with drift is non-stationary and integrated of order one. To see that, let the
univariate process start in ty with value y, and consider the successive substitution for lagged y’s,
ie.,

t
ye=vtyiatu=v+(VEyotuy) Fup == Yo+ vE+ Y U
i=1
Thus, we can directly conclude by IE[y;] = yo + vt and V[y;] = V[u;] = to? that the random walk
is non-stationary. Furthermore, checking the stability condition of Definition 2.2.5 reveals that the
reverse characteristic polynomial of the random walk has a root on the unit circle. It is important
to point out that constant terms in VAR processes have different influences on stable and unstable
processes. Note that the constant term in eq. (2.4) corresponds to the slope of the deterministic
trend. Consider a univariate first-order autoregressive process defined by

Ye=v+ Py +uy, (2.5)

with |¢| < 1 and other terms as in eq. (2.4). This process is indeed stable and it can be shown that the
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mean and autocovariance of eq. (2.5) are given by

Bl = 25 =

and

h
¢ 2
1_¢20u.

In contrast, for stable processes, the constant term v does not correspond to a linear trend, as it does

T,(h) =E[(yr — ) (Ye-n —1)] =

for the random walk, but rather determines the mean of the process. As illustrated in this example,
stable and non-stable processes differ significantly. To be able to distinguish whether a given sample
is generated by stable and non-stable processes, testing strategies have been developed. The so-called
unit root or stationarity tests will be discussed in Section 2.3.2.

2.3 | Specification Procedure for Multivariate Time Series

In the following section, we provide an overview of common methods and procedures which are
applied to multivariate time series in order to find an appropriate DGP among the family of VAR
processes. The specification steps of the general procedure are described in the following remark.

Remark 2.3.1 (VAR/VECM Specification). Following Liitkepohl (2007, Chapter 8), the specification
steps include:

(1) The lag order selection of an unrestricted VAR(p) is obtained through several information
criteria, such as the Akaike’s Information Criterion (AIC), the Hannan-Quinn Criterion (HQ),
the Schwarz Criterion (SC) or the Final Prediction Error (FPE).

(2) Unit root and stationary tests are applied to each univariate time series. The considered tests
include the Augmented Dickey-Fuller test (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin
test (KPSS). These tests have contrary null hypotheses. The ADF test checks the null hypothesis
of a unit root, while the null hypothesis of KPSS is level or trend stationarity.

(3.a) Ifallunivariate variables are stationary, then a VAR( p) is an appropriate DGP for the underlying
observation. Parameters of VAR processes with Gaussian noise term can be consistently
estimated using the OLS regression. See Liitkepohl (2007, Chapter 3) for the concrete form of
the estimator and its asymptotic properties.

(3.b) If some univariate variables are integrated of order one, then the Johansen test procedure
should be applied in order to detect the presence of cointegration relations among the variables.
If there are some cointegration relations, then the representation of a VAR as given in eq. (2.1)
is not optimal, since there are restrictions on the VAR coefficients imposed by cointegration
relations. These restrictions are only covered implicitly by the VAR representation. A superior
representation of a VAR with cointegration relations is given by the so-called vector error
correction model (VECM). The VECM representation covers the imposed restrictions by
cointegration relations explicitly as rank restrictions on a particular coeflicient matrix. The
VECM methodology will be introduced in Section 2.3.3.
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(3.c) If some univariate variables are integrated of order one, but there are no cointegration relations,
then a VAR(p — 1) process can be applied to the difference process Ay;.

(4) The specification terminates with a validation procedure, where several tests are applied
to the residuals to detect model misspecification through exceptional autocorrelations or
non-normality, see Section 2.3.6.

2.3.1 | Lag Order Selection

In the upcoming section, we provide a brief introduction to some widely used criteria for lag order
selection. These include the information criteria as defined by Akaike (1981), abbreviated by AIC, the
Hannan and Quinn (1979) criterion, denoted by HQ, the Schwarz (1978) criterion, abbreviated SC,
and the final prediction error (FPE) criterion by Liitkepohl (2007). The measures for the length of the
lag determination are defined as

AIC(m) = ln‘iu(m)‘ + %mKZ, (2.6)

HQ(m) = ln‘iu(m)‘ + 2Inln Tsz, (2.7)

SC(m) =1n ‘iu(m)‘ + 1nTTmKZ, (2.8)
T+Km+1\5 .

where 2,(m) = T™' YL, 4l is the estimator of T, obtained by fitting a VAR(m) to the K-
dimensional time series. Note that while having distinct penalization terms, all above criteria
are functions of the determinant of the residual covariance matrix. Let Cr denote one of the criteria
defined in egs. (2.6) to (2.9), then the lag order p is chosen as

p = argmin Cr(m),
0<m<M
where M € IN is a pre-specified maximal considered lag order. For a detailed discussion on the
presented criteria, such as their derivation, small sample properties, and their consistency as lag
order estimators, see Liitkepohl (2007).

2.3.2 | Unit Root and Stationary Tests

In this section, we present two common statistical tests which are used to analyse whether the DGP
of the observed time series is a stationary or a non-stationary unit root process.

Augmented Dickey-Fuller Test

The most common test is the Augmented Dickey-Fuller (ADF) unit root test which is based on the
regression

k
AGt = Eo + flt + 7T9t_1 + E y,-A@t_,- + €4, (210)
i=1
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where the error term ¢, is a Gaussian white noise process. The number of lagged differences k in
the regression can be either determined by information criteria, by a significance ¢-type test of the
regression parameter or by checking the residuals for the absence of serial correlation, see Pfaft
(2008). Based on the regression of eq. (2.10), the objective is to test the hypothesis pair

Hy:m=0 vs. Hy:m#0,

which is given by a t-statistic of the OLS estimated parameter 7. The test statistic does not have an
asymptotic normal distribution. Critical values have to be obtained by simulation and are provided by
Dickey and Fuller (1981) and Fuller (1976). Furthermore, the limiting distribution does also depend
on the type of the included deterministic term. The null hypothesis 7 = 0 implies that 6, is an I(1)
process. This can be seen by adding y;_; to both sides of eq. (2.10) which yields

k
O =8+ &t +(1+m)01 + ) yilOs; +ép.

i=1

For 7 = 0, the coefficient of the term y;_; is equal to one, thus, the stability condition of eq. (2.2) is
violated. Since we do not consider processes of a higher order of integration, the term Zle Vil
is necessarily a stationary process. Thus, for 7 = 0, the process 6; can be essentially decomposed as

0; = deterministic term + random walk + stationary error process.

As mentioned above, the limiting distribution of the ADF test depends on whether the regression
in eq. (2.10) only includes a constant &, or a linear &, + &;t term. Therefore, there exists a series of
possible tests for 77 = 0. In the more general case, where & + &t is included, we have a t-type test
statistic

for the hypothesis pair
Hy:m=0 vs. Hy:m#0 (2.11)
and two joined null F-type test statistics ¢3 and ¢, for the pairs
Ho:(§&=0Am=0) vs. Hi:(&#0vm#0) (2.12)
and
Ho: (& =0A&=0Am=0) vs. Hy:(&#0vE £0vm+0).

The null hypothesis, corresponding to the statistic 73, is that the considered process is essentially a
random walk with drift and a deterministic time trend. The corresponding null hypothesis for the
statistic ¢3 is a random walk with drift and for ¢, the null hypothesis is a random walk without drift.
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In the second case, where only a constant term & is included in eq. (2.10), we have a ¢-type statistic,
denoted by 1, testing Hy : 7 = 0 versus H; : 7 # 0, and a joined F-type test for the hypothesis pair
Hoy: & =0Am=0versus Hy : & # 0 v 7 # 0. These null hypotheses correspond to a random walk
with and without drift. Critical values of the involved non-standard statistics can be found in Dickey
and Fuller (1981) and Fuller (1976).

In Section 2.4, we will provide a unit root analysis for time series given by the coefficients #; of
the Kannisto model. To verify the assumption that the underlying DGPs are indeed I(1) processes,
the following procedure is applied. First, the ADF test is applied to each individual component
of ;. If the null hypotheses cannot be rejected, the ADF tests are reapplied to the components of
the first-order differences Ax;. If the latter tests turn out to be significant, then we conclude that
Ax; ~ I(0) and therefore, x; ~ I(1). For a comprehensive introduction to the testing procedure see,
e.g., Pfaft (2008).

Kwiatkowski-Phillips-Schmidt-Shin Test

As a confirmatory analysis for unit roots, we use the KPSS test proposed by Kwiatkowski, Phillips,
Schmidt and Shin (1992). The KPSS test has the null hypothesis of stationarity, which is contrary to
the ADF test with the null hypothesis of a unit root. Kwiatkowski, Phillips, Schmidt and Shin (1992)
derived their test by considering a decomposition of the process into a deterministic component
B’ Dy, a pure random walk v, with innovation variance o2, and a stationary error process u; given by

9t=CDt+vt+ut

V¢ = Vi1 + €t

Obviously, for 62 = 0, 6; is trend stationary and for o2 > 0, the process is integrated. Thus, the null
hypothesis of §; ~ I(0) is formulated as H : 62 = 0, and the alternative is H; : 0 > 0. The KPSS test
uses a one-sided Lagrange multiplier statistic (see Section 1.6.3) which is given by

iZtTﬂ St

KPSS = :
T 6;(1)

where §; = 25:1 i1} is the partial sum of the residual obtained by a regression of 8; on the deterministic
trend CD; and

2(1) 12T:A2+2z’:(1 s )ET: . o)
& ==Y 0+ = - Qeliy )
* T i3 ‘ T3 I+1/ 5% e

is a consistent estimator of the long-run variance of u; using / as a length of a spectral window in the
so-called Barlett weighting function. Suitable choices for I might be I = 4 \/T/100 or I = 12 y/T/100 for
T being the sample size, see Pfaff (2008). Kwiatkowski, Phillips, Schmidt and Shin (1992) showed that
under Hy the KPSS statistic converges in distribution to a function of standard Brownian motion that
depends on the form Dy, but not on C. Critical values of the KPSS statistic for D; = 1 and D; = (1,t)’
are obtained by simulation and can be found in Kwiatkowski, Phillips, Schmidt and Shin (1992). In
Section 2.4, i1, will denote the KPSS statistic when D; = (1,) is used to test trend-stationarity, and
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1 will denote the KPSS statistic for D; = 1 to test stationarity.

Similar to the ADF unit root testing procedure, we will apply the KPSS test to x; and Ax;. If the
underlying DGP of «; is I(1), then we expect that KPSS tests will reject the null hypothesis for
components of x; but not for Ax;.

2.3.3 | Vector Error Correction Model

The section is devoted to vector error correction models (VECM), or alternatively called vector
equilibrium correction models. VECMs provide an alternative representation of VAR processes which
is more convenient if cointegration relations between variables exist. The topics presented in this
section are considered as known and are based on Liitkepohl (2007).

VECM Methodology

Recall from Definition 2.2.4 that omitting any deterministic terms, a K-dimensional vector autore-
gressive process y; with order p is defined as

Ye=A1ye1+ o+ Apyep + U, (2.14)

where Ay, ...,A, denote the coefficient matrices (K x K) and u; is a white noise process of dimension
K. Following Liitkepohl (2007), subtracting y;_; from eq. (2.14) and subsequently rearranging terms,
we obtain the VECM form

Ayt = Hyt,1 + I‘lAyt,l + -+ rpflAytfp + Uy, (215)

which is an equivalent representation of the VAR standard form, as given in eq. (2.14). In eq. (2.15),
that specifies a VECM(p — 1) process, we have

II := _(]]-K_Al_---_Ap)
and
l",- = _(Ai+1 + .- +Ap),

fori=1,...,p—1.If we now assume that all variables of y; are at most I(1), we see that the left-hand
side of eq. (2.15), Ay;, must be I(0). On the right-hand side, ITy,_; is the only term with I(1)
variables, but since it must also be I(0), it has to contain the potential cointegration relations. If we
now consider a VAR(p) process with unit roots, then by definition we have

\IIK—AIZ—...—APZP|:O,

for z = 1. This implies that IT = —(Ix — A; — ...~ A,) in eq. (2.15) does not have a full rank K. Let
tkIT = r < K, then II can be decomposed into a matrix product ap’ with & and B’ being (K x r)
matrices of rank r, see Liitkepohl (2007). The matrix « is called a loading matrix. Since B'y;_
contains the cointegration relations, f is referred to as a cointegration matrix, and the rank of IT as
the cointegration rank. As Liitkepohl (2007) points out, the decomposition IT = aB’ is not unique.
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However, by a suitable rearrangement of variables it is always possible to achieve a unique normalized
form, e.g.,

g - []L : ﬁEK_r)] , (2.16)

where 1, is the (7 x r) identity matrix and B’( K- isan (r x K — r) matrix. This normalized form
ensures a unique cointegration matrix and will be used from this point on.

In a VECM as in eq. (2.15), three essential cases for the cointegration rank can be distinguished. If
r = K, then all variables are stationary and the process y; has a stable VAR(p) representation. This
corresponds to the case (3.a) at page 106. If r = 0, then there are no cointegration relations among the
variables, ITy;_; vanishes in eq. (2.15), and therefore A y; has as stable representation as a VAR(p — 1)
process, see case (3.c) on page 107. Assuming now that all variables are I(1), then 0 < r < K implies
that there are r cointegration relations among the variables such that By, ~ I(0), or equivalently,
the variables are driven by K — r common trends. This situation describes the case (3.b), where the
system of variables is represented as a VECM(p — 1), as given in eq. (2.15) or equivalently by

Ayr=af'yr 1 +T1Ay g+ + Tp 1Ay p+us.

This VECM(p — 1) representation can also be transformed to a VAR(p) representation by the
following reorganization of coeflicient matrices

A1 =]lK+aﬁ’+l"1,
A;=T;-T;_4, fori:2,...,p—1
Ap :_rp_l.

However, the advantage of the VECM representation is that the hypothesis of cointegration relations
among the variables can be formulated in terms of a reduced rank tests of the matrix IT = af’, i.e.,

Hy:rkII=r vs. Hy:rkII>r, (2.17)

for r =0,1,...,K — 1. Likelihood ratio based testing procedures for the hypothesis pair of eq. (2.17),
as well as reduced rank ML estimation methods, have been developed by Johansen (1988, 1995) and
will be introduced in Section 2.3.5

2.3.4 | VECM Parameter Estimation

In this section, we introduce two estimation methods for VECMs. The presentation of the following
is based on Liitkepohl (2007, Section 7.2). We begin by providing some notations needed to express
the estimators. As the underlying process, we consider a VECM with deterministic terms of the form

A)/t = (xl:ﬁ/ : 1’],] |:£tc;)1:| + rlAyt_l + -+ Fp_lAyt_p+1 + \I]Dt + Ut
t-1

= H+}/:—_1 + I‘lAyt,l + e+ Fp,lAyt,pH + WDy + uy, (218)
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where y; is a K-dimensional process, rk(af’) = r, with 0 < r < K, where &, B are K x r matrices

.....

Further, we use the notation
. | Ve
H+ = “[ﬁ, : 17,] = “BH and y:——l = [Dco :|’
-1

where %' represents a vector of coefficients of the deterministic term D¢°,, which is restricted to
the cointegration relation. The coefficients ¥, on the other side, correspond to the unrestricted
deterministic D; terms. To avoid an over-determined system of equations, we assume that specific
deterministic terms appear either in D{°; or in D;. We also assume that y; is an integrated process
of order one and that

p-1
o (]lK -3 ri) B, (2.19)
i=1

is invertible, where & and B, denote orthogonal complements of the (r x K) matrices & and .
The assumption in eq. (2.19) is required for the Granger representation theorem, which is a result on
the decomposition of y; into integrated and stationary components, see Engle and Granger (1987)
for further details.

Following the notation of Liitkepohl (2007), for t = 1,...,T the VECM in eq. (2.18) can be written
in matrix notation as

AY =II"Y +TTAX" + U,

where
AY :=[Ayy,...,.Ayr], (2.20)
Y4 = [y oyl (2.21)
I*:=[Ty,....Tp %], (2.22)
AX" = [AXg, ..., AX_ ] (2.23)
with
A}/t—l
AXF . = : (2.24)
- Ayi-p+1
Dy
and

U:=[uy,...,url.
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LS Estimator for VECM

The multivariate least squares (LS) estimator, where no rank restriction on IT = af’ is taken into
account, is given by (Liitkepohl, 2007)

-1
YHYH  YHAXY

A+

Lty +1 +/
(M1 : 1] =[AYAY']: AYAX"Y] AX Y AXTAX (2.25)
A consistent estimator of the white noise covariance matrix can be obtained as
.= (T-Kp) N(AY -TT' YH T AX")(AY - Y, - T7AX™Y. (2.26)

The asymptotic properties of the LS estimator are derived in Liitkepohl (2007, Proposition 7.1). Based
on that, the estimator as given eq. (2.25) is consistent and asymptotically normal, i.e.,

VTvec ([T 17] - [ : 1*]) A N(0,20), (2.27)
where
Zo=A®Z,, (2.28)
with
s sl i)
0 dgpx 0 1gpx]|)’
and
+ It R /
Q= phm:lr [ﬁ A ;fg?;ﬁ P A ;flAAX)S ] , (2.29)

where ® in eq. (2.28) denotes the Kronecker product and plim in eq. (2.29) the probability limit. The
Matrix A can be consistently estimated by

A- T[ YRYH  YHAXY ]‘1

AXTYH  AXTAXY

For a known B, the LS estimator of [&,I'"] can be derived as

(2.30)

BUYAYART BTV AXT) T
AXTYH BT AXTAXY

[a,07] = [AYAY? BT : AYAX™] [
The LS estimator of eq. (2.30) has an asymptotic normal distribution, i.e.,

VTvec([&: 1]~ [a:T"]) 4 N(0,Zar), (2.31)
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where

-1
B 1 ﬁ+,Y+ Y+/ﬁ+ ﬁ‘HYJr AXH
1 . 1 1_ _
Zar = Q7 2, = plim 7, AX+1Y_+{;3+ Axtax | ®Zw
As noted in Liitkepohl (2007), the asymptotic distributions of eq. (2.31) and eq. (2.27), reduced to the
coefficients [&,I'*], coincide and do no depend on whether B has been estimated or assumed to be
known. This fact is a consequence of the faster convergence rate for the estimation of .

ML Estimator for VECM

Under the assumption that the process y; is Gaussian, i.e., uy ~ N'(0,%,), a maximum likelihood
estimator (ML) can be used for the estimation of a VECM. The ML estimator for VECM is derived
in Johansen (1995, Theorem 6.1) and considers explicitly the rank restriction of the matrix IT = aﬂ'.
Using the notations of eqgs. (2.20) to (2.24), the log-likelihood function of VECM with sample size T
is given by

KT T 1
InL(a,B,I,Z,) = - In2m - 5 In|Z,|- T [(AY —ap'Y_; -TAX)'S, (AY - ap'Y_; -TAX)],

(2.32)

where tr denotes the trace operator. In the following, we use the above notation and outline the
ML estimator for a VECM as can be found in Liitkepohl (2007, Proposition 7.3). The ML estimator
given below is an estimator for a VECM with no deterministic terms. However, a corresponding
estimator for eq. (2.18) can be analogously obtained by replacing (Y_;,AX, T') with the extended
variables (Y*,AX",T").

Proposition 2.3.2 (ML Estimators for VECMs; Liitkepohl (2007)). Let y; be a VECM driven by Gaussian
white noise u; and let M = 17 — AX(AXAX')"1,Ry := AYM and R; := Y_1 M, where AY :=
[Ay1,....Ayr] as before, Y_, = [yo,...,y7-1], [ == [T1,...,Tp_1], and AX := [AXp,...,AX 1]
with AX;_1 = [Ays_1,...,AY1—ps1]" and define

1
Sij = —R,'R

T i ije{0,1}.

Let A; > --- > Ak be the ordered eigenvalues of the generalized eigenvalue equation
IAS11 = S10S50 So1| = 0, (2.33)

with corresponding orthonormal eigenvectors vy, . . . vk, then the log-likelihood function as given in
eq. (2.32) is maximized for

B=P:=[v... ,vr]'Sl_ll/z, (2.34)
a=a:=AYMY{B(B'Y MY  B)" =S B('S1p)", (2.35)
I=T:=(AY -af'Y_))AX'(AXAX')7!, (2.36)
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Zy

~ 1 ~ - ~ -
T, = ?(AY —ap'Y_; -TAX)(AY -aB'Y_; -TAX)'. (2.37)
Proof. See Liitkepohl (2007, Proposition 7.3) or Johansen (1995, Theorem 6.1). O

The maximum of the log-likelihood function obtained by plugging in the estimators of egs. (2.34)
to (2.37) is given by

KT

maxInL = InL(&B,I,5,) = -

T r KT

In27m - = |In|Seo| + Y In(1-A;) | - —. (2.38)
2 o 2

These estimators are consistent and jointly asymptotically normal, i.e.,

VT vec ([ap':T]-[IL:T]) i>/\/(0,2co),

where X, is defined in eq. (2.28). The estimator 3, of the covariance matrix ¥, is also asymptotically
normal, see Liitkepohl (2007, Proposition 7.4) for the asymptotic covariance matrix, and Johansen
(1995) for the proof. Note that without further restrictions, only the product IT = af’ and therefore
the cointegration space can be estimated consistently, but not the parameters of & and . To obtain
uniqueness, it is necessary to impose further restrictions. This can be done by normalization of  in
accordance to eq. (2.16). That means, for > 1, B is normalized to the form

1,
p [ﬁw—r)] ’

where B(x_,) is a K x (K — r) matrix denoting the last K — r rows. As mentioned in Liitkepohl (2007,
Remark 3 of Proposition 7.4), the ML estimator Bx_,) of B_,) can be obtained as the last K - r

rows of Bﬁ(rl), where [i(r) consists of the first 7 rows of B, i.e.,

B = (BB -
For r = 1, the normalization is directly obtained through division by the first component of the
vector f = V{SI_II/ ?_ Johansen (1995) shows that the estimators are consistent and both T( B-PB)
and \/T(& — &) converge in distribution. The latter case has the same asymptotic distribution as in
eq. (2.31). The faster convergence rate of the estimator of 8 is also said to be superconsistent. For the
sake of completeness, the asymptotics of the normalized coefficients follow

vec |:(B,(K—r) - ﬁ,(Kfr)) (Rl(K,,)Ri(K_,) )2] AN (0,1k—, ® (a'Z,'a)7"), (2.39)

where R (Rer) denotes the last K — r rows of R;. For a more detailed discussion and proofs, we refer
to Liitkepohl (2007) and Ahn and Reinsel (1990, Theorem 4). The asymptotic covariance matrices as
given in eq. (2.27) or in eq. (2.31) and eq. (2.39) are used to derive standard deviations and ¢-ratios of
the estimated coeflicients.
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2.3.5 | Johansen Tests for Cointegration Rank

For the following, we consider a VECM driven by Gaussian white noise. Under this setting, a ML
estimator is available as a closed-form expression as presented in Proposition 2.3.2. Based on this
result, the likelihood ratio statistic can be applied for testing hypothesis pairs involving a particular
cointegration rank of the system. For the hypothesis pair

Hy:tkIl=ry vs. Hj:ro<rkII<r, (2.40)
the likelihood ratio statistic is given by
/\LR(To,rl) =2 (lnL(rl) —1In L(To))

L8 To
eq- 238) T(— S In(1-24)+ > In(1 —Ai))
i=1 i=1
L
=-T Z ln(l - )Li),
i=ro+1

where In L(r;) denotes the maximum of the log-likelihood function using the cointegration rank
r;. The statistic Ay g (9,71) is not normal, i.e., the limiting null distribution is not X2 and it depends
on the number of common trends, K — 7y, and the type of the deterministic term included in the
VECM, see Liitkepohl (2007).

Johansen Trace & Maximum Eigenvalue Test

Two particular choices for the alternative hypothesis in eq. (2.40) are commonly known as Johansen
cointegration tests. First, the LR statistic A r(¢,K) for testing the hypothesis pair

Hy:rkII=ry vs. H;:rog<rkII <K,

that is, testing that there are at most rg cointegration relations, is also known as the trace statistic.
The trace statistic is given by
K
Mr(r0,K) ==T > In(1-1;), (2.41)

i=ro+1

where A, +1 > ... > A are the K — r( smallest eigenvalues of the generalized eigenvalue equation
eq. (2.33). The statistic AL r (9,70 + 1) for checking the existence of ry against ry + 1 cointegration
relation by the hypothesis pair

Ho:tkIl=ry vs. Hj:rkIlI=ry+1,
is referred to as the maximum eigenvalue statistic and takes the form

AMr(ro,ro+1) ==TIn (1 - Ayys1). (2.42)
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The maximum eigenvalue statistic has been proposed by Johansen and Juselius (1990). The limiting
distributions of the trace statistic and the maximum eigenvalue statistic under the null hypothesis
have been studied by Johansen (1988, 1995) and Johansen and Juselius (1990). In the simplest case,
where the VECM does not include any deterministic terms, the test statistics of eqgs. (2.41) and (2.42)
have the following asymptotics (Liitkepohl, 2007)

d
ALr(70,K) — tr(W)
and
ALR(rO,rO + 1) i> /\max(w)’ (2.43)

where W is defined by
1 " 1
w=| [waw'| | [wwiae| | [waw'|,
0 0 0

with W being a (K — r¢)-dimensional standard Brownian motion process and Ap.x (W) in eq. (2.43)
denotes the maximum eigenvalue of W. The asymptotic distributions of both test statistics are
also available for more general VECMs with deterministic terms. Critical values are obtained by
simulation and can be found in Johansen and Juselius (1990, Appendix A). The procedure for the
determination of the cointegration rank consists of a sequence of tests with null hypotheses given by

Hy:rkII =0, Hy:rkII=1, ... Hy:rkII=K-1.

The testing procedure terminates at the first time when the test statistic is not significant (see
Liitkepohl (2007)). The corresponding null hypothesis at the termination point determines the
choice of the cointegration rank. This procedure is also described as the ‘top — bottom’ approach in
Juselius (2006, Section 8.1).

2.3.6 | VAR/VECM Model Diagnostics

The following section covers some frequently used diagnostic tests which are employed on the residu-
als in order to detect model misspecification. These tests are based on the residuals & := y; — J;, with
t=1,...,T, and include testing procedures for autocorrelation, conditional heteroscedasticity and
non-normality. If the model is wrongly specified in terms of the lag order, deterministic components,
or the cointegration rank, the residuals will significantly differ from a white noise process. Further
discussions on misspecification tests can be found in Juselius (2006), Liitkepohl and Kritzig (2004)
and Pfaff (2008).

Before introducing some formal tests, it should be noted that several graphical tools are also
available for diagnostic purposes. These include, in particular, the autocorrelation function (ACF) and
the cross-correlation function of the model residuals. The ACF is defined by h — Corr(#; +,0; 1),
withi=1,...,K, h=1,...,hmax > p, and the cross-correlation function by h Corr(ﬁi,t,ﬁj,t_h)
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for i # j. These graphical methods are helpful to detect model misspecification. As Liitkepohl and
Kritzig (2004) point out, autocorrelation and cross-correlation functions can reveal remaining serial
dependence in the residuals, while autocorrelations of squared residuals may detect conditional
heteroscedasticity. The assessment, whether an estimated correlation coefficient is significant or not,
is conducted using its standard error, which is asymptotically 1/ VT, see Juselius (2006). Thus, an
unusual number of autocorrelation or cross-correlations outside the 95% confidence region, given
by the band +1.96/+/T, are indications for model misspecification. The following introduction to
formal residual tests is based on Liitkepohl and Kritzig (2004).

Portmanteau Test for Residual Autocorrelation

The potential presence of residual autocorrelation can be assessed by the portmanteau or adjusted
portmanteau statistic. The portmanteau test checks the null hypothesis of no residual autocorrelation
up to lag h, which can be stated as

Hy : E[d,4;_;]=0, i=1,....h,

1

versus the alternative that at least one autocorrelation up to lag h differs from zero. The test statistic

is given by
h A A A A
Qn=T> tr(CiCy iy, (2.44)
i=1
where
R T
Ci=T" Y il
t=i+1

is the empirical autocovariance matrix. The limiting distribution of the statistic Q; under the null
hypothesis is the y* distribution with K*(h - p) degrees of freedom, where K is the dimension of the
time series and p is the order of the VAR process. The number of degrees of freedom of the limiting
X2 distribution depends on the number of free model parameters. Thus, for a VECM, the number
of independent parameters reduces due to a rank restriction to hK? — K?(p — 1) — Kr, where r is
the cointegration rank, see Liitkepohl (2007). Note that deterministic terms in the VAR/VECM
must also be considered for the calculation of the degrees of freedom. A modified version of the
portmanteau statistic of eq. (2.44), referred to as the adjusted portmanteau statistic, is defined by

h
Q=T (T-i)"te(CiCy GGy ).
i=1

This adjusted statistic is potentially more suitable for small sample sizes.

Breusch-Godfrey Test for Residual Autocorrelation

An alternative test for residual autocorrelation, the so-called Breusch-Godfrey test, is a Lagrange mul-
tiplier type test proposed by Breusch (1978) and Godfrey (1978). The test for residual autocorrelation
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up to order F is based on the auxiliary regression

=

t=A1yr 1+ +Apyr p+ CDy+ Biily 1+ + Bptly_p + e
for a VAR model, and in analogy on the regression
U =ap yi1+T1Ay; g+ +Tp1Ayip+ CDy + Byily_y + -+ + Byily_p, + €
for a VECM. The test checks the hypothesis pair
Hy:By=--=B, =0 VS. Hy:3B; #0fori=1,...,h.
The Breusch-Godfrey test statistic is defined as
Am(h) = T[K -t (£.25)],

where 3, and 3 denote the estimated covariance matrices of the auxiliary regressions for the
unrestricted case and for the case with imposed restrictions By = --- = B, = 0, i.e,,

A - 1& e
Se=— Y 66 and Zp=—) é'¢.
=i TS

The limiting distribution of the A1y (k) under the null hypothesis is y*(hK?). As Liitkepohl (2007)
points out, the Breusch-Godfrey test is useful, in particular, for testing low order residual autocorre-
lation, where the y? approximation of the portmanteau statistic might be insufficient. On the other
hand, a portmanteau test is superior for larger h. Thus, usually both tests are used complementary to
check the residuals for autocorrelation.

Non-normality Tests for Residuals

The following non-normality tests are based on skewness and kurtosis of the standardized residuals.
Let 2, denote the empirical residual covariance matrix

- 1
u=

~ |

T - -
> (e =) (i — 1),
t=1

where & := T™' ¥ L, 4; is the residual mean, then the standardized residuals are obtained by

.1 _
by = (0. o0%,) = 242 (0 - ).

Let the following auxiliary quantities b; and b, be defined as
1T

b= (bu,-obix) with bye= o > ()’
t=1
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and
1 I

b= (ban,..obax)  with b= > (45,)",
t=1

then it can be shown, see, e.g., Liitkepohl (2007, Proposition 4.9) that b; and b, are asymptotically
independent and normally distributed, i.e.,

P R Ol e
where 3k := (3,...,3)". This result implies that
8= by s ()
and
1= 54 (b2 30) (b2 - 31) - P(K),
The statistics s3 and s can be used to check the hypothesis pairs
Hy:E[(4°)°]=0 vs.  H:E[(&)’]#0 (2.45)
and
Hy:E[(&)*]=3x  vs.  Hp:E[(&°)*] # 3. (2.46)

A joint test for the null hypotheses of egs. (2.45) and (2.46) can be checked by the statistic

2 2
AL}B =831 8y,

'multi

which is a multivariate generalization of the univariate Lomnicki-Jarque-Bera test for non-normality,
proposed by Jarque and Bera (1987) and Lomnicki (1961). Using the asymptotic properties of s3 and

s3 we can conclude that

d
ALJB —> XZ(ZK).

multi

In the upcoming case study in Section 2.4, we will report the multivariate test statistics s%, si and
ALB, . as well as the univariate statistic Ajp for each time series component.

(M)ARCH Test for Residual Heteroscedasticity

Some frequently used tests for conditional heteroscedasticity in the residuals are the Lagrange
multiplier type tests, denoted by ARCH in the univariate case, and its generalization to a multivariate
conditional heteroscedasticity test, denoted by MARCH. Following Liitkepohl and Kritzig (2004),
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the multivariate g-th order test is based on the regression
vech(itsiy) = Bo + By vech(dy—yity_y) + -+ + By vech(dy—qity_p) + &, (2.47)

where vech(+) is the half-vectorization operator which converts a symmetric matrix to a vector by
vectorizing only the lower triangular part of the matrix. The corresponding coefficient matrices B;
for j=1,...,q are therefore (12K(K + 1) x 12K (K + 1))-dimensional. Note that in the univariate
case, the regression of eq. (2.47) reduces to

i} = Po+ Bril; y + -+ Byliy o + &1,
The MARCH test checks the hypothesis pair
Hy:By=--=B;=0 vs. H;:3B;#0 fori=1,...,q

through the multivariate LM statistic
1 A A
MARCHyy(q) := B TK(K +1) - Ttr(ZvenZot), (2.48)

where Zyeq, is the residual covariance matrix obtained by the regression of eq. (2.47) and 3, is the
alternative residual covariance matrix obtained by using the regression with g = 0. Under the null
hypothesis of no conditional heteroscedasticity, the statistic has an asymptotic y*(qK*(K + 1)%/4)
distribution, see Liitkepohl (2007). For the univariate case, the statistic of eq. (2.48) reduces to

A

ARCHi(q) = T(l - i) .
0o

The limiting distribution of the ARCHy;(q) statistic is consequently given by the y*(q) distribution,
see Engle (1982).

2.4 | VECM Specification for the Kannisto Model

In the following, we return to the Kannisto model as specified in Section 1.9.1. We investigate whether
the presence of cointegration relations among the multivariate time series, given by Kannisto model
estimates, can be confirmed as it was suggested in Section 1.9.5. In the subsequent sections, we will
analyse all three proposed models KAN, KAN:2, and KAN:3 following the specification procedure
described in Remark 2.3.1.

2.4.1 | VECM Specification for the KAN Model

The basis for the upcoming analysis is the 2-dimensional time series of the KAN model parameters

estimated in Section 1.9.2. The trajectories of the KAN coeflicients KEI) and K;Z), as well as their

first-order differences AKEI) and AKSZ), are provided in Figure 2.1. Visual inspection of the time
series indicates a structural change of the trajectories in the 1940’s. This period corresponds to the
end of the Second World War that brought significant improvements of mortality rates. That also
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applies to the non-directly involved Swedish female population, as discussed in Section 1.3 and
illustrated in Figure 1.4. For all following analyses, we will therefore only consider the corresponding
time series in the period between 1946 and 2014.

Lag Order Selection for the KAN Model

Following the specification procedure of Remark 2.3.1, we start by selecting the lag order p of an
unrestricted VAR(p) model by using the information criteria from Section 2.3.1. Table 2.1 shows
the results for an unrestricted VAR model with both a constant and a deterministic trend and a
maximum lag order of p = 7. For the criteria AIC, HQ, SC, and FPE see egs. (2.6) to (2.9).

According to the AIC and FPE criteria, the optimal VAR lag is p = 3. On the other hand, the HQ
and SC criteria suggest the optimal lag order to be p = 1. Note that choosing the lag order according
to information criteria does not necessarily imply that the residuals of that model will pass the
standard diagnostic tests. Using the methods of Section 2.3.6, we detect significant autocorrelations
in the residual of the VAR(1) model and therefore choose p = 3 as the VAR lag order as suggested
by the AIC and FPE criteria.

Unit Root Tests for the KAN Model

Next, we investigate whether the DGP of the underlying KAN time series contains unit roots or
otherwise can be considered as stationary. The upper panel of Figure 2.1 suggests that based on visual
judgment KEI) and KEZ) do not have a stationary DGP. Nevertheless, they could have been generated
by a trend-stationary DGP. Formal tests, as introduced in Section 2.3.2, will be considered to assess
stationarity of those time series.

The objective of the forthcoming testing procedure is to confirm that both time series KEI) and
ng) have an I(1) DGP. First, we apply the ADF test on each component of x; to test whether we can
reject the unit null hypothesis. Additionally, the KPSS test is applied to check stationarity as the null
hypothesis. If the null hypotheses of the ADF tests cannot be rejected and the null hypotheses of the
conformational KPSS tests are rejected, then both tests are reapplied to individual components of the
first-order differences Ak, in order to confirm that the unit root null hypothesis can be rejected, while
the stationarity null hypothesis cannot. Since the trajectories of KEI) and KEZ) have a drift, we include
a constant and a linear trend term in the ADF regression (see eq. (2.10)) and use the t-type 73 and
the F-type ¢3 statistics to test the hypothesis pairs of eqgs. (2.11) and (2.12). The corresponding KPSS
tests employ the statistic #, to check trend-stationarity. The testing procedure continues with the
first-order differences. Due to the absence of a drift, the ADF ¢-type 7, and the F-type ¢, statistics
are employed for testing the presence of a unit root and the KPSS statistic 7, for checking stationarity.
The ADF and KPSS tests are evaluated in R using the urca package (Pfaft, Zivot and Stigler, 2016).
The results are summarized in Table 2.2. The second column of the table contains the information
about the deterministic term used for the corresponding test and the third column either contains
the number of lagged differences k in eq. (2.10), or the length [ of the spectral window in the Barlett
weighting function, as given in eq. (2.13).

The ADF test results imply that we cannot reject the null hypothesis of a unit root for Kt(l) and
ng). The KPSS test results of KEI) and KEZ), on the other hand, are significant at the 5% level. The

results of the first-order differences AKEI) and AKEZ) show that the ADF test suggests to reject the
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Figure 2.1: Trajectories of the KAN model estimates and the corresponding first-order differences.
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Table 2.1: Information criteria based VAR lag order selection for the KAN model.

lags p AIC(p) HQ(p) SC(p) EPE(p)

1 -21.049 -20.941 -20.775 7.22-10710
2 -21.066 —-20.904 —-20.654 7.11-10710
3 -21.081 -20.865 -20.532 7.01-1071°
4 -21.039 -20.769 -20.353 7.34-10710
5 -21.067 -20.743 -20.243 7.16-1071°
6 -21.062 -20.685 -20.102 7.24-10710
7 -21.065 -20.634 -19.967 7.28-10710

null hypothesis of unit root for both time series. Furthermore, the stationarity null of the KPSS test
is accepted at the 5% level. Thus, based on that testing procedure, we can conclude that both time

series are integrated of order one.

Cointegration Tests for the KAN Model

Stationarity tests of the previous analysis confirmed that both components of «; are integrated of
order one. Next, we will conduct Johansen cointegration tests to determine whether a VAR model
for Ax; is appropriate, if no cointegration relation exist, or otherwise a VECM can be applied to «;,
if a long-run equilibrium relation can be confirmed. These cases are outlined in (3.c) and (3.b) of
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Table 2.2: ADF and KPSS tests for the components of x; and Ax, of the KAN model.

time series  deterministic trend  lags / length statistic  test value critical values
1% 5% 10%
£V constant, trend k=3 ADF: 1, —239  -4.04 -345 -3.15
xH constant, trend k=3 ADF: ¢; 3.66 873 649 547
M constant, trend I=4 KPSS : 71, 0.168 0216 0.146  0.119
KEZ) constant, trend k=3 ADF: 13 -2.15 -4.04 -3.45 -3.15
KEZ) constant, trend k=3 ADF: ¢3 2.34 8.73 6.49 5.47
K2 constant, trend I=4 KPSS : 71, 0.159 0216 0.146  0.119
Ak constant k=3 ADF: 1, ~743 =351 -2.89 -2.58
Ak constant k=3 ADF: ¢, 27.60 670 471  3.86
Ak constant I=4 KPSS : 7, 0.075 0739 0463  0.347
Ax? constant k=3 ADF: 1 ~593  -351 -2.89 -2.58
Ax? constant k=3 ADF: ¢, 1761 670 471  3.86
A constant I=4  KPSS:y, 0.064 0739 0463  0.347

Remark 2.3.1.

Tables 2.3 and 2.4 report the results of the Johansen cointegration tests, as introduced in Sec-
tion 2.3.5, with the trace statistic given in eq. (2.41) and the maximum eigenvalue statistic in eq. (2.42),
respectively. Recall that the procedure of cointegration rank selection involves a series of Johansen
tests until a rejection of the null hypothesis arises for the first time. Since the corresponding time
series has the dimension K = 2, there are 2 null hypotheses to be checked here. As for the unit root test,
we use the urca package for the cointegration rank tests. Critical values used by this implementation
have been taken from Osterwald-Lenum (1992). An alternative source for critical values can also be
found in MacKinnon, Haug and Michelis (1999). The LR type trace and the maximum eigenvalue
statistics are obtained by estimating pairs of restricted VAR(p) models using Proposition 2.3.2. For
that estimation, we use the suggested lag order of p = 3 and a deterministic term containing a trend
&co restricted only to appear in the cointegrating relations and an unrestricted constant &, i.e.,

Ak = (x[ﬁ' . fco] |:;€t__11:| + T1AKi—1 + ToAKi, + E+ U,

=M+ TAx + Tp Ak p + E+uy.

It should be noted here that an unrestricted linear trend would allow a quadratic growth of the
variables. However, the above specification allows a linear trend in the cointegration relation as
well as in the variables. For a detailed discussion on the selection of deterministic terms and the
implication of their restrictions, we refer to Juselius (2006).

The trace test shows that the null hypothesis of no cointegration relation, i.e., r = 0, is rejected at
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the 5% level. The maximum eigenvalue test confirms this result by also rejecting the null hypothesis
of r = 0 at the 5% level. For K = 2 and r = 1, both statistics coincide and accept the null hypothesis
r = 1. Conclusively, there is statistical evidence that both periodic components of the KAN model
Kt(l) and KEZ), which shape the mortality curve in the period ¢, have a long-run equilibrium relation.
As outlined in Remark 2.3.1, the appropriate model for this system of variables is a VECM of order 2,

which will be estimated in the following section.

VECM Estimation for the KAN Model

In the following, the maximum likelihood estimator of Proposition 2.3.2 is used to estimate a VECM
of the form

Ak = “[ﬁ' : €] [;ct__ll] + 1Ak + ToAki_y + &+ uy, (2.49)

where a denotes the loading vector, f the cointegration vector, &, the linear trend parameter in the
cointegration relation, and & is the parameter vector corresponding to a constant term. I and I
are the coefficient matrices of the VECM, and u; is a Gaussian white noise process with covariance
matrix X,,. Using the KAN time series «; for t = 1946, ...,2014, and a VECM of the form eq. (2.49)
yields the following estimates

[-0.359 K1,6-1 -0.311 -4.835
Axpe| _ | (-3.569) [1.00 : —6.805 0.023 ] B L 2379)  (2007) [ | Ak
Ak 0.022 (-1713)  (22922) | [ "> T 0,010 -0.229 | | Ay
| (2.965) t—1 (-1.057) (-1.856)
- (2.50)
-0.255 -0.919 -1.919 .
L | (2146)  (-0577) AK12 RIGCCOINLEY:
-0.014 —0.286 || Axz s 0.116 o]
| (-1.575)  (-2.418) (2.975)
Table 2.3: Trace test for cointegration rank of the KAN model.
Hy H, trace statistic critical values
10% 5% 1%
r=0 0<r<2 28.07 22.76 25.32 30.45
r=1 1<r<2 9.07 10.49 12.25 16.26

Table 2.4: Maximum eigenvalue test for cointegration rank of the KAN model.

Hy H, max eig. statistic critical values
10% 5% 1%
r=0 r=1 19.00 16.85 18.96 23.65

r= r=2 9.07 10.49 12.25 16.26
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The t-values of the coefficient estimates are given in parentheses. Coefficient estimates which are
significant at the 5% level are denoted in bold. Equation (2.50) shows that all VECM matrices have
significant coefficients. Thus, it is unlikely that a model reduction to a lower lag order, as suggested by
the HQ or SC information criteria, is possible. A VAR representation of the VECM form in eq. (2.50)
is given by

K= A1K; 1 + Ak + Az + CDt + ﬁt
0330 —2.392 || k1,11 N 0.056 3.915( | K1,t-2
“ 10012 0.620|| K241 | |-0.004 —0.057 | K2 (2.51)
L [0-255 0.919] 1] [-1.919 ~0.008][ 1 ] [inne
0.014 0.286||x2.3| |0.0116 0.001||t—1| |dosl’
and is obtained using the transformations A; = II + I'; + 1, A, = I', - T'j, and A3 = -T5. The

coefficient matrix of D; = (1,t — 1)’ is given by C = [E : (xfco]. The estimated residual covariance
and correlation matrices can be obtained using the estimator of eq. (2.26) which leads to

(2.52)

u=

~ [3.357 -0.117

— 1 —0471
_ -4 _
~0.117 0.018] <107 Corr(ur) [ ]

-0.471 1

In Figure 2.2(a), we illustrate the estimated long-run equilibrium relation B’ K + écot of the KAN
model coefficients. Recall that the existence of cointegration relations implies that while the DGPs
of KEI) and ng) are non-stationary unit root processes, there exists a linear combination of them,
such that the resulting process is stationary. Alternatively, by omitting the drift term &t in the

cointegration relation, we illustrate the trend stationarity of §'x, in Figure 2.2(b).

VECM Validation for the KAN Model

In this section, the diagnostic tests from Section 2.3.6 are performed to check the residuals for
autocorrelation, non-normality and heteroscedasticity. We begin the analysis by visual inspection of
the residuals of the estimation as given by eq. (2.50). The standardized residuals, residual autocorrela-
tions, cross-correlations, and Gaussian kernel density estimators for the residuals are illustrated in

Figure 2.3. The ACF and the cross-correlation plots show that although most correlations are below
the significance bounds of +1.96//T there are few correlations outside the bounds which might
cause problems in formal validation tests. Notice that the sample size for the time series from 1946 to

2014 is T = 66 since 3 presample values are used in the VECM(2)/VAR(3) model. The correlation

significance bounds are therefore given by +0.2413. Further inspection of the autocorrelations of
the squared residuals gives no indication of ARCH effects. From Figure 2.3(g), we can observe by
the Gaussian kernel density estimators that the dispersion of both standardized residuals is slightly
higher than the standard normal distribution. This potential indication of non-normality will be

assessed by multivariate/univariate Lomnicki-Jarque-Bera tests.

Table 2.5 summarizes the results of employed diagnostic tests for the VECM(2) model. The table
contains the test values and the p-values, which are derived according to the corresponding x*
limiting distributions. Recall from Remark 1.6.2 that a test will reject the null hypothesis if the p-value
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(a) Level stationary equilibrium relation B'm + gcot of the KAN model.

I I
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(b) Trend stationary equilibrium relation '« of the KAN model.

Figure 2.2: Estimated equilibrium relation of the KAN model.

is smaller than the chosen significance level. Since all p-values in Table 2.5 are above 0.05, none of the
null hypotheses is rejected at the 5% level. The absence of autocorrelations in the residuals is accepted
by the Portmanteau test, by checking high order autocorrelations, as well as, by the Breusch-Godfrey
test for low order autocorrelations. Normality of the residuals is also accepted using multivariate and
univariate tests. According to the results of the MARCH/ARCH tests, there is no indication for the
presence of ARCH effects in the residuals.

In summary, none of the autocorrelation, non-normality or heteroscedasticity tests indicates
problems with the VECM specified in eq. (2.49). We can conclude that the presented model provides
an appropriate representation of the DGP of the KAN model coefficients and thus the estimated
cointegration relation captures the long-run behaviour of the mortality structure.

2.4.2 | VECM Specification for the KAN:2 Model

In this section, we proceed our analysis of the multivariate time series given by the KAN:2 model as
presented in Section 1.9.2. Recall that the predictor function of the KAN:2 model

3 . .
Nex = Z(x - xmin)l_lkgl)
i=1
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(b) standardized residuals u,
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(f) Cross-correlation of u5 ; against u,;
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(g) Gaussian kernel density estimators of the residuals u,,; with selected bandwidth of h,, , = 0.5 and with bandwidth

huy, = 0.5 for uy ;.

Figure 2.3: Residual autocorrelation, cross-correlations and Gaussian kernel density estimators.
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Table 2.5: Diagnostics of the VECM for the KAN time series.

diagnostic type test name test statistic testvalue  appr. dist. p-value
autocorrelation Portmanteau Qis 59.585 ¥*(54) 0.280
adjusted Portmanteau Qg 69.276 x*(54) 0.079
Breusch-Godfrey Am(5) 28.069 x*(20) 0.108
non-normality multivariate ALJB,, 1 0.629 x> (4) 0.960
skewness only s 0.094 ¥ (2) 0.954
kurtosis only s3 0.535 ¥ (2) 0.765
univariate ALys 0.279 ¥ (2) 0.870
univariate u, ALys 0.988 ¥ (2) 0.610
heteroscedasticity —multivariate MARCHy(5) 60.131 x*(45) 0.065
univariate ARCHy(16) 5.739 ¥*(16) 0.991
univariate u, ARCH] y(16) 18.516 x*(16) 0.295

has, compared to the KAN model, an additional quadratic term, such that there are altogether 3
coefficients, namely Kgl), KEZ), and K§3), which determine the mortality curve for the period ¢. Using
the time series of the KAN:2 estimates, we again follow the specification procedure for the VECM/VAR
models as described in Remark 2.3.1. For the plots of the KAN:2 trajectories, see Figure 1.37. The
objective of the following is to analyse whether we can formally confirm the observation of long-run

relations between the coefficients, as made in Section 1.9.5 and shown in Figure 1.42(b) on page 98.

Lag Order Selection for the KAN:2 Model

Analogous to Section 2.4.1, we start by selecting the lag order p of an unrestricted VAR(p) model,
with a constant and a deterministic trend, by using the information criteria from Section 2.3.1. The
results are presented in Table 2.6 and show that the AIC, HQ, and the FPE information criteria are
minimized for p = 3. On the other hand, the SC criterion prefers the lag order p = 1. In this case,
we will follow the suggestion made by the majority and choose the order p = 3 for the KAN:2 time
series.

Table 2.6: Information criteria based VAR lag order selection for the KAN:2 model.

lags p AIC(p) HQ(p) SC(p) FPE(p)

1 -39.745 —-39.543 -39.230 5.49-10718
2 -39.819 -39.495 -38.995 5.12-107!8
3 -40.043 -39.598 -38.911 4.12-107!8
4 -39.946 -39.380 -38.505 45910718
5 -39.907 -39.220 -38.157 4.87-10718
6 -39.876 -39.068 -37.818 5.17-107!8
7 -39.781 -38.851 -37.414 5.91-107'8
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Unit Root Tests for the KAN:2 Model

In this section, we investigate whether the underlying DGPs of the three KAN:2 components have
unit roots or can be considered as stationary. From visual inspection of the trajectories as given in
Figure 1.37 the DGP is unlikely to be stationary. The formal analysis by ADF and KPSS tests is shown
in Table 2.7. The results show that the unit root null hypotheses of the ADF tests are accepted for
all components of k; at the 5% level. Simultaneously, the KPSS null hypotheses of stationarity are
rejected for all components of «; at the 5% level. Furthermore, we observe an opposite behaviour for
the first-order differences Ax;. The unit root null hypotheses are rejected by the ADF tests at the 5%
level, and simultaneously, stationarity is accepted by the KPSS tests at the 5% level. Based on the

results of this testing procedure, we can conclude that the underlying univariate DGPs of Kfl), ng)

and K§3) are integrated of order one.

Cointegration Tests for the KAN:2 Model

Unit root and stationarity tests from confirmed that components of x; are integrated of order one.
Next, we will conduct Johansen cointegration tests to determine whether an unrestricted VAR or a
VECM is better suited for the KAN:2 time series. The results of the Johansen trace and maximum
eigenvalue test are reported in Tables 2.8 and 2.9. Applying the ‘top — bottom’ approach for the
trace test, we find that the null hypothesis 7 = 0 is rejected, but the null hypothesis r = 1 is accepted at
the 5% level. The same holds for the maximum eigenvalue test. The null hypothesis r = 0 is rejected
at the 5% level in favour for the alternative r = 1, while at the next step the null hypothesis r = 1 is
accepted at the 5% level. Thus, we conclude that there are at least two unit roots and at most one
stationary relation.

Table 2.7: ADF and KPSS tests for the components of x; and Ax; of the KAN:2 model.

time series  deterministic trend lags / length statistic  test value critical values
1% 5%  10%
KEI) constant, trend k=3 ADF: 13 -2.63 -4.04 —-3.45 -3.15
KEI) constant, trend 1=2 KPSS: 4, 0.511  0.216  0.146  0.119
2 constant, trend k=3 ADF: 15 310 -4.04 -3.45 -3.15
x?) constant, trend 1=2 KPSS : 7, 0444 0216 0.146  0.119
1) constant, trend k=3 ADF: 7 ~2.83  -4.04 -345 -3.15
K constant, trend 1=2 KPSS : 7, 0466 0216  0.146  0.119
Ak constant k=3 ADF: 1, ~353  -351 -2.89 -2.58
AV constant 1=2 KPSS : 1, 0329 0739 0463 0347
Ak constant k=3 ADF: 1, ~368 -351 -2.89 -2.58
A constant 1=2 KPSS : 7, 0327 0739 0463  0.347
Ax® constant k=3 ADF: 1, 347 351 -2.89 -2.58
At constant 1=2 KPSS : 7, 0237 0739 0463 0347
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Table 2.8: Trace test for the cointegration rank of the KAN:2 model.

H, H, trace statistic critical values

10% 5% 1%
r=0 0<r<3 51.79 39.06 42.44 48.45
r=1 1<r<3 19.50 22.76 25.32 30.45
r=2 2<r<3 8.39 10.49 12.25 16.26

Table 2.9: Maximum eigenvalue test for the cointegration rank of the KAN:2 model.

Hy H,; max eig. statistic critical values

10% 5% 1%
r=0 r=1 32.29 23.11 25.54 30.34
r=1 r=2 11.10 16.85 18.96 23.65
r=2 r=3 8.39 10.49 12.25 16.26

VECM Estimation for the KAN:2 Model

Analogously to the KAN model, the maximum likelihood estimator of Proposition 2.3.2 is used to
estimate a VECM with cointegration rank r = 1. The concrete form is given by

Kt-1

¢ 1] + 1A + T Ak 5 + f-i- Uy,

Ak = “[ﬁ, : ‘fco] [

where a denotes the loading vector, B the cointegration vector, &, the linear trend parameter in the
cointegration relation, and & the parameter of the unrestricted deterministic term. The ML estimator

yields
[ 2.45x 107!
Aky (-3.364) K1,t-1
Akr s | = | 223x1072 |[1.00: -3.16 x 10" —1.52x10° 2.51 x 1072 || K2t-1
2.t (2.848) (~2.994) (-3.562) (9.268) K311
Akt -2.98 x 107* -1
(-1.429)
[-3.193 x 1072 -8.738 -4.160 x 10%]
(-0.170) (-2.917) (-3.892) Ak
L |-6.113x1072 7.599x 1072 3.148 x 10" || A
(~3.025) (0.236) (2.744) 2,t-1
1.810x 1073 —2.263 x 1073 ~1.043 | LAK31
(3.355) (0.264) (-3.404)
[—5.986 x 1072 -1.908 ~1.999 x 102 ]
(-0.325) (-0.749) (-2.276) Akt o
+]-3977x107% -1.384x 107" 1.644 x 10" || A,
(-2.014) (~0.506) (1.744) 2,t-2
1.147 x 1073 —8.873x 10™% —6.476 x 107! [ LAK3,1-2
(2.176) (-0.122) (-2.574)
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-2.038
(-3.395) 1 fns
1.814 x 10 .
* (2.815) + Uz (2.53)

2379 x 1073 | Lia:
(~1.383)

In eq. (2.53) the t-values of parameter estimates are given in parentheses. The estimated innovation
covariance and correlation matrices are given by

7.909 x 107% -7.002x 107>  1.759 x 107
>, =1-7.002x107° 9.112x107® -2.235x 1077
1.759 x 107 —2.235x10"7  6.494x 10~°

and

1 -0.825 0.776
Corr(u;) = | -0.825 1 -0.9191. (2.54)
0.776 -0.919 1

The VECM shows very high instantaneous correlations between the variables. For instance, there
is a correlation of —0.825 between the first and second variable and an instantaneous correlation
of —0.919 between the second and third component. Furthermore, there is a significant positive
correlation of 0.776 between the first and third variable. Figure 2.4 illustrates the estimated long-run
equilibrium relation of the KAN:2 model by showing the expressions f'x; + €.t and B'%,. From
Figure 2.4(b), we see that the complex and non-stationary evolutions of the individual trajectories of
the KAN:2 model, as presented Figure 1.37, follow a trend stationary process given by ﬁ’ «;. This also
implies that the essential degrees of freedom of the KAN:2 model are reduced from three to only one
dimension.

By using the same transformation as for eq. (2.51), we obtain a VAR representation of eq. (2.54) as

Ky =Ai1Ki 1 + A2Kt_2 + Aszkip + CDt + ﬁt

[ 7.23x1071 -9.85x 107" —4.39 x 10'] [ k1,1

=|-388x1072 3.71x107' -2.33 Kai-1
| 1.51x107°  7.18x 107 4.10x 107! [ [ x3, 1|
[—2.79x 1072 6.83 2.16 x 102 [#1,4-2]

+| 2.14%x1072 -2.14x 1071 —1.50 x 10" | | k2,12
[-6.62x107*  1.38x107% 3.95x 107" | [x3,2]

[ 5.99%x 1072 1.91 2.00 x 10*] [x1,s-3
+| 3.98x1072 1.38x107' —1.64x 10! ||z 3
[-1.15x 1073 8.87x107* 6.48x 107! || k3,3

[—2.06 -6.16 x 1073 ) iy
+| 1.83x107"  5.60x107* [t - 1] + [ e
[-2.40x107* -7.50 x 107° i3y
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(a) Level stationary equilibrium relation B'Kt + écot of the KAN:2 model.
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(b) Trend stationary equilibrium relation [3'1: + of the KAN:2 model.

Figure 2.4: Estimated equilibrium relation of the KAN:2 model.

VECM Validation for the KAN:2 Model

We proceed the analysis by performing diagnostic tests to check the residuals of the VECM in
eq. (2.53) for autocorrelation, non-normality and heteroscedasticity. Visual inspection of the residual
ACF and cross-correlation functions, as shown in Figure 2.5, does not reveal any serious issues with the
fitted VECM(2). Apart from only a few exceptions, the estimated residual auto and cross-correlation
are below the significance bounds. The results of the formal diagnostic tests are summarized in
Table 2.10 and show that none of the autocorrelation, non-normality or heteroscedasticity tests
indicates problems with the fitted model of eq. (2.53). All null hypotheses are accepted at the 5%
level. Therefore, we conclude that the estimated VECM(2) with cointegration rank r = 1 provides a
good approximation of the KAN:2 DGP.
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Table 2.10: Diagnostics of the VECM for the KAN:2 time series.

diagnostic type test name test statistic testvalue  appr. dist. p-value
Autocorrelation Portmanteau Q16 127.299 ¥ (123) 0.377
adjusted Portmanteau Qg 148.221 y*(123) 0.060
Breusch-Godfrey Am(5) 55.508 x> (45) 0.136
Non-normality multivariate ALjB 7.320 x*(6) 0.292
skewness only s3 5.635 ¥ (3) 0.131
kurtosis only s 1.685 ¥ (3) 0.640
univariate u, ALjB 2.829 ¥ (2) 0.243
univariate u, ALjs 2.724 ¥ (2) 0.256
univariate u3 ALys 2.349 ¥ (2) 0.309
Heteroscedasticity ~multivariate MARCH], v (5) 206.438 ¥*(180) 0.086
univariate u; ARCH(16) 10.877 x*(16) 0.817
univariate u, ARCH\(16) 9.960 x*(16) 0.869
univariate 13 ARCHy(16) 12.099 ¥*(16) 0.737

2.4.3 | VECM Specification for the KAN:3 Model

The objective of this section is to analyse the multivariate time series given by the KAN:3 model
presented in Section 1.9.2. The predictor function of the KAN:3 model is given by

4 , )
nt,x = Z(x — Xmin)j_lKgl).

i=1

The 4 coefficients, namely KEI), KEZ), KE3), and Kt(4) determine the mortality curve at the period ¢. For

the plots of the KAN:3 trajectories, see Figure 1.38 on page 92. As for the KAN and KAN:2 models,
we follow the specification procedure for VAR/VECM as described in Remark 2.3.1 to determine
whether we can formally confirm the observation of long-run relations between the coefficients, as
made in Section 1.9.5 and shown in Figures 1.42(c) and 1.42(d). Since the specification steps are very
similar to those described in Sections 2.4.1 and 2.4.2, we provide only a summarized presentation of
the procedure.

Lag Order Selection for KAN:3

By using the information criteria from Section 2.3.1, we begin by selecting the lag order p of an
unrestricted VAR(p) model, with an included constant and a deterministic trend. The results are
summarized in Table 2.11. Similar to the previous analysis of the KAN and KAN:2, two different
lag orders are suggested. The AIC information criterion is minimized for p = 3, whereas the other
criteria prefer the lag order p = 1. Based on diagnostic tests and significance analysis of coefficients
corresponding to higher lag order, we choose the lag order p = 3 for the further analysis.
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Table 2.11: Information criteria based VAR lag order selection for the KAN:3 model.

lags p AIC(p) HQ(p) SC(p) FPE(p)

1 —63.060 -62.737 -62.237 4.11-107%8
2 -62.971 —-62.432 -61.599 4.54-107%8
3 -63.086 -62.332 -61.165 4.13-10728
4 —62.884 -61.914 —-60.414 5.24-10728
5 -62.940 -61.755 -59.921 5.27-10728
6 —-62.755 -61.354 -59.187 6.94-10728
7 -62.794 -61.177 -58.677 7.63-10728

Unit Root Tests for the KAN:3 Model

In Table 2.12, we summarize the results of the ADF unit root tests and the KPSS stationary tests
for the KAN:3 time series. The results show that the unit root null hypotheses of the ADF tests
are accepted for all components of «; at the 5% level. Simultaneously, the KPSS null hypotheses

of stationarity are rejected for the components KEI), KEZ) ,and K£4) at the 5% level. Stationarity of

K§3) could only be rejected at the 10% level. Furthermore, for the first-order differences Ax; the unit
root null hypotheses are rejected by the ADF tests at the 5% level and simultaneously stationarity is
accepted by the KPSS tests at the 5% level. Based on the results of this testing procedure, we can
(1 (2 (3 (4)
t t

conclude that the underlying univariate DGPs of x, 7, x,”’, x,”” and k,  are integrated of order one.

Cointegration Tests for the KAN:3 Model

Next, Johansen cointegration tests will be performed to assess the number of cointegration relations
between the KAN:3 time series. The results of the trace and maximum eigenvalue test are reported in
Tables 2.13 and 2.14. The trace test rejects the null hypotheses of r = 0 and r = 1 and accepts the null
hypothesis of r = 2 at the 5% level. The maximum eigenvalue test rejects the null hypothesis of r = 0
and accepts the null hypotheses of = 1 at the 5% level. This means that the trace test suggests r = 2
and the maximum eigenvalue test = 1 as the cointegration rank. As a consequence of this ambiguous
result, we estimated two VECMs using both suggested cointegration ranks. The estimation results
for r = 2 showed that the loading matrix & only contained non-significant coefficients for the second
cointegration relation. Therefore, we will only consider the more restrictive case and present the
estimation results of a VECM with cointegration rank r = 1.

VECM Estimation for the KAN:3 Model

The maximum likelihood estimator of Proposition 2.3.2 is used to estimate a Gaussian noise driven
VECM in cointegration rank r = 1. Analogously to the previous two models, we estimate a VECM of
the form

AKt = (x[ﬁ’ : fco] |:;€t__11:| + l"let,l + rzAKt,Z + f+ U,
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Table 2.12: ADF and KPSS tests for the components of k; and Ax; of the KAN:3 model.

time series  deterministic trend lags / length statistic  test value critical values
1% 5%  10%
D constant, trend k=3 ADF: 1 ~2.95 -4.04 -345 -3.15
Kfl) constant, trend =2 KPSS : 1, 0.441 0.216 0.146 0.119
%2 constant, trend k=3 ADF: 74 ~2.70  -4.04 -345 -3.15
x? constant, trend 1=2 KPSS : 7 0253 0216 0.146  0.119
K§3) constant, trend k=3 ADEF: 13 -2.54 -4.04 -345 -3.15
x> constant, trend 1=2 KPSS : 7, 0.137 0216 0.146  0.119
K§4) constant, trend k=3 ADEF: 13 -2.05 -4.04 -345 -3.15
k(Y constant, trend 1=2 KPSS : 71, 0254 0216 0.146  0.119
Ax) constant k=3 ADF: 1, ~538 351 -2.89 -2.58
A constant =2 KPSS : 7, 0216 0739 0463  0.347
Ax'? constant k=3 ADF: 1, ~562 -351 -2.89 -2.58
Ak constant 1=2 KPSS : 7, 0.112 0739 0463  0.347
A constant k=3 ADF: 1, ~554 351 -2.89 -2.58
A constant 1=2 KPSS : 7, 0.055 0739  0.463  0.347
Ak constant k=3 ADF: 1, -550 -3.51 -2.89 -2.58
At constant 1=2 KPSS : 7, 0.047 0739  0.463  0.347

Table 2.13: Trace test for cointegration rank of the KAN:3 model.

Hy H, trace statistic critical values

10% 5% 1%
r=0 0<r<4 78.01 59.14 62.99 70.05
r=1 1<r<4 43.47 39.06 42.44 48.45
r=2 2<r<4 18.79 22.76 25.32 30.45
r=3 3<r<4 7.75 10.49 12.25 16.26

Table 2.14: Maximum eigenvalue test for cointegration rank of the KAN:3 model.

Hy H,; max eig. statistic critical values
10% 5% 1%
r=0 r=1 34.54 29.12 31.46 36.65
r=1 r=2 24.68 23.11 25.54 30.34
r=2 r=3 11.04 16.85 18.96 23.65
r=3 r=4 7.75 10.49 12.25 16.26
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where a denotes the loading vector, f the cointegration vector, £, the linear trend parameter in the
cointegration relation, and & the coefficient of the unrestricted deterministic term. The ML estimator
leads to
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[ 4.56 x 107! 1.09 -1.35x 10> -7.35x10°]
(1.75) (0.35) (~1.32) (-1.77) A
1 2 K1,t-1
-1.72 x 10 -1.61 -7.11 3.39x 10
. (-3.44) (-2.62) (~0.35) (0.42) AKy -1
1.04x 1072 8.58x1072  7.59x107% -3.13x 10" || Aks s
(3.47) (2.39) (0.07) (-0.66) Ax
-1.67x107% -1.55x1073 -1.35x1072 -3.58 x 1072 4.1
(-3.07) (-2.37) (-0.64) (-0.04)
[ 2.52x 107! 2.92 -5.05x 10!  —4.43 x 10%]
(1.07) (0.98) (~0.51) (~1.16) A
-1 2 K1,t-2
-1.31x 10 -1.20 -6.03 2.03 x 10
+ (-2.83) (-2.06) (-0.31) (0.27) Axa -2
832x107%  6.25x1072 581x1072 -221x10' || Axs, 5
(3.09) (1.84) (0.05) (-0.50) Ax
~1.42x 107 -1.22x1073 -9.9x 1073 4.04x 1072 4i-2
(-2.89) (-1.97) (-0.48) (0.05) |
-3.01 ]
(-3.15) 4
5.0(() x 1)0—1 ﬁ”
2.66 2.t
+ + . 2.55
-3.69 x 1072 U3t (255)
(-3.37) 4
6.92 x 1074 4t
| (3.46) _

The covariance and correlation estimates of the Gaussian innovation process are given by

1.15x 107> -1.81x107* 82x107° -1.15x1077
~ ~1.81x107% 447x10™° -2.46x107° 41x1078
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Com(uy | 0% 1 095 08

0.62 -0.95 1 -0.97|"
-0.48 0.86 -0.97 1
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Similar to both previous cases, the VECM shows high instantaneous correlations between particular
variables. For instance, there is a high negative correlation between the first and second variable, the
second and third, and the third and fourth component. The VAR representation of the VECM of
eq. (2.55) is given by

Kt = Ath_l + Arki p + A3Kt_2 + CDt + ﬁt (257)
[ 6.69 x 107! -2.67 -323x10"  1.48x 10° | [y, ]
|-391x107% 2.03x107% 244 x 10" -1.15x 10? [ | kp,1
] 6.34x107*  3.92x1072 2.35 7.79 x 101 || %31
| 1.51x107°  -6.83x107* -3.73x1072  -1.08 ||Ka1)
[~2.04x 107! 1.83 8.45x10"  2.92x10% |[xy,]
L | 405 1072 4.1x107! 1.08 ~1.35x 10% | | k2,02
—2.06x1073 -2.33x10"2 -1.78 x 1072 9.25 K322
| 2.51%x107°  333x107*  3.65x107°  7.62x 1072 || ka3 |
[—2.52x 107! -2.92 505x10"  4.43x10° |[xyss
| 131 107! 1.2 6.03 ~2.03 x 10% || k243
-8.32x107° -6.25x107% -581x1072 221 x 10" [|x3,3
| 1.42x 107" 1.22x107  9.9x107°  -4.04x107% || ka3
[ -3.01 ~1.54 x 1072 fys
o5 107! 2.59x 1073 1 s fiy ¢
-3.69x 1072 —1.91x107*[|t—1] [ds, |
| 6.92x107*  3.57x107° fig s

Figure 2.6 illustrates the estimated long-run equilibrium relation of the KAN:3 model. The upper
panel shows the non-trending relation [§’ K + éco t, while the lower panel illustrates the linear
trending relation fx;. By these plots, one can visually assess stationarity or trend stationarity of the
corresponding processes. The trajectories of Figures 2.6(a) and 2.6(b) do not indicate problems with
the VECM. Formal model validation is conducted in the following section.

VECM Validation for the KAN:3 Model

We proceed the specification by performing diagnostic tests to check the residuals of the VECM(2)
with cointegration rank r = 1, as given in eq. (2.55), for autocorrelation, non-normality and het-
eroscedasticity. Figure 2.7 illustrates the residual ACF and cross-correlation functions. We observe
some significant correlations at the lag orders 4 and 9, see, for instance, Figures 2.7(a) to 2.7(e), 2.7(i)
and 2.7(m). However, formal tests for autocorrelation, non-normality or heteroscedasticity do not
indicate problems with the fitted VECM. The testing results, which are summarized in Table 2.15,
show that all null hypotheses are accepted at the 5% level. Therefore, we conclude that the estimated
VECM(2) with cointegration rank r = 1 provides a good approximation of the KAN:3 DGP.
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T
-3.75+ _Ig”ct + gcot
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t

(a) Level stationary equilibrium relation ﬁ'tct + écot of the KAN:3 model.

T T
~4.00 |- LA
450 | 1
~5.00 | 1
| | | |
1950 1970 1990 2010
t

(b) Trend stationary equilibrium relation f'x; of the KAN:3 model.

Figure 2.6: Estimated equilibrium relation of the KAN:3 model.
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Table 2.15: Diagnostics of the VECM for the KAN:3 time series.

diagnostic type test name test statistic test value  appr. dist. p-value
Autocorrelation Portmanteau Q16 197.012 X2 (220) 0.865
adjusted Portmanteau Q4 231.211 x*(220) 0.289
Breusch-Godfrey Am(5) 88.357 x*(80) 0.245
Non-normality multivariate ALs 2.298 x> (8) 0.971
skewness only s2 1.523 x> (4) 0.823
kurtosis only s3 0.775 ¥ (4) 0.942
univariate u, Auys 0.928 x*(2) 0.629
univariate u, ALs 1.757 ¥ (2) 0.415
univariate u3 ALjB 0.829 x*(2) 0.661
univariate ALys 0.912 ¥ (2) 0.634
Heteroscedasticity ~multivariate MARCH M (5) 496.19 x*(500) 0.540
univariate u; ARCH\(16) 20.489 ¥*(16) 0.199
univariate u, ARCH v (16) 11.890 ¥*(16) 0.752
univariate us ARCHy (16) 17.420 ¥(16) 0.359

univariate u4 ARCHy (16) 18.701 x*(16) 0.285
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2.5 | VECM Projections for the Kannisto Model

In Section 1.9.4, we studied the projections of the KAN, KAN:2 and KAN:3 models using a random
walk with drift which is considered as the standard approach in GAPC modelling. Our major criticism
regarding the random walk approach was in the first place, the high degree of uncertainty of the
resulting projections and in the second place, an inconsistent trend in the improvements in the
remaining life expectancy compared to the historical development.

The objective of the following is to compare the random walk projection of Section 1.9.4 with the
projections of the previously estimated VECMs of Sections 2.4.1 to 2.4.3. We begin by presenting
how the central forecast and prediction intervals are obtained for VECM/VAR models. Following
Litkepohl (2007), the optimal h-step forecast at origin ¢, denoted by (), of a VAR(p) driven by a
white noise process u; with covariance matrix X, is given by

ki(h) =Axi(h—1)+-+ Ap;(h - p), (2.58)

where x(j) := &, j for j < 0. The forecast error can be expressed as

Keeh =Kt (h) = v + Qrtpeppg + -+ Op_quipsn,
where the matrices ®@; for i = 1,...,h — 1 are recursively defined by

D; = i@i_jAj, i=12,...,
j=1
with @ = g and A; = 0 for j > p. The mean-squared error of an h-step forecast is then given by
h-1
() s MSE[w ()] = (k11 =510 (s = (1)) ] = 3, 012,

Similar to Section 1.9.4, we can specify the (1 — &) 100% forecast prediction interval (PI.) of the i-th
component for h periods ahead of the origin ¢ by

[Ki,t(h) - Z((X/Z)O','(h), K,',t(h) + z(a/z)ai(h)] s (2.59)

where 0;(h) is the square root of the i-th diagonal element of X, () and z,, is the a/2 quantile of
the standard normal distribution, see Liitkepohl (2007).

2.5.1 | VECM Projections for the KAN Model

In Figure 2.8, we illustrate the projections of the VECM for the KAN model as given eq. (2.50).
The projections are obtained by using eqs. (2.58) and (2.59) and replacing the coefficient matrices
A1,A3,A3 and Z,, by their estimates as provided in egs. (2.51) and (2.52). The two upper panels of
Figures 2.8(a) and 2.8(b) show the projected KAN components and their 95% prediction intervals.
For comparison, the plots also display the random walk (RW) projections as obtained in Section 1.9.4.
By this comparison, we can clearly see that the central projections of the VECM have different
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slopes and also narrower prediction intervals. The different slopes of both projections have direct
implications on the resulting mortality structures. The lower projected Kfl) values of the VECM lead
to lower mortality rates across all ages, while the lower KEZ) values of the RW imply lower mortality
rates, in particular, for higher ages. For the interpretation of the KAN coefficients, see the discussion
of Section 1.9.3 and the example illustrated in Figure 1.35.

Figure 2.8(c) shows the influence of the KAN projection on the remaining life expectancy of
the reference population of Swedish females aged 60. The life expectancy, projected by the VECM,
is overall higher compared to the RW projection. By the VECM, we have an overall increase of
the remaining life expectancy of about 3.6 years until the year 2050, rising from 25.85 to 29.44
years, which leads to an average improvement of about 36.5 days per year. This value is much closer
to the historical improvements of, on average, 38.1 days per year during the past 36 years. Recall
that the RW projections showed a lower average improvement of only 29.17 days per year. Another
noticeable difference is the width of the prediction intervals. As criticized before in Section 1.9.4,
the level of uncertainty of the future life expectancy, as given by the RW projection, would lead to
non-competitive prices of mortality related claims. The width of the 95% prediction interval of the
VECM at the period 2050 is with 2.33 years clearly smaller and also more realistic than the P.I width
0f 10.5 years of the RW projection.

Figure 2.9 shows the VECM projected hazard rates at 2050 with the corresponding 95% prediction
intervals. For comparison, the plot includes the historical KAN hazard rates of the years 1910, 1970,
and 2010. As the forecast for 2050 shows, there is a continuing trend of decreasing rates for the entire
age range. Figure 2.10 illustrates the historical survival functions together with the forecast for 2050.
Here, we can observe the continuing rectangularization of the survival function. That means, that
the improvements of the life expectancy do not primarily come due to an increase of the highest
attainable age but rather by a decrease of the mortality rates, in particular, at lower ages.

2.5.2 | VECM Projections for the KAN:2 Model

The projections for the VECM of the KAN:2 model, as given in eq. (2.53), are illustrated in Figure 2.11.
Similar observations to the previous case can be made here. The central projections, obtained by
the VECM, differ from those of the RW. The VECM implies higher improvements of the mortality
rates across all ages. This can be determined by the lower Kgl) values of the VECM, as displayed in
Figure 2.11(a). On the other side, higher KE3) values of the VECM, compared to the RW projection,
imply lower mortality improvement rates for very high ages. Furthermore, the prediction intervals
of the VECM projection are noticeably smaller than those of the RW.

Figure 2.12 illustrates the KAN:2 projections of the remaining life expectancy of the Swedish
female population aged 60. For comparison, we also include the projections by the RW (grey) and
the VECM of the KAN model (green). Regarding the remaining life expectancy, the projections of
the KAN and KAN:2 model are quantitatively very similar. The KAN:2 model leads to slightly higher
values, where the remaining life expectancy increases to 29.51 years until the projection horizon at
2050. The average improvements of 38.1 days per year of the 36 periods ahead forecast coincides
exactly with the historical average of the past 36 years. The prediction intervals of KAN:2 projections
are also slightly narrower than those of the KAN model. Despite the similarities, the age-dependent
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(c) Historical and projected remaining life expectancy for Swedish females aged 60.

Figure 2.8: VECM projections of the KAN model coefficient. Dashed lines represent the central forecasts

and the dotted lines show the 95% prediction intervals.
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Figure 2.9: Projected hazard function at 2050 with 95% prediction intervals (Swedish females).
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Figure 2.10: Projected survival function at 2050 with 95% prediction intervals (Swedish females).

mortality improvements of these two models differ significantly, as we illustrate in Figures 2.15
and 2.16.

2.5.3 | VECM Projections for the KAN:3 Model

Figure 2.13 illustrates the projections of the KAN:3 coefficients by the VECM of eq. (2.55). As for
both previous cases, these projections are obtained using egs. (2.58) and (2.59) and substituting the
estimates from eqs. (2.56) and (2.57) for the coefficient matrices A;,A;,A3 and Z,,. The comparison
to the RW projection shows different slopes of the central forecasts as well as narrower prediction
intervals as for the lower dimensional models KAN and KAN:2. The projected remaining life
expectancy is quantitatively very similar to the KAN:2 model, as shown in Figure 2.12. The same
applies to age-dependent mortality improvements, as will be illustrated in Figure 2.17.

Next, we want to highlight a fundamental difference between the RW and VECM projection.
Since the individual components of the Kannisto model are non-stationary, the RW is fitted to
the first-order difference Ax;, see eq. (1.90). However, by differencing variables, one potentially
loses the long-run relations between those variables. Thus, it is highly recommended to first check
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(c) Trajectories and projections of K;s) under a VECM.
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Figure 2.12: Historical and projected remaining life expectancy for Swedish females aged 60. Comparison
of the VECM for KAN versus VECM for KAN:2.

the presence of cointegration relations before trying to stationarize the corresponding time series
through differencing. If cointegration relations exist, then the individual components are not moving
completely independent but rather follow a long-run equilibrium relation. This has a beneficial
impact on the prediction intervals obtained by a VECM. Notice, from Figure 2.13, that prediction
intervals of the individual coeflicients increase over time. However, the prediction intervals of the
process B'x; + &t remain bounded since this process is stationary. The forecast of the equilibrium
relation is illustrated in Figure 2.14. Notice that at the beginning of the projection period, the time
series reverts towards their equilibrium state. Furthermore, we observe stable prediction intervals
which match well to the historical progression of the time series.

2.5.4 | Mortality Improvements

In Figure 2.12, we showed the improvements of the remaining life expectancy obtained by the
previously considered models. While this is a proper representation for the aggregated improvements,
it contains no information about the age-related changes of the mortality rates. On the other hand,
Figure 2.9 showed the absolute age-related changes of the mortality rates, but since the rates differ by
two orders of magnitude on the involved range of ages, it is not a suitable representation to cover
the changes for lower and higher ages simultaneously. A more appropriate representation can be
achieved by considering the relative changes of the hazard rates, the so-called mortality improvements.
In a time discrete setting, mortality improvements, denoted by j(t,x), are defined as

_p(tx) —p(t-1,x)

w(E—1.2) , (2.60)

j(tx) =

where p(t,x) are the hazard rates at time ¢ for the age x. From eq. (2.60) it is clear that the mortality
improvements are defined in terms of relative changes of the hazard rates from period ¢ — 1 to
period t. Positive mortality improvements express decreasing hazard rates, while negative mortality
improvements represent increasing hazard rates. For continuous time models, the definition of
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Figure 2.13: VECM projections of the KAN:3 coefficients. Dashed lines represent the central forecasts
and dotted lines show the 95% prediction intervals.

mortality improvements is
) d
j(tx) = —Eln‘u(t,x). (2.61)

This definition reveals a conceptional similarity to the relation of hazard rates and their survival
functions. While mortality improvements are defined as (infinitesimal) relative changes of the
hazard rates in time, hazard functions are defined as (infinitesimal) relative changes in age, as will be
discussed in Section 3.2.1.

The objective of the following is to highlight the differences of the projection obtained by the
VECMs for the KAN, KAN:2 and KAN:3 models. Figures 2.15 to 2.17 illustrate the mortality improve-
ments of those three models. Note that the high fluctuations at the beginning of the projection occur
due to the high fluctuation of the raw mortality rates, which are commonly greater than 10%. The
historical mortality improvements, as shown in Figures 1.7 to 1.10, were obtained by the B/P-spline
smoothing method. By comparing the forecasts of the KAN model, as displayed in Figure 2.15, with
those of KAN:2 in Figure 2.16, we observe that the KAN model shows higher improvement rates
of about 2% for the ages around 60, while the KAN:2 model projects improvement rates of only
about 1.5%. On the other hand, the improvement rates of the KAN:2 model are higher compared
to the KAN model for the ages between 70 and 90, reaching a maximum of 1.75% for at the ages
around 75. Above the age of 90, the KAN model shows again higher improvement rates of about 1%
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Figure 2.14: Estimated equilibrium relation ﬁ’ K¢ + écot of the KAN:3 model together with VECM
projections and surrounding 95% prediction intervals.

for the age 95, compared to 0.75% of the KAN:2 model. Despite the deviations of the improvement
rates, both models yield almost the same remaining life expectancy, as shown in Figure 2.12. The
difference of the KAN:2 and KAN:3 model is only marginal. The KAN:3 model shows slightly higher
improvements until the age of 75 and slightly lower values above. All projections have in common that
the improvement rates go to zero as the age increases. This observation also provides an explanation
for the rectangularization effect of the survival function since the historical, as well as the projected
improvement rates, tend to be higher for lower ages.

2.5.5 | Projections of the Life Expectancy for Real and Synthetic Cohorts

In Section 1.9, we defined the Kannisto models as members of the GAPC mortality models family, by
proposing specific logistic-type hazard rates (see eqgs. (1.85) and (1.86)). This represents the static part
of the mortality model, where for every fixed period the parametric hazard rates capture age-related
mortality effects. In Section 2.4, we studied the dynamics of our model, where the evolution of the
Kannisto parameters are modelled by discrete time series, such as VECMs. It is important to point
out that calculations of survival probabilities, based on the hazard rates at fixed periods, would lead
to survival probabilities of synthetic cohorts rather than real cohorts. In Section 1.2.1, we defined a
synthetic cohort ( T,x) as a group of individuals with age x in T, who throughout their life, experience
the age-specific mortality rates y(T,x + i) for i = 1,...,imay. This was referred to as the vertical
arrangement in Table 1.1. Note that a real cohort (T,x)* is a group of individuals who, throughout
their life, experience the age-specific mortality rates (T + i,x + i) for i = 1,...,imax. This case was
referred to as the diagonal arrangement in Table 1.1.

Synthetic cohorts serve as an auxiliary construction, which is used to obtain a modelling approach
for real cohorts. Note that the reason why the parametric hazard rates were fit to periodic mortalities
(vertical arrangement) rather than to mortalities of real cohorts (diagonal arrangement), is that for
recent real cohorts only few data are available. Thus, it is infeasible to fit a non-linear curve if only a
few data points are available. However, a forecast from a dynamic model for the periodic hazard
rates can be used to obtain projections of survival probabilities for real cohorts.



2.5 VECM Projections for the Kannisto Model

151

100

90

age

80

70

E %
2020 2030 2040 2050
year

60
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Figure 2.16: KAN:2 projected mortality improvements of the Swedish female population.
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Figure 2.17: KAN:3 projected mortality improvements of the Swedish female population.

Figure 2.18 displays the projected survival functions for the Swedish female population of the
synthetic cohort (2015,60) and the real cohorts (2015,60)*, (2030,60)* and (2050,60)*. The life
expectancy of the synthetic cohort (2015,60) is 86.47. This calculation is based on the informa-
tion available at 2015 and involves the mortality rates ¢(2015,60),...,14(2015,110). The life ex-
pectancy of the real cohort (2015,60)* is 88.54 and is based on the projected mortality rates
#(2015,60), . ..,u(2065,110). The difference of more than two years implies that one would signifi-
cantly underestimate the life expectancy of the real cohort by only using the periodic data of 2015
without including the corresponding mortality improvements. The projected life expectancies of the
other two displayed real cohorts (2030,60)* and (2050,60)* are 90.22 and 92.31 years.

Another example for the improvements of the life expectancy of real cohorts, based on the VECM
forecast, is shown in Figure 2.19, which illustrates the historical and the forecasted values for the
ages 60, 70, 80, and 90. The solid lines represent the life expectancies purely based on available
data, while the dotted lines show the life expectancies obtained by available and projected data.
For instance, if we take the cohort (1990,60)*, then the calculation of the life expectancy involves
the already observed mortalities ¢£(1990,60), ...,1(2014,84) as well as the projected mortalities
©(2015,85), ...,4(2040,110). From Figure 2.19, we can observe that the life expectancies progress
with different slopes. This can be attributed to the higher mortality improvements for lower ages.
Notice also that the gaps between e} ¢, €7 ¢, €749 and e7 gy continue to decrease due to the
rectangularization effect of the involved survival functions.
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2.6 | Conclusion

This chapter presents the dynamic part of our proposed stochastic mortality model, where the
evolution of the Kannisto parameters are modelled by a VECM. We recall that the Kannisto model
is a multivariate parametric model for the age-related mortality structure (see Section 1.9.1). The
Kannisto parameters can be understood as influencing factors of particular age groups on the
mortality. For these factors, we use a VECM, a general modelling approach for the dynamics of a
system of variables, which is, in particular, capable to capture long-run equilibrium relations between
the individual components. By applying the common specification procedure for VECMs, we first
demonstrate that cointegration relations exist for the time series of the models KAN, KAN:2 and
KAN:3, and moreover that the estimated VECMs provide a good representation of the underlying
DGPs. For all Kannisto time series, the preferred VECM uses one cointegration relation, which implies
that the individual components do not move independently but rather have common stochastic
trends.

The result that several stochastic factors, which drive the mortality rates, have long-run equilibrium
relations has a strong impact on strategies managing longevity risk. On the one hand, there are
oversimplified models with only one stochastic factor, like the Lee-Carter model, which implicitly
assumes that changes in the mortality at one age can be perfectly hedged with changes at a different
age. On the other hand, there are mortality models with multiple stochastic factors. The downside
is that additional degrees of freedom could have a negative impact on the forecast mean squared
error which leads to higher forecast uncertainties. However, if cointegration relations between these
stochastic factors exist, then a VECM can be highly beneficial for the forecast performance.

By comparing the VECM projections to those obtained by the standard approach using a random
walk, we demonstrate a better forecast performance of the VECM. Furthermore, the obtained central
projections, as well as the prediction intervals, are more consistent with the historical experience. By
using the VECM projections, we obtain substantially lower forecast MSEs. This is highly important
for the life insurance industry since the forecast uncertainty is part of the risk which has to be priced
for mortality-linked products. Finally, it is important to point out, that the VECM methodology is
not limited to the Kannisto model and could also be successfully applied to other GAPC models
with multiple stochastic factors.
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3.1 | Introduction

The objective of the following chapter is to characterize the Kannisto distribution which is deter-
mined by a logistic-type hazard rate function as used for the KAN model in Section 1.9. In the
following, the age x is not treated as a discrete integer valued variable as in Chapter 1, but as a
continuous variable. In analogy to probability densities or cumulative distribution functions, hazard
rate functions are equivalent representatives of distributions. By characterizing the instantaneous risk
of failure associated with certain age, hazard rate functions are the most preferred representatives of
distributions in the context of survival analysis.

As noted in Section 1.9, the logistic-type hazard rate function, which we call the Kannisto hazard
rate was first proposed by the demographer Viiné Kannisto who studied mortality rates of high
ages, see Kannisto (1992) and Thatcher, Kannisto and Vaupel (1998). The approach by Kannisto was
similar to those of his predecessors, who only aimed to identify a parametric curve which minimizes
the Euclidean distance for the observed data. Commonly this process initially included a logarithmic
or logit transformation of the data, followed by applying a (weighted) linear model to estimate the
model parameters. Apart from this modelling approach, Kannisto did not study the properties of the
continuous distribution induced by the logistic-type hazard rate function he proposed.

Unlike other life distributions, the Kannisto distribution is widely uncharacterized. Some results
may be found in, e.g., Marshall and Olkin (2007) and Missov (2013). In the following, we will
prove some properties of the Kannisto distribution and provide an extensive characterization. The
chapter is outlined as follows. In Section 3.2, we initially review some standard concepts of survival
analysis. Subsequently, we reveal some connections of the Kannisto distribution to other well-known
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distributions in Section 3.3. Some of these connections are based on the fact that the Kannisto
distribution is a special case of the so-called extended exponential distribution which is analysed by
Marshall and Olkin (2007), a standard reference on parametric and non-parametric life distributions.
In Section 3.5, we provide an extensive characterization of both, the Kannisto and the extended
exponential distribution, covering topics such as mean residual life function, moment generating
function, central moments, order statistics, maximum, and minimum domain of attraction, Fisher
information matrix, and Kullback-Leibler divergence.

3.2 | Survival Analysis

There exists a vast literature on mortality modelling based on parametric-type mortality rates. These
models aim to describe the pattern of the instantaneous age-specific failure rate, also known as the
hazard rate or in actuarial literature as the force of mortality. Traditional actuarial models can be
found in Moivre (1725), Gompertz (1825), Makeham (1860), Beard (1961), Heligman and Pollard
(1980) and Kannisto (1992). Carriere (1992), and Marshall and Olkin (2007) also cover other hazard
rate models such as Weibull, Inverse-Gompertz, and Inverse-Weibull. For a comprehensive review of
age-specific models for human populations, we refer to Gavrilov and Gavrilova (1991).

This section provides some background material and notations which are needed in the subse-
quent parts. The terminology covered here is standard in survival analysis and is mostly based on
Marshall and Olkin (2007). We will begin by introducing hazard rate functions and other common
representatives of lifetime distributions. We then proceed with basic concepts of survival analysis,
including residual life distribution, competing risks and subsequently show how many familiar
distributions are based on elementary hazard rate functions.

3.2.1 | Lifetime Distributions and their Representatives

In this section, we describe some basic concepts of univariate survival analysis. We introduce the
notation and cover some results related to mortality modelling.

The lifetime of an individual of some population is represented by a continuous non-negative
random variable X. Generally, lifetimes or survival times describe the duration between entering and
escaping from particular states. In non-life related applications, the escaping is often called failure,
while in life-related applications it stands for the death of an individual. Unless stated otherwise,
we will only consider lifetime distributions with an unbounded support, i.e., all of the lifetime
representative functions will be defined over the interval [0,00).

In the following part, we summarize the so-called lifetime representatives which describe the
distribution of a random variable. The following representatives will be discussed below (cf., e.g.,
Rinne, 2014):

» the cumulative distribution function, denoted by F(-), abbreviated by (CDF),
» the survival function denoted by S(-), also known as reliability function,

» the probability density denoted by f(-), abbreviated by (PDF),

» the hazard rate function, denoted by h(-) or u(-), also known as instantaneous failure rate,
force of mortality or mortality curve,
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» the cumulative hazard rate denoted by H(-),

» the mean residual life function denoted by v(-), where v(x) is also called the mean future life
of an x-survivor.

The representatives define the lifetime distributions and can be obtained from each other when
they exist, see Marshall and Olkin (2007). In Section 3.2.7, we illustrate how popular distributions
naturally arise from elementary hazard rate curves.

Definition 3.2.1. The function F defined for x € [0,00) by
F(x):=P[X < x] (3.1)

is called distribution function or cumulative distribution function of the lifetime random variable X.

The distribution function gives the probability of failure/death up to time or age x. To distinguish
distribution functions associated to different lifetime variables, we use a subscript, such as Fy, to
indicate the corresponding random variable. Any function satisfies the properties:

(a) F(0) =0,
(b) limy,, e F(x) =1,
(c) F(xp) > F(x,) forallx, > x,,
(d) F is continuous,
is a distribution function of some continuous lifetime variable.

Definition 3.2.2. The function S defined for x € [0,00) by
S(x):=P[X > x] (3.2)

is called the survival function or sometimes the reliability function.

The survival function gives the probability of an individual surviving to time x or exceeding the
age x. From eq. (3.1) and eq. (3.2) it is clear, that the relationship between the distribution function
and the survival function is given by

S(x) =1-F(x).

A survival function S is monotone decreasing over [0,00), is continuous and it satisfies S(0) = 1 and
lim,_,o S(x) = 0. Furthermore, since we consider unbounded lifetimes, we have S(x) > 0 for all
x> 0.

Definition 3.2.3. If f is a measurable non-negative function such that for all x € [0,00)

F(x) = [ )y,

then f is called a probability density function or simply density function of F.
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When a density exists then the random variable X is called continuous or absolutely continuous
since the measure induced by X is absolutely continuous to the Lebesgue measure. Note that the
density function is not unique since it can be changed on Lebesgue zero sets and remain a density
function of X. The relations between a density function f and the survival function S of some
random variable are given by

s@)= [ fdy
and

d
f(x) = ==-5(x).

Definition 3.2.4. A distribution with survival function § is defined to be (right)-heavy-tailed if and
only if

lim S(x)e*™ = oo forall A >0.

X—>00

Otherwise, a distribution with survival function S is defined to be light-tailed if and only if

lim S(x) e’ < oo for some A > 0.

X—>00
Remark 3.2.5. Note that by the exponential Chebyshev inequality, the distribution is light-tailed if
and only if the survival function is dominated by an exponential function, i.e., for some ¢; > 0 and
¢z > 0, we have S(x) < cje”* for all x.

Another important representative of a lifetime distribution, especially in mortality modelling, is
the hazard rate function h also referred to as the force of mortality or age-specific death rate and is
usually denoted by p.

Definition 3.2.6. If F is an absolutely continuous lifetime distribution function with density f then
the function 4 defined on the interval [0,00) by

[x) if S(x) >0
h(x):=]5@® ! 33
() {oo if S(x) =0 (33)

is called a hazard rate of F or X.

The hazard rate function characterizes the instantaneous risk of failure associated with certain age.
Note that the hazard rate can be expressed as

Plx<X<x+e|X>x]
; .

h(x) = lgg)l
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Therefore, we have approximately
h(x)emP[x<X<x+e|X>x],

i.e., for a small increment in time ¢, the product h(x) ¢ is the approximate probability of failure in the
interval [x,x + ¢€), given survival to x. This interpretation makes the hazard rate presumably the most
preferred lifetime representative in theoretical considerations as well as in actuarial applications.
The hazard rate reveals and characterizes the process of ageing more intuitively than other lifetime
representatives and therefore lifetime distributions are often classified by the properties of their
hazard rate function. These classifications distinguish between monotone increasing or decreasing
hazard rates describing wearout/ageing or wearin/improving eftects. Another important class of
lifetime distributions are those with non-monotone bathtub-shaped hazard rates, which can be
observed in life tables, where the infant mortality rates initially decreasing, see Figures 1.3 and 1.4.

Proposition 3.2.7. A function h is a hazard function of some non-negative random variable if and
only if:

(@) h(x)>0, Vx>0,

) [~ h(y)dy = oo,
(¢) 3x>0: [, h(y)dy < oo,
(d) [y h(y)dy=o00=h(z) =00, Vz>x.

Unless stated otherwise, we will only consider non-bounded lifetimes, such that

f h(y)dy < oo, forall x > 0,
0

thus £ is a hazard function of some non-negative and non-bounded random variable if and only if
properties (a) and (b) are satisfied.

Proof. First, suppose that h is a hazard function, then (a) follows since f(x) > 0 and S(x) > 0, thus

h(x) = ggi; > 0.

(b) holds since S(x) = e~ o ") 47 and lim,_ o, S(x) = 0. Next, suppose that a function / fulfills (a)
and (b). Define the function f as

f(x) = h(x)e_fox h(y) d)’.

To show that f is a probability density function of a non-negative random variable, we have to show
the properties

(i) f(x)>0, Vx>0,
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(i) [y~ f(x)dx=1.

The property (i) holds, since h(x) > 0 for all x > 0. With S(x) = e Jo M)y we obtain

]Of(x)dx:f(h(x)efoxh(y)dy) dx
0 0
:—j(j_xe_foxh(J’)d)’) dx

=—/O-OS'(x)dx
0

=— xlggoS(x) -S(0) | =1.

—_—
=0
O
Definition 3.2.8. The function H defined on the interval [0,00) by
H(x):=-InS(x) (3.4)

where S is the survival function of X is called cumulative hazard rate of the lifetime X.

From eq. (3.3) and eq. (3.4) and the usual assumption for lifetime distributions, i.e., F(0) = 0, we
see that

S(x) = e HO) _ e~ Jo K dy. (3.5)

Furthermore, from eq. (3.5), we can see that when F is an absolutely continuous distribution then

xS(x)

S(x)

h(x) = %H(x) _ —%lnS(x) - (3.6)

The cumulative hazard rate satisfies the following conditions:
(a) H(0) =0,
(b) limy_ o H(x) = oo,

(c) H(x) is non-decreasing.

Remark 3.2.9. From the right term of eq. (3.6), we see that the hazard rate is the negative of the
so-called logarithmic derivative of the survival function. Let f be a real-valued function without



3.2 Survival Analysis 161

roots, the logarithmic derivative L( f) of f is defined by

f/
=
Intuitively it is clear that the logarithmic derivative of f denotes the relative infinitesimal change,
which is the absolute infinitesimal change of f, namely f’ scaled by the reciprocal of the function

f,i.e., by /r. Thus, the hazard rate h can be expressed as the logarithmic derivative of the survival
function S by

L(f)

h(x) = —il((;)) - L(S(x)).

The logarithmic derivative does also appear in the definition of mortality improvements (see eq. (2.61)),
a quantity which describes the change of the hazard rate over time. Similar to a hazard rate, which is
the negative logarithmic derivative of the survival function with respect to age, we introduced the
mortality improvements as the negative logarithmic derivative of the hazard rate with respect to
time.

Proposition 3.2.10. A distribution is light-tailed if and only if the cumulative hazard function
H(-) = —InS(-) satisfies

lim

X—>00

H
ﬁ + 0.
x
Proof. First, suppose the distribution is light-tailed. By the exponential Chebyshev inequality, we
have some c¢1,¢; > 0 such
S(x) = e H® < 17 forall x > 0.

This implies that limy_, o H(*)/x > ¢, # 0. Suppose now that lim,_,., H(*)/x > 0, then there exist x¢
and ¢ > 0 such H(x) < cx for all x > xo. Thus, we have

S(x)<e™ ™ forall x > x.

This implies that the distribution is light-tailed. O]

3.2.2 | Expectation and Higher Central Moments

Clearly, the expectation of the random lifetime X corresponds to the individual life expectancy. Next,
we recall how the expectation and higher raw moments of continuous lifetime random variables can
be expressed in terms of its survival function.

Definition 3.2.11 (Expectation). Let X be a random variable with distribution function F, such that
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the integral [ |x|dF(x) < oo, then the expectation E[X] of X is defined by

IHX}i[xde) (3.7)

For non-negative random variables with survival function S, the expectation can also be expressed
by

o0

Hm:famm.

0

This relation follows from eq. (3.7) by using Fubini’s theorem. This form is often more convenient for
actuarial purposes. If the random variable corresponds to a lifetime, then the expectation is also
called life expectancy. In the context of the thesis, the expectation is denoted by v. The n-th moment
of a non-negative random variable X with distribution function F is defined as

o0

vy = E[X"] = fx” dF(x). (3.8)

0

An alternative expression for the n-th moment of the non-negative random variable X in terms of
the survival function is given by

o0

vy = E[X"] = n/x"_IS(x) dx.
0

This expression can be derived from eq. (3.8) using integration by parts.
The following hazard rate based criteria for the existence or non-existence of moments was
originally given by Barlow, Marshall and Proschan (1963).

Proposition 3.2.12 (Marshall and Olkin, 2007). Let h be a hazard rate of a distribution on [0,00),
n >0, and let v, denote the n-th moment. If the inequality

n < liminf x h(x)
holds, then v,, < co. On the other hand, if

n > limsup x h(x)

X—>00
holds, then v,, = co.
Proof. For a proof of this result, see Marshall and Olkin (2007, Proposition 20.B.6). O

A direct consequence of Proposition 3.2.12 is that for every distribution with non-decreasing
hazard function all moments exist. On the other hand, if this criterion is applied to a distribution
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with a decreasing hazard rate, such as the Pareto distribution (see, eq. (3.22)), we obtain
.. .. (44
liminf x hp, (x | k,a,p4) = liminf x —— =«
X —00 X—>00 k — u+x
Thus, we have v, < o0 if 11 < a.

3.2.3 | Residual Life Distribution

In survival analysis, one is often interested in the distribution of the remaining lifetime for individuals
who accomplished to survive until a particular time. The relation of the remaining lifetime and the
original lifetime is defined in the following.

Definition 3.2.13. Let S be the survival function of a lifetime distribution with an unbounded support
X such that $(0) = 1 and S(x) > 0 for all x > 0. The residual life distribution S' of S at ¢ is defined by

S(x+1t)
S(t)

It is clear from the above definition that the residual life distribution S is a conditional distribution
of the remaining lifetime since we can express eq. (3.9)

S'(x) = x > 0. (3.9)

S(x+1t)
$(t)
The corresponding conditional random variable X — ¢ | X > ¢ with the survival function S’ is called

the residual lifetime of a t-survivor. Suppose that X has a density f, then we obtain the density and
the hazard rate of the residual lifetime distribution of a ¢-survivor by

(x+1)
NGO

SH(x) = =P[X>x+t|X>t].

forx>0

iy =Lt

and

B (x) = Jschig h(x+1), forx>0. (3.10)

From the interpretation of S t being a conditional distribution, it is clear that the hazard rate Kt
associated to the remaining lifetime of a t-survivor is simply the original hazard rate h evaluated at
the shifted argument x + ¢.

The logistic-type hazard rate functions are of particular interest of the thesis. The following

proposition classifies the limiting residual life distribution of distributions where the hazard rate
functions have finite positive limits.

Proposition 3.2.14 (Marshall and Olkin, 2007). Let & be a hazard function and S the corresponding
survival function of a lifetime variable. Suppose that the property

lim h(x) =A, forsomeleR, (3.11)

X—>00
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holds, then the remaining lifetime with survival function S’ converges in distribution to an exponen-
tial distribution with parameter A as t — oo.

Proof. By using the relation of eq. (3.10) and the assumption eq. (3.11), we conclude

§1(x) = e K WOy _ o= HOm0dy o [ dy 258 phx

3.2.4 | Mean Residual Life Function

The next definition provides another distribution representative, which is mainly used in the area of
survival analysis.

Definition 3.2.15. The mean residual life function v(t) is the mean of the residual life distribution S’
as a function of t. Under the same assumption as for Definition 3.2.13, the mean residual life function

is defined by

(o]

_ S(x+1t)
v(x) = Of de.

The mean residual life function v(t) has the following properties:

(@) v(t)>0 forallt>0,
(b) v(0) =E[X] =,

v - Otﬁdz
(c) S(t):%e Jo iz 2z,

The first two properties are clear from the definition. Property (c) shows how the survival function
can be reconstructed from the mean residual life function. For a more detailed discussion and the
proof of (c), see Cox (1962).

3.2.5 | Mixture Distributions

Survival data of humans might have some properties which can be better understood if the population
is assumed to be non-homogeneous. Separation of gender, ethnic groups or various lifestyle character-
istics is helpful to explain survival properties of the combined population as a mixture of individuals.
The following definition provides mixture representations of inhomogeneous populations.

Definition 3.2.16 (Marshall and Olkin, 2007). Let F = {F(- | 0), 6 € ®} be a family of distributions
and G a distribution on ® c RY, i.e., a distribution of the parameter 6. Then,
F(x) = [ F(x|6)dG(6) (.12)
0c®

is called the mixture of F with respect to G or compound distribution of F and G. F(x|6) is known as
the kernel and G is the mixing (or compounding) distribution.
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In eq. (3.12), 6 > 0 is considered to be an unobservable random variable with distribution function
G. A widely studied class of models is based on the assumption that the hazard function A(x) of a
lifetime X has the form A¢(x) x 6. These models are known as frailty models. 1¢(x) is called the
baseline hazard rate and 0 represents an individual failure factor which scales the baseline hazard
rate. Mixture models allow describing heterogeneity of populations. In Proposition 3.3.7, we will
show a connection of the Kannisto and the Gompertz distributions, where the Kannisto distribution
is obtained as a continuous mixture using a Gompertz kernel.

3.2.6 | Competing Risks

The lifetime can also be considered to be a composite if we decide to distinguish between different
causes of failure. Models which refer to a cause-specific ending of life, such as different diseases or
accidents, are also called competing risks models. In this framework, the failure is associated with the
time of the first event of distinct causes of failures, where the single risk components are typically
not observable, but only their minimum. Under these models, the lifetime is considered to be the
time-until-first-event.

The following Proposition 3.2.17 shows that for independent competing risks the hazard function of
the time-until-first-event is the sum of the single hazard rates of the involved risk components. Using
this approach one can design complex age-specific failure profiles by combining risk components
with decreasing and increasing hazard rates. Possible applications are bathtub-shaped hazard rates as
observed for infants, where the hazard rate first decreases during the first years and eventually starts
to increase, see Figures 1.3 and 1.4 for full age range empirical hazard rate profiles.

Proposition 3.2.17. Let Xi,...,X, be independent (continuous) random variables with hazard
functions hy, . ..,h,. Then, the lifetime Y on n competing risks given as Y := min(Xj,...,X,) has
the hazard function hy = Y1, h;.

Proof. From the independence of the random variables Xj, . .., X, follows that the survival function
Sy has the form
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3.2.7 | Distributions induced by Elementary Hazard Rate Functions

In the following section, we recall some continuous parametric distributions used in lifetime mod-
elling from the perspective of hazard rates. We will define different types of hazard functions and
derive the resulting distributions. This approach will show that many of the well-known distributions
arise by a natural choice of hazard function. See, e.g., Rinne (2014) for an extended discussion on
that topic.

For the clarification of categorical parameter types of the following distributions, we use the
definition provided by Marshall and Olkin (2007).

Definition 3.2.18 (Scale, Frailty, and Tilt Parameters, (Marshall and Olkin, 2007)). A parametric family
S(- | B) with 8 > 0 of the form S(x | ) = S(Sx | 1) is said to be a scale parameter family and f3 is
called a scale parameter. A parameter 0 is called a frailty parameter if S(- | 0) is defined in terms of
S(-) by the expression

S(x]0)=S(x)% @>o0.

A parameter y is called a tilt parameter if S(- | y) is defined in terms of S(-) according to the
expression

yS(x)
1-(1-y)S(x)’

A distribution with a tilt parameter is alternatively called a proportional odds family, since eq. (3.13)

S(x|y)= y > 0. (3.13)

is equivalent to

F(x|y) _1F(x)
S(x|y) yS(x)

This section provides a foundation for Section 3.3, where we show many connections between
popular distributions obtained by transformations, truncations, continuous mixtures, and as limiting
distributions. In the following, we repeatedly start with an elementary type parametric hazard
function and derive further representatives such as survival or density functions.

(a) A constant hazard rate

h(x|A) =210, A>0,
yields directly to

S(x | 1) = e Lo, (3.14)
f(x 1) = Ae Ly

This gives the exponential distribution Exp(1).
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(b) A linear hazard rate of the form

(c)

(d)

h(x|Ao)=(A+0x)Nys, Ao>0, (3.15)

leads to

g

S(x | A,0) = e 5% 1,
02
f(x|Ao)=(A+ (m)e_’\x_T"2 Lyso-
For A = 0 this is the Rayleigh distribution with the scale parameter . From Proposition 3.2.17

follows that a competing risks lifetime with factors Exp(1) and Rayleigh(o) has a linear
hazard rate as given in eq. (3.15).

Starting with a power hazard rate given by

hxlaf) - § (E) Lo, wf>0,

we obtain

S(x|a,pB)= e_(%) Liso,
« a-1
o _( z) (x )
= —e \F - ]]-xZO-
B B
This is the Weibull distribution, denoted by WiB(a, ), with shape parameter « and scale
parameter f3. The exponential distribution Exp(A) and Rayleigh(o') are special cases of the

WB(a,f) distribution, namely WB(1,1/x) and WB(2,/2/s), respectively.

f(x|aB)

For an exponential hazard rate of the form
h(x | &) = kEe™ Luso, &6 >0,
we obtain

S(x | &x) = ¥ T,
flx| &) = ket

This distribution with scale parameter x and frailty parameter £ is called Gompertz due to
the parametric form of the hazard rate proposed by Gompertz (1825) and will be denoted
by G(&,x). The publication of Gompertz is widely considered as the first systematic attempt
of age-specific modelling of human mortality rates. By studying mortality tables, Gompertz
discovered that from the age of 30 onwards mortality rates tend to increase exponentially.
A generalization was given by Makeham (1867, 1890) as a four parameter distribution, the
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(e)

()

so-called Gompertz-Makeham distribution GM (&,«,0,a) with the hazard rate
h(x | x,6,0,0) = 0k& + 21> Eax + kEe™™ 0.

By Proposition 3.2.17, we see that the extended distribution GM (&,x,1/(¢x),9/2x*¢) with the
hazard rate

h(x|A0,6k) =1+ 0x +k&e™

results through a composition of an exponential, a Rayleigh and a restricted Gompertz distri-
bution, i.e.,

A
agmM (E,K,g,zKLzs) ~ min(Exp(A1), Rayleigh(o), GM(&,x)).

This shows the building blocks of the extended Gompertz-Makeham distribution that contains
three risk factors, namely: an age-independent factor, a factor where the risk grows linear in
age and one with an exponential growth.

Kannisto (1992) proposed a logistic-type hazard rate

erx+ﬂx

h(x | 06,/3) = mﬂxzo) ac IR,ﬁ >0 (3.16)

which better tracks the observed mortality for higher ages, see Thatcher, Kannisto and Vaupel
(1998). The authors studied the mortalities of several industrialized countries and showed that
logistic-type hazard rates provide a better fit to historical data, since the observations show
a sub-exponential growth for higher ages. From the hazard rate in eq. (3.16), we obtain the
survival and the density as follows:

_1
S(x|a,B) = (1+e“)§ (1+e"F*) P 1, (3.17)

1 _p
flx|apf)=(1+e")F e¥Hhx (1 + e‘“ﬁx) B Lyso.

The distribution characterized by the hazard rate of eq. (3.16) will be called the Kannisto
distribution and denoted by IC(«,8). Characteristic properties of the Kannisto distribution
will be discussed in Section 3.5.

Perks (1932) proposed a hazard rate of the form

A+ BeM®
1+ De** + Ke A

h(x | A,A,B,D,K) = £30-

This general form contains many of the hazard rate types introduced above, e.g., for:

» B=D =K =0, we obtain a constant hazard rate, i.e., the distribution Exp(A),
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(g)

» A =D =K =0 this is the Gompertz distribution G(A,8/1),
» D =K =0, this results in the Gompertz-Makeham distribution GM (A,B/1,4/)
» A=K =0and B = D = e*, is the Kannisto distribution K(a,7).

Marshall and Olkin (2007) showed that the survival function of the Perks type hazard rate is

o ¢ 8 0
S(x | Aa.B,€,0) :(e)‘x—(l—oc)) (elx— (1_[3)) (3.18)
a,$>0,§+60>0,x>0,

with the parametrization

(x:%(1+\/1—4KD)D+1, B==(1-V1-4KD)D+1,

B(1-2AD+/1-4DK) o (-1+2AD +V/1-4DK)
2DV1-4DK ) 2D\/1-4DK '

For £,0 > 0 eq. (3.18) is a product of two survival functions of the extended exponential
distribution which will be defined below in eq. (3.20) below. The distribution with the Perks
type hazard rate turns out to be distributed like the minimum of two extended independent
exponential distributions. This is a consequence of Proposition 3.2.17 that shows that the

1
2
B

hazard rate of the minimum of two random variables is the sum of the hazard rates. Since
the hazard rates of the extended exponential family are decreasing if the tilt parameter is less
than 1 (a, f < 1 in eq. (3.18)), one can construct bathtub-shaped hazard rates from the Perks
distribution. These types of hazard rates are useful to model initially decreasing hazard rates
as in the case of infant mortality.

An extended logistic-type hazard rate of the form

BOeP
h(x |y,0.8) = Tysi  y20,6>0,8>0, (3.19)
y

+eBx—1
generalizes the Kannisto hazard function of eq. (3.16). Both functions are logistic-type and
can be obtained as solutions of the first-order non-linear Bernoulli differential equation

h'(x) = & h(x)(cmax = h(x)),

where cpax is the limiting value of h and « € R. The distribution characterized by the hazard
rate of eq. (3.19) will be called the extended exponential distribution and denoted by £(y,6,).
This distribution received its name since it can be derived as a tilt and frailty parametric
extension of the exponential distribution, see Marshall and Olkin (2007) and Proposition 3.3.1
for the precise definition of those extensions types. The survival and density functions of
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E(y,0,pB) are

]
S(x|y.0,8) = (ﬁl—y}) Ls0, (3.20)

f(x]9.0.8) = pOYPeP*(y + ef* — 1)~ O+ D1, (3.21)

(h) A reciprocal hazard rate function of the form

h(x | kap) = —— T, k>0,a>0,ueR (3.22)

k—p+x

leads to

k
(x| koop) = ak®(k—p +x)_a_1 ﬂxzy-

_ -
S(x | kyo,u) = (x ‘., 1) Lesps

This hazard rate characterizes the Pareto type II distribution and is denoted by Py (k,a,u ). For
p = 0, we will abbreviate the notation and denote the distribution by Py (k,«). This special
case is also known as the Lomax distribution. In Proposition 3.3.4, we will give a connection of
the Pareto type II distribution to the Kannisto as well as the extended exponential distribution.

(i) Next, we recall another well-known distribution which is not a lifetime distribution since it
takes values in R. The logistic distribution, denoted by L(u,s) is the distribution characterized
by a logistic-type distribution function and should not be mistaken with /C(«,3) and £(y,0,/3)
which are characterized by a logistic-type hazard rate function. The CDF of L(y,s) is given by

1
F(x|ps)=—5—> forxeR,ueR,s>0
e s +1

and the corresponding hazard, survival, and density functions are

1
h(x | ) = ——=——>
s(e s +1)
1
S(x | ss) = = (3.23)
es +1
e
Fl | ps) = —

4 x 2°
s(es +es)

The connection to the lifetime distributions /C(«,f3) and £(y,0,3) will be given in Proposi-
tion 3.3.10.

The next result shows that a distribution with a polynomial hazard function of order #n can be
decomposed into a competing risks model with of n independent Weibull distributed factors.
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Proposition 3.2.19. A non-negative random variable Y with a polynomial hazard function given by
n .
hy(x | ag,....a,) = Zaix’ Nys0, witha; >0 Vie{0,...n},
i=0

can be composed of independent Weibull distributed competing risks Xy, ..., Xy, i.e.,
Y ~ min(Xo, . ..,X,)

with X; ~ WB (i +1,(7+1/a) "),

Proof. We start with the cumulative hazard function Hy, which is obtained by

Hy(x | ag,...,an) = fhy(y | ag,....an)dy
0

:f‘ aiyidy

i+1

S

1l
==
~ | =

I
—_

aix

The cumulative hazard function Hy (-) is related to the survival function by Sy (-) = exp {-H(-) }.
Using that, we obtain

Sy(x | aog,...,an) =exp (-H(x | ag,...,an))

where the factors
1 i+1
Sx,(x | a;) =exp|-=aix
i

are survival functions of Weibull distributions X; ~ WB (i +1,(i+ 1/a,»)1/ o 1). Hence, the survival

function of min(Xjy, . ..,X,) factorizes in the case of independent random variables, and we conclude
Y ~ min(Xo, ..., X,). O
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3.3 | Connections of the Kannisto Distribution to Other Parametric Distributions

In the following part, we study the connections of the previously introduced logistic hazard rate
distributions, namely the Kannisto and the extended exponential distribution, to other well-known
distributions. We will show how the extended exponential distribution generalizes other distributions
and demonstrate existing relations obtained by transformations, truncations, continuous mixtures,
and by limiting distributions.

3.3.1 | Connection of the Extended Exponential Distribution and the Kannisto Distribution

First of all, one can easily verify that the extended exponential distribution £(y,60,) is indeed a
parametric extension of the exponential distribution Exp(1). Choosing y = 1 and 6 = 1, we see that
the survival function of £(1,4/5,3)

Sg(x | 1,1,,8) = e—/)’x = SExp(x | ﬁ)

coincides with the survival function of the exponential distribution Exp(f), see eq. (3.14). The
next proposition shows that the Kannisto distribution is a special case of the extended exponential
distribution.

Proposition 3.3.1. The extended exponential distribution £(y,0,) is a generalization of the Kannisto
distribution K(a,f3).

Proof. The extended exponential distribution has the survival function

0
se(x 110 - (il )

see the definition in eq. (3.20). For y = 1 + ¢™* and 6 = 1/, we obtain the survival function of the
K(a,B) distribution as given in eq. (3.17), i.e.,

e % 1 eoc+ﬁx -3
Sg(x|1+e‘“,1/ﬁ,/3)=( L )ﬁ =(1+ ) ' =Sk (x| a.p).

e~ + efx 1+e®

O

While £(y,0,8) generalizes the exponential distribution as well as the Kannisto distribution,
the exponential distribution cannot be obtained from the Kannisto distribution by a particular
parameter choice. However, as next proposition shows, the exponential distribution results as a
limiting distribution.

Proposition 3.3.2. For the Kannisto distribution K(«,f3), we have
D
K(a,f) — Exp(1), (3.24)
o—>00

K(a,B) /;%o Exp(1), (3.25)
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KO -1,B) % Exp(\) for 0<A<L. (3.26)

Proof. For the convergence in distribution, we need to show that the survival function of the
Kannisto distribution converges pointwise, for each x > 0, to the survival function of the exponential
distribution. Thus, for eq. (3.24), we have

1
1 a+fx\ "B
lim S (x | a,f) = lim (*e—) =™ = S (x| 1).
X— 00

a—oo \ 1+ e

To prove eq. (3.25), we apply the UHépital’s rule on eq. (3.27)

1

1+ e%+Px\ ¢
1+e”
a+xf
ln(1+e * )

1+e®

= lim e B (3.27)

ﬂ—>oo

lim Sic(x | «,8) = lim
/3—><>o K:( | ﬁ) /3—»00(

eoH—xﬁx
= lim e 1+e**p

ﬁ—>oo

=e " = Spp(x | 1).

Equation (3.26) can be obtained by using the UHopital’s rule for eq. (3.28)

_1
}gi_r)r(l)S,c(x | M1-1,B) = };i_r)r(l) (A (eﬁx -1)+1) 7
= lim ¢~ MDD (3.28)
B0
_ AxePx
— hme A(zﬁx—l)ﬂ
B0
= e M = Spyp(x | ).
O

An overview of the relations between the exponential, Kannisto, and the extended exponential
distribution is displayed in Figure 3.1. The next result shows that the Kannisto distribution is not
stable under scaling, i.e., multiplying a Kannisto random variable with a positive constant does not
result in a Kannisto distribution. The result shows also that the extended exponential distribution is
stable under scaling.

Proposition 3.3.3. Let X ~ KC(«,f3) be Kannisto distributed and ¢ € R,, then cX follows the extended
exponential distribution £(1 + e~%,1/g,B/c).

Proof. Asobserved in Proposition 3.3.1 the Kannisto distribution /C(«,3) is a special case of extended
exponential distribution £(y,0,), where the frailty parameter 6 is set to the inverse of the scale
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y=l+e % 0=7

£(y,6,8) K(a, B)

| N

£(1,1,1) gg;ic(ln(*/o—m»ﬁ), Ae(0,1)  lim K(a,p), ﬁlirgolc(mﬁ)

L /o

Exp(1) A=1 Exp(1)

Figure 3.1: Relationships between the Kannisto and the extended exponential distribution.

parameter 3, and the tilt parameter set to y = 1 + e~ %. The proof can be obtained directly by
computation of the transformed survival function. This leads to

B
1+e*te

B
Sex(x) =PeX>x]=Se(x/e|1+e1/p,p) = ( 17 % ) = Se(1+ e %1 p.Ffe).

O]

3.3.2 | Connection of the Extended Exponential Distribution and the Pareto Type Il Distribution

The following proposition exhibits the connection of the Kannisto distribution and the Pareto type II
distribution. The connection is interesting since the Pareto distribution is a heavy-tailed distribution
with various applications especially in non-life actuarial science, while the Kannisto distribution
arises in life actuarial science by observing a logistic-type growth of age-specific mortalities for
high ages. Due to its popularity, the Pareto distribution is implemented in almost all statistical
software packages. Thus, using the transformation of the following proposition, sampling from the
non-standard Kannisto or extended exponential distribution can be implemented efficiently.

Proposition 3.3.4. Let X be a Pareto type II distribution with survival function

Spll(x ’ )/,9) = (1 + x/V)_e Lo, )’:9 >0,

then Y := g(X), with g(X) =1/gln (X + 1) is £(y,0,p) distributed. Furthermore, for X ~ Pr(1 +
e~ %,1/g), we obtain the Kannisto I(«,f) distribution through the transformation g.

Proof. The map g: R, — IR, is bijective with g7!(y) = eP¥ — 1. The survival function of Y satisfies

Sy(y)=P[Y>y],
=P [g(X) > y],
=P[X>¢' ()],
:]P[X>eﬁy—1],
=Sp, [eﬁy— 1],
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0
[t
ef*—(1-y)

=Se(y | y.0.8),

which completes the proof of the first part. The second result for the Kannisto distribution follows
directly from Proposition 3.3.1. O

Note that by using the inverse transformation of Proposition 3.3.4, g”'(Y) = €'/ — 1 with
Y~K (— In(y-1), é), we obtain the Pareto distribution Py;(y,0) from the Kannisto distribution.

Alternatively, the extended exponential distribution or the Kannisto distribution can be sampled
from the uniform distribution as covered in the following result.

Proposition 3.3.5. Let U ~ 1/(0,1) be uniformly distributed on the interval (0,1) then
1 1
X:==In(l-y+y(1-U) @ (3.29)
L |
is £(y,0,p) distributed and
Y::%ln((lJre“)(l—U)ﬁ—e“) (3.30)
is C(a,p) distributed.

Proof. This is a direct consequence of the inverse sampling theorem. The cumulative distribution
function of the extended exponential distribution £(y,0,) is given by

0
Y
F, 0,8) =1~ ————] Lo 331
(x| 1.08) (eﬁx_(l_y)) 631
For a strictly increasing distribution function F, inverse F~! of F is defined by

FY(p)=sup{x:F(x)<p}, 0<p<l.

From eq. (3.31), we obtain

=

).

Equation (3.30) follows from eq. (3.29) by Proposition 3.3.1. O

B (p) = gin(1-y oy )"

3.3.3 | Connection of the Extended Exponential Distribution and the Gompertz Distribution

The next proposition shows how the Gompertz distribution, which is characterized by exponential
increasing hazard rates can be obtained as a limiting distribution of the extended exponential
distribution. This connection without a rigorous proof can be found in Marshall and Olkin (2007).
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Proposition 3.3.6. The Gompertz distribution is a limiting distribution of the extended exponential
distribution. More precisely, we have

E(ryEp) > G(ER)

Proof. This result is obtained by setting 6 = y& in the survival function of £(y,0,) and taking the
limit y — oo for fixed £ and f3, i.e.,

y&
. i y
lim S YoB) = Iim | iy
yerolo e(x|y.y&B) yLTo(eﬁx—(l_Y)) =

ln(iy )
= lim eyf Far-1) 1,50

y—>o00
_y
=i S 1, (3.32)
))—)00
{CECAON TN (3.33)
=Sg(x [ &),
where egs. (3.32) and (3.33) follow by LHopital’s rule. O

The following proposition shows how the Kannisto distribution arises as a mixture of Gompertz
distributions. This means that a proper mixture of individuals with inhomogeneous exponential
hazard rates can result in a population with a bounded logistic hazard rate.

Proposition 3.3.7. The Kannisto distribution can be obtained as a mixture of Gompertz distributions
by regarding the frailty parameter as a random variable following a gamma distribution. More specif-
ically, the Kannisto distribution KC(a,) results as a continuous mixture of a Gompertz distribution
G(&,B), where the frailty parameter £ is considered to be I'(1/(1+¢7*),1/s) distributed.

Proof. Let Sg be the survival function of the Gompertz distribution, with

Sg(x | f:ﬁ) = €Xp (_f(eﬁx - 1)) ]leO’ E)ﬁ > 0.

Let & be a I'(1/y,0)-distributed random variable with the distribution function Fr(¢ | 1/y,0) and
density

)’6 e—yf£0—1

r'(9) 20,

fo(€10) =

where the 1/ is the scale and 6 the shape parameter. Using Definition 3.2.16, we now consider a
continuous mixture for & in G(&,B) with respect to I'(1/y,8). The survival function of the mixture



3.3 Connections of the Kannisto Distribution to Other Parametric Distributions 177

Smix has the form
Svi(x | 1,6.8) = [ Sq(x | £8) dFe(£] 1. 0) (334

x e v 6-1
- [ewp(-g(eP - 1)) I — yrgg? at

0
(y§)Pe 8" )
f ae

: (Wyl—w)e'

The mixing distribution turns out to be the extended exponential distribution £(y,0,3). As shown in
Proposition 3.3.1 the Kannisto distribution appears as a special case for y = 1 + e™* and 6 = 1/. Note,
the connection of a Gompertz mixture and the extended exponential distribution was originally
obtained by Marshall and Olkin (2007). O]

Remark 3.3.8. Proposition 3.3.7 shows that the Kannisto distribution can be derived by continuous
mixing of Gompertz distributions with respect to a gamma distribution. Observe that despite taking
a mixture of Gompertz distributions with exponentially increasing hazard rates of the form

hg(x | £.):=Epef™,  x20, &>, (3.35)
the result is a Kannisto distribution with logistic-type hazard rates which are bounded by
lim h(x | ap) = 1.

Thus, modelling lifetimes of populations by a Kannisto distribution allows a twofold interpretation
of the composition of the underlying population. The first one is the homogeneous population
interpretation, which treats the lifetimes of individuals as i.i.d. Kannisto distributed random variables.
Since the entire group is considered to have the identical lifetime distribution, we indeed have a
homogeneous group. On the other hand the heterogeneous population interpretation arises, when we
do not assume the population to be composed of individuals with i.i.d. distributed lifetimes. This
assumption is less restrictive and more realistic than the former one since groups of individual of the
same cohort show indeed different lifestyles, diets or diseases which influence individual lifetimes.
The differences can be modelled by the frailty parameter and its distribution. In the presented case,
each member of the group has an individual Gompertz distributed remaining lifetime where the
parameter £ in eq. (3.35) is randomly chosen from a specified gamma distribution. Taking the above
mixture leads to Kannisto distributed lifetimes of that population.

Remark 3.3.9. The mixture as given in eq. (3.34) can also be interpreted as a Gamma-Gompertz
frailty model. Frailty models are popular in mortality analysis of heterogeneous population groups,
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see, e.g., Yashin (2004) and Vaupel and Yashin (1985). They are characterized in terms of hazard rates
with a multiplicative decomposition into a frailty parameter and a baseline hazard rate hy. In the
case above, the hazard rate of the Gompertz distribution is

hg(x | &) = EBeP* = Ehy(x | B),

where £ is called the frailty parameter and is treated as non-negative random variable following, e.g.,
a gamma distribution such as in Proposition 3.3.7.

3.3.4 | Connection of the Extended Exponential Distribution and the Logistic Distribution

The following result shows that the extended exponential distribution and the Kannisto distribution
correspond to zero-truncated and frailty extended logistic distribution.

Proposition 3.3.10. The extended exponential distribution £(y,0,) can be obtained as a truncation
of a frailty extended logistic distribution £(u,s) with frailty 6, y = n(y -1 /g and s = 1/p.

Proof. Let X ~ L(u,s) be alogistic distributed random variable with survival function (see eq. (3.23))

1
Sc(x|ps) = —5—, forxeR,uelR,s>0.
e s +1

A frailty extension (see Definition 3.2.18) of L£(u,s) is a distribution with survival function

6

1

Sge(x|y,s,6)=( = 1), forx e R,ueR,s>0,0>0.
e s +

Truncation of Sz, (x | In(r - 1)/g,1/5,0) at 0 leads to a distribution with survival function

Se, (01 20.50) (51

) G

) y+ePr—1

The right-hand side reveals the survival function of the distribution £(y,0,f3) as defined in eq. (3.20).
Note that by Proposition 3.3.1, a truncation at 0 with frailty 0 = % and y = 1 + e * leads to the
Kannisto distribution /C(a,f3). O

Figure 3.2 displays an overview of the connections revealed by Propositions 3.3.1, 3.3.4, 3.3.6, 3.3.7
and 3.3.10.
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Lo ("55) Pu(r.0)
g e
P[X|X>0] %ln(x+1)
™~ e
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Figure 3.2: Relationships between the Gompertz, Pareto, Logistic, Kannisto, and the extended exponential
distribution.

3.4 | Generalized Hypergeometric Functions

In Section 3.5, we will proceed with the characterization of the extended exponential and the Kannisto
distribution. As will be shown there, many characteristics of interest such as the central moments, the
Fisher information or the Kullback-Leibler divergence do not have closed form representations but
can be expressed in terms of generalized hypergeometric functions. In preparation for the upcoming
sections, we give a formal definition and add some remarks on generalized hypergeometric functions.
A standard reference on the following topic is the book by Slater (1966).

The generalized hypergeometric function ,F, is defined by the following series expansion

> (a)n-..(ap)n 2"
F lay,....apb1,...,b,:2] = —_—
pFalan Pl %] Z%wgn”4%%;n

where ay, ... ,ap and by, ... ,bq are complex numbers, and

p>q € Ny, (3.36)

mgn:E%égﬁ:a4m+1x@+2y(@+n—1y (ai)o =1

is a Pochhammer symbol or also called ascending factorial. The generalized hypergeometric function
is invariant under permutations of the first p parameters ay, .. .,a, and invariant under permutations
of the last g parameters by, ...,b,. It is also clear from the definition that if anyone of the first p
parameters, say a;, coincides with one of the last g parameters, say b;, then ,F, reduces to

p—qu—l[al> e es@i—15A5415 .- - aap; bl) e abj—labj+l) e )bQ)Z]
Using the gamma function, eq. (3.36) can be expressed as

a © P T q I'(b; k
F 1)~~-’ap X (k+a,~) (b]) Va
I A Z:I [ - > INp. 3.37
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Note, the left-hand side of the above equation is a common alternative notation for generalized
hypergeometric functions. Hypergeometric functions have been studied for more than two centuries
by influencing mathematicians such as Euler, Gauss, and Riemann, see, e.g., Cattani (2006) for
historical notes. For p = 2 and g = 1 the series eq. (3.37) is known as the Gauss hypergeometric
series. It is well-known (Bailey, 1935; Slater, 1966) that for p < g the series converges for |z| < co. For
p = q + 1 convergence occurs for |z| < 1 and when p > g + 1 the series diverges for all z # 0. For
|z| > 1 many generalized hypergeometric functions ,F; can be analytically continued. For instance,
Norlund (1955) shows that for p = g + 1 any hypergeometric series in powers of z can be transformed
into a series in powers of —%5 such that the convergence holds for Re(z) < % In particular, analytic
continuation provided by Nerlund (1955) is given by the transformation

ai,az,...,0y, —a ad (al)m [_m:ab---’an ]( Z )m
F,_ ;z=(1-2)"" F,_ ;1 . 3.38
e l[bl,bz,...,bn_l ] ( ) mZ::O m! nin-l bl,bz,...,bn_l z-1 ( )

The series on the right-hand side converges for z < % For n = 2, the relation given in eq. (3.38)
reduces to the so-called Pfaft’s transformations

ac-b z

a,b —a _ c-ab z
2F1[ ;Z]=(1—Z) 2F1[ ;—]=(1—Z) bZFl[
c c z-1

;— |- 3.39
z—-1 ] (3:39)
The transformation of eq. (3.39) will be used in Sections 3.5.5 and 3.5.8. Efficient numerical methods
for evaluation of generalized hypergeometric functions can be found in, e.g., Forrey (1997) and

Pearson (2009).

3.5 | Characteristics and Properties of the Kannisto and the Extended Exponential
Distribution

In the following section, we provide a characterization of the Kannisto and the extended exponential
distribution and study their properties. Both distributions are, as defined in Section 3.2.7, specified
by logistic hazard rate functions with two or three degrees of freedom. The representatives of both
distributions are summarized in Tables 3.1 and 3.2. See also Figure 3.3 for example graphs of the
Kannisto hazard rates, survival, and density function for some estimated parameters for the KAN
model in Section 1.9.2.

3.5.1 | Basic Properties

Initially, we deduce some basic properties of the Kannisto and the extended exponential distribution
including some measures of central tendency;, tail behaviour and characteristic of the hazard rate
functions.

Unimodality

A distribution is called unimodal if the cumulative distribution function F(x) is convex for x < x™°de

and concave for x > x™°%¢, see Marshall and Olkin (2007). By differentiating the density of £(y,0,8)
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(a) Hazard rate function hx (x | a,f).
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(b) Survival function Sk (x | a,f8).
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— fic(x | @1910,B1910)
6| flc(x | “1970,ﬁ1970) -
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(c) Probability density function fic(x | a,f3).

Figure 3.3: Hazard, survival, and density function of the Kannisto distribution for the parameters of the
Swedish female population at the years ¢ € {1910,1970,2010}.
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Table 3.1: Representatives of the extended exponential distribution £(y,0,8).

ext. exponential distribution X ~ £(y,0,8) withy>1,6>0,3>0

PDF fe(x | 10.B) = y2B0eP* (y+ efr 1) V1,

y 0
CDF F]C(X | (X,/_)?) =1- (e:Bx——(l—y)) ]]-xZO

0
survival function Sg(x | y,0,8) = (M) Lyiso

hazard rate he(x|y,0,B) = %Lzo

Table 3.2: Representatives of the Kannisto distribution /C(a,f).

Kannisto distribution X ~ K(a,) with &« € R and § € R,

1 _I+B
PDF fic(x | a,B) = (1 +e%)B e**hx (1+ e‘“ﬁx) B yso
CDF Fie(x| ) =1 (1+e%)F (1+¢5F%) Bl
survival function Sic(x | a,) = (1 + e“)% (1+ e“*ﬁx)_ﬁ Lyso

hazard rate hic(x | a,B) = e**P* (1+ e“+ﬁx)_1 Lo

one can verify that this density is unimodal with the mode at

xrgn(’de = max {0,% In (%)} . (3.40)

The maximal value of the density obtained at the mode is given by

Bo

mode _ Yy
Je(x2°%) ﬁ(%)eu(y_zl)e’ ifxg)ode#()‘

From egs. (3.40) and (3.41) and by Proposition 3.3.1, we see that the mode of the Kannisto distribution
K(a,p) is given by

: if xode = 0

(3.41)

xmode = max lln —oc}
K {O,ﬁ( B-a)

For the Kannisto density, the maximal value obtained at the mode is then given by

1 : de _
N
X = % 7
f’C K ﬁ( ﬁrll)ﬁ if mode
T, 1 .X,'K: +0.



3.5 Characteristics and Properties of the Kannisto and the Extended Exponential Distribution 183

Quantiles

The quantile functions of £(y,0,) and K(a,f3) are given by (cf., Proposition 3.3.5)

1 -

Qs(p|y.0.8) = Eln(l—yw(l—m 1) (3.42)

and

1 _ - _

Q(p|ap) = Bln((e “+1)(1-p)F-e).
From eq. (3.42), we obtain
medg = Qg (1) = lln(l —y+y21/9)
£ B ﬁ >

as the median of £(y,0,) and

1\ In(2f(e*+1)-1) «q
med,C:Q;C(—): i
2 B p
as the median of the distribution C(«,8). While the mode and the median, which can be considered
as measures of central tendency, are given in closed forms, this is not the case anymore for the
expectation or higher moments, as we will see later.

Cumulative Hazard Rates

The cumulative hazard rates of the distributions £(y,0,5) and K(«,f3) (see Definition 3.2.8) are
given by

X _ ﬁx
He(x | y,0,8) = f he (x | y,0,8)dy = Hln()/l%) (3.43)
0

and

B 1+e*

X
N
(s [ ) = [ ety Loy = gin( 7).
0
By using the cumulative hazard rates, we derive the tail behaviour of both distributions in the next
proposition.
Proposition 3.5.1. The Kannisto and the extended exponential distribution are light-tailed.

Proof. By Proposition 3.2.10, in order to prove that a distribution is light-tailed, we need to show

TLICI

X—>00 X
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Thus, by using eq. (3.43), we have

Hln()’—“eﬁx) P
H, ,0, fel*
tim BP0 N )y PO g
X—>00 X X—>00 X x—o00 p — 1+ eﬁx
For the Kannisto distribution, we have by Proposition 3.3.1 lim,_, o, Hc(x | @) [/x = 1. O

Initial and Limiting Values of the Hazard Rate Functions

The starting values of the £(y,0,) and K(«,f3) hazard rates are determined by

0
he(0]y,0,8) = o

and

1
1+e @

h;c(() | oc,/3) =

The turning points of the logistic growth of the hazard rates are located at x = In(y - 1) /g for £(y,6,3)
and at x = —/g for the KC(a,f3) distribution. For the limiting hazard values, we have

lim he(x|y,0,8) = fO
X—>00
and
lim (x| a,pB) = 1.

While the Kannisto hazard rate is bounded by 1, the additional degree of freedom of the extended
exponential distribution influences the upper limit of the hazard rate function.

3.5.2 | Residual Life Distribution

According to Definition 3.2.13 the survival function S, of the residual life distribution of a ¢-survivor
is given by

 Se(x+t]p0,8) (y 4 ePtx) _ 1)9

C Se(x[y.0.8) \ yref-1

The next proposition states that the residual life distributions of £(x | y,6,8) and K(x | «,f3) converge
to exponential distributions.

Proposition 3.5.2. The residual life distribution of £(x | y,0,) converges in distribution to the
exponential distribution Exp(6).

Proof. This is a direct consequence of Proposition 3.2.14, where for any hazard rate h with a finite
positive limit, limy_, o, #(x) = A, the residual life distribution converges to an exponential distribution
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with parameter A for t — oo. Alternatively, it can be obtained by direct calculation

£ 7.0, Blt+x) _ 1\°
lim Sf = lim Se(x+ |y9/3): im (L~ = ¢ PO,
theo ©imo Sg(x[y,0,8) e\ y+eft-l

By Proposition 3.3.1, we have for K(«,f3) that the limiting distribution of a ¢-survivor converges to
the distribution Exp (1) as t — oo. O

3.5.3 | Mean Residual Life Function

By Definition 3.2.15 the mean residual life function v(x) is the remaining life expectancy of an
x-survivor. In the following two results, we derive the mean residual life functions of the Kannisto
and the extended exponential distribution.

Proposition 3.5.3. The mean residual life function vg(x | y,6,5) of an x-survivor with an extended
exponential distributed lifetime X ~ £(y,0,f3) is given by

ePO% (ePr 1y —1)°

ve(x|y,0,8) = 30 2F1[60,6;0 + e P (1-y)] (3.44)
or equivalently by
0
1(y-1+ef*
)6> o B - G)O > 3.45
el 30 = 5 (2215 ) B (00) 649

where B,(a,b) is the incomplete beta function defined as

z

B.(a,b) = f 11— 1) dr. (3.46)
0

Proof. The mean residual life function at age x is defined as

Se(x +t|y,0,8)
Se(x[y,0,8)

1 o0
= m ;C/ Sg(Z | y,@,/J’) dz. (347)

ve(x [ 1.0.8) = [ dt
0

The factor outside the integral is the reciprocal of the survival function given as

-9
1 B y
Se(x | y.0,8) (y+eﬁ" - 1) ' (49

Let I be the integral term of eq. (3.47). The proof is obtained by direct computation using the integral
representation of the incomplete beta function B,(a,b) and the connection to the hypergeometric
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function , F; as will be given in eq. (3.54). We have

oo

I- f Se(z|7.0,8) dz

(o) y 0
:,[(y+eﬁz—1) dz

X

ePr—(1-y))!
jo BT
_ [ — s (3.49)
B J 1-(y-1)s
y—1
9 y—1+eﬁx
0
ye
:—B —1 9,0 3‘51
B -1 (40 o
) Y Flonesn Y"1 (3.52)
BO(y 1+ )0 [T Py 1ok |
0
e PO F[6,6:6 + e (1-y)]. (3.53)

Equation (3.49) is obtained by substitution

1 —
Z::_ln(u))
B s

and eq. (3.50) by substitution

t

§i= —.
y-1

The integraleq. (3.50) corresponds to the incomplete beta function. To derive eq. (3.52) and eq. (3.53),
we use the identities

a

B.(a,b) = = ,Fi[a,1 - bya+ 1,2] (3.54)
a

and

2Fi[abicz) = (1-2)"%F [a,c - b;c; ad 1]
Z_

provided by Olver (2010). Multiplying eq. (3.53) or eq. (3.51) by the factor given in eq. (3.48) completes
the proof. O

Corollary 3.5.4. The mean residual life function v (x | «,8) of an x-survivor with a Kannisto
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distributed lifetime X ~ /C(a,f) is given by

1
vIC(X | (X,ﬁ) =e ¥ (e“" + eﬂ")f £ [%,%;1 I %;_e—(a+xﬁ):|

or alternatively by

Proof. The result can be obtained directly from Propositions 3.3.1 and 3.5.3. O

An illustration of the Kannisto mean residual life function for some reference periods is provided
in Figure 3.4. Note that for the mean residual lifetime of the extended exponential distribution, we
have

1
1' »Us = - .
lim ve (x| .0,8) 36

Thus, the life expectancy of an x-survivor has a lower strictly positive bound 1/ge. This means,
regardless how high the attained age x is, the remaining life expectancy does not drop below that
particular value. That specific property of the extended exponential or the Kannisto distribution
differs from other popular life distributions such as the Weibull or Gompertz distribution. For

T T

250 _VIC(X | 061910,/31910) |
vic(x | @1970,B1970)

20 vic(x | @2010,B2010) | |
15| |
10 | :
5 - |
0 - B |

| | | | | |

60 70 80 90 100 110

Figure 3.4: Post-age-60 mean residual life function vic (x | &, ;) of the Kannisto distribution for Swedish
females, for the years ¢ € {1910,1970,2010}.
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instance, the mean residual life function of the Gompertz distribution is obtained by

vg(x | k) = f Sgs(x(:lté i)K) dt

5(1 e(t+x)1<)

e

_f—ef(l_em) dt
0

[ee]

_ f e_fexx(ekt_l)dt

0

= —%e"{e Ei(-e**¢), (3.55)

where the exponential integral Ei(x) is defined for x € Ry as

® -t

Ei(x):—[%dt.

—-X

Taking the limit x — oo in eq. (3.55) leads to

lim vg(x | &x) = 0.

Using Proposition 3.5.3 and the fact that evaluating the mean residual life at zero leads to the
expectation of the corresponding lifetime (see page 164), we can deduce analytic expressions for the
expectation of the £(y,6,f) and KC(«,f) distribution.

Corollary 3.5.5. The expectation of the extended exponential distribution X ~ £(y,0,) is given by

0
E[X] = /30 T R[6,6:6+ 11 -] (3.56)
y6
G-t (0 37

Proof. The mean residual life function evaluated at zero gives the expectation of the corresponding
distribution, since S¢(0 | y,0,5) = 1, we have

w0170.0) = s [ S¢(z|7.0,8) dz = E[X].

Se (0|

Thus, setting x = 0 in eqs. (3.44) and (3.45) leads to egs. (3.56) and (3.57). ]
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Corollary 3.5.6. The expectation of the Kannisto distribution X ~ IC(a,f) is given by
E[X] —(1+e‘“)% F [1 1-1+ L e‘“]
= 2801 57> P
BB B
1 1 1
= — (1 +60C)/3 B 1 (—,0).
ﬁ 1+e® ﬁ
Proof. This follows directly from Corollary 3.5.4 using the fact that v(0) = E[ X]. O

3.5.4 | Moment Generating Function of the Kannisto and the Extended Exponential Distribution

The moment generating function is an alternative representative of a probability distribution of a
real-valued random variable. The following result provides the moment generating function (mgf) of

an extended exponential distribution.

Proposition 3.5.7. The moment generating function of the extended exponential distribution X ~

E(y,0,p) is given by

B

where B;(a,b) is the incomplete beta function as defined in eq. (3.46)

mgfe (s | .6.8) = 6y (y - 1)?931_% (9 SR %) , fors < o,

Proof. Recall from eq. (3.21) that the density fc(x | ,0,8) of X ~ £(y,60,B) is given by

0+1
ﬁe Bx Y
,0,) = — _ .
el y0.8) = EneP

We proof eq. (3.58) by direct calculation. We have

mgfy (s |7.0,8) = E[e™]

[
00 0+1
:—Gfesxeﬁx _r dx
Y 3 y+ePr—1

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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To obtain eq. (3.60), we use the substitution x := 1/gIn (w) and for eq. (3.61) the substitution z :=

z
t%. The integral expression in eq. (3.62) is the incomplete beta function as given in eq. (3.46). [

By using the hypergeometric representation of the incomplete beta function, i.e.,

a(l _x)b

By(ab) =~ 2Fi[a+bla+1;x], (3.63)

(see, e.g., Olver, 2010) we can represent the moment generating function of the extended exponential
distribution in terms of a hypergeometric function. Using eq. (3.63), we obtain

B0 s 1
mgfy (s |y,0,8) = ————2F1[1,0+1;0+1—-—;1-—|, fors<f6. (3.64)
X y(BO=s) By
Corollary 3.5.8. The moment generating function of the Kannisto distribution X ~ K(«,f3) is given
by
sX 1 g —a s=1 1 ) N
mgf (s | a,B) =E[e ]:Ee F(l+e®)F B 1 T’1+E , fors<1. (3.65)

Proof. We use again the fact that the Kannisto distribution is a special case of the extended exponential
distribution as shown in Proposition 3.3.1 and substitute y = 1 + e"* and 6 = 1/g into eq. (3.58). [

The representation of eq. (3.65) in terms of a hypergeometric function follows by substituting
6 =1/gand y =1+ e into eq. (3.64). Thus, we have

1 1 1 s 1
2P| L1+ =51+

T+e %) (1-s) B TR B lrer |

The next result is not directly related to the moment generating function of the extended exponential

fors<1.

mgfy(s [ a,B) = (

distribution. However, it turns out that the life expectancy of a competing risks lifetime, as specified
in the following proposition, involves an integral which is of the same type as in eq. (3.59).

Corollary 3.5.9. Let Z := min(X,Y) be a competing risks lifetime of two independent risk factors,
where the first factor is X ~ £(y,0,[8) distributed and the second follows an exponential distribution,
ie., Y ~ Exp(A). Then, the expectation Z is given by

1 A 1
Fl11,6;1+0+—;1-—].

EL2)= 5o By

Proof. Since Z is a competing risks lifetime variable, it has the hazard rate (see Proposition 3.2.17)

OeP*
oo ) < he g 0

where hg is the hazard rate of £(y,0,5) and hgyp the hazard rate of an exponential distribution with
parameter A. The survival function Sy is given by the product of the individual survival functions,
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i.e.,

0
Sz(x | ,0,8,1) = e M2V ORED = — g (3 |1y,0,8) Sep (x| 1) = (#) o
eP*—(l-y

The expectation of Z is given by the integral [ S¢(x | ,0,8) Sexp(x | A) dx. Comparing the
corresponding integral with the integral involved in the computation of eq. (3.59), we observe that
E[Z] can be written in terms of the moment generating function of the extended exponential
distribution as derived in Proposition 3.5.7. Using that, we obtain

E[Z] = [ Se(x | y,0,8) Sexp(x | A)dx

r Y ? A
=0f(e/3"—(1—y)) ¢

= ﬁlemgfg(—(ﬂ +1)|y,0-1,B)

1 A1
= F111,0;1+0+—;1—-—1.
po 1’ [ TUTB y]

3.5.5 | Moments of the Kannisto and the Extended Exponential Distribution

In the following section, we will derive a concrete analytic expression of the n-th moment for
the extended exponential as well as for the Kannisto distribution. Since the extended exponential
distribution has a non-decreasing hazard function we know that by Proposition 3.2.12 all moments
exist, i.e., for X ~ £(y,0,3), we have [E[ X"] < oo. The central moments could also be obtained by
the moment generating function as given in Proposition 3.5.7. However, that would involve the
differentiation of the incomplete beta function in both arguments, cf., eq. (3.58). The following
result provides an expression of the moments of £(y,0,8) in terms of generalized hypergeometric
functions.

Theorem 3.5.10. The n-th moment of the extended exponential random variable X ~ £(y,0,5) with
survival function

0
SS(X‘Y,Q,,B):(m) foerO,[j’,9>0,y21,
is given by

1,0
IE[X"]:%”HF,[ 0,....01+6,....1+6;1-y].
ﬂ —_———
n+l n
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Proof. We start with the series representation of generalized hypergeometric function. Further
transformations will be given below.

n+1
—
o0 _ )k
s |0 01460, 1 01—y | =3 (O () (1-y)
—_— k=0(1+€)kx"'x(1+9)k k!
n+l n

n

[(6+k)™ T(1+6)" (1-y)k

= kZ:;) r(e)n+l r(k +1+ 9)11 k! (366)
> 0 _ Nk
) Z 0+ k)n( )k(l 'y) (3.67)

[ee]

2 1 —kz Bzdz (3 68)

n sy k —kz
_ an) fz"_le_ez(Z(G) —( )e )dz(3.69)
L (e-zu ¥
= ) sz e? (2(9) )
en r n— 1 -0z
o [ e R [0 (1-9)] dz (3.70)

_ 9 / 2" le %% (1-e77(1- y))_19 dz (3.71)
0

oo Ve am
yo(n-1)tJ ef* = (1-y) '

0

_ OB pxm,

yon!
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Equation (3.66) follows directly from the definition of the Pochhammer symbols as rising factorials

given by
[(0+n)
n= 1)--- =
(0),=0(60+1)---(0+n) r(0)
Equation (3.67) follows from the identity
0" (6) CT(0+k)"™! T(1+6)"
O+k)n K7 T T(k+1+0)

hence the gamma function satisfies the functional equation I'(0 + 1) = 6 T(8). Equation (3.68) is
derived by the Laplace transformation where the term I'(n) (60 + k)~" is replaced by the Laplace
transform of y" ! at 6 + k, i.e.,

I(n) r o (04K
(6+k)" Ofy O dy.

Equation (3.69) is derived by interchanging the order summation and integration using Fubini’s the-
orem, considering the sum as integration with respect to a counting measure on INy. Equation (3.70)
is obtained by recognizing the series representation of a hypergeometric function  Fy, i.e.,

ol *(1- ) - S50 G
which is simplified in eq. (3.71) using the identity

1Folas;z] = (1-2)%,

which is stated in Olver (2010). Rearranging terms and the substitution z = fx yields eq. (3 72). From

eq. (3.72), we see that scaling the generalized hypergeometric function with the factor 2+ [3”9” ’ results in
the desired expression

E[X"]—annmp 0,...,6;1+0,...,1+6;1-y].
n+1 n
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Corollary 3.5.11. The n-th moment of the Kannisto distribution /C(«,f) is given by

1 1 1 1 1
E[X"]=n!(1+e*)F 411F, B,~~-’E;1+E,.--,1+E;—€_a . (3.73)
n+l n

Proof. The result is a consequence of Theorem 3.5.10 and the fact that the Kannisto distribution is a
special case of the extended exponential distribution as shown in Proposition 3.3.1. O

For n = 1 in eq. (3.73), we obtain the expectation of a IC(«,f3) distributed lifetime X as

1 11 1
E[X]=(1+e™")F zFl[—,—;1+—;—e“]. (3.74)
BB B
This result corresponds to the expression derived from the mean residual life function as in Corol-
lary 3.5.4. By using Pfaft’s transformation formula for hypergeometric functions

JFi[abicz] = (1-2)7%F [c - a,b;c; ] , (3.75)

z—-1

we can obtain

1 1 1
E[X]=,F|1,—1+ —; ——
= “[ B +/31+e“]

as an alternative representation of eq. (3.74).
Let vic(a,3) be the expectation of K(a,f8), then vic(a,f3) is decreasing for an increasing «, since

1 1

< for ay > ay,
I+e% 1+e*

and it is also decreasing for increasing f3, since

(e 1
(1+1p), Ppn+1

is decreasing for increasing f and any fixed n € INj.

Proposition 3.5.12. The variance of the Kannisto distribution is given by

1 1 1 1

V(X) = C(a.p) (23F2 [E’%,B;l + E,l + %;—e_a] - C(a,B) 2F [/3’/13;1 + %;—e_“] )

with

Claf) = (1+e )7 .
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Proof. Use eq. (3.73) to substitute in V(X) = E[X?] - E[X]*. O

Next, we will list some asymptotic properties of the KC(«,f3) and £(y,0,8) moments which will
require the following definition.

Definition 3.5.13 (Asymptotic equivalence). Let f and g be real valued functions. We say that f and
g are asymptotically equal (at c0), if

)
Mg "

Asymptotic equivalence will be denoted by f(x) ~ g(x) and means that the growth of f(x) and
g(x) is of the same type when x gets large.

Remark 3.5.14 (Approximation and Asymptotic Behaviour of the Kannisto Expectation). The expecta-
tion function vi («,f3) has the following asymptotic behaviour

lim vic(a,B) = ﬁlim vic(a,B) =1, (3.76)
o@x—>00 — 00
};irr(l) vic(a,) =1+e %, (3.77)

lim —v;c((x,ﬁ) = —l.
o—>—00 0.4 ﬁ

The limits of eqgs. (3.76) and (3.77) can also be established from the limiting distributions, which is
the exponential distribution with parameter 1 in the first case and the exponential distribution with
parameter (1 +e~%)"! in the second case, cf., Figure 3.1 for an overview of the Kannisto limiting
distributions. Taylor series expansion of vi(«,f3) for a at —oo, which is essentially an expansion of

() g

L shows that for e® ~ 0 the expectation can be approximated by

1+e®

atz=1withz:=
_ 1 11 N_“_ll/(l)JF‘/’(l/ﬁ)
]E[X]—2F1 I:l,—ﬁ,l'f‘—ﬁ,m],v _ﬂ —ﬁ 5

where y denotes the polygamma function, defined by

ORE

and y(1) = -y ~ —0.57721 is also known as the Euler-Mascheroni constant. Comparing this
linearization with regard to the parameter «, we observe a relative error of about 2.5% in the parameter
region obtained for real life data of the past century, see Table 1.15. Note that the approximation tends
to improve since the observed « values decrease over time.
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Remark 3.5.15 (Asymptotic Properties of the £(y,0,/3) n-th moments).
In the following part, we list some asymptotic properties and special cases for the central moments
of the distribution £(y,0,p).

(a) For X ~ &(y,0,8), we have

lim E[X"]
% (DB In(y - 1)

i.e., for y - oo the n-th moment is asymptotically equivalent to the function

Ay [ B.n) = (-1)"B"In(y - 1)".

=1,

(b) For y — 1, the extended exponential distribution X ~ £(y,0,5) converges to the exponential
distribution Exp(f36), hence we have

. ny n!
ly1_r)r%IE[X ]—/3”9".

(c) Since
n+1Fn [6""’0;1+6""’1+9;1_Y]‘6=0: 1,
we have
i e =1

Bron

(d) For 0 = 1, we have the special case where only a tilt extension of the exponential distribution is
considered. The generalized hypergeometric function ,.1F,[6,...,0;1+6,...,1 + 0] reduces
to the polylogarithm function. This can be deduced by using the series representation of the
generalized hypergeometric function and by simplifying the integer valued Pochhammer
functions. Thus,

L...,1 o (1) (1= p)"
n+1Fn[2 2;1—y:|:znl—1()m( y)

m=o [Tjm (2)m - m!

ye e

o a-p-
m:0(1+m)n
_ Lin(l_)’)‘

1-y
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(e)

The last expression contains the polylogarithm function defined by
ook
, z
Lln(Z) = Z ﬁ
k=1
Thus, for X ~ £(y,1,5), we conclude

E[X") = Y 1i,(1-y).
Br(1-7)
This can be further generalized for arbitrary 6 € IN. For 6 being an integer, we have the
following reduction of the generalized hypergeometric function

v 0,...0 0" %%,8(6,i) Linsi—i(1-p)
nl 1+0,...,1+60° - (6-1)1(1-y)? ’

where S(0,i) denotes the Stirling number of the first kind, defined as the number of permu-
tation of 6 elements with exactly i cycles multiplied by the factor (~1)%~, see Olver (2010).
Using the reduction formula of eq. (3.78), we obtain

0
(&) ¢
L(6)p" iz

This special case expression is useful since 6 is a frailty parameter of the £(y,0,$3) distribution
and thus, we can consider the survival function of £(y,0,8) as the 6-fold product of tilt
extended exponential distribution survival functions which is indeed a competing risks model
with 6 independent risk factors following the distribution £(y,1,83).

(3.78)

E[X"] =

28(91 Ligs1-i(1-9).

For X ~ £(y,0,$3), we have the following asymptotic behaviour of the #-th moment
nly®
E[X"] ~ [gn)én asn — oo,

since
pe1Fnl0,...,01+6,...,1+6;1-yp] =51 for6>0,y>1.

Thus, we obtain the asymptotic moment ratios as

E[X"] n
E[X"1] "~ po

as 711 —> 090,

This asymptotic ratio property of the £(y,0,) moments is inherited from the underlying
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exponential distribution, where for Y ~ Exp(1), we have

E[Y"] A7"n! n
= = - V N.
E[Y"1] A0 D(n-1) 1 " °
(f) For X ~ £(y,0,B) and n € IN, we have
1 n n
n!(ﬂ—e) <E[X"] <n!(/%) : (3.79)

The inequality holds, since
Bo
— <hg(x|y,0,8) <po forallx > 0.
Y

Both inequalities of eq. (3.79) arise from the n-th moments of the exponential distributions
Exp(7/p6) and Exp(1/s6).

(g) For X ~ £(y,0,B) and n € N, we have

n! n
—— _E[X] < —E[X" '] <E[X"] < nlE[X]" 3.80
(ﬁe)n—l[]ﬁe[ ] <E[X"] < nlE[X] (3.80)
and for the coefficient of variation

VIX] <1 (3.81)
E[x] ~ '

The last inequity of eq. (3.80) holds for the class of increasing hazard rate distributions, see
Rinne (2014) which directly implies eq. (3.81). The first inequality is obtained by an iterative
application of the second inequality, which follows from the fact

ni1Fn[60,...,0;1+0,...,1+0;1—y]

1<
nFu1[6,...,0;1+0,...,1+0;1-y]

fory > 1.

Remark 3.5.16 (Approximate Expressions for Expectation, Variance, Skewness, and Kurtosis). Taylor
series expansion of the £(y,0,8) moments at y = co lead to the following approximations:

B[X] = 5 () —y(0) -y ) <0 (™),

2y
V[X] :EJF 4 /52(9) +0(y™),
) (1) - 4
kewx] = VWO D -y )(9))+(’)(y_1),

(6y)(8) + n2)*




3.5 Characteristics and Properties of the Kannisto and the Extended Exponential Distribution 199

9 (60y 1) (0)2 + 2072y () + 20y () + 37%)
+
5(6y(M(0) + 712)2

kurt[ X] =

o).

The function y("™) denotes the polygamma function of order m defined as the (m + 1)-th derivative
of the logarithm of the gamma function.

am+1

V()= 2 y(e) = o).

The next higher Taylor expansion yields the following approximations:

E[X]= o (4O W)+ 0)+ b+ O)In() - (r+ Oy O(0) +6-1)+0(y?), (382

ﬁ

VIX] = o (-601n(y) 2y (1) + In(y) +2) ~ 6(y O (1) (¥ (1) +2) + 2)8 + 7y + )

6/32 (3.83)
+ 12090 (0) (¥ (1) +1In(y) + 1) + 6(y + 0)y ) (6) - 60y (8)2) + O (y ).

We observe a very high accuracy of the approximations in eqs. (3.82) and (3.83). On average, the
relative deviation, in the region of estimated Kannisto parameters, is about 0.1% for the expectation
approximation, and about —1.8% for the variance approximation in eq. (3.83).

3.5.6 | Order Statistics

In the next result, we derive the probability density function of the r-th order statistic from an n
sample of the extended exponential distribution. In actuarial applications, the following result can
be used to obtain statements about the occurrence of the r-th death in a group of # individuals. For
example, the probability that the first death takes place within one year or the expected age at death
of the last survivor, which is useful in actuarial pension calculations.

Theorem 3.5.17. Let X,., by the r-th order statistic from an i.i.d. sequence Xj,...,X,, with X; ~
E(y,0,B). The probability density function of the r-th order statistic is given by,

fe..(x|9,0,8) = n! rz (-1) ( )

(r-D)(n-rNZ(n-r+i+1)

fe(x|y,0(n—r+i+1),p). (3.84)
Proof. In general, the probability density function of the r-th order statistic of X is given by (Arnold,
Balakrishnan and Nagaraja, 1992)

n!

(r=1!(n-r)!
Thus, for X ~ £(y,0,3), we have

fx (%) = Sx()[Fx(x)]™[1 - Fx(x)]"™

n!

mff(x | 7,0,8)[Fe(x | y,0,8)]'[1 - Ee(x | y,0,8)]"

fxe(x 1 y,0,B) =
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) #(!n—r)!hf(x | 9,0,8)[Fe(x | y,@,/})]“l[l — Fe(x| y,&/})]"*”l (3.85)
= #('n—r)' 2 (r: 1)(—1)ihg(x | y,0,8)[1 - Fe(x | y,0,8)]" " (3.86)
= #('n—r)' rio( ) (-1)'he(x | y,0,8)Se(x | y,0,8)" "+*!
_f’l—!rl ihe(x | p,0(n—r+i+1),p)
_(Y—l)!(n—r)|Z( e UL o

xSe(x[y,0(n—r+i+1),p)

n! =1 (-1) (r 1)
D= & (o et 00T D),

where for eq. (3.85), we used the relation
fe = heSe = he[1 - Fe], (3.88)
and eq. (3.86) is obtained by the binomial expansion, i.e.,
Fe(x | .0,8) " = [1- (1~ Fe(x|y.0,8))]""

(") B vopy.

i=0

To obtain eq. (3.87), we use the fact that £(y,0,) belongs to the family of frailty distributions. Thus,
we have

Se(x| y,@,/:’)"_”m =Se(x|p.0(n-r+i+1),p)

and
he(r.0.6) = PO L he(8(n—r+i+1),p)
e\ _y+e/3x—1_(n—r+i+1)gy’ e
The proof is completed by reusing the relation of eq. (3.88). O

Note that the distribution density of the r-th order statistic given in eq. (3.84) has the form of a
discrete mixture of extended exponential distributions with different frailty parameters 6 (n—r+i+1)
weighted by w;(r,n), with

( l)i(r—l)

forO<r<mand0<i<r-1. (3.89)
(n—r+i+1)(r-1)(n-r)

wi(r,n) =

Corollary 3.5.18. The first-order statistic X;., of an i.i.d. sample Xi,...,X, from the extended
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exponential distribution £(y,0,f3) follows the distribution
Xy ~ E(y,n0,p).
Proof. The proof follows directly from Theorem 3.5.17 by setting r = 1 or by using the relation

Fx,, =1-[1-Feg(x|y,0,8)]"

=1-Sg(x|y,n0,B) (3.90)
= Fe(x | y,n6,B),
where eq. (3.90) follows from the fact that £(y,0,3) belongs to the frailty family. O

Notice here that the first-order statistic remains extended exponentially distributed. This property
is also shared by the exponential distribution, where for i.i.d. X; ~ Exp(1) the following holds
X1:p = min(Xy,...,X,) ~ Exp(nd). Furthermore, since 6 is the frailty parameter, we can conclude
by Proposition 3.2.17 that the distribution of the first-order statistic corresponds to a competing risks
lifetime with » individual £(y,0,$3) factors.

Corollary 3.5.19. The m-th moment of the r-th order statistic X,., of the extended exponential
distribution £(y,0,p) is given by

r-1 m! ye(n—r+i+1)
E[X"]= i(r, a
[X5n] ng(rn)ﬂm(e(n—r+i+1))m
F O(n-r+i+l),....0(n-r+i+1)
MM B ritl) .+ 0n—rrit1) |

where w;(r,n) are the weights as given in eq. (3.89). In particular, we have

m! On
E[X]" ] = —YMFm[

On,...,0n y]
pm(6n)m ’

. '
1+6n...,1+0n

and

i _n—l(_l)in(”zl) m! 0+ 0(i+1),....0(i+1)
IE[X":"]_,;) i+1  pm(6(i+1))m ’"“F'"[1+6(i+1)...,1+6(i+1)’ _y]

Proof. 'This result is obtained by combining Theorems 3.5.10 and 3.5.17. O

3.5.7 | Maximum and Minimum Domain of Attraction

As defined in Section 3.2.1, the lifetime of individuals is considered to be an unbounded random
variable, i.e., F(x) < 1 for all x < oo. If one is interested in the distribution of the maximum lifespan
of n individuals, i.e., the distribution of the n-th order statistic, one obviously has,

n—oo

FXn:n (x) = F)’}(x) - O’
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for all x, and thus

Pr
Xyp —> o0,
n—o00o

The n-th order statistic X,,., has to be standardized to accomplish a non-degenerate limit behaviour.

Definition 3.5.20 (Minimum and Maximum Domain of Attraction, (Marshall and Olkin, 2007)). Let
X1,X3, ..., beasequence of independent and identically distributed random variables with distribu-
tion function F, and for n = 1,2, ... let

U, = min{Xy,...,X,} V, = max{Xy,.... X, }

be the minima and maxima of a sample of length . If there exist sequences a, and b, such that the
normalization (U, - b, )/a, converges to a non-degenerate distribution G, i.e.,

U, -b, 2}

a, n—>o0

G,

then the distribution F is said to belong to the minimum domain of attraction of G. Respectively,
if there exist sequences a, and by, such that (V,, — b, )/a, converges in distribution to a random
variable with distribution H,

Vazbn D

an n—oo
then the sample distribution F is said to belong to the maximum domain of attraction of H.

A fundamental result, known as the Fisher-Tippett-Gnedenko theorem, states that there are only
three types of limiting distributions, which are the Gumbel, Fréchet, and Weibull distributions, also
known as extreme value distributions. Partial results were first found by Fréchet (1927) and Fisher
and Tippett (1928) and later in full generality by Gnedenko (1943).

In the following results, we will prove that the extended exponential distribution and the Gompertz
distribution belong to the Gumbel maximum domain of attraction and to the Weibull minimum
domain of attraction.

Theorem 3.5.21 (Maximum Domain of Attraction of £(y,0,3)). Let X;,...,X, be an i.i.d. sequence
of the extended exponential distribution £(y,0,8) and Fgumpei (X | 0,1) = ¢ the CDF of the
Gumbel distribution Gum(0,1). Let the normalizing constants be defined as

_ L _In(y)  In(n)
a”_eﬁ and b, = 8 + 36

then, we have

max {Xi,...,Xn} = by 2, Gum(0,1),

an n
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i.e.,

lim P

n—>oo

max{Xg,...
[ {  Foumpa(x | 0,1),

an

’Xn} - bn < x]

for all x > 0. As a consequence, the extended exponential distribution £(y,0,3) belongs to the
Gumbel maximum domain of attraction.

Proof. The proof is obtained directly. For all x > 0 we have

lim IP[maX{Xl’”"X"}_b" gx] = lim ]P(X"”—_b" <x)

n—>oo an n—>oo an

lim Fx,, (a,x+by)
n—oo

lim Fg(anx + by)
X—>00

lim (1 - Sg(anx +b,))"
X—>00

0
lim [ 1- | ——2——
o y+y(nex)s -1

hm(l—gj)n (3.91)

X—>00 n

= e_eix = FGumbel(x | 0,1).

n

Equation (3.91) is obtained by observing

6
oy ) .es
y+y(ner)s -1 n

Note that the above theorem states, that for large n > 1 the distribution of the n-th order statistic
is approximately Gumbel distributed, i.e.,

Xn;n asxm. Gum (11’1;3)/) " ln/—;(g) ,ﬂie) =Y, (392)

with expectation

.7 In(y) In(n)
E[Y]_ﬁ6+ 5 + 30 "

where y ~ 0.577 is the Euler-Mascheroni constant. Note that the expectation is logarithmically



204 3 Characterization of the Kannisto and the Extended Exponential Distribution

increasing in the sample size n. However, the variance of the asymptotical distribution, given by

71,2

VIY]

does not depend on the sample size.

Theorem 3.5.22 (Minimum Domain of Attraction of £(y,0,f3)). Let Xi,...,X, be an i.i.d. sequence
of the extended exponential distribution £(y,0,) and Fyeipun(x | 1,1) = 1 — e™ the CDF of the
Weibull distribution W(1,1). Let the normalizing constants be defined as

a, = /ﬁ and b, =0, (3.93)

then, we have

in {X1,....Xp} - by
min {X, P2l 2oy,

an n—>oo

Therefore, the extended exponential distribution £(y,0,) belongs to the Weibull minimum domain
of attraction.

Proof. The convergence of the normalized sample minimum in distribution to the Weibull distribu-
tion WW(1,1) holds, since for all x > 0 we have

lim P min {Xy,...,X,} - by Sx] - lim IP(Xm—bn <x)

n—oo a, n—o0 a,

= lim Fx,,, (anx + by)
n—>oo

= lim 1 - (1 - Fe(apx +by,))"

X—>00
= J}Lrgo 1-Sz(anx +by)
On
= lim 1- (+)
x=ee y+eon —1
—1-e¢~ (3.94)

= Fyeibun(x | 1,1).

On
Y e
y+e%—l

Equation (3.94) holds, since
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Thus, for a large sample size n, we have approximately

Xpp o W (1’[#) =2

with expectation and variance given by

]E[Z]:ﬁ% and v[z]:(/#).

Next, we derive the normalizing sequences for maximum and minimum domain of attraction
of the Gompertz distribution in order to compare their asymptotic behaviour with the extended

exponential and the Kannisto distribution.

Theorem 3.5.23 (Maximum Domain of Attraction of G(&,x)). Let Xy, ...,X, be an ii.d. sequence of
the Gompertz distribution G(&,x) and Fgumpel(x | 0,1) = e the CDF of the Gumbel distribution

Gum(0,1). Suppose the normalizing constants are given as

__1 SR S S
an_;cln(n) and bn_;cln(n)Jr;cln(fln(n))’

then, we have

max {Xy,...,.X,} — by

Qan

2, Gum(0,1)
n—o00o

Proof. The proof is obtained directly. For all x > 0 we have

lim P max {Xy,...,X,} - by Sx:|  im IP(Xn:n_bn <x)

n—>oo an n—>oo an

= lim Fy,,(anx + by)
n—o0o

= Xl:r};lo Fg(anx +by)

= lim (1 - Sg(anx +b,))"
X—>00

x \ N
_eln(n
= lim (l—efn ¢ ())
n—oo

e \"
- lim (1-—)
n—o00 n

—e ¢ = FGum(x | 0,1).

Equation (3.95) holds, since

x+& _
,eln(Jrn) e (.X+f)
n ~ .
n

(3.95)
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O]

Theorem 3.5.24 (Minimum Domain of Attraction of G(&,x)). Let X;,...,X, be an i.i.d. sequence of
the Gompertz distribution G (&,x) and Fyeibun ( | 1,1) = 1— e~ the CDF of the Weibull distribution
W. Suppose the normalizing constants are given as

1
a,=—— and b, =0, (3.96)
kén

then, we have

mln{Xl’-"’X”} _ bn 2) W(l)l)

a, n—o00

Therefore, the Gompertz distribution G(&,x) belongs to the Weibull minimum domain of attraction.

Proof. The convergence of the normalized sample minimum in distribution to the Weibull distribu-
tion WW(1,1) holds, since:

lim P min {Xj,...,X,} - by, < x]

n—oo an

im (Mt )

n—oo an

lim Fx,, (anx+b,)
n—>oo

lim 1 - (1-Fg(anx+by))"

X—>00

= lenc}o 1-SG(anx +by,)

=1- (ef_fenxf)n
—1-—¢* (3.97)

= Fweibunn (x | 1,1).

Equation (3.97) holds, since

=

PRI P
n
which follows from a Taylor expansion of the transformed variable s := % ats =0. O

The results of Theorems 3.5.22 and 3.5.24 reveal a close connection between the Gompertz and
the extended exponential distribution at the lower tail. The results show not only that both lifetime
distributions belong to the Weibull minimum domain of attraction, but they also share the same
growth behaviour of the normalizing sequences, see egs. (3.93) and (3.96). For instance, with

Bly-1)

x=——"—2% and E:L,
y y-1
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both hazard rate functions hg(x | £,x) and he(x | ,0,8) coincide at x = 0, which leads to the
same normalizing sequences as given in eq. (3.93). In contrast to that, Theorems 3.5.21 and 3.5.23
reveal fundamental differences between both distributions at the right tail. They are both in the
Gumbel maximum domain of attraction, but they show different growth behaviour of the normalizing
sequences. In particular, we have the shifting sequence

_In(y) In(n) In(n)
b = 5 + 30 ~ 30 € O(Inn)

for the extended exponential distribution and

g _ § lnlnn ~lnnn € nlnn
5 = iy * 1 (§1n0m) ~ S nn(m) £ Ot

for the Gompertz distribution, respectively. Note that b9 € o(b%), i.e., b¥ is asymptotically negligible
compared to b.

For Kannisto distributed lifetimes, i.e., X; ~ K(a,f) for i = 1,...,n, we conclude from eq. (3.92)
that the expected maximal lifespan can be approximated by

. 1
E[X:n] e 7+ Eln(l +e %) +1In(n) “s° y - % +1n(n). (3.98)

Evaluating the last term of eq. (3.98), at the parameter estimates (a2011,532011) = (—5.894,0.138)
for the reference population at 2011 and using the population size 1 := ES;;; ¢ = 6 x 10%, yields an
expected maximal lifespan of 105.69 years, which appears to be a plausible approximation.

3.5.8 | Fisher Information Matrix for the Kannisto Distribution and the Extended Exponential
Distribution

The Fisher information matrix plays an important role in statistics such as for the derivation of the
asymptotic covariance matrix of maximum likelihood estimators. To determine the exact form of
the Fisher information matrix for the Kannisto and the extended exponential distribution, we will
need some integral representations of particular generalized hypergeometric functions, which are
provided in the following Lemmas 3.5.25 and 3.5.26.

Lemma 3.5.25. Let k > 1, 0 > 0 and n € IN. Then, we obtain the following integral representation.

f xR 1" (1 -y + x) dx.

n+1Fn [
Y

k-1+6,....k-1+86 k—1+60)"!
.(l_y)]:;

k+6,...k+6 ’ n

Proof. We start with the series representation of the generalized geometric function ,,; F, where all
upper and all the lower coefficients coincide. Further transformations are described below.

k—1+9,...,k—1+0.
”“F”[ k+0... k+0 ’(1_”]
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> (k-1+0)" (1-yp)"
— k-1+0 m—
mz::O(k—1+6+m)"( +6) m!
:w Z(k—1+6)mfz”(k—1+9+m)e_(k_1+9+m)zdz (3.99)
n

0

: m=0
_ n ¥ oo _ —z\m
_ (k 11‘"9) fzne—z(k—1+9) Z(k—1+9)m(k—1+9+m)((1 )})e ) dz
n.
0

= m!
_ (k 1 '+ 0) [ Zne—z(k—l+9)(k 1+ G)IFO[k 4 9;; (1 _ y)e_z] dz (3100)
n!
0
_ n+l X
LT om0 (1 (1)) *0
n! J
_ n+1 R
_ (k-1 +' 0) f 101 (1 g 4 ) dix (3.101)
n!
Y

For eq. (3.99), we write (k — 1+ 6 + m)~" as an integral using a Laplace transform, i.e.,

(k=1+0+m) "= FZLEOEM [ mChtibmz
[(n+1)

To obtain eq. (3.100), we use the identity

o) m
> (@)m(a+m) = = arFola+13;2] = a(1-2) ",
m.

m=0
since
(a+m)(a)m=(a+m)r(a+m) _ F(a+1+m) _ al(a+1+m) ~a(a+ 1)
I'(a) I'(a) [(a+1)
The last transformation in eq. (3.101) is obtained by the substitution z = In(1 -y + x). O

Lemma 3.5.26. Let 6 > 0, k > 2, and n € IN. Then, the following integral representation holds:

F[9+k—2,...,9+k—2,6+k‘1_ ]
L g k-1, 04k-1 )
_(0+k-2) @R (1 Zy 1) " (1 =y + x) do.
(n-1)!

Proof. The proof is obtained by the same methods as in Lemma 3.5.25. We start with the series
representation of the generalized geometric function ,,1 F,. Further transformations are described
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below.

6+k—2,...,0+k—2,6+k‘1_ ]
O+k-1,....0+k-1 "~

S (0+k- 2) (O+k)m (L=y)™
=2 O+k-1)4

m=0

n+1Fn[

m!
i (O+k-2)"T(k+m+8)(1-y)"
O+k-2+m)"T(k+0) m!

m=0

_ oy (0K (A-p)"
=(0+k-2) ,;0(0+k—2+m)" - (3.102)
_(Brk-2) & A=N)" [t @ek2em)
O+k)m fz” e "% dz (3.103)
r( ) m=0 m! 0

p— n x®

=%‘/\2n_1€_(e+k—2) 1F0(0+k;;(1—)/)€_z)d2
0

_ (9 _}I(( _)2) Zn—le—z(9+k—2) (1 _ (1 _ y)e—Z)—(9+k) dz

n
= % x O (1 -y x)In" (1 -y + x) dx. (3.104)

To obtain eq. (3.102), we rewrite the term (6 + k —2 + m) ™" as an integral using a Laplace transform,
ie,

(9+k—2+m)‘” = ;/Zn—le—(0+k—2+m)z dz.
r(n) J

Equation (3.103) follows from Fubini’s theorem by changing the order of integration and by replacing
the series with the hypergeometric function ; Fy, i.e.,

VFo[0+ ks (1-y)e®] = 20(9 + k)mM.

Finally, substitution z = In(1 — y + x) gives eq. (3.104). O

In the following part, we determine the Fisher information matrix for the Kannisto distribution. For
a random variable X with probability density f(- | 8), where 8 = (6, ...,0,), the Fisher information
matrix [(0) is an n x n symmetric matrix with elements given by

aln f(X |0) dln f(X | 6)
90, 39,

I;;j(0) = Eg
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If the density has continuous second partial derivatives W for all i and j, then II; (@) can
be expressed by ]

o’ Inf(X|®©

M] . (3.105)

Lij(0) = _]E"[ 20,90,
7]

For the Kannisto distribution K(«,) with density

1 _1+g
fic(x | ) = (1 +e*)F e~ (1 + e‘“ﬁx) F 10

all second partial derivatives exist and are continuous, such that we will use the expression given in
eq. (3.105) for the computation of the matrix coeflicients.

o

For the following part, we will change the Kannisto parametrization by defining y := 1 + ¢ and

6 := 1/, such that by that choice, we have

K(a,p) = K(In (y-1),/6),
where y > 1 and 0 > 0. With that parametrization, the logarithmic density is given by

X

In(f(x|.6)) = 0In(y) - (0 +1)In(y+ e’ - 1) + 5

The second partial derivatives required for the Fisher information matrix are:

Pnfic(x|y.0)  0+1 9
dydy ) (y+e"/6—l)2 _F’

*In fic(x | ,0) 1 (6 +1)xe*/® ~ 1
dya0 Yy 02 (y+ex/9—1)2 y+ex/f -1

0*In fic(x | y,0) x(y-1) (—26 +2¢*/% +2y6) . x*(y-1) (—ex/e - e"/ee)
0000 (-1+ex/0+ y)2 64 (-1+ex/0+ y)2 64

Theorem 3.5.27 (Fisher Information Matrix of the Kannisto Distribution). The Fisher information
matrix of the Kannisto distribution /C(In (1/y-1) ,1/6) is given by

)

Iy, Tge
with the following coefficients:

0

L, (y.0) = 012 (3.106)

1 6+1

Y
— BE[0+1,0+1,0+3;0+2,0+2;1—-7v(3.107
y(9+1)+)/(9+1)3 »[0 + + + + + Y )

L, 9(y,0) =14, (y,0) =
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2(y - )3

To0(r-0) = =557 2)3

3F[0+2,0+2,0+2;0+3,0+3;1-7]

Proof. We begin by proving eq. (3.106). The calculation of this term only requires standard integration
techniques. We have,

21n folx
I,,,(y.0) = ~Eq [a In fi(x | y,@)]

dydy

0 r 0+1
- [ 16 d
VA (y+eﬁx—1)

:%—9w+1wﬂ/x*“®dx
Y
0 6(6+1)
P PA6+2)
0
Cy(6+2)

[ee)

To show eq. (3.107), we express Il,, 9(y,0) in terms of standard integrals and an integral of the type of
Lemma 3.5.26. We obtain

0*In fic(x | ,0)
dyab

r e*0x
=_1+/( S (1+6) )fzc(xlyﬁ)dx
0

Lo(7.0) = ~Eq [

y “1+e¥/f 1y (_1+ex/9+y)232
:—l+9y9/x7(9+2)dx+(9+l)yefxf(eﬁ)(l—y+x)ln(1—y+x)dx (3.108)
Y Y Y
L B0+1,0+1,0+30+20+21-y]
- y y(9+1) 9+13 2 > > > > > y
1 y9+1

SN0+ (641

3FB[0+1,0+1,0 +3;0+2,0 +2;1-y],

where Lemma 3.5.26 is applied to eq. (3.108). The remaining element I, 9(y,0) is obtained by a
similar procedure.

H%dyﬁ)=—mo[alnﬁiXIyﬁ)]

0000
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fic(x | y,0) dx

~ ]o x(y-1) (—29 +26%99 + 2y9)

J (—1+ex/9+y)294

o0 x2(y — _ex/O _ ex/@e
Sy ) fetx 7). dx

3 (—1+e"/9+y)204

9 o0
= 2=y f x 0D In(1-y+2z)dx
6
(3.109)

pa— 9 r
AP0 01y i1+ x-y) dx

2(y-1)y°
—F 1, 1; 2;1 -
B(0+1) 1[0+1,0+1;60+ Y]

— 0
+H4F3[9+1,0+1,9+1,9+3;9+2,9+2,9+2;1_)}]

2(y - 1)y°
—F 1, 1; 2;1—
B0+ 1) 1[0+1,0+1;60+ 7]

+%4F [0+1,0+1,0+1,0+3;0+2,0+2,0+2;1-y]

_2(y—1)y 0+1,0+1,0+1,0+3 0+1,0+1
T 0(0+1)2 Bl gia020+2 1TV gu, 1TV
2(y - 1)%°
= mﬁz[e+2,6+2,9+2;9+3,9+3;1—y],
where for eq. (3.109) we use Lemmas 3.5.25 and 3.5.26. The last identity follows from rearranging the
series coeflicients of 4 F3 + 2 F; to a generalized hypergeometric 3 F,. More specifically, we use the

identity

0+1,0+1,6+1,0+3 0+1,0+1
afs 0+2,0+2,0+2 ;l_y]_zFl[ 0+2 ;l_y]
&, ~m(1+0)°T(1+m+0) (1-y)m
ZO(1+m+9)2(2+6)(1+0)1"(1+0) m!
(1+60)T(1+m+0)m(1-y)mt
(9+2)(0+1) Z 0 (1+m+60)2T(1+80) m!

~ y-1 d 0+1,0+1,0+1
T )0+ )d1-p) > e+260+2 7
y-1 (6+1)3 0+2,0+2,0+2
= F 31— 3.110
0+2)0+1)6+22> 7| 6+3.6+3 Y (3.110)
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C(y-1)(6+1)? 0+2,0+2,0+2
- (8+2)3 2 6+3,06+3 '

Equation (3.110) is obtained by the differentiation rule

ﬂ F 111,--->11p.z :(al)n"'(ap)n E a1+n,...,ap+n'z
dZ" P b, by T (0, (bg), T b by ]

see, e.g., Olver (2010). O

Retransformation to the original parametrization of the Kannisto distribution yields the following
matrix coeflicients:

1
Leelab) = T R )’
Lo p(a,B) =g o(a.)
_ e’ B (e +1)F LU S DN U
__e"‘ﬁ+e"‘+ﬁ+l+ (B+1) 3F2[E+1,E+1,B+3,B+2,B+2, e ]

1
2% B (e * + 1) 1 1 1 1 1 .
I p(a.B) = AL ) 3B [— +3;-e ]

3 +2,=-+2,—-+2;—-+3,=
(i+2)

g B B B B
Theorem 3.5.28 (Fisher Information Matrix of the Extended Exponential Distribution). The Fisher
information matrix of the extended exponential distribution £(y,6,/3)

Pinfx|e)] [T Lo L
Taej = H@,y ]Ig)e ]Ig)ﬁ

1(3,6,8) = I, () - —lEe[
gy Hgo lppg

has the following coefficients:

I, - ﬁ(e;iz) (3.111)
Ig=1p, = —m (3.112)
L,p=1lg, = —/3((;—);61) 3B[0+1,0+1,0+3;0+2,0+2;1-y] (3.113)

o= % (3.114)
Top=1lgp = ;5’—23F2[9,0,9+2;0+ 1,0 +1;1-y] (3.115)

1 2(y-1)8y°

]IN;:E+ B0+ 1) 4F3[0+1,0+1,0+1,0+3;0+2,0+2,0+2;1-y]  (3.116)
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Proof. The density of the extended exponential distribution is given by

-(6+1)

fe(x]9,0,8) = Oy eP* (y + eP* - 1) for x > 0.

Thus, for the logarithmic density, we have

In(fe(x|y,6,8)) =1n (ﬁ@ye) -(6+1)In (eﬁx -(1- y)) + Bx.

The Fisher information matrix can be expressed as

azhnf(X|())]

H”(®):_E0[ 90,00,
i99j

since the density fe(x | y,0,8) has continuous second partial derivatives regards to all parameters.
The second partial derivatives of the logarithmic density required for the Fisher information matrix
are:

o*Inf(x]y.0,8) 6+1 6
Ny (yrebro1) ¥
Plfe(x |10 1 1
dyd0 y y+efr-1
*Infe(x|y,0,8)  (0+1)xe*
dyop ) (y +ePx — 1)2,
Plnfe(x |1.0.6) 1
0006 62’
Plnfo(x| p0f) e
000 y+efr—1’
0*In fe(x | y,0,8) _ 1 (y-1(0+ 1)x2eP*
9pap P (y+efr - 1)2 .

In the following, we proof by direct calculation the matrix coefficients as provided in eqs. (3.111)
to (3.116). For standard integrals, such as for the coefficients I, g and I, we use

x y—(9+k—1)
\/x%mmdngzij,fmy>Q€+k>L (3.117)

Y

and for integrals involving generalized hypergeometric functions, we use Lemma 3.5.26 such as for
IL, g, g, and Il . Equation (3.111) is derived by using eq. (3.117).

azlnfé(xlyi%ﬁ)]
dydy

I, (3.6,6) = ~Eq [
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0 j9 0+1
o (y+efr—1)

0 _
:F—6(9+1)y9fx (6+3) gx
Y

0 0(0+1)
T2 y2(6+2)
e

S p2(0+2)

Equation (3.112) can also be shown by using eq. (3.117).

2 n x
I,,0(y,0,8) = ~Eq [a 1 fe;(y aleyﬁ,m]

1 1
=t [ — ,0,8)d
+0/y+eﬁx_1f5(X|V9/3) x

= —% +y99fx_(9+2) dx

1 0

-+
y y(6+1)
1

_y(9+ 1)

Equation (3.113) is obtained by using Lemma 3.5.26 for eq. (3.118).

S

r xePx
=-(60+1) b[ mfs(x | y,6,8) dx

=—(0+ l)ﬁﬁye f xe?Px (y +ePr 1)7673 dx
0
6 (o)
_ (6 +;)9y /x*(9+3)(1—y+x)1n(1—y+x)dx (3.118)

0)/6

—M3F2[9+ 1,6+ 1,6+3;0+2,9+2;1 —y]
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The computation of eq. (3.114) is trivial since the corresponding second derivative is constant.

0*In fe(x | y,@,ﬁ)]

HanAQﬁ)=—E9[ 030

- [ fe1ye.pdx
0

1
ﬁ.

To show eq. (3.115), we apply Lemma 3.5.26 to eq. (3.119)

g s(y.0,8) = —Eqg [a 1“f%(9’;|ﬁ%9,/3)]

7 Bx
xe
- [ e felx 1 7.0.8) dx
0
= poy? f xe*P* (y+ ePx - 1)7972 dx

0
= 7fx_(6+2)(1—y+x)ln(l—y+x) dx (3.119)
4
6

/303F2[606+2 0+1,0+1;1-y].

The remaining coefficient of eq. (3.116) is shown by using Lemma 3.5.26 for eq. (3.120)

0% In fe (x| yﬁ,ﬁ)]

I p(y.0.8) = —]Ee[

3Bp
/32+()’—1)(9+1)f+—)2fg(x\y,0/3)dx
"B 5+ (7= 1)(0+1)B0y Ofoo P (y+ P 1) "7 dx
:/%+ (y_l)(/f;l)ey fx_(9+3)(1—y+x)ln2(1—y+x)dx (3.120)

1 2(y-1)8y?
N —Fe 1,0+1,0+1,0 +3;0+2,0+2,0+2;1-
B R0 1) 5[0+ + + + + + + y].
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3.5.9 | Kullback-Leibler Divergence

For continuous distributions, the Kullback-Leibler divergence Dxy (P || Q) is defined as

fo(x) o

Du(P| Q) = /fp< X)in 0

where fp(x) and fo(x) denote the probability density functions of P and Q, respectively. The
Kullback-Leibler divergence can be seen as a non-symmetrical distance from Q to P, or as a measure
of the information loss when the measure Q is used to approximate P, see Burnham and Anderson
(2002). The Kullback-Leibler divergence is non-negative and zero if and only if P = Q almost
everywhere.

In the following proposition, we derive the Kullback-Leibler divergence between the Kannisto
distribution K(a,) and Gompertz distribution G(3,¢*/g). The particular choice of the Gompertz
parameters is made to obtain similar behaviour at the lower tail of the distribution, see the illustration
Figure 3.5.

Proposition 3.5.29 (Kullback-Leibler Divergence between the Gompertz and the Kannisto Distribution).
The Kullback-Leibler divergence between the Gompertz distribution G(3,¢"/s) and the Kannisto
distribution K(a,f3) is given by

e+ B2+ (1-B)In(e*+1)
B-1 ’

Proof. The Kullback-Leibler divergence of two probability distributions P and Q with Lebesgue
densities fp(x) respectively fqo(x) is defined as

D (K(a,B) | G(B.e"[8)) = for0<p<1. (3.121)

fr(x)

Du(P| Q) - ffp( X)In o d

see, Kullback and Leibler (1951). With

ﬂ
fic(x | a,p) = (1+e"‘)lg e“+ﬁx(1+e"‘+ﬁx) , forx>0,

and

% l—eﬁx

(1)
fo(x | Befp) = e P F , forx >0,

we have

" (flc(x|0‘/3)) In(e®+1)+e” (eﬁx ; (ﬂ+1)ln( Py ) (3.122)

fo(x | B [p)
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By substitution of eq. (3.122) in the definition of the Kullback-Leibler divergence, we obtain

fic(x)
fo) “

:wofwﬁc(x)der%ofw - 1) fic(x) dx

Dia(K(@p) [G(B"f)) = [ fic(x) In

. (3.123)
—%fln(e“+ﬁx+l)f;c(x)dx
_In(e+1) e (1+e“"/3 1)
B B\ 1-8
—ﬁgl(oc+[3+ln(l+e_“))

e “+p*+(1-B)In(e” +1)
-1

where the second integral in eq. (3.123) only exists for < 1, since by Proposition 3.3.4

o0

eP* fic(x) dx = BE[X],

for X ~ Prr(1+ e %,3). O

Notice, that for the Kullback-Leibler divergence obtained in Proposition 3.5.29, we have the
following limits:

Jim it (K(a) | G(B1p))
2
Jim Dy (KC(aB) |G (B /) /3[;

lim Do (K(.8) | G(8'6)) = ¢ ~In (e + 1).

We see that the Kullback-Leibler divergence as obtained eq. (3.121) is exponentially decreasing for
a such that for e* ~ 0, that is for a << 0, we have

Dy (K(a.B) [ G(B.e"[p)) =

ﬁ2
1-B

Proposition 3.5.30. Let £(y,6,5) and £(4,7,/3) be two extended exponential distributions with the
same scale parameter . The Kullback-Leibler divergence between £(y,0,8) and £(J,7,) is given
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[ [
10° |- . g
I —hg(x—60|[3,e/;;) .
I hic(x - 60| a, B) ]
107 |
1072 | s
| | | |

| |
60 70 80 90 100 110

Figure 3.5: Comparison of the post-age-60 hazard rates i (x | ®2010,82010) of the Kannisto distribution
with estimated parameters (« = —5.89, § = 0.138) for the year 2010 of the Swedish female population
and the Gompertz distribution evaluated for the same parameters. The hazard rates almost coincide for
lower ages but diverge for higher ages.

by
0
Dia(e(r6.9)1£0.n)) ~1n( 25 ) - (146) 1n) + )

+(1+71) (ln(6) + %ZFI [1,6;8+ 1;1- é])
Y

Proof. The Kullback-Leibler divergence for non-negative continuous distributions £(y,6,) and
£(9,1,B) with corresponding densities fg(x | y,0,8) and fz(x | 8,7,5) is defined as

fe(x]y.0.8)

Folx |07 ’/3) (3.124)

D (E(.0.8) |€(8.5.p)) = [ fe(x7.0.8) In
0

The density of f¢(x | y,0,3) is given by

fe(x | .0, /3) 59)/6 ﬁx( —(1- )) (6+1)

and the logarithmic quotient of the corresponding densities can be simplified to

{fgx:)(;eﬁg =In (Ggf)—(0+l)ln(y+e/3x—1)+(r+1)ln(8+eﬂx—1). (3.125)
e(x |61 T

We begin evaluating eq. (3.124) by splitting the integration into three parts, namely for each summand
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of the right-hand side of eq. (3.125). Integration of the first term

regarding the density is trivial since the term is constant. Integration of the second term I, with
L=—(0+ 1)1n(y+eﬁx— 1),

leads to
f L fe(x | y,0,8) dx = —(6 + 1) 6y° / In(y + ePx - 1) eP* (y+ P - 1)_(9+1) dx.
0 0

Substituting x = 1/gIn(1 -y + z) leads to

o0

—(6+1)B6y’ f %z‘(e“) In(z) dz = —(6 + 1) p0y° y“’(@l/;@(zy) . ~(1+90) (ln()/) " %) '
y

The integration of the last term
IL=(1+ T)ln(6+eﬁx— 1)
leads to

[ Is fe(x | y,0,8) dx = (1 + 1) f6y° f In(8+ P - 1) eP* (y+ P - 1)7(9“) dx
0 0

o0

= (1+1)6y° / D In(d-y+2)dz (3.126)
y
=(1+ T)de / 2~ (6+1) (ln(6) +ln(1 - % + %)) dz
y
= (1 + T)e)}e ln(é) / Z_(9+1) dz+ f Z—(9+1)1n(1 _ % " %) dz)
Y Y
1 1 7
:(1+T)6)/6 rég)(z) +F/Z_(9+l)ln<1_§+z) dZ
%
In(J) 1

= (1+1)6y° [0,0;9+1;1—§]) (3.127)

6,0 " 502 2"
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In(6) 1 ¢° 8
=(1+1)0y° LR |1L,6:;0+1;1- = 3.128
( H)y(@ya +5692)’921[ ’ )’]) (128

=(1+1) (ln((S) + %2131 [1,9;0+ L;1- é]),
Y

where eq. (3.126) is obtained by the substitution z = ef* — (1 - y). Equation (3.127) follows from the
integral representation given in Lemma 3.5.25. For eq. (3.128), we use Pfaff’s transformation formula
for hypergeometric functions to change the argument 1 — ¥/s to 1 — 9/), by using the transformation
of eq. (3.75). O

Corollary 3.5.31. The Kullback-Leibler divergence between the Kannisto distributions («,) and
K(A,B) is given by

B B’ 1+e I+e®

Dia () 1K) = (1) (2 1155 T2 )‘] -1)m( 1 e )

o

Proof. Corollary 3.5.31 follows directly from Proposition 3.5.30 for 7 = 0 = %, y=1+e*%and

8 = 1+ e, since by Proposition 3.3.1 the Kannisto distribution is a special case of the extended
exponential distribution. O]

3.6 | Conclusion

In this chapter, we provided an extensive characterization of the Kannisto and the extended expo-
nential life distributions which are determined by logistic-type hazard rate functions. Logistic-type
hazard rates have been originally studied by Kannisto (1992) and Thatcher, Kannisto and Vaupel
(1998) and play an important role in mortality modelling of elderly populations. However, the
corresponding distributions remained widely uncharacterized. Our contributions show how these
distributions are connected to other well-known life and non-life distributions. These connections
were obtained through transformations, continuous mixtures, truncations, and as limiting distribu-
tions. Furthermore, we derived analytic expressions for the mean residual life function, moment
generating function, central moments, Fisher information matrix, and Kullback-Leibler divergence.
The Kannisto distribution has been widely uncharacterized in terms of these quantities and the results
provided here are the main contributions of this chapter. Moreover, we proved that the extended
exponential distribution and the Kannisto distribution belong to the minimum domain of attraction
of the Weibull distribution and to the maximum domain of attraction of the Gumbel distribution.
We also provided the maximum and minimum domain of attraction for the Gompertz distribution
and quantified how the Kannisto and the Gompertz distributions differ in terms of the population
maximal lifespan.

In the academical literature as well as in practical applications, the Gompertz distribution plays a
major role in mortality modelling of high ages. As we demonstrated, the Kannisto distribution can
be obtained as a continuous mixture of Gompertz distributions. This allows a non-homogeneous
interpretation of the underlying population. In the previous Section 1.7, we demonstrated that the
non-canonical logit link function is often preferable over the canonical logarithmic link in the
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Poisson GAPC setting. This implies that in many cases a logistic growth of the mortality rates at
high ages does provide a more accurate representation. For the most elementary predictor function
n(tx) = Kfo) + Kfl)x the choice between a logit or a logarithmic link equally complies to the choice
between a Kannisto or a Gompertz distributed lifetime. By studying their connections and showing
some important characteristics, we provide deeper insights to parametric hazard rate models for
higher ages, which can be beneficially applied in actuarial science or life insurance industry.
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Figure A.1: Mean, standard deviation, skewness, and kurtosis of the /C(«,3; ) distribution at the estimated
parameters « and f3 for the for Swedish females between 1900 and 2014.
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A.2 | Mortality Improvements

A.2.1 | Sweden Improvements
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Figure A.2: Annual mortality improvements of Sweden (females).
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Figure A.3: Annual mortality improvements of Sweden (males).
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A.2.2 | UKImprovements
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Figure A.4: Annual mortality improvements of UK-Wales (females).
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Figure A.5: Annual mortality improvements of UK-Wales (males).
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A.2.3 | France Improvements
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Figure A.6: Annual mortality improvements of France (females).
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Figure A.7: Annual mortality improvements of France (males).
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A.2.4 | Denmark Improvements
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Figure A.8: Annual mortality improvements of Denmark (females).
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Figure A.9: Annual mortality improvements of Denmark (males).
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A.2.5 | Switzerland Improvements
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Figure A.10: Annual mortality improvements of Switzerland (females).
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Figure A.11: Annual mortality improvements of Switzerland (males).
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A.2.6 | Finland Improvements
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Figure A.12: Annual mortality improvements of Finland (females).

4%
3%
2%
1%

0%

age

-1%
-2%
-3%
-4%

1900 1920 1940 1960 1980 2000
year

Figure A.13: Annual mortality improvements of Finland (males).
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A.2.7 | Russia Improvements
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Figure A.14: Annual mortality improvements of Russia (females).
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Figure A.15: Annual mortality improvements of Russia (males).
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A.3 | Estimated Kannisto Time Series
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Figure A.16: KAN model estimates for Sweden (females).
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Figure A.17: KAN model estimates for Sweden (males).
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Figure A.18: KAN model estimates for France (females).
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Figure A.19: KAN model estimates for France (males).
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A.3.3 | Switzerland
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Figure A.20: KAN model estimates for Switzerland (females).
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Figure A.21: KAN model estimates for Switzerland (males).
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A3.4 | UK-Wales
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Figure A.22: KAN model estimates for UKWales (females).
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Figure A.23: KAN model estimates for UKWales (males).
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Figure A.24: KAN model estimates for Finnland (females).
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Figure A.25: KAN model estimates for Finnland (males).
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A.3.6 | Denmark
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Figure A.26: KAN model estimates for Denmark (females).



258 A Empirical Data & Model Estimates

-4.0 a

ot

-5.0

[S— | | |
1850 1900 1950 2000

(a) Estimated parameter series a;.

< 010 y

0.09 - |

| | | |
1850 1900 1950 2000

(b) Estimated parameter series f;.

(c) Parametric plot (&,f:).

Figure A.27: KAN model estimates for Denmark (males).
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B.1 | Significance of Individual GAPC Parameters
B.1.1 | APC Model

Table B.1: Regression table of the APC model for Swedish females. Only 143 of 315 parameters (~ 45%)
are significant on the 5% level. p-value significance codes: 0 ****0.001 *** 0.01 ** 0.05“.” 0.1. " L.

Covariate Estimate Std. Error z value P(> |2|) Signif. code
%60 -5.219 7.358 x 107" -7.093 1.3x 10712 oo
61 -5.146 7.422 x 107! -6.933 4.1 x 10712 wex
62 -5.066 7.487 x 107! -6.766 1.3 x 10711 wex
®63 -4.971 7.551 x 107" -6.583 4.6x 10711 wex
Oes —4.880 7.616 x 107! -6.408 1.5%x 10710 oo
X5 -4.786 7.680 x 107! -6.232 4.6x 10710 wex
K6 -4.700 7.744 x 107" -6.069 1.3x107° ¢
®e7 -4.601 7.809 x 107! -5.893 3.8x107° e
K68 -4.508 7.873 x 107" -5.726 1.0x 1078 wex
X0 4412 7.938 x 107 -5.559 27x1078  wex
&7 —-4.305 8.002 x 107! -5.380 74%x107%  oeer
a7 -4.204 8.067 x 107! -5.212 1.9x 1077  #+*
o7 -4.104 8.131 x 107! -5.048 45%x107 o
a73 -3.999 8.196 x 107" —4.880 1.1x 1078 #+*
074 -3.888 8.260 x 107! -4.707 25x107%  ex
®7s -3.793 8.324x 107! -4.556 52x107° e
76 -3.679 8.389 x 107" -4.386 1.2x107° o
continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
a7 -3.571 8.453 x 107" —4.225 24x107°  wex
a7s —3.474 8.518 x 107" -4.078 45x107°  er
79 -3.365 8.582 x 107" -3.921 8.8x107° ¢t
so -3.263 8.647 x 107! —-3.774 1.6x107* oo
as1 -3.156 8.711 x 107 -3.623 29x 107" wex
as2 -3.053 8.776 x 107! —-3.478 50x107%  wx
os3 -2.950 8.840 x 107" -3.337 85x107% ¢t
tsa -2.847 8.905 x 107 -3.197 14x107°  **
ass -2.742 8.969 x 107! -3.057 22x107° **
g6 -2.640 9.034 x 107" -2.923 35x107° **
g7 -2.540 9.098 x 107" -2.792 52x107°  **
ass -2.441 9.163 x 107" -2.664 7.7%x107%
) -2.341 9.227 x 107" -2.537 1.1x107% *
oo —2.249 9.292 x 107! —2.421 1.5x107% %
o -2.153 9.356 x 107! -2.301 21x10%  *
oos -2.056 9.421 x 107" -2.183 29x107%  *
o3 -1.967 9.485 x 107" -2.074 3.8x107% ¢
oy -1.884 9.550 x 107" -1.972 49%x107% %
o5 -1.795 9.614 x 107" -1.867 6.2 x 1072

tog -1.713 9.679 x 107" -1.769 7.7 x 107

o7 -1.637 9.743 x 107! -1.680 9.3 x 1072

Qog -1.570 9.808 x 107" -1.600 1.1x107!

oo -1.509 9.873 x 107! -1.528 1.3x 107"

@100 -1.421 9.938 x 107" -1.430 1.5 x 107"

101 —1.343 1.000 -1.343 1.8 x 107!

102 -1.326 1.007 -1.317 1.9x 107"

103 -1.287 1.013 -1.270 2.0x 107!

104 —1.247 1.020 -1.222 22x107!

X105 —-1.211 1.027 -1.179 24x107"

106 -1.223 1.035 -1.181 24x107!

K1901 -1.082 x 107! 1.219 x 1072 -8.870 <2.0x 10716 wex
k1002 -9.004x 107> 1.647 x 1072 —5.466 46x 1078 wex
%1903 -1.470x 107" 2.195x 1072 -6.697 21x1071 wex
K1904 -7.846 x 107 2.774x 1072 -2.828 47x107° o+
K1905 -1.067 x 107" 3.386 x 1072 -3.152 1.6 x 107> **
K1906 -1.889x 107" 4.012x 1072 —-4.709 25x107%  wex
K1907 -1213x 10" 4.635x 107> -2.616 89x107°  **
K1908 -1.047x10" 5267 x 1072 -1.987 47x107%  *
K1909 -1.771x 107" 5.905 x 1072 -2.999 27x107°
K1910 -1.668x 107" 6.542 x 1072 -2.550 1.1x107% *
K1o11 -1917x107"  7.182x 1072 -2.669 7.6x107°  **
k1912 -1.300x 107" 7.821 x 1072 -1.663 96x107% .
K1013 -1.753x 107" 8.464 x 1072 -2.071 3.8x107%  *
K1o14 -1.658 x 107" 9.106 x 1072 -1.821 6.9 x 1072

K1915 -7.798 x 107> 9.747 x 1072 -8.000x 10!  42x107!

continued ...
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
K1916 -2.021x 107" 1.039 x 107! -1.945 52 x 1072
HoLo0 -1.959 x 107" 1.104 x 107! -1.775 7.6 x 1072
K1018 -1.694x 107" 1.168 x107! -1.450 1.5x 107"
K1919 -1.515x 107" 1.232 x 107" -1.229 22x107!
€1920 —2.220x 107" 1.297 x 107! -1.711 8.7 x 1072
K1021 -2.328x 107" 1.361 x 107! -1.710 8.7 x 1072
K1922 -1.307x 107" 1.426x 107! -9.160 x 107! 3.6x 107"
K1923 -2.818 x 107! 1.491 x 107" -1.891 5.9 x 1072
K1924 -2.359 % 107" 1.555 x 107! -1.517 1.3x 107!
K1925 -2.574x 107" 1.620 x 107" -1.589 1.1x107"
K1926 -2.383x107"  1.684 x 107 -1.415 1.6 x 107!
K1927 -1.523 x 107! 1.748 x 107" -8.710 x 107! 3.8x 107}
K1928 —2.294x 107" 1.813 x 107! -1.265 2.1x107}
K1929 —-2.048 x 107" 1.878 x 107" -1.091 2.8x107!
K1930 -2.457 x 107! 1.942 x 107" -1.265 2.1x107!
K1931 -1.280 x 107" 2.007 x 107" -6.380 x 107! 52x 107}
K1932 -2278x107"  2.071x 107" -1.100 2.7 %107}
K1933 -2.637x107"  2.136x107" -1.235 22x107!
K1934 -2.604x107" 2201 x 107" -1.183 24x107}
€1935 -1.968 x 107! 2.265x 107" -8.690 x 107! 3.8 x 107"
K1936 -1.840x 107" 2.330x 107" ~-7.900 x 107! 43 x 107"
K1937 -1.789x 107" 2.394x 107! -7470x 107" 45x 107"
K1938 -2.369 x 107! 2.459 x 107! -9.640 x 107" 3.4x 107!
€1939 -1.939x 107" 2.524x 107" -7.690x 107" 4.4x 107"
K1940 -1.933x 107"  2.588x 107" —-7.470 x 107! 4.6x 107"
K1941 -2.076 x107"  2.653x107" -7.820x 107" 43 x 107"
K1942 -3.843 x 107! 2.718 x 107! -1.414 1.6x 107!
€1943 -3.687x107"  2.782x 107! -1.325 1.9x 107!
K1944 -2.881x107"  2.847x107" -1.012 3.1x107}
K1945 -2.831x107"  2911x107" -9.720x 107" 33 x 107"
K1946 -2.791x107" 2976 x 107" -9.380 x 107! 3.5x 107}
K1947 -2290x 107" 3.041x 107" -7.530x 107" 4.5x 107"
K1948 -3206x 107" 3.105x 107" -1.032 3.0x 107"
K1949 -2.963x 107" 3.170x 107! -9.350 x 107" 3.5%x 107"
K1950 -2.775 x 107" 3.234x 107! -8.580 x 107! 3.9x 107}
K1951 -2.938x 107" 3.299x 107" -8.910 x 107! 3.7 x 107"
K1952 -3278x 107" 3.364x107" -9.740 x 107" 3.3x107"
K1953 -3.131x107""  3.428x107" -9.130 x 107! 3.6x 107"
K1954 -3.323x 107! 3.493 x 107! -9.510x 107! 3.4x107}
K1955 -3.732x 107" 3.558 x 107! -1.049 29x107!
K1956 -3.644x 107" 3.622x107" -1.006 3.1x 107"
K1957 -3317x 107" 3.687x107! -9.000 x 107" 3.7x107"
K1958 -3.699 x 107! 3.752 x 107" -9.860 x 107! 32x107!
K1959 -3.938x 107"  3.816x 107" -1.032 3.0x 107!
K1960 -3549%x 107" 3.881x107! -9.150 x 107" 3.6x107"

continued ...



262 B GAPC Regression Tables

Covariate Estimate Std. Error z value P(> |z]) Signif. code
K1961 -3.900x 107" 3.945x 107" -9.890 x 107! 32x 107!
K1962 -3674%x 107" 4.010x 107" -9.160 x 107" 3.6x107"
K1963 -3.960x 10" 4.075x 107" -9.720x 107" 3.3 x107!
K1964 -4194x 10" 4.139x 107! -1.013 3.1x107"
K1965 -4.168x 107" 4204 x 107" -9.910 x 107! 32x107"
K1966 -4277x10"" 4269 x 107! -1.002 3.2x107!
K1967 -4307x107" 4333 x107" -9.940x 107" 3.2x107!
K1968 -4.008 x 10" 4.398 x 107! -9.110 x 107" 3.6x 107!
1969 -4.140x 10" 4.463 x 107" -9.280 x 107! 3.5x%x 107"
%1970 -4.840x 107" 4527 x107" -1.069 29x107!
K1971 -4.883%x107" 4592 x 107" -1.063 29x107"
K1972 -4.787 x 10" 4.657 x 107" -1.028 3.0x 107!
K1973 -4796x 107" 4.721 x 107" -1.016 3.1x107!
K1974 -4900x 107" 4.786 x 107" -1.024 3.1x107!
%1975 -4767 x 107" 4.850 x 107" -9.830x107"  33x107!
K1976 -4559x 10" 4.915x 107" -9.270 x 107" 3.5x 107!
K1977 —5.104x 10" 4.980 x 107" -1.025 3.1x107!
K1978 -4977x107"  5.044 x 107" -9.870 x 107" 32x107!
K1979 -4975%x 107" 5.109 x 107" -9.740 x 107" 3.3 x 107!
1980 -4.852x 107" 5.174 x 107} -9.380x 107! 3.5x 107!
K1981 -4804x 10"  5238x107" -9.170 x 107" 3.6 x 107!
K1982 -5.115%x 10" 5.303x 107" -9.640x 107" 3.3x107!
K1983 —-5.174 x 107" 5.368 x 107" -9.640 x 107" 3.4 x 107!
K1984 -5.232x 107" 5.432 x 107! -9.630 x 107! 34x107!
K1985 -4843x 107"  5.497 x 107 -8.810 x 107! 3.8x 107!
K1986 -4955%x 107" 5.562x 107" -8.910x 107" 3.7x107!
K1987 -4.994 x 107! 5.626 x 107" —-8.880 x 107" 3.7 x 107!
K1988 -4508x 10" 5.691 x 107 -7.920x 107" 43 x 107!
K1989 —-5.002 x 107" 5.756 x 107! -8.690 x 107! 3.8x 107!
K1990 -4629%x 10" 5.820x 107" -7.950x 10" 43 x 107!
K1991 -4.669 x 107! 5.885 x 107" -7.930 x 107" 43x107!
€199 -4.602x 10" 5.950 x 107 -7.740 x 107" 4.4 x 107!
K1993 -4194x 10"  6.014x 107! -6.970 x 107" 49x107"
K1994 -4825%x107"  6.079 x 107" -7.940x 107" 43 x 107!
K1995 -4554x 10" 6.144 x 107" -7.410 x 107" 46x107!
€1996 -4382x10"  6.208x 107" -7.060x 107" 4.8x 107"
K1997 -4408x 107" 6.273x 107" -7.030x107"  4.8x107!
K1998 -4369%x 107" 6.337x 107" -6.890x 107" 4.9x 107!
K1999 -3.962x 10" 6.402x 107" -6.190 x 107! 54x107!
2000 -3976x 107" 6.467 x 107" -6.150 x 107! 5.4 x 107!
k2001 -3764%x 10" 6.531 x 107" -5.760 x 107" 5.6x 107"
k2002 -3421x107"  6.596 x 107" -5.190 x 107" 6.0x107"
2003 -3.632x10""  6.661 x 107" —-5.450 x 107! 59x 107!
2004 -3759%x 107" 6.725x 107" —-5.590 x 107! 5.8 x 107!
K2005 -3.603x10""  6.790 x 107" -5310x10""  6.0x 107"
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
K2006 -3.465x 10" 6.855x 107" -5.060 x 10" 6.1x107"
K2007 -3.150x 107" 6.919x 107" -4.550x 107" 6.5x 107"
K2008 -3101x10""  6.984x 107" -4.440x 107" 6.6 x 107"
K2009 -3203x107"  7.049 x 107" -4540x 107" 6.5x 107"
2010 -3.013x 10" 7.113x 107" -4240x 10" 67x107"
K2011 -2962x 107" 7.178 x 107" —4.130x 10" 68x107"
K2012 -2.540x 107" 7.243x 107" -3510x10""  7.3x 107"
K2013 -2616x107"  7.307 x 107" -3580x107"  7.2x107"
K2014 -2.769x 107" 7.372x 107" 3760 x 10" 7.1x 107"
Y1800 1.001 1.112 9.000x 10" 3.7x107"
Y1801 1.159 1.042 1.113 2.7 %107
Y1802 1.501 1.012 1.483 1.4 x 107"
Y1803 1.093 9.893 x 107! 1.105 2.7x107"
Y1804 1.034 9.763 x 107" 1.060 2.9x107"
Y1805 1.098 9.680 x 107" 1.134 2.6x 107"
Y1806 1.042 9.593 x 107" 1.086 2.8x 107"
Y1807 9.671x 10" 9.511x107" 1.017 3.1x107"
Y1808 1.037 9.436 x 107" 1.099 2.7x107"
Y1809 1.089 9.369 x 10" 1.163 24x10"
Y1810 1.071 9.301 x 107" 1.151 2.5x 107"
yisin 1.101 9.233 x 107" 1.193 23x107"
Y1812 1.115 9.167 x 107" 1.216 22 %107
Y1813 1.150 9.102 x 107" 1.264 2.1x107"
Yisia 1.137 9.037 x 107" 1.259 2.1x 107
Y1815 1.168 8.971x 107" 1.302 1.9x 10"
Yyisis 1.196 8.906 x 107" 1.343 1.8x 107"
Y1817 1.196 8.842 x 107" 1.353 1.8x 107"
Yisis 1.170 8.777 x 107" 1.332 1.8x 107"
Y1819 1.209 8.712x 107! 1.388 1.7x 107"
Y1820 1.176 8.648 x 107" 1.360 1.7 x 107"
Y1821 1.202 8.583 x 107" 1.401 1.6x 107"
Y1822 1.206 8.519 x 107" 1.416 1.6x 107"
Y1823 1.183 8.454 x 107" 1.399 1.6x 107"
Y1824 1.207 8.390 x 107" 1.439 1.5% 107"
Y1825 1.225 8.325 x 107" 1.472 1.4x 107"
V1826 1.228 8.261 x 107" 1.487 14x107"
Y1827 1.226 8.196 x 107" 1.496 13x107"
Y1828 1.195 8.132x 107" 1.470 14x 107"
Y1829 1.262 8.067 x 107" 1.565 1.2x 107"
Y1830 1.231 8.003 x 107" 1.539 12x107"
Y1831 1.229 7.938 x 107! 1.549 12x107"
Y1832 1.203 7.874 x 107" 1.528 1.3x 107"
Y1833 1.219 7.809 x 107" 1.561 1.2x 107"
V1834 1.261 7.745 x 107! 1.628 1.0x 10"
Y1835 1.247 7.680 x 107! 1.623 1.0x 10"
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
Vis3e 1.227 7.616 x 107" 1.612 1.1x10"

V1837 1.258 7.552 % 107" 1.666 9.6 x 107

Y1838 1.257 7.487 x 107" 1.679 9.3x 107

Y1839 1.211 7.423 x 107! 1.632 1.0x 107"

Y1840 1.273 7.358 x 107" 1.730 8.4x107°

Yisa1 1.269 7.294 x 107" 1.739 82x107?

Yisa2 1.280 7.230 x 107" 1.770 7.7 x 107

Yisas 1.258 7.165 x 107! 1.756 7.9 x 1072
Visaa 1.282 7.101 x 107" 1.805 7.1x107°
Vis4s 1.288 7.036 x 107" 1.831 6.7 x 107

Yis4s 1.283 6.972 x 10" 1.841 6.6 x 10~

Yisay 1.286 6.908 x 107! 1.861 6.3 x 107

V1848 1.282 6.843 x 107" 1.873 6.1x107°

V1849 1.288 6.779 x 107" 1.900 5.7 x 107

Y1850 1.316 6.715 x 10”" 1.960 5.0 x 107

Yissi 1.275 6.650 x 107! 1.917 55x107 .
V1852 1.311 6.586 x 107" 1.991 46x107 %
Y1853 1.263 6.522 x 10" 1.936 53x107% .
Y1854 1.301 6.457 x 10”" 2.015 44x107% %
Pisss 1.307 6.393 x 107! 2.045 41x107%  *
Yisse 1317 6.329 x 10”" 2.081 37x107% %
Y1857 1.295 6.264 x 107" 2.067 39x107% ¥
Y1gss 1.320 6.200 x 107" 2.129 33x107% %
Y1859 1.314 6.136 x 107" 2.141 32x107% %
Y1860 1.336 6.071 x 107" 2.200 2.8x 1072 %
Yise1 1317 6.007 x 10”" 2.193 2.8x107% ¥
Yise2 1.304 5.943 x 107" 2.194 2.8x107% %
V1863 1.325 5.879 x 107" 2.255 24x107% %
YVisea 1.321 5.814 x 107" 2272 23x107% %
Y1865 1.296 5.750 x 107" 2.254 24x107% %
Yises 1.322 5.686 x 107! 2.325 20x 1072 %
Vise7 1319 5622 x 107" 2.346 1L9x1072  *
YVis6s 1.322 5.558 x 107" 2.378 1.7x107%  *
Y1869 1.298 5493 x 107" 2.364 1.8x107%  *
Y1870 1.316 5.429 x 107! 2.423 1.5x107%  *
Y1871 1.307 5.365 x 107" 2.436 1.5x107  *
Yis72 1.309 5.301 x 107" 2.469 14x1072  *
Y1873 1.301 5237 x 107" 2.485 13x107% *
Yis7a 1.301 5172 x 107! 2.515 12x107%  *
V1875 1.280 5108 x 107" 2.506 12x1072  *
Y1876 1.290 5.044 x 107" 2.558 1L1x1072  *
Y1877 1.282 4.980 x 107" 2.575 LOx107%  *
Yis7s 1.276 4916 x 107" 2.596 9.4x107°  **
Y1879 1.264 4.852x 107" 2.605 92x 107 **
Y1880 1.263 4.788 x 107" 2.638 83x107°  **
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Yiss1 1.248 4724 x 107" 2.641 83x 107  **
V1882 1.259 4.660 x 107" 2.702 6.9x 107  **
Y1883 1.227 4.596 x 107" 2.669 7.6x107°  **
Yiss4 1.221 4.532 x 107" 2.694 71x107° %
Yisss 1.200 4.468 x 107" 2.686 72x 107 **
V1886 1.209 4.404 x 107" 2.745 6.1x107°  **
Y187 1.184 4.340 x 107" 2.728 6.4x107°
YV1sss 1.203 4.276 x 107! 2.813 49x107°
V1889 1.167 4212 x 107" 2.771 56x 107 **
Y1890 1.159 4.148 x 107" 2.793 52x107° **
Y1801 1.150 4.084 x 107" 2.817 49x107%
Y1892 1.129 4.021 x 107" 2.809 501070 **
V1893 1.109 3.957 x 107" 2.802 51x 107 **
Pisoa 1.108 3.893x 107" 2.847 44x107°  **
Y1895 1.110 3.829 x 107" 2.898 38x107°
Y1896 1.085 3.766 x 107" 2.882 40x107°
V1897 1.068 3.702 x 107! 2.884 3.9x 107 **
V1898 1.073 3.638 x 107" 2.948 32x107°
Y1899 1.048 3.575x 107" 2.932 34x107° **
Y1900 1.029 3.511 x 107" 2.932 34x107° %
Y1901 1.010 3.448 x 107! 2.930 34x 107 **
Y1902 9.928 x 107" 3.384x 107" 2.933 34x107°
Y1903 9.708 x 107" 3.321 x 107" 2.923 35x107° %+
Y1904 9.595x 107" 3.258 x 107" 2.945 32x 107 **
Y1905 9.416 x 107" 3.194x 107" 2.948 32x107
Y1906 9.262x 107" 3.131x107" 2.958 31x107°
Y1907 9.086 x 107" 3.068 x 107" 2.962 31x107°
Y1908 9.008 x 107" 3.005x 107" 2.998 27x 107 **
Y1909 8706 x 107" 2.942x 107" 2.960 3.1x107
Y1910 8.639x 107" 2.879x 107" 3.001 27 %107
Y1911 8.403x 107" 2.816x 107" 2.984 2.8x 107 **
Yio12 8257x 107" 2753 x 107" 2.999 27107 **
Y113 7.949 x 107" 2,690 x 107 2.955 3.1x107°
Y1914 7.863x 107" 2.628 x 107" 2.992 2.8x107°
Y1915 7.775x 107" 2.565 x 107" 3.031 24x 107 **
Yio16 7.427x 107" 2503 x 107 2.967 3.0x 107 **
Y1917 7208 x 107" 2.441x107" 2.954 3.1x107
Y1918 7.018 x 107" 2378 x 107" 2.951 32x107° %+
Y1919 6.506 x 107" 2.316 x 107" 2.809 50x 1070 **
Y1920 6.858 x 107" 2.254x 107" 3.042 24x 107 **
Y1921 6.113x 10" 2193 x107" 2.788 53x 107 **
Y1922 6.183x 107" 2131 x 107" 2.901 37x107°
Y1923 5698 x 107" 2.070 x 107" 2.753 59x 107 **
Y1924 5476 x 107" 2.009 x 107" 2.726 6.4x107°  **
Y1925 5166 x 107" 1.948 x 107" 2.652 8.0x107 ¥+

continued ...



266

B GAPC Regression Tables

Covariate Estimate Std. Error z value P(> |z]) Signif. code
Y1926 4.699x 10" 1.887x 107" 2.490 13x107%  *
Y1927 4696 x 10" 1.827x 107" 2.570 1LO0x107>  *
Y1928 4.145x 10" 1.767 x 107" 2.346 1L9x107%  *
Y1929 4109x 107" 1.707 x 107" 2.407 L6x1072 *
Y1930 3797 x 107" 1.648 x 107" 2.304 21x107% %
Y1931 3757 x 107" 1.589 x 107" 2.364 1.8x107%  *
Y1932 3490 x 10" 1.531x 107" 2.280 23x107% %
Y1933 3223x107"  1.473x 107" 2.188 29x107% %
Y1934 2.975x 10" 1.416 x 107" 2.100 3.6x1072 ¥
Y1935 2.930x 10" 1.360 x 107" 2.155 3.1x107% ¥
Y1936 2915x 107" 1.304x 107" 2.235 25x107% %
Y1937 2533x 107" 1.250x 107" 2.027 43x107% %
Y1938 2.411x 10" 1196 x 107" 2.017 44x107 %
Y1939 2308 x 107" 1.143x 107 2.018 44x107%
Y1940 2.530x 107" 1.092 x 107" 2.317 21x107% %
Y1941 2.114x 107" 1.043x 107" 2.027 43x107% %
Y1942 2.526x 107" 9.944 x 107 2.541 L1x1072 *
Y1943 2.052x 107" 9.484x 1072 2.163 3.1x107% %
Y1944 2278 x 107" 9.045x 1072 2.519 12x107  *
Y1945 2.062x 107" 8.641 x 107 2.386 1.7x107%  *
Y1946 1.895x 107" 8275x 1072 2.290 22x107% %
Y1947 1.952x 107" 7.949 x 1072 2.455 14x107%  *
Yisas 1.540 x 107" 7.684 x 10~* 2.004 45x107%  *
V1949 1415x 107" 7.481x 107 1.891 5.9x 107
Y1950 1256 x 107" 7.364 x 1072 1.705 8.8x 107

Y1951 1126 x 107" 7.357 x 1072 1.531 1.3x107"

Y1952 2.086x 107 7.555x 1072 2.760x 107" 7.8x 107"

Y1953 1.922x107%  7.971x 1072 2410x 107" 81x107"

B.1.2 | PLAT Model

Table B.2: Regression table of the PLAT:2 model for Swedish females. Only 26 of 428 parameters (~ 6%)

are significant on the 5% level. p-value significance codes: 0 **** 0.001 *** 0.01 ** 0.05 ‘. 0.1’ 1.

Covariate Estimate Std. Error z value P(> |z]) Signif. code
60 —5.652 8.203 x 107" -6.890 5.6x 10712 e
%61 -5.571 7.936 x 107" -7.020 22x 10712 e
62 —5.484 7.745 x 107 -7.082 14 x 10712 #ex
063 -5.382 7.633 x 107" -7.051 1.8x107' o
o4 -5.284 7.602 x 107 -6.951 3.6x 10712 e
s -5.183 7.649 x 107" -6.776 1.2 x 10710 #x
s -5.090 7.769 x 107 -6.552 57 x 1071 et
067 —-4.984 7.956 x 107! -6.264 3.8x 10710 e
es -4.882 8.202 x 107" -5.952 26x107°0 e
oo —-4.779 8.501 x 107" -5.621 1.9x 1078 o
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
&0 —4.664 8.843 x 107" -5.273 1.3x 107 #*
a7 —4.554 9.223 x 107" -4.937 7.9x 107 oo
a7 —4.445 9.632 x 107" -4.615 39% 1070 e
ar -4.331 1.007 -4.303 1.7x107° o
074 -4.210 1.052 -4.002 63x107° o
ars -4.105 1.099 -3.736 1.9x 107 o+
&6 -3.981 1.147 —3.472 52x 107" e
oz -3.863 1.196 -3.231 12x107° **
arg -3.754 1.245 -3.016 26x107°
®79 -3.634 1.295 -2.807 50x 1070
®s0 -3.521 1.345 -2.619 88x107°
s -3.403 1.395 —2.440 1.5x107% *
g2 -3.289 1.444 2277 23x1072  *
®g3 -3.175 1.494 -2.125 34%x1072  *
g4 -3.061 1.543 -1.984 47x107%  *
ags -2.946 1.592 -1.850 6.4 x 1072

ass -2.835 1.641 -1.728 8.4x1072

as7 -2.726 1.689 -1.614 1.1 x 107!

oss -2.618 1.736 -1.508 1.3x107!

aso -2.512 1.783 -1.409 1.6 x 107!

oo —2.414 1.829 -1.320 1.9x 107!

®o1 -2.313 1.874 -1.234 22x107!

0o -2.213 1.919 -1.153 25%x 107!

o3 -2.123 1.963 -1.081 2.8x107!

o -2.038 2.006 -1.016 3.1x107"

®os -1.951 2.049 -9.520x 107" 3.4 x107"

®96 -1.872 2.090 -8.950 x 107" 3.7%x 107!

ooy -1.801 2.131 -8.450x 107"  4.0x 107"

g -1.739 2.171 -8.010x107"  42x107"

®99 -1.685 2210 —7.620x 107" 45x 107"

®100 -1.605 2.248 -7.140x 107" 4.8x 107"

a101 -1.538 2.285 -6.730x10""  5.0x10"

®102 -1.530 2322 -6.590x107"  5.1x107"

®103 -1.507 2.357 -6.390x 107" 52x 107"

®104 -1.486 2.392 -6.210 x 107! 53 % 107"

®105 -1.475 2.426 -6.080x 107" 5.4 x107"

®106 -1.512 2.459 -6.150x 107" 5.4 x107"

2 ~1.385x 107" 6.360 x 1072 ~2.178 29x102  *
1oy ~1543x 1070 1.237x 107! ~1.248 21x107!

(). ~2170x 10" 1.833x 107" ~1.184 24x107

), ~1.641x 107" 2.420x 107! -6.780 x 10" 5.0x 107!

(). ~2327x 107" 2.998 x 10" ~7.760x 107" 44x 107"

1 a0 -3308x 107" 3.565x 107! -9.280x 10" 3.5x107!

() ~2.506x 107" 4.122x 10" ~6.080x 10" 54x 107"

K -2.527x 107" 4.669 x 107" -5410x 10" 59x107"
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
<2 -3.659x 107" 5.206 x 107" -7.030x 107" 4.8x 107"
e -3.590x 107" 5.732x 107" -6.260 x 107! 53x 107"
AT -4013x10""  6.248x 107" -6.420x 107" 52x107!
Kfé?z -3.602x 107" 6.753 x 107" -5.330 x 107! 5.9x 107!
(), —4171x 107" 7.249x 107" ~5.750x 10" 5.7x 107"
D, ~4189x 107" 7.734x 107" ~5420x 10" 59x107"
< -3381x 10" 8.208x 10" -4120x10"  68x10"
Kio1s -5.005x 10" 8.673x 107" -5770x10""  5.6x107"
Kf;b -4.966 x 107! 9.127 x 107! —5.440 x 107! 5.9 % 107!
D -5263x 1070 9.571x 107 -5500x 107" 5.8x 107"
8, -4.844 x 107! 1.000 —4.840 x 107! 6.3x107"
D -5615x 10" 1.043 ~5380x 10" 59107
Ko 5667 x 10" 1.084 ~5230x10"  6.0x 10"
ksl -4844x 107" 1.124 —4310x 1070 67x107"
k{53 -6593x 10" 1.163 5670x10"  57x 10"
Kio2s ~6.199x 1077 1.202 5160107 6.1x10"
D -6.507 x 10" 1.239 -5250x10""  6.0x107"
g -6485x 10" 1.275 ~5090x 10" 6.1x10"
T -5476x 10" 1.310 ~4180x 10" 68x 107"
I -6.579 x 107! 1.344 —-4.900 x 107! 6.2x 107"
B ~6.435x10" 1377 ~4670x10"  6.4x107"
(5% 6967 x10"  1.409 4940107 62x 107
B —5584x 107" 1.440 ~3.880x 10" 7.0x 107"
xf;§2 -6.851 x 107! 1.470 -4.660 x 107" 6.4x107"
(), ~7330x 107" 1.499 -4890x10"  62x10"
xf;§4 -7.321x 107" 1.527 —-4.790 x 107" 6.3x107"
<3 -6.627x 10" 1.554 ~4270x 10" 67 x 107
e -6598x 10" 1.580 ~4180x 10" 68x 107"
k{52 ~6.680x 107" 1.604 ~4160x 10" 68x 107"
D -7331x107"  1.628 -4500x 107" 65x 107"
k{2 -6.683x 107" 1.651 -4.050x 107" 6.9x 107!
) -6770x 107" 1.673 ~4050x 10" 6.9x 107"
xf;?u -6.862 x 107! 1.693 —-4.050 x 107! 6.9 x 107"
ksl -8950x 10" 1.713 ~5220x10"  6.0x107"
Kio)s -8.843x 10" 1.732 5110x 10" 6.1x 107"
ko), ~7.900 x 107" 1.749 -4520x 10" 65x10"
K55 —7.952x 107" 1.766 —4500x 10" 65x 107"
k2 -7783x 107" 1.782 43701070 6.6x10""
<8 -7.168 x 107" 1.796 -3990x10""  69x107"
ko) -8.363 x 107! 1.810 —-4.620 x 107! 6.4x 107"
B —7.970x 107" 1.822 ~4370x 10" 6.6x 107"
k3 -7.660 x 107" 1.834 —-4.180 x 107! 6.8x 107"
<L ~7690x 107" 1.844 -4170x 1070 6.8 x 107
s -8217x 107" 1.854 —4430x 10" 66x 107"
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
xa), 8040 x 10" 1.862 —4320x 1070 6.7 x 10"
xf;§4 -8.096 x 107! 1.870 -4330x 107! 6.7 x 107}
), ~8548x 107" 1.876 ~4560x 107" 6.5x 107"
xf;§6 -8.376 x 107! 1.882 -4.450 x 107! 6.6 x 107}
() —7916x 107" 1.886 ~4200x 107" 67 x 10"
xfé?,s -8.224 x 107! 1.890 —-4.350 x 107! 6.6 x 107"
), ~8379x 107" 1.892 ~4430x10"  6.6x107
xfggo -7.849 x 107! 1.894 —4.140 x 107! 6.8 x 107"
Kféél -8.108 x 107" 1.894 -4280x 107! 6.7 x 107}
x50, ~7708x 107" 1.894 —4070 x 107" 6.8 x 107!
xf;§3 -7.952 x 107! 1.892 -4.200x 107! 6.7 x 107}
Kions —8215x 107" 1.890 ~4350% 10" 6.6x 10"
xggs -7.950 x 107! 1.886 -4210x 107" 6.7 x 107}
Kféis -7.914x 107" 1.882 -4.210x 107! 6.7 x 107!
xf;§7 -7.819 x 107! 1.876 -4.170 x 107! 6.8 x 107"
K3 —7337x10"  1.870 ~3920x 10" 69x107
xfégg ~7.444 x 107! 1.863 —-4.000 x 107! 6.9 x 107"
Kfé% -8.022x 107! 1.854 -4.330 x 107! 6.7 x 107}
xf;% —-7.874 x 107! 1.845 —4.270 x 107! 6.7 x 107"
xfé?z -7.571x 107" 1.834 -4.130x 107" 6.8 x 107!
(), —7350x 107" 1.823 ~4.030x10"  6.9x 107
xf;34 -7311x 107" 1.811 -4.040 x 107! 6.9 x 107!
x), ~6.940x 107" 1.798 ~3.860x 10" 7.0x 107"
xf;36 -6.437 x 107! 1.784 -3.610x 107" 7.2 %107}
() ~6.810x 107" 1.769 ~3850x 107" 7.0x 10"
xg;s -6.462 x 107! 1.753 ~-3.690 x 107! 7.1%x 107}
Koo -6.207 x 10" 1.736 —-3.580 x 107! 7.2 % 107"
xfggo —5.856 x 107! 1.718 -3.410 x 107! 73 %107}
Kféil -5.549 x 107" 1.699 -3270x 107" 7.4 x 107!
xf;?;z ~5.660 x 107" 1.680 -3.370 x 107! 7.4% 107"
xf;§3 —5.406 x 107! 1.659 -3.260x 107! 7.4 %107}
Kfé& -5.257 x 107" 1.638 -3.210x 107" 7.5% 107!
xggs -4575x 107" 1.616 -2.830x 107" 7.8 x 107}
1) ~4.452x 107" 1.593 —2.800x10""  7.8x 107"
xf;§7 —4.265 x 107! 1.569 -2.720 x 107! 7.9 %107}
Kade 23493x 107" 1.544 —2260x 10" 82x 107"
x§;;9 —-3.740 x 107! 1.519 -2.460 x 107! 8.1x 107"
k{590 -3.136x 107" 1.492 -2.100x 107" 83 x 107"
xg;l -2.958 x 107! 1.465 —-2.020 x 107! 8.4 x 107!
xg;z -2.672x 107" 1.438 -1.860 x 107" 8.5x 107}
(), 2015x 107" 1.409 ~1430x 10" 8.9x 10"
xf;34 -2.448 x 107! 1.380 -1.770 x 107! 8.6 x 107!
x3), ~1975x 10" 1.351 ~1460x 10" 88x 107"
xf;§6 -1.599 x 107! 1.321 -1.210 x 107! 9.0 x 107"
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
K397 -1.439x 10" 1.290 ~1.120x 107" 9.1 x 107"
{0 -1226x 107" 1.259 —9.700 x 102 9.2 x 107!
<8, —6.553x 1072 1.228 ~5300x 102  9.6x 107"
K000 ~5169x 102 1.196 —4300x 102  97x 107"
x) -1.664x 107 1.164 ~1400%x 102  99x10"
e 2968 x 1072 1.132 2.600x 1072 9.8x 107"
< 2.051x107  1.100 1900 x 10> 9.9x 107"
D, 1.855x 10 1.068 1.700 x 107> 9.9x 107"
k0 4312x107  1.036 4200x 102  9.7x 107
KSos 6.347x 102 1.005 6300102  95x 107"
k8 1.010x 107" 9.746 x 107! 1.040x 1070 92 x 10"
k) 1107 x 107" 9.449 x 107" 1170 x 1070 9.1x 107!
D 1.060 x 10" 9.164 x 107! 1160 x 10" 9.1x 107"
T 1285x 10" 8.893x 107 1440 x 1070 89x 10"
Kon 1.340 10" 8.639 x 107" 1550 x 10" 8.8x 107"
Kol 1771107 8.406 x 10”! 2110x 107" 83x 107"
D 1.712x 10" 8197 x 107! 2090x107"  83x107"
Koy 1.557x 10" 8.019 x 10" 1940 x 107 85x 107"
<2 ~1.082x 102 1187 x 10" 9100102 9.3x10"
k2, —9011x107°  1.177x 107 7700102 9.4x 10"
K300 -6.681x 10  1.166 x 10" -5700x 1072  9.5x 107"
k2, ~7.994%x 107 1.156x 10" -6.900x1072  9.4x107"
*io0s -7.985x107°  1.145x 107" -7.000x 10 9.4 x 107"
Kfﬁgs —4582x 107 1.135x 107" -4000x107%  9.7x 107"
2 ~4.404x 107  1.125x 10" 23900x 102 9.7x 107
<2 ~8231x10°  1.114x10™" ~7.400x 102 9.4x10"
<2 ~7.618x10°  1.104x 107" -6.900x 102 9.4x10"
2, ~3.762x 107 1.093 x 10" ~3.400x 102 9.7x107"
2, -5207x107°  1.083 x 10~ _4800x 10>  9.6x107"
2, ~4.601x107°  1.073x 107" ~4300%x102  9.7x 10"
k{0 -3.456 x 10 1.062 x 107" -3300x107%  9.7x107"
Kfﬁf; -3.584x 107 1.052x 107" -3.400x107%  9.7x 107"
Kfﬁh -3.692x 107  1.041x 107" -3.500x 102  9.7x 107"
k2, -4381x10°  1.031x 107" ~4300x 102 9.7x 107"
2. ~3474x 10 1.020x 107" ~3.000 x 10~ 10.0 x 10™
3, ~1565x 107 1.010x 10" ~1500x 102 9.9x 107!
<2, 5096 x 107 9.996 x 1072 5100x102  9.6x 107"
k{52 2521 x107%  9.892 x 1072 3.000 x 107 10.0 x 107"
%520 -1.563x 107 9.788 x 1072 —-2.000x10°  10.0x 107"
2, —2373x 107 9.684 x 1072 2500x10% 9.8 x 10"
3, ~6.484x 10" 9.580 x 10 ~7.000x10°  9.9x 107"
2, 1703 x 107 9.476 x 107 1.800x 102 9.9x 107"
<3, 1554 x 10 9.371 x 102 1700 x 102 99 x 10!
2. 1.864x 107 9.267 x 102 2000x1072  9.8x 107"
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
2, 3389 x 107 9.163 x 107 3700x 102 9.7 x 107"
k{327 2.435x107%  9.059 x 1072 3.000 x 10 10.0 x 107"
«2), 4330x107°  8.955x 107 4800x1072  9.6x10"!
k{320 5.053x107°  8.851 x 1072 5700 x 1072 9.5x 107"
20 6.155x 107 8746 x 1072 7.000 x 102 9.4x 107!
2, 2416x107°  8.642x 1072 2800x102  9.8x 107"
kit 5.854x 107  8.538 x 107 6.900x 1072 95x 107"
@), 7.146 x 107 8.434x 1072 8500x1072  93x 107"
«2), 7.086x 107°  8.330 x 1072 8.500x 102 9.3x 107"
2, 5848 x 107 8226 x 1072 7100102 9.4x 107"
2, 7.046x 107 8.121 x 1072 8700x 102  93x 107"
3, 8.854x 107  8.017x 1072 1.100x 107" 9.1x 107!
xiéﬁs 9.808 x 10 7.913 x 1072 1.240 x 107" 9.0 x 107!
12 6.462x 107> 7.809 x 102 8300x 102 9.3x 107!
k{320 7.926 x107°  7.705 x 107 1.030x 10" 9.2x107"
Kfﬁil 7.280x 107  7.601 x 107 9.600 x 107 9.2x107"
«2) 1236 x 1072 7.497 x 107 1650 x 10" 8.7x107
3, 1345x 107  7.392x 107 1.820x 10" 8.6x 10"
«2), 1178 x 107> 7.288 x 10 1.620x 10" 8.7x107"
2. 1.387x 1072 7.184x 107 1.930x 107" 85x 107"
2. 1247 x 102 7.080 x 1072 1.760x 10" 8.6x 107"
@) 1136102 6.976 x 102 1630 x 10" 87x107
x2), 1648 x 107> 6.872 x 107 2400x 10" 8.1x107"
ngig 1509 x 107> 6.767 x 10°* 2.230x 107" 8.2x 107!
Kio% 1.418 x 107> 6.663 x 1072 2.130x 107" 83 x 107"
2, 1319%x 107 6.559 x 10 2010x10"  84x10™"
A 1733x 102 6455 x 1072 2680107 7.9x 107!
@), 1817x 107 6.351 x 10 2860x 10" 7.7x 107"
Kf§§4 1.749 x 107> 6.247 x 107> 2.800 x 107! 7.8 x 107!
@), 1.972x 1072 6.142x 1072 3210x 107" 7.5x 107"
2. 2009% 102 6.038 x 1072 3330x 10" 7.4x 107"
Kf§§7 1.977 x 107> 5.934x 107 3330 x 107" 7.4%x107"
xiéés 2.050x 1072 5.830 x 1072 3.520 x 107" 73 % 107"
12 2120x 1072 5726 x 1072 3700 x 107 7.1x 107!
2 2109% 102 5.622x 1072 3750x 1070 7.1x 107"
Kion 2.194x107% 5517 x 107 3.980x 107" 69x107"
2 2150x 102 5.413 x 1072 3970x 107 69x 107"
3, 2350x 10 5.309 x 10 4430x 107" 6.6x 107"
«2), 2693 %1072 5.205x 1072 5170x 107 6.0x 107"
2. 2579% 102 5.101 x 102 5060x10"  6.1x107"
12 2640x 1072 4.997 x 102 5280 x 107 6.0x 107!
Kfﬁt)w 2.755x1072  4.893 x 1072 5.630 x 107" 5.7 % 107"
12 2772x 1072 4788 x 1072 5790 x 1070 5.6x 107!
K300 3111 x1072  4.684 x 1072 6.640x 107" 51x107"
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
(5% 3284x 102 4580 x 10°2 7170100 47x10"
Ko 3336 x 1072 4.476 x 107> 7450 x 1070 4.6x 107
A 3366x 1072 4372x 107 7700107 44x 107!
2, 3354x 102 4268 x 1072 7.860x 10" 43 x 107"
KSQ 3.543 x 107 4.163 x 1072 8.510 x 107" 3.9%x 107!
2. 3540 x 1072 4.059 x 1072 8720x 10" 3.8x 107"
<2 3.400x 102 3.955x 1072 8.600x 10" 3.9x 107"
k(307 3.566 x 102 3.851 x 107> 9260x107"  35x107"
x2, 3623x 1072 3.747 x 1072 9670x 107" 33x10"
2, 3.601 x 107> 3.643 x 1072 9.890x 107" 32x10""
nggo 3.650 x 107 3.539 x 107> 1.031 3.0x 107!
k2, 3.607x 1072 3.434x 1072 1.050 2.9% 107!
kom0 3.752x 1072 3330 1072 1.127 2.6 %107
K2, 3540x 1072 3226 x 1072 1.097 2.7x 107!
Kions 3.664x 1072 3.122x 107 1.174 24x107"
k2, 3.484x 107  3.018x 107 1.154 25x 107!
Kions 3.504x 1072 2.914 x 107 1.202 23x107"
x2), 3565x 102 2.810x 1072 1.269 2.0x 107!
Ko 3333 x1072  2.705 x 107> 1.232 22x107"
Kions 3240%x 1072 2,601 x 1072 1.246 2.1x107!
<2, 3208x 1072 2.497 x 1072 1.285 2.0x 107!
Kl 3.239x107% 2393 x 1072 1.353 1.8x 107"
2, 3231x107 2289 x 107 1.412 1.6 x 107!
k(503 2906 x 102 2.185 x 1072 1.330 1.8 x 107"
K04 2970 x 107 2.081 x 1072 1.427 1.5 x 107!
k(305 2.939x107%  1.977 x 107 1.487 1.4 x 107"
x2) 2711x 107 1.873x 107 1.448 1.5x 107!
k(397 2570 x 102 1.768 x 107> 1.453 1.5 x 107"
{0 2561 x 1072 1.664 x 1072 1.538 1.2x 10"
2, 2312x 107 1560 x 10 1.482 1.4x 107"
5000 2256 x 1072 1.456 x 1072 1.549 12x 107"
k), 2060x 102 1.352x 1072 1.523 1.3 %107
K02 1.809x 1072 1.248 x 102 1.449 1.5x 107"
K, 1757 x 1072 1.144 x 102 1.535 12 %107
KSo0a 1.719x 107 1.040 x 10°* 1.653 9.8 x 107>
K, 1.583x 1072 9.364x 107 1.690 9.1x1072
KSo0s 1295x 107  8.326x107° 1.555 1.2 x 107"
o 1.092x 102 7.289x 107 1.499 1.3x 107!
Kio0s 8.670 x10°  6.253 x 107 1.387 1.7 x 107"
K2 8382x10°  5220x107 1.606 1.1x 107"
<3, 7.052x 107  4.191x 107 1.683 9.2 x 1072
2, 3920x10°  3.171x 107 1.236 22x107
3, 1955 x 10 2.169 x 10 9.020x 10" 3.7x107"
2, 1382x 107  1.205x 107 1.147 25% 107!
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Y1800 1.024 1.109 9230x 10" 3.6x107"
Yiso1 1.178 1.042 1.131 2.6 x 107"
Y1802 1.525 1.021 1.493 1.4x107"
Y1803 1.158 1.014 1.142 2.5x 107"
Y1804 1.110 1.022 1.087 2.8x 107
Y1805 1.168 1.039 1.124 2.6x107"
Y1806 1.126 1.061 1.061 2.9x107"
Y1807 1.069 1.088 9.830 x 107" 3.3x 107"
Y1808 1.152 1.118 1.030 3.0x 107
Y1809 1.218 1.153 1.056 2.9x107"
Y1810 1.212 1.190 1.018 3.1x 10"
Yisit 1.258 1.229 1.023 31x107"
Yisi2 1.286 1.271 1.012 3.1x 107
Yisi3 1.338 1.313 1.018 3.1x 107"
Y181 1.341 1.357 9.880 x 107" 32x 107"
Yis1s 1.387 1.402 9.890x 107" 3.2x 107"
Vists 1.434 1.448 9.900x 10" 32x107"
Y1817 1.452 1.494 9.720x 10" 33 x 107"
Y1818 1.443 1.541 9370 x 107" 3.5x 107"
Y1819 1.501 1.587 9.460 x 107" 3.4 x 107"
Y1820 1.486 1.634 9.090 x 10" 3.6x107"
Y1821 1.530 1.681 9.110x 10" 3.6x107"
Y1822 1.553 1.727 8990 x 107" 3.7x 107!
Y1823 1.547 1.774 8.720x107"  3.8x 107"
Y1824 1.589 1.820 8730 x 10" 3.8x 107"
Y1825 1.624 1.865 8710x 10" 3.8x 107"
Y1826 1.644 1.910 8.610x107"  3.9x10™"
Y1827 1.660 1.955 8490x 107" 4.0x 107"
V1828 1.645 1.999 8230x 10"  41x10"
Y1829 1.728 2.042 8.460x 10" 4.0x107"
Y1830 1.713 2.085 8220x107"  41x10™"
V1831 1.727 2.127 8.120x 107" 42x107"
Y1832 1.715 2.169 7.910x 107" 43x107"
Y1833 1.746 2.209 7.900 x 10" 43 x 107"
Y1834 1.801 2.249 8.010x 107" 4.2x 107"
V1835 1.801 2.288 7.870x 10" 43 x107"
Y1836 1.794 2.327 7.710x 107" 44 x107"
Y1837 1.838 2.364 7.770 x 107" 4.4 x 107
Y1838 1.849 2.401 7.700 x 107" 4.4 x 107"
Y1839 1.815 2.437 7450 x 107" 4.6x 107"
Y180 1.888 2.472 7.640 x 10" 4.4 x 107
Yisa1 1.894 2.506 7560 x 10" 45x 107"
Y1842 1.915 2.539 7540 x 107" 4.5x 107"
V1843 1.903 2.571 7.400x 10" 46x107"
Y1844 1.936 2.603 7.440 x 107" 4.6x 107"
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Yisas 1.951 2.633 7410x107"  4.6x 107
Vis4s 1.955 2.663 7340 x 107" 4.6x 107"
V1847 1.965 2.692 7.300x 107" 47 x 107"
Y184s 1.969 2.719 7240 x 107" 4.7x 107"
Yisao 1.981 2.746 7210x10"  47x 107
Y1850 2.016 2.772 7270 x 107" 47x107"
Y1851 1.981 2.797 7.080 x 107" 4.8x 107"
Y1852 2.023 2.821 7170 x 107" 4.7 x 107"
Piss3 1.980 2.844 6.960x 107" 4.9x 10"
V1854 2.024 2.866 7.060 x 107" 4.8x 107"
Y1855 2.034 2.887 7.040 x 107" 4.8 x 107"
Y1856 2.046 2.907 7.040 x 107" 4.8x 107"
V1857 2.028 2.926 6.930x 10" 49x10™"
Y1858 2.056 2.944 6.980x 10" 48x107"
Y1859 2.054 2.962 6.940x 107" 4.9x 107"
Y1860 2.078 2.978 6.980x 107"  4.9x107"
V1861 2.061 2.993 6.890x 10" 49x10™"
Yise2 2.048 3.007 6.810x 10"  50x107"
Vise3 2.070 3.020 6.850x 107" 4.9x 107"
Yises 2.065 3.033 6.810x 107" 50x 10"
V1865 2.039 3.044 6.700x 10" 50x107"
YVises 2.064 3.054 6760 x 107" 5.0x 107"
Yis67 2.059 3.063 6.720x 10" 5.0x 107"
Yises 2.058 3.072 6.700x 107" 5.0x 10"
V1869 2.032 3.079 6.600x 10" 51x107"
Y1870 2.046 3.085 6.630x 10" 51x107"
Y1871 2.033 3.090 6.580x 10" 51x107"
Y1872 2.029 3.094 6.560x 107" 5.1 x 10"
V1873 2.016 3.097 6510x 10" 52x107"
Y187 2.010 3.100 6.490x 10" 52x107"
Y1875 1.983 3.101 6.400x 107" 52x107"
V1876 1.985 3.101 6.400x 10" 52x107"
V1877 1.969 3.100 6.350x 10" 53x107"
Y1878 1.955 3.098 6310x 10" 53x107"
Y1879 1.933 3.095 6250x 107" 53x107"
Y1880 1.922 3.091 6.220x 10" 53x107"
YViss1 1.895 3.086 6.140x 10" 54x107"
Yiss2 1.894 3.080 6.150x 10" 54x107"
Y1883 1.850 3.073 6.020x10"  55x107"
Vissa 1.831 3.065 5970 x 107" 55x107
Visss 1.796 3.056 5880 x 107" 5.6x107"
Y1886 1.789 3.046 5870x 107" 56x 107"
Viss7 1.747 3.035 5750x 107" 5.6x 107"
Visss 1.747 3.023 5780 x 10" 5.6x107"
Yisso 1.693 3.010 5620x 10" 57x107"
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
V1890 1.664 2.996 5550 x 10" 5.8x 107"
Y1891 1.635 2.981 5480 x 10" 58x107"
Y1892 1.591 2.965 5360 x 107" 59x107"
Y1893 1.547 2.947 5250x 107" 6.0x 107"
V1894 1.523 2.929 5200x 10" 6.0x107"
V1895 1.499 2.910 5150x 107" 6.1x 107"
Y1896 1.449 2.890 5010x 10" 62x107"
Y1897 1.405 2.868 4900x 10" 62x107"
V1898 1.383 2.846 4.860x 10" 63x107"
Y1899 1332 2.823 4720x 107" 64 x107"
Y1900 1.285 2.798 4590x 107" 65x107"
Y1901 1.238 2.773 4470x 107" 6.6x 107"
Y1902 1.193 2.746 4340x 10" 6.6x107"
Y1903 1.142 2.719 4200x 107" 67x107"
Y1904 1.103 2.690 4.100x 107" 6.8x 107"
Y1905 1.058 2.661 3.980x 107" 6.9x107"
Y1906 1.015 2.630 3.860x 10" 7.0x 107"
Y1907 9.703x 107" 2.599 3.730x 10" 7.1x 107"
Y1908 9.361 x 107" 2.566 3.650x 107" 7.2x 107"
Y1909 8.800 x 107" 2.532 3.480x 107" 7.3x 107"
Y1910 8.486x 107" 2.497 3.400x 10" 73x107"
Yion 8.010x 107" 2.462 3250x 107" 7.4x107"
Y1912 7.632x 107" 2.425 3.150x 107" 7.5x 107!
Y1913 7.104x 107" 2.387 2.980x 107" 7.7x107"
Y1914 6.810x 107" 2.348 2.900x 107" 7.7x 107"
Y1915 6.531x 107" 2.308 2.830x 10" 7.8x 107"
Y1916 6.003x 107" 2.267 2.650x 107" 7.9x 107
Y1917 5617x 107" 2226 2.520x 107" 8.0x107"
Y1918 5279x 107" 2.183 2.420x 10" 81x107"
Y1919 4.635x 107" 2.139 2.170x 10" 83 x 107"
Y1920 4871x 107" 2.093 2.330x 107" 82x 107"
Y1921 4.029x 107" 2.047 1970 x 107" 8.4 x 10"
Y1922 4.019x 10" 2.000 2.010x 10" 84x107"
Y1923 3468 x 107" 1.952 1.780x 107" 8.6x 107"
Y1924 3.193x 107" 1.903 1.680 x 107" 8.7 x 107"
Y1925 2.845x 107" 1.853 1.540x 107" 8.8x 10"
Y1926 2.349x 107" 1.801 1.300x 107" 9.0x 10"
Y1927 2328 x 107" 1.749 1.330x 107" 89x 10"
Y1928 1.769 x 107" 1.696 1.040x 107" 92x 107"
Y1929 1.731x 107" 1.642 1.050x 107" 9.2x 10"
Y1930 1.420x 107" 1.586 9.000x 10 93 x107"
Y1931 1.390x 107" 1.530 9.100x 102 9.3x 107"
Y1932 1.140 x 107" 1.472 7700 x 102 9.4 x 107"
Y1933 9.003x 1072 1.414 6.400x 107> 95x 107"
Y1934 6.759 x 102 1.354 5.000x 107 9.6x 107"
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Y1935 6.640 x 1072 1.294 5100x 1072 9.6x 107"
Y1936 6.942x 107 1232 5600 x 1072 9.6x 107"
Y1937 3580 x 1072 1.169 3.100x 1072 9.8x107"
Y1938 2.861x 107  1.106 2.600x 107> 9.8x 107"
Y1939 2.456 x 1072 1.041 2.400x 1072 9.8x107"
Y1940 5342x 1072 9.754x 107" 5500x 1072 9.6x 107"
Y1941 1.988x 107> 9.086 x 10" 2200x 107 9.8x107"
V1942 6.984x 107  8.409 x 107" 8.300x 102 93 x107"
Y1943 3.099x 1072 7.721 x 107" 4.000x 102  9.7x107"
Y1944 6.416 x 107> 7.023 x 107" 9.100x 107> 93 x 107"
Y1945 5577 x 1072 6.314x 107" 8.800x 10> 93 x 107"
V1946 5471x 1072  5.597 x 107" 9.800x 10> 9.2x107"
Y1947 7.494x 107 4.869 x 107" 1540 x 107" 8.8x 10"
Y1948 4.887x107%  4.132x 107" 1.180x 107" 9.1x 10"
Y1949 5.038 x 107 3.387 x 107" 1.490x 107" 8.8x107"
Y1950 5379x 1072 2.637 x 107" 2.040x 107" 84x107"
Y1951 6.443x 107  1.887x 107" 3410x 107" 73x107"
Y1952 -1.025x 10 1.166 x 107" -8.800x 107> 93 x107"

B.1.3 | M7 Model

Table B.3: Regression table of the M7 model for Swedish females. 438 of 498 parameters (~ 87%) are
significant on the 5% level. p-value significance codes: 0 *** 0.001 *** 0.01 ** 0.05“.” 0.1’ 1.

Covariate Estimate Std. Error z value P(> |z|) Signif. code
PIen ~1313x 10" 1.440 -9.115 <2.0x 10716 e
Ao ~1.375x 10" 1.487 -9.249 <2.0x 10716 e
2 ~1422x 10" 1.534 -9.272 <2.0x 10716 e
L, ~1474x 10" 1.581 -9.324 <2.0x 10710 wex
0, ~1.508x 10" 1.628 -9.268 <2.0x 10716 e
k8. -1.559x 10" 1.674 -9.311 <2.0x 10710 e
k). ~1.604x 10" 1.721 -9.319 <2.0x 10716 e
8. ~1.637x10"  1.767 -9.265 <2.0x 10716 e
o) ~1.675x 10"  1.813 -9.239 <2.0x 10716 e
8 ~1.719x 10" 1.859 -9.251 <2.0x 10716 e
x(a), ~1.750x 10 1.904 -9.193 <2.0x 10716 e
B ~1.785x 10" 1.948 -9.164 <2.0x 10716 e
), ~1.812x 10" 1.992 -9.097 <2.0x 10710 wex
0. ~1.848x10'  2.035 -9.080 <2.0x 10716 e
2, -1.873x 10" 2.077 -9.018 <2.0x 10710 e
<D ~1.894x 10" 2.119 -8.936 <2.0x 10716 e
D -1.932 x 10 2.160 -8.945 <2.0x1071¢ ox
). ~1.954x 10" 2.201 -8.878 <2.0x 10716 e
IR ~1.976x 10" 2.240 -8.821 <2.0x 10716 e
3 -1.996x 10" 2.279 -8.759 <2.0x 10716 e
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COVaIlate Estimate td Error Value ]I z Slglllf. Code
m s . < (> | |)
K1920 -2.022 x 10 2.317 -8.729 2.0 10

(1) 0 01 . .66 ) . 0—16 %%
K1921 2.038 x 1 2.354 .

1ss . 8. 1 <20x1

1922 048 x 10 8.

(1) 07 01 ' 8. 6 ) . 0—16 %%
K1923 2.076 x 1 2.425 .

1ss d .563 <20x1

1924 ‘ X
K1925 -2.101 x 10 2.493 = .
K1926 -2.116 x 10 2.525 —8.377 2.0 10

(1) 5 01 7 8.270 ) . 0*16 %%
K1927 2.115x 1 2.55 .

iss . 2 <20x1
K]928 -2.136 x 10 2.588 - .
K1929 —2.143 x 10 2.617 —-8.186 . 0

1z d .1 <20x1
K]930 -2.150 x 10 2.646 - .
K19 -2.144 x 10 2.674 -8.019 .

: 3)1 d <2.0x 10
K]932 -2.161 x 10 2.701 - .
K19 -2.165 x 10 2.727 —7.940 .

! 3)3 . <2.0x 10
K]931 -2.168 x 10 2.752 - .

L1935 ° & 6

(1) 6 01 799 7.7 . s 0*16 %%
K]936 2.164 x 1 2 .

i3 . 731 <20x1
K1937 -2.164 x 10 2.821 -7.671 2.0 10

(1) 69 01 8 7.6 = s 0*14 %%
K]938 2.1 x 1 2.842 .

i3 . .631 23x1
K1939 -2.158 x 10 2.862 - .

1940 155 % 10 88 § S

(1) 01 '899 7. . 0—13 %%
K19“ 2.152 x 1 2 .

1942 ‘ X
K1913 -2.156 x 10 2.932 - .
K19“ -2.143 x 10 2.947 -7.272 3.6 10

(1) 6 01 926 7. . 0*13 %%
K1915 2.136 x 1 2 2 .
K1946 -2.123 x 10 2.975 -7.137 9.6 10

(1) 08 01 987 7.057 . 0*12 %%
K1917 2.1 x 1 2 .

Iod . . 1.7x1
K]918 -2.109 x 10 2.998 - .
K1919 -2.093 x 10 3.008 = . 0

1 . 6.957 3.5x1
K]950 -2.079 x 10 3.01 — .

1951 065 x 10 3.02: 6.828 8.6

(1) 0 01 ‘0 6.786 s 0—11 %%
K]952 2.057 x 1 3.032 .

13 . . 1.2x1
K1953 -2.042 x 10 3.038 -6.724 1.8 10

(1) 026 01 0. 6.658 s 0—11 %%
K]951 2.026 x 1 3.043 .

L3 . .65 2.8x1
K1955 -2.017 x 10 3.046 -6.619 3.6 10

(1) 99 01 049 6.557 s 0*11 %%
K]956 1.999 x 1 3.04 .

b3 . . 55x1
K1957 -1.975 x 10 3.051 -6.473 9.6 10

(1) 926 01 05 6 0 s 0*10 %%
K1958 1.963 x 1 3 2 .

b3 . 43 1.3x1
K1959 -1.945 x 10 3.052 — .
K1960 -1.924 x 10 3.051 —6.307 2.9 10

(1) 90 01 ‘0 9 6. 6 . 0—10 %%
K196l 1.909 x 1 3.04 .
K1962 —1.885 x 10 3.045 -6.188 6.1 10

(1) 6 01 '0 6. 8 . 0—10 %%
Kl963 1.865 x 1 3.041
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
3, ~1.846x 10" 3.036 -6.083 12x107°  **
L), -1.823x 10" 3.029 -6.019 1.8x 1070
x(a) ~1.802x 10" 3.022 -5.963 25x107° o
D ~1.782x 10" 3.014 -5.912 34x10° o
x(a) ~1.754x 10" 3.004 -5.838 53x107° 0
0 1731100 2.994 -5.783 74x107° o
132 ~1713x 100 2.982 -5.744 93x107° o
D ~1.690 x 10 2.970 ~5.689 13x 107  *xr
3, -1.662x 10" 2.956 ~5.622 19x 1078 o
<D, ~1.637x 10"  2.942 ~5.564 26x107° oo
2, -1.613x 10" 2926 -5.512 3.6x107° 0o
<D ~1.585x 10" 2.909 ~5.449 51x1078 oo
K8 ~1.555x 100 2.892 -5.379 75x10°8 o
. ~1.534x 10" 2.873 -5.340 93x107% oo
D ~1.508x 10" 2.853 -5.285 13x107  **
x5 ~1479x 10" 2.832 -5.221 1.8x 107 *¢*
2 ~1449x10' 2811 -5.156 25x107 o
e ~1.422x 100 2.788 -5.100 34x107 o
<) ~1.398x 10" 2.764 -5.057 43x107 o
kL), -1369x 10! 2.739 ~4.998 58x107 00
2, ~1342x 100 2713 ~4.948 75x107 o
), ~1.310x 10" 2.686 -4.876 L1x1076 %
x(a) ~1.283x 10" 2.658 -4.828 14x 1070 **r
0 ~1255x 10" 2.629 -4.775 1.8x 1070 %
Kol ~1.221x 100 2.599 -4.697 26x107° oo
8 ~1.199x 10" 2.568 ~4.668 3.0x1070 oo
x$ad ~1.168x 10" 2.535 -4.605 41x1070 o
0, ~1139x 10" 2.502 -4.552 53x1070 oo
3, ~L111x 10" 2468 -4.500 6.8x 107 0o
<0 ~1.079x 10" 2.433 -4.437 9.1x1070 oo
3, -1.059x 10" 2.396 -4.420 9.9x107¢ e+
<0 ~1.030x 10" 2.359 -4.366 13x107°  *x*
D -1.001 x 10 2.321 -4.314 1L6x107°
x5 -9.751 2281 -4.275 19x107°  **r
IR -9.494 2.241 -4.237 23x107° o
130 -9.197 2.199 -4.182 29x107° oo
kB ~8.945 2.157 -4.148 34x107° o
oo -8.686 2.113 —4.111 39x107° 0
) ~8.409 2.068 ~4.066 48x107° o
kL. -8.182 2.023 ~4.046 52x107° 0o
K0 ~7.967 1.976 ~4.032 55x107° oo
x50, -7.721 1.928 -4.004 62x107° o
K0 ~7.486 1.879 -3.983 6.8x107° o
D ~7.249 1.829 -3.963 74x107° o
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
ko) ~7.029 1.779 ~3.952 78x107° o
), -6.833 1.727 -3.958 7.6x107° o
xS, -6.618 1.674 ~3.954 7.7x107° o
D ~6.430 1.620 ~3.970 72x107° o
Kol -6.197 1.565 -3.961 75x107° 0
8, -6.025 1.508 ~3.996 6.4x107° o
8, -5.857 1.452 ~4.034 55x107° 0
2 5912x 1070 6376 x 10 9.273 <2.0x 10716 e
2, 5710x 1070 6270 x 1072 9.107 <2.0x 10710 wer
3, 5524x 1070 6.162x 107 8.965 <2.0x 10716 e
@), 5359x 10" 6.055x 107 8.852 <2.0x 10710 e
«2, 5217x 1070 5947 x 107 8.772 <2.0x 10716 e
@), 4996 x 107" 5840 x 1072 8.555 <2.0x 10716 e
«2 4870 x 107" 5.732x 1072 8.496 <2.0x 10716 e
@) 4716 x 107" 5.625x 1072 8.383 <2.0x 10716 e
x2) 4539x 10" 5518 x 1072 8.226 <2.0x 10716 e
@), 4359x 107" 5411 x 107 8.055 <2.0x 10716 e
x 2, 4234x 10" 5.304x 107 7.983 <2.0x 10716 e
2, 4082x 10" 5198 x 107 7.853 <2.0x 10716 e
«2), 3.912x 107" 5.091 x 1072 7.683 <2.0x 10710 e
Q). 3.752x 1070 4.985x 107 7.526 52x 10714 o
«2), 36211070 4.879x 107 7.421 12x 10713 oer
2, 3.461x 1070 4773 x 107 7.251 41x10717 o
2. 3293x 1070 4.667 x 107 7.056 17 x 10712 »xr
3, 3176 x 1071 4561 x 107 6.963 33x 10712 o
@) 2989 x 107" 4.456 x 10 6.708 20x 10710 o
3, 2.868 x 1071 4350 x 107 6.592 44x 1071 e
«2), 2740 x 107" 4.245x 107 6.455 1L1x 10710 *x*
2, 2.644x 1070 4.140 x 1072 6.385 1.7 x 10710 wer
«2), 2480 x 107" 4.035x 102 6.147 7.9x 10710 o
2, 2.365x 107" 3.931x 107 6.016 1.8x 1077
«2), 22261070 3.826x 107 5.818 6.0x107° o
@), 2122x107"  3722x 107 5.702 12x107° %
«3), 1950 x 107" 3.618 x 1072 5.390 701070 o
2 1.869x 10" 3.514x 1072 5.320 1.0x 107 %
x 2, 1.700 x 107" 3.410 x 1072 4.986 62x107 o
3, 1570 x 107" 3.307 x 1072 4748 21x107° o
«2), 1486 x 107" 3.204 x 1072 4.638 35x1070 o
2, 1384 x 107" 3.101 x 1072 4.464 81x1070 o
@), 1242 %107 2.999 x 107 4.143 34x107° e
2, 1153 x 107" 2.897 x 1072 3.980 69x1075 o
«2, 1.045x 107" 2.795 x 1072 3.741 1.8x 107 %
2, 9.274x 107 2.693 x 102 3.444 57x107F o
2. 8220 x 107 2592 x 107 3.171 15x107°

continued ...



280 B GAPC Regression Tables

Covariate Estimate Std. Error z value P(> |z]) Signif. code
2. 7.033x 102 2.492 x 102 2.823 48x107°  **
x2, 5932x 107 2.392 x 1072 2.480 13x1072  *
k3, 5442x 102 2292 x 102 2.374 18x102 *
2 4385x102  2.194x 1072 1.999 46x102  *
o 3438x 1072 2.096 x 1072 1.640 1.0x 107!

<2, 2263x107%  2.000 x 102 1.132 26x107

ko) 1411x 102 1.903 x 10 7420x10"  4.6x 107"

Kion 3.655x 107  1.808 x 107 2.020x 107" 8.4 x107"

(505 -7.439x107° 1714 x 107 -4340x10"  6.6x 107

Kions -1.177x 107 1.620 x 107 -7270x 10" 47x107"

3. ~1911x102  1.530x 1072 ~1.249 2.1x107"

A0 ~3.198x 107 1.442 x 107 -2.218 27x102 %
Kot -3.703x 107 1.355x 107 -2.733 63x107°  **
2 -4490 x 1072 1.271 x 1072 -3.532 41x107% o
3, ~4990x 107 1.191x 107 ~4.191 28x107° o
<2 -6.092x 102 1.115x 10 ~5.462 47107 o
3, ~6.938x 107 1.045x 107 ~6.642 31x10710 o
KS;A; -7.330 x 10~ 9.795 x 107° —7.483 73 x 10714 e
Kods -8318x 107 9.229x 107 -9.013 <2.0x 10716 e
2 —9.012x 1072  8.742x 107 “1.031x 10" <2.0x 10716 e
K12, -9.325x 107 8354x 107 1116 x 100 <2.0x 10716 *
T -1.010x 107" 8.102x 10 -1.246 x 10" <2.0x 107'6  ***
Kioto -1.061x 107" 7.973x 10" -1.330x 10" <2.0x107'6 e
o -1.134x 107" 7.982x 10 1421 x 10" <2.0x107'6 e
Lo -1.202x 107" 8.130x 107 ~1478x 10" <2.0x 107" 0
e -1.239x 107" 8.400x 10~ -1.476 x 10" <2.0x 10716 o
Ki3es -1.288x 107" 8788 x 107 -1.465x 10" <2.0x1071¢
e -1.363x 107" 9.283x 10 -1.469 x 10" <2.0x 10716 e
Kioes -1.397x10""  9.858x 107 -1417x 100 <2.0x 10710 o
B -1.447 x 107" 1.051 x 107 1377 x 10" <2.0x107'6 e
Ko7 -1516x 107" 1.122x 107 -1.350 x 10" <2.0x 10716
Kiogs -1.547 107" 1.198x 107 1291 x 10" <2.0x 10716 o+
Kous -1.606 x 107" 1.278 x 107 1256 x 10" <2.0x 10716 e+
K132 -1.647x 107" 1.362x 107 -1210x 10" <2.0x 10716 e
K{on -1.694x 107" 1.448 x 107 1170 x 10" <2.0x 10716 e
Kion -1718x 107" 1.536x 107 -1.118 x 10! <2.0x107'6  *x
Ko -1.751x 107" 1.626 x 107 1077 x 10" <2.0x 10716 e
K1 -1799x 107" 1718 x 107 -1.047 x 10" <2.0x 10710 e
K(ors -1.828x 107" 1.812x 107 -1.009 x 10" <2.0x 10716 e
%o ~1.834x 107" 1.906 x 1072 -9.620 <2.0x 10716 wex
ki) -1.870 x 107" 2.002 x 10 -9.345 <2.0x 10716 wex
Gk -1.909 x 107" 2.098 x 1072 -9.098 <2.0x 10716 wer
kD, ~1914x 107" 2.195x 102 -8.720 <20x 10716 e
o -1.930x 107" 2.293 x 107 -8.416 <2.0x 10716 wer
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Ko -1.946 x 107" 2.391 x 107 -8.137 <2.0x 10716 oex
@), ~1.974x 107" 2.490 x 102 ~7.925 <2.0x 10716 et
Kiots -1.959x 107" 2.590 x 107 ~7.563 3.9x 1071 exx
«2, ~1.983x 107" 2.690 x 102 ~7.373 17 x 10713
ngis -1.971x 107" 2790 x 107 -7.065 1.6 x 10712 #+*
2 ~1.980x 107" 2.890 x 107 ~6.852 73x 10712
Kf§§7 -1.985x 107" 2.991 x 107 -6.638 32x 1071 e
2 “1.957x 1070 3.092 x 107 ~6.328 2510710 o
2, ~1.951x 107" 3.194x 107 -6.110 9.9 x 10710 e
«2), ~1.947 x 107" 3.295 x 102 ~5.909 35x107°
nggl -1.937 x 107" 3.397 x 107> -5.701 1.2x1078 o+t
Kfﬁgz -1.926x 107" 3.499x 107 -5.506 3.7x1078  wex
2, ~1.886 x 107" 3.601 x 107 -5.238 1L6x107
Kl -1.883x 107 3.704x 107 ~5.083 37x107 o
@), ~1.866 x 10" 3.806 x 102 ~4.902 95x107
K199 -1.822x 10" 3.909 x 107 ~4.661 31x107° o
Koo -1.788x 107" 4.011 x 107 —4.457 83x10°
x2), ~1.766 x 107" 4.114 x 10 ~4.292 18x1075 ¢
2, “1714x 107" 4217 x 10 —4.065 48x107° o
K%())o -1.679x 107" 4.320x 107 -3.887 1.0x 107*  #+*
Koo —1631x 107" 4.424x 107 ~3.688 23x107% o
Ko J1571x 1070 4527x 107 —3.472 52x 107w
K, ~1526x 107" 4.630 x 102 ~3.295 9.8x 1074 o+
KSooa -1.484x 107" 4.734x 107 -3.134 1.7x107°  **
K, ~1426x 107" 4.837 x 10 ~2.948 32x107°  *
2 ~1351x 107" 4.941 x 102 ~2.735 62x107° **
K§§37 -1.287 x 107" 5.044 x 107 -2.552 1.1x107%2 %
KSo0s -1211x 107" 5148 x 107 -2.353 1.9x107% *
KSons ~1.154x 107" 5.252x 107 ~2.198 28x1072%
2 ~1.086x 10" 5.356 x 102 ~2.027 43x102 %
D, -9.973x107%  5.460 x 107 -1.827 6.8 x 1072

). —9.134x 102 5564 x 102 ~1.642 1.0 x 107!

), ~8430x 102 5.670 x 102 ~1.487 1.4 x 107"

«2), ~7583x 102 5.769 x 1072 ~1.314 1.9 x 107!

K{a00 8.146x 107  5.629x 107* 1447 x 10" <2.0x 107" o
x3) 7.965x 107 5.630 x 107 1415x10'  <2.0x 1076 o
Kio02 7910x 107 5.616 x 107 1.409 x 10" <2.0x 107" o
Kias 7.740 x 107 5.611x 107" 1379 x 10" <2.0x 107"
Kio0s 7.796 x 107 5593 x 107* 1.394 x 10" <2.0x 107" o
Kias 7538 x 107 5589 x 107* 1349 x 10" <2.0x 107! o+
Kians 7.692x 107 5584x 107" 1377 x 100 <2.0x 10716 o
K{ops 7362x10° 5574 x 107 1321x10'  <20x 1076 *
Kiods 7.170x 107 5.567 x 107" 1.288x 10" <2.0x107'¢
Koo 7.164x10° 5563 x 10°* 1288x 10" <2.0x 1076 *x
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
<3 7168 x10°  5552x 10" 1291 x 10" <2.0x 10716
3, 7.103x 107 5546 x 107 1281 x 100 <2.0x 1076 o
k), 6.934x 107  5536x 107 1253 x 100 <2.0x 1076 o
3. 6.731x10°  5534x10™* 1216 x 10" <2.0x 10716 o
), 6.728x 107 5525x 107" 1218 x 100 <2.0x 1076 o
Q). 6.451x10°  5515x10°* 1170 x 10" <2.0x 10716
K3 6.454x 107 5516 x 107* 1170 x 100 <2.0x 10716 =
Q). 6.427 x10° 5509 x 10™* 1167 x 10" <2.0x 10716+
3, 6.444x 107 5500 x 107 1172 x 100 <2.0x 1076 o
<3, 6.090 x 10° 5494 x 10™* 1109 x 10" <2.0x 10716+
2 6.001 x 107 5.492x 107 1093 x 10" <2.0x 1076 o
3, 5990 x 10°  5.487 x 10™* 1.092x 10" <2.0x 10716 o
<3, 5762x107° 5477 x 107* 1.052x 10" <2.0x 107" *x
3. 5920 x10° 5479 x 107 1081 x 10! <2.0x 10716
<3, 5706 x 107 5.472x 107" 1.043x 10" <2.0x 10716 o
3 5772x10° 5468 x 107 1056 x 10! <2.0x 10716+
3. 5400 x 107 5463 x 107 9.884 <2.0x 10716 e
3, 5347 x 107 5453 x 107 9.804 <20 x 10716 wer
3. 5160 x 107 5.455x 107 9.459 <2.0x 10716 e
3, 4995x107°  5.450 x 10 9.166 <2.0x 10710 wex
3 5198 x10° 5446 x 10 9.545 <2.0x 10716 e
3, 4874x107°  5437x 107 8.963 <2.0x 10716 ¢
), 4783x 107 5439x 107 8.793 <2.0x 10716 e
3. 4912x 107  5435x 107 9.039 <2.0x 10716 e
3, 4784x 107 5430x 107 8.810 <2.0x 10716 e
x3). 4470 x 107 5423x 107 8.241 <2.0x 10716 e
13 4423x107°  5419x 107 8.162 <2.0x 10716 e
<3, 4307x10°  5415x 107 7.955 <2.0x 10716 e
k3, 4176 x107° 5414 x 107 7.713 <2.0x 10710 wex
<3, 4.165x 10 5407 x 107 7.702 <2.0x 10716 o
3 4073x107°  5.405x 107 7.536 49x 1071 o
3, 3.892x10° 5403 x 107 7.203 59x 10717 oe
<3 3.951x107°  5.409 x 107* 7.306 2.8x1077 o
3, 3.941x10°  5.402x 107 7.296 3.0x10717  oe
<3, 3566 x 10° 5396 x 10™* 6.608 3910711 o
3 3407 x10°  5392x 107 6318 26x 10710 oe
3 3480 x10° 5386 x 107" 6.461 1.0x 10710 oer
3, 3331x10°  5382x107* 6.190 6.0x 10710 e
3. 3222x10° 5383 x 107 5.985 22x107° o
x3, 3197 x 107 5378 x 107" 5.945 28x107° 0
3 2976 x10°  5374x 107 5.537 31x107 o
3, 2.957x107°  5372x 107 5.504 37x1078 e
k), 2.853x 107 5371x 107 5311 L1x107 %
3. 2674x10° 5368 x 107" 4.982 63x107 o
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
KS;4 2720x 107 5.365x 107" 5.070 40x 107 o+t
(). 2507x 107 5.365x 107 4.674 30x1070 o
"S;e 2.366x107 5361 x107* 4413 LOx 1075 o
«3) 2461x107°  5355x 107 4.595 43x1070
TSR 2254x107°  5.356x 107 4.208 26x107° 0
Kok 2242x10° 5354 % 107 4188 28x107°
Kion 1.964x 107 5.352x 107" 3.671 24 %1070 e
Kion 1.793x 107 5.352x 107 3.350 8.1x107% ot
Kionn 1.752x 107 5348 x 107" 3.275 1.1x107°
Kions 1.813x 107  5.346x 107" 3.391 7.0x 1071 ot
Kions 1.750 x 10 5.345x 107 3.273 L1x107°  *
Kions 1.638 x 107 5.343x 107* 3.067 22x107°
Ko 1.524x 107 5.341x 107 2.853 43x107° **
K{oer 1272x 107 5340 x 107* 2.383 1.7x107%  *
Kions 1251x 107 5.337x107* 2.344 19%x107%  *
Kions 1251 x 107  5.335x 107 2.346 19x 1072 *
3, 1251x 107 5.335x 107" 2.345 1.9x1072  *
x3), 1.074x 107 5334x107* 2.013 44x107%  *
), 1.074x10°  5331x10™* 2.014 44%x102 ¥
3, 9.247x 107" 5330 x 107 1.735 83 x 102

3, 8.128x10* 532910 1.525 13x 107

(). 6.854x 107  5328x 107 1.287 2.0x 107"

3. 6283x107%  5326x107* 1.180 2.4 %107

«3) 5489x10°%  5326x 107 1.030 3.0x 107"

Kios 3.152x 10 5.325x107* 5.920 x 107! 5.5% 107!

K{a%0 3351x107*  5.324x107* 6290 x 107" 53x107"

Kiono 3.037x 107 5322x107* 5710 x 107" 57 x 107"

Kioni 1.344x10*  5320x107* 2530x 107" 8.0x 107"

«3) 2614x10°  5320x107* 4900x 1072 9.6x 107"

Kions —2.063x 107  5319x107* -3900x107%  9.7x107"

Kion -1.684x 10"  5320x107* -3.170 x 107! 7.5% 107"

), 2607 x10* 5317 x10™* ~4900x 107" 6.2 x 107!

Kions -4.055x 10 5318x107* -7.630x 107" 45x107"

«3) ~4648x10*  5317x107* ~8740x 107" 3.8x 107"

Kions -4.826x10"  5316x107* -9.080x107"  3.6x107"

3 ~6827x10%  5317x107* ~1.284 2.0x 107!

3, ~8431x10*  5317x 107 ~1.586 1.1x 107

x3), -8395x10*  5316x10™* ~1.579 1.1x 107!

3, —9441x10*  5316x 107 ~1.776 76x1072 .
G, ~1.116x10°  5315x 107 ~2.099 36x102 %
3, ~1298x10°  5317x 10 ~2.441 15x102  *
ka5 -1.465x 107  5317x107* -2.755 59x107°
Kioss -1.544x 107  5316x107* -2.905 37x107° ¢
Kia97 -1.697 x 107 5316x107* -3.192 14x107°  **

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
3. ~1.886x 107  5316x 107" -3.548 39x107F o
3, -2.019%107°  5316x 107 -3.798 15x 107 e
3 ~2.149x 107 5315x 107" ~4.042 53x107° o
Q) ~2374x107°  5315x 107" ~4.466 8.0x1070 o
Ko)s ~2512x 107 5315x 107" -4.727 23x107° o
Q). ~2.564x 107  5315x 107" -4.824 14x 1070 *r
Kod,s ~2.753% 107 5315x 107" -5.179 22x107 o
Q). ~2.866x 107  5315x 107" -5.393 6.9x107 oo
K -3.003x 107 5315x 107 ~5.650 1.6x 1078 o
Q) -3.253x 107 5315x 107" -6.120 9.3x 10710 oo
k2 -3332x10°  5315x 107 -6.269 3.6x 10710 oo
Q) ~3.468x 107  5316x 107" -6.523 6.9x 10711 oe
), -3.629x107  5317x 107 -6.825 8.8x 10717 e
Q). -3834x10°  5318x10™* ~7.209 56x 10713 oo
<), ~3.898x 107 5318 x 107" -7.331 23x1071% o
x5 -4.023x107° 5367 x 107" ~7.495 6.6 x 10714 oe
<, ~4.009x 107 5262x 107 ~7.619 26x 10714 oo
Y1800 1.839 1.110 1.657 9.8x107 .
Yiso1 2.760 1.043 2.647 81x107°  **
Yiso2 3.873 1.023 3.786 1L5x 107" **
Yisos 4.252 1.017 4.181 29x107°
Pisos 4.936 1.026 4.809 1.5x107¢
Y1805 5.704 1.045 5.456 49x107% e
Y106 6.343 1.069 5.933 30x107°
Y1807 6.951 1.098 6.333 24x 10710 e
Y1808 7.677 1.130 6.793 1L1x 107 ¢
Y1809 8.365 1.166 7.171 7.4 %1071 ek
Y1810 8.961 1.205 7.435 L1x1077  *
Yisin 9.592 1.247 7.695 <2.0x 107" e
Yis12 1.019 x 10" 1.290 7.899 <2.0x 10716 xex
Y1813 1.078 x 10 1.334 8.083 <2.0x 10710 wex
Y1814 1.132 x 10" 1.380 8.201 <2.0x 1071 e
Yisis 1.187 x 10" 1.426 8.324 <2.0x 10716 xex
Yisie 1.241 x 10" 1.474 8.422 <2.0x107' e
Y1817 1.290 x 10 1.521 8.482 <2.0x 1071 e
Yis1s 1.335 x 10" 1.569 8.509 <2.0x 107" o
Yists 1.385 x 10" 1.617 8.564 <2.0x 10716 xex
Y1820 1.426 x 10" 1.666 8.561 <2.0x 1071w
Y1821 1.471 x 10 1.713 8.585 <2.0x 1071 e
Y1822 1.512 x 10" 1.761 8.587 <2.0x 107" o
V1823 1.549 x 10" 1.809 8.566 <2.0x 1071w
Yis24 1.589 x 10" 1.856 8.564 <2.0x 1071¢  wex
Y1825 1.627 x 10 1.902 8.553 <2.0x 1071 e
V1826 1.662 x 10" 1.948 8.528 <2.0x 107" o
V1827 1.694 x 10" 1.994 8.497 <2.0x 10716 e
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Covariate Estimate Std. Error z value P(> |2) Signif. code
Yis2s 1.723 x 10" 2.039 8.448 2.0x1016 o=
Y1829 1.759 x 10" 2.083 8.443 2.0x 10716
Y1830 1.784x 100 2.127 8.388 <2.0x 10710 e
Y1831 1.810x 10" 2.170 8.344 <2.0x 10710 e
Yis32 1.833 x 10" 2212 8.287 2.0x 1076 o
Y1833 1.858 x 10" 2.253 8.248 <2.0x 10716 wex
Y1834 1.885 x 10" 2.294 8.217 <2.0x 10716 ot
Yis3s 1.904 x 10" 2334 8.161 <2.0x 10710 e
Y1836 1.922 x 10" 2.372 8.101 2.0x 10716
Y1837 1.943 x 10" 2.410 8.060 <2.0x 10716 wex
Y1838 1.960 x 10'  2.448 8.006 <2.0x 10710 e
Y1839 1.970 x 10" 2.484 7.932 <2.0x 10710
Y140 1.991 x 10" 2.519 7.901 2.0x 1076
Yisa1 2.003 x 10" 2.554 7.842 2.0 x 10716 wex
Y1842 2015x 10" 2588 7.788 <2.0x 10716 wex
Yisas 2.023 x 10 2.620 7.722 <2.0x 1071 e
Yisaa 2.034 x 10" 2.652 7.672 2.0x 10716
Y1sas 2.043x 10" 2.683 7.615 27x 107 o
Y1846 2.049 x 10 2.713 7.553 43 x 1071 oex
Y1847 2.054 x 10 2.742 7.494 6.7 x 1071
Yis4s 2.058 x 10" 2.769 7.431 L1x107"2 ¢
Y1849 2.062 x 10 2.796 7.372 1.7x 10713 oex
Y1850 2.066 x 10 2.822 7.321 25x 10717 ot
Yisst 2.063 x 10" 2.847 7.245 43x107"7 e
Yiss2 2.066 x 10" 2.872 7.196 6.2x 1077
Y1853 2.060 x 10" 2.895 7.117 L1x10712
Y1854 2.062 x 10" 2917 7.068 L6 x 10712 ¢
Y1855 2.059 x 10" 2.938 7.008 24x 10712
Yisss 2.055 x 10" 2.958 6.948 3.7 x 10712 ¢
Y1857 2.047x 10" 2977 6.878 6.1x 10712 o
Yisss 2.044 x 10" 2.995 6.823 8.9x 10712
Y1859 2.036 x 10 3.012 6.759 14x 107" exx
Y1860 2.030 x 10" 3.028 6.703 2.0 x 1071 ek
Y1se1 2019x 10" 3.043 6.634 3310711 o
Yis62 2.007 x 10" 3.057 6.566 52x 1071 xer
Y1863 1.999 x 10" 3.070 6.509 7.6x 1071 e
Y1864 1.986 x 10 3.083 6.444 12 x 10710 %
Y1865 1.971x 101 3.094 6372 1.9 x 10710 *xx
Y1866 1.961 x 10" 3.104 6.317 2.7 x 10710 eex
Y1867 1.946 x 10" 3.113 6.252 4.0x10710  exx
Y1s6s 1.931 x 10" 3.121 6.189 6.1 x 10710 ¢
Y1869 1913x 10" 3.128 6.118 95x 10710 o
Y1870 1.899 x 10" 3.134 6.059 14x107°
Y1871 1.881 x 10" 3.138 5.992 2.1x107° ¢
Y1872 1.863 x 10" 3.142 5.928 31x10° o

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
Y1873 1.844 x 10" 3.145 5.862 46x107 o+
Y1874 1.825 x 10" 3.147 5.797 6.7 x 1070 **
Yis7s 1.803 x 10" 3.148 5.727 1LOx 1078 ***
Y1876 1.783 x 10" 3.148 5.665 15x107%
V1877 1.761 x 10" 3.147 5.598 22x 1078
Yis7s 1.739 x 10" 3.144 5.531 32x 1078
Yis79 1.716 x 10" 3.141 5.462 47x1078 o
Y1880 1.693 x 10" 3.137 5.397 6.8x 1078 X
YViss1 1.668 x 10" 3.132 5.327 10.0x 1078 **
Yiss2 1.646 x 10" 3.125 5.265 14x107 %+
Yiss3 1.618 x 10" 3.118 5.190 21x 107
V1884 1.593 x 10 3.109 5.123 3.0x 107 e
V1885 1.566 x 10" 3.100 5.051 44x107 o+
Yisse 1.541 x 10" 3.090 4.987 6.1x 107 ***
Yiss7 1.512 x 10" 3.078 4913 9.0x 107 ¢
Yisss 1.488 x 10" 3.066 4.853 12x107¢  *
V1889 1.457 x 10" 3.052 4.774 1.8x107°
Y1890 1.429 x 10" 3.037 4.705 25107
Y1891 1.400 x 10 3.022 4.634 3.6x107°
Y1892 1.370 x 10" 3.005 4.559 51x 107
V1893 1.340 x 10" 2.988 4.484 7.3x 1070
Yisos 1.311 x 10" 2.969 4.415 1LOx 107 ***
Y1895 1.282 x 10 2.949 4.347 14x107° 0
Y1896 1.250 x 10" 2.928 4270 20x107° ¢
V1897 1.219 x 10" 2.907 4.194 271070
Yisos 1.190 x 10" 2.884 4.126 3.7x107°
Y1899 1.157 x 10 2.860 4.047 52x107°
Y1900 1.126 x 10" 2.835 3.970 72x107°
Yiso1 1.093 x 10" 2.809 3.893 9.9x 1070 **
Y1902 1.061 x 10" 2.782 3.815 14x 107
Y1903 1.029 x 10 2.754 3.735 L9x107* o
Y1904 9.972 2.725 3.660 2.5x 107
Y1905 9.651 2.695 3.581 34x107" o
Y1906 9.332 2.664 3.503 4.6x 107" e
Y1907 9.011 2.631 3.424 6.2x 107
Y1908 8.700 2.598 3.348 8.1x 107"
Y1909 8.368 2.564 3.264 L1x107°  **
Yio10 8.062 2.529 3.188 14x107°  **
Yiotn 7.740 2.492 3.106 19x107°  *
Yio12 7.430 2.455 3.026 25%x 107 **
Yiois 7.106 2.417 2.940 33x107° %
Y1914 6.807 2.377 2.863 42x107°
Y1915 6.511 2.337 2.786 53x107°
Yiot6 6.193 2.295 2.698 7.0x 107 **
Yior7 5.892 2.253 2.616 89x107°  **
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Yio1s 5.598 2.209 2.534 1L1x107>  *
Y1919 5.277 2.164 2.438 1.5x107  *
Y1920 5.047 2.119 2.382 1L7x107% *
Y1921 4714 2.072 2.275 23x107% %
Y1922 4.468 2.024 2.207 27x107% %
Y1923 4172 1.975 2.112 35x107% %
Y1924 3.908 1.926 2.030 42x107% %
Y1925 3.643 1.875 1.943 5.2 %1072
Y1926 3.368 1.823 1.848 6.5x 107
Y1927 3.146 1.770 1.777 7.5x 107
Y1928 2.876 1.716 1.676 9.4x 107
Y1929 2.665 1.661 1.605 1.1x 10"
Y1930 2.433 1.605 1.516 1.3x 10"

Y1031 2.236 1.547 1.445 1.5x 107"

Y1932 2.024 1.489 1.359 1.7 x 107"

Y1933 1.821 1.430 1.273 2.0x 107"

Y1934 1.627 1.370 1.188 2.3 x 107

Yio3s 1.461 1.308 1117 2.6x 107"

Y1936 1.308 1.246 1.049 2.9x 107"

Y1937 1.126 1.183 9.520x 107" 3.4 x 107"

Y1938 9.793x 107" 1.118 8760 x 10" 3.8x 107"

Y1939 8.437x 107" 1.053 8.010x 107" 42x107"

Y1940 7510 x 107" 9.863 x 107" 7.610x 107" 4.5x 107"

Y1941 6.043x 107" 9.187x 107" 6.580x 10" 5.1x107"

Y1942 5498 x 107" 8.501 x 107" 6470 x 10" 52x107"

Y1943 4161 x107"  7.805x 107" 5330x 10" 59x107"

Y1944 3.659x 107" 7.099 x 107" 5150x 107" 6.1x 107"

Y1945 2.833x 107" 6.382x107" 4440 x 10" 6.6x107"
V1946 2203x 107" 5.656x 107" 3.890x 10" 7.0x107"

Y1947 1.894x 107" 4.920 x 107" 3.850x 10" 7.0x 107"

Y1948 1.181x 107" 4.174x 107" 2.830x 107" 7.8x 107"

V1949 8.820x 102 3.421x107" 2.580x 10" 8.0x107"

Y1950 6.991x 1072 2,662 x 107" 2.630x 10" 7.9x107"

Y1951 6.857x 107 1.903 x 107" 3.600x 107" 7.2x 107"

Y1952 -1.583x 1072  1.174x 107" -1350x 107" 8.9x 107"

B.1.4 | KAN Model

Table B.4: Regression table of the KAN model for Swedish females. All 230 parameters are significant
even on the 0.1% level. p-value significance codes: 0 **** 0.001 *** 0.01 ** 0.05“.” 0.1°" 1

Covariate Estimate Std. Error z value P(> |z|) Signif. code
xad -4.191 1.750 x 1072 —2.395x 107 <2.0x 10716
2 ~4.264 1.807 x 1072 ~2359x 10> <2.0x 10716 e
xGa), -4.210 1.765 x 1072 —2.385x 107 <2.0x 10716 e
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
<0 ~4.295 1.807 x 1072 —2377x 10 <2.0x 10716 %
), -4.231 1.744 x 107 2426 x 10> <2.0x 10710 e
x50, -4.201 1.730 x 107 2428 x10°  <2.0x 1076w
I -4.277 1.781 x 1072 ~2.402x10°  <2.0x 10716 wer
o -4.293 1.759 x 107 —2441 x 107 <2.0x 1076w
IR ~4.273 1.739 x 1072 ~2458 x 107 <2.0x 10716 wer
. -4.273 1.749 x 107 2443 x 100 <2.0x 1076w
IR ~4.291 1.740 x 1072 —2.467 x 107 <2.0x 10716 *er
e -4.310 1.746 x 107 —2.469 x 10> <2.0x 1071¢ e
< ~4.235 1.689 x 1072 ~2.508 x 107 <2.0x 10716 *er
3, -4.292 1.721 x 107 2494 x 10> <2.0x 10710 e
D, ~4.288 1.704 x 1072 —2516x 107 <2.0x 10716 %o
D -4.227 1.646 x 1072 ~2.568 x 107 <2.0x 10716 *x*
g -4.270 1.692 x 107 —2524x 107 <2.0x 1076w
D ~4.291 1.688 x 1072 ~2.542x 107 <2.0x 10716 wer
Kol -4.145 1.607 x 1072 —2.579x 107 <2.0x 10716 wer
D -4.227 1.619 x 1072 —2.611x10°  <2.0x107'6  *er
132 -4.305 1.656 x 1072 ~2.600 x 107 <2.0x 10716 *xr
D ~4.364 1.672 x 1072 —2.611x 10 <2.0x107'6  *er
3, -4.247 1.587 x 107 —2.676 x 10> <2.0x 1071¢ e
0. ~4.345 1.658 x 1072 ~2.621 x 107 <2.0x 10716 %o
2, -4313 1.617 x 107 ~2.667 x 10> <2.0x 10716 e
kD -4.336 1.621 x 1072 ~2.674x 10 <2.0x 10716 %
D ~4.302 1.593 x 1072 —2.702x 107 <2.0x 10716 wer
o) -4.292 1.561 x 107 —2749x 100 <2.0x 1076w
D ~4.296 1.588 x 1072 ~2.706 x 107 <2.0x 10716 *er
2 -4.274 1.575 x 107 —2714x 100  <2.0x 1076
IR ~4.294 1.595 x 1072 ~2.692x 107 <2.0x 10716 wer
xD, -4.273 1.557 x 107 —2.745x 10 <2.0x1071¢ o
(8, -4.310 1.597 x 1072 —2.700 x 107 <2.0x 10716 *er
L, -4.326 1.609 x 107 —2.689 x 10> <2.0x 1071¢  wxx
D, -4.337 1.606 x 1072 —2.701 x 107 <2.0x 10716 %o
D ~4.320 1.575 x 1072 —2.744x 107 <2.0x 10716 we¢
x(a)e -4.296 1.557 x 1072 —2.759x 107 <2.0x 10716 wer
0. ~4.271 1.539 x 1072 —2.776 x 107 <2.0x 10716 wer
Kol -4.323 1.563 x 1072 —2.767x 107 <2.0x 10716 wer
<0 ~4.362 1.555 x 1072 ~2.806x 107 <2.0x107'6  *er
3 -4.349 1.539 x 1072 ~2.826x 107 <2.0x 10716 *xr
L ~4.396 1.551 x 1072 ~2.834x 10 <2.0x 10716 wer
), ~4.479 1.619 x 107 —2.767 x 10> <2.0x 1071¢ e
0. ~4.463 1.588 x 1072 ~2.810x 107 <2.0x107'6  *er
), ~4.444 1.540 x 107 ~2.885x 10> <2.0x 10716 e
x50 ~4.425 1.514 x 107 —2922x 10 <2.0x 1076
D ~4.466 1.513 x 1072 —2.952x 10 <2.0x 10716 wer
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
) ~4.466 1.486 x 1072 ~3.005x 10 <2.0x 10716
() ~4.475 1.499 x 1072 —2985x 10> <2.0x 10716
() ~4.503 1.489 x 1072 ~3.024x 10 <2.0x 10716 e
() ~4.531 1.483 x 1072 ~3.056 x 10> <2.0x 10716 e
(). ~4.590 1.498 x 1072 ~3.064x 107 <2.0x 10716
() ~4.571 1.489 x 1072 ~3.070 x 10> <2.0x 10716
), -4.571 1.475 x 1072 ~3.099x 107 <2.0x 10716
<3, ~4.629 1.490 x 1072 ~3.107 x 10> <2.0x 10716
), ~4.654 1.498 x 107 ~3.108 x 10> <2.0x 1076 o
3 ~4.670 1.487 x 1072 ~3.041x 10> <2.0x 10716
() ~4.673 1.468 x 1072 ~3.184x 107 <2.0x 10716
x(3)e -4.727 1.486 x 1072 ~3.181x 107 <2.0x 10716
(), ~4.765 1.493 x 1072 ~3.191x 107 <2.0x 10716
TN ~4.769 1.471 x 107 —3242x10°  <2.0x 1076w
2 ~4.820 1.484 x 1072 ~3248x 10> <2.0x 10716 e
xons ~4.841 1.471 x 107 —3292x10°  <2.0x 1076w
(). ~4.858 1.471 x 1072 ~3.302x 10> <2.0x 10716 e
ias, ~4.846 1.459 x 107 ~3322x10°  <2.0x 1076w
(). ~4.901 1.463 x 1072 ~3.351x 10> <2.0x 10716
(D -4.932 1.462 x 107 ~3.373x 10> <2.0x 1076 o
() ~4.950 1.454 x 1072 ~3.405x 10> <2.0x 10716+
() ~4.949 1.431 x 1072 ~3458 x 10> <2.0x 10716 e
£ -4.925 1.412 x 107 ~3.487 x 107 <2.0x 1076w
() ~4.983 1.437 x 1072 ~3467 x 10> <2.0x 10716 e
(). ~5.009 1.433 x 1072 ~3.496 x 107 <2.0x 10716
(), ~5.020 1.421 x 1072 ~3.532x 107 <2.0x 10716 e
), ~5.056 1.422 x 1072 ~3.556x 107 <2.0x 10716 e
8, ~5.055 1.414 x 1072 ~3.575x 107 <2.0x 10716
£, ~5.070 1.406 x 107 ~3.606 x 10> <2.0x 1076 o
) ~5.109 1.407 x 1072 —3.631x 10> <2.0x 10716
() ~5.150 1.430 x 1072 ~3.601 x 10 <2.0x 10716
K3 -5.151 1.420 x 1072 —3.627x 107 <2.0x 10716 e
(), ~5.179 1.425 x 1072 ~3.634x 10> <2.0x 10716
1) -5.175 1.413 x 1072 ~3.663x 107 <2.0x 10716
2 ~5.204 1.412 x 1072 ~3.685x 10> <2.0x 10716 e
1), -5.216 1.419 x 1072 —3.676x 107 <2.0x 10716
(). ~5.287 1.439 x 1072 ~3.673x 10> <2.0x 10716 e
), -5.283 1.437 x 1072 —3.677x 107 <2.0x 10716
(). ~5.304 1.431 x 1072 ~3.708 x 10> <2.0x 10716 e
0 ~5.329 1.442 x 107 ~3.696 x 10> <2.0x 1076 o
() ~5.330 1.444 x 1072 ~3.691 x 10> <2.0x 10716 wx
() ~5.352 1.440 x 1072 ~3718x 10> <2.0x 10716
) ~5.434 1.485 x 1072 —3.661 x 102 <2.0x 10716
(), ~5.420 1.471 x 1072 ~3.685x 10> <2.0x 10716
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
x5 ~5.421 1.476 x 1072 —3.673x 10 <2.0x 10716 %
3, -5.423 1.479 x 107 -3.668 x 10> <2.0x 1071¢ e
<. ~5.477 1.489 x 1072 —3.679x 107 <2.0x 10716 wer
0, -5.523 1.530 x 1072 —3.611x 107 <2.0x 10716 *e*
10 -5.511 1.519 x 1072 —3.628x 107 <2.0x 10716 *er
I ~5.552 1.532 x 1072 ~3.624x10°  <2.0x 10716 wer
3 -5.592 1.551 x 1072 -3.607 x 107 <2.0x 10716 %
0 -5.591 1.552 x 1072 ~3.603x 107 <2.0x 10716 *er
k3, -5.618 1.550 x 107 -3.623x 10> <2.0x1071¢ e
k0 ~5.625 1.556 x 1072 —3.615x 10 <2.0x 10716 %o
o ~5.656 1.562 x 107 -3.622x 10 <2.0x 10710 wxx
) ~5.682 1.560 x 1072 —3.642x 107 <2.0x 10716 wer
B ~5.692 1.568 x 1072 —3.631x 107 <2.0x 10716 *x¢
Kad -5.694 1.564 x 1072 ~3.640 x 107 <2.0x 10716 *er
D ~5.696 1.550 x 1072 ~3.674x 107 <2.0x 10716 wer
ka0 -5.743 1.552 x 1072 —3.700 % 107 <2.0x 10716 *er
D -5.753 1.536 x 1072 ~3.746 x 107 <2.0x 10716 wer
Koo -5.791 1.538 x 107 ~3.765x 10> <2.0x 10716 wer
B ~5.784 1.528 x 1072 ~3.785x 107 <2.0x 10716 %er
x5 ~5.787 1.513 x 107 -3.825x 10  <2.0x1071® e
B, ~5.857 1.529 x 1072 ~3.831x 10 <2.0x 107! %o
), -5.857 1.510 x 107 -3.880 x 10> <2.0x 10716 e
k) -5.862 1.507 x 1072 ~3.889x 107 <2.0x 10716 *er
D, ~5.896 1.518 x 1072 ~3.886x 107 <2.0x 10716 *er
© 2 1118 x 1077 1.075x 107 1.040 x 10> <2.0x 10716 =
2, 1090 x 107" 1.099 x 107 9.920 x 10" <2.0x 1071 o
<2 1.071x 107" 1.071x 107 9.990 x 10" <2.0x 10716 o+
2. 1.089x 107" 1.081x 107 1.007 x 10> <2.0x 10716+
A 109 x 10" 1.043 x 107 1.054 x 10> <2.0x 1076 o
Q). 1.063x 10" 1.035x 107 1027 x 10> <2.0x 10716+
x2. 1.056 x 10" 1.052x 107 1.004 x 10> <2.0x 1076 o
<3, L117x 1070 1.029x 107 1.086 x 10 <2.0x 1076 =
2. 1119x 10" 1.016x 107 1101 x 107 <2.0x 10716
K30 1070 x 107 1.021x 107 1.048 x 10 <2.0x 1076 =
2, 1.091x 10" 1.009 x 107 1.082x 10> <2.0x 10716 o
), 1.088 x 10" 1.008 x 107> 1.080 x 10> <2.0x 1076 o
<2, 1.087x 10" 9.790 x 107 1110 x 10> <2.0x 10716
2, 1.093x 107" 9.910x 107 1103 x 107 <2.0x 10716
<2, 1099 x 107" 9.800 x 107 1121 x 10> <2.0x 10716 o
2, 1125x 10" 9.540 x 107 1179 x 10°  <2.0x 1076 o
<2, 1.068x 107" 9.780 x 107 1.092x 10> <2.0x 10716 o
2. 1.087 x 10" 9.720 x 107 L118 x 10> <2.0x 1076 o
2, 1016 x 107" 9.400 x 107 1.081 x 107 <2.0x 10716
2, 1.083x 10" 9370 x 107 1156 x 107 <2.0x 10716
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
2, 1086 x 107" 9.520x 107* 1140 x 10> <2.0x 10716 o
2, 1L116x 10" 9.550 x 107* 1169 x 10> <2.0x 10716
«2), L117x 107" 9190 x 107* 1215x 107 <2.0x 10716+
3, 1.075x 107" 9.540 x 107" 1127 x 107 <2.0x 10716
«3), 1.089x 107" 9.330x 10 1167 x 10> <2.0x 10716
@), 1.089x 107" 9.340 x 107 1166 x 10> <2.0x 10716
2 1.084x 107" 9.210 x 107 1177 x 100 <2.0x 10716
2, 1.139x 107" 9.050 x 107 1259 x 10> <2.0x 10716+
« 2. 1.090 x 10" 9.220 x 10°* 1182 x 10> <2.0x 1076 o
x 3, 1094 x 107" 9.160 x 107* 1195 x 10> <2.0x 10716 o
@, 1.079x 10" 9.250 x 107* 1166 x 107 <2.0x 10716
3, 1149 x 107" 9.050 x 107* 1270 x 107 <2.0x 10716
«2), 1.104x 10" 9270 x 107* 1192x 10> <2.0x 10716
3, 1.089x 107" 9.310x 107* 1170 x 107 <2.0x 10716
«2, 1.100x 107" 9.260 x 107* 1187 x 10> <2.0x 10716+
12, 1.134x 107" 9.090 x 107 1248 x 100 <2.0x 1076
«2). 1.128x 107" 9.020 x 107 1251 x 10> <2.0x 10716+
x3), 1117x 107" 8930 x 107 1251 x 100 <2.0x 1076
@), 1110x 107" 9.030x 107* 122910 <2.0x 10716
2, 1.163x 107" 8.940 x 10°* 1301 x 10> <2.0x 1076 o
2 1156 x 107" 8.880 x 107* 1301 x 10> <2.0x 10716 o
2, 1.174x 107" 8.930x 107" 1315x 10> <2.0x 10716
«2), 1104 x 107" 9.260 x 107* 1192x 107 <2.0x 10716
Q). 1.104x 107" 9.050 x 107* 1220 x 10> <2.0x 10716
«2), 1146 x 107" 8.760 x 10°* 1309 x 10> <2.0x 1071 o
Q). 1.137x 107" 8.630 x 10°* 1318 x 10> <2.0x 10716
«2) 1.163x 107" 8590 x 107* 1354 % 107 <2.0x 10716+
2 1.195x 107" 8.470 x 107 1411 x 10 <2.0x 10716+
x 2 1136 10" 8570 x 10* 1326 x 10> <2.0x 1076 o
x 2 1167 x 107" 8.480 x 107* 1375 x 10> <2.0x 10716 o
@, 1.194x 107" 8.440x 107" 1415x 102 <2.0x 10716+
3, 1216 x 107" 8510 x 107 1429 x 100 <2.0x 1076
@), 1177 x 107" 8.490 x 107* 1387 x 10> <2.0x 10716
xZ), 1.184x 1071 8.420x 107 1406 x 10> <2.0x 1076
«2, 1.202x 107" 8.460x 107 1421 x 10> <2.0x 10716+
2, 1.185x 107" 8.480x 107* 1398 x 107 <2.0x 10716
2. 1196 x 107" 8.390 x 10™* 1426 x 10> <2.0x 10716+
3, 1214x 107" 8270 x 107* 1469 x 107 <2.0x 10716
2 1217x 107" 8.320x107* 1462 x 10> <2.0x 10716+
2, 1218101 8320x107* 1465 x 10°  <2.0x 1076 o
2 1241107 8170 x 107 1520 x 107 <2.0x 10716
2, 1242x 10" 8.180x107* 1519 x 10> <2.0x 10716
x2), 1263 x 107" 8.070 x 107* 1565 x 107 <2.0x 10716+
@), 1.248x 107" 8.050 x 107* 1551 x 10> <2.0x 10716
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
2, 1219x 10" 7.970 x 107 1530 x 102 <2.0x 10716 =
k2, 1246 x10"  7.910x 107 1575 x 10> <2.0x 1076 o
<2 1.250x 107" 7.860 x 107 1591 x 107 <2.0x 10716
2. 1252x 107" 7.770 x 107 1611 x 10> <2.0x 10716
2 1.263x 107" 7.620 x 107 1657 x 107 <2.0x 10716+
2, 1.233x 10" 7.520x 107 1640 x 107 <2.0x 10716+
<2 1.215x 107" 7.590 x 107 1.602x 107 <2.0x 10716+
2, 1.220x 107" 7.500 x 107 1626 x 10> <2.0x 10716+
x2, 1.224x10"  7.390 x 1074 1657 x 10> <2.0x 1076 o
2. 1.236x 107" 7.330x 107 1686 x 107 <2.0x 10716+
2, 1.221x10"  7.250 x 1074 1683 x 10> <2.0x 1076 o
<, 1229x 107 7.160 x 107* 1717 x 100 <2.0x 1076
. 1.255x 10" 7.100 x 107 1767 x 107 <2.0x 10716+
(2, 1.236x 107" 7.160 x 107 1727 x 10 <2.0x 10716
<D, 1.236x 107" 7.060 x 107 1750 x 10> <2.0x 10716+
x(D, 1.242x 107" 7.030 x 107 1768 x 107 <2.0x 10716+
<2 123910 6.930x 107 1787 x 10> <2.0x 10716 o
3, 1.248x 10" 6.880 x 107 1.814x 107 <2.0x 10716
<2, 1.228x10"" 6870 x 107 1788 x 10> <2.0x 10716 o
k2, 1.252x 10" 6.880 x 107 1819 x 10> <2.0x 1076 o
<2, 1.238x 10" 6.830x 107" 1.812x 107 <2.0x 10716
2, 1261 x10"  6.740 x 107 1.870 x 10> <2.0x 10716 o
2. 1258 x 107" 6.740 x 107 1.865x 107 <2.0x 10716+
2. 1247 x 107" 6710 x 107 1858 x 10> <2.0x 10716
©2 1274x 107" 6.640 x 107 1920 x 10> <2.0x 10716
<2, 1278 x 107" 6.760 x 107 1.890 x 107 <2.0x 10716
2 1.282x 107" 6.670 x 107 1923 x 10 <2.0x 10716
k2, 1270 x 107" 6.650 x 107 1910 x 10> <2.0x 10716
x2), 1.265x 10" 6.620 x 107 1911 x 10> <2.0x 1076 o
2. 1.301x 107" 6.600 x 107 1972x 10 <2.0x 10716+
2, 1.281x10" 6720 x 1074 1907 x 10> <2.0x 1076 o
2, 1.280x 107" 6.630 x 107 1929 x 10> <2.0x 10716
2. 1297 x 107" 6.630 x 107 1956 x 107 <2.0x 10716
3, 1.304x 107" 6.660 x 107 1959 x 107 <2.0x 10716
2, 1296 x 107" 6.620 x 107 1956 x 10> <2.0x 10716
x3, 1317x 107" 6570 x 107 2.004x 10> <2.0x 10716 0w
2 1310x 107" 6.570 x 107 1995 x 10> <2.0x 10716
Kk, 1.324x 107" 6.550 x 107 2021 x 10> <2.0x 10716 0w
<3, 1.341x 10" 6510 x 107 2.060 x 10> <2.0x 10716 oe
K2, 1325100 6.520x 107 2.031x10°  <20x107'0 0o
<2, 1310x 107" 6.490 x 107 2019x 10> <2.0x 10716 oe
k2. 1308 x10" 6410 107 2041 x 107 <2.0x 10716 e
). 1.325x 10" 6380 x 107" 2075 x 10> <2.0x 10716 0w
. 1.334x 10" 6300 x 107 2117 x 10> <2.0x 10716 o
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
K20 1342x 107 6290 x 107 2134x 10 <2.0x107'¢  +
K2 1325x 107" 6.240x 107* 2121 x10°  <2.0x 1076 %
2, 1325x 107 6170 x 107 2147 x 107 <2.0x 10716+
D, 1.347x 107" 6.200x 107" 2172100 <2.0x 1076 %
x2), 1357 x 107" 6.120x 107* 2216 x 107 <2.0x 10716 %o
), 1345x 10" 6.110 x 10°* 2201 x10°  <2.0x 1076 %o
x2), 1.343x 107" 6.140x 107* 2.186x 10> <2.0x 10716 o

B.1.5 | KAN:2 Model

Table B.5: Regression table of the KAN:2 model for Swedish females. 317 of 345 parameters (~ 92%) are
significant on the 5% level. p-value significance codes: 0 *** 0.001

“**0.01%°0.05°.°0.1°1

Covariate Estimate Std. Error z value P(> |2|) Signif. code
xa) ~4.036 2478 x 1072 ~1.628 x 10> <2.0x 10716
2 ~4.148 2578 x 107 ~1.609x 10> <2.0x 10716
1), ~4.076 2500 x 1072 ~1.631 x 10> <2.0x 10716
(). ~4.173 2575 x 1072 ~1.620 x 107 <2.0x 10716
), -4.067 2461 x 1072 ~1.652x 107 <2.0x 10716 e
(). ~4.077 2454 x 1072 ~1.661 x 10> <2.0x 10716
1a0e ~4.114 2513 x 1072 ~1.637 x 10 <2.0x 1076w
() ~4.149 2529 x 1072 ~1.641 x 10> <2.0x 10716
1 a0 ~4.147 2513 x 107 ~1.650 x 102 <2.0x 10716
(), ~4.143 2505 x 1072 ~1.654x 10> <2.0x 10716
D ~4.130 2474 x 1072 ~1.670 x 10> <2.0x 1076 o
x5, ~4.145 2.480 x 1072 ~1671x 107 <2.0x 1076
(), ~4.083 2.408 x 1072 ~1.696 x 10> <2.0x 10716
(), -4.163 2474 x 1072 ~1.683x 107 <2.0x 10716
8, ~4.140 2433 x 107 ~1702x 107 <2.0x 10716 e
), ~4.100 2357 x 1072 ~1739x 102 <2.0x 10716 e
3 ~4.145 2.409 x 1072 ~1721 x 107 <2.0x 10716 e
() -4.156 2.404 x 1072 ~1729x 102 <2.0x 10716
() ~4.000 2252 x 107 ~1777x 107 <2.0x 10716
(), -4.117 2300 x 1072 ~1.790x 10 <2.0x 107'¢ o
) ~4.194 2351 x 1072 ~1.784x 10> <2.0x 10716
3 ~4.225 2374 x 107 ~1.780x 10 <2.0x 10716+
x50, ~4.124 2261 x 1072 ~1.824x 107 <2.0x 1076w
«(), ~4.196 2341 x 10 ~1.793x 10> <2.0x 10716
), ~4.187 2.301 x 1072 ~1.820 x 10> <2.0x 10716 o
(). ~4.176 2293 x 1072 ~1.821 x 10> <2.0x 10716
1326 ~4.196 2281 x 1072 ~1.840 x 107 <2.0x 1076w
() ~4.147 2238 x 1072 ~1.853x 10> <2.0x 10716
130 -4.195 2303 x 107 ~1.821x 107 <2.0x 10716+
(), ~4.182 2305 x 1072 ~1.815x 10> <2.0x 10716 wx
0 ~4.157 2.314x 1072 ~1.797 x 10> <2.0x 1076 o
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
x5, -4.147 2279 x 1072 ~1.820x 10> <2.0x 1076
3, ~4.207 2.332x 1072 ~1.804x 10> <2.0x107'¢ e
<. ~4.185 2318 x 107 ~1.806 x 107 <2.0x 10716 %o
D, -4.198 2308 x 107 ~1.819x 107 <2.0x 10716 *er
(), -4.215 2279 x 107 ~1.850 x 107 <2.0x 10716 *xr
I ~4.187 2238 x 107 ~1.871x 107 <2.0x 10716 %
<) -4.167 2.198 x 107 ~1.896 x 107 <2.0x 10716 *xr
D ~4.237 2233 %107 ~1.897 x 107 <2.0x 10716 *er
x2, ~4.240 2214 x 1072 “1.915x 10> <2.0x 10710 e
I -4.233 2.190 x 1072 ~1.933x 10 <2.0x 10716 wer
x8 -4.292 2223 x 1072 “1.931x 10 <2.0x 10710
) -4.384 2313x 107 ~1.895x 107 <2.0x 10716 *er
8 ~4.350 2266 x 107 ~1919x 107 <2.0x 10716 *x*
x(a), -4375 2236 x 1072 —1.957 x 10 <2.0x 10716 e
B ~4.366 2201 x 107 ~1.984x 107 <2.0x107'6  wer
Kol -4.367 2.188 x 107 ~1.996 x 107 <2.0x 10716 *xr
<8 ~4.368 2.160 x 1072 ~2.023x 10  <2.0x 107! wer
TR -4.408 2.178 x 107 —2.024x 10 <2.0x 10716 *er
<8 ~4.412 2.164 x 1072 ~2.039x 10 <2.0x 10716 *er
k3 ~4.460 2.176 x 1072 —2.049 x 10> <2.0x 1071¢ e
L ~4.496 2.196 x 1072 —2.048x 107 <2.0x 10716 *er
) ~4.496 2.180 x 1072 ~2.062x 10> <2.0x 10716 e
k) -4.522 2175 x 107 —2079x 107 <2.0x 10716 *er
2, ~4.543 2.185 x 1072 —2079x 10> <2.0x 10716 *er
10 ~4.607 2211 x 1072 —2.084x 107  <2.0x 1076 wxx
2 ~4.630 2200 x 1072 ~2.104x 10 <2.0x 10716 wer
< -4.589 2155 x 107 ~2130x 107 <2.0x 10716 wxr
k2 ~4.669 2.198 x 1072 —2124x 10 <2.0x 10716 %o
o -4.695 2207 x 1072 2127 x 10> <2.0x 10716 e
x50 -4.727 2.197 x 107 —2.152x 10 <2.0x 10716 %o
x8 -4.801 2231 x 1072 —2152x 10> <2.0x1071¢ e
x50, -4.802 2208 x 1072 ~2.174x 100 <2.0x 10716 wxx
B -4.794 2.194 x 1072 ~2.185x 107 <2.0x 10716 we*
Ko, -4.786 2174 x 1072 —2202x 107 <2.0x 1076w
B -4.837 2.191 x 107 —2207x 107 <2.0x 107'6  wer
Ko -4.880 2202 x 1072 —2216x 107 <2.0x 10716
L -4.929 2210 x 107 —2231x 10 <2.0x 10716 wer
k2 -4.909 2172 x 107 —2260x 107 <2.0x 10716 *er
<0 ~4.865 2.126 x 107 —2.289x 107 <2.0x 10716 wer
A -4.914 2.160 x 1072 —2275x 10> <2.0x 10710 e
<D -4.957 2174 x 107 ~2280x 107 <2.0x 10716 wer
3, ~4.946 2.154 x 1072 —2296 x 10> <2.0x 10716 e
D -4.983 2.170 x 1072 —2296x 107 <2.0x 10716 *er
D, -4.988 2.165 x 107 —2304x 107 <2.0x 10716 wer
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
130, ~5.003 2.167 x 1072 ~2.309x 102 <2.0x 10716
K ~5.008 2.174 x 107 ~2304x 10> <2.0x 10716 e
() ~5.047 2215 x 107 —2279x 107 <2.0x 10716 e
() ~5.086 2229 x 107 —2282x 107 <2.0x 10716 e
3 -5.071 2229 x 107 —2276x 107 <2.0x 10716
(&) ~5.030 2.188 x 1072 ~2299x 10> <2.0x 10716
G, -5.061 2.184 x 1072 —2317x 107 <2.0x 10716+
() ~5.078 2.190 x 1072 ~2318x 10> <2.0x 10716
), -5.119 2.226 x 1072 ~2.300 x 10> <2.0x 1076 o
), -5.119 2228 x 107 —2298x 10> <2.0x 10716
(). -5.118 2225 x 107 ~2.300x 10> <2.0x 10716
1$a0e ~5.140 2253 x 1072 2281 x 107  <2.0x 1076
() -5.121 2.256 x 1072 ~2270x 10> <2.0x 10716
1as -5.092 2247 x 107 —2266x 10> <2.0x 10716 o
(), ~5.193 2345 x 1072 ~2214x 107 <2.0x107'6 e
xa20 -5.177 2336 x 107 —2217x 107 <2.0x 10716
2 -5.128 2322 x 107 ~2208x 10> <2.0x 10716 e
Ko, -5.111 2325 x 1072 —2.199x 10 <2.0x 10716
(), ~5.148 2364 x 1072 ~2.178 x 10> <2.0x 10716+
2, ~5.224 2.448 x 1072 2134 x 10°  <2.0x 1076 o
), ~5.208 2437 x 1072 ~2.137x 10 <2.0x 10716 e
(). -5.216 2452 x 107 —2127x 10> <2.0x 10716 e
) ~5.249 2.482 x 1072 “2115x 10 <2.0x 10716
(), ~5.259 2.481 x 1072 ~2120x 10> <2.0x 10716 e
) -5.257 2.464 x 1072 ~2.133x 102 <2.0x 10716 e
K ~5.251 2450 x 1072 ~2.143x 10> <2.0x 10716 e
), -5.293 2462 x 1072 2149 x 10 <2.0x 10716
xS ~5.285 2430 x 1072 ~2175x 10> <2.0x 10716 wx
xD. ~5.274 2.391 x 1072 ~2.206 x 10> <2.0x 1076 o
), ~5.289 2354 x 1072 ~2246x 10> <2.0x 10716 e
K. ~5.271 2294 x 10 —2298x 107 <2.0x 10716
) ~5.303 2.280 x 1072 ~2.326x 107 <2.0x 10716 e
) ~5.336 2262 x 107 ~2359x 10> <2.0x 10716 e
K0 ~5.340 2249 x 107 —2375x 107 <2.0x 10716 e
), ~5.350 2239 x 1072 ~2390 x 10> <2.0x 10716
TR -5.353 2.231x 107 —2.400x 10> <2.0x 10716
2 ~5.434 2294 x 1072 ~2369x 10> <2.0x 10716 e
Kol -5.408 2278 x 107 ~2.374x 10 <2.0x 10716 o
8, ~5.427 2299 x 1072 ~2360x 10> <2.0x 10716 e
D, ~5.419 2316 x 1072 ~2.340 x 10> <2.0x 1076 o
£2), 9.262x 1072 3.684x 107 2514x 100 <2.0x 10716 o
2, 9.731x 10  3.783x 107 2572100 <2.0x 1076w
«2), 9.185x 102 3.681x 107 2495 x 100 <2.0x 10716 %o
@), 9.612x 1072 3.740x 107 2570 x 100 <2.0x 1076 %o
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Covariate Estimate Std. Error z value P> |z) Signif. code
s 8.934x107°  3.601x10° 2481x 10"  <2.0x 10716 xx
Kigos 9.294x107  3585x107 2593x 100 <20x 10710 e
Kiane 8.490 x 107 3.644x 107 2330 10" <2.0x10710 e+
Kispy 9.552x 107  3.626x 10 2635x10"0  <20x1071C
Kja0s 9.894x 107  3592x107 2754 x 10" <2.0x10710 e
K13 9.303x107  3.581x107 2598 x 10" <2.0x1071%  **
i 8.959x 107 3.528x10° 2540 x 100 <20x 10716 %%
Kioh 8.859x 107  3.520x 107 2517 x10'  <2.0x10710  *+
Kio, 9.070 x 1072 3.427x107° 2647 x 10" <2.0x 10710 e
Kiots 9.578x107  3.483x 107 2750 x 10" <2.0x 10710 *e*
Kiots 9312x107  3.427x107° 2717100 <20x 10710 ¢
Kiols 9.960 x 10 3340 x 10 2982x 10"  <20x10710 e
Kisle 9.372x107  3.404x107° 2753 x 10" <2.0x1071C  **
Kiot7 9.410x 107 3.387x 107 2778 x 10" <2.0x 10710 e
Ki3ls 8.405x107  3235x107 2598 x 10" <2.0x1071°  **
i1 9.807x 107 3.258x 10" 3010 x 100 <2.0x 10716 o
K132 9.819x 107  3313x107° 2964x 100 <2.0x107'¢  0e
Kl 9.657x 107 3337 x10° 2.894x 10" <2.0x 1071 0
K1, 9.939x107%  3213x107 3.093x10"  <20x1071° e+
Kis 8.999x 107  3314x107° 2716 x 10" <2.0x 10710 *e*
Kis 9.590 x 107 3256 x 10~ 2946 x 10" <2.0x 10710 *e*
Kis 8.964x107  3250x 107 2758 x 10" <2.0x107'¢  **
K132 9.898 107  3215x 107 3.079x 10" <2.0x10710  *e*
K1, 9.794x 107 3.168x 107 3.092x10"  <2.0x1071%
iz 1006 x 107 3234x107 3.110x 10" <2.0x 1076 o
K132 1.028x 107" 3.219x 107 3195x 10" <2.0x107'¢ ¢
K132 9313x 107 3234x107° 2879 x 10" <2.0x10710  *e*
Kioh 1.028x 107" 3.185x107° 3229 10"  <20x1071% e+
%t 1.019x 10" 3240x107° 3.145x 10" <2.0x 10710 *e*
K132 9.363x 107 3224x107 2905x 10" <2.0x10710 e+
K1k 9.498 x107  3201x10° 2967 x 10" <2.0x107'¢ 0
K132s 1.048x 107" 3.149x 107 3329%x 10" <20x1071" e+
K132 1.034x 107" 3.115x107° 3319x10"  <2.0x107'%  **
iy 1030 x 10" 3.075x 107 3350 x 100 <2.0x 10716 e
K132 1.054x 107" 3.113x107° 3386x 10"  <2.0x1071%  **
i 1047 %107 3.09x107 3.379x 100 <2.0x 10710 o
K13l 1.048x 107" 3.088x107° 3395x 10"  <2.0x1071" e+
Ko 1.093x 107" 3.128x107° 3494x 10" <2.0x10710 e
Kio: 1.031x 107" 3.240x107° 3.183x 10"  <20x1071%  **
Kios 9.978x 107 3.177x 107 3141 x 10" <2.0x107'¢
Kiols L125x 107" 3.117x107° 3.611x10" <20x1071°  **
Kiols L133x 107" 3.069 x 107 3.692x 10"  <2.0x107'¢
i 1.089x 10" 3.051x 107 3.571x 100 <2.0x 10716 e
Kisy 1127 x107"  3.020x 107° 3731x 10"  <2.0x107'%  **

continued ...
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
2, 1117 x 10" 3.037x 107 3.678 x 100 <2.0x 10716 %o
2, 1.109x 107" 3.009 x 107 3.684x 100 <2.0x 1076w
x2), 1.174x 107" 3.004x 107 3.908 x 100 <2.0x 10716 %o
2, 1157 x 10" 3.020x 107 3.831x 100 <2.0x 1076w
x2), 1148 x 107" 2.995x 107 3.835x 100 <2.0x 10716 %o
@), 1201 x 107" 2.972x 107 4040 x 10'  <2.0x 10716 o
«2, L155x 107" 2.977x 107 3.881 x 100 <2.0x 10716 %
@), 1.205x 107" 2,988 x 107 4033 x10°  <20x 10716 o
«2) 123110 2957 x 107 4162x 10" <2.0x 10716 0o
x3, 1176 x 107" 2,905 x 107 4046 x 10'  <2.0x 10716 o
@), 1222x107"  2.942x 107 4152x 100 <2.0x 10716 oe
12 1202 x 1070 2,945 x 107 4083x 10" <2.0x 10716 o
@) 1275x 107" 2917 x 107 4372x10'  <20x 10710 o
3 1315x 107" 2,936 x 107 4477 x 100 <2.0x 10716 o
2 1.304x 107" 2.902 x 107 4492 x10'  <2.0x 10716 o
«2), 1244 x 107" 2.885x 107 4313x10'  <2.0x107'C o
«2, 1221 x 107" 2.854x 107 4278 x10'  <2.0x 10716 o
12 1244 x 107" 2.851x 107 4362x10'  <2.0x107'C o
2 1267 x 107" 2.845x 107> 4454 x10'  <2.0x 10716 o
2. 1319x 10" 2.830x 107 4663 x 10" <2.0x 10716 oo
2. 1300 x 107" 2.779 x 107 4678 x 100 <2.0x 10716 o
@), 1.236x 107" 2726 x 107 4535x10°  <20x 10710 o
«2, 1203 x 107" 2.750 x 107 4374x 10" <2.0x 10716 o
2, 1.235x 107" 2.740 x 107 4509 x 10'  <2.0x 10716 o
2, 1203 x 107" 2702 x 107 4452x10'  <2.0x 10716 o
@), 1217 x 107" 2,696 x 107> 4515x 10" <20x 10716 o
«3, 1.212x 107" 2.675x 107 4532x 100 <2.0x 10716 o
@), 1221 x 107" 2,653 x 107 4603 x10°  <2.0x 1071 o
«2 1197 x107" 2,640 x 107> 4533x 100 <2.0x 10716 oo
3, 1176 x 107" 2,665 x 107> 4412x 100 <20x 10716 o
@, 1.231x107" 2,650 x 107 4.645x 10" <2.0x 10710 o
13, 1176 x 1071 2.632x 107 4467 x 10"  <2.0x 10716 o
@) 1118x 10" 2578 x 107 4338x10'  <20x 10710 o
3, 1.132x 107" 2,553 x 107 4433x10"  <2.0x 10710 o
2 1118 x 107" 2.543x107° 4394x10°  <20x 10716 o
x3, 1.104 x 1071 2,556 x 107 4320x 10" <2.0x107'C o
«2, 1.095x 107" 2,546 x 107> 4303 x10'  <2.0x 10716 o
2, 1091 x 107" 2.523x 107 4322x 100 <2.0x 10716 o
2 1.085x 107" 2.535x 107 4282x10°  <20x 10716 o
2. 1.048 x 107" 2526 x 107 4151x 10" <2.0x 10716 0o
2, 1.011x 1070 2,507 x 107 4032100 <2.0x 10716 o
@), 1.044x 107" 2,580 x 107 4047 x 10" <20x 10710 o
«2), 1.047 x 107" 2,556 x 107> 4096 x 10" <2.0x 10716 o
2, 9.712x 107 2539107 3.825x 100 <2.0x 1076 %

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
Kio: 942110 2531x 107 3722x 100 <2.0x 10710 e
{503 9.645x 102 2548 x 10°° 3785x 100 <2.0x 10716
K@Lx 9.839x 107 2.609 x 107 3.772 x 100 <2.0 x 10716 *ex
2. 9.794x 107> 2.580 x 10 3795 x 100 <2.0x 107'6 ¢
Kg;gs 9.601 x 107 2.580 x 107° 3.721 x 100 <2.0x 10716 wex
Koy 9.613x 10> 2.590 x 107 3712x 100 <2.0x 10716 ¢
B 9.681x 102  2.573x 107 3762 x 100 <2.0x 10716
Koo 9.577x 1072 2.545x 107 3762 x 100 <2.0x 10716
5000 9.336x 10 2.524x 107 3.698 x 100 <2.0x 1071 eex
k), 9.634x 1072 2519x107° 3.824x 10" <2.0x 10716 oo+
2 9414x 1072  2.484x 10 3790 x 100 <2.0x 10716 e
Kinns 8.948 x 10  2452x 107 3649 x 100 <2.0x 10710 e
KSo0a 8.905x 1072  2.418x107° 3.683x 10"  <2.0x 10716 oo
K305 8.600 x 102 2.368 x 107 3.632x 100 <2.0x 10716 oo+
KSo0s 8570 x 1072 2.355x107° 3.638 x 10" <2.0x 1076 o0+
Ksopr 8.937x 102  2.340x 107 3.819x 10" <2.0x 10716 o+
Kio0s 8578 x 1072 2.338x107° 3.668 x 10" <2.0x 10716 o0+
KSons 8.576 x 107 2.337x 107 3.670 x 10" <2.0x 10716 o+
K% 8.568 x 1072 2.333x107° 3.673x 100 <2.0x 10716 o0+
Ko 9.017 x 1072 2.381x107° 3.786 x 10" <2.0x 10716 o+
KSohs 8797 x 1072 2.373x107° 3.707 x 10" <2.0x 10716 o0+
KSols 8.879x 1072  2.393x107° 3.710 x 10" <2.0x 10716 oo+
Kol 8.349x 102 2.409x 107 3.465x 10" <2.0x 10716 oo+
<3 6.675x 10  1.235x 107 5.405 65x 1078 o
) 4031x10*  1.254x107* 3.215 13x1073
Ko 5261x10*  1.221x107* 4.308 17 x107° %+
<2 4356 x107* 1227 x 107 3.551 38x107% o
<3, 7.042x10*  1.187x 107 5.933 30x107° o
k3. 4570x10°* 1178 x 10™* 3.880 LOx 1074+
3. 6.993x10*  1.186x 107 5.899 37107 o
3 5419x10*  1.172x 10 4.623 38x1070 e
3 4321x10*  1.158x 107 3.731 19x 1074 *or
3 4667 %10  1.151x 107 4.055 50x107°5 o
Kislo 6.497x 107" 1.131x 10" 5.745 92x1070
Kion 6.710x10™*  1.123x 107* 5.974 23x107° ot
), 5967x10*  1.096 x 10 5.446 52x107° o
s 4.455x 10 1.104x 107" 4.034 55% 1075 o
Koy 5536 x 107" 1.087 x 107* 5.092 35x107 et
Q). 4286x 10 1.067 x 107 4018 59x 1075 o
x3). 4309%x10*  1.080x 107* 3.989 6.6 x107° o
Q). 4804x10*  1.073x107* 4478 75x10° oo
3, 5845x 107 1.036 x 10~ 5.642 L7 x 1078 o
Koo 3399x10*  1.036x107* 3.281 1.0x107° **
e 3.408x 107" 1.047 x107* 3.255 1.1x107°  **

continued ...
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Kioy 4932x107%  1.052x 107 4.688 28x10°6 o
), 4071x10*  1.022x10™* 3.982 6.8x107°
Kios 5749 x 10 1.045x 107! 5.499 38x 1078 o
«3), 4256x10*  1.028x107* 4.140 35x107° o
), 6327x107%  1.026x 107 6.166 7.0x 10710 oo
Q). 3.105x107*  1.012x 107 3.068 22x107° %
ng; 5.256 x 107 1.003 x 107 5.241 1.6 x 1077 ok
3, 2753x107*  1.016 x 10 2711 6.7x107° %+
:cfj;g 2159x10™*  1.008 x 107 2.141 32x1072 *
Ko 4792x10™*  1.012x 107" 4.734 22x107¢ ot
3, 3.968x10%  1.004x 1074 3.952 77x 1075 e
), 2777x10% 1.016x 107 2734 63x107°  **
(), 4994x 107 1.012x 107 4.935 8.0x107 o
Kiom 4.891x10™*  1.005x 107* 4.865 L1x1070 %+
ka5 2.795x10% 9911 x 107 2.820 48x107°  **
3, 3111x107%  9.870x 10°° 3.152 16x10°
Koy 2.893x107*  9.789x 107 2.955 31x107°
e 1.846x 10 9.868 x 107° 1.870 61x107% .
K{a3o 3.843x10*  9.870x107° 3.894 9.9x107°
K{o%0 3570 x 107" 9.878 x 107° 3.615 3.0x 107 e
«3) 2702x 107 9.984 x 107 2.706 6.8x107°  **
ko1 2386x 10 1.023x107* 2332 20%x102  *
). 3474x10%  1.001x 107 3.471 52x 107 oo
<), 6796 x 10°  9.795x 107 6940x 107" 4.9x 107"

), 1306 x 10°  9.625x 107° 1360x 10" 89x107"

Ko 2.394x 10 9.556x 107 2.505 12x1072  *
«3) 2237x10*  9.487x 107 2.358 1.8x1072  *
Kiors 6.046 x 10°  9.491x107° 6370x 10" 52x 107"

Kioto 1.880 x 10™*  9.385x 107 2.003 45x107%  *
3, 6.500 x 10°  9.331 x 107 6.970x 107" 4.9x 107"

Kion 1.890 x 107 9.366 x 10°° 2.018 44x102 %
), 9.287x107°  9.271x107° 1.002 32x10™"

(), 5627x10°  9.184x 107 ~6130x10"  54x10"

3, 1488 x 10*  9.183x 107 1.621 1.1x 107!

(). 6398 x10° 9170 x 10°° 6980 x 10" 4.9x 107

3, ~1.09% x 10" 9.046 x 10°° ~1.211 23 %107

Kiots 1233x10™*  8.921x107° 1.382 1.7 x 107!

13 ~1.482x10°  8.989x10° ~1.650x 107" 8.7x 107"

«3), 5019x107°  8.974x 107 5590x 10" 58x 107"

<3 ~1.088x 107 8.874x10°° ~1.227 22x107"

Kioni —2281x10*  8.871x107° —2.572 1.0x1072 *
() ~1284x10*  8.761x 107 ~1.465 14x 107!

x5, 1.134x 10°  8.698 x 10~° 1300 x 107 9.0x 107"

Kion -5.113x10°  8.582x107° -6.000x10%  9.5x 107"

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
x3) 7.130x 10°  8.516 x 10 8400 x 107> 93 x 10"

Kious -5356x 107 8.447 x 107 -6.340 x 107" 53x 107"

<3 -2.085x 10" 8.345x107° -2.499 12x107%  *
3 “1136x 10  8.185x 107 ~1.388 1.6 x 10"

x3) ~8323x10°  8.028x10°° ~1.040x 107" 9.2x 107

K% 3.801 x 10  8.032x 107" 4730x107" 6.4 x107"

3, -4695x10°  7.935x 107 5920x 10" 55x 107

K50 6.250 x 10°  7.792x 107 8.020x 107" 42x107"

k{2 5428 x107°  7.714x107° 7.040 x 107" 4.8x107"

<3, 2556 x 10°  7.609 x 107° 3360x 1070 7.4x 107"

*io2s 2443 x 107 7.491x107° 3.260 x 107" 7.4%x107"

KS;G 1.690 x 107* 7.406 x 10~° 2.282 22x107%2 %
Kiors 1733 x 107 7.412x 107 2338 19x107%  *
K 1627 x10°  7.302x 10°° 2230x10"  82x 107"

R 1.893x 107  7211x107° 2.625 87x107°  **
nga);o 3413 x107* 7.052 x 107° 4.839 1.3x10°° ok
Q) 3268x 107 6.952x107° 4701 26%x1070
Kion 3.104x 107" 6.884x107° 4.509 65x 1076 e
Q). 4091x10°  6.860x 10~ 5.964 25%x107° o
3, 3941x 10  6.802x10° 5.794 6.9x107° 0
nggs 4676 x 10" 6.705x 107 6.973 3.1x10712  wex
k) 4709x 107 6.692x 107 7.037 20x 10712 e
ngz)w 5384 %10  6.634x 107 8.116 <2.0x 10716 wex
Ko 7.095x 107" 6.567 x 10°° 1080 x 10" <2.0x 1076 **
A 6.246 x 107 6.680 x 107° 9.351 <2.0x 10716 eex
<3 6.233x 107" 6.594x107° 9.453 <2.0x 10716 eer
K190 7.901x 107 6.536 x 107 1209 x 10" <2.0x107'% o
Ko 8.498 x 107"  6.489x107° 1310 x 10" <2.0x107'¢ ¢
K293 8.785x 107" 6.486x 107 1354 x 10" <2.0x107'¢ o
Koo 7.688x 107 6.568 x 107° 1171 x 10" <2.0x 107'¢
A 7730x 10 6.463x 10°° 1196 x 10"  <2.0x 1076 **
3. 8599 x 10*  6.428x10™° 1338 x 100 <2.0x 10716 o
k(397 8.679x 10  6.412x107° 1354 x 10" <2.0x107'¢ oo
K3 8269x 107  6339x107° 1304 x 100 <2.0x 1076 o
k(a9 9.044 x 10" 6.255x 107 1.446 x 10°  <2.0x 107" oo
Kol 9.440x10*  6.189x10°° 1525 x 100 <2.0x 1076 o
Ko 8.997 x 107 6.146 x 107 1464 x 10" <2.0x 107" o
KSonn 9.977x 107 6.064 x 107° 1.645 x 10" <2.0x 107" e
Kia0s 1.075x 10 6.000 x 107 1.792 x 10" <2.0x 107" e
Kio0a 1051107 5922x10°° L775x 10" <2.0x 1076 %
K305 1126 X107 5820107 1.935x 10" <2.0x107'¢
KSos 1174x10° 5790 x 10°° 2028x 10" <2.0x 107w
e 1.107 x 107 5752 x 107 1.924 x 10" <2.0x 10716 ¢
Ko 1218x10° 5757 x 107 2115x 10" <2.0x 1076 o

continued ...
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Ko)s 1173 x 107 5748 x 107 2040 x 100 <2.0x 10716 %o
K 1174x 107 5727 x107° 2050 x 100 <2.0x 10716 *e*
3 1107 x 107 5799 x 107 1909 x 10'  <2.0x 1076
), 1182x 107 5777 x10°° 2046 x 100 <2.0x 10716 %o
%), 1.129x 107 5799 x 107 1948 x 10" <2.0x 10716+
3, 1247 x 10 5816 x 107 2144 x 100 <2.0x 1076w

B.1.6 | KAN:3 Model

Table B.6: Regression table of the KAN:3 model for Swedish females. 385 of 460 parameters (~» 84%)
are significant on the 5% level. p-value significance codes: 0 **** 0.001 *** 0.01 ** 0.05 ‘. 0.1’ 1

Covariate Estimate Std. Error z value P(> |z|) Signif. code
el -4.026 3.499 x 1072 ~1151 x 10> <2.0x 1076 o
) ~4.180 3.679 x 1072 ~1136 x 10> <2.0x 10716
K3 -4.063 3.515x 1072 -1.156 x 10> <2.0x 107'¢  **
(). ~4.132 3.597 x 1072 ~1.149x 102 <2.0x 10716+
), ~4.057 3.445 x 107 ~1178 x 107 <2.0x 10716
1), ~4.085 3.452 x 1072 ~1183x 102 <2.0x 10716
() ~4.131 3.550 x 107 ~1164x 10> <2.0x 10716
() -4.155 3.588 x 1072 ~1158x 102 <2.0x 10716 e
() ~4.168 3.575 x 107 ~1166 x 10> <2.0x 10716+
s ~4.169 3.547 x 107 “1176 x 10 <2.0x 10716+
() ~4.133 3.470 x 1072 ~1191x 10> <2.0x 10716+
D -4.126 3.464 x 1072 -1.191 x 10> <2.0x 107'¢  ***
1), ~4.085 3.394 x 1072 ~1.203x 10> <2.0x 10716
(), ~4.185 3.522 x 1072 ~1.188x 10> <2.0x 10716 e
(), -4.147 3.434 x 1072 ~1.208x 102 <2.0x 10716+
(), ~4.127 3344 x 1072 ~1.234x 10> <2.0x 10716 e
1), -4.137 3.387 x 1072 ~1.222x 102 <2.0x 10716 e
) ~4.215 3433 x 1072 ~1.228x 10 <2.0x 10716 e
13l -4.022 3.166 x 107 —1270 x 102 <2.0x 10716
(), ~4.156 3.244 x 1072 ~1.281 x 10> <2.0x 10716+
D -4.218 3302 x 1072 ~1.277 x 10> <2.0x 1076 o
D ~4.224 3.330 x 1072 ~1.268x 10> <2.0x 10716
k&), -4.116 3.180 x 1072 -1.295x 10> <2.0x 10716 ***
(), ~4.176 3.275 x 1072 ~1.275x 102 <2.0x 10716 e
), ~4.221 3.268 x 1072 ~1292x 107 <2.0x 10716 e
), -4.198 3.247 x 1072 ~1.293x 102 <2.0x 10716
) ~4.211 3.230 x 1072 ~1.304x 10> <2.0x 10716
() -4.133 3.159 x 1072 ~1.309x 102 <2.0x 10716
3 ~4.205 3.291 x 1072 ~1.278 x 10> <2.0x 10716
B ~4.159 3.277 x 107 ~1269 x 10 <2.0x 1076w
8 ~4.215 3.340 x 1072 ~1.262x 10> <2.0x 10716
3, -4.163 3.243x 1072 -1.284 x 10> <2.0x 107'¢  ***

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
(8l -4.212 3293 x 107 “1.279x 10 <2.0x 10710 *xr
xL, -4.229 3.285 x 1072 ~1.287 x 10> <2.0x107'¢ ¢
x(a), -4.219 3.247 x 107 ~1.300x 107 <2.0x 10716 *er
D ~4.248 3214 x 107 S1321x 107 <2.0x 10716 wer
x(a)e -4.241 3.173 x 1072 ~1336x 10> <2.0x 10716 e
D, ~4.201 3.095 x 1072 ~1.357x 107 <2.0x 10716 wer
13 -4.252 3.134x 107 “1357x 100 <2.0x 10716
<0 ~4.273 3.131x 107 ~1.364x 107 <2.0x 10716 wer
3 -4.261 3.102 x 1072 ~1374x 10 <2.0x 10710 e
8 -4.321 3.162 x 107 ~1.366x 107 <2.0x 10716 *er
), -4.410 3.288 x 1072 ~1.341x 10> <2.0x 10710 ¢
0. -4.359 3.205 x 1072 ~1.360x 107 <2.0x 10716 *er
D, -4.423 3.201 x 1072 -1.382x 10> <2.0x 10716
k). -4.359 3.098 x 107 ~1.407 x 107 <2.0x 10716 %
D ~4.366 3.074 x 1072 ~1420x 107 <2.0x 10716 wer
<) -4.392 3.055 x 1072 ~1437x 10 <2.0x 10716 wer
I ~4.434 3.077 x 1072 ~1.441 x 10> <2.0x 10716 wer
0. -4.428 3.057 x 107 ~1.449 x 107 <2.0x 10716
) ~4.484 3.092 x 1072 ~1.450 x 107 <2.0x 10716 *er
xL -4.514 3.118 x 1072 ~1.448 x 10> <2.0x 1071¢  wxx
) ~4.503 3.088 x 107 ~1458 x 107 <2.0x 10716 *er
8 -4.558 3.111 x 107 -1.465x 10 <2.0x107'¢  **
K3, ~4.549 3.103 x 107 ~1.466 x 107 <2.0x 10716 %o
8 ~4.636 3.157 x 1072 ~1.469 x 10> <2.0x 10716 *er
x(a) ~4.663 3.143 x 1072 ~1.484x 10 <2.0x 10716 wer
8. ~4.647 3.094 x 1072 ~1.502x 107 <2.0x 10716 wer
15 -4.684 3.126 x 1072 ~1.499x 107 <2.0x 10716 *er
8 ~4.730 3.152x 107 ~1.501 x 107 <2.0x 10716 %o
k) ~4.750 3.134 x 1072 ~1516x 10> <2.0x 10710 ¢
L. ~4.796 3.162 x 107 ~1517x 107 <2.0x 10716 %o
), -4.812 3.144 x 1072 —1531x 10 <2.0x 10710 e
<0 -4.824 3.134x 107 ~1.539x 107 <2.0x 10716 wer
0, -4.786 3.081 x 1072 -1.554x 10> <2.0x107'¢
() -4.818 3.098 x 1072 ~1.555x 107 <2.0x 10716 %o
D ~4.893 3.145 x 107 ~1.556 x 107 <2.0x 10716 wer
<) -4.911 3.138 x 1072 ~1.565x 107 <2.0x 10716 *xr
kD ~4.908 3.102 x 107 ~1.582x 107 <2.0x 10716 %o
k) -4.826 3.000 x 1072 ~1.609 x 107 <2.0x 10716 *xr
D ~4.894 3.062 x 1072 ~1.598 x 107 <2.0x 10716 wer
x ~4.949 3.104 x 1072 ~1.594x 10 <2.0x1071¢ e
3 -4.973 3.102 x 107 ~1.603x 107 <2.0x 10716 %o
D -4.982 3.112x 107 -1.601 x 10> <2.0x107'¢  **
K3, -4.998 3.119x 107 ~1.602x 107 <2.0x 10716 *er
D -4.992 3.115x 107 ~1.602x 107 <2.0x 10716 wer
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
) -4.948 3.099 x 107 ~1.597 x 10> <2.0x 10716
() ~4.973 3.154 x 1072 ~1577x 102 <2.0x 10716 wex
13 ~5.042 3.204 x 1072 ~1.574x 10 <2.0x 10716
(), ~5.032 3.206 x 1072 ~1.569 x 107 <2.0x 10716
xad -4.967 3.103 x 1072 ~1.600 x 107 <2.0x 10716+
2 ~4.988 3.071 x 1072 ~1.624x 10> <2.0x 10716 e
Kons -5.023 3.093 x 107 ~1.624x 107 <2.0x 10716
(). ~5.080 3.167 x 1072 ~1.604 x 10> <2.0x 10716
), ~5.037 3.154 x 1072 ~1.597 x 10> <2.0x 10716 o
(). ~5.069 3.188 x 1072 ~1.590 x 10> <2.0x 10716
K3 -5.051 3213x 1072 -1.572x 10> <2.0x 107'¢
o0 ~5.038 3.233x 1072 ~1.558 x 102 <2.0x 10716+
() ~5.075 3277 x 1072 ~1.549 x 107 <2.0x 10716
() -5.131 3.396 x 107 ~1511x 102 <2.0x 10716+
(), ~5.123 3.391 x 1072 ~1511x 107 <2.0x 10716+
G, -5.064 3.351 x 1072 ~1511x 102 <2.0x 10716+
(), ~5.057 3.358 x 1072 ~1.506 x 10> <2.0x 10716
G, -5.102 3.430 x 1072 ~1.488x 107 <2.0x 10716
3, ~5.109 3.498 x 1072 ~1461 x 10> <2.0x 10716
) -5.095 3.478 x 1072 -1.465x 10> <2.0x 107'¢  ***
8D -5.178 3.553 x 1072 ~1457x 10> <2.0x 10716
«G) -5.216 3.586 x 1072 ~1454x 10> <2.0x 10716 e
K (a2 -5.166 3.516 x 1072 ~1.469 x 107 <2.0x 10716
(), ~5.169 3.485 x 1072 ~1484x 10> <2.0x 10716 e
K0 -5.135 3.427 x 1072 ~1.498 x 107 <2.0x 10716+
) ~5.202 3.468 x 107 ~1.500 x 10> <2.0x 10716
K0 -5.197 3.408 x 1072 ~1.525x 107 <2.0x 10716 e
8. ~5.210 3343 x 1072 ~1.558 x 10> <2.0x 10716
Ko -5.189 3.242 x 1072 ~1.600 x 10> <2.0x 1076 o
x$a). ~5.180 3.154 x 1072 ~1.642x 107 <2.0x 10716 e
k) -5.225 3.150 x 1072 -1.659 x 10>  <2.0x 10716 ***
) ~5.270 3.150 x 1072 ~1673x 102 <2.0x 10716 e
K -5.237 3.120 x 1072 ~1678 x 107 <2.0x 10716
xa)s -5.283 3.154 x 107 ~1675x 102 <2.0x 10716 e
) ~5.254 3.145 x 1072 ~1.670 x 10> <2.0x 10716
x) -5.345 3277 x 1072 ~1.631 x 10> <2.0x 10716 o
), -5.371 3314 x 1072 ~1.621 x 10> <2.0x 10716
), -5.410 3373 x 1072 ~1.604x 107 <2.0x 10716+
), ~5.372 3371 x 1072 ~1.593 x 10> <2.0x 10716
@ 7297 x 107 8.820x 107 8.273 <2.0x 10710 e
2 9.136 x 102 9.171x 107 9.962 <2.0x 10716 e
2, 7.101x10%  8.816x 10~ 8.054 <2.0x 10716 e
«2, 6.556 x 102 8927 x 107 7.344 21x10717 o
«2, 6.983x10% 8580 x 107 8.139 <2.0x 10716 e

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
k2. 7910 x 102 8584 x 107 9.216 <2.0x 10716 e
x2. 7569 x 1072 8.757 x 107 8.643 <2.0x 10710 e
2, 8.091x1072  8751x107 9.246 <2.0x 10716 e
2. 8.931x107%  8.683x10° 1029 x 10" <2.0x 10716 o
K30 8570 x 1072 8.650 x 107 9.908 <2.0x 10716 e
2, 7497 x 107 8.472x107° 8.850 <2.0x 10716 e
Q) 6.679x 1072 8.434x 107 7.919 <2.0x 10716 wer
<2, 7.585x 102 8277 x 107 9.164 <2.0x 10716 e
2, 8708 x 102 8.507 x 107 1024 x 10" <2.0x 1076 o
<2, 7.962x 1072  8318x 107 9.571 <2.0x 10716 e
2, 9.161 x 102 8.136 x 107 1126 x 10" <2.0x 1076 o
Q. 7509 x 102 8222x 107 9.133 <2.0x 10716 e
2. 9.732x 107> 8.275x 107 1176 x 10" <2.0x 107" **
3, 7.655x 1072 7.788 x 107 9.829 <2.0x 10716 e
<2, 9.425x107%  7.854x 107 1200 x 10" <2.0x 10716 o
3, 8.955x 1072 7.969 x 107 1124x 10" <2.0x 10716 =
2, 7.972x107%  8.040 x 10 9.915 <2.0x 10716 e
2, 7.999x 102 7.734x 107 1.034x 100 <2.0x 1076 o
2. 6.800 x 102 7.947 x 107 8.557 <2.0x 10716 e
2 9.083x 102 7.905x 107 1149 x 10" <2.0x 1076 o
2. 8170 x 102  7.882x 107 1037 x 10" <2.0x 10716+
2. 8.722x 107> 7.758 x 107 1124 x 10" <2.0x 107'¢ %
2, 7.710x 1072 7.603 x 107 1.014x 10" <2.0x 10716
2. 8.742x 107 7.808 x 107 1120 x 10" <2.0x 10716 o
kD, 7.897x 1072 7.701 x 107 1.025x 10" <2.0x 10716
<2, 9.632x107%  7.848x 10 1227 x 10" <2.0x 10716 o
x$2), 9.116x 1072 7.627 x 107 1195 x 10" <2.0x 10716
<2, 8712x102%  7.732x107° 1127 x 10" <2.0x 10716 o
3 9207 x 1072 7.748 x 107 1188 x 10! <2.0x 1076 o
<2, 8.618x1072  7.680x 107 1122x 10" <2.0x 10716+
k2, 9.824x 102 7.580 x 107 1296 x 10" <2.0x 1076 o
<2, 1.039x 107" 7.569 x 107 1.373x 10" <2.0x 10716 o
2. 9.685x 107> 7.433x 107 1303 x 10" <2.0x107'¢  *+
« 2 9.283x 1072 7503 x 107 1237 x 10" <2.0x 10716+
<2, 9.794x 107 7.546 x 10 1298 x 10" <2.0x 10716
<2 9.635x 1072 7.526x 107 1280 x 10! <2.0x 10716+
2, 1.004x 107" 7.629x 107 1316 x 10" <2.0x 10716+
2, 9.465x 107 7.871x 107 1203 x 10" <2.0x 10716+
2 8.626 x 1072 7.665 x 10 1125x 10" <2.0x 10716 o
2, 109 x 10" 7.584x 107 1449 x 100 <2.0x 1076 o
2. 9.267x107%  7.335x 107 1263 x 10" <2.0x 10716+
2. 9.079 x 10> 7.270 x 107 1249 x 10" <2.0x 1076 ¢
«2), 1018 x 1070 7.254x 107 1404 x 100 <2.0x 10716
2. 1.022x 10" 7.281x 107 1404 x 10" <2.0x 10716 o
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
2, 9.818x 102 7.230x 107 1358 x 101 <2.0x 10716 o
@, 1.065x 107" 7.256 x 107 1468 x 10" <2.0x 10716
3, 1.029x 1070 7.311x 107 1408 x 100 <2.0x 10716
2, 9.904x 102  7.230x 107 1370 x 10" <2.0x 10716
xZ), 1128 x 1071 7.242x 107 1557 x 100 <2.0x 10716
«2, 9.917x10%  7.229x 107 1372x 10" <2.0x 10716
12, L111x 107" 7.271x 107 1528 x 100 <2.0x 1076
2. 1.144x 107" 7.184x 107 1592 x 10" <2.0x 10716
2. 1169 x 107" 7.096 x 107 1.648 x 10" <2.0x 1076 o
12, 1.081 x 107" 7.113x 107 1520 x 10" <2.0x 10716+
2, 1.125x 107" 7.147 x 107 1575 x 100 <2.0x107'¢  *
«2 1153 x 107" 7.065 x 107> 1632x 10" <2.0x 10716
2, 1106 x 107" 7.081 x 107 1563 x 10" <2.0x 10716
2 1.140 x 1071 7.043 x 107 1618 x 100 <2.0x 1076
@), 1150 x 107" 7.018 x 107 1638 x 10" <2.0x 10716
«2), 1036 x 107" 6.894x 107 1503 x 10" <2.0x 10716+
@), 1001 x 107" 6.886x 10> 1453 x 10" <2.0x 10716+
e 1120x 107" 6.940 x 107 1615 x 100 <2.0x 1076
2 1078 x 107" 6.865x 10 1570 x 10" <2.0x 10716 o
@) 1.110x 107" 6.794 x 107 1.634x 10" <2.0x107'¢ =
12 9.388x 102 6.603 x 107 1422 x 10" <20x 10716 o
@, 9.670 x 10 6.689 x 10~ 1446 x 10" <2.0x 10716 o
3, 1.032x 107" 6.709 x 107 1539 x 10" <2.0x 10716+
@) 1.108x 107" 6.656 x 107 1.665x 10" <2.0x 10716
«2), 1.042x 107" 6,628 x 107 1572 x 100 <2.0x 10716
«2, 1069 x 107" 6.605 x 107> 1619x 10" <2.0x 10716
3, 1021 x 107" 6.536x 107 1.562x 101 <2.0x 10716
2. 8.653x107%  6.470x 107 1338 x 10" <2.0x 10716
2. 8.107x 102 6.539x 107 1240 x 10" <2.0x 1076 o
x 3, 9.497 x 107 6.533x 107 1454 x 10" <2.0x 10716+
2, 9.136 x 10> 6.505x 107 1404 x 10" <2.0x 107'¢  **
«2) 7.939x 102  6310x 107 1258 x 10" <2.0x 10716+
2, 7.784x 107 6223x 107 1251 x 10" <2.0x 10716
«2), 8.175x 107  6230x 107 1312x 10" <2.0x 10716
2, 8506 x 102 6.314x 107 1347 x 10" <2.0x 10716
«2), 7317x107% 6289 x 107 1164 x 10" <2.0x 10716+
@), 8.183x107%  6.289x 107 1301 x 10" <2.0x 10716+
«2) 7.124x 107 6303 x 107 1130 x 10" <2.0x 10716+
3, 6976 x 1072 6312x 107 1105 x 10" <2.0x 10716 o
@) 8.327x 107  6.356x 107 1310 x 10" <2.0x107'®  *=
2, 7542x 107 6501 x 107 1160 x 10" <2.0x 10716 o
@), 7.781x 107 6451 x 107 1206 x 10" <2.0x 10716
3, 6.822x107  6.384x 107 1069 x 10" <2.0x 10716+
@), 6.832x107%  6372x107 1.072x 10" <2.0x 10716+
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
(393 7.244x 107 6.441x107° 1.125 x 10" <2.0x 107" e
2, 5790x 102 6.512x 107 8.892 <2.0x107'6 et
x(3, 5811x 102  6.444x 107 9.018 Q.0 x 10716 e
Ko 7.449x107 6538 %107 1139x 10" <2.0x 1076 %
Kiog7 7.589x 107 6.564 x 107 L156x 10" <2.0x107'®
e 6.186x 102 6.442x107° 9.603 <2.0x 10716 e
Koo 6.204x 107 6.400x 107 9.695 <2.0x10716  oex
& 5253x 107 6.325x107° 8.305 <2.0x 10716 e
k), 6.167x 107 6369 x 10 9.683 <2.0x 10716 wex
2% 5972x107%  6.294x 107 9.488 <2.0x 10710 oex
Kio0s 6.109x 107 6237 x 107 9.794 <2.0x 10716 e
o 5096 x 107 6.107 x 107 8.345 <2.0x1076 e
). 4990x107%  6.004x 107 8.312 <2.0x 10716 wex
B 5315x 107  6.014x 10 8.837 <2.0x 10716 e
Kou7 5967 x 1072 6.006 x 107 9.935 <2.0x 10716 wex
K%gs 4.666 x 107> 5.996 x 10~ 7.782 <2.0x 10716 wex
Kons 5643x 107 6.033x107° 9.354 <2.0x 10716 e
o 4.857x 1072 6.002x107° 8.092 <2.0x 10716 eer
Kion 5578 x107%  6.155x 107 9.062 <2.0x 10716 oex
3, 6730x 102 6.185x 10 1.088 x 10" <2.0x 10716 **
K013 7289107 6.236x107° 1169 x 10" <2.0x107'¢  **
Kiors 6.095x10% 6217 x 107 9.803 <2.0x 10716 e
o0 2.141x 107 6.306x 107* 3.396 6.9x 107 0wt
3 8.286x 107 6503 x 10™* 1.274 20x 107!

k), 2092x10° 6261 x 10 3.341 83x 1074 oo
<3 2737x107°  6.284x 107 4.355 13x107°
1, 2.147x107°  6.056 x 107 3.545 3.9x 107 o
Q). 1482x10°  6.050 x 107 2.450 14x1072  *
k3. 1.345x10°  6.115x 107 2.199 28x107% %
<3 1.601x10°  6.082x 107 2.633 85x107°  **
k3, 1L123x10° 6026 x 107 1.864 62x1072

<3 9.846 x 10*  6.005x 107 1.640 1.0x 107"

K% 1.703 x 10 5876 x 10™* 2.899 3.7x107°  *
KSL 2.256 x 107 5.822 x 107 3.875 1.1x107 o
k(o1 1.663x 107 5724x 107" 2.906 3.7x107°
<) 1.061x10°  5.841x 10 1.816 69x1072 .
Ko 1.515x 107  5715x107* 2.651 8.0x107°  **
x3), 9.945x10*  5.626x 107 1.768 77x1072 .
Q). 1787 x 107 5.641 x 107 3.167 15x107°
ki) 2.066x 107 5.658 x 107" 3.650 x 107 7.1x 107"

Kions 1.103x 107 5381 x10™* 2.050 40x10%  *
3, 5985x 107  5385x107* 1.111 2.7 x107"

3, 9560 x 10*  5.437x 107 1.758 79%x102 .
Ko 1.701 x 10 5479 x 107* 3.104 19x107°  *
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Covariate Esti
KS%Z lszzlznlaiemi3 Std. Error z value P(> |2|) igni
s 2.157 e 5.306 x 107 3.432 6.0x 107* flgmf. -
oy 7.676 he 5.415x 107" 3.984 6.8 x 107 *H
0y 1.173 e 5.396 x 107 1.423 1.5 x 107" :
£y 1.154 e 5.386 x 107 2.178 2.9 x 107 *
E3 2.029 e 5.269 x 10~ 2.190 2.9 x1072 %
i 1'213 e 5183 x 107" 3.915 9.1 x 1070 e
oy 1:940 e 5.265 x 107 2.314 2.1 x1072 %
ity L0 X107 5163 x 107 3.757 1'7 x 107
o) 1:224 e 5276 x 107* 4.010 x 107" 6.9 x 107" *
e 24107 5.165 x 107 2.369 1.8 x107  *
oy 5.773 ho 5226 x 107* 2.565 1.0 x1072 %
Ey 1.102 e 5.252 x 107 1.099 2.7 x 107"
3 7.465 ho 5.215x 107 2.114 3.5 x 107 *
iy 2.501 e 5.147 x 107 1.450 1.5 x 107"
" 7.269 ho 5179 x 107 4.830 x 107" 6.3 x 107"
o 1.098 e 5.096 x 10~ 1.426 1.5 x 107"
£y 3'569 ho 5113 x 107 2.148 3'2 x107  *
oy 9.609 he 5.169 x 10~ 1.658 9.7 x 107
o) 9.105 ho 5172 x 107 1.858 6'3 x 107
o) 8.418 he 5.220 x 107 1.744 8.1 x 1072
s 1.311 e 5324 x 107 1.581 1.1 x 107"
) 2.560 ho 5174 x 107 2.533 1.1 x 107 *
) 1.523 e 5113 x 107 5.010 x 107" 6.2 x 107"
5y 1.549 e 4.937 x 107* 3.086 2.0 x107 %
300 1.006 x 10° 4.892 x 107 3.167 15x 107 .
o) 7.525 : 12_4 4917 x 107* 2.046 4.1 x 107 :
) 1.102 e 4913 x 107 1.532 1.3 x 107"
oy 3'552 : 12_4 4.880 x 107* 2.259 2'4 x107  *
5 1.108 e 4.879 x 107* 1.753 8.0 x 107
e 1.236 e 4914 x 107 2.254 2.4 x 107 .
s 4.767 ho 4.845x 107* 2.552 1.1 x107 %
5y 1.320 e 4.839x 107 9.850 x 10”" 3.2 x 107"
5y 6.170 ho 4.827 x 107* 2.735 6.2 x107 %
53 5.173 e 4.815x 107" 1.281 2.0 x 107" *
s 1.584 ho 4.731 x 107* 1.093 2.7 x 107!
o 9.848 e 4.688 x 107 3.380 x 107" 7.4 x 107"
0y 5'903 : 10_4 4.669 x 107* 2.109 3'5 x 107
o 7.662 074 4.679 x 107* 1.263 2.1 x 107" *
) 1.250 i ig-a 4.616 x 107 1.660 9'7 x 18*2
o1 1.035 e 4.600 x 107 2.717 6.6 x 107
s 6.771 10_4 4.580 x 107 2.260 2.4 x 107 .
£hy 1.291 x 073 4.556 x 107* 1.486 1.4 x 10‘1 *
5y 1.69 x 10_3 4.462 x 107 2.893 . 0*3

699 x 10 4433 x 107 3.833 a0 )

: 1L3x 107 o

continued ...
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Covariate Estimate Std. Error z value P(> |z]) Signif. code
) 9.652x 10*  4.447x 107" 2.171 3.0x102 %
K827 1.474 x 1072 4.368 x 107 3.375 74 %1074 ok
K3 119x10° 4327 x 10 2771 56x107°  **
Koo 2.040 x 107 4.209 x 107* 4.847 13%x107% et
K3, 1.643x107°  4.232x107* 3.883 1.0x 1074 oo
3, 1330 x 107°  4212x 107 3.159 16x107°
), 6959 x 107 4.157x 10 1.674 94x102 .
<3, 1224x 107 4.115x 107 2.975 29x107° %+
2, 9.759x 10 4.080 x 104 2.392 17x1072  *
Q). 1.343x10°  4.010x 107 3.350 81x 1074 o
k2 2339x10°  3.952x 10 5.919 33x107°0 e
KS% 2.551x 107 3.968 x 107 6.429 1.3x 10710 oo
<. 1.828x107° 3921 x10™* 4.662 31x107¢ o
B 1862x 107 3.887 x 10°* 4.790 1.7x10°  *x
<3 2412x 107 3776 x 107 6.387 1.7 x 10710 e
ngél 2.587x 107  3.716 x 107* 6.961 3.4 x 10712 oex
<) 2213x 107 3.697 x 107 5.984 22x107° 0
s 1.991x10°  3.714x107* 5.360 83x 108
<3, 2.667 x 107 3.691 x 10 7.224 50x 10717 oo
k3, 2142x10°  3.662x 107 5.850 49x107° o
). 2765x107°  3.648 x 107 7.579 35x 1071 e
3 2677 x 107 3.634x 107 7.365 1.8x 10713 e
K3, 1.762x 107 3.647 x 107 4.832 14x1076  »r
3 2353x10°  3.692x 107 6.372 1.9x 10710 wex
K3, 2219x 107 3.649x 107 6.080 12x107°  *
Q). 2496 x10°  3.610x 107 6.914 47 x 10712 o
nggz 2.369x 1077 3.593x 107 6.593 43 x 10711 wer
<3, 2272x107°  3.610x 107 6.293 31x10710 o
3, 3137x107°  3.621x 107 8.665 <2.0x 10716 wex
Q). 3.098 x 10 3.571x107* 8.676 <2.0x 10716 oo
{596 2.083x 107 3.608 x 107* 5.774 7.8x1070  eer
K837 2013x107°  3.609 x 107" 5.579 24x1078  wex
<), 2.839x 107  3539x107* 8.021 <2.0x 10716 o
Klo%s 2.840x 107 3.521x 107 8.066 <2.0x 107" o
KSono 3298x 107  3.483x107* 9.467 <2.0x 10716 e
KS& 2.886x 107  3.492x 107* 8.264 <2.0x 10716 et
<3, 2969 x 107 3.458 x 10™* 8.585 <2.0x 10716 e
3. 2689x10°  3.439x107* 7.820 <2.0x 10716 wer
Kians 3247 x107°  3.375x107* 9.622 <2.0x 10710 oex
k). 3205x107°  3.327x 107 9.633 <2.0x 10716 wex
K§336 3.036 x 107 3.328x 107* 9.122 2.0x10716 e
3 2798 x 107  3.312x107* 8.449 <2.0x 10716 eer
Kod 3.457x10° 3308 x 10 1.045 x 100 <2.0x 10716 o
3 2.826x10°  3.311x10™ 8.537 <2.0x 10716 wex
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
KSoto 3276 x 107  3.280x 107" 9.988 <2.0x10716 e
Kgf)fl 3.035x107°  3.330x107* 9.115 <2.0x 10716 e
Kiors 2307 x107° 3337 x107* 6.913 47 x 10712 e
Kions 1.978x10°  3.347x 107* 5.910 34x107° e
3, 2469x107°  3.332x 107 7.411 13x 10713 oo
k{390 -3.125x 107 1309 x 10~ -2.387 1.7x10%  *
ng()n -8.920x10°  1.341x107° —6.650 x 107" 5.1x 107!

k{302 -3294x 107  1.291x107° —2.552 1.1x107% *
Kions -4.802x 107  1.285x107 -3.736 1.9x107% e
K304 -3.020x 10  1.242x107° —2.432 15x107% *
x§;‘35 -2.146 x 10 1.239x107° -1.732 8.3 x 1072

3. ~1337x10°  1.241x 107 ~1.077 2.8x 107!

() ~2189x10°  1.233x 107 ~1.775 7.6 x 1072

ngés -1.425 x 107 1.221 x 107 -1.167 24x107!

Kfﬁgg -1.068x 107 1213 x107° -8.810 x 107" 3.8x 107!

(3, ~2.169x10°  1.185x10° ~1.831 6.7 x 1072

Kioh 3246 x107°  1.168x 107 -2.781 54x107°
3, ~2.180x10°  1.150x10°° ~1.896 5.8 x 1072

Kio1s -1.254x 107  1.166x 107 -1.076 2.8x107"

ngh -1951x 107  1.141x107 -1.710 8.7 x 1072

K3, ~1.158x10°  1.131x 107 ~1.024 31x10"

3. —2.754x10°  1.122x107° —2.454 14x107%
3. 5538x10°  1.124x10° 4930x 1070 62x 107!

&) ~1.057x10°  1.075x 107 ~9830x10"  33x107"

Kf;?g -5239x107° 1.071 x 107° —4.890 x 107" 6.2x107"

k{920 -1241x 107 1076 x 107 -1.153 25x 107"

), ~2430x10°  1.083x 107 ~2.244 25x1072%
k{922 —2.871x10°  1.056x 107 -2.720 65x107° ¥
Kio2s -3.181x 107  1.068 x 107 -2.979 29x107°
k{2 —6.869x 10°°  1.068 x 107 -6.430x107"  52x107"

x§;‘§5 -1.089x 10  1.066 x 10~ -1.022 3.1x107"

3. ~1.695x10°  1.038x 10°° ~1.633 1.0 x 107!

k{937 -3.040x 107 1.026x 107 -2.962 31x107°
x$3), ~1.891x10°  1.034x 107 ~1.829 6.7 x 1072

k{20 -3.447x 107 1.009 x 107 -3.415 6.4x 107 ovr
(3, 5347 x107°  1.035x107° 5170 x 107" 6.1 x 107"

Kioy -1.667x 10  1.023x 107 -1.630 1.0 x 107!

3, —2135x10°  1.031x10° ~2.071 38x102 *
x(3), ~1571x10°  1.037x 107 ~1510x 10" 88x107

x§;‘§4 -1.236x10”  1.031x107° -1.200 23x107"

135 ~9431x10°  1.019x 107 9260 x 10" 3.5x 107!

nggs 1.236x10°  1.031x107° 1.200 x 107" 9.0 x 107!

x$3), -8903x10°  1.015x107° -8770x 107" 3.8x 107"

(3. ~1.843x10°  1.012x 107 ~1.821 6.9 x 1072

continued ...



310

B GAPC Regression Tables

Covariate Estimate Std. Error z value P(> |z]) Signif. code
PRl -9.596x 10°°  1.029 x 10°° 29320x 10" 35x10"

k{920 -1227x 107 1.033x107° -1.188 23x107"

K3 ~1301x10°  1.040x 107 ~1.251 2.1x107"

8 ~1209x10°  1.047 x 10 ~1.154 2.5x 107"

k(3. ~1.929x10°  1.016x 10 ~1.898 5.8 x 1072

ki) -3.770x 10 1.006 x 107 -3.750 x 107" 7.1x107"

K3, -3.035x10°  9.692x 10 -3.131 17x107°
8. -2.626x107°  9.604 x 107 -2.734 63x107° %+
KSL -1.579x 107 9.731 x 1076 -1.622 1.0x 107!

8. ~1386x10°  9.658 x 10°° ~1.435 1.5 x 107"

Kio2s -1.831x 107 9.595x107° -1.909 5.6x 1072

3 ~1578x10°  9.573x 107 ~1.649 9.9 x 1072

8, -1.837x107°  9.635x10°° -1.907 57x107% .
), 2279%x10°  9.456 x 10°° ~2.411 16x102  *
8 ~1.056x10°  9.432x 10°° ~1.120 26x107"

xS —2322x10°  9.391x10°° -2.472 13x1072  *
Ko -1.343x107 9307 x 107° -1.443 1.5 x 107"

A -1232x10°  9.107 x 10 ~1.353 18x 107"

Ko7 —6.895x 107 9.056 x 10°° -7.600x10% 9.4 x107"

(2, ~1.956x10°  8.972x 107 -2.180 29x107% %
8 ~1.055x10°  8.976x 10°° ~1.176 2.4 %107

8 -1.713x10”°  8.855x10°° -1.935 5.3 x 107

k() 2871x10° 8778 x10°° -3271 11x107°
8 2267x10°  8.752x 107 ~2.591 9.6x107°  **
x(3), -1297x107°  8.689x 10 ~1.492 14x 107"

8, 2512x10°  8475x 107 ~2.964 3.0x10°  **
Kises -3260x 107 8.387x10° -3.888 1.0x 107 oo
<8 -1.953x107°  8.382x 107 -2.330 20x1072 %
ke -3221x10°  8.185x10° -3.935 83x107° 0
<8 ~2503x10°  8.116x 10 ~3.083 20x107° **
ke -3909%x10°  7.885x10° -4.958 71x107 o
o -3.035x107°  7.868 x 10°° -3.858 1.1x107%  eer
Ko 2592x10°  7.785x10°  -3.329 87x 107w
KS;Z -1.185x107° 7.652 x 107 -1.549 1.2x 107"

k{23 -2.182x 107 7.539x 107° -2.895 3.8x107°
<, ~1.764x10°  7.441x 107 ~2.371 18x102 *
8. ~2430x10° 7270 x 10°° ~3.342 83x107* o
e -3990x10°  7.137x10°° -5.591 23x10°8 o
2. ~4346x10°  7.121x10°° -6.104 1L0x 1070
k8, -3277x10° 6979 x 107 -4.696 27 %107 o
2, 23.017x10°  6.892x10° ~4.377 12x107°
nggo -3.735x 107 6.692x 107 -5.581 24x1078  eer
K3 ~4075x10° 6570 x 10°° -6.203 55x 10710 e
<8 ~3.406x10°  6.496 x 10°° -5.243 1.6x107
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Covariate Estimate Std. Error z value P(> |2|) Signif. code
Kions -2.808x 107  6.478 x 107° -4.334 1.5x107° o+
«3), ~4.023x10°  6.419x 10 ~6.267 37x10710 o
nggs -2.946x107°  6.334x10°° -4.650 33x107%  wex
3 ~4019x10°  6274x10° ~6.407 1.5x 10710
x5 3727x107°  6.222x10°° ~5.990 21x107° o
) ~1.830x10°  6.238x 10 ~2.934 33x107°  **
K3, 2980 x10°  6.260 x 10°° ~4.761 19x10°6
&), 2746x10°  6.172x10°° —4.450 8.6x 1070
(3, 2932x10°  6.100x10°° ~4.806 1.5x1076
3, 2608 x10°  6.055x 10 ~4.307 17x107°
k(3. -2383x10°  6.064x10°° -3.929 85x107° ¢t
), ~4012x10°  6.032x10° ~6.651 2910711 o
x(3), 23.931x10°  5.930x10° ~6.630 34x1071 o
). —2.060x 107°  5.977 x 107 ~3.447 57x 107w+
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