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Abstract

¿is thesis is devoted to stochastic mortality modelling. ¿e �rst part considers the popular family of
GAPC models and identi�es several conceptual di�culties of most well-established models. ¿e
GAPC models are embedded in the framework of generalized linear models. However, the vast
majority of the literature only considers the canonical link function and by that omits an important
modelling factor. In our study, we also incorporate a non-canonical link function and demonstrate
its advantages on the �tting performance. While the �rst part focuses on the static component of the
modelling approach, where the main objective is to identify the in�uencing factors that drive the
mortality structure, the second part is devoted to the dynamical part of the modelling approach. For
the proposed model we identify appropriate multivariate stochastic processes for the dynamics of
the involved stochastic factors. We study cointegration relations between the individual components
and compare the forecasting performance with the common GAPC approach. ¿e last part of this
thesis can be considered independently of the previous content. ¿ere, we provide an extensive
characterization of the lifetime distribution which is induced by logistic-type hazard rates of the
proposed Kannisto model. Furthermore, we reveal multiple connections to other well-known lifetime
distributions.

Keywords: stochastic mortality modelling, cointegrated vector autoregressive processes, logistic
hazard rate functions
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Kurzfassung

Die vorliegende Dissertation behandelt stochastische Mortalitätsmodelle. Im ersten Teil werden
zunächst die Familie derGAPC-Modelle vorgestellt und anschließend einige konzeptionelle Probleme
der in der Literatur und Praxis etablierten Modelle herausgestellt. Die GAPC-Modelle sind im
Rahmen von generalisierten linearen Modellen formuliert. Der Großteil der Literatur vernachlässigt
jedoch einen wichtigen Freiheitsgrad der Modellierung, indem nur kanonische Link-Funktionen
betrachtet werden. Unsere Analyse schließt eine nicht kanonische Link-Funktion ein, welche in
vielen Fällen zu einer verbesserten Güte der Regression führt. Während sich der erste Teil der Arbeit
mit der statischen Komponente des Modellierungsansatzes beschä igt, in dem der Fokus darauf
liegt, die Hauptein�ussfaktoren für die Struktur der Mortalität zu identi�zieren, beschä igt sich
der zweite Teil der Arbeit mit deren dynamischen Entwicklungen. Für das von uns vorgeschlagene
Modell analysieren wir, welche multivariaten Prozesse sich eignen, um die Charakteristiken der
Dynamik abzubilden. Dazu wird eine Kointegrationsanalyse durchgeführt, um eventuelle langfristige
Beziehungen zwischen den einzelnen Faktoren aufzudecken. Der abschließende Teil der Arbeit
kann unabhängig von dem Vorhergehenden betrachtet werden. In diesem dritten Teil wird eine
umfangreiche Charakterisierung der Lebenszeit-Verteilung durchgeführt, die durch logistische
Hazard-Raten des vorgeschlagenen Kannisto Models impliziert wird. Darüber hinaus werden
mehrere Verbindungen zu weiteren bekannten Verteilungen hergestellt.

Schlagwörter: stochastische Mortalitätsmodelle, kointegrierte vektorautoregressive Prozesse, logisti-
sche Hazard-Raten-Modelle
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¿esis Structure

In the �rst part of this dissertation, we study stochastic mortality models in the framework of Gener-
alized Age-Period-Cohort (GAPC) models. ¿ese models are represented in terms of generalized
linear models and decompose the mortality across the dimensions age, period, and cohort. We
give a review on well-established models and provide a comparative case study to highlight the
strengths and weaknesses of various model predictors. While some of the GAPC models provide a
good �tting accuracy to historical data, almost all of them share the same conceptional issues, which
are mainly implied by imposed constraints on their parameters to ensure identi�ability or some
structural properties. We identify these issues and o�er a detailed discussion of their implications. In
the second case study, we investigate how a non-canonical link function impacts the quality-of-�t.
¿is particular degree of freedom is mostly ignored in the literature. By drawing conclusions from
both case studies, we propose a model which does not su�er from the common identi�ability issues
and employs a non-canonical link. We denote this model as the Kannisto model since it implies
logistic-type growth of mortality rates, originally studied by the Finnish demographer Kannisto. We
compare the �tting performance to the well-established models and demonstrate the advantages of
the Kannisto model.
In the second part of the thesis, we focus on multivariate dynamics of the system of Kannisto

variables. ¿e objective is to identify an appropriate discrete time stochastic process which is
capable of capturing the characteristics of the underlying stochastic factors that determine the
mortality structure. We will investigate the presence of cointegration relations between the individual
components. Furthermore, we demonstrate that, through the ability of capturing common trends,
vector error correction models (VECMs) are better suited to model the dynamics of those factors
compared to the standard choice of a random walk with dri .
¿e third chapter, on the �eld of survival analysis, is largely independent of the previous content.

¿ere,we provide an extensive characterization of the Kannisto lifetime distribution and its generaliza-
tion, the so-called extended exponential distribution, which are both speci�ed by logistic-type hazard
rate functions as proposed by the Kannisto model of Section 1.9. We study the connections of these
distributions to other well-known life and non-life distributions and prove further characterizing
properties.

¿e individual chapters of this thesis are self-contained and organized as follows.

Chapter 1 | GAPCModels

¿roughout Sections 1.1 to 1.3, we give a brief introduction to some basic concepts of mortality
modelling and provide a review of the historical evolution of human mortality. In Section 1.4, we
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2 ¿esis Structure

formally introduce the family of GAPC mortality models, where we �rst review their building
blocks and subsequently present several well-established models. In Section 1.5, we discuss the
Newton-Raphson and Fisher Scoring algorithms for parameter estimation of GAPC models and in
Section 1.6, we provide a brief introduction to common statistical tests for model assessment and
validation. ¿en, we provide two quantitative case studies with the focus on elderly populations in
Section 1.7. First, we compare various predictors and then analyze the in�uence of a non-canonical
link on the �tting accuracy. In Section 1.8 we identify several common issues of GAPC models which
emerge due to the imposed parameter constraints. Based on the conclusions of the case studies,
we propose a model family in Section 1.9.1, which still belongs to the GAPC family, but does not
share the common problematic properties. Subsequently, a goodness-of-�t analysis is provided for
the proposed Kannisto models, and we employ the standard GAPC approach for forecasting. An
important observation which provides the connection to the second part of the thesis is that the
estimated parameter trajectories suggest that there might be common stochastic trends between the
factors of the Kannisto models. Conclusions on this chapter are given in Section 1.10.

Chapter 2 | Cointegration Analysis for the Kannisto Model

In order to identify an appropriate multivariate time series model for the dynamics of the Kannisto
factors, we �rst provide an overview of some concepts of discrete multivariate stochastic processes
in Section 2.2. In Section 2.3, we o�er a detailed discussion on the speci�cation procedure for
VAR/VECM time series models. ¿is includes methods for lag order selection, unit root and station-
arity tests, parameter estimation under rank restrictions, cointegration tests, and residual tests for
model diagnostics. In Section 2.4, we employ the VECM speci�cation procedure on the Kannisto
models and prove the existence of cointegration relations between their components. ¿is implies
that a VECM process, which is capable of capturing these relations, is an appropriate modelling
approach. In Section 2.5 VECM driven projections of the Kannisto models are conducted and
compared to the standard GAPC approach. Conclusions on this chapter are given in Section 2.6.

Chapter 3 | Characterization of the Kannisto and the Extended Exponential Distribution

¿is chapter can be considered independently of the previous content.¿e connection to the previous
content is that the proposed Kannisto model implies a logistic-type hazard rate. Equivalently to
density functions, hazard rate functions are representatives of distributions. However, the resulting
continuous lifetime distribution, which is based on the logistic-type hazard rate, remained widely
uncharacterized in the literature. In Section 3.2.1, we �rst provide an introduction to central concepts
of survival analysis by considering di�erent representatives of lifetime distributions and reviewing
their properties. In Section 3.3, we reveal several connections of the Kannisto distribution and its
generalization, the so-called extended exponential distribution, to other well-known distributions. In
Section 3.5, we provide an extensive characterization of the Kannisto and the extended exponential
distribution by deriving analytic expressions for the mean residual life function, moment generating
function, central moments, Fisher information matrix, and Kullback-Leibler divergence. Section 3.6
gives a conclusion.
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Contributions of the¿esis

¿e following provides a summary of the individual contributionsmade in this thesis. In Chapter 1, we
investigate the GAPC family of stochastic mortality models. ¿is popular and well-established class
of models decomposes mortality across the dimensions age, period, and cohort, and has been widely
studied by, e.g., Alai and Sherris (2014), Aro and Pennanen (2011), Berkum, Antonio and Vellekoop
(2014), Börger, Fleischer and Kuksin (2014), Cairns, Blake and Dowd (2006), Cairns, Blake, Dowd
et al. (2009), Haberman and Renshaw (2009), Lee and Carter (1992), Lovász (2011), O’Hare and Y. Li
(2012), Plat (2009) and Renshaw and Haberman (2003, 2006). Recent articles, see, e.g., Currie (2016),
Hunt and Blake (2014) and Villegas, Kaishev and Millossovich (2015) showed that the GAPC models
can be embedded in the framework of generalized linear models, as introduced by the seminal paper
of McCullagh and Nelder (1989). ¿is conceptional generalization extends the classical modelling
approaches with a feature which has been widely ignored in the literature. Our contribution in
Section 1.7.2, shows that a non-canonical link function can improve the quality-of-�t for a variety
of predictors. A similar conclusion has also been obtained by Currie (2016). An improved �tting
accuracy is demonstrated, in particular, for populations aged above 60. ¿e fact that a non-canonical
logit link (with Poisson distributed response variable) performs better than the canonical logarithmic
link implies that for high ages the historical age-related mortalities obey a logistic-type growth rather
than an exponential.
Another main contribution of the �rst chapter is the analysis of several conceptional issues of

GAPCmodels. ¿e vast majority of GAPCmodels, especially those with a higher �tting performance,
have an underdetermined predictor function. ¿us, further parameter constraints are required to
ensure parameter identi�cation. ¿is implies that the estimated parameters do not solely depend on
the underlying data, but also on arbitrarily imposed constraints. Hence, particular patterns in the
paths of the parameters may only occur due to those constraints. Related studies on the impact of
the constraints can be found in, e.g., Hunt and Villegas (2015). Apart from parameter interpretability,
the lack of identi�ability also implies further issues. In particular, we demonstrate that the cohort
term fails to serve its intended purpose to capture or reveal cohort e�ects, although it increases
the quality-of-�t. Another point of criticism is that for forecasting purposes, the cohort term is
usually assumed to be independent of periodic terms, which appears to be highly questionable, see
also Currie (2012). Another contribution of this chapter is the signi�cance analysis of individual
parameters, which, to our knowledge, is considered for the �rst time forGAPCmodels.¿e surprising
result of the Wald-type tests shows that one of the best performing models on our reference dataset
has only about 6% (26 of 428) individually signi�cant parameters.
Based on the conclusions of the conducted case studies we propose a mortality model with

identi�able parameters and a non-canonical Poisson link. ¿e so-called Kannisto model family
implies a logistic-type growth of the age-related mortality rates and contains only parametric age-
modulation terms in order to re�ect the regular mortality structure of elderly populations. We
provide a comparative analysis and highlight several advantages of the model.

In the second part of the thesis, we switch our focus to the dynamics of the stochastic factors that
drive the mortality structure. In Chapter 2, we treat the period-related parameters of GAPC models
as components of multivariate time series. ¿e objective is to identify appropriate processes which
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are able to capture essential features of these time series. In the literature, the standard modelling
approach for the period factors has been a random walk with dri , see, e.g., Cairns, Blake and
Dowd (2006), Cairns, Blake, Dowd et al. (2009), Dowd, Cairns, Blake et al. (2010a,b) and Haberman
and Renshaw (2011). ¿is approach is motivated by the fact that the corresponding time series are
non-stationary, and thus, a randomwalk is one of the most elementary potential candidates. However,
the observation of the obtained time series from the proposed Kannisto model indicates long-run
dependencies between the components. An appropriate framework to capture these dependencies
is given by cointegrated processes as proposed by Engle and Granger (1987) and Granger (1981).
Cointegration methods in the context of mortality modelling have been applied by orthogonal
approaches in, e.g., Gaille and Sherris (2012), Lazar and Denuit (2009) and Salhi and Loisel (2011).
¿e contribution of Chapter 2 is to provide statistical evidence for the existence of cointegration
relations by using the tests proposed by Johansen (1988, 1995) and Johansen and Juselius (1990). In
our analysis, we �nd cointegration relations for all proposed Kannisto predictors. Consequently, the
individual periodic terms follow long-run equilibrium relations that cannot be represented by a
random walk process, which is only capable to capture dependencies as instantaneous correlations.
We provide an analysis of the forecasting performance, comparing the standard random walk
approach with cointegrated VECM processes, a er proper speci�cation and validation procedures.
¿e results show that by using VECM processes, we obtain forecasts which are more consistent
with previous developments in terms of central forecasts and prediction intervals. We show that
the framework of cointegration can be successfully applied to stochastic mortality modelling by
using more sophisticated time series processes for the periodic terms. ¿is result is not limited to the
Kannisto predictor and can be applied to other predictors with multiple periodic terms, see, e.g.,
Gaille and Sherris (2011).

¿e contribution of the third part of the thesis is an extensive characterization of the distribution
which is induced by a logistic-type hazard rate function, as proposed in the �rst part. Logistic-type
hazard rate functions have been originally studied by Kannisto (1992) and¿atcher, Kannisto and
Vaupel (1998). However, the primary objective of these studies was to �nd a parametric functionwhich
minimizes the Euclidean distance to empirical age-related mortalities. ¿e authors did not consider
the properties of the lifetime distribution which is induced by the corresponding logistic-type hazard
function. ¿erefore, despite the practical importance of logistic-type hazard rates for mortality
modelling of elderly populations, the implied distribution remained widely uncharacterized. A few
speci�c contributions can be found inMarshall and Olkin (2007) andMissov (2013). In Chapter 3, we
study the relations of the Kannisto distribution and its three-parameter generalization, the so-called
extended exponential distribution, as proposed by Marshall and Olkin (2007). We show several
connections to other well-known life and non-life distributions. Furthermore, we derive analytic
expressions for the mean residual life function, moment generating function, central moments,
Fisher information matrix, and Kullback-Leibler divergence. Moreover, we prove that the extended
exponential and the Kannisto distribution belong to the minimum domain of attraction of the
Weibull distribution, and to the maximum domain of attraction of the Gumbel distribution. ¿e
obtained contributions provide deeper insights to parametric hazard rate models for higher ages,
which hopefully will �nd bene�cial applications in actuarial science or life insurance industry.
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1.1 | Motivation
¿e development of human mortality rates has shown continuing improvements over the past
centuries.¿e life expectancy, as well as themaximum lifespan, have strongly increased. Asmentioned
in Wilmoth (1997), demographic studies do not indicate certain biologic imposed bounds of the
lifetime.¿e life expectancy at birth has experienced substantial gains and has almost tripled over the
human history. ¿ese improvements are mainly based on general enhancements of living standards
and medical developments. ¿e continuous increase of the life expectancy can be attributed to
signi�cant improvements of infant and child mortalities at the beginning of the 20th century as well
as to the reduction of mortality rates of the elderly population due to improved medical diagnostics
methods, treatments of cardiovascular diseases and cancer (see Wilmoth (2000) for more details).
As Oeppen and Vaupel (2002) point out, the female life expectancy at birth in the record-holding
country has increased for 160 years at a steady pace of almost 3 months per year.
Extrapolative methods for projections of mortality rates have been used by actuaries for centuries.

Traditionally, deterministicmodelling approaches have been used by life insurers for the calculation of
premiums and reserves. ¿e risk of a deviation between forecasted mortality rates and the eventually
realized mortality rates has been assumed to be diversi�ed over time and individuals. As historical
data of the past century shows, mortality rates improved quite unpredictable under classic models,
so that the mortality risk remained undiversi�ed. Traditional deterministic approaches appeared to
be inadequate since the projections made by these models showed a substantial underestimation

5
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of the life expectancy trend. ¿e world’s oldest insurance company, the Equitable Life, which was
established in 1762, declared bankruptcy in 2000, as a result of overestimated mortality rates and
falling interest rates, see Roberts (2012).
Mortality modelling has a long history, see, e.g., Gompertz (1825) and Moivre (1725). However,

signi�cant developments of mathematical methods were achieved only recently, see Booth (2006) and
Booth and Tickle (2008) for detailed reviews of the methodological developments of demographic
forecasting since 1980. Reviews on di�erent approaches to mortality modelling and forecasting
methods can be found in Pitacco, Denuit, Haberman and Olivieri (2009), Pollard, Benjamin and
Soliman (1987), Tabeau, Berg Jeths and Heathcote (2001), Tuljapurkar and Boe (1998) and Wong-
Fupuy and Haberman (2004).
Historical lifetime data shows clearly thatmortality rates decrease over time. However, the reduction

di�ers for di�erent ages and there are also variations among various cohorts. In the past two decades,
enormous e�orts have been made to explore stochastic models with the objective to describe the
dynamics of human mortalities and to develop pricing tools for classical and modern mortality-
linked securities. ¿e increasing amount of academic attention was substantially triggered by the life
insurance industry and their new challenges in risk management and internal models brought by
Solvency 2.
Research with the focus on the impact of mortality decrease on mortality linked securities such as

annuities and life insurance can be found among others in Ballotta andHaberman (2003), Gatzert and
Wesker (2014) and Olivieri (2001). For valuations of mortality-contingent claims, see, e.g., Ballotta
and Haberman (2006) and Milevsky and Promislow (2001). Publications on stochastic forward
mortality models, inspired by modelling approaches of interest rates in �nance, can be found in, e.g.,
Bauer, Benth and Kiesel (2012), Bi�s (2005), Bi�s and Millossovich (2006), Dahl (2004), Dahl and
Møller (2006), Norberg (2010) and Tappe and Weber (2014).
Before we provide an introduction to basic concepts for mortality models, we �rst bring clarity in

di�erent types of involved mortality-related risks. We follow the conventions of Cairns, Blake and
Dowd (2006) to distinguish between the following risks.

▸ ¿etermmortality risk covers all forms of uncertainty about the futuremortality rates, including
increases or decreases of mortality rates.

▸ ¿e term longevity risk encompasses the uncertainty in the long-term trend of mortality rates
and indicates that future survival rates turn out to be higher than anticipated.

▸ ¿e term short-term or catastrophic mortality risk covers the risk of catastrophic events leading
to signi�cantly higher mortality rates. ¿ese include, in particular, in�uenza pandemics such
as the Spanish �u in 1918 or the recent swine �u pandemic and also all kinds of natural
catastrophes such as the earthquake at the west coast of Sumatra and the resulting tsunami in
December 2004.

¿e remarkable evolution of mortality improvements beyond previously anticipated limits has
shown the need for sophisticated mortality models. ¿e main advantage of the development of
stochastic mortality modelling is that they produce forecasts in terms of probability distributions
rather than deterministic point forecasts and thus allowing quanti�cation of the forecast uncertainty.
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¿us, the focus of this thesis is to provide additional methods for the quanti�cation of mortality and
longevity risks. Both risks are not only generally important for life insurers, but they are also used for
the determination of the Solvency Capital Requirement (SCR) as requested by Solvency 2.

¿e following content of this chapter is organized as follows. In Sections 1.2 and 1.3, we give a brief
introduction to elementary concepts of mortality modelling and review the historical evolution of
human mortality. In Section 1.4, we formally introduce the family of GAPC mortality models, where
we �rst introduce their building blocks and subsequently present several well-established models. In
Section 1.5, we discuss the Newton-Raphson and Fisher Scoring algorithms for parameter estimation
of GAPCmodels in the framework of generalized linear models, and in Section 1.6, we provide a brief
introduction to common statistical tests for model assessment and validation. ¿e comprehensive
surveys in Sections 1.4 to 1.6 serve as preparations, and for the most part, do not contain any original
research. A er the theoretical foundations of stochastic mortality models, parameter estimations for
GLMs, and statistical tests for model comparison, we provide two quantitative case studies with the
focus on elderly populations in Section 1.7. In the �rst case study, we compare various predictors,
and subsequently, analyze the in�uence of a non-canonical link function on the �tting accuracy. In
Section 1.8 we identify several common issues of GAPC models which emerge due to the imposed
parameter constraints. Based on the conclusions of the case studies, we propose a model family, the
so-called Kannisto model, in Section 1.9.1. Subsequently, a goodness-of-�t analysis for the proposed
model is provided. In Section 1.9.4 we consider the standard GAPC approach for forecasting which
will be used as a reference for a more sophisticated time series approach that will be introduced in
Chapter 2. Conclusions and an outlook are provided in Section 1.10.

1.2 | Basic Concepts and Source of Data

To identify patterns and trends in humanmortality a precise and reliable data source over an extended
period is required. For comparative studies, the data should also be available for several groups,
distinguished by country and gender. For most developed countries mortality data is collected by
o�cial authorities or population registers. To facilitate research on human mortality the Human
Mortality Database (HMD) was initiated aiming to provide continuous collections and aggregations
of mortality data. HMD is a joint project of the Department of Demography at the University of
California, Berkeley, USA, and the Max Planck Institute for Demographic Research in Rostock,
Germany. Detailed population and mortality data is freely available for researchers at www.mortality.
org. Currently, the HMD database o�ers life tables for 38 countries. ¿ese tables represent an
empirical record of mortality-related quantities with data grouped by countries, gender, periods
or cohorts. ¿e data covers the ages from 0 to 110 for each country with yearly increments in age
and time. ¿e most extensive collection of life data, which starts from the year 1751, is provided
for Sweden. ¿is particular dataset will serve as our reference mortality dataset for the illustration
of the historical changes in human mortality, as will be provided in Section 1.3, and also for the
case studies of Generalized Age-Period-Cohort models in Section 1.7. We took that particular set of
data, �rstly because it covers the longest available period and on the other hand, we focused on the
female population, since they were not strongly involved in military con�icts. In general, mortality
data of male populations show substantial distortions in times of wars. ¿us, to highlight long-term

www.mortality.org
www.mortality.org
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e�ects, male data is mostly excluded from the demonstrations. Further illustrations of mortality
improvements, that clearly show the dramatic impact of epidemic diseases and wars on human life
over the last century, can be found in Appendix A.2.
Initially, we provide some notes on how HMD life tables are structured. ¿e concept of life tables

belongs to the most established tools in the empirical survival analysis. One of the �rst documented
developments of a life table goes back to the well-known astronomer Edmund Halley, see Halley
(1693). Estimation methods for hazard rates, survival functions, and other lifetime representatives
(see Section 3.2.1) are designed for situations, where a large sample size is available, but the exact
times of the events are unknown, see, e.g., Rinne (2014). ¿at means that generally, life tables do not
contain information on the level of individuals. Mortality rates are rather aggregated population-wise
and grouped by ages and periods. ¿us, in a discrete setting, a person of age x has an exact age in the
interval (︀x ,x + 1). Similarly, an event that occurs in year t, takes place at some time in the interval(︀t,t + 1). For each calendar year t and age x the quantities included in life tables are:

▸ lt,x , the number of individuals aged x during the year t. Note that in life tables lt,0 is usually
normalized to a particular value (e.g., 105), the so-called radix.

▸ dt,x , the number of deaths occurred during the year t at age x.
▸ pt,x , the conditional probability at the calendar year t of surviving to age x + 1 given the
survival to age x.

▸ qt,x , the conditional probability at time t for an individual of age x not surviving up to age
x + 1. Note that qt,x = 1 − pt,x .

▸ et,x , the expectation of remaining life at age x in calendar year t.

Detailed information on the methods used to create HMD life tables can be found in Wilmoth,
Andreev, Jdanov et al. (2007).

1.2.1 | Real Cohorts vs. Synthetic Cohorts

In the following, we will distinguish between the concepts of real cohorts and synthetic cohorts and
also introduce a slightly more general meaning of the term cohort.
In the usual sense, a cohort T is a group of individuals with the same year of birth, namely T , or in

other words, a group of individuals aged 0 in the period T . We will use the tuple (T , 0)∗ to denote
the real birth cohorts. A group of people of the same birth cohort will turn the same age in future
periods in case of survival. ¿e subgroup of individuals of the birth cohort (T , 0)∗, that survive y
years, such that in year T + y their age is y, will be denoted as (T + y, y)∗ and called a generalized
real cohort or simply real cohort. For instance, the (1950, 0)∗ and the (2015, 65)∗ real cohorts are
both groups of people with the birth year 1950, but the later cohort contains only the subgroup of
individuals who survived up to age 65 in 2015. ¿is conceptual distinction of real cohorts will be
used later.
Next, we introduce an arti�cial cohort type, the so-called synthetic cohort. Synthetic cohorts are

groups of people aged x at a reference period T and which, at every further age throughout their
life, experience the age-speci�c death/survival rates of that period T (cf., Mokyr, 2003). Synthetic
cohorts will be denoted by (T , x).
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Table 1.1: An illustration of mortality rates referring to real and synthetic cohorts. ¿e columns of the
table contain age-speci�c mortality rates for �xed periods and the rows contain mortality rates for �xed
ages at di�erent periods, respectively. ¿e essential di�erence between a real and a synthetic cohort is
the assumption which age-speci�c mortality rates a group of individuals will experience during their
lives. Mortality rates of real cohorts are arranged on diagonals, see the orange marked entries of the real
cohort (2006,60)∗. Mortality rates of synthetic cohorts are arranged on verticals, see the blue marked
entries of the synthetic cohort (2006,60).
⋯ q2006,110 q2007,110 q2008,110 q2009,110 q2010,110 q2011,110 q2012,110 q2013,110 q2014,110 ?

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ q2006,75 q2007,75 q2008,75 q2009,75 q2010,75 q2011,75 q2012,75 q2013,75 q2014,75 ?

⋯ q2006,74 q2007,74 q2008,74 q2009,74 q2010,74 q2011,74 q2012,74 q2013,74 q2014,74 ?

⋯ q2006,73 q2007,73 q2008,73 q2009,73 q2010,73 q2011,73 q2012,73 q2013,73 q2014,73 ?

⋯ q2006,72 q2007,72 q2008,72 q2009,72 q2010,72 q2011,72 q2012,72 q2013,72 q2014,72 ?

⋯ q2006,71 q2007,71 q2008,71 q2009,71 q2010,71 q2011,71 q2012,71 q2013,71 q2014,71 ?

⋯ q2006,70 q2007,70 q2008,70 q2009,70 q2010,70 q2011,70 q2012,70 q2013,70 q2014,70 ?

⋯ q2006,69 q2007,69 q2008,69 q2009,69 q2010,69 q2011,69 q2012,69 q2013,69 q2014,69 ?

⋯ q2006,68 q2007,68 q2008,68 q2009,68 q2010,68 q2011,68 q2012,68 q2013,68 q2014,68 ?

⋯ q2006,67 q2007,67 q2008,67 q2009,67 q2010,67 q2011,67 q2012,67 q2013,67 q2014,67 ?

⋯ q2006,66 q2007,66 q2008,66 q2009,66 q2010,66 q2011,66 q2012,66 q2013,66 q2014,66 ?

⋯ q2006,65 q2007,65 q2008,65 q2009,65 q2010,65 q2011,65 q2012,65 q2013,65 q2014,65 ?

⋯ q2006,64 q2007,64 q2008,64 q2009,64 q2010,64 q2011,64 q2012,64 q2013,64 q2014,64 ?

⋯ q2006,63 q2007,63 q2008,63 q2009,63 q2010,63 q2011,63 q2012,63 q2013,63 q2014,63 ?

⋯ q2006,62 q2007,62 q2008,62 q2009,62 q2010,62 q2011,62 q2012,62 q2013,62 q2014,62 ?

⋯ q2006,61 q2007,61 q2008,61 q2009,61 q2010,61 q2011,61 q2012,61 q2013,61 q2014,61 ?

⋯ q2006,60 q2007,60 q2008,60 q2009,60 q2010,60 q2011,60 q2012,60 q2013,60 q2014,60 ?

To make the above de�nitions more precise, we consider an array of mortality rates qt,x as
illustrated in Table 1.1. ¿e columns of the table contain age-speci�c mortality rates for �xed periods,
and the rows contain the mortality rates for �xed ages at di�erent periods. Mortality rates can be
grouped according to di�erent arrangements, cf., e.g., Liu (2008).

▸ A diagonal arrangement

{qt,x , qt+1,x+1, . . . , qt+n,x+n} ,
corresponds to a sequence of mortality rates of individuals with the same year of birth t − x.
For instance, the orange marked entries {q2006,60, . . . , q2014,68} of Table 1.1 correspond to a
real cohort born in t − x = 1946. We can alternatively de�ne a real cohort (T , x)∗ as a group of
individuals, which experience the diagonal-arranged age-speci�c mortality rates qT ,x , qT+1,x+1,
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qT+2,x+2, . . . , qT+c,x+c , for some integer c such that x + c is the highest available age of the life
table.

▸ A vertical arrangement,

{qt,x , qt,x+1, . . . , qt,x+n} ,
corresponds to a sequence of age-speci�c mortality rates at some �xed period t. ¿e column
entries contain mortality rates corresponding to distinct real cohorts, see the blue marked
entries of Table 1.1. By the above de�nition, a synthetic cohort (T , x) is a �ctive group of
individuals with age x in T , which experience the vertical-arranged age-speci�c mortality rates
of the period T , i.e., qT ,x , qT ,x+1, qT ,x+2, . . . , qT ,x+c , for some integer c, such that x + c is the
highest available age of the life table. Synthetic cohorts are auxiliary constructions and are o en
used when the actual mortality rates needed for statements on real cohort are not available.
¿emost popular example is the life expectancy at birth. In order to provide the life expectancy
of, say a newborn in 2015, one would need future mortality rates q2015,0, q2016,1, . . . , q2015+c,c .
¿ese are obviously not available at present time. To avoid the problem of missing data, one
can make the assumption, that a newborn will experience the same age-speci�c mortality rate
in year 2015 + y like individuals aged y in 2015. ¿is is equivalently to the assumption that the
newborn belongs to the synthetic cohort (2015,0).

▸ A horizontal arrangement

{qt,x , qt+1,x , . . . ,qt+n,x}
corresponds to a time series of mortality rates referring to a given age x.

As a concluding remark, note that a synthetic cohort is an auxiliary construction and due to
mortality changes over time, a real cohort (T ,y)∗ will not experience the same mortality rates as
those of the synthetic cohort (T ,y). In the further course of the thesis, we will estimate parametric
hazard rates for �xed periods. ¿e advantage of considering mortality rates of synthetic cohorts over
real cohorts is that observations exist on the entire age range for any given reference time. For real
cohorts on the other side, only a few observations might be available. ¿e non-linear structure of
mortality rates makes the estimation on shorter ranges less reliable. ¿us, projections of life tables
are o en based on modelling mortalities of synthetic cohorts rather than of real cohorts. However,
projections based on synthetic cohorts can be used to obtain forecasts for real cohorts, see, e.g.,
Section 2.5.5.

1.3 | Historical Evolution of Human Mortality
¿e objective of this section is to present an empirical study on the evolution of human mortalities
that have experienced signi�cant changes over the past century.
We will demonstrate several aspects of historical mortality improvements based on some lifetime

characteristics, as the life expectancy, and lifetime representatives, as survival functions and the
hazard rate functions (see Section 3.2.1).¿e survival functions and life expectancies will be illustrated
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for both, real and synthetic cohorts. For the following presentation, we use our reference HMD of
the Swedish female population. For a comparative study of the Swedish male population, see, e.g.,
Liu (2008).
Figure 1.1 illustrates the death counts dt,x for the full available age range x ∈ {0, . . . , 109} and the

periods t ∈ {1860, 1910, 1960, 2010}. Note that the total numbers are normalized to 105 and that for
the periods 1860 and 1910 the infant mortalities are out of plot range. ¿e data show that in 1860
nearly 20% of the children did not survive until the age of 5, whereas in 1910 this number decreased
to almost 10%, while present rates are below 0.3%. Qualitatively, one can observe that the modes of
the curves move towards higher ages, while the dispersion around the modes decreases. Wilmoth
(2000) terms this behaviour as the compression of mortality because not only the level of longevity
has increased but also the certainty about the timing of death.
Figure 1.2 illustrates empirical survival functions, i.e., the probability to survive up to a particular

age, for several real birth cohorts (dashed lines) and synthetic cohorts (solid lines). Note, there
would be no di�erence between survival functions of real cohorts (T ,0)∗ and those of synthetic
cohorts (T ,0) if the age-speci�c mortality rates would remain unchanged. Since the age-speci�c
mortality rates have generally shown a decreasing trend, the values of the survival functions for
recent cohorts turn out to be higher. In the perspective of survival functions, the e�ect of mortality
compression is o en referred to as the rectangularization of the survival function. By comparing
the survival curves of the real (1910,0)∗-cohort (orange dashed) and the synthetic (1910,0)-cohort
(orange), we can make another important observation, which is, that mortalities at di�erent ages
changed at di�erent extents. Another observation, which demonstrates the magnitude of the overall
improvements, can be made by comparing quantiles of ancient and recent cohorts. For instance,
the empirical 0.2 quantile of the (1860,0)-cohort is, due to high infant mortalities, only the age of 5,
whereas the corresponding quantile of (2010,0)-cohort is the age of 76.
In Figures 1.3 and 1.4 historical hazard rates, alternatively called the force of mortality curves, are

illustrated. Hazard rates will be covered in detail in Section 3.2. For now, they should be understood
as the instantaneous risk of dying associated with a particular age. Qualitatively, hazard rates show
the same pattern as the mortality curves. In actuarial science, the hazard rates belong to the mainly
preferred representations of the lifetime, since they illustrate the age-based risk pro�le experienced
by individuals.
Figure 1.3 illustrates, on a logarithmic scale, the smoothed mortality rates of the Swedish female

population for the reference periods t ∈ {1860, 1910, 1960, 2010}. Each of the presented periods
shows a relatively high infant mortality risk followed by an initial decrease. A er reaching the lowest
values around the age of 10, the values eventually increase. Note that newborns in 1910 subjected the
same age-speci�c mortality risk, as individuals around the age of 70 at the same period. Exactly one
century later, in 2010, the infant hazard rates were reduced by approximately a factor of 30. However,
it is still as high as of individuals aged around 50 in 2010. Moreover, the illustration shows that for
each period the hazard rates are roughly linear for ages above 60, which means that on a linear scale
the risk is exponentially increasing in age. However, the slopes of the hazard rates tend to decrease
for ages above 80, which indicates a sub-exponential age-speci�c growth. Studies on mortalities
at very high ages are available in, e.g., Himes, Preston and Condran (1994), Kannisto (1992) and
¿atcher, Kannisto and Vaupel (1998). Figure 1.3 also shows that the general decay in mortalities
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Figure 1.1: Empirical number of deaths dx ,t at age x ∈ {0, . . . ,109} for the periods t ∈{1860, 1910, 1960, 2010} of Swedish female population. Note, the total numbers are normalized to 105.
¿e dotted curves represent the age-speci�c death numbers of real birth cohorts, e.g., 1860 (blue), 1910
(orange) and 1960 (green). For the 1860 and 1910 birth cohorts, there is a clear shi of the mode to higher
ages compared to periodic data.

is a�ected by catastrophic events as in 1918. ¿e outbreak of an in�uenza pandemic, known as the
Spanish �u in 1918, is considered as the deadliest natural disaster in human history, and is responsible
for more than 50 million deaths, see Taubenberger and Morens (2006). Figure 1.3 shows that in
contrast to other in�uenzas, primary the young and healthy part of the population were a�ected.
Notice, in particular, the spread of the 1910 curve (orange) and the 1918 curve (blue) between the ages
10 up to 40. ¿e spread between the hazard rate in 1910 and that of the time of the largest pandemic
in human history also stresses out how remarkable the mortality improvements have been in the
course of the past 100 years.
Figure 1.4 shows the hazard rates for all periods since 1850. Here, one can observe the continuous

changes of the age-speci�c instantaneous mortality risk, experienced by the Swedish female popula-
tion. Figure 1.5 shows the post-age 60 hazard rates on a linear scale. Note that the rates appear highly
regular. We will focus on this particular age range in the further course of the thesis and provide a
comparative analysis between models with logistic-type hazard rates and exponential increasing
hazard rates.
In the actuarial literature, there are essentially two di�erent approaches to quantify mortality

improvements. ¿e �rst is, to choose a reference period, say for example the period 1910, and consider
the ratio of the hazard rates of that particular period and a second period of interest, say the period
2010. ¿is approach allows a quanti�cation of mortality changes for widely separated periods by
considering the hazard ratios.
¿rough the thesis, we will use an alternative de�nition of mortality improvements. ¿e rigorous

de�nition will be provided in Section 2.5.4. Descriptive spoken, the alternative approach characterizes
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Figure 1.2: Survival functions of Swedish female population. ¿e dashed curves S∗T represent sur-
vival functions of the birth cohorts 1860, 1910 and 1960 and the solid lines the survival functions
ST , i.e., the survival probabilities up to age x, of the synthetic cohorts from the reference periods
T ∈ {1860,1910,1960,2010}.

mortality improvements jt(x) as the in�nitesimal relative changes of the hazard rate in time. For
discrete data, as provided by life tables, this approach corresponds to the following expression:

jt(x) = −(ht(x) − ht−1(x))ht−1(x) .

¿e minus sign is a convention to express that for decreasing mortality rates the improvements
considered to be positive, and for increasing mortality rates the improvements are negative. ¿e
historical annual mortality improvements of the Swedish female or male population are shown
in Figures 1.7 and 1.8. ¿e �gures illustrate the mortality improvements, in the sense of relative
changes of the hazard rates, for the periods 1900-2010 and ages 25-100. Note, these representations
are obtained by applying two-dimensional B-spline smoothing methods to raw data. For additional
details on B-spline smoothing with focus on mortality modelling see, Currie, Durban and Eilers
(2004). B-spline smoothing yields data with reduced �uctuations and reveals local periodic patterns
as well as cohort e�ects. Without smoothing, these patterns would be covered by high �uctuations
especially at younger ages.
Figures 1.7 and 1.8 can be read as follows. Blue areas imply that mortality is deteriorating. Green

regions represent almost unchanged mortality rates. Yellow parts imply smaller rates of improvement,
orange and red state for stronger rates of improvement. For example, the in�uenza pandemic of 1918
and the corresponding a�ected ages are clearly noticeable by those representation. Another example
for a negative development can be observed for the male population at ages around 40 in 1965 of
Figure 1.8. ¿e local increase of the mortality can be attributed to a rise in cardiovascular mortality
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Figure 1.3: Smoothed hazard rates (force of mortality) of Sweden’s female population for the reference
periods t ∈ {1910, 1918, 1960, 2010}.

among industrial workers, cf., Diderichsen and Hallqvist (1997). High mortality improvements can
be registered for both genders up to the age of 60 immediately a er the ending of the Second World
War. ¿at fact can be primarily attributed to the discovery of penicillin and further antibiotics and
vaccines.
Formore examples of local deviations of the positive trend, see Figures 1.9 and 1.10 for the mortality

improvements of the UK-Wales population, where one can clearly observe the impacts of both
World Wars on the male population. Noticeable as well, is the increased mortality for the male
population around 1990 for ages about 30. ¿is increase in mortality occurred mainly due to the
sexually transmitted human immunode�ciency virus infection (HIV).
Cohort e�ects can also be observed more clearly for the UK-Wales population compared to

the Swedish population. For instance, notice the diagonal-arranged patterns of annual mortality
improvements above 3%. ¿ese improvements can be attributed to birth cohorts centred around the
year 1935. For more insights and explanations why these cohorts experienced higher improvements
in mortality than other generations, see Willets (2004).
Further illustrations of mortality improvements of other countries can be found in Appendix A.2,

where similar trends of mortality improvements and local e�ects can be detected. For an outlining
country-speci�c behaviour, see the mortality improvements of Russia on page 246. Russia has
experienced a negative development of the life expectancy due to social disruptions and instability
resulted by the collapse of the Soviet Union.
Finally, we demonstrate in Figures 1.11 and 1.12 the time evolution of the life expectancy for

synthetic and real Swedish female cohorts. Figure 1.11 illustrates the life expectancy at age x, denoted
by eT ,x . ¿e following characteristics are worth mentioning: compared to the life expectancies of
higher ages, the life expectancy at birth made the largest progress, from values around 45 in 1850’s to



1.3 Historical Evolution of Human Mortality 15

1875 1900 1925 1950 1975 2000
0

20

40

60

80

100

year t

ag
ex

10−4

10−3

10−2

10−1

µt(x)

Figure 1.4:Hazard rates of Swedish female population on a logarithmic scale.

almost the age of 84 for the most recent periodic data. ¿e down peaks at 1918, resulted due to the �u
pandemic, are noticeable for the life expectancies at birth and at age 20. Note also, the life expectancy
at birth in 2011 is 83.9 years, whereas at age 60 the expectancy is with 85.7 years only slightly larger.
¿e progress of the curves emphases the fact, the mortality improvements had a higher impact on
younger ages.
¿e characteristics of the life expectancy for real cohorts are illustrated in Figure 1.12. Note that the

life expectancy of real cohorts is only fully observable a er all individuals of that cohort have passed
away. Since we do not include projected mortality values in our presentation, the paths terminate at
the beginning of the 20th century. Projections of the life expectancy of real cohorts can be found in
Figure 2.19.

In summary, we have presented the empirical changes in the human mortality based on several
lifetime representatives. Chapter 3 will contain a deeper discussion of those representatives including
their connections. ¿e next section will review several stochastic mortality models which have been
successfully applied on empirical data.
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Figure 1.6: Logit transformed post-age-60 hazard rates of Sweden’s female population for the reference
periods t ∈ {1860, 1910, 1960, 2010}. Notice that data show a highly regular linear structure. ¿us, we
will use that fact to propose a parametric logistic-type hazard rate model, which linearizes under the
logit transformation.
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Figure 1.7: Annual mortality improvements of the Swedish female population.
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Figure 1.8: Annual mortality improvements of the Swedish male population.
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Figure 1.9: Annual mortality improvements of the UK-Wales female population.
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Figure 1.10: Annual mortality improvements of the UK-Wales male population.
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Figure 1.11: Life expectancy at birth, age 20, 40, 60, and 80 of Swedish females (synthetic cohorts) from
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cohorts.
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1.4 | Stochastic Mortality Models
¿e development of human mortality, as presented in the previous section, has triggered a lot of
academic attention. ¿us, a vast of mortality models have been developed over the last 25 years. In
this section, an overview of well-established and recently proposed mortality models is given.

1.4.1 | Model Quality Criteria

Before presenting some modelling approaches, we �rst provide a list of criteria which can be used to
evaluate and compare di�erent models. ¿e following collection of criteria has been proposed and
thoroughly discussed by Cairns, Blake and Dowd (2008, p. 87). ¿eir requirements for a good model
are:

▸ Mortality rates should be positive.

▸ ¿emodel should be consistent with historical data.

▸ Long-term dynamics under the model should be biologically reasonable.

▸ Parameter estimates should be robust relative to the period of data and range of ages employed.

▸ Model forecasts should be robust relative to the period of data and range of ages employed.

▸ Forecast levels of uncertainty and central trajectories should be plausible and consistent with
historical trends and variability in mortality data.

▸ ¿emodel should be straightforward to implement using analytical methods or fast numerical
algorithms.

▸ ¿emodel should be relatively parsimonious.

▸ It should be possible to use the model to generate sample paths and calculate prediction
intervals.

▸ ¿e structure of the model should make it possible to incorporate parameter uncertainty in
simulations.

▸ At least for some countries, the model should incorporate a stochastic cohort e�ect.

▸ ¿emodel should have a non-trivial correlation structure, i.e., the mortality improvements
should not be perfectly correlated for all ages.

Most of the provided criteria are self-explanatory and reasonable. For some criteria, a subjective
interpretation remains, such as for a biologically reasonable long-term behaviour. Other points have
contrary objectives and require trade-o�s, such as the criteria for model parsimoniousness and
accuracy. Plat (2009) points out that the existing models meet most of the listed criteria, but none of
the models ful�ls all of them.

1.4.2 | Review of Stochastic Mortality Models

In the following, we introduce the notation and common components of stochastic mortality models.
Stochastic mortality models are either focusing on central death rates mt,x or initial death rates qt,x
as measures of mortality.



1.4 Stochastic Mortality Models 21

Let the random variable Dt,x denote the number of deaths of a population group at age x during
the calendar year t. Moreover, let dt,x denote the observed death count, Ect,x the central exposed to
risk, i.e., the average population size aged x in calendar year t, and E0t,x the initial number exposed
to risk. In this notation, the one-year initial mortality rate qt,x is de�ned as the ratio qt,x = Dt,x⇑E0t,x
and can be estimated by q̂t,x = dt,x⇑E0t,x . Alternatively, the central mortality rate mt,x is de�ned as
mt,x = Dt,x⇑Ect,x , with the empirical estimate m̂t,x = dt,x⇑Ect,x . If the underlying population data only
contains the initial exposures, one usually uses an approximation of the central exposures as the
mean of the initial exposures of two consecutive years t and t + 1, i.e.,

Ect,x ≈ E0t,x + E0t+1,x
2

= E0t,x + E0t,x − dx ,t
2

= E0t,x − 1
2
dt,x . (1.1)

Consistently to Brouhns, Denuit and Vermunt (2002), we assume for the following that the number
of deaths Dt,x is Poisson distributed

Dt,x ∼ Poi(mt,xEct,x). (1.2)

with mean mt,xEct,x . Despite the fact that human hazard rates follow complicated structures, they
vary slowly during a period of one year. A common simpli�cation is therefore that individuals with
the same age x at year t experience the same piecewise hazard rates µt,x . By that assumption, the
central mortalities provide decent approximations of the hazard rates µt,x . Moreover, we have the
following relation between the two mortality measures

qt,x = 1 − e−mt ,x .

¿e random variable of the death counts Dt,x in terms of the initial mortality rate qt,x follows a
binomial distribution, i.e.,

Dt,x ∼ Bin(qt,x , E0t,x), (1.3)

see, Currie (2016). ¿e maximum likelihood estimates of mt,x and qt,x , derived from eqs. (1.2)
and (1.3), are given by (Rinne, 2014, Section 5.1)

m̂t,x = dt,x
Ect,x

,

q̂t,x = dt,x
E0t,x

.

¿erefore, the central or initial death rates are sometimes directly de�ned as the maximum likelihood
estimators of the hazard rate, which is assumed to be constant on small intervals of time and age.
Models based on eqs. (1.2) and (1.3) are therefore called Poisson or binomial regression models,
respectively. ¿e choice of the mortality measure is primarily a�ected by the available data. ¿e
Poisson model requires central exposures to risk Ect,x , which are more common (e.g., in Human
Mortality Database) than the initial exposures to risk E0t,x .
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1.4.3 | Generalized Age-Period-Cohort Models

¿e vast majority of stochastic mortality models decompose mortality rates or other mortality
measures across the dimensions of age, period, and cohort. Recent contributions, for instance, Hunt
and Blake (2014), Currie (2016) and Villegas, Kaishev and Millossovich (2015) showed that many
proposed stochastic mortality models are covered by the family of the Generalized Age-Period-
Cohort (GAPC) mortality models which can be expressed in the framework of generalized linear
and non-linear models (see, e.g., McCullagh and Nelder, 1989)). ¿e framework of the following
section is known and largely based on the contributions of Currie (2016), Hunt and Blake (2014) and
Villegas, Kaishev and Millossovich (2015). We start with an introduction to the GAPC model class
and its building blocks and subsequently review some popular models which have been proposed in
the literature.
Following the de�nition of Villegas, Kaishev and Millossovich (2015), a GAPC model is composed

of four components:

(a) ¿e random component encompasses a distribution assumption on the death count Dt,x . A
common assumption is that the number of deaths Dt,x follow a Poisson distribution or a
binomial distribution, i.e.,

Dt,x ∼ Poi(µt,xEct,x) (1.4)

or

Dt,x ∼ Bin(qt,x , E0t,x) (1.5)

with expectations E(︀Dt,x⇑Ect,x⌋︀ = µt,x and E(︀Dt,x⇑E0t,x⌋︀ = qt,x , respectively. More precisely,
one assumes that conditionally on µt,x , or similarly on qt,x , the random variables Dt,x are
independent and follow Poisson or binomial distributions, respectively. Note, in more general
settings, as for GLMs, for some response variable Y and predictor variable X, the conditional
expectation E(︀Y ⋃︀ X⌋︀, is a member of the exponential family distribution. ¿is conditional
factor structure of the GAPC models will be discussed in more detail in Section 1.5.

(b) ¿e systematic component captures the e�ects of the dimensions age x, calendar year t, and
cohort c = t − x through a linear or bilinear predictor function ηt,x of the form

ηt,x = αx + N∑
i=1 β

(i)
x κ(i)t + β(0)x γt−x .

¿e predictor contains the following components:

▸ ¿e �rst term αx is called the static age function, aiming to capture the general shape of
the corresponding mortality measure.

▸ ¿e second part contains a set of N ≥ 0 bilinear age/periodic terms β(i)x κ(i)t , for i =
1, . . . ,N , where the period functions κ(i)t determine the mortality change through time,
and the age functions β(i)x serve as modulations of periodic trends across the ages.
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▸ ¿e last term γt−x is the cohort term aiming to capture mortality e�ects based on the
year of birth. ¿ese e�ects can include age-speci�c modi�cations through the term β(0)x .

As we will see later by reviewing the proposed models of recent decades, the age-speci�c
modulating term β(i)x , i = 0,1, . . . ,N , can either be a speci�c analytic function, i.e., β(i)x ≡
f (i)(x) or non-parametric without any pre-speci�ed structure. A key assumption of the GAPC
family is that the periodic terms κt and the cohort terms γt−x are all model factors for each
period t and cohort t − x, rather than smooth functions of time or cohort (cf., e.g., Villegas,
Kaishev and Millossovich, 2015). ¿is assumption enables stochastic projections of mortality
rates by applying time series methods for the estimated coe�cients of those factors. ¿is
approach leads to probabilistic rather than to deterministic forecasts. It is important to point
out that B-Spline models do not belong to GAPC family since they impose a polynomial
functional form for the periodic terms.

(c) ¿e link function g provides a connection between the random component and the systematic
predictor. ¿e link is a monotone and di�erentiable function that describes how the mean of
the regression objective depends on the linear predictor, i.e.,

g (E ⌊︀Dt,x
Et,x

}︀) = ηt,x .
For the Poisson model, the canonical choice for the link function is the logarithmic function
and for the binomial model the logit function, respectively. One of the requirements for an
appropriate link function is that the transformeddata are approximately linear (ormultiplicative
bilinear) since they are passed to a linear regressor. In Section 1.7, we will demonstrate that for
high ages the logit link function leads to be �t than the canonical Poisson link, for the vast
majority of stochastic mortality models.

(d) A set of parameter constraints to ensure model identi�cation. An important characteristic of
the most proposed stochastic mortality models is that their parameters are only identi�able
up to transformations, i.e., the model parameters

θ ∶= (αx , β(1)x , . . . , β(N)x , κ(1)t , . . . , κ(N)t , β(0)x , γt−x)
can be transformed by a map v to equivalent parameters

v(θ) = θ̃ = (α̃x , β̃(1)x , . . . , β̃(N)x , κ̃(1)t , . . . , κ̃(N)t , β̃(0)x , γ̃t−x) ,
such that the predictor ηt,x remains unchanged. ¿e implications and drawbacks of required
parameter constraints will be discussed later.

Many proposed mortality models can be expressed within the GAPC modelling framework. Some
models assume Poisson distributed death counts with a log link function, for instance, the model
proposed by Lee and Carter (1992) and the extensions proposed by Renshaw and Haberman (2003,
2006). Other models assume binomial distributed death counts and a logit link to target the logit
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transformed initial death rates as the regression objective, see, e.g., Cairns, Blake and Dowd (2006)
and the extensions in Cairns, Blake, Dowd et al. (2009), and also Aro and Pennanen (2011). Further
models of the GAPC family can be found in Alai and Sherris (2014), Berkum, Antonio and Vellekoop
(2014), Börger, Fleischer and Kuksin (2014), Haberman and Renshaw (2009), Lovász (2011), O’Hare
and Y. Li (2012) and Plat (2009).
Some examples of proposed mortality models, which do not belong to the GAPC family, can be

found in Currie, Durban and Eilers (2004), Renshaw, Haberman and Hatzopoulos (1996) and Sithole,
Haberman and Verrall (2000). As Hunt and Blake (2014) point out, the models assume the periodic
functions κ(i)t to be cubic B/P-splines or Legendre polynomials, respectively. Projections based on
these models are obtained by extrapolation of deterministic functions. ¿us, the application of these
models is restricted to short-term forecasts. On the other hand, the P-splines approach of Currie,
Durban and Eilers (2004) proved to be very useful for smoothing and data regulation to identify
general trends of mortality change, as well as, reveal cohort e�ects, which are di�cult to detect with
crude mortality rates. An application of P-spline smoothing is shown in Figures 1.7 to 1.10.

In the following, we describe some established GAPC models which have received considerable
attention from the scienti�c community. ¿e review on proposed models is based on the survey
articles of Hunt and Blake (2014) and Villegas, Kaishev and Millossovich (2015). ¿e second paper
introduces an R package called StMoMo1, which provides an excellent tool for parameter estimation
of GAPC models, assessing their goodness-of-�t, and performing projections using ARIMA models.

¿e Lee-Carter Model

¿e Lee-Carter (LC) model was one of the �rst stochastic mortality models and still remains widely
used. ¿e LC model in the original form, as proposed by Lee and Carter (1992), does not �t into the
GAPC family, since it misses a random component. ¿us, we use the implementation of Brouhns,
Denuit and Vermunt (2002), which assumes Poisson distributed death counts, the log link function
to target the force of mortality µt,x , and the original predictor function with a static age function αx ,
one non-parametric age-periodic term β(1)x κ

(1)
t , and no cohort e�ect. More precisely, the predictor is

given by

ηt,x = αx + β(1)x κ(1)t . (1.6)

¿e LC model belongs to the simplest GAPC models. As we will see later, it forms a basis for further
model extensions. One key property of that model, and therefore also for all generalizations, is that
the parameters are not identi�able without additional constraints, i.e., the model response variable
remains unchanged under the parameter transformation v, with

v ∶ (αx ,β(1)x , κ(1)t ) ↦ (αx + c1β(1)x , 1
c2
β(1)x , c2(κ(1)t − c1)) , (1.7)

1 ¿e acronym stands for StochasticMortalityModelling. ¿e source code is available at https://github.com/amvillegas/
StMoMo.

https://github.com/amvillegas/StMoMo
https://github.com/amvillegas/StMoMo
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for arbitrary real constants c1 and c2 ≠ 0. To overcome the identi�cation issue, Lee and Carter suggest
to impose the following two parameter constraints

∑
x
β(1)x = 1, ∑

t
κ(1)t = 0. (1.8)

¿ese constraints can be achieved by

c1 = 1
n∑t κ(1)t , c2 = ∑

x
β(1)x

in the transformation of eq. (1.7). LC model forecasts are attained by using ARIMA processes for the
time index κ(1)t . A common choice proposed in the literature, is to use a random walk with dri , i.e.,

κ(1)t = δ + κ(1)t−1 + ξt , ξt ∼ 𝒩(0,σκ),
with δ being the dri parameter and ξt a Gaussian white noise process with variance σκ . ¿e strength
of the LC model and its extensions is their �exibility to capture age-speci�c mortality pattern over
large ranges of ages. However, one of the disadvantages of the LC model is that it only allows a trivial
correlation structure of the projected mortality rates, i.e., the changes in the mortality are perfectly
correlated across all ages (cf., Cairns, Blake and Dowd, 2006).

¿e Cairns-Black-Dowd Model

To overcome the issue of a single age-period factor with trivial correlated projected mortality rates,
Cairns, Blake and Dowd (2006) proposed a model with two age-periodic terms and parametric
age-modulations β(1)x = 1 and β(2)x = x − x, where x denotes the average age in the underlying data.
¿e model does not include an age-speci�c function αx , nor a cohort function γt−x . ¿e predictor
function of the Cairns-Black-Dowd (CBD) model is given by

ηt,x = κ(1)t + (x − x)κ(2)t . (1.9)

¿e absence of a static age function and the assumption of parametric age-modulations, results in
a more parsimonious model compared to the LC model. ¿e CBD assumption of approximately
linear log-transformed mortality rates on the entire age range restricts the application of the model
to high ages only. ¿e key characteristics of the CBD model, and the unique property across other
models covered here, is that the model does not require any parameter constraints to be identi�able.
¿e original approach of Cairns, Blake and Dowd (2006) used ordinary least squares parameter
estimation targeting the logit transformed initial death rates qt,x . Haberman and Renshaw (2011) used
the original predictor function and the assumption of binomial distributed death counts with a logit
link function, to adapt the model to the framework of generalized linear models. In order to obtain
forecasts of mortality rates, Cairns, Blake and Dowd (2006) employed a two-dimensional random
walk for the periodic terms κ(1)t and κ(2)t . Empirical studies have shown that the obtained time series(κ(1)t ,κ(2)t ) are not stationary. Using a two-dimensional random walk leads to diverging prediction
intervals of the forecasts. In Chapter 2, we will propose an approach, which uses cointegration
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relations between the components of time series to obtain smaller prediction intervals.

¿e Renshaw and Haberman Model

Renshaw and Haberman (2006) proposed an extension of the Lee-Carter model by an incorporation
of an additional cohort term to the LC predictor in eq. (1.6). ¿e predictor of the (generalized)
Renshaw-Haberman (RH) model satis�es the equation

ηt,x = αx + β(1)x κ(1)t + β(0)x γt−x . (1.10)

¿e predictor is invariant under the following transformation

v ∶ (αx ,β(1)x , κ(1)t , β(0)x , γt−x) ↦ (αx + c1β(1)x + c2β(1)x , 1
c3
β(1)x , c3(κ(1)t − c1), 1c4 β(0)x , c4(γt−x − c2)),

(1.11)

with real constants c1, c2, c3 ≠ 0 and c4 ≠ 0. ¿e suggested parameter constraints by Cairns, Blake,
Dowd et al. (2009) in order to ensure model identi�cation are

∑
x
β(1)x = 1, ∑

t
κ(1)t = 0, ∑

x
β(0)x = 1, tn−x1∑

c=t1−xk γc = 0.
¿ese can be imposed by the following choice of parameters

c1 = 1
n∑t κ(1)t , c2 = 1

n + k − 1
tn−x1∑
c=t1−xk γc , c3 = ∑

x
β(1)x , c4 = ∑

x
β(0)x

in the transformation of eq. (1.11), where n denotes the number of periods and k the number of ages
covered in the mortality data.
¿e RH model has been criticized for its slow convergence and the lack of robustness due to high

sensitivity to the choice of the initial parameters, see, e.g., Cairns, Blake, Dowd et al. (2011, 2009) and
Hunt and Villegas (2015). Since the RH model generalizes the LC model, Currie (2016) suggested
using the estimated parameters of the LC model as starting values to overcome convergence issues
which have been also encountered by, e.g., Macdonald, Gallop, Miller et al. (2007). Renshaw and
Haberman (2006) also considered nested models obtained by restricting the age modulating terms
β(i)x , i = 0,1 to constants. Of particular interest, is the submodel

ηt,x = αx + β(1)x κ(1)t + γt−x , (1.12)

which resolves some stability problems due to the simpli�cation β(0)x = 1 in eq. (1.10), see Hunt and
Villegas (2015) for a deeper discussion on robustness and convergence issues of RH models. ¿e
restricted model with the predictor given in eq. (1.12) will be referred to as the RH model in the
further course of the thesis. Mortality projections of the RHmodel are obtained by assuming that the
age-speci�c e�ects αx and β(1)x remain constant over time, whereas κ(1)t and γt−x are modelled by
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univariate ARIMA processes, under the assumption of independence between periodic and cohort
e�ects. ¿e independence assumption is common in the literature of GAPC models. However, it is
questionable and has been criticized by, e.g., Currie (2012).
Extensions of the predictor function in eq. (1.10) have been proposed in Berkum, Antonio and

Vellekoop (2014) by postulating a predictor of the form

ηt,x = αx + β(1)x κ(1)t + β(2)x κ(2)t + γt−x . (1.13)

Further extensions to multiple cohort terms with predictors of the type

ηt,x = αx + N∑
i=1 β

(i)
x κ(i)t + M∑

j=N+1 β
( j)
x γ( j)t−x .

have been considered by Hatzopoulos and Haberman (2011). According to Hunt and Blake (2014),
there was no evidence found in practice for the demand of multiple cohort terms.

¿e Classic Age-Period-Cohort Model

Another nested model of the generalized RH model, with predictor given in eq. (1.10), is the model
obtained by restricting both age-speci�c e�ects to β(0)x = β(1)x = 1. ¿is leads to the predictor

ηt,x = αx + κ(1)t + γt−x . (1.14)

As Hunt and Blake (2014) and Villegas, Kaishev and Millossovich (2015) point out, despite the fact
that the model of the APC type has been traditionally used by, e.g., Clayton and Schi�ers (1987) and
Hobcra , Menken and Preston (1985), it was Currie (2006) who introduced the particular model
type to the actuarial science. One can show that the response variable ηt,x is invariant under the
parameter transformations

vϕ ∶ (αx , κ(1)t , γt−x) ↦ (αx + ϕ1 − ϕ2x , κ(1)t + ϕ2t, γt−x − ϕ1 − ϕ2(t − x))
and

vc ∶ (αx , κ(1)t , γt−x) ↦ (αx + c1, κ(1)t − c1, γt−x) , (1.15)

with real constants c1, ϕ1 and ϕ2. One possible set of parameter constraints to ensure identi�cation is

∑
t
κ(1)t = 0, tn−x1∑

c=t1−xk γc = 0,
tn−x1∑
c=t1−xk cγc = 0, (1.16)

where the last two constraints are employed to obtain a cohort e�ect with zero mean and no linear
trend. To impose the two constraints on the cohort term Haberman and Renshaw (2011) suggest to
use the transformation vϕ with constants ϕ1, ϕ2 obtained by the regression

γt−x = ϕ1 + ϕ2(t − x) + εt−x ,
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with i.i.d. εt−x ∼ 𝒩(0,σ2). Subsequently, the �rst constraint in eq. (1.16) can be achieved by using
the transformation of eq. (1.15) with

c1 = 1
n∑t κ(1)t .

Comparing the parameter estimation of the RH model and the APC model, which only di�er by
the functional restriction of the age-speci�c term of the latter model to β(1)x ≡ 1, we observe a
signi�cant di�erence of the running time. ¿e convergence time of the parameter estimation for the
RH model is 2 order of magnitudes larger than the parameter estimation time of the APC model.
¿ese convergence di�culties combined with robustness issues make the RH model less appealing
for practical use.

M7Model

¿eM7 model is an extended CBD model with additional quadratic age e�ect and a cohort term
proposed by Cairns, Blake, Dowd et al. (2009). ¿e predictor of the model is given by

ηt,x = κ(1)t + (x − x)κ(2)t + ((x − x)2 − σ̃2x) κ(3)t + γt−x , (1.17)

where x denotes the mean age and σ̃2x = 1⇑k∑x(x − x)2, with k being the number of considered ages.
¿e extension of the CBD predictor leads to additional parameter constraints to ensure identi�cation.
¿e M7 predictor is invariant under the transformation

v ∶ (κ(1)t , κ(3)t , κ(3)t , γt−x) ↦ (κ(1)t + ϕ1 + ϕ2(t − x) + ϕ3 ((t − x)2 + σ̃2) , κ(2)t − ϕ2 − 2ϕ3(t − x),
κ(3)t + ϕ3, γt−x − ϕ1 − ϕ2(t − x) − ϕ3(t − x)2), (1.18)

where ϕ1, ϕ2 and ϕ3 are real constants. Cairns, Blake, Dowd et al. (2009) suggest imposing the
following set of constraints

tn−x1∑
c=t1−xk γc = 0,

tn−x1∑
c=t1−xk cγc = 0,

tn−x1∑
c=t1−xk c

2γc = 0, (1.19)

on the cohort term to achieve parameter identi�cation. ¿e intention of the given constraints is to
obtain a cohort term with zero mean and no linear or quadratic trends. Following Haberman and
Renshaw (2011), this can be achieved by the transformation of eq. (1.18) using the coe�cients of the
regression of γt−x on t − x and (t − x)2, i.e.,

γt−x = ϕ1 + ϕ2(t − x) + ϕ3(t − x)2 + εt−x ,
with i.i.d. error term εt−x ∼ 𝒩(0,σ2). Note, the �rst constraint of the set given in eq. (1.19) is su�cient
to reduce the degrees of freedom and already ensures identi�ability. Further constraints impose
additional structures on the cohort term γt−x with the purpose to obtain desirable properties, such
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that the resulted series of parameter estimates might be able to be projected using stationary processes.
Cairns, Blake, Dowd et al. (2009) also investigate simpler predictors such as

ηt,x = κ(1)t + (x − x̄)κ(2)t + γt−x (1.20)

and

ηt,x = κ(1)t + (x − x̄)κ(2)t + (xc − x)γt−x , (1.21)

where xc is a parameter which has to be estimated. ¿e predictor of eqs. (1.20) and (1.21) are referred
to as the models M6 and M8, respectively. Comparing the predictors of eqs. (1.17) and (1.20) reveals
that the model M7 nests the model M6, i.e., M6 is a submodel of M7.

Plat Model

¿emodel proposed by Plat (2009) attempts to combine the features of previous models. Similar
to the Lee-Carter model, it incorporates a static age function αx , which makes it applicable to
larger age ranges. Furthermore, it uses a cohort term with a pre-speci�ed age-modulation β(0)x ,
like the APC model, and it uses three age-modulating parameters β(1)x ≡ 1, β(2)x = (x − x), and
β(3)x = (x − x)+ = max0,(x − x). ¿e predictor function, which will be referred to as the general
PLAT model, is given by

ηt,x = αx + κ(1)t + (x − x)κ(2)t + (x − x)+κ(3)t + γt−x . (1.22)

¿e original model of Plat (2009) targets the mortality rate µt,x using a log link function as the
canonical link and Poisson distributed death counts Dt,x . Like many other mortality models, the
PLAT model is not identi�able. ¿e predictor is invariant under the transformations

vϕ ∶ (αx , κ(1)t , κ(2)t , κ(3)t , γ̃t−x) ↦ (αx + ϕ1 − ϕ2x + ϕ3x2, κ(1)t + ϕ2t + ϕ3(t2 − 2xt),
κ(2)t + 2ϕ3t, κ(3)t , γt−x − ϕ1 − ϕ2(t − x) − ϕ3(t − x)2)(1.23)

and

vc ∶ (αx , κ(1)t , κ(2)t , κ(3)t , γt−x) ↦ (αx + c1 + c2(x − x) + c3(x − x)+,
κ(1)t − c1, κ(2)t − c2, κ(3)t − c3, γt−x),

for some real constants c1, c2, c3, ϕ1, ϕ2, and ϕ3. Parameter identi�cation can be ensured by imposing
the following constraints

∑
t
κ(1)t = 0, ∑

t
κ(2)t = 0, ∑

t
κ(3)t = 0, tn−x1∑

c=t1−xk γc = 0,
tn−x1∑
c=t1−xk cγc = 0,

tn−x1∑
c=t1−xk c

2γc = 0.
(1.24)
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¿e constraints on the cohort term γt−x can be achieved by using the transformation vϕ given in
eq. (1.23) with coe�cients ϕi , for i ∈ {1,2,3}, obtained by the regression

γt−x = ϕ1 + ϕ2(t − x) + ϕ3(t − x)2 + εt−x ,
with an i.i.d. error εt−x ∼ 𝒩(0,σ2). Note, not all imposed constraints are necessary for identi�cation.
¿e rationale behind the constraints on γt−x is to ensure that the �tted process will �uctuate around
zero with no linear or quadratic trend. ¿is approach aims to force the process γt−x only to capture
the cohort e�ects and not just to be a compensation for the de�ciency of the age-period terms, see
Plat (2009). ¿e normalization constraints on the period terms κ(i)t , for i ∈ {1,2,3}, can be enforced
by the transformation vc using the constants

ci = 1
n∑t κ(i)t .

Plat (2009) suggests a more parsimonious model if only older ages (above 60) are considered. In that
particular case, Plat suggests that the third periodic factor can be excluded from the predictor. ¿us,

ηt,x = αx + κ(1)t + (x̄ − x)κ(2)t + γt−x ,
is the resulted predictor of that nested model, which is essentially the M6 model with an additional
static age term αx . Since we are interested in mortality modelling of the elderly population, we will
use the reduced predictor in the case studies on Section 1.7.
A modi�cation of the general Plat model, with particular interest of the application to younger

ages, has been investigated by O’Hare and Y. Li (2012). ¿e paper suggests the following predictor

ηt,x = αx + κ(1)t + (x − x)κ(2)t + ((x − x)+ + ((x − x)+)2) κ(3)t + γt−x ,
where the third age-modulation ((x − x)+)2 serves as the PLAT model modi�cation.
We conclude the description of popular GAPC models by providing an overview of the predictors

together with references to the original papers in Table 1.2. In Table 1.3, we give an overview of
suggested parameter constraints associated to these models. Note, the provided approaches to ensure
identi�ability are not necessarily unique or minimal. In some cases, there are additional constraints
on the parameter terms in order to employ stationary processes for forecasting. Figure 1.13 provides
an illustration of a structural classi�cation scheme for the introduced mortality models, where the
distinct classi�cation layers emerge by structural forms of the predictor terms, cf., Hunt and Blake
(2014).

Forecasting Procedure of GAPCMortality Models

Following the presentation of Villegas, Millossovich and Kaishev (2016), we recall that forecasts of
GAPC mortality models are obtained by applying time series methods on the period terms κ(i)t ,
i = 1, . . . ,N , and the cohort term γt−x . ¿e following two-stage procedure has emerged in the
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literature. ¿e initial step is to �t a GAPC model and then treat the estimates of period or cohort
terms as time series. ¿e �nal step is to choose an appropriate time discrete process and estimate its
parameters. ¿is process is then used for forecasting.
¿e standard time series approach for period terms κt = (κ(1)t , . . . ,κ(N)t ) is to employ a multivari-

ate random walk with dri . ¿e particular assumption for the dynamics of κt is

κt = δ + κt−1 + εκt , εκt ∼ 𝒩(0,Σ), (1.25)

where δ denotes the dri term and Σ the variance-covariance matrix of the multivariate white noise
εκt . ¿e approach of eq. (1.25) has been used among others in studies of, e.g., Cairns, Blake and Dowd
(2006), Cairns, Blake, Dowd et al. (2011) and Haberman and Renshaw (2011). For the dynamics of the
cohort term, univariate autoregressive integratedmoving average processes have been considered, see,
e.g., Cairns, Blake, Dowd et al. (2011) and Renshaw and Haberman (2006). ¿e common approach
for the cohort γc is an ARIMA(p,q,d) process of the form

∆dγc = δ0 + ϕ1∆dγc−1 +⋯ + ϕp∆dγc−p + εc + δ1εc−1 +⋯ + δqεc−q ,
where ∆d is the di�erence operator of order d, ϕ1, . . . ,ϕp are the autoregressive coe�cients and
δ1, . . . ,δq the moving average coe�cients. δ0 denotes the dri parameter and εc the Gaussian white
noise process with variance σε, which is independent of εκt . Some concrete approaches for the cohort
dynamics include an ARIMA(1,1,0) for the APC and the RH model and an ARIMA(2,0,0) for the
M7 and PLAT predictor types, see Villegas, Millossovich and Kaishev (2016). In Section 1.8, we will
examine the cohort estimates on a reference dataset in order to determine whether the assumption
of ARIMA type time series is indeed justi�ed.
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Table 1.2:Overview of proposed predictor speci�cations in the recent literature.

Model Predictor Original paper

LC ηt,x = αx + β(1)x κ(1)t Lee and Carter (1992)

LC2 ηt,x = αx + β(1)x κ(1)t + β(2)x κ(2)t Renshaw and Haberman (2003)

LC2+C ηt,x = αx + β(1)x κ(1)t + β(2)x κ(2)t + γt−x van Berkum et al. (2014)

RH ηt,x = αx + β(1)x κ(1)t + β(0)x γt−x Renshaw and Haberman (2006)

APC ηt,x = αx + κ(1)t + γt−x Currie (2006)

CBD ηt,x = κ(1)t + (x − x)κ(2)t Cairns, Blake and Dowd (2006)

M6 ηt,x = κ(1)t + (x − x)κ(2)t + γt−x Cairns, Blake, Dowd et al. (2009)

M7 ηt,x = κ(1)t +(x − x)κ(2)t +((x − x)2 − σ̃2x) κ(3)t +γt−x Cairns, Blake, Dowd et al. (2009)

M8 ηt,x = κ(1)t + (x − x)κ(2)t + (xc − x)γt−x Cairns, Blake, Dowd et al. (2009)

PLAT ηt,x = αx + κ(1)t + (x − x)κ(2)t + (x − x)+κ(3)t + γt−x Plat (2009)

OL ηt,x = αx + κ(1)t + (x − x)κ(2)t((x − x)+ + ((x − x)+)2) κ(3)t +γt−x O’Hare and Y. Li (2012)

Table 1.3:Overview of the suggested parameter constraints to ensure parameter identi�cation.

Model Constraints

LC ∑x β
(1)
x = 1 ∑t κ

(1)
t = 0

LC2 ∑x β
(1)
x = 1 ∑t κ

(1)
t = 0 ∑x β

(2)
x = 1 ∑t κ

(2)
t = 0

LC2+C ∑x β
(1)
x = 1 ∑t κ

(1)
t = 0 ∑x β

(2)
x = 1 ∑t κ

(2)
t = 0 ∑c=t−x γc = 0

RH ∑x β
(1)
x = 1 ∑t κ

(1)
t = 0 ∑x β

(0)
x = 1 ∑c=t−x γc = 0

APC ∑t κ
(1)
t = 0 ∑c=t−x γc = 0 ∑c=t−x cγc = 0

CBD –

M6 ∑c=t−x γc = 0 ∑c=t−x cγc = 0
M7 ∑c=t−x γc = 0 ∑c=t−x cγc = 0 ∑c=t−x c2γc = 0
M8 ∑c=t−x γc = 0
PLAT ∑t κ

(i)
t = 0 ∑c=t−x γc = 0 ∑c=t−x cγc = 0 ∑c=t−x c2γc = 0

OL ∑t κ
(3)
t = 0 ∑c=t−x γc = 0 ∑c=t−x cγc = 0
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1.5 | Parameter Estimation for Generalized Linear Models
Currie (2016) noticed that many mortality models, in particular, the GAPC models, can be expressed
as generalized linear models or generalized non-linear models. In this section, we provide the
framework for parameter estimation of GAPC models for a general class of distributions, namely the
exponential distribution family. As conducted by the seminal publication of McCullagh and Nelder
(1989) and Nelder and Wedderburn (1972), if the dependent variable of the regression belongs to the
exponential distribution family, then there is a uni�ed procedure to cover those models.

1.5.1 | Exponential Family and its Properties

SupposeY1, . . . ,YN are independent random variables. Let fYi(yi ⋃︀ θ i ,ϕ) denote either the probability
density function or the probability mass function of the random variable Yi . ¿e distribution of Yi
belongs to the exponential family if fYi(yi ⋃︀ θ i ,ϕ) can be written in the form

fYi(yi ⋃︀ θ i ,ϕ) = exp( yiθ i − b(θ i)ai(ϕ) + c(yi ,ϕ)) , (1.26)

for some �xed parameter ϕ, called the dispersion parameter, and θ i , called the canonical parameter
since it primarily determines the expectation. ¿e functions ai(⋅), b(⋅) and c(⋅,⋅) are functions
specifying distinct members of the exponential family, see, e.g., Table 1.4 for some examples. ¿e
function b is also referred to as the cumulant since it determines the moments as will be shown by
eqs. (1.36) and (1.37). ¿e primary purpose of the function c is normalization. For many distributions
1 the function ai(ϕ) has the form

ai(ϕ) = ϕ
wi
,

where wi is called the prior weight. ¿us, eq. (1.26) takes the form

fYi(yi ⋃︀ θ i ,ϕ,wi) = exp( yiθ i − b(θ i)ϕ
wi + c(yi ,ϕ,wi)) . (1.27)

Many distributions like the normal, Poisson, and binomial distribution belong to the family of
exponential distributions. For instance, for a Poisson distributed Yi ∼ 𝒫(λi) the probability mass
function can be written as

fYi(yi ⋃︀ λi) = λy ii
yi!

eλ i = exp (yi ln(λi) − λi − ln(yi!)) .
For binomial Yi ∼ ℬ(ni ,pi), we have

fYi(yi ⋃︀ ni ,pi) = (niyi)py ii (1 − pi)n i−y i

1 For example, the Poisson, binomial, proportional binomial, and normal distribution, see Table 1.4
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= exp(yi ln( pi
1 − pi ) + ni ln(1 − pi) + ln(niyi)) ,

and for normally distributed Yi ∼ 𝒩(µi ,σ) the density can be written as
fYi(yi ⋃︀ µi ,σ) = 1⌋︂

2πσ2
exp(−(yi − µi)2

2σ2
)

= exp( yiµi − µ i
2

σ2
− 1
2
ln(2πϕ) − y2

2ϕ
) .

¿e canonical parameter θ, the dispersion parameter ϕ and the functions a(⋅), b(⋅), c(⋅) for the above
examples are compiled in Table 1.4. O en, the parameters θ i are not of primary interest since for the
intended application, Yi will represent the death counts and there will be as many θ i as observations.
Having as many parameters as observations would lead to a saturated model (see Section 1.6.2).
Instead, one is interested in a lower dimensional parameter space, of parameters β0, . . . ,βK , where
K < N . Let µi denote the mean of Yi , i.e.,

µi ∶= E(︀Yi ⋃︀ x i⌋︀,
then the key assumption of generalized linear models, as introduced by Nelder and Wedderburn
(1972), is that the mean µi of the response variable Yi (member of the exponential family) is coupled
to a linear predictor η through a monotone and di�erentiable link function g, i.e.,

g(µi) = β1xi1 + . . . + βKxiK =∶ η. (1.28)

Di�erent predictor types of the GAPC family were introduced Section 1.4.2. For mortality models,
the response variable Yi usually represents either the death counts Dt,x or the ratio Dt,x⇑Et,x and
β1, . . . ,βK represent a combination of static age, periodic or cohort parameters, while xi1, . . . ,xiK are
the corresponding common factors age and period. ¿e expression in eq. (1.28) can be abbreviated
by using a vector notation which leads to

g(µi) = xTi β, (1.29)

where x i is the i-th column of the model design matrix X and β = (β1, . . . ,βK)T , such that the
model takes the form

η = g(µ) = g (E(︀Y ⋃︀ X⌋︀) = Xβ, (1.30)

with η = (η1, . . . ,ηN)T , µ = (µ1, . . . ,µN)T and Y = (Y1, . . . ,YN)T . Some models, like the Poisson
model for the death counts, use a slightly more general setting that extends the relation of eq. (1.29)
to

g(µi) = xTi β + o�seti .
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¿e o�set term of the Poisson model, as introduced in eq. (1.4), is the central exposure to risk, i.e., the
average population number of particular age and period of interest. Note also that for the binomial
model, as de�ned by the random component given in eq. (1.5), the regression is referred to the mean
of the distribution Yi ∶= X i⇑n i , with Xi ∼ Bin(pi ,ni). In the mortality modelling setting, Xi represents
the death counts and ni the initial exposure to risk. In that particular case of a proportional binomial
random variable Yi , we have E(︀Yi⌋︀ = pi and V(︀Yi⌋︀ = p i(1−p i)

n i . Furthermore, Yi does also belong to
the exponential family since we have

P(Yi = yi) = ( ni
ni yi

)pn i y ii (1 − pi)n i−n i y i
= exp⎛⎜⎝

yi ln ( p i
1−p i ) + ln(1 − pi)

1
n i

+ ln( ni
ni yi

)⎞⎟⎠ .
¿e above expression of the probability mass function satis�es the form of the exponential family
as given in eq. (1.27), with the canonical parameter θ i = ln (p i⇑1 − p i). ¿e other terms are wi = ni ,
b(θ i) = ln (1 + eθ i) and c(yi ,ϕ,wi) = ln ( w i

w i y i). Note that ni are known (number of exposures to
risk). To distinguish the binomial model from the proportional binomial model these prior weights
are required to be speci�ed while using a so ware implementation for parameter estimation such
as theR packages stats and gnm. Formore details see RCore Team (2015) andTurner and Firth (2015).

¿e following part provides an introduction to established computational approaches of maximum
likelihood estimation for generalized linear models. ¿e forthcoming presentation is largely based
on the standard reference for GLMs by McCullagh and Nelder (1989) and the books of Dobson and
Barnett (2008) and Hardin and Hilbe (2012).

Before we present the maximum-likelihood estimation algorithm, we observe some properties
of the exponential family and begin with the log-likelihood function. ¿e log-likelihood functionℒ(θ i ,ϕ ⋃︀ yi) of Yi with density fYi(yi ⋃︀ θ i ,ϕ), as given in eq. (1.26), has the form

ℒ(θ i ,ϕ ⋃︀ yi) = yiθ i − b(θ i)
ai(ϕ) + c(yi ,ϕ), (1.31)

where ℒ(θ i ,ϕ ⋃︀ yi) = ln fYi(yi ⋃︀ θ i ,ϕ). Under suitable regularity conditions, such that the order of
integration and di�erentiation can be interchanged, i.e.,

∂
∂θ i ∫D fYi(yi ⋃︀ θ i ,ϕ) dyi = ∫

D

∂
∂θ i

fYi(yi ⋃︀ θ i ,ϕ) dyi ,
where D is the domain of fYi(yi ⋃︀ θ i ,ϕ), one can show that

E ]︀ ∂
∂θ i
ℒ(θ i ,ϕ ⋃︀ yi){︀ = 0 (1.32)
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Table 1.4: Parametrization of some distributions from the exponential family. Note that the exponential
family also contains the Bernoulli, Geometric, negative binomial, exponential, gamma, Pareto, Weibull,
Laplace, and the inverse Gaussian distribution.

Distribution θ ϕ a(ϕ) b(θ) c(y,ϕ)
normal 𝒩(µ,σ) µ σ2 ϕ θ2

2 − 1
2 ln(2πϕ) − y2

2ϕ

Poisson 𝒫(λ) ln(λ) 1 1 eθ − ln(y!)
binomial ℬ(n,p) ln ( p

1−p) 1 1 n ln(1 + eθ) ln (ny)
prop. binomial ℬ(n,p)⇑n ln ( p

1−p) 1 1
n ln(1 + eθ) ln ( nny)

and

E ⌊︀ ∂2

∂θ2i
ℒ(θ i ,ϕ ⋃︀ yi)}︀ = −E ⌊︀( ∂

∂θ i
ℒ(θ i ,ϕ ⋃︀ yi))2}︀ . (1.33)

Using eqs. (1.31) to (1.33), we can conclude

E

⎨⎝⎝⎝⎝⎪
Yi − ∂

∂θ i b(θ i)
ai(ϕ)

⎬⎠⎠⎠⎠⎮ = 0 (1.34)

and

E

⎨⎝⎝⎝⎝⎪
− ∂2
∂θ2 b(θ i)
ai(ϕ)

⎬⎠⎠⎠⎠⎮ = −E

⎨⎝⎝⎝⎝⎝⎪
⎛⎝
Yi − ∂

∂θ i b(θ i)
ai(ϕ)

⎞⎠
2⎬⎠⎠⎠⎠⎠⎮

(1.35)

Rearranging eqs. (1.34) and (1.35) leads to the following expressions for the mean and variance of Yi

E(︀Yi⌋︀ = b′(θ i) = µi , (1.36)

and

V(︀Yi⌋︀ = b′′(θ i)ai(ϕ). (1.37)

Note that the expectation depends only on the canonical parameter θ i . ¿e second derivative b′′(θ i)
in eq. (1.37) is usually referred to as the variance function of the GLM and is denoted by V(µi), since
it can be expressed as a function of the mean µi . From eq. (1.36), we have

∂µi
∂θ i

= V(µi). (1.38)

For the forthcoming discussion of di�erent computational approaches, it will be important to
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distinguish between canonical and non-canonical link functions.We say that the GLMhas a canonical
link function if

ηi = θ i ,
holds, i.e., if the canonical parameter θ i coincides with the predictor ηi . Alternatively, one could
de�ne the canonical link as

g = (b′)−1 .
¿is is indeed equivalent, since

ηi = g(µi) = g(b′(θ i)) = θ i .
¿us, from Table 1.4 we can conclude that for a Poisson distributed response variable the canonical
link corresponds to g = ln, and for a normally distributed response, we have g = id, i.e., the identity
function as the canonical link. ¿e canonical link of the proportional binomial response variable,
with b(θ) = ln(1 + eθ), is g = logit, i.e.,

g ∶ µi ↦ ln( µi
1 − µi ) .

¿e exponential family has the useful property that the log-likelihood function ℒ is concave
in the canonical parameter θ. ¿is guarantees the uniqueness of a maximum likelihood estimate.
Note that the concavity in the canonical parameter θ does not imply concavity in the parameters
β1, . . . ,βK . One advantage of using the canonical link functions, where θ = η and η is linear in β,
is that the canonical link preserves concavity of the log-likelihood function for the parameters of
interest. GLMs with non-canonical link functions are therefore computationally more challenging.

¿e choice of the link function as part of a GLM is not limited to the canonical case. In the
further course, we will demonstrate that a non-canonical link, such as the logit link for a Poisson
response variable, might lead to a better model �t. ¿e objective of the next part is to present two
computational approaches for parameter estimation for GLMs. ¿ese approaches are both based
on the Newton-Raphson (NR) method. However, the algorithms involve di�erent matrices in the
iterative scheme. One uses the Hessian matrix, which is closely related to the observed information
matrix, while the other involves the Fisher information matrix. ¿ese both approaches turn out to be
equivalent for a canonical link, as will be shown below.

We begin by assuming independent random variables Y1, . . . ,YN from the exponential family of
the same distribution type. Our objective here is to estimate the parameters of the linear predictor
β1, . . . ,βK , rather than the parameters of the exponential family θ1, . . . ,θN . ¿e joint probability
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density function of Y1, . . . ,YN is given by

fY(y ⋃︀ θ ,ϕ) = fY1 ,...,YN (y1, . . . ,yn ⋃︀ θ1, . . . ,θN ,ϕ) = N∏
i=1 exp(

yiθ i − b(θ i)
ai(ϕ) + c(yi ,ϕ)) .

¿e log-likelihood function based on the independent observations y1, . . . ,yN is thus given by

ℒ(θ ,ϕ ⋃︀ y1, . . . ,yN) = ln fY(y1, . . . ,yN ⋃︀ θ ,ϕ)
= N∑
i=1 ln fYi(yi ⋃︀ θ i ,ϕ)

= N∑
i=1(

yiθ i − b(θ i)
ai(ϕ) + c(yi ,ϕ)) . (1.39)

¿e above expression is the sum of the individual log-likelihood functions as given in eq. (1.31).
To obtain the maximum likelihood estimates of the parameters β = (β1, . . . ,βK)T , the GLM log-
likelihood function needs to bemaximizedwith respect to β given the observation samples y1, . . . ,yN .
Due to eqs. (1.30) and (1.36), the log-likelihood of the GLM is a function of β. ¿e �rst derivative of
the log-likelihood function is called Fisher’s score function or simply the score function and is denoted
by

s(β) ∶= ∂ℒ
∂β

= ( ∂ℒ
∂β1

, . . . , ∂ℒ
∂βK

)T . (1.40)

To obtain the maximum likelihood estimator of β, we need to solve the score function, i.e., we wish
to �nd some β̂ such that s(β̂) = 0 holds. ¿e standard algorithmic approaches for ML estimation
are Newton-Raphson type algorithms that use the �rst terms of the Taylor series to successively
approximate the roots of the score function. Taylor series expansion of the score function at β − β(0)
is given by

0 = s(β(0)1 ,⋯,β(0)K )
+ K∑

j=1
∂s(β(0)1 ,⋯,β(0)K )

∂β j
(β j − β(0)j )

+ 1
2!

K∑
j=1

K∑
k=1

∂2s(β(0)1 ,⋯,β(0)K )
∂β j∂βk

(β j − β(0)j )(βk − β(0)k )
+ 1
3!

K∑
j=1

K∑
k=1

K∑
l=1

∂3s(β(0)1 ,⋯,β(0)K )
∂β j∂βk∂βl

(β j − β(0)j )(βk − β(0)k )(βl − β(0)l ) +⋯.
By discarding all super-linear Taylor terms, we obtain the following approximation

0 ≈ s(β(0)) + ∂s(β(0))
∂βT

(β − β(0)).
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Rewriting that expression leads to

β ≈ β(0) − (∂s(β(0))
∂βT

)−1 s(β(0)).
¿is approximation may be used iteratively, i.e.,

β(r+1) = β(r) − (∂s(β(r))
∂βT

)−1 s(β(r)),
for r ∈ N and reasonable starting vector β(0), see Hardin and Hilbe (2012). ¿e partial derivative in
the iterative expression is the Hessian matrix of the log-likelihood function ℒ which is related to the
observed information matrix, denoted by 𝒥 (β), through

∂s(β)
∂βT

= ∂2ℒ(β)
∂β∂βT

= −𝒥 (β), (1.41)

or in matrix component notation, through

𝒥 jk = − ∂2ℒ
∂β j∂βk

.

1.5.2 | Newton-Raphson and Fisher Scoring Algorithm

Analytical solutions of GLM likelihood equations are not available in general. ¿erefore, they have
to be obtained by iterative algorithms. Let β̂(r) be the estimate of β a er r iteration steps, then the
r + 1 update β̂(r+1) of the Newton-Raphson method is de�ned by

β̂(r+1) = β̂(r) + (𝒥 (β̂(r)))−1 s(β̂(r)). (1.42)

¿e Newton-Raphson algorithm, which depends on the observed information matrix can face
some di�culties. As discussed in Hardin and Hilbe (2012) a problem appears if for some r ∈ N

the matrix of second partial derivatives 𝒥 (β(r)) is not positive de�nite. ¿is can be avoided by
replacing the observed information matrix 𝒥 (β(r)) by its expectation. ¿at particular variation of
the Newton-Raphson method was �rst suggested by Fisher (1935) and is known as the Fisher scoring
method. ¿e expected information, or the Fisher information, is de�ned as the second moment of
the score function. Under some regularity conditions 1 on the log-likelihood function, the Fisher

1 If fY(y ⋃︀ θ) is twice di�erentiable in θ ∈ Θ for all y ∈ supp( f ) almost everywhere and ∂2
∂θ∂θT ∬ fY(y ⋃︀ θ)dy =

∬ ∂2
∂θ∂θT fY(y ⋃︀ θ)dy.
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information can be expressed as

ℐ = −E ⌊︀ ∂2ℒ
∂β∂βT

}︀ .
Given that expression and eq. (1.41), we have the relation

ℐ(β) = E(︀𝒥 (β)⌋︀
between the Fisher information and the observed information. As indicated above, contrary to the
observed information, the Fisher information ℐ(β) is positive semide�nite on the entire parameter
space. ¿e Fisher scoring, as a variation of the iterative approximation, takes the form

β̂(r+1) = β̂(r) + (E [︀𝒥 (β̂(r))⌉︀)−1 s(β̂(r))
= β̂(r) + (ℐ(β̂(r)))−1 s(β̂(r)). (1.43)

In the following, we verify that the Newton-Raphson method and the Fisher scoring method
coincide forGLMswith a canonical link function andderive an alternative representation of eqs. (1.42)
and (1.43), known as iteratively reweighted least squares algorithm (IRLS), see, e.g., Charnes, Frome
and Yu (1976). Following Hardin and Hilbe (2012), we start by the calculation of the partial derivative
using the chain rule for di�erentiation. ¿us, we have

∂ℒ
∂β j

= N∑
i=1(

∂ℒi
∂θ i

)( ∂θ i
∂µi

)(∂µi
∂ηi

)(∂ηi
∂β j

)
= N∑
i=1(

yi − b′(θ i)
ai(ϕ) )( 1

V(µi))(∂µi∂ηi
)(xi j) (1.44)

= N∑
i=1

yi − µi
ai(ϕ)V(µi) ∂µi∂ηi

xi j (1.45)

= N∑
i=1

yi − µi
ai(ϕ)V(µi)

xi j
g′(µi) , (1.46)

where eq. (1.44) follows since

∂ℒi
∂θ i

eq. (1.31)= ∂
∂θ i

( yiθ i − b(θ i)
ai(ϕ) + c(yi ,ϕ)) = yi − b′(θ i)

ai(ϕ) ,

∂θ i
∂µi

= 1
∂µ i
∂θ i

eq. (1.38)= 1
V(µi) ,

∂ηi
∂β j

eq. (1.28)= ∂
∂β j

(β1xi1 + . . . + βKxiK) = xi j . (1.47)
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Equation (1.45) is obtained by substitution of eq. (1.36) in eq. (1.44) and for eq. (1.46) we used the
following relation between the predictor ηi and the mean µi

µi = g−1(ηi), (1.48)

such that

∂µi
∂ηi

= 1
g′(µi) .

Note, for the canonical link, i.e., ηi = θ i , we have a simpli�cation of the chain rule
( ∂θ i
∂µi

)(∂µi
∂ηi

) = ( ∂θ i
∂µi

)(∂µi
∂θ i

) = 1
or alternatively,

V(µi) = 1
g′(µi) .

¿us, eq. (1.46) simpli�es to

∂ℒ
∂β j

= N∑
i=1

yi − µi
ai(ϕ) xi j .

We continue with the derivation of the observed information matrix by using eqs. (1.45) and (1.47)
and applying the chain and the Leibniz rule.

𝒥 jk = − ∂2ℒ
∂β j∂βk

= − N∑
i=1

1
ai(ϕ) ( ∂

∂βk
)⌊︀ yi − µi

V(µi) ∂µi∂ηi
xi j}︀

= − N∑
i=1

1
ai(ϕ) ⌊︀( ∂

∂µi
∂µi
∂ηi

∂ηi
∂βk

)⌊︀ yi − µi
V(µi) ∂µi∂ηi

}︀ + yi − µi
V(µi) ( ∂

∂ηi
∂ηi
∂βk

)⌊︀∂µi
∂ηi

}︀}︀ xi j
= − N∑

i=1
1

ai(ϕ)
⎨⎝⎝⎝⎝⎪(

∂µi
∂ηi

)2 ( ∂
∂µi

)⌊︀ yi − µi
V(µi) }︀ + yi − µi

V(µi) (∂
2µi
∂η2i

)⎬⎠⎠⎠⎠⎮ xi jxik
= N∑
i=1

1
ai(ϕ)

⎨⎝⎝⎝⎝⎪
1

V(µi) (∂µi∂ηi
)2

+(µi − yi)⎛⎝ 1
V(µi)2 (∂µi∂ηi

)2 ∂V(µi)
∂µi

− 1
V(µi) (∂

2µi
∂η2i

)⎞⎠
⎬⎠⎠⎠⎠⎮ xi jxik (1.49)
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Using that result, we can conclude that for GLM with a canonical link we have

𝒥 (β) = −∂2ℒ(β)
∂β∂βT

= −E ⌊︀∂2ℒ(β)
∂β∂βT

}︀ = ℐ(β), (1.50)

i.e., the Newton-Raphson method and the Fisher scoring coincide. ¿is can be obtained by the
following. First, for the right-hand side, we have

ℐ jk = −E ⌊︀ ∂2ℒ
∂β j∂βk

}︀
eq. (1.49)= E

⎨⎝⎝⎝⎝⎪
N∑
i=1

1
ai(ϕ)

⎨⎝⎝⎝⎝⎪
1

V(µi) (∂µi∂ηi
)2

+(µi − Yi)⎛⎝ 1
V(µi)2 (∂µi∂ηi

)2 ∂V(µi)
∂µi

− 1
V(µi) (∂

2µi
∂η2i

)⎞⎠
⎬⎠⎠⎠⎠⎮ xi jxik

⎬⎠⎠⎠⎠⎮
= N∑
i=1

1
ai(ϕ)

⎨⎝⎝⎝⎝⎪
1

V(µi) (∂µi∂ηi
)2

+E(︀µi − Yi⌋︀)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂=0
⎛⎝ 1
V(µi)2 (∂µi∂ηi

)2 ∂V(µi)
∂µi

− 1
V(µi) (∂

2µi
∂η2i

)⎞⎠ xi jxik
⎬⎠⎠⎠⎠⎮

= N∑
i=1

1
ai(ϕ)V(µi) (∂µi∂ηi

)2 xi jxik . (1.51)

For the le -hand side of eq. (1.50) and the canonical case where θ i = ηi , we have
∂µi
∂ηi

= ∂µi
∂θ i

eq. (1.38)= V(µi). (1.52)

¿us, the last term in eq. (1.49) vanishes, i.e.,

1
V(µi)2 (∂µi∂ηi

)2 ∂V(µi)
∂µi

− 1
V(µi) (∂

2µi
∂η2i

) = 0. (1.53)

¿is follows by using eq. (1.52) and the substitution of

∂2µi
∂η2i

= ∂
∂ηi

∂µi
∂ηi

= ∂
∂ηi

V(µi) = ∂V(µi)
∂µi

∂µi
∂ηi

= ∂V(µi)
∂µi

V(µi)
in eq. (1.53). ¿erefore, we conclude that for a canonical link eq. (1.49) simpli�es to

𝒥 jk = N∑
i=1

1
ai(ϕ)V(µi) (∂µi∂ηi

)2 xi jxik ,
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and therefore both iterative methods of eqs. (1.42) and (1.43) are equivalent. To obtain the iterative
weighted least squares representation of the Fisher scoring algorithm, recall that using the iteration
of eq. (1.43), the Fisher information matrix is evaluated at the previous estimate. Let β̂(r) be the
estimate of β a er r iterations and

µ̂(r)i ∶= µi(β̂(r)) = g−1 (xTi β̂(r))
the corresponding estimate of the mean µi = E(︀Yi⌋︀. Furthermore, recall that the involved Fisher
information matrix evaluated at β, with components given in eq. (1.51), has the form

ℐ(β) = N∑
i=1

xTi x i
ai(ϕ)V(µi(β)) (g′(µi(β))) . (1.54)

Moreover, using eq. (1.46), the score function s(β) can be expressed as
s(β) = N∑

i=1
yi − µi(β)

ai(ϕ)V(µi(β)) x i
g′(µi(β)) . (1.55)

A slide transformation of the Fisher scoring equation of eq. (1.43) to

ℐ(β̂(r))β̂(r+1) = ℐ(β̂(r))β̂(r) + s(β(r)), (1.56)

and a subsequential substitution of the expressions of eqs. (1.54) and (1.55), leads to

ℐ(β̂(r))β̂(r+1) = XTW(r)Xβ̂(r+1),
where X is the design matrix with dimensions N × K andW(r) is an N × N diagonal matrix with
elements

w(r)ii = 1

ai(ϕ)V (µ̂(r)i ) (g′ (µ̂(r)i ))2 =
( ∂µ i∂η i )2
V(︀Yi⌋︀ . (1.57)

For the right-hand side of eq. (1.56) we get

ℐ(β̂(r))β̂(r) + s(β(r)) = XTW(r)Z(r), (1.58)

where Z(r) is a vector called the working variable with components
Z(r)i = xTi β̂(r) + g′(µ̂(r)i )(yi − µ̂(r)i ) (1.59)

= g(µ̂(r)i ) + g′(µ̂(r)i )(yi − µ̂(r)i )
for i = 1, . . . ,N . Combination of eqs. (1.58) and (1.59), and a rearrangement of the expression for
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β̂(r+1) leads to
β̂(r+1) = (XTW(r)X)−1 XTW(r)Z(r). (1.60)

Note that eq. (1.60) has the form of the normal equation of a weighted least squares regression.
In other words, the r + 1 iterative estimate β̂(r+1) minimizes the weighted least squares objective
function

N∑
i=1W

(r)
ii (Z(r)i − xTi β)2 .

For a consistent proof of the equivalence of the Fisher scoring and the iterative weighted least squares
algorithm, see McCullagh and Nelder (1989). ¿e R package StMoMo which we employ to estimate
the parameters of generalized age-period-cohort models, includes a method of the gnm package,
which contains an implementation of the iterative weighted least squares eq. (1.60).
For the ML estimation, the iterative updating procedure of eq. (1.60) continues until a termination

criterion is met. ¿is can be the relative changes of the estimates

∫︁β̂(r+1) − β̂(r)∫︁
∫︁β̂(r+1)∫︁ ≤ є,

or the ratio of the score function and the estimated standard deviation of the coe�cients

⋃︀s(β̂(r))i ⋃︀⌉︂ℐii (β̂(r)) ≤ 10
−6,

for all i = 1, . . . ,K, which is the default criterion of the gnm package.

Remark 1.5.1 (Weight matrixW and working variable Z for the Poisson model with canonical and
non-canonical link function). In the following course of the thesis, we will estimate GAPCmodels in a
Poisson setting.We therefore derive the precise forms of the weightmatrixW(r) andworking variable
Z(r) for the canonical link function g ≡ ln and a non-canonical link function g ≡ logit, respectively.
Recall, in the Poisson setting, we have Yi ∼ 𝒫(µi) and E(︀Yi⌋︀ = V(︀Yi⌋︀ = µi . Moreover, ai(ϕ) ≡ 1
and for the variance function we have V ≡ id. ¿e canonical link g ≡ ln yields g′(µi) = 1⇑µi . ¿us,
from eq. (1.57) we can conclude

w(r)ii = 1

ai(ϕ)V (µ̂(r)i ) (g′ (µ̂(r)i ))2 = µ̂
(r)
i

and

Z(r)i = xTi β̂(r) + g′(µ̂(r)i )(yi − µ̂(r)i )
= xTi β̂(r) + yi

µ̂(r)i
− 1.
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Switching from the GLM notation to the notation of mortality models leads to w(r)ii = d̂(r)i and
Z(r)i = xTi β̂(r) + di⇑d̂(r)i − 1, where di are the observed death counts and d̂(r)i are the �tted death
counts a er r iterations. For the non-canonical link g ≡ logit, the corresponding weight matrix is
given by

w(r)ii = µ̂(r)i (µ̂(r)i − 1)2, (1.61)

since

g′(µi) = 1
µi(1 − µi) .

For the working variable Z(r), we obtain

Z(r)i = xTi β̂(r) + yi − µ(r)i
µ(r)i (1 − µ(r)i ) . (1.62)

Using the notation of GAPC models and the relation of eq. (1.48), then eqs. (1.61) and (1.62) can be
rewritten as

w(r)ii = d̂(r)i
(1 + exTi β̂(r))2

and

Z(r)i = xTi β̂(r) + (1 + exTi β̂(r))⎛⎝ di
d̂(r)i

− 1⎞⎠ .
Remark 1.5.2 (Newton-Raphson versus Fisher Scoring). Summarizing the above discussion on the
iterative algorithms, it can be noted that the Fisher scoring algorithm is a modi�cation of the Newton-
Raphson algorithm, where the observed Fisher information 𝒥 (β) is replaced by the expected
Fisher information ℐ(β). ¿e crucial di�erence between those algorithms is that, in general, 𝒥 (β)
depends on the observation. Unlike for the expected Fisher information ℐ(β), the dependence on
the observation might not ensure 𝒥 (β) to be positive de�nite. Knight (2000) points out that it is
di�cult to make general statements about the performance of both algorithms. However, according
to Knight, the Newton-Raphson algorithm o en converges faster if both algorithms converge, but
the radius of convergence of the Fisher scoring algorithm is o en larger. As illustrated above, the
Newton-Raphson algorithm and the Fisher scoring algorithm coincide for generalized linear models
with a canonical link function. For non-canonical link functions the concavity property of the
GLM log-likelihood function does no longer hold in general. In that case, there is no guarantee
for numerical methods to converge to the global maximum. ¿erefore, further techniques, e.g.,
perturbations of the starting points are required to get initial estimates su�ciently close to the global
maximum. We have also illustrated above that solving the Fisher scoring algorithm is equivalent
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to solving a sequence of weighted least squares problems. For a detailed discussion on the choice
between the Newton-Raphson algorithm and the Fisher scoring, we refer to Efron and Hinkley
(1978).

1.5.3 | Asymptotic Properties of MLEs

Under quite general regularity conditions, we have strong consistency and asymptotic normality of
the maximum likelihood estimator β̂ of β, i.e.,

β̂N
a.s.Ð→

N→∞ β

and ⌋︂
N(β̂N − β) 𝒟Ð→

N→∞ 𝒩K(0,ℐ−1(β)), (1.63)

where N is the sample size. For proofs on consistency and asymptotic normality and more details on
conditions, in particular, for the GLM framework with canonical or non-canonical link functions,
we refer to Fahrmeir and Kaufmann (1985). ¿e asymptotic covariance matrix for the estimator in
eq. (1.63) is the inverse Fisher information

ℐ(β) = Cov(s(β)) = E ⌊︀∂ℒ(β)
∂β

∂ℒ(β)
∂βT

}︀ .
Note that ℐ(β) depends on the unknown parameters β. Common practice is to replace the unknown
β by the estimated value β̂ and using

ℐ̂ i j(β̂N ,N) = 1
N

N∑
i=1

xi jxik
ai(ϕ)V (µ̂i) (g′ (µ̂i))2 (1.64)

as the approximated covariance matrix of the estimator. Substituting the weight components of
eq. (1.57), reduces eq. (1.64) to matrix expression

ℐ̂ = XTŴX .

¿e asymptotic standard error estimator ŝe(β̂i) for parameter βi can be obtained as the square root
of the corresponding diagonal element of the inverse Fisher matrix, i.e.,

ŝe(β̂i) = ⌉︂ℐ̂−1ii ={︂(XTŴX)−1ii ,
using the estimatedweightmatrix of the �nal iteration step of the IRLS procedure Ŵ ,with components
wi given by eq. (1.57). Note, in the special case of a GLM with a multivariate normally distributed
response variable and the canonical link (identity function), the weight matrix is constant and
coincides with the identity matrix. Furthermore, the working variable Zi coincides with the original
response variable Yi and the IRLS converges a er the �rst iteration step. ¿e asymptotic distribution
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of β̂ is multivariate normal with the covariance matrix σ2 (XTX)−1. ¿is is a well-known result for
standard linear regressions with normally distributed response variables.

1.6 | Hypothesis Tests, Goodness-of-fit Measures and Model Selection Criteria

In this section, we provide a brief introduction to some common tests of statistical hypothesis
and goodness-of-�t measures which will be used in the forthcoming case studies to assess and
compare di�erent GAPC models. First, we will consider the Wald test, the likelihood ratio test,
and the Lagrange multiplier test for hypothesis testing. ¿en, we will discuss the deviance statistic
as goodness-of-�t measure and provide the concrete forms for Poisson and binomial distributed
response variables. Finally, we brie�y present information bases criteria for model selection and
discuss di�erent types of residuals, which are used to detect model misspeci�cations and are therefore
of key importance for model assessment.
¿e following presentation is based on Lütkepohl (2007) and Rodríguez (2008). More details and

proofs of the asymptotic properties of the involved statistics can be found in Knight (2000).

1.6.1 | Wald Test

Generally, regression modelling encompasses several procedures for model selection and validation.
In particular, one is interested in determining the signi�cance of particular parameters by performing
statistical tests. By omitting non-signi�cant coe�cients from the regression one obtains a more
parsimonious model. Consider a hypothesis test of the form

H0 ∶ β = β0 vs. HA ∶ β j ≠ β0,
for some �xed β0, and an asymptotically normal estimator β̂ = (β̂1, . . . ,β̂K), then theWald statistic,
de�ned by

T2W = (β̂ − β0)TΣ−1β̂ (β̂ − β0),
is approximately chi-squared distributed with K degrees of freedom, where Σβ̂ is the non-singular
asymptotic covariance matrix of β̂. If the objective is to test the signi�cance of a single parameter, say
β j, with the hypothesis pair

H0 ∶ β j = 0 vs. HA ∶ β j ≠ 0,
then commonly the Wald statistic T2W is replaced by its square root. ¿is leads to the statistic given
by the ratio

TW = β̂ j
ŝe(β̂ j) . (1.65)

Remark 1.6.1 (t-value & z-value). In statistical so ware, the test value of the Wald statistic is either
denoted as the t-value or z-value. ¿e reason for the di�erent notations is the following. For ordinary
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Gaussian regression, the standard error of β̂ j

ŝe(β̂ j) = {︂σ2 (XTX)−1j j
depends on an unknown variance σ2. In practice, σ2 is replaced by an unbiased estimator σ̂ which is
based on the residual sum of squares, see Rodríguez (2008). Under the null hypothesis, the resulting
statistic then follows asymptotically a Student-t distribution with N − K degrees of freedom. In the
other case, where σ2 is known, the statistic TW follows asymptotically a normal distribution, if the
null hypothesis holds. ¿is is also the case for the Poisson and binomial regression models, where
the variance is a function of the expectation which does not depend on an additional free parameter.
¿us, when the Wald statistic is normally distributed, then the test value is denoted by the z-value,
and in the other case, where the statistic is Student-t distributed, the test value is denoted by the
t-value. In order to decide whether to reject the hypothesis H0 at the level α ∈ (0,1), we need to
compare the absolute value of the test with the (1 − α⇑2)-quantile of the corresponding limiting
distribution. For the Poisson, binomial, or Gaussian regression with a known variance, a size αWald
test rejects H0 when ⋃︀TW ⋃︀ > z1−α⇑2, where z1−α⇑2 is the 1 − α⇑2-quantile of the standard normal
distribution. For the ordinary Gaussian regression with an unknown variance, the αWald test rejects
H0 when ⋃︀TW ⋃︀ > t1−α⇑2,N−K , where t1−α⇑2,N−K is the 1 − α⇑2-quantile of the Student-t distribution
with N − K degrees of freedom.
In summary, whether a t-test or z-test is used for testing signi�cance of individual parameters of

a GLM depends on whether the dispersion parameter of the exponential family is known or has
to be estimated. For large sample sizes, the inference of both tests tends to correspond since the
Student-t distribution is asymptotically normal with growing number of degrees of freedom.¿e
Wald statistic can also be used to express the con�dence interval for β̂ j. ¿e following interval

C = )︀β̂ j − z1−α⇑2 ŝe(β̂ j),β̂ j + z1−α⇑2 ŝe(β̂ j)⌈︀ (1.66)

contains the true parameter β j with the con�dence level of 100(1 − α)%. As Wasserman (2013)
points out, the size αWald test rejects H0 ∶ β j = β̃ j versus HA ∶ β j ≠ β̃ j if and only if β̃ j ∉ C, where
the interval C is given in eq. (1.66). ¿us, testing the hypothesis is equivalent to checking whether
the con�dence interval contains the null value. Finally, it should be noted that the Wald test can
also be used for testing joint signi�cance of model parameters, i.e., testing H0 ∶ βi = β j = βl = 0, or
jointly multiple hypotheses, e.g., testing M hypotheses on K parameters by H0 ∶ Mβ = m versus
HA ∶ Mβ ≠ m, for someM × K matrix M andM-dimensional vector m. If H0 ∶ Mβ = m is true and
if Σ̂β̂, the consistent estimator of the covariance matrix, is invertible, then the corresponding Wald
statistic

N(Mβ̂N −m)T (MΣ̂β̂M
T)−1 (Mβ̂N −m) 𝒟Ð→

N→∞ χ2M

follows asymptotically a chi-squared distribution withM degrees of freedom. For more details on
this topic, see, e.g., Harrell (2015).
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Remark 1.6.2 (p-value). Checking the test statistic T of an α sized test with critical values cα gives
only a binary type information, which is, either to reject H0 or to retain H0. If a test rejects H0 at
level α, it will also reject H0 for all higher levels α̃ ∈ (α,1). ¿e smallest level at which H0 is rejected
based on the available observation (x1, . . . ,xN) is also known as the p-value, i.e.,

p-value = inf{α ∶ T(x1, . . . ,xN) ∈ Rα}
where Rα is the rejection region of the test of size α. As Wasserman (2013) points out, for a size α test
of the form

reject H0 ∶ θ ∈ Θ0 if and only if T(X1, . . . ,Xn) ≥ cα ,
the p-value coincides with the probability, under H0, of observing a test value more extreme than for
the available observation. More precisely,

p-value = sup
θ∈Θ0

Pθ (︀T(X1, . . . ,Xn) ≥ T(x1, . . . ,xn)⌋︀ .
¿e p-value can be seen as a measure of evidence against the null hypothesis. ¿e smaller the p-value,
the stronger the evidence against H0. On the other hand, a large p-value does not necessarily support
the null hypothesis, since it can also occur if H0 does not hold, but the power of the test is too low to
detect that.

1.6.2 | Likelihood Ratio Test

Another important type of statistical tests is the so-called likelihood ratio test (LR). ¿e idea of the
LR test is based on the comparison of the maximized likelihoods of nested models, these are models,
where one model can be obtained from the other by imposing some constraints on the parameters.
For instance, let Θr be the parameter state space of the restricted model (submodel) and Θ the state
space of the larger model, i.e., Θr ⊂ Θ.¿e simplest example of nested models is where the submodel
emerges from the larger model by restricting some parameters to zero. In the following, we consider
tests of the form

H0 ∶ θ0 ∈ Θr vs. HA ∶ θ0 ∈ Θ∖Θr . (1.67)

Let y = (y1, . . . ,yN) be a sample of size N and

sup
θ∈Θr

L(θ ,y) = L(θ̂Θr ,y) (1.68)

be the maximized likelihood function of the submodel, where θ̂Θr denotes MLE of θ0 under the
restrictions stated by the null hypothesis. Let further

sup
θ∈Θ L(θ ,y) = L(θ̂Θ ,y) (1.69)
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be the maximized likelihood function of the unconstrained model with the MLE θ̂Θ. For the ratio of
eqs. (1.68) and (1.69)

λ = L(θ̂Θr ,y)
L(θ̂Θ ,y) ,

we have λ ∈ (︀0,1). ¿e lower bound of the interval follows from the non-negativity of likelihood
functions, and the upper from the fact that for nested models the maximized likelihood of the
submodel is always smaller than the maximized likelihood of the full model. Note that a low λ
indicates that the observation of a particular sample is far less likely under the submodel than under
the full model. Whereas, λ ≈ 1 indicates that the observation under the submodel is almost as likely
as under the full model. ¿e likelihood ratio test is based on the statistic λLR de�ned by

λLR ∶= −2 ln λ.
¿us, we have

λLR = 2 ln L(θ̂Θ) − 2 ln L(θ̂Θr)= 2 (ℒ(θ̂Θ) − ℒ(θ̂Θr)) , (1.70)

where ℒ denotes the log-likelihood function. Under H0, as stated in eq. (1.67), and some suitable
regularity conditions (see, e.g., Knight, 2000, ¿eorem 7.5), we have

λLR = λLR(Y1, . . . ,YN) 𝒟Ð→
N→∞ χ2κ , (1.71)

where the number of degrees of freedom, κ, is the di�erence of the state space dimensions, i.e.,
κ = dim(Θ) − dim(Θr). Usually, submodels are constructed in that way that the number of degrees
of freedom is simply the di�erence of the number of parameters. ¿e likelihood ratio test rejects the
null Hypothesis on level α when

λLR(y1, . . . ,yN) > χ2κ,1−α (1.72)

where χ2κ,1−α denotes the 1 − α quantile of the chi-squared distribution with κ degrees of freedom.
In terms of number of parameters, there are two extreme cases of statistical models. ¿e �rst is the
so-called saturated model, which has as many parameters as observations. On the other side the
null model in regression analysis includes only one parameter corresponding to a constant factor.
¿e main purpose of considering the null model is to dismiss the null hypothesis that all regression
parameters but one are zero, which would imply that the best description of the data is obtained
by the mean. Considering the saturated model on the other hand, with as many parameters as
observations, does not yield any simpli�cation. However, the concept of a saturated model as the
largest reasonable model is useful for goodness-of-�t analysis of any model of interest.
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1.6.3 | Lagrange Multiplier / Score Test

Another statistic for hypothesis tests is based on the score function and is therefore called the Score
Test, or alternatively the Lagrange multiplier test (LM). ¿e LM test statistic for testing a hypothesis
of the form as in eq. (1.67) is given by the quadratic form

λLM = s(θ̂Θr)Tℐ(θ̂Θr)−1s(θ̂Θr),
where s(⋅) denotes the score function (see eq. (1.40)), ℐ(⋅) the information matrix and θ̂Θr the
maximum likelihood estimate under the restricted model Θr . Under the null hypothesis H0 ∶ θ ∈ Θr
and some regularity conditions, the λLM statistic is asymptotically χ2N distributed, see Lütkepohl
(2007).

Note that although the three introduced tests have equivalent asymptotic distributions under
the null hypothesis, they might have di�erent small sample properties, see, e.g., Lütkepohl (2007).
Our choice among the tests will be based on the objective of the application. For the comparison of
nested GAPC models that di�er by categorical e�ects, e.g., models with a cohort e�ect vs. restricted
models without a cohort e�ect, we will use the LR statistic. For signi�cance tests of particular ages,
cohorts or other predictors, we employ the Wald test.

1.6.4 | Deviance Statistic for the Exponential Family

A special case of the likelihood ratio statistic, as provided in eq. (1.70), is to consider the saturated
model as the unrestricted model and compare it to the model of interest in order to determine how
appropriate the proposed model �ts the data. In that particular case, the likelihood ratio statistic λLR
is called the deviance and is denoted by D.
¿e objective of the following is to derive the deviance statistic for the exponential family and to

show how the likelihood ratio criterion for the comparison of nested models can be expressed in
terms of the deviance. Let Θ denote the model of interest and ΘS the saturated model. Further, let
θ̂ i denote the estimated canonical parameters and µ̂i the �tted values under the model Θ, where
µ̂i = b′(θ̂ i) (see eq. (1.36)). Alternatively, let θ̃ i and µ̃i denote the corresponding estimates under the
saturated model ΘS . Recall, the log-likelihood function for the exponential family is given by

ℒ(θ i ,ϕ ⋃︀ yi) = yiθ i − b(θ i)
ai(ϕ) + c(yi ,ϕ).

¿us, the likelihood ratio criterion applied to those models leads to

λLR = 2 (ℒ(θ̃) − ℒ(θ̂))
= 2 N∑

i=1
yi(θ̃ i − θ̂ i) − b(θ̃ i) + b(θ̂ i)

ai(ϕ) . (1.73)

As noted before in Section 1.5, for the distributions of interest, we have ai(ϕ) = ϕ⇑wi with known



1.6 Hypothesis Tests, Goodness-of-fit Measures and Model Selection Criteria 53

prior weights wi . Using that simpli�cation, we can rewrite eq. (1.73) as

ϕ λLR = 2 N∑
i=1wi (yi(θ̃ i − θ̂ i) − b(θ̃ i) + b(θ̂ i)) . (1.74)

¿e right-hand side of this expression is called the deviance and is denoted by D(y,µ̂). ¿e deviance
can be seen as the generalization of the residual sum of squares. With Table 1.4, it can be easily
veri�ed that the deviance for the normal distributed response variables is indeed given by D(y,µ̂) =∑N
i=1(yi − µ̂i)2. Since GAPC stochastic mortality models employ Poisson and binomial distributed

response variables, the corresponding deviances are derived in the following. Recall that for the
Poisson distribution we have, θ i = ln µi , b(θ i) = eθ i , ai(ϕ) = ϕ with ϕ = 1 and prior weights wi = 1.
¿us, the deviance is given by

D(y,µ̂) = 2 N∑
i=1wi (yi(θ̃ i − θ̂ i) − b(θ̃ i) + b(θ̂ i)) (1.75)

= 2 N∑
i=1(yi ln(

yi
µ̂i
) − (yi − µ̂i)) .

Note that for the saturated model, the means µi = b(θ i) are estimated by the corresponding
observations yi . Alternatively, for the binomial distribution, we have b(θ) = n ln(1 + eθ) and
a(ϕ) ≡ 1, such that θ̃ i = (b′)−1(yi) and θ̂ i = (b′)−1(µ̂i), and thus

D(y,µ̂) = 2 N∑
i=1(yi ln(

yi
µ̂i
) + (ni − yi) ln(ni − yini − µ̂i )) .

For both, the Poisson and the binomial distribution, the dispersion parameter is ϕ = 1 and therefore
we can conclude from eqs. (1.71) and (1.74) that for large sample sizes the deviance is approximately
chi-squared distributed with N − K − 1 degrees of freedom, where N is the number of observations
and K the number of parameters of the proposed model Θ.

To see that the likelihood ratio test can be expressed in terms of the deviance, observe that for the
increasing model setting, e.g., Θr ⊂ Θ ⊂ ΘS , we have

λLR(Θr ,Θ) = 2 (ℒ(θ̂Θ) − ℒ(θ̂Θr))= 2 (ℒ(θ̂ΘS) − ℒ(θ̂Θr)) − 2 (ℒ(θ̂ΘS) − ℒ(θ̂Θ))
= D(y,µ̂Θr) − D(y,µ̂Θ)

ϕ
.

In the forthcoming numerical case studies, we will only consider distributions where ϕ is known,
like the Poisson or the binomial distribution (ϕ = 1). ¿us, in order to test H0 ∶ θ ∈ Θr versus
HA ∶ θ ∈ Θ∖Θr , we follow the condition of eq. (1.72) and compare the di�erence of the deviances to
a corresponding quantile of a chi-squared distribution.
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1.6.5 | Information based Criteria for Model Selection

Aswe have seen above, the likelihood ratio test provides amethod formodel selection of nestedmodels.
¿e LR method is based on the asymptotic distribution of the test statistic and does not directly
account model complexity. Alternative approaches for model selection, of not necessarily nested
models, are established in terms of penalized likelihood functions. A well-known representative of
that class is the Akaike’s information criterion (see, Akaike, 1973)

AIC = −2ℒ(µ̂Θ ⋃︀ y) + 2K (1.76)

¿e criterion is based on the maximum likelihood estimate under model Θ and an additional
complexity penalizing term of 2K, where K = dim(Θ). Another penalized maximum likelihood-
based measure of goodness-of-�t is the Bayesian information criterion (see, Schwarz, 1978)

BIC = −2ℒ(µ̂Θ ⋃︀ y) + K lnN , (1.77)

where the penalization term incorporates both, the model complexity K and sample size N . Equa-
tion (1.77) shows, that for N > 8, the Bayesian information criterion penalizes the model complexity
higher than the Akaike’s information criterion. Both criteria are used for comparison of competing
statistical models, where models with lower values are preferable over those with larger values. Other
information based criteria will be introduced in Section 2.3.1.

1.6.6 | GLM Residuals

Residuals are important for GLM assessment and diagnostic purposes. ¿e accuracy of the model
�t can be analysed with respect to all components of a GLM, namely, the choice of the response
variable distribution, the linear predictor, and the link function. Possible weaknesses of a model
can be identi�ed through residual patterns. In general, residuals measure the deviation between
the observed and the �tted values. In the following part, we will present the de�nition of deviance
residuals which are a generalization of raw response residuals used for Linear Models, see Pierce and
Schafer (1986) for more details and an overview of further alternative approaches to residuals for
GLMs.
¿e raw response residuals are primarily used for diagnostics of LMs and are de�ned as the

di�erence between the observation and the �tted value

rRi = yi − µ̂i , i = 1, . . . ,N .
In GLMs, however, the variance of Yi depends on the covariates x i . ¿erefore, the raw response
residual rRi would be an inappropriate choice since it does not cover heterogeneous variance structures.
¿at issue can be avoided by using Pearson residuals

rPi = yi − µ̂i⌈︂
V(µ̂i) , i = 1, . . . ,N ,

as scaled modi�cations of the response residuals, where V(⋅) is the variance function of the GLM
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(see eq. (1.38)). In the forthcoming case studies we will employ deviance residuals which are usually
preferred over Pearson residuals due to their properties (see Hardin and Hilbe (2012)). ¿e deviance
residuals are de�ned by

rDi = sign(yi − µ̂i)⌉︂(︃devi , i = 1, . . . ,N , (1.78)

where (︃devi corresponds to the partial deviation of the i-th observation. By using eq. (1.75), we have
(︃devi = wi (yi(θ̃ i − θ̂ i) − b(θ̃ i) + b(θ̂ i)) (1.79)

as individual contributions to the deviance for a response variable from the exponential family. From
the de�nition of eq. (1.78), we see that the total deviance satis�es

D(y,µ̂) = N∑
i=1 (rDi )

2 = N∑
i=1

(︃devi .
For Poisson distributed response variables, we conclude from eq. (1.79) and Table 1.4 that

(︃devi = )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
2 µ̂i if yi = 0
2 (yi ln ( y iµ̂ i ) − (yi − µ̂i)) otherwise.

For the particular forms of (︃devi for the binomial and other distributions, we refer to Hardin and
Hilbe (2012, Table A.11).
¿e StMoMo package, which will be used for a comparative case study of several GAPC models

(see Figures 1.16 to 1.24), employs a standardized form of the deviance residuals. ¿ese standardized
deviance residuals are de�ned as

rDi = sign(yi − µ̂i)
⟨⧸︂⧸︂⟩(N − K) (︃devi

D(yi ,µ̂i) , (1.80)

where D(yi ,µ̂i) is the total deviance, N the number of observations and K the number of model
parameters. ¿e standardized deviance residuals are the most commonly used residuals for GLM
assessment. It is worth noting that for normally distributed response variables, the introduced
generalizations, such as the Poisson and the deviance residuals, coincide with the raw response
residuals rRi .

1.6.7 | Notations for GAPCModels under the GLM Framework

In this section, we leave the general notation of the previous sections and consider the concrete
quantities which are required for stochastic mortality modelling. As presented in Section 1.4.3, the
key quantity of interest in mortality modelling is the death count Dt,x at period t and individuals
aged x. As in Villegas, Kaishev and Millossovich (2015), the �rst component of the GAPC model
determines the distribution of the discrete random variable Dt,x , which takes the role of the response
variable within the GLM framework. As previously presented, some plausible distributions for Dt,x ,
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which have been primarily considered in the literature, are the Poisson and the binomial distribution,
i.e., Dt,x ∼ Poi(µt,xEct,x) or Dt,x ∼ Bin(qt,x , E0t,x), where Ect,x or E0t,x denote the known central or
initial exposures to risk, respectively. ¿e aim of the GAPC models is to regress a particular function
of the expected death count on some linear combination of covariates, such as age, period, and cohort
terms. In case of a Poisson distributed death counts, the force of mortality µt,x , as the unknown term
of E(︀Dt,x⌋︀ = µt,xEct,x is modelled by

ηt,x = g(µt,x) = g (E(︀Dt,x⌋︀
Ect,x

) ,
where g denotes the link function and ηt,x a general age-period-cohort predictor function of form

ηt,x = αx + N∑
i=1 β

(i)
x κ(i)t + β(0)x γt−x . (1.81)

¿e terms αx , βx in eq. (1.81) account age-related e�ects, whereas κt , γt−x represent periodic and
cohort e�ects, respectively. An overview of popular predictor functions is provided in Table 1.2. ¿e
form of the log-likelihood function for the Poisson and the binomial model follows directly from the
general exponential family log-likelihood function, as given in eq. (1.39). ¿us, we have

ℒ(d̂t,x ⋃︀ dt,x) = ∑
t,x
(dt,x ln d̂t,x − d̂t,x − ln (dt,x !)) (1.82)

for Poisson distributed death counts, and

ℒ(d̂t,x ⋃︀ dt,x) = ∑
t,x

⎛⎝dt,x ln( d̂t,xE0t,x
) + (E0t,x − dt,x) ln⎛⎝E

0
t,x − d̂t,x
E0t,x

⎞⎠ + (E
0
t,x
dt,x

)⎞⎠ ,
for binomial distributed death counts, where dt,x denotes the observed death counts of individuals
aged x at period t, and d̂t,x denotes the model prediction obtained by MLE. ¿e predicted numbers
of deaths d̂t,x are related to the estimated model parameters through

d̂t,x = Ect,x µ̂t,x = Ect,x g−1 (α̂x + N∑
i=1 β̂

(i)
x κ̂(i)t + β̂(0)x γ̂t−x)

in the Poisson case, and through

d̂t,x = E0t,x q̂t,x = E0t,x g−1 (α̂x + N∑
i=1 β̂

(i)
x κ̂(i)t + β̂(0)x γ̂t−x)

in the binomial case, where g−1 denotes the inverse of the link function g. For goodness-of-�t and
misspeci�cation analysis of GAPC models, standardized deviance residuals will be used. Rewriting
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the general notion of standardized deviance residuals, as provided in eq. (1.80), leads to

rDt,x = sign(dt,x − d̂t,x)
⟨⧸︂⧸︂⟩(N − K) (︃dev(t,x)

D(dt,x ,d̂t,x) , (1.83)

where the individual contributions (︃dev(t,x) to the total deviance D(dt,x ,d̂t,x) = ∑t,x (︃dev(t,x) are
given as

(︃dev(t,x) = )︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀
2 d̂t,x if dt,x = 0
2(dt,x ln( dt ,xd̂t ,x

) − (dt,x − d̂t,x)) otherwise,
(1.84)

in the Poisson case, and as

(︃dev(t,x) =
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

2 E0t,x ln( E0t ,x
E0t ,x−d̂t ,x ) if dt,x = 0

2 dt,x ln( dt ,xd̂t ,x
) + 2(E0t,x − dt,x) ln( E0t ,x−dt ,xE0t ,x−d̂t ,x ) if 0 < dt,x < E0t,x

2 E0t,x ln( E0t ,xd̂t ,x
) if dt,x = E0t,x ,

for the binomial random component, respectively. ¿e deviance statistic, standardized deviance
residuals and information criteria, such as the Akaike’s (AIC) and Bayesian (BIC), will be employed
in the following section for a goodness-of-�t analysis of some GAPC stochastic mortality models as
presented in Section 1.4.3.

1.7 | GAPC Case Study

In the following section, we provide a comparative analysis of some GAPC stochastic mortality
models as introduced in Section 1.4.2. ¿e objective of the case study is in the �rst place to assess the
ability of the models to re�ect the observed mortality rates and to capture the e�ects of the time
evolution. In the second place, we will analyse how suitable these models are to obtain forecasts of
future rates and identify the advantages and disadvantages of the distinct models. For a composition
of the distinct predictor functions of the models, see Table 1.2. Parameter estimation for GAPC
models is obtained by maximization of the log-likelihood function which is achieved by numerical
methods as introduced in Section 1.5. In the following section, we �rst provide an analysis comparing
the accuracy of some GAPC models from Section 1.4.3 using a Poisson random component and
the canonical link function. Subsequently, we continue our analysis with likelihood ratio tests for
nested model pairs to determine the signi�cance of periodic or cohort-related e�ects. A erwards, in
Section 1.7.2, we analyse how these models compare to models with the same random component
and same predictor function but a non-canonical link function. Subsequently, in Section 1.8, we
provide an in-depth discussion on common weaknesses of widely used GAPC models.
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Reference Dataset

For the following comparative analysis, we use the annual central mortality rates of the Swedish
female population as our reference dataset. ¿e analysis is restricted to the periods between 1900
and 2014, and ages between 60 and 106. ¿e observed mortality rates of the corresponding dataset
are visualized in Figure 1.14 on a linear scale and in Figure 1.15 on a logarithmic scale. From these
illustrations one can observe that for each period the mortality rates are strongly increasing with the
age. Moreover, the growth of the mortality rates for �xed periods shows high regularity, see also
Figures 1.5 and 1.6. ¿is indicates that models with parametric age-related e�ects β(i)x might perform
well, while having the advantage of being more parsimonious. Another observation is that despite
the �uctuation in time there is a general decline in the mortality rate across all ages. However, the
decline is not constant and is higher for lower ages (60-80) compared to higher ages (90+). GAPC
models aim to capture these e�ects by age-periodic terms β(i)x κ(i)t . Cohort-related e�ects are usually
not detectable from plots containing crude mortality rates. Hence, one has to use relative changes in
the mortality in time to reveal these e�ects. As already reviewed in Section 1.3, Figure 1.7 shows
the mortality improvements of the Swedish females (see Section 2.5.4 for the de�nition). From
that illustration, cohort e�ects are not clearly detectable as they are for the males or the UK-Wales
population as shown in Figures 1.8 to 1.10. In the upcoming analysis, likelihood ratio tests are used to
determine whether general models with a cohort e�ect γt−x are favourable over nested models with
no cohort term.

Software Considerations

¿e �tting methodology of Section 1.5.2 will be applied to several GAPC models. ¿e computational
analysis is performed within the R so ware environment. In particular, we use the demography
package to obtain the corresponding dataset from the Human Mortality Database, and the packages
StMoMo and gnm for parameter estimation.¿e StMoMo package accommodates a great collection
of functions and routines which are useful for model design and validation of stochastic mortality
models. It provides a very comfortable way for model speci�cation, and handles the connection of
the model, the historical data, and the routines of gnm package. ¿e gnm package itself does the
heavy workload estimating several hundred parameters by using an implementation of the Fisher
scoring algorithm (see Section 1.5.2). ¿e results of the iterative estimation scheme are then again
passed to the routines of StMoMo package, which ensure a proper representation of the estimates
and also provides some relevant statistics for goodness-of-�t analysis. For the following quantitative
analysis of several GAPC models, we use our own modi�cation of the StMoMo package in order to
employ non-canonical link functions. 1

1.7.1 | GAPCModel Analysis (Setting 1)

¿e primary objective of the following analysis is to investigate the �tting performance for distinct
predictor types and study the signi�cance of age, period, and cohort terms on the quality-of-�t.

1 At the time of writing, the current version StMoMo v0.3.1 can only handle canonical link functions.
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Figure 1.14:Historical central mortality rates of the Swedish female population aged 60 to 106 during
the periods between 1900 and 2014.

Specifications for the first Case Study

For the �rst part of our quantitative analysis of several commonly used mortality models, we choose
the following GAPC speci�cation. ¿e random component follows a Poisson distribution with mean
µt,xEct,x , i.e., Dt,x ∼ Poi(µt,xEct,x). For the systematic components, the predictor functions of the
types LC, LC2, CBD, APC, RH, M6, M7, and PLAT will be used, see Table 1.2 for an overview of the
distinct functions.1 ¿e canonical Poisson link function g = ln will be used as well as the parameter
constraints from Table 1.3 to ensure identi�cation. ¿ese four components provide an unambiguous
speci�cation of a GAPC model. ¿ese models are compared on our reference dataset of Swedish
females aged 60-106 in the periods between 1900 and 2014.
¿e estimates of the model coe�cients αx , β

(i)
x , κ(i)t and γt−x are obtained by maximizing the

Poisson type log-likelihood function of eq. (1.82) using the iterative Fisher scoring algorithm.
Subsequently the corresponding transformations on the estimates are applied to satisfy the imposed
parameter constraints.

1 Originally, the predictor functions of CBD, M6, and M7 were applied to the initial mortality rates qt ,x and not as
speci�ed here to the central mortality rates µt ,x . In order to model qt ,x , an adaption from central Ect ,x to initial
exposures E0t ,x is required. Since the mortality database does typically not provide both exposures, the initial exposure
rates E0t ,x are then generated using the approximation of eq. (1.1). However, this transformation generates a new
dataset. By doing that, we are no longer capable to compare di�erent models for the dataset, but rather di�erent
models for di�erent datasets. To avoid that circumstance and provide an even comparison, we apply all predictor
functions to the central mortality rates.
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Figure 1.15:Historical central mortality rates of the Swedish female population aged 60 to 106 during
the periods between 1900 and 2014 (logarithmic scale).

Fitting Results and Goodness-of-fit Analysis

¿e estimation results of the speci�ed set of candidate models are provided in Table 1.5. ¿e table
contains the number of used parameters, the maximum value of the likelihood function, the total
deviance, as well as the information criteria AIC and BIC. ¿e total deviance for the Poisson case
can be obtained by using eq. (1.84) which provides a measure �tting accuracy between the observed
dt,x and the �tted deaths counts d̂t,x . Boldface numbers indicate the most favourable models across
the measures: deviance, AIC, and BIC. ¿e best �t according to the total deviance is achieved by
the M7 predictor. Note that M7 predictor with 3 periodic terms κ(1)t , κ(2)t , κ(3)t and a cohort γt−x
requires 498 parameters for the overall 5103 degrees of freedom of the underlying dataset, which is
almost a ratio of 1/10. ¿e PLAT:3 model, which is the second according to the deviance ranking,
has a slightly higher deviance despite the fact that it incorporates even more parameters through
the additional age-speci�c term αx . ¿e LC, APC, and the CBD predictor types are least favourable
according to the deviance ranking.
To provide a comparison of the �tting performance relative to the number of used parameters,

information criteria are employed. To avoid over-parametrization the AIC and BIC criteria are
considered to provide a trade-o� between �t accuracy and model parsimoniousness. Recall from
eqs. (1.76) and (1.77) that models with a lower AIC or BIC value are preferable over the models
with higher values. ¿e M7 model turns out to be the most favourable also according to the AIC
ranking. Regardless the penalizing term of the AIC criterion, the models with more parameters (M7,
PLAT:2, PLAT:3) tend to dominate the models with lower number of parameters. Using the Bayesian
information criterion for model selection, which has a higher penalization for more parameters,
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Table 1.5:Number of parameters, log-likelihood, deviance, AIC, and BIC for the speci�ed set of candidate
models �tted to the Sweden’s female population for ages 60-106 and the periods between 1900 and 2014
(5103 available observations). PLAT:2 and PLAT:3 denote the PLAT model (see eq. (1.22)) with 2 or 3
periodic terms, respectively. For predictor functions of the corresponding models, see Table 1.2.

Model # of parm. ln L Deviance AIC BIC

LC 207 −24516 9535 49446 50799

LC2 365 −22538 5579 45806 48193

CBD 230 −27543 15589 55546 57050

APC 315 −24884 10270 50397 52456

RH 362 −22726 5954 46175 48542

M6 384 −24674 9850 50115 52626

M7 498 −22157 4817 45310 48566

PLAT:2 428 −22257 5018 45371 48169

PLAT:3 542 −22168 4839 45420 48964

leads to the PLAT:2 model as the best performing model. ¿e most favourable candidates, M7 and
PLAT:2, have in common that both incorporate a cohort term γt−x and parametric age-related e�ects
β(i)x .
Before we address the signi�cance of the cohort term, as well as its interpretability, we provide a

better insight into the �tting performance of these models by inspecting the standardized deviance
residuals, as de�ned in eq. (1.83).¿e lack of the ability to describe essential features of the dataset will
be indicated by regular residual patterns. Figures 1.16 to 1.24 illustrate heat plots of the standardized
deviance residuals, plotted versus calendar year and age. Note, the reddish areas (positive residuals)
on the heat maps indicate an underestimation of the death counts by the particular model, whereas
bluish regions (negative residuals) indicate an overestimation of the death counts, compared to the
actual observations. From Figures 1.16, 1.18, 1.19 and 1.21, we see that the models LC, CBD, APC, and
M6 display signi�cant residual patterns, whereas the models LC2, M7, and the both PLAT models, in
Figures 1.17 and 1.22 to 1.24, appear quite random. ¿e residual plot of the APC model in Figure 1.19
indicates the lack of the model to capture non-uniform age-related improvements, since this is the
only model without any age-adaptive terms β(i)x . ¿e CBD and the M6 show both strong clustering
across particular age bands. ¿at might indicate a missing non-linear modulation term β(2)x in order
to capture the progressive curvature of the mortality rates, as illustrated in Figure 1.6. None of the
residual plots shows sharp diagonal patterns which would indicate the inability to capture the cohort
e�ect. ¿e absence of diagonal patterns for models without cohort terms is an indication that there
are no substantial cohort e�ects in the corresponding dataset. ¿is is in accordance with the inference
from the mortality improvements, as shown in Figure 1.7, which also do not provide an indication of
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cohort e�ects.
In the following part of our quantitative analysis, we explore whether certain extensions of the

predictor function are justi�ed. Note that some proposed models are nested within other models,
for instance, the APC model is a submodel of the more general PLAT models. ¿e APC predictor
function of eq. (1.14) emerges from the PLAT type predictor function, as de�ned in eq. (1.22), by
imposing the setting κ(2)t = κ(3)t = 0. For nested models, likelihood ratio tests (see Section 1.6.2) are
more appropriate for model assessment than the information criteria AIC and BIC. In the following,
we use the LR test to check the null hypothesis that the parameters lie in the subspace of the nested
model against the alternative that the more general parameter space is required. In other words,
whether the restricted model can be rejected in favour of the more general one or not. Recall from
eqs. (1.70) and (1.72), that the null hypothesis is rejected if the test statistic λLR exceeds the 1 − α
quantile of the chi-squared distribution with κ degrees of freedom, where α is the signi�cance level
and κ is the number of the additional parameters incorporated in the general model.
For the likelihood ratio tests, we consider the nine models from the previous analysis (see Table 1.5)

joined by a LC2+C type predictor function, which was given in eq. (1.13), and a reduced M7 model
without a cohort term. ¿is collection of models leads to 13 nested pairs. ¿e testing results are
presented in Table 1.6, where the columns contain the submodel, the full model, the corresponding
restriction, followed by the test value, the degrees of freedom, and the p-value. As the results show,
for all nested pairs the null hypothesis is rejected in favour of the full model on any reasonable level.
1 As the p-value column shows, there is a clear statistical evidence for the justi�cation of additional
terms for each nested pair. For instance, the rejection of null hypothesis for the pairs LC vs. RH,
LC2 vs. LC2+C, CBD vs. M6, and M7:sub vs. M7, justi�es the existence of cohort term. Consequently,
there is an indication for cohort-related mortality e�ects in the corresponding dataset. However, in
Section 1.8.2, we will discuss the validity of that implication by analysing whether the cohort term
truly captures the cohort e�ects of the dataset.
Other consequences of the previous analysis are that the rejection of the null hypothesis for

the pairs APC vs. PLAT:2 and APC vs. PLAT:3, indicates the presence of a non-trivial correlation
structure. ¿is is coherent with the observation of age-related mortality improvements as illustrated
in Figures 1.7 and 1.15.

Conclusions for the GAPCModel Analysis (Setting 1)

In the previous analysis of various GAPC models, we have investigated the �tting performance for
distinct predictor types.¿e primary objective was to provide better insights on the impacts of the age,
period, and cohort terms on the quality-of-�t. ¿e �tting results, as summarized in Table 1.5, suggest
that the models M7 and PLAT:2 provide the most favourable predictor structures to describe the
essential features of our reference dataset. ¿e overall conclusion of signi�cance tests, as depicted in
Table 1.6, is that model selection based on the likelihood ratio tests would justify additional terms in
favour of a less parsimonious model, even though, the larger model contains up to several hundreds
more parameters. Note that the LR test checks the signi�cance for the entire parameter groups such

1 For any signi�cance level α > 0.001.
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Figure 1.16: Standardized deviance residuals of the Poisson LC model with log link function.
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Figure 1.17: Standardized deviance residuals of the Poisson LC2 model with log link function.
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Figure 1.18: Standardized deviance residuals of the Poisson CBD model with log link function.
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Figure 1.19:Deviance residuals of the Poisson APC model with log link function.
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Figure 1.20: Standardized deviance residuals of the Poisson RH model with log link function.
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Figure 1.21: Standardized deviance residuals of the Poisson M6 model with log link function.
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Figure 1.22: Standardized deviance residuals of the Poisson M7 model with log link function.
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Figure 1.23: Standardized deviance residuals of the Poisson PLAT:2 model with log link function.
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Figure 1.24: Standardized deviance residuals of the Poisson PLAT:3 model with log link function.
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Table 1.6: Results of the likelihood ratio tests for various pairs of general and restricted models. ¿e
columns λLR and d.f. contain the LR test statistic and the degrees of freedom. ¿e latter is equal to
the di�erence in the dimensionality of the general and the restricted model. For all test pairs, the null
hypothesis is rejected at any reasonable signi�cance level in favour of the general model. Predictor
functions of these models can be found in Table 1.2.

H0 (nested) HA (general) Restriction λLR d.f. p-value

LC RH γt−x = 0 3580 155 < 0.0001
LC LC2 β(2)x κ(2)t = 0 3956 158 < 0.0001
LC LC2+C β(2)x κ(2)t = γt−x = 0 5000 313 < 0.0001
LC2 LC2+C γt−x = 0 1045 155 < 0.0001
CBD M6 γt−x = 0 5738 154 < 0.0001
CBD M7 κ(3)t = γt−x = 0 10772 268 < 0.0001
CBD PLAT:2 αx = γt−x = 0 10572 198 < 0.0001
CBD PLAT:3 αx = κ(3)t = γt−x = 0 10750 312 < 0.0001
APC PLAT:2 κ(2)t = 0 5254 113 < 0.0001
APC PLAT:3 κ(2)t = κ(3)t = 0 5432 227 < 0.0001
M6 M7 κ(3)t = 0 5034 114 < 0.0001
M7:sub M7 γt−x = 0 7148 153 < 0.0001
PLAT:2 PLAT:3 κ(3)t = 0 178 114 0.00012

as cohort e�ects or period-related e�ects. Before we continue with an analysis on the signi�cance of
individual elements of these categorical groups in Section 1.8, we investigate how the accuracy of the
�t changes by using an alternative link function.

1.7.2 | GAPCModel Analysis (Setting 2)

Many of the predictor types of the previous analysis were proposed before it become aware that these
mortality modelling approaches could be uni�ed by the GLM framework. ¿e GLM framework has
an additional degree of freedom, which can be utilized for modelling, and, for traditional reasons,
has been mostly ignored in the actuary literature. Apart from a few exceptions (see, e.g., (Currie,
2016)), most GAPC models only use the canonical link function. In the following case study, we
demonstrate the impact of a non-canonical link function to the quality-of-�t.

Specification for the second Case Study

For the second quantitative analysis of GAPC model, the distribution type of the response variable,
the predictor functions, and the imposed parameter constraints remain the same as in the �rst case
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study of Section 1.7.1. ¿e only modi�ed component is the link function, where in addition to the
Poisson canonical (g = ln), a logit link (g = logit) is considered. In Remark 1.5.1, we have provided
the explicit forms of the weighting matrixW and working variable Z for the IRLS algorithm, which
are employed here for parameter estimation. Note, to apply the logit link to a Poisson distributed
response variable, we have to ensure that the underlying data is within the domain of the logit
function, which is the interval (0,1). However, for the human mortalities, 0 < µ < 1 holds even for
very high ages.
To examine whether this setting leads to a higher quality �t, we provide an analysis based on 6

datasets including the female mortality rates of the countries Denmark, Finland, France, Sweden,
Switzerland, and UK-Wales. ¿e data from HMD are considered on the same periods from 1900
to 2014 and ages from 60 to 106, as in the �rst setting. ¿e objective of the upcoming analysis is to
conclude whether the non-canonical logit link is preferable for a set of di�erent predictors.

Goodness-of-fit Analysis of Canonical Poisson Link versus Logit Link

Tables 1.7 to 1.12 summarize the �tting results of both link functions. Note that despite taking the
same period and the same age range, the number of observations di�ers for individual countries.
¿e discrepancy in the number comes due to missing data points in the HMD, which are present,
in particular, at higher ages at the �rst part of the 20th century. ¿e results of Tables 1.7 to 1.9, 1.11
and 1.12 lead to the conclusion, that for all countries, the logit link function provides a better �t for
the LC, CBD, APC, M7, and PLAT models, with Denmark being the only exception for the CBD
model. ¿e only model which shows a di�erent behaviour, favouring the canonical link, is the RH
model. ¿is exception might be the result of the already discussed convergence issues of the RH
predictor, see Section 1.4.3, and Hunt and Villegas (2015) and Macdonald, Gallop, Miller et al. (2007).
As pointed out in Section 1.5.1, in addition to the already problematic behaviour for the canonical
case, using the logit link, leads to a not necessarily concave function. ¿us further complications can
potentially arise since numerical approximation of the estimates might converge to a local and not to
the global maximum.
¿e accumulation of the results in Tables 1.7 to 1.12 shows that for our reference dataset the

predictor preference is mostly preserved across the used link functions. For instance, similar to
Sweden, we observe the preference of the M7 and the PLAT models for Denmark, Finland, France,
Switzerland, andUK-Wales. For poorly performing predictors there are a few changes in the predictor
rankings, see, e.g., the models LC and CBD for Denmark.

Conclusions for the GAPCModel Analysis (Setting 2)

As we have demonstrated, a non-canonical link function can have a positive impact on the quality-of-
�t. It is important to stress out that most mortality studies within the GAPC framework have been
conducted using only the canonical choice, see among others, e.g., Cairns, Blake, Dowd et al. (2009).
Since, from the GLM perspective, there is no a priori reason for omitting this degree of freedom
for model selection, we assume that this issue arises due to the inability to handle alternative link
functions in current so ware environments. For further results, advocating the application of non-
canonical link functions see, Currie (2016), who also demonstrated the advantage of non-canonical
link functions for the binomial random component.
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Table 1.7:Number of observations, number of parameters, and the total deviance for the Poisson LC
model with log and logit link functions. ¿e lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g = ln) Dev (g = logit)
Denmark 4958 207 8529 8433
Finland 4757 205 9143 8955
France 5176 206 43594 39120
Sweden 5103 207 9533 9334
Switzerland 4774 204 8173 7646
UK-Wales 5273 206 40450 38872

Table 1.8: Number of observations, number of parameters, and the total deviance for the Poisson CBD
model with log and logit link functions. ¿e lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g = ln) Dev (g = logit)
Denmark 4958 230 8215 10573
Finland 4757 226 11765 9151
France 5176 228 96433 88916
Sweden 5103 230 15637 14901
Switzerland 4774 224 12743 12130
UK-Wales 5273 228 52628 43405

Table 1.9:Number of observations, number of parameters, and the total deviance for the Poisson APC
model with log and logit link functions. ¿e lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g = ln) Dev (g = logit)
Denmark 4958 314 7866 6324
Finland 4757 308 7450 6840
France 5176 316 46454 32602
Sweden 5103 315 10282 8799
Switzerland 4774 305 8782 7417
UK-Wales 5273 316 37037 27956

Table 1.10:Number of observations, number of parameters, and the total deviance for the Poisson RH
model with log and logit link functions. ¿e lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g = ln) Dev (g = logit)
Denmark 4958 361 4992 5051
Finland 4757 355 6040 6200
France 5176 363 13729 15307
Sweden 5103 362 5953 6475
Switzerland 4774 352 4870 5061
UK-Wales 5273 363 16299 16398
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Table 1.11:Number of observations, number of parameters, and the total deviance for the Poisson M7
model with log and logit link functions. ¿e lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g = ln) Dev (g = logit)
Denmark 4958 497 4248 4087
Finland 4757 487 4893 4882
France 5176 497 10096 9483
Sweden 5103 498 4817 4709
Switzerland 4774 482 4562 4439
UK-Wales 5273 497 15285 14446

Table 1.12:Number of observations, number of parameters, and the total deviance for the Poisson PLAT:2
model with log and logit link functions. ¿e lower deviance is shown in bold.

Country # of obs. # of parm. Dev (g = ln) Dev (g = logit)
Denmark 4958 427 4280 4239
Finland 4757 419 5049 5015
France 5176 428 11809 10310
Sweden 5103 428 5013 4788
Switzerland 4774 415 4798 4543
UK-Wales 5273 428 12114 11781

¿e fact that models with a logit link function perform better than their competitors with a
logarithmic link indicates that human mortality rates for higher ages (60-106) obey a logistic-type
growth rather than an exponential. Note that the logit function is the inverse of a logistic function.
¿e summarized results in Tables 1.7 to 1.12 lead to the conclusion that the logit-transformedmortality
rates appear more linear compared to the log-transformed case.

1.8 | Common Issues and Problematic Properties of GAPCModels

In this section, we provide a critical re�ection on GAPC models based on their general properties
and the case studies of Sections 1.7.1 and 1.7.2. ¿e discussion with respect to the quality criteria for
mortality models by Cairns, Blake and Dowd (2008), as listed on page 20, also aims to examine to
which extent the best explanatory models are also well-suited for forecasting purposes.

In the following, we identify and discuss some areas of main di�culties related to GAPC models.
Section 1.8.1 focuses on issues which arise due to additional parameter constraints in order to ensure
model identi�cation. In Section 1.8.2, we discuss the weaknesses of the cohort term and its ability
to capture or reveal cohort e�ects. Subsequently, in Section 1.8.3, we focus on the signi�cance test
of individual parameters in contrast to the analysis on whole categorical terms, as considered in
Section 1.7.2.
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1.8.1 | Identification Issues and the Implication on Robustness, Interpretability, and Internal
Dependencies

First, we start with the issue of parameter identi�cation, which was already discussed in Section 1.4.3.
Recall, that except the CBD, all predictor types require additional parameter constraints to ensure
identi�cation and that these constraints can be chosen arbitrarily. ¿is has versatile implications on
the concepts of interpretation, comparability, and robustness.
First, in Figure 1.25, we illustrate how di�erent constraints in�uence the parameter estimates.

¿e �gure depicts the estimates for the LC predictor for three distinct constraints. In the �rst case
we use the suggested constraints, i.e., ∑x βx = 1 and ∑t κt = 0 (see eq. (1.8)). Next, we consider
two constraint modi�cations of the periodic term, namely, κ0 = 0 and κn = 0. Figure 1.25 clearly
shows that the parameter estimates obey some structural changes, only due to arbitrarily chosen
constraints. Note that all pairs of estimates (blue, orange, green) in Figure 1.25 lead to the same
model predictor and thus describe the same mortality structure. ¿e di�erent behaviour of the term
αx for high ages is only the result of di�erent constraints and not an indicator of particular mortality
e�ects in the dataset. ¿e LC model is one of the simplest models within the GAPC family. However,
as the observation from above demonstrates, the paths of the estimates are di�cult to interpret.
Neither the absolute level, as shown in Figure 1.25(b), nor the trend changing behaviour, as shown in
Figure 1.25(a), are solely caused by the underlying data. ¿e decision whether the path behaviour is
purely data-driven or arti�cial is a challenging task. For related studies on how di�erent identi�ability
constraints lead to di�erent patterns in the estimates, we refer to Hunt and Villegas (2015).
To highlight further problematic behaviour of the most GAPC models, we refer to Figures 1.26

and 1.27,where the parameter estimates of themost favourablemodels from Section 1.7.1 are presented.
Figure 1.26 illustrates the estimates of the periodic terms κ(1)t , κ(2)t , κ(3)t and the cohort term γt−x
of the M7 model. Figure 1.27 shows the estimates of αx , κ(1)t , κ(2)t and γt−x of the PLAT:2 model.
¿e solid lines present the estimates on the full reference dataset of Swedish females aged 60-106 in
between 1900 to 2014, whereas the dashed lines show the estimates on the reduced dataset, omitting
the period 1900-1949. Several e�ects are apparent in these illustrations. Apparently, omitting the �rst
part of the dataset, in�uences the estimates not only at the beginning of the period, around the 50s,
but also in very recent periods. ¿at means, that the representation of the mortality in the year 2014
depends not only on the data from that year but also on the mortality data from decades ago. ¿is is
common for models which require additional parameter constraints.
Furthermore, it is important to underline that in order to represent the mortality of, e.g., 2014

for the ages 60-106, it requires 96 parameters for the PLAT:2 model. ¿is is indeed more than the
degrees of freedom of these observations. ¿is appears to be paradoxical, however, we have 47
observations d2014,60, . . . ,d2014,106, which are explained by the PLAT:2 predictor (see eq. (1.22)) with
47 age terms α60, . . . ,α106, 2 periodic terms κ(1)2014, κ(2)2014, and 47 cohort terms γ1908, . . . ,γ1954. ¿eM7
model requires 50 parameters (3 periodic and 47 cohort variables) to explain the 47 observations.¿e
reason that these over-parameterized models do not explain the observations perfectly is of course
that the same parameter terms as αx or γt−x are also intended to explain the mortality for various
years. ¿e CBD is the only model which does not share this behaviour. To explain the mortality
of a given year t it requires only 2 parameters κ(1)t and κ(2)t . ¿e CBD model, however, showed a
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Figure 1.25: Estimated parameters αx and κt of the LC model under di�erent identi�cation constraints.
¿e blue lines represent the standard choice of the Lee Carter model, i.e.,∑t κt = 0. ¿e orange lines
represent the estimates obtained by the constraint κ0 = 0. ¿e green lines represent the estimates for
κn = 0. Note, while the κt estimates only di�er up to a�ne linear transformation, the static age functions
αx , however, di�er by a non-linear transformation.

relatively poor quality-of-�t, as emerged in the case studies of Sections 1.7.1 and 1.7.2.
According to the mentioned quality criteria (see page 20) for mortality models, the parameter

estimates should be robust relative to the period of data and range of ages employed. As we have
noticed, models which require parameter constraints are not robust since the range of data has an
in�uence on the constraints and those have direct impact on the estimates. For instance, simple
dataset updates, such as adding the most recent period of mortality data, changes the values of
any previously estimated parameters. From that perspective, most GAPC models do not show any
robustness.
Furthermore, we would like to draw the attention to the dependence structure of the estimates. In

contrast to the estimates of the CBD model, where κ(1)t , κ(2)t only depend on data of period t and
not on estimates of other parameters, the situation for all other models is much more complicated.
Non-parametric age or cohort terms and additional parameter constraints lead to an entanglement
of these parameters. As we discussed above, a parameter which is indexed by t or x does not only rely
on the mortality data from the particular period or age, but also on the data of other periods or ages.
¿us, there is an internal complex connection between the estimates. ¿is dependence structure
appears to be too di�cult to be modelled by a simple random walk process, as commonly assumed in
the literature, see, e.g., Cairns, Blake, Dowd et al. (2009). Even more questionable appears to be the
standard assumption of the independence of the cohort term and the period terms. From Figure 1.26,
we see that the regularity of the estimates (κ(1)t ,κ(2)t ,κ(3)t ) of model M7 can hardly be explained by a
three-dimensional random walk. It is quite challenging to �nd an appropriate time series process to
capture the behaviour of the period terms of the illustrated models. Based on the estimated paths,
random walk processes are hardly suitable to express the progress of the shown paths κ(1)t and κ(2)t .
Further results on the assumption of independence between the predictor terms and the role of the
constraints on the estimation can be found in Currie (2012).
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Figure 1.26: Parameter estimates of the M7 model �tted to the Sweden’s female population for ages
60-106 and the periods between 1900 and 2014 in solid lines. ¿e dotted lines show the estimates of the
same model for the periods between 1950 and 2014.

1.8.2 | Issues and Weaknesses of the Cohort Term

¿e second part of the critical assessment is devoted to the modelling approach of the cohort e�ect.
Recall from Section 1.4.3 that all considered approaches use a non-parametric cohort term γt−x .
Moreover, additional to identi�ability constraints some structural constraints are imposed on the
cohort term. ¿e purpose of these postulations is mainly to obtain desirable properties, such that the
resulted time series of parameter estimates might be modelled by stationary processes. For instance,
the constraints of eq. (1.19) for the M7 model, ensure that the cohort term vary around zero with no
linear or quadratic trends. ¿e idea behind this proposal is to obtain a cohort e�ect which is coherent
with the intuition regarding some desired properties of the cohort e�ect. According to Hunt and
Blake (2014), these properties include, e.g., the absence of any systematic trends in value or variability.
Furthermore, averaged across all cohorts, the e�ect should be zero and represent deviations from a
reference level, rather than compensate discrepancies of other terms. Finally, the e�ect should be
mean reverting and show positive autocorrelation across successive cohorts.
¿e bottom right panels of Figures 1.26 and 1.27 show the parameter estimates of the cohort term

of the models M7 and PLAT:2 from the case study of Section 1.7.1. Recall that models with a cohort
term outperformed their competitors, see the goodness-of-�t results in Table 1.5 and the likelihood
ratio tests in Table 1.6. From the paths of the estimates, we see that the most desired property does
not occur. ¿e paths do not show deviations from a reference level for particular cohorts, indicating
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Figure 1.27: Parameter estimates of the PLAT:2 model �tted to the Sweden’s female population for ages
60-106 and the periods between 1900 and 2014 in solid lines. ¿e dotted lines show the parameter
estimates of the same model on the periods between 1950 and 2014.

higher or lower cohort-related mortality e�ects, but rather reveal that the paths structures are mainly
determined by constraints of eqs. (1.19) and (1.24). As already criticized above, the patterns of the
paths are not only data-driven but also heavily in�uenced by the imposed constraints. Even though
the cohort terms improve the accuracy of the �t, it is challenging to ensure interpretability of these
parameters and attribute cohort e�ects to the values of the cohort term.
To underline the lack of parameters interpretability, we provide another example. ¿e mortality

data of the UK-Wales females o en serves as a prime example for the cohort e�ects. ¿e mortality
improvements of UK-Wales females, which are provided in Figure 1.10 on page 18, clearly show the
impact of the “golden generations” born around the year 1935. To detect whether this considerable
e�ect is captured by the cohort term, we �t several models to the UK-Wales female population aged
60-106 in the period 1900 to 2014. Figure 1.28 illustrates the parameter estimates of the cohort term
using the predictors of the models APC, RH, M6, M7, and PLAT.¿e results reveal that none of these
models is able to provide evidence of the observed cohort e�ect. As for the Swedish females, the
patterns of the paths are primary dominated by the imposed constraints. Furthermore, the regularity
of the paths in Figure 1.28 and the examples of Figures 1.26 and 1.27 does not justify the common
assumption that the cohort term follows a stationary ARIMA process.
For another example, which demonstrates that the GAPC cohort termmisses the intended purpose,

we consider a comparison of the reduced M7:sub (γt−x = 0) and the full M7 predictor. As shown
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Figure 1.28: Estimated cohort parameters of the models APC, RH, M6, M7, and PLAT for UK-Wales
female population. ¿e annual mortality improvements, as visualized in Figure 1.10, demonstrate a clear
e�ect of cohort-related mortality improvements around the 1935 birth cohorts. None of these models is
able to provide evidence of this cohort e�ect.

in Table 1.6, the null hypothesis H0 ∶ γt−x = 0 is rejected in favour of the full M7 model. ¿us, the
�tting performance of the full models justi�es the cohort term. As introduced in Section 1.4.3 the
purpose of the cohort term is to reveal the cohort-related features of the dataset rather than capture
the �tting discrepancies of the remaining period or age-related terms. Figures 1.29 and 1.30 show
scatter plots of the standardized deviance residuals by age, period, and cohort for the M7:sub and the
M7 models. For the reduced M7:sub model Figure 1.29(a) reveals the di�culties of the model to
capture age-related mortality e�ects. ¿is is recognizable by the appearance of systematic patterns
of the residuals when plotted against the involved ages. For instance, we observe some systematic
underestimations of the death counts for ages around 60-65 and 85-90 and some overestimations of
the death counts for ages around 75-80 and 100-105. ¿e residuals plotted versus period and cohort,
as illustrated in Figures 1.29(b) and 1.29(c), do not show substantial systematic deviations. Adding
the cohort term and considering the residuals scatter plots of the full M7 model in Figure 1.30, shows
that the age-related systematic deviations have disappeared. ¿e direct comparison of Figures 1.29(a)
and 1.30(a) illustrates that the cohort term of the full model does increase the �tting performance.
However, this is achieved by the compensation of the �tting discrepancy across ages rather than
cohorts. ¿e conclusion of this analysis and the results from both case studies are, that the cohort
term is indeed useful, in terms of providing additional degrees of freedom, but it does not serve the
intended purpose to explain or reveal cohort e�ects.

1.8.3 | Significance of Individual GAPC Parameters

In Section 1.7.2 likelihood ratio tests have been considered to examine whether age, period, or cohort
terms provide signi�cant improvements of the quality-of-�t. In the following section, we focus on
the signi�cance of individual parameters from these categorical groups, since we have not found
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Figure 1.29: Scatter plots of deviance residuals rDt ,x for the Poisson model with log link and a reduced
M7 predictor function (γt−x = 0) �tted to Swedish female population for ages 60-106 and the periods
between 1900 and 2014.
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Figure 1.30: Scatter plots of deviance residuals rDt ,x for the Poisson model with log link and M7 predictor
function �tted to Swedish female population for ages 60-106 and the period 1900-2014.
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any other considerations on this topic in the literature. Commonly, the �tting procedure of linear
or generalized linear models always includes a signi�cance analysis of the model coe�cients to
determine which predictors have a statistically relevant in�uence on the response variable. For GAPC
models this analysis is rather done for whole parameter groups (αx , βx , κx , γt−x) since it is not a
priori clear why certain ages, periods or cohorts should be included in the model while others can be
removed. We do not intend to criticize this approach, since we consider that to be reasonable to treat
these factors equally, however, we want to stress out our �ndings on the signi�cance of individual
GAPC model parameters.

To determine the signi�cance of individual model parameters, we consider Wald type tests as
introduced in Section 1.6.1. More speci�cally, we intend to test the hypothesis H0 ∶ δ = 0 versus
HA ∶ δ ≠ 0, for δ being one parameter of the corresponding set of model parameters. For instance,
taking the APC model and the setting of the �rst case study, we have

δ ∈ {α60, . . . ,α106,κ1900, . . . ,κ2014,γ1800, . . . ,γ1952},
i.e., δ is one of the 315 APC parameters. Table B.1 on page 259 shows the results of the regression
analysis for the APC predictor with the canonical link. ¿e columns contain the coe�cient names,
the estimates, the standard errors, the test values, the p-values and the standardized signi�cance
codes for better readability. Recall from eq. (1.65), that the z-value denotes the test value of the Wald
test, which is given by

TW = δ̂
ŝe(δ̂) .

Recall also that the p-value is the probability (under H0) of obtaining a test value equal to or even
more extreme than the observed test value. ¿us, the p-value is the smallest level at which H0 can be
rejected. For instance, for p < 0.01, we have a very strong evidence against H0, which means, we
have a strong evidence to suggest that the corresponding parameter is not zero. Table B.1 shows
that for the APC model only 143 of 315 parameters (≈ 45%) are signi�cant at the 5% level. For the
other 172 parameters, the evidence is not strong to reject the null hypothesis at the 5% level. Among
them are 12 of 47 from the αx term, 102 of 114 from the κt term and 58 of 154 from the γt−x term.
Despite the fact, that the APC model is relatively parsimonious, about 55% of its parameters are
not individually signi�cant at the 5% level. From the modelling perspective, it appears not to be
justi�able to include that amount of non-signi�cant parameters.

¿is observation is not unique as we point out in the following. Recall from Section 1.7.1 that the
PLAT:2 model turned out to be among the most favourable models. Furthermore, likelihood ratio
tests of the pairs CBD vs. PLAT:2 and APC vs. PLAT:2 showed that the parameter groups αx or
γt−x contribute signi�cantly to the �tting accuracy in the �rst case and the parameter group κ(2)t
leads to a signi�cant improvement compared to the APC model, see Table 1.6. Signi�cance analysis
for the PLAT:2 parameters on the individual level can be found in Table B.2. ¿e results show that
even fewer parameters are signi�cant on the individual level. Only 26 of the 428 parameters (≈ 6%)
showed signi�cance at the 5% level. ¿e null hypothesis could not be rejected for all γt−x and κ(2)t



78 1 GAPC Models

parameters and for all but one κ(1)t parameters.
¿e fact that the whole parameter group is signi�cant, but none of the individual parameters

is, could be an indicator for over-parametrization. It certainly shows that due to the complicated
dependence structure among the parameters, imposed by identi�ability constraints, it appears to be
di�cult to identify the most in�uencing factors.
Not all models share this behaviour of too many non-signi�cant parameters. For instance, the

M7 model, with results reported in Table B.3, show a better ratio of signi�cant parameters. ¿e null
hypothesis was rejected for 438 of 498 parameters of the 5% level. Subsequently, we will see that this
ratio can even be improved by considering predictors which do not have any identi�ability issues.
¿e simplest of our proposed models in Section 1.9, will only have signi�cant parameters.

1.8.4 | Summary of the Identified Issues Related to GAPCModels

In Sections 1.8.1 to 1.8.3, we stressed out many fundamental issues and conceptional di�culties of the
well-established GAPC mortality modelling family. As pointed out in Section 1.8.1, many of these
issues are direct consequences of non-identi�able predictor functions and corresponding parameter
constraints. For a better overview, we provide a summary of the identi�ed problems.

poor interpretability of parameters: Due to non-identi�able parameters, it is di�cult to determine,
whether particular patterns in the parameter paths are solely data-driven or arti�cial due to
the imposed constraints. Modi�cations of the arbitrarily chosen constraints yield alternative
representations of the same mortality structure.

excessive number of parameters: To describe the observed age-related mortality of a particular
period, most models typically require more parameters than the actual degrees of freedom in
the observation.

poor robustness: Simple database updates, such as adding the most recent period or omitting the
oldest, leads to changes in all parameter estimates.

complex dependence structure: Despite a very complicated dependency structure between the
parameters due to their entanglement, the common assumption, for forecasting purposes, is
independence between period terms and the cohort term.

meaningless cohort term: ¿e cohort term provides additional degrees of freedom, which o en
improve the quality-of-�t, but it does not serve the intended purpose to capture or reveal
cohort e�ects. Path structures of the cohort estimates are heavily in�uenced by the imposed
constraints. Moreover, given the obtained estimates, the assumption of ARIMA driven cohort
terms is questionable.

poor significance of individual parameters: Wald type tests revealed that some models have only a
few parameters (6% for PLAT) that are signi�cant at the individual level. ¿ere are instances
where likelihood ratio tests for nested models showed that a particular group of parameters is
signi�cant, however, none of the individual parameters of this group appeared to be signi�cant.

Regarding the quality criteria for stochastic mortality models by Cairns, Blake and Dowd (2008),
as listed on page 20, we can draw the following conclusion. All GAPC models produce positive
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mortality rates which are consistent with historical data. ¿e �tting accuracy tends to increase with
predictor complexity. Likelihood ratio tests also showed that relatively parsimonious models were
less preferable. All models with identi�ability issues are to some extent not robust against changes
of the employed periods or ages. ¿e numerical implementation is straightforward since these
models fall in the GLM framework. ¿ere are further criteria mentioned by Cairns, Blake and Dowd
(2008). However, they involve model forecasts, which cannot be assessed here since we have not
considered model forecasts yet. As we will see later, the common modelling approach of random
walk driven coe�cient series does not lead to desirable forecasts in terms of the level of uncertainty
and consistency with historical developments. We will therefore study more sophisticated time
series approaches in Chapter 2, which involve long-run dependencies, called cointegration relations,
between the components of multivariate time series.

1.9 | Kannisto Model
In the previous Section 1.8, we reviewed the GAPC class of well-established stochastic mortality
models, and revealed several problematic properties and fundamental issues of these models. ¿e
case studies of Section 1.7 showed that models with more extensive predictors (e.g., M7 or PLAT)
performed well in describing historical observations. However, this came at the cost of parameter
identi�ability. ¿at means, all predictors, except the CBD predictor, require additional parameter
constraints that cause many further issues.
In the following section, we propose a family of stochastic mortality models, which also belongs to

the GAPC class, but avoids the identi�ed disadvantages, as highlighted in Section 1.8.4. Furthermore,
the new model family incorporates the key conclusion of the second case study Section 1.7.2, which
showed that for various predictors a non-canonical link o en leads to a better �t than the canonical
link, in particular, for mortality rates of high ages (60+). ¿e proposed models will be called the
Kannisto family. Our choice of that name relies on the fact that in the simplest form, the model has a
parametric logistic-type hazard rate. ¿is form has been originally considered by the demographer
Väinö Kannisto in 1992. Kannisto studied historical mortality rates with a focus on higher ages,
see Kannisto (1992) and¿atcher, Kannisto and Vaupel (1998). However, similar to the Lee-Carter
model, the authors did not consider their model within the broader framework of generalized linear
models, but rather used the ordinary least squares �tting method on logit transformed mortality
rates.
Recent contributions addressing the Kannisto model can be found be in Pitacco (2016) and

Pitacco and Rroji (2016). Based on a semi-parametric bootstrap technique Pitacco and Rroji (2016)
investigates the impact of uncertainty in parameter estimation for the Gompertz and Kannisto-
type mortality rates. In contrast to our model, their approach uses the canonical link function
for both predictor functions. Furthermore, projections of future mortality rates are obtained by
bootstrapped ARIMA processes, rather then a multidimensional cointegrated processes, as will be
proposed in Section 2.4. Pitacco (2016) provides an overview of parametric models representing the
age-speci�c of mortality. ¿e main focus of Pitacco (2016) lies on mortality of high ages, in particular,
on the observed e�ect of decelerated mortality increase in the age-pattern. Pitacco (2016) provides
various hypothesis for the main causes of a sub-exponential increase of the age-speci�c mortality (cf.,
Section 1.3). ¿e proposed explanations include heterogeneity of populations as well as of individuals.
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¿is connection to frailty models and mixtures of distributions will be discussed in the upcoming
Chapter 3 in Proposition 3.3.7 and Remark 3.3.8.

1.9.1 | Specification of the Kannisto Model Family

For the speci�cation of the Kannisto model we combine the insights from empirical observations and
the case studies from Sections 1.3 and 1.7. ¿e primary objective of the following speci�cation is to
obtain a model with no identi�cation issues. Secondly, we employ a non-canonical link function and,
�nally, we utilize the fact of strong regularities in the mortalities of elderly populations by including
parametric age terms.

GAPC Components of the Kannisto Model Family

As stated in Section 1.4.3, the speci�cation of a GAPCmodel requires 4 components. For the Kannisto
model, we consider a Poisson distributed response variable, i.e.,

Dt,x ∼ Poi(µt,xEct,x).
¿e systematic component of the Kannisto model of order p is de�ned by the predictor function

ηt,x = p∑
i=1 β

(i)
x κ(i)t = p∑

i=1(x − xmin)i−1κ(i)t . (1.85)

¿e connection of the random component and the predictor is established by the logit link function
g, i.e.,

g ∶ µt,x ↦ ln( µt,x
1 − µt,x ) . (1.86)

¿is non-canonical choice for a Poisson distributed response is based on the results of the second
case study of Section 1.7.2. Since the parameters of the Kannisto predictor in eq. (1.85) are entirely
identi�able, the set of the required parameter constraints is empty.

Remarks on the Kannisto Model

¿e form of the Kannisto predictors in eq. (1.85) shows that the Kannisto family neither incorporate
a static age function αx nor a cohort term γt−x . Since we focus on mortality modelling of the elderly
population, a static age function is expendable, considering the regular structure of the mortality
rates, as shown in Figures 1.5 and 1.6. A cohort term is not incorporated in eq. (1.85) for two reasons.
Firstly, to ensure identi�ability without additional parameter constraints and, secondly because our
case studies showed that the cohort term misses its actual purpose, see Section 1.8.2. Note that the
Kannisto predictor has parametric age-modulation terms β(i)x = (x − xmin)i−1, where xmin denotes
the lower bound of the considered ages. To ensure comparability to the previous case studies, we
will consider xmin = 60 in the further course. In contrast to other predictors, such as those of the
models LC, LC2, LC2+C, and RH (see, Table 1.2) the age, as a whole, is a model factor. For models
with non-parametric age-modulation terms, each individual age of the considered range is a model
factor. ¿is conceptual di�erence causes an extensive amount of parameters in latter case.
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In the further course, we will consider 3 models of the Kannisto family. ¿ese are characterized by
the polynomial order of the age-modulating term β(i)x . ¿e predictor

ηt,x = κ(1)t + (x − xmin)κ(2)t
will be denoted as the KAN predictor. Models with a Kannisto predictor that incorporates quadratic
or cubic terms will be referred to as the KAN:2 and KAN:3 models.

Kannisto Model in the context of Logistic Hazard Rate Models

In the following, we provide some remarks on how the Kannisto model is related to logistic hazard
rate models. Recall that in generalized linear models the expectation of the variables of interest
(death counts Dt,x), is connected to a linear predictor ηt,x through a link function g. ¿us, with a
logit link and the Kannisto predictor, we have the relation

µt,x = E ⌊︀Dt,x
Ect,x

}︀ = g−1(ηt,x) = logit−1 (κ(1)t + (x − xmin)κ(2)t ) = eκ
(1)
t +κ(2)t (x−xmin)

1 + eκ(1)t +κ(2)t (x−xmin) , (1.87)

where the mortality rates µt,x are logistic functions in the age x. Note that the logistic function is the
inverse of the logit function.

logit−1(x) = logistic(x) = exp(x)
1 + exp(x) .

¿erefore, postulating the KAN model is equivalent to proposing a logistic-type growth of the
mortality rates. Hazard rate models, which will be introduced in Chapter 3, provide a conceptual
extension from a discrete to a continuous setting.

Distinction of the Kannisto and the CBDModel (Logistic vs. Exponential Growth)

Note that the CBD predictor, as de�ned in eq. (1.9) is very similar to the KAN predictor.¿e di�erence
between the models lies not only in the shi ing term (x vs. xmin) of the β(1)x term but also in the
link function. ¿e CBD model uses a canonical link and the KAN model a non-canonical logit
link. A similar consideration for the CBD model as in eq. (1.87), shows that mortality rates in the
CBD model follow an exponential growth. An exponential type hazard rate corresponds to the
so-called Gompertz lifetime distribution as will be introduced in Section 3.2.7. ¿e key conceptional
distinction of those models is therefore, how age-related mortalities increase. For the Kannisto
model, the rates increase logistically (saturated growth), while for the Gompertz model, the rates
grow exponentially.

1.9.2 | Kannisto Model Parameter Estimation and Goodness-of-fit Analysis

¿e following section provides the estimation results and goodness-of-�t analysis for the Kannisto
models. To ensure comparability with the other models, we consider the same reference dataset, as
for the �rst two case studies of Sections 1.7.1 and 1.7.2. ¿is means, we consider the dataset of the
Swedish female population on the age range 60 to 106 and the periods between 1900 and 2014.
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Kannisto Fitting Accuracy in terms of Deviance, AIC, and BIC

¿e �tting results of the KAN, KAN:2 and KAN:3 models are presented in Table 1.13. ¿e table
presents the deviance as a measure of quality-of-�t and the values of AIC and BIC information
criteria. ¿e �rst column shows the total number of parameters of the corresponding model. Note,
to represent the mortality for a given period, the Kannisto models require only 2-4 parameters,
depending on the polynomial order of the predictor. Recall, that for other model predictors the
number of parameters exceeded the actual degrees of freedom, as discussed in Section 1.8. Since
we consider nested models, the deviance is declining by the incorporation of higher polynomial
terms in the predictor. Note that the simplest KANmodel has a better �tting accuracy by having
lower deviance, AIC, and BIC values, compared to the CBD model, which has the same number of
parameters (see Table 1.5). ¿e comparison with the best performing models of the �rst case study
shows that the KAN:3 model has a 8% higher deviance than the M7 model (498 parameters), or a
4% higher deviance compared to the PLAT:2 (428 parameters) model. ¿is slightly higher model �t
discrepancy of the Kannisto model is the trade-o� for having identi�able parameters, where the
estimates depend only on the data and not on arbitrarily imposed constraints.

Likelihood Ratio Tests for Nested Kannisto Pairs

Table 1.14 summarizes the results of the likelihood ratio test for the nested Kannisto pairs. ¿e LR
tests check whether extensions to higher polynomial age-modulation terms are justi�ed. Similar
to the results of the �rst case study, as shown Table 1.6, for all nested pairs the null hypothesis is
rejected. Consequently, additional age-modulation terms provide signi�cant improvements of the
quality-of-�t. Nevertheless, as we will demonstrate below, even the simplest KAN predictor provides
a very good approximation of the lifetime characteristic.

Residuals Analysis of the Kannisto Predictors

Figures 1.31 to 1.33 illustrate the standardized deviance residuals, as de�ned in eq. (1.83), plotted
against the calendar year and age.¿e reddish regions (positive residuals) on the heatmaps indicate an
underestimation of the death counts by the particularmodel, whereas bluish areas (negative residuals)
indicate an overestimation of the death counts compared to the actual observations. Figure 1.31
displays substantial residual patterns for the simplest Kannisto model. ¿ere is a clear evidence that
the KAN model is not capable to capture non-linear age-modulation e�ects of the dataset, since
there is a considerable reduction of the residual patterns for the predictors with additional quadratic
and cubic βx terms, as displayed in Figures 1.32 and 1.33. ¿e patterns for the KAN:3 model are
qualitatively very similar to those of the M7 and PLAT models as illustrated in Figures 1.22 to 1.24.

Significance of Individual Kannisto Parameters

In Section 1.8.3, we have criticized that some traditional GAPCmodels have toomany non-signi�cant
parameters. For instance, in the �rst case study, only 45% of the 315 parameters of the APC predictor
were individually signi�cant at a 5% level (see Table B.1). ¿e PLAT:2 model, which was one of
the most favourable models, was even less satisfying with a signi�cance for only 6% of the 428
parameters at the 5% level (see Table B.2). Signi�cance analysis for the parameters of the Kannisto
model family can be found in Tables B.4 to B.6. For the simplest KAN model with 2 parameters for
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Figure 1.31: Standardized deviance residuals of the KANmodel.
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Figure 1.32: Standardized deviance residuals of the KAN:2 model.
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Figure 1.33: Standardized deviance residuals of the KAN:3 model.
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Table 1.13:Number of parameters, log-likelihood, deviance, AIC, and BIC for the Kannisto models �tted
to the Swedish female population for ages 60-106 and the period between 1900 and 2014 (5103 available
observations).

Model # of parm. ln L Deviance AIC BIC

KAN 230 −27200 14903 54860 56364

KAN:2 345 −23075 6654 46841 49096

KAN:3 460 −22358 5219 45636 48643

Table 1.14: Results of the likelihood ratio test for the Kannisto models. ¿e columns λLR and d.f. contain
the LR test statistic and the degrees of freedom.

H0 (nested) HA (general) Restriction λLR d.f. p-value

KAN KAN:2 κ(2)t = 0 8250 115 < 0.0001
KAN:2 KAN:3 κ(3)t = 0 1434 115 < 0.0001
KAN KAN:3 κ(2)t = κ(3)t = 0 9684 230 < 0.0001

each period,Wald type tests showed that all 230 parameters are signi�cant at the 5% level. For KAN:2,
the model with a quadratic age-modulation term, we obtain that 92% of parameters are individually
signi�cant at the 5% level. Some parameters associated to the quadratic term in the middle of the
past century are not signi�cant, see Table B.5. As pointed out in Section 1.8.3, most of the traditional
GAPC models need an excessive number of parameters to represent the mortality structure of a
certain period. However, here we have a simple 3 parameters model, where the non-signi�cance of
some quadratic terms can easily be explained by a su�cient linear structure of the logit transformed
mortality rates, see Figure 1.6 for an illustration. For the KAN:3 model the Wald tests show that 84%
of all parameters are individually signi�cant at the 5% level, see Table B.6. Similar to the KAN:2
model, we can explain the non-signi�cance of some parameters of higher polynomial terms by
observing that the logit transformed mortality rates are su�cient linear. Conclusively, we can point
out, that not only the Kannisto models do have a better signi�cance rate of their parameters, but
throughout the uncomplicated and identi�able model structure we can also explain why certain
parameters turn out to be non-signi�cant.

Fitting Accuracy in Terms of Lifetime Characteristics

¿e deviance is a common measure of the �tting discrepancy for GLMs and the deviance residual
plots are eligible for identifying particular domains where the models fail to describe the essential
features of the dataset. However, they are not suitable to assess the impact of the discrepancy on
relevant actuarial quantities such as the life expectancy. ¿e objective of the following exploration is
to show that even the simplest KANmodel provides a remarkably good approximation of the lifetime
characteristics. A lifetime is a continuous non-negative random variable modelling the time to death
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of individuals of particular groups. A rigorous focus on the topic of survival analysis is provided in
Chapter 3. For the current purpose it is su�cient to know, that the age-speci�c mortality rates µt,x
are representatives of the lifetime distribution. Equivalently to probability densities, distributions
can be represented by hazard rates, which are continuous versions of discrete central mortality rates.
A positive continuous random variable, with a 2 parameter logistic hazard rate function of the type

µt(x) = eαt+βtx
1 + eαt+βtx , (1.88)

will be de�ned to be the Kannisto distribution and denoted be𝒦(αt ,βt) (see Section 3.2.7), where
αt ∈ R and βt ∈ R+ are distribution parameters at the period t. Note that the hazard rates in eq. (1.88)
are of the same type as in eq. (1.87), where we showed that the mortality rates obey a logistical
function given the GLM setting with a KAN predictor and a logit link function. For the bene�t of a
simpler notation, we will alternatively denote the periodic terms κ(1)t ,κ(2)t ,κ(3)t ,κ(4)t in the Kannisto
predictor as αt (constant term), βt (linear term), γt (quadratic term), δt (cubic term).
To provide a better insight on the �tting performance of the KANmodel regarding lifetime related

characteristics, we present a comparison between some empirical quantities and the corresponding
quantities derived from the estimated lifetime distributions. Table 1.15 shows parameter estimates,
the mean, the standard deviation, the skewness and the kurtosis of both the empirical data and the
Kannisto distribution using the estimates of the KAN model. Note that in this context, the empirical
mean and the expectation of the lifetime distribution correspond to the expected remaining lifetime
of individuals. Since we investigate the mortality rates on the age range 60-106, the remaining lifetime
has to be added to the starting age of 60 to obtain the life expectancy of the underlying population
group. Note furthermore, since the HMD does not contain the exact times of death events, but rather
just their total numbers, we set the occurrence of the events to the middle of the corresponding
period in order to calculate the empirical moments. To summarize the results of Table 1.15, we point
out that the accuracy of the KANmodel �t on several actuarial relevant quantities is remarkably good.
For instance, between 1900 and 2014, the relative error of the mean (remaining life expectancy) is on
average about 0.1%. In absolute values, this is a discrepancy of about only 9 days on the remaining
lifetimes with values reaching between 17 to 26 years. ¿e relativ error of the standard deviation
is about 0.5% and for the kurtosis about 1.4% on average. ¿e absolute error of the skewness is
on average about 0.05. Overall, we observe a very good approximation of the empirical lifetime
characteristics by the Kannisto distribution by using the estimated parameters of the KAN model.
An illustration of the time evolution of the discussed characteristics is provided in Figure A.1.
Another way to demonstrate the great �tting capabilities of the Kannisto model is provided

via a series of quantile-quantile-plots (Q-Q-plots) in Figure 1.34. In a Q-Q-plot quantiles of two
distributions are plotted against each other to compare these distributions visually. For our purpose,
we plot the empirical quantiles (abscissa) against the quantiles of the estimated Kannisto distribution,
denoted by theoretical quantiles (ordinate). Each plot of Figure 1.34 shows di�erent periods ranging
from 1940 to 2010 with 10 years apart. ¿e dashed orange lines in each plot represent the identity
function, where the empirical quantiles coincide with the estimated Kannisto quantiles. For values
below the identity, there is an overestimation of the survival probability by the𝒦(αt ,βt) distribution
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Table 1.15: Distribution characteristics of the empirical vs. the estimated Kannisto distribution for
Swedish females with age above 60 between 1902 and 2014.

year est. parameter mean stand. deviation skewness kurtosis
α̂ β̂ data 𝒦(α̂,β̂) data 𝒦(α̂,β̂) data 𝒦(α̂,β̂) data 𝒦(α̂,β̂)

1902 −4.210 0.107 16.98 17.00 8.45 8.42 0.007 0.054 2.329 2.372
1906 −4.277 0.106 17.59 17.61 8.66 8.63 −0.024 0.035 2.303 2.371
1910 −4.291 0.109 17.37 17.39 8.50 8.44 −0.032 0.022 2.324 2.377
1914 −4.288 0.110 17.28 17.30 8.45 8.39 −0.020 0.021 2.336 2.378
1918 −4.145 0.102 17.01 17.03 8.67 8.63 0.040 0.089 2.290 2.367
1922 −4.247 0.112 16.85 16.86 8.27 8.23 −0.010 0.031 2.343 2.378
1926 −4.302 0.108 17.52 17.53 8.53 8.50 −0.009 0.020 2.345 2.376
1930 −4.294 0.108 17.51 17.52 8.57 8.52 −0.008 0.024 2.321 2.375
1934 −4.337 0.110 17.61 17.64 8.51 8.47 −0.037 0.005 2.329 2.380
1938 −4.323 0.111 17.44 17.45 8.40 8.39 −0.014 0.008 2.371 2.381
1942 −4.479 0.110 18.60 18.60 8.68 8.68 −0.069 −0.042 2.379 2.394
1946 −4.466 0.116 17.96 17.96 8.34 8.32 −0.076 −0.049 2.400 2.403
1950 −4.531 0.119 18.11 18.11 8.25 8.25 −0.086 −0.075 2.429 2.418
1954 −4.629 0.120 18.71 18.71 8.35 8.34 −0.122 −0.107 2.452 2.436
1958 −4.727 0.122 19.24 19.23 8.39 8.39 −0.140 −0.139 2.488 2.459
1962 −4.841 0.126 19.55 19.55 8.27 8.28 −0.175 −0.179 2.526 2.496
1966 −4.932 0.125 20.30 20.30 8.46 8.46 −0.200 −0.204 2.551 2.517
1970 −4.983 0.122 21.03 21.03 8.72 8.71 −0.221 −0.213 2.562 2.522
1974 −5.055 0.122 21.46 21.47 8.76 8.76 −0.245 −0.234 2.561 2.544
1978 −5.151 0.124 21.97 21.98 8.79 8.78 −0.273 −0.263 2.626 2.579
1982 −5.216 0.123 22.50 22.53 8.91 8.90 −0.331 −0.279 2.620 2.597
1986 −5.329 0.126 22.93 22.97 8.88 8.83 −0.378 −0.313 2.674 2.645
1990 −5.420 0.128 23.26 23.33 8.87 8.78 −0.417 −0.339 2.705 2.686
1994 −5.523 0.128 23.97 24.05 9.00 8.88 −0.462 −0.365 2.767 2.725
1998 −5.591 0.130 24.25 24.34 8.99 8.85 −0.489 −0.382 2.790 2.757
2002 −5.682 0.134 24.30 24.39 8.85 8.66 −0.530 −0.408 2.832 2.808
2006 −5.743 0.132 24.99 25.02 8.97 8.80 −0.575 −0.421 2.899 2.829
2010 −5.787 0.133 25.33 25.33 8.98 8.83 −0.601 −0.431 2.936 2.848
2014 −5.896 0.134 25.85 25.85 8.98 8.81 −0.626 −0.457 2.983 2.901
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Figure 1.34: Empirical quantiles vs. theoretical quantiles of the Kannisto distribution
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with estimated parameters (αt ,βt). Values above the dashed line indicate an underestimation of
survival probability of the theoretical distribution compared to the empirical distribution. As the
Q-Q-plots in Figure 1.34 show, there is a very close correspondence of the empirical distribution
and the Kannisto distribution. For the periods 2000 and 2010, there is a slight overestimation of the
survival probabilities by the Kannisto distribution between the ages 60-75 and above 100. However,
these quantile deviations have only marginal in�uences on the moments as Table 1.15 shows.
As a concluding remark, we point out that although the elementary KAN predictor has in terms of

the deviance measure the highest �tting discrepancy among the Kannisto model family, it captures
the empirical properties of the lifetime very well, which from a practitioner’s perspective might be a
better scale for model assessment.

1.9.3 | Interpretability and Comparability of the Kannisto Parameters

In Section 1.8.1, we stressed out some interpretability and comparability challenges of many GAPC
models with identi�ability issues. Recall, that due to additional imposed parameter constraints,
required to achieve identi�ability, the parameter estimates do not only depend on the observed data
anymore but also on those constraints, see, for instance, the illustration in Figure 1.25. Moreover,
adding recent or removing old mortality data, does change all estimates, not only those of the
corresponding periods, see the examples in Figures 1.26 and 1.27.
In the following application-oriented example, we demonstrate how practitioners bene�t, in the

sense of model interpretability & comparability, by considering predictors with no identi�ability
issues. In Figure 1.35, we display trajectories of the KAN parameter estimates (αt ,βt) for the periods
t ∈ {1900, . . . ,2011} of the female populations for Sweden (magenta), Switzerland (green) and France
(cyan). ¿ese parameter trajectories are embedded in a contour plot illustrating constant slices of the
expected remaining lifetime as a function of estimated Kannisto parameters. ¿e trajectories of all
countries show a general trend towards a higher life expectancy. ¿e given plot provides a possibility
of comparing mortalities of di�erent populations either for �xed time frames or for particular
parameter regions. For instance, in 1989 the parameter values of Switzerland and France almost
coincide and indicate high similarities of the population’s mortality at this time. ¿e path of Sweden
parameters reaches this region with a delay of 10 years. ¿e delay of the mortality improvements for
Sweden appears to increase. ¿e region of parameter values, which has been obtained by France
and Switzerland in 1977, was reached four years later by Sweden. From 1990 the paths of France and
Switzerland dri apart. ¿e remaining life expectancy at age 60 of France in 2011 is 27.4 years and is
0.8 years higher compared to Switzerland. Note that for 2011 the α values for France and Switzerland
almost coincide, while the β values of France and Sweden almost coincide in 2011. In the �rst case,
we have αFR2011 ≈ αCH2011 and βFR2011 < βCH2011. From this situation, we can conclude that the higher life
expectancy of France compared to Switzerland is mainly due to lower mortality rates for higher ages.
In the second case, where βFR2011 ≈ βSE2011 and αFR2011 < αSE2011, the higher remaining life expectancy of
France, in comparison to Sweden, bene�ts from the overall lower mortality rates, especially at ages
60-95.
Consequently, by having identi�able parameters, we gain the ability for a meaningful interpretation

of the estimates, and compare mortalities based on these value. ¿at holds, since other than for non-
identi�able models, the parameters depend only on the underlying data, rather than on additional
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constraints.

1.9.4 | Kannisto Model Forecasts obtained by a Multivariate RandomWalk with Drift

In Section 1.4.3, we gave a brief introduction to the standard forecasting approach of GAPC models.
In the upcoming section, we follow this approach of modelling the periodic κt components by a
multivariate random walk with dri , illustrate the forecasting results, and also reveal the limitations
of the underlying concept.
Figures 1.36 to 1.38 illustrate the trajectories of the estimates κt for the Kannisto predictors KAN,

KAN:2, and KAN:3, which will be used to calibrate a random walk with dri . Note, in the illustration,
we use an alternative notation for the components of κt , namely, αt , βt , γt , and δt for the constant,
linear, quadratic, and the cubic term. Note that a stochastic process is called stationary if its �rst and
second moments are time invariant, see De�nition 2.2.2 or Lütkepohl (2007). A visual inspection
of the trajectories reveals that all paths show global or local trends. ¿erefore, only non-stationary
processes appear to be eligible to model the underlying periodic terms. A random walk with dri is
an integrated process of order one (see De�nition 2.2.7) and is the standard modelling approach in
the GAPC literature, see, e.g., Cairns, Blake and Dowd (2006), Cairns, Blake, Dowd et al. (2011) and
Haberman and Renshaw (2011). In order to provide comparability to a later proposed alternative
modelling approach which will utilize cointegration relations between the components, we initially
demonstrate the standard modelling approach.
Let κt , with t = 0,1,2, . . . ,tN , denote a multivariate time series of estimated parameters. We now

assume that κt follows a multivariate random walk with dri , i.e.,

κt = κt−1 + δ + εt , (1.89)

where δ is the dri vector and εt a white noise process (see the explanations of De�nition 2.2.2) with
variance Σ. Let yt ∶= ∆κt = κt −κt−1 denote the time series of the �rst-order di�erences. Substituting
yt in eq. (1.89) yields

yt = δ + εt . (1.90)

Following Haberman and Renshaw (2011), the estimates of the dri components can be obtained by

δ̂ i = 1
N

N∑
j=1 yi , j =

1
N
(κi ,N − κi ,0). (1.91)

With ε̂i ,t = ri ,t ∶= (yi ,t − δ̂i), the estimator of the white noise covariance matrix is given by

Σ̂ = 1
N − 1 ε̂ε̂′ = 1

N − 1
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

∑t r21,t ∑t r1,tr2,t ∑t r1,tr3,t ⋯∑t r2,tr1,t ∑t r22,t ∑t r2,tr3,t ⋯∑t r3,tr1,t ∑t r3,tr2,t ∑t r23,t ⋯⋮ ⋮ ⋮ ⋱

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎮
. (1.92)

¿e right-hand side of the above expression is the sample covariance matrix of ∆κt which is an
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Figure 1.35: Trajectories of the KANmodel parameters (αt ,βt) for t ∈ {1900, . . . ,2011} of the female
population of Sweden (magenta), Switzerland (green) and France (cyan).

unbiased estimator of the white noise covariance matrix Σ = E(︀εtε′t⌋︀. Notice, that successive
substitution for lagged κt terms in eq. (1.89) leads to

κtN+ j = κtN + jδ + εtN+ j + εtN+ j−1 + . . . + εtN+1. (1.93)

Taking the expectation of eq. (1.93) and using the white noise property E(︀εt⌋︀ = 0, for all t, yields

κtN ( j) ∶= E(︀κtN+ j⌋︀ = κtN + jδ, (1.94)

where κtN ( j) denotes the j-step ahead forecast of κtN+ j at origin tN . To obtain prediction intervals
of the forecast, notice that

κtN+ j − κtN ( j) = εt+ j + εt+ j−1 + . . . + εt+1,
and thus, the j-step forecast mean squared error (MSE), a quantity which re�ects the forecast
uncertainty, takes the form

Σκ( j) ∶=MSE(︀κtN ( j)⌋︀ = E [︀(κtN+ j − κtN ( j)) (κtN+ j − κtN ( j))′⌉︀ = jΣ,
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Figure 1.36: Parameters for the KAN model �tted to the Sweden’s female population aged 60-106 in the
periods between 1900 and 2014.
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Figure 1.37: Parameters for the KAN:2 model �tted to the Sweden’s female population aged 60-106 the
periods between 1900 and 2014.

since E(︀εtε′t⌋︀ = Σ and E(︀εtε′s⌋︀ = 0 for t ≠ s. ¿us, using the fact that the forecast errors of the
individual components are normally distributed, an (1− α)100% forecast prediction interval (P.I.), j
periods ahead is given by

)︀κi ,tN ( j) − z(α⇑2)σi( j), κi ,tN ( j) + z(α⇑2)σi( j)⌈︀ , (1.95)

where σi( j) is the square root of the i-th diagonal element of Σκ( j) and zα⇑2 is the α⇑2 quantile of
the standard normal distribution, see Lütkepohl (2007).

Using eqs. (1.91) and (1.92), we obtain the following estimates

δ̂ = ⌊︀−1.495 ⋅ 10−21.973 ⋅ 10−4}︀ Σ̂ = ⌊︀ 1.498 ⋅ 10−3 −1.544 ⋅ 10−5−1.544 ⋅ 10−5 6.534 ⋅ 10−6}︀ (1.96)

for the dri and the covariance matrix of the two-dimensional random walk which drives the period
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Figure 1.38: Parameters for the KAN:3 model �tted to the Sweden’s female population aged 60-106 the
periods between 1900 and 2014.

terms of the KAN model. An estimation for the KAN:2 time series yields

δ̂ =
⎨⎝⎝⎝⎝⎝⎪
−1.209 ⋅ 10−2−8.521 ⋅ 10−5
5.081 ⋅ 10−6

⎬⎠⎠⎠⎠⎠⎮
Σ̂ =

⎨⎝⎝⎝⎝⎝⎪
2.008 ⋅ 10−3 −1.072 ⋅ 10−4 3.047 ⋅ 10−6−1.072 ⋅ 10−4 2.273 ⋅ 10−5 −5.243 ⋅ 10−7
3.047 ⋅ 10−6 −5.243 ⋅ 10−7 1.692 ⋅ 10−8

⎬⎠⎠⎠⎠⎠⎮
. (1.97)

In the same way, we obtain the estimates for the KAN:3 model as

δ̂ =
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

−1.180 ⋅ 10−2−1.055 ⋅ 10−4
2.876 ⋅ 10−6
1.002 ⋅ 10−7

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎮
Σ̂ =

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

2.658 ⋅ 10−3 −3.301 ⋅ 10−4 1.882 ⋅ 10−5 −3.132 ⋅ 10−7−3.301 ⋅ 10−4 9.448 ⋅ 10−5 −5.517 ⋅ 10−6 9.752 ⋅ 10−8
1.882 ⋅ 10−5 −5.517 ⋅ 10−6 3.667 ⋅ 10−7 −6.859 ⋅ 10−9−3.132 ⋅ 10−7 9.752 ⋅ 10−8 −6.859 ⋅ 10−9 1.347 ⋅ 10−10

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎮
.

(1.98)

Figures 1.39 to 1.41 illustrate the parameter estimates of the models KAN, KAN:2 and KAN:3 along
with the corresponding central forecasts κ2014(36) and their 95% prediction intervals. ¿e 36 years
ahead central forecasts (until 2050) are obtained by eq. (1.94) using random walks with dri and
covariance matrices as in eqs. (1.96) to (1.98). Prediction intervals are obtained by a consecutive
application of eq. (1.95).
In Figure 1.39(c), we illustrate the historical and the projected remaining life expectancy for the
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(c) Historical and projected remaining life expectancy for Swedish females aged 60.

Figure 1.39: Projections of the KANmodel coe�cients with 95% prediction intervals.
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Figure 1.40: Random walk driven projections of the KAN:2 coe�cients. Dashed lines represent the
central forecasts and dotted lines show the 95% prediction intervals.
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Figure 1.41: Random walk driven projections of the KAN:3 coe�cients. Dashed lines represent the
central forecasts and dotted lines show the 95% prediction intervals.

Swedish female population at the age of 60. ¿e projections of the remaining life expectancy and
the corresponding prediction intervals are simulated using the Monte Carlo method with a sample
size of 105, by �rst sampling from the �tted random walk and then calculating the remaining life
expectancy based on the sampled mortality structure. ¿e projected life expectancy is an important
actuarial quantity and also serves here as a plausibility assessment since it is modelled indirectly
through the parameters of the KAN model. Large deviations from the historical experience in values
or slope would raise doubts in the quality of the underlying model.
¿e 36 years ahead forecast of the KANmodel shows an average increase of the remaining life

expectancy of about one month (29.17 days) per year. ¿e overall increase until 2050 is about 3 years,
raising from 25.85 to 28.79 years. ¿e width of the 95% prediction interval at the period 2050 is
about 10.5 years, ranging from 24 to 34.5 years. Notice, that the slope of the forecast in Figure 1.39(c)
is slightly lower than the historical value. ¿e observed averaged increase of the remaining life
expectancy over the previous 36 years is 38.12 days per year. It is also worth mentioning that, based
on the historical trajectories, the 95% prediction intervals appear to be wider than anticipated. For
instance, the lower 95% prediction interval is located below the current value. A decrease of the life
expectancy or an increase of almost 9 years until 2050 appears to be not plausible, even for a 95%
prediction interval.
For the sake of completeness, we add that the forecasts of the remaining life expectancy for

the models KAN:2 and KAN:3 are almost identical to those of the KAN model, as illustrated in
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Figure 1.39(c). We observe a relative discrepancy below 0.1% for both, the central projections and the
prediction intervals.
To conclude, the standard approach of treating the periodic term κt as a multivariate random walk

with dri does lead to decent central forecasts. However, the forecasts have unsatisfying prediction
uncertainties. ¿ese properties are inherited by the deduced actuarial quantities, such as remaining
life expectancy. As demonstrated, the central forecasts of the life expectancy are plausible, but the
uncertainty levels are di�cult to work with in real-world applications. Mortality based contracts
priced according to that level of uncertainty might not be competitive.

1.9.5 | Indications for the Presence of Cointegration Relations between the Periodic Components
κt of the Kannisto Model

As illustrated in Figures 1.39 to 1.41, the forecasts of the periodic components of the Kannisto model
show that the prediction intervals increase for further-reaching forecasts. ¿is is typical for integrated
processes where the MSEs are generally unbounded over time. ¿is implies that, as the forecast
horizon increases the forecast uncertainty also increases, see Lütkepohl and Krätzig (2004). For
stationary processes, however, the MSEs are bounded, such that the forecast uncertainty does not
become arbitrarily large. From that perspective, stationary processes do have better properties.
However, as suggested in Figures 1.36 to 1.38 the time series of the estimated Kannisto parameters,
taken individually, are likely non-stationary and therefore cannot be modelled directly by stationary
processes on an individual level. However, even if individual variables are non-stationary, there
might be a linear combination which leads to stationarity. ¿is topic is presented in the seminal
papers by Engle and Granger (1987) and Granger (1981), who formalized the concept of cointegration.
According to the authors, two integrated processes are called cointegrated if there exists a linear
combination of them which is stationary. ¿is concept has become very important in research on
equilibrium relationships between economic variables and their long-run trends. ¿e contributions
by Engle and Granger have been awarded the Nobel Prize in 2003.
To demonstrate some indications on the existence of cointegration relations between the individual

components of the Kannisto model, we refer to Figure 1.42, where every sub-�gure displays a pair of
components, plotted on two di�erent scales. For instance, Figure 1.42(a) illustrates the estimated
components αt and βt of the KANmodel. We can observe the following similarities between the
trajectories. In the �rst part, where αt holds a certain level, βt also does. However, as soon αt starts
trending downwards βt starts showing an upward trend. ¿e visual impression of the trajectories is
that a linear combination of them might lead to a trajectory without trends. ¿is observation is even
more valid for other coe�cient pairs as illustrated in Figures 1.42(b) to 1.42(d). ¿e paths of βt and
γt of the KAN:2 model demonstrate the contradictory behaviour of those components, not only
globally but also locally, where positive increments of βt are re�ected as negative increments of γt
and vice verse. For all presented pairs of coe�cients, there is some evidence that particular linear
combinations might be non-trending and that it is worth checking these variables for cointegration
relations, which will be done in Chapter 2. Note that although it is possible to model non-stationary
variables by �rst di�erencing them and using an appropriate stationary process a erwards, however,
this procedure might not be optimal since di�erencing can distort the relationship between the
original variables if cointegration relations exist, see Lütkepohl (2007). ¿e loss of the long-run
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equilibrium relations, caused by di�erencing, can negatively a�ect the modelling capabilities.
Further evidence for existing cointegration relations can also be found Figure 1.35, where the

trajectories of the KAN model for three di�erent countries show a long-term linear relation between
them. We made this observation not only for the countries shown in that example, but also in many
other cases which are presented Figures A.16 to A.27 in Appendix A.3.
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Figure 1.42: Evidence on cointegration relations between Kannisto coe�cients.

1.10 | Conclusion and Outlook

¿is chapter presents an important class of stochastic mortality models. ¿e key aspect of the
Generalized Age-Period-Cohort model family is that mortality rates are decomposed across the
dimensions of age, period, and cohort. Even though this modelling approach was followed by
practitioners and actuarial researchers for more than two decades, recent contributions showed that
most Age-Period-Cohort mortality models can be expressed in the framework of generalized linear
and non-linear models.
¿roughout this chapter, we introduce the building blocks of GAPC models, provide an overview

of the most popular mortality models and review numerical methods for parameter estimation. To
assess various mortality models, we review some model selection criteria and common statistical
tests. A quantitative analysis, with the focus on elderly populations, is provided for distinct predictor
functions to compare their abilities to capture historical mortality changes. ¿e results identify the
M8 and the PLAT model as the most favourable models. In general, less parsimonious models are
preferred over their sub-models as likelihood ratio tests demonstrate. In the second case study, we
show that by using a non-canonical link function we obtain, for all but one predictor function, a
better �tting performance. ¿is is an important observation since the vast majority of the literature
does not consider this particular degree of freedom, which is a key component of generalized linear
models.
In the further course, we stress out many issues of the most popular GAPC models which are

direct consequences of the imposed parameter constraints in order to ensure identi�ability. ¿e
central points of criticisms are presented in Section 1.8. Considering the results of the case studies
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and the identi�ed issues of current models, we propose a model class which is using a non-canonical
logit link and a predictor function which does not require additional constraints for parameters to
be identi�able. Our proposed model class is named a er the demographer Väinö Kannisto who
originally studied logistic hazard rate models. In a further case study, we provide a goodness-of-�t
analysis to show how the Kannisto models compare to the established models and demonstrate its
accuracy to re�ect main characteristics of the lifetime distribution.
For forecasting purposes, the common approach of GAPC models is to treat periodic and cohort

parameters as stochastic factors and use discrete multivariate stochastic processes to model the
dynamics of those parameters. ¿is approach uses a multivariate random walk with dri which we
employ here in order to have a comparison to a more sophisticated modelling approach, which will
be provided in Chapter 2. ¿e observation of the Kannisto trajectories suggests that the individual
components do notmove independently but rather follow commonpatterns. An alternativemodelling
approach is to use particular vector autoregressive processes, which are capable of capturing long-run
equilibrium relations between the individual components. An analysis of cointegration relations
between the Kannisto coe�cients is covered by the following chapter.
While Chapter 2 describes the dynamic part of our proposed stochastic mortality model, Chapter 3

is largely independent of the previous. It is dedicated to an extensive characterization of the distribu-
tion, implied by a logistic hazard rate function, as proposed by the KAN predictor. We will study the
properties of the Kannisto distribution and show its relation to other well-known distributions.
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2.1 | Introduction
¿e historical evolution of human mortality, as presented in Section 1.3, shows that improvements
of mortality rates are driven by many factors. ¿e GAPC family of mortality models, which is
formulated in the framework of generalized linear models, aims to capture relevant changes by a
decomposition of the mortality across the dimensions of age, period, and cohort. Many models
of this class introduce multiple factors that allow to capture mortality changes at di�erent ages to
di�erent extents. As Gaille and Sherris (2011) point out, the consequence of that approach is that
several factors of the model o en follow common stochastic trends.
In the following chapter, we focus on the dynamics of the system of Kannisto variables. Recall that

the Kannisto model, as proposed in Section 1.9, is a parametric logistic-type model for age-related
mortality rates, including two, three or four periodic terms. In the following, we treat the Kannisto
parameters as stochastic factors and model their dynamics by a multivariate process. Based on the
time series of Kannisto parameters, we aim to �nd an appropriate discrete time stochastic process
which is able to capture their characteristics.
A VAR (vector autoregressive) process is considered to be a popular approach for modelling

dynamic interactions between multivariate variables. ¿is process is capable of capturing dependen-
cies through time and between variables. However, without further restrictions, it cannot capture
long-run relations between the components. In the case of common stochastic trends between the
variables, a VECM (vector error correction model) is a better suited time series model.
In the following chapter, a cointegration analysis is performed for the Kannisto model family. ¿e

result will reveal whether common stochastic trends are present in the considered time series. ¿e
analysis will provide deeper insights in the relations between those factors that drive the structure of
mortality. By comparing the more sophisticated VECM/VAR models with the standard choice of a

101
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random walk, we demonstrate the impact of common trends on the forecasting performance. ¿e
implementation of these methods by practitioners in the life insurance industry might bene�cially
a�ect the risk managing strategies.
First, we provide a short overview of other related mortality modelling approaches that involve

cointegration methods. Subsequently, in Sections 2.2 and 2.3, we provide a brief introduction to the
theoretical background of multivariate time series and the speci�cation procedure for VECM/VAR
processes. Note that these sections serve as preparation and are largely based on Johansen (1995),
Lütkepohl (2007) and Pfa� (2008).¿ey do not contain original research. Our contribution continues
in Section 2.4,wherewe apply the describedmethods to themultivariate series ofKannisto parameters.
In Section 2.5, we consider projections of the Kannisto parameters under VECMs and compare them
to the standard approach, as discussed in Section 1.9.4. Section 2.6 concludes.

Related Studies on Mortality Modelling with Cointegration Methods

¿e cointegration approach for stochastic mortality models has been considered in several academic
studies. Among others, see, e.g., Salhi and Loisel (2011) for a study on long-run equilibrium relations
between mortality rates of the insured and the total national population. See also Lazar and Denuit
(2009) for an analysis of cointegration relations between the mortality rates of multiple age ranges.
¿e study of Gaille and Sherris (2012) reveals long-run equilibrium relations between the �ve main
causes of death.
H. Li and Lu (2017) proposes a �rst order spatial-temporal autoregressive model for the mortality

surface, where the mortality rates of each age depend on their historical values and, in addition, on
the rates of the neighbouring ages. ¿eir approach implies co-integrated mortality rates at di�erent
ages and thus prevents the long run divergence of the mortality forecast at di�erent ages, which
is a common issue, such as for the Lee-Carter model. Furthermore, the approach by H. Li and Lu
(2017) also captures the cohort e�ect without imposing additional identi�cation constraints on
the parameters. In particular, the proposed model avoids a widespread issue of arbitrarily chosen
constraints, as discussed in Section 1.8. In contrast to ourmodel, which will be speci�ed in Section 2.4,
the model by H. Li and Lu (2017) is non-parametric, where the smoothness of the mortality surface
is achieved by penalized least square estimation. In comparison, the non-parametric model is less
parsimonious than ours, however, it can be applied to wider age ranges. A further distinction is that
in H. Li and Lu (2017) the autoregressive model is applied to logarithmic transformed mortality
rates, where in our approach we consider a logistic-type transformation, which is, in particular, more
suitable for higher ages.
¿e closest consideration to our approach is the study of Gaille and Sherris (2011), where the

authors use a parametric mortality rate model as introduced by Heligman and Pollard (1980). ¿e
so-called Heligman-Pollard model attempts to cover the mortality e�ects on the entire age range
using nine terms for each year. ¿e study of Gaille and Sherris (2011) identi�es common stochastic
trends between the Heligman-Pollard model parameters.

2.2 | Basic Concepts of Multivariate Time Series Analysis
We start by providing some basic de�nitions and useful terminologies for the subsequent sections.
¿e presented material is standard and is based on Lütkepohl (2007). ¿e books of Hamilton (1994)
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and Brockwell and Davis (2013) are further standard references on time series.

Definition 2.2.1 (Multivariate Stochastic Process). Let (Ω,ℱ ,P) be a probability space and Z a count-
able index set, such as Z or N0. A K-dimensional (discrete) multivariate stochastic process is a
map

y ∶ Z ×Ω → RK ,

where, for each �xed t ∈ Z, y(t,⋅) is a K-dimensional random vector. In other words, a multivariate
stochastic process is a parameterized collection y = (yt)t∈Z of random vectors yt ∶ Ω → RK . To keep
the notation simple, it is common to denote the stochastic process by yt .

For a �xed ω ∈ Ω the map Z → RK with t ↦ yt(ω) is called a realization or path of a stochastic
process. A time series is regarded as a �nite part of a realization, i.e., as a set of values

y1(ω), . . . ,yT(ω).
Since in practice the stochastic process which generates the underlying set of observations is generally
unknown, the process itself is referred to as the data generation process (DGP). A time series generated
by yt will usually be denoted by y1, . . . ,yT , where T is called the sample size.

Definition 2.2.2 (Stationary Process). A stochastic process yt is said to be stationary if

(a) E(︀⋃︀yt ⋃︀2⌋︀ < ∞ for all t ∈ Z,
(b) E(︀yt⌋︀ = µ for all t ∈ Z,
(c) E(︀(yt − µ)(yt−h − µ)′⌋︀ = Γy(h) = Γy(−h)′ for all t ∈ Z and h = N0.

¿e �rst condition states that all �rst and second moments are �nite. ¿e second condition
states that all random vectors yt have the same constant mean. ¿e last condition requires that the
autocovariance, de�ned by Γy, only depends on the distance h between two variables and not on t.
Note that the last condition also ensures that the covariance matrices are invariant under t. If the
stochastic process is not stationary, it is said to be non-stationary. ¿e above concept of stationarity
must not be confused with a stricter form of stationarity, where a process yt is said to be strictly
stationary if

(yt1 , . . . ,ytn) d= (yt1+h , . . . ,ytn+h),
for all n ∈ N and for all t1, . . . ,tn ,h ∈ Z, i.e., if the joint distribution of n consecutive vectors is time
invariant for all n. Strict stationarity implies stationarity but not the other way around. A stochastic
process ut is called a white noise process if the conditions E(︀ut⌋︀ = 0 for all t, E(︀utu′t⌋︀ = Σu, and
E(︀utu′s⌋︀ = 0 for t ≠ s are satis�ed. If not stated otherwise, the covariance matrix Σu is assumed to be
non-singular. If, in addition, ut is assumed to be normally distributed, i.e., ut ∼ 𝒩(0,Σu), then the
process is called a Gaussian white noise.
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Definition 2.2.3 (Trend Stationary Process). A stochastic process yt is said to be trend stationary if it
has the following decomposition

yt = f (t) + zt ,
where zt is a stationary process according to De�nition 2.2.2 and f (t) is a deterministic trend
function with values in RK . We will mainly consider stationarity around a linear trend, such that the
trend function will have the form f (t) = a + bt for some �xed parameters a and b.
Definition 2.2.4 (VectorAutoregressive Process (VAR)). AK-dimensional vector autoregressive process
of order p, denoted by VAR(p), is de�ned by

yt = A1yt−1 +⋯ + Apyt−p + CDt + ut , (2.1)

where the Ai are (K × K) coe�cient matrices for i = 1, . . . ,p, C is the (K ×M) coe�cient matrix of
potentially included deterministic terms, which are represented by a (M × 1) vector Dt , and ut is a
K-dimensional white noise process.

¿us, a VAR(p) process describes the evolution of K endogenous variables as a regression on a
deterministic term as well as on p of their own lags perturbed by a white noise process. An important
property of a VAR(p) process is stability, which is the subject of the next de�nition.

Definition 2.2.5 (Stable Process). A K-dimensional VAR(p) process is said to be stable if the condition

det (1K − A1z − . . . − Apzp) ≠ 0 for ⋃︀z⋃︀ ≤ 1. (2.2)

is satis�ed. ¿us, the process is stable if the polynomial of VAR coe�cient matrices has no roots in
and on the complex circle. ¿e condition of eq. (2.2) is also referred to as the stability condition and
the polynomial as the reverse characteristic polynomial of a VAR(p) process (see Lütkepohl (2007)).

Realizations of stable processes di�er qualitatively from realizations of unstable processes. While
stable processes generate trajectories which typically �uctuate around constant means with time-
invariant variance, trajectories of unstable processes usually show trends or strong seasonal �uctua-
tions. See Lütkepohl (2007) for a detailed discussion on that topic.

Proposition 2.2.6 (Stationarity Condition). A stable VAR(p) process of the form

yt = ν + A1yt−1 +⋯Apyt−p + ut , for t ∈ Z

is stationary.

Proof. ¿e result can be obtained by the moving average representation of the VAR process, see
Lütkepohl, 2007, Proposition 2.1.

¿e previous result states that stability of a VAR(p) process, which has been initiated in the in�nite
past, implies stationarity. See Lütkepohl (2007) for possible generalizations of this result for VAR(p)
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processes starting at some �nite time t0. In preparation for the next de�nition, we introduce the
notation of the lag operator L which shi s the index of the process by one period, i.e., Lyt = yt−1 and
the di�erence operator ∆ such that ∆yt = (1 − L)yt = yt − yt−1. Consequently, ∆d yt = (1 − L)d yt
will denote the di�erence of order d.

Definition 2.2.7 (Integrated & Cointegrated Stochastic Processes; Lütkepohl (2007)). A K-dimensional
stochastic process yt is called integrated of order d, denoted by yt ∼ I(d), if ∆d yt is stable and ∆d−1yt
is not stable. An integrated process is sometimes also called a unit root process. An I(d) process yt is
said to be cointegrated if there exists a linear combination β′yt with β ≠ 0 which is integrated of
order less than d. ¿e vector β is called the cointegrating vector.

In the following, we will only consider processes that are at most integrated of order one. ¿us,
cointegration relations are necessarily stationary or trend stationary, i.e., for a K-dimensional process
yt and cointegrating vector β, we have

β′yt = β1yKt +⋯ + βK yKt = zt , (2.3)

where zt is stationary or trend stationary. ¿e process zt in eq. (2.3) is considered to be a deviation
from the long-run equilibrium β′yt .
Definition 2.2.8 (RandomWalk with Drift). ¿e process yt is called a random walk with dri if it has
the form

yt = ν + yt−1 + ut , (2.4)

where ν is a non-zero constant vector and ut is a white noise process. For ν = 0, the process is simply
called a random walk.

A random walk with dri is non-stationary and integrated of order one. To see that, let the
univariate process start in t0 with value y0 and consider the successive substitution for lagged yt ’s,
i.e.,

yt = ν + yt−1 + ut = ν + (ν + yt−2 + ut−1) + ut = ⋯ = y0 + νt + t∑
i=1ut .

¿us, we can directly conclude by E(︀yt⌋︀ = y0 + νt and V(︀yt⌋︀ = V(︀ut⌋︀ = tσ2u that the random walk
is non-stationary. Furthermore, checking the stability condition of De�nition 2.2.5 reveals that the
reverse characteristic polynomial of the random walk has a root on the unit circle. It is important
to point out that constant terms in VAR processes have di�erent in�uences on stable and unstable
processes. Note that the constant term in eq. (2.4) corresponds to the slope of the deterministic
trend. Consider a univariate �rst-order autoregressive process de�ned by

yt = ν + ϕyt−1 + ut , (2.5)

with ⋃︀ϕ⋃︀ < 1 and other terms as in eq. (2.4). ¿is process is indeed stable and it can be shown that the
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mean and autocovariance of eq. (2.5) are given by

E(︀yt⌋︀ = ϕ
1 − ϕ =∶ µ

and

Γy(h) = E (︀(yt − µ)(yt−h − µ)⌋︀ = ϕh

1 − ϕ2 σ2u .
In contrast, for stable processes, the constant term ν does not correspond to a linear trend, as it does
for the random walk, but rather determines the mean of the process. As illustrated in this example,
stable and non-stable processes di�er signi�cantly. To be able to distinguish whether a given sample
is generated by stable and non-stable processes, testing strategies have been developed. ¿e so-called
unit root or stationarity tests will be discussed in Section 2.3.2.

2.3 | Specification Procedure for Multivariate Time Series
In the following section, we provide an overview of common methods and procedures which are
applied to multivariate time series in order to �nd an appropriate DGP among the family of VAR
processes. ¿e speci�cation steps of the general procedure are described in the following remark.

Remark 2.3.1 (VAR/VECM Specification). Following Lütkepohl (2007, Chapter 8), the speci�cation
steps include:

(1) ¿e lag order selection of an unrestricted VAR(p) is obtained through several information
criteria, such as the Akaike’s Information Criterion (AIC), the Hannan-Quinn Criterion (HQ),
the Schwarz Criterion (SC) or the Final Prediction Error (FPE).

(2) Unit root and stationary tests are applied to each univariate time series. ¿e considered tests
include the Augmented Dickey-Fuller test (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin
test (KPSS).¿ese tests have contrary null hypotheses. ¿e ADF test checks the null hypothesis
of a unit root, while the null hypothesis of KPSS is level or trend stationarity.

(3.a) If all univariate variables are stationary, then aVAR(p) is an appropriateDGP for the underlying
observation. Parameters of VAR processes with Gaussian noise term can be consistently
estimated using the OLS regression. See Lütkepohl (2007, Chapter 3) for the concrete form of
the estimator and its asymptotic properties.

(3.b) If some univariate variables are integrated of order one, then the Johansen test procedure
should be applied in order to detect the presence of cointegration relations among the variables.
If there are some cointegration relations, then the representation of a VAR as given in eq. (2.1)
is not optimal, since there are restrictions on the VAR coe�cients imposed by cointegration
relations. ¿ese restrictions are only covered implicitly by the VAR representation. A superior
representation of a VAR with cointegration relations is given by the so-called vector error
correction model (VECM). ¿e VECM representation covers the imposed restrictions by
cointegration relations explicitly as rank restrictions on a particular coe�cient matrix. ¿e
VECMmethodology will be introduced in Section 2.3.3.
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(3.c) If some univariate variables are integrated of order one, but there are no cointegration relations,
then a VAR(p − 1) process can be applied to the di�erence process ∆yt .

(4) ¿e speci�cation terminates with a validation procedure, where several tests are applied
to the residuals to detect model misspeci�cation through exceptional autocorrelations or
non-normality, see Section 2.3.6.

2.3.1 | Lag Order Selection

In the upcoming section, we provide a brief introduction to some widely used criteria for lag order
selection. ¿ese include the information criteria as de�ned by Akaike (1981), abbreviated by AIC, the
Hannan and Quinn (1979) criterion, denoted by HQ, the Schwarz (1978) criterion, abbreviated SC,
and the �nal prediction error (FPE) criterion by Lütkepohl (2007). ¿e measures for the length of the
lag determination are de�ned as

AIC(m) = ln ⋂︀Σ̃u(m)⋂︀ + 2
T
mK2, (2.6)

HQ(m) = ln ⋂︀Σ̃u(m)⋂︀ + 2 ln lnT
T

mK2, (2.7)

SC(m) = ln ⋂︀Σ̃u(m)⋂︀ + lnT
T

mK2, (2.8)

FPE(m) = (T + Km + 1
T − Km − 1)

K ⋂︀Σ̃u(m)⋂︀ , (2.9)

where Σ̃u(m) = T−1∑T
t=1 ûtû′t is the estimator of Σu obtained by �tting a VAR(m) to the K-

dimensional time series. Note that while having distinct penalization terms, all above criteria
are functions of the determinant of the residual covariance matrix. Let Cr denote one of the criteria
de�ned in eqs. (2.6) to (2.9), then the lag order p is chosen as

p = argmin
0≤m≤M Cr(m),

where M ∈ N is a pre-speci�ed maximal considered lag order. For a detailed discussion on the
presented criteria, such as their derivation, small sample properties, and their consistency as lag
order estimators, see Lütkepohl (2007).

2.3.2 | Unit Root and Stationary Tests

In this section, we present two common statistical tests which are used to analyse whether the DGP
of the observed time series is a stationary or a non-stationary unit root process.

Augmented Dickey-Fuller Test

¿emost common test is the Augmented Dickey-Fuller (ADF) unit root test which is based on the
regression

∆θ t = ξ0 + ξ1t + π θ t−1 + k∑
i=1 γi∆θ t−i + єt , (2.10)
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where the error term єt is a Gaussian white noise process. ¿e number of lagged di�erences k in
the regression can be either determined by information criteria, by a signi�cance t-type test of the
regression parameter or by checking the residuals for the absence of serial correlation, see Pfa�
(2008). Based on the regression of eq. (2.10), the objective is to test the hypothesis pair

H0 ∶ π = 0 vs. H1 ∶ π ≠ 0,
which is given by a t-statistic of the OLS estimated parameter π. ¿e test statistic does not have an
asymptotic normal distribution. Critical values have to be obtained by simulation and are provided by
Dickey and Fuller (1981) and Fuller (1976). Furthermore, the limiting distribution does also depend
on the type of the included deterministic term. ¿e null hypothesis π = 0 implies that θ t is an I(1)
process. ¿is can be seen by adding yt−1 to both sides of eq. (2.10) which yields

θ t = ξ0 + ξ1t + (1 + π)θ t−1 + k∑
i=1 γi∆θ t−i + єt .

For π = 0, the coe�cient of the term yt−1 is equal to one, thus, the stability condition of eq. (2.2) is
violated. Since we do not consider processes of a higher order of integration, the term∑k

i=1 γi∆θ t−i
is necessarily a stationary process. ¿us, for π = 0, the process θ t can be essentially decomposed as

θ t ≅ deterministic term + random walk + stationary error process.
As mentioned above, the limiting distribution of the ADF test depends on whether the regression
in eq. (2.10) only includes a constant ξ0 or a linear ξ0 + ξ1t term. ¿erefore, there exists a series of
possible tests for π = 0. In the more general case, where ξ0 + ξ1t is included, we have a t-type test
statistic

τ3 = π̂
s.e.(π̂) ,

for the hypothesis pair

H0 ∶ π = 0 vs. H1 ∶ π ≠ 0 (2.11)

and two joined null F-type test statistics ϕ3 and ϕ2 for the pairs

H0 ∶ (ξ1 = 0 ∧ π = 0) vs. H1 ∶ (ξ1 ≠ 0 ∨ π ≠ 0) (2.12)

and

H0 ∶ (ξ0 = 0 ∧ ξ1 = 0 ∧ π = 0) vs. H1 ∶ (ξ0 ≠ 0 ∨ ξ1 ≠ 0 ∨ π ≠ 0).
¿e null hypothesis, corresponding to the statistic τ3, is that the considered process is essentially a
random walk with dri and a deterministic time trend. ¿e corresponding null hypothesis for the
statistic ϕ3 is a random walk with dri and for ϕ2 the null hypothesis is a random walk without dri .
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In the second case, where only a constant term ξ0 is included in eq. (2.10), we have a t-type statistic,
denoted by τ2, testing H0 ∶ π = 0 versus H1 ∶ π ≠ 0, and a joined F-type test for the hypothesis pair
H0 ∶ ξ0 = 0 ∧ π = 0 versus H1 ∶ ξ0 ≠ 0 ∨ π ≠ 0. ¿ese null hypotheses correspond to a random walk
with and without dri . Critical values of the involved non-standard statistics can be found in Dickey
and Fuller (1981) and Fuller (1976).
In Section 2.4, we will provide a unit root analysis for time series given by the coe�cients κt of

the Kannisto model. To verify the assumption that the underlying DGPs are indeed I(1) processes,
the following procedure is applied. First, the ADF test is applied to each individual component
of κt . If the null hypotheses cannot be rejected, the ADF tests are reapplied to the components of
the �rst-order di�erences ∆κt . If the latter tests turn out to be signi�cant, then we conclude that
∆κt ∼ I(0) and therefore, κt ∼ I(1). For a comprehensive introduction to the testing procedure see,
e.g., Pfa� (2008).

Kwiatkowski-Phillips-Schmidt-Shin Test

As a con�rmatory analysis for unit roots, we use the KPSS test proposed by Kwiatkowski, Phillips,
Schmidt and Shin (1992). ¿e KPSS test has the null hypothesis of stationarity, which is contrary to
the ADF test with the null hypothesis of a unit root. Kwiatkowski, Phillips, Schmidt and Shin (1992)
derived their test by considering a decomposition of the process into a deterministic component
β′Dt , a pure random walk νt with innovation variance σ2ε , and a stationary error process ut given by

θ t = CDt + νt + ut
νt = νt−1 + єt .

Obviously, for σ2є = 0, θ t is trend stationary and for σ2є > 0, the process is integrated. ¿us, the null
hypothesis of θ t ∼ I(0) is formulated as H0 ∶ σ2є = 0, and the alternative is H1 ∶ σ2є > 0. ¿e KPSS test
uses a one-sided Lagrange multiplier statistic (see Section 1.6.3) which is given by

KPSS = 1
T2
∑T
t=1 Ŝ2t
σ̂2u(l) ,

where Ŝt = ∑t
j=1 û j is the partial sum of the residual obtained by a regression of θ t on the deterministic

trend CDt and

σ̂2u(l) = 1
T

T∑
i=1 û

2
t + 2

T

l∑
s=1(1 −

s
l + 1)

T∑
t=s+1 ûtût−s (2.13)

is a consistent estimator of the long-run variance of ut using l as a length of a spectral window in the
so-called Barlett weighting function. Suitable choices for l might be l = 4 4

⌈︂
T⇑100 or l = 12 4

⌈︂
T⇑100 for

T being the sample size, see Pfa� (2008). Kwiatkowski, Phillips, Schmidt and Shin (1992) showed that
underH0 the KPSS statistic converges in distribution to a function of standard Brownian motion that
depends on the form Dt , but not on C. Critical values of the KPSS statistic for Dt = 1 and Dt = (1,t)′
are obtained by simulation and can be found in Kwiatkowski, Phillips, Schmidt and Shin (1992). In
Section 2.4, ητ will denote the KPSS statistic when Dt = (1,t)′ is used to test trend-stationarity, and
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ηµ will denote the KPSS statistic for Dt = 1 to test stationarity.
Similar to the ADF unit root testing procedure, we will apply the KPSS test to κt and ∆κt . If the

underlying DGP of κt is I(1), then we expect that KPSS tests will reject the null hypothesis for
components of κt but not for ∆κt .

2.3.3 | Vector Error Correction Model

¿e section is devoted to vector error correction models (VECM), or alternatively called vector
equilibrium correction models. VECMs provide an alternative representation of VAR processes which
is more convenient if cointegration relations between variables exist. ¿e topics presented in this
section are considered as known and are based on Lütkepohl (2007).

VECMMethodology

Recall from De�nition 2.2.4 that omitting any deterministic terms, a K-dimensional vector autore-
gressive process yt with order p is de�ned as

yt = A1yt−1 +⋯ + Apyt−p + ut , (2.14)

where A1, . . . ,Ap denote the coe�cientmatrices (K×K) and ut is a white noise process of dimension
K. Following Lütkepohl (2007), subtracting yt−1 from eq. (2.14) and subsequently rearranging terms,
we obtain the VECM form

∆yt = Πyt−1 + Γ1∆yt−1 +⋯ + Γp−1∆yt−p + ut , (2.15)

which is an equivalent representation of the VAR standard form, as given in eq. (2.14). In eq. (2.15),
that speci�es a VECM(p − 1) process, we have

Π ∶= −(1K − A1 − . . . − Ap)
and

Γi ∶= −(Ai+1 +⋯ + Ap),
for i = 1, . . . ,p−1. If we now assume that all variables of yt are at most I(1), we see that the le -hand
side of eq. (2.15), ∆yt , must be I(0). On the right-hand side, Πyt−1 is the only term with I(1)
variables, but since it must also be I(0), it has to contain the potential cointegration relations. If we
now consider a VAR(p) process with unit roots, then by de�nition we have

⋃︀1K − A1z − . . . − Apzp⋃︀ = 0,
for z = 1. ¿is implies that Π = −(1K − A1 − . . . − Ap) in eq. (2.15) does not have a full rank K. Let
rkΠ = r < K, then Π can be decomposed into a matrix product αβ′ with α and β′ being (K × r)
matrices of rank r, see Lütkepohl (2007). ¿e matrix α is called a loading matrix. Since β′yt−1
contains the cointegration relations, β is referred to as a cointegration matrix, and the rank of Π as
the cointegration rank. As Lütkepohl (2007) points out, the decomposition Π = αβ′ is not unique.
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However, by a suitable rearrangement of variables it is always possible to achieve a unique normalized
form, e.g.,

β′ = [︀1r ∶ β̃′(K−r)⌉︀ , (2.16)

where 1r is the (r × r) identity matrix and β̃′(K−r) is an (r × K − r)matrix. ¿is normalized form
ensures a unique cointegration matrix and will be used from this point on.
In a VECM as in eq. (2.15), three essential cases for the cointegration rank can be distinguished. If

r = K, then all variables are stationary and the process yt has a stable VAR(p) representation. ¿is
corresponds to the case (3.a) at page 106. If r = 0, then there are no cointegration relations among the
variables,Πyt−1 vanishes in eq. (2.15), and therefore ∆yt has as stable representation as a VAR(p−1)
process, see case (3.c) on page 107. Assuming now that all variables are I(1), then 0 < r < K implies
that there are r cointegration relations among the variables such that β′yt ∼ I(0), or equivalently,
the variables are driven by K − r common trends. ¿is situation describes the case (3.b), where the
system of variables is represented as a VECM(p − 1), as given in eq. (2.15) or equivalently by

∆yt = αβ′yt−1 + Γ1∆yt−1 +⋯ + Γp−1∆yt−p + ut .
¿is VECM(p − 1) representation can also be transformed to a VAR(p) representation by the
following reorganization of coe�cient matrices

A1 = 1K + αβ′ + Γ1,
Ai = Γi − Γi−1, for i = 2, . . . ,p − 1
Ap = −Γp−1.

However, the advantage of the VECM representation is that the hypothesis of cointegration relations
among the variables can be formulated in terms of a reduced rank tests of the matrix Π = αβ′, i.e.,

H0 ∶ rkΠ = r vs. H1 ∶ rkΠ > r, (2.17)

for r = 0,1, . . . ,K − 1. Likelihood ratio based testing procedures for the hypothesis pair of eq. (2.17),
as well as reduced rank ML estimation methods, have been developed by Johansen (1988, 1995) and
will be introduced in Section 2.3.5

2.3.4 | VECM Parameter Estimation

In this section, we introduce two estimation methods for VECMs. ¿e presentation of the following
is based on Lütkepohl (2007, Section 7.2). We begin by providing some notations needed to express
the estimators. As the underlying process, we consider a VECM with deterministic terms of the form

∆yt = α(︀β′ ∶ η′⌋︀ ⌊︀ yt−1Dco
t−1}︀ + Γ1∆yt−1 +⋯ + Γp−1∆yt−p+1 +ΨDt + ut

= Π+y+t−1 + Γ1∆yt−1 +⋯ + Γp−1∆yt−p+1 + ΨDt + ut , (2.18)
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where yt is a K-dimensional process, rk(αβ′) = r, with 0 < r < K, where α, β are K × r matrices
with full rank r, Γi∈1,...,p−1 are K × K parameter matrices, and ut ∼ (0,Σu) is a white noise process.
Further, we use the notation

Π+ ∶= α(︀β′ ∶ η′⌋︀ = αβ+′ and y+t−1 ∶= ⌊︀ yt−1Dco
t−1}︀ ,

where η′ represents a vector of coe�cients of the deterministic term Dco
t−1, which is restricted to

the cointegration relation. ¿e coe�cients Ψ, on the other side, correspond to the unrestricted
deterministic Dt terms. To avoid an over-determined system of equations, we assume that speci�c
deterministic terms appear either in Dco

t−1 or in Dt . We also assume that yt is an integrated process
of order one and that

α′� ⎛⎝1K − p−1∑
i=1 Γi

⎞⎠ β� (2.19)

is invertible, where α′� and β� denote orthogonal complements of the (r × K)matrices α′ and β.
¿e assumption in eq. (2.19) is required for the Granger representation theorem, which is a result on
the decomposition of yt into integrated and stationary components, see Engle and Granger (1987)
for further details.

Following the notation of Lütkepohl (2007), for t = 1, . . . ,T the VECM in eq. (2.18) can be written
in matrix notation as

∆Y = Π+Y+−1 + Γ+∆X+ +U ,
where

∆Y ∶= (︀∆y1, . . . ,∆yT⌋︀, (2.20)
Y+−1 ∶= (︀y+0 , . . . ,y+T−1⌋︀, (2.21)
Γ+ ∶= (︀Γ1, . . . ,Γp−1,Ψ⌋︀, (2.22)

∆X+ ∶= (︀∆X+0 , . . . ,∆X+T−1⌋︀, (2.23)

with

∆X+t−1 ∶=
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

∆yt−1⋮
∆yt−p+1
Dt

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎮
(2.24)

and

U ∶= (︀u1, . . . ,uT⌋︀.
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LS Estimator for VECM

¿emultivariate least squares (LS) estimator, where no rank restriction on Π = αβ′ is taken into
account, is given by (Lütkepohl, 2007)

(︀Π̂+ ∶ Γ̂+⌋︀ = )︀∆Y∆Y+′−1 ∶ ∆Y∆X+′⌈︀ ⌊︀ Y+−1Y+′−1 Y+−1∆X+′
∆X+Y+′−1 ∆X+∆X+′}︀

−1
. (2.25)

A consistent estimator of the white noise covariance matrix can be obtained as

Σ̂u = (T − Kp)−1(∆Y − Π̂+Y+−1 − Γ̂+∆X+)(∆Y − Π̂+Y+−1 − Γ̂+∆X+)′. (2.26)

¿e asymptotic properties of the LS estimator are derived in Lütkepohl (2007, Proposition 7.1). Based
on that, the estimator as given eq. (2.25) is consistent and asymptotically normal, i.e.,

⌋︂
T vec ((︀Π̂+ ∶ Γ̂+⌋︀ − (︀Π+ ∶ Γ+⌋︀) dÐ→𝒩(0,Σco), (2.27)

where

Σco = Λ ⊗ Σu , (2.28)

with

Λ = (⌊︀β+′ 0
0 1Kp−K}︀Ω−1 ⌊︀β+′ 0

0 1Kp−K}︀) ,
and

Ω = plim 1
T
⌊︀β+′Y+−1Y+′−1β+ β+′Y+−1∆X+′
∆X+Y+′−1β+ ∆X+∆X+′ }︀ , (2.29)

where ⊗ in eq. (2.28) denotes the Kronecker product and plim in eq. (2.29) the probability limit. ¿e
Matrix Λ can be consistently estimated by

Λ̂ = T ⌊︀ Y+−1Y+′−1 Y+−1∆X+′
∆X+Y+′−1 ∆X+∆X+′}︀

−1
.

For a known β, the LS estimator of (︀α,Γ+⌋︀ can be derived as
(︀α̂,Γ̂+⌋︀ = )︀∆Y∆Y+′−1β+ ∶ ∆Y∆X+′⌈︀ ⌊︀β+′Y+−1Y+′−1β+ β+′Y+−1∆X+′

∆X+Y+′−1β+ ∆X+∆X+′ }︀
−1
. (2.30)

¿e LS estimator of eq. (2.30) has an asymptotic normal distribution, i.e.,

⌋︂
T vec ((︀α̂ ∶ Γ̂+⌋︀ − (︀α ∶ Γ+⌋︀) dÐ→𝒩(0,Σα,Γ), (2.31)
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where

Σα,Γ = Ω−1 ⊗ Σu = plim 1
T
⌊︀β+′Y+−1Y+′−1β+ β+′Y+−1∆X+′
∆X+Y+′−1β+ ∆X+∆X+′ }︀

−1 ⊗ Σu .

As noted in Lütkepohl (2007), the asymptotic distributions of eq. (2.31) and eq. (2.27), reduced to the
coe�cients (︀α,Γ+⌋︀, coincide and do no depend on whether β has been estimated or assumed to be
known. ¿is fact is a consequence of the faster convergence rate for the estimation of β.

ML Estimator for VECM

Under the assumption that the process yt is Gaussian, i.e., ut ∼ 𝒩(0,Σu), a maximum likelihood
estimator (ML) can be used for the estimation of a VECM.¿e ML estimator for VECM is derived
in Johansen (1995, ¿eorem 6.1) and considers explicitly the rank restriction of the matrix Π = αβ′.
Using the notations of eqs. (2.20) to (2.24), the log-likelihood function of VECM with sample size T
is given by

ln L(α,β,Γ,Σu) = −KT2 ln 2π − T
2
ln ⋃︀Σu ⋃︀ − 1

2
tr )︀(∆Y − αβ′Y−1 − Γ∆X)′Σ−1u (∆Y − αβ′Y−1 − Γ∆X)⌈︀ ,

(2.32)

where tr denotes the trace operator. In the following, we use the above notation and outline the
ML estimator for a VECM as can be found in Lütkepohl (2007, Proposition 7.3). ¿e ML estimator
given below is an estimator for a VECM with no deterministic terms. However, a corresponding
estimator for eq. (2.18) can be analogously obtained by replacing (Y−1,∆X , Γ) with the extended
variables (Y+−1,∆X+, Γ+).
Proposition 2.3.2 (ML Estimators for VECMs; Lütkepohl (2007)). Let yt be a VECM driven by Gaussian
white noise ut and let M ∶= 1T − ∆X(∆X∆X′)−1, R0 ∶= ∆YM and R1 ∶= Y−1M, where ∆Y ∶=(︀∆y1, . . . ,∆yT⌋︀ as before, Y−1 ∶= (︀y0, . . . ,yT−1⌋︀, Γ ∶= (︀Γ1, . . . ,Γp−1⌋︀, and ∆X ∶= (︀∆X0, . . . ,∆XT−1⌋︀
with ∆Xt−1 ∶= (︀∆yt−1, . . . ,∆yt−p+1⌋︀′ and de�ne

Si j ∶= 1
T
RiR′j , i , j ∈ {0,1}.

Let λ1 ≥ ⋯ ≥ λK be the ordered eigenvalues of the generalized eigenvalue equation
⋃︀λS11 − S10S−100 S01⋃︀ = 0, (2.33)

with corresponding orthonormal eigenvectors v1, . . . vK , then the log-likelihood function as given in
eq. (2.32) is maximized for

β = β̃ ∶= (︀v1 . . . ,vr⌋︀′S−1⇑211 , (2.34)
α = α̃ ∶= ∆YMY ′1 β̃(β̃′Y−1MY ′−1β̃)−1 = S01β̃(β̃′S11β̃)−1, (2.35)
Γ = Γ̃ ∶= (∆Y − α̃β̃′Y−1)∆X′(∆X∆X′)−1, (2.36)
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Σu = Σ̃u ∶= 1
T
(∆Y − α̃β̃′Y−1 − Γ̃∆X)(∆Y − α̃β̃′Y−1 − Γ̃∆X)′. (2.37)

Proof. See Lütkepohl (2007, Proposition 7.3) or Johansen (1995, ¿eorem 6.1).

¿e maximum of the log-likelihood function obtained by plugging in the estimators of eqs. (2.34)
to (2.37) is given by

max ln L = ln L(α̃,β̃,Γ̃,Σ̃u) = −KT2 ln 2π − T
2
⌊︀ln ⋃︀S00⋃︀ + r∑

i=1 ln(1 − λi)}︀ −
KT
2
. (2.38)

¿ese estimators are consistent and jointly asymptotically normal, i.e.,

⌋︂
T vec ((︀α̃β̃′ ∶ Γ̃⌋︀ − (︀Π ∶ Γ⌋︀) dÐ→𝒩(0,Σco),

where Σco is de�ned in eq. (2.28). ¿e estimator Σ̃u of the covariance matrix Σu is also asymptotically
normal, see Lütkepohl (2007, Proposition 7.4) for the asymptotic covariance matrix, and Johansen
(1995) for the proof. Note that without further restrictions, only the product Π = αβ′ and therefore
the cointegration space can be estimated consistently, but not the parameters of α and β. To obtain
uniqueness, it is necessary to impose further restrictions. ¿is can be done by normalization of β in
accordance to eq. (2.16). ¿at means, for r > 1, β is normalized to the form

β = ⌊︀ 1r
β(K−r)}︀ ,

where β(K−r) is a K × (K − r)matrix denoting the last K − r rows. As mentioned in Lütkepohl (2007,
Remark 3 of Proposition 7.4), the ML estimator β̄(K−r) of β(K−r) can be obtained as the last K − r
rows of β̃β̃−1(r), where β̃(r) consists of the �rst r rows of β̃, i.e.,

β̄(K−r) ∶= (β̃β̃−1(r))(K−r) .
For r = 1, the normalization is directly obtained through division by the �rst component of the
vector β̃ = v′1S−1⇑211 . Johansen (1995) shows that the estimators are consistent and both T(β̃ − β)
and

⌋︂
T(α̃ − α) converge in distribution. ¿e latter case has the same asymptotic distribution as in

eq. (2.31). ¿e faster convergence rate of the estimator of β is also said to be superconsistent. For the
sake of completeness, the asymptotics of the normalized coe�cients follow

vec ⌊︀(β̄′(K−r) − β′(K−r)) (R1(K−r)R′1(K−r)) 1
2 }︀ dÐ→𝒩 (0,1K−r ⊗ (α′Σ−1u α)−1) , (2.39)

where R1(K−r) denotes the last K − r rows of R1. For a more detailed discussion and proofs, we refer
to Lütkepohl (2007) and Ahn and Reinsel (1990, ¿eorem 4). ¿e asymptotic covariance matrices as
given in eq. (2.27) or in eq. (2.31) and eq. (2.39) are used to derive standard deviations and t-ratios of
the estimated coe�cients.



116 2 Cointegration Analysis for the Kannisto Model

2.3.5 | Johansen Tests for Cointegration Rank

For the following, we consider a VECM driven by Gaussian white noise. Under this setting, a ML
estimator is available as a closed-form expression as presented in Proposition 2.3.2. Based on this
result, the likelihood ratio statistic can be applied for testing hypothesis pairs involving a particular
cointegration rank of the system. For the hypothesis pair

H0 ∶ rkΠ = r0 vs. H1 ∶ r0 < rkΠ ≤ r1, (2.40)

the likelihood ratio statistic is given by

λLR(r0,r1) = 2 (ln L(r1) − ln L(r0))
eq. (2.38)= T (− r1∑

i=1 ln (1 − λi) +
r0∑
i=1 ln (1 − λi))

= −T r1∑
i=r0+1 ln (1 − λi),

where ln L(ri) denotes the maximum of the log-likelihood function using the cointegration rank
ri . ¿e statistic λLR(r0,r1) is not normal, i.e., the limiting null distribution is not χ2 and it depends
on the number of common trends, K − r0, and the type of the deterministic term included in the
VECM, see Lütkepohl (2007).

Johansen Trace & Maximum Eigenvalue Test

Two particular choices for the alternative hypothesis in eq. (2.40) are commonly known as Johansen
cointegration tests. First, the LR statistic λLR(r0,K) for testing the hypothesis pair

H0 ∶ rkΠ = r0 vs. H1 ∶ r0 < rkΠ ≤ K ,
that is, testing that there are at most r0 cointegration relations, is also known as the trace statistic.
¿e trace statistic is given by

λLR(r0,K) = −T K∑
i=r0+1ln (1 − λi), (2.41)

where λr0+1 > . . . > λK are the K − r0 smallest eigenvalues of the generalized eigenvalue equation
eq. (2.33). ¿e statistic λLR(r0,r0 + 1) for checking the existence of r0 against r0 + 1 cointegration
relation by the hypothesis pair

H0 ∶ rkΠ = r0 vs. H1 ∶ rkΠ = r0 + 1,
is referred to as themaximum eigenvalue statistic and takes the form

λLR(r0,r0 + 1) = −T ln (1 − λr0+1). (2.42)
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¿emaximum eigenvalue statistic has been proposed by Johansen and Juselius (1990). ¿e limiting
distributions of the trace statistic and the maximum eigenvalue statistic under the null hypothesis
have been studied by Johansen (1988, 1995) and Johansen and Juselius (1990). In the simplest case,
where the VECM does not include any deterministic terms, the test statistics of eqs. (2.41) and (2.42)
have the following asymptotics (Lütkepohl, 2007)

λLR(r0,K) dÐ→ tr(𝒲)
and

λLR(r0,r0 + 1) dÐ→ λmax(𝒲), (2.43)

where𝒲 is de�ned by

𝒲 ∶= ⎛⎜⎝
1

∫
0

WdW ′⎞⎟⎠
′ ⎛⎜⎝

1

∫
0

WW ′dt⎞⎟⎠
−1 ⎛⎜⎝

1

∫
0

WdW ′⎞⎟⎠ ,
withW being a (K − r0)-dimensional standard Brownian motion process and λmax(𝒲) in eq. (2.43)
denotes the maximum eigenvalue of𝒲 . ¿e asymptotic distributions of both test statistics are
also available for more general VECMs with deterministic terms. Critical values are obtained by
simulation and can be found in Johansen and Juselius (1990, Appendix A). ¿e procedure for the
determination of the cointegration rank consists of a sequence of tests with null hypotheses given by

H0 ∶ rkΠ = 0, H0 ∶ rkΠ = 1, . . . H0 ∶ rkΠ = K − 1.
¿e testing procedure terminates at the �rst time when the test statistic is not signi�cant (see
Lütkepohl (2007)). ¿e corresponding null hypothesis at the termination point determines the
choice of the cointegration rank. ¿is procedure is also described as the ‘top→ bottom’ approach in
Juselius (2006, Section 8.1).

2.3.6 | VAR/VECMModel Diagnostics

¿e following section covers some frequently used diagnostic tests which are employed on the residu-
als in order to detect model misspeci�cation. ¿ese tests are based on the residuals ût ∶= yt − ŷt , with
t = 1, . . . ,T , and include testing procedures for autocorrelation, conditional heteroscedasticity and
non-normality. If the model is wrongly speci�ed in terms of the lag order, deterministic components,
or the cointegration rank, the residuals will signi�cantly di�er from a white noise process. Further
discussions on misspeci�cation tests can be found in Juselius (2006), Lütkepohl and Krätzig (2004)
and Pfa� (2008).
Before introducing some formal tests, it should be noted that several graphical tools are also

available for diagnostic purposes. ¿ese include, in particular, the autocorrelation function (ACF) and
the cross-correlation function of the model residuals. ¿e ACF is de�ned by h ↦ Corr(ûi ,t ,ûi ,t−h),
with i = 1, . . . ,K, h = 1, . . . ,hmax > p, and the cross-correlation function by h ↦ Corr(ûi ,t ,û j,t−h)
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for i ≠ j. ¿ese graphical methods are helpful to detect model misspeci�cation. As Lütkepohl and
Krätzig (2004) point out, autocorrelation and cross-correlation functions can reveal remaining serial
dependence in the residuals, while autocorrelations of squared residuals may detect conditional
heteroscedasticity. ¿e assessment, whether an estimated correlation coe�cient is signi�cant or not,
is conducted using its standard error, which is asymptotically 1⇑⌋︂T , see Juselius (2006). ¿us, an
unusual number of autocorrelation or cross-correlations outside the 95% con�dence region, given
by the band ±1.96⇑⌋︂T , are indications for model misspeci�cation. ¿e following introduction to
formal residual tests is based on Lütkepohl and Krätzig (2004).

Portmanteau Test for Residual Autocorrelation

¿e potential presence of residual autocorrelation can be assessed by the portmanteau or adjusted
portmanteau statistic. ¿e portmanteau test checks the null hypothesis of no residual autocorrelation
up to lag h, which can be stated as

H0 ∶ E(︀ûtû′t−i⌋︀ = 0, i = 1, . . . ,h,
versus the alternative that at least one autocorrelation up to lag h di�ers from zero. ¿e test statistic
is given by

Qh = T h∑
i=1 tr(Ĉ′iĈ−10 ĈiĈ−10 ), (2.44)

where

Ĉi = T−1 T∑
t=i+1 ûtû

′
t−i

is the empirical autocovariance matrix. ¿e limiting distribution of the statistic Qh under the null
hypothesis is the χ2 distribution with K2(h− p) degrees of freedom, where K is the dimension of the
time series and p is the order of the VAR process. ¿e number of degrees of freedom of the limiting
χ2 distribution depends on the number of free model parameters. ¿us, for a VECM, the number
of independent parameters reduces due to a rank restriction to hK2 − K2(p − 1) − Kr, where r is
the cointegration rank, see Lütkepohl (2007). Note that deterministic terms in the VAR/VECM
must also be considered for the calculation of the degrees of freedom. A modi�ed version of the
portmanteau statistic of eq. (2.44), referred to as the adjusted portmanteau statistic, is de�ned by

Q∗
h = T2 h∑

i=1(T − i)−1 tr(Ĉ′iĈ−10 ĈiĈ−10 ).
¿is adjusted statistic is potentially more suitable for small sample sizes.

Breusch-Godfrey Test for Residual Autocorrelation

An alternative test for residual autocorrelation, the so-called Breusch-Godfrey test, is a Lagrange mul-
tiplier type test proposed by Breusch (1978) and Godfrey (1978). ¿e test for residual autocorrelation
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up to order h is based on the auxiliary regression

ût = A1yt−1 +⋯ + Apyt−p + CDt + B1ût−1 +⋯ + Bhût−h + et
for a VAR model, and in analogy on the regression

ût = αβ′yt−1 + Γ1∆yt−1 +⋯ + Γp−1∆yt−p + CDt + B1ût−1 +⋯ + Bhût−h + et
for a VECM.¿e test checks the hypothesis pair

H0 ∶ B1 = ⋯ = Bh = 0 vs. H1 ∶ ∃Bi ≠ 0 for i = 1, . . . ,h.
¿e Breusch-Godfrey test statistic is de�ned as

λLM(h) = T )︀K − tr (Σ̃e Σ̃−1R )⌈︀ ,
where Σ̃e and Σ̃R denote the estimated covariance matrices of the auxiliary regressions for the
unrestricted case and for the case with imposed restrictions B1 = ⋯ = Bh = 0, i.e.,

Σ̃e = 1
T

T∑
t=1 êt ê

′
t and Σ̃R = 1

T

T∑
t=1 ê

R
t êR

′
t .

¿e limiting distribution of the λLM(h) under the null hypothesis is χ2(hK2). As Lütkepohl (2007)
points out, the Breusch-Godfrey test is useful, in particular, for testing low order residual autocorre-
lation, where the χ2 approximation of the portmanteau statistic might be insu�cient. On the other
hand, a portmanteau test is superior for larger h. ¿us, usually both tests are used complementary to
check the residuals for autocorrelation.

Non-normality Tests for Residuals

¿e following non-normality tests are based on skewness and kurtosis of the standardized residuals.
Let Σ̃u denote the empirical residual covariance matrix

Σ̃u = 1
T

T∑
t=1(ût − ¯̂u)(ût − ¯̂u)′,

where ¯̂u ∶= T−1∑T
t=1 ût is the residual mean, then the standardized residuals are obtained by

ûst = (ûs1,t , . . . ,ûsK ,t)′ = Σ̃− 1
2

u (û − ¯̂u).
Let the following auxiliary quantities b1 and b2 be de�ned as

b1 = (b11, . . . ,b1K) with b1k = 1
T

T∑
t=1 (ûskt)

3
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and

b2 = (b21, . . . ,b2K) with b2k = 1
T

T∑
t=1 (ûskt)

4 ,

then it can be shown, see, e.g., Lütkepohl (2007, Proposition 4.9) that b1 and b2 are asymptotically
independent and normally distributed, i.e.,

⌋︂
T ⌊︀ b1

b2 − 3K
}︀ dÐ→𝒩 (0, ⌊︀61K 0

0 241K
}︀) ,

where 3K ∶= (3, . . . ,3)′. ¿is result implies that

s23 ∶= T
6
b′1b1 dÐ→ χ2(K)

and

s24 ∶= T
24
(b2 − 3K)′(b2 − 3K) dÐ→ χ2(K).

¿e statistics s23 and s24 can be used to check the hypothesis pairs

H0 ∶ E(︀(ûs)3⌋︀ = 0 vs. H1 ∶ E(︀(ûs)3⌋︀ ≠ 0 (2.45)

and

H0 ∶ E(︀(ûs)4⌋︀ = 3K vs. H1 ∶ E(︀(ûs)4⌋︀ ≠ 3K . (2.46)

A joint test for the null hypotheses of eqs. (2.45) and (2.46) can be checked by the statistic

λLJBmulti ∶= s23 + s24 ,
which is a multivariate generalization of the univariate Lomnicki-Jarque-Bera test for non-normality,
proposed by Jarque and Bera (1987) and Lomnicki (1961). Using the asymptotic properties of s23 and
s24 we can conclude that

λLJBmulti
dÐ→ χ2(2K).

In the upcoming case study in Section 2.4, we will report the multivariate test statistics s23, s24 and
λLJBmulti as well as the univariate statistic λLJB for each time series component.

(M)ARCH Test for Residual Heteroscedasticity

Some frequently used tests for conditional heteroscedasticity in the residuals are the Lagrange
multiplier type tests, denoted by ARCH in the univariate case, and its generalization to a multivariate
conditional heteroscedasticity test, denoted by MARCH. Following Lütkepohl and Krätzig (2004),
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the multivariate q-th order test is based on the regression

vech(ûtû′t) = β0 + B1 vech(ût−1û′t−1) +⋯ + Bq vech(ût−qû′t−q) + εt , (2.47)

where vech(⋅) is the half-vectorization operator which converts a symmetric matrix to a vector by
vectorizing only the lower triangular part of the matrix. ¿e corresponding coe�cient matrices B j
for j = 1, . . . ,q are therefore (1⇑2K(K + 1) × 1⇑2K(K + 1))-dimensional. Note that in the univariate
case, the regression of eq. (2.47) reduces to

û2t = β0 + B1û2t−1 +⋯ + Bqû2t−q + εt ,
¿e MARCH test checks the hypothesis pair

H0 ∶ B1 = ⋯ = Bq = 0 vs. H1 ∶ ∃Bi ≠ 0 for i = 1, . . . ,q
through the multivariate LM statistic

MARCHLM(q) ∶= 1
2
TK(K + 1) − T tr(Σ̂vechΣ̂−10 ), (2.48)

where Σ̂vech is the residual covariance matrix obtained by the regression of eq. (2.47) and Σ̂0 is the
alternative residual covariance matrix obtained by using the regression with q = 0. Under the null
hypothesis of no conditional heteroscedasticity, the statistic has an asymptotic χ2(qK2(K + 1)2⇑4)
distribution, see Lütkepohl (2007). For the univariate case, the statistic of eq. (2.48) reduces to

ARCHLM(q) ∶= T (1 − σ̂
σ̂0
) .

¿e limiting distribution of the ARCHLM(q) statistic is consequently given by the χ2(q) distribution,
see Engle (1982).

2.4 | VECM Specification for the Kannisto Model

In the following, we return to the Kannisto model as speci�ed in Section 1.9.1. We investigate whether
the presence of cointegration relations among the multivariate time series, given by Kannisto model
estimates, can be con�rmed as it was suggested in Section 1.9.5. In the subsequent sections, we will
analyse all three proposed models KAN, KAN:2, and KAN:3 following the speci�cation procedure
described in Remark 2.3.1.

2.4.1 | VECM Specification for the KANModel

¿e basis for the upcoming analysis is the 2-dimensional time series of the KAN model parameters
estimated in Section 1.9.2. ¿e trajectories of the KAN coe�cients κ(1)t and κ(2)t , as well as their
�rst-order di�erences ∆κ(1)t and ∆κ(2)t , are provided in Figure 2.1. Visual inspection of the time
series indicates a structural change of the trajectories in the 1940’s. ¿is period corresponds to the
end of the Second World War that brought signi�cant improvements of mortality rates. ¿at also
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applies to the non-directly involved Swedish female population, as discussed in Section 1.3 and
illustrated in Figure 1.4. For all following analyses, we will therefore only consider the corresponding
time series in the period between 1946 and 2014.

Lag Order Selection for the KANModel

Following the speci�cation procedure of Remark 2.3.1, we start by selecting the lag order p of an
unrestricted VAR(p)model by using the information criteria from Section 2.3.1. Table 2.1 shows
the results for an unrestricted VAR model with both a constant and a deterministic trend and a
maximum lag order of p = 7. For the criteria AIC, HQ, SC, and FPE see eqs. (2.6) to (2.9).
According to the AIC and FPE criteria, the optimal VAR lag is p = 3. On the other hand, the HQ

and SC criteria suggest the optimal lag order to be p = 1. Note that choosing the lag order according
to information criteria does not necessarily imply that the residuals of that model will pass the
standard diagnostic tests. Using the methods of Section 2.3.6, we detect signi�cant autocorrelations
in the residual of the VAR(1)model and therefore choose p = 3 as the VAR lag order as suggested
by the AIC and FPE criteria.

Unit Root Tests for the KANModel

Next, we investigate whether the DGP of the underlying KAN time series contains unit roots or
otherwise can be considered as stationary. ¿e upper panel of Figure 2.1 suggests that based on visual
judgment κ(1)t and κ(2)t do not have a stationary DGP. Nevertheless, they could have been generated
by a trend-stationary DGP. Formal tests, as introduced in Section 2.3.2, will be considered to assess
stationarity of those time series.
¿e objective of the forthcoming testing procedure is to con�rm that both time series κ(1)t and

κ(2)t have an I(1) DGP. First, we apply the ADF test on each component of κt to test whether we can
reject the unit null hypothesis. Additionally, the KPSS test is applied to check stationarity as the null
hypothesis. If the null hypotheses of the ADF tests cannot be rejected and the null hypotheses of the
conformational KPSS tests are rejected, then both tests are reapplied to individual components of the
�rst-order di�erences ∆κt in order to con�rm that the unit root null hypothesis can be rejected, while
the stationarity null hypothesis cannot. Since the trajectories of κ(1)t and κ(2)t have a dri , we include
a constant and a linear trend term in the ADF regression (see eq. (2.10)) and use the t-type τ3 and
the F-type ϕ3 statistics to test the hypothesis pairs of eqs. (2.11) and (2.12). ¿e corresponding KPSS
tests employ the statistic ητ to check trend-stationarity. ¿e testing procedure continues with the
�rst-order di�erences. Due to the absence of a dri , the ADF t-type τ2 and the F-type ϕ1 statistics
are employed for testing the presence of a unit root and the KPSS statistic ηµ for checking stationarity.
¿e ADF and KPSS tests are evaluated in R using the urca package (Pfa�, Zivot and Stigler, 2016).
¿e results are summarized in Table 2.2. ¿e second column of the table contains the information
about the deterministic term used for the corresponding test and the third column either contains
the number of lagged di�erences k in eq. (2.10), or the length l of the spectral window in the Barlett
weighting function, as given in eq. (2.13).
¿e ADF test results imply that we cannot reject the null hypothesis of a unit root for κ(1)t and

κ(2)t . ¿e KPSS test results of κ(1)t and κ(2)t , on the other hand, are signi�cant at the 5% level. ¿e
results of the �rst-order di�erences ∆κ(1)t and ∆κ(2)t show that the ADF test suggests to reject the



2.4 VECM Specification for the Kannisto Model 123
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(a) KAN model trajectory κ(1)t .

1900 1925 1950 1975 2000
0.10

0.11

0.12

0.13
κ(2)t

(b) KANmodel trajectory κ(2)t .
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(d) First di�erence ∆κ(2)t = κ(2)t − κ(2)t−1.
Figure 2.1: Trajectories of the KANmodel estimates and the corresponding �rst-order di�erences.

Table 2.1: Information criteria based VAR lag order selection for the KANmodel.

lags p AIC(p) HQ(p) SC(p) FPE(p)
1 −21.049 −20.941 −20.775 7.22 ⋅ 10−10
2 −21.066 −20.904 −20.654 7.11 ⋅ 10−10
3 −21.081 −20.865 −20.532 7.01 ⋅ 10−10

4 −21.039 −20.769 −20.353 7.34 ⋅ 10−10
5 −21.067 −20.743 −20.243 7.16 ⋅ 10−10
6 −21.062 −20.685 −20.102 7.24 ⋅ 10−10
7 −21.065 −20.634 −19.967 7.28 ⋅ 10−10

null hypothesis of unit root for both time series. Furthermore, the stationarity null of the KPSS test
is accepted at the 5% level. ¿us, based on that testing procedure, we can conclude that both time
series are integrated of order one.

Cointegration Tests for the KANModel

Stationarity tests of the previous analysis con�rmed that both components of κt are integrated of
order one. Next, we will conduct Johansen cointegration tests to determine whether a VAR model
for ∆κt is appropriate, if no cointegration relation exist, or otherwise a VECM can be applied to κt ,
if a long-run equilibrium relation can be con�rmed. ¿ese cases are outlined in (3.c) and (3.b) of
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Table 2.2: ADF and KPSS tests for the components of κ t and ∆κ t of the KANmodel.

time series deterministic trend lags / length statistic test value critical values
1% 5% 10%

κ(1)t constant, trend k = 3 ADF ∶ τ3 −2.39 −4.04 −3.45 −3.15
κ(1)t constant, trend k = 3 ADF ∶ ϕ3 3.66 8.73 6.49 5.47
κ(1)t constant, trend l = 4 KPSS ∶ ητ 0.168 0.216 0.146 0.119

κ(2)t constant, trend k = 3 ADF ∶ τ3 −2.15 −4.04 −3.45 −3.15
κ(2)t constant, trend k = 3 ADF ∶ ϕ3 2.34 8.73 6.49 5.47
κ(2)t constant, trend l = 4 KPSS ∶ ητ 0.159 0.216 0.146 0.119

∆κ(1)t constant k = 3 ADF ∶ τ2 −7.43 −3.51 −2.89 −2.58
∆κ(1)t constant k = 3 ADF ∶ ϕ1 27.60 6.70 4.71 3.86
∆κ(1)t constant l = 4 KPSS ∶ ηµ 0.075 0.739 0.463 0.347

∆κ(2)t constant k = 3 ADF ∶ τ2 −5.93 −3.51 −2.89 −2.58
∆κ(2)t constant k = 3 ADF ∶ ϕ1 17.61 6.70 4.71 3.86
∆κ(2)t constant l = 4 KPSS ∶ ηµ 0.064 0.739 0.463 0.347

Remark 2.3.1.
Tables 2.3 and 2.4 report the results of the Johansen cointegration tests, as introduced in Sec-

tion 2.3.5, with the trace statistic given in eq. (2.41) and the maximum eigenvalue statistic in eq. (2.42),
respectively. Recall that the procedure of cointegration rank selection involves a series of Johansen
tests until a rejection of the null hypothesis arises for the �rst time. Since the corresponding time
series has the dimension K = 2, there are 2 null hypotheses to be checked here. As for the unit root test,
we use the urca package for the cointegration rank tests. Critical values used by this implementation
have been taken from Osterwald-Lenum (1992). An alternative source for critical values can also be
found in MacKinnon, Haug and Michelis (1999). ¿e LR type trace and the maximum eigenvalue
statistics are obtained by estimating pairs of restricted VAR(p)models using Proposition 2.3.2. For
that estimation, we use the suggested lag order of p = 3 and a deterministic term containing a trend
ξco restricted only to appear in the cointegrating relations and an unrestricted constant ξ, i.e.,

∆κt = α(︀β′ ∶ ξco⌋︀ ⌊︀κt−1t − 1}︀ + Γ1∆κt−1 + Γ2∆κt−2 + ξ + ut ,
= Π+κ+t−1 + Γ1∆κt−1 + Γp−1∆κt−2 + ξ + ut .

It should be noted here that an unrestricted linear trend would allow a quadratic growth of the
variables. However, the above speci�cation allows a linear trend in the cointegration relation as
well as in the variables. For a detailed discussion on the selection of deterministic terms and the
implication of their restrictions, we refer to Juselius (2006).
¿e trace test shows that the null hypothesis of no cointegration relation, i.e., r = 0, is rejected at
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the 5% level. ¿e maximum eigenvalue test con�rms this result by also rejecting the null hypothesis
of r = 0 at the 5% level. For K = 2 and r = 1, both statistics coincide and accept the null hypothesis
r = 1. Conclusively, there is statistical evidence that both periodic components of the KANmodel
κ(1)t and κ(2)t , which shape the mortality curve in the period t, have a long-run equilibrium relation.
As outlined in Remark 2.3.1, the appropriate model for this system of variables is a VECM of order 2,
which will be estimated in the following section.

VECM Estimation for the KANModel

In the following, the maximum likelihood estimator of Proposition 2.3.2 is used to estimate a VECM
of the form

∆κt = α(︀β′ ∶ ξco⌋︀ ⌊︀κt−1t − 1}︀ + Γ1∆κt−1 + Γ2∆κt−2 + ξ + ut , (2.49)

where α denotes the loading vector, β the cointegration vector, ξco the linear trend parameter in the
cointegration relation, and ξ is the parameter vector corresponding to a constant term. Γ1 and Γ2
are the coe�cient matrices of the VECM, and ut is a Gaussian white noise process with covariance
matrix Σu . Using the KAN time series κt for t = 1946, . . . ,2014, and a VECM of the form eq. (2.49)
yields the following estimates

⌊︀∆κ1,t∆κ2,t
}︀ =

⎨⎝⎝⎝⎝⎝⎪
−0.359(−3.569)
0.022(2.965)

⎬⎠⎠⎠⎠⎠⎮
]︀1.00 ∶ −6.805(−1.713) 0.023(22.922){︀

⎨⎝⎝⎝⎝⎝⎪
κ1,t−1
κ2,t−1
t − 1

⎬⎠⎠⎠⎠⎠⎮
+
⎨⎝⎝⎝⎝⎝⎪
−0.311(−2.379) −4.835(−2.907)−0.010(−1.057) −0.229(−1.856)

⎬⎠⎠⎠⎠⎠⎮
⌊︀∆κ1,t−1∆κ2,t−1}︀

+
⎨⎝⎝⎝⎝⎝⎪
−0.255
(−2.146)

−0.919(−0.577)−0.014(−1.575) −0.286(−2.418)

⎬⎠⎠⎠⎠⎠⎮
⌊︀∆κ1,t−2∆κ2,t−2}︀ +

⎨⎝⎝⎝⎝⎝⎪
−1.919(−3.644)
0.116(2.975)

⎬⎠⎠⎠⎠⎠⎮
+ ⌊︀û1,tû2,t

}︀ .
(2.50)

Table 2.3: Trace test for cointegration rank of the KANmodel.

H0 H1 trace statistic critical values
10% 5% 1%

r = 0 0 < r ≤ 2 28.07 22.76 25.32 30.45
r = 1 1 < r ≤ 2 9.07 10.49 12.25 16.26

Table 2.4:Maximum eigenvalue test for cointegration rank of the KANmodel.

H0 H1 max eig. statistic critical values
10% 5% 1%

r = 0 r = 1 19.00 16.85 18.96 23.65
r = 1 r = 2 9.07 10.49 12.25 16.26



126 2 Cointegration Analysis for the Kannisto Model

¿e t-values of the coe�cient estimates are given in parentheses. Coe�cient estimates which are
signi�cant at the 5% level are denoted in bold. Equation (2.50) shows that all VECMmatrices have
signi�cant coe�cients. ¿us, it is unlikely that a model reduction to a lower lag order, as suggested by
the HQ or SC information criteria, is possible. A VAR representation of the VECM form in eq. (2.50)
is given by

κt = A1κt−1 + A2κt−2 + A3κt−2 + CDt + ût
= ⌊︀0.330 −2.392

0.012 0.620}︀ ⌊︀κ1,t−1κ2,t−1}︀ + ⌊︀ 0.056 3.915−0.004 −0.057}︀ ⌊︀κ1,t−2κ2,t−2}︀
+ ⌊︀0.255 0.919

0.014 0.286}︀ ⌊︀κ1,t−3κ2,t−3}︀ + ⌊︀−1.919 −0.008
0.0116 0.001}︀ ⌊︀ 1

t − 1}︀ + ⌊︀û1,tû2,t
}︀ ,

(2.51)

and is obtained using the transformations A1 = Π + Γ1 + 12, A2 = Γ2 − Γ1, and A3 = −Γ2. ¿e
coe�cient matrix of Dt = (1,t − 1)′ is given by C = )︀ξ ∶ αξco⌈︀. ¿e estimated residual covariance
and correlation matrices can be obtained using the estimator of eq. (2.26) which leads to

Σ̃u = ⌊︀ 3.357 −0.117−0.117 0.018}︀ × 10−4 C̃orr(ut) = ⌊︀ 1 −0.471−0.471 1 }︀ . (2.52)

In Figure 2.2(a), we illustrate the estimated long-run equilibrium relation β̂′κt + ξ̂cot of the KAN
model coe�cients. Recall that the existence of cointegration relations implies that while the DGPs
of κ(1)t and κ(2)t are non-stationary unit root processes, there exists a linear combination of them,
such that the resulting process is stationary. Alternatively, by omitting the dri term ξcot in the
cointegration relation, we illustrate the trend stationarity of β̂′κt in Figure 2.2(b).
VECM Validation for the KANModel

In this section, the diagnostic tests from Section 2.3.6 are performed to check the residuals for
autocorrelation, non-normality and heteroscedasticity. We begin the analysis by visual inspection of
the residuals of the estimation as given by eq. (2.50). ¿e standardized residuals, residual autocorrela-
tions, cross-correlations, and Gaussian kernel density estimators for the residuals are illustrated in
Figure 2.3. ¿e ACF and the cross-correlation plots show that although most correlations are below
the signi�cance bounds of ±1.96⇑⌋︂T there are few correlations outside the bounds which might
cause problems in formal validation tests. Notice that the sample size for the time series from 1946 to
2014 is T = 66 since 3 presample values are used in the VECM(2)/VAR(3) model. ¿e correlation
signi�cance bounds are therefore given by ±0.2413. Further inspection of the autocorrelations of
the squared residuals gives no indication of ARCH e�ects. From Figure 2.3(g), we can observe by
the Gaussian kernel density estimators that the dispersion of both standardized residuals is slightly
higher than the standard normal distribution. ¿is potential indication of non-normality will be
assessed by multivariate/univariate Lomnicki-Jarque-Bera tests.
Table 2.5 summarizes the results of employed diagnostic tests for the VECM(2) model. ¿e table

contains the test values and the p-values, which are derived according to the corresponding χ2
limiting distributions. Recall from Remark 1.6.2 that a test will reject the null hypothesis if the p-value
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β̂′κt + ξ̂cot

(a) Level stationary equilibrium relation β̂′κ t + ξ̂co t of the KANmodel.

1950 1970 1990 2010

−6.50
−6.00
−5.50

t

β̂′κt

(b) Trend stationary equilibrium relation β̂′κ t of the KANmodel.

Figure 2.2: Estimated equilibrium relation of the KANmodel.

is smaller than the chosen signi�cance level. Since all p-values in Table 2.5 are above 0.05, none of the
null hypotheses is rejected at the 5% level. ¿e absence of autocorrelations in the residuals is accepted
by the Portmanteau test, by checking high order autocorrelations, as well as, by the Breusch-Godfrey
test for low order autocorrelations. Normality of the residuals is also accepted using multivariate and
univariate tests. According to the results of the MARCH/ARCH tests, there is no indication for the
presence of ARCH e�ects in the residuals.
In summary, none of the autocorrelation, non-normality or heteroscedasticity tests indicates

problems with the VECM speci�ed in eq. (2.49). We can conclude that the presented model provides
an appropriate representation of the DGP of the KANmodel coe�cients and thus the estimated
cointegration relation captures the long-run behaviour of the mortality structure.

2.4.2 | VECM Specification for the KAN:2 Model

In this section, we proceed our analysis of the multivariate time series given by the KAN:2 model as
presented in Section 1.9.2. Recall that the predictor function of the KAN:2 model

ηt,x = 3∑
i=1(x − xmin)i−1κ(i)t
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(g) Gaussian kernel density estimators of the residuals u1,t with selected bandwidth of hu1,t = 0.5 and with bandwidth
hu2,t = 0.5 for u2,t .
Figure 2.3: Residual autocorrelation, cross-correlations and Gaussian kernel density estimators.
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Table 2.5:Diagnostics of the VECM for the KAN time series.

diagnostic type test name test statistic test value appr. dist. p-value

autocorrelation Portmanteau Q16 59.585 χ2(54) 0.280
adjusted Portmanteau Q∗

16 69.276 χ2(54) 0.079
Breusch-Godfrey λLM(5) 28.069 χ2(20) 0.108

non-normality multivariate λLJBmulti 0.629 χ2(4) 0.960
skewness only s23 0.094 χ2(2) 0.954
kurtosis only s24 0.535 χ2(2) 0.765
univariate u1 λLJB 0.279 χ2(2) 0.870
univariate u2 λLJB 0.988 χ2(2) 0.610

heteroscedasticity multivariate MARCHLM(5) 60.131 χ2(45) 0.065
univariate u1 ARCHLM(16) 5.739 χ2(16) 0.991
univariate u2 ARCHLM(16) 18.516 χ2(16) 0.295

has, compared to the KAN model, an additional quadratic term, such that there are altogether 3
coe�cients, namely κ(1)t , κ(2)t , and κ(3)t , which determine the mortality curve for the period t. Using
the time series of theKAN:2 estimates,we again follow the speci�cation procedure for theVECM/VAR
models as described in Remark 2.3.1. For the plots of the KAN:2 trajectories, see Figure 1.37. ¿e
objective of the following is to analyse whether we can formally con�rm the observation of long-run
relations between the coe�cients, as made in Section 1.9.5 and shown in Figure 1.42(b) on page 98.

Lag Order Selection for the KAN:2 Model

Analogous to Section 2.4.1, we start by selecting the lag order p of an unrestricted VAR(p)model,
with a constant and a deterministic trend, by using the information criteria from Section 2.3.1. ¿e
results are presented in Table 2.6 and show that the AIC, HQ, and the FPE information criteria are
minimized for p = 3. On the other hand, the SC criterion prefers the lag order p = 1. In this case,
we will follow the suggestion made by the majority and choose the order p = 3 for the KAN:2 time
series.

Table 2.6: Information criteria based VAR lag order selection for the KAN:2 model.

lags p AIC(p) HQ(p) SC(p) FPE(p)
1 −39.745 −39.543 −39.230 5.49 ⋅ 10−18
2 −39.819 −39.495 −38.995 5.12 ⋅ 10−18
3 −40.043 −39.598 −38.911 4.12 ⋅ 10−18

4 −39.946 −39.380 −38.505 4.59 ⋅ 10−18
5 −39.907 −39.220 −38.157 4.87 ⋅ 10−18
6 −39.876 −39.068 −37.818 5.17 ⋅ 10−18
7 −39.781 −38.851 −37.414 5.91 ⋅ 10−18
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Unit Root Tests for the KAN:2 Model

In this section, we investigate whether the underlying DGPs of the three KAN:2 components have
unit roots or can be considered as stationary. From visual inspection of the trajectories as given in
Figure 1.37 the DGP is unlikely to be stationary. ¿e formal analysis by ADF and KPSS tests is shown
in Table 2.7. ¿e results show that the unit root null hypotheses of the ADF tests are accepted for
all components of κt at the 5% level. Simultaneously, the KPSS null hypotheses of stationarity are
rejected for all components of κt at the 5% level. Furthermore, we observe an opposite behaviour for
the �rst-order di�erences ∆κt . ¿e unit root null hypotheses are rejected by the ADF tests at the 5%
level, and simultaneously, stationarity is accepted by the KPSS tests at the 5% level. Based on the
results of this testing procedure, we can conclude that the underlying univariate DGPs of κ(1)t , κ(2)t
and κ(3)t are integrated of order one.

Cointegration Tests for the KAN:2 Model

Unit root and stationarity tests from con�rmed that components of κt are integrated of order one.
Next, we will conduct Johansen cointegration tests to determine whether an unrestricted VAR or a
VECM is better suited for the KAN:2 time series. ¿e results of the Johansen trace and maximum
eigenvalue test are reported in Tables 2.8 and 2.9. Applying the ‘top → bottom’ approach for the
trace test, we �nd that the null hypothesis r = 0 is rejected, but the null hypothesis r = 1 is accepted at
the 5% level. ¿e same holds for the maximum eigenvalue test. ¿e null hypothesis r = 0 is rejected
at the 5% level in favour for the alternative r = 1, while at the next step the null hypothesis r = 1 is
accepted at the 5% level. ¿us, we conclude that there are at least two unit roots and at most one
stationary relation.

Table 2.7: ADF and KPSS tests for the components of κ t and ∆κ t of the KAN:2 model.

time series deterministic trend lags / length statistic test value critical values
1% 5% 10%

κ(1)t constant, trend k = 3 ADF ∶ τ3 −2.63 −4.04 −3.45 −3.15
κ(1)t constant, trend l = 2 KPSS ∶ ητ 0.511 0.216 0.146 0.119

κ(2)t constant, trend k = 3 ADF ∶ τ3 −3.10 −4.04 −3.45 −3.15
κ(2)t constant, trend l = 2 KPSS ∶ ητ 0.444 0.216 0.146 0.119

κ(3)t constant, trend k = 3 ADF ∶ τ3 −2.83 −4.04 −3.45 −3.15
κ(3)t constant, trend l = 2 KPSS ∶ ητ 0.466 0.216 0.146 0.119

∆κ(1)t constant k = 3 ADF ∶ τ2 −3.53 −3.51 −2.89 −2.58
∆κ(1)t constant l = 2 KPSS ∶ ηµ 0.329 0.739 0.463 0.347

∆κ(2)t constant k = 3 ADF ∶ τ2 −3.68 −3.51 −2.89 −2.58
∆κ(2)t constant l = 2 KPSS ∶ ηµ 0.327 0.739 0.463 0.347

∆κ(3)t constant k = 3 ADF ∶ τ2 −3.47 −3.51 −2.89 −2.58
∆κ(3)t constant l = 2 KPSS ∶ ηµ 0.237 0.739 0.463 0.347
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Table 2.8: Trace test for the cointegration rank of the KAN:2 model.

H0 H1 trace statistic critical values
10% 5% 1%

r = 0 0 < r ≤ 3 51.79 39.06 42.44 48.45
r = 1 1 < r ≤ 3 19.50 22.76 25.32 30.45
r = 2 2 < r ≤ 3 8.39 10.49 12.25 16.26

Table 2.9:Maximum eigenvalue test for the cointegration rank of the KAN:2 model.

H0 H1 max eig. statistic critical values
10% 5% 1%

r = 0 r = 1 32.29 23.11 25.54 30.34
r = 1 r = 2 11.10 16.85 18.96 23.65
r = 2 r = 3 8.39 10.49 12.25 16.26

VECM Estimation for the KAN:2 Model

Analogously to the KAN model, the maximum likelihood estimator of Proposition 2.3.2 is used to
estimate a VECM with cointegration rank r = 1. ¿e concrete form is given by

∆κt = α(︀β′ ∶ ξco⌋︀ ⌊︀κt−1t − 1}︀ + Γ1∆κt−1 + Γ2∆κt−2 + ξ + ut ,
where α denotes the loading vector, β the cointegration vector, ξco the linear trend parameter in the
cointegration relation, and ξ the parameter of the unrestricted deterministic term. ¿e ML estimator
yields

⎨⎝⎝⎝⎝⎝⎪
∆κ1,t
∆κ2,t
∆κ3,t

⎬⎠⎠⎠⎠⎠⎮
=
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

−2.45 × 10−1(−3.364)
2.23 × 10−2(2.848)−2.98 × 10−4(−1.429)

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮
]︀1.00 ∶ −3.16 × 101(−2.994) −1.52 × 103(−3.562) 2.51 × 10−2(9.268) {︀

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

κ1,t−1
κ2,t−1
κ3,t−1
t − 1

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎮
+
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

−3.193 × 10−2(−0.170) −8.738(−2.917) −4.160 × 102(−3.892)−6.113 × 10−2(−3.025) 7.599 × 10−2(0.236) 3.148 × 101(2.744)
1.810 × 10−3(3.355) −2.263 × 10−3(0.264) −1.043(−3.404)

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

⎨⎝⎝⎝⎝⎝⎪
∆κ1,t−1
∆κ2,t−1
∆κ3,t−1

⎬⎠⎠⎠⎠⎠⎮

+
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

−5.986 × 10−2(−0.325) −1.908(−0.749) −1.999 × 102(−2.276)−3.977 × 10−2(−2.014) −1.384 × 10−1(−0.506) 1.644 × 101(1.744)
1.147 × 10−3(2.176) −8.873 × 10−4(−0.122) −6.476 × 10−1(−2.574)

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

⎨⎝⎝⎝⎝⎝⎪
∆κ1,t−2
∆κ2,t−2
∆κ3,t−2

⎬⎠⎠⎠⎠⎠⎮
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+
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

−2.038(−3.395)
1.814 × 10−1(2.815)−2.379 × 10−3(−1.383)

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮
+
⎨⎝⎝⎝⎝⎝⎪
û1,t
û2,t
û3,t

⎬⎠⎠⎠⎠⎠⎮
. (2.53)

In eq. (2.53) the t-values of parameter estimates are given in parentheses. ¿e estimated innovation
covariance and correlation matrices are given by

Σ̃u =
⎨⎝⎝⎝⎝⎝⎪
7.909 × 10−4 −7.002 × 10−5 1.759 × 10−6−7.002 × 10−5 9.112 × 10−6 −2.235 × 10−7
1.759 × 10−6 −2.235 × 10−7 6.494 × 10−9

⎬⎠⎠⎠⎠⎠⎮
and

C̃orr(ut) =
⎨⎝⎝⎝⎝⎝⎪

1 −0.825 0.776−0.825 1 −0.919
0.776 −0.919 1

⎬⎠⎠⎠⎠⎠⎮
. (2.54)

¿e VECM shows very high instantaneous correlations between the variables. For instance, there
is a correlation of −0.825 between the �rst and second variable and an instantaneous correlation
of −0.919 between the second and third component. Furthermore, there is a signi�cant positive
correlation of 0.776 between the �rst and third variable. Figure 2.4 illustrates the estimated long-run
equilibrium relation of the KAN:2 model by showing the expressions β̂′κt + ξ̂cot and β̂′κt . From
Figure 2.4(b), we see that the complex and non-stationary evolutions of the individual trajectories of
the KAN:2 model, as presented Figure 1.37, follow a trend stationary process given by β̂′κt . ¿is also
implies that the essential degrees of freedom of the KAN:2 model are reduced from three to only one
dimension.

By using the same transformation as for eq. (2.51), we obtain a VAR representation of eq. (2.54) as

κt = A1κt−1 + A2κt−2 + A3κt−2 + CDt + ût
=
⎨⎝⎝⎝⎝⎝⎪
7.23 × 10−1 −9.85 × 10−1 −4.39 × 101−3.88 × 10−2 3.71 × 10−1 −2.33
1.51 × 10−3 7.18 × 10−3 4.10 × 10−1

⎬⎠⎠⎠⎠⎠⎮
⎨⎝⎝⎝⎝⎝⎪
κ1,t−1
κ2,t−1
κ3,t−1

⎬⎠⎠⎠⎠⎠⎮
+
⎨⎝⎝⎝⎝⎝⎪
−2.79 × 10−2 6.83 2.16 × 102
2.14 × 10−2 −2.14 × 10−1 −1.50 × 101−6.62 × 10−4 1.38 × 10−3 3.95 × 10−1

⎬⎠⎠⎠⎠⎠⎮
⎨⎝⎝⎝⎝⎝⎪
κ1,t−2
κ2,t−2
κ3,t−2

⎬⎠⎠⎠⎠⎠⎮
+
⎨⎝⎝⎝⎝⎝⎪
5.99 × 10−2 1.91 2.00 × 102
3.98 × 10−2 1.38 × 10−1 −1.64 × 101−1.15 × 10−3 8.87 × 10−4 6.48 × 10−1

⎬⎠⎠⎠⎠⎠⎮
⎨⎝⎝⎝⎝⎝⎪
κ1,t−3
κ2,t−3
κ3,t−3

⎬⎠⎠⎠⎠⎠⎮
+
⎨⎝⎝⎝⎝⎝⎪
−2.06 −6.16 × 10−3
1.83 × 10−1 5.60 × 10−4−2.40 × 10−3 −7.50 × 10−6

⎬⎠⎠⎠⎠⎠⎮
⌊︀ 1
t − 1}︀ +

⎨⎝⎝⎝⎝⎝⎪
û1,t
û2,t
û3,t

⎬⎠⎠⎠⎠⎠⎮
.
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(a) Level stationary equilibrium relation β̂′κ t + ξ̂co t of the KAN:2 model.
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(b) Trend stationary equilibrium relation β̂′κ t of the KAN:2 model.
Figure 2.4: Estimated equilibrium relation of the KAN:2 model.

VECM Validation for the KAN:2 Model

We proceed the analysis by performing diagnostic tests to check the residuals of the VECM in
eq. (2.53) for autocorrelation, non-normality and heteroscedasticity. Visual inspection of the residual
ACF and cross-correlation functions, as shown in Figure 2.5, does not reveal any serious issues with the
�tted VECM(2). Apart from only a few exceptions, the estimated residual auto and cross-correlation
are below the signi�cance bounds. ¿e results of the formal diagnostic tests are summarized in
Table 2.10 and show that none of the autocorrelation, non-normality or heteroscedasticity tests
indicates problems with the �tted model of eq. (2.53). All null hypotheses are accepted at the 5%
level. ¿erefore, we conclude that the estimated VECM(2) with cointegration rank r = 1 provides a
good approximation of the KAN:2 DGP.
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Table 2.10:Diagnostics of the VECM for the KAN:2 time series.

diagnostic type test name test statistic test value appr. dist. p-value

Autocorrelation Portmanteau Q16 127.299 χ2(123) 0.377
adjusted Portmanteau Q∗

16 148.221 χ2(123) 0.060
Breusch-Godfrey λLM(5) 55.508 χ2(45) 0.136

Non-normality multivariate λLJB 7.320 χ2(6) 0.292
skewness only s23 5.635 χ2(3) 0.131
kurtosis only s24 1.685 χ2(3) 0.640
univariate u1 λLJB 2.829 χ2(2) 0.243
univariate u2 λLJB 2.724 χ2(2) 0.256
univariate u3 λLJB 2.349 χ2(2) 0.309

Heteroscedasticity multivariate MARCHLM(5) 206.438 χ2(180) 0.086
univariate u1 ARCHLM(16) 10.877 χ2(16) 0.817
univariate u2 ARCHLM(16) 9.960 χ2(16) 0.869
univariate u3 ARCHLM(16) 12.099 χ2(16) 0.737

2.4.3 | VECM Specification for the KAN:3 Model

¿e objective of this section is to analyse the multivariate time series given by the KAN:3 model
presented in Section 1.9.2. ¿e predictor function of the KAN:3 model is given by

ηt,x = 4∑
i=1(x − xmin)i−1κ(i)t .

¿e 4 coe�cients, namely κ(1)t , κ(2)t , κ(3)t , and κ(4)t determine the mortality curve at the period t. For
the plots of the KAN:3 trajectories, see Figure 1.38 on page 92. As for the KAN and KAN:2 models,
we follow the speci�cation procedure for VAR/VECM as described in Remark 2.3.1 to determine
whether we can formally con�rm the observation of long-run relations between the coe�cients, as
made in Section 1.9.5 and shown in Figures 1.42(c) and 1.42(d). Since the speci�cation steps are very
similar to those described in Sections 2.4.1 and 2.4.2, we provide only a summarized presentation of
the procedure.

Lag Order Selection for KAN:3

By using the information criteria from Section 2.3.1, we begin by selecting the lag order p of an
unrestricted VAR(p)model, with an included constant and a deterministic trend. ¿e results are
summarized in Table 2.11. Similar to the previous analysis of the KAN and KAN:2, two di�erent
lag orders are suggested. ¿e AIC information criterion is minimized for p = 3, whereas the other
criteria prefer the lag order p = 1. Based on diagnostic tests and signi�cance analysis of coe�cients
corresponding to higher lag order, we choose the lag order p = 3 for the further analysis.



136 2 Cointegration Analysis for the Kannisto Model

Table 2.11: Information criteria based VAR lag order selection for the KAN:3 model.

lags p AIC(p) HQ(p) SC(p) FPE(p)
1 −63.060 −62.737 −62.237 4.11 ⋅ 10−28

2 −62.971 −62.432 −61.599 4.54 ⋅ 10−28
3 −63.086 −62.332 −61.165 4.13 ⋅ 10−28
4 −62.884 −61.914 −60.414 5.24 ⋅ 10−28
5 −62.940 −61.755 −59.921 5.27 ⋅ 10−28
6 −62.755 −61.354 −59.187 6.94 ⋅ 10−28
7 −62.794 −61.177 −58.677 7.63 ⋅ 10−28

Unit Root Tests for the KAN:3 Model

In Table 2.12, we summarize the results of the ADF unit root tests and the KPSS stationary tests
for the KAN:3 time series. ¿e results show that the unit root null hypotheses of the ADF tests
are accepted for all components of κt at the 5% level. Simultaneously, the KPSS null hypotheses
of stationarity are rejected for the components κ(1)t , κ(2)t , and κ(4)t at the 5% level. Stationarity of
κ(3)t could only be rejected at the 10% level. Furthermore, for the �rst-order di�erences ∆κt the unit
root null hypotheses are rejected by the ADF tests at the 5% level and simultaneously stationarity is
accepted by the KPSS tests at the 5% level. Based on the results of this testing procedure, we can
conclude that the underlying univariate DGPs of κ(1)t , κ(2)t , κ(3)t and κ(4)t are integrated of order one.

Cointegration Tests for the KAN:3 Model

Next, Johansen cointegration tests will be performed to assess the number of cointegration relations
between the KAN:3 time series. ¿e results of the trace and maximum eigenvalue test are reported in
Tables 2.13 and 2.14. ¿e trace test rejects the null hypotheses of r = 0 and r = 1 and accepts the null
hypothesis of r = 2 at the 5% level. ¿e maximum eigenvalue test rejects the null hypothesis of r = 0
and accepts the null hypotheses of r = 1 at the 5% level. ¿is means that the trace test suggests r = 2
and themaximum eigenvalue test r = 1 as the cointegration rank. As a consequence of this ambiguous
result, we estimated two VECMs using both suggested cointegration ranks. ¿e estimation results
for r = 2 showed that the loading matrix α only contained non-signi�cant coe�cients for the second
cointegration relation. ¿erefore, we will only consider the more restrictive case and present the
estimation results of a VECM with cointegration rank r = 1.
VECM Estimation for the KAN:3 Model

¿emaximum likelihood estimator of Proposition 2.3.2 is used to estimate a Gaussian noise driven
VECM in cointegration rank r = 1. Analogously to the previous two models, we estimate a VECM of
the form

∆κt = α(︀β′ ∶ ξco⌋︀ ⌊︀κt−1t − 1}︀ + Γ1∆κt−1 + Γ2∆κt−2 + ξ + ut ,
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Table 2.12: ADF and KPSS tests for the components of κ t and ∆κ t of the KAN:3 model.

time series deterministic trend lags / length statistic test value critical values
1% 5% 10%

κ(1)t constant, trend k = 3 ADF ∶ τ3 −2.95 −4.04 −3.45 −3.15
κ(1)t constant, trend l = 2 KPSS ∶ ητ 0.441 0.216 0.146 0.119

κ(2)t constant, trend k = 3 ADF ∶ τ3 −2.70 −4.04 −3.45 −3.15
κ(2)t constant, trend l = 2 KPSS ∶ ητ 0.253 0.216 0.146 0.119

κ(3)t constant, trend k = 3 ADF ∶ τ3 −2.54 −4.04 −3.45 −3.15
κ(3)t constant, trend l = 2 KPSS ∶ ητ 0.137 0.216 0.146 0.119

κ(4)t constant, trend k = 3 ADF ∶ τ3 −2.05 −4.04 −3.45 −3.15
κ(4)t constant, trend l = 2 KPSS ∶ ητ 0.254 0.216 0.146 0.119

∆κ(1)t constant k = 3 ADF ∶ τ2 −5.38 −3.51 −2.89 −2.58
∆κ(1)t constant l = 2 KPSS ∶ ηµ 0.216 0.739 0.463 0.347

∆κ(2)t constant k = 3 ADF ∶ τ2 −5.62 −3.51 −2.89 −2.58
∆κ(2)t constant l = 2 KPSS ∶ ηµ 0.112 0.739 0.463 0.347

∆κ(3)t constant k = 3 ADF ∶ τ2 −5.54 −3.51 −2.89 −2.58
∆κ(3)t constant l = 2 KPSS ∶ ηµ 0.055 0.739 0.463 0.347

∆κ(4)t constant k = 3 ADF ∶ τ2 −5.50 −3.51 −2.89 −2.58
∆κ(4)t constant l = 2 KPSS ∶ ηµ 0.047 0.739 0.463 0.347

Table 2.13: Trace test for cointegration rank of the KAN:3 model.

H0 H1 trace statistic critical values
10% 5% 1%

r = 0 0 < r ≤ 4 78.01 59.14 62.99 70.05
r = 1 1 < r ≤ 4 43.47 39.06 42.44 48.45
r = 2 2 < r ≤ 4 18.79 22.76 25.32 30.45
r = 3 3 < r ≤ 4 7.75 10.49 12.25 16.26

Table 2.14:Maximum eigenvalue test for cointegration rank of the KAN:3 model.

H0 H1 max eig. statistic critical values
10% 5% 1%

r = 0 r = 1 34.54 29.12 31.46 36.65
r = 1 r = 2 24.68 23.11 25.54 30.34
r = 2 r = 3 11.04 16.85 18.96 23.65
r = 3 r = 4 7.75 10.49 12.25 16.26
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where α denotes the loading vector, β the cointegration vector, ξco the linear trend parameter in the
cointegration relation, and ξ the coe�cient of the unrestricted deterministic term. ¿e ML estimator
leads to

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪
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+
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪
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. (2.55)

¿e covariance and correlation estimates of the Gaussian innovation process are given by

Σ̃u =
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

1.15 × 10−3 −1.81 × 10−4 8.2 × 10−6 −1.15 × 10−7−1.81 × 10−4 4.47 × 10−5 −2.46 × 10−6 4.1 × 10−8
8.2 × 10−6 −2.46 × 10−6 1.51 × 10−7 −2.69 × 10−9−1.15 × 10−7 4.1 × 10−8 −2.69 × 10−9 5.05 × 10−11
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(2.56)

and

C̃orr(ut) =
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎪

1 −0.80 0.62 −0.48−0.80 1 −0.95 0.86
0.62 −0.95 1 −0.97−0.48 0.86 −0.97 1

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎮
.
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Similar to both previous cases, the VECM shows high instantaneous correlations between particular
variables. For instance, there is a high negative correlation between the �rst and second variable, the
second and third, and the third and fourth component. ¿e VAR representation of the VECM of
eq. (2.55) is given by

κt = A1κt−1 + A2κt−2 + A3κt−2 + CDt + ût (2.57)

=
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Figure 2.6 illustrates the estimated long-run equilibrium relation of the KAN:3 model. ¿e upper
panel shows the non-trending relation β̂′κt + ξ̂cot, while the lower panel illustrates the linear
trending relation β̂′κt . By these plots, one can visually assess stationarity or trend stationarity of the
corresponding processes. ¿e trajectories of Figures 2.6(a) and 2.6(b) do not indicate problems with
the VECM. Formal model validation is conducted in the following section.

VECM Validation for the KAN:3 Model

We proceed the speci�cation by performing diagnostic tests to check the residuals of the VECM(2)
with cointegration rank r = 1, as given in eq. (2.55), for autocorrelation, non-normality and het-
eroscedasticity. Figure 2.7 illustrates the residual ACF and cross-correlation functions. We observe
some signi�cant correlations at the lag orders 4 and 9, see, for instance, Figures 2.7(a) to 2.7(e), 2.7(i)
and 2.7(m). However, formal tests for autocorrelation, non-normality or heteroscedasticity do not
indicate problems with the �tted VECM.¿e testing results, which are summarized in Table 2.15,
show that all null hypotheses are accepted at the 5% level. ¿erefore, we conclude that the estimated
VECM(2) with cointegration rank r = 1 provides a good approximation of the KAN:3 DGP.
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1950 1970 1990 2010

−3.85
−3.80
−3.75

t

β̂′κt + ξ̂cot

(a) Level stationary equilibrium relation β̂′κ t + ξ̂co t of the KAN:3 model.

1950 1970 1990 2010

−5.00
−4.50
−4.00

t

β̂′κt

(b) Trend stationary equilibrium relation β̂′κ t of the KAN:3 model.
Figure 2.6: Estimated equilibrium relation of the KAN:3 model.
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Table 2.15:Diagnostics of the VECM for the KAN:3 time series.

diagnostic type test name test statistic test value appr. dist. p-value

Autocorrelation Portmanteau Q16 197.012 χ2(220) 0.865
adjusted Portmanteau Q∗

16 231.211 χ2(220) 0.289
Breusch-Godfrey λLM(5) 88.357 χ2(80) 0.245

Non-normality multivariate λLJB 2.298 χ2(8) 0.971
skewness only s23 1.523 χ2(4) 0.823
kurtosis only s24 0.775 χ2(4) 0.942
univariate u1 λLJB 0.928 χ2(2) 0.629
univariate u2 λLJB 1.757 χ2(2) 0.415
univariate u3 λLJB 0.829 χ2(2) 0.661
univariate u4 λLJB 0.912 χ2(2) 0.634

Heteroscedasticity multivariate MARCHLM(5) 496.19 χ2(500) 0.540
univariate u1 ARCHLM(16) 20.489 χ2(16) 0.199
univariate u2 ARCHLM(16) 11.890 χ2(16) 0.752
univariate u3 ARCHLM(16) 17.420 χ2(16) 0.359
univariate u4 ARCHLM(16) 18.701 χ2(16) 0.285
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2.5 | VECM Projections for the Kannisto Model

In Section 1.9.4, we studied the projections of the KAN, KAN:2 and KAN:3 models using a random
walkwith dri which is considered as the standard approach in GAPCmodelling. Ourmajor criticism
regarding the random walk approach was in the �rst place, the high degree of uncertainty of the
resulting projections and in the second place, an inconsistent trend in the improvements in the
remaining life expectancy compared to the historical development.
¿e objective of the following is to compare the random walk projection of Section 1.9.4 with the

projections of the previously estimated VECMs of Sections 2.4.1 to 2.4.3. We begin by presenting
how the central forecast and prediction intervals are obtained for VECM/VAR models. Following
Lütkepohl (2007), the optimal h-step forecast at origin t, denoted by κt(h), of a VAR(p) driven by a
white noise process ut with covariance matrix Σu is given by

κt(h) = A1κt(h − 1) +⋯ + Apκt(h − p), (2.58)

where κ( j) ∶= κt+ j for j ≤ 0. ¿e forecast error can be expressed as

κt+h − κt(h) = ut+h +Φ1ut+h−1 +⋯ +Φh−1ut+1,
where the matrices Φi for i = 1, . . . ,h − 1 are recursively de�ned by

Φi = i∑
j=1Φi− jA j , i = 1,2, . . . ,

with Φ0 = 1K and A j = 0 for j > p. ¿e mean-squared error of an h-step forecast is then given by

Σκ(h) ∶=MSE(︀κt(h)⌋︀ = E )︀(κt+h − κt(h)) (κt+h − κt(h))′⌈︀ = h−1∑
j=0 Φ jΣuΦ′

j .

Similar to Section 1.9.4, we can specify the (1 − α)100% forecast prediction interval (P.I.) of the i-th
component for h periods ahead of the origin t by

)︀κi ,t(h) − z(α⇑2)σi(h), κi ,t(h) + z(α⇑2)σi(h)⌈︀ , (2.59)

where σi(h) is the square root of the i-th diagonal element of Σκ(h) and zα⇑2 is the α⇑2 quantile of
the standard normal distribution, see Lütkepohl (2007).

2.5.1 | VECM Projections for the KANModel

In Figure 2.8, we illustrate the projections of the VECM for the KAN model as given eq. (2.50).
¿e projections are obtained by using eqs. (2.58) and (2.59) and replacing the coe�cient matrices
A1,A2,A3 and Σu by their estimates as provided in eqs. (2.51) and (2.52). ¿e two upper panels of
Figures 2.8(a) and 2.8(b) show the projected KAN components and their 95% prediction intervals.
For comparison, the plots also display the random walk (RW) projections as obtained in Section 1.9.4.
By this comparison, we can clearly see that the central projections of the VECM have di�erent



144 2 Cointegration Analysis for the Kannisto Model

slopes and also narrower prediction intervals. ¿e di�erent slopes of both projections have direct
implications on the resulting mortality structures. ¿e lower projected κ(1)t values of the VECM lead
to lower mortality rates across all ages, while the lower κ(2)t values of the RW imply lower mortality
rates, in particular, for higher ages. For the interpretation of the KAN coe�cients, see the discussion
of Section 1.9.3 and the example illustrated in Figure 1.35.
Figure 2.8(c) shows the in�uence of the KAN projection on the remaining life expectancy of

the reference population of Swedish females aged 60. ¿e life expectancy, projected by the VECM,
is overall higher compared to the RW projection. By the VECM, we have an overall increase of
the remaining life expectancy of about 3.6 years until the year 2050, rising from 25.85 to 29.44
years, which leads to an average improvement of about 36.5 days per year. ¿is value is much closer
to the historical improvements of, on average, 38.1 days per year during the past 36 years. Recall
that the RW projections showed a lower average improvement of only 29.17 days per year. Another
noticeable di�erence is the width of the prediction intervals. As criticized before in Section 1.9.4,
the level of uncertainty of the future life expectancy, as given by the RW projection, would lead to
non-competitive prices of mortality related claims. ¿e width of the 95% prediction interval of the
VECM at the period 2050 is with 2.33 years clearly smaller and also more realistic than the P.I width
of 10.5 years of the RW projection.
Figure 2.9 shows the VECM projected hazard rates at 2050 with the corresponding 95% prediction

intervals. For comparison, the plot includes the historical KAN hazard rates of the years 1910, 1970,
and 2010. As the forecast for 2050 shows, there is a continuing trend of decreasing rates for the entire
age range. Figure 2.10 illustrates the historical survival functions together with the forecast for 2050.
Here, we can observe the continuing rectangularization of the survival function. ¿at means, that
the improvements of the life expectancy do not primarily come due to an increase of the highest
attainable age but rather by a decrease of the mortality rates, in particular, at lower ages.

2.5.2 | VECM Projections for the KAN:2 Model

¿e projections for the VECM of the KAN:2 model, as given in eq. (2.53), are illustrated in Figure 2.11.
Similar observations to the previous case can be made here. ¿e central projections, obtained by
the VECM, di�er from those of the RW.¿e VECM implies higher improvements of the mortality
rates across all ages. ¿is can be determined by the lower κ(1)t values of the VECM, as displayed in
Figure 2.11(a). On the other side, higher κ(3)t values of the VECM, compared to the RW projection,
imply lower mortality improvement rates for very high ages. Furthermore, the prediction intervals
of the VECM projection are noticeably smaller than those of the RW.
Figure 2.12 illustrates the KAN:2 projections of the remaining life expectancy of the Swedish

female population aged 60. For comparison, we also include the projections by the RW (grey) and
the VECM of the KAN model (green). Regarding the remaining life expectancy, the projections of
the KAN and KAN:2 model are quantitatively very similar. ¿e KAN:2 model leads to slightly higher
values, where the remaining life expectancy increases to 29.51 years until the projection horizon at
2050. ¿e average improvements of 38.1 days per year of the 36 periods ahead forecast coincides
exactly with the historical average of the past 36 years. ¿e prediction intervals of KAN:2 projections
are also slightly narrower than those of the KAN model. Despite the similarities, the age-dependent
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(c) Historical and projected remaining life expectancy for Swedish females aged 60.

Figure 2.8:VECM projections of the KANmodel coe�cient. Dashed lines represent the central forecasts
and the dotted lines show the 95% prediction intervals.
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Figure 2.9: Projected hazard function at 2050 with 95% prediction intervals (Swedish females).
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Figure 2.10: Projected survival function at 2050 with 95% prediction intervals (Swedish females).

mortality improvements of these two models di�er signi�cantly, as we illustrate in Figures 2.15
and 2.16.

2.5.3 | VECM Projections for the KAN:3 Model

Figure 2.13 illustrates the projections of the KAN:3 coe�cients by the VECM of eq. (2.55). As for
both previous cases, these projections are obtained using eqs. (2.58) and (2.59) and substituting the
estimates from eqs. (2.56) and (2.57) for the coe�cient matrices A1,A2,A3 and Σu . ¿e comparison
to the RW projection shows di�erent slopes of the central forecasts as well as narrower prediction
intervals as for the lower dimensional models KAN and KAN:2. ¿e projected remaining life
expectancy is quantitatively very similar to the KAN:2 model, as shown in Figure 2.12. ¿e same
applies to age-dependent mortality improvements, as will be illustrated in Figure 2.17.
Next, we want to highlight a fundamental di�erence between the RW and VECM projection.

Since the individual components of the Kannisto model are non-stationary, the RW is �tted to
the �rst-order di�erence ∆κt , see eq. (1.90). However, by di�erencing variables, one potentially
loses the long-run relations between those variables. ¿us, it is highly recommended to �rst check
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Figure 2.11: VECM projections of the KAN:2 model coe�cient with 95% prediction intervals.
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Figure 2.12:Historical and projected remaining life expectancy for Swedish females aged 60. Comparison
of the VECM for KAN versus VECM for KAN:2.

the presence of cointegration relations before trying to stationarize the corresponding time series
through di�erencing. If cointegration relations exist, then the individual components are not moving
completely independent but rather follow a long-run equilibrium relation. ¿is has a bene�cial
impact on the prediction intervals obtained by a VECM. Notice, from Figure 2.13, that prediction
intervals of the individual coe�cients increase over time. However, the prediction intervals of the
process β′κt + ξcot remain bounded since this process is stationary. ¿e forecast of the equilibrium
relation is illustrated in Figure 2.14. Notice that at the beginning of the projection period, the time
series reverts towards their equilibrium state. Furthermore, we observe stable prediction intervals
which match well to the historical progression of the time series.

2.5.4 | Mortality Improvements

In Figure 2.12, we showed the improvements of the remaining life expectancy obtained by the
previously considered models. While this is a proper representation for the aggregated improvements,
it contains no information about the age-related changes of the mortality rates. On the other hand,
Figure 2.9 showed the absolute age-related changes of the mortality rates, but since the rates di�er by
two orders of magnitude on the involved range of ages, it is not a suitable representation to cover
the changes for lower and higher ages simultaneously. A more appropriate representation can be
achieved by considering the relative changes of the hazard rates, the so-calledmortality improvements.
In a time discrete setting, mortality improvements, denoted by j(t,x), are de�ned as

j(t,x) ∶= − µ(t,x) − µ(t − 1,x)
µ(t − 1,x) , (2.60)

where µ(t,x) are the hazard rates at time t for the age x. From eq. (2.60) it is clear that the mortality
improvements are de�ned in terms of relative changes of the hazard rates from period t − 1 to
period t. Positive mortality improvements express decreasing hazard rates, while negative mortality
improvements represent increasing hazard rates. For continuous time models, the de�nition of
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Figure 2.13: VECM projections of the KAN:3 coe�cients. Dashed lines represent the central forecasts
and dotted lines show the 95% prediction intervals.

mortality improvements is

j(t,x) ∶= − d
dt

ln µ(t,x). (2.61)

¿is de�nition reveals a conceptional similarity to the relation of hazard rates and their survival
functions. While mortality improvements are de�ned as (in�nitesimal) relative changes of the
hazard rates in time, hazard functions are de�ned as (in�nitesimal) relative changes in age, as will be
discussed in Section 3.2.1.
¿e objective of the following is to highlight the di�erences of the projection obtained by the

VECMs for the KAN, KAN:2 and KAN:3 models. Figures 2.15 to 2.17 illustrate the mortality improve-
ments of those three models. Note that the high �uctuations at the beginning of the projection occur
due to the high �uctuation of the raw mortality rates, which are commonly greater than 10%. ¿e
historical mortality improvements, as shown in Figures 1.7 to 1.10, were obtained by the B/P-spline
smoothing method. By comparing the forecasts of the KAN model, as displayed in Figure 2.15, with
those of KAN:2 in Figure 2.16, we observe that the KANmodel shows higher improvement rates
of about 2% for the ages around 60, while the KAN:2 model projects improvement rates of only
about 1.5%. On the other hand, the improvement rates of the KAN:2 model are higher compared
to the KAN model for the ages between 70 and 90, reaching a maximum of 1.75% for at the ages
around 75. Above the age of 90, the KAN model shows again higher improvement rates of about 1%
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Figure 2.14: Estimated equilibrium relation β̂′κ t + ξ̂co t of the KAN:3 model together with VECM
projections and surrounding 95% prediction intervals.

for the age 95, compared to 0.75% of the KAN:2 model. Despite the deviations of the improvement
rates, both models yield almost the same remaining life expectancy, as shown in Figure 2.12. ¿e
di�erence of the KAN:2 and KAN:3 model is only marginal. ¿e KAN:3 model shows slightly higher
improvements until the age of 75 and slightly lower values above. All projections have in common that
the improvement rates go to zero as the age increases. ¿is observation also provides an explanation
for the rectangularization e�ect of the survival function since the historical, as well as the projected
improvement rates, tend to be higher for lower ages.

2.5.5 | Projections of the Life Expectancy for Real and Synthetic Cohorts

In Section 1.9, we de�ned the Kannisto models as members of the GAPC mortality models family, by
proposing speci�c logistic-type hazard rates (see eqs. (1.85) and (1.86)). ¿is represents the static part
of the mortality model, where for every �xed period the parametric hazard rates capture age-related
mortality e�ects. In Section 2.4, we studied the dynamics of our model, where the evolution of the
Kannisto parameters are modelled by discrete time series, such as VECMs. It is important to point
out that calculations of survival probabilities, based on the hazard rates at �xed periods, would lead
to survival probabilities of synthetic cohorts rather than real cohorts. In Section 1.2.1, we de�ned a
synthetic cohort (T ,x) as a group of individuals with age x in T , who throughout their life, experience
the age-speci�c mortality rates µ(T ,x + i) for i = 1, . . . ,imax. ¿is was referred to as the vertical
arrangement in Table 1.1. Note that a real cohort (T ,x)∗ is a group of individuals who, throughout
their life, experience the age-speci�c mortality rates µ(T + i ,x + i) for i = 1, . . . ,imax. ¿is case was
referred to as the diagonal arrangement in Table 1.1.
Synthetic cohorts serve as an auxiliary construction, which is used to obtain a modelling approach

for real cohorts. Note that the reason why the parametric hazard rates were �t to periodic mortalities
(vertical arrangement) rather than to mortalities of real cohorts (diagonal arrangement), is that for
recent real cohorts only few data are available. ¿us, it is infeasible to �t a non-linear curve if only a
few data points are available. However, a forecast from a dynamic model for the periodic hazard
rates can be used to obtain projections of survival probabilities for real cohorts.
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Figure 2.15: KAN projected mortality improvements of the Swedish female population.
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Figure 2.16: KAN:2 projected mortality improvements of the Swedish female population.
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Figure 2.17: KAN:3 projected mortality improvements of the Swedish female population.

Figure 2.18 displays the projected survival functions for the Swedish female population of the
synthetic cohort (2015,60) and the real cohorts (2015,60)∗, (2030,60)∗ and (2050,60)∗. ¿e life
expectancy of the synthetic cohort (2015,60) is 86.47. ¿is calculation is based on the informa-
tion available at 2015 and involves the mortality rates µ(2015,60), . . . ,µ(2015,110). ¿e life ex-
pectancy of the real cohort (2015,60)∗ is 88.54 and is based on the projected mortality rates
µ(2015,60), . . . ,µ(2065,110). ¿e di�erence of more than two years implies that one would signi�-
cantly underestimate the life expectancy of the real cohort by only using the periodic data of 2015
without including the corresponding mortality improvements. ¿e projected life expectancies of the
other two displayed real cohorts (2030,60)∗ and (2050,60)∗ are 90.22 and 92.31 years.
Another example for the improvements of the life expectancy of real cohorts, based on the VECM

forecast, is shown in Figure 2.19, which illustrates the historical and the forecasted values for the
ages 60, 70, 80, and 90. ¿e solid lines represent the life expectancies purely based on available
data, while the dotted lines show the life expectancies obtained by available and projected data.
For instance, if we take the cohort (1990,60)∗, then the calculation of the life expectancy involves
the already observed mortalities µ(1990,60), . . . ,µ(2014,84) as well as the projected mortalities
µ(2015,85), . . . ,µ(2040,110). From Figure 2.19, we can observe that the life expectancies progress
with di�erent slopes. ¿is can be attributed to the higher mortality improvements for lower ages.
Notice also that the gaps between e∗T ,60, e∗T ,60, e∗T ,80 and e∗T ,90 continue to decrease due to the
rectangularization e�ect of the involved survival functions.
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2.6 | Conclusion
¿is chapter presents the dynamic part of our proposed stochastic mortality model, where the
evolution of the Kannisto parameters are modelled by a VECM. We recall that the Kannisto model
is a multivariate parametric model for the age-related mortality structure (see Section 1.9.1). ¿e
Kannisto parameters can be understood as in�uencing factors of particular age groups on the
mortality. For these factors, we use a VECM, a general modelling approach for the dynamics of a
system of variables, which is, in particular, capable to capture long-run equilibrium relations between
the individual components. By applying the common speci�cation procedure for VECMs, we �rst
demonstrate that cointegration relations exist for the time series of the models KAN, KAN:2 and
KAN:3, and moreover that the estimated VECMs provide a good representation of the underlying
DGPs. For all Kannisto time series, the preferredVECMuses one cointegration relation,which implies
that the individual components do not move independently but rather have common stochastic
trends.
¿e result that several stochastic factors, which drive themortality rates, have long-run equilibrium

relations has a strong impact on strategies managing longevity risk. On the one hand, there are
oversimpli�ed models with only one stochastic factor, like the Lee-Carter model, which implicitly
assumes that changes in the mortality at one age can be perfectly hedged with changes at a di�erent
age. On the other hand, there are mortality models with multiple stochastic factors. ¿e downside
is that additional degrees of freedom could have a negative impact on the forecast mean squared
error which leads to higher forecast uncertainties. However, if cointegration relations between these
stochastic factors exist, then a VECM can be highly bene�cial for the forecast performance.
By comparing the VECM projections to those obtained by the standard approach using a random

walk, we demonstrate a better forecast performance of the VECM. Furthermore, the obtained central
projections, as well as the prediction intervals, are more consistent with the historical experience. By
using the VECM projections, we obtain substantially lower forecast MSEs. ¿is is highly important
for the life insurance industry since the forecast uncertainty is part of the risk which has to be priced
for mortality-linked products. Finally, it is important to point out, that the VECMmethodology is
not limited to the Kannisto model and could also be successfully applied to other GAPC models
with multiple stochastic factors.
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3.1 | Introduction
¿e objective of the following chapter is to characterize the Kannisto distribution which is deter-
mined by a logistic-type hazard rate function as used for the KAN model in Section 1.9. In the
following, the age x is not treated as a discrete integer valued variable as in Chapter 1, but as a
continuous variable. In analogy to probability densities or cumulative distribution functions, hazard
rate functions are equivalent representatives of distributions. By characterizing the instantaneous risk
of failure associated with certain age, hazard rate functions are the most preferred representatives of
distributions in the context of survival analysis.
As noted in Section 1.9, the logistic-type hazard rate function, which we call the Kannisto hazard

rate was �rst proposed by the demographer Väinö Kannisto who studied mortality rates of high
ages, see Kannisto (1992) and¿atcher, Kannisto and Vaupel (1998). ¿e approach by Kannisto was
similar to those of his predecessors, who only aimed to identify a parametric curve which minimizes
the Euclidean distance for the observed data. Commonly this process initially included a logarithmic
or logit transformation of the data, followed by applying a (weighted) linear model to estimate the
model parameters. Apart from this modelling approach, Kannisto did not study the properties of the
continuous distribution induced by the logistic-type hazard rate function he proposed.

Unlike other life distributions, the Kannisto distribution is widely uncharacterized. Some results
may be found in, e.g., Marshall and Olkin (2007) and Missov (2013). In the following, we will
prove some properties of the Kannisto distribution and provide an extensive characterization. ¿e
chapter is outlined as follows. In Section 3.2, we initially review some standard concepts of survival
analysis. Subsequently, we reveal some connections of the Kannisto distribution to other well-known
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distributions in Section 3.3. Some of these connections are based on the fact that the Kannisto
distribution is a special case of the so-called extended exponential distribution which is analysed by
Marshall and Olkin (2007), a standard reference on parametric and non-parametric life distributions.
In Section 3.5, we provide an extensive characterization of both, the Kannisto and the extended
exponential distribution, covering topics such as mean residual life function, moment generating
function, central moments, order statistics, maximum, and minimum domain of attraction, Fisher
information matrix, and Kullback-Leibler divergence.

3.2 | Survival Analysis
¿ere exists a vast literature on mortality modelling based on parametric-type mortality rates. ¿ese
models aim to describe the pattern of the instantaneous age-speci�c failure rate, also known as the
hazard rate or in actuarial literature as the force of mortality. Traditional actuarial models can be
found in Moivre (1725), Gompertz (1825), Makeham (1860), Beard (1961), Heligman and Pollard
(1980) and Kannisto (1992). Carriere (1992), and Marshall and Olkin (2007) also cover other hazard
rate models such as Weibull, Inverse-Gompertz, and Inverse-Weibull. For a comprehensive review of
age-speci�c models for human populations, we refer to Gavrilov and Gavrilova (1991).
¿is section provides some background material and notations which are needed in the subse-

quent parts. ¿e terminology covered here is standard in survival analysis and is mostly based on
Marshall and Olkin (2007). We will begin by introducing hazard rate functions and other common
representatives of lifetime distributions. We then proceed with basic concepts of survival analysis,
including residual life distribution, competing risks and subsequently show how many familiar
distributions are based on elementary hazard rate functions.

3.2.1 | Lifetime Distributions and their Representatives

In this section, we describe some basic concepts of univariate survival analysis. We introduce the
notation and cover some results related to mortality modelling.
¿e lifetime of an individual of some population is represented by a continuous non-negative

random variable X. Generally, lifetimes or survival times describe the duration between entering and
escaping from particular states. In non-life related applications, the escaping is o en called failure,
while in life-related applications it stands for the death of an individual. Unless stated otherwise,
we will only consider lifetime distributions with an unbounded support, i.e., all of the lifetime
representative functions will be de�ned over the interval (︀0,∞).
In the following part, we summarize the so-called lifetime representatives which describe the

distribution of a random variable. ¿e following representatives will be discussed below (cf., e.g.,
Rinne, 2014):

▸ the cumulative distribution function, denoted by F(⋅), abbreviated by (CDF),
▸ the survival function denoted by S(⋅), also known as reliability function,
▸ the probability density denoted by f (⋅), abbreviated by (PDF),
▸ the hazard rate function, denoted by h(⋅) or µ(⋅), also known as instantaneous failure rate,
force of mortality ormortality curve,
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▸ the cumulative hazard rate denoted by H(⋅),
▸ themean residual life function denoted by ν(⋅), where ν(x) is also called the mean future life
of an x-survivor.

¿e representatives de�ne the lifetime distributions and can be obtained from each other when
they exist, see Marshall and Olkin (2007). In Section 3.2.7, we illustrate how popular distributions
naturally arise from elementary hazard rate curves.

Definition 3.2.1. ¿e function F de�ned for x ∈ (︀0,∞) by
F(x) ∶= P (︀X ≤ x⌋︀ (3.1)

is called distribution function or cumulative distribution function of the lifetime random variable X.

¿e distribution function gives the probability of failure/death up to time or age x. To distinguish
distribution functions associated to di�erent lifetime variables, we use a subscript, such as FX , to
indicate the corresponding random variable. Any function satis�es the properties:

(a) F(0) = 0,
(b) limx→∞ F(x) = 1,
(c) F(xb) ≥ F(xa) for all xb ≥ xa,
(d) F is continuous,

is a distribution function of some continuous lifetime variable.

Definition 3.2.2. ¿e function S de�ned for x ∈ (︀0,∞) by
S(x) ∶= P (︀X > x⌋︀ (3.2)

is called the survival function or sometimes the reliability function.

¿e survival function gives the probability of an individual surviving to time x or exceeding the
age x. From eq. (3.1) and eq. (3.2) it is clear, that the relationship between the distribution function
and the survival function is given by

S(x) = 1 − F(x).
A survival function S is monotone decreasing over (︀0,∞), is continuous and it satis�es S(0) = 1 and
limx→∞ S(x) = 0. Furthermore, since we consider unbounded lifetimes, we have S(x) > 0 for all
x > 0.
Definition 3.2.3. If f is a measurable non-negative function such that for all x ∈ (︀0,∞)

F(x) = x

∫
0

f (y) dy,
then f is called a probability density function or simply density function of F.
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When a density exists then the random variable X is called continuous or absolutely continuous
since the measure induced by X is absolutely continuous to the Lebesgue measure. Note that the
density function is not unique since it can be changed on Lebesgue zero sets and remain a density
function of X. ¿e relations between a density function f and the survival function S of some
random variable are given by

S(x) = ∞
∫
x

f (y) dy
and

f (x) = − d
dx

S(x).
Definition 3.2.4. A distribution with survival function S is de�ned to be (right)-heavy-tailed if and
only if

lim
x→∞ S(x) eλx = ∞ for all λ > 0.

Otherwise, a distribution with survival function S is de�ned to be light-tailed if and only if

lim
x→∞ S(x) eλx < ∞ for some λ > 0.

Remark 3.2.5. Note that by the exponential Chebyshev inequality, the distribution is light-tailed if
and only if the survival function is dominated by an exponential function, i.e., for some c1 > 0 and
c2 > 0, we have S(x) ≤ c1e−c2x for all x.
Another important representative of a lifetime distribution, especially in mortality modelling, is

the hazard rate function h also referred to as the force of mortality or age-speci�c death rate and is
usually denoted by µ.

Definition 3.2.6. If F is an absolutely continuous lifetime distribution function with density f then
the function h de�ned on the interval (︀0,∞) by

h(x) ∶= )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
f (x)
S(x) if S(x) > 0
∞ if S(x) = 0 (3.3)

is called a hazard rate of F or X.

¿e hazard rate function characterizes the instantaneous risk of failure associated with certain age.
Note that the hazard rate can be expressed as

h(x) = lim
ε↓0

P (︀x ≤ X < x + ε ⋃︀ X ≥ x⌋︀
ε

.
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¿erefore, we have approximately

h(x) ε ≈ P (︀x ≤ X < x + ε ⋃︀ X ≥ x⌋︀ ,
i.e., for a small increment in time ε, the product h(x) ε is the approximate probability of failure in the
interval (︀x ,x + ε), given survival to x. ¿is interpretation makes the hazard rate presumably the most
preferred lifetime representative in theoretical considerations as well as in actuarial applications.
¿e hazard rate reveals and characterizes the process of ageing more intuitively than other lifetime
representatives and therefore lifetime distributions are o en classi�ed by the properties of their
hazard rate function. ¿ese classi�cations distinguish between monotone increasing or decreasing
hazard rates describing wearout/ageing or wearin/improving e�ects. Another important class of
lifetime distributions are those with non-monotone bathtub-shaped hazard rates, which can be
observed in life tables, where the infant mortality rates initially decreasing, see Figures 1.3 and 1.4.

Proposition 3.2.7. A function h is a hazard function of some non-negative random variable if and
only if:

(a) h(x) ≥ 0, ∀x > 0,
(b) ∫ ∞0 h(y)dy = ∞,

(c) ∃x > 0 ∶ ∫ x0 h(y)dy < ∞,

(d) ∫ x0 h(y)dy = ∞⇒ h(z) = ∞, ∀z > x.
Unless stated otherwise, we will only consider non-bounded lifetimes, such that

x

∫
0

h(y)dy < ∞, for all x > 0,
thus h is a hazard function of some non-negative and non-bounded random variable if and only if
properties (a) and (b) are satis�ed.

Proof. First, suppose that h is a hazard function, then (a) follows since f (x) ≥ 0 and S(x) ≥ 0, thus
h(x) = f (x)

S(x) ≥ 0.
(b) holds since S(x) = e−∫ x0 h(y) dy and limx→∞ S(x) = 0. Next, suppose that a function h ful�lls (a)
and (b). De�ne the function f as

f (x) ∶= h(x)e−∫ x0 h(y) dy .
To show that f is a probability density function of a non-negative random variable, we have to show
the properties

(i) f (x) ≥ 0, ∀x ≥ 0,
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(ii) ∫ ∞0 f (x) dx = 1.
¿e property (i) holds, since h(x) ≥ 0 for all x > 0. With S(x) = e−∫ x0 h(y) dy, we obtain

∞
∫
0

f (x)dx = ∞
∫
0

(h(x)e−∫ x0 h(y) dy) dx
= − ∞
∫
0

( d
dx

e−∫ x0 h(y) dy) dx
= − ∞
∫
0

S′(x) dx

= −
⎛⎜⎜⎜⎜⎜⎝
lim
x→∞ S(x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂=0

−S(0)
⎞⎟⎟⎟⎟⎟⎠
= 1.

Definition 3.2.8. ¿e function H de�ned on the interval (︀0,∞) by
H(x) ∶= − ln S(x) (3.4)

where S is the survival function of X is called cumulative hazard rate of the lifetime X.

From eq. (3.3) and eq. (3.4) and the usual assumption for lifetime distributions, i.e., F(0) = 0, we
see that

S(x) = e−H(x) = e−∫ x0 h(y) dy . (3.5)

Furthermore, from eq. (3.5), we can see that when F is an absolutely continuous distribution then

h(x) = d
dx

H(x) = − d
dx

ln S(x) = − d
dx S(x)
S(x) . (3.6)

¿e cumulative hazard rate satis�es the following conditions:

(a) H(0) = 0,
(b) limx→∞H(x) = ∞,

(c) H(x) is non-decreasing.
Remark 3.2.9. From the right term of eq. (3.6), we see that the hazard rate is the negative of the
so-called logarithmic derivative of the survival function. Let f be a real-valued function without
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roots, the logarithmic derivative L( f ) of f is de�ned by
L( f ) = f ′

f
.

Intuitively it is clear that the logarithmic derivative of f denotes the relative in�nitesimal change,
which is the absolute in�nitesimal change of f , namely f ′ scaled by the reciprocal of the function
f , i.e., by 1⇑f . ¿us, the hazard rate h can be expressed as the logarithmic derivative of the survival
function S by

h(x) = −S′(x)
S(x) = −L(S(x)).

¿e logarithmic derivative does also appear in the de�nition ofmortality improvements (see eq. (2.61)),
a quantity which describes the change of the hazard rate over time. Similar to a hazard rate, which is
the negative logarithmic derivative of the survival function with respect to age, we introduced the
mortality improvements as the negative logarithmic derivative of the hazard rate with respect to
time.

Proposition 3.2.10. A distribution is light-tailed if and only if the cumulative hazard function
H(⋅) = − ln S(⋅) satis�es

lim
x→∞

H(x)
x

≠ 0.
Proof. First, suppose the distribution is light-tailed. By the exponential Chebyshev inequality, we
have some c1,c2 > 0 such

S(x) = e−H(x) ≤ c1e−c2x for all x > 0.
¿is implies that limx→∞ H(x)⇑x ≥ c2 ≠ 0. Suppose now that limx→∞ H(x)⇑x > 0, then there exist x0
and c > 0 such H(x) ≤ cx for all x ≥ x0. ¿us, we have

S(x) ≤ e−cx for all x ≥ x0.
¿is implies that the distribution is light-tailed.

3.2.2 | Expectation and Higher Central Moments

Clearly, the expectation of the random lifetime X corresponds to the individual life expectancy. Next,
we recall how the expectation and higher raw moments of continuous lifetime random variables can
be expressed in terms of its survival function.

Definition 3.2.11 (Expectation). Let X be a random variable with distribution function F, such that
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the integral ∫ ∞−∞ ⋃︀x⋃︀ dF(x) < ∞, then the expectation E(︀X⌋︀ of X is de�ned by

E(︀X⌋︀ = ∞
∫−∞ x dF(x). (3.7)

For non-negative random variables with survival function S, the expectation can also be expressed
by

E(︀X⌋︀ = ∞
∫
0

S(x) dx .
¿is relation follows from eq. (3.7) by using Fubini’s theorem. ¿is form is o en more convenient for
actuarial purposes. If the random variable corresponds to a lifetime, then the expectation is also
called life expectancy. In the context of the thesis, the expectation is denoted by ν. ¿e n-th moment
of a non-negative random variable X with distribution function F is de�ned as

νn = E(︀Xn⌋︀ = ∞
∫
0

xn dF(x). (3.8)

An alternative expression for the n-th moment of the non-negative random variable X in terms of
the survival function is given by

νn = E(︀Xn⌋︀ = n ∞
∫
0

xn−1S(x) dx .
¿is expression can be derived from eq. (3.8) using integration by parts.
¿e following hazard rate based criteria for the existence or non-existence of moments was

originally given by Barlow, Marshall and Proschan (1963).

Proposition 3.2.12 (Marshall and Olkin, 2007). Let h be a hazard rate of a distribution on (︀0,∞),
n > 0, and let νn denote the n-th moment. If the inequality

n < lim inf
x→∞ x h(x)

holds, then νn < ∞. On the other hand, if

n > lim sup
x→∞ x h(x)

holds, then νn = ∞.

Proof. For a proof of this result, see Marshall and Olkin (2007, Proposition 20.B.6).

A direct consequence of Proposition 3.2.12 is that for every distribution with non-decreasing
hazard function all moments exist. On the other hand, if this criterion is applied to a distribution
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with a decreasing hazard rate, such as the Pareto distribution (see, eq. (3.22)), we obtain

lim inf
x→∞ x h𝒫II(x ⋃︀ k,α,µ) = lim inf

x→∞ x α
k − µ + x = α.

¿us, we have νn < ∞ if n < α.
3.2.3 | Residual Life Distribution

In survival analysis, one is o en interested in the distribution of the remaining lifetime for individuals
who accomplished to survive until a particular time. ¿e relation of the remaining lifetime and the
original lifetime is de�ned in the following.

Definition 3.2.13. Let S be the survival function of a lifetime distribution with an unbounded support
X such that S(0) = 1 and S(x) > 0 for all x > 0. ¿e residual life distribution S t of S at t is de�ned by

S t(x) = S(x + t)
S(t) , x ≥ 0. (3.9)

It is clear from the above de�nition that the residual life distribution S t is a conditional distribution
of the remaining lifetime since we can express eq. (3.9)

S t(x) = S(x + t)
S(t) = P (︀X > x + t ⋃︀ X > t⌋︀ .

¿e corresponding conditional random variable X − t ⋃︀ X > t with the survival function S t is called
the residual lifetime of a t-survivor. Suppose that X has a density f , then we obtain the density and
the hazard rate of the residual lifetime distribution of a t-survivor by

f t(x) = f (x + t)
S(t) , for x ≥ 0

and

ht(x) = f (x + t)
S(x + t) = h(x + t), for x ≥ 0. (3.10)

From the interpretation of S t being a conditional distribution, it is clear that the hazard rate ht
associated to the remaining lifetime of a t-survivor is simply the original hazard rate h evaluated at
the shi ed argument x + t.
¿e logistic-type hazard rate functions are of particular interest of the thesis. ¿e following

proposition classi�es the limiting residual life distribution of distributions where the hazard rate
functions have �nite positive limits.

Proposition 3.2.14 (Marshall and Olkin, 2007). Let h be a hazard function and S the corresponding
survival function of a lifetime variable. Suppose that the property

lim
x→∞ h(x) = λ, for some λ ∈ R+ (3.11)
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holds, then the remaining lifetime with survival function S t converges in distribution to an exponen-
tial distribution with parameter λ as t →∞.

Proof. By using the relation of eq. (3.10) and the assumption eq. (3.11), we conclude

S t(x) = e−∫ x0 ht(y) dy = e−∫ x0 h(y+t) dy = e−∫ x+tt h(y) dy t→∞Ð→ e−λx .

3.2.4 | Mean Residual Life Function

¿e next de�nition provides another distribution representative, which is mainly used in the area of
survival analysis.

Definition 3.2.15. ¿emean residual life function ν(t) is the mean of the residual life distribution S t
as a function of t. Under the same assumption as for De�nition 3.2.13, the mean residual life function
is de�ned by

ν(x) ∶= ∞
∫
0

S(x + t)
S(t) dx .

¿e mean residual life function v(t) has the following properties:
(a) ν(t) ≥ 0 for all t ≥ 0,
(b) ν(0) = E(︀X⌋︀ = ν,
(c) S(t) = ν(0)

ν(t) e−∫
t
0

1
ν(z) dz .

¿e �rst two properties are clear from the de�nition. Property (c) shows how the survival function
can be reconstructed from the mean residual life function. For a more detailed discussion and the
proof of (c), see Cox (1962).

3.2.5 | Mixture Distributions

Survival data of humansmight have some properties which can be better understood if the population
is assumed to be non-homogeneous. Separation of gender, ethnic groups or various lifestyle character-
istics is helpful to explain survival properties of the combined population as a mixture of individuals.
¿e following de�nition provides mixture representations of inhomogeneous populations.

Definition 3.2.16 (Marshall and Olkin, 2007). Let ℱ = {F(⋅ ⋃︀ θ), θ ∈ Θ} be a family of distributions
and G a distribution on Θ ⊂ Rd , i.e., a distribution of the parameter θ. ¿en,

F(x) = ∫
θ∈Θ

F(x ⋃︀ θ) dG(θ) (3.12)

is called the mixture of F with respect to G or compound distribution of F and G. F(x⋃︀θ) is known as
the kernel and G is themixing (or compounding) distribution.
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In eq. (3.12), θ > 0 is considered to be an unobservable random variable with distribution function
G. A widely studied class of models is based on the assumption that the hazard function λ(x) of a
lifetime X has the form λ0(x) × θ. ¿ese models are known as frailtymodels. λ0(x) is called the
baseline hazard rate and θ represents an individual failure factor which scales the baseline hazard
rate. Mixture models allow describing heterogeneity of populations. In Proposition 3.3.7, we will
show a connection of the Kannisto and the Gompertz distributions, where the Kannisto distribution
is obtained as a continuous mixture using a Gompertz kernel.

3.2.6 | Competing Risks

¿e lifetime can also be considered to be a composite if we decide to distinguish between di�erent
causes of failure. Models which refer to a cause-speci�c ending of life, such as di�erent diseases or
accidents, are also called competing risksmodels. In this framework, the failure is associated with the
time of the �rst event of distinct causes of failures, where the single risk components are typically
not observable, but only their minimum. Under these models, the lifetime is considered to be the
time-until-�rst-event.
¿e following Proposition 3.2.17 shows that for independent competing risks the hazard function of

the time-until-�rst-event is the sum of the single hazard rates of the involved risk components. Using
this approach one can design complex age-speci�c failure pro�les by combining risk components
with decreasing and increasing hazard rates. Possible applications are bathtub-shaped hazard rates as
observed for infants, where the hazard rate �rst decreases during the �rst years and eventually starts
to increase, see Figures 1.3 and 1.4 for full age range empirical hazard rate pro�les.

Proposition 3.2.17. Let X1, . . . ,Xn be independent (continuous) random variables with hazard
functions h1, . . . ,hn. ¿en, the lifetime Y on n competing risks given as Y ∶= min(X1, . . . ,Xn) has
the hazard function hY = ∑n

i=1 hi .

Proof. From the independence of the random variables X1, . . . ,Xn follows that the survival function
SY has the form

SY(y) = P (︀min(X1, . . . ,Xn) > y⌋︀= P (︀X1 > y, . . . ,Xn > y⌋︀
= n∏

i=1 P (︀Xi > y⌋︀ = n∏
i=1 Si(y),

where Si(y) = P (︀Xi > y⌋︀ is the survival function of Xi . Since Si(y) = exp (−∫ y0 hi(x)dx), we have
SY(y) = n∏

i=1 exp
⎛⎜⎝−

y

∫
0

hi(x)dx⎞⎟⎠ = exp⎛⎜⎝−
y

∫
0

n∑
i=1 hi(x)dx

⎞⎟⎠ = exp⎛⎜⎝−
y

∫
0

hY(x)dx⎞⎟⎠ .
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3.2.7 | Distributions induced by Elementary Hazard Rate Functions

In the following section, we recall some continuous parametric distributions used in lifetime mod-
elling from the perspective of hazard rates. We will de�ne di�erent types of hazard functions and
derive the resulting distributions. ¿is approach will show that many of the well-known distributions
arise by a natural choice of hazard function. See, e.g., Rinne (2014) for an extended discussion on
that topic.
For the clari�cation of categorical parameter types of the following distributions, we use the

de�nition provided by Marshall and Olkin (2007).

Definition 3.2.18 (Scale, Frailty, and Tilt Parameters, (Marshall and Olkin, 2007)). A parametric family
S(⋅ ⋃︀ β) with β > 0 of the form S(x ⋃︀ β) = S(βx ⋃︀ 1) is said to be a scale parameter family and β is
called a scale parameter. A parameter θ is called a frailty parameter if S(⋅ ⋃︀ θ) is de�ned in terms of
S(⋅) by the expression

S(x ⋃︀ θ) = S(x)θ , θ > 0.
A parameter γ is called a tilt parameter if S(⋅ ⋃︀ γ) is de�ned in terms of S(⋅) according to the
expression

S(x ⋃︀ γ) = γS(x)
1 − (1 − γ)S(x) , γ > 0. (3.13)

A distribution with a tilt parameter is alternatively called a proportional odds family, since eq. (3.13)
is equivalent to

F(x ⋃︀ γ)
S(x ⋃︀ γ) = 1

γ
F(x)
S(x) .

¿is section provides a foundation for Section 3.3, where we show many connections between
popular distributions obtained by transformations, truncations, continuous mixtures, and as limiting
distributions. In the following, we repeatedly start with an elementary type parametric hazard
function and derive further representatives such as survival or density functions.

(a) A constant hazard rate

h(x ⋃︀ λ) = λ 1x≥0, λ > 0,
yields directly to

S(x ⋃︀ λ) = e−λx 1x≥0, (3.14)

f (x ⋃︀ λ) = λe−λx1x≥0.
¿is gives the exponential distribution Exp(λ).
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(b) A linear hazard rate of the form

h(x ⋃︀ λ,σ) = (λ + σx)1x≥0, λ,σ > 0, (3.15)

leads to

S(x ⋃︀ λ,σ) = e−λx− σ
2 x

2
1x≥0,

f (x ⋃︀ λ,σ) = (λ + σx)e−λx− σ2
2 x

2
1x≥0.

For λ = 0 this is the Rayleigh distribution with the scale parameter σ . From Proposition 3.2.17
follows that a competing risks lifetime with factors Exp(λ) and Rayleigh(σ) has a linear
hazard rate as given in eq. (3.15).

(c) Starting with a power hazard rate given by

h(x ⋃︀ α,β) = α
β
(x
β
)α−1 1x≥0, α,β > 0,

we obtain

S(x ⋃︀ α,β) = e−( xβ )α 1x≥0,
f (x ⋃︀ α,β) = α

β
e−( xβ )α (x

β
)α−1 1x≥0.

¿is is the Weibull distribution, denoted by𝒲ℬ(α,β), with shape parameter α and scale
parameter β. ¿e exponential distribution Exp(λ) and Rayleigh(σ) are special cases of the𝒲ℬ(α,β) distribution, namely𝒲ℬ(1,1⇑λ) and𝒲ℬ(2,⌈︂2⇑σ), respectively.

(d) For an exponential hazard rate of the form

h(x ⋃︀ ξ,κ) = κξeκx 1x≥0, ξ,κ > 0,
we obtain

S(x ⋃︀ ξ,κ) = eξ(1−eκx) 1x≥0,
f (x ⋃︀ ξ,κ) = κξeξ(1−eκx)+κx 1x≥0.

¿is distribution with scale parameter κ and frailty parameter ξ is called Gompertz due to
the parametric form of the hazard rate proposed by Gompertz (1825) and will be denoted
by 𝒢(ξ,κ). ¿e publication of Gompertz is widely considered as the �rst systematic attempt
of age-speci�c modelling of human mortality rates. By studying mortality tables, Gompertz
discovered that from the age of 30 onwards mortality rates tend to increase exponentially.
A generalization was given by Makeham (1867, 1890) as a four parameter distribution, the
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so-called Gompertz-Makeham distribution 𝒢ℳ(ξ,κ,θ ,α) with the hazard rate
h(x ⋃︀ κ,ξ,θ ,σ) = θκξ + 2κ2ξσx + κξeκx 1x≥0.

By Proposition 3.2.17, we see that the extended distribution 𝒢ℳ(ξ,κ,λ⇑(ξκ),σ⇑2κ2 ξ) with the
hazard rate

h(x ⋃︀ λ,σ ,ξ,κ) = λ + σx + κξeκx
results through a composition of an exponential, a Rayleigh and a restricted Gompertz distri-
bution, i.e.,

𝒢ℳ(ξ,κ, λ
ξκ
, σ
2κ2ξ

) ∼ min(Exp(λ), Rayleigh(σ),𝒢ℳ(ξ,κ)).
¿is shows the building blocks of the extended Gompertz-Makeham distribution that contains
three risk factors, namely: an age-independent factor, a factor where the risk grows linear in
age and one with an exponential growth.

(e) Kannisto (1992) proposed a logistic-type hazard rate

h(x ⋃︀ α, β) = eα+βx
1 + eα+βx 1x≥0, α ∈ R, β > 0 (3.16)

which better tracks the observed mortality for higher ages, see ¿atcher, Kannisto and Vaupel
(1998). ¿e authors studied the mortalities of several industrialized countries and showed that
logistic-type hazard rates provide a better �t to historical data, since the observations show
a sub-exponential growth for higher ages. From the hazard rate in eq. (3.16), we obtain the
survival and the density as follows:

S(x ⋃︀ α,β) = (1 + eα) 1
β (1 + eα+βx)− 1

β 1x≥0, (3.17)

f (x ⋃︀ α,β) = (1 + eα) 1
β eα+βx (1 + eα+βx)− 1+β

β 1x≥0.

¿e distribution characterized by the hazard rate of eq. (3.16) will be called the Kannisto
distribution and denoted by𝒦(α,β). Characteristic properties of the Kannisto distribution
will be discussed in Section 3.5.

(f) Perks (1932) proposed a hazard rate of the form

h(x ⋃︀ λ,A,B,D,K) = A+ Beλx
1 + Deλx + Ke−λx 1x≥0.

¿is general form contains many of the hazard rate types introduced above, e.g., for:

▸ B = D = K = 0, we obtain a constant hazard rate, i.e., the distribution Exp(A),
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▸ A = D = K = 0 this is the Gompertz distribution 𝒢(λ,B⇑λ),
▸ D = K = 0, this results in the Gompertz-Makeham distribution 𝒢ℳ(λ,B⇑λ,A⇑B)
▸ A = K = 0 and B = D = eα , is the Kannisto distribution𝒦(α,λ).

Marshall and Olkin (2007) showed that the survival function of the Perks type hazard rate is

S(x ⋃︀ λ,α,β,ξ,θ) =( α
eλx − (1 − α))

ξ ( β
eλx − (1 − β))

θ

(3.18)

α, β > 0, ξ + θ ≥ 0, x ≥ 0,
with the parametrization

α = 1
2
(1 +⌋︂1 − 4KD)D + 1, β = 1

2
(1 −⌋︂1 − 4KD)D + 1,

ξ = B (1 − 2AD +⌋︂1 − 4DK)
2D

⌋︂
1 − 4DK , θ = B (−1 + 2AD +⌋︂1 − 4DK)

2D
⌋︂
1 − 4DK .

For ξ,θ > 0 eq. (3.18) is a product of two survival functions of the extended exponential
distribution which will be de�ned below in eq. (3.20) below. ¿e distribution with the Perks
type hazard rate turns out to be distributed like the minimum of two extended independent
exponential distributions. ¿is is a consequence of Proposition 3.2.17 that shows that the
hazard rate of the minimum of two random variables is the sum of the hazard rates. Since
the hazard rates of the extended exponential family are decreasing if the tilt parameter is less
than 1 (α, β < 1 in eq. (3.18)), one can construct bathtub-shaped hazard rates from the Perks
distribution. ¿ese types of hazard rates are useful to model initially decreasing hazard rates
as in the case of infant mortality.

(g) An extended logistic-type hazard rate of the form

h(x ⋃︀ γ,θ ,β) = βθeβx

γ + eβx − 1 1x≥1 γ ≥ 0, θ > 0, β > 0, (3.19)

generalizes the Kannisto hazard function of eq. (3.16). Both functions are logistic-type and
can be obtained as solutions of the �rst-order non-linear Bernoulli di�erential equation

h′(x) = κ h(x)(cmax − h(x)),
where cmax is the limiting value of h and κ ∈ R. ¿e distribution characterized by the hazard
rate of eq. (3.19) will be called the extended exponential distribution and denoted by ℰ(γ,θ ,β).
¿is distribution received its name since it can be derived as a tilt and frailty parametric
extension of the exponential distribution, see Marshall and Olkin (2007) and Proposition 3.3.1
for the precise de�nition of those extensions types. ¿e survival and density functions of
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ℰ(γ,θ ,β) are
S(x ⋃︀ γ,θ ,β) = ( γ

eβx − (1 − γ))
θ

1x≥0, (3.20)

f (x ⋃︀ γ,θ ,β) = βθγθeβx(γ + eβx − 1)−(θ+1)1x≥0. (3.21)

(h) A reciprocal hazard rate function of the form

h(x ⋃︀ k,α,µ) = α
k − µ + x 1x≥µ k > 0, α > 0, µ ∈ R (3.22)

leads to

S(x ⋃︀ k,α,µ) = (x − µ
k

+ 1)−α 1x≥µ ,
f (x ⋃︀ k,α,µ) = αkα(k − µ + x)−α−1 1x≥µ .

¿is hazard rate characterizes the Pareto type II distribution and is denoted by 𝒫II(k,α,µ). For
µ = 0, we will abbreviate the notation and denote the distribution by 𝒫II(k,α). ¿is special
case is also known as the Lomax distribution. In Proposition 3.3.4, we will give a connection of
the Pareto type II distribution to the Kannisto as well as the extended exponential distribution.

(i) Next, we recall another well-known distribution which is not a lifetime distribution since it
takes values in R. ¿e logistic distribution, denoted by ℒ(µ,s) is the distribution characterized
by a logistic-type distribution function and should not be mistaken with𝒦(α,β) and ℰ(γ,θ ,β)
which are characterized by a logistic-type hazard rate function. ¿e CDF of ℒ(µ,s) is given by

F(x ⋃︀ µ,s) = 1
e− x−µ

s + 1 , for x ∈ R, µ ∈ R, s > 0
and the corresponding hazard, survival, and density functions are

h(x ⋃︀ µ,s) = 1
s (e µ−x

s + 1) ,
S(x ⋃︀ µ,s) = 1

e
x−µ
s + 1 , (3.23)

f (x ⋃︀ µ,s) = e
µ+x
s

s (e µ
s + e x

s )2 .
¿e connection to the lifetime distributions𝒦(α,β) and ℰ(γ,θ ,β) will be given in Proposi-
tion 3.3.10.

¿e next result shows that a distribution with a polynomial hazard function of order n can be
decomposed into a competing risks model with of n independent Weibull distributed factors.
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Proposition 3.2.19. A non-negative random variable Y with a polynomial hazard function given by

hY(x ⋃︀ a0, . . . ,an) = n∑
i=0 aix

i 1x≥0, with ai > 0 ∀i ∈ {0, . . . n},
can be composed of independent Weibull distributed competing risks X0, . . . ,Xn, i.e.,

Y ∼ min(X0, . . . ,Xn)
with Xi ∼ 𝒲ℬ(i + 1, (i + 1⇑a i)1⇑i + 1).

Proof. We start with the cumulative hazard function HY , which is obtained by

HY(x ⋃︀ a0, . . . ,an) = x

∫
0

hY(y ⋃︀ a0, . . . ,an) dy
= x

∫
0

n∑
i=0 ai y

i dy

= n∑
i=1

1
i
aix i+1.

¿e cumulative hazard function HY(⋅) is related to the survival function by SY(⋅) = exp{−H(⋅)}.
Using that, we obtain

SY(x ⋃︀ a0, . . . ,an) = exp (−H(x ⋃︀ a0, . . . ,an))
= exp(− n∑

i=0
1
i
aix i+1)

= n∏
i=0 exp(−

1
i
aix i+1)

= n∏
i=0 SX i (x ⋃︀ ai) ,

where the factors

SX i(x ⋃︀ ai) = exp(−1i aix i+1)
are survival functions of Weibull distributions Xi ∼ 𝒲ℬ(i + 1, (i + 1⇑a i)1⇑i + 1). Hence, the survival
function ofmin(X0, . . . ,Xn) factorizes in the case of independent random variables, andwe conclude
Y ∼ min(X0, . . . ,Xn).
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3.3 | Connections of the Kannisto Distribution to Other Parametric Distributions
In the following part, we study the connections of the previously introduced logistic hazard rate
distributions, namely the Kannisto and the extended exponential distribution, to other well-known
distributions. We will show how the extended exponential distribution generalizes other distributions
and demonstrate existing relations obtained by transformations, truncations, continuous mixtures,
and by limiting distributions.

3.3.1 | Connection of the Extended Exponential Distribution and the Kannisto Distribution

First of all, one can easily verify that the extended exponential distribution ℰ(γ,θ ,β) is indeed a
parametric extension of the exponential distribution Exp(λ). Choosing γ = 1 and θ = 1, we see that
the survival function of ℰ(1,λ⇑β,β)

Sℰ(x ⋃︀ 1,1,β) = e−βx = SExp(x ⋃︀ β)
coincides with the survival function of the exponential distribution Exp(β), see eq. (3.14). ¿e
next proposition shows that the Kannisto distribution is a special case of the extended exponential
distribution.

Proposition 3.3.1. ¿eextended exponential distribution ℰ(γ,θ ,β) is a generalization of the Kannisto
distribution𝒦(α,β).
Proof. ¿e extended exponential distribution has the survival function

Sℰ(x ⋃︀ γ,θ ,β) = ( γ
eβx − (1 − γ))

θ

,

see the de�nition in eq. (3.20). For γ = 1 + e−α and θ = 1⇑β, we obtain the survival function of the𝒦(α,β) distribution as given in eq. (3.17), i.e.,
Sℰ(x ⋃︀ 1 + e−α ,1⇑β,β) = ( 1 + e−α

e−α + eβx )
1
β = (1 + eα+βx

1 + eα )−
1
β = S𝒦(x ⋃︀ α,β).

While ℰ(γ,θ ,β) generalizes the exponential distribution as well as the Kannisto distribution,
the exponential distribution cannot be obtained from the Kannisto distribution by a particular
parameter choice. However, as next proposition shows, the exponential distribution results as a
limiting distribution.

Proposition 3.3.2. For the Kannisto distribution𝒦(α,β), we have
𝒦(α,β) 𝒟Ð→

α→∞ Exp(1), (3.24)

𝒦(α,β) 𝒟Ð→
β→∞ Exp(1), (3.25)
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𝒦(λ⇑1 − λ,β) 𝒟Ð→
β→0 Exp(λ) for 0 < λ < 1. (3.26)

Proof. For the convergence in distribution, we need to show that the survival function of the
Kannisto distribution converges pointwise, for each x ≥ 0, to the survival function of the exponential
distribution. ¿us, for eq. (3.24), we have

lim
α→∞ S𝒦(x ⋃︀ α,β) = lim

α→∞(1 + eα+βx
1 + eα )−

1
β = e−x = SExp(x ⋃︀ 1).

To prove eq. (3.25), we apply the L’Hôpital’s rule on eq. (3.27)

lim
β→∞ S𝒦(x ⋃︀ α,β) = lim

β→∞(1 + eα+βx
1 + eα )−

1
β

= lim
β→∞ e−

ln( 1+eα+xβ1+eα )
β (3.27)

= lim
β→∞ e− eα+xβ x

1+eα+xβ

= e−x = SExp(x ⋃︀ 1).
Equation (3.26) can be obtained by using the L’Hôpital’s rule for eq. (3.28)

lim
β→0 S𝒦(x ⋃︀ λ⇑1 − λ,β) = lim

β→0 (λ (eβx − 1) + 1)−
1
β

= lim
β→0 e

− 1
β ln(λ(eβx−1)+1) (3.28)

= lim
β→0 e

− λx eβx

λ(eβx−1)+1

= e−λx = SExp(x ⋃︀ λ).

An overview of the relations between the exponential, Kannisto, and the extended exponential
distribution is displayed in Figure 3.1. ¿e next result shows that the Kannisto distribution is not
stable under scaling, i.e., multiplying a Kannisto random variable with a positive constant does not
result in a Kannisto distribution. ¿e result shows also that the extended exponential distribution is
stable under scaling.

Proposition 3.3.3. Let X ∼ 𝒦(α,β) be Kannisto distributed and c ∈ R+, then cX follows the extended
exponential distribution ℰ(1 + e−α ,1⇑β,β⇑c).
Proof. As observed in Proposition 3.3.1 the Kannisto distribution𝒦(α,β) is a special case of extended
exponential distribution ℰ(γ,θ ,β), where the frailty parameter θ is set to the inverse of the scale
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ℰ(γ, θ , β) 𝒦(α, β)

Exp(λ) Exp(1)
ℰ(1, 1, λ)

γ = 1 + e−α , θ = 1
β

lim
β→0
𝒦(ln(λ⇑(1 − λ)), β) , λ ∈ (0, 1) lim

α→∞𝒦(α, β), lim
β→∞𝒦(α, β)

λ = 1

Figure 3.1: Relationships between the Kannisto and the extended exponential distribution.

parameter β, and the tilt parameter set to γ = 1 + e−α . ¿e proof can be obtained directly by
computation of the transformed survival function. ¿is leads to

Sc⋅X(x) = P (︀cX > x⌋︀ = Sℰ(x⇑c ⋃︀ 1 + e−α ,1⇑β,β) = ⎛⎝1 + e
α+ β

c x

1 + eα ⎞⎠
−1⇑β

= Sℰ(1 + e−α ,1⇑β,β⇑c).

3.3.2 | Connection of the Extended Exponential Distribution and the Pareto Type II Distribution

¿e following proposition exhibits the connection of the Kannisto distribution and the Pareto type II
distribution. ¿e connection is interesting since the Pareto distribution is a heavy-tailed distribution
with various applications especially in non-life actuarial science, while the Kannisto distribution
arises in life actuarial science by observing a logistic-type growth of age-speci�c mortalities for
high ages. Due to its popularity, the Pareto distribution is implemented in almost all statistical
so ware packages. ¿us, using the transformation of the following proposition, sampling from the
non-standard Kannisto or extended exponential distribution can be implemented e�ciently.

Proposition 3.3.4. Let X be a Pareto type II distribution with survival function

S𝒫II(x ⋃︀ γ,θ) = (1 + x⇑γ)−θ 1x≥0, γ,θ > 0,
then Y ∶= g(X), with g(X) = 1⇑β ln (X + 1) is ℰ(γ,θ ,β) distributed. Furthermore, for X ∼ 𝒫II(1 +
e−α ,1⇑β), we obtain the Kannisto𝒦(α,β) distribution through the transformation g.
Proof. ¿emap g ∶ R+ → R+ is bijective with g−1(y) = eβy − 1. ¿e survival function of Y satis�es

SY(y) = P (︀Y > y⌋︀ ,
= P (︀g(X) > y⌋︀ ,
= P )︀X > g−1(y)⌈︀ ,
= P )︀X > eβy − 1⌈︀ ,
= S𝒫II )︀eβy − 1⌈︀ ,
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= ⌊︀ γ
eβx − (1 − γ)}︀

θ

,

= Sℰ(y ⋃︀ γ,θ ,β),
which completes the proof of the �rst part. ¿e second result for the Kannisto distribution follows
directly from Proposition 3.3.1.

Note that by using the inverse transformation of Proposition 3.3.4, g−1(Y) = eY⇑θ − 1 with
Y ∼ 𝒦(− ln (γ − 1), 1θ ), we obtain the Pareto distribution 𝒫II(γ,θ) from the Kannisto distribution.
Alternatively, the extended exponential distribution or the Kannisto distribution can be sampled

from the uniform distribution as covered in the following result.

Proposition 3.3.5. Let U ∼ 𝒰(0,1) be uniformly distributed on the interval (0,1) then
X ∶= 1

β
ln (1 − γ + γ(1 −U)− 1

θ ) (3.29)

is ℰ(γ,θ ,β) distributed and
Y ∶= 1

β
ln ((1 + e−α) (1 −U)−β − e−α) (3.30)

is𝒦(α,β) distributed.
Proof. ¿is is a direct consequence of the inverse sampling theorem.¿e cumulative distribution
function of the extended exponential distribution ℰ(γ,θ ,β) is given by

Fℰ(x ⋃︀ γ,θ ,β) = 1 − ( γ
eβx − (1 − γ))

θ

1x≥0. (3.31)

For a strictly increasing distribution function F, inverse F−1 of F is de�ned by
F−1(p) = sup{x ∶ F(x) ≤ p}, 0 < p < 1.

From eq. (3.31), we obtain

F−1ℰ (p) = 1
β
ln (1 − γ + γ(1 − p)− 1

θ ) .
Equation (3.30) follows from eq. (3.29) by Proposition 3.3.1.

3.3.3 | Connection of the Extended Exponential Distribution and the Gompertz Distribution

¿e next proposition shows how the Gompertz distribution, which is characterized by exponential
increasing hazard rates can be obtained as a limiting distribution of the extended exponential
distribution. ¿is connection without a rigorous proof can be found in Marshall and Olkin (2007).
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Proposition 3.3.6. ¿e Gompertz distribution is a limiting distribution of the extended exponential
distribution. More precisely, we have

ℰ(γ,γξ,β) 𝒟Ð→
γ→∞ 𝒢(ξ,β)

Proof. ¿is result is obtained by setting θ = γξ in the survival function of ℰ(γ,θ ,β) and taking the
limit γ →∞ for �xed ξ and β, i.e.,

lim
γ→∞ Sℰ(x ⋃︀ γ,γξ,β) = lim

γ→∞( γ
eβx − (1 − γ))

γξ

1x≥0

= lim
γ→∞ e

γξ ln( γ
exβ+γ−1) 1x≥0

= lim
γ→∞ e

γξ( γ
exβ+γ−1−1) 1x≥0 (3.32)

= eξ(1−eβx) 1x≥0 (3.33)
= S𝒢(x ⋃︀ ξ,β),

where eqs. (3.32) and (3.33) follow by L’Hôpital’s rule.

¿e following proposition shows how the Kannisto distribution arises as a mixture of Gompertz
distributions. ¿is means that a proper mixture of individuals with inhomogeneous exponential
hazard rates can result in a population with a bounded logistic hazard rate.

Proposition 3.3.7. ¿eKannisto distribution can be obtained as a mixture of Gompertz distributions
by regarding the frailty parameter as a random variable following a gamma distribution. More specif-
ically, the Kannisto distribution𝒦(α,β) results as a continuous mixture of a Gompertz distribution𝒢(ξ,β), where the frailty parameter ξ is considered to be Γ(1⇑(1 + e−α),1⇑β) distributed.
Proof. Let S𝒢 be the survival function of the Gompertz distribution, with

S𝒢(x ⋃︀ ξ,β) = exp (−ξ(eβx − 1)) 1x≥0, ξ, β > 0.
Let ξ be a Γ(1⇑γ,θ)-distributed random variable with the distribution function FΓ(ξ ⋃︀ 1⇑γ,θ) and
density

fΓ(ξ ⋃︀ 1⇑γ,θ) = γθe−γξξθ−1
Γ(θ) , ξ ≥ 0,

where the 1⇑γ is the scale and θ the shape parameter. Using De�nition 3.2.16, we now consider a
continuous mixture for ξ in 𝒢(ξ,β) with respect to Γ(1⇑γ,θ). ¿e survival function of the mixture
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SMix has the form

SMix(x ⋃︀ γ,θ ,β) = ∞
∫
0

S𝒢(x ⋃︀ ξ,β) dFΓ(ξ ⋃︀ 1⇑γ, θ) (3.34)

= ∞
∫
0

exp (−ξ(eβx − 1)) γe−γξ(γξ)θ−1
Γ(θ) dξ

= ∞
∫
0

(γξ)θe−ξ(eβx+γ−1)
ξΓ(θ) dξ

= ( γ
eβx − (1 − γ))

θ

.

¿e mixing distribution turns out to be the extended exponential distribution ℰ(γ,θ ,β). As shown in
Proposition 3.3.1 the Kannisto distribution appears as a special case for γ = 1+ e−α and θ = 1⇑β. Note,
the connection of a Gompertz mixture and the extended exponential distribution was originally
obtained by Marshall and Olkin (2007).

Remark 3.3.8. Proposition 3.3.7 shows that the Kannisto distribution can be derived by continuous
mixing of Gompertz distributions with respect to a gamma distribution. Observe that despite taking
a mixture of Gompertz distributions with exponentially increasing hazard rates of the form

h𝒢(x ⋃︀ ξ,β) ∶= ξ βeβx , x ≥ 0, ξ,β > 0, (3.35)

the result is a Kannisto distribution with logistic-type hazard rates which are bounded by

lim
x→∞ h𝒦(x ⋃︀ α,β) = 1.

¿us, modelling lifetimes of populations by a Kannisto distribution allows a twofold interpretation
of the composition of the underlying population. ¿e �rst one is the homogeneous population
interpretation, which treats the lifetimes of individuals as i.i.d. Kannisto distributed random variables.
Since the entire group is considered to have the identical lifetime distribution, we indeed have a
homogeneous group. On the other hand the heterogeneous population interpretation arises, when we
do not assume the population to be composed of individuals with i.i.d. distributed lifetimes. ¿is
assumption is less restrictive and more realistic than the former one since groups of individual of the
same cohort show indeed di�erent lifestyles, diets or diseases which in�uence individual lifetimes.
¿e di�erences can be modelled by the frailty parameter and its distribution. In the presented case,
each member of the group has an individual Gompertz distributed remaining lifetime where the
parameter ξ in eq. (3.35) is randomly chosen from a speci�ed gamma distribution. Taking the above
mixture leads to Kannisto distributed lifetimes of that population.

Remark 3.3.9. ¿e mixture as given in eq. (3.34) can also be interpreted as a Gamma-Gompertz
frailty model. Frailty models are popular in mortality analysis of heterogeneous population groups,
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see, e.g., Yashin (2004) and Vaupel and Yashin (1985). ¿ey are characterized in terms of hazard rates
with a multiplicative decomposition into a frailty parameter and a baseline hazard rate h0. In the
case above, the hazard rate of the Gompertz distribution is

h𝒢(x ⋃︀ ξ,β) = ξ βeβx = ξ h0(x ⋃︀ β),
where ξ is called the frailty parameter and is treated as non-negative random variable following, e.g.,
a gamma distribution such as in Proposition 3.3.7.

3.3.4 | Connection of the Extended Exponential Distribution and the Logistic Distribution

¿e following result shows that the extended exponential distribution and the Kannisto distribution
correspond to zero-truncated and frailty extended logistic distribution.

Proposition 3.3.10. ¿e extended exponential distribution ℰ(γ,θ ,β) can be obtained as a truncation
of a frailty extended logistic distribution ℒ(µ,s) with frailty θ, µ = ln(γ − 1)⇑β and s = 1⇑β.
Proof. Let X ∼ ℒ(µ,s) be a logistic distributed random variable with survival function (see eq. (3.23))

Sℒ(x ⋃︀ µ,s) = 1
e
x−µ
s + 1 , for x ∈ R, µ ∈ R, s > 0.

A frailty extension (see De�nition 3.2.18) of ℒ(µ,s) is a distribution with survival function
Sℒθ (x ⋃︀ µ,s,θ) = ( 1

e
x−µ
s + 1)

θ

, for x ∈ R, µ ∈ R, s > 0, θ > 0.
Truncation of Sℒθ (x ⋃︀ ln(γ − 1)⇑β,1⇑β,θ) at 0 leads to a distribution with survival function

Sℒθ (x ⋃︀ ln(γ−1)β , 1β ,θ)
Sℒθ (0 ⋃︀ ln(γ−1)β , 1β ,θ) = ( γ−1

γ+eβx−1)θ
( γ−1γ )θ = ( γ

γ + eβx − 1)
θ

.

¿e right-hand side reveals the survival function of the distribution ℰ(γ,θ ,β) as de�ned in eq. (3.20).
Note that by Proposition 3.3.1, a truncation at 0 with frailty θ = 1

β and γ = 1 + e−α leads to the
Kannisto distribution𝒦(α,β).
Figure 3.2 displays an overview of the connections revealed by Propositions 3.3.1, 3.3.4, 3.3.6, 3.3.7

and 3.3.10.
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ℒθ ( ln(γ)−1β , 1β) 𝒫II(γ, θ)

ℰ(γ, θ , β)

𝒢(ξ, β) 𝒦(α, β)

1
β ln(X + 1)P (︀X ⋃︀ X ≥ 0⌋︀

lim
γ→∞ℰ(γ, γξ, β)

ξ ∼ Γ ( 1
1+e−α , 1

β )-mix

γ = 1 + e−α , θ = 1
β

ξ ∼ Γ ( 1γ , θ)-mix eY⇑θ − 1 Y ∼ 𝒦(− ln (γ − 1), 1
θ )

Figure 3.2:Relationships between theGompertz,Pareto,Logistic,Kannisto, and the extended exponential
distribution.

3.4 | Generalized Hypergeometric Functions

In Section 3.5, we will proceed with the characterization of the extended exponential and the Kannisto
distribution. As will be shown there, many characteristics of interest such as the central moments, the
Fisher information or the Kullback-Leibler divergence do not have closed form representations but
can be expressed in terms of generalized hypergeometric functions. In preparation for the upcoming
sections, we give a formal de�nition and add some remarks on generalized hypergeometric functions.
A standard reference on the following topic is the book by Slater (1966).
¿e generalized hypergeometric function pFq is de�ned by the following series expansion

pFq(︀a1, . . . ,ap; b1, . . . ,bq; z⌋︀ = ∞∑
n=0

(a1)n . . . (ap)n(b1)n . . . (bq)n zn

n!
; p,q ∈ N0, (3.36)

where a1, . . . ,ap and b1, . . . ,bq are complex numbers, and

(ai)n = Γ(ai + n)
Γ(ai) = ai(ai + 1)(ai + 2)⋯(ai + n − 1), (ai)0 = 1

is a Pochhammer symbol or also called ascending factorial. ¿e generalized hypergeometric function
is invariant under permutations of the �rst p parameters a1, . . . ,ap and invariant under permutations
of the last q parameters b1, . . . ,bq. It is also clear from the de�nition that if anyone of the �rst p
parameters, say ai , coincides with one of the last q parameters, say b j, then pFq reduces to

p−1Fq−1(︀a1, . . . ,ai−1,ai+1, . . . ,ap; b1, . . . ,b j−1,b j+1, . . . ,bq; z⌋︀.
Using the gamma function, eq. (3.36) can be expressed as

pFq ⌊︀ a1, . . . ,ap
b1, . . . ,bq

; z}︀ ∶= ∞∑
k=0

p∏
i=1

Γ(k + ai)
Γ(ai)

q∏
j=1

Γ(b j)
Γ(k + b j) z

k

k!
p,q ∈ N0. (3.37)
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Note, the le -hand side of the above equation is a common alternative notation for generalized
hypergeometric functions. Hypergeometric functions have been studied for more than two centuries
by in�uencing mathematicians such as Euler, Gauss, and Riemann, see, e.g., Cattani (2006) for
historical notes. For p = 2 and q = 1 the series eq. (3.37) is known as the Gauss hypergeometric
series. It is well-known (Bailey, 1935; Slater, 1966) that for p ≤ q the series converges for ⋃︀z⋃︀ < ∞. For
p = q + 1 convergence occurs for ⋃︀z⋃︀ < 1 and when p > q + 1 the series diverges for all z ≠ 0. For⋃︀z⋃︀ ≥ 1 many generalized hypergeometric functions pFq can be analytically continued. For instance,
Nørlund (1955) shows that for p = q+ 1 any hypergeometric series in powers of z can be transformed
into a series in powers of z(z−1) such that the convergence holds for Re(z) < 1

2 . In particular, analytic
continuation provided by Nørlund (1955) is given by the transformation

nFn−1]︀ a1,a2, . . . ,an
b1, b2, . . . ,bn−1 ; z{︀ = (1 − z)−a1

∞∑
m=0

(a1)m
m! nFn−1]︀ −m, a2, . . . ,anb1,b2, . . . ,bn−1 ; 1{︀ ( z

z − 1)
m
. (3.38)

¿e series on the right-hand side converges for z < 1
2 . For n = 2, the relation given in eq. (3.38)

reduces to the so-called Pfa� ’s transformations

2F1]︀a,bc ; z{︀ = (1 − z)−a 2F1]︀a,c − bc
; z
z − 1{︀ = (1 − z)−b 2F1]︀ c − a,bc

; z
z − 1{︀ . (3.39)

¿e transformation of eq. (3.39) will be used in Sections 3.5.5 and 3.5.8. E�cient numerical methods
for evaluation of generalized hypergeometric functions can be found in, e.g., Forrey (1997) and
Pearson (2009).

3.5 | Characteristics and Properties of the Kannisto and the Extended Exponential
Distribution

In the following section, we provide a characterization of the Kannisto and the extended exponential
distribution and study their properties. Both distributions are, as de�ned in Section 3.2.7, speci�ed
by logistic hazard rate functions with two or three degrees of freedom. ¿e representatives of both
distributions are summarized in Tables 3.1 and 3.2. See also Figure 3.3 for example graphs of the
Kannisto hazard rates, survival, and density function for some estimated parameters for the KAN
model in Section 1.9.2.

3.5.1 | Basic Properties

Initially, we deduce some basic properties of the Kannisto and the extended exponential distribution
including some measures of central tendency, tail behaviour and characteristic of the hazard rate
functions.

Unimodality

A distribution is called unimodal if the cumulative distribution function F(x) is convex for x < xmode
and concave for x > xmode, see Marshall and Olkin (2007). By di�erentiating the density of ℰ(γ,θ ,β)
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(a) Hazard rate function h𝒦(x ⋃︀ α,β).
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(b) Survival function S𝒦(x ⋃︀ α,β).
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(c) Probability density function f𝒦(x ⋃︀ α,β).
Figure 3.3:Hazard, survival, and density function of the Kannisto distribution for the parameters of the
Swedish female population at the years t ∈ {1910,1970,2010}.



182 3 Characterization of the Kannisto and the Extended Exponential Distribution

Table 3.1: Representatives of the extended exponential distribution ℰ(γ,θ ,β).
ext. exponential distribution X ∼ ℰ(γ,θ ,β) with γ > 1, θ > 0, β > 0
PDF fℰ(x ⋃︀ γ,θ ,β) = γθβθeβx (γ + eβx − 1)−(θ+1) 1x≥0
CDF F𝒦(x ⋃︀ α,β) = 1 − ( γ

eβx−(1−γ))θ 1x≥0
survival function Sℰ(x ⋃︀ γ,θ ,β) = ( γ

eβx−(1−γ))θ 1x≥0
hazard rate hℰ(x ⋃︀ γ,θ ,β) = βθeβx

eβx−(1−γ)1x≥0

Table 3.2: Representatives of the Kannisto distribution𝒦(α,β).
Kannisto distribution X ∼ 𝒦(α,β) with α ∈ R and β ∈ R+
PDF f𝒦(x ⋃︀ α,β) = (1 + eα) 1

β eα+βx (1 + eα+βx)− 1+β
β 1x≥0

CDF F𝒦(x ⋃︀ α,β) = 1 − (1 + eα) 1
β (1 + eα+βx)− 1

β 1x≥0
survival function S𝒦(x ⋃︀ α,β) = (1 + eα) 1

β (1 + eα+βx)− 1
β 1x≥0

hazard rate h𝒦(x ⋃︀ α,β) = eα+βx (1 + eα+βx)−1 1x≥0

one can verify that this density is unimodal with the mode at

xmodeℰ = max{0, 1
β
ln(γ − 1

θ
)(︀ . (3.40)

¿e maximal value of the density obtained at the mode is given by

fℰ(xmodeℰ ) = )︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀
βθ
γ , if xmodeℰ = 0
β ( θ

θ+1)θ+1 ( γ
γ−1)θ , if xmodeℰ ≠ 0. (3.41)

From eqs. (3.40) and (3.41) and by Proposition 3.3.1, we see that the mode of the Kannisto distribution𝒦(α,β) is given by
xmode𝒦 = max{0, 1

β
(ln β − α)(︀

For the Kannisto density, the maximal value obtained at the mode is then given by

f𝒦(xmode𝒦 ) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

1
e−α+1 , if xmode𝒦 = 0
β( eα+1β+1 ) 1β

β+1 , if xmode𝒦 ≠ 0.
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Quantiles

¿e quantile functions of ℰ(γ,θ ,β) and𝒦(α,β) are given by (cf., Proposition 3.3.5)
Qℰ(p ⋃︀ γ,θ ,β) = 1

β
ln (1 − γ + γ(1 − p)−1⇑θ) (3.42)

and

Q𝒦(p ⋃︀ α,β) = 1
β
ln ((e−α + 1) (1 − p)−β − e−α) .

From eq. (3.42), we obtain

medℰ = Qℰ (12) = 1
β
ln (1 − γ + γ21⇑θ) ,

as the median of ℰ(γ,θ ,β) and
med𝒦 = Q𝒦 (12) = ln (2β (eα + 1) − 1)

β
− α
β

as the median of the distribution𝒦(α,β). While the mode and the median, which can be considered
as measures of central tendency, are given in closed forms, this is not the case anymore for the
expectation or higher moments, as we will see later.

Cumulative Hazard Rates

¿e cumulative hazard rates of the distributions ℰ(γ,θ ,β) and 𝒦(α,β) (see De�nition 3.2.8) are
given by

Hℰ(x ⋃︀ γ,θ ,β) = x

∫
0

hℰ(x ⋃︀ γ,θ ,β)dy = θ ln(γ − 1 + eβxγ
) (3.43)

and

H𝒦(x ⋃︀ α,β) = x

∫
0

h𝒦(y ⋃︀ α,β)dy = 1
β
ln(1 + eα+βx

1 + eα ) .
By using the cumulative hazard rates, we derive the tail behaviour of both distributions in the next
proposition.

Proposition 3.5.1. ¿e Kannisto and the extended exponential distribution are light-tailed.

Proof. By Proposition 3.2.10, in order to prove that a distribution is light-tailed, we need to show

lim
x→∞

H(x)
x

≠ 0,
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¿us, by using eq. (3.43), we have

lim
x→∞

Hℰ(x ⋃︀ γ,θ ,β)
x

= lim
x→∞

θ ln( γ−1+eβxγ )
x

= lim
x→∞

βθeβx

γ − 1 + eβx = βθ ≠ 0.
For the Kannisto distribution, we have by Proposition 3.3.1 limx→∞ H𝒦(x ⋃︀ α ,β)⇑x = 1.
Initial and Limiting Values of the Hazard Rate Functions

¿e starting values of the ℰ(γ,θ ,β) and𝒦(α,β) hazard rates are determined by
hℰ(0 ⋃︀ γ,θ ,β) = βθ

γ

and

h𝒦(0 ⋃︀ α,β) = 1
1 + e−α .

¿e turning points of the logistic growth of the hazard rates are located at x = ln(γ − 1)⇑β for ℰ(γ,θ ,β)
and at x = −α⇑β for the𝒦(α,β) distribution. For the limiting hazard values, we have

lim
x→∞ hℰ(x ⋃︀ γ,θ ,β) = βθ

and

lim
x→∞ h𝒦(x ⋃︀ α,β) = 1.

While the Kannisto hazard rate is bounded by 1, the additional degree of freedom of the extended
exponential distribution in�uences the upper limit of the hazard rate function.

3.5.2 | Residual Life Distribution

According to De�nition 3.2.13 the survival function S tℰ of the residual life distribution of a t-survivor
is given by

S tℰ = Sℰ(x + t ⋃︀ γ,θ ,β)
Sℰ(x ⋃︀ γ,θ ,β) = (γ + eβ(t+x) − 1

γ + eβt − 1 )θ .
¿e next proposition states that the residual life distributions ofℰ(x ⋃︀ γ,θ ,β) and𝒦(x ⋃︀ α,β) converge
to exponential distributions.

Proposition 3.5.2. ¿e residual life distribution of ℰ(x ⋃︀ γ,θ ,β) converges in distribution to the
exponential distribution Exp(βθ).
Proof. ¿is is a direct consequence of Proposition 3.2.14, where for any hazard rate h with a �nite
positive limit, limx→∞ h(x) = λ, the residual life distribution converges to an exponential distribution
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with parameter λ for t →∞. Alternatively, it can be obtained by direct calculation

lim
t→∞ S tℰ = lim

t→∞
Sℰ(x + t ⋃︀ γ,θ ,β)
Sℰ(x ⋃︀ γ,θ ,β) = lim

t→∞(γ + eβ(t+x) − 1
γ + eβt − 1 )θ = e−βθx .

By Proposition 3.3.1, we have for𝒦(α,β) that the limiting distribution of a t-survivor converges to
the distribution Exp (1) as t →∞.

3.5.3 | Mean Residual Life Function

By De�nition 3.2.15 the mean residual life function ν(x) is the remaining life expectancy of an
x-survivor. In the following two results, we derive the mean residual life functions of the Kannisto
and the extended exponential distribution.

Proposition 3.5.3. ¿emean residual life function νℰ(x ⋃︀ γ,θ ,β) of an x-survivor with an extended
exponential distributed lifetime X ∼ ℰ(γ,θ ,β) is given by

νℰ(x ⋃︀ γ,θ ,β) = e−βθx (eβx + γ − 1)θ
βθ 2F1 )︀θ , θ; θ + 1; e−βx(1 − γ)⌈︀ (3.44)

or equivalently by

νℰ(x ⋃︀ γ,θ ,β) = 1
β
(γ − 1 + eβx

γ − 1 )θ B γ−1
γ+eβx−1

(θ ,0), (3.45)

where Bz(a,b) is the incomplete beta function de�ned as
Bz(a,b) = z

∫
0

ta−1(1 − t)b−1 dt. (3.46)

Proof. ¿emean residual life function at age x is de�ned as

νℰ(x ⋃︀ γ,θ ,β) = ∞
∫
0

Sℰ(x + t ⋃︀ γ,θ ,β)
Sℰ(x ⋃︀ γ,θ ,β) dt

= 1
Sℰ(x ⋃︀ γ,θ ,β)

∞
∫
x

Sℰ(z ⋃︀ γ,θ ,β) dz. (3.47)

¿e factor outside the integral is the reciprocal of the survival function given as

1
Sℰ(x ⋃︀ γ,θ ,β) = ( γ

γ + eβx − 1)
−θ
. (3.48)

Let I be the integral term of eq. (3.47). ¿e proof is obtained by direct computation using the integral
representation of the incomplete beta function Bz(a,b) and the connection to the hypergeometric
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function 2F1 as will be given in eq. (3.54). We have

I = ∞
∫
x

Sℰ(z ⋃︀ γ,θ ,β) dz
= ∞
∫
x

( γ
γ + eβz − 1)

θ

dz

= γθ

β

(eβx−(1−γ))−1
∫
0

sθ−1
1 − (γ − 1)s ds (3.49)

= γθ

β(γ − 1)θ
γ−1

γ−1+eβx
∫
0

tθ−1(1 − t)−1dt (3.50)

= γθ

β(γ − 1)θ B γ−1
γ−1+exβ

(θ ,0) (3.51)

= γθ

βθ(γ − 1 + exβ)θ 2F1 ⌊︀θ ,1; θ + 1, γ − 1
γ − 1 + exβ }︀ (3.52)

= γθ

βθ
e−βθx 2F1 )︀θ , θ; θ + 1; e−xβ(1 − γ)⌈︀ . (3.53)

Equation (3.49) is obtained by substitution

z ∶= 1
β
ln(1 + s − γs

s
) ,

and eq. (3.50) by substitution

s ∶= t
γ − 1 .

¿e integraleq. (3.50) corresponds to the incomplete beta function. To derive eq. (3.52) and eq. (3.53),
we use the identities

Bz(a,b) = za

a 2F1(︀a,1 − b; a + 1,z⌋︀ (3.54)

and

2F1(︀a,b; c; z⌋︀ = (1 − z)−a2F1 ]︀a,c − b; c; z
z − 1{︀

provided byOlver (2010). Multiplying eq. (3.53) or eq. (3.51) by the factor given in eq. (3.48) completes
the proof.

Corollary 3.5.4. ¿e mean residual life function ν𝒦(x ⋃︀ α,β) of an x-survivor with a Kannisto
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distributed lifetime X ∼ 𝒦(α,β) is given by
ν𝒦(x ⋃︀ α,β) = e−x (e−α + eβx) 1

β
2 F1 ⌊︀ 1β , 1β ; 1 + 1

β
;−e−(α+xβ)}︀

or alternatively by

ν𝒦(x ⋃︀ α,β) = 1
β
(1 + eα)1⇑β B 1

1+eα+xβ ( 1β ,0) .
Proof. ¿e result can be obtained directly from Propositions 3.3.1 and 3.5.3.

An illustration of the Kannisto mean residual life function for some reference periods is provided
in Figure 3.4. Note that for the mean residual lifetime of the extended exponential distribution, we
have

lim
x→∞ νℰ(x ⋃︀ γ,θ ,β) = 1

βθ
.

¿us, the life expectancy of an x-survivor has a lower strictly positive bound 1⇑βθ. ¿is means,
regardless how high the attained age x is, the remaining life expectancy does not drop below that
particular value. ¿at speci�c property of the extended exponential or the Kannisto distribution
di�ers from other popular life distributions such as the Weibull or Gompertz distribution. For
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Figure 3.4: Post-age-60mean residual life function ν𝒦(x ⋃︀ αt ,βt) of the Kannisto distribution for Swedish
females, for the years t ∈ {1910,1970,2010}.
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instance, the mean residual life function of the Gompertz distribution is obtained by

ν𝒢(x ⋃︀ ξ,κ) = ∞
∫
0

S𝒢(x + t ⋃︀ ξ,κ)
S𝒢(x ⋃︀ ξ,κ) dt

= ∞
∫
0

eξ(1−e(t+x)κ)
eξ(1−exκ) dt

= ∞
∫
0

e−ξeκx(eκt−1)dt

= −1
κ
eξe

κx
Ei (−exκ ξ) , (3.55)

where the exponential integral Ei(x) is de�ned for x ∈ R≠0 as

Ei(x) = − ∞
∫−x

e−t
t
dt.

Taking the limit x →∞ in eq. (3.55) leads to

lim
x→∞ ν𝒢(x ⋃︀ ξ,κ) = 0.

Using Proposition 3.5.3 and the fact that evaluating the mean residual life at zero leads to the
expectation of the corresponding lifetime (see page 164), we can deduce analytic expressions for the
expectation of the ℰ(γ,θ ,β) and𝒦(α,β) distribution.

Corollary 3.5.5. ¿e expectation of the extended exponential distribution X ∼ ℰ(γ,θ ,β) is given by
E(︀X⌋︀ = γθ

βθ 2F1(︀θ , θ; θ + 1; 1 − γ⌋︀ (3.56)

= γθ

β(γ − 1)θ B1− 1
γ
(θ , 0). (3.57)

Proof. ¿emean residual life function evaluated at zero gives the expectation of the corresponding
distribution, since Sℰ(0 ⋃︀ γ,θ ,β) = 1, we have

νℰ(0 ⋃︀ γ,θ ,β) = 1
Sℰ(0 ⋃︀ γ,θ ,β)

∞
∫
0

Sℰ(z ⋃︀ γ,θ ,β) dz = E(︀X⌋︀.
¿us, setting x = 0 in eqs. (3.44) and (3.45) leads to eqs. (3.56) and (3.57).
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Corollary 3.5.6. ¿e expectation of the Kannisto distribution X ∼ 𝒦(α,β) is given by
E(︀X⌋︀ = (1 + e−α) 1

β 2F1 ⌊︀ 1β , 1β ; 1 + 1
β
;−e−α}︀

= 1
β
(1 + eα) 1

β B 1
1+eα ( 1β ,0) .

Proof. ¿is follows directly from Corollary 3.5.4 using the fact that ν(0) = E(︀X⌋︀.
3.5.4 | Moment Generating Function of the Kannisto and the Extended Exponential Distribution

¿emoment generating function is an alternative representative of a probability distribution of a
real-valued random variable. ¿e following result provides themoment generating function (mgf) of
an extended exponential distribution.

Proposition 3.5.7. ¿emoment generating function of the extended exponential distribution X ∼ℰ(γ,θ ,β) is given by
mgfℰ(s ⋃︀ γ,θ ,β) = θγθ(γ − 1) s

β−θB1− 1
γ
(θ − s

β
,1 + s

β
) , for s < βθ , (3.58)

where Bz(a,b) is the incomplete beta function as de�ned in eq. (3.46)
Proof. Recall from eq. (3.21) that the density fℰ(x ⋃︀ γ,θ ,β) of X ∼ ℰ(γ,θ ,β) is given by

fℰ(x ⋃︀ γ,θ ,β) = βθ
γ
eβx ( γ

γ + eβx − 1)
θ+1

.

We proof eq. (3.58) by direct calculation. We have

mgfX(s ⋃︀ γ,θ ,β) = E(︀esX⌋︀
= βθ

γ

∞
∫
0

esx eβx ( γ
γ + eβx − 1)

θ+1
dx (3.59)

= θ 1

∫
0

zθ−1 (γ (1
z
− 1) + 1)s⇑β dz (3.60)

= θγθ(γ − 1) s
β−θ

1− 1
γ

∫
0

tθ−1 (1
t
− 1)s⇑β dt (3.61)

= θγθ(γ − 1) s
β−θ

1− 1
γ

∫
0

tθ− s
β−1(1 − t) s

β dt (3.62)

= θγθ(γ − 1) s
β−θB1− 1

γ
(θ − s

β
,1 + s

β
) , for s < βθ .
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To obtain eq. (3.60), we use the substitution x ∶= 1⇑β ln ( γ−γz+zz ) and for eq. (3.61) the substitution z ∶=
t γ
γ−1 . ¿e integral expression in eq. (3.62) is the incomplete beta function as given in eq. (3.46).

By using the hypergeometric representation of the incomplete beta function, i.e.,

Bx(a,b) = xa(1 − x)b
a 2F1 (︀a + b,1; a + 1; x⌋︀ , (3.63)

(see, e.g., Olver, 2010) we can represent the moment generating function of the extended exponential
distribution in terms of a hypergeometric function. Using eq. (3.63), we obtain

mgfX(s ⋃︀ γ,θ ,β) = βθ
γ(βθ − s) 2F1 ⌊︀1,θ + 1; θ + 1 − s

β
; 1 − 1

γ
}︀ , for s < βθ . (3.64)

Corollary 3.5.8. ¿emoment generating function of the Kannisto distribution X ∼ 𝒦(α,β) is given
by

mgf𝒦(s ⋃︀ α,β) = E(︀esX⌋︀ = 1
β
e− α

β (1 + e−α) s−1
β B 1

1+eα (1 − sβ ,1 + s
β
) , for s < 1. (3.65)

Proof. Weuse again the fact that theKannisto distribution is a special case of the extended exponential
distribution as shown in Proposition 3.3.1 and substitute γ = 1 + e−α and θ = 1⇑β into eq. (3.58).
¿e representation of eq. (3.65) in terms of a hypergeometric function follows by substituting

θ = 1⇑β and γ = 1 + e−α into eq. (3.64). ¿us, we have

mgf𝒦(s ⋃︀ α,β) = 1(1 + e−α) (1 − s) 2F1 ⌊︀1,1 + 1
β
; 1 + 1

β
− s
β
; 1
1 + eα }︀ , for s < 1.

¿enext result is not directly related to themoment generating function of the extended exponential
distribution. However, it turns out that the life expectancy of a competing risks lifetime, as speci�ed
in the following proposition, involves an integral which is of the same type as in eq. (3.59).
Corollary 3.5.9. Let Z ∶= min(X ,Y) be a competing risks lifetime of two independent risk factors,
where the �rst factor is X ∼ ℰ(γ,θ ,β) distributed and the second follows an exponential distribution,
i.e., Y ∼ Exp(λ). ¿en, the expectation Z is given by

E(︀Z⌋︀ = 1
βθ + λ 2F1 ⌊︀1,θ; 1 + θ + λ

β
; 1 − 1

γ
}︀ .

Proof. Since Z is a competing risks lifetime variable, it has the hazard rate (see Proposition 3.2.17)

hZ(x ⋃︀ γ,θ ,β,λ) = hℰ + hExp = βθeβx

eβx − (1 − γ) + λ,
where hℰ is the hazard rate of ℰ(γ,θ ,β) and hExp the hazard rate of an exponential distribution with
parameter λ. ¿e survival function SZ is given by the product of the individual survival functions,



3.5 Characteristics and Properties of the Kannisto and the Extended Exponential Distribution 191

i.e.,

SZ(x ⋃︀ γ,θ ,β,λ) = e−∫ x0 hZ(z⋃︀γ,θ ,β,λ) dz = Sℰ(x ⋃︀ γ,θ ,β) SExp(x ⋃︀ λ) = ( γ
eβx − (1 − γ))

θ

e−λx .

¿e expectation of Z is given by the integral ∫ ∞0 Sℰ(x ⋃︀ γ,θ ,β) SExp(x ⋃︀ λ) dx. Comparing the
corresponding integral with the integral involved in the computation of eq. (3.59), we observe that
E(︀Z⌋︀ can be written in terms of the moment generating function of the extended exponential
distribution as derived in Proposition 3.5.7. Using that, we obtain

E(︀Z⌋︀ = ∞
∫
0

Sℰ(x ⋃︀ γ,θ ,β) SExp(x ⋃︀ λ)dx
= ∞
∫
0

( γ
eβx − (1 − γ))

θ

e−λx dx

= γ
βθ

mgfℰ(−(β + λ) ⋃︀ γ,θ − 1,β)
= 1
βθ + λ 2F1 ⌊︀1,θ; 1 + θ + λ

β
; 1 − 1

γ
}︀ .

3.5.5 | Moments of the Kannisto and the Extended Exponential Distribution

In the following section, we will derive a concrete analytic expression of the n-th moment for
the extended exponential as well as for the Kannisto distribution. Since the extended exponential
distribution has a non-decreasing hazard function we know that by Proposition 3.2.12 all moments
exist, i.e., for X ∼ ℰ(γ,θ ,β), we have E(︀Xn⌋︀ < ∞. ¿e central moments could also be obtained by
the moment generating function as given in Proposition 3.5.7. However, that would involve the
di�erentiation of the incomplete beta function in both arguments, cf., eq. (3.58). ¿e following
result provides an expression of the moments of ℰ(γ,θ ,β) in terms of generalized hypergeometric
functions.

¿eorem 3.5.10. ¿e n-th moment of the extended exponential random variable X ∼ ℰ(γ,θ ,β) with
survival function

Sℰ(x ⋃︀ γ,θ ,β) = ( γ
eβx − (1 − γ))

θ

for x ≥ 0, β,θ > 0, γ ≥ 1,
is given by

E(︀Xn⌋︀ = n! γθ

βnθn n+1Fn
⎨⎝⎝⎝⎝⎝⎝⎪
θ , . . . ,θ)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

n+1
; 1 + θ , . . . ,1 + θ)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

n

; 1 − γ
⎬⎠⎠⎠⎠⎠⎠⎮
.
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Proof. We start with the series representation of generalized hypergeometric function. Further
transformations will be given below.

n+1Fn
⎨⎝⎝⎝⎝⎝⎝⎪
θ , . . . ,θ)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

n+1
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n

; 1 − γ
⎬⎠⎠⎠⎠⎠⎠⎮
= ∞∑
k=0
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n

(1 − γ)k
k!

= ∞∑
k=0

Γ(θ + k)n+1
Γ(θ)n+1 Γ(1 + θ)n

Γ(k + 1 + θ)n (1 − γ)
k

k!
(3.66)

= ∞∑
k=0

θn(θ + k)n (θ)k (1 − γ)
k

k!
(3.67)

= ∞∑
k=0 θ

n(θ)k (1 − γ)kk!
1

Γ(n)
∞
∫
0

zn−1e−kze−θz dz (3.68)

= θn

Γ(n)
∞
∫
0

zn−1e−θz ( ∞∑
k=0(θ)k

(1 − γ)ke−kz
k!

) dz (3.69)
= θn

Γ(n)
∞
∫
0

zn−1e−θz ( ∞∑
k=0(θ)k

(e−z(1 − γ))k
k!

) dz
= θn

Γ(n)
∞
∫
0

zn−1e−θz 1F0 (︀θ; ; e−z(1 − γ)⌋︀ dz (3.70)

= θn

Γ(n)
∞
∫
0

zn−1e−θz (1 − e−z(1 − γ))−θ dz (3.71)

= θn(n − 1)!
∞
∫
0

zn−1 ( e−z
1 − e−z(1 − γ))

θ

dz

= θn(n − 1)!
∞
∫
0

zn−1 ( 1
ez − (1 − γ))

θ

dz

= θnβn(n − 1)!
∞
∫
0

xn−1 ( 1
eβx − (1 − γ))

θ

dx

= θnβn

γθ(n − 1)!
∞
∫
0

xn−1 ( γ
eβx − (1 − γ))

θ

dx (3.72)

= θnβn

γθn!

∞
∫
0

n xn−1Sℰ(x ⋃︀ γ,θ ,β) dx
= θnβn

γθn!
E(︀Xn⌋︀.
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Equation (3.66) follows directly from the de�nition of the Pochhammer symbols as rising factorials
given by

(θ)n = θ(θ + 1)⋯(θ + n) = Γ(θ + n)
Γ(θ) .

Equation (3.67) follows from the identity

θn(θ + k)n (θ)k = Γ(θ + k)n+1
Γ(θ)n+1 Γ(1 + θ)n

Γ(k + 1 + θ)n ,
hence the gamma function satis�es the functional equation Γ(θ + 1) = θ Γ(θ). Equation (3.68) is
derived by the Laplace transformation where the term Γ(n)(θ + k)−n is replaced by the Laplace
transform of yn−1 at θ + k, i.e.,

Γ(n)(θ + k)n = ∞
∫
0

yn−1e−(θ+k)y dy.

Equation (3.69) is derived by interchanging the order summation and integration using Fubini’s the-
orem, considering the sum as integration with respect to a counting measure on N0. Equation (3.70)
is obtained by recognizing the series representation of a hypergeometric function 1F0, i.e.,

1F0 (︀θ; ; e−z(1 − γ)⌋︀ = ∞∑
k=0(θ)k

(e−z(1 − γ))k
k!

,

which is simpli�ed in eq. (3.71) using the identity

1F0(︀a; ; z⌋︀ = (1 − z)a ,
which is stated in Olver (2010). Rearranging terms and the substitution z = βx yields eq. (3.72). From
eq. (3.72), we see that scaling the generalized hypergeometric function with the factor n! γθ

βnθn results in
the desired expression

E(︀Xn⌋︀ = n! γθ

βnθn n+1Fn
⎨⎝⎝⎝⎝⎝⎝⎪
θ , . . . ,θ)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

n+1
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n

; 1 − γ
⎬⎠⎠⎠⎠⎠⎠⎮
.
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Corollary 3.5.11. ¿e n-th moment of the Kannisto distribution𝒦(α,β) is given by

E(︀Xn⌋︀ = n! (1 + e−α) 1
β n+1Fn

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪
1
β
, . . . , 1

β)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
n+1

; 1 + 1
β
, . . . ,1 + 1
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n

;−e−α
⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮
. (3.73)

Proof. ¿e result is a consequence of ¿eorem 3.5.10 and the fact that the Kannisto distribution is a
special case of the extended exponential distribution as shown in Proposition 3.3.1.

For n = 1 in eq. (3.73), we obtain the expectation of a𝒦(α,β) distributed lifetime X as

E(︀X⌋︀ = (1 + e−α) 1
β 2F1 ⌊︀ 1β , 1β ; 1 + 1

β
;−e−α}︀ . (3.74)

¿is result corresponds to the expression derived from the mean residual life function as in Corol-
lary 3.5.4. By using Pfa� ’s transformation formula for hypergeometric functions

2F1 (︀a,b; c; z⌋︀ = (1 − z)−b2F1 ]︀c − a,b; c; z
z − 1{︀ , (3.75)

we can obtain

E(︀X⌋︀ = 2F1 ⌊︀1, 1β ; 1 + 1
β
; 1
1 + eα }︀

as an alternative representation of eq. (3.74).
Let ν𝒦(α,β) be the expectation of𝒦(α,β), then ν𝒦(α,β) is decreasing for an increasing α, since

1
1 + eα1 ≤ 1

1 + eα2 for α1 ≥ α2,
and it is also decreasing for increasing β, since

(1⇑β)n(1 + 1⇑β)n = 1
βn + 1

is decreasing for increasing β and any �xed n ∈ N0.

Proposition 3.5.12. ¿e variance of the Kannisto distribution is given by

V(X) = C(α,β)⎛⎝2 3F2 ⌊︀ 1β , 1β , 1β ; 1 + 1
β
,1 + 1

β
;−e−α}︀ − C(α,β) 2F1 ⌊︀ 1β , 1β ; 1 + 1

β
;−e−α}︀2⎞⎠

with

C(α,β) ∶= (1 + e−α) 1
β .
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Proof. Use eq. (3.73) to substitute in V(X) = E(︀X2⌋︀ −E(︀X⌋︀2.
Next, we will list some asymptotic properties of the𝒦(α,β) and ℰ(γ,θ ,β)moments which will

require the following de�nition.

Definition 3.5.13 (Asymptotic equivalence). Let f and g be real valued functions. We say that f and
g are asymptotically equal (at∞), if

lim
x→∞

f (x)
g(x) = 1.

Asymptotic equivalence will be denoted by f (x) ∼ g(x) and means that the growth of f (x) and
g(x) is of the same type when x gets large.
Remark 3.5.14 (Approximation and Asymptotic Behaviour of the Kannisto Expectation). ¿e expecta-
tion function ν𝒦(α,β) has the following asymptotic behaviour

lim
α→∞ ν𝒦(α,β) = lim

β→∞ ν𝒦(α,β) = 1, (3.76)

lim
β→0 ν𝒦(α,β) = 1 + e−α , (3.77)

lim
α→−∞

ν𝒦(α,β)
α

= − 1
β
.

¿e limits of eqs. (3.76) and (3.77) can also be established from the limiting distributions, which is
the exponential distribution with parameter 1 in the �rst case and the exponential distribution with
parameter (1 + e−α)−1 in the second case, cf., Figure 3.1 for an overview of the Kannisto limiting
distributions. Taylor series expansion of ν𝒦(α,β) for α at −∞, which is essentially an expansion of

ν𝒦 (ln(1 − zz ) ,β) = 2F1 ⌊︀1, 1β ; 1 + 1
β
; z}︀

at z = 1 with z ∶= 1
1+eα shows that for eα ≈ 0 the expectation can be approximated by

E(︀X⌋︀ = 2F1 ⌊︀1, 1β ; 1 + 1
β
; 1
1 + eα }︀ ≈ −αβ − ψ(1) + ψ (1⇑β)

β
,

where ψ denotes the polygamma function, de�ned by

ψ(z) = Γ′(z)
Γ(z) ,

and ψ(1) = −γ̃ ≈ −0.57721 is also known as the Euler-Mascheroni constant. Comparing this
linearization with regard to the parameter α, we observe a relative error of about 2.5% in the parameter
region obtained for real life data of the past century, see Table 1.15. Note that the approximation tends
to improve since the observed α values decrease over time.
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Remark 3.5.15 (Asymptotic Properties of the ℰ(γ,θ ,β) n-th moments).
In the following part, we list some asymptotic properties and special cases for the central moments
of the distribution ℰ(γ,θ ,β).
(a) For X ∼ ℰ(γ,θ ,β), we have

lim
γ→∞

E(︀Xn⌋︀(−1)nβ−n ln(γ − 1)n = 1,
i.e., for γ →∞ the n-th moment is asymptotically equivalent to the function

λ(γ ⋃︀ β,n) ∶= (−1)nβ−n ln(γ − 1)n .
(b) For γ → 1, the extended exponential distribution X ∼ ℰ(γ,θ ,β) converges to the exponential

distribution Exp(βθ), hence we have
lim
γ→1E(︀Xn⌋︀ = n!

βnθn
.

(c) Since

n+1Fn (︀θ , . . . ,θ; 1 + θ , . . . ,1 + θ; 1 − γ⌋︀⋂︀θ=0 = 1,
we have

lim
θ→0

E(︀Xn⌋︀
n! γθ
βnθn

= 1.

(d) For θ = 1, we have the special case where only a tilt extension of the exponential distribution is
considered. ¿e generalized hypergeometric function n+1Fn(︀θ , . . . ,θ; 1+ θ , . . . ,1+ θ⌋︀ reduces
to the polylogarithm function. ¿is can be deduced by using the series representation of the
generalized hypergeometric function and by simplifying the integer valued Pochhammer
functions. ¿us,

n+1Fn ⌊︀ 1, . . . ,12, . . . , 2 ; 1 − γ}︀ = ∞∑
m=0
∏n+1

i=1 (1)m∏n
j=1(2)m

(1 − γ)m
m!

= ∞∑
m=0

(1 − γ)m(1 +m)n
= Lin(1 − γ)

1 − γ .



3.5 Characteristics and Properties of the Kannisto and the Extended Exponential Distribution 197

¿e last expression contains the polylogarithm function de�ned by

Lin(z) = ∞∑
k=1

zk

kn
.

¿us, for X ∼ ℰ(γ,1,β), we conclude
E(︀Xn⌋︀ = n! γ

βn(1 − γ) Lin(1 − γ).
¿is can be further generalized for arbitrary θ ∈ N. For θ being an integer, we have the
following reduction of the generalized hypergeometric function

n+1Fn ⌊︀ θ , . . . ,θ
1 + θ , . . . ,1 + θ ; 1 − γ}︀ = θn∑θ

i=1 S(θ ,i)Lin+1−i(1 − γ)(θ − 1)!(1 − γ)θ , (3.78)

where S(θ ,i) denotes the Stirling number of the �rst kind, de�ned as the number of permu-
tation of θ elements with exactly i cycles multiplied by the factor (−1)θ−i , see Olver (2010).
Using the reduction formula of eq. (3.78), we obtain

E(︀Xn⌋︀ = ( γ
1−γ)θ

Γ(θ)βn
θ∑
i=1 S(θ ,i)Lin+1−i(1 − γ).

¿is special case expression is useful since θ is a frailty parameter of the ℰ(γ,θ ,β) distribution
and thus, we can consider the survival function of ℰ(γ,θ ,β) as the θ-fold product of tilt
extended exponential distribution survival functions which is indeed a competing risks model
with θ independent risk factors following the distribution ℰ(γ,1,β).

(e) For X ∼ ℰ(γ,θ ,β), we have the following asymptotic behaviour of the n-th moment
E(︀Xn⌋︀ ∼ n!γθ

βnθn
as n →∞,

since

n+1Fn(︀θ , . . . ,θ; 1 + θ , . . . ,1 + θ; 1 − γ⌋︀ n→∞Ð→ 1 for θ > 0,γ > 1.
¿us, we obtain the asymptotic moment ratios as

E(︀Xn⌋︀
E(︀Xn−1⌋︀ ∼ n

βθ
as n →∞.

¿is asymptotic ratio property of the ℰ(γ,θ ,β)moments is inherited from the underlying
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exponential distribution, where for Y ∼ Exp(λ), we have
E(︀Yn⌋︀

E(︀Yn−1⌋︀ = λ−nn!
λ−(n−1)(n − 1)! = n

λ
∀n ∈ N.

(f) For X ∼ ℰ(γ,θ ,β) and n ∈ N, we have

n!( 1
βθ

)n < E(︀Xn⌋︀ < n!( γ
βθ

)n . (3.79)

¿e inequality holds, since

βθ
γ

< hℰ(x ⋃︀ γ,θ ,β) < βθ for all x > 0.
Both inequalities of eq. (3.79) arise from the n-th moments of the exponential distributions
Exp(γ⇑βθ) and Exp(1⇑βθ).

(g) For X ∼ ℰ(γ,θ ,β) and n ∈ N, we have

n!(βθ)n−1E(︀X⌋︀ ≤ n
βθ

E(︀Xn−1⌋︀ ≤ E(︀Xn⌋︀ ≤ n!E(︀X⌋︀n (3.80)

and for the coe�cient of variation ⌈︂
V(︀X⌋︀

E(︀X⌋︀ ≤ 1. (3.81)

¿e last inequity of eq. (3.80) holds for the class of increasing hazard rate distributions, see
Rinne (2014) which directly implies eq. (3.81). ¿e �rst inequality is obtained by an iterative
application of the second inequality, which follows from the fact

1 ≤ n+1Fn (︀θ , . . . ,θ; 1 + θ , . . . ,1 + θ; 1 − γ⌋︀
nFn−1 (︀θ , . . . ,θ; 1 + θ , . . . ,1 + θ; 1 − γ⌋︀ for γ ≥ 1.

Remark 3.5.16 (Approximate Expressions for Expectation, Variance, Skewness, and Kurtosis). Taylor
series expansion of the ℰ(γ,θ ,β)moments at γ = ∞ lead to the following approximations:

E(︀X⌋︀ = 1
β
(ln (γ) − ψ(0)(θ) + ψ(0)(1)) +𝒪 (γ−1) ,

V(︀X⌋︀ = π2

β2
+ ψ(1)(θ)

β2
+𝒪 (γ−1) ,

skew(︀X⌋︀ = 6
⌋︂
6 (ψ(2)(1) − ψ(2)(θ))
(6ψ(1)(θ) + π2)3⇑2 +𝒪 (γ−1) ,
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kurt(︀X⌋︀ = 9 (60ψ(1)(θ)2 + 20π2ψ(1)(θ) + 20ψ(3)(θ) + 3π4)
5 (6ψ(1)(θ) + π2)2 +𝒪 (γ−1) .

¿e function ψ(m) denotes the polygamma function of order m de�ned as the (m + 1)-th derivative
of the logarithm of the gamma function.

ψ(m)(z) ∶= ∂m

∂zm
ψ(z) = ∂m+1

∂zm+1 ln Γ(z).
¿e next higher Taylor expansion yields the following approximations:

E(︀X⌋︀ = 1
βγ

(ψ(0)(1)(γ + θ) + (γ + θ) ln(γ) − (γ + θ)ψ(0)(θ) + θ − 1) +𝒪 (γ−2) , (3.82)

V(︀X⌋︀ = 1
6β2γ

(−6θ ln(γ)(2ψ(0)(1) + ln(γ) + 2) − 6(ψ(0)(1)(ψ(0)(1) + 2) + 2)θ + π2(γ + θ)
+ 12θψ(0)(θ)(ψ(0)(1) + ln(γ) + 1) + 6(γ + θ)ψ(1)(θ) − 6θψ(0)(θ)2) +𝒪 (γ−2) .(3.83)

We observe a very high accuracy of the approximations in eqs. (3.82) and (3.83). On average, the
relative deviation, in the region of estimated Kannisto parameters, is about 0.1% for the expectation
approximation, and about −1.8% for the variance approximation in eq. (3.83).

3.5.6 | Order Statistics

In the next result, we derive the probability density function of the r-th order statistic from an n
sample of the extended exponential distribution. In actuarial applications, the following result can
be used to obtain statements about the occurrence of the r-th death in a group of n individuals. For
example, the probability that the �rst death takes place within one year or the expected age at death
of the last survivor, which is useful in actuarial pension calculations.

¿eorem 3.5.17. Let Xr∶n by the r-th order statistic from an i.i.d. sequence X1, . . . ,Xn, with Xi ∼ℰ(γ,θ ,β). ¿e probability density function of the r-th order statistic is given by,

fℰr∶n(x ⋃︀ γ,θ ,β) = n!(r − 1)!(n − r)!
r−1∑
i=0

(−1)i(r−1i )(n − r + i + 1) fℰ(x ⋃︀ γ, θ(n − r + i + 1),β). (3.84)

Proof. In general, the probability density function of the r-th order statistic of X is given by (Arnold,
Balakrishnan and Nagaraja, 1992)

fXr∶n(x) = n!(r − 1)!(n − r)! fX(x)(︀FX(x)⌋︀r−1(︀1 − FX(x)⌋︀n−r .
¿us, for X ∼ ℰ(γ,θ ,β), we have

fXr∶n(x ⋃︀ γ,θ ,β) = n!(r − 1)!(n − r)! fℰ(x ⋃︀ γ,θ ,β)(︀Fℰ(x ⋃︀ γ,θ ,β)⌋︀r−1(︀1 − Fℰ(x ⋃︀ γ,θ ,β)⌋︀n−r
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= n!(r − 1)!(n − r)!hℰ(x ⋃︀ γ,θ ,β)(︀Fℰ(x ⋃︀ γ,θ ,β)⌋︀r−1(︀1 − Fℰ(x ⋃︀ γ,θ ,β)⌋︀n−r+1 (3.85)

= n!(r − 1)!(n − r)!
r−1∑
i=0 (

r − 1
i
)(−1)ihℰ(x ⋃︀ γ,θ ,β)(︀1 − Fℰ(x ⋃︀ γ,θ ,β)⌋︀n−r+i+1 (3.86)

= n!(r − 1)!(n − r)!
r−1∑
i=0 (

r − 1
i
)(−1)ihℰ(x ⋃︀ γ,θ ,β)Sℰ(x ⋃︀ γ,θ ,β)n−r+i+1

= n!(r − 1)!(n − r)!
r−1∑
i=0 (

r − 1
i
)(−1)i hℰ(x ⋃︀ γ,θ(n − r + i + 1),β)

n − r + i + 1
× Sℰ(x ⋃︀ γ,θ(n − r + i + 1),β)

(3.87)

= n!(r − 1)!(n − r)!
r−1∑
i=0

(−1)i(r−1i )(n − r + i + 1) fℰ(x ⋃︀ γ, θ(n − r + i + 1),β),
where for eq. (3.85), we used the relation

fℰ = hℰSℰ = hℰ(︀1 − Fℰ⌋︀, (3.88)

and eq. (3.86) is obtained by the binomial expansion, i.e.,

Fℰ(x ⋃︀ γ,θ ,β)r−1 = (︀1 − (1 − Fℰ(x ⋃︀ γ,θ ,β))⌋︀r−1
= r−1∑
i=0 (

r − 1
i
)(−1)i(︀1 − Fℰ(x ⋃︀ γ,θ ,β)⌋︀i .

To obtain eq. (3.87), we use the fact that ℰ(γ,θ ,β) belongs to the family of frailty distributions. ¿us,
we have

Sℰ(x ⋃︀ γ,θ ,β)n−r+i+1 = Sℰ(x ⋃︀ γ,θ(n − r + i + 1),β)
and

hℰ(γ,θ ,β) = βθeβx

γ + eβx − 1 = 1(n − r + i + 1)hℰ(γ,θ(n − r + i + 1),β).
¿e proof is completed by reusing the relation of eq. (3.88).

Note that the distribution density of the r-th order statistic given in eq. (3.84) has the form of a
discrete mixture of extended exponential distributions with di�erent frailty parameters θ(n−r+ i+1)
weighted by wi(r,n), with

wi(r,n) = (−1)i(r−1i )n!(n − r + i + 1)(r − 1)!(n − r)! , for 0 ≤ r ≤ n and 0 ≤ i ≤ r − 1. (3.89)

Corollary 3.5.18. ¿e �rst-order statistic X1∶n of an i.i.d. sample X1, . . . ,Xn from the extended
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exponential distribution ℰ(γ,θ ,β) follows the distribution
X1∶n ∼ ℰ(γ,nθ ,β).

Proof. ¿e proof follows directly from¿eorem 3.5.17 by setting r = 1 or by using the relation
FX1∶n = 1 − (︀1 − Fℰ(x ⋃︀ γ,θ ,β)⌋︀n= 1 − Sℰ(x ⋃︀ γ,nθ ,β) (3.90)

= Fℰ(x ⋃︀ γ,nθ ,β),
where eq. (3.90) follows from the fact that ℰ(γ,θ ,β) belongs to the frailty family.
Notice here that the �rst-order statistic remains extended exponentially distributed. ¿is property

is also shared by the exponential distribution, where for i.i.d. Xi ∼ Exp(λ) the following holds
X1∶n = min(X1, . . . ,Xn) ∼ Exp(nλ). Furthermore, since θ is the frailty parameter, we can conclude
by Proposition 3.2.17 that the distribution of the �rst-order statistic corresponds to a competing risks
lifetime with n individual ℰ(γ,θ ,β) factors.
Corollary 3.5.19. ¿e m-th moment of the r-th order statistic Xr∶n of the extended exponential
distribution ℰ(γ,θ ,β) is given by

E(︀Xm
r∶n⌋︀ = r−1∑

i=0wi(r,n) m! γθ(n−r+i+1)
βm(θ(n − r + i + 1))m

m+1Fm⌊︀ θ(n − r + i + 1), . . . ,θ(n − r + i + 1)
1 + θ(n − r + i + 1) . . . ,1 + θ(n − r + i + 1) ; 1 − γ}︀ ,

where wi(r,n) are the weights as given in eq. (3.89). In particular, we have
E(︀Xm

1∶n⌋︀ = m! γθn

βm(θn)m m+1Fm]︀ θn, . . . ,θn
1 + θn . . . ,1 + θn ; 1 − γ{︀ ,

and

E(︀Xm
n∶n⌋︀ = n−1∑

i=0
(−1)in(n−1i )

i + 1 m! γθ(i+1)
βm(θ(i + 1))m m+1Fm⌊︀ θ(i + 1), . . . ,θ(i + 1)

1 + θ(i + 1) . . . ,1 + θ(i + 1) ; 1 − γ}︀ .
Proof. ¿is result is obtained by combining¿eorems 3.5.10 and 3.5.17.

3.5.7 | Maximum and Minimum Domain of Attraction

As de�ned in Section 3.2.1, the lifetime of individuals is considered to be an unbounded random
variable, i.e., F(x) < 1 for all x < ∞. If one is interested in the distribution of the maximum lifespan
of n individuals, i.e., the distribution of the n-th order statistic, one obviously has,

FXn∶n(x) = FnX(x) n→∞Ð→ 0,
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for all x, and thus

Xn∶n PÐ→
n→∞∞.

¿e n-th order statistic Xn∶n has to be standardized to accomplish a non-degenerate limit behaviour.
Definition 3.5.20 (Minimum and Maximum Domain of Attraction, (Marshall and Olkin, 2007)). Let
X1,X2, . . . , be a sequence of independent and identically distributed random variables with distribu-
tion function F, and for n = 1,2, . . . let

Un = min{X1, . . . ,Xn} Vn = max{X1, . . . ,Xn}
be the minima and maxima of a sample of length n. If there exist sequences an and bn such that the
normalization (Un − bn)⇑an converges to a non-degenerate distribution G, i.e.,

Un − bn
an

𝒟Ð→
n→∞ G ,

then the distribution F is said to belong to theminimum domain of attraction of G. Respectively,
if there exist sequences an and bn, such that (Vn − bn)⇑an converges in distribution to a random
variable with distribution H,

Vn − bn
an

𝒟Ð→
n→∞ H,

then the sample distribution F is said to belong to themaximum domain of attraction of H.

A fundamental result, known as the Fisher-Tippett-Gnedenko theorem, states that there are only
three types of limiting distributions, which are the Gumbel, Fréchet, and Weibull distributions, also
known as extreme value distributions. Partial results were �rst found by Fréchet (1927) and Fisher
and Tippett (1928) and later in full generality by Gnedenko (1943).
In the following results, we will prove that the extended exponential distribution and the Gompertz

distribution belong to the Gumbel maximum domain of attraction and to the Weibull minimum
domain of attraction.

¿eorem 3.5.21 (Maximum Domain of Attraction of ℰ(γ,θ ,β)). Let X1, . . . ,Xn be an i.i.d. sequence
of the extended exponential distribution ℰ(γ,θ ,β) and FGumbel(x ⋃︀ 0,1) = e−e−x the CDF of the
Gumbel distribution Gum(0,1). Let the normalizing constants be de�ned as

an = 1
θβ

and bn = ln(γ)
β

+ ln(n)
βθ

,

then, we have

max {X1, . . . ,Xn} − bn
an

𝒟Ð→
n→∞ Gum(0,1),
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i.e.,

lim
n→∞P ⌊︀max {X1, . . . ,Xn} − bn

an
≤ x}︀ = FGumbel(x ⋃︀ 0,1),

for all x ≥ 0. As a consequence, the extended exponential distribution ℰ(γ,θ ,β) belongs to the
Gumbel maximum domain of attraction.

Proof. ¿e proof is obtained directly. For all x ≥ 0 we have
lim
n→∞P ⌊︀max {X1, . . . ,Xn} − bn

an
≤ x}︀ = lim

n→∞P(Xn∶n − bn
an

< x)
= lim
n→∞ FXn∶n(anx + bn)

= lim
x→∞ Fnℰ (anx + bn)

= lim
x→∞(1 − Sℰ(anx + bn))n

= lim
x→∞

⎛⎜⎝1 −
⎛⎝ γ
γ + γ(nex) 1

θ − 1
⎞⎠
θ⎞⎟⎠

n

= lim
x→∞(1 − e−x

n
)n (3.91)

= e−e−x = FGumbel(x ⋃︀ 0,1).
Equation (3.91) is obtained by observing

⎛⎝ γ
γ + γ(nex) 1

θ − 1
⎞⎠
θ ∼ e−x

n
.

Note that the above theorem states, that for large n ≫ 1 the distribution of the n-th order statistic
is approximately Gumbel distributed, i.e.,

Xn∶n asym.∼ Gum( ln(γ)
β

+ ln(n)
βθ

, 1
βθ

) =∶ Y , (3.92)

with expectation

E(︀Y⌋︀ ≃ γ̃
βθ

+ ln(γ)
β

+ ln(n)
βθ

,

where γ̃ ≈ 0.577 is the Euler-Mascheroni constant. Note that the expectation is logarithmically
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increasing in the sample size n. However, the variance of the asymptotical distribution, given by

V(︀Y⌋︀ ≃ π2

6β2θ2
,

does not depend on the sample size.

¿eorem 3.5.22 (Minimum Domain of Attraction of ℰ(γ,θ ,β)). Let X1, . . . ,Xn be an i.i.d. sequence
of the extended exponential distribution ℰ(γ,θ ,β) and FWeibull(x ⋃︀ 1,1) = 1 − e−x the CDF of the
Weibull distribution𝒲(1,1). Let the normalizing constants be de�ned as

an = γ
βθn

and bn = 0, (3.93)

then, we have

min{X1, . . . ,Xn} − bn
an

𝒟Ð→
n→∞𝒲(1,1).

¿erefore, the extended exponential distribution ℰ(γ,θ ,β) belongs to the Weibull minimum domain
of attraction.

Proof. ¿e convergence of the normalized sample minimum in distribution to the Weibull distribu-
tion𝒲(1,1) holds, since for all x ≥ 0 we have

lim
n→∞P ⌊︀min{X1, . . . ,Xn} − bn

an
≤ x}︀ = lim

n→∞P(X1∶n − bn
an

< x)
= lim
n→∞ FX1∶n(anx + bn)

= lim
x→∞ 1 − (1 − Fℰ(anx + bn))n

= lim
x→∞ 1 − Snℰ(anx + bn)

= lim
x→∞ 1 − ⎛⎝ γ

γ + e γx
θn − 1

⎞⎠
θn

= 1 − e−x (3.94)
= FWeibull(x ⋃︀ 1,1).

Equation (3.94) holds, since

⎛⎝ γ
γ + e γx

θn − 1
⎞⎠
θn ∼ e−x .
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¿us, for a large sample size n, we have approximately

X1∶n asym.∼ 𝒲 (1, γ
βθn

) =∶ Z ,
with expectation and variance given by

E(︀Z⌋︀ ≃ γ
βθn

and V(︀Z⌋︀ ≃ ( γ
βθn

)2 .
Next, we derive the normalizing sequences for maximum and minimum domain of attraction

of the Gompertz distribution in order to compare their asymptotic behaviour with the extended
exponential and the Kannisto distribution.

¿eorem 3.5.23 (Maximum Domain of Attraction of 𝒢(ξ,κ)). Let X1, . . . ,Xn be an i.i.d. sequence of
the Gompertz distribution 𝒢(ξ,κ) and FGumbel(x ⋃︀ 0,1) = e−e−x the CDF of the Gumbel distribution
Gum(0,1). Suppose the normalizing constants are given as

an = 1
κ ln(n) and bn = ξ

κ ln(n) + 1
κ
ln(1

ξ
ln(n)) ,

then, we have

max {X1, . . . ,Xn} − bn
an

𝒟Ð→
n→∞ Gum(0,1)

Proof. ¿e proof is obtained directly. For all x ≥ 0 we have
lim
n→∞P ⌊︀max {X1, . . . ,Xn} − bn

an
≤ x}︀ = lim

n→∞P(Xn∶n − bn
an

< x)
= lim
n→∞ FXn∶n(anx + bn)

= lim
x→∞ Fn𝒢(anx + bn)

= lim
x→∞(1 − S𝒢(anx + bn))n

= lim
n→∞(1 − eξn−e ξ+x

ln(n) )n

= lim
n→∞(1 − e−x

n
)n (3.95)

= e−e−x = FGum(x ⋃︀ 0,1).
Equation (3.95) holds, since

n−e
x+ξ
ln(n) ∼ e−(x+ξ)

n
.
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¿eorem 3.5.24 (Minimum Domain of Attraction of 𝒢(ξ,κ)). Let X1, . . . ,Xn be an i.i.d. sequence of
the Gompertz distribution 𝒢(ξ,κ) and FWeibull(x ⋃︀ 1,1) = 1− e−x the CDF of theWeibull distribution𝒲 . Suppose the normalizing constants are given as

an = 1
κξn

and bn = 0, (3.96)

then, we have

min{X1, . . . ,Xn} − bn
an

𝒟Ð→
n→∞𝒲(1,1).

¿erefore, the Gompertz distribution 𝒢(ξ,κ) belongs to the Weibull minimum domain of attraction.

Proof. ¿e convergence of the normalized sample minimum in distribution to the Weibull distribu-
tion𝒲(1,1) holds, since:

lim
n→∞P ⌊︀min{X1, . . . ,Xn} − bn

an
≤ x}︀ = lim

n→∞P(X1∶n − bn
an

< x)
= lim
n→∞ FX1∶n(anx + bn)

= lim
x→∞ 1 − (1 − F𝒢(anx + bn))n

= lim
x→∞ 1 − Sn𝒢(anx + bn)

= 1 − (eξ−ξe x
nξ )n

= 1 − e−x (3.97)
= FWeibull(x ⋃︀ 1,1).

Equation (3.97) holds, since

eξ−ξe
x
nξ ∼ 1 − x

n
,

which follows from a Taylor expansion of the transformed variable s ∶= 1
n at s = 0.

¿e results of ¿eorems 3.5.22 and 3.5.24 reveal a close connection between the Gompertz and
the extended exponential distribution at the lower tail. ¿e results show not only that both lifetime
distributions belong to the Weibull minimum domain of attraction, but they also share the same
growth behaviour of the normalizing sequences, see eqs. (3.93) and (3.96). For instance, with

κ = β(γ − 1)
γ

and ξ = θ
γ − 1 ,
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both hazard rate functions h𝒢(x ⋃︀ ξ,κ) and hℰ(x ⋃︀ γ,θ ,β) coincide at x = 0, which leads to the
same normalizing sequences as given in eq. (3.93). In contrast to that, ¿eorems 3.5.21 and 3.5.23
reveal fundamental di�erences between both distributions at the right tail. ¿ey are both in the
Gumbelmaximum domain of attraction, but they show di�erent growth behaviour of the normalizing
sequences. In particular, we have the shi ing sequence

bℰn = ln(γ)
β

+ ln(n)
βθ

∼ ln(n)
βθ

∈ 𝒪(ln n)
for the extended exponential distribution and

b𝒢n = ξ
κ ln(n) + 1

κ
ln(1

ξ
ln(n)) ∼ 1

κ
ln(ln(n)) ∈ 𝒪(ln ln n),

for the Gompertz distribution, respectively. Note that b𝒢n ∈ o(bℰn), i.e., b𝒢n is asymptotically negligible
compared to bℰn .
For Kannisto distributed lifetimes, i.e., Xi ∼ 𝒦(α,β) for i = 1, . . . ,n, we conclude from eq. (3.92)

that the expected maximal lifespan can be approximated by

E(︀Xn∶n⌋︀ asym.≃ γ̃ + 1
β
ln(1 + e−α) + ln(n) α≪0≈ γ̃ − α

β
+ ln(n). (3.98)

Evaluating the last term of eq. (3.98), at the parameter estimates (α2011,β2011) = (−5.894,0.138)
for the reference population at 2011 and using the population size n ∶= Ec2011,60 = 6 × 104, yields an
expected maximal lifespan of 105.69 years, which appears to be a plausible approximation.

3.5.8 | Fisher Information Matrix for the Kannisto Distribution and the Extended Exponential
Distribution

¿e Fisher information matrix plays an important role in statistics such as for the derivation of the
asymptotic covariance matrix of maximum likelihood estimators. To determine the exact form of
the Fisher information matrix for the Kannisto and the extended exponential distribution, we will
need some integral representations of particular generalized hypergeometric functions, which are
provided in the following Lemmas 3.5.25 and 3.5.26.

Lemma 3.5.25. Let k > 1, θ > 0 and n ∈ N0. ¿en, we obtain the following integral representation.

n+1Fn ⌊︀ k − 1 + θ , . . . ,k − 1 + θ
k + θ , . . . k + θ ; (1 − γ)}︀ = (k − 1 + θ)n+1

n!

∞
∫
γ

x−(k+θ) lnn(1 − γ + x) dx .
Proof. We start with the series representation of the generalized geometric function n+1Fn where all
upper and all the lower coe�cients coincide. Further transformations are described below.

n+1Fn ⌊︀ k − 1 + θ , . . . ,k − 1 + θk + θ , . . . k + θ ; (1 − γ)}︀
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= ∞∑
m=0

(k − 1 + θ)n(k − 1 + θ +m)n (k − 1 + θ)m (1 − γ)
m

m!

= (k − 1 + θ)n
n!

∞∑
m=0(k − 1 + θ)m

∞
∫
0

zn(k − 1 + θ +m)e−(k−1+θ+m)zdz (3.99)

= (k − 1 + θ)n
n!

∞
∫
0

zne−z(k−1+θ) ∞∑
m=1(k − 1 + θ)m(k − 1 + θ +m)

((1 − γ)e−z)m
m!

dz

= (k − 1 + θ)n
n!

∞
∫
0

zne−z(k−1+θ)(k − 1 + θ)1F0(︀k + θ; ; (1 − γ)e−z⌋︀ dz (3.100)

= (k − 1 + θ)n+1
n!

∞
∫
0

zne−z(θ+k−1) (1 − (1 − γ)e−z)−(k+θ) dz
= (k − 1 + θ)n+1

n!

∞
∫
γ

x−(k+θ) lnn(1 − γ + x) dx (3.101)

For eq. (3.99), we write (k − 1 + θ +m)−n as an integral using a Laplace transform, i.e.,
(k − 1 + θ +m)−n = k − 1 + θ +m

Γ(n + 1)
∞
∫
0

zne−(k−1+θ+m)z dz.

To obtain eq. (3.100), we use the identity

∞∑
m=0(a)m(a +m)

zm

m!
= a 1F0(︀a + 1; ; z⌋︀ = a(1 − z)−(a+1),

since

(a +m)(a)m = (a +m)Γ(a +m)
Γ(a) = Γ(a + 1 +m)

Γ(a) = aΓ(a + 1 +m)
Γ(a + 1) = a(a + 1)m .

¿e last transformation in eq. (3.101) is obtained by the substitution z = ln(1 − γ + x).
Lemma 3.5.26. Let θ > 0, k > 2, and n ∈ N. ¿en, the following integral representation holds:

n+1Fn]︀θ + k − 2, . . . ,θ + k − 2,θ + kθ + k − 1, . . . ,θ + k − 1 ; 1 − γ{︀
= (θ + k − 2)n(n − 1)!

∞
∫
γ

x−(θ+k)(1 − γ + x) lnn−1(1 − γ + x) dx .
Proof. ¿e proof is obtained by the same methods as in Lemma 3.5.25. We start with the series
representation of the generalized geometric function n+1Fn. Further transformations are described
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below.

n+1Fn]︀θ + k − 2, . . . ,θ + k − 2,θ + kθ + k − 1, . . . ,θ + k − 1 ; 1 − γ{︀
= ∞∑
m=0

(θ + k − 2)nm(θ + k)m(θ + k − 1)nm
(1 − γ)m

m!

= ∞∑
m=0

(θ + k − 2)nΓ(k +m + θ)(θ + k − 2 +m)nΓ(k + θ) (1 − γ)
m

m!

= (θ + k − 2)n ∞∑
m=0

(θ + k)m(θ + k − 2 +m)n (1 − γ)
m

m!
(3.102)

= (θ + k − 2)n
Γ(n)

∞∑
m=0(θ + k)m

(1 − γ)m
m!

∞
∫
0

zn−1e−(θ+k−2+m)z dz (3.103)

= (θ + k − 2)n
Γ(n)

∞
∫
0

zn−1e−(θ+k−2) 1F0(θ + k; ; (1 − γ)e−z) dz
= (θ + k − 2)n

Γ(n)
∞
∫
0

zn−1e−z(θ+k−2) (1 − (1 − γ)e−z)−(θ+k) dz
= (θ + k − 2)n(n − 1)!

∞
∫
γ

x−(θ+k)(1 − γ + x) lnn−1(1 − γ + x) dx . (3.104)

To obtain eq. (3.102), we rewrite the term (θ + k − 2 +m)−n as an integral using a Laplace transform,
i.e.,

(θ + k − 2 +m)−n = 1
Γ(n)

∞
∫
0

zn−1e−(θ+k−2+m)z dz.

Equation (3.103) follows from Fubini’s theorem by changing the order of integration and by replacing
the series with the hypergeometric function 1F0, i.e.,

1F0(︀θ + k; ; (1 − γ)e−z⌋︀ = ∞∑
m=0(θ + k)m

((1 − γ)e−z)m
m!

.

Finally, substitution z = ln(1 − γ + x) gives eq. (3.104).
In the following part,we determine the Fisher informationmatrix for the Kannisto distribution. For

a random variable X with probability density f (⋅ ⋃︀ θ), where θ = (θ1 . . . ,θn), the Fisher information
matrix I(θ) is an n × n symmetric matrix with elements given by

Ii , j(θ) = Eθ ⌊︀∂ ln f (X ⋃︀ θ)
∂θ i

∂ ln f (X ⋃︀ θ)
∂θ j

}︀ .
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If the density has continuous second partial derivatives ∂2 f (⋅⋃︀θ1 ,...,θn)
∂θ i ∂θ j

for all i and j, then Ii , j(θ) can
be expressed by

Ii , j(θ) = −Eθ ⌊︀∂2 ln f (X ⋃︀ Θ)
∂θ i∂θ j

}︀ . (3.105)

For the Kannisto distribution𝒦(α,β) with density
f𝒦(x ⋃︀ α,β) = (1 + eα) 1

β eα+βx (1 + eα+βx)− 1+β
β 1x≥0

all second partial derivatives exist and are continuous, such that we will use the expression given in
eq. (3.105) for the computation of the matrix coe�cients.

For the following part, we will change the Kannisto parametrization by de�ning γ ∶= 1 + e−α and
θ ∶= 1⇑β, such that by that choice, we have

𝒦(α,β) = 𝒦(ln (1⇑γ − 1) ,1⇑θ),
where γ > 1 and θ > 0. With that parametrization, the logarithmic density is given by

ln ( f (x ⋃︀ γ,θ)) = θ ln(γ) − (θ + 1) ln (γ + ex⇑θ − 1) + x
θ
.

¿e second partial derivatives required for the Fisher information matrix are:

∂2 ln f𝒦(x ⋃︀ γ,θ)
∂γ∂γ

= θ + 1
(γ + ex⇑θ − 1)2 −

θ
γ2
,

∂2 ln f𝒦(x ⋃︀ γ,θ)
∂γ∂θ

= 1
γ
− (θ + 1)xex⇑θ
θ2 (γ + ex⇑θ − 1)2 −

1
γ + ex⇑θ − 1 ,

∂2 ln f𝒦(x ⋃︀ γ,θ)
∂θ∂θ

= x(γ − 1) (−2θ + 2ex⇑θθ + 2γθ)
(−1 + ex⇑θ + γ)2 θ4 + x2(γ − 1) (−ex⇑θ − ex⇑θθ)

(−1 + ex⇑θ + γ)2 θ4 .

¿eorem 3.5.27 (Fisher Information Matrix of the Kannisto Distribution). ¿e Fisher information
matrix of the Kannisto distribution𝒦(ln (1⇑γ − 1) ,1⇑θ) is given by

I(γ,θ) = (Iγ,γ Iγ,θ
Iθ ,γ Iθ ,θ

) ,
with the following coe�cients:

Iγ,γ(γ,θ) = θ
γ2(θ + 2) (3.106)

Iγ,θ(γ,θ) = Iθ ,γ(γ,θ) = − 1
γ(θ + 1) + γθ+1

γ(θ + 1) 3F2(︀θ + 1,θ + 1,θ + 3; θ + 2,θ + 2; 1 − γ⌋︀(3.107)



3.5 Characteristics and Properties of the Kannisto and the Extended Exponential Distribution 211

Iθ ,θ(γ,θ) = 2(γ − 1)2γθ
θ(θ + 2)3 3F2(︀θ + 2,θ + 2,θ + 2; θ + 3,θ + 3; 1 − γ⌋︀

Proof. Webegin by proving eq. (3.106).¿e calculation of this term only requires standard integration
techniques. We have,

Iγ,γ(γ,θ) = −Eθ ⌊︀∂2 ln f𝒦(x ⋃︀ γ,θ)∂γ∂γ
}︀

= θ
γ2

− ∞
∫
0

θ + 1
(γ + eβx − 1)2 f𝒦(x ⋃︀ γ,θ) dx

= θ
γ2

− θ(θ + 1)γθ ∞
∫
γ

x−(θ+3) dx

= θ
γ2

− θ(θ + 1)
γ2(θ + 2)

= θ
γ2(θ + 2) .

To show eq. (3.107), we express Iγ,θ(γ,θ) in terms of standard integrals and an integral of the type of
Lemma 3.5.26. We obtain

Iγ,θ(γ,θ) = −Eθ ⌊︀∂2 ln f𝒦(x ⋃︀ γ,θ)∂γ∂θ
}︀

= −1
γ
+ ∞
∫
0

⎛⎝ 1−1 + ex⇑θ + γ + ex⇑θx(1 + θ)
(−1 + ex⇑θ + γ)2 θ2

⎞⎠ f𝒦(x ⋃︀ γ,θ) dx
= −1

γ
+ θγθ ∞

∫
γ

x−(θ+2) dx + (θ + 1)γθ ∞
∫
γ

x−(θ+3)(1 − γ + x) ln(1 − γ + x) dx (3.108)
= −1

γ
+ θ
γ(θ + 1) + γθ

θ + 1 3F2(︀θ + 1,θ + 1,θ + 3; θ + 2,θ + 2; 1 − γ⌋︀
= − 1

γ(θ + 1) + γθ+1
γ(θ + 1) 3F2(︀θ + 1,θ + 1,θ + 3; θ + 2,θ + 2; 1 − γ⌋︀,

where Lemma 3.5.26 is applied to eq. (3.108). ¿e remaining element Iγ,θ(γ,θ) is obtained by a
similar procedure.

Iγ,θ(γ,θ) = −Eθ ⌊︀∂2 ln f𝒦(x ⋃︀ γ,θ)∂θ∂θ
}︀
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= − ∞
∫
0

x(γ − 1) (−2θ + 2ex⇑θθ + 2γθ)
(−1 + ex⇑θ + γ)2 θ4 f𝒦(x ⋃︀ γ,θ) dx

− ∞
∫
0

x2(γ − 1) (−ex⇑θ − ex⇑θθ)
(−1 + ex⇑θ + γ)2 θ4 f𝒦(x ⋃︀ γ,θ) dx

= −2(γ − 1)γθ
θ

∞
∫
γ

x−(θ+2) ln(1 − γ + z) dx
+ (γ − 1)γθ(1 + θ)

θ

∞
∫
γ

x−(θ+3)(1 + x − γ) ln2(1 + x − γ) dx
(3.109)

= −2(γ − 1)γθ
θ(θ + 1)2 2F1(︀θ + 1,θ + 1; θ + 2; 1 − γ⌋︀
+ 2(γ − 1)γθ
θ(θ + 1)2 4F3(︀θ + 1,θ + 1,θ + 1,θ + 3; θ + 2,θ + 2,θ + 2; 1 − γ⌋︀

= −2(γ − 1)γθ
θ(θ + 1)2 2F1(︀θ + 1,θ + 1; θ + 2; 1 − γ⌋︀
+ 2(γ − 1)γθ
θ(θ + 1)2 4F3(︀θ + 1,θ + 1,θ + 1,θ + 3; θ + 2,θ + 2,θ + 2; 1 − γ⌋︀

= 2(γ − 1)γθ
θ(θ + 1)2 (4F3 ⌊︀ θ + 1,θ + 1,θ + 1,θ + 3

θ + 2,θ + 2,θ + 2 ; 1 − γ}︀ − 2F1 ⌊︀ θ + 1,θ + 1
θ + 2 ; 1 − γ}︀)

= 2(γ − 1)2γθ
θ(θ + 2)3 3F2(︀θ + 2,θ + 2,θ + 2; θ + 3,θ + 3; 1 − γ⌋︀,

where for eq. (3.109) we use Lemmas 3.5.25 and 3.5.26. ¿e last identity follows from rearranging the
series coe�cients of 4F3 + 2F1 to a generalized hypergeometric 3F2. More speci�cally, we use the
identity

4F3 ⌊︀ θ + 1,θ + 1,θ + 1,θ + 3
θ + 2,θ + 2,θ + 2 ; 1 − γ}︀ − 2F1 ⌊︀ θ + 1,θ + 1

θ + 2 ; 1 − γ}︀
= ∞∑
m=0

−m(1 + θ)2Γ(1 +m + θ)(1 +m + θ)2(2 + θ)(1 + θ)Γ(1 + θ) (1 − γ)
m

m!

= γ − 1(θ + 2)(θ + 1)
∞∑
m=0

(1 + θ)2Γ(1 +m + θ)(1 +m + θ)2Γ(1 + θ) m(1 − γ)
m−1

m!

= γ − 1(θ + 2)(θ + 1) d
d(1 − γ) 3F2 ⌊︀ θ + 1,θ + 1,θ + 1

θ + 2,θ + 2 ; 1 − γ}︀
= γ − 1(θ + 2)(θ + 1) (θ + 1)

3

(θ + 2)2 3F2 ⌊︀ θ + 2,θ + 2,θ + 2
θ + 3,θ + 3 ; 1 − γ}︀ (3.110)
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= (γ − 1)(θ + 1)2(θ + 2)3 3F2 ⌊︀ θ + 2,θ + 2,θ + 2
θ + 3,θ + 3 ; 1 − γ}︀ .

Equation (3.110) is obtained by the di�erentiation rule

dn

dzn pFq⌊︀a1, . . . , apb1, . . . ,bq
; z}︀ = (a1)n⋯(ap)n(b1)n⋯(bq)n pFq⌊︀a1 + n, . . . ,ap + nb1 + n, . . . ,bq + n ; z}︀ ,

see, e.g., Olver (2010).

Retransformation to the original parametrization of the Kannisto distribution yields the following
matrix coe�cients:

Iα,α(α,β) = 1(e−α + 1)2 (2β + 1) ,
Iα,β(α,β) = Iβ,α(α,β)

= − eαβ
eαβ + eα + β + 1 + β3 (e−α + 1) 1

β

(β + 1)3 3F2 ⌊︀ 1β + 1, 1β + 1, 1β + 3; 1β + 2, 1β + 2;−e−α}︀ ,
Iβ,β(α,β) = 2e−2αβ (e−α + 1) 1

β

( 1β + 2)3 3F2 ⌊︀ 1β + 2, 1β + 2, 1β + 2; 1β + 3, 1β + 3;−e−α}︀ .
¿eorem 3.5.28 (Fisher Information Matrix of the Extended Exponential Distribution). ¿e Fisher
information matrix of the extended exponential distribution ℰ(γ,θ ,β)

I(γ,θ ,β) = Ii , j(Θ) = −Eθ ⌊︀∂2 ln f (X ⋃︀ Θ)
∂θ i∂θ j

}︀ = ⎛⎜⎜⎝
Iγ,γ Iγ,θ Iγ,β
Iθ ,γ Iθ ,θ Iθ ,β
Iβ,γ Iβ,θ Iβ,β

⎞⎟⎟⎠
has the following coe�cients:

Iγ,γ = θ
γ2(θ + 2) (3.111)

Iγ,θ = Iθ ,γ = − 1
γ(θ + 1) (3.112)

Iγ,β = Iβ,γ = − θγθ

β(θ + 1) 3F2(︀θ + 1,θ + 1,θ + 3; θ + 2,θ + 2; 1 − γ⌋︀ (3.113)

Iθ ,θ = 1
θ2

(3.114)

Iθ ,β = Iβ,θ = γθ

βθ 3F2(︀θ ,θ ,θ + 2; θ + 1,θ + 1; 1 − γ⌋︀ (3.115)

Iβ,β = 1
β2

+ 2(γ − 1)θγθ
β2(θ + 1)2 4F3(︀θ + 1,θ + 1,θ + 1,θ + 3; θ + 2,θ + 2,θ + 2; 1 − γ⌋︀ (3.116)
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Proof. ¿e density of the extended exponential distribution is given by

fℰ(x ⋃︀ γ,θ ,β) = βθγθeβx (γ + eβx − 1)−(θ+1) for x ≥ 0.
¿us, for the logarithmic density, we have

ln( fℰ(x ⋃︀ γ,θ ,β)) = ln (βθγθ) − (θ + 1) ln (eβx − (1 − γ)) + βx .
¿e Fisher information matrix can be expressed as

Ii , j(Θ) = −Eθ ⌊︀∂2 ln f (X ⋃︀ Θ)
∂θ i∂θ j

}︀ ,
since the density fℰ(x ⋃︀ γ,θ ,β) has continuous second partial derivatives regards to all parameters.
¿e second partial derivatives of the logarithmic density required for the Fisher information matrix
are:

∂2 ln f (x ⋃︀ γ,θ ,β)
∂γ∂γ

= θ + 1
(γ + eβx − 1)2 −

θ
γ2
,

∂2 ln fℰ(x ⋃︀ γ,θ ,β)
∂γ∂θ

= 1
γ
− 1
γ + eβx − 1 ,

∂2 ln fℰ(x ⋃︀ γ,θ ,β)
∂γ∂β

= (θ + 1)xeβx
(γ + eβx − 1)2 ,

∂2 ln fℰ(x ⋃︀ γ,θ ,β)
∂θ∂θ

= − 1
θ2
,

∂2 ln fℰ(x ⋃︀ γ,θ ,β)
∂θ∂β

= − xeβx

γ + eβx − 1 ,
∂2 ln fℰ(x ⋃︀ γ,θ ,β)

∂β∂β
= − 1

β2
− (γ − 1)(θ + 1)x2eβx

(γ + eβx − 1)2 .

In the following, we proof by direct calculation the matrix coe�cients as provided in eqs. (3.111)
to (3.116). For standard integrals, such as for the coe�cients Iγ,θ and Iγ,γ we use

∞
∫
γ

x−(θ+k) dx = γ−(θ+k−1)
θ + k − 1 , for γ > 0, θ + k > 1, (3.117)

and for integrals involving generalized hypergeometric functions, we use Lemma 3.5.26 such as for
Iγ,β, Iθ ,β and Iβ,β. Equation (3.111) is derived by using eq. (3.117).

Iγ,γ(γ,θ ,β) = −Eθ ⌊︀∂2 ln fℰ(x ⋃︀ γ,θ ,β)∂γ∂γ
}︀
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= θ
γ2

− ∞
∫
0

θ + 1
(γ + eβx − 1)2 fℰ(x ⋃︀ γ,θ ,β) dx

= θ
γ2

− θ(θ + 1)γθ ∞
∫
γ

x−(θ+3) dx

= θ
γ2

− θ(θ + 1)
γ2(θ + 2)

= θ
γ2(θ + 2) .

Equation (3.112) can also be shown by using eq. (3.117).

Iγ,θ(γ,θ ,β) = −Eθ ⌊︀∂2 ln fℰ(x ⋃︀ γ,θ ,β)∂γ∂θ
}︀

= −1
γ
+ ∞
∫
0

1
γ + eβx − 1 fℰ(x ⋃︀ γ,θ ,β) dx

= −1
γ
+ γθθ ∞

∫
γ

x−(θ+2) dx

= −1
γ
+ θ
γ(θ + 1)

= − 1
γ(θ + 1) .

Equation (3.113) is obtained by using Lemma 3.5.26 for eq. (3.118).

Iγ,β(γ,θ ,β) = −Eθ ⌊︀∂2 ln fℰ(x ⋃︀ γ,θ ,β)∂γ∂β
}︀

= −(θ + 1) ∞
∫
0

xeβx

(γ + eβx − 1)2 fℰ(x ⋃︀ γ,θ ,β) dx
= −(θ + 1)βθγθ ∞

∫
0

xe2βx (γ + eβx − 1)−θ−3 dx
= −(θ + 1)θγθ

β

∞
∫
γ

x−(θ+3)(1 − γ + x) ln(1 − γ + x) dx (3.118)

= − θγθ

β(θ + 1) 3F2(︀θ + 1,θ + 1,θ + 3; θ + 2,θ + 2; 1 − γ⌋︀.
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¿e computation of eq. (3.114) is trivial since the corresponding second derivative is constant.

Iθ ,θ(γ,θ ,β) = −Eθ ⌊︀∂2 ln fℰ(x ⋃︀ γ,θ ,β)∂θ∂θ
}︀

= 1
θ2

∞
∫
0

fℰ(x ⋃︀ γ,θ ,β) dx
= 1
θ2
.

To show eq. (3.115), we apply Lemma 3.5.26 to eq. (3.119)

Iθ ,β(γ,θ ,β) = −Eθ ⌊︀∂2 ln fℰ(x ⋃︀ γ,θ ,β)∂θ∂β
}︀

= ∞
∫
0

xeβx

γ + eβx − 1 fℰ(x ⋃︀ γ,θ ,β) dx
= βθγθ ∞

∫
0

xe2βx (γ + eβx − 1)−θ−2 dx
= θγθ

β

∞
∫
γ

x−(θ+2)(1 − γ + x) ln(1 − γ + x) dx (3.119)

= γθ

βθ 3F2(︀θ ,θ ,θ + 2; θ + 1,θ + 1; 1 − γ⌋︀.
¿e remaining coe�cient of eq. (3.116) is shown by using Lemma 3.5.26 for eq. (3.120)

Iβ,β(γ,θ ,β) = −Eθ ⌊︀∂2 ln fℰ(x ⋃︀ γ,θ ,β)∂β∂β
}︀

= 1
β2

+ (γ − 1)(θ + 1) ∞
∫
0

x2eβx

(γ + eβx − 1)2 fℰ(x ⋃︀ γ,θ ,β) dx
= 1
β2

+ (γ − 1)(θ + 1)βθγθ ∞
∫
0

x2e2βx (γ + eβx − 1)−θ−3 dx
= 1
β2

+ (γ − 1)(θ + 1)θγθ
β2

θ

∫
γ

x−(θ+3)(1 − γ + x) ln2(1 − γ + x) dx (3.120)

= 1
β2

+ 2(γ − 1)θγθ
β2(θ + 1)2 4F3(︀θ + 1,θ + 1,θ + 1,θ + 3; θ + 2,θ + 2,θ + 2; 1 − γ⌋︀.
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3.5.9 | Kullback-Leibler Divergence

For continuous distributions, the Kullback-Leibler divergence DKL(P ∏︁Q) is de�ned as
DKL(P ∏︁Q) = ∞

∫−∞ fP(x) ln fP(x)
fQ(x)dx ,

where fP(x) and fQ(x) denote the probability density functions of P and Q, respectively. ¿e
Kullback-Leibler divergence can be seen as a non-symmetrical distance from Q to P, or as a measure
of the information loss when the measure Q is used to approximate P, see Burnham and Anderson
(2002). ¿e Kullback-Leibler divergence is non-negative and zero if and only if P = Q almost
everywhere.
In the following proposition, we derive the Kullback-Leibler divergence between the Kannisto

distribution𝒦(α,β) and Gompertz distribution 𝒢(β,eα⇑β). ¿e particular choice of the Gompertz
parameters is made to obtain similar behaviour at the lower tail of the distribution, see the illustration
Figure 3.5.

Proposition 3.5.29 (Kullback-Leibler Divergence between the Gompertz and the Kannisto Distribution).
¿e Kullback-Leibler divergence between the Gompertz distribution 𝒢(β,eα⇑β) and the Kannisto
distribution𝒦(α,β) is given by

DKL(𝒦(α,β) ∏︁𝒢(β,eα⇑β)) = eα + β2 + (1 − β) ln (eα + 1)
β − 1 , for 0 < β < 1. (3.121)

Proof. ¿e Kullback-Leibler divergence of two probability distributions P and Q with Lebesgue
densities fP(x) respectively fQ(x) is de�ned as

DKL(P ∏︁Q) = ∞
∫−∞ fP(x) ln fP(x)

fQ(x) dx ,
see, Kullback and Leibler (1951). With

f𝒦(x ⋃︀ α,β) = (1 + eα) 1
β eα+βx (1 + eα+βx)− 1+β

β , for x ≥ 0,
and

f𝒢(x ⋃︀ β,eα⇑β) = eα+βx+ eα(1−eβx)
β , for x ≥ 0,

we have

ln( f𝒦(x ⋃︀ α,β)
f𝒢(x ⋃︀ β,eα⇑β)) =

ln (eα + 1) + eα (eβx − 1) − (β + 1) ln (eα+βx + 1)
β

. (3.122)
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By substitution of eq. (3.122) in the de�nition of the Kullback-Leibler divergence, we obtain

DKL(𝒦(α,β) ∏︁𝒢(β,eα⇑β)) = ∞
∫
0

f𝒦(x) ln f𝒦(x)
f𝒢(x) dx

= ln (eα + 1)
β

∞
∫
0

f𝒦(x) dx + eα

β

∞
∫
0

(eβx − 1) f𝒦(x) dx
− β − 1

β

∞
∫
0

ln (eα+βx + 1) f𝒦(x) dx
(3.123)

= ln (eα + 1)
β

+ eα

β
(1 + e−αβ

1 − β − 1)
− β + 1

β
(α + β + ln (1 + e−α))

= eα + β2 + (1 − β) ln (eα + 1)
β − 1 ,

where the second integral in eq. (3.123) only exists for β < 1, since by Proposition 3.3.4
∞
∫
0

eβx f𝒦(x) dx = βE(︀X⌋︀,
for X ∼ 𝒫II(1 + e−α ,β).
Notice, that for the Kullback-Leibler divergence obtained in Proposition 3.5.29, we have the

following limits:

lim
α→∞DKL(𝒦(α,β) ∏︁𝒢(β,eα⇑β)) = ∞,

lim
α→−∞DKL(𝒦(α,β) ∏︁𝒢(β,eα⇑β)) = β2

1 − β ,
lim
β→0DKL(𝒦(α,β) ∏︁𝒢(β,eα⇑β)) = eα − ln (eα + 1) .

We see that the Kullback-Leibler divergence as obtained eq. (3.121) is exponentially decreasing for
α such that for eα ≈ 0, that is for α ≪ 0, we have

DKL(𝒦(α,β) ∏︁𝒢(β,eα⇑β)) ≈ β2

1 − β .

Proposition 3.5.30. Let ℰ(γ,θ ,β) and ℰ(δ,τ,β) be two extended exponential distributions with the
same scale parameter β. ¿e Kullback-Leibler divergence between ℰ(γ,θ ,β) and ℰ(δ,τ,β) is given
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Figure 3.5: Comparison of the post-age-60 hazard rates h𝒦(x ⋃︀ α2010 ,β2010) of the Kannisto distribution
with estimated parameters (α = −5.89, β = 0.138) for the year 2010 of the Swedish female population
and the Gompertz distribution evaluated for the same parameters. ¿e hazard rates almost coincide for
lower ages but diverge for higher ages.

by

DKL(ℰ(γ,θ ,β) ∏︁ ℰ(δ,τ,β)) = ln(θγθτδτ
) − (1 + θ) (ln(γ) + 1

θ
)

+ (1 + τ)(ln(δ) + 1
θ 2F1 ⌊︀1,θ; θ + 1; 1 − δ

γ
}︀) .

Proof. ¿e Kullback-Leibler divergence for non-negative continuous distributions ℰ(γ,θ ,β) andℰ(δ,τ,β) with corresponding densities fℰ(x ⋃︀ γ,θ ,β) and fℰ(x ⋃︀ δ,τ,β) is de�ned as
DKL(ℰ(γ,θ ,β) ∏︁ ℰ(δ,τ,β)) = ∞

∫
0

fℰ(x ⋃︀ γ,θ ,β) ln fℰ(x ⋃︀ γ,θ ,β)
fℰ(x ⋃︀ δ,τ,β) dx . (3.124)

¿e density of fℰ(x ⋃︀ γ,θ ,β) is given by
fℰ(x ⋃︀ γ,θ ,β) = βθγθeβx (eβx − (1 − γ))−(θ+1) ,

and the logarithmic quotient of the corresponding densities can be simpli�ed to

ln fℰ(x ⋃︀ γ,θ ,β)
fℰ(x ⋃︀ δ,τ,β) = ln(θγθ

τδτ
) − (θ + 1) ln (γ + eβx − 1) + (τ + 1) ln (δ + eβx − 1) . (3.125)

We begin evaluating eq. (3.124) by splitting the integration into three parts, namely for each summand
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of the right-hand side of eq. (3.125). Integration of the �rst term

I1 = ln(θγθτδτ
)

regarding the density is trivial since the term is constant. Integration of the second term I2, with

I2 = −(θ + 1) ln (γ + eβx − 1) ,
leads to

∞
∫
0

I2 fℰ(x ⋃︀ γ,θ ,β) dx = −(θ + 1)βθγθ ∞
∫
0

ln (γ + eβx − 1) eβx (γ + eβx − 1)−(θ+1) dx .
Substituting x = 1⇑β ln(1 − γ + z) leads to
−(θ + 1)βθγθ ∞

∫
γ

1
β
z−(θ+1) ln(z) dz = −(θ + 1)βθγθ γ−θ(θ ln(γ) + 1)

βθ2
= −(1 + θ) (ln(γ) + 1

θ
) .

¿e integration of the last term

I3 = (1 + τ) ln (δ + eβx − 1)
leads to

∞
∫
0

I3 fℰ(x ⋃︀ γ,θ ,β) dx = (1 + τ)βθγθ ∞
∫
0

ln (δ + eβx − 1) eβx (γ + eβx − 1)−(θ+1) dx
= (1 + τ)θγθ ∞

∫
γ

z−(θ+1) ln(δ − γ + z) dz (3.126)

= (1 + τ)θγθ ∞
∫
γ

z−(θ+1) (ln(δ) + ln(1 − γ
δ
+ z
δ
)) dz

= (1 + τ)θγθ ⎛⎜⎝ln(δ)
∞
∫
γ

z−(θ+1) dz + ∞
∫
γ

z−(θ+1) ln(1 − γ
δ
+ z
δ
) dz⎞⎟⎠

= (1 + τ)θγθ ⎛⎜⎜⎝
ln(δ)
θγθ

+ 1
δθ

∞
∫
γ
δ

z−(θ+1) ln(1 − γ
δ
+ z) dz⎞⎟⎟⎠

= (1 + τ)θγθ ( ln(δ)
θγθ

+ 1
δθθ2 2F1 ]︀θ ,θ; θ + 1; 1 − γ

δ
{︀) (3.127)
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= (1 + τ)θγθ ( ln(δ)
θγθ

+ 1
δθθ2

δθ

γθ 2F1 ⌊︀1,θ; θ + 1; 1 − δ
γ
}︀) (3.128)

= (1 + τ)(ln(δ) + 1
θ 2F1 ⌊︀1,θ; θ + 1; 1 − δ

γ
}︀) ,

where eq. (3.126) is obtained by the substitution z = eβx − (1 − γ). Equation (3.127) follows from the
integral representation given in Lemma 3.5.25. For eq. (3.128), we use Pfa� ’s transformation formula
for hypergeometric functions to change the argument 1 − γ⇑δ to 1 − δ⇑γ, by using the transformation
of eq. (3.75).

Corollary 3.5.31. ¿e Kullback-Leibler divergence between the Kannisto distributions𝒦(α,β) and𝒦(λ,β) is given by
DKL(𝒦(α,β) ∏︁𝒦(λ,β)) = (1 + β)( 2F1 ⌊︀1, 1β ; 1 + 1

β
; 1 − eα−λ
1 + eα }︀ − 1) + ln(1 + e−λ

1 + e−α ) .
Proof. Corollary 3.5.31 follows directly from Proposition 3.5.30 for τ = θ = 1

β , γ = 1 + e−α and
δ = 1 + e−λ, since by Proposition 3.3.1 the Kannisto distribution is a special case of the extended
exponential distribution.

3.6 | Conclusion
In this chapter, we provided an extensive characterization of the Kannisto and the extended expo-
nential life distributions which are determined by logistic-type hazard rate functions. Logistic-type
hazard rates have been originally studied by Kannisto (1992) and¿atcher, Kannisto and Vaupel
(1998) and play an important role in mortality modelling of elderly populations. However, the
corresponding distributions remained widely uncharacterized. Our contributions show how these
distributions are connected to other well-known life and non-life distributions. ¿ese connections
were obtained through transformations, continuous mixtures, truncations, and as limiting distribu-
tions. Furthermore, we derived analytic expressions for the mean residual life function, moment
generating function, central moments, Fisher information matrix, and Kullback-Leibler divergence.
¿e Kannisto distribution has been widely uncharacterized in terms of these quantities and the results
provided here are the main contributions of this chapter. Moreover, we proved that the extended
exponential distribution and the Kannisto distribution belong to the minimum domain of attraction
of the Weibull distribution and to the maximum domain of attraction of the Gumbel distribution.
We also provided the maximum and minimum domain of attraction for the Gompertz distribution
and quanti�ed how the Kannisto and the Gompertz distributions di�er in terms of the population
maximal lifespan.
In the academical literature as well as in practical applications, the Gompertz distribution plays a

major role in mortality modelling of high ages. As we demonstrated, the Kannisto distribution can
be obtained as a continuous mixture of Gompertz distributions. ¿is allows a non-homogeneous
interpretation of the underlying population. In the previous Section 1.7, we demonstrated that the
non-canonical logit link function is o en preferable over the canonical logarithmic link in the
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Poisson GAPC setting. ¿is implies that in many cases a logistic growth of the mortality rates at
high ages does provide a more accurate representation. For the most elementary predictor function
η(t,x) = κ(0)t + κ(1)t x the choice between a logit or a logarithmic link equally complies to the choice
between a Kannisto or a Gompertz distributed lifetime. By studying their connections and showing
some important characteristics, we provide deeper insights to parametric hazard rate models for
higher ages, which can be bene�cially applied in actuarial science or life insurance industry.
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Figure A.2: Annual mortality improvements of Sweden (females).
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Figure A.3: Annual mortality improvements of Sweden (males).
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A.2.2 | UK Improvements
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Figure A.4: Annual mortality improvements of UK-Wales (females).
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Figure A.5: Annual mortality improvements of UK-Wales (males).
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A.2.3 | France Improvements
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Figure A.6: Annual mortality improvements of France (females).
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Figure A.7: Annual mortality improvements of France (males).
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A.2.4 | Denmark Improvements
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Figure A.8: Annual mortality improvements of Denmark (females).
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Figure A.9: Annual mortality improvements of Denmark (males).
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A.2.5 | Switzerland Improvements
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Figure A.10: Annual mortality improvements of Switzerland (females).
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Figure A.11: Annual mortality improvements of Switzerland (males).
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A.2.6 | Finland Improvements
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Figure A.12: Annual mortality improvements of Finland (females).
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Figure A.13: Annual mortality improvements of Finland (males).
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A.2.7 | Russia Improvements
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Figure A.14: Annual mortality improvements of Russia (females).
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Figure A.15: Annual mortality improvements of Russia (males).
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A.3 | Estimated Kannisto Time Series

A.3.1 | Sweden
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Figure A.16: KANmodel estimates for Sweden (females).
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Figure A.17: KANmodel estimates for Sweden (males).
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A.3.2 | France
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Figure A.18: KANmodel estimates for France (females).
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Figure A.19: KANmodel estimates for France (males).
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A.3.3 | Switzerland

1900 1950 2000

−6.0

−5.0

−4.0

α t

(a) Estimated parameter series αt .

1900 1950 2000

0.10

0.12

0.14

β t

(b) Estimated parameter series βt .

2011

1964

1876

−6.0 −5.0 −4.0
0.10

0.12

0.14

αt

β t

(c) Parametric plot (αt ,βt).

Figure A.20: KANmodel estimates for Switzerland (females).
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Figure A.21: KANmodel estimates for Switzerland (males).
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A.3.4 | UK-Wales
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Figure A.22: KANmodel estimates for UKWales (females).
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Figure A.23: KANmodel estimates for UKWales (males).
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A.3.5 | Finland
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Figure A.24: KANmodel estimates for Finnland (females).
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Figure A.25: KANmodel estimates for Finnland (males).
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A.3.6 | Denmark
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Figure A.26: KANmodel estimates for Denmark (females).
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Figure A.27: KANmodel estimates for Denmark (males).
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B.1 | Significance of Individual GAPC Parameters

B.1.1 | APC Model

Table B.1: Regression table of the APC model for Swedish females. Only 143 of 315 parameters (≈ 45%)
are signi�cant on the 5% level. p-value signi�cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1. ‘ ’ 1.

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
α60 −5.219 7.358 × 10−1 −7.093 1.3 × 10−12 ***
α61 −5.146 7.422 × 10−1 −6.933 4.1 × 10−12 ***
α62 −5.066 7.487 × 10−1 −6.766 1.3 × 10−11 ***
α63 −4.971 7.551 × 10−1 −6.583 4.6 × 10−11 ***
α64 −4.880 7.616 × 10−1 −6.408 1.5 × 10−10 ***
α65 −4.786 7.680 × 10−1 −6.232 4.6 × 10−10 ***
α66 −4.700 7.744 × 10−1 −6.069 1.3 × 10−9 ***
α67 −4.601 7.809 × 10−1 −5.893 3.8 × 10−9 ***
α68 −4.508 7.873 × 10−1 −5.726 1.0 × 10−8 ***
α69 −4.412 7.938 × 10−1 −5.559 2.7 × 10−8 ***
α70 −4.305 8.002 × 10−1 −5.380 7.4 × 10−8 ***
α71 −4.204 8.067 × 10−1 −5.212 1.9 × 10−7 ***
α72 −4.104 8.131 × 10−1 −5.048 4.5 × 10−7 ***
α73 −3.999 8.196 × 10−1 −4.880 1.1 × 10−6 ***
α74 −3.888 8.260 × 10−1 −4.707 2.5 × 10−6 ***
α75 −3.793 8.324 × 10−1 −4.556 5.2 × 10−6 ***
α76 −3.679 8.389 × 10−1 −4.386 1.2 × 10−5 ***
continued . . .
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
α77 −3.571 8.453 × 10−1 −4.225 2.4 × 10−5 ***
α78 −3.474 8.518 × 10−1 −4.078 4.5 × 10−5 ***
α79 −3.365 8.582 × 10−1 −3.921 8.8 × 10−5 ***
α80 −3.263 8.647 × 10−1 −3.774 1.6 × 10−4 ***
α81 −3.156 8.711 × 10−1 −3.623 2.9 × 10−4 ***
α82 −3.053 8.776 × 10−1 −3.478 5.0 × 10−4 ***
α83 −2.950 8.840 × 10−1 −3.337 8.5 × 10−4 ***
α84 −2.847 8.905 × 10−1 −3.197 1.4 × 10−3 **
α85 −2.742 8.969 × 10−1 −3.057 2.2 × 10−3 **
α86 −2.640 9.034 × 10−1 −2.923 3.5 × 10−3 **
α87 −2.540 9.098 × 10−1 −2.792 5.2 × 10−3 **
α88 −2.441 9.163 × 10−1 −2.664 7.7 × 10−3 **
α89 −2.341 9.227 × 10−1 −2.537 1.1 × 10−2 *
α90 −2.249 9.292 × 10−1 −2.421 1.5 × 10−2 *
α91 −2.153 9.356 × 10−1 −2.301 2.1 × 10−2 *
α92 −2.056 9.421 × 10−1 −2.183 2.9 × 10−2 *
α93 −1.967 9.485 × 10−1 −2.074 3.8 × 10−2 *
α94 −1.884 9.550 × 10−1 −1.972 4.9 × 10−2 *
α95 −1.795 9.614 × 10−1 −1.867 6.2 × 10−2 .
α96 −1.713 9.679 × 10−1 −1.769 7.7 × 10−2 .
α97 −1.637 9.743 × 10−1 −1.680 9.3 × 10−2 .
α98 −1.570 9.808 × 10−1 −1.600 1.1 × 10−1
α99 −1.509 9.873 × 10−1 −1.528 1.3 × 10−1
α100 −1.421 9.938 × 10−1 −1.430 1.5 × 10−1
α101 −1.343 1.000 −1.343 1.8 × 10−1
α102 −1.326 1.007 −1.317 1.9 × 10−1
α103 −1.287 1.013 −1.270 2.0 × 10−1
α104 −1.247 1.020 −1.222 2.2 × 10−1
α105 −1.211 1.027 −1.179 2.4 × 10−1
α106 −1.223 1.035 −1.181 2.4 × 10−1
κ1901 −1.082 × 10−1 1.219 × 10−2 −8.870 <2.0 × 10−16 ***
κ1902 −9.004 × 10−2 1.647 × 10−2 −5.466 4.6 × 10−8 ***
κ1903 −1.470 × 10−1 2.195 × 10−2 −6.697 2.1 × 10−11 ***
κ1904 −7.846 × 10−2 2.774 × 10−2 −2.828 4.7 × 10−3 **
κ1905 −1.067 × 10−1 3.386 × 10−2 −3.152 1.6 × 10−3 **
κ1906 −1.889 × 10−1 4.012 × 10−2 −4.709 2.5 × 10−6 ***
κ1907 −1.213 × 10−1 4.635 × 10−2 −2.616 8.9 × 10−3 **
κ1908 −1.047 × 10−1 5.267 × 10−2 −1.987 4.7 × 10−2 *
κ1909 −1.771 × 10−1 5.905 × 10−2 −2.999 2.7 × 10−3 **
κ1910 −1.668 × 10−1 6.542 × 10−2 −2.550 1.1 × 10−2 *
κ1911 −1.917 × 10−1 7.182 × 10−2 −2.669 7.6 × 10−3 **
κ1912 −1.300 × 10−1 7.821 × 10−2 −1.663 9.6 × 10−2 .
κ1913 −1.753 × 10−1 8.464 × 10−2 −2.071 3.8 × 10−2 *
κ1914 −1.658 × 10−1 9.106 × 10−2 −1.821 6.9 × 10−2 .
κ1915 −7.798 × 10−2 9.747 × 10−2 −8.000 × 10−1 4.2 × 10−1
continued . . .
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ1916 −2.021 × 10−1 1.039 × 10−1 −1.945 5.2 × 10−2 .
κ1917 −1.959 × 10−1 1.104 × 10−1 −1.775 7.6 × 10−2 .
κ1918 −1.694 × 10−1 1.168 × 10−1 −1.450 1.5 × 10−1
κ1919 −1.515 × 10−1 1.232 × 10−1 −1.229 2.2 × 10−1
κ1920 −2.220 × 10−1 1.297 × 10−1 −1.711 8.7 × 10−2 .
κ1921 −2.328 × 10−1 1.361 × 10−1 −1.710 8.7 × 10−2 .
κ1922 −1.307 × 10−1 1.426 × 10−1 −9.160 × 10−1 3.6 × 10−1
κ1923 −2.818 × 10−1 1.491 × 10−1 −1.891 5.9 × 10−2 .
κ1924 −2.359 × 10−1 1.555 × 10−1 −1.517 1.3 × 10−1
κ1925 −2.574 × 10−1 1.620 × 10−1 −1.589 1.1 × 10−1
κ1926 −2.383 × 10−1 1.684 × 10−1 −1.415 1.6 × 10−1
κ1927 −1.523 × 10−1 1.748 × 10−1 −8.710 × 10−1 3.8 × 10−1
κ1928 −2.294 × 10−1 1.813 × 10−1 −1.265 2.1 × 10−1
κ1929 −2.048 × 10−1 1.878 × 10−1 −1.091 2.8 × 10−1
κ1930 −2.457 × 10−1 1.942 × 10−1 −1.265 2.1 × 10−1
κ1931 −1.280 × 10−1 2.007 × 10−1 −6.380 × 10−1 5.2 × 10−1
κ1932 −2.278 × 10−1 2.071 × 10−1 −1.100 2.7 × 10−1
κ1933 −2.637 × 10−1 2.136 × 10−1 −1.235 2.2 × 10−1
κ1934 −2.604 × 10−1 2.201 × 10−1 −1.183 2.4 × 10−1
κ1935 −1.968 × 10−1 2.265 × 10−1 −8.690 × 10−1 3.8 × 10−1
κ1936 −1.840 × 10−1 2.330 × 10−1 −7.900 × 10−1 4.3 × 10−1
κ1937 −1.789 × 10−1 2.394 × 10−1 −7.470 × 10−1 4.5 × 10−1
κ1938 −2.369 × 10−1 2.459 × 10−1 −9.640 × 10−1 3.4 × 10−1
κ1939 −1.939 × 10−1 2.524 × 10−1 −7.690 × 10−1 4.4 × 10−1
κ1940 −1.933 × 10−1 2.588 × 10−1 −7.470 × 10−1 4.6 × 10−1
κ1941 −2.076 × 10−1 2.653 × 10−1 −7.820 × 10−1 4.3 × 10−1
κ1942 −3.843 × 10−1 2.718 × 10−1 −1.414 1.6 × 10−1
κ1943 −3.687 × 10−1 2.782 × 10−1 −1.325 1.9 × 10−1
κ1944 −2.881 × 10−1 2.847 × 10−1 −1.012 3.1 × 10−1
κ1945 −2.831 × 10−1 2.911 × 10−1 −9.720 × 10−1 3.3 × 10−1
κ1946 −2.791 × 10−1 2.976 × 10−1 −9.380 × 10−1 3.5 × 10−1
κ1947 −2.290 × 10−1 3.041 × 10−1 −7.530 × 10−1 4.5 × 10−1
κ1948 −3.206 × 10−1 3.105 × 10−1 −1.032 3.0 × 10−1
κ1949 −2.963 × 10−1 3.170 × 10−1 −9.350 × 10−1 3.5 × 10−1
κ1950 −2.775 × 10−1 3.234 × 10−1 −8.580 × 10−1 3.9 × 10−1
κ1951 −2.938 × 10−1 3.299 × 10−1 −8.910 × 10−1 3.7 × 10−1
κ1952 −3.278 × 10−1 3.364 × 10−1 −9.740 × 10−1 3.3 × 10−1
κ1953 −3.131 × 10−1 3.428 × 10−1 −9.130 × 10−1 3.6 × 10−1
κ1954 −3.323 × 10−1 3.493 × 10−1 −9.510 × 10−1 3.4 × 10−1
κ1955 −3.732 × 10−1 3.558 × 10−1 −1.049 2.9 × 10−1
κ1956 −3.644 × 10−1 3.622 × 10−1 −1.006 3.1 × 10−1
κ1957 −3.317 × 10−1 3.687 × 10−1 −9.000 × 10−1 3.7 × 10−1
κ1958 −3.699 × 10−1 3.752 × 10−1 −9.860 × 10−1 3.2 × 10−1
κ1959 −3.938 × 10−1 3.816 × 10−1 −1.032 3.0 × 10−1
κ1960 −3.549 × 10−1 3.881 × 10−1 −9.150 × 10−1 3.6 × 10−1
continued . . .
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ1961 −3.900 × 10−1 3.945 × 10−1 −9.890 × 10−1 3.2 × 10−1
κ1962 −3.674 × 10−1 4.010 × 10−1 −9.160 × 10−1 3.6 × 10−1
κ1963 −3.960 × 10−1 4.075 × 10−1 −9.720 × 10−1 3.3 × 10−1
κ1964 −4.194 × 10−1 4.139 × 10−1 −1.013 3.1 × 10−1
κ1965 −4.168 × 10−1 4.204 × 10−1 −9.910 × 10−1 3.2 × 10−1
κ1966 −4.277 × 10−1 4.269 × 10−1 −1.002 3.2 × 10−1
κ1967 −4.307 × 10−1 4.333 × 10−1 −9.940 × 10−1 3.2 × 10−1
κ1968 −4.008 × 10−1 4.398 × 10−1 −9.110 × 10−1 3.6 × 10−1
κ1969 −4.140 × 10−1 4.463 × 10−1 −9.280 × 10−1 3.5 × 10−1
κ1970 −4.840 × 10−1 4.527 × 10−1 −1.069 2.9 × 10−1
κ1971 −4.883 × 10−1 4.592 × 10−1 −1.063 2.9 × 10−1
κ1972 −4.787 × 10−1 4.657 × 10−1 −1.028 3.0 × 10−1
κ1973 −4.796 × 10−1 4.721 × 10−1 −1.016 3.1 × 10−1
κ1974 −4.900 × 10−1 4.786 × 10−1 −1.024 3.1 × 10−1
κ1975 −4.767 × 10−1 4.850 × 10−1 −9.830 × 10−1 3.3 × 10−1
κ1976 −4.559 × 10−1 4.915 × 10−1 −9.270 × 10−1 3.5 × 10−1
κ1977 −5.104 × 10−1 4.980 × 10−1 −1.025 3.1 × 10−1
κ1978 −4.977 × 10−1 5.044 × 10−1 −9.870 × 10−1 3.2 × 10−1
κ1979 −4.975 × 10−1 5.109 × 10−1 −9.740 × 10−1 3.3 × 10−1
κ1980 −4.852 × 10−1 5.174 × 10−1 −9.380 × 10−1 3.5 × 10−1
κ1981 −4.804 × 10−1 5.238 × 10−1 −9.170 × 10−1 3.6 × 10−1
κ1982 −5.115 × 10−1 5.303 × 10−1 −9.640 × 10−1 3.3 × 10−1
κ1983 −5.174 × 10−1 5.368 × 10−1 −9.640 × 10−1 3.4 × 10−1
κ1984 −5.232 × 10−1 5.432 × 10−1 −9.630 × 10−1 3.4 × 10−1
κ1985 −4.843 × 10−1 5.497 × 10−1 −8.810 × 10−1 3.8 × 10−1
κ1986 −4.955 × 10−1 5.562 × 10−1 −8.910 × 10−1 3.7 × 10−1
κ1987 −4.994 × 10−1 5.626 × 10−1 −8.880 × 10−1 3.7 × 10−1
κ1988 −4.508 × 10−1 5.691 × 10−1 −7.920 × 10−1 4.3 × 10−1
κ1989 −5.002 × 10−1 5.756 × 10−1 −8.690 × 10−1 3.8 × 10−1
κ1990 −4.629 × 10−1 5.820 × 10−1 −7.950 × 10−1 4.3 × 10−1
κ1991 −4.669 × 10−1 5.885 × 10−1 −7.930 × 10−1 4.3 × 10−1
κ1992 −4.602 × 10−1 5.950 × 10−1 −7.740 × 10−1 4.4 × 10−1
κ1993 −4.194 × 10−1 6.014 × 10−1 −6.970 × 10−1 4.9 × 10−1
κ1994 −4.825 × 10−1 6.079 × 10−1 −7.940 × 10−1 4.3 × 10−1
κ1995 −4.554 × 10−1 6.144 × 10−1 −7.410 × 10−1 4.6 × 10−1
κ1996 −4.382 × 10−1 6.208 × 10−1 −7.060 × 10−1 4.8 × 10−1
κ1997 −4.408 × 10−1 6.273 × 10−1 −7.030 × 10−1 4.8 × 10−1
κ1998 −4.369 × 10−1 6.337 × 10−1 −6.890 × 10−1 4.9 × 10−1
κ1999 −3.962 × 10−1 6.402 × 10−1 −6.190 × 10−1 5.4 × 10−1
κ2000 −3.976 × 10−1 6.467 × 10−1 −6.150 × 10−1 5.4 × 10−1
κ2001 −3.764 × 10−1 6.531 × 10−1 −5.760 × 10−1 5.6 × 10−1
κ2002 −3.421 × 10−1 6.596 × 10−1 −5.190 × 10−1 6.0 × 10−1
κ2003 −3.632 × 10−1 6.661 × 10−1 −5.450 × 10−1 5.9 × 10−1
κ2004 −3.759 × 10−1 6.725 × 10−1 −5.590 × 10−1 5.8 × 10−1
κ2005 −3.603 × 10−1 6.790 × 10−1 −5.310 × 10−1 6.0 × 10−1
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ2006 −3.465 × 10−1 6.855 × 10−1 −5.060 × 10−1 6.1 × 10−1
κ2007 −3.150 × 10−1 6.919 × 10−1 −4.550 × 10−1 6.5 × 10−1
κ2008 −3.101 × 10−1 6.984 × 10−1 −4.440 × 10−1 6.6 × 10−1
κ2009 −3.203 × 10−1 7.049 × 10−1 −4.540 × 10−1 6.5 × 10−1
κ2010 −3.013 × 10−1 7.113 × 10−1 −4.240 × 10−1 6.7 × 10−1
κ2011 −2.962 × 10−1 7.178 × 10−1 −4.130 × 10−1 6.8 × 10−1
κ2012 −2.540 × 10−1 7.243 × 10−1 −3.510 × 10−1 7.3 × 10−1
κ2013 −2.616 × 10−1 7.307 × 10−1 −3.580 × 10−1 7.2 × 10−1
κ2014 −2.769 × 10−1 7.372 × 10−1 −3.760 × 10−1 7.1 × 10−1
γ1800 1.001 1.112 9.000 × 10−1 3.7 × 10−1
γ1801 1.159 1.042 1.113 2.7 × 10−1
γ1802 1.501 1.012 1.483 1.4 × 10−1
γ1803 1.093 9.893 × 10−1 1.105 2.7 × 10−1
γ1804 1.034 9.763 × 10−1 1.060 2.9 × 10−1
γ1805 1.098 9.680 × 10−1 1.134 2.6 × 10−1
γ1806 1.042 9.593 × 10−1 1.086 2.8 × 10−1
γ1807 9.671 × 10−1 9.511 × 10−1 1.017 3.1 × 10−1
γ1808 1.037 9.436 × 10−1 1.099 2.7 × 10−1
γ1809 1.089 9.369 × 10−1 1.163 2.4 × 10−1
γ1810 1.071 9.301 × 10−1 1.151 2.5 × 10−1
γ1811 1.101 9.233 × 10−1 1.193 2.3 × 10−1
γ1812 1.115 9.167 × 10−1 1.216 2.2 × 10−1
γ1813 1.150 9.102 × 10−1 1.264 2.1 × 10−1
γ1814 1.137 9.037 × 10−1 1.259 2.1 × 10−1
γ1815 1.168 8.971 × 10−1 1.302 1.9 × 10−1
γ1816 1.196 8.906 × 10−1 1.343 1.8 × 10−1
γ1817 1.196 8.842 × 10−1 1.353 1.8 × 10−1
γ1818 1.170 8.777 × 10−1 1.332 1.8 × 10−1
γ1819 1.209 8.712 × 10−1 1.388 1.7 × 10−1
γ1820 1.176 8.648 × 10−1 1.360 1.7 × 10−1
γ1821 1.202 8.583 × 10−1 1.401 1.6 × 10−1
γ1822 1.206 8.519 × 10−1 1.416 1.6 × 10−1
γ1823 1.183 8.454 × 10−1 1.399 1.6 × 10−1
γ1824 1.207 8.390 × 10−1 1.439 1.5 × 10−1
γ1825 1.225 8.325 × 10−1 1.472 1.4 × 10−1
γ1826 1.228 8.261 × 10−1 1.487 1.4 × 10−1
γ1827 1.226 8.196 × 10−1 1.496 1.3 × 10−1
γ1828 1.195 8.132 × 10−1 1.470 1.4 × 10−1
γ1829 1.262 8.067 × 10−1 1.565 1.2 × 10−1
γ1830 1.231 8.003 × 10−1 1.539 1.2 × 10−1
γ1831 1.229 7.938 × 10−1 1.549 1.2 × 10−1
γ1832 1.203 7.874 × 10−1 1.528 1.3 × 10−1
γ1833 1.219 7.809 × 10−1 1.561 1.2 × 10−1
γ1834 1.261 7.745 × 10−1 1.628 1.0 × 10−1
γ1835 1.247 7.680 × 10−1 1.623 1.0 × 10−1
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
γ1836 1.227 7.616 × 10−1 1.612 1.1 × 10−1
γ1837 1.258 7.552 × 10−1 1.666 9.6 × 10−2 .
γ1838 1.257 7.487 × 10−1 1.679 9.3 × 10−2 .
γ1839 1.211 7.423 × 10−1 1.632 1.0 × 10−1
γ1840 1.273 7.358 × 10−1 1.730 8.4 × 10−2 .
γ1841 1.269 7.294 × 10−1 1.739 8.2 × 10−2 .
γ1842 1.280 7.230 × 10−1 1.770 7.7 × 10−2 .
γ1843 1.258 7.165 × 10−1 1.756 7.9 × 10−2 .
γ1844 1.282 7.101 × 10−1 1.805 7.1 × 10−2 .
γ1845 1.288 7.036 × 10−1 1.831 6.7 × 10−2 .
γ1846 1.283 6.972 × 10−1 1.841 6.6 × 10−2 .
γ1847 1.286 6.908 × 10−1 1.861 6.3 × 10−2 .
γ1848 1.282 6.843 × 10−1 1.873 6.1 × 10−2 .
γ1849 1.288 6.779 × 10−1 1.900 5.7 × 10−2 .
γ1850 1.316 6.715 × 10−1 1.960 5.0 × 10−2 .
γ1851 1.275 6.650 × 10−1 1.917 5.5 × 10−2 .
γ1852 1.311 6.586 × 10−1 1.991 4.6 × 10−2 *
γ1853 1.263 6.522 × 10−1 1.936 5.3 × 10−2 .
γ1854 1.301 6.457 × 10−1 2.015 4.4 × 10−2 *
γ1855 1.307 6.393 × 10−1 2.045 4.1 × 10−2 *
γ1856 1.317 6.329 × 10−1 2.081 3.7 × 10−2 *
γ1857 1.295 6.264 × 10−1 2.067 3.9 × 10−2 *
γ1858 1.320 6.200 × 10−1 2.129 3.3 × 10−2 *
γ1859 1.314 6.136 × 10−1 2.141 3.2 × 10−2 *
γ1860 1.336 6.071 × 10−1 2.200 2.8 × 10−2 *
γ1861 1.317 6.007 × 10−1 2.193 2.8 × 10−2 *
γ1862 1.304 5.943 × 10−1 2.194 2.8 × 10−2 *
γ1863 1.325 5.879 × 10−1 2.255 2.4 × 10−2 *
γ1864 1.321 5.814 × 10−1 2.272 2.3 × 10−2 *
γ1865 1.296 5.750 × 10−1 2.254 2.4 × 10−2 *
γ1866 1.322 5.686 × 10−1 2.325 2.0 × 10−2 *
γ1867 1.319 5.622 × 10−1 2.346 1.9 × 10−2 *
γ1868 1.322 5.558 × 10−1 2.378 1.7 × 10−2 *
γ1869 1.298 5.493 × 10−1 2.364 1.8 × 10−2 *
γ1870 1.316 5.429 × 10−1 2.423 1.5 × 10−2 *
γ1871 1.307 5.365 × 10−1 2.436 1.5 × 10−2 *
γ1872 1.309 5.301 × 10−1 2.469 1.4 × 10−2 *
γ1873 1.301 5.237 × 10−1 2.485 1.3 × 10−2 *
γ1874 1.301 5.172 × 10−1 2.515 1.2 × 10−2 *
γ1875 1.280 5.108 × 10−1 2.506 1.2 × 10−2 *
γ1876 1.290 5.044 × 10−1 2.558 1.1 × 10−2 *
γ1877 1.282 4.980 × 10−1 2.575 1.0 × 10−2 *
γ1878 1.276 4.916 × 10−1 2.596 9.4 × 10−3 **
γ1879 1.264 4.852 × 10−1 2.605 9.2 × 10−3 **
γ1880 1.263 4.788 × 10−1 2.638 8.3 × 10−3 **
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
γ1881 1.248 4.724 × 10−1 2.641 8.3 × 10−3 **
γ1882 1.259 4.660 × 10−1 2.702 6.9 × 10−3 **
γ1883 1.227 4.596 × 10−1 2.669 7.6 × 10−3 **
γ1884 1.221 4.532 × 10−1 2.694 7.1 × 10−3 **
γ1885 1.200 4.468 × 10−1 2.686 7.2 × 10−3 **
γ1886 1.209 4.404 × 10−1 2.745 6.1 × 10−3 **
γ1887 1.184 4.340 × 10−1 2.728 6.4 × 10−3 **
γ1888 1.203 4.276 × 10−1 2.813 4.9 × 10−3 **
γ1889 1.167 4.212 × 10−1 2.771 5.6 × 10−3 **
γ1890 1.159 4.148 × 10−1 2.793 5.2 × 10−3 **
γ1891 1.150 4.084 × 10−1 2.817 4.9 × 10−3 **
γ1892 1.129 4.021 × 10−1 2.809 5.0 × 10−3 **
γ1893 1.109 3.957 × 10−1 2.802 5.1 × 10−3 **
γ1894 1.108 3.893 × 10−1 2.847 4.4 × 10−3 **
γ1895 1.110 3.829 × 10−1 2.898 3.8 × 10−3 **
γ1896 1.085 3.766 × 10−1 2.882 4.0 × 10−3 **
γ1897 1.068 3.702 × 10−1 2.884 3.9 × 10−3 **
γ1898 1.073 3.638 × 10−1 2.948 3.2 × 10−3 **
γ1899 1.048 3.575 × 10−1 2.932 3.4 × 10−3 **
γ1900 1.029 3.511 × 10−1 2.932 3.4 × 10−3 **
γ1901 1.010 3.448 × 10−1 2.930 3.4 × 10−3 **
γ1902 9.928 × 10−1 3.384 × 10−1 2.933 3.4 × 10−3 **
γ1903 9.708 × 10−1 3.321 × 10−1 2.923 3.5 × 10−3 **
γ1904 9.595 × 10−1 3.258 × 10−1 2.945 3.2 × 10−3 **
γ1905 9.416 × 10−1 3.194 × 10−1 2.948 3.2 × 10−3 **
γ1906 9.262 × 10−1 3.131 × 10−1 2.958 3.1 × 10−3 **
γ1907 9.086 × 10−1 3.068 × 10−1 2.962 3.1 × 10−3 **
γ1908 9.008 × 10−1 3.005 × 10−1 2.998 2.7 × 10−3 **
γ1909 8.706 × 10−1 2.942 × 10−1 2.960 3.1 × 10−3 **
γ1910 8.639 × 10−1 2.879 × 10−1 3.001 2.7 × 10−3 **
γ1911 8.403 × 10−1 2.816 × 10−1 2.984 2.8 × 10−3 **
γ1912 8.257 × 10−1 2.753 × 10−1 2.999 2.7 × 10−3 **
γ1913 7.949 × 10−1 2.690 × 10−1 2.955 3.1 × 10−3 **
γ1914 7.863 × 10−1 2.628 × 10−1 2.992 2.8 × 10−3 **
γ1915 7.775 × 10−1 2.565 × 10−1 3.031 2.4 × 10−3 **
γ1916 7.427 × 10−1 2.503 × 10−1 2.967 3.0 × 10−3 **
γ1917 7.208 × 10−1 2.441 × 10−1 2.954 3.1 × 10−3 **
γ1918 7.018 × 10−1 2.378 × 10−1 2.951 3.2 × 10−3 **
γ1919 6.506 × 10−1 2.316 × 10−1 2.809 5.0 × 10−3 **
γ1920 6.858 × 10−1 2.254 × 10−1 3.042 2.4 × 10−3 **
γ1921 6.113 × 10−1 2.193 × 10−1 2.788 5.3 × 10−3 **
γ1922 6.183 × 10−1 2.131 × 10−1 2.901 3.7 × 10−3 **
γ1923 5.698 × 10−1 2.070 × 10−1 2.753 5.9 × 10−3 **
γ1924 5.476 × 10−1 2.009 × 10−1 2.726 6.4 × 10−3 **
γ1925 5.166 × 10−1 1.948 × 10−1 2.652 8.0 × 10−3 **
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
γ1926 4.699 × 10−1 1.887 × 10−1 2.490 1.3 × 10−2 *
γ1927 4.696 × 10−1 1.827 × 10−1 2.570 1.0 × 10−2 *
γ1928 4.145 × 10−1 1.767 × 10−1 2.346 1.9 × 10−2 *
γ1929 4.109 × 10−1 1.707 × 10−1 2.407 1.6 × 10−2 *
γ1930 3.797 × 10−1 1.648 × 10−1 2.304 2.1 × 10−2 *
γ1931 3.757 × 10−1 1.589 × 10−1 2.364 1.8 × 10−2 *
γ1932 3.490 × 10−1 1.531 × 10−1 2.280 2.3 × 10−2 *
γ1933 3.223 × 10−1 1.473 × 10−1 2.188 2.9 × 10−2 *
γ1934 2.975 × 10−1 1.416 × 10−1 2.100 3.6 × 10−2 *
γ1935 2.930 × 10−1 1.360 × 10−1 2.155 3.1 × 10−2 *
γ1936 2.915 × 10−1 1.304 × 10−1 2.235 2.5 × 10−2 *
γ1937 2.533 × 10−1 1.250 × 10−1 2.027 4.3 × 10−2 *
γ1938 2.411 × 10−1 1.196 × 10−1 2.017 4.4 × 10−2 *
γ1939 2.308 × 10−1 1.143 × 10−1 2.018 4.4 × 10−2 *
γ1940 2.530 × 10−1 1.092 × 10−1 2.317 2.1 × 10−2 *
γ1941 2.114 × 10−1 1.043 × 10−1 2.027 4.3 × 10−2 *
γ1942 2.526 × 10−1 9.944 × 10−2 2.541 1.1 × 10−2 *
γ1943 2.052 × 10−1 9.484 × 10−2 2.163 3.1 × 10−2 *
γ1944 2.278 × 10−1 9.045 × 10−2 2.519 1.2 × 10−2 *
γ1945 2.062 × 10−1 8.641 × 10−2 2.386 1.7 × 10−2 *
γ1946 1.895 × 10−1 8.275 × 10−2 2.290 2.2 × 10−2 *
γ1947 1.952 × 10−1 7.949 × 10−2 2.455 1.4 × 10−2 *
γ1948 1.540 × 10−1 7.684 × 10−2 2.004 4.5 × 10−2 *
γ1949 1.415 × 10−1 7.481 × 10−2 1.891 5.9 × 10−2 .
γ1950 1.256 × 10−1 7.364 × 10−2 1.705 8.8 × 10−2 .
γ1951 1.126 × 10−1 7.357 × 10−2 1.531 1.3 × 10−1
γ1952 2.086 × 10−2 7.555 × 10−2 2.760 × 10−1 7.8 × 10−1
γ1953 1.922 × 10−2 7.971 × 10−2 2.410 × 10−1 8.1 × 10−1

B.1.2 | PLAT Model

Table B.2: Regression table of the PLAT:2 model for Swedish females. Only 26 of 428 parameters (≈ 6%)
are signi�cant on the 5% level. p-value signi�cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1 ‘ ’ 1.

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
α60 −5.652 8.203 × 10−1 −6.890 5.6 × 10−12 ***
α61 −5.571 7.936 × 10−1 −7.020 2.2 × 10−12 ***
α62 −5.484 7.745 × 10−1 −7.082 1.4 × 10−12 ***
α63 −5.382 7.633 × 10−1 −7.051 1.8 × 10−12 ***
α64 −5.284 7.602 × 10−1 −6.951 3.6 × 10−12 ***
α65 −5.183 7.649 × 10−1 −6.776 1.2 × 10−11 ***
α66 −5.090 7.769 × 10−1 −6.552 5.7 × 10−11 ***
α67 −4.984 7.956 × 10−1 −6.264 3.8 × 10−10 ***
α68 −4.882 8.202 × 10−1 −5.952 2.6 × 10−9 ***
α69 −4.779 8.501 × 10−1 −5.621 1.9 × 10−8 ***
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
α70 −4.664 8.843 × 10−1 −5.273 1.3 × 10−7 ***
α71 −4.554 9.223 × 10−1 −4.937 7.9 × 10−7 ***
α72 −4.445 9.632 × 10−1 −4.615 3.9 × 10−6 ***
α73 −4.331 1.007 −4.303 1.7 × 10−5 ***
α74 −4.210 1.052 −4.002 6.3 × 10−5 ***
α75 −4.105 1.099 −3.736 1.9 × 10−4 ***
α76 −3.981 1.147 −3.472 5.2 × 10−4 ***
α77 −3.863 1.196 −3.231 1.2 × 10−3 **
α78 −3.754 1.245 −3.016 2.6 × 10−3 **
α79 −3.634 1.295 −2.807 5.0 × 10−3 **
α80 −3.521 1.345 −2.619 8.8 × 10−3 **
α81 −3.403 1.395 −2.440 1.5 × 10−2 *
α82 −3.289 1.444 −2.277 2.3 × 10−2 *
α83 −3.175 1.494 −2.125 3.4 × 10−2 *
α84 −3.061 1.543 −1.984 4.7 × 10−2 *
α85 −2.946 1.592 −1.850 6.4 × 10−2 .
α86 −2.835 1.641 −1.728 8.4 × 10−2 .
α87 −2.726 1.689 −1.614 1.1 × 10−1
α88 −2.618 1.736 −1.508 1.3 × 10−1
α89 −2.512 1.783 −1.409 1.6 × 10−1
α90 −2.414 1.829 −1.320 1.9 × 10−1
α91 −2.313 1.874 −1.234 2.2 × 10−1
α92 −2.213 1.919 −1.153 2.5 × 10−1
α93 −2.123 1.963 −1.081 2.8 × 10−1
α94 −2.038 2.006 −1.016 3.1 × 10−1
α95 −1.951 2.049 −9.520 × 10−1 3.4 × 10−1
α96 −1.872 2.090 −8.950 × 10−1 3.7 × 10−1
α97 −1.801 2.131 −8.450 × 10−1 4.0 × 10−1
α98 −1.739 2.171 −8.010 × 10−1 4.2 × 10−1
α99 −1.685 2.210 −7.620 × 10−1 4.5 × 10−1
α100 −1.605 2.248 −7.140 × 10−1 4.8 × 10−1
α101 −1.538 2.285 −6.730 × 10−1 5.0 × 10−1
α102 −1.530 2.322 −6.590 × 10−1 5.1 × 10−1
α103 −1.507 2.357 −6.390 × 10−1 5.2 × 10−1
α104 −1.486 2.392 −6.210 × 10−1 5.3 × 10−1
α105 −1.475 2.426 −6.080 × 10−1 5.4 × 10−1
α106 −1.512 2.459 −6.150 × 10−1 5.4 × 10−1
κ(1)1901 −1.385 × 10−1 6.360 × 10−2 −2.178 2.9 × 10−2 *
κ(1)1902 −1.543 × 10−1 1.237 × 10−1 −1.248 2.1 × 10−1
κ(1)1903 −2.170 × 10−1 1.833 × 10−1 −1.184 2.4 × 10−1
κ(1)1904 −1.641 × 10−1 2.420 × 10−1 −6.780 × 10−1 5.0 × 10−1
κ(1)1905 −2.327 × 10−1 2.998 × 10−1 −7.760 × 10−1 4.4 × 10−1
κ(1)1906 −3.308 × 10−1 3.565 × 10−1 −9.280 × 10−1 3.5 × 10−1
κ(1)1907 −2.506 × 10−1 4.122 × 10−1 −6.080 × 10−1 5.4 × 10−1
κ(1)1908 −2.527 × 10−1 4.669 × 10−1 −5.410 × 10−1 5.9 × 10−1
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1909 −3.659 × 10−1 5.206 × 10−1 −7.030 × 10−1 4.8 × 10−1
κ(1)1910 −3.590 × 10−1 5.732 × 10−1 −6.260 × 10−1 5.3 × 10−1
κ(1)1911 −4.013 × 10−1 6.248 × 10−1 −6.420 × 10−1 5.2 × 10−1
κ(1)1912 −3.602 × 10−1 6.753 × 10−1 −5.330 × 10−1 5.9 × 10−1
κ(1)1913 −4.171 × 10−1 7.249 × 10−1 −5.750 × 10−1 5.7 × 10−1
κ(1)1914 −4.189 × 10−1 7.734 × 10−1 −5.420 × 10−1 5.9 × 10−1
κ(1)1915 −3.381 × 10−1 8.208 × 10−1 −4.120 × 10−1 6.8 × 10−1
κ(1)1916 −5.005 × 10−1 8.673 × 10−1 −5.770 × 10−1 5.6 × 10−1
κ(1)1917 −4.966 × 10−1 9.127 × 10−1 −5.440 × 10−1 5.9 × 10−1
κ(1)1918 −5.263 × 10−1 9.571 × 10−1 −5.500 × 10−1 5.8 × 10−1
κ(1)1919 −4.844 × 10−1 1.000 −4.840 × 10−1 6.3 × 10−1
κ(1)1920 −5.615 × 10−1 1.043 −5.380 × 10−1 5.9 × 10−1
κ(1)1921 −5.667 × 10−1 1.084 −5.230 × 10−1 6.0 × 10−1
κ(1)1922 −4.844 × 10−1 1.124 −4.310 × 10−1 6.7 × 10−1
κ(1)1923 −6.593 × 10−1 1.163 −5.670 × 10−1 5.7 × 10−1
κ(1)1924 −6.199 × 10−1 1.202 −5.160 × 10−1 6.1 × 10−1
κ(1)1925 −6.507 × 10−1 1.239 −5.250 × 10−1 6.0 × 10−1
κ(1)1926 −6.485 × 10−1 1.275 −5.090 × 10−1 6.1 × 10−1
κ(1)1927 −5.476 × 10−1 1.310 −4.180 × 10−1 6.8 × 10−1
κ(1)1928 −6.579 × 10−1 1.344 −4.900 × 10−1 6.2 × 10−1
κ(1)1929 −6.435 × 10−1 1.377 −4.670 × 10−1 6.4 × 10−1
κ(1)1930 −6.967 × 10−1 1.409 −4.940 × 10−1 6.2 × 10−1
κ(1)1931 −5.584 × 10−1 1.440 −3.880 × 10−1 7.0 × 10−1
κ(1)1932 −6.851 × 10−1 1.470 −4.660 × 10−1 6.4 × 10−1
κ(1)1933 −7.330 × 10−1 1.499 −4.890 × 10−1 6.2 × 10−1
κ(1)1934 −7.321 × 10−1 1.527 −4.790 × 10−1 6.3 × 10−1
κ(1)1935 −6.627 × 10−1 1.554 −4.270 × 10−1 6.7 × 10−1
κ(1)1936 −6.598 × 10−1 1.580 −4.180 × 10−1 6.8 × 10−1
κ(1)1937 −6.680 × 10−1 1.604 −4.160 × 10−1 6.8 × 10−1
κ(1)1938 −7.331 × 10−1 1.628 −4.500 × 10−1 6.5 × 10−1
κ(1)1939 −6.683 × 10−1 1.651 −4.050 × 10−1 6.9 × 10−1
κ(1)1940 −6.770 × 10−1 1.673 −4.050 × 10−1 6.9 × 10−1
κ(1)1941 −6.862 × 10−1 1.693 −4.050 × 10−1 6.9 × 10−1
κ(1)1942 −8.950 × 10−1 1.713 −5.220 × 10−1 6.0 × 10−1
κ(1)1943 −8.843 × 10−1 1.732 −5.110 × 10−1 6.1 × 10−1
κ(1)1944 −7.900 × 10−1 1.749 −4.520 × 10−1 6.5 × 10−1
κ(1)1945 −7.952 × 10−1 1.766 −4.500 × 10−1 6.5 × 10−1
κ(1)1946 −7.783 × 10−1 1.782 −4.370 × 10−1 6.6 × 10−1
κ(1)1947 −7.168 × 10−1 1.796 −3.990 × 10−1 6.9 × 10−1
κ(1)1948 −8.363 × 10−1 1.810 −4.620 × 10−1 6.4 × 10−1
κ(1)1949 −7.970 × 10−1 1.822 −4.370 × 10−1 6.6 × 10−1
κ(1)1950 −7.660 × 10−1 1.834 −4.180 × 10−1 6.8 × 10−1
κ(1)1951 −7.690 × 10−1 1.844 −4.170 × 10−1 6.8 × 10−1
κ(1)1952 −8.217 × 10−1 1.854 −4.430 × 10−1 6.6 × 10−1
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1953 −8.040 × 10−1 1.862 −4.320 × 10−1 6.7 × 10−1
κ(1)1954 −8.096 × 10−1 1.870 −4.330 × 10−1 6.7 × 10−1
κ(1)1955 −8.548 × 10−1 1.876 −4.560 × 10−1 6.5 × 10−1
κ(1)1956 −8.376 × 10−1 1.882 −4.450 × 10−1 6.6 × 10−1
κ(1)1957 −7.916 × 10−1 1.886 −4.200 × 10−1 6.7 × 10−1
κ(1)1958 −8.224 × 10−1 1.890 −4.350 × 10−1 6.6 × 10−1
κ(1)1959 −8.379 × 10−1 1.892 −4.430 × 10−1 6.6 × 10−1
κ(1)1960 −7.849 × 10−1 1.894 −4.140 × 10−1 6.8 × 10−1
κ(1)1961 −8.108 × 10−1 1.894 −4.280 × 10−1 6.7 × 10−1
κ(1)1962 −7.708 × 10−1 1.894 −4.070 × 10−1 6.8 × 10−1
κ(1)1963 −7.952 × 10−1 1.892 −4.200 × 10−1 6.7 × 10−1
κ(1)1964 −8.215 × 10−1 1.890 −4.350 × 10−1 6.6 × 10−1
κ(1)1965 −7.950 × 10−1 1.886 −4.210 × 10−1 6.7 × 10−1
κ(1)1966 −7.914 × 10−1 1.882 −4.210 × 10−1 6.7 × 10−1
κ(1)1967 −7.819 × 10−1 1.876 −4.170 × 10−1 6.8 × 10−1
κ(1)1968 −7.337 × 10−1 1.870 −3.920 × 10−1 6.9 × 10−1
κ(1)1969 −7.444 × 10−1 1.863 −4.000 × 10−1 6.9 × 10−1
κ(1)1970 −8.022 × 10−1 1.854 −4.330 × 10−1 6.7 × 10−1
κ(1)1971 −7.874 × 10−1 1.845 −4.270 × 10−1 6.7 × 10−1
κ(1)1972 −7.571 × 10−1 1.834 −4.130 × 10−1 6.8 × 10−1
κ(1)1973 −7.350 × 10−1 1.823 −4.030 × 10−1 6.9 × 10−1
κ(1)1974 −7.311 × 10−1 1.811 −4.040 × 10−1 6.9 × 10−1
κ(1)1975 −6.940 × 10−1 1.798 −3.860 × 10−1 7.0 × 10−1
κ(1)1976 −6.437 × 10−1 1.784 −3.610 × 10−1 7.2 × 10−1
κ(1)1977 −6.810 × 10−1 1.769 −3.850 × 10−1 7.0 × 10−1
κ(1)1978 −6.462 × 10−1 1.753 −3.690 × 10−1 7.1 × 10−1
κ(1)1979 −6.207 × 10−1 1.736 −3.580 × 10−1 7.2 × 10−1
κ(1)1980 −5.856 × 10−1 1.718 −3.410 × 10−1 7.3 × 10−1
κ(1)1981 −5.549 × 10−1 1.699 −3.270 × 10−1 7.4 × 10−1
κ(1)1982 −5.660 × 10−1 1.680 −3.370 × 10−1 7.4 × 10−1
κ(1)1983 −5.406 × 10−1 1.659 −3.260 × 10−1 7.4 × 10−1
κ(1)1984 −5.257 × 10−1 1.638 −3.210 × 10−1 7.5 × 10−1
κ(1)1985 −4.575 × 10−1 1.616 −2.830 × 10−1 7.8 × 10−1
κ(1)1986 −4.452 × 10−1 1.593 −2.800 × 10−1 7.8 × 10−1
κ(1)1987 −4.265 × 10−1 1.569 −2.720 × 10−1 7.9 × 10−1
κ(1)1988 −3.493 × 10−1 1.544 −2.260 × 10−1 8.2 × 10−1
κ(1)1989 −3.740 × 10−1 1.519 −2.460 × 10−1 8.1 × 10−1
κ(1)1990 −3.136 × 10−1 1.492 −2.100 × 10−1 8.3 × 10−1
κ(1)1991 −2.958 × 10−1 1.465 −2.020 × 10−1 8.4 × 10−1
κ(1)1992 −2.672 × 10−1 1.438 −1.860 × 10−1 8.5 × 10−1
κ(1)1993 −2.015 × 10−1 1.409 −1.430 × 10−1 8.9 × 10−1
κ(1)1994 −2.448 × 10−1 1.380 −1.770 × 10−1 8.6 × 10−1
κ(1)1995 −1.975 × 10−1 1.351 −1.460 × 10−1 8.8 × 10−1
κ(1)1996 −1.599 × 10−1 1.321 −1.210 × 10−1 9.0 × 10−1
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κ(1)1997 −1.439 × 10−1 1.290 −1.120 × 10−1 9.1 × 10−1
κ(1)1998 −1.226 × 10−1 1.259 −9.700 × 10−2 9.2 × 10−1
κ(1)1999 −6.553 × 10−2 1.228 −5.300 × 10−2 9.6 × 10−1
κ(1)2000 −5.169 × 10−2 1.196 −4.300 × 10−2 9.7 × 10−1
κ(1)2001 −1.664 × 10−2 1.164 −1.400 × 10−2 9.9 × 10−1
κ(1)2002 2.968 × 10−2 1.132 2.600 × 10−2 9.8 × 10−1
κ(1)2003 2.051 × 10−2 1.100 1.900 × 10−2 9.9 × 10−1
κ(1)2004 1.855 × 10−2 1.068 1.700 × 10−2 9.9 × 10−1
κ(1)2005 4.312 × 10−2 1.036 4.200 × 10−2 9.7 × 10−1
κ(1)2006 6.347 × 10−2 1.005 6.300 × 10−2 9.5 × 10−1
κ(1)2007 1.010 × 10−1 9.746 × 10−1 1.040 × 10−1 9.2 × 10−1
κ(1)2008 1.107 × 10−1 9.449 × 10−1 1.170 × 10−1 9.1 × 10−1
κ(1)2009 1.060 × 10−1 9.164 × 10−1 1.160 × 10−1 9.1 × 10−1
κ(1)2010 1.285 × 10−1 8.893 × 10−1 1.440 × 10−1 8.9 × 10−1
κ(1)2011 1.340 × 10−1 8.639 × 10−1 1.550 × 10−1 8.8 × 10−1
κ(1)2012 1.771 × 10−1 8.406 × 10−1 2.110 × 10−1 8.3 × 10−1
κ(1)2013 1.712 × 10−1 8.197 × 10−1 2.090 × 10−1 8.3 × 10−1
κ(1)2014 1.557 × 10−1 8.019 × 10−1 1.940 × 10−1 8.5 × 10−1
κ(2)1900 −1.082 × 10−2 1.187 × 10−1 −9.100 × 10−2 9.3 × 10−1
κ(2)1901 −9.011 × 10−3 1.177 × 10−1 −7.700 × 10−2 9.4 × 10−1
κ(2)1902 −6.681 × 10−3 1.166 × 10−1 −5.700 × 10−2 9.5 × 10−1
κ(2)1903 −7.994 × 10−3 1.156 × 10−1 −6.900 × 10−2 9.4 × 10−1
κ(2)1904 −7.985 × 10−3 1.145 × 10−1 −7.000 × 10−2 9.4 × 10−1
κ(2)1905 −4.582 × 10−3 1.135 × 10−1 −4.000 × 10−2 9.7 × 10−1
κ(2)1906 −4.404 × 10−3 1.125 × 10−1 −3.900 × 10−2 9.7 × 10−1
κ(2)1907 −8.231 × 10−3 1.114 × 10−1 −7.400 × 10−2 9.4 × 10−1
κ(2)1908 −7.618 × 10−3 1.104 × 10−1 −6.900 × 10−2 9.4 × 10−1
κ(2)1909 −3.762 × 10−3 1.093 × 10−1 −3.400 × 10−2 9.7 × 10−1
κ(2)1910 −5.207 × 10−3 1.083 × 10−1 −4.800 × 10−2 9.6 × 10−1
κ(2)1911 −4.601 × 10−3 1.073 × 10−1 −4.300 × 10−2 9.7 × 10−1
κ(2)1912 −3.456 × 10−3 1.062 × 10−1 −3.300 × 10−2 9.7 × 10−1
κ(2)1913 −3.584 × 10−3 1.052 × 10−1 −3.400 × 10−2 9.7 × 10−1
κ(2)1914 −3.692 × 10−3 1.041 × 10−1 −3.500 × 10−2 9.7 × 10−1
κ(2)1915 −4.381 × 10−3 1.031 × 10−1 −4.300 × 10−2 9.7 × 10−1
κ(2)1916 −3.474 × 10−4 1.020 × 10−1 −3.000 × 10−3 10.0 × 10−1
κ(2)1917 −1.565 × 10−3 1.010 × 10−1 −1.500 × 10−2 9.9 × 10−1
κ(2)1918 5.096 × 10−3 9.996 × 10−2 5.100 × 10−2 9.6 × 10−1
κ(2)1919 2.521 × 10−4 9.892 × 10−2 3.000 × 10−3 10.0 × 10−1
κ(2)1920 −1.563 × 10−4 9.788 × 10−2 −2.000 × 10−3 10.0 × 10−1
κ(2)1921 −2.373 × 10−3 9.684 × 10−2 −2.500 × 10−2 9.8 × 10−1
κ(2)1922 −6.484 × 10−4 9.580 × 10−2 −7.000 × 10−3 9.9 × 10−1
κ(2)1923 1.703 × 10−3 9.476 × 10−2 1.800 × 10−2 9.9 × 10−1
κ(2)1924 1.554 × 10−3 9.371 × 10−2 1.700 × 10−2 9.9 × 10−1
κ(2)1925 1.864 × 10−3 9.267 × 10−2 2.000 × 10−2 9.8 × 10−1
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κ(2)1926 3.389 × 10−3 9.163 × 10−2 3.700 × 10−2 9.7 × 10−1
κ(2)1927 2.435 × 10−4 9.059 × 10−2 3.000 × 10−3 10.0 × 10−1
κ(2)1928 4.330 × 10−3 8.955 × 10−2 4.800 × 10−2 9.6 × 10−1
κ(2)1929 5.053 × 10−3 8.851 × 10−2 5.700 × 10−2 9.5 × 10−1
κ(2)1930 6.155 × 10−3 8.746 × 10−2 7.000 × 10−2 9.4 × 10−1
κ(2)1931 2.416 × 10−3 8.642 × 10−2 2.800 × 10−2 9.8 × 10−1
κ(2)1932 5.854 × 10−3 8.538 × 10−2 6.900 × 10−2 9.5 × 10−1
κ(2)1933 7.146 × 10−3 8.434 × 10−2 8.500 × 10−2 9.3 × 10−1
κ(2)1934 7.086 × 10−3 8.330 × 10−2 8.500 × 10−2 9.3 × 10−1
κ(2)1935 5.848 × 10−3 8.226 × 10−2 7.100 × 10−2 9.4 × 10−1
κ(2)1936 7.046 × 10−3 8.121 × 10−2 8.700 × 10−2 9.3 × 10−1
κ(2)1937 8.854 × 10−3 8.017 × 10−2 1.100 × 10−1 9.1 × 10−1
κ(2)1938 9.808 × 10−3 7.913 × 10−2 1.240 × 10−1 9.0 × 10−1
κ(2)1939 6.462 × 10−3 7.809 × 10−2 8.300 × 10−2 9.3 × 10−1
κ(2)1940 7.926 × 10−3 7.705 × 10−2 1.030 × 10−1 9.2 × 10−1
κ(2)1941 7.280 × 10−3 7.601 × 10−2 9.600 × 10−2 9.2 × 10−1
κ(2)1942 1.236 × 10−2 7.497 × 10−2 1.650 × 10−1 8.7 × 10−1
κ(2)1943 1.345 × 10−2 7.392 × 10−2 1.820 × 10−1 8.6 × 10−1
κ(2)1944 1.178 × 10−2 7.288 × 10−2 1.620 × 10−1 8.7 × 10−1
κ(2)1945 1.387 × 10−2 7.184 × 10−2 1.930 × 10−1 8.5 × 10−1
κ(2)1946 1.247 × 10−2 7.080 × 10−2 1.760 × 10−1 8.6 × 10−1
κ(2)1947 1.136 × 10−2 6.976 × 10−2 1.630 × 10−1 8.7 × 10−1
κ(2)1948 1.648 × 10−2 6.872 × 10−2 2.400 × 10−1 8.1 × 10−1
κ(2)1949 1.509 × 10−2 6.767 × 10−2 2.230 × 10−1 8.2 × 10−1
κ(2)1950 1.418 × 10−2 6.663 × 10−2 2.130 × 10−1 8.3 × 10−1
κ(2)1951 1.319 × 10−2 6.559 × 10−2 2.010 × 10−1 8.4 × 10−1
κ(2)1952 1.733 × 10−2 6.455 × 10−2 2.680 × 10−1 7.9 × 10−1
κ(2)1953 1.817 × 10−2 6.351 × 10−2 2.860 × 10−1 7.7 × 10−1
κ(2)1954 1.749 × 10−2 6.247 × 10−2 2.800 × 10−1 7.8 × 10−1
κ(2)1955 1.972 × 10−2 6.142 × 10−2 3.210 × 10−1 7.5 × 10−1
κ(2)1956 2.009 × 10−2 6.038 × 10−2 3.330 × 10−1 7.4 × 10−1
κ(2)1957 1.977 × 10−2 5.934 × 10−2 3.330 × 10−1 7.4 × 10−1
κ(2)1958 2.050 × 10−2 5.830 × 10−2 3.520 × 10−1 7.3 × 10−1
κ(2)1959 2.120 × 10−2 5.726 × 10−2 3.700 × 10−1 7.1 × 10−1
κ(2)1960 2.109 × 10−2 5.622 × 10−2 3.750 × 10−1 7.1 × 10−1
κ(2)1961 2.194 × 10−2 5.517 × 10−2 3.980 × 10−1 6.9 × 10−1
κ(2)1962 2.150 × 10−2 5.413 × 10−2 3.970 × 10−1 6.9 × 10−1
κ(2)1963 2.350 × 10−2 5.309 × 10−2 4.430 × 10−1 6.6 × 10−1
κ(2)1964 2.693 × 10−2 5.205 × 10−2 5.170 × 10−1 6.0 × 10−1
κ(2)1965 2.579 × 10−2 5.101 × 10−2 5.060 × 10−1 6.1 × 10−1
κ(2)1966 2.640 × 10−2 4.997 × 10−2 5.280 × 10−1 6.0 × 10−1
κ(2)1967 2.755 × 10−2 4.893 × 10−2 5.630 × 10−1 5.7 × 10−1
κ(2)1968 2.772 × 10−2 4.788 × 10−2 5.790 × 10−1 5.6 × 10−1
κ(2)1969 3.111 × 10−2 4.684 × 10−2 6.640 × 10−1 5.1 × 10−1
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κ(2)1970 3.284 × 10−2 4.580 × 10−2 7.170 × 10−1 4.7 × 10−1
κ(2)1971 3.336 × 10−2 4.476 × 10−2 7.450 × 10−1 4.6 × 10−1
κ(2)1972 3.366 × 10−2 4.372 × 10−2 7.700 × 10−1 4.4 × 10−1
κ(2)1973 3.354 × 10−2 4.268 × 10−2 7.860 × 10−1 4.3 × 10−1
κ(2)1974 3.543 × 10−2 4.163 × 10−2 8.510 × 10−1 3.9 × 10−1
κ(2)1975 3.540 × 10−2 4.059 × 10−2 8.720 × 10−1 3.8 × 10−1
κ(2)1976 3.400 × 10−2 3.955 × 10−2 8.600 × 10−1 3.9 × 10−1
κ(2)1977 3.566 × 10−2 3.851 × 10−2 9.260 × 10−1 3.5 × 10−1
κ(2)1978 3.623 × 10−2 3.747 × 10−2 9.670 × 10−1 3.3 × 10−1
κ(2)1979 3.601 × 10−2 3.643 × 10−2 9.890 × 10−1 3.2 × 10−1
κ(2)1980 3.650 × 10−2 3.539 × 10−2 1.031 3.0 × 10−1
κ(2)1981 3.607 × 10−2 3.434 × 10−2 1.050 2.9 × 10−1
κ(2)1982 3.752 × 10−2 3.330 × 10−2 1.127 2.6 × 10−1
κ(2)1983 3.540 × 10−2 3.226 × 10−2 1.097 2.7 × 10−1
κ(2)1984 3.664 × 10−2 3.122 × 10−2 1.174 2.4 × 10−1
κ(2)1985 3.484 × 10−2 3.018 × 10−2 1.154 2.5 × 10−1
κ(2)1986 3.504 × 10−2 2.914 × 10−2 1.202 2.3 × 10−1
κ(2)1987 3.565 × 10−2 2.810 × 10−2 1.269 2.0 × 10−1
κ(2)1988 3.333 × 10−2 2.705 × 10−2 1.232 2.2 × 10−1
κ(2)1989 3.240 × 10−2 2.601 × 10−2 1.246 2.1 × 10−1
κ(2)1990 3.208 × 10−2 2.497 × 10−2 1.285 2.0 × 10−1
κ(2)1991 3.239 × 10−2 2.393 × 10−2 1.353 1.8 × 10−1
κ(2)1992 3.231 × 10−2 2.289 × 10−2 1.412 1.6 × 10−1
κ(2)1993 2.906 × 10−2 2.185 × 10−2 1.330 1.8 × 10−1
κ(2)1994 2.970 × 10−2 2.081 × 10−2 1.427 1.5 × 10−1
κ(2)1995 2.939 × 10−2 1.977 × 10−2 1.487 1.4 × 10−1
κ(2)1996 2.711 × 10−2 1.873 × 10−2 1.448 1.5 × 10−1
κ(2)1997 2.570 × 10−2 1.768 × 10−2 1.453 1.5 × 10−1
κ(2)1998 2.561 × 10−2 1.664 × 10−2 1.538 1.2 × 10−1
κ(2)1999 2.312 × 10−2 1.560 × 10−2 1.482 1.4 × 10−1
κ(2)2000 2.256 × 10−2 1.456 × 10−2 1.549 1.2 × 10−1
κ(2)2001 2.060 × 10−2 1.352 × 10−2 1.523 1.3 × 10−1
κ(2)2002 1.809 × 10−2 1.248 × 10−2 1.449 1.5 × 10−1
κ(2)2003 1.757 × 10−2 1.144 × 10−2 1.535 1.2 × 10−1
κ(2)2004 1.719 × 10−2 1.040 × 10−2 1.653 9.8 × 10−2 .
κ(2)2005 1.583 × 10−2 9.364 × 10−3 1.690 9.1 × 10−2 .
κ(2)2006 1.295 × 10−2 8.326 × 10−3 1.555 1.2 × 10−1
κ(2)2007 1.092 × 10−2 7.289 × 10−3 1.499 1.3 × 10−1
κ(2)2008 8.670 × 10−3 6.253 × 10−3 1.387 1.7 × 10−1
κ(2)2009 8.382 × 10−3 5.220 × 10−3 1.606 1.1 × 10−1
κ(2)2010 7.052 × 10−3 4.191 × 10−3 1.683 9.2 × 10−2 .
κ(2)2011 3.920 × 10−3 3.171 × 10−3 1.236 2.2 × 10−1
κ(2)2012 1.955 × 10−3 2.169 × 10−3 9.020 × 10−1 3.7 × 10−1
κ(2)2013 1.382 × 10−3 1.205 × 10−3 1.147 2.5 × 10−1
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γ1800 1.024 1.109 9.230 × 10−1 3.6 × 10−1
γ1801 1.178 1.042 1.131 2.6 × 10−1
γ1802 1.525 1.021 1.493 1.4 × 10−1
γ1803 1.158 1.014 1.142 2.5 × 10−1
γ1804 1.110 1.022 1.087 2.8 × 10−1
γ1805 1.168 1.039 1.124 2.6 × 10−1
γ1806 1.126 1.061 1.061 2.9 × 10−1
γ1807 1.069 1.088 9.830 × 10−1 3.3 × 10−1
γ1808 1.152 1.118 1.030 3.0 × 10−1
γ1809 1.218 1.153 1.056 2.9 × 10−1
γ1810 1.212 1.190 1.018 3.1 × 10−1
γ1811 1.258 1.229 1.023 3.1 × 10−1
γ1812 1.286 1.271 1.012 3.1 × 10−1
γ1813 1.338 1.313 1.018 3.1 × 10−1
γ1814 1.341 1.357 9.880 × 10−1 3.2 × 10−1
γ1815 1.387 1.402 9.890 × 10−1 3.2 × 10−1
γ1816 1.434 1.448 9.900 × 10−1 3.2 × 10−1
γ1817 1.452 1.494 9.720 × 10−1 3.3 × 10−1
γ1818 1.443 1.541 9.370 × 10−1 3.5 × 10−1
γ1819 1.501 1.587 9.460 × 10−1 3.4 × 10−1
γ1820 1.486 1.634 9.090 × 10−1 3.6 × 10−1
γ1821 1.530 1.681 9.110 × 10−1 3.6 × 10−1
γ1822 1.553 1.727 8.990 × 10−1 3.7 × 10−1
γ1823 1.547 1.774 8.720 × 10−1 3.8 × 10−1
γ1824 1.589 1.820 8.730 × 10−1 3.8 × 10−1
γ1825 1.624 1.865 8.710 × 10−1 3.8 × 10−1
γ1826 1.644 1.910 8.610 × 10−1 3.9 × 10−1
γ1827 1.660 1.955 8.490 × 10−1 4.0 × 10−1
γ1828 1.645 1.999 8.230 × 10−1 4.1 × 10−1
γ1829 1.728 2.042 8.460 × 10−1 4.0 × 10−1
γ1830 1.713 2.085 8.220 × 10−1 4.1 × 10−1
γ1831 1.727 2.127 8.120 × 10−1 4.2 × 10−1
γ1832 1.715 2.169 7.910 × 10−1 4.3 × 10−1
γ1833 1.746 2.209 7.900 × 10−1 4.3 × 10−1
γ1834 1.801 2.249 8.010 × 10−1 4.2 × 10−1
γ1835 1.801 2.288 7.870 × 10−1 4.3 × 10−1
γ1836 1.794 2.327 7.710 × 10−1 4.4 × 10−1
γ1837 1.838 2.364 7.770 × 10−1 4.4 × 10−1
γ1838 1.849 2.401 7.700 × 10−1 4.4 × 10−1
γ1839 1.815 2.437 7.450 × 10−1 4.6 × 10−1
γ1840 1.888 2.472 7.640 × 10−1 4.4 × 10−1
γ1841 1.894 2.506 7.560 × 10−1 4.5 × 10−1
γ1842 1.915 2.539 7.540 × 10−1 4.5 × 10−1
γ1843 1.903 2.571 7.400 × 10−1 4.6 × 10−1
γ1844 1.936 2.603 7.440 × 10−1 4.6 × 10−1
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γ1845 1.951 2.633 7.410 × 10−1 4.6 × 10−1
γ1846 1.955 2.663 7.340 × 10−1 4.6 × 10−1
γ1847 1.965 2.692 7.300 × 10−1 4.7 × 10−1
γ1848 1.969 2.719 7.240 × 10−1 4.7 × 10−1
γ1849 1.981 2.746 7.210 × 10−1 4.7 × 10−1
γ1850 2.016 2.772 7.270 × 10−1 4.7 × 10−1
γ1851 1.981 2.797 7.080 × 10−1 4.8 × 10−1
γ1852 2.023 2.821 7.170 × 10−1 4.7 × 10−1
γ1853 1.980 2.844 6.960 × 10−1 4.9 × 10−1
γ1854 2.024 2.866 7.060 × 10−1 4.8 × 10−1
γ1855 2.034 2.887 7.040 × 10−1 4.8 × 10−1
γ1856 2.046 2.907 7.040 × 10−1 4.8 × 10−1
γ1857 2.028 2.926 6.930 × 10−1 4.9 × 10−1
γ1858 2.056 2.944 6.980 × 10−1 4.8 × 10−1
γ1859 2.054 2.962 6.940 × 10−1 4.9 × 10−1
γ1860 2.078 2.978 6.980 × 10−1 4.9 × 10−1
γ1861 2.061 2.993 6.890 × 10−1 4.9 × 10−1
γ1862 2.048 3.007 6.810 × 10−1 5.0 × 10−1
γ1863 2.070 3.020 6.850 × 10−1 4.9 × 10−1
γ1864 2.065 3.033 6.810 × 10−1 5.0 × 10−1
γ1865 2.039 3.044 6.700 × 10−1 5.0 × 10−1
γ1866 2.064 3.054 6.760 × 10−1 5.0 × 10−1
γ1867 2.059 3.063 6.720 × 10−1 5.0 × 10−1
γ1868 2.058 3.072 6.700 × 10−1 5.0 × 10−1
γ1869 2.032 3.079 6.600 × 10−1 5.1 × 10−1
γ1870 2.046 3.085 6.630 × 10−1 5.1 × 10−1
γ1871 2.033 3.090 6.580 × 10−1 5.1 × 10−1
γ1872 2.029 3.094 6.560 × 10−1 5.1 × 10−1
γ1873 2.016 3.097 6.510 × 10−1 5.2 × 10−1
γ1874 2.010 3.100 6.490 × 10−1 5.2 × 10−1
γ1875 1.983 3.101 6.400 × 10−1 5.2 × 10−1
γ1876 1.985 3.101 6.400 × 10−1 5.2 × 10−1
γ1877 1.969 3.100 6.350 × 10−1 5.3 × 10−1
γ1878 1.955 3.098 6.310 × 10−1 5.3 × 10−1
γ1879 1.933 3.095 6.250 × 10−1 5.3 × 10−1
γ1880 1.922 3.091 6.220 × 10−1 5.3 × 10−1
γ1881 1.895 3.086 6.140 × 10−1 5.4 × 10−1
γ1882 1.894 3.080 6.150 × 10−1 5.4 × 10−1
γ1883 1.850 3.073 6.020 × 10−1 5.5 × 10−1
γ1884 1.831 3.065 5.970 × 10−1 5.5 × 10−1
γ1885 1.796 3.056 5.880 × 10−1 5.6 × 10−1
γ1886 1.789 3.046 5.870 × 10−1 5.6 × 10−1
γ1887 1.747 3.035 5.750 × 10−1 5.6 × 10−1
γ1888 1.747 3.023 5.780 × 10−1 5.6 × 10−1
γ1889 1.693 3.010 5.620 × 10−1 5.7 × 10−1
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
γ1890 1.664 2.996 5.550 × 10−1 5.8 × 10−1
γ1891 1.635 2.981 5.480 × 10−1 5.8 × 10−1
γ1892 1.591 2.965 5.360 × 10−1 5.9 × 10−1
γ1893 1.547 2.947 5.250 × 10−1 6.0 × 10−1
γ1894 1.523 2.929 5.200 × 10−1 6.0 × 10−1
γ1895 1.499 2.910 5.150 × 10−1 6.1 × 10−1
γ1896 1.449 2.890 5.010 × 10−1 6.2 × 10−1
γ1897 1.405 2.868 4.900 × 10−1 6.2 × 10−1
γ1898 1.383 2.846 4.860 × 10−1 6.3 × 10−1
γ1899 1.332 2.823 4.720 × 10−1 6.4 × 10−1
γ1900 1.285 2.798 4.590 × 10−1 6.5 × 10−1
γ1901 1.238 2.773 4.470 × 10−1 6.6 × 10−1
γ1902 1.193 2.746 4.340 × 10−1 6.6 × 10−1
γ1903 1.142 2.719 4.200 × 10−1 6.7 × 10−1
γ1904 1.103 2.690 4.100 × 10−1 6.8 × 10−1
γ1905 1.058 2.661 3.980 × 10−1 6.9 × 10−1
γ1906 1.015 2.630 3.860 × 10−1 7.0 × 10−1
γ1907 9.703 × 10−1 2.599 3.730 × 10−1 7.1 × 10−1
γ1908 9.361 × 10−1 2.566 3.650 × 10−1 7.2 × 10−1
γ1909 8.800 × 10−1 2.532 3.480 × 10−1 7.3 × 10−1
γ1910 8.486 × 10−1 2.497 3.400 × 10−1 7.3 × 10−1
γ1911 8.010 × 10−1 2.462 3.250 × 10−1 7.4 × 10−1
γ1912 7.632 × 10−1 2.425 3.150 × 10−1 7.5 × 10−1
γ1913 7.104 × 10−1 2.387 2.980 × 10−1 7.7 × 10−1
γ1914 6.810 × 10−1 2.348 2.900 × 10−1 7.7 × 10−1
γ1915 6.531 × 10−1 2.308 2.830 × 10−1 7.8 × 10−1
γ1916 6.003 × 10−1 2.267 2.650 × 10−1 7.9 × 10−1
γ1917 5.617 × 10−1 2.226 2.520 × 10−1 8.0 × 10−1
γ1918 5.279 × 10−1 2.183 2.420 × 10−1 8.1 × 10−1
γ1919 4.635 × 10−1 2.139 2.170 × 10−1 8.3 × 10−1
γ1920 4.871 × 10−1 2.093 2.330 × 10−1 8.2 × 10−1
γ1921 4.029 × 10−1 2.047 1.970 × 10−1 8.4 × 10−1
γ1922 4.019 × 10−1 2.000 2.010 × 10−1 8.4 × 10−1
γ1923 3.468 × 10−1 1.952 1.780 × 10−1 8.6 × 10−1
γ1924 3.193 × 10−1 1.903 1.680 × 10−1 8.7 × 10−1
γ1925 2.845 × 10−1 1.853 1.540 × 10−1 8.8 × 10−1
γ1926 2.349 × 10−1 1.801 1.300 × 10−1 9.0 × 10−1
γ1927 2.328 × 10−1 1.749 1.330 × 10−1 8.9 × 10−1
γ1928 1.769 × 10−1 1.696 1.040 × 10−1 9.2 × 10−1
γ1929 1.731 × 10−1 1.642 1.050 × 10−1 9.2 × 10−1
γ1930 1.420 × 10−1 1.586 9.000 × 10−2 9.3 × 10−1
γ1931 1.390 × 10−1 1.530 9.100 × 10−2 9.3 × 10−1
γ1932 1.140 × 10−1 1.472 7.700 × 10−2 9.4 × 10−1
γ1933 9.003 × 10−2 1.414 6.400 × 10−2 9.5 × 10−1
γ1934 6.759 × 10−2 1.354 5.000 × 10−2 9.6 × 10−1
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
γ1935 6.640 × 10−2 1.294 5.100 × 10−2 9.6 × 10−1
γ1936 6.942 × 10−2 1.232 5.600 × 10−2 9.6 × 10−1
γ1937 3.580 × 10−2 1.169 3.100 × 10−2 9.8 × 10−1
γ1938 2.861 × 10−2 1.106 2.600 × 10−2 9.8 × 10−1
γ1939 2.456 × 10−2 1.041 2.400 × 10−2 9.8 × 10−1
γ1940 5.342 × 10−2 9.754 × 10−1 5.500 × 10−2 9.6 × 10−1
γ1941 1.988 × 10−2 9.086 × 10−1 2.200 × 10−2 9.8 × 10−1
γ1942 6.984 × 10−2 8.409 × 10−1 8.300 × 10−2 9.3 × 10−1
γ1943 3.099 × 10−2 7.721 × 10−1 4.000 × 10−2 9.7 × 10−1
γ1944 6.416 × 10−2 7.023 × 10−1 9.100 × 10−2 9.3 × 10−1
γ1945 5.577 × 10−2 6.314 × 10−1 8.800 × 10−2 9.3 × 10−1
γ1946 5.471 × 10−2 5.597 × 10−1 9.800 × 10−2 9.2 × 10−1
γ1947 7.494 × 10−2 4.869 × 10−1 1.540 × 10−1 8.8 × 10−1
γ1948 4.887 × 10−2 4.132 × 10−1 1.180 × 10−1 9.1 × 10−1
γ1949 5.038 × 10−2 3.387 × 10−1 1.490 × 10−1 8.8 × 10−1
γ1950 5.379 × 10−2 2.637 × 10−1 2.040 × 10−1 8.4 × 10−1
γ1951 6.443 × 10−2 1.887 × 10−1 3.410 × 10−1 7.3 × 10−1
γ1952 −1.025 × 10−2 1.166 × 10−1 −8.800 × 10−2 9.3 × 10−1

B.1.3 | M7 Model

Table B.3: Regression table of the M7 model for Swedish females. 438 of 498 parameters (≈ 87%) are
signi�cant on the 5% level. p-value signi�cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1 ‘ ’ 1.

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1900 −1.313 × 101 1.440 −9.115 <2.0 × 10−16 ***
κ(1)1901 −1.375 × 101 1.487 −9.249 <2.0 × 10−16 ***
κ(1)1902 −1.422 × 101 1.534 −9.272 <2.0 × 10−16 ***
κ(1)1903 −1.474 × 101 1.581 −9.324 <2.0 × 10−16 ***
κ(1)1904 −1.508 × 101 1.628 −9.268 <2.0 × 10−16 ***
κ(1)1905 −1.559 × 101 1.674 −9.311 <2.0 × 10−16 ***
κ(1)1906 −1.604 × 101 1.721 −9.319 <2.0 × 10−16 ***
κ(1)1907 −1.637 × 101 1.767 −9.265 <2.0 × 10−16 ***
κ(1)1908 −1.675 × 101 1.813 −9.239 <2.0 × 10−16 ***
κ(1)1909 −1.719 × 101 1.859 −9.251 <2.0 × 10−16 ***
κ(1)1910 −1.750 × 101 1.904 −9.193 <2.0 × 10−16 ***
κ(1)1911 −1.785 × 101 1.948 −9.164 <2.0 × 10−16 ***
κ(1)1912 −1.812 × 101 1.992 −9.097 <2.0 × 10−16 ***
κ(1)1913 −1.848 × 101 2.035 −9.080 <2.0 × 10−16 ***
κ(1)1914 −1.873 × 101 2.077 −9.018 <2.0 × 10−16 ***
κ(1)1915 −1.894 × 101 2.119 −8.936 <2.0 × 10−16 ***
κ(1)1916 −1.932 × 101 2.160 −8.945 <2.0 × 10−16 ***
κ(1)1917 −1.954 × 101 2.201 −8.878 <2.0 × 10−16 ***
κ(1)1918 −1.976 × 101 2.240 −8.821 <2.0 × 10−16 ***
κ(1)1919 −1.996 × 101 2.279 −8.759 <2.0 × 10−16 ***
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1920 −2.022 × 101 2.317 −8.729 <2.0 × 10−16 ***
κ(1)1921 −2.038 × 101 2.354 −8.661 <2.0 × 10−16 ***
κ(1)1922 −2.048 × 101 2.390 −8.571 <2.0 × 10−16 ***
κ(1)1923 −2.076 × 101 2.425 −8.563 <2.0 × 10−16 ***
κ(1)1924 −2.088 × 101 2.459 −8.489 <2.0 × 10−16 ***
κ(1)1925 −2.101 × 101 2.493 −8.426 <2.0 × 10−16 ***
κ(1)1926 −2.116 × 101 2.525 −8.377 <2.0 × 10−16 ***
κ(1)1927 −2.115 × 101 2.557 −8.270 <2.0 × 10−16 ***
κ(1)1928 −2.136 × 101 2.588 −8.253 <2.0 × 10−16 ***
κ(1)1929 −2.143 × 101 2.617 −8.186 <2.0 × 10−16 ***
κ(1)1930 −2.150 × 101 2.646 −8.123 <2.0 × 10−16 ***
κ(1)1931 −2.144 × 101 2.674 −8.019 <2.0 × 10−16 ***
κ(1)1932 −2.161 × 101 2.701 −8.001 <2.0 × 10−16 ***
κ(1)1933 −2.165 × 101 2.727 −7.940 <2.0 × 10−16 ***
κ(1)1934 −2.168 × 101 2.752 −7.877 <2.0 × 10−16 ***
κ(1)1935 −2.165 × 101 2.776 −7.799 <2.0 × 10−16 ***
κ(1)1936 −2.164 × 101 2.799 −7.731 <2.0 × 10−16 ***
κ(1)1937 −2.164 × 101 2.821 −7.671 <2.0 × 10−16 ***
κ(1)1938 −2.169 × 101 2.842 −7.631 2.3 × 10−14 ***
κ(1)1939 −2.158 × 101 2.862 −7.540 4.7 × 10−14 ***
κ(1)1940 −2.155 × 101 2.881 −7.479 7.5 × 10−14 ***
κ(1)1941 −2.152 × 101 2.899 −7.423 1.1 × 10−13 ***
κ(1)1942 −2.165 × 101 2.916 −7.423 1.1 × 10−13 ***
κ(1)1943 −2.156 × 101 2.932 −7.352 2.0 × 10−13 ***
κ(1)1944 −2.143 × 101 2.947 −7.272 3.6 × 10−13 ***
κ(1)1945 −2.136 × 101 2.962 −7.214 5.4 × 10−13 ***
κ(1)1946 −2.123 × 101 2.975 −7.137 9.6 × 10−13 ***
κ(1)1947 −2.108 × 101 2.987 −7.057 1.7 × 10−12 ***
κ(1)1948 −2.109 × 101 2.998 −7.036 2.0 × 10−12 ***
κ(1)1949 −2.093 × 101 3.008 −6.957 3.5 × 10−12 ***
κ(1)1950 −2.079 × 101 3.017 −6.892 5.5 × 10−12 ***
κ(1)1951 −2.065 × 101 3.025 −6.828 8.6 × 10−12 ***
κ(1)1952 −2.057 × 101 3.032 −6.786 1.2 × 10−11 ***
κ(1)1953 −2.042 × 101 3.038 −6.724 1.8 × 10−11 ***
κ(1)1954 −2.026 × 101 3.043 −6.658 2.8 × 10−11 ***
κ(1)1955 −2.017 × 101 3.046 −6.619 3.6 × 10−11 ***
κ(1)1956 −1.999 × 101 3.049 −6.557 5.5 × 10−11 ***
κ(1)1957 −1.975 × 101 3.051 −6.473 9.6 × 10−11 ***
κ(1)1958 −1.963 × 101 3.052 −6.430 1.3 × 10−10 ***
κ(1)1959 −1.945 × 101 3.052 −6.373 1.9 × 10−10 ***
κ(1)1960 −1.924 × 101 3.051 −6.307 2.9 × 10−10 ***
κ(1)1961 −1.909 × 101 3.049 −6.261 3.8 × 10−10 ***
κ(1)1962 −1.885 × 101 3.045 −6.188 6.1 × 10−10 ***
κ(1)1963 −1.865 × 101 3.041 −6.132 8.7 × 10−10 ***
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1964 −1.846 × 101 3.036 −6.083 1.2 × 10−9 ***
κ(1)1965 −1.823 × 101 3.029 −6.019 1.8 × 10−9 ***
κ(1)1966 −1.802 × 101 3.022 −5.963 2.5 × 10−9 ***
κ(1)1967 −1.782 × 101 3.014 −5.912 3.4 × 10−9 ***
κ(1)1968 −1.754 × 101 3.004 −5.838 5.3 × 10−9 ***
κ(1)1969 −1.731 × 101 2.994 −5.783 7.4 × 10−9 ***
κ(1)1970 −1.713 × 101 2.982 −5.744 9.3 × 10−9 ***
κ(1)1971 −1.690 × 101 2.970 −5.689 1.3 × 10−8 ***
κ(1)1972 −1.662 × 101 2.956 −5.622 1.9 × 10−8 ***
κ(1)1973 −1.637 × 101 2.942 −5.564 2.6 × 10−8 ***
κ(1)1974 −1.613 × 101 2.926 −5.512 3.6 × 10−8 ***
κ(1)1975 −1.585 × 101 2.909 −5.449 5.1 × 10−8 ***
κ(1)1976 −1.555 × 101 2.892 −5.379 7.5 × 10−8 ***
κ(1)1977 −1.534 × 101 2.873 −5.340 9.3 × 10−8 ***
κ(1)1978 −1.508 × 101 2.853 −5.285 1.3 × 10−7 ***
κ(1)1979 −1.479 × 101 2.832 −5.221 1.8 × 10−7 ***
κ(1)1980 −1.449 × 101 2.811 −5.156 2.5 × 10−7 ***
κ(1)1981 −1.422 × 101 2.788 −5.100 3.4 × 10−7 ***
κ(1)1982 −1.398 × 101 2.764 −5.057 4.3 × 10−7 ***
κ(1)1983 −1.369 × 101 2.739 −4.998 5.8 × 10−7 ***
κ(1)1984 −1.342 × 101 2.713 −4.948 7.5 × 10−7 ***
κ(1)1985 −1.310 × 101 2.686 −4.876 1.1 × 10−6 ***
κ(1)1986 −1.283 × 101 2.658 −4.828 1.4 × 10−6 ***
κ(1)1987 −1.255 × 101 2.629 −4.775 1.8 × 10−6 ***
κ(1)1988 −1.221 × 101 2.599 −4.697 2.6 × 10−6 ***
κ(1)1989 −1.199 × 101 2.568 −4.668 3.0 × 10−6 ***
κ(1)1990 −1.168 × 101 2.535 −4.605 4.1 × 10−6 ***
κ(1)1991 −1.139 × 101 2.502 −4.552 5.3 × 10−6 ***
κ(1)1992 −1.111 × 101 2.468 −4.500 6.8 × 10−6 ***
κ(1)1993 −1.079 × 101 2.433 −4.437 9.1 × 10−6 ***
κ(1)1994 −1.059 × 101 2.396 −4.420 9.9 × 10−6 ***
κ(1)1995 −1.030 × 101 2.359 −4.366 1.3 × 10−5 ***
κ(1)1996 −1.001 × 101 2.321 −4.314 1.6 × 10−5 ***
κ(1)1997 −9.751 2.281 −4.275 1.9 × 10−5 ***
κ(1)1998 −9.494 2.241 −4.237 2.3 × 10−5 ***
κ(1)1999 −9.197 2.199 −4.182 2.9 × 10−5 ***
κ(1)2000 −8.945 2.157 −4.148 3.4 × 10−5 ***
κ(1)2001 −8.686 2.113 −4.111 3.9 × 10−5 ***
κ(1)2002 −8.409 2.068 −4.066 4.8 × 10−5 ***
κ(1)2003 −8.182 2.023 −4.046 5.2 × 10−5 ***
κ(1)2004 −7.967 1.976 −4.032 5.5 × 10−5 ***
κ(1)2005 −7.721 1.928 −4.004 6.2 × 10−5 ***
κ(1)2006 −7.486 1.879 −3.983 6.8 × 10−5 ***
κ(1)2007 −7.249 1.829 −3.963 7.4 × 10−5 ***
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)2008 −7.029 1.779 −3.952 7.8 × 10−5 ***
κ(1)2009 −6.833 1.727 −3.958 7.6 × 10−5 ***
κ(1)2010 −6.618 1.674 −3.954 7.7 × 10−5 ***
κ(1)2011 −6.430 1.620 −3.970 7.2 × 10−5 ***
κ(1)2012 −6.197 1.565 −3.961 7.5 × 10−5 ***
κ(1)2013 −6.025 1.508 −3.996 6.4 × 10−5 ***
κ(1)2014 −5.857 1.452 −4.034 5.5 × 10−5 ***
κ(2)1900 5.912 × 10−1 6.376 × 10−2 9.273 <2.0 × 10−16 ***
κ(2)1901 5.710 × 10−1 6.270 × 10−2 9.107 <2.0 × 10−16 ***
κ(2)1902 5.524 × 10−1 6.162 × 10−2 8.965 <2.0 × 10−16 ***
κ(2)1903 5.359 × 10−1 6.055 × 10−2 8.852 <2.0 × 10−16 ***
κ(2)1904 5.217 × 10−1 5.947 × 10−2 8.772 <2.0 × 10−16 ***
κ(2)1905 4.996 × 10−1 5.840 × 10−2 8.555 <2.0 × 10−16 ***
κ(2)1906 4.870 × 10−1 5.732 × 10−2 8.496 <2.0 × 10−16 ***
κ(2)1907 4.716 × 10−1 5.625 × 10−2 8.383 <2.0 × 10−16 ***
κ(2)1908 4.539 × 10−1 5.518 × 10−2 8.226 <2.0 × 10−16 ***
κ(2)1909 4.359 × 10−1 5.411 × 10−2 8.055 <2.0 × 10−16 ***
κ(2)1910 4.234 × 10−1 5.304 × 10−2 7.983 <2.0 × 10−16 ***
κ(2)1911 4.082 × 10−1 5.198 × 10−2 7.853 <2.0 × 10−16 ***
κ(2)1912 3.912 × 10−1 5.091 × 10−2 7.683 <2.0 × 10−16 ***
κ(2)1913 3.752 × 10−1 4.985 × 10−2 7.526 5.2 × 10−14 ***
κ(2)1914 3.621 × 10−1 4.879 × 10−2 7.421 1.2 × 10−13 ***
κ(2)1915 3.461 × 10−1 4.773 × 10−2 7.251 4.1 × 10−13 ***
κ(2)1916 3.293 × 10−1 4.667 × 10−2 7.056 1.7 × 10−12 ***
κ(2)1917 3.176 × 10−1 4.561 × 10−2 6.963 3.3 × 10−12 ***
κ(2)1918 2.989 × 10−1 4.456 × 10−2 6.708 2.0 × 10−11 ***
κ(2)1919 2.868 × 10−1 4.350 × 10−2 6.592 4.4 × 10−11 ***
κ(2)1920 2.740 × 10−1 4.245 × 10−2 6.455 1.1 × 10−10 ***
κ(2)1921 2.644 × 10−1 4.140 × 10−2 6.385 1.7 × 10−10 ***
κ(2)1922 2.480 × 10−1 4.035 × 10−2 6.147 7.9 × 10−10 ***
κ(2)1923 2.365 × 10−1 3.931 × 10−2 6.016 1.8 × 10−9 ***
κ(2)1924 2.226 × 10−1 3.826 × 10−2 5.818 6.0 × 10−9 ***
κ(2)1925 2.122 × 10−1 3.722 × 10−2 5.702 1.2 × 10−8 ***
κ(2)1926 1.950 × 10−1 3.618 × 10−2 5.390 7.0 × 10−8 ***
κ(2)1927 1.869 × 10−1 3.514 × 10−2 5.320 1.0 × 10−7 ***
κ(2)1928 1.700 × 10−1 3.410 × 10−2 4.986 6.2 × 10−7 ***
κ(2)1929 1.570 × 10−1 3.307 × 10−2 4.748 2.1 × 10−6 ***
κ(2)1930 1.486 × 10−1 3.204 × 10−2 4.638 3.5 × 10−6 ***
κ(2)1931 1.384 × 10−1 3.101 × 10−2 4.464 8.1 × 10−6 ***
κ(2)1932 1.242 × 10−1 2.999 × 10−2 4.143 3.4 × 10−5 ***
κ(2)1933 1.153 × 10−1 2.897 × 10−2 3.980 6.9 × 10−5 ***
κ(2)1934 1.045 × 10−1 2.795 × 10−2 3.741 1.8 × 10−4 ***
κ(2)1935 9.274 × 10−2 2.693 × 10−2 3.444 5.7 × 10−4 ***
κ(2)1936 8.220 × 10−2 2.592 × 10−2 3.171 1.5 × 10−3 **
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κ(2)1937 7.033 × 10−2 2.492 × 10−2 2.823 4.8 × 10−3 **
κ(2)1938 5.932 × 10−2 2.392 × 10−2 2.480 1.3 × 10−2 *
κ(2)1939 5.442 × 10−2 2.292 × 10−2 2.374 1.8 × 10−2 *
κ(2)1940 4.385 × 10−2 2.194 × 10−2 1.999 4.6 × 10−2 *
κ(2)1941 3.438 × 10−2 2.096 × 10−2 1.640 1.0 × 10−1
κ(2)1942 2.263 × 10−2 2.000 × 10−2 1.132 2.6 × 10−1
κ(2)1943 1.411 × 10−2 1.903 × 10−2 7.420 × 10−1 4.6 × 10−1
κ(2)1944 3.655 × 10−3 1.808 × 10−2 2.020 × 10−1 8.4 × 10−1
κ(2)1945 −7.439 × 10−3 1.714 × 10−2 −4.340 × 10−1 6.6 × 10−1
κ(2)1946 −1.177 × 10−2 1.620 × 10−2 −7.270 × 10−1 4.7 × 10−1
κ(2)1947 −1.911 × 10−2 1.530 × 10−2 −1.249 2.1 × 10−1
κ(2)1948 −3.198 × 10−2 1.442 × 10−2 −2.218 2.7 × 10−2 *
κ(2)1949 −3.703 × 10−2 1.355 × 10−2 −2.733 6.3 × 10−3 **
κ(2)1950 −4.490 × 10−2 1.271 × 10−2 −3.532 4.1 × 10−4 ***
κ(2)1951 −4.990 × 10−2 1.191 × 10−2 −4.191 2.8 × 10−5 ***
κ(2)1952 −6.092 × 10−2 1.115 × 10−2 −5.462 4.7 × 10−8 ***
κ(2)1953 −6.938 × 10−2 1.045 × 10−2 −6.642 3.1 × 10−11 ***
κ(2)1954 −7.330 × 10−2 9.795 × 10−3 −7.483 7.3 × 10−14 ***
κ(2)1955 −8.318 × 10−2 9.229 × 10−3 −9.013 <2.0 × 10−16 ***
κ(2)1956 −9.012 × 10−2 8.742 × 10−3 −1.031 × 101 <2.0 × 10−16 ***
κ(2)1957 −9.325 × 10−2 8.354 × 10−3 −1.116 × 101 <2.0 × 10−16 ***
κ(2)1958 −1.010 × 10−1 8.102 × 10−3 −1.246 × 101 <2.0 × 10−16 ***
κ(2)1959 −1.061 × 10−1 7.973 × 10−3 −1.330 × 101 <2.0 × 10−16 ***
κ(2)1960 −1.134 × 10−1 7.982 × 10−3 −1.421 × 101 <2.0 × 10−16 ***
κ(2)1961 −1.202 × 10−1 8.130 × 10−3 −1.478 × 101 <2.0 × 10−16 ***
κ(2)1962 −1.239 × 10−1 8.400 × 10−3 −1.476 × 101 <2.0 × 10−16 ***
κ(2)1963 −1.288 × 10−1 8.788 × 10−3 −1.465 × 101 <2.0 × 10−16 ***
κ(2)1964 −1.363 × 10−1 9.283 × 10−3 −1.469 × 101 <2.0 × 10−16 ***
κ(2)1965 −1.397 × 10−1 9.858 × 10−3 −1.417 × 101 <2.0 × 10−16 ***
κ(2)1966 −1.447 × 10−1 1.051 × 10−2 −1.377 × 101 <2.0 × 10−16 ***
κ(2)1967 −1.516 × 10−1 1.122 × 10−2 −1.350 × 101 <2.0 × 10−16 ***
κ(2)1968 −1.547 × 10−1 1.198 × 10−2 −1.291 × 101 <2.0 × 10−16 ***
κ(2)1969 −1.606 × 10−1 1.278 × 10−2 −1.256 × 101 <2.0 × 10−16 ***
κ(2)1970 −1.647 × 10−1 1.362 × 10−2 −1.210 × 101 <2.0 × 10−16 ***
κ(2)1971 −1.694 × 10−1 1.448 × 10−2 −1.170 × 101 <2.0 × 10−16 ***
κ(2)1972 −1.718 × 10−1 1.536 × 10−2 −1.118 × 101 <2.0 × 10−16 ***
κ(2)1973 −1.751 × 10−1 1.626 × 10−2 −1.077 × 101 <2.0 × 10−16 ***
κ(2)1974 −1.799 × 10−1 1.718 × 10−2 −1.047 × 101 <2.0 × 10−16 ***
κ(2)1975 −1.828 × 10−1 1.812 × 10−2 −1.009 × 101 <2.0 × 10−16 ***
κ(2)1976 −1.834 × 10−1 1.906 × 10−2 −9.620 <2.0 × 10−16 ***
κ(2)1977 −1.870 × 10−1 2.002 × 10−2 −9.345 <2.0 × 10−16 ***
κ(2)1978 −1.909 × 10−1 2.098 × 10−2 −9.098 <2.0 × 10−16 ***
κ(2)1979 −1.914 × 10−1 2.195 × 10−2 −8.720 <2.0 × 10−16 ***
κ(2)1980 −1.930 × 10−1 2.293 × 10−2 −8.416 <2.0 × 10−16 ***
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κ(2)1981 −1.946 × 10−1 2.391 × 10−2 −8.137 <2.0 × 10−16 ***
κ(2)1982 −1.974 × 10−1 2.490 × 10−2 −7.925 <2.0 × 10−16 ***
κ(2)1983 −1.959 × 10−1 2.590 × 10−2 −7.563 3.9 × 10−14 ***
κ(2)1984 −1.983 × 10−1 2.690 × 10−2 −7.373 1.7 × 10−13 ***
κ(2)1985 −1.971 × 10−1 2.790 × 10−2 −7.065 1.6 × 10−12 ***
κ(2)1986 −1.980 × 10−1 2.890 × 10−2 −6.852 7.3 × 10−12 ***
κ(2)1987 −1.985 × 10−1 2.991 × 10−2 −6.638 3.2 × 10−11 ***
κ(2)1988 −1.957 × 10−1 3.092 × 10−2 −6.328 2.5 × 10−10 ***
κ(2)1989 −1.951 × 10−1 3.194 × 10−2 −6.110 9.9 × 10−10 ***
κ(2)1990 −1.947 × 10−1 3.295 × 10−2 −5.909 3.5 × 10−9 ***
κ(2)1991 −1.937 × 10−1 3.397 × 10−2 −5.701 1.2 × 10−8 ***
κ(2)1992 −1.926 × 10−1 3.499 × 10−2 −5.506 3.7 × 10−8 ***
κ(2)1993 −1.886 × 10−1 3.601 × 10−2 −5.238 1.6 × 10−7 ***
κ(2)1994 −1.883 × 10−1 3.704 × 10−2 −5.083 3.7 × 10−7 ***
κ(2)1995 −1.866 × 10−1 3.806 × 10−2 −4.902 9.5 × 10−7 ***
κ(2)1996 −1.822 × 10−1 3.909 × 10−2 −4.661 3.1 × 10−6 ***
κ(2)1997 −1.788 × 10−1 4.011 × 10−2 −4.457 8.3 × 10−6 ***
κ(2)1998 −1.766 × 10−1 4.114 × 10−2 −4.292 1.8 × 10−5 ***
κ(2)1999 −1.714 × 10−1 4.217 × 10−2 −4.065 4.8 × 10−5 ***
κ(2)2000 −1.679 × 10−1 4.320 × 10−2 −3.887 1.0 × 10−4 ***
κ(2)2001 −1.631 × 10−1 4.424 × 10−2 −3.688 2.3 × 10−4 ***
κ(2)2002 −1.571 × 10−1 4.527 × 10−2 −3.472 5.2 × 10−4 ***
κ(2)2003 −1.526 × 10−1 4.630 × 10−2 −3.295 9.8 × 10−4 ***
κ(2)2004 −1.484 × 10−1 4.734 × 10−2 −3.134 1.7 × 10−3 **
κ(2)2005 −1.426 × 10−1 4.837 × 10−2 −2.948 3.2 × 10−3 **
κ(2)2006 −1.351 × 10−1 4.941 × 10−2 −2.735 6.2 × 10−3 **
κ(2)2007 −1.287 × 10−1 5.044 × 10−2 −2.552 1.1 × 10−2 *
κ(2)2008 −1.211 × 10−1 5.148 × 10−2 −2.353 1.9 × 10−2 *
κ(2)2009 −1.154 × 10−1 5.252 × 10−2 −2.198 2.8 × 10−2 *
κ(2)2010 −1.086 × 10−1 5.356 × 10−2 −2.027 4.3 × 10−2 *
κ(2)2011 −9.973 × 10−2 5.460 × 10−2 −1.827 6.8 × 10−2 .
κ(2)2012 −9.134 × 10−2 5.564 × 10−2 −1.642 1.0 × 10−1
κ(2)2013 −8.430 × 10−2 5.670 × 10−2 −1.487 1.4 × 10−1
κ(2)2014 −7.583 × 10−2 5.769 × 10−2 −1.314 1.9 × 10−1
κ(3)1900 8.146 × 10−3 5.629 × 10−4 1.447 × 101 <2.0 × 10−16 ***
κ(3)1901 7.965 × 10−3 5.630 × 10−4 1.415 × 101 <2.0 × 10−16 ***
κ(3)1902 7.910 × 10−3 5.616 × 10−4 1.409 × 101 <2.0 × 10−16 ***
κ(3)1903 7.740 × 10−3 5.611 × 10−4 1.379 × 101 <2.0 × 10−16 ***
κ(3)1904 7.796 × 10−3 5.593 × 10−4 1.394 × 101 <2.0 × 10−16 ***
κ(3)1905 7.538 × 10−3 5.589 × 10−4 1.349 × 101 <2.0 × 10−16 ***
κ(3)1906 7.692 × 10−3 5.584 × 10−4 1.377 × 101 <2.0 × 10−16 ***
κ(3)1907 7.362 × 10−3 5.574 × 10−4 1.321 × 101 <2.0 × 10−16 ***
κ(3)1908 7.170 × 10−3 5.567 × 10−4 1.288 × 101 <2.0 × 10−16 ***
κ(3)1909 7.164 × 10−3 5.563 × 10−4 1.288 × 101 <2.0 × 10−16 ***
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κ(3)1910 7.168 × 10−3 5.552 × 10−4 1.291 × 101 <2.0 × 10−16 ***
κ(3)1911 7.103 × 10−3 5.546 × 10−4 1.281 × 101 <2.0 × 10−16 ***
κ(3)1912 6.934 × 10−3 5.536 × 10−4 1.253 × 101 <2.0 × 10−16 ***
κ(3)1913 6.731 × 10−3 5.534 × 10−4 1.216 × 101 <2.0 × 10−16 ***
κ(3)1914 6.728 × 10−3 5.525 × 10−4 1.218 × 101 <2.0 × 10−16 ***
κ(3)1915 6.451 × 10−3 5.515 × 10−4 1.170 × 101 <2.0 × 10−16 ***
κ(3)1916 6.454 × 10−3 5.516 × 10−4 1.170 × 101 <2.0 × 10−16 ***
κ(3)1917 6.427 × 10−3 5.509 × 10−4 1.167 × 101 <2.0 × 10−16 ***
κ(3)1918 6.444 × 10−3 5.500 × 10−4 1.172 × 101 <2.0 × 10−16 ***
κ(3)1919 6.090 × 10−3 5.494 × 10−4 1.109 × 101 <2.0 × 10−16 ***
κ(3)1920 6.001 × 10−3 5.492 × 10−4 1.093 × 101 <2.0 × 10−16 ***
κ(3)1921 5.990 × 10−3 5.487 × 10−4 1.092 × 101 <2.0 × 10−16 ***
κ(3)1922 5.762 × 10−3 5.477 × 10−4 1.052 × 101 <2.0 × 10−16 ***
κ(3)1923 5.920 × 10−3 5.479 × 10−4 1.081 × 101 <2.0 × 10−16 ***
κ(3)1924 5.706 × 10−3 5.472 × 10−4 1.043 × 101 <2.0 × 10−16 ***
κ(3)1925 5.772 × 10−3 5.468 × 10−4 1.056 × 101 <2.0 × 10−16 ***
κ(3)1926 5.400 × 10−3 5.463 × 10−4 9.884 <2.0 × 10−16 ***
κ(3)1927 5.347 × 10−3 5.453 × 10−4 9.804 <2.0 × 10−16 ***
κ(3)1928 5.160 × 10−3 5.455 × 10−4 9.459 <2.0 × 10−16 ***
κ(3)1929 4.995 × 10−3 5.450 × 10−4 9.166 <2.0 × 10−16 ***
κ(3)1930 5.198 × 10−3 5.446 × 10−4 9.545 <2.0 × 10−16 ***
κ(3)1931 4.874 × 10−3 5.437 × 10−4 8.963 <2.0 × 10−16 ***
κ(3)1932 4.783 × 10−3 5.439 × 10−4 8.793 <2.0 × 10−16 ***
κ(3)1933 4.912 × 10−3 5.435 × 10−4 9.039 <2.0 × 10−16 ***
κ(3)1934 4.784 × 10−3 5.430 × 10−4 8.810 <2.0 × 10−16 ***
κ(3)1935 4.470 × 10−3 5.423 × 10−4 8.241 <2.0 × 10−16 ***
κ(3)1936 4.423 × 10−3 5.419 × 10−4 8.162 <2.0 × 10−16 ***
κ(3)1937 4.307 × 10−3 5.415 × 10−4 7.955 <2.0 × 10−16 ***
κ(3)1938 4.176 × 10−3 5.414 × 10−4 7.713 <2.0 × 10−16 ***
κ(3)1939 4.165 × 10−3 5.407 × 10−4 7.702 <2.0 × 10−16 ***
κ(3)1940 4.073 × 10−3 5.405 × 10−4 7.536 4.9 × 10−14 ***
κ(3)1941 3.892 × 10−3 5.403 × 10−4 7.203 5.9 × 10−13 ***
κ(3)1942 3.951 × 10−3 5.409 × 10−4 7.306 2.8 × 10−13 ***
κ(3)1943 3.941 × 10−3 5.402 × 10−4 7.296 3.0 × 10−13 ***
κ(3)1944 3.566 × 10−3 5.396 × 10−4 6.608 3.9 × 10−11 ***
κ(3)1945 3.407 × 10−3 5.392 × 10−4 6.318 2.6 × 10−10 ***
κ(3)1946 3.480 × 10−3 5.386 × 10−4 6.461 1.0 × 10−10 ***
κ(3)1947 3.331 × 10−3 5.382 × 10−4 6.190 6.0 × 10−10 ***
κ(3)1948 3.222 × 10−3 5.383 × 10−4 5.985 2.2 × 10−9 ***
κ(3)1949 3.197 × 10−3 5.378 × 10−4 5.945 2.8 × 10−9 ***
κ(3)1950 2.976 × 10−3 5.374 × 10−4 5.537 3.1 × 10−8 ***
κ(3)1951 2.957 × 10−3 5.372 × 10−4 5.504 3.7 × 10−8 ***
κ(3)1952 2.853 × 10−3 5.371 × 10−4 5.311 1.1 × 10−7 ***
κ(3)1953 2.674 × 10−3 5.368 × 10−4 4.982 6.3 × 10−7 ***
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κ(3)1954 2.720 × 10−3 5.365 × 10−4 5.070 4.0 × 10−7 ***
κ(3)1955 2.507 × 10−3 5.365 × 10−4 4.674 3.0 × 10−6 ***
κ(3)1956 2.366 × 10−3 5.361 × 10−4 4.413 1.0 × 10−5 ***
κ(3)1957 2.461 × 10−3 5.355 × 10−4 4.595 4.3 × 10−6 ***
κ(3)1958 2.254 × 10−3 5.356 × 10−4 4.208 2.6 × 10−5 ***
κ(3)1959 2.242 × 10−3 5.354 × 10−4 4.188 2.8 × 10−5 ***
κ(3)1960 1.964 × 10−3 5.352 × 10−4 3.671 2.4 × 10−4 ***
κ(3)1961 1.793 × 10−3 5.352 × 10−4 3.350 8.1 × 10−4 ***
κ(3)1962 1.752 × 10−3 5.348 × 10−4 3.275 1.1 × 10−3 **
κ(3)1963 1.813 × 10−3 5.346 × 10−4 3.391 7.0 × 10−4 ***
κ(3)1964 1.750 × 10−3 5.345 × 10−4 3.273 1.1 × 10−3 **
κ(3)1965 1.638 × 10−3 5.343 × 10−4 3.067 2.2 × 10−3 **
κ(3)1966 1.524 × 10−3 5.341 × 10−4 2.853 4.3 × 10−3 **
κ(3)1967 1.272 × 10−3 5.340 × 10−4 2.383 1.7 × 10−2 *
κ(3)1968 1.251 × 10−3 5.337 × 10−4 2.344 1.9 × 10−2 *
κ(3)1969 1.251 × 10−3 5.335 × 10−4 2.346 1.9 × 10−2 *
κ(3)1970 1.251 × 10−3 5.335 × 10−4 2.345 1.9 × 10−2 *
κ(3)1971 1.074 × 10−3 5.334 × 10−4 2.013 4.4 × 10−2 *
κ(3)1972 1.074 × 10−3 5.331 × 10−4 2.014 4.4 × 10−2 *
κ(3)1973 9.247 × 10−4 5.330 × 10−4 1.735 8.3 × 10−2 .
κ(3)1974 8.128 × 10−4 5.329 × 10−4 1.525 1.3 × 10−1
κ(3)1975 6.854 × 10−4 5.328 × 10−4 1.287 2.0 × 10−1
κ(3)1976 6.283 × 10−4 5.326 × 10−4 1.180 2.4 × 10−1
κ(3)1977 5.489 × 10−4 5.326 × 10−4 1.030 3.0 × 10−1
κ(3)1978 3.152 × 10−4 5.325 × 10−4 5.920 × 10−1 5.5 × 10−1
κ(3)1979 3.351 × 10−4 5.324 × 10−4 6.290 × 10−1 5.3 × 10−1
κ(3)1980 3.037 × 10−4 5.322 × 10−4 5.710 × 10−1 5.7 × 10−1
κ(3)1981 1.344 × 10−4 5.320 × 10−4 2.530 × 10−1 8.0 × 10−1
κ(3)1982 2.614 × 10−5 5.320 × 10−4 4.900 × 10−2 9.6 × 10−1
κ(3)1983 −2.063 × 10−5 5.319 × 10−4 −3.900 × 10−2 9.7 × 10−1
κ(3)1984 −1.684 × 10−4 5.320 × 10−4 −3.170 × 10−1 7.5 × 10−1
κ(3)1985 −2.607 × 10−4 5.317 × 10−4 −4.900 × 10−1 6.2 × 10−1
κ(3)1986 −4.055 × 10−4 5.318 × 10−4 −7.630 × 10−1 4.5 × 10−1
κ(3)1987 −4.648 × 10−4 5.317 × 10−4 −8.740 × 10−1 3.8 × 10−1
κ(3)1988 −4.826 × 10−4 5.316 × 10−4 −9.080 × 10−1 3.6 × 10−1
κ(3)1989 −6.827 × 10−4 5.317 × 10−4 −1.284 2.0 × 10−1
κ(3)1990 −8.431 × 10−4 5.317 × 10−4 −1.586 1.1 × 10−1
κ(3)1991 −8.395 × 10−4 5.316 × 10−4 −1.579 1.1 × 10−1
κ(3)1992 −9.441 × 10−4 5.316 × 10−4 −1.776 7.6 × 10−2 .
κ(3)1993 −1.116 × 10−3 5.315 × 10−4 −2.099 3.6 × 10−2 *
κ(3)1994 −1.298 × 10−3 5.317 × 10−4 −2.441 1.5 × 10−2 *
κ(3)1995 −1.465 × 10−3 5.317 × 10−4 −2.755 5.9 × 10−3 **
κ(3)1996 −1.544 × 10−3 5.316 × 10−4 −2.905 3.7 × 10−3 **
κ(3)1997 −1.697 × 10−3 5.316 × 10−4 −3.192 1.4 × 10−3 **
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κ(3)1998 −1.886 × 10−3 5.316 × 10−4 −3.548 3.9 × 10−4 ***
κ(3)1999 −2.019 × 10−3 5.316 × 10−4 −3.798 1.5 × 10−4 ***
κ(3)2000 −2.149 × 10−3 5.315 × 10−4 −4.042 5.3 × 10−5 ***
κ(3)2001 −2.374 × 10−3 5.315 × 10−4 −4.466 8.0 × 10−6 ***
κ(3)2002 −2.512 × 10−3 5.315 × 10−4 −4.727 2.3 × 10−6 ***
κ(3)2003 −2.564 × 10−3 5.315 × 10−4 −4.824 1.4 × 10−6 ***
κ(3)2004 −2.753 × 10−3 5.315 × 10−4 −5.179 2.2 × 10−7 ***
κ(3)2005 −2.866 × 10−3 5.315 × 10−4 −5.393 6.9 × 10−8 ***
κ(3)2006 −3.003 × 10−3 5.315 × 10−4 −5.650 1.6 × 10−8 ***
κ(3)2007 −3.253 × 10−3 5.315 × 10−4 −6.120 9.3 × 10−10 ***
κ(3)2008 −3.332 × 10−3 5.315 × 10−4 −6.269 3.6 × 10−10 ***
κ(3)2009 −3.468 × 10−3 5.316 × 10−4 −6.523 6.9 × 10−11 ***
κ(3)2010 −3.629 × 10−3 5.317 × 10−4 −6.825 8.8 × 10−12 ***
κ(3)2011 −3.834 × 10−3 5.318 × 10−4 −7.209 5.6 × 10−13 ***
κ(3)2012 −3.898 × 10−3 5.318 × 10−4 −7.331 2.3 × 10−13 ***
κ(3)2013 −4.023 × 10−3 5.367 × 10−4 −7.495 6.6 × 10−14 ***
κ(3)2014 −4.009 × 10−3 5.262 × 10−4 −7.619 2.6 × 10−14 ***
γ1800 1.839 1.110 1.657 9.8 × 10−2 .
γ1801 2.760 1.043 2.647 8.1 × 10−3 **
γ1802 3.873 1.023 3.786 1.5 × 10−4 ***
γ1803 4.252 1.017 4.181 2.9 × 10−5 ***
γ1804 4.936 1.026 4.809 1.5 × 10−6 ***
γ1805 5.704 1.045 5.456 4.9 × 10−8 ***
γ1806 6.343 1.069 5.933 3.0 × 10−9 ***
γ1807 6.951 1.098 6.333 2.4 × 10−10 ***
γ1808 7.677 1.130 6.793 1.1 × 10−11 ***
γ1809 8.365 1.166 7.171 7.4 × 10−13 ***
γ1810 8.961 1.205 7.435 1.1 × 10−13 ***
γ1811 9.592 1.247 7.695 <2.0 × 10−16 ***
γ1812 1.019 × 101 1.290 7.899 <2.0 × 10−16 ***
γ1813 1.078 × 101 1.334 8.083 <2.0 × 10−16 ***
γ1814 1.132 × 101 1.380 8.201 <2.0 × 10−16 ***
γ1815 1.187 × 101 1.426 8.324 <2.0 × 10−16 ***
γ1816 1.241 × 101 1.474 8.422 <2.0 × 10−16 ***
γ1817 1.290 × 101 1.521 8.482 <2.0 × 10−16 ***
γ1818 1.335 × 101 1.569 8.509 <2.0 × 10−16 ***
γ1819 1.385 × 101 1.617 8.564 <2.0 × 10−16 ***
γ1820 1.426 × 101 1.666 8.561 <2.0 × 10−16 ***
γ1821 1.471 × 101 1.713 8.585 <2.0 × 10−16 ***
γ1822 1.512 × 101 1.761 8.587 <2.0 × 10−16 ***
γ1823 1.549 × 101 1.809 8.566 <2.0 × 10−16 ***
γ1824 1.589 × 101 1.856 8.564 <2.0 × 10−16 ***
γ1825 1.627 × 101 1.902 8.553 <2.0 × 10−16 ***
γ1826 1.662 × 101 1.948 8.528 <2.0 × 10−16 ***
γ1827 1.694 × 101 1.994 8.497 <2.0 × 10−16 ***
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γ1828 1.723 × 101 2.039 8.448 <2.0 × 10−16 ***
γ1829 1.759 × 101 2.083 8.443 <2.0 × 10−16 ***
γ1830 1.784 × 101 2.127 8.388 <2.0 × 10−16 ***
γ1831 1.810 × 101 2.170 8.344 <2.0 × 10−16 ***
γ1832 1.833 × 101 2.212 8.287 <2.0 × 10−16 ***
γ1833 1.858 × 101 2.253 8.248 <2.0 × 10−16 ***
γ1834 1.885 × 101 2.294 8.217 <2.0 × 10−16 ***
γ1835 1.904 × 101 2.334 8.161 <2.0 × 10−16 ***
γ1836 1.922 × 101 2.372 8.101 <2.0 × 10−16 ***
γ1837 1.943 × 101 2.410 8.060 <2.0 × 10−16 ***
γ1838 1.960 × 101 2.448 8.006 <2.0 × 10−16 ***
γ1839 1.970 × 101 2.484 7.932 <2.0 × 10−16 ***
γ1840 1.991 × 101 2.519 7.901 <2.0 × 10−16 ***
γ1841 2.003 × 101 2.554 7.842 <2.0 × 10−16 ***
γ1842 2.015 × 101 2.588 7.788 <2.0 × 10−16 ***
γ1843 2.023 × 101 2.620 7.722 <2.0 × 10−16 ***
γ1844 2.034 × 101 2.652 7.672 <2.0 × 10−16 ***
γ1845 2.043 × 101 2.683 7.615 2.7 × 10−14 ***
γ1846 2.049 × 101 2.713 7.553 4.3 × 10−14 ***
γ1847 2.054 × 101 2.742 7.494 6.7 × 10−14 ***
γ1848 2.058 × 101 2.769 7.431 1.1 × 10−13 ***
γ1849 2.062 × 101 2.796 7.372 1.7 × 10−13 ***
γ1850 2.066 × 101 2.822 7.321 2.5 × 10−13 ***
γ1851 2.063 × 101 2.847 7.245 4.3 × 10−13 ***
γ1852 2.066 × 101 2.872 7.196 6.2 × 10−13 ***
γ1853 2.060 × 101 2.895 7.117 1.1 × 10−12 ***
γ1854 2.062 × 101 2.917 7.068 1.6 × 10−12 ***
γ1855 2.059 × 101 2.938 7.008 2.4 × 10−12 ***
γ1856 2.055 × 101 2.958 6.948 3.7 × 10−12 ***
γ1857 2.047 × 101 2.977 6.878 6.1 × 10−12 ***
γ1858 2.044 × 101 2.995 6.823 8.9 × 10−12 ***
γ1859 2.036 × 101 3.012 6.759 1.4 × 10−11 ***
γ1860 2.030 × 101 3.028 6.703 2.0 × 10−11 ***
γ1861 2.019 × 101 3.043 6.634 3.3 × 10−11 ***
γ1862 2.007 × 101 3.057 6.566 5.2 × 10−11 ***
γ1863 1.999 × 101 3.070 6.509 7.6 × 10−11 ***
γ1864 1.986 × 101 3.083 6.444 1.2 × 10−10 ***
γ1865 1.971 × 101 3.094 6.372 1.9 × 10−10 ***
γ1866 1.961 × 101 3.104 6.317 2.7 × 10−10 ***
γ1867 1.946 × 101 3.113 6.252 4.0 × 10−10 ***
γ1868 1.931 × 101 3.121 6.189 6.1 × 10−10 ***
γ1869 1.913 × 101 3.128 6.118 9.5 × 10−10 ***
γ1870 1.899 × 101 3.134 6.059 1.4 × 10−9 ***
γ1871 1.881 × 101 3.138 5.992 2.1 × 10−9 ***
γ1872 1.863 × 101 3.142 5.928 3.1 × 10−9 ***
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γ1873 1.844 × 101 3.145 5.862 4.6 × 10−9 ***
γ1874 1.825 × 101 3.147 5.797 6.7 × 10−9 ***
γ1875 1.803 × 101 3.148 5.727 1.0 × 10−8 ***
γ1876 1.783 × 101 3.148 5.665 1.5 × 10−8 ***
γ1877 1.761 × 101 3.147 5.598 2.2 × 10−8 ***
γ1878 1.739 × 101 3.144 5.531 3.2 × 10−8 ***
γ1879 1.716 × 101 3.141 5.462 4.7 × 10−8 ***
γ1880 1.693 × 101 3.137 5.397 6.8 × 10−8 ***
γ1881 1.668 × 101 3.132 5.327 10.0 × 10−8 ***
γ1882 1.646 × 101 3.125 5.265 1.4 × 10−7 ***
γ1883 1.618 × 101 3.118 5.190 2.1 × 10−7 ***
γ1884 1.593 × 101 3.109 5.123 3.0 × 10−7 ***
γ1885 1.566 × 101 3.100 5.051 4.4 × 10−7 ***
γ1886 1.541 × 101 3.090 4.987 6.1 × 10−7 ***
γ1887 1.512 × 101 3.078 4.913 9.0 × 10−7 ***
γ1888 1.488 × 101 3.066 4.853 1.2 × 10−6 ***
γ1889 1.457 × 101 3.052 4.774 1.8 × 10−6 ***
γ1890 1.429 × 101 3.037 4.705 2.5 × 10−6 ***
γ1891 1.400 × 101 3.022 4.634 3.6 × 10−6 ***
γ1892 1.370 × 101 3.005 4.559 5.1 × 10−6 ***
γ1893 1.340 × 101 2.988 4.484 7.3 × 10−6 ***
γ1894 1.311 × 101 2.969 4.415 1.0 × 10−5 ***
γ1895 1.282 × 101 2.949 4.347 1.4 × 10−5 ***
γ1896 1.250 × 101 2.928 4.270 2.0 × 10−5 ***
γ1897 1.219 × 101 2.907 4.194 2.7 × 10−5 ***
γ1898 1.190 × 101 2.884 4.126 3.7 × 10−5 ***
γ1899 1.157 × 101 2.860 4.047 5.2 × 10−5 ***
γ1900 1.126 × 101 2.835 3.970 7.2 × 10−5 ***
γ1901 1.093 × 101 2.809 3.893 9.9 × 10−5 ***
γ1902 1.061 × 101 2.782 3.815 1.4 × 10−4 ***
γ1903 1.029 × 101 2.754 3.735 1.9 × 10−4 ***
γ1904 9.972 2.725 3.660 2.5 × 10−4 ***
γ1905 9.651 2.695 3.581 3.4 × 10−4 ***
γ1906 9.332 2.664 3.503 4.6 × 10−4 ***
γ1907 9.011 2.631 3.424 6.2 × 10−4 ***
γ1908 8.700 2.598 3.348 8.1 × 10−4 ***
γ1909 8.368 2.564 3.264 1.1 × 10−3 **
γ1910 8.062 2.529 3.188 1.4 × 10−3 **
γ1911 7.740 2.492 3.106 1.9 × 10−3 **
γ1912 7.430 2.455 3.026 2.5 × 10−3 **
γ1913 7.106 2.417 2.940 3.3 × 10−3 **
γ1914 6.807 2.377 2.863 4.2 × 10−3 **
γ1915 6.511 2.337 2.786 5.3 × 10−3 **
γ1916 6.193 2.295 2.698 7.0 × 10−3 **
γ1917 5.892 2.253 2.616 8.9 × 10−3 **
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
γ1918 5.598 2.209 2.534 1.1 × 10−2 *
γ1919 5.277 2.164 2.438 1.5 × 10−2 *
γ1920 5.047 2.119 2.382 1.7 × 10−2 *
γ1921 4.714 2.072 2.275 2.3 × 10−2 *
γ1922 4.468 2.024 2.207 2.7 × 10−2 *
γ1923 4.172 1.975 2.112 3.5 × 10−2 *
γ1924 3.908 1.926 2.030 4.2 × 10−2 *
γ1925 3.643 1.875 1.943 5.2 × 10−2 .
γ1926 3.368 1.823 1.848 6.5 × 10−2 .
γ1927 3.146 1.770 1.777 7.5 × 10−2 .
γ1928 2.876 1.716 1.676 9.4 × 10−2 .
γ1929 2.665 1.661 1.605 1.1 × 10−1
γ1930 2.433 1.605 1.516 1.3 × 10−1
γ1931 2.236 1.547 1.445 1.5 × 10−1
γ1932 2.024 1.489 1.359 1.7 × 10−1
γ1933 1.821 1.430 1.273 2.0 × 10−1
γ1934 1.627 1.370 1.188 2.3 × 10−1
γ1935 1.461 1.308 1.117 2.6 × 10−1
γ1936 1.308 1.246 1.049 2.9 × 10−1
γ1937 1.126 1.183 9.520 × 10−1 3.4 × 10−1
γ1938 9.793 × 10−1 1.118 8.760 × 10−1 3.8 × 10−1
γ1939 8.437 × 10−1 1.053 8.010 × 10−1 4.2 × 10−1
γ1940 7.510 × 10−1 9.863 × 10−1 7.610 × 10−1 4.5 × 10−1
γ1941 6.043 × 10−1 9.187 × 10−1 6.580 × 10−1 5.1 × 10−1
γ1942 5.498 × 10−1 8.501 × 10−1 6.470 × 10−1 5.2 × 10−1
γ1943 4.161 × 10−1 7.805 × 10−1 5.330 × 10−1 5.9 × 10−1
γ1944 3.659 × 10−1 7.099 × 10−1 5.150 × 10−1 6.1 × 10−1
γ1945 2.833 × 10−1 6.382 × 10−1 4.440 × 10−1 6.6 × 10−1
γ1946 2.203 × 10−1 5.656 × 10−1 3.890 × 10−1 7.0 × 10−1
γ1947 1.894 × 10−1 4.920 × 10−1 3.850 × 10−1 7.0 × 10−1
γ1948 1.181 × 10−1 4.174 × 10−1 2.830 × 10−1 7.8 × 10−1
γ1949 8.820 × 10−2 3.421 × 10−1 2.580 × 10−1 8.0 × 10−1
γ1950 6.991 × 10−2 2.662 × 10−1 2.630 × 10−1 7.9 × 10−1
γ1951 6.857 × 10−2 1.903 × 10−1 3.600 × 10−1 7.2 × 10−1
γ1952 −1.583 × 10−2 1.174 × 10−1 −1.350 × 10−1 8.9 × 10−1

B.1.4 | KANModel

Table B.4: Regression table of the KANmodel for Swedish females. All 230 parameters are signi�cant
even on the 0.1% level. p-value signi�cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1 ‘ ’ 1

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1900 −4.191 1.750 × 10−2 −2.395 × 102 <2.0 × 10−16 ***
κ(1)1901 −4.264 1.807 × 10−2 −2.359 × 102 <2.0 × 10−16 ***
κ(1)1902 −4.210 1.765 × 10−2 −2.385 × 102 <2.0 × 10−16 ***
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1903 −4.295 1.807 × 10−2 −2.377 × 102 <2.0 × 10−16 ***
κ(1)1904 −4.231 1.744 × 10−2 −2.426 × 102 <2.0 × 10−16 ***
κ(1)1905 −4.201 1.730 × 10−2 −2.428 × 102 <2.0 × 10−16 ***
κ(1)1906 −4.277 1.781 × 10−2 −2.402 × 102 <2.0 × 10−16 ***
κ(1)1907 −4.293 1.759 × 10−2 −2.441 × 102 <2.0 × 10−16 ***
κ(1)1908 −4.273 1.739 × 10−2 −2.458 × 102 <2.0 × 10−16 ***
κ(1)1909 −4.273 1.749 × 10−2 −2.443 × 102 <2.0 × 10−16 ***
κ(1)1910 −4.291 1.740 × 10−2 −2.467 × 102 <2.0 × 10−16 ***
κ(1)1911 −4.310 1.746 × 10−2 −2.469 × 102 <2.0 × 10−16 ***
κ(1)1912 −4.235 1.689 × 10−2 −2.508 × 102 <2.0 × 10−16 ***
κ(1)1913 −4.292 1.721 × 10−2 −2.494 × 102 <2.0 × 10−16 ***
κ(1)1914 −4.288 1.704 × 10−2 −2.516 × 102 <2.0 × 10−16 ***
κ(1)1915 −4.227 1.646 × 10−2 −2.568 × 102 <2.0 × 10−16 ***
κ(1)1916 −4.270 1.692 × 10−2 −2.524 × 102 <2.0 × 10−16 ***
κ(1)1917 −4.291 1.688 × 10−2 −2.542 × 102 <2.0 × 10−16 ***
κ(1)1918 −4.145 1.607 × 10−2 −2.579 × 102 <2.0 × 10−16 ***
κ(1)1919 −4.227 1.619 × 10−2 −2.611 × 102 <2.0 × 10−16 ***
κ(1)1920 −4.305 1.656 × 10−2 −2.600 × 102 <2.0 × 10−16 ***
κ(1)1921 −4.364 1.672 × 10−2 −2.611 × 102 <2.0 × 10−16 ***
κ(1)1922 −4.247 1.587 × 10−2 −2.676 × 102 <2.0 × 10−16 ***
κ(1)1923 −4.345 1.658 × 10−2 −2.621 × 102 <2.0 × 10−16 ***
κ(1)1924 −4.313 1.617 × 10−2 −2.667 × 102 <2.0 × 10−16 ***
κ(1)1925 −4.336 1.621 × 10−2 −2.674 × 102 <2.0 × 10−16 ***
κ(1)1926 −4.302 1.593 × 10−2 −2.702 × 102 <2.0 × 10−16 ***
κ(1)1927 −4.292 1.561 × 10−2 −2.749 × 102 <2.0 × 10−16 ***
κ(1)1928 −4.296 1.588 × 10−2 −2.706 × 102 <2.0 × 10−16 ***
κ(1)1929 −4.274 1.575 × 10−2 −2.714 × 102 <2.0 × 10−16 ***
κ(1)1930 −4.294 1.595 × 10−2 −2.692 × 102 <2.0 × 10−16 ***
κ(1)1931 −4.273 1.557 × 10−2 −2.745 × 102 <2.0 × 10−16 ***
κ(1)1932 −4.310 1.597 × 10−2 −2.700 × 102 <2.0 × 10−16 ***
κ(1)1933 −4.326 1.609 × 10−2 −2.689 × 102 <2.0 × 10−16 ***
κ(1)1934 −4.337 1.606 × 10−2 −2.701 × 102 <2.0 × 10−16 ***
κ(1)1935 −4.320 1.575 × 10−2 −2.744 × 102 <2.0 × 10−16 ***
κ(1)1936 −4.296 1.557 × 10−2 −2.759 × 102 <2.0 × 10−16 ***
κ(1)1937 −4.271 1.539 × 10−2 −2.776 × 102 <2.0 × 10−16 ***
κ(1)1938 −4.323 1.563 × 10−2 −2.767 × 102 <2.0 × 10−16 ***
κ(1)1939 −4.362 1.555 × 10−2 −2.806 × 102 <2.0 × 10−16 ***
κ(1)1940 −4.349 1.539 × 10−2 −2.826 × 102 <2.0 × 10−16 ***
κ(1)1941 −4.396 1.551 × 10−2 −2.834 × 102 <2.0 × 10−16 ***
κ(1)1942 −4.479 1.619 × 10−2 −2.767 × 102 <2.0 × 10−16 ***
κ(1)1943 −4.463 1.588 × 10−2 −2.810 × 102 <2.0 × 10−16 ***
κ(1)1944 −4.444 1.540 × 10−2 −2.885 × 102 <2.0 × 10−16 ***
κ(1)1945 −4.425 1.514 × 10−2 −2.922 × 102 <2.0 × 10−16 ***
κ(1)1946 −4.466 1.513 × 10−2 −2.952 × 102 <2.0 × 10−16 ***
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1947 −4.466 1.486 × 10−2 −3.005 × 102 <2.0 × 10−16 ***
κ(1)1948 −4.475 1.499 × 10−2 −2.985 × 102 <2.0 × 10−16 ***
κ(1)1949 −4.503 1.489 × 10−2 −3.024 × 102 <2.0 × 10−16 ***
κ(1)1950 −4.531 1.483 × 10−2 −3.056 × 102 <2.0 × 10−16 ***
κ(1)1951 −4.590 1.498 × 10−2 −3.064 × 102 <2.0 × 10−16 ***
κ(1)1952 −4.571 1.489 × 10−2 −3.070 × 102 <2.0 × 10−16 ***
κ(1)1953 −4.571 1.475 × 10−2 −3.099 × 102 <2.0 × 10−16 ***
κ(1)1954 −4.629 1.490 × 10−2 −3.107 × 102 <2.0 × 10−16 ***
κ(1)1955 −4.654 1.498 × 10−2 −3.108 × 102 <2.0 × 10−16 ***
κ(1)1956 −4.670 1.487 × 10−2 −3.141 × 102 <2.0 × 10−16 ***
κ(1)1957 −4.673 1.468 × 10−2 −3.184 × 102 <2.0 × 10−16 ***
κ(1)1958 −4.727 1.486 × 10−2 −3.181 × 102 <2.0 × 10−16 ***
κ(1)1959 −4.765 1.493 × 10−2 −3.191 × 102 <2.0 × 10−16 ***
κ(1)1960 −4.769 1.471 × 10−2 −3.242 × 102 <2.0 × 10−16 ***
κ(1)1961 −4.820 1.484 × 10−2 −3.248 × 102 <2.0 × 10−16 ***
κ(1)1962 −4.841 1.471 × 10−2 −3.292 × 102 <2.0 × 10−16 ***
κ(1)1963 −4.858 1.471 × 10−2 −3.302 × 102 <2.0 × 10−16 ***
κ(1)1964 −4.846 1.459 × 10−2 −3.322 × 102 <2.0 × 10−16 ***
κ(1)1965 −4.901 1.463 × 10−2 −3.351 × 102 <2.0 × 10−16 ***
κ(1)1966 −4.932 1.462 × 10−2 −3.373 × 102 <2.0 × 10−16 ***
κ(1)1967 −4.950 1.454 × 10−2 −3.405 × 102 <2.0 × 10−16 ***
κ(1)1968 −4.949 1.431 × 10−2 −3.458 × 102 <2.0 × 10−16 ***
κ(1)1969 −4.925 1.412 × 10−2 −3.487 × 102 <2.0 × 10−16 ***
κ(1)1970 −4.983 1.437 × 10−2 −3.467 × 102 <2.0 × 10−16 ***
κ(1)1971 −5.009 1.433 × 10−2 −3.496 × 102 <2.0 × 10−16 ***
κ(1)1972 −5.020 1.421 × 10−2 −3.532 × 102 <2.0 × 10−16 ***
κ(1)1973 −5.056 1.422 × 10−2 −3.556 × 102 <2.0 × 10−16 ***
κ(1)1974 −5.055 1.414 × 10−2 −3.575 × 102 <2.0 × 10−16 ***
κ(1)1975 −5.070 1.406 × 10−2 −3.606 × 102 <2.0 × 10−16 ***
κ(1)1976 −5.109 1.407 × 10−2 −3.631 × 102 <2.0 × 10−16 ***
κ(1)1977 −5.150 1.430 × 10−2 −3.601 × 102 <2.0 × 10−16 ***
κ(1)1978 −5.151 1.420 × 10−2 −3.627 × 102 <2.0 × 10−16 ***
κ(1)1979 −5.179 1.425 × 10−2 −3.634 × 102 <2.0 × 10−16 ***
κ(1)1980 −5.175 1.413 × 10−2 −3.663 × 102 <2.0 × 10−16 ***
κ(1)1981 −5.204 1.412 × 10−2 −3.685 × 102 <2.0 × 10−16 ***
κ(1)1982 −5.216 1.419 × 10−2 −3.676 × 102 <2.0 × 10−16 ***
κ(1)1983 −5.287 1.439 × 10−2 −3.673 × 102 <2.0 × 10−16 ***
κ(1)1984 −5.283 1.437 × 10−2 −3.677 × 102 <2.0 × 10−16 ***
κ(1)1985 −5.304 1.431 × 10−2 −3.708 × 102 <2.0 × 10−16 ***
κ(1)1986 −5.329 1.442 × 10−2 −3.696 × 102 <2.0 × 10−16 ***
κ(1)1987 −5.330 1.444 × 10−2 −3.691 × 102 <2.0 × 10−16 ***
κ(1)1988 −5.352 1.440 × 10−2 −3.718 × 102 <2.0 × 10−16 ***
κ(1)1989 −5.434 1.485 × 10−2 −3.661 × 102 <2.0 × 10−16 ***
κ(1)1990 −5.420 1.471 × 10−2 −3.685 × 102 <2.0 × 10−16 ***
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κ(1)1991 −5.421 1.476 × 10−2 −3.673 × 102 <2.0 × 10−16 ***
κ(1)1992 −5.423 1.479 × 10−2 −3.668 × 102 <2.0 × 10−16 ***
κ(1)1993 −5.477 1.489 × 10−2 −3.679 × 102 <2.0 × 10−16 ***
κ(1)1994 −5.523 1.530 × 10−2 −3.611 × 102 <2.0 × 10−16 ***
κ(1)1995 −5.511 1.519 × 10−2 −3.628 × 102 <2.0 × 10−16 ***
κ(1)1996 −5.552 1.532 × 10−2 −3.624 × 102 <2.0 × 10−16 ***
κ(1)1997 −5.592 1.551 × 10−2 −3.607 × 102 <2.0 × 10−16 ***
κ(1)1998 −5.591 1.552 × 10−2 −3.603 × 102 <2.0 × 10−16 ***
κ(1)1999 −5.618 1.550 × 10−2 −3.623 × 102 <2.0 × 10−16 ***
κ(1)2000 −5.625 1.556 × 10−2 −3.615 × 102 <2.0 × 10−16 ***
κ(1)2001 −5.656 1.562 × 10−2 −3.622 × 102 <2.0 × 10−16 ***
κ(1)2002 −5.682 1.560 × 10−2 −3.642 × 102 <2.0 × 10−16 ***
κ(1)2003 −5.692 1.568 × 10−2 −3.631 × 102 <2.0 × 10−16 ***
κ(1)2004 −5.694 1.564 × 10−2 −3.640 × 102 <2.0 × 10−16 ***
κ(1)2005 −5.696 1.550 × 10−2 −3.674 × 102 <2.0 × 10−16 ***
κ(1)2006 −5.743 1.552 × 10−2 −3.700 × 102 <2.0 × 10−16 ***
κ(1)2007 −5.753 1.536 × 10−2 −3.746 × 102 <2.0 × 10−16 ***
κ(1)2008 −5.791 1.538 × 10−2 −3.765 × 102 <2.0 × 10−16 ***
κ(1)2009 −5.784 1.528 × 10−2 −3.785 × 102 <2.0 × 10−16 ***
κ(1)2010 −5.787 1.513 × 10−2 −3.825 × 102 <2.0 × 10−16 ***
κ(1)2011 −5.857 1.529 × 10−2 −3.831 × 102 <2.0 × 10−16 ***
κ(1)2012 −5.857 1.510 × 10−2 −3.880 × 102 <2.0 × 10−16 ***
κ(1)2013 −5.862 1.507 × 10−2 −3.889 × 102 <2.0 × 10−16 ***
κ(1)2014 −5.896 1.518 × 10−2 −3.886 × 102 <2.0 × 10−16 ***
κ(2)1900 1.118 × 10−1 1.075 × 10−3 1.040 × 102 <2.0 × 10−16 ***
κ(2)1901 1.090 × 10−1 1.099 × 10−3 9.920 × 101 <2.0 × 10−16 ***
κ(2)1902 1.071 × 10−1 1.071 × 10−3 9.990 × 101 <2.0 × 10−16 ***
κ(2)1903 1.089 × 10−1 1.081 × 10−3 1.007 × 102 <2.0 × 10−16 ***
κ(2)1904 1.099 × 10−1 1.043 × 10−3 1.054 × 102 <2.0 × 10−16 ***
κ(2)1905 1.063 × 10−1 1.035 × 10−3 1.027 × 102 <2.0 × 10−16 ***
κ(2)1906 1.056 × 10−1 1.052 × 10−3 1.004 × 102 <2.0 × 10−16 ***
κ(2)1907 1.117 × 10−1 1.029 × 10−3 1.086 × 102 <2.0 × 10−16 ***
κ(2)1908 1.119 × 10−1 1.016 × 10−3 1.101 × 102 <2.0 × 10−16 ***
κ(2)1909 1.070 × 10−1 1.021 × 10−3 1.048 × 102 <2.0 × 10−16 ***
κ(2)1910 1.091 × 10−1 1.009 × 10−3 1.082 × 102 <2.0 × 10−16 ***
κ(2)1911 1.088 × 10−1 1.008 × 10−3 1.080 × 102 <2.0 × 10−16 ***
κ(2)1912 1.087 × 10−1 9.790 × 10−4 1.110 × 102 <2.0 × 10−16 ***
κ(2)1913 1.093 × 10−1 9.910 × 10−4 1.103 × 102 <2.0 × 10−16 ***
κ(2)1914 1.099 × 10−1 9.800 × 10−4 1.121 × 102 <2.0 × 10−16 ***
κ(2)1915 1.125 × 10−1 9.540 × 10−4 1.179 × 102 <2.0 × 10−16 ***
κ(2)1916 1.068 × 10−1 9.780 × 10−4 1.092 × 102 <2.0 × 10−16 ***
κ(2)1917 1.087 × 10−1 9.720 × 10−4 1.118 × 102 <2.0 × 10−16 ***
κ(2)1918 1.016 × 10−1 9.400 × 10−4 1.081 × 102 <2.0 × 10−16 ***
κ(2)1919 1.083 × 10−1 9.370 × 10−4 1.156 × 102 <2.0 × 10−16 ***
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κ(2)1920 1.086 × 10−1 9.520 × 10−4 1.140 × 102 <2.0 × 10−16 ***
κ(2)1921 1.116 × 10−1 9.550 × 10−4 1.169 × 102 <2.0 × 10−16 ***
κ(2)1922 1.117 × 10−1 9.190 × 10−4 1.215 × 102 <2.0 × 10−16 ***
κ(2)1923 1.075 × 10−1 9.540 × 10−4 1.127 × 102 <2.0 × 10−16 ***
κ(2)1924 1.089 × 10−1 9.330 × 10−4 1.167 × 102 <2.0 × 10−16 ***
κ(2)1925 1.089 × 10−1 9.340 × 10−4 1.166 × 102 <2.0 × 10−16 ***
κ(2)1926 1.084 × 10−1 9.210 × 10−4 1.177 × 102 <2.0 × 10−16 ***
κ(2)1927 1.139 × 10−1 9.050 × 10−4 1.259 × 102 <2.0 × 10−16 ***
κ(2)1928 1.090 × 10−1 9.220 × 10−4 1.182 × 102 <2.0 × 10−16 ***
κ(2)1929 1.094 × 10−1 9.160 × 10−4 1.195 × 102 <2.0 × 10−16 ***
κ(2)1930 1.079 × 10−1 9.250 × 10−4 1.166 × 102 <2.0 × 10−16 ***
κ(2)1931 1.149 × 10−1 9.050 × 10−4 1.270 × 102 <2.0 × 10−16 ***
κ(2)1932 1.104 × 10−1 9.270 × 10−4 1.192 × 102 <2.0 × 10−16 ***
κ(2)1933 1.089 × 10−1 9.310 × 10−4 1.170 × 102 <2.0 × 10−16 ***
κ(2)1934 1.100 × 10−1 9.260 × 10−4 1.187 × 102 <2.0 × 10−16 ***
κ(2)1935 1.134 × 10−1 9.090 × 10−4 1.248 × 102 <2.0 × 10−16 ***
κ(2)1936 1.128 × 10−1 9.020 × 10−4 1.251 × 102 <2.0 × 10−16 ***
κ(2)1937 1.117 × 10−1 8.930 × 10−4 1.251 × 102 <2.0 × 10−16 ***
κ(2)1938 1.110 × 10−1 9.030 × 10−4 1.229 × 102 <2.0 × 10−16 ***
κ(2)1939 1.163 × 10−1 8.940 × 10−4 1.301 × 102 <2.0 × 10−16 ***
κ(2)1940 1.156 × 10−1 8.880 × 10−4 1.301 × 102 <2.0 × 10−16 ***
κ(2)1941 1.174 × 10−1 8.930 × 10−4 1.315 × 102 <2.0 × 10−16 ***
κ(2)1942 1.104 × 10−1 9.260 × 10−4 1.192 × 102 <2.0 × 10−16 ***
κ(2)1943 1.104 × 10−1 9.050 × 10−4 1.220 × 102 <2.0 × 10−16 ***
κ(2)1944 1.146 × 10−1 8.760 × 10−4 1.309 × 102 <2.0 × 10−16 ***
κ(2)1945 1.137 × 10−1 8.630 × 10−4 1.318 × 102 <2.0 × 10−16 ***
κ(2)1946 1.163 × 10−1 8.590 × 10−4 1.354 × 102 <2.0 × 10−16 ***
κ(2)1947 1.195 × 10−1 8.470 × 10−4 1.411 × 102 <2.0 × 10−16 ***
κ(2)1948 1.136 × 10−1 8.570 × 10−4 1.326 × 102 <2.0 × 10−16 ***
κ(2)1949 1.167 × 10−1 8.480 × 10−4 1.375 × 102 <2.0 × 10−16 ***
κ(2)1950 1.194 × 10−1 8.440 × 10−4 1.415 × 102 <2.0 × 10−16 ***
κ(2)1951 1.216 × 10−1 8.510 × 10−4 1.429 × 102 <2.0 × 10−16 ***
κ(2)1952 1.177 × 10−1 8.490 × 10−4 1.387 × 102 <2.0 × 10−16 ***
κ(2)1953 1.184 × 10−1 8.420 × 10−4 1.406 × 102 <2.0 × 10−16 ***
κ(2)1954 1.202 × 10−1 8.460 × 10−4 1.421 × 102 <2.0 × 10−16 ***
κ(2)1955 1.185 × 10−1 8.480 × 10−4 1.398 × 102 <2.0 × 10−16 ***
κ(2)1956 1.196 × 10−1 8.390 × 10−4 1.426 × 102 <2.0 × 10−16 ***
κ(2)1957 1.214 × 10−1 8.270 × 10−4 1.469 × 102 <2.0 × 10−16 ***
κ(2)1958 1.217 × 10−1 8.320 × 10−4 1.462 × 102 <2.0 × 10−16 ***
κ(2)1959 1.218 × 10−1 8.320 × 10−4 1.465 × 102 <2.0 × 10−16 ***
κ(2)1960 1.241 × 10−1 8.170 × 10−4 1.520 × 102 <2.0 × 10−16 ***
κ(2)1961 1.242 × 10−1 8.180 × 10−4 1.519 × 102 <2.0 × 10−16 ***
κ(2)1962 1.263 × 10−1 8.070 × 10−4 1.565 × 102 <2.0 × 10−16 ***
κ(2)1963 1.248 × 10−1 8.050 × 10−4 1.551 × 102 <2.0 × 10−16 ***
continued . . .



292 B GAPC Regression Tables

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(2)1964 1.219 × 10−1 7.970 × 10−4 1.530 × 102 <2.0 × 10−16 ***
κ(2)1965 1.246 × 10−1 7.910 × 10−4 1.575 × 102 <2.0 × 10−16 ***
κ(2)1966 1.250 × 10−1 7.860 × 10−4 1.591 × 102 <2.0 × 10−16 ***
κ(2)1967 1.252 × 10−1 7.770 × 10−4 1.611 × 102 <2.0 × 10−16 ***
κ(2)1968 1.263 × 10−1 7.620 × 10−4 1.657 × 102 <2.0 × 10−16 ***
κ(2)1969 1.233 × 10−1 7.520 × 10−4 1.640 × 102 <2.0 × 10−16 ***
κ(2)1970 1.215 × 10−1 7.590 × 10−4 1.602 × 102 <2.0 × 10−16 ***
κ(2)1971 1.220 × 10−1 7.500 × 10−4 1.626 × 102 <2.0 × 10−16 ***
κ(2)1972 1.224 × 10−1 7.390 × 10−4 1.657 × 102 <2.0 × 10−16 ***
κ(2)1973 1.236 × 10−1 7.330 × 10−4 1.686 × 102 <2.0 × 10−16 ***
κ(2)1974 1.221 × 10−1 7.250 × 10−4 1.683 × 102 <2.0 × 10−16 ***
κ(2)1975 1.229 × 10−1 7.160 × 10−4 1.717 × 102 <2.0 × 10−16 ***
κ(2)1976 1.255 × 10−1 7.100 × 10−4 1.767 × 102 <2.0 × 10−16 ***
κ(2)1977 1.236 × 10−1 7.160 × 10−4 1.727 × 102 <2.0 × 10−16 ***
κ(2)1978 1.236 × 10−1 7.060 × 10−4 1.750 × 102 <2.0 × 10−16 ***
κ(2)1979 1.242 × 10−1 7.030 × 10−4 1.768 × 102 <2.0 × 10−16 ***
κ(2)1980 1.239 × 10−1 6.930 × 10−4 1.787 × 102 <2.0 × 10−16 ***
κ(2)1981 1.248 × 10−1 6.880 × 10−4 1.814 × 102 <2.0 × 10−16 ***
κ(2)1982 1.228 × 10−1 6.870 × 10−4 1.788 × 102 <2.0 × 10−16 ***
κ(2)1983 1.252 × 10−1 6.880 × 10−4 1.819 × 102 <2.0 × 10−16 ***
κ(2)1984 1.238 × 10−1 6.830 × 10−4 1.812 × 102 <2.0 × 10−16 ***
κ(2)1985 1.261 × 10−1 6.740 × 10−4 1.870 × 102 <2.0 × 10−16 ***
κ(2)1986 1.258 × 10−1 6.740 × 10−4 1.865 × 102 <2.0 × 10−16 ***
κ(2)1987 1.247 × 10−1 6.710 × 10−4 1.858 × 102 <2.0 × 10−16 ***
κ(2)1988 1.274 × 10−1 6.640 × 10−4 1.920 × 102 <2.0 × 10−16 ***
κ(2)1989 1.278 × 10−1 6.760 × 10−4 1.890 × 102 <2.0 × 10−16 ***
κ(2)1990 1.282 × 10−1 6.670 × 10−4 1.923 × 102 <2.0 × 10−16 ***
κ(2)1991 1.270 × 10−1 6.650 × 10−4 1.910 × 102 <2.0 × 10−16 ***
κ(2)1992 1.265 × 10−1 6.620 × 10−4 1.911 × 102 <2.0 × 10−16 ***
κ(2)1993 1.301 × 10−1 6.600 × 10−4 1.972 × 102 <2.0 × 10−16 ***
κ(2)1994 1.281 × 10−1 6.720 × 10−4 1.907 × 102 <2.0 × 10−16 ***
κ(2)1995 1.280 × 10−1 6.630 × 10−4 1.929 × 102 <2.0 × 10−16 ***
κ(2)1996 1.297 × 10−1 6.630 × 10−4 1.956 × 102 <2.0 × 10−16 ***
κ(2)1997 1.304 × 10−1 6.660 × 10−4 1.959 × 102 <2.0 × 10−16 ***
κ(2)1998 1.296 × 10−1 6.620 × 10−4 1.956 × 102 <2.0 × 10−16 ***
κ(2)1999 1.317 × 10−1 6.570 × 10−4 2.004 × 102 <2.0 × 10−16 ***
κ(2)2000 1.310 × 10−1 6.570 × 10−4 1.995 × 102 <2.0 × 10−16 ***
κ(2)2001 1.324 × 10−1 6.550 × 10−4 2.021 × 102 <2.0 × 10−16 ***
κ(2)2002 1.341 × 10−1 6.510 × 10−4 2.060 × 102 <2.0 × 10−16 ***
κ(2)2003 1.325 × 10−1 6.520 × 10−4 2.031 × 102 <2.0 × 10−16 ***
κ(2)2004 1.310 × 10−1 6.490 × 10−4 2.019 × 102 <2.0 × 10−16 ***
κ(2)2005 1.308 × 10−1 6.410 × 10−4 2.041 × 102 <2.0 × 10−16 ***
κ(2)2006 1.325 × 10−1 6.380 × 10−4 2.075 × 102 <2.0 × 10−16 ***
κ(2)2007 1.334 × 10−1 6.300 × 10−4 2.117 × 102 <2.0 × 10−16 ***
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κ(2)2008 1.342 × 10−1 6.290 × 10−4 2.134 × 102 <2.0 × 10−16 ***
κ(2)2009 1.325 × 10−1 6.240 × 10−4 2.121 × 102 <2.0 × 10−16 ***
κ(2)2010 1.325 × 10−1 6.170 × 10−4 2.147 × 102 <2.0 × 10−16 ***
κ(2)2011 1.347 × 10−1 6.200 × 10−4 2.172 × 102 <2.0 × 10−16 ***
κ(2)2012 1.357 × 10−1 6.120 × 10−4 2.216 × 102 <2.0 × 10−16 ***
κ(2)2013 1.345 × 10−1 6.110 × 10−4 2.201 × 102 <2.0 × 10−16 ***
κ(2)2014 1.343 × 10−1 6.140 × 10−4 2.186 × 102 <2.0 × 10−16 ***

B.1.5 | KAN:2 Model

Table B.5: Regression table of the KAN:2 model for Swedish females. 317 of 345 parameters (≈ 92%) are
signi�cant on the 5% level. p-value signi�cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1 ‘ ’ 1

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1900 −4.036 2.478 × 10−2 −1.628 × 102 <2.0 × 10−16 ***
κ(1)1901 −4.148 2.578 × 10−2 −1.609 × 102 <2.0 × 10−16 ***
κ(1)1902 −4.076 2.500 × 10−2 −1.631 × 102 <2.0 × 10−16 ***
κ(1)1903 −4.173 2.575 × 10−2 −1.620 × 102 <2.0 × 10−16 ***
κ(1)1904 −4.067 2.461 × 10−2 −1.652 × 102 <2.0 × 10−16 ***
κ(1)1905 −4.077 2.454 × 10−2 −1.661 × 102 <2.0 × 10−16 ***
κ(1)1906 −4.114 2.513 × 10−2 −1.637 × 102 <2.0 × 10−16 ***
κ(1)1907 −4.149 2.529 × 10−2 −1.641 × 102 <2.0 × 10−16 ***
κ(1)1908 −4.147 2.513 × 10−2 −1.650 × 102 <2.0 × 10−16 ***
κ(1)1909 −4.143 2.505 × 10−2 −1.654 × 102 <2.0 × 10−16 ***
κ(1)1910 −4.130 2.474 × 10−2 −1.670 × 102 <2.0 × 10−16 ***
κ(1)1911 −4.145 2.480 × 10−2 −1.671 × 102 <2.0 × 10−16 ***
κ(1)1912 −4.083 2.408 × 10−2 −1.696 × 102 <2.0 × 10−16 ***
κ(1)1913 −4.163 2.474 × 10−2 −1.683 × 102 <2.0 × 10−16 ***
κ(1)1914 −4.140 2.433 × 10−2 −1.702 × 102 <2.0 × 10−16 ***
κ(1)1915 −4.100 2.357 × 10−2 −1.739 × 102 <2.0 × 10−16 ***
κ(1)1916 −4.145 2.409 × 10−2 −1.721 × 102 <2.0 × 10−16 ***
κ(1)1917 −4.156 2.404 × 10−2 −1.729 × 102 <2.0 × 10−16 ***
κ(1)1918 −4.000 2.252 × 10−2 −1.777 × 102 <2.0 × 10−16 ***
κ(1)1919 −4.117 2.300 × 10−2 −1.790 × 102 <2.0 × 10−16 ***
κ(1)1920 −4.194 2.351 × 10−2 −1.784 × 102 <2.0 × 10−16 ***
κ(1)1921 −4.225 2.374 × 10−2 −1.780 × 102 <2.0 × 10−16 ***
κ(1)1922 −4.124 2.261 × 10−2 −1.824 × 102 <2.0 × 10−16 ***
κ(1)1923 −4.196 2.341 × 10−2 −1.793 × 102 <2.0 × 10−16 ***
κ(1)1924 −4.187 2.301 × 10−2 −1.820 × 102 <2.0 × 10−16 ***
κ(1)1925 −4.176 2.293 × 10−2 −1.821 × 102 <2.0 × 10−16 ***
κ(1)1926 −4.196 2.281 × 10−2 −1.840 × 102 <2.0 × 10−16 ***
κ(1)1927 −4.147 2.238 × 10−2 −1.853 × 102 <2.0 × 10−16 ***
κ(1)1928 −4.195 2.303 × 10−2 −1.821 × 102 <2.0 × 10−16 ***
κ(1)1929 −4.182 2.305 × 10−2 −1.815 × 102 <2.0 × 10−16 ***
κ(1)1930 −4.157 2.314 × 10−2 −1.797 × 102 <2.0 × 10−16 ***
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κ(1)1931 −4.147 2.279 × 10−2 −1.820 × 102 <2.0 × 10−16 ***
κ(1)1932 −4.207 2.332 × 10−2 −1.804 × 102 <2.0 × 10−16 ***
κ(1)1933 −4.185 2.318 × 10−2 −1.806 × 102 <2.0 × 10−16 ***
κ(1)1934 −4.198 2.308 × 10−2 −1.819 × 102 <2.0 × 10−16 ***
κ(1)1935 −4.215 2.279 × 10−2 −1.850 × 102 <2.0 × 10−16 ***
κ(1)1936 −4.187 2.238 × 10−2 −1.871 × 102 <2.0 × 10−16 ***
κ(1)1937 −4.167 2.198 × 10−2 −1.896 × 102 <2.0 × 10−16 ***
κ(1)1938 −4.237 2.233 × 10−2 −1.897 × 102 <2.0 × 10−16 ***
κ(1)1939 −4.240 2.214 × 10−2 −1.915 × 102 <2.0 × 10−16 ***
κ(1)1940 −4.233 2.190 × 10−2 −1.933 × 102 <2.0 × 10−16 ***
κ(1)1941 −4.292 2.223 × 10−2 −1.931 × 102 <2.0 × 10−16 ***
κ(1)1942 −4.384 2.313 × 10−2 −1.895 × 102 <2.0 × 10−16 ***
κ(1)1943 −4.350 2.266 × 10−2 −1.919 × 102 <2.0 × 10−16 ***
κ(1)1944 −4.375 2.236 × 10−2 −1.957 × 102 <2.0 × 10−16 ***
κ(1)1945 −4.366 2.201 × 10−2 −1.984 × 102 <2.0 × 10−16 ***
κ(1)1946 −4.367 2.188 × 10−2 −1.996 × 102 <2.0 × 10−16 ***
κ(1)1947 −4.368 2.160 × 10−2 −2.023 × 102 <2.0 × 10−16 ***
κ(1)1948 −4.408 2.178 × 10−2 −2.024 × 102 <2.0 × 10−16 ***
κ(1)1949 −4.412 2.164 × 10−2 −2.039 × 102 <2.0 × 10−16 ***
κ(1)1950 −4.460 2.176 × 10−2 −2.049 × 102 <2.0 × 10−16 ***
κ(1)1951 −4.496 2.196 × 10−2 −2.048 × 102 <2.0 × 10−16 ***
κ(1)1952 −4.496 2.180 × 10−2 −2.062 × 102 <2.0 × 10−16 ***
κ(1)1953 −4.522 2.175 × 10−2 −2.079 × 102 <2.0 × 10−16 ***
κ(1)1954 −4.543 2.185 × 10−2 −2.079 × 102 <2.0 × 10−16 ***
κ(1)1955 −4.607 2.211 × 10−2 −2.084 × 102 <2.0 × 10−16 ***
κ(1)1956 −4.630 2.200 × 10−2 −2.104 × 102 <2.0 × 10−16 ***
κ(1)1957 −4.589 2.155 × 10−2 −2.130 × 102 <2.0 × 10−16 ***
κ(1)1958 −4.669 2.198 × 10−2 −2.124 × 102 <2.0 × 10−16 ***
κ(1)1959 −4.695 2.207 × 10−2 −2.127 × 102 <2.0 × 10−16 ***
κ(1)1960 −4.727 2.197 × 10−2 −2.152 × 102 <2.0 × 10−16 ***
κ(1)1961 −4.801 2.231 × 10−2 −2.152 × 102 <2.0 × 10−16 ***
κ(1)1962 −4.802 2.208 × 10−2 −2.174 × 102 <2.0 × 10−16 ***
κ(1)1963 −4.794 2.194 × 10−2 −2.185 × 102 <2.0 × 10−16 ***
κ(1)1964 −4.786 2.174 × 10−2 −2.202 × 102 <2.0 × 10−16 ***
κ(1)1965 −4.837 2.191 × 10−2 −2.207 × 102 <2.0 × 10−16 ***
κ(1)1966 −4.880 2.202 × 10−2 −2.216 × 102 <2.0 × 10−16 ***
κ(1)1967 −4.929 2.210 × 10−2 −2.231 × 102 <2.0 × 10−16 ***
κ(1)1968 −4.909 2.172 × 10−2 −2.260 × 102 <2.0 × 10−16 ***
κ(1)1969 −4.865 2.126 × 10−2 −2.289 × 102 <2.0 × 10−16 ***
κ(1)1970 −4.914 2.160 × 10−2 −2.275 × 102 <2.0 × 10−16 ***
κ(1)1971 −4.957 2.174 × 10−2 −2.280 × 102 <2.0 × 10−16 ***
κ(1)1972 −4.946 2.154 × 10−2 −2.296 × 102 <2.0 × 10−16 ***
κ(1)1973 −4.983 2.170 × 10−2 −2.296 × 102 <2.0 × 10−16 ***
κ(1)1974 −4.988 2.165 × 10−2 −2.304 × 102 <2.0 × 10−16 ***
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κ(1)1975 −5.003 2.167 × 10−2 −2.309 × 102 <2.0 × 10−16 ***
κ(1)1976 −5.008 2.174 × 10−2 −2.304 × 102 <2.0 × 10−16 ***
κ(1)1977 −5.047 2.215 × 10−2 −2.279 × 102 <2.0 × 10−16 ***
κ(1)1978 −5.086 2.229 × 10−2 −2.282 × 102 <2.0 × 10−16 ***
κ(1)1979 −5.071 2.229 × 10−2 −2.276 × 102 <2.0 × 10−16 ***
κ(1)1980 −5.030 2.188 × 10−2 −2.299 × 102 <2.0 × 10−16 ***
κ(1)1981 −5.061 2.184 × 10−2 −2.317 × 102 <2.0 × 10−16 ***
κ(1)1982 −5.078 2.190 × 10−2 −2.318 × 102 <2.0 × 10−16 ***
κ(1)1983 −5.119 2.226 × 10−2 −2.300 × 102 <2.0 × 10−16 ***
κ(1)1984 −5.119 2.228 × 10−2 −2.298 × 102 <2.0 × 10−16 ***
κ(1)1985 −5.118 2.225 × 10−2 −2.300 × 102 <2.0 × 10−16 ***
κ(1)1986 −5.140 2.253 × 10−2 −2.281 × 102 <2.0 × 10−16 ***
κ(1)1987 −5.121 2.256 × 10−2 −2.270 × 102 <2.0 × 10−16 ***
κ(1)1988 −5.092 2.247 × 10−2 −2.266 × 102 <2.0 × 10−16 ***
κ(1)1989 −5.193 2.345 × 10−2 −2.214 × 102 <2.0 × 10−16 ***
κ(1)1990 −5.177 2.336 × 10−2 −2.217 × 102 <2.0 × 10−16 ***
κ(1)1991 −5.128 2.322 × 10−2 −2.208 × 102 <2.0 × 10−16 ***
κ(1)1992 −5.111 2.325 × 10−2 −2.199 × 102 <2.0 × 10−16 ***
κ(1)1993 −5.148 2.364 × 10−2 −2.178 × 102 <2.0 × 10−16 ***
κ(1)1994 −5.224 2.448 × 10−2 −2.134 × 102 <2.0 × 10−16 ***
κ(1)1995 −5.208 2.437 × 10−2 −2.137 × 102 <2.0 × 10−16 ***
κ(1)1996 −5.216 2.452 × 10−2 −2.127 × 102 <2.0 × 10−16 ***
κ(1)1997 −5.249 2.482 × 10−2 −2.115 × 102 <2.0 × 10−16 ***
κ(1)1998 −5.259 2.481 × 10−2 −2.120 × 102 <2.0 × 10−16 ***
κ(1)1999 −5.257 2.464 × 10−2 −2.133 × 102 <2.0 × 10−16 ***
κ(1)2000 −5.251 2.450 × 10−2 −2.143 × 102 <2.0 × 10−16 ***
κ(1)2001 −5.293 2.462 × 10−2 −2.149 × 102 <2.0 × 10−16 ***
κ(1)2002 −5.285 2.430 × 10−2 −2.175 × 102 <2.0 × 10−16 ***
κ(1)2003 −5.274 2.391 × 10−2 −2.206 × 102 <2.0 × 10−16 ***
κ(1)2004 −5.289 2.354 × 10−2 −2.246 × 102 <2.0 × 10−16 ***
κ(1)2005 −5.271 2.294 × 10−2 −2.298 × 102 <2.0 × 10−16 ***
κ(1)2006 −5.303 2.280 × 10−2 −2.326 × 102 <2.0 × 10−16 ***
κ(1)2007 −5.336 2.262 × 10−2 −2.359 × 102 <2.0 × 10−16 ***
κ(1)2008 −5.340 2.249 × 10−2 −2.375 × 102 <2.0 × 10−16 ***
κ(1)2009 −5.350 2.239 × 10−2 −2.390 × 102 <2.0 × 10−16 ***
κ(1)2010 −5.353 2.231 × 10−2 −2.400 × 102 <2.0 × 10−16 ***
κ(1)2011 −5.434 2.294 × 10−2 −2.369 × 102 <2.0 × 10−16 ***
κ(1)2012 −5.408 2.278 × 10−2 −2.374 × 102 <2.0 × 10−16 ***
κ(1)2013 −5.427 2.299 × 10−2 −2.360 × 102 <2.0 × 10−16 ***
κ(1)2014 −5.419 2.316 × 10−2 −2.340 × 102 <2.0 × 10−16 ***
κ(2)1900 9.262 × 10−2 3.684 × 10−3 2.514 × 101 <2.0 × 10−16 ***
κ(2)1901 9.731 × 10−2 3.783 × 10−3 2.572 × 101 <2.0 × 10−16 ***
κ(2)1902 9.185 × 10−2 3.681 × 10−3 2.495 × 101 <2.0 × 10−16 ***
κ(2)1903 9.612 × 10−2 3.740 × 10−3 2.570 × 101 <2.0 × 10−16 ***
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κ(2)1904 8.934 × 10−2 3.601 × 10−3 2.481 × 101 <2.0 × 10−16 ***
κ(2)1905 9.294 × 10−2 3.585 × 10−3 2.593 × 101 <2.0 × 10−16 ***
κ(2)1906 8.490 × 10−2 3.644 × 10−3 2.330 × 101 <2.0 × 10−16 ***
κ(2)1907 9.552 × 10−2 3.626 × 10−3 2.635 × 101 <2.0 × 10−16 ***
κ(2)1908 9.894 × 10−2 3.592 × 10−3 2.754 × 101 <2.0 × 10−16 ***
κ(2)1909 9.303 × 10−2 3.581 × 10−3 2.598 × 101 <2.0 × 10−16 ***
κ(2)1910 8.959 × 10−2 3.528 × 10−3 2.540 × 101 <2.0 × 10−16 ***
κ(2)1911 8.859 × 10−2 3.520 × 10−3 2.517 × 101 <2.0 × 10−16 ***
κ(2)1912 9.070 × 10−2 3.427 × 10−3 2.647 × 101 <2.0 × 10−16 ***
κ(2)1913 9.578 × 10−2 3.483 × 10−3 2.750 × 101 <2.0 × 10−16 ***
κ(2)1914 9.312 × 10−2 3.427 × 10−3 2.717 × 101 <2.0 × 10−16 ***
κ(2)1915 9.960 × 10−2 3.340 × 10−3 2.982 × 101 <2.0 × 10−16 ***
κ(2)1916 9.372 × 10−2 3.404 × 10−3 2.753 × 101 <2.0 × 10−16 ***
κ(2)1917 9.410 × 10−2 3.387 × 10−3 2.778 × 101 <2.0 × 10−16 ***
κ(2)1918 8.405 × 10−2 3.235 × 10−3 2.598 × 101 <2.0 × 10−16 ***
κ(2)1919 9.807 × 10−2 3.258 × 10−3 3.010 × 101 <2.0 × 10−16 ***
κ(2)1920 9.819 × 10−2 3.313 × 10−3 2.964 × 101 <2.0 × 10−16 ***
κ(2)1921 9.657 × 10−2 3.337 × 10−3 2.894 × 101 <2.0 × 10−16 ***
κ(2)1922 9.939 × 10−2 3.213 × 10−3 3.093 × 101 <2.0 × 10−16 ***
κ(2)1923 8.999 × 10−2 3.314 × 10−3 2.716 × 101 <2.0 × 10−16 ***
κ(2)1924 9.590 × 10−2 3.256 × 10−3 2.946 × 101 <2.0 × 10−16 ***
κ(2)1925 8.964 × 10−2 3.250 × 10−3 2.758 × 101 <2.0 × 10−16 ***
κ(2)1926 9.898 × 10−2 3.215 × 10−3 3.079 × 101 <2.0 × 10−16 ***
κ(2)1927 9.794 × 10−2 3.168 × 10−3 3.092 × 101 <2.0 × 10−16 ***
κ(2)1928 1.006 × 10−1 3.234 × 10−3 3.110 × 101 <2.0 × 10−16 ***
κ(2)1929 1.028 × 10−1 3.219 × 10−3 3.195 × 101 <2.0 × 10−16 ***
κ(2)1930 9.313 × 10−2 3.234 × 10−3 2.879 × 101 <2.0 × 10−16 ***
κ(2)1931 1.028 × 10−1 3.185 × 10−3 3.229 × 101 <2.0 × 10−16 ***
κ(2)1932 1.019 × 10−1 3.240 × 10−3 3.145 × 101 <2.0 × 10−16 ***
κ(2)1933 9.363 × 10−2 3.224 × 10−3 2.905 × 101 <2.0 × 10−16 ***
κ(2)1934 9.498 × 10−2 3.201 × 10−3 2.967 × 101 <2.0 × 10−16 ***
κ(2)1935 1.048 × 10−1 3.149 × 10−3 3.329 × 101 <2.0 × 10−16 ***
κ(2)1936 1.034 × 10−1 3.115 × 10−3 3.319 × 101 <2.0 × 10−16 ***
κ(2)1937 1.030 × 10−1 3.075 × 10−3 3.350 × 101 <2.0 × 10−16 ***
κ(2)1938 1.054 × 10−1 3.113 × 10−3 3.386 × 101 <2.0 × 10−16 ***
κ(2)1939 1.047 × 10−1 3.099 × 10−3 3.379 × 101 <2.0 × 10−16 ***
κ(2)1940 1.048 × 10−1 3.088 × 10−3 3.395 × 101 <2.0 × 10−16 ***
κ(2)1941 1.093 × 10−1 3.128 × 10−3 3.494 × 101 <2.0 × 10−16 ***
κ(2)1942 1.031 × 10−1 3.240 × 10−3 3.183 × 101 <2.0 × 10−16 ***
κ(2)1943 9.978 × 10−2 3.177 × 10−3 3.141 × 101 <2.0 × 10−16 ***
κ(2)1944 1.125 × 10−1 3.117 × 10−3 3.611 × 101 <2.0 × 10−16 ***
κ(2)1945 1.133 × 10−1 3.069 × 10−3 3.692 × 101 <2.0 × 10−16 ***
κ(2)1946 1.089 × 10−1 3.051 × 10−3 3.571 × 101 <2.0 × 10−16 ***
κ(2)1947 1.127 × 10−1 3.020 × 10−3 3.731 × 101 <2.0 × 10−16 ***
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κ(2)1948 1.117 × 10−1 3.037 × 10−3 3.678 × 101 <2.0 × 10−16 ***
κ(2)1949 1.109 × 10−1 3.009 × 10−3 3.684 × 101 <2.0 × 10−16 ***
κ(2)1950 1.174 × 10−1 3.004 × 10−3 3.908 × 101 <2.0 × 10−16 ***
κ(2)1951 1.157 × 10−1 3.020 × 10−3 3.831 × 101 <2.0 × 10−16 ***
κ(2)1952 1.148 × 10−1 2.995 × 10−3 3.835 × 101 <2.0 × 10−16 ***
κ(2)1953 1.201 × 10−1 2.972 × 10−3 4.040 × 101 <2.0 × 10−16 ***
κ(2)1954 1.155 × 10−1 2.977 × 10−3 3.881 × 101 <2.0 × 10−16 ***
κ(2)1955 1.205 × 10−1 2.988 × 10−3 4.033 × 101 <2.0 × 10−16 ***
κ(2)1956 1.231 × 10−1 2.957 × 10−3 4.162 × 101 <2.0 × 10−16 ***
κ(2)1957 1.176 × 10−1 2.905 × 10−3 4.046 × 101 <2.0 × 10−16 ***
κ(2)1958 1.222 × 10−1 2.942 × 10−3 4.152 × 101 <2.0 × 10−16 ***
κ(2)1959 1.202 × 10−1 2.945 × 10−3 4.083 × 101 <2.0 × 10−16 ***
κ(2)1960 1.275 × 10−1 2.917 × 10−3 4.372 × 101 <2.0 × 10−16 ***
κ(2)1961 1.315 × 10−1 2.936 × 10−3 4.477 × 101 <2.0 × 10−16 ***
κ(2)1962 1.304 × 10−1 2.902 × 10−3 4.492 × 101 <2.0 × 10−16 ***
κ(2)1963 1.244 × 10−1 2.885 × 10−3 4.313 × 101 <2.0 × 10−16 ***
κ(2)1964 1.221 × 10−1 2.854 × 10−3 4.278 × 101 <2.0 × 10−16 ***
κ(2)1965 1.244 × 10−1 2.851 × 10−3 4.362 × 101 <2.0 × 10−16 ***
κ(2)1966 1.267 × 10−1 2.845 × 10−3 4.454 × 101 <2.0 × 10−16 ***
κ(2)1967 1.319 × 10−1 2.830 × 10−3 4.663 × 101 <2.0 × 10−16 ***
κ(2)1968 1.300 × 10−1 2.779 × 10−3 4.678 × 101 <2.0 × 10−16 ***
κ(2)1969 1.236 × 10−1 2.726 × 10−3 4.535 × 101 <2.0 × 10−16 ***
κ(2)1970 1.203 × 10−1 2.750 × 10−3 4.374 × 101 <2.0 × 10−16 ***
κ(2)1971 1.235 × 10−1 2.740 × 10−3 4.509 × 101 <2.0 × 10−16 ***
κ(2)1972 1.203 × 10−1 2.702 × 10−3 4.452 × 101 <2.0 × 10−16 ***
κ(2)1973 1.217 × 10−1 2.696 × 10−3 4.515 × 101 <2.0 × 10−16 ***
κ(2)1974 1.212 × 10−1 2.675 × 10−3 4.532 × 101 <2.0 × 10−16 ***
κ(2)1975 1.221 × 10−1 2.653 × 10−3 4.603 × 101 <2.0 × 10−16 ***
κ(2)1976 1.197 × 10−1 2.640 × 10−3 4.533 × 101 <2.0 × 10−16 ***
κ(2)1977 1.176 × 10−1 2.665 × 10−3 4.412 × 101 <2.0 × 10−16 ***
κ(2)1978 1.231 × 10−1 2.650 × 10−3 4.645 × 101 <2.0 × 10−16 ***
κ(2)1979 1.176 × 10−1 2.632 × 10−3 4.467 × 101 <2.0 × 10−16 ***
κ(2)1980 1.118 × 10−1 2.578 × 10−3 4.338 × 101 <2.0 × 10−16 ***
κ(2)1981 1.132 × 10−1 2.553 × 10−3 4.433 × 101 <2.0 × 10−16 ***
κ(2)1982 1.118 × 10−1 2.543 × 10−3 4.394 × 101 <2.0 × 10−16 ***
κ(2)1983 1.104 × 10−1 2.556 × 10−3 4.320 × 101 <2.0 × 10−16 ***
κ(2)1984 1.095 × 10−1 2.546 × 10−3 4.303 × 101 <2.0 × 10−16 ***
κ(2)1985 1.091 × 10−1 2.523 × 10−3 4.322 × 101 <2.0 × 10−16 ***
κ(2)1986 1.085 × 10−1 2.535 × 10−3 4.282 × 101 <2.0 × 10−16 ***
κ(2)1987 1.048 × 10−1 2.526 × 10−3 4.151 × 101 <2.0 × 10−16 ***
κ(2)1988 1.011 × 10−1 2.507 × 10−3 4.032 × 101 <2.0 × 10−16 ***
κ(2)1989 1.044 × 10−1 2.580 × 10−3 4.047 × 101 <2.0 × 10−16 ***
κ(2)1990 1.047 × 10−1 2.556 × 10−3 4.096 × 101 <2.0 × 10−16 ***
κ(2)1991 9.712 × 10−2 2.539 × 10−3 3.825 × 101 <2.0 × 10−16 ***
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κ(2)1992 9.421 × 10−2 2.531 × 10−3 3.722 × 101 <2.0 × 10−16 ***
κ(2)1993 9.645 × 10−2 2.548 × 10−3 3.785 × 101 <2.0 × 10−16 ***
κ(2)1994 9.839 × 10−2 2.609 × 10−3 3.772 × 101 <2.0 × 10−16 ***
κ(2)1995 9.794 × 10−2 2.580 × 10−3 3.795 × 101 <2.0 × 10−16 ***
κ(2)1996 9.601 × 10−2 2.580 × 10−3 3.721 × 101 <2.0 × 10−16 ***
κ(2)1997 9.613 × 10−2 2.590 × 10−3 3.712 × 101 <2.0 × 10−16 ***
κ(2)1998 9.681 × 10−2 2.573 × 10−3 3.762 × 101 <2.0 × 10−16 ***
κ(2)1999 9.577 × 10−2 2.545 × 10−3 3.762 × 101 <2.0 × 10−16 ***
κ(2)2000 9.336 × 10−2 2.524 × 10−3 3.698 × 101 <2.0 × 10−16 ***
κ(2)2001 9.634 × 10−2 2.519 × 10−3 3.824 × 101 <2.0 × 10−16 ***
κ(2)2002 9.414 × 10−2 2.484 × 10−3 3.790 × 101 <2.0 × 10−16 ***
κ(2)2003 8.948 × 10−2 2.452 × 10−3 3.649 × 101 <2.0 × 10−16 ***
κ(2)2004 8.905 × 10−2 2.418 × 10−3 3.683 × 101 <2.0 × 10−16 ***
κ(2)2005 8.600 × 10−2 2.368 × 10−3 3.632 × 101 <2.0 × 10−16 ***
κ(2)2006 8.570 × 10−2 2.355 × 10−3 3.638 × 101 <2.0 × 10−16 ***
κ(2)2007 8.937 × 10−2 2.340 × 10−3 3.819 × 101 <2.0 × 10−16 ***
κ(2)2008 8.578 × 10−2 2.338 × 10−3 3.668 × 101 <2.0 × 10−16 ***
κ(2)2009 8.576 × 10−2 2.337 × 10−3 3.670 × 101 <2.0 × 10−16 ***
κ(2)2010 8.568 × 10−2 2.333 × 10−3 3.673 × 101 <2.0 × 10−16 ***
κ(2)2011 9.017 × 10−2 2.381 × 10−3 3.786 × 101 <2.0 × 10−16 ***
κ(2)2012 8.797 × 10−2 2.373 × 10−3 3.707 × 101 <2.0 × 10−16 ***
κ(2)2013 8.879 × 10−2 2.393 × 10−3 3.710 × 101 <2.0 × 10−16 ***
κ(2)2014 8.349 × 10−2 2.409 × 10−3 3.465 × 101 <2.0 × 10−16 ***
κ(3)1900 6.675 × 10−4 1.235 × 10−4 5.405 6.5 × 10−8 ***
κ(3)1901 4.031 × 10−4 1.254 × 10−4 3.215 1.3 × 10−3 **
κ(3)1902 5.261 × 10−4 1.221 × 10−4 4.308 1.7 × 10−5 ***
κ(3)1903 4.356 × 10−4 1.227 × 10−4 3.551 3.8 × 10−4 ***
κ(3)1904 7.042 × 10−4 1.187 × 10−4 5.933 3.0 × 10−9 ***
κ(3)1905 4.570 × 10−4 1.178 × 10−4 3.880 1.0 × 10−4 ***
κ(3)1906 6.993 × 10−4 1.186 × 10−4 5.899 3.7 × 10−9 ***
κ(3)1907 5.419 × 10−4 1.172 × 10−4 4.623 3.8 × 10−6 ***
κ(3)1908 4.321 × 10−4 1.158 × 10−4 3.731 1.9 × 10−4 ***
κ(3)1909 4.667 × 10−4 1.151 × 10−4 4.055 5.0 × 10−5 ***
κ(3)1910 6.497 × 10−4 1.131 × 10−4 5.745 9.2 × 10−9 ***
κ(3)1911 6.710 × 10−4 1.123 × 10−4 5.974 2.3 × 10−9 ***
κ(3)1912 5.967 × 10−4 1.096 × 10−4 5.446 5.2 × 10−8 ***
κ(3)1913 4.455 × 10−4 1.104 × 10−4 4.034 5.5 × 10−5 ***
κ(3)1914 5.536 × 10−4 1.087 × 10−4 5.092 3.5 × 10−7 ***
κ(3)1915 4.286 × 10−4 1.067 × 10−4 4.018 5.9 × 10−5 ***
κ(3)1916 4.309 × 10−4 1.080 × 10−4 3.989 6.6 × 10−5 ***
κ(3)1917 4.804 × 10−4 1.073 × 10−4 4.478 7.5 × 10−6 ***
κ(3)1918 5.845 × 10−4 1.036 × 10−4 5.642 1.7 × 10−8 ***
κ(3)1919 3.399 × 10−4 1.036 × 10−4 3.281 1.0 × 10−3 **
κ(3)1920 3.408 × 10−4 1.047 × 10−4 3.255 1.1 × 10−3 **
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κ(3)1921 4.932 × 10−4 1.052 × 10−4 4.688 2.8 × 10−6 ***
κ(3)1922 4.071 × 10−4 1.022 × 10−4 3.982 6.8 × 10−5 ***
κ(3)1923 5.749 × 10−4 1.045 × 10−4 5.499 3.8 × 10−8 ***
κ(3)1924 4.256 × 10−4 1.028 × 10−4 4.140 3.5 × 10−5 ***
κ(3)1925 6.327 × 10−4 1.026 × 10−4 6.166 7.0 × 10−10 ***
κ(3)1926 3.105 × 10−4 1.012 × 10−4 3.068 2.2 × 10−3 **
κ(3)1927 5.256 × 10−4 1.003 × 10−4 5.241 1.6 × 10−7 ***
κ(3)1928 2.753 × 10−4 1.016 × 10−4 2.711 6.7 × 10−3 **
κ(3)1929 2.159 × 10−4 1.008 × 10−4 2.141 3.2 × 10−2 *
κ(3)1930 4.792 × 10−4 1.012 × 10−4 4.734 2.2 × 10−6 ***
κ(3)1931 3.968 × 10−4 1.004 × 10−4 3.952 7.7 × 10−5 ***
κ(3)1932 2.777 × 10−4 1.016 × 10−4 2.734 6.3 × 10−3 **
κ(3)1933 4.994 × 10−4 1.012 × 10−4 4.935 8.0 × 10−7 ***
κ(3)1934 4.891 × 10−4 1.005 × 10−4 4.865 1.1 × 10−6 ***
κ(3)1935 2.795 × 10−4 9.911 × 10−5 2.820 4.8 × 10−3 **
κ(3)1936 3.111 × 10−4 9.870 × 10−5 3.152 1.6 × 10−3 **
κ(3)1937 2.893 × 10−4 9.789 × 10−5 2.955 3.1 × 10−3 **
κ(3)1938 1.846 × 10−4 9.868 × 10−5 1.870 6.1 × 10−2 .
κ(3)1939 3.843 × 10−4 9.870 × 10−5 3.894 9.9 × 10−5 ***
κ(3)1940 3.570 × 10−4 9.878 × 10−5 3.615 3.0 × 10−4 ***
κ(3)1941 2.702 × 10−4 9.984 × 10−5 2.706 6.8 × 10−3 **
κ(3)1942 2.386 × 10−4 1.023 × 10−4 2.332 2.0 × 10−2 *
κ(3)1943 3.474 × 10−4 1.001 × 10−4 3.471 5.2 × 10−4 ***
κ(3)1944 6.796 × 10−5 9.795 × 10−5 6.940 × 10−1 4.9 × 10−1
κ(3)1945 1.306 × 10−5 9.625 × 10−5 1.360 × 10−1 8.9 × 10−1
κ(3)1946 2.394 × 10−4 9.556 × 10−5 2.505 1.2 × 10−2 *
κ(3)1947 2.237 × 10−4 9.487 × 10−5 2.358 1.8 × 10−2 *
κ(3)1948 6.046 × 10−5 9.491 × 10−5 6.370 × 10−1 5.2 × 10−1
κ(3)1949 1.880 × 10−4 9.385 × 10−5 2.003 4.5 × 10−2 *
κ(3)1950 6.500 × 10−5 9.331 × 10−5 6.970 × 10−1 4.9 × 10−1
κ(3)1951 1.890 × 10−4 9.366 × 10−5 2.018 4.4 × 10−2 *
κ(3)1952 9.287 × 10−5 9.271 × 10−5 1.002 3.2 × 10−1
κ(3)1953 −5.627 × 10−5 9.184 × 10−5 −6.130 × 10−1 5.4 × 10−1
κ(3)1954 1.488 × 10−4 9.183 × 10−5 1.621 1.1 × 10−1
κ(3)1955 −6.398 × 10−5 9.170 × 10−5 −6.980 × 10−1 4.9 × 10−1
κ(3)1956 −1.096 × 10−4 9.046 × 10−5 −1.211 2.3 × 10−1
κ(3)1957 1.233 × 10−4 8.921 × 10−5 1.382 1.7 × 10−1
κ(3)1958 −1.482 × 10−5 8.989 × 10−5 −1.650 × 10−1 8.7 × 10−1
κ(3)1959 5.019 × 10−5 8.974 × 10−5 5.590 × 10−1 5.8 × 10−1
κ(3)1960 −1.088 × 10−4 8.874 × 10−5 −1.227 2.2 × 10−1
κ(3)1961 −2.281 × 10−4 8.871 × 10−5 −2.572 1.0 × 10−2 *
κ(3)1962 −1.284 × 10−4 8.761 × 10−5 −1.465 1.4 × 10−1
κ(3)1963 1.134 × 10−5 8.698 × 10−5 1.300 × 10−1 9.0 × 10−1
κ(3)1964 −5.113 × 10−6 8.582 × 10−5 −6.000 × 10−2 9.5 × 10−1
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κ(3)1965 7.130 × 10−6 8.516 × 10−5 8.400 × 10−2 9.3 × 10−1
κ(3)1966 −5.356 × 10−5 8.447 × 10−5 −6.340 × 10−1 5.3 × 10−1
κ(3)1967 −2.085 × 10−4 8.345 × 10−5 −2.499 1.2 × 10−2 *
κ(3)1968 −1.136 × 10−4 8.185 × 10−5 −1.388 1.6 × 10−1
κ(3)1969 −8.323 × 10−6 8.028 × 10−5 −1.040 × 10−1 9.2 × 10−1
κ(3)1970 3.801 × 10−5 8.032 × 10−5 4.730 × 10−1 6.4 × 10−1
κ(3)1971 −4.695 × 10−5 7.935 × 10−5 −5.920 × 10−1 5.5 × 10−1
κ(3)1972 6.250 × 10−5 7.792 × 10−5 8.020 × 10−1 4.2 × 10−1
κ(3)1973 5.428 × 10−5 7.714 × 10−5 7.040 × 10−1 4.8 × 10−1
κ(3)1974 2.556 × 10−5 7.609 × 10−5 3.360 × 10−1 7.4 × 10−1
κ(3)1975 2.443 × 10−5 7.491 × 10−5 3.260 × 10−1 7.4 × 10−1
κ(3)1976 1.690 × 10−4 7.406 × 10−5 2.282 2.2 × 10−2 *
κ(3)1977 1.733 × 10−4 7.412 × 10−5 2.338 1.9 × 10−2 *
κ(3)1978 1.627 × 10−5 7.302 × 10−5 2.230 × 10−1 8.2 × 10−1
κ(3)1979 1.893 × 10−4 7.211 × 10−5 2.625 8.7 × 10−3 **
κ(3)1980 3.413 × 10−4 7.052 × 10−5 4.839 1.3 × 10−6 ***
κ(3)1981 3.268 × 10−4 6.952 × 10−5 4.701 2.6 × 10−6 ***
κ(3)1982 3.104 × 10−4 6.884 × 10−5 4.509 6.5 × 10−6 ***
κ(3)1983 4.091 × 10−4 6.860 × 10−5 5.964 2.5 × 10−9 ***
κ(3)1984 3.941 × 10−4 6.802 × 10−5 5.794 6.9 × 10−9 ***
κ(3)1985 4.676 × 10−4 6.705 × 10−5 6.973 3.1 × 10−12 ***
κ(3)1986 4.709 × 10−4 6.692 × 10−5 7.037 2.0 × 10−12 ***
κ(3)1987 5.384 × 10−4 6.634 × 10−5 8.116 <2.0 × 10−16 ***
κ(3)1988 7.095 × 10−4 6.567 × 10−5 1.080 × 101 <2.0 × 10−16 ***
κ(3)1989 6.246 × 10−4 6.680 × 10−5 9.351 <2.0 × 10−16 ***
κ(3)1990 6.233 × 10−4 6.594 × 10−5 9.453 <2.0 × 10−16 ***
κ(3)1991 7.901 × 10−4 6.536 × 10−5 1.209 × 101 <2.0 × 10−16 ***
κ(3)1992 8.498 × 10−4 6.489 × 10−5 1.310 × 101 <2.0 × 10−16 ***
κ(3)1993 8.785 × 10−4 6.486 × 10−5 1.354 × 101 <2.0 × 10−16 ***
κ(3)1994 7.688 × 10−4 6.568 × 10−5 1.171 × 101 <2.0 × 10−16 ***
κ(3)1995 7.730 × 10−4 6.463 × 10−5 1.196 × 101 <2.0 × 10−16 ***
κ(3)1996 8.599 × 10−4 6.428 × 10−5 1.338 × 101 <2.0 × 10−16 ***
κ(3)1997 8.679 × 10−4 6.412 × 10−5 1.354 × 101 <2.0 × 10−16 ***
κ(3)1998 8.269 × 10−4 6.339 × 10−5 1.304 × 101 <2.0 × 10−16 ***
κ(3)1999 9.044 × 10−4 6.255 × 10−5 1.446 × 101 <2.0 × 10−16 ***
κ(3)2000 9.440 × 10−4 6.189 × 10−5 1.525 × 101 <2.0 × 10−16 ***
κ(3)2001 8.997 × 10−4 6.146 × 10−5 1.464 × 101 <2.0 × 10−16 ***
κ(3)2002 9.977 × 10−4 6.064 × 10−5 1.645 × 101 <2.0 × 10−16 ***
κ(3)2003 1.075 × 10−3 6.000 × 10−5 1.792 × 101 <2.0 × 10−16 ***
κ(3)2004 1.051 × 10−3 5.922 × 10−5 1.775 × 101 <2.0 × 10−16 ***
κ(3)2005 1.126 × 10−3 5.820 × 10−5 1.935 × 101 <2.0 × 10−16 ***
κ(3)2006 1.174 × 10−3 5.790 × 10−5 2.028 × 101 <2.0 × 10−16 ***
κ(3)2007 1.107 × 10−3 5.752 × 10−5 1.924 × 101 <2.0 × 10−16 ***
κ(3)2008 1.218 × 10−3 5.757 × 10−5 2.115 × 101 <2.0 × 10−16 ***
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κ(3)2009 1.173 × 10−3 5.748 × 10−5 2.040 × 101 <2.0 × 10−16 ***
κ(3)2010 1.174 × 10−3 5.727 × 10−5 2.050 × 101 <2.0 × 10−16 ***
κ(3)2011 1.107 × 10−3 5.799 × 10−5 1.909 × 101 <2.0 × 10−16 ***
κ(3)2012 1.182 × 10−3 5.777 × 10−5 2.046 × 101 <2.0 × 10−16 ***
κ(3)2013 1.129 × 10−3 5.799 × 10−5 1.948 × 101 <2.0 × 10−16 ***
κ(3)2014 1.247 × 10−3 5.816 × 10−5 2.144 × 101 <2.0 × 10−16 ***

B.1.6 | KAN:3 Model

Table B.6: Regression table of the KAN:3 model for Swedish females. 385 of 460 parameters (≈ 84%)
are signi�cant on the 5% level. p-value signi�cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1 ‘ ’ 1

Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(1)1900 −4.026 3.499 × 10−2 −1.151 × 102 <2.0 × 10−16 ***
κ(1)1901 −4.180 3.679 × 10−2 −1.136 × 102 <2.0 × 10−16 ***
κ(1)1902 −4.063 3.515 × 10−2 −1.156 × 102 <2.0 × 10−16 ***
κ(1)1903 −4.132 3.597 × 10−2 −1.149 × 102 <2.0 × 10−16 ***
κ(1)1904 −4.057 3.445 × 10−2 −1.178 × 102 <2.0 × 10−16 ***
κ(1)1905 −4.085 3.452 × 10−2 −1.183 × 102 <2.0 × 10−16 ***
κ(1)1906 −4.131 3.550 × 10−2 −1.164 × 102 <2.0 × 10−16 ***
κ(1)1907 −4.155 3.588 × 10−2 −1.158 × 102 <2.0 × 10−16 ***
κ(1)1908 −4.168 3.575 × 10−2 −1.166 × 102 <2.0 × 10−16 ***
κ(1)1909 −4.169 3.547 × 10−2 −1.176 × 102 <2.0 × 10−16 ***
κ(1)1910 −4.133 3.470 × 10−2 −1.191 × 102 <2.0 × 10−16 ***
κ(1)1911 −4.126 3.464 × 10−2 −1.191 × 102 <2.0 × 10−16 ***
κ(1)1912 −4.085 3.394 × 10−2 −1.203 × 102 <2.0 × 10−16 ***
κ(1)1913 −4.185 3.522 × 10−2 −1.188 × 102 <2.0 × 10−16 ***
κ(1)1914 −4.147 3.434 × 10−2 −1.208 × 102 <2.0 × 10−16 ***
κ(1)1915 −4.127 3.344 × 10−2 −1.234 × 102 <2.0 × 10−16 ***
κ(1)1916 −4.137 3.387 × 10−2 −1.222 × 102 <2.0 × 10−16 ***
κ(1)1917 −4.215 3.433 × 10−2 −1.228 × 102 <2.0 × 10−16 ***
κ(1)1918 −4.022 3.166 × 10−2 −1.270 × 102 <2.0 × 10−16 ***
κ(1)1919 −4.156 3.244 × 10−2 −1.281 × 102 <2.0 × 10−16 ***
κ(1)1920 −4.218 3.302 × 10−2 −1.277 × 102 <2.0 × 10−16 ***
κ(1)1921 −4.224 3.330 × 10−2 −1.268 × 102 <2.0 × 10−16 ***
κ(1)1922 −4.116 3.180 × 10−2 −1.295 × 102 <2.0 × 10−16 ***
κ(1)1923 −4.176 3.275 × 10−2 −1.275 × 102 <2.0 × 10−16 ***
κ(1)1924 −4.221 3.268 × 10−2 −1.292 × 102 <2.0 × 10−16 ***
κ(1)1925 −4.198 3.247 × 10−2 −1.293 × 102 <2.0 × 10−16 ***
κ(1)1926 −4.211 3.230 × 10−2 −1.304 × 102 <2.0 × 10−16 ***
κ(1)1927 −4.133 3.159 × 10−2 −1.309 × 102 <2.0 × 10−16 ***
κ(1)1928 −4.205 3.291 × 10−2 −1.278 × 102 <2.0 × 10−16 ***
κ(1)1929 −4.159 3.277 × 10−2 −1.269 × 102 <2.0 × 10−16 ***
κ(1)1930 −4.215 3.340 × 10−2 −1.262 × 102 <2.0 × 10−16 ***
κ(1)1931 −4.163 3.243 × 10−2 −1.284 × 102 <2.0 × 10−16 ***
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κ(1)1932 −4.212 3.293 × 10−2 −1.279 × 102 <2.0 × 10−16 ***
κ(1)1933 −4.229 3.285 × 10−2 −1.287 × 102 <2.0 × 10−16 ***
κ(1)1934 −4.219 3.247 × 10−2 −1.300 × 102 <2.0 × 10−16 ***
κ(1)1935 −4.248 3.214 × 10−2 −1.321 × 102 <2.0 × 10−16 ***
κ(1)1936 −4.241 3.173 × 10−2 −1.336 × 102 <2.0 × 10−16 ***
κ(1)1937 −4.201 3.095 × 10−2 −1.357 × 102 <2.0 × 10−16 ***
κ(1)1938 −4.252 3.134 × 10−2 −1.357 × 102 <2.0 × 10−16 ***
κ(1)1939 −4.273 3.131 × 10−2 −1.364 × 102 <2.0 × 10−16 ***
κ(1)1940 −4.261 3.102 × 10−2 −1.374 × 102 <2.0 × 10−16 ***
κ(1)1941 −4.321 3.162 × 10−2 −1.366 × 102 <2.0 × 10−16 ***
κ(1)1942 −4.410 3.288 × 10−2 −1.341 × 102 <2.0 × 10−16 ***
κ(1)1943 −4.359 3.205 × 10−2 −1.360 × 102 <2.0 × 10−16 ***
κ(1)1944 −4.423 3.201 × 10−2 −1.382 × 102 <2.0 × 10−16 ***
κ(1)1945 −4.359 3.098 × 10−2 −1.407 × 102 <2.0 × 10−16 ***
κ(1)1946 −4.366 3.074 × 10−2 −1.420 × 102 <2.0 × 10−16 ***
κ(1)1947 −4.392 3.055 × 10−2 −1.437 × 102 <2.0 × 10−16 ***
κ(1)1948 −4.434 3.077 × 10−2 −1.441 × 102 <2.0 × 10−16 ***
κ(1)1949 −4.428 3.057 × 10−2 −1.449 × 102 <2.0 × 10−16 ***
κ(1)1950 −4.484 3.092 × 10−2 −1.450 × 102 <2.0 × 10−16 ***
κ(1)1951 −4.514 3.118 × 10−2 −1.448 × 102 <2.0 × 10−16 ***
κ(1)1952 −4.503 3.088 × 10−2 −1.458 × 102 <2.0 × 10−16 ***
κ(1)1953 −4.558 3.111 × 10−2 −1.465 × 102 <2.0 × 10−16 ***
κ(1)1954 −4.549 3.103 × 10−2 −1.466 × 102 <2.0 × 10−16 ***
κ(1)1955 −4.636 3.157 × 10−2 −1.469 × 102 <2.0 × 10−16 ***
κ(1)1956 −4.663 3.143 × 10−2 −1.484 × 102 <2.0 × 10−16 ***
κ(1)1957 −4.647 3.094 × 10−2 −1.502 × 102 <2.0 × 10−16 ***
κ(1)1958 −4.684 3.126 × 10−2 −1.499 × 102 <2.0 × 10−16 ***
κ(1)1959 −4.730 3.152 × 10−2 −1.501 × 102 <2.0 × 10−16 ***
κ(1)1960 −4.750 3.134 × 10−2 −1.516 × 102 <2.0 × 10−16 ***
κ(1)1961 −4.796 3.162 × 10−2 −1.517 × 102 <2.0 × 10−16 ***
κ(1)1962 −4.812 3.144 × 10−2 −1.531 × 102 <2.0 × 10−16 ***
κ(1)1963 −4.824 3.134 × 10−2 −1.539 × 102 <2.0 × 10−16 ***
κ(1)1964 −4.786 3.081 × 10−2 −1.554 × 102 <2.0 × 10−16 ***
κ(1)1965 −4.818 3.098 × 10−2 −1.555 × 102 <2.0 × 10−16 ***
κ(1)1966 −4.893 3.145 × 10−2 −1.556 × 102 <2.0 × 10−16 ***
κ(1)1967 −4.911 3.138 × 10−2 −1.565 × 102 <2.0 × 10−16 ***
κ(1)1968 −4.908 3.102 × 10−2 −1.582 × 102 <2.0 × 10−16 ***
κ(1)1969 −4.826 3.000 × 10−2 −1.609 × 102 <2.0 × 10−16 ***
κ(1)1970 −4.894 3.062 × 10−2 −1.598 × 102 <2.0 × 10−16 ***
κ(1)1971 −4.949 3.104 × 10−2 −1.594 × 102 <2.0 × 10−16 ***
κ(1)1972 −4.973 3.102 × 10−2 −1.603 × 102 <2.0 × 10−16 ***
κ(1)1973 −4.982 3.112 × 10−2 −1.601 × 102 <2.0 × 10−16 ***
κ(1)1974 −4.998 3.119 × 10−2 −1.602 × 102 <2.0 × 10−16 ***
κ(1)1975 −4.992 3.115 × 10−2 −1.602 × 102 <2.0 × 10−16 ***
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κ(1)1976 −4.948 3.099 × 10−2 −1.597 × 102 <2.0 × 10−16 ***
κ(1)1977 −4.973 3.154 × 10−2 −1.577 × 102 <2.0 × 10−16 ***
κ(1)1978 −5.042 3.204 × 10−2 −1.574 × 102 <2.0 × 10−16 ***
κ(1)1979 −5.032 3.206 × 10−2 −1.569 × 102 <2.0 × 10−16 ***
κ(1)1980 −4.967 3.103 × 10−2 −1.600 × 102 <2.0 × 10−16 ***
κ(1)1981 −4.988 3.071 × 10−2 −1.624 × 102 <2.0 × 10−16 ***
κ(1)1982 −5.023 3.093 × 10−2 −1.624 × 102 <2.0 × 10−16 ***
κ(1)1983 −5.080 3.167 × 10−2 −1.604 × 102 <2.0 × 10−16 ***
κ(1)1984 −5.037 3.154 × 10−2 −1.597 × 102 <2.0 × 10−16 ***
κ(1)1985 −5.069 3.188 × 10−2 −1.590 × 102 <2.0 × 10−16 ***
κ(1)1986 −5.051 3.213 × 10−2 −1.572 × 102 <2.0 × 10−16 ***
κ(1)1987 −5.038 3.233 × 10−2 −1.558 × 102 <2.0 × 10−16 ***
κ(1)1988 −5.075 3.277 × 10−2 −1.549 × 102 <2.0 × 10−16 ***
κ(1)1989 −5.131 3.396 × 10−2 −1.511 × 102 <2.0 × 10−16 ***
κ(1)1990 −5.123 3.391 × 10−2 −1.511 × 102 <2.0 × 10−16 ***
κ(1)1991 −5.064 3.351 × 10−2 −1.511 × 102 <2.0 × 10−16 ***
κ(1)1992 −5.057 3.358 × 10−2 −1.506 × 102 <2.0 × 10−16 ***
κ(1)1993 −5.102 3.430 × 10−2 −1.488 × 102 <2.0 × 10−16 ***
κ(1)1994 −5.109 3.498 × 10−2 −1.461 × 102 <2.0 × 10−16 ***
κ(1)1995 −5.095 3.478 × 10−2 −1.465 × 102 <2.0 × 10−16 ***
κ(1)1996 −5.178 3.553 × 10−2 −1.457 × 102 <2.0 × 10−16 ***
κ(1)1997 −5.216 3.586 × 10−2 −1.454 × 102 <2.0 × 10−16 ***
κ(1)1998 −5.166 3.516 × 10−2 −1.469 × 102 <2.0 × 10−16 ***
κ(1)1999 −5.169 3.485 × 10−2 −1.484 × 102 <2.0 × 10−16 ***
κ(1)2000 −5.135 3.427 × 10−2 −1.498 × 102 <2.0 × 10−16 ***
κ(1)2001 −5.202 3.468 × 10−2 −1.500 × 102 <2.0 × 10−16 ***
κ(1)2002 −5.197 3.408 × 10−2 −1.525 × 102 <2.0 × 10−16 ***
κ(1)2003 −5.210 3.343 × 10−2 −1.558 × 102 <2.0 × 10−16 ***
κ(1)2004 −5.189 3.242 × 10−2 −1.600 × 102 <2.0 × 10−16 ***
κ(1)2005 −5.180 3.154 × 10−2 −1.642 × 102 <2.0 × 10−16 ***
κ(1)2006 −5.225 3.150 × 10−2 −1.659 × 102 <2.0 × 10−16 ***
κ(1)2007 −5.270 3.150 × 10−2 −1.673 × 102 <2.0 × 10−16 ***
κ(1)2008 −5.237 3.120 × 10−2 −1.678 × 102 <2.0 × 10−16 ***
κ(1)2009 −5.283 3.154 × 10−2 −1.675 × 102 <2.0 × 10−16 ***
κ(1)2010 −5.254 3.145 × 10−2 −1.670 × 102 <2.0 × 10−16 ***
κ(1)2011 −5.345 3.277 × 10−2 −1.631 × 102 <2.0 × 10−16 ***
κ(1)2012 −5.371 3.314 × 10−2 −1.621 × 102 <2.0 × 10−16 ***
κ(1)2013 −5.410 3.373 × 10−2 −1.604 × 102 <2.0 × 10−16 ***
κ(1)2014 −5.372 3.371 × 10−2 −1.593 × 102 <2.0 × 10−16 ***
κ(2)1900 7.297 × 10−2 8.820 × 10−3 8.273 <2.0 × 10−16 ***
κ(2)1901 9.136 × 10−2 9.171 × 10−3 9.962 <2.0 × 10−16 ***
κ(2)1902 7.101 × 10−2 8.816 × 10−3 8.054 <2.0 × 10−16 ***
κ(2)1903 6.556 × 10−2 8.927 × 10−3 7.344 2.1 × 10−13 ***
κ(2)1904 6.983 × 10−2 8.580 × 10−3 8.139 <2.0 × 10−16 ***
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κ(2)1905 7.910 × 10−2 8.584 × 10−3 9.216 <2.0 × 10−16 ***
κ(2)1906 7.569 × 10−2 8.757 × 10−3 8.643 <2.0 × 10−16 ***
κ(2)1907 8.091 × 10−2 8.751 × 10−3 9.246 <2.0 × 10−16 ***
κ(2)1908 8.931 × 10−2 8.683 × 10−3 1.029 × 101 <2.0 × 10−16 ***
κ(2)1909 8.570 × 10−2 8.650 × 10−3 9.908 <2.0 × 10−16 ***
κ(2)1910 7.497 × 10−2 8.472 × 10−3 8.850 <2.0 × 10−16 ***
κ(2)1911 6.679 × 10−2 8.434 × 10−3 7.919 <2.0 × 10−16 ***
κ(2)1912 7.585 × 10−2 8.277 × 10−3 9.164 <2.0 × 10−16 ***
κ(2)1913 8.708 × 10−2 8.507 × 10−3 1.024 × 101 <2.0 × 10−16 ***
κ(2)1914 7.962 × 10−2 8.318 × 10−3 9.571 <2.0 × 10−16 ***
κ(2)1915 9.161 × 10−2 8.136 × 10−3 1.126 × 101 <2.0 × 10−16 ***
κ(2)1916 7.509 × 10−2 8.222 × 10−3 9.133 <2.0 × 10−16 ***
κ(2)1917 9.732 × 10−2 8.275 × 10−3 1.176 × 101 <2.0 × 10−16 ***
κ(2)1918 7.655 × 10−2 7.788 × 10−3 9.829 <2.0 × 10−16 ***
κ(2)1919 9.425 × 10−2 7.854 × 10−3 1.200 × 101 <2.0 × 10−16 ***
κ(2)1920 8.955 × 10−2 7.969 × 10−3 1.124 × 101 <2.0 × 10−16 ***
κ(2)1921 7.972 × 10−2 8.040 × 10−3 9.915 <2.0 × 10−16 ***
κ(2)1922 7.999 × 10−2 7.734 × 10−3 1.034 × 101 <2.0 × 10−16 ***
κ(2)1923 6.800 × 10−2 7.947 × 10−3 8.557 <2.0 × 10−16 ***
κ(2)1924 9.083 × 10−2 7.905 × 10−3 1.149 × 101 <2.0 × 10−16 ***
κ(2)1925 8.170 × 10−2 7.882 × 10−3 1.037 × 101 <2.0 × 10−16 ***
κ(2)1926 8.722 × 10−2 7.758 × 10−3 1.124 × 101 <2.0 × 10−16 ***
κ(2)1927 7.710 × 10−2 7.603 × 10−3 1.014 × 101 <2.0 × 10−16 ***
κ(2)1928 8.742 × 10−2 7.808 × 10−3 1.120 × 101 <2.0 × 10−16 ***
κ(2)1929 7.897 × 10−2 7.701 × 10−3 1.025 × 101 <2.0 × 10−16 ***
κ(2)1930 9.632 × 10−2 7.848 × 10−3 1.227 × 101 <2.0 × 10−16 ***
κ(2)1931 9.116 × 10−2 7.627 × 10−3 1.195 × 101 <2.0 × 10−16 ***
κ(2)1932 8.712 × 10−2 7.732 × 10−3 1.127 × 101 <2.0 × 10−16 ***
κ(2)1933 9.207 × 10−2 7.748 × 10−3 1.188 × 101 <2.0 × 10−16 ***
κ(2)1934 8.618 × 10−2 7.680 × 10−3 1.122 × 101 <2.0 × 10−16 ***
κ(2)1935 9.824 × 10−2 7.580 × 10−3 1.296 × 101 <2.0 × 10−16 ***
κ(2)1936 1.039 × 10−1 7.569 × 10−3 1.373 × 101 <2.0 × 10−16 ***
κ(2)1937 9.685 × 10−2 7.433 × 10−3 1.303 × 101 <2.0 × 10−16 ***
κ(2)1938 9.283 × 10−2 7.503 × 10−3 1.237 × 101 <2.0 × 10−16 ***
κ(2)1939 9.794 × 10−2 7.546 × 10−3 1.298 × 101 <2.0 × 10−16 ***
κ(2)1940 9.635 × 10−2 7.526 × 10−3 1.280 × 101 <2.0 × 10−16 ***
κ(2)1941 1.004 × 10−1 7.629 × 10−3 1.316 × 101 <2.0 × 10−16 ***
κ(2)1942 9.465 × 10−2 7.871 × 10−3 1.203 × 101 <2.0 × 10−16 ***
κ(2)1943 8.626 × 10−2 7.665 × 10−3 1.125 × 101 <2.0 × 10−16 ***
κ(2)1944 1.099 × 10−1 7.584 × 10−3 1.449 × 101 <2.0 × 10−16 ***
κ(2)1945 9.267 × 10−2 7.335 × 10−3 1.263 × 101 <2.0 × 10−16 ***
κ(2)1946 9.079 × 10−2 7.270 × 10−3 1.249 × 101 <2.0 × 10−16 ***
κ(2)1947 1.018 × 10−1 7.254 × 10−3 1.404 × 101 <2.0 × 10−16 ***
κ(2)1948 1.022 × 10−1 7.281 × 10−3 1.404 × 101 <2.0 × 10−16 ***
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κ(2)1949 9.818 × 10−2 7.230 × 10−3 1.358 × 101 <2.0 × 10−16 ***
κ(2)1950 1.065 × 10−1 7.256 × 10−3 1.468 × 101 <2.0 × 10−16 ***
κ(2)1951 1.029 × 10−1 7.311 × 10−3 1.408 × 101 <2.0 × 10−16 ***
κ(2)1952 9.904 × 10−2 7.230 × 10−3 1.370 × 101 <2.0 × 10−16 ***
κ(2)1953 1.128 × 10−1 7.242 × 10−3 1.557 × 101 <2.0 × 10−16 ***
κ(2)1954 9.917 × 10−2 7.229 × 10−3 1.372 × 101 <2.0 × 10−16 ***
κ(2)1955 1.111 × 10−1 7.271 × 10−3 1.528 × 101 <2.0 × 10−16 ***
κ(2)1956 1.144 × 10−1 7.184 × 10−3 1.592 × 101 <2.0 × 10−16 ***
κ(2)1957 1.169 × 10−1 7.096 × 10−3 1.648 × 101 <2.0 × 10−16 ***
κ(2)1958 1.081 × 10−1 7.113 × 10−3 1.520 × 101 <2.0 × 10−16 ***
κ(2)1959 1.125 × 10−1 7.147 × 10−3 1.575 × 101 <2.0 × 10−16 ***
κ(2)1960 1.153 × 10−1 7.065 × 10−3 1.632 × 101 <2.0 × 10−16 ***
κ(2)1961 1.106 × 10−1 7.081 × 10−3 1.563 × 101 <2.0 × 10−16 ***
κ(2)1962 1.140 × 10−1 7.043 × 10−3 1.618 × 101 <2.0 × 10−16 ***
κ(2)1963 1.150 × 10−1 7.018 × 10−3 1.638 × 101 <2.0 × 10−16 ***
κ(2)1964 1.036 × 10−1 6.894 × 10−3 1.503 × 101 <2.0 × 10−16 ***
κ(2)1965 1.001 × 10−1 6.886 × 10−3 1.453 × 101 <2.0 × 10−16 ***
κ(2)1966 1.120 × 10−1 6.940 × 10−3 1.615 × 101 <2.0 × 10−16 ***
κ(2)1967 1.078 × 10−1 6.865 × 10−3 1.570 × 101 <2.0 × 10−16 ***
κ(2)1968 1.110 × 10−1 6.794 × 10−3 1.634 × 101 <2.0 × 10−16 ***
κ(2)1969 9.388 × 10−2 6.603 × 10−3 1.422 × 101 <2.0 × 10−16 ***
κ(2)1970 9.670 × 10−2 6.689 × 10−3 1.446 × 101 <2.0 × 10−16 ***
κ(2)1971 1.032 × 10−1 6.709 × 10−3 1.539 × 101 <2.0 × 10−16 ***
κ(2)1972 1.108 × 10−1 6.656 × 10−3 1.665 × 101 <2.0 × 10−16 ***
κ(2)1973 1.042 × 10−1 6.628 × 10−3 1.572 × 101 <2.0 × 10−16 ***
κ(2)1974 1.069 × 10−1 6.605 × 10−3 1.619 × 101 <2.0 × 10−16 ***
κ(2)1975 1.021 × 10−1 6.536 × 10−3 1.562 × 101 <2.0 × 10−16 ***
κ(2)1976 8.653 × 10−2 6.470 × 10−3 1.338 × 101 <2.0 × 10−16 ***
κ(2)1977 8.107 × 10−2 6.539 × 10−3 1.240 × 101 <2.0 × 10−16 ***
κ(2)1978 9.497 × 10−2 6.533 × 10−3 1.454 × 101 <2.0 × 10−16 ***
κ(2)1979 9.136 × 10−2 6.505 × 10−3 1.404 × 101 <2.0 × 10−16 ***
κ(2)1980 7.939 × 10−2 6.310 × 10−3 1.258 × 101 <2.0 × 10−16 ***
κ(2)1981 7.784 × 10−2 6.223 × 10−3 1.251 × 101 <2.0 × 10−16 ***
κ(2)1982 8.175 × 10−2 6.230 × 10−3 1.312 × 101 <2.0 × 10−16 ***
κ(2)1983 8.506 × 10−2 6.314 × 10−3 1.347 × 101 <2.0 × 10−16 ***
κ(2)1984 7.317 × 10−2 6.289 × 10−3 1.164 × 101 <2.0 × 10−16 ***
κ(2)1985 8.183 × 10−2 6.289 × 10−3 1.301 × 101 <2.0 × 10−16 ***
κ(2)1986 7.124 × 10−2 6.303 × 10−3 1.130 × 101 <2.0 × 10−16 ***
κ(2)1987 6.976 × 10−2 6.312 × 10−3 1.105 × 101 <2.0 × 10−16 ***
κ(2)1988 8.327 × 10−2 6.356 × 10−3 1.310 × 101 <2.0 × 10−16 ***
κ(2)1989 7.542 × 10−2 6.501 × 10−3 1.160 × 101 <2.0 × 10−16 ***
κ(2)1990 7.781 × 10−2 6.451 × 10−3 1.206 × 101 <2.0 × 10−16 ***
κ(2)1991 6.822 × 10−2 6.384 × 10−3 1.069 × 101 <2.0 × 10−16 ***
κ(2)1992 6.832 × 10−2 6.372 × 10−3 1.072 × 101 <2.0 × 10−16 ***
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κ(2)1993 7.244 × 10−2 6.441 × 10−3 1.125 × 101 <2.0 × 10−16 ***
κ(2)1994 5.790 × 10−2 6.512 × 10−3 8.892 <2.0 × 10−16 ***
κ(2)1995 5.811 × 10−2 6.444 × 10−3 9.018 <2.0 × 10−16 ***
κ(2)1996 7.449 × 10−2 6.538 × 10−3 1.139 × 101 <2.0 × 10−16 ***
κ(2)1997 7.589 × 10−2 6.564 × 10−3 1.156 × 101 <2.0 × 10−16 ***
κ(2)1998 6.186 × 10−2 6.442 × 10−3 9.603 <2.0 × 10−16 ***
κ(2)1999 6.204 × 10−2 6.400 × 10−3 9.695 <2.0 × 10−16 ***
κ(2)2000 5.253 × 10−2 6.325 × 10−3 8.305 <2.0 × 10−16 ***
κ(2)2001 6.167 × 10−2 6.369 × 10−3 9.683 <2.0 × 10−16 ***
κ(2)2002 5.972 × 10−2 6.294 × 10−3 9.488 <2.0 × 10−16 ***
κ(2)2003 6.109 × 10−2 6.237 × 10−3 9.794 <2.0 × 10−16 ***
κ(2)2004 5.096 × 10−2 6.107 × 10−3 8.345 <2.0 × 10−16 ***
κ(2)2005 4.990 × 10−2 6.004 × 10−3 8.312 <2.0 × 10−16 ***
κ(2)2006 5.315 × 10−2 6.014 × 10−3 8.837 <2.0 × 10−16 ***
κ(2)2007 5.967 × 10−2 6.006 × 10−3 9.935 <2.0 × 10−16 ***
κ(2)2008 4.666 × 10−2 5.996 × 10−3 7.782 <2.0 × 10−16 ***
κ(2)2009 5.643 × 10−2 6.033 × 10−3 9.354 <2.0 × 10−16 ***
κ(2)2010 4.857 × 10−2 6.002 × 10−3 8.092 <2.0 × 10−16 ***
κ(2)2011 5.578 × 10−2 6.155 × 10−3 9.062 <2.0 × 10−16 ***
κ(2)2012 6.730 × 10−2 6.185 × 10−3 1.088 × 101 <2.0 × 10−16 ***
κ(2)2013 7.289 × 10−2 6.236 × 10−3 1.169 × 101 <2.0 × 10−16 ***
κ(2)2014 6.095 × 10−2 6.217 × 10−3 9.803 <2.0 × 10−16 ***
κ(3)1900 2.141 × 10−3 6.306 × 10−4 3.396 6.9 × 10−4 ***
κ(3)1901 8.286 × 10−4 6.503 × 10−4 1.274 2.0 × 10−1
κ(3)1902 2.092 × 10−3 6.261 × 10−4 3.341 8.3 × 10−4 ***
κ(3)1903 2.737 × 10−3 6.284 × 10−4 4.355 1.3 × 10−5 ***
κ(3)1904 2.147 × 10−3 6.056 × 10−4 3.545 3.9 × 10−4 ***
κ(3)1905 1.482 × 10−3 6.050 × 10−4 2.450 1.4 × 10−2 *
κ(3)1906 1.345 × 10−3 6.115 × 10−4 2.199 2.8 × 10−2 *
κ(3)1907 1.601 × 10−3 6.082 × 10−4 2.633 8.5 × 10−3 **
κ(3)1908 1.123 × 10−3 6.026 × 10−4 1.864 6.2 × 10−2 .
κ(3)1909 9.846 × 10−4 6.005 × 10−4 1.640 1.0 × 10−1
κ(3)1910 1.703 × 10−3 5.876 × 10−4 2.899 3.7 × 10−3 **
κ(3)1911 2.256 × 10−3 5.822 × 10−4 3.875 1.1 × 10−4 ***
κ(3)1912 1.663 × 10−3 5.724 × 10−4 2.906 3.7 × 10−3 **
κ(3)1913 1.061 × 10−3 5.841 × 10−4 1.816 6.9 × 10−2 .
κ(3)1914 1.515 × 10−3 5.715 × 10−4 2.651 8.0 × 10−3 **
κ(3)1915 9.945 × 10−4 5.626 × 10−4 1.768 7.7 × 10−2 .
κ(3)1916 1.787 × 10−3 5.641 × 10−4 3.167 1.5 × 10−3 **
κ(3)1917 2.066 × 10−4 5.658 × 10−4 3.650 × 10−1 7.1 × 10−1
κ(3)1918 1.103 × 10−3 5.381 × 10−4 2.050 4.0 × 10−2 *
κ(3)1919 5.985 × 10−4 5.385 × 10−4 1.111 2.7 × 10−1
κ(3)1920 9.560 × 10−4 5.437 × 10−4 1.758 7.9 × 10−2 .
κ(3)1921 1.701 × 10−3 5.479 × 10−4 3.104 1.9 × 10−3 **
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κ(3)1922 1.821 × 10−3 5.306 × 10−4 3.432 6.0 × 10−4 ***
κ(3)1923 2.157 × 10−3 5.415 × 10−4 3.984 6.8 × 10−5 ***
κ(3)1924 7.676 × 10−4 5.396 × 10−4 1.423 1.5 × 10−1
κ(3)1925 1.173 × 10−3 5.386 × 10−4 2.178 2.9 × 10−2 *
κ(3)1926 1.154 × 10−3 5.269 × 10−4 2.190 2.9 × 10−2 *
κ(3)1927 2.029 × 10−3 5.183 × 10−4 3.915 9.1 × 10−5 ***
κ(3)1928 1.218 × 10−3 5.265 × 10−4 2.314 2.1 × 10−2 *
κ(3)1929 1.940 × 10−3 5.163 × 10−4 3.757 1.7 × 10−4 ***
κ(3)1930 2.115 × 10−4 5.276 × 10−4 4.010 × 10−1 6.9 × 10−1
κ(3)1931 1.224 × 10−3 5.165 × 10−4 2.369 1.8 × 10−2 *
κ(3)1932 1.340 × 10−3 5.226 × 10−4 2.565 1.0 × 10−2 *
κ(3)1933 5.773 × 10−4 5.252 × 10−4 1.099 2.7 × 10−1
κ(3)1934 1.102 × 10−3 5.215 × 10−4 2.114 3.5 × 10−2 *
κ(3)1935 7.465 × 10−4 5.147 × 10−4 1.450 1.5 × 10−1
κ(3)1936 2.501 × 10−4 5.179 × 10−4 4.830 × 10−1 6.3 × 10−1
κ(3)1937 7.269 × 10−4 5.096 × 10−4 1.426 1.5 × 10−1
κ(3)1938 1.098 × 10−3 5.113 × 10−4 2.148 3.2 × 10−2 *
κ(3)1939 8.569 × 10−4 5.169 × 10−4 1.658 9.7 × 10−2 .
κ(3)1940 9.609 × 10−4 5.172 × 10−4 1.858 6.3 × 10−2 .
κ(3)1941 9.105 × 10−4 5.220 × 10−4 1.744 8.1 × 10−2 .
κ(3)1942 8.418 × 10−4 5.324 × 10−4 1.581 1.1 × 10−1
κ(3)1943 1.311 × 10−3 5.174 × 10−4 2.533 1.1 × 10−2 *
κ(3)1944 2.560 × 10−4 5.113 × 10−4 5.010 × 10−1 6.2 × 10−1
κ(3)1945 1.523 × 10−3 4.937 × 10−4 3.086 2.0 × 10−3 **
κ(3)1946 1.549 × 10−3 4.892 × 10−4 3.167 1.5 × 10−3 **
κ(3)1947 1.006 × 10−3 4.917 × 10−4 2.046 4.1 × 10−2 *
κ(3)1948 7.525 × 10−4 4.913 × 10−4 1.532 1.3 × 10−1
κ(3)1949 1.102 × 10−3 4.880 × 10−4 2.259 2.4 × 10−2 *
κ(3)1950 8.552 × 10−4 4.879 × 10−4 1.753 8.0 × 10−2 .
κ(3)1951 1.108 × 10−3 4.914 × 10−4 2.254 2.4 × 10−2 *
κ(3)1952 1.236 × 10−3 4.845 × 10−4 2.552 1.1 × 10−2 *
κ(3)1953 4.767 × 10−4 4.839 × 10−4 9.850 × 10−1 3.2 × 10−1
κ(3)1954 1.320 × 10−3 4.827 × 10−4 2.735 6.2 × 10−3 **
κ(3)1955 6.170 × 10−4 4.815 × 10−4 1.281 2.0 × 10−1
κ(3)1956 5.173 × 10−4 4.731 × 10−4 1.093 2.7 × 10−1
κ(3)1957 1.584 × 10−4 4.688 × 10−4 3.380 × 10−1 7.4 × 10−1
κ(3)1958 9.848 × 10−4 4.669 × 10−4 2.109 3.5 × 10−2 *
κ(3)1959 5.908 × 10−4 4.679 × 10−4 1.263 2.1 × 10−1
κ(3)1960 7.662 × 10−4 4.616 × 10−4 1.660 9.7 × 10−2 .
κ(3)1961 1.250 × 10−3 4.600 × 10−4 2.717 6.6 × 10−3 **
κ(3)1962 1.035 × 10−3 4.580 × 10−4 2.260 2.4 × 10−2 *
κ(3)1963 6.771 × 10−4 4.556 × 10−4 1.486 1.4 × 10−1
κ(3)1964 1.291 × 10−3 4.462 × 10−4 2.893 3.8 × 10−3 **
κ(3)1965 1.699 × 10−3 4.433 × 10−4 3.833 1.3 × 10−4 ***
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κ(3)1966 9.652 × 10−4 4.447 × 10−4 2.171 3.0 × 10−2 *
κ(3)1967 1.474 × 10−3 4.368 × 10−4 3.375 7.4 × 10−4 ***
κ(3)1968 1.199 × 10−3 4.327 × 10−4 2.771 5.6 × 10−3 **
κ(3)1969 2.040 × 10−3 4.209 × 10−4 4.847 1.3 × 10−6 ***
κ(3)1970 1.643 × 10−3 4.232 × 10−4 3.883 1.0 × 10−4 ***
κ(3)1971 1.330 × 10−3 4.212 × 10−4 3.159 1.6 × 10−3 **
κ(3)1972 6.959 × 10−4 4.157 × 10−4 1.674 9.4 × 10−2 .
κ(3)1973 1.224 × 10−3 4.115 × 10−4 2.975 2.9 × 10−3 **
κ(3)1974 9.759 × 10−4 4.080 × 10−4 2.392 1.7 × 10−2 *
κ(3)1975 1.343 × 10−3 4.010 × 10−4 3.350 8.1 × 10−4 ***
κ(3)1976 2.339 × 10−3 3.952 × 10−4 5.919 3.3 × 10−9 ***
κ(3)1977 2.551 × 10−3 3.968 × 10−4 6.429 1.3 × 10−10 ***
κ(3)1978 1.828 × 10−3 3.921 × 10−4 4.662 3.1 × 10−6 ***
κ(3)1979 1.862 × 10−3 3.887 × 10−4 4.790 1.7 × 10−6 ***
κ(3)1980 2.412 × 10−3 3.776 × 10−4 6.387 1.7 × 10−10 ***
κ(3)1981 2.587 × 10−3 3.716 × 10−4 6.961 3.4 × 10−12 ***
κ(3)1982 2.213 × 10−3 3.697 × 10−4 5.984 2.2 × 10−9 ***
κ(3)1983 1.991 × 10−3 3.714 × 10−4 5.360 8.3 × 10−8 ***
κ(3)1984 2.667 × 10−3 3.691 × 10−4 7.224 5.0 × 10−13 ***
κ(3)1985 2.142 × 10−3 3.662 × 10−4 5.850 4.9 × 10−9 ***
κ(3)1986 2.765 × 10−3 3.648 × 10−4 7.579 3.5 × 10−14 ***
κ(3)1987 2.677 × 10−3 3.634 × 10−4 7.365 1.8 × 10−13 ***
κ(3)1988 1.762 × 10−3 3.647 × 10−4 4.832 1.4 × 10−6 ***
κ(3)1989 2.353 × 10−3 3.692 × 10−4 6.372 1.9 × 10−10 ***
κ(3)1990 2.219 × 10−3 3.649 × 10−4 6.080 1.2 × 10−9 ***
κ(3)1991 2.496 × 10−3 3.610 × 10−4 6.914 4.7 × 10−12 ***
κ(3)1992 2.369 × 10−3 3.593 × 10−4 6.593 4.3 × 10−11 ***
κ(3)1993 2.272 × 10−3 3.610 × 10−4 6.293 3.1 × 10−10 ***
κ(3)1994 3.137 × 10−3 3.621 × 10−4 8.665 <2.0 × 10−16 ***
κ(3)1995 3.098 × 10−3 3.571 × 10−4 8.676 <2.0 × 10−16 ***
κ(3)1996 2.083 × 10−3 3.608 × 10−4 5.774 7.8 × 10−9 ***
κ(3)1997 2.013 × 10−3 3.609 × 10−4 5.579 2.4 × 10−8 ***
κ(3)1998 2.839 × 10−3 3.539 × 10−4 8.021 <2.0 × 10−16 ***
κ(3)1999 2.840 × 10−3 3.521 × 10−4 8.066 <2.0 × 10−16 ***
κ(3)2000 3.298 × 10−3 3.483 × 10−4 9.467 <2.0 × 10−16 ***
κ(3)2001 2.886 × 10−3 3.492 × 10−4 8.264 <2.0 × 10−16 ***
κ(3)2002 2.969 × 10−3 3.458 × 10−4 8.585 <2.0 × 10−16 ***
κ(3)2003 2.689 × 10−3 3.439 × 10−4 7.820 <2.0 × 10−16 ***
κ(3)2004 3.247 × 10−3 3.375 × 10−4 9.622 <2.0 × 10−16 ***
κ(3)2005 3.205 × 10−3 3.327 × 10−4 9.633 <2.0 × 10−16 ***
κ(3)2006 3.036 × 10−3 3.328 × 10−4 9.122 <2.0 × 10−16 ***
κ(3)2007 2.798 × 10−3 3.312 × 10−4 8.449 <2.0 × 10−16 ***
κ(3)2008 3.457 × 10−3 3.308 × 10−4 1.045 × 101 <2.0 × 10−16 ***
κ(3)2009 2.826 × 10−3 3.311 × 10−4 8.537 <2.0 × 10−16 ***
continued . . .
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(3)2010 3.276 × 10−3 3.280 × 10−4 9.988 <2.0 × 10−16 ***
κ(3)2011 3.035 × 10−3 3.330 × 10−4 9.115 <2.0 × 10−16 ***
κ(3)2012 2.307 × 10−3 3.337 × 10−4 6.913 4.7 × 10−12 ***
κ(3)2013 1.978 × 10−3 3.347 × 10−4 5.910 3.4 × 10−9 ***
κ(3)2014 2.469 × 10−3 3.332 × 10−4 7.411 1.3 × 10−13 ***
κ(4)1900 −3.125 × 10−5 1.309 × 10−5 −2.387 1.7 × 10−2 *
κ(4)1901 −8.920 × 10−6 1.341 × 10−5 −6.650 × 10−1 5.1 × 10−1
κ(4)1902 −3.294 × 10−5 1.291 × 10−5 −2.552 1.1 × 10−2 *
κ(4)1903 −4.802 × 10−5 1.285 × 10−5 −3.736 1.9 × 10−4 ***
κ(4)1904 −3.020 × 10−5 1.242 × 10−5 −2.432 1.5 × 10−2 *
κ(4)1905 −2.146 × 10−5 1.239 × 10−5 −1.732 8.3 × 10−2 .
κ(4)1906 −1.337 × 10−5 1.241 × 10−5 −1.077 2.8 × 10−1
κ(4)1907 −2.189 × 10−5 1.233 × 10−5 −1.775 7.6 × 10−2 .
κ(4)1908 −1.425 × 10−5 1.221 × 10−5 −1.167 2.4 × 10−1
κ(4)1909 −1.068 × 10−5 1.213 × 10−5 −8.810 × 10−1 3.8 × 10−1
κ(4)1910 −2.169 × 10−5 1.185 × 10−5 −1.831 6.7 × 10−2 .
κ(4)1911 −3.246 × 10−5 1.168 × 10−5 −2.781 5.4 × 10−3 **
κ(4)1912 −2.180 × 10−5 1.150 × 10−5 −1.896 5.8 × 10−2 .
κ(4)1913 −1.254 × 10−5 1.166 × 10−5 −1.076 2.8 × 10−1
κ(4)1914 −1.951 × 10−5 1.141 × 10−5 −1.710 8.7 × 10−2 .
κ(4)1915 −1.158 × 10−5 1.131 × 10−5 −1.024 3.1 × 10−1
κ(4)1916 −2.754 × 10−5 1.122 × 10−5 −2.454 1.4 × 10−2 *
κ(4)1917 5.538 × 10−6 1.124 × 10−5 4.930 × 10−1 6.2 × 10−1
κ(4)1918 −1.057 × 10−5 1.075 × 10−5 −9.830 × 10−1 3.3 × 10−1
κ(4)1919 −5.239 × 10−6 1.071 × 10−5 −4.890 × 10−1 6.2 × 10−1
κ(4)1920 −1.241 × 10−5 1.076 × 10−5 −1.153 2.5 × 10−1
κ(4)1921 −2.430 × 10−5 1.083 × 10−5 −2.244 2.5 × 10−2 *
κ(4)1922 −2.871 × 10−5 1.056 × 10−5 −2.720 6.5 × 10−3 **
κ(4)1923 −3.181 × 10−5 1.068 × 10−5 −2.979 2.9 × 10−3 **
κ(4)1924 −6.869 × 10−6 1.068 × 10−5 −6.430 × 10−1 5.2 × 10−1
κ(4)1925 −1.089 × 10−5 1.066 × 10−5 −1.022 3.1 × 10−1
κ(4)1926 −1.695 × 10−5 1.038 × 10−5 −1.633 1.0 × 10−1
κ(4)1927 −3.040 × 10−5 1.026 × 10−5 −2.962 3.1 × 10−3 **
κ(4)1928 −1.891 × 10−5 1.034 × 10−5 −1.829 6.7 × 10−2 .
κ(4)1929 −3.447 × 10−5 1.009 × 10−5 −3.415 6.4 × 10−4 ***
κ(4)1930 5.347 × 10−6 1.035 × 10−5 5.170 × 10−1 6.1 × 10−1
κ(4)1931 −1.667 × 10−5 1.023 × 10−5 −1.630 1.0 × 10−1
κ(4)1932 −2.135 × 10−5 1.031 × 10−5 −2.071 3.8 × 10−2 *
κ(4)1933 −1.571 × 10−6 1.037 × 10−5 −1.510 × 10−1 8.8 × 10−1
κ(4)1934 −1.236 × 10−5 1.031 × 10−5 −1.200 2.3 × 10−1
κ(4)1935 −9.431 × 10−6 1.019 × 10−5 −9.260 × 10−1 3.5 × 10−1
κ(4)1936 1.236 × 10−6 1.031 × 10−5 1.200 × 10−1 9.0 × 10−1
κ(4)1937 −8.903 × 10−6 1.015 × 10−5 −8.770 × 10−1 3.8 × 10−1
κ(4)1938 −1.843 × 10−5 1.012 × 10−5 −1.821 6.9 × 10−2 .
continued . . .
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(4)1939 −9.596 × 10−6 1.029 × 10−5 −9.320 × 10−1 3.5 × 10−1
κ(4)1940 −1.227 × 10−5 1.033 × 10−5 −1.188 2.3 × 10−1
κ(4)1941 −1.301 × 10−5 1.040 × 10−5 −1.251 2.1 × 10−1
κ(4)1942 −1.209 × 10−5 1.047 × 10−5 −1.154 2.5 × 10−1
κ(4)1943 −1.929 × 10−5 1.016 × 10−5 −1.898 5.8 × 10−2 .
κ(4)1944 −3.770 × 10−6 1.006 × 10−5 −3.750 × 10−1 7.1 × 10−1
κ(4)1945 −3.035 × 10−5 9.692 × 10−6 −3.131 1.7 × 10−3 **
κ(4)1946 −2.626 × 10−5 9.604 × 10−6 −2.734 6.3 × 10−3 **
κ(4)1947 −1.579 × 10−5 9.731 × 10−6 −1.622 1.0 × 10−1
κ(4)1948 −1.386 × 10−5 9.658 × 10−6 −1.435 1.5 × 10−1
κ(4)1949 −1.831 × 10−5 9.595 × 10−6 −1.909 5.6 × 10−2 .
κ(4)1950 −1.578 × 10−5 9.573 × 10−6 −1.649 9.9 × 10−2 .
κ(4)1951 −1.837 × 10−5 9.635 × 10−6 −1.907 5.7 × 10−2 .
κ(4)1952 −2.279 × 10−5 9.456 × 10−6 −2.411 1.6 × 10−2 *
κ(4)1953 −1.056 × 10−5 9.432 × 10−6 −1.120 2.6 × 10−1
κ(4)1954 −2.322 × 10−5 9.391 × 10−6 −2.472 1.3 × 10−2 *
κ(4)1955 −1.343 × 10−5 9.307 × 10−6 −1.443 1.5 × 10−1
κ(4)1956 −1.232 × 10−5 9.107 × 10−6 −1.353 1.8 × 10−1
κ(4)1957 −6.895 × 10−7 9.056 × 10−6 −7.600 × 10−2 9.4 × 10−1
κ(4)1958 −1.956 × 10−5 8.972 × 10−6 −2.180 2.9 × 10−2 *
κ(4)1959 −1.055 × 10−5 8.976 × 10−6 −1.176 2.4 × 10−1
κ(4)1960 −1.713 × 10−5 8.855 × 10−6 −1.935 5.3 × 10−2 .
κ(4)1961 −2.871 × 10−5 8.778 × 10−6 −3.271 1.1 × 10−3 **
κ(4)1962 −2.267 × 10−5 8.752 × 10−6 −2.591 9.6 × 10−3 **
κ(4)1963 −1.297 × 10−5 8.689 × 10−6 −1.492 1.4 × 10−1
κ(4)1964 −2.512 × 10−5 8.475 × 10−6 −2.964 3.0 × 10−3 **
κ(4)1965 −3.260 × 10−5 8.387 × 10−6 −3.888 1.0 × 10−4 ***
κ(4)1966 −1.953 × 10−5 8.382 × 10−6 −2.330 2.0 × 10−2 *
κ(4)1967 −3.221 × 10−5 8.185 × 10−6 −3.935 8.3 × 10−5 ***
κ(4)1968 −2.503 × 10−5 8.116 × 10−6 −3.083 2.0 × 10−3 **
κ(4)1969 −3.909 × 10−5 7.885 × 10−6 −4.958 7.1 × 10−7 ***
κ(4)1970 −3.035 × 10−5 7.868 × 10−6 −3.858 1.1 × 10−4 ***
κ(4)1971 −2.592 × 10−5 7.785 × 10−6 −3.329 8.7 × 10−4 ***
κ(4)1972 −1.185 × 10−5 7.652 × 10−6 −1.549 1.2 × 10−1
κ(4)1973 −2.182 × 10−5 7.539 × 10−6 −2.895 3.8 × 10−3 **
κ(4)1974 −1.764 × 10−5 7.441 × 10−6 −2.371 1.8 × 10−2 *
κ(4)1975 −2.430 × 10−5 7.270 × 10−6 −3.342 8.3 × 10−4 ***
κ(4)1976 −3.990 × 10−5 7.137 × 10−6 −5.591 2.3 × 10−8 ***
κ(4)1977 −4.346 × 10−5 7.121 × 10−6 −6.104 1.0 × 10−9 ***
κ(4)1978 −3.277 × 10−5 6.979 × 10−6 −4.696 2.7 × 10−6 ***
κ(4)1979 −3.017 × 10−5 6.892 × 10−6 −4.377 1.2 × 10−5 ***
κ(4)1980 −3.735 × 10−5 6.692 × 10−6 −5.581 2.4 × 10−8 ***
κ(4)1981 −4.075 × 10−5 6.570 × 10−6 −6.203 5.5 × 10−10 ***
κ(4)1982 −3.406 × 10−5 6.496 × 10−6 −5.243 1.6 × 10−7 ***
continued . . .
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Covariate Estimate Std. Error z value P(> ⋃︀z⋃︀) Signif. code
κ(4)1983 −2.808 × 10−5 6.478 × 10−6 −4.334 1.5 × 10−5 ***
κ(4)1984 −4.023 × 10−5 6.419 × 10−6 −6.267 3.7 × 10−10 ***
κ(4)1985 −2.946 × 10−5 6.334 × 10−6 −4.650 3.3 × 10−6 ***
κ(4)1986 −4.019 × 10−5 6.274 × 10−6 −6.407 1.5 × 10−10 ***
κ(4)1987 −3.727 × 10−5 6.222 × 10−6 −5.990 2.1 × 10−9 ***
κ(4)1988 −1.830 × 10−5 6.238 × 10−6 −2.934 3.3 × 10−3 **
κ(4)1989 −2.980 × 10−5 6.260 × 10−6 −4.761 1.9 × 10−6 ***
κ(4)1990 −2.746 × 10−5 6.172 × 10−6 −4.450 8.6 × 10−6 ***
κ(4)1991 −2.932 × 10−5 6.100 × 10−6 −4.806 1.5 × 10−6 ***
κ(4)1992 −2.608 × 10−5 6.055 × 10−6 −4.307 1.7 × 10−5 ***
κ(4)1993 −2.383 × 10−5 6.064 × 10−6 −3.929 8.5 × 10−5 ***
κ(4)1994 −4.012 × 10−5 6.032 × 10−6 −6.651 2.9 × 10−11 ***
κ(4)1995 −3.931 × 10−5 5.930 × 10−6 −6.630 3.4 × 10−11 ***
κ(4)1996 −2.060 × 10−5 5.977 × 10−6 −3.447 5.7 × 10−4 ***
κ(4)1997 −1.924 × 10−5 5.955 × 10−6 −3.230 1.2 × 10−3 **
κ(4)1998 −3.368 × 10−5 5.827 × 10−6 −5.780 7.5 × 10−9 ***
κ(4)1999 −3.238 × 10−5 5.798 × 10−6 −5.584 2.3 × 10−8 ***
κ(4)2000 −3.928 × 10−5 5.725 × 10−6 −6.861 6.8 × 10−12 ***
κ(4)2001 −3.305 × 10−5 5.714 × 10−6 −5.784 7.3 × 10−9 ***
κ(4)2002 −3.282 × 10−5 5.659 × 10−6 −5.799 6.7 × 10−9 ***
κ(4)2003 −2.683 × 10−5 5.628 × 10−6 −4.768 1.9 × 10−6 ***
κ(4)2004 −3.648 × 10−5 5.514 × 10−6 −6.616 3.7 × 10−11 ***
κ(4)2005 −3.455 × 10−5 5.437 × 10−6 −6.355 2.1 × 10−10 ***
κ(4)2006 −3.086 × 10−5 5.425 × 10−6 −5.688 1.3 × 10−8 ***
κ(4)2007 −2.799 × 10−5 5.385 × 10−6 −5.198 2.0 × 10−7 ***
κ(4)2008 −3.700 × 10−5 5.374 × 10−6 −6.886 5.7 × 10−12 ***
κ(4)2009 −2.720 × 10−5 5.356 × 10−6 −5.078 3.8 × 10−7 ***
κ(4)2010 −3.449 × 10−5 5.289 × 10−6 −6.521 7.0 × 10−11 ***
κ(4)2011 −3.144 × 10−5 5.334 × 10−6 −5.895 3.8 × 10−9 ***
κ(4)2012 −1.833 × 10−5 5.346 × 10−6 −3.428 6.1 × 10−4 ***
κ(4)2013 −1.380 × 10−5 5.348 × 10−6 −2.580 9.9 × 10−3 **
κ(4)2014 −1.983 × 10−5 5.313 × 10−6 −3.732 1.9 × 10−4 ***
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