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Abstract

This thesis comprises a numerical study of high-order harmonic generation (HHG) in the
hydrogen molecule H2 and its heavier isotope D2. HHG refers to the emission of high-frequency
radiation by an atom or molecule when it is subject to a strong laser field. It can be explained
as a series of three steps: ionization, continuum travel of the freed electron and recombination
of the electron with the parent ion, releasing its acquired energy as a high-energy photon.
Our central focus lies on how the harmonic signal strength differs between the isotopologues,
quantified by the ratio of the emitted harmonic intensities (harmonic ratio). The molecular
analogue of the Lewenstein model predicts a dependence of the dipole moment, and consequently
the harmonic intensity, on the vibrational autocorrelation function. This function measures the
overlap of the vibrational ground state of the neutral molecule and the time-dependent state
evolving on the Born-Oppenheimer potential energy curve of the ion while the electron is in
the continuum. The duration of the time evolution is determined by the time of ionization and
recombination of the participating electron. The heavier nuclear mass of D2 leads to a slower
vibration than in H2, which affects the time dependence of the autocorrelation and ultimately
the intensity of the harmonic radiation. The analytical expression of the HHG dipole moment
is typically simplified with the help of the saddle-point approximation, which leads to the
peculiar result of complex-valued electron ionization and recombination times. We study the
autocorrelation and in particular the ratio of autocorrelations of D2/H2 in the context of these
complex times. We do so separately for the short and long trajectories, which are two distinct
kinds of trajectories the electron follows during its continuum journey. The study consists
of two parts. The first is purely theoretical where we compare autocorrelation ratios with
harmonic ratios acquired by numerical solution of the time-dependent Schrödinger equation.
The second consists of a comparison of the theoretical results with harmonic ratios determined
by experiment. The theoretical comparison in the first part is done for two orientations of the
molecular axis relative to the linearly polarized electric field of the driving laser pulse, parallel
and perpendicular. Moreover, we employ two models of the autocorrelation function in the
comparison. One uses real-valued times originating from the semiclassical three-step model and
an LCAO-approximated dipole-transition matrix element. The other makes use of the complex-
valued saddle-point times and an exact transition matrix element, calculated numerically via
exact scattering states of the model potentials. The comparison with the experiment involves
the study of the Stark effect as well as molecular alignment distributions. Additionally, also
the PACER method (Probing Attosecond dynamics by Chirp-Encoded Recollision) is employed.
That is, the molecular vibrational motion is reconstructed from the experimental observables
on an attosecond time scale. Finally, the comparison between theory and experiment is carried
out for the ammonia molecule NH3 and its heavier counterpart ND3 as well.
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Zusammenfassung

Diese Arbeit umfasst eine numerische Studie der Erzeugung hoher Harmonischer (HHG) im
Wasserstoffmolekül H2 und dem schwereren Isotop D2. HHG bezeichnet die Emission von
hochfrequenter Strahlung durch ein Atom oder Molekül welches einem starken Laserfeld
ausgesetzt ist. Es kann als ein dreistufiger Prozess verstanden werden: Ionisation, Bewegung des
befreiten Elektrons im Kontinuum und Rekombination des Elektrons mit dem entstandenen Ion,
wobei die erlangte Energie des Elektrons in Form eines hochenergetischen Photons freigesetzt
wird. Das Ziel ist die Untersuchung der unterschiedlich starken harmonischen Signale der
beiden Isotope, was durch das Verhältnis der Intensitäten der Harmonischen ausgedrückt
werden kann (harmonisches Verhältnis). Das molekulare Analog des Lewenstein-Modells sagt
eine Abhängigkeit des Dipolmoments, und somit der Intensität der Harmonischen, von der
Vibrations-Autokorrelationsfunktion voraus. Diese Funktion misst den Überlapp zwischen dem
Vibrationsgrundzustand des neutralen Moleküls und dem zeitabhängigen Zustand entwickelt auf
der Born-Oppenheimer Potentialkurve des Ions während das Elektron im Kontinuum ist. Die
Dauer der Zeitentwicklung ist durch die Ionisations- und Rekombinationszeit des teilnehmenden
Elektrons bestimmt. Die schwerere Kernmasse von D2 führt zu einer langsameren Vibration
als in H2, was die Zeitentwicklung der Autokorrelation und letztendlich die Intensität der
harmonischen Strahlung beeinflusst. Der analytische Ausdruck des HHG-Dipolmoments wird
üblicherweise durch die Sattelpunktsnäherung vereinfacht, welches komplexwertige Ionisations-
und Rekombinationszeiten des Elektrons zur Folge hat. Wir untersuchen die Autokorrelation und
insbesondere das Verhältnis der Autokorrelationen von D2 und H2 hinsichtlich dieser komplexen
Zeiten. Wir unterscheiden dabei explizit zwischen den kurzen und langen Trajektorien, welches
zwei unterschiedliche Typen von Trajektorien sind, denen das Elektron im Kontinuum folgt.
Unsere Studie besteht aus zwei Teilen. Der erste Teil ist eine rein theoretische Betrachtung, bei
der wir Autokorrelationsverhältnisse mit harmonischen Verhältnissen aus numerischen Lösungen
der zeitabhängigen Schrödingergleichung vergleichen. Der zweite Teil ist ein Vergleich der
theoretischen Ergebnisse mit experimentellen harmonischen Verhältnissen. Der theoretische
Vergleich im ersten Teil wird für zwei Orientierungen der Molekülachse zu dem linear polarisierten
elektrischen Feld des Lasers durchgeführt, parallel und senkrecht. Darüber hinaus betrachten wir
in dem Vergleich zwei Modelle der Autokorrelationsfunktion. Eines verwendet die reellwertigen
Zeiten aus dem semiklassischen Drei-Stufen-Modell und ein Dipolübergangselement in LCAO-
Näherung. Das andere benutzt die komplexwertigen Sattelpunktszeiten und ein exaktes
Übergangselement, welches numerisch exakte Streulösungen der Modellpotentiale verwendet.
Der Vergleich mit dem Experiment beinhaltet eine Studie des Stark-Effekts und molekularer
Ausrichtungsverteilungen. Zusätzlich kommt auch die PACER-Methode zum Einsatz. Dies
bedeutet, dass die Vibrationsbewegung des Molekülions aus den experimentellen Observablen
auf der Attosekundenskala rekonstruiert wird. Der Vergleich zwischen Theorie und Experiment
wird auch für das Ammoniakmolekül NH3 und dem schwereren Gegenstück ND3 durchgeführt.
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Atomic Units Unless stated otherwise, all quantities in this work are given in atomic units [1].
Specifically, the following physical constants are set to unity

Reduced Planck constant ~
Electron mass me

Elementary charge e

Coulomb constant 4πε0

Accordingly, the atomic units of length, time and energy are given by

Quantity Expression Approximate value

Length
4πε0~2

me2
5.29 · 10−11 m (1 bohr)

Time
16π2ε2

0~3

me4
2.42 · 10−17 s (24.2 as)

Energy
e2

4πε0a0
4.36 · 10−18 J (27.2 eV)

where a0 is the bohr radius, which is equal to the atomic unit of length in the first row. The
notation “a.u.” is omitted in the following.

Abbreviations

ADK Ammosov-Delone-Krainov
BO Born-Oppenheimer
CM Center Of Mass
FC Franck-Condon
FT Fourier Transform
FWHM Full Width at Half Maximum
HHG High-Harmonic Generation
HO Harmonic Order
LCAO Linear Combination of Atomic Orbitals
LER Low-Energy Region
PACER Probing Attosecond dynamics by Chirp-Encoded Recollision
PT Perturbation Theory
SAE Single Active Electron
SFA Strong-Field Approximation
SM Simple Man’s
SPA Saddle-Point Approximation
STFT Short-Time Fourier Transform
TDSE Time-Dependent Schrödinger Equation
WKB Wentzel–Kramers–Brillouin
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1. Introduction

The main topic of this thesis is the strong-field phenomenon of high-order harmonic generation
(HHG) in the H2 molecule. This chapter serves as a first introduction to the concepts of
strong-field physics relevant for the treatment of HHG. In particular, section 1.1 presents the
relevant theoretical landmarks that led to the studies presented in this work. Section 1.2
explains the purposes of the chapters.

1.1. Motivation

When a sufficiently intense laser pulse interacts with matter, specifically individual atoms
or molecules (henceforth collectively just denoted as targets), a nonlinear response can be
the consequence [2]. Nonlinearity in this context means a nonlinear electric field strength
dependence of the induced polarization, a measure of how the electronic charge distribution
around the atomic core is modified by the field. The physical mechanism behind this nonlinear
response depends on the regime of laser parameters. There are two regimes that are commonly
distinguished, the perturbative regime and the strong-field regime. In the former, the electric
fields are still weak enough such that the interaction can be described using perturbation theory.
Examples of phenomena that belong to this regime are, for example, single-photon ionization
and low-order harmonic generation [3, 4].

In the strong-field regime, the field strengths are comparable to or even greater than the inner-
atomic Coulomb fields experienced by the bound electrons and it can no longer be considered a
small perturbation of the field-free system. The advent of laser pulses with correspondingly high
intensities, in excess of 1013 W/cm2, have made the strong-field regime experimentally accessible
and have effectively opened up the research field of strong-field physics. Today they are the
standard tool of physicists working in this field. The creation of ultrashort pulses, consisting of
only a few cycles, as well as tailoring of their specific shape, have become increasingly possible in
the last two decades, facilitating fine-grained control over experimental laser conditions. Today,
pulse durations reach the sub-femtosecond timescale (1 femtosecond = 10−15 seconds) [5, 6].
Considering that the dynamics of electrons bound in an atom typically unfolds on the attosecond
timescale (1 attosecond = 10−18 seconds) means that manipulation of inner-atomic processes
comes into the reach of technology [7].

The advances in such laser technologies have led to the discovery of many strong-field phenomena.
The physical mechanism underlying most of these is the initial ionization of the target, commonly
termed strong-field ionization. Examples of such phenomena are, among others, multiphoton
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1. Introduction

ionization (MPI), which was first observed in 1965 [8–10], high-order above-threshold ionization
(ATI), discovered in 1979 [11–13], nonsequential double-ionization (NSDI) [14,15] and high-order
harmonic generation (HHG) [16–22]. In MPI, the electron absorbs multiple photons providing
enough energy to transition into the continuum. The number of absorbed photons can be higher
than the minimum number required to reach the continuum, which is the case of ATI. In NSDI
two electrons are removed, where the second ionization event is caused by inelastic scattering
of the first electron from the parent ion. HHG refers to the emission of radiation by the target
with frequencies many times higher than the frequency of the laser pulse that initiates the
process. Although it is nowadays commonly studied with gas targets as in the first reported
measurement in 1987/88 [17,18], it was discovered in solids in 1977 [16]. The power spectrum of
the emitted radiation features a plateau of approximately constant harmonic peaks at (usually)
odd multiples of the laser frequency, followed by a sharp cutoff, i.e. a sudden decrease in
intensity beyond a certain energy. HHG gives rise to very capable applications. The generated
high harmonics may serve as the source of coherent attosecond pulse trains [23] or even isolated
attosecond pulses [24], with frequencies up to the extreme ultraviolet and soft X-ray frequency
range [25,26]. Furthermore, HHG can be utilized as a spectroscopy tool to study the generating
target systems themselves, because rich structural and dynamical information is encoded in the
harmonic spectrum [27–30].

The development of a thorough understanding of these phenomena is the goal of theoretical
strong-field physics. As mentioned above, perturbation theory is generally not applicable in this
regime. In order to describe strong-field effects, the electric field of the laser is treated classically,
which is rooted in the fact that the field consists of a large number of photons and its interaction
with a target does only negligibly change the state of the light. The coupling between the field
and an electron is usually described in dipole approximation, i.e. it is assumed that the spatial
variation of the electric field is negligible compared to the size of the target. The most accurate
solution for such a system lies in numerically solving the time-dependent Schrödinger equation
(TDSE). Unfortunately, an exact treatment, with all relevant degrees of freedom, is practically
impossible for most targets. The reason for this is primarily the large number of spatial degrees
of freedom (and also their extent due to the potentially large spreading of the wave function in
the presence of intense fields). All but the simplest systems are of many-electron nature and
finding the exact solution is, even with today’s computing power, a formidable task. This is
especially relevant for molecules, which not only comprise a multitude of individual particles,
but also lack spherical symmetry. The only mitigation to this problem is the introduction of
approximations, the most prevalent of which is the single-active electron (SAE) approximation.
As the name suggests, this reduces the computational complexity by assuming that only a single
electron participates in the dynamics. It depends on the target system and the phenomenon
to be studied whether the SAE is a useful practice, because multielectron effects are trivially
absent. HHG and ATI are quite well describable as single-electron effects [31]. NSDI, however, is
not. Calculations with more than one active electron usually have to be done with severe limits
on the degrees of freedom, for example restricting two electrons to a single fixed direction. Such
approximations often go along with approximating the exact Coulomb potential by a soft-core
potential to avoid the singularity. This introduces an additional free parameter, the soft-core
parameter, which can be adjusted to match, for example, the system’s ground-state energy to
the real-world value. All things considered, it is necessary to find the right balance between a
TDSE model that is sophisticated enough to capture the physical phenomenon at hand and
suitable approximations that render the computational effort viable. It is often very helpful to

16



1.1. Motivation

have a rough understanding of the phenomenon beforehand in order to realize this. This is
especially important considering that the TDSE solution, once it has been acquired, has the
status of a “theoretical measurement”. By itself it does not further the physical understanding,
but needs to be interpreted in terms of intuitive models, similar to a real measurement made in
a laboratory.

A theoretical breakthrough in such an intuitive understanding of strong-field phenomena was
accomplished by the introduction of classical trajectories first by Corkum et al. in 1989 and
1993 [21,32] and also Gallagher in 1988 [33] in order to describe the continuum travel of the
electron after ionization. This model has become known as the three-step model, because its
description of the process can be divided into three distinct and consecutive steps. The first
is the ionization of the target due to removal of an electron. The second is the appearance
of the electron in the continuum with zero velocity and its subsequent motion as a charged
classical point particle in the electric field of the laser pulse only, i.e. the potential of the parent
ion is neglected. The third is the return of the electron to the parent ion, either elastically
scattering off the parent ion (ATI, see also [34, 35]), inelastically scattering off it (NSDI), or
recombining with it and releasing its energy as a high-energy photon (HHG). The classical
description of the continuum dynamics is naturally linked to the definition of ionzation and
recombination times that uniquely define a trajectory of the electron in the electric field. Two
important kinds of trajectories emerge in such a study, the so-called short and long trajectories.
For every harmonic energy up until the cutoff, there exists a unique short and long trajectory
that contributes to that specific energy in the overall signal. The excursion time and distance
to the parent ion of the short trajectories are smaller than for the long trajectories, giving
rise to their names. Furthermore, the short trajectories produce an up-chirp and the long
trajectories a down-chirp, meaning that the energy increases with excursion time for the short
and decreases for the long trajectories. Since this model uses quantum mechanical as well as
classical physics, it is often categorized as being semiclassical and due to its simplicity also
called the simple man’s model. Despite this simplicity, it quantitatively explains the position of
the high-harmonic cutoff with astonishing accuracy and proved very effective in the qualitative
understanding.

It did not take long until the next theoretical milestone in strong-field physics appeared in
1994 [22]. What is nowadays known as the Lewenstein model is the full quantum mechanical
counterpart of the three-step model. It is based on the strong-field approximation (SFA), whose
concepts actually date back to the 1960s work of Keldysh [36] and later works by Faisal [37]
and Reiss [38]. It shares a key assumption with the three-step model in that it neglects the
influence of the parent ion on the electron. In quantum mechanical terms, this is equivalent to
approximating the continuum states by plane waves, specifically Volkov states, which are the
exact analytical solutions of the TDSE for an electron that interacts only with a time-dependent
electric field. This, in turn, allows an analytical solution of the TDSE for the complete system,
i.e. an electron initially bound by the target and under the influence of the strong laser field. It
comes as no surprise that the Lewenstein model can be interpreted in terms of the quantum
mechanical analogues of the same three steps as in the three-step model.

SFA-based transition amplitudes or dipole moments generally appear as multidimensional
integrals over the electron momentum, the ionization time and also the recombination time,
and can be interpreted as path integrals. The evaluation of these integrals is not possible
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analytically and theoretical studies in terms of the SFA therefore usually go along with another
approximation, the saddle-point approximation [22]. By itself it is a purely mathematical tool
that can be applied if the integrand is a product of a rapidly varying complex exponential
and another slowly varying function. The idea is that the fast oscillations of the exponential
mostly cancel themselves out in the integration and the dominant contributions come from the
points where the exponent changes slowly, i.e. when its derivative vanishes. Applied to the
HHG dipole moment, this leads to a set of equations for the saddle points, i.e. a set of values
for the electron momentum, the ionization time and the recombination time, as a function
of harmonic energy. In analogy to the three-step model, these values define trajectories, the
saddle-point trajectories. In the context of path integrals they are the most relevant paths
that give rise to the overall signal. A peculiarity of the so-called saddle-point times is that
they are complex-valued, which is effectively caused by a nonzero ionization potential. This is
related to the fact that the mechanism of ionization in the SFA is tunnelling [39], which is a
purely quantum mechanical phenomenon with no classical analogue. The saddle-point times
also allow a separation into short and long trajectories. In the limit of vanishing ionization
potential, equivalent to a nonexistent tunnel barrier and therefore to the electron just appearing
in the continuum, they coincide with the classical times from the three-step model. Overall,
the SFA-based theoretical framework is the workhorse of today’s strong-field physics and an
indispensable tool in this field of research.

Despite its effectiveness, the SFA, by nature, cannot yield quantitatively accurate results in
cases where the influence of the parent ions potential is comparable to or greater than that
of the electric field of the laser. A typical example is a low-energy electron that moves in the
vicinity of the ion, e.g. in low-order ATI or in the generation of low-order harmonics in HHG.
Notable contributions to improve such a description were given by Smirnova et al. with the
development of the Eikonal-Volkov approximation (EVA) starting in 2006 [40–42]. In the EVA,
the laser field is included as usual, i.e. classically in dipole approximation, and the potential is
treated in eikonal approximation. An introduction into this topic can be found in [42]. This led
to more sophisticated theories such as the analytical R-matrix (ARM) theory by Torlina et al.
in 2012 [43–45].

The study of HHG in molecules increasingly shifted into the focus of strong-field physicists in
the beginning- to mid-1990s [46–48]. Due to the aforementioned complexity of molecular targets,
early theoretical studies concentrated on diatomic molecules and in particular the hydrogen
molecule H2 or its even simpler molecular ion H+

2 . The essential new degree of freedom is the
internuclear distance vector, which specifies the distance between the nuclei and the orientation
of the molecular axis with respect to the electric field vector of the driving laser. A common
approximation in TDSE calculations in this context is fixing the positions of the nuclei in space,
sometimes also called the frozen-nuclei approximation. This is closely related to the famous
Born-Oppenheimer (BO) approximation that relies on the fact that the mass of an atomic
nucleus is generally much larger than the mass of an electron and the nuclear motion therefore
happens on a significantly slower timescale. Properties of HHG specific to molecules include the
more efficient production of high harmonics due to charge resonance [47, 48], extended plateaus
in the harmonic spectrum due to the electron recombining at a different nucleus than it ionized
from [49] as well as due to two-electron interactions [50], the generation of even harmonics [51],
and intramolecular interference structures in the harmonic spectrum [29, 52, 53]. The latter,
for example, leads to a pronounced minimum (or maximum) in the harmonic spectrum, also
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1.1. Motivation

denoted as the two-center interference minimum.

An important contribution to the analytical treatment of molecular HHG was done by Lein in
2005 [54] with a modified version of the Lewenstein model for molecules, on the basis of H2.
The resulting dipole moment is fundamentally the same as for the atomic case, the difference
being the appearance of the vibrational autocorrelation function. This function measures the
overlap between the initial vibrational state of the neutral molecule, i.e. the ground state in
the neutral BO potential energy curve, and the same state evolved on the BO potential energy
curve of the ion. The timespan of the evolution is given by the excursion time of the electron
in the continuum, i.e. the difference between the recombination and the ionization time. The
overlap initially decreases and typically shows an oscillatory behaviour for sufficiently long
excursion times, corresponding to a vibration of the nuclei in the ion, which leaves a direct
signature in the molecular dipole moment [55]. In particular, the ratio of harmonic spectra for
different isotopes is primarily given by the ratio of the corresponding autocorrelations functions.
The original publication [54] already exploited this property in order to extract the nuclear
motion in the ion, a procedure nowadays commonly referred to as PACER (Probing Attosecond
dynamics by Chirp-Encoded Recollision) [28]. It uses a fundamental characteristic of HHG,
namely the mapping between a harmonic energy and the corresponding excursion time of a
trajectory. This is equivalent to a pump-probe scheme [30], where the ionization corresponds to
the pump, the continuum travel to a delay, and the recombination to the probe. The chirped
nature of the trajectories means that a whole interval of pump-probe time delays is contained
within a single HHG process. The time range and resolution depend on the laser parameters.

The autocorrelation picture has since been also applied to more complex molecules such as
methane [28], water [56] and ammonia [57–59]. A common practice in such studies is the use
of the classical times that originate from the three-step model, and the exclusion of the long
trajectories. The classical times are convenient to work with because they are easily acquired
numerically and the three-step model is often sufficiently accurate. However, the Lewenstein
model gives rise to complex saddle-point times, which raises the question whether they provide
an even better description of HHG in terms of the autocorrelation. Already in the seminal
publication [54] it was noted that the autocorrelation ratio matches the experimental data only
for a modified BO potential. Is the complex-valued nature of the saddle-point times the missing
piece? In order to assess this, we extend the studies of the autocorrelation function in two ways.
First, we use the full complex solutions for the saddle-point times in the time-evolution. Second,
we include both the short and the long trajectories and consider them separately. The principal
quantity in our studies is the harmonic ratio for the two hydrogen molecular isotopes D2 and H2,
i.e. the ratio of harmonic intensities emitted by these isotopes when they undergo HHG. This
quantity is approximated by the modulus-squared ratio of the corresponding autocorrelations
and we test the agreement in two ways. First, we compare autocorrelation ratios with harmonic
ratios from numerical solutions of the TDSE. Second, we compare them with harmonic ratios
determined by experiment. The models used in the TDSE calculations are two-dimensional, one
dimension for the electron and the other for the internuclear distance. We therefore employ the
single-active electron approximation but not the frozen-nuclei approximation. The inclusion of
the nuclear degree of freedom is crucial for a meaningful comparison with the autocorrelation,
otherwise any effects originating from different nuclear masses, i.e. different isotopes, would be
absent. For the experimental comparison, the data was kindly shared with us by the group of
Pengfei Lan from the Huazhong University of Science and Technology in Wuhan, China [59].
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1. Introduction

1.2. Outline

This thesis is organized in 9 chapters, this introduction being the first. The second chapter
explains the theory of HHG and lays the theoretical foundation for the rest of the thesis. In
this regard, section 2.1 presents the three-step model and the resulting classical times. The
Lewenstein model is the subject of section 2.2, where we derive in detail the expression for the
molecular HHG dipole moment of H2 from first principles, based on the condensed derivation
given in [54]. This derivation shows the origin and relevance of the vibrational autocorrelation
function. Application of the saddle-point approximation yields the saddle-point times, which
are studied in section 2.2.4.

The basic properties of the vibrational autocorrelation function itself are detailed in chapter 3.
In particular, we present the differences between the classical and saddle-point times.

The fourth chapter presents two two-dimensional quantum-mechanical models of the H2 molecule,
one for parallel and one for perpendicular orientation. One dimension is for the electron, the
other for the internuclear distance, describing the motion of the nuclei relative to one another
(nuclear vibration). We exclusively consider linearly polarized light and the direction of motion
of the electron coincides with the polarization direction of the electric field. These models serve
two purposes. On the one hand we use them for numerical solutions of the TDSE, from which
we can extract harmonic ratios. These ratios can then be compared to autocorrelation ratios.
On the other hand they are the basis for the calculation of the dipole-transition matrix element
that directly enters the autocorrelation. This matrix element requires the knowledge of the
electronic ground state for a range of internuclear distances as well as continuum states for a
range of electron momenta. It is calculated for both orientations and for two types of continuum
states, plane waves and exact states. The plane-wave case follows from the SFA. The exact
states are exact numerical scattering solutions of the electron-nuclear interaction potentials.

Chapter 5 is dedicated to the comparison between TDSE ratios and autocorrelation ratios. It
presents the procedure of how we extract the harmonic ratios, for both the short and the long
trajectories, from the TDSE solution, and presents the results of the comparison.

The chapters 6, 7 and 8 belong together and deal with the comparison of autocorrelation ratios
against the experiment. The comparison itself is done in chapter 8. In the interpretation of
the results, several questions arise concerning the influence of molecular alignment and the
Stark effect on the harmonic ratios. These two effects are therefore studied beforehand in
H2, separately in chapters 6 and 7, which present the basic theory and the relevant numerical
results that are later needed in chapter 8. The experiment was also performed for ammonia,
NH3, and chapter 8 presents a model and numerical results of autocorrelation ratios for this
molecule as well.
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2. High-Harmonic Generation

This chapter serves as an introduction to the strong-field phenomenon of high-order harmonic
generation (HHG). The goal is to introduce the reader to the theoretical background that is
necessary for the study of harmonic ratios, which is the main subject of this thesis. We are
concerned with the single-atom or single-molecule response only and do not consider propagation
effects that enter the picture when ensembles of systems are studied.

When an atomic or molecule is subject to a sufficiently strong laser field, radiation with
frequencies many times higher than the fundamental laser frequency ω0 can be observed. The
physical mechanism behind this can be understood in terms of the three-step model [21]. In
short, it consists of ionization of an electron from the target system, its subsequent continuum
travel in the oscillating electric field of the laser, and its recombination once the field has
changed sign, which opens the possibility for the electron to be driven back to the parent ion.

Between ionization and recombination, the electron follows trajectories that are characterized by
their ionization and recombination times. These times are defined relative to the field maximum
of the sinusoidal time-dependence of the electric field. The trajectories can be classified into
distinct types, the most important of which are the short trajectories and the long trajectories.
Considering these two, the whole harmonic generation process takes place within a single cycle
of the driving field. The designations “short” and “long” refer to the duration of the electron
continuum travel, i.e. the difference between the recombination and ionization time. The long
trajectories start before the short ones and end after them. A more detailed description of the
three-step model and these trajectories will be given below.

A typical power spectrum of the emitted radiation is shown in Figure 2.1. It consists of a
plateau where the intensity of the harmonics stays approximately constant, followed by a sharp
decline in intensity known as the cutoff. Closer inspection shows, given the driving field persists
for sufficiently many cycles, that the intensity is concentrated at frequencies that are integer
multiples of ω0, i.e. there are proper harmonics. This is a consequence of the process repeating
identically every laser cycle, which leads to the Fourier spectrum having peaks at said integer
multiples of ω0 [30].

Furthermore, since the maxima of the driving field occur twice per optical cycle with alternating
sign, the process is actually repeated every half-cycle (given that the initial state is not
significantly depleted), but with a different sign of the induced dipole moment. If the target
system possesses inversion symmetry, this repetition every half-cycle leads to there being only
odd integer multiples of ω0. This again can be seen through a Fourier analysis. Such an
inversion symmetry is naturally given in atoms, because of the spherical symmetry, and also
in homonuclear molecules. The hydrogen molecule, which is the system that we are primarily
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2. High-Harmonic Generation

concerned with in this work, therefore only exhibits odd harmonics. If the inversion symmetry
is broken, the process results in even-order harmonics, as was for example studied in [51].

In the next section we will outline the three-step model as it was first used in the context of
HHG by Corkum [21], followed a full quantum-mechanical treatment [22,54].

2.1. Three-step model

The semiclassical three-step model, as it was first introduced to strong-field physics by Corkum,
combines aspects of quantum-mechanical and classical physics to describe the emission of the
high-harmonic radiation. In the original paper [21], the model is not only used to describe
HHG, but also ATI and NSDI. We will concentrate on the HHG part in this work and recount
the relevant concepts. Let the laser be linearly polarized and its electric field strength given
by E(t) = E0 cos(ω0t). Additionally, let the target atom or molecule be located at the origin,
x = 0.

2.1.1. First step: ionization

The first step in the process is the ionization of an electron from the target system. In strong-
field ionization, two ionization regimes are commonly distinguished, quantified by the Keldysh
parameter [36]

γ =
ω0

√
2Ip

E0
,

with ionization potential Ip. One limiting case, γ � 1 (ω0 large, E0 small), is identified with
multiphoton ionization (MPI), also known as the vertical ionization channel [39] and can be
understood as the simultaneous absorption of multiple photons by the electron, giving it enough
energy to transition into the continuum (a “vertical climb” up in energy). The other limiting
case, γ � 1 (ω0 small, E0 large), is the regime of tunnelling ionization. The high electric field
strength bends down the inner-atomic potential significantly (see the illustration in the left
panel of Figure 2.2), thereby creating a finite potential barrier. Due to its slow oscillation, the
barrier persists long enough for the electron to have a significant probability to tunnel out. In
contrast to MPI, it is also called the horizontal ionization channel, motivated by the picture
that part of the bound electrons wave function leaks out horizontally into the continuum. Both
channels coexist but are of varying relevance depending on the value of γ [39].

Ionization in HHG usually falls into the tunnelling regime. The ionization rate ΓADK(Ip, E(t))
is then given by [30,60]

ΓADK(Ip, E) = Γ0(Ip, E) exp

(
−2(2Ip)3/2

3|E|

)
. (2.1)
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Figure 2.1.: Harmonic spectrum as it results from HHG, calculated with the perpendicular model of H2 (see
chapter 4), for a wavelength of 1200 nm and an intensity of 1 · 1014 W/cm2. The pulse consists of six cycles
with two-cycle ramps in the beginning and end. Due to the multiple full laser cycles, the harmonic peaks
are clearly visible. Shorter pulses generally imprint the laser frequency less clearly on the spectrum. The
peaks are located at odd integer multiples of the fundamental laser frequency ω0. The classical cutoff law
(2.9) predicts the cutoff to be at ωc ≈ 2.17 (harmonic order 57), which agrees well with the plot.

It depends sensitively on the ionization potential Ip and the instantaneous electric field strength
E(t), due to the exponential function. The prefactor Γ0 contains the contributions specific to
the bound state of the system. The right panel in Figure 2.2 shows a plot of this rate for one
cycle of the electric field for a specific set of laser parameters. It becomes apparent that there
are temporarily localized bursts of ionization happening close to the maximum of the electric
field.

2.1.2. Second step: classical dynamics in the continuum

Once the electron is liberated into the continuum, the probability of which can be obtained
from ΓADK, it is in the second step treated as a classical point particle whose trajectory x(t) is
dictated by Newton’s equation of motion

ẍ(t) = −E0 cos(ω0t). (2.2)

The initial position and velocity, at t = t0, are set to zero

x(t0) = 0 (2.3)

ẋ(t0) = 0 (2.4)

i.e. the electron appears at time of ionization t0 with zero velocity at the origin, which is
assumed to be the position of the parent ion. The subsequent motion can be easily determined

23



2. High-Harmonic Generation

−Ip

Field-free potential

Instantaneous
tunnel barrier

0 50 100 150

t

0.0

0.2

0.4

0.6

0.8

Γ
A

D
K

(I
p
,E

(t
))
/Γ

0
(I

p
,E

(t
))

×10−7

−0.04

−0.02

0.00

0.02

0.04

E
(t

)

Figure 2.2.: Left: Illustration of the instantaneous tunnel barrier that is formed when an external electric
field distorts the Coulomb potential of an atom. Right: ADK tunneling ionization rate for a single cycle of
the electric field E(t) = E0 cos(ω0t), for the same wavelength and intensity as in Figure 2.1. The ionization
potential is that of H2 and the prefactor is set to one, Γ0 = 1. Ionization is dominant close to the maxima of
the electric field, which occur twice during one optical cycle.

by integration of equation (2.2) from t0 to t

ẋ(t, t0) = −E0

ω0

[
sin(ω0t)− sin(ω0t0)

]
(2.5)

x(t, t0) =
E0

ω2
0

[
cos(ω0t)− cos(ω0t0)

]
+
E0

ω0
sin(ω0t0)(t− t0). (2.6)

We see that in addition to the oscillatory motion, the electron acquires a drift momentum
(E0/ω0) sin(ω0t0) that depends on the electric field phase ω0t0 at the time of ionization. This
magnitude of this drift may be large enough such that the linear motion associated with it
prevents the electron from returning to the parent. It turns out that the trajectories that start
in a quarter cycle following a field maximum do eventually return to x = 0. The electron is
then assumed to recombine with the parent ion, which constitutes the third and last step.

2.1.3. Third step: recombination

The recombination time tr of a returning trajectory is defined as

x(tr, t0) = 0. (2.7)

The kinetic energy of the electron at that instant then determines the energy of the emitted
radiation ω

ω = Ip +
ẋ(tr, t0)2

2
, (2.8)
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Figure 2.3.: Relation between the ionization time t0, the recombinations time tr and the harmonic energy ω
according to the semiclassical three-step model. The electric field profile is shown as a low-contrast curve. The
wavelength is 800 nm and the intensity is 4 · 1014 W/cm2. The short (dashed lines) and long trajectories (solid
lines) start in the first quarter cycle after a field maximum and recombine during the remaining three-quarters.
A single trajectory, starting at tc0, gives rise to the highest harmonic energy and marks the boundary between
short and long trajectories.

which follows from the conservation of energy. Figure 2.3 shows the ionization and recombination
times, together with the corresponding harmonic energies. Only the trajectories that start in
the first quarter cycle, 0 ≤ t0 ≤ T/4, are depicted. The ones starting after the second field
maximum, T/2 ≤ t0 ≤ 3T/4, are not shown.

Ones sees that the recombination times span the whole remaining three-quarter cycle after
ionization. The highest possible return energy turns out to be

max

{
ẋ(tr, t0)2

2
: 0 ≤ t0 ≤ T/2

}
≈ 3.17Up

with the ponderomotive potential, defined as the mean kinetic energy of the electron

Up =
1

T

∫ T

0
dt
ẋ(t, t0)2

2

∣∣∣∣
t0=0

=
E2

0

4ω2
0

.

This defines the semiclassical cutoff law of HHG, i.e. the highest possible photon energy

ωc = Ip + 3.17Up. (2.9)

Only one trajectory reaches this maximum energy. Its time of ionization is tc0 ≈ 0.05T after the
field maximum, or ω0t

c
0 ≈ π/10. This instant divides the trajectories into two types, which are

called the short trajectories and long trajectories. The long trajectories start before tc0 and the
short trajectories after tc0. For every harmonic energy ω with Ip ≤ ω < ωc, there is a short and
a long trajectory that contributes to that ω.

Figure 2.4 shows the harmonic energy plotted over the excursion time τ = tr− t0 of the electron,
including also the “very long trajectories”, i.e. trajectories that return to the origin multiple
times with excursion times beyond one optical cycle. Note that all of these trajectories are
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Figure 2.4.: Harmonic energy ω and maximum excursion distance xmax plotted over the excursion time
τ = tr − t0, for trajectories starting in the first quarter cycle after the field maximum. The wavelength
is 800 nm and the wavelength is 4 · 1014 W/cm2. The short and long trajectories corresponds to the first of
multiple returns to the origin. Later returns have excursion times τ beyond one optical cycle. The maximum
excursion distance xmax(tr, t0) is the largest distance to the origin a trajectory, starting at t0 and recombining
at tr, experiences during the journey. It is a monotonically increasing function of τ for the short and long
trajectories, with a maximum value of 2E0/ω0 (≈ 65.8 for the present laser parameters).

launched within a quarter cycle following the maximum of the laser field. Physically these are
equivalent to short and long trajectories that do not recombine on the first return. They do
not reach the cutoff energy, this is only possible on said first return.

Also shown in Figure 2.4 is the maximum excursion distance, xmax(tr, t0). It is largest distance
to the origin that a trajectory with ionization time t0 and recombination time tr experienced
during the excursion. We see that the long trajectories not only have a larger τ , but also a
larger excursion distance to the parent ion. In fact, the curve for xmax(tr, t0) is monotonically
increasing with τ for the short and long trajectories. The largest possible distance for any
returning trajectory is

max{xmax(tr, t0) : 0 ≤ t0 ≤ T/2} =
2E0

ω2
0

.

Another characteristic that differs between the short and long trajectories is the change of
frequency of the emitted radiation over time. In Figure 2.3 we see that the harmonic energy ω
increases with the recombination time tr for the short trajectories. In contrast, ω decreases
with tr for the long trajectories. This means that the short trajectories give rise to an up-chirp,
while the long trajectories exhibit a down-chirp in the emitted radiation.

In the case of a single atom (in particular without phase matching effects relevant in experiments)
the contributions of the long trajectories to the harmonic signal are usually larger than those of
the short trajectories. The reason for this is the large ionization rate ΓADK (see Figure 2.2) close
to the maximum of the driving field where the long trajectories start, compared to the time
frame where the short trajectories start. The exponential dependence of ΓADK on the electric
field strength has a significant influence in this respect. The larger ionization probability of the
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2.2. Strong-field approximation

long trajectories is counteracted by the increased wave packet spreading of the electron that
is caused by the longer time it spends in the continuum, which decreases the recombination
probability. These two effects, however, do not compensate and the long trajectories still give
the larger contribution [61]. The situation is different for molecules, where the magnitude of the
harmonic signal depends also on the vibrational autocorrelation function, which may suppress
the contributions of the long trajectories below that of the short trajectories, see section 2.2.1
and chapter 3.

To arrive at the power spectrum, one needs to evaluate the expectation value of the dipole
moment operator, 〈ψ|r|ψ〉, where the state |ψ〉 = |ψg〉 + |ψc〉 is commonly assumed to be a
superposition of the initial bound state, usually the ground state |ψg〉, and a continuum state
|ψc〉 of the electron, which is a superposition of plane waves. This implies that no excited states
are populated, a common assumption in HHG. The original work of the three-step model given
in [21] also takes this approach, outlined in the following.

In [21] the depletion of |ψg〉 is neglected, which is another common assumption in the study of
HHG. It not only simplifies the calculations because the ground state population is approximately
constant, it also implies that the contributions of every half cycle are approximately equal
(except for a change in sign of the dipole moment). The continuum state, |ψc〉, is constructed
in an ad hoc manner. It is, as mentioned above, a superposition of plane waves that includes
contributions from the short and long trajectories, added incoherently, for every harmonic
order. Continuum-continuum transitions, 〈ψc|r|ψc〉, are neglected, since the transition from
the continuum to the initial ground state is the principal mechanism behind the harmonic
generation process. To account for the different ionization probabilities of the trajectories, the
individual plane waves are weighted by means of a position- and time-dependent normalization
function, which acts as a wave-packet envelope. It is determined via ΓADK and the classical
trajectories (2.5) and (2.6). The harmonic spectrum is reproduced well by this approach.

2.2. Strong-field approximation

The semiclassical three-step model presented in section 2.1 works well when studying the
qualitative features of HHG. For a more detailed understanding, however, a full quantum
mechanical treatment is necessary. Such a theory, on the basis of the strong-field approximation,
was presented for atoms [22] shortly after the advent of three-step model and has become known
as the Lewenstein model.

The theory was extended to diatomic molecules in [54] by studying the H2 molecule, which
revealed that the harmonic intensity depends von the vibrational dynamics in the ion via the
vibrational autocorrelation function. This function measures the overlap between the initial
vibrational wave packet in the ion, that is created by the ionization of an electron, and its
time-evolved counterpart. It implies a dependence on the nuclear mass and therefore the isotope
of a given molecular species. The next section presents this theory in detail, based on the
original publication [54].
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2. High-Harmonic Generation

2.2.1. Dipole moment

The goal is to solve the time-dependent Schrödinger equation (TDSE) for an H2 molecule driven
by a external laser, following the work made in [22,54]. Starting point is the Hamiltonian

H(r1, r2, R, t) = −∇
2
1

2
− ∇

2
2

2
− 1

M

∂2

∂R2
+ V (r1, r2, R) +E(t) · (r1 + r2)

where r1, r2 are the coordinates of the two electrons and ∇1, ∇2 the corresponding derivatives.
The internuclear distance is denoted by R and the electric field of the laser is given by E(t).
The potential V includes the Coulomb interactions of all particles

V = Vr1,r2 + VR + Vr1,p1 + Vr1,p2 + Vr2,p1 + Vr2,p2 .

Given the assumptions below, the TDSE

i
∂Ψ(r1, r2, R, t)

∂t
= HΨ(r1, r2, R, t)

can be solved with the ansatz

Ψ(r1, r2, R, t) = e−iE0t

(
Ψ0(r1, r2, R) +

∫
d3k

(2π)3
φ(k, R, t)

[
eik·r1ψ+

R(r2) + eik·r2ψ+
R(r1)

])

(2.10)

which consists of the Born-Oppenheimer (BO) ground state Ψ0(r1, r2, R) = χ0(R)ψR(r1, r2) of
the neutral molecule (with energy E0) and a superposition of BO states of the ion, where one
of the two electrons is in the continuum. ψ+

R is the electronic BO ground state of the bound
electron in H+

2 .

It is assumed that

• in the neutral molecule only the BO ground state Ψ0 is populated

• the ground state is not depleted by the interaction with the laser

• the ionized electron in the continuum does not interact with the remaining parent ion, i.e.
its wave function is approximated by a plane wave

• once an electron has been moved to the continuum, the other one does not interact with
the laser and remains in the ionic BO ground state

The left side of the TDSE yields

ieiE0t∂Ψ

∂t
= E0

(
. . .

)
+ i

∫
d3k

(2π)3

∂φ(k, R, t)

∂t

[
eik·r1ψ+

R(r2) + eik·r2ψ+
R(r1)

]

= E0Ψ0(r1, r2, R) + i

∫
d3k

(2π)3

(
−iE0φ(k, R, t) +

∂φ(k, R, t)

∂t

)
×

×
[
eik·r1ψ+

R(r2) + eik·r2ψ+
R(r1)

]
.
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2.2. Strong-field approximation

The right side gives

eiE0tHΨ = E0Ψ0(r1, r2, R) +E(t) · (r1 + r2)Ψ0(r1, r2, R)

+

∫
d3k

(2π)3
Hφ(k, R, t)

[
eik·r1ψ+

R(r2) + eik·r2ψ+
R(r1)

]
. (2.11)

Application of H to the first term under the integral gives

Hφ(k, R, t)eik·r1ψ+
R(r2) =φ(k, R, t)

k2

2
eik·r1ψ+

R(r2)
︸ ︷︷ ︸

−∇2
1/2

− 1

M

∂2

∂R2
φ(k, R, t)eik·r1ψ+

R(r2)

+ φ(k, R, t)eik·r1V +
BO(R)ψ+

R(r2)︸ ︷︷ ︸
−∇2

2/2+V (r1,r2,R)

+E(t) · r1φ(k, R, t)eik·r1ψ+
R(r2)︸ ︷︷ ︸

E(t)·(r1+r2)

=

[
k2

2
− 1

M

∂2

∂R2
+ V +

BO(R) +E(t) · r1

]
φ(k, R, t)eik·r1ψ+

R(r2).

The contributions of r1 in −∇
2
2

2 + V (r1, r2, R) and from r2 in E(t) · (r1 + r2) were neglected,
in accordance with the above assumptions.

The second term under the integral in equation (2.11) has an analogous expression with the
roles of r1 and r2 interchanged. The complete result of applying H to the ansatz takes the
form

eiE0tHΨ = E0Ψ0(r1, r2, R) +E(t) · (r1 + r2)Ψ0(r1, r2, R)

+

∫
d3k

(2π)3

([
k2

2
− 1

M

∂2

∂R2
+ V +

BO(R)

]
×

× φ(k, R, t)
[
eik·r1ψ+

R(r2) + eik·r2ψ+
R(r1)

]

+ φ(k, R, t)E(t) ·
[
r1e

ik·r1ψ+
R(r2) + r2e

ik·r2ψ+
R(r1)

])
.

In order to get an equation for the ionic vibrational wave packets φ(k, R, t) both sides of the
TDSE are projected onto the ionic BO states eik′·ψ+

R . Although the electronic BO ground
states ψ+

R and ψR are real the asterisk indicating the complex-conjugate is kept for clarity. The
term E0Ψ0(r1, r2, R) appears on both sides and can be dropped. For the left side then holds

ieiE0t∂Ψ

∂t
→ i

∫
d3k

(2π)3

(
−iE0φ(k, R, t) +

∂φ(k, R, t)

∂t

)
×

×
[

(2π)3δ(k − k′) +

∫
d3r1

∫
d3r2 e

−ik′·r1ψ+∗
R (r2)eik·r2ψ+

R(r1)

︸ ︷︷ ︸
≈0

]

where it was used that ψ+
R is normalized and

∫
d3r ei(k−k′)·r = (2π)3δ(k − k′). The double

integral over r1, r2 would be zero exactly if the exact continuum states were used instead of
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2. High-Harmonic Generation

plane waves because of orthogonality of the continuum states and ψ+
R . Setting it to zero here is

an approximation. Performing the integral over the δ-function simplifies the expression even
further

ieiE0t∂Ψ

∂t
→ E0φ(k′, R, t) + i

∂φ(k′, R, t)

∂t
.

Projection of the right side gives

eiE0tHΨ→ χ0(R)E(t) ·
∫

d3r1

∫
d3r2 e

−ik′·r1ψ+∗
R (r2)(r1 + r2)ψR(r1, r2)

+

∫
d3k

(2π)3

[
k2

2
− 1

M

∂2

∂R2
+ V +

BO(R)

]
φ(k, R, t)×

×
[

(2π)3δ(k − k′) +

∫
d3r1

∫
d3r2 e

−ik′·r1ψ+∗
R (r2)eik·r2ψ+

R(r1)

︸ ︷︷ ︸
≈0

]

+E(t) ·
∫

d3k

(2π)3
φ(k, R, t)

[∫
d3r1 r1e

i(k−k′)·r1

+

∫
d3r1

∫
d3r2 e

−ik′·r1ψ+∗
R (r2)r2e

ik·r2ψ+
R(r1)

︸ ︷︷ ︸
≈0

]
.

The two double integrals again vanish because of approximate orthogonality. Further simplifi-
cations yield

eiE0tHΨ→ χ0(R)E(t) ·
[
dion(k′, R) +

∫
d3r1

∫
d3r2 e

−ik′·r1ψ+∗
R (r2)r2ψR(r1, r2)

︸ ︷︷ ︸
≈0

]

+

[
k′

2

2
− 1

M

∂2

∂R2
+ V +

BO(R)

]
φ(k′, R, t) + iE(t) · ∇k′φ(k′, R, t).

Here it was used that
∫

d3k
(2π)3

φ(k, R, t)
∫
d3r rei(k−k′)·r = i∇k′φ(k′, R, r). The function dion is

the dipole-transition matrix element for ionization

dion(k, R) := 〈k|r|ψR〉 =

∫
d3r1

∫
d3r2 e

−ik·r1ψ+∗
R (r2)r1ψR(r1, r2) (2.12)

which is characteristic to the molecule at hand and describes the transition probability of the
electron to the continuum. The other double integral is set to zero because it describes the
dipole-transition matrix element for the inactive electron.

Equating both sides of the TDSE provides an equation for φ

∂φ(k, R, t)

∂t
=−i

[
k2

2
− 1

M

∂2

∂R2
+ V +

BO(R)− E0

]
φ(k, R, t) +E(t) · ∇kφ(k, R, t)

−iχ0(R)E(t) · dion(k, R).
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2.2. Strong-field approximation

which is solved by

φ(k, R, t) = −i

∫ t

0
dt′E(t′) · U+

R (t, t′)
[
dion(k −A(t) +A(t′), R)χ0(R)

]
×

× e−i
∫ t
t′ dt

′′([k−A(t)+A(t′′)]2/2−E0).

with A(t) = −
∫ t

dt′E(t′). The time-evolution in the ionic BO potential is given by U+
R [62]

i
∂U+

R (t, t′)

∂t
= H+

RU
+
R (t, t′) with H+

R = − 1

M

∂2

∂R2
+ V +

BO(R) (2.13)

The dipole moment is defined as D(t) = −〈Ψ(t)|r1 + r2|Ψ(t)〉. Inserting the ansatz for Ψ gives

−D(t) =

∫
dR |χ0(R)|2

∫
d3r1

∫
d3r2 |ψR(r1, r2)|2(r1 + r2)

︸ ︷︷ ︸
=0

+

(
2

∫
d3k

(2π)3

∫
dRφ(k, R, t)χ∗0(R)

[
d∗rec(k, R)

+

∫
d3r1

∫
d3r2 e

ik·r1ψ+
R(r2)r2ψ

∗
R(r1, r2)

︸ ︷︷ ︸
≈0

]
+ c.c

)

+ continuum-continuum transitions

The first double integral vanishes exactly because the electronic BO ground state of the
neutral molecule has even symmetry and the second double integral again is the transition
moment for the inactive electron. The function d∗rec is the dipole-transition matrix element for
recombination which is the complex-conjugate of the ionization element dion, i.e. dion = drec.
If the continuum-continuum transitions are neglected one gets

D(t) = −2

∫
d3k

(2π)3

∫
dRφ(k, R, t)χ∗0(R)d∗rec(k, R) + c.c.

Inserting the solution for φ and substituting k = p+A(t), where p is the canonical momentum
which is conserved in the continuum,

D(t) = 2i

∫ t

0
dt′
∫

d3p

(2π)3

∫
dRd∗rec

(
p+A(t), R

)
χ∗0(R)×

×E(t′) · U+
R (t, t′)

[
dion

(
p+A(t′), R

)
χ0(R)

]
e−i

∫ t
t′ dt

′′([p+A(t′′)]2/2−E0) + c.c.

We introduce the vibrational autocorrelation

C̃(p, t, t′) :=

∫
dRd∗rec(p+A(t), R)χ∗0(R)E(t′) · U+

R (t, t′)dion(p+A(t′), R)χ0(R)

and semiclassical action

S(p, t, t′) :=

∫ t

t′
dt′′

(
[p+A(t′′)]2

2
− E0

)
. (2.14)
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2. High-Harmonic Generation

The integral over the first term in S is the Volkov phase, i.e. the phase that a free electron
acquires over time in the laser field described by A. It comes from neglecting the interaction
between the electron and the parent ion during the time between ionization and recombination.
This is the fundamental part of the strong-field approximation and is the origin of its name.

With these definitions, the dipole moment can be written in the more compact form

D(t) = 2i

∫ t

0
dt′
∫

d3p

(2π)3
C̃(p, t, t′)e−iS(p,t,t′) + c.c. (2.15)

Fourier transformation results in

D̃(ω) = 2i

∫
dt

∫ t

0
dt′
∫

d3p

(2π)3
C̃(p, t, t′)e−iS̃(p,t,t′;ω) (2.16)

with

S̃(p, t, t′;ω) := S(p, t, t′)− ωt, (2.17)

where the complex conjugate in D(t) has been neglected, which is appropriate under the
condition ω > 0.

2.2.2. Spectrum

In high-harmonic generation, the subject of most interest is the spectrum of emitted radiation,
which is proportional to the modulus-squared Fourier-transformed dipole acceleration D̈(t)
[63,64]

Sspec(ω) ∝
∣∣∣ ˜̈D(ω)

∣∣∣
2

=

∣∣∣∣
∫ tf

t0

dt D̈(t)eiωt

∣∣∣∣
2

where it is assumed that the laser pulse is turned on and off between t0 and tf .

Applying integration by parts twice to ˜̈D(ω) relates it to the dipole moment D(t)

˜̈D(ω) =
(
Ḋ(t)eiωt −D(t)(iω)eiωt

)∣∣∣
tf

t0
+

∫ tf

t0

dtD(t)(iω)2eiωt. (2.18)

Before the laser is turned on, t < t0, the system is in its ground state and the dipole moment
and velocity are identical to zero, D(t ≤ t0) = Ḋ(t ≤ t0) ≡ 0. However, this does not need to
be true after the laser pulse is turned off, t > tf , where the total wave function is generally in a
superposition of many different states, as can be seen by the ansatz (2.10), and thus can give
rise to position and velocity components of the dipole. In other words, while the electron is no
longer accelerated by the laser field, its wave function may still change over time and cause a
varying charge distribution. Since these contributions are not of interest, the boundary terms
in (2.18) can be neglected and the spectrum simply be written as

Sspec(ω) ∝ ω4
∣∣∣D̃(ω)

∣∣∣
2
.

It should be noted here that there may be recollisions shortly after the end of the laser pulse,
which are also neglected by this approach.
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2.2. Strong-field approximation

2.2.3. Length, velocity and acceleration formulations

If the total wave function Ψ(t) of the system is known exactly, the Ehrenfest theorem [65]
assures that

D̈(t) =
∂

∂t
PD(t) = AD(t) (2.19)

with the dipole velocity PD and acceleration AD, for the single active electron, given in terms
of |Ψ(t)〉

PD(t) = −〈Ψ(t)|p|Ψ(t)〉
AD(t) = 〈Ψ(t)|∇V +E(t)|Ψ(t)〉.

where V describes the interaction between the electron and the core. In the SFA, however, the
wave function is only approximately known and equation (2.19) is not valid. Consequently,
one should expect different results depending on which quantity is taken in the calculation of
Sspec [66]. Following the literature, we refer to the different formulations as length, velocity and
acceleration forms. Specifically, the different forms give rise to different recombination matrix
elements drec

drec
L = 〈k|r|ψR〉
drec

V = 〈k|−i∇|ψR〉
drec

A = 〈k|∇V |ψR〉.

In section 2.2.2 it was shown that the spectrum Sspec can be written either in terms of the
dipole moment or acceleration and if certain temporary boundary terms vanish, the difference
is a simple factor ω4. If the time integration is taken over all times, the boundary terms can be
set to zero and it holds that [66]

Sspec ∝
∣∣∣ÃD(ω)

∣∣∣
2

= ω2
∣∣∣P̃D(ω)

∣∣∣
2

= ω4
∣∣∣D̃(ω)

∣∣∣
2
.

2.2.4. Saddle-point approximation

For HHG the primary interest lies in a linearly polarized electric field. In this case the
components of the dipole moment perpendicular to the field can be neglected and the relevant
quantities, such as A, the transition elements dion, d∗rec and the canonical momentum p, become
scalar. The dipole moment then takes the form

D̃(ω) = 2i

∫
dt

∫ t

0
dt′E(t′)

∫
dp

2π
C(p, t, t′)e−iS̃(p,t,t′;ω). (2.20)

with a redefined autocorrelation C(p, t, t′) := C̃(p, t, t′)/E(t′) (see beginning of chapter 3 for
more details).

33



2. High-Harmonic Generation

Even in the case of linear polarization the evaluation of the multiple integrals in the dipole
moment is computationally demanding. In order to reduce the effort, the saddle-point approxi-
mation [22] can be employed which transforms the integrals into finite sums over saddle-points
of the action S. The resulting saddle-point equations have tuples of solutions (ps, ts, t

′
s) (one for

every frequency ω) that describe the electron trajectories (so-called saddle-point trajectories)
that give the dominant contributions to the dipole moment. The approximation requires the
phase factor e−iS̃(p,t,t′) to vary much faster than the rest of the integrand, i.e. the autocorrelation
C(p, t, t′). For this we introduce a suitable energy shift as outlined in the following.

The dipole moment (2.15) (and therefore the one in (2.20)) is invariant under energy shifts of
the BO potentials, i.e. adding some constant energy to the potentials does not alter the value
of D̃(ω). This can be seen easiest by rewriting the autocorrelation in terms of a finite sum

C(p, t, t′) =
∑

ν

cν∗rec

(
t, t′
)
cνion

(
t, t′
)
e−iE+

ν (t−t′) (2.21)

where the expansion coefficients cνrec(t, t
′) and cνion(t, t′) are defined such that

∑

ν

cνion

(
t, t′
)
χ+
ν (R) = dion

(
p(t, t′) +A(t′), R

)
χ0(R)

∑

ν

cνrec

(
t, t′
)
χ+
ν (R) = drec

(
p(t, t′) +A(t), R

)
χ0(R)

and E+
ν are the eigenenergies of the BO potential V +

BO(R). Shifting the potential energy by
some constant V0 affects the total ground state energy E0 in the action (2.14), (2.17) and
the vibrational eigenenergies E+

ν in (2.21). This gives rise to a factor eiV0(t−t′) and its inverse
e−iV0(t−t′), respectively, which cancel out. It is therefore possible to choose a suitable zero-point
of the energy such that the quality of the saddle-point approximation is improved. Defining the
shifted BO potential V+

BO

V+
BO(R) = V +

BO(R) + V shift
BO with V shift

BO = −(E0 + Ip) ≈ 0.57014, (2.22)

the energy −E0 in the action is replaced by the ionization potential Ip

S(p, t, t′) :=

∫ t

t′
dt′′

(
[p+A(t′′)]2

2
+ Ip

)

S̃(p, t, t′;ω) := S(p, t, t′)− ωt.

The vibrational eigenenergies E+
ν are shifted up by V shift

BO accordingly. We apply the SPA to S̃
and choose to do so for the momentum p first, followed by a combined SPA for t, t′.

Saddle-point equations and factors Setting the first derivatives of S̃ with respect to p, t, t′

equal to zero yields the following saddle-point equations.

Saddle-point momentum p

ps(ts, t
′
s) = − 1

ts − t′s

∫ ts

t′s

dt A(t) (2.23)
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2.2. Strong-field approximation

Ionization time t′

[
ps(ts, t

′
s) +A(t′s)

]2

2
= −Ip (2.24)

Recombination time t

[
ps(ts, t

′
s) +A(ts)

]2

2
= ω − Ip (2.25)

These equations are almost identical to the ones encountered in the semiclassical three-step
model in section 2.1. Equation (2.23) is the condition that the electron trajectoary starts at
the same location as it ends, which is analogous to the semiclassical model where this location
is set to zero, see equations (2.3) and (2.7).

Furthermore, equation (2.25) tells us that the kinetic energy at the time of recombination
(left hand side) should match the difference between the emitted harmonic energy ω and the
ionizaton potential Ip. This is the conservation of energy and corresponds to equation (2.8).

The important difference to the semiclassical model can be seen in equation (2.24), where the
initial kinetic energy of the electron is negative, −Ip, which is attributed to the fact that the
electron must tunnel out through a potential barrier in order to enter the continuum [22,61].
In the semiclassical model, tunneling is incorporated through the ionization rate (2.1), which
influences the overall probability of a certain trajectory, but does not affect its ionization or
recombination times. For Ip = 0, tunneling is not necessary and equations (2.24) and (2.4)
coincide. The physically relevant case of nonzero Ip gives rise to complex-valued times ts and t′s.

The corresponding saddle-point factor for p reads

Π(t, t′) =

∫
dp

2π
exp

(
− i

2

∂2S̃
∂p2

(p− ps)
2

)

=

∫
dp

2π
exp

(
− i

2
(t− t′)(p− ps)

2

)

=

(
1

2πi(t− t′)

)1/2

(2.26)

where the exponent in the result counts the number of dimensions. In three dimensions for
example, it would be 3/2.

The saddle-point factor for t, t′ is

Λ(ts, t
′
s) =

∫
dt

∫
dt′ exp

(
− i

2

∂2S̃
∂t2

(t− ts)2

)
×

× exp

(
−i

∂2S̃
∂t∂t′

(t− ts)(t′ − t′s)
)

exp

(
− i

2

∂2S̃
∂t′2

(t′ − t′s)2

) (2.27)
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2. High-Harmonic Generation

where the derivatives of S̃ are evaluated at the saddle-point times (ts, t
′
s). With the help of

equations (2.24) and (2.25) we can define the kinetic momenta of the electron at the saddle-point
times of ionization and recombination as

k±ion := ps(ts, t
′
s) +A(t′s) = ±

√
−2Ip

k±rec(ω) := ps(ts, t
′
s) +A(ts) = ±

√
2(ω − Ip).

The second derivatives of S̃ in Λ(ts, t
′
s) can then be written as

∂2S̃
∂t2

(
ts, t
′
s;ω
)

= −
(
ps(ts, t

′
s) +A(ts)

)(ps(ts, t
′
s) +A(ts)

ts − t′s
+ E(ts)

)

= −k±rec(ω)

(
k±rec(ω)

ts − t′s
+ E(ts)

)
(2.28)

∂2S̃
∂t′2

(
ts, t
′
s;ω
)

= −
(
ps(ts, t

′
s) +A(t′s)

)(ps(ts, t
′
s) +A(t′s)

ts − t′s
− E(t′s)

)

= −k±ion

(
k±ion

ts − t′s
− E(t′s)

)
(2.29)

∂2S̃
∂t∂t′

(
ts, t
′
s;ω
)

=

(
ps(ts, t

′
s) +A(ts)

)(
ps(ts, t

′
s) +A(t′s)

)

ts − t′s
=
k±rec(ω)k±ion

ts − t′s
. (2.30)

The existence of the integral in expression (2.27) is not clear a priori, but can be verified
numerically. There exists a combination of signs in k±ion and k±rec(ω) such that the integral
converges and the result is

Λ(ts, t
′
s) = 2π



(
∂2S̃
∂t∂t′

)2

− ∂2S̃
∂t2

∂2S̃
∂t′2



−1/2

. (2.31)

The saddle-point approximated expression for the Fourier-transformed dipole moment then
reads

D̃SPA(ω) = 2i
∑

s

E(t′s)Π(ts, t
′
s)Λ(ts, t

′
s)C(ps, ts, t

′
s)e
−iS̃(ps,ts,t′s;ω) (2.32)

where the sum goes over all tuples of solutions (ps, ts, t
′
s) for a given ω.

Saddle-point times

In this section we want to study the solutions to equations (2.23) - (2.25). We employ the case
of a linearly polarized electric field with constant intensity

E(t) = E0 cos(ω0t) ⇒ A(t) := −
∫ t

dt′E(t′) = −E0

ω0
sin(ω0t).
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2.2. Strong-field approximation

with peak amplitude E0 and angular frequency ω0. This allows us to analytically solve equation
(2.23)

ps(ts, t
′
s) = −E0

ω2
0

cos(ω0ts)− cos(ω0t
′
s)

ts − t′s
.

Hence, the problem reduces to solving the two equations (2.24) and (2.25)

[
ps(ts, t

′
s)−

E0

ω0
sin(ω0t

′
s)

]2

= −2Ip (2.33)

[
ps(ts, t

′
s)−

E0

ω0
sin(ω0ts)

]2

= 2(ω − Ip). (2.34)

The energy of the emitted harmonic is ω. The expression in brackets on the left sides are the
kinetic momenta at time of ionization (2.33) and recombination (2.34). Note that if ts, t

′
s are

solutions, so are t∗s , t
′∗
s , i.e. the complex-conjugate times. A description of the properties of the

saddle-point times can also be found in [61].

It should be noted that the features of the solutions described in this section have been
studied only for a narrow range of parameters and therefore are not supported by a rigorous
mathematical proof. While the descriptions may well apply to a wide range of parameters, it
is not certain that it holds true for any set of such values. For example, any statement that
involves large harmonic energies ω →∞ is strictly speaking only tested for ω below a certain
numerical limit.

Zero ionization potential Let us first, for simplicity, consider the case of a vanishing ionization
potential Ip = 0. We then arrive at the classical case where the initial momentum of the
electron is zero (2.33) and the return energy corresponds to the emitted harmonic energy ω
(2.34). Figure 2.5 shows the solutions for a wavelength of 800 nm and intensity of 4 · 1014 W/cm2.

The times in Figure 2.5 should be understood as the limiting case of Ip → 0. The saddle-point
integral over t′ in expression (2.27) does not converge for Ip = 0. The reason is the vanishing
second derivatives of the action with respect to t′ in expressions (2.29) and (2.30)

∂2S̃
∂t′2

(ts, t
′
s;ω) =

∂2S̃
∂t∂t′

(ts, t
′
s;ω) = 0

because k±ion = ±
√
−2Ip = 0.

There is a sharp energy threshold below which the saddle-point times ts, t
′
s are real and equal

to the classical times. This boundary is what we define as the cutoff energy ωc ≈ 3.17Up. This
is approximately 2.78 for the current parameters.

We call the range below that energy, 0 ≤ ω ≤ ωc, the plateau region. In that region, we can
distinguish between two kinds of solutions, the short and long trajectories. The short trajectory
is defined by having the lower excursion time τs = ts − t′s of the two. Correspondingly, the long
trajectory has the higher value of τs. The long trajectories start before the short ones and
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2. High-Harmonic Generation
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Figure 2.5.: Saddle-point solutions for a wavelength of 800 nm and intensity of 4 · 1014 W/cm2 and vanishing
ionization potential Ip = 0. The period of the field is approximately 110. Top: Real part of ionization and
recombination times for both short (dashed) and long (solid) trajectories. Also shown is the profile of the
electric field E(t). The vertical dashed line indicates the first quarter of the field period. Bottom: Imaginary
part of the ionization and recombination times. Note that the times shown here are to be understood as the
limiting case for Ip → 0. The saddle-point integral over t′ does not converge for Ip = 0 (see main text).

recombine after them. With the field maximum as reference, they both start within the first
quarter of the field period and recombine in the last three quarters.

In the cutoff region, i.e. for ω > ωc, there exist no real solutions. The short and long trajectories
merge into just one complex trajectory. Otherwise it is not possible for the electron to reach
kinetic energies higher than ωc. Complex values for the ionization and recombination times
are necessary to satisfy the saddle-point equations in this region. The imaginary part of the
excursion time grows rapidly with increasing energy, while the real part has a nearly constant
value of approximately 4.1/ω. For a wavelength of 800 nm, this is around 72 (see left panel in
Figure 2.6).

The cutoff ωc is clearly visible in Figure 2.5 as the energy where the real parts of the ionization
and recombination times meet for the short and long trajectories, respectively. It is also the
point where the imaginary parts deviate from zero. The right panel in Figure 2.6 demonstrates
this for a fixed harmonic while the electric field intensity is varied. For a weak field, the
harmonic lies in the cutoff-region where the excursion time is complex with an approximately
constant real part. If the intensity is high enough, the harmonic enters the plateau region where
the single complex solution becomes real and bifurcates into the short and long solutions.
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2.2. Strong-field approximation
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Figure 2.6.: Excursion time τs = ts − t′s for a wavelength of 800 nm and vanishing ionization potential, Ip = 0.
Left: Real and imaginary part for an electric field intensity of 4 ·1014 W/cm2. The arrows indicate the direction
of increasing harmonic energy ω. Once ω exceeds the cutoff energy ωc, the saddle-point times become complex
with approximately constant real part of τs. A selection of harmonic energies is shown as colored points.
Right: Real and imaginary part as a function of field intensity for the 13th harmonic. Once the intensity is
high enough for this harmonic to fall within the plateau region, the real part bifurcates into two branches
corresponding to the short and long trajectory and the imaginary part becomes zero. The vertical dotted line
indicates the intensity for which the harmonic energy equals the cutoff energy.

Nonzero ionization potential The physically relevant case is that of nonvanishing Ip. An
example of such solutions for the same parameters of 800 nm and 4 · 1014 W/cm2 as before is
shown in Figure 2.8 for the ionization potential of H2.

In contrast to the case of Ip = 0, there are no real solutions for the saddle-point times for any
value of the harmonic energy ω. This is true independently of the electric field E(t), see the
more general equation (2.24). Below the cutoff, we can still identify short and long trajectories
by taking the real part of the excursion time τs, i.e. Re

(
τs

short
)
< Re

(
τs

long
)
.

The graphs of the solutions in Figure 2.8 share similarities to the ones for Ip = 0 in Figure 2.5.
The real parts of ionization and recombination of both trajectories approach each other for
increasing energy and in the transition to the cutoff-region they become less sensitive to the
energy. Correspondingly, the real parts of the excursion time τs become less sensitive to the
harmonic energy in that region too (see left panel in Figure 2.9). Furthermore, the imaginary
parts show a rapid change with energy as for Ip = 0 as well.

The cutoff energy is more complicated to determine compared to Ip = 0, where the cutoff is
the energy above which the saddle-point times become complex. It can be shown [22] that ωc

is approximately of the form

ωc ≈ fc(Ip/Up)Ip + 3.17Up (2.35)

for some function fc, which can be found numerically, see Figure 2.7. The correction to the
classical expression Ip + 3.17Up can be attributed to the tunnelling of the electron and the
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2. High-Harmonic Generation
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Figure 2.7.: Function fc which enters the cutoff-law (2.35). The values were graphically extracted from FIG. 5
in [22]. For small but positive ionization potential, 0 < Ip � Up, the value is approximately 1.32. The colored
dots show the value of H2 for 800 nm and the given intensities.

spreading of its wave function in the continuum. For a more detailed description see [22].

In practice it suffices to think of a range of cutoff-energies. It is usually not necessary to identify
a sharp boundary where the transition from the plateau- to the cutoff-region takes place. The
conspicuous change in behaviour of the saddle-point solutions makes it possible to establish
such a transition in a heuristic manner when referring to plots. This also holds for quantities
that depend on the saddle-point times, since they inherit such a behaviour.

It seems that there is always an energy where the real part of the ionization time for the short
trajectory intersects with that of the long trajectory. There are still two solutions above that
energy, but the physical meaning of “short” and “long” loses its relevance. The solution that
we identified as being short now has a greater real part of the excursion time than the long
counterpart, since the real parts of the recombination times do not intersect. We can still
distinguish between the two since the solutions should depend continuously-differentiable on the
energy. In this regard, one starts by finding solutions for low energies and then keeping track of
them while increasing the energy. The imaginary parts of the ionization times do not intersect
and switching between former short and long trajectories would introduce a discontinuity.

Contrary to the real parts of the saddle-point solutions, the imaginary parts of the ionization
times are larger than for the recombination times, at least below the cutoff. For energies above
the cutoff, the imaginary part of the ionization time, for the long trajectory, at some energy
becomes less than that of the recombination time (the solid lines intersect in the lower panel
in Figure 2.8). Furthermore, the recombination times have an imaginary part close to zero,
especially for the long trajectory.

We plot in the right panel of Figure 2.9 the dependence of the excursion time on the field
intensity for a fixed harmonic. These graphs show a similar behaviour to the case of Ip = 0 as
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2.2. Strong-field approximation
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Figure 2.8.: Saddle-point solutions for a wavelength of 800 nm and intensity of 4 · 1014 W/cm2 for H2. The
period of the field is approximately 110. Top: Real part of ionization and recombination times for both short
(dashed) and long (solid) trajectories. The thin lines are the classical times. Also shown is the profile of the
electric field E(t). The vertical dashed line indicates the first quarter of the field period. Bottom: Imaginary
part of the ionization and recombination times.

well. The real part is relatively insensitive to changes in field intensity when the harmonic is
in the cutoff-region (low intensity) compared to when it falls within the plateau-region (high
intensity). The opposite holds true for the imaginary part.

Experimental and theoretical studies of the phase of the harmonics generated by short and
long trajectories and related phenomena (e.g. Quantum Path Interference) can be found
in [61,67–72].

Variation of ionization potential Having understood the general behaviour of the saddle-point
times, we now turn our attention to how the times change when the ionization potential is
varied. For this we concentrate on values of Ip around the value of H2, i.e. IH

p = 0.5944. The
relative change δt

δt(Ip, ω) =
∆t(Ip, ω)

t
(
IH

p , ω
) with ∆t(Ip, ω) = t(Ip, ω)− t

(
IH

p , ω
)

is plotted in Figure 2.10 for the ionization time t′s and excursion time τs = ts − t′s. We choose
to plot τs here instead of ts because we are ultimately interested in how the autocorrelation
function changes with the ionization potential. In this context it is easiest to consider the

41



2. High-Harmonic Generation

20 40 60 80 100

Re(τs)

−30

−20

−10

0

10

Im
(τ

s
)

4 · 1014 W/cm2

short

long

11

21

31

41

51

61
ωc 60

70

80

R
e(
τ s

)

25th harmonic

short

long

0.4 0.6 0.8 1 1.2 1.4

I [1014 W/cm2]

−60

−45

−30

−15

0

Im
(τ

s
)

short

long

Figure 2.9.: Excursion time τs = ts − t′s for a wavelength of 800 nm for H2. Left: Real and imaginary part for
an electric field intensity of 4 · 1014 W/cm2. The arrows indicate the direction of increasing harmonic energy ω.
The excursion times for short and long trajectories approach each other for increasing energy. Similar to the
case of vanishing Ip, beyond the cutoff the real part becomes less sensitive to the energy while the imaginary
part changes rapidly. A selection of harmonic energies is shown as colored points and ωc is calculated with
expression (2.35). Right: Real and imaginary part as a function of field intensity for the 25th harmonic.

starting point of the vibrational dynamics, which is given by t′s, and how long the time evolution
takes place, given by τs.

The behaviour of the times as a function of ω is quite complicated. The transition from the
plateau- to the cutoff-region manifests itself as peaks. We are primarily interested in how large
δt becomes in the plateau-region. There the relative change is for the most part below 2.5 %.
The dependence of δt as a function of δIp is linear in a good approximation, in particular for
energies below and above the transition from the plateau to the cutoff.

The imaginary part of δτs exhibits a pole at ω ≈ 4 for the long trajectory. This originates from
the intersection of Im(t′s) and Im(ts), visible in Figure 2.8.
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2.2. Strong-field approximation
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Figure 2.10.: Relative change δt of the saddle-point solutions of H2 for the short (upper 4× 4 grid) and long
(lower 4× 4 grid) trajectories. Shown is the dependence on harmonic energy ω and on the relative change of
the ionization potential δIp up to ±5 %. The electric field parameters are 800 nm and 4 · 1014 W/cm2. The
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The real parts are on the left and the imaginary parts on the right. Values outside of the given range are
colored white for the upper and black for the lower limit.
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3. Vibrational Autocorrelation Function

This chapter is devoted to the study of the basic properties of the vibrational autocorrelation
function

C̃(p, t, t′) =

∫
dRd∗rec(p+A(t), R)χ∗0(R)E(t′) · U+

R (t, t′)dion(p+A(t′), R)χ0(R).

It appears in the expression of the dipole moment (2.15) and is an essential part of the SFA-
based theory of HHG in H2 that includes the nuclear dynamics. Here, U+

R is the time-evolution
operator for the shifted ionic BO potential V+

BO, dion and drec are the dipole-transition matrix
elements for ionization and recombination, and χ0(R) is the vibrational ground state of neutral
H2. For a linearly polarized electric field E(t) the components of C̃ perpendicular to E can be
neglected. We define the autocorrelation along the direction of E (see also section 2.2.4)

C(p, t, t′) =
1

E(t′)
eE · C̃(p, t, t′)

=

∫
dR
[
d∗rec(p+A(t), R)χ∗0(R)

]
U+
R (t, t′)

[
dion(p+A(t′), R)χ0(R)

]
. (3.1)

with a constant unit vector eE and E(t) = E(t)eE. The matrix elements in the direction
of eE are denoted by drec and dion. This is the general expression used in all our numerical
calculations and whenever we refer to the autocorrelation we implicitly mean this form.

Expression (3.1) can be rewritten in a different form, which is useful for practical evaluation.
We have already used it in equation (2.21), but repeat it here for completeness

C(p, t, t′) =
∑

ν

cν∗rec

(
t, t′
)
cνion

(
t, t′
)
e−iE+ν (t−t′), (3.2)

with shifted ionic vibrational eigenenergies E+
ν and expansion coefficients cνion(t, t′), cνrec(t, t

′)
such that

∑

ν

cνion

(
t, t′
)
χ+
ν (R) = dion

(
p(t, t′) +A(t′), R

)
χ0(R)

∑

ν

cνrec

(
t, t′
)
χ+
ν (R) = drec

(
p(t, t′) +A(t), R

)
χ0(R).

The ionic vibrational eigenstates are given by χ+
ν .

45



3. Vibrational Autocorrelation Function

3.1. Relevance for harmonic ratio

The main interest in the autocorrelation function stems from its role in the harmonic ratio of
different isotopes of the molecule. The saddle-point-approximated dipole moment (2.32) can be
separately evaluated for short and long trajectories via choice of the saddle-point times ts, t

′
s for

a given ω

D̃SPA(ps, ts, t
′
s;ω) = 2iE(t′s)Π(ts, t

′
s)Λ(ts, t

′
s)C(ps, ts, t

′
s)e
−iS̃(ps,ts,t′s;ω).

The saddle-point factor for p is given by Π(t, t′), see expression (2.26), and for t, t′ by Λ(t, t′),
expression (2.31). The modulus-squared of D̃SPA gives the spectrum of the emitted harmonic
radiation.

Define, for a function f(p, t, t′;ω, Ip), its modulus-squared ratio, evaluated at the saddle-point
times for D2 in the numerator and for H2 in the denominator

R[f ](ω) :=

∣∣∣f
(
ps

(
tDs (ω), t′Ds (ω)

)
, tDs (ω), t′Ds (ω);ω, ID

p

)∣∣∣
2

∣∣∣f
(
ps

(
tHs (ω), t′Hs (ω)

)
, tHs (ω), t′Hs (ω);ω, IH

p

)∣∣∣
2 .

The ratio of harmonic intensities is then given by

R[D̃SPA](ω) = R[EΠΛ](ω)×R[C](ω)×R[exp(−iS̃)](ω), (3.3)

where × represents multiplication of real numbers. Here it becomes clear that the ratio of the
modulus-squared vibrational autocorrelations for the different isotopes directly enters the ratio
of harmonic intensities.

The autocorrelation, by definition, describes the nuclear dynamics of the ion during the
continuum travel of the electron. Experimental [28, 29, 56, 57] as well as theoretical [54, 58]
results of harmonic spectra show that heavier isotopes may produce more intense harmonics.
This can be explained by the appearance of the modulus-squared autocorrelation in R[C](ω),
which decreases faster for the lighter isotope (see section 3.3), leading to a smaller value of
the spectral intensity. Extraction of the nuclear dynamics from the harmonic spectra is called
PACER, see chapter 8.

3.2. Complex time-evolution

In contrast to the real ionization and recombination times originating from the semiclassical
three-step model (section 2.1), the use of the complex saddle-point times (section 2.2.4) in
calculations of the autocorrelation function changes the nature of the time evolution. For
instance, the time-evolution operator is no longer unitary and the norm of the wave function
therefore not conserved. There also arises the question of which path through the complex
plane is to be taken.

46



3.2. Complex time-evolution
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Figure 3.1.: Illustration of ionization and recombination time in the complex plane. Left: Stepwise evolution
from ti to tr. This picture is more representative of the short trajectory than the long trajectory because for
the latter Im tr is usually much smaller than illustrated here and also positive, see Figure 2.8. Right: Direct
path

Figure 3.1 shows an illustration of a pair of saddle-point times (ti, tr) in the complex plane and a
stepwise path which allows a physical interpretation. The first step, ti → Re ti, can be identified
with the tunnelling of the electron, see section 3.2.2. While the electron is tunnelling out, the
nuclei already undergo a motion in imaginary time. The subsequent real path from Re ti to
Re tr corresponds to the travel time of the electron in the continuum during which the nuclei
evolve in real time. The last step, Re tr → tr, completes the process with the recombination.
The absolute value of the imaginary part of tr is usually small compared to the ionization time
when the harmonic energy lies in the plateau region, see Figure 2.8.

3.2.1. Path-independence

Time-independent potential Without any modifications such as the Stark shift (7.2.1), the
ionic vibrational potential is time-independent and the time-evolution operator U+

R (t, t′) in
expression (3.1) is given by the operator exponential

U+
R (t, t′) = exp

(
−iH+

R(t− t′)
)

with Hamiltonian

H+
R = − 1

M

∂2

∂R2
+ V+

BO(R).

U+
R does therefore not depend separately on t and t′, but only on the travel time t − t′. In

particular, it does not matter at which point in the complex plane the evolution starts or ends,
as long as t− t′ is the same.
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3. Vibrational Autocorrelation Function

Time-dependent potential A general statement about the path-independence in case of a
time-dependent potential is a much harder problem to solve compared to the case of a time-
independent potential. It would be desirable to have a mathematical proof to assure a unique
continuation of the solution to the TDSE into the complex plane. Unfortunately, there does
not seem to exist such a theorem that applies to the Schrödinger equation. We therefore rely
on numerical verification to show that the autocorrelation is path-independent. It is an open
question whether the path-independence holds generally.

3.2.2. Relation between ionization time and tunnelling

In the limit of a small Keldysh parameter, i.e. the tunnelling regime relevant for HHG, the
modulus squared of the action phase factor e−iS along the imaginary part of the saddle-point
ionization time is related to the ADK tunnelling rate [39,60]

exp
(
2 ImS

(
ps(ts, t

′
s),Re t′s, t

′
s

))
≈ Γ

(
Ip, E(Re t′s)

)
with Γ(Ip, E) = exp

(
−2[2Ip]3/2

3|E|

)
(3.4)

This holds because the imaginary part of the recombination time, in the plateau region, is
usually small compared to the other components of the saddle-point times, a notable exception
being the short trajectories at low harmonic energies (lower panel of Figure 2.8). This means
that the ionization dynamics of HHG can be reasonably well described with the dynamics
encountered in ATI. The general idea is that, because the recombination time ts is nearly real,
the momentum ps is nearly real as well. This can be seen in equation (2.25), where a vanishing
imaginary part of ts necessarily leads to a zero imaginary part of ps, which corresponds to the
case of just ionization. A more comprehensive analysis of the comparison between ionization in
HHG and ATI can be found in the supplementary material of [73].

As a consequence, the action along the remaining integration path after ionization, Re t′s → ts,
only has a small imaginary part and the approximation in (3.4) can be made for the whole
integration of S̃

exp
(

2 Im S̃
(
ps(ts, t

′
s), ts, t

′
s

))
≈ Γ

(
Ip, E(Re t′s)

)
. (3.5)

This leads to the approximation

R[exp(−iS̃)] ≈ R[Γ′] (3.6)

with Γ′(t′s; Ip) :=
√

Γ(Ip, E(Re t′s)). This ratio accounts for the different ionization probabilities
of the isotopes. A comparison is shown in Figure 3.2. Apart from low plateau energies of the
short trajectories, the approximation in (3.6) works well. In terms of harmonic ratios, equation
(3.6) is most reliable within a large plateau region, because then Re ts is small in a wide energy
range. More care must be taken for small cutoff energies, when the plateau region is narrow.
In this case it might be more appropriate to use R[exp(−iS̃)] instead of R[Γ′].
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′
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trajectories. The intensity is 4 · 1014 W/cm2. Left: 800 nm Right: 1200 nm Top: short trajectories Bottom:
long trajectories.

Expansion coefficients after tunnelling

The connection between the tunnelling of the electron and the saddle-point ionization time
manifests itself also in the expansion coefficients of the neutral vibrational wave packet after the
purely imaginary time evolution from t′s to Re t′s (see Figure 3.1). This can be seen as follows.

One approach [57,58] to include the influence of tunnelling on the neutral vibrational ground
state is to modify the Franck-Condon factors cνFC = 〈χ+

ν |χ0〉 by multiplying them with the
square-root of the ADK tunnelling rate Γ, i.e. the tunnelling amplitude. The electric field used
in the amplitude is usually taken to be the peak field strength. This is an approximation which
strictly holds only for trajectories starting close to the maximum of the field (i.e. the long
trajectories) and makes the resulting coefficients independent of the harmonic order. A more
accurate approach is to use the instantaneous electric field at the moment of ionization t′s. The
new coefficients, for a certain harmonic order corresponding to ionization time t′s, then take the
form

cνTunnel = cνFC

√
Γ
(
Ip(ν), E(Re t′s)

)
(3.7)

= cνFC exp

(
− [2Ip(ν)]3/2

3|E(Re t′s)|

)
(3.8)

where Ip(ν) = E+
ν − E0. Taylor-expanding the tunnelling factor to first order in Ip(ν) − Ip

yields

exp

(
− [2Ip(ν)]3/2

3|E(Re t′s)|

)
= exp

(
− [2Ip]3/2

3|E(Re t′s)|

)
exp

(
−
√

2Ip(Ip(ν)− Ip)

|E(Re t′s)|

)
. . . (3.9)
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3. Vibrational Autocorrelation Function

Applying the time-evolution operator, corresponding to the imaginary part of the ionization
time, to the neutral ground state gives

U+
R

(
−i Im t′s

)
|χ0〉 =

∑

ν

cνFC exp
(
−iE+

ν

(
−i Im t′s

))
|χ+
ν 〉

≈
∑

ν

cνFC exp

(
−
√

2Ip(Ip(ν)− Ip)

|E(Re t′s)|

)
|χ+
ν 〉 (3.10)

where in the first step |χ0〉 was expanded in vibrational eigenstates of the ion, |χ+
ν 〉, on which

U+
R acts by multiplication with a phase factor. In the second step the shifted ionic eigenenergies
E+
ν = E+

ν − (E0 + Ip) = Ip(ν)− Ip were used, together with the definition of the Keldysh time
to approximate the imaginary part of the ionization time [74]

Im t′s ≈ τK =

√
2Ip

|E(Re t′s)|
. (3.11)

The weight factor of the expansion coefficients occurring in (3.10) equals the first order term in
(3.9) and therefore

∑

ν

cνFC

√
Γ
(
Ip(ν), E(Re t′s)

)
|χ+
ν 〉 ≈

√
Γ
(
Ip, E(Re t′s)

)
U+
R

(
−i Im t′s

)
|χ0〉 (3.12)

which means that the approach in (3.8) to describe the influence of tunnelling on the vibrational
wave packet is approximately equivalent to a time-propagation in complex time.

Another approach for including tunnelling [58,75] is to replace the ionization potential for a
specific vibrational state Ip(ν) with the difference of the BO potentials Ip(R) = V +

BO(R)−VBO(R)

cνTunnel,R = 〈χ+
ν |
√

Γ
(
Ip(R), E(Re t′s)

)
|χ0〉

=

∫
dRχ+∗

ν (R)
√

Γ
(
Ip(R), E(Re t′s)

)
χ0(R). (3.13)

The two approaches in (3.8) and (3.13) are related, which can be seen by using (3.12) and
writing U+

R as an exponential

cνTunnel√
Γ
(
Ip, E(Re t′s)

) ≈ 〈χ+
ν | exp

(
−iH+

R

(
−i Im t′s

))
|χ0〉

≈ 〈χ+
ν | exp

(
−i
(
TR + V+

BO

)(
−i Im t′s

))
|χ0〉 (3.14)

with the shifted Hamiltonian H+
R = TR + V+

BO and nuclear kinetic energy TR. The neutral
ground-state energy E0 occurring in the definition of the BO-shift V shift

BO = −(E0 + Ip) in (2.22)
enters V+

BO = V +
BO + V shift

BO in the exponential and can be written as the result of applying the
Hamiltonian HR = TR + VBO of the neutral molecule to the state |χ0〉 on the right. This then
gives

cνTunnel√
Γ
(
Ip, E(Re t′s)

) ≈ 〈χ+
ν | exp

(
−i
(
H+
R −HR − Ip

)(
−i Im t′s

))
|χ0〉
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Figure 3.3.: Comparison of the modulus squared of the expansion coefficients for the bound eigenstates of H2,
for the various cases described in the text. Shown is the case for a wavelength of 1200 nm and an intensity of
4 · 1014 W/cm2, with the ionization time corresponding to the 95th harmonic and the short trajectory. The
corresponding wave functions are normalized.

with H+
R = TR + V +

BO. Using the definition of Ip(R) yields

cνTunnel√
Γ
(
Ip, E(Re t′s)

) ≈ 〈χ+
ν | exp

(
−i(Ip(R)− Ip)

(
−i Im t′s

))
|χ0〉

≈ 1√
Γ
(
Ip, E(Re t′s)

)〈χ+
ν |
√

Γ
(
Ip(R), E(Re t′s)

)
|χ0〉 (3.15)

and therefore

cνTunnel ≈ cνTunnel,R.

In (3.15) the definition of the Keldysh time in (3.11), together with the reverse Taylor expansion
in (3.9) was used to write the overlap in terms of Γ.

A direct comparision of the different coefficients can be seen in Figure 3.3.

3.2.3. Ratio of saddle-point factors

The harmonic ratio in equation (3.3) also contains the ratio R[EΠΛ] of the electric field E(t′s)
and the saddle-point factors Π(ts, t

′
s), expression 2.26, and Λ(ts, t

′
s), expression 2.31. An example

of this ratio is shown in Figure 3.4. It has not much influence in the plateau region and can
usually be neglected.
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Figure 3.4.: Ratio R[EΠΛ](ω) of the electric field E(t′s) and the saddle point factors Π(ts, t
′
s), expression (2.26),

and Λ(ts, t
′
s), expression 2.31. It is close to unity for both short and long trajectories in the plateau region and

therefore of less importance for the harmonic ratio than the ratio of the ionization probabilities R[exp(−iS̃)],
see Figure 3.2. The laser intensity is 4 · 1014 W/cm2. Left: 800 nm Right: 1200 nm.

3.3. Basic properties

In this section we want to show some generic examples of graphs of the autocorrelation function.
For this we use it in its simplest form, with ionization dion and recombination drec matrix
elements set to unity

Cd=1(τ) =

∫
dRχ∗0(R)U+

R (τ)χ0(R), (3.16)

which corresponds to the overlap of the neutral vibrational ground state of H2/D2 with its
time-evolved counterpart. An illustration of the physical picture is shown in Figure 3.5. The
value at the τ = 0 is Cd=1(0) = 1, because χ0 is normalized.

3.3.1. Classical times

In the semiclassical three-step model, the continuum dynamics of the electron is treated as
that of a classical point particle (see section 2.1), giving rise to real-valued ionization and
recombination times. For these times the autocorrelation exhibits a simple and qualitatively
predictable behaviour in the beginning of the time-evolution. Neutral H2 has a equilibrium
distance of approximately 1.4, while for H+

2 it is 2. The vibrational wave packet will therefore
initially move towards larger internuclear distances as time passes. This reduces the overlap
(3.16) and |Cd=1(τ)|2 is monotonically decreasing. At some later instant of time the wave
packet reaches a turning point in the ionic potential well, because its energy is not large enough
to escape from it. The direction of motion is reversed at that point accordingly, ultimately
resulting in an oscillation that leads to local maxima of |Cd=1(τ)|2. Figure 3.6 shows the
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Figure 3.5.: Illustration of the vibrational dynamics of HHG in H2/D2. Ionization launches a vibrational wave
packet on the ionic BO potential energy curve. During the continuum travel of the electron, the wave packet
undergoes a time-evolution. The overlap between the initial and the evolved state at the time of return gives
the value of the autocorrelation (depicted as shaded area between the wave packets on the lower curve).

evolution of |Cd=1(τ)|2 for H2 and D2. The initial decrease and the next maximum starting at
approximately τ = 500 (750) for H2 (D2) are clearly visible. Interference of the wave packet
with itself produces additional oscillations for longer times and the dynamic becomes more
complicated.

The BO potential V+
BO is the same for both isotopes and the only difference is that D2 has a

higher nuclear mass than H2. The larger inertia causes a slower separation of the nuclei and a
corresponding slower initial decrease of the autocorrelation. The ratio |CD

d=1(τ)|2/|CH
d=1(τ)|2 is

therefore increasing at first. Accordingly, the maxima are delayed as well. This is the primary
mechanism that gives rise to a ratio of harmonic intensities greater than unity between D2 and
H2.

The dependence of |Cd=1|2 on electron travel time τ that can be seen in Figure 3.6 is without
regard for short and long trajectories. To give a reference, the transition, in terms of travel
time, between short and long trajectories is shown in Figure 3.7 for a selection of wavelengths.
For 800 nm it is at approximately 71.7.

It is also instructional to plot |Cd=1|2 as a function of harmonic energy ω. The semiclassical
three-step model provides a mapping between electron travel time τ and ω, see equation (2.8).
The 3D plot in Figure 3.8 shows how |Cd=1|2 varies with ω and τ for the short and long
trajectories. The laser parameters are a wavelength of 800 nm and intensity of 4 · 1014 W/cm2.
Also plotted are the corresponding projections that show the dependence on τ and ω separately.
The curve in the C-τ plane is the same as in Figure 3.6. Here it ends at τ ≈ 110, which is the
period of a 800 nm cycle and the duration of the longest long trajectory. This duration still
falls within the initial decrease of the autocorrelation and the values of |Cd=1|2 for the short
trajectories are therefore strictly larger than those for the long trajectories.
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Figure 3.6.: Modulus-squared of the real-time vibrational autocorrelation function with matrix elements set to
unity, for H2 (thin lines) and D2 (thick lines). Left: Long-term time-evolution Right: Beginning of evolution
as marked by the rectangle in the left panel. The higher nuclear mass of D2 means a slower separation of the
nuclei. This causes a less rapid initial decrease and delayed maxima compared to H2 and leads to an initially
increasing ratio |CD

d=1(τ)|2/|CH
d=1(τ)|2.
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Figure 3.7.: Ranges of classical electron travel times for a selection of wavelengths (lower panel). The shortest
short trajectory has a travel time of τ = 0. This means the autocorrelation ratio (upper panel) always exhibts
the same behaviour in the beginning of the time-evolution. In contrast, the interval of travel times for the
long trajectories shifts to ever higher values for increasing wavelengths.
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Figure 3.8.: Left: Dependence of classical |Cd=1|2 of H2 on electron travel time τ and harmonic energy ω (low
contrast black), for short (dashed lines) and long (solid lines) trajectories. The wavelength is 800 nm and the
intensity equals 4 · 1014 W/cm2. The projections on the C-ω and C-τ planes show the variations separately.
Note that ω and τ are not independent from one another, but are related by a mapping originating from
the classical equations of motion. This mapping can be seen as the projection on the τ -ω plane. Right:
Projection on the C-ω plane, also visible in the left panel.

Ratio The right panel in Figure 3.6 shows the ratio of |Cd=1|2 for D2 and H2 as a function of
electron travel time τ . We now want to study the ratio as a function of harmonic energy ω.
This is the quantity that directly relates to the ratio of harmonic spectra, see section 3.1. The
different ionization potentials of the isotopes mean that a certain travel time τ maps to slightly
different harmonic energies ω. Figure 3.9 shows the ratios for 800 nm and 1200 nm and for an
intensity of 4 · 1014 W/cm2. For the sake of simplicity we will henceforth call the ratio of the
autocorrelation for the short trajectories “short ratio” and for the long trajectories “long ratio”.

In Figure 3.9 the short ratio is smaller than the long ratio in case of the lower wavelength. The
situation is reversed for the higher wavelength. This is rooted in the fact that the transition
from short to long trajectories happens at a time τ that grows with increasing wavelength
(see Figure 3.7). Hence, the long ratio will fall below the short ratio once the wavelength is
sufficiently large and the transition time has passed the maximum ratio. After that maximum,
the ratio is monotonically falling with τ and will rise again when the autocorrelation for D2

exhibits its next maximum. This happens at τ ≈ 750 and requires much higher wavelengths.
Furthermore, for 800 nm the long ratio is quite insensitive to a change in ω compared to the
short ratio and is slightly falling above ω = 1.5 (left panel of Figure 3.9). This is because the
electron travel times for the long ratio are (for this specific set of laser paremeters) situated
around the maximum in Figure 3.7 where the ratio changes little.

The ratio will always approach unity for τ → 0 since the autocorrelation (3.16) does so,
independent of the isotope. Because the short trajectories are positively chirped, i.e. ω grows
with τ , their low-energy ratio does only weakly depend on the laser parameters. This is different
for the long trajectories where the interval of electron travel times τ is shifted to larger τ when
the wavelength increases. The reason why the short ratio is larger than the long ratio for the
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Figure 3.9.: Ratio of classical autocorrelations |CD
d=1|2/|CH

d=1|2 as a function of harmonic energy ω for 800 nm
and 1200 nm. The intensity is 4 · 1014 W/cm2. The short trajectories yield a lower ratio in case of the low
wavelength. For the high wavelength, the situation is reversed.

higher wavelength in Figure 3.9 is therefore that the long ratio decreases significantly while the
short ratio changes only marginally when the wavelength is increased. This explains also why
the long ratio is increasing with ω for the higher wavelength. For 1200 nm, the transition time
between short and long lies just after the maximum ratio, which implies that long trajectories
with shorter travel times have larger ratios. Combined with the fact that the long trajectories
are negatively chirped, ω falls with τ , the ratio increases with ω. For 800 nm the transition
time is located just before the maximum where the ratio changes little with τ .

The spike-like features that occur at the beginning and end of the curves in Figure 3.9 originate
from the large slopes that the autocorrelation exhibits at low and high energy (see Figure 3.8).
A certain travel time corresponds to slightly different harmonic energies for the two isotopes,
because of slightly different ionization potentials. The ratio will therefore be significantly
affected if one the autocorrlations changes its value quickly.

3.3.2. Saddle-point times

We now want to study the properties of |Cd=1|2 when its time evolution is calculated with
complex saddle-point times. The left panel of Figure 3.10 shows what the graph of |Cd=1|2
looks like as a function of the complex-valued electron travel time τs = ts − t′s. The projection
on the C-Re(τs) plane shares similarities with the classical case, which can also be seen in the
top right panel. Apart from a slight upwards shift and the conspicuous cutoff spikes, both cases
show the same trend. The lowest-energy short trajectory has a nonzero travel time, which is
why the dashed curve does not start at Re(τs) = 0.

As already mentioned in section 3.2.1, the two-dimensional nature of the complex saddle-point
times requires choosing a path from the start time t′s to the end time ts of the time-evolution.
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Figure 3.10.: Modulus-squared vibrational autocorrelation |Cd=1|2 of H2 calculated with saddle-point times,
for short (dashed) and long (solid) trajectories. The wavelength is 800 nm with an intensity of 4 · 1014 W/cm2.
Left: Dependence on real- and imaginary parts of electron travel time τs, including projections to show the
dependences separately. The projection on Re(τs)-Im(τs) plane is the same graph as in the left panel of Figure
2.9. Right Top: Projection on the C-Re(τ) plane. Right Bottom: Ratio |CD

d=1|2/|CH
d=1|2. For comparison

the classical graphs are shown as thin blue lines as well.

In the classical case there is only one possible path and for every pair t′s, ts the intermediate
values of Cd=1 during the evolution from t′s to ts are the same. In terms of the modulus-squared,
this means that |Cd=1|2 and the ratio always follow the curves in Figure 3.6 until τs = ts − t′s
is reached and the evolution stops. The situation is different in the saddle-point case where
Cd=1 generally assumes different values between t′s and ts because of the different paths. As a
consequence, the evolution of Cd=1 cannot be as easily understood as for the classical times.
It should be noted here that in case of a time-dependent potential, the time-evolution in the
autocorrelation generally depends on the absolute values of t′s, ts and the intermediate values of
Cd=1 are not the same for all trajectories in the classical case as well.

In the bottom right panel of Figure 3.10 we show |CD
d=1|2/|CH

d=1|2. The classical and the
saddle-point ratio show the same trend, with the latter being noticeably smaller. Both curves
have a local maximum at Re(τs) ≈ 95 but the maximum is smaller by approximately 0.2 in the
saddle-point case. This is a significant difference. The larger inertia of the nuclei in D2 has less
impact on the harmonic ratio when the saddle-point times are used to model their dynamics.

To get a better understanding of the long-term behaviour, we plot in the left panel of Figure
3.11 the graph of |Cd=1|2 for a much larger wavelength of 10000 nm. This increases the travel
times of the trajectories sufficiently to cover the first maximum. It can be seen that it occurs
at approximately the same Re(τs) as for the classical times.

Considered as a function of ω, the saddle-point autocorrelation |Cd=1|2 can be seen in the right
panel of Figure 3.11. For comparison the classical case is shown as well. Both cases again
share similarities, the most significant difference being that the saddle-point curves are shifted
upwards. The cutoff is clearly visible as the energy where the curves exhibit a kink. It lies
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Figure 3.11.: Comparison between saddle-point (dark-red, thick) and classical (blue, thin) graphs of |Cd=1|2
of H2, for short (dashed) and long (solid) trajectories. Left: |Cd=1|2 for 10000 nm and 4 · 1014 W/cm2 as a
function of Re(τs). This demonstrates that there exist maxima in |Cd=1|2 in the saddle-point case as well.
Because of the nonzero imaginary part, |Cd=1|2 can become greater than 1. This happens in particular in
the low-energy region of the short trajectories since the modules of Im(t′s) and Im(ts) takes on large values
there, compare Figure 2.8. Shown are only values for harmonic energies below the cutoff. This is why the
transition at Re(τs) ≈ 896 from the short to the long trajectories appears continuous here. It normally shows
a discontinuity similar to the one in the upper right panel of Figure 3.10. Right: |Cd=1|2 as a function of
harmonic energy for 800 nm and 4 · 1014 W/cm2.

at a slightly larger harmonic energy, as we already know from the study of the saddle-point
solutions, see section 2.2.4.

In Figure 3.12 we show the evolution of |Cd=1|2 for a specific pair t′s, ts that corresponds to the
15th harmonic of H2, for the stepwise and direct paths (Figure 3.1). Note that such curves
exist for every point on the curves in left panel of Figure 3.10, which shows the autocorrelation
for a whole range of harmonic energies. It also serves as a demonstration of path-independence
since both paths yield the same value at t = ts.

Ratio We already established that the qualitative behaviour of the saddle-point autocorrelation
is comparable with the classical case. The most notable difference is the lower ratio in the
bottom right panel of Figure 3.10. It can therefore be expected that the overall trend, if the
ratio is considered as a function of harmonic energy ω, is similar as well. Figure 3.13 confirms
this. The arguments presented in section 3.3.1 to understand the graphs in the plateau region
can be applied here as well.

Also shown in Figure 3.13 are the ratios with the imaginary part of the recombination time
neglected in the time evolution, Im ts = 0. It generally only weakly alters the plateau region
of the ratio, because of small values of |Im ts| (see the lower panel of Figure 2.8). The long
ratios are generally less affected than the short ratios, because the long trajectories have a
particularly small |Im ts| and the difference to the full time evolution is barely visible. The
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Figure 3.12.: Complex time-evolution of |Cd=1|2 for a specific pair of saddle-point times t′s, ts belonging to the
15th harmonic of H2, i.e. the evolution starts at t′s and the value at ts lies on the curve in the left panel of
Figure 3.10. Shown is the evolution along the two paths given in Figure 3.1, i.e. stepwise and direct. Because
of path-independence both paths yield the same value at ts. Left: Short trajectory Right: Long trajectory.
Note that Im(ts) is quite small for the long trajectory and not visible on this scale. The laser parameters are
800 nm and 4 · 1014 W/cm2.
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Figure 3.13.: Ratio of saddle-point autocorrelations |CD
d=1|2/|CH

d=1|2 (dark-red, solid) as a function of harmonic
energy ω for 800 nm and 1200 nm with an intensity of 4 · 1014 W/cm2. Plotted are also the corresponding
classical ratios (blue, thin) for comparison. Both cases exhibit a lower short ratio for the lower wavelength and
a higher short ratio for the higher wavelength. The reason is the same position for the first local maximum in
the bottom right panel of Figure 3.10. Also shown is the ratio with Im ts = 0 (low contrast curves).
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3. Vibrational Autocorrelation Function

situation is different beyond the cutoff energy, where |Im ts| becomes large.

3.4. Summary and Conclusion

The modulus-squared saddle-point-approximated harmonic ratio for two isotopes, R[D̃SPA],
can be written as the product of three separate ratios, expression (3.3). These are the ratio of
the saddle-point factors, R[EΠΛ], of the vibrational autocorrelation, R[C], and of the action
phase factor R[exp(−iS̃)]. Of these three, R[C] and R[exp(−iS̃)] are the important ones, i.e.
they influence the harmonic ratio significantly in the plateau region. The heavier isotope D2

has a lower ionization probability (and rate) than H2, thus giving a corresponding ratio smaller
than unity. This is described by R[exp(−iS̃)], which can be adequately approximated by the
ratio of ADK tunnelling rates, R[Γ′], see section 3.2.2.

The dynamics of the nuclei enters the harmonic ratio via R[C], which is its most important
ingredient. The overall qualitative features of R[C], i.e. the autocorrelation ratio calculated
with complex-valued saddle-point times, can be understood by studying the autocorrelation
with real-valued times that come from the (semi)classical three-step model, see Figures 3.10, 3.11
and 3.13. The differences between the classical and the saddle-point case are of a quantitative
nature, hidden in the intricate complex-time evolution. The effect of this is a lower ratio for
the saddle-point times. The imaginary part of the recombination time is negligible for the ratio
in the plateau region.

In summary we conclude that the saddle-point autocorrelation ratio, while sharing similarities
with the classical one, is noticably shifted. It therefore gives rise to a shifted harmonic ratio and
a more detailed study, with the recombination transition matrix element included, is justified.
This is the subject of chapter 5.
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4. Quantum Mechanical Model

In this chapter we present two quantum mechanical models to describe high-harmonic generation
of the H2 molecule in a strong linearly polarized laser field. One model is for parallel orientation
of the laser polarization to the internuclear axis, the other for perpendicular orientation. Both
models are two-dimensional, one dimension for the active electron and one for the internuclear
distance. We are not interested in multielectron effects and therefore set one of the electrons to
be inactive. It interacts neither with the laser field nor with the active electron or nuclei. This
reduces the computational complexity significantly.

4.1. Relevant physical properties of the molecular isotopes

In this section we introduce the physical properties of the H2 and D2 molecules relevant for our
studies. The masses of the real nuclei are [76]

mproton
n = 1836.152 673 89

mdeuteron
n = 3670.482 967 85.

An overview of the lowest exact BO potential energy curves for H2 and H+
2 is given in Figures

4.1 and 4.2. When we refer to the BO potential or vibrational potential, we implicitly mean the
ground-state potential energy curve. For the neutral molecule, we denote it by VBO, this is the
X1Σ+

g 1sσg state. For the ion, it is denoted by V +
BO, which is the 1sσg state. Since these are

defined in BO approximation, they are independent of the isotope. The equilibrium distances,
i.e. the position of the minimum of the potential energy well, of the neutral, R0, and ion, R+

0 ,
are

R0 ≈ 1.401

R+
0 ≈ 1.997.

These are numerically determined for the curves VBO and V +
BO. Our notion of the ionization

potential is given by the vertical ionization potential. For H2 and D2 it is

IH
p = V +

BO(R0)− EH
0 ≈ 0.5944

ID
p = V +

BO(R0)− ED
0 ≈ 0.5973,

where EH
0 and ED

0 are the total ground-state energies of H2 and D2, respectively, i.e. the
energies of the vibrational ground states of VBO. Their values are

EH
0 ≈ −1.16454

ED
0 ≈ −1.16743.
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Figure 4.1.: Left: H2 Born-Oppenheimer potential energy curves for the ground state and the next six lowest
1Σ+

u states [77]. Right: H2 Born-Oppenheimer potential energy curves for the ground state and the next four
lowest 1Πu states. [78]

An illustration of the definition of Ip is given in the right panel of Figure 4.2.

4.2. Coordinates

For completeness we also a introduce position coordinate for the inactive electron in the
beginning. This position will later be fixed in the middle between the two nuclei, i.e. at their
center of mass, when the single-active-electron approximation is adopted. The contribution of
the inactive electron to the system is indirect via the potential energy (see next sections). So we
are initially considering a system of four particles which in the laboratory reference frame have
position coordinates r1, r2 for the two nuclei and ra and ri for the active and inactive electron,
respectively. The transformation to the molecular frame, so-called Jacobi coordinates [79], takes
the form

RCM =
1

2mn + 2
(mnr1 +mnr2 + ra + ri)

R = r1 − r2

r = ra −
mnr1 +mnr2

2mn
= ra −

r1 + r2

2

s = ri −
mnr1 +mnr2

2mn
= ri −

r1 + r2

2

where mn is the mass of one nucleus. The internuclear distance coordinate R describes vibration
and rotation of the two nuclei. The active electron coordinate r is defined as the distance of
the electron to the nuclear center of mass. The position for the inactive electron, s, is defined
analogously. RCM is the total center of mass of the molecule. Technically, these are not genuine
Jacobi coordinates since both electron coordinates are defined relative to the nuclear center of
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Figure 4.2.: Left: Collection of Born-Oppenheimer potential energy curves for H+
2 . The two energetically

lowest states 1sσg and 2pσu are separated from higher states by an energy gap. Right: Illustration of how
the vertical ionization potential Ip is defined. It is the difference between the ionic potential energy at the
neutral equilibrium distance V +

BO(R0) and the vibrational ground-state energy of the neutral molecule, E0.
The potential energy curves are the same for all isotopes, which means the difference between the isotopes lies
in the value of E0. The ionization potentials consequently differ by the difference in E0. Note that the upper
curve in the right panel is the same as the lowest curve in the left panel. The lower curve in the right panel is
the lowest curve in the panels of Figure 4.1.

mass. As a consequence, the kinetic energy is not diagonal in this frame but contains mixed
term of the electron momenta (see below). This does not complicate the calculations in this
work because, as already mentioned, the inactive electron coordinate is fixed later on.

The transformation back to laboratory frame reads

r1 = RCM +R/2− r + s

2mn + 2

r2 = RCM −R/2−
r + s

2mn + 2

ra = RCM + r − r + s

2mn + 2

ri = RCM + s− r + s

2mn + 2

Interaction with the laser The transformation of the length-gauge laser-interaction potential
in dipole approximation is

(ra + ri − r1 − r2) ·E(t) = (r + s) ·E(t). (4.1)

Here we see that neither the center of mass RCM nor the internuclear separation R couple to
the electric field E(t). Physically this makes sense, the molecule as a whole is uncharged and is
not acted upon by the electric field. Furthermore, the individual nuclei couple identically to
the field and their separation is therefore not changed by it. This is a consequence of the dipole
approximation that neglects the spatial dependence of the laser field.
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4. Quantum Mechanical Model

Kinetic energy The kinetic energies of all particles in the laboratory frame takes the form

T = − 1

2mn
∇2

1 −
1

2mn
∇2

2 −
1

2
∇2

a −
1

2
∇2

i .

Transformed to the molecular frame

T = − 1

2(2mn + 2)
∇2

CM −
1

2µn
∇2
R −

1

2µe
∇2
r −

1

2µe
∇2
s −

1

2mn
∇r∇s (4.2)

with reduced masses

µn =
mn

2
and µe =

2mn

2mn + 1
.

Here it can be seen that the center-of-mass motion decouples from the intramolecular dynamics
and the total state can be written as a product

|ψtotal〉 = |ψCM〉|ψ〉.

The center of mass, and correspondingly the molecule as a whole, does not couple to the electric
field, see (4.1). The state |ψCM〉 is that of a free particle and we can simply drop it, only
considering the intramolecular state |ψ〉.

Dipole acceleration The total induced dipole moment of the molecule, in the laboratory
frame, is given by

D(t) = 〈ψtotal(t)|r1 + r2 − ra + ri|ψtotal(t)〉

where the expectation value is calculated for the total time-dependent wave function in the
laboratory frame and with respect to all particle coordinates. Using equation (4.1) we see that
in the molecular frame this reduces to

D(t) = −〈ψ(t)|r + s|ψ(t)〉

under the assumption that the center-of-mass state |ψCM〉 is normalized. The dipole acceleration
is the second time derivative of D(t). With the help of the Ehrenfest theorem [65] this can be
written as

D̈(t) =
1

µe
〈ψtotal(t)|(∇r +∇s)V (r, s, t)|ψtotal(t)〉 (4.3)

where V (r, s, t) is the total potential under which the electrons move, i.e. the interaction with
the core and the electric field of the laser (compare with section 2.2.3). This form has the
advantage that it is only sensitive to regions where the interaction with the core is significant.
In particular, parts of the wave function located far from the core, where the potential is flat,
are automatically weighted less.

In the gradient of V above, the interaction with the laser gives rise to a term proportional to
E(t). Such a term introduces only the spectrum of the laser, which is not of interest. It is
therefore appropriate to omit this contribution in V .
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4.3. Perpendicular orientation

p+

p+

e−e−R

z

Figure 4.3.: Illustration of the perpendicular model. The electric field, and the electron motion that is coupled
to it, is oriented perpendicular to the internuclear axis along which the two nuclei vibrate. Note that the
position of the inactive electron in the middle between the nuclei is purely illustrative and does not reflect its
physical state.

Treatment of the inactive electron Adopting the single-active-electron approximation, we
assume that the inactive electron stays in the electronic BO ground state at all times and does
not participate in the dynamics initiated by the electric field of the laser. Correspondingly, we
set the kinetic-energy term in (4.2) equal to zero

1

2µe
∇s ≡ 0.

The mixed kinetic term ∇r∇s/2mn is neglected. The inactive electron contributes indirectly
in that the electron-core interaction potentials V⊥,‖ (introduced in the following) are defined

relative to the ionic BO potential V +
BO. In particular, V⊥,‖ do not contain interaction terms for

the inactive electron and the term including ∇s in the dipole acceleration (4.3) is zero.

From now on when we talk about an electron, the active one is implicitly meant except where
otherwise stated.

4.3. Perpendicular orientation

Since we are only interested in linearly polarized laser fields, we consider a model that treats the
internuclear distance as well as the electron position one-dimensionally, such that the electron
is able to move along the polarization direction and the nuclei are allowed to move along the
direction given by the orientation of the molecule relative to the field. An illustration of this
model [80] is shown in Figure 4.3. The electron, with one-dimensional position coordinate z,
is constrained to the direction perpendicular to the internuclear axis. The nuclei are allowed
to vibrate, described by the internuclear separation coordinate R. This orientation avoids
two-center interference minima in the spectra [52,53] and therefore allows isotope-dependent
harmonic ratios to be studied independently of such an interference effect.

The Hamiltonian for this system in the molecular frame and after separation of the center-of-mass
motion takes the form

H⊥ = − 1

2µn

∂2

∂R2
− 1

2µe

∂2

∂z2
+ V⊥(z,R) + V +

BO(R) + E(t)z (4.4)
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Figure 4.4.: Left: Perpendicular soft-core parameter σ(R). Right: Perpendicular electronic-nuclear interaction
potential V⊥(z,R). Since the electron is moving perpendicular to the internuclear axis, it sees only one
potential well. Note that V⊥(0, R) = −1/σ(R). The asymptotic potential V⊥(z,R → ∞) = 1/

√
z2 + 2

reproduces the correct asymptotic energy of limR→∞[VBO(R) − V +
BO(R)] = −1/2 [81], which is also the

ground-state energy of the hydrogen atom.

where V +
BO(R) is the BO ground-state potential of the ion, H+

2 .

The electronic-nuclear interaction potential reads

V⊥(z,R) = − 1√
z2 + σ2(R)

. (4.5)

There is only a single potential well for the active electron in V⊥(z,R) because of the perpendic-
ular arrangement. The electron always has the same distance to both of the nuclei. The depth
of the well depends on the separation R which enters the potential via the soft-core parameter
σ(R). This parameter is chosen such that the BO ground-state potential energy curve of H⊥
equals the exact one for H2, i.e. VBO(R). This is where the otherwise nonparticipating inactive
electron has its indirect contribution: the potential V⊥(z,R) is defined relative to V +

BO(R) and
is adjusted to match VBO(R) in BO approximation. A plot of σ(R) and V⊥(z,R) is shown in
Figure 4.4.

4.4. Parallel orientation

For this orientation we can also reduce the dimensionality, for the same reasons as for the
perpendicular case. The one-dimensional electron coordinate is denoted by x, the internuclear
distance by R as before. An illustration is given in Figure 4.5.
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4.5. Dipole-transition matrix element

p+p+ e−e−

R

x

Figure 4.5.: Illustration of the parallel model. The electron motion is oriented parallel to the internuclear axis
along which the two nuclei vibrate. Similar to Figure 4.3, the position of the inactive electron in the middle
between the nuclei is purely illustrative and does not reflect its physical state.

The Hamiltonian H‖ is analogue to H⊥ and in the molecular frame reads

H‖ = − 1

2µn

∂2

∂R2
− 1

2µe

∂2

∂x2
+ V‖(x,R) + V +

BO(R) + E(t)x. (4.6)

The reduced masses are the same as in the perpendicular case, namely µn = mn/2 and
µe = 2mn/(2mn +1). In contrast to H⊥ the electron sees two potential wells. The corresponding
electronic-nuclear interaction potential is chosen similar to ref. [54]

V‖(x,R) = − Zeff

(
x+ R

2

)
√(

x+ R
2

)2
+ ε(R)2

− Zeff

(
x− R

2

)
√(

x− R
2

)2
+ ε(R)2

.

The effective nuclear charge Zeff is meant to describe the screening effect of the inactive electron
by means of a Gaussian function, Zeff(x) = 1

2

(
1 + e−4 ln(2)x2

)
= 1

2

(
1 + 2−4x2

)
, with a FWHM

of 1. The screening of one nucleus by the inactive electron is the smaller the closer the active
electron is to that nucleus, i.e. Zeff(x→ 0) = 1. On the other hand, if the active electron is far
away, the remaining ion carries a total charge of 1 and one could say that this charge is equally
shared by both nuclei, i.e. Zeff(x→∞) = 1

2 .

As in the perpendicular case, the soft-core parameter ε(R) is chosen to match the VBO(R)
potential curve in BO approximation. Figure 4.6 shows ε(R) and V‖(x,R).

4.5. Dipole-transition matrix element

In this section the dipole-transition matrix element is investigated for the parallel and perpen-
dicular models described above, which is an essential part of the vibrational autocorrelation
(3.1). Primary interest lies in the recombination step because it is the main ingredient in
calculating the harmonic spectrum [82,83]. The ionization step, which is the reversed process,
is of less importance for the structure of the spectrum as it mostly determines the yield.

We distinguish between length/velocity gauge and length/velocity form. The former concerns
the (physically equivalent) gauges of the laser-matter-interaction and determines if the ionization
matrix element is calculated with the position or momentum operator. The latter affects the
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Figure 4.6.: Left: Parallel soft-core parameter ε(R). Right: Parallel electronic-nuclear interaction potential
V‖(x,R). In this orientation the electron sees two potential wells.

recombination matrix element, as discussed in section 2.2.3, and the forms are equivalent when
the state of the system is known exactly.

We are interested in two different descriptions of the continuum wave function. The first are
plane waves used in the SFA and the second are exact scattering solutions. Both cases are
discussed in the following. Regarding plane waves, it was pointed out in section 2.2.3 that
it makes a difference as to which form of the matrix element is used because they are not
exact solutions for a nonvanishing potential. To address this, we will consider both the length
and velocity forms. The acceleration form ranks close to the velocity form when accuracy is
concerned, but is more demanding to calculate [66]. Specifically, we concern ourselves with the
following two integrals

dL(k,R) = 〈ψc
k|x|ψR〉 =

∫
dxψc∗

k (x)xψR(x) (4.7)

dV(k,R) = 〈ψc
k|k|ψR〉 =

∫
dxψc∗

k (x)(−i∇)ψR(x) (4.8)

where ψc
k is a general continuum wave function. In the SFA these are ψc

k(x) = eikx, expression
(2.12). The electronic BO states ψR are the one-dimensional ground states of the electronic-
nuclear interaction potential for constant R.

In general, the matrix element needs to be calculated only once for a molecular target and
is independent of the isotope. Since there are no analytical expressions for ψR for the model
potentials above, the evaluation is done numerically. It is helpful to compare the results with
an approximate model where ψR is given in LCAO approximation. These are given in the
appendix, section A.1.

Physically the cases of k and −k should be equivalent because H2 is a homonuclear diatomic
molecule. In our model the electron is constrained to one dimension and can be thought of to
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4.5. Dipole-transition matrix element

move from the left to the right for positive k and in the opposite direction for negative k. This
means the continuum states should satisfy

ψc
−k(−x) = ψc

k(x).

We therefore know for a general dipole moment operator d̂

d(−k,R) =

∫ ∞

−∞
dxψc∗

−k(x)d̂ψR(x)

=

∫ −∞

∞
d(−x)ψc∗

−k(−x)
(
−d̂
)
ψR(−x) (4.9)

= −d(k,R)

because ψR(−x) = ψR(x) for the same symmetry reasons. The operator d̂ is antisymmetric
under the transformation x → −x in both length and velocity form. We conclude that the
matrix element is antisymmetric under reversion of the electron momentum. As a side note,
changing the sign of the internuclear distance leaves d invariant because R→ −R amounts to
an exchange of the identical nuclei.

4.5.1. Plane wave continuum

This is the realm of the SFA where the influence of the core potential upon the continuum
electron is neglected. The matrix elements are given by

dL(k,R) =

∫
dx e−ikxxψR(x)

dV(k,R) =

∫
dx e−ikx(−i∇)ψR(x).

Changing the sign of k in e−ikx is equivalent to taking the complex-conjugate. The states ψR
can be and are chosen real-valued in position representation. This gives for dL and dV

d∗L(k,R) =

∫
dx eikxxψR(x)

= dL(−k,R)

= −dL(k,R)

d∗V(k,R) =

∫
dx eikx(i∇)ψR(x)

= −dV(−k,R)

= dV(k,R)

where the last equalities come from (4.9). dL is therefore purely imaginary and dV is real.
Consequently, arg(dL(k,R)) = ±π/2 and arg(dV(k,R)) = 0,±π.

Perpendicular orientation

We first consider the perpendicular orientation, i.e. the electronic BO states ψR are the one-
dimensional eigenstates of V⊥ for constant R. The single potential well in this orientation is
equivalent to an atom. Interference effects [53] originating from the multiple nuclei are absent.
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Figure 4.7.: Absolute values of the matrix elements for perpendicular orientation, calculated with plane waves.
This case is physically equivalent to an atom and no interference features due to multiple nuclei are visible.
Instead there is a single maximum as a function of k, which as a function of R inherits the shape from the
reciprocal of σ(R) in Figure 4.4. Left: |dL(k,R)| Right: |dV(k,R)|

The absolute values of the matrix elements are shown in Figure 4.7, dL on the left, dV on the
right.

As expected, there are no interference features visible in both panels of Figure 4.7, instead
there is a single maximum as a function of k. This is qualitatively similar to the LCAO case in
Figure A.2 in section A.1 in the appendix. The position and value of the maximum of both
dL and dV are nonconstant functions of R, inheriting the shape of the reciprocal soft-core
parameter σ(R) of V⊥ shown in Figure 4.4. The position of the maximum is shown as a black
dashed line and for large R, it can be reasonably well described in LCAO approximation
since the nuclei can be considered separated. This gives kmax

L (R � 0) ≈ 1/
√

5 ≈ 0.45 and
kmax

V (R� 0) ≈ 1/
√

3 ≈ 0.58, see appendix A.1.

Parallel orientation

Here we study the parallel orientation, i.e. ψR are the one-dimensional eigenstates of V‖ for
constant R. This orientation reveals the molecular structure since there are two potential
wells. It is well known [52, 53] that the two (independent) nuclear centers together with the
recombining plane wave of the electron are equivalent to a double-slit setup. This causes
interference patterns in the recombination matrix element, which are imprinted onto the
harmonic spectrum. Depending on the angle θ between the wave vector k of the returning
electron and the internuclear axis R, there is an effective internuclear separation |R| cos(θ) that
corresponds to the separation of the slits. If an odd number of half wavelengths λ/2 = π/|k|
matches this effective separation the interference is destructive and the harmonic radiation with
frequency ω = |k|2/2 + Ip is suppressed. This is commonly known as the two-center interference
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Figure 4.8.: Absolute values of the matrix elements for parallel orientation, calculated with plane waves.
Internuclear interference (see main text) causes more intricate features compared to the perpendicular case in
Figure 4.7.Left: |dL(k,R)| Right: |dV(k,R)|. The first three two-center interference minima (m = 0, 1, 2 in
expression (4.10)) are shown as well. It fits the minima of |dV(k,R)| quite well and is more accurate for large
R.

minimum. Correspondingly, if a multiple of full wavelengths matches the effective separation,
the emitted radiation is enhanced. Since this reasoning is based on a plane-wave formulation
for the continuum electron, the different formulations of the matrix element are not equivalent
and yield different results [66]. The velocity form is preferable in this respect.

The present case of parallel orientation means the angle is equal to zero, θ = 0, and the effective
separation is equal to the true internuclear separation R. One should therefore expect that the
velocity-form recombination matrix element exhibits roots approximately at

kR = (2m+ 1)π for m = 0, 1, 2, . . . (4.10)

This approximation improves with increasing |k| because in this case the plane-wave description
of the continuum electron becomes more appropriate. It also improves for increasing R since the
electron can then be taken to interact independently with both nuclei. The interference minima
coincide with the roots of d, which means that crossing a curve describing such a minimum
within the k-R-plane leads to a jump in the phase of π.

The absolute values of both forms are shown in Figure 4.8. Shown is a relatively large range
of internuclear distances to demonstrate the many orders of interference minima, which can
clearly be seen. The dominant part of the nuclear dynamics in the ion H+

2 is taking place in
the well of the ionic potential curve, however, below R ≈ 4.
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4.5.2. Exact continuum

Approximating the continuum states of the electron by plane waves is one of the key elements
of the SFA. However, neglecting the influence of the core potential is problematic because the
long-range nature of the Coulomb potential means that the electron is never affected by the
laser-field only. Effects such as two-center interference [82], which depend on the interaction
between electron the core, cannot be accurately described with this approach. The soft-core
potentials V⊥ and V‖ introduced above possess this long-range tail as well and the same
shortcomings are present.

In this section we want to go beyond the plane-wave approximation for the continuum electron
and use numerically exact, field-free scattering states in the recombination matrix element.
This improves the accuracy of the results obtained from the vibrational autocorrelation function
(3.1) since it explicitly depends on the matrix element. The scattering states that we are using
have been applied before, see [84,85].

Length and velocity form

Using an exact continuum state ψc
k, i.e. a scattering solution of the electronic-nuclear interaction

potential, in expressions (4.7) and (4.8), means that both participating states are exact
eigenstates of their respective Hamiltonian. In particular, it follows that

dV(k,R) = 〈ψc
k|−i∇|ψR〉

= −i〈ψc
k|[x,H]|ψR〉

= i

(
k2

2
− E(R)

)
dL(k,R). (4.11)

From the first to the second line it was used that the momentum operator is related to the
commutator [x,H]. The Hamiltonian H is the field-free version of H⊥, expression (4.4), or H‖,
expression (4.6), in BO approximation. From the second to the third line, after expanding the
definition of the commutator, [x,H] = xH −Hx, the Hamiltonian acted to the left and right
to yield the eigenenergies k2/2 of ψc

k and E(R) = VBO(R)− V +
BO(R) of ψR.

We see that the phases of dV and dL are related by a shift of π/2. The absolute value differs by
the energy difference of the continuum and bound state. Note that k2/2 − E(R) is positive
and therefore nonzero for all k,R. Thus, dV and dL have the same roots. For large R it holds
that E(R) ≈ −1/2 and the matrix elements differ by a factor of approximately (k2 + 1)/2 in
magnitude.

Because of this, explicit study of the matrix element for both forms is not necessary. However,
doing independent calculations for either form serves as an additional check that the numerical
data is valid. In the following we show plots of both cases to have a complete reference.
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4.5. Dipole-transition matrix element

Procedure

Starting point is the solution to the one-dimensional time-independent Schrödinger equation in
WKB approximation [86]. For a given asymptotic (i.e. x → ±∞) kinetic momentum k then
holds

ψWKB
k (x) =

N√
|pk(x)|

exp

(
±i

∫ x

dx′ pk(x
′)

)
(4.12)

with the expression for the classical momentum

pk(x) =
√
k2 − 2V (x). (4.13)

The constant N provides normalization. The first term in the square root is twice the
total energy of the state. Since the potential V (x) vanishes for x → ±∞, the total energy
asymptotically equals the kinetic energy k2/2. With the help of the special case of zero potential,
ψWKB
k (x) ∝ exp(±|k|x), we see that the ±-sign can be interpreted as the sign of k.

For nonzero potential, the WKB approximation is valid in regions where V (x) changes little,
compared to the total energy, on length scales comparable to the de-Broglie wavelength 2π/k.
The basic idea is that under these conditions the wave function is close to that of a free particle,
i.e. for a constant potential. To account for the slow but nevertheless nonconstant spatial
dependence of the potential, the amplitude and phase of the wave function are allowed to
depend on the position x. One then arrives at the expressions (4.12) and (4.13).

The general idea to determine the exact numerical scattering states is the following. We know
that expression (4.12) is a good approximation of the exact solution for large values of |x| and
can therefore use it as an initial value at a numerical grid boundary sufficiently far from the
potential well. The complete wave function is then determined by numerically integrating the
Schrödinger equation over the rest of the grid.

Although the exact scattering states are to be calculated for the soft-core potentials V⊥ and
V‖, we choose to use the exact Coulomb potential V (x) = −1/|x| in expressions (4.12) and
(4.13) to determine the initial values at the boundary. This has the advantage that the integral
can be evaluated analytically and the introduced error should be negligible by the fact that
asymptotically the soft-core potentials coincide with the Coulomb potential (also for the parallel
orientation where the potential is a sum of two shifted Coulomb potentials). The WKB phase
integral then reads

1

sgn(k)
φWKB
k (x) =

∫ x

0
dx′

√
k2 +

2

|x′|

= x

√
k2 +

2

|x| +
sgn(x)

|k| ln

(
1 + k2|x|+ |kx|

√
k2 +

2

|x|

)
, (4.14)

assuming that the electron starts its journey at the origin. See A.2.1 in the appendix for the
proof of this expression. The momentum pk(x) in the amplitude in (4.12) is set to be constant,
which is asymptotically correct. Note that φWKB

−k (x) = −φWKB
k (x).
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4. Quantum Mechanical Model

To get a better physical intuition about expression (4.14), it is helpful to approximate the
square root for |x| → ∞. One then arrives at

φWKB
k (x) ≈ φCoulomb

k (x) + sgn(x)φshift(k)

with

φCoulomb
k (x) = kx+

sgn(x)

k
ln
(
2|kx|

)
(4.15)

φshift(k) =
1

k

[
1 + ln

(
|k|
)]
.

This is equivalent to the Eikonal approximation, which further approximates the WKB expression
for potentials that are small compared to the total energy of the state. For a more detailed
derivation, see A.2.2 in the appendix. The first term, φCoulomb

k (x), is the well-known asymptotic
phase in the Coulomb potential [87], which corresponds to a plane wave with momentum k
that is corrected by a contribution due to the Coulomb tail. The second term, φshift(k), is a
global constant phase shift.

The transmitted part, i.e. on the side of the potential well opposite to where the incident wave
is coming from, of the scattering state in the asymptotic region is set to

ψc
k(x) = exp

(
iφboundary
k (x)

)
for |x| � 0 (4.16)

with the phase

φboundary
k (x) = φWKB

k (x)− sgn(x)φshift(k). (4.17)

Here, the expression for φWKB
k (x) is the one in (4.14). Asymptotically expression (4.17) is equal

to φCoulomb
k (x), which is the usual expression found in the literature. [42, 84,85].

For our purpose we need the outgoing solution, i.e. the wave function is asymptotically a
superposition of an incident wave and a scattered wave travelling outwards from the scattering
center [88]. There exists also an incoming solution, which is a superposition of an incident and
inwards travelling wave. Specifically, for k > 0 and outgoing type, we set the wave function as
in (4.16) at the positive end of the grid, i.e. x� 0. Once the numerical solution ψc

k is known
on the whole grid, it needs to be properly normalized, i.e. multiplied by a number T (k), such
that for x� 0

T (k)ψc
k(x) = exp

(
iφboundary
k (x)

)
+R(k) exp

(
iφboundary
−k (x)

)
. (4.18)

The terms on the right-hand side correspond to the aforementioned incident (left term) and

outgoing scattered (right term) wave. Note that also φboundary
−k (x) = −φboundary

k (x). The
modulus-squared of the functions T (k) and R(k) can then be interpreted as transmission
coefficient and reflection coefficient, respectively, and it can be numerically verified that
T 2(k) +R2(k) = 1.
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Figure 4.9.: Transmission coefficient T 2(k) for the indicated internuclear distances R. The reflection coefficient
R2(k) is given by 1− T 2(k). Due to numerical difficulties for small asymptotic momenta k, the solution is
not accurate in that region (see main text). This can be seen in the left panel, where artifacts are visible.
Left: Perpendicular orientation. Right: Parallel orientation.

Using expression (4.18) at two different points in the asymptotic region, say x1, x2 with x1 6= x2,
it is easy to see that

T (k) =
exp
(

iφboundary
−k (x2)

)
exp
(

iφboundary
k (x1)

)
− x1 ↔ x2

exp
(

iφboundary
−k (x2)

)
ψc
k(x1)− x1 ↔ x2

R(k) =
exp
(

iφboundary
k (x1)

)
ψc
k(x2)− x1 ↔ x2

exp
(

iφboundary
−k (x2)

)
ψc
k(x1)− x1 ↔ x2

where x1 ↔ x2 stands for the preceding term with x1 and x2 interchanged. Numerically, x1

and x2 are chosen as the two neighbouring points at the grid boundary. The function T 2(k) for
some internuclear distances is shown in Figure 4.9.

Accuracy

With respect to numerical accuracy, the calculation of the exact scattering states is difficult for
low asymptotic momenta k. As mentioned above, the WKB approximation is valid when the
potential varies slowly, over a wavelength 2π/k, compared to the total energy k2/2. This loosely
defines what qualifies as the asymptotic region. To make this a little more clear, consider (for
x > 0) the change of the Coulomb potential over the distance 2π/k relative to k2/2

r(k, x) =
1/x− 1/(x+ 2π/k)

k2/2
=

4π

k3x(x+ 2π/k)
.
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4. Quantum Mechanical Model

This serves as a measure of accuracy in the sense that if r(k, x) is small, so is the error when
adopting the WKB approximation. Requiring a fixed error r(k, xb) = a for small k leads to

xb =
1

k

(
−π +

√
π2 +

4π

ka

)

≈ 1

k

[
−π +

√
4π

ka

(
1 +

1

2

kaπ

4

)]

=

√
π

a

(
2

k3/2
+
π

4

1

k1/2

)
− π

k

We see that for fixed a, xb grows with a leading term of k−3/2 as k → 0, although the term
proportional to −k−1 dampens the growth in some intermediate region. Otherwise for fixed k
and a→ 0, the position xb grows as a−1/2.

Numerically, this means that large grids need to be used to adequately calculate the dipole
matrix element for small k. Failure to do so usually manifests itself in artifacts as can be seen
in the left panel of Figure 4.9. Another example is the absolute value of the matrix element
for k → 0. We know by means of equation (4.9) that d(k → 0, R)→ 0. However, in numerical
results, the absolute value of d tends to some constant value greater than 0 which depends on
the grid boundary.

The behaviour of the absolute value of the matrix element could possibly be inferred from the
Wigner-threshold law, that, among other processes, describes the low-energy cross section of
photoionization. This cross section depends on the modulus-squared of the corresponding matrix
element, see for example [89,90] and references therein. However, our studies of HHG in this
work are not concerned with low harmonic energies. Primary interest lies in the plateau region
of the harmonic emission, well above the threshold harmonic energy given by the ionization
potential Ip ≈ 0.6. We can therefore neglect the numerical inaccuracies of the matrix element
for small k.

Perpendicular orientation

Generally, the qualitative behaviour of the absolute value of the transition matrix element is
similar to the plane-wave case. In case of perpendicular orientation, this means we still arrive
at a single maximum as a function of k. This can be seen in the left panels of Figures 4.10
(length form) and 4.11 (velocity form). The difference is quantitative, such as the position and
value of the maximum (black dashed line). In velocity form that maximum lies at higher k
than in length form, which can be understood by means of equation (4.11).

Compared to plane waves, low internuclear distances have more weight relative to higher
distances. This is especially apparent in the velocity form, but is also the case for the length
form. Recombination for small R is therefore enhanced. This is plausible, because at small
internuclear distances the electron-core interaction is especially strong. The electron approaches
closer to a more concentrated positive charge of the nuclei when its distance to the internuclear
axis decreases. Hence, the difference to plane waves should be more pronounced.
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Figure 4.10.: Length-form dipole-transition matrix element for perpendicular orientation, calculated with
exact scattering states. Left: Absolute value, it is qualitatively similar to the plane-wave case with a single
R-dependent maximum as a function of k (black dashed line). For large R the maximum lies at k ≈ 0.327.
Right: Phase, it diverges for |k| → 0, which results in jumps of 2π. For large |k|, the scattering states
approach plane waves and the phase of the matrix element therefore approaches π/2 for negative k and −π/2
for positive k.
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Figure 4.11.: Velocity-form dipole-transition matrix element for perpendicular orientation, calculated with
exact scattering states. Left: Absolute value, it is qualitatively similar to the plane-wave case with a single
R-dependent maximum as a function of k (black dashed line). For large R the maximum lies at k ≈ 0.43
Right: Phase, it diverges as |k| → 0, which causes jumps of 2π. For |k| → ∞, the phase approaches the
phase of the plane-wave case, which is 0 for positive k and ±π for negative k.
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Figure 4.12.: Length-form dipole-transition matrix element for parallel orientation, calculated with exact
scattering states. Left: Absolute value, the interference minima lie at different positions compared to the
plane-wave matrix element in Figure 4.8. Right: Phase, it diverges for |k| → 0, which causes jumps of 2π.
Additionally, there are jumps of π at the positions of the interference minima, which coincide with the roots.
For large |k| the phase shows the behaviour of the plane-wave case, which are jumps between ±π/2. This can
be seen particularly well for large R in the upper-right corner.

The most notable difference to the plane-wave case is the phase of d, which is no longer constant
within a halfplane of positive or negative k (right panels of Figures 4.10 and 4.11). It diverges
for |k| → 0 and (slowly) approaches the plane-wave phase of ±π/2 (length-form) and 0,±π
(velocity-form) for |k| → ∞. The rapidly varying phase for small |k| is not well represented by
the numerical data. This is another manifestation of the increasing numerical effort necessary
as |k| tends to zero.

Parallel orientation

In this orientation the quantitative difference between plane waves and exact scattering states
becomes especially apparent, see Figures 4.12 and 4.13. Qualitatively, the absolute value is
similar. It shows a series of interference minima (left panels). The crucial distinction is that the
minimum curves are at different positions compared to the plane-wave case. This is expected
since the electron-core interaction is the physical mechanism behind the interference effects and
is specifically what the exact states are meant to address. The term k2/2 in equation (4.11),
that relates dV and dL, gives more relative weight to the interference structures of dV at large
k, visible as a higher contrast in the left panel of Figure 4.13.

The phase is a complicated function of k and R. The interference minima lie at the roots of d
(as for plane waves) and corresponding jumps of π thus occur. Analogous to the perpendicular
orientation, the phase diverges for |k| → 0 and approaches the phase of the plane-wave case for
|k| → ∞. Note that dL and dV are related by equation (4.11) and the roots of dL and dV thus
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Figure 4.13.: Velocity-form dipole-transition matrix element for parallel orientation, calculated with exact
scattering states. Left: Absolute value, the interference minima lie at different positions compared to the
plane-wave matrix element in Figure 4.8. Right: Phase, it diverges for |k| → 0, which causes jumps of 2π.
Additionally, there are jumps of π at the positions of the interference minima, which coincide with the roots.
For large |k| the phase shows the behaviour of the plane-wave case, i.e. jumps between 0 and ±π. This is can
be seen particularly well for large R in the upper-right corner.

coincide. The interference minima are therefore located at the same positions.

Figure 4.14 compares the positions of the first 10 interference minima with equation (4.10).
The approximation (4.10) is based on plane waves as continuum states. We see that the curves
in Figure 4.14 agree increasingly well for large |k|.

4.5.3. Divergence of ionization matrix element in SPA

The ionization step in HHG, as described by the length-gauge matrix element dion, presents a
problem in saddle-point approximation. Specifically, the function dion(k,R) has a singularity at
k±ion, as can be seen in the following.

For electron positions far from the core, i.e. x → ±∞, the electronic-nuclear interaction
potential, which we denote by V here, goes to zero for any R (and any orientation)

lim
x→±∞

V (x,R) = 0.

The electronic BO states ψR are therefore asymptotically given by (we take µe ≈ 1 because
mn � 1)

ψR(x) −→
x→±∞

e∓
√

2|E(R)|x
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Figure 4.14.: Position of the lowest 10 interference minima of the transition matrix element for the parallel
orientation, counted starting at 0 and increasing from lowest to highest internuclear distance R. The curves
for the exact matrix element are shown as thick solid lines. For comparison, the minima according to equation
(4.10), kR = (2m+ 1)π, m = 0, 1, 2, . . . , are shown as thin dashed lines. The exact minima approach (4.10)
for large |k| and R.

with E(R) = VBO(R)− V +
BO(R). In order to show that dion

(
k±ion, R

)
is undefined, we study the

asymptotic behaviour of the integrand of dion. If we set the continuum state to be a plane wave
ψc
k = exp(ikx) we arrive at the asymptotic integrand (see expression (4.7))

f±x (k,R) = exp(−ikx)x exp
(
∓
√

2|E(R)|x
)
.

where f+
x holds for x→ +∞ and f−x for x→ −∞. Let us first consider the case of k+

ion = i
√

2Ip

f±x
(
k+

ion, R
)

= x exp
([√

2Ip ∓
√

2|E(R)|
]
x
)
.

We see that for any R

f−x
(
k+

ion, R
)

= x exp
([√

2Ip +
√

2|E(R)|
]
x
)
−→
x→−∞

0.

In contrast, the behaviour of f+
x (k+

ion, R) depends on the value of R. There exists a Rthr ≈ 1.43
(for Ip ≈ 0.6) such that Ip ≥ |E(R)| for R ≥ Rthr and Ip < |E(R)| otherwise. It follows that

f+
x

(
k+

ion, R ≥ Rthr

)
= x exp

([√
2Ip −

√
2|E(R ≥ Rthr)|

]
x
)
−→
x→+∞

∞

and consequently dion

(
k+

ion, R ≥ Rthr

)
→ ∞. The value of Rthr is close to the equilibrium

distance R0 ≈ 1.4, where the vibrational ground state χ0 yields a significant probability.

The situation is similar for k−ion = −i
√

2Ip. Here we have

f±x
(
k−ion, R

)
= x exp

(
−
[√

2Ip ±
√

2|E(R)|
]
x
)
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and therefore

f+
x

(
k−ion, R

)
= x exp

(
−
[√

2Ip +
√

2|E(R)|
]
x
)
−→
x→+∞

0

while in the other limit

f−x
(
k−ion, R ≥ Rthr

)
= x exp

([√
2|E(R ≥ Rthr)| −

√
2Ip

]
x
)
−→
x→−∞

−∞.

Hence, dion

(
k−ion, R ≥ Rthr

)
→ −∞.

The argument also applies for the exact scattering states. For large x the Coulomb phase-
correction is proportional to ln

(
2|kx|

)
, expression (4.15), which in any case grows slower for

|x| → ∞ than the phase linear in x which causes the singularity.

The problem of the ill-defined ionization matrix element has direct consequences for the
vibrational autocorrelation function (see chapter 3), which is therefore also ill-defined. The
saddle-point approximation simply fails to appropriately describe the ionization step. This
does not a priori mean, however, that the ratio of vibrational autocorrelations, which is the
physical relevant quantity of interest, loses its significance as well. It may be that, although
the autocorrelations by themselves diverge, their ratio stills contains information about how
the ionization step differs between the isotopes. A suitable regularization procedure of the
integrals might help in extracting such information. Unfortunately, the problem is aggravated
by the fact that dion is not a global factor, but is involved in the functional dependence of the
autocorrelation integrand. Furthermore, the evaluation of the autocorrelation integral is only
possible numerically, which makes a prospective regularization a formidable task.

Another way to deal with the singularity, which is the way we choose to overcome the problem, is
to neglect the ionization matrix element altogether. This is equivalent to setting it identically to
1, dion ≡ 1. The R- and isotope-dependent ionization-amplitude is consequently not accessible.
However, the structure of the harmonic spectrum is largely independent of how the electron
was promoted to the continuum [52,83], rendering the ionization step less important than the
recombination step. Leaving out dion should therefore be seen as an additional approximation
of the SFA-SPA-based model of HHG.
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5. Time-Frequency Study of Harmonic Signal

The purpose of this chapter is to compare vibrational autocorrelation ratios with harmonic
ratios calculated via solutions of the TDSE. For this we use the parallel and perpendicular
models from chapter 4. The central focus lies on the autocorrelation ratios that are calculated
with the complex saddle-point times, see section 2.2.4. The theoretical background and basic
properties of the autocorrelation function can be found in chapters 2 and 3.

5.1. Harmonic spectrum

In HHG, the quantity of interest is the power spectrum of the emitted harmonic radiation. Once
the exact wave function ψ(t) has been found numerically via the TDSE, the dipole acceleration
(see also section 4.2)

Dacc(t) =
1

µe

〈
ψ(t)

∣∣∣∣
∂V (x,R)

∂x

∣∣∣∣ψ(t)

〉

is related to the spectrum by its modulus-squared Fourier transform, as explained in section
2.2.2.

Sspec(ω) ∝
∣∣∣D̃acc(ω)

∣∣∣
2

=

∣∣∣∣
∫ tf

t0

dtDacc(t)e
iωt

∣∣∣∣
2

, (5.1)

with suitably chosen start time t0 and end time tf . Since we are only interested in linearly
polarized electric fields, the dipole acceleration above is taken to be a scalar quantity. The
harmonic ratio can then be calculated by

Rspec(ω) =
SD

spec(ω)

SH
spec(ω)

,

where SD
spec and SH

spec are the spectra for D2 and H2, respectively. Examples of such spectra,
for the parallel orientation, together with the harmonic ratio Rspec resulting from it, is shown
in Figure 5.1. The laser pulse is a single cycle starting at full amplitude, i.e. E(t) = E0 cos(ω0t)
with t ∈ [t0, tf ] = [0, 2π/ω].

In the left panel, the low contrast curves are the spectra as calculated with expression (5.1).
The high contrast curves show the same data smoothed by means of a moving average. The
ratio of the smooth curves is shown in the right panel. The two-center interference minima in
the spectra occur at slightly different energies for the two isotopes and give rise to the peak in
the ratio at ω ≈ 2.
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Figure 5.1.: Left: Example of harmonic spectra for D2 and H2 (low contrast curves). The driving laser field
is a single cycle starting at full amplitude, i.e. E(t) = E0 cos(ω0t) with t ∈ [0, 2π/ω0]. The wavelength is
1200 nm with an intensity of 4 · 1014 W/cm2. A smoothed spectrum, calculated by a moving average over an
energy range of approximately 0.42, is given by the high contrast curves. Right: Ratio of the smoothed
spectra (D2 vs. H2).

There are drawbacks to obtaining the ratio directly from the harmonic spectra. The most
prominent, concerning our purpose, is that the contributions from short and long trajectories
cannot be distinguished. Only their combined signal, and therefore the interference between
them, enters the spectrum. Additionally, in a pulse that is longer than the single cycle considered
here, contributions from different cycles interfere as well. It is therefore more useful to use a
short-time Fourier transform that allows for a time-resolved spectral analysis of the harmonic
signal.

5.2. Gabor transform

5.2.1. Short-time Fourier transform

A Short-time Fourier transform (STFT) is defined as the Fourier transform of the product of
the signal to be analyzed and a suitable window function fwin(t) [91]

SSTFT[fwin](ω, t) =

∫
dt′Dacc

(
t′
)
fwin

(
t′ − t

)
eiωt′ .

For any window position t, the function fwin selects a certain temporal range while suppressing
the rest. The overall Fourier transform is therefore only sensitive to the frequency components
within that range. Moving the position of the window over the whole signal then gives
information not only about the frequency content, but also at which instants these frequencies
occur.
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5.2. Gabor transform

The temporal width of the window needs to be chosen appropriately. The spectral and temporal
resolutions of a STFT obey the familiar uncertainty relation between energy and time. A
wide window increases the sample length for the Fourier transform and therefore the spectral
resolution, but it simultaneously decreases the ability to attribute the frequencies to a certain
moment in time. In contrast, a narrow window increases the temporal resolution since it
restricts the signal content to a small time interval, but it decreases the sample length and
consequently the spectral resolution. As the window width approaches zero, less and less full
periods of ever higher frequencies no longer fit into the window and cannot be resolved. Note
that this is a general principle that underlies any time-frequency analysis [92].

A Gabor transform is a STFT with the special case of a Gaussian window

fGwin(t) =
1√
2πσ

exp

(
− t2

2σ2

)
,

which is the case that we use in this work. Define

G =
∣∣SSTFT

[
fGwin

]∣∣2.

The width of the window is given by σ. In our calculations we set σ equal to

σIp =
1√

8 ln(2)

2π

Ip

with Ip ≈ 0.6 for all isotopes. This is chosen such that the lowest order harmonic, with energy
Ip, fits into the FWHM of the Gaussian window. It turns out that the harmonic ratio RG
(introduced below), in the plateau region, depends only weakly on σ around σIp and the exact
value is therefore not relevant, which from a physical standpoint is sensible.

A typical Gabor transform G of a HHG signal is shown in Figure 5.2, for a two-cycle laser field.
Within these two cycles, the first, the third and the fifth quarter-cycles, which start at full
amplitude, launch trajectories that can recombine. They lead to what we denote as “branches”,
consisting of a contribution from the short (left part) and long (right part) trajectories.

The first branch is the most suitable to extract harmonic ratios from, because it contains
the least interference. The later branches are weaker and also contain contributions from
trajectories of earlier cycles that have excursion times longer than the long trajectories (see
chapter 2). This gives rise to complicated interference patterns, as can be seen in the second
and third branch in Figure 5.2.

The maximum of G for the first branch is shown as solid lines in Figure 5.2. It agrees well
with the real part of the saddle-point return times that are given by the dashed lines. This
agreement generally improves with increasing ponderomotive potential Up.

Another typical feature of G for HHG is a strong contribution at low energies, visible as the
yellow horizontal stripe for ω close to zero. This is caused by the slow oscillation of the wave
function as it follows the laser field.
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Figure 5.2.: Gabor transform G for a two-cycle laser field (white dashed line) with a wavelength of 1200 nm
and an intensity of 4 · 1014 W/cm2, for the parallel orientation of H2 (see chapter 4). The three highlighted
quarter-cycles that start at full amplitude give rise to three branches consisting of contributions from the short
and long trajectories. The position of the maximum tHmax(ω) of G for the first branch is shown as solid lines,
red for the short and blue for the long trajectories. Additionally, the dashed lines show the real parts of the
saddle-point return times, which agree well with the position of the maximum. The effect of the two-center
interference minimum can be seen as a small oscillation of the maximum at ω ≈ 2 and t ≈ 75.

5.2.2. Extraction of harmonic ratios from the Gabor transform

The Gabor transform G can be thought of as a “local spectrum” that includes only the frequency
components within the temporal window of width σ. We know from chapter 2 that the short
and long trajectories both contribute to a certain emitted harmonic energy ω at specific return
times tr within a cycle. When viewed as a function of t for fixed ω, G(ω, t) exhibits a local
maximum at t ≈ tr (Figure 5.2), which suggests that the value of this maximum may be a
measure of the harmonic signal strength of the corresponding trajectory. The harmonic ratio
should then be given by

RG(ω) =
GD
(
ω, tDmax(ω)

)

GH(ω, tHmax(ω))
, (5.2)

where GD and GH stand for the Gabor transforms of D2 and H2, respectively. The position
of the maximum of GD,H is given by tD,Hmax. As explained above, this is a function of ω and in
Figure 5.2 given by the red/left (short trajectories) and blue/right (long trajectories) solid lines.

A priori, it is not clear the ratio in expression (5.2) is a physically reasonable quantity. Harmonic
ratios, by definition, are ratios of harmonic intensities, i.e. ratios of the full harmonic spectra.
The autocorrelation ratio that appears in expression (3.3) and that we want to compare the
TDSE ratios to, is no exception. However, the Gabor transform G contains only part of
the signal for a given window position and might be an inappropriate quantity for such a
comparison.

In order to verify the suitability of expression (5.2), a test TDSE calculation can be carried
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Figure 5.3.: Comparison of harmonic ratios Rspec and RG to verify the suitability of RG. The laser parameters
are a wavelength of 1200 nm with an intensity of 4 · 1014 W/cm2, with a single cycle starting at full amplitude,
i.e. E(t) = E0 cos(ω0t) with t ∈ [0, 2π/ω0]. The extent of the grid in the calculation of Rspec is chosen such
that the absorber starts at E0/ω

2
0 , gradually suppressing the wave function to zero as it reaches the grid

boundary at ≈ 1.1E0/ω
2
0 . The dipole accelerations that enter SD,H

spec are multiplied by a quadratic window
function that is zero at t0 and tf and one at t0 + (tf − t0)/2. This suppresses the artificial high-frequency
components at t0 and tf that result from the sudden turn-on and -off of the laser field. Furthermore, the
spectra SD,H

spec are smoothed over an energy range of approximately 0.11 before the calculation of Rspec in order
to slightly reduce the interference structures. The grid dimensions in the calculation of RG are large enough
to accommodate the long trajectories also. Left: Parallel orientation Right: Perpendicular orientation.

out, with a numerical grid size in the electrons dimension intentionally chosen too small such
that the long trajectories are prevented from returning to the parent ion [93]. From chapter
2 we know that the transition between the short and long trajectories happens at a time of
approximately 0.05T (T is the laser period) after the field maximum. This corresponds to a
maximum distance of approximately 1.1E0/ω

2
0 (compare Figure 2.4), which is chosen as the

extent of the numerical grid. All long trajectories are therefore absorbed at the grid boundary
and the full spectrum, as calculated by expression (5.1), contains only the contributions of the
short trajectories. The corresponding ratio Rspec should then coincide with the Gabor ratio
RG for the short trajectory subbranch tmax, calculated with a grid size that is large enough to
accommodate also the long trajectories. The result of such a test is shown in Figure 5.3.

The calculation in Figure 5.3 is done for a single cycle. The numerical grid parameters for
the calculation of Rspec and RG are identical except for the aforementioned smaller electron
dimension in case of Rspec. The agreement between Rspec and RG is remarkable. Apart from
interference structures in case of Rspec, the curves coincide very well. This proves that RG is a
suitable measure of the harmonic ratio and that, in particular, the lost phase information in
the modulus-squared of G is irrelevant for the ratio. It is reasonable to assume that this also
holds for the long trajectories, whose harmonic ratios cannot be verified by this procedure.

The Gabor ratio has the advantage that it does not contain interferences that result from
trajectories recombining at different times during the laser cycle, most notably the interference
between short and long trajectories. This naturally leads to smoother harmonic ratios RG(ω).

87



5. Time-Frequency Study of Harmonic Signal

It does, however, still contain interferences between trajectories that recombine at similar times,
i.e. when differences in return times are smaller than the Gabor window width. This may lead
to peaks and oscillations in RG(ω) for some laser parameters and does not yield useful ratios.

It is generally not possible to calculateRG(ω) for harmonic energies as low as Ip. The low-energy
region of G is often complicated because of interferences. In particular, the short subbranch
usually allows for lower energies to be studied than the long subbranch. This is primarily
caused by the overlap of the long subbranch of one laser half-cycle with the short subbranch
of the subsequent half-cycle. This can be seen in the example of Figure 5.2, where the curve
of tmax for the long trajectories stops at t ≈ 150. Such an overlap introduces oscillations of
G. Furthermore, the broad contributions in G at ω ≈ 0 also cause interferences at low energy.
We collectively call such low-energy interferences “LER” in the following. As a consequence,
settings with low ponderomotive potentials are generally less favorable for calculating RG
because the accessible energy range is quite small.

5.3. Results

In this section we compare Gabor ratios RG(ω), equation (5.2), with autocorrelation ratios
R[C](ω), see (3.3). The general form of C is that from expression (3.1), with ionization element
set to unity (see section 4.5.3)

C(p, t, t′) =

∫
dRd∗rec(p+A(t), R)χ∗0(R)U+

R (t, t′)χ0(R).

We concentrate on two cases. In the first, the values of the recombination time t and ionization
time t′ are taken from the saddle-point approximated SFA (section 2.2.4). The recombination
matrix element is taken with exact continuum states and in length-form, dexact

L (k,R), as
introduced in section 4.5.2. The kinetic return momentum, according to equation (2.25), is
given by ps(ts, t

′
s) +A(ts) =

√
2(ω − Ip) =: krec(ω). The time-evolution operator U+

R is only a
function of the excursion time, τs(ω) = ts(ω)− t′s(ω). We then arrive at

CSPA(ω) =

∫
dRdexact

rec

(
krec(ω), R

)
χ∗0(R)U+

R

(
τs(ω)

)
χ0(R). (5.3)

In the second case, the times come from the semiclassical three-step model (section 2.1) and
the recombination element is calculated with plane waves, LCAO-approximated electronic
ground state and in velocity form (see appendix section A.1). Additionally, the heuristic
relation k̃rec(ω) :=

√
2ω is used as the return momentum. It has been shown that this improves

the agreement in terms of the two-center interference when plane waves are used [53,82, 94].
Physically it can be interpreted as an additional energy gain of Ip when the electron enters the
potential well of the core. The autocorrelation then takes the form

CSM(ω) =

∫
dR cos

(
k̃rec(ω)R cos(θ)

2

)
χ∗0(R)U+

R

(
τ(ω)

)
χ0(R). (5.4)

The angle θ is measured between the molecular axis and the return direction of the electron,
i.e. the polarization direction of the laser. For perpendicular orientation it is θ = π/2 and for
parallel orientation θ = 0.
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The autocorrelation ratio, R[C](ω), is in both cases multiplied with the ratio of the ionization
probabilities, R[Γ′](ω), see expression (3.3) and section 3.2.2. The ratio of the saddle-point
factors, R[EΠΛ](ω), is neglected, as was shown in section 3.2.3. The autocorrelation ratios are
therefore of the form

Rc[C](ω) := R[C](ω)R[Γ′](ω).

All Gabor ratios RG in this section are calculated with a single-cycle electric field starting at
full amplitude, i.e. E(t) = E0 cos(ω0t) with t ∈ [0, 2π/ω0]. The ratio is then calculated for the
single branch that appears in G. This is sufficient for our purpose since this first branch (see
Figure 5.2) is the most suitable, as explained above, and any interaction with the electric field
longer than one period only adds more branches that we are not interested in.

When we speak of the “autocorrelation ratios” in the following sections, we implicitly mean
both Rc[CSPA] and Rc[CSM]. With “Gabor ratio” we mean RG.

5.3.1. Harmonic ratios

In order to familiarize the reader with the Gabor as well as autocorrelation ratios defined
above, we show in this section such ratios for selected laser parameters. A study of which
autocorrelation ratio, i.e. either Rc[CSPA] or Rc[CSM], reproduces RG better is done in the
next section. The reader is advised to read chapter 3 first to see what the graphs of the
autocorrelation and its ratio look like without a transition matrix element.

Figures 5.4 and 5.5 show examples of harmonic ratios for a wavelength of 1200 nm and an
intensity of 4 · 1014 W/cm2. For this particular set of laser parameters the Gabor ratios RG can
be adequately extracted for both the short and long trajectories. As will become clear later, it
is often difficult for both kinds of trajectories to be studied simultaneously for a single set of
laser parameters, because interference structures of G may distort the ratio significantly. The
oscillations of RG in the right panel of Figure 5.5 are an example of that. Characteristic for the
parallel orientation is the two-center interference minimum in the harmonic spectrum which, in
case of the first minimum, causes a maximum in the harmonic ratio that lies between ω = 1 and
ω = 2. Overall, we see that the qualitative features of RG such as the position of said two-center
maximum and, in this case, an increasing ratio with harmonic energy, agree well with the
autocorrelation ratios. The LER interferences manifest themselves as oscillations which can be
seen particularly well in the right panels (long trajectories) below ω ≈ 2. Here, the low-contrast
thin solid curves represent RG along the real part of the saddle-point recombination time,
Re ts(ω). In the plateau region both ratios, i.e. RG along tmax(ω) and along Re ts(ω), agree
well. Since tmax(ω) can typically not be reliably determined in the LER region, the ratio RG
along Re ts(ω) is the only straightforward way to access this energy region. The long ratio RG
often exhibits a sharp incline or decline for low energies because of these interferences (see the
right panel of Figure 5.4).

The intensity of Figures 5.4 and 5.5 is rather high and the ground state is significantly depleted
during the action of the laser pulse. The ground state populations at the end of the pulse range
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Figure 5.4.: Example of harmonic ratios for the perpendicular orientation, RG (high-contrast solid line),
Rc[CSPA] (high-contrast dashed line) and Rc[CSM] (low-contrast dashed-dotted line). The low-contrast thin
solid line is RG with G(ω,Re ts), i.e. evaluated along the real part of the saddle-point return time (see the
dashed lines in Figure 5.2 for an example). If no interferences distort the branch in the plateau region, it
agrees well with the maximum of G, given by tmax(ω). Here it also serves as a good demonstration of the
oscillations that appear at low energies. The wavelength is 1200 nm with an intensity of 4 · 1014 W/cm2. Left:
short trajectories Right: long trajectories.
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Figure 5.5.: Example of harmonic ratios for the parallel orientation, see the caption of Figure 5.4 for the types
of curves shown. Because of two-center interference, the ratios exhibit a peak between ω = 1 and ω = 2.
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between Pgr ≈ 10 % and 13 %, with D2 having a population slightly higher than H2, as expected,
and the parallel orientation slightly lower than the perpendicular orientation. Such a depletion
is not included in the SFA theory of section 2.2. In order to determine if it has a noticeable
influence on the harmonic ratio, we checked the time-dependence of (1− PD

gr(t))/(1− PH
gr(t))

during the first quarter cycle of the pulse, i.e. the time span where the trajectories are launched.
This quantity has its lowest value for the parallel orientation and the shortest short trajectory
at around 0.97, with all other trajectories having values closer to unity. This shows that both
isotopes experience similar depletion of their ground states and this should not influence the
harmonic ratio significantly. Furthermore, it can approximately be interpreted as the ratio of
the ionization rates and is consistent with (the right panel of) Figure 3.2.

Figures 5.6 and 5.7 show the ratios for a fixed intensity of 6 ·1013 W/cm2 and varying wavelengths,
ranging from 2000 nm to 3000 nm. For such high wavelengths, the electron excursion times
reach well beyond the first maximum of the autocorrelation ratio (see Figure 3.7) and cause
the long ratio to be less than unity. For this intensity, the short ratio exhibits pronounced
high values at low energies. This originates from an interference structure that distorts the
short subbranch of G. This is not related to two-center interference because it occurs for both
orientations (compare the left panels of Figures 5.6 and 5.7). It can be observed in the intensity
range from 5 · 1013 W/cm2 to 1 · 1014 W/cm2 where it prevents a meaningful comparison with the
autocorrelation ratios. It is absent for 2 · 1014 W/cm2 and above and its origin is not known. In
contrast, the long ratio is free from such features and the agreement with the autocorrelation
ratios in Figures 5.6 and 5.7 increases with wavelength. In particular, the shape of all three
curves agree remarkably well for high wavelengths. For intensities below 5 · 1013 W/cm2 (not
shown) the harmonic signal becomes weak and the both the short- and long ratios suffer from
interference-induced oscillations. The beginning of such oscillations are already discernible in
the right panel of Figure 5.7. A higher intensity of 8 · 1013 W/cm2 is shown in Figures A.7 and
A.8 in appendix section A.7. There the mentioned interference structure causes pronounced
maxima in the short ratio.

A typical feature of the two-center maximum of RG is that it takes on higher values than the
corresponding maxima of the autocorrelation ratios. A good example is also the short ratio for
8 · 1013 W/cm2 in the appendix, where it lies outside the vertical scale while the autocorrelation
maxima are within the scale. It is therefore better to compare only the energy at which it
occurs (which is done below) and not its value.

Figure 5.8 shows the harmonic ratios for the perpendicular orientation and for a higher intensity
of 3 · 1014 W/cm2. The wavelengths reach from 900 nm to 1300 nm, which corresponds to
approximately the same range of cutoff energies as in Figure 5.6. Here the short ratio RG
is not distorted by interference and it follows approximately the same curve for low energies,
independent of wavelength. This agrees well with the same behaviour of the autocorrelation
ratio, which was discussed in Figure 3.7. Furthermore, for these wavelengths, the range of long
excursion times lies around the position of the first maximum of the autocorrelation ratio (see
again Figure 3.7) and the long ratio is therefore comparable in absolute value to the short ratio.

The values of RG in Figure 5.8 are noticeably higher than Rc[CSPA] and Rc[CSM] for both
kinds of trajectories and especially for the long trajectories there is poor agreement. In Figure
5.9, that presents the parallel orientation, the agreement is better. Here, RG is not too high

91



5. Time-Frequency Study of Harmonic Signal

1 2 3 4 5 6 7

ω

0.25

0.50

0.75

1.00

1.25

1.50

1.75

H
ar

m
on

ic
ra

ti
o

short, perpendicular

6 · 1013 W/cm2

1 2 3 4 5 6 7

ω

0.0

0.2

0.4

0.6

long, perpendicular

6 · 1013 W/cm2

Figure 5.6.: Harmonic ratios for the perpendicular orientation, a fixed intensity of 6 ·1013 W/cm2 and wavelengths
of 2000 nm, 2200 nm, 2400 nm, 2600 nm, 2800 nm and 3000 nm. Shown are RG (high-contrast solid line),
Rc[CSPA] (high-contrast dashed line) and Rc[CSM] (low-contract dotted-dashed line). Same-color curves
belong to the same wavelengths; additionally, the length of the dashes indicate the wavelength. The high
ratios at low energies in case of the short trajectories originate from an interference structure of G that also
gives rise to the maxima in Figures A.7 and A.8 in the appendix. Such interferences render a comparison with
autocorrelation ratios infeasible in the intensity range below approximately 2 · 1014 W/cm2.
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Figure 5.7.: Harmonic ratios for the parallel orientation with the same laser parameters as in Figure 5.6.
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Figure 5.8.: Harmonic ratios for the perpendicular orientation, a fixed intensity of 3 ·1014 W/cm2 and wavelengths
of 900 nm, 1000 nm, 1100 nm, 1200 nm and 1300 nm. Shown are RG (high-contrast solid line), Rc[CSPA]
(high-contrast dashed line) and Rc[CSM] (low-contract dotted-dashed line). Same-color curves belong to the
same wavelengths and the length of the dashes indicate the wavelength. For this intensity RG for the short
trajectories is free from interference maxima and reproduces qualitatively the behaviour of the autocorrelation
ratios. However, RG is noticeably higher for both kinds of trajectories. In case of the long trajectories, LER
interference is visible below ω ≈ 2.5.
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Figure 5.9.: Harmonic ratios for the parallel orientation with the same laser parameters as in Figure 5.8. RG
agrees well with the autocorrelation ratios for the short trajectories. The long ratio RG exhibits oscillations
but is also in reasonable agreement.
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Figure 5.10.: Harmonic ratios for the perpendicular orientation, a fixed intensity of 2·1014 W/cm2 and wavelengths
of 1400 nm, 1800 nm, 2200 nm, 2600 nm. Shown are RG (high-contrast solid line), Rc[CSPA] (high-contrast
dashed line) and Rc[CSM] (low-contract dotted-dashed line). Same-color curves belong to the same wavelengths
and the length of the dashes indicate the wavelength. Similar to the lower intensity in Figure 5.6 the long RG
agrees well with the autocorrelation ratios for high wavelengths. The short RG is noticeably higher, similar to
Figure 5.8.

and for the short trajectories fits the autocorrelation ratios well. The long ratio RG exhibits
oscillations but is also in reasonable agreement.

In order to test higher ponderomotive potentials, we show in Figure 5.10 the ratios for the
perpendicular orientation and for a similar intensity of 2 · 1014 W/cm2, with higher wavelengths
from 1400 nm to 2600 nm. It is apparent that the agreement of the long ratio for the perpendic-
ular orientation increases with wavelength, similar to Figure 5.6. This suggests that the long
ratio RG is well reproduced by the autocorrelation ratios when the electron excursion times
reach beyond the first maximum, where the ratio becomes small. The short ratio RG is again
noticeably higher than the autocorrelation ratios. For the parallel orientation, Figure 5.11, we
see the appearance of another maximum that stems from the second two-center interference
minimum of the autocorrelations. It is often much higher and broader for RG than for the
autocorrelation ratios, see the left panel of Figure 5.11.

Finally, in Figures 5.12 and 5.13 the ratios are shown for a fixed wavelength of 800 nm and
intensities from 4 to 8 · 1014 W/cm2. Similar to the short wavelengths in Figures 5.8 and 5.9,
there is good agreement. The LER interference affects the long ratio significantly.

5.4. Discussion of results

In this section we compare the individual autocorrelation ratios, Rc[CSPA] and Rc[CSM], with
the Gabor ratio RG. This is done separately for the parallel and perpendicular orientation. In
order to quantify the agreement it is useful to introduce a measure. Define, for two functions f
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Figure 5.11.: Harmonic ratios for the parallel orientation with the same laser parameters as in Figure 5.10.
The second two-center interference minimum in G typically gives rise to a broad and large maximum of RG.
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Figure 5.12.: Harmonic ratios for the perpendicular orientation, a fixed wavelength of 800 nm and intensities
of 4, 5, 6, 7 and 8 · 1014 W/cm2. Shown are RG (high-contrast solid line), Rc[CSPA] (high-contrast dashed
line) and Rc[CSM] (low-contract dotted-dashed line). Same-color curves belong to the same intensities and
the length of the dashes indicate the intensity. For this low wavelength the agreement of the short ratio is
noticeably better than for higher wavelengths.
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Figure 5.13.: Harmonic ratios for the parallel orientation with the same laser parameters as in Figure 5.12.

and g, that depend on the harmonic energy ω, the following absolute and relative deviation
measures

∆{f, g} :=

√√√√ 1

N

N∑

n

(
f(ωn)− g(ωn)

)2
,

δ{f, g} :=

√√√√ 1

N

N∑

n

(
f(ωn)− g(ωn)

|f(ωn)|+ |g(ωn)|

)2

,

where the functions are sampled at N harmonic energies ωn. For our purpose, one function will
be equal to RG and the other to either Rc[CSPA] or R[CSM]. In particular, we consider the
ratio as well as its derivative

∆R[C] := ∆
{
RG,Rc[C]

}

∆∂R[C] := ∆

{
dRG
dω

,
dRc[C]

dω

}
δR[C] := δ

{
RG,Rc[C]

}

δ∂R[C] := δ

{
dRG
dω

,
dRc[C]

dω

}

Every one of these 4 measures has its merit. ∆R simply gives the average difference between
two ratios, which can be easily compared with pictures of the ratios themselves. For ratios with
values between 1 and 2 (which is the typical scenario for short wavelengths) one can readily
draw conclusions from ∆R. If the ratio close to zero, which happens for long wavelengths, δR
may be interesting as well. Using the derivatives of the ratios in ∆∂R and δ∂R gives a measure
that is not sensitive to a shift, i.e. if the ratios are equal up to a constant, it yields zero. Since
RG may behave erratic, a case study is often required and all measures need to be considered
for a complete picture.

In order to avoid LER interferences, all measures shown in the following are calculated for
ω ≥ 2.5. The upper bound is ω ≈ 0.95ωc with the cutoff energy ωc given by expression (2.9).
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Figure 5.14.: Absolute deviations ∆R and ∆∂R as a function of wavelength for intensities of 6 · 1013 W/cm2

(blue), 8 ·1013 W/cm2 (orange), 2 ·1014 W/cm2 (green), 4 ·1014 W/cm2 (red) and 6 ·1014 W/cm2 (purple). Shown are
∆R[CSPA], ∆∂R[CSPA] (high-contrast dashed line) and ∆R[CSM], ∆∂R[CSM] (low-contrast dotted-dashed
line). The dash-length indicates the wavelength. ∆R tends to zero for the long trajectories while it increases
for the short trajectories. ∆∂R also tends to zero for the long trajectories while it stays approximately stays
constant for the short trajectories.

5.4.1. Perpendicular orientation

The perpendicular orientation is generally easier to study than the parallel orientation, where
the two-center interference maxima distort the ratio noticeably. In Figures 5.14 and 5.15 the
absolute and relative deviations are plotted as a function of wavelength for intensities of 2, 4
and 6 · 1014 W/cm2. For the long trajectories, also 6 and 8 · 1013 W/cm2 are shown.

We see that for the short trajectories the deviation increases with wavelength, in absolute as
well as relative terms. See for example the ratios in the left panel of Figure 5.10, where RG
is noticeably higher than the autocorrelation ratios. For the higher intensity 4 · 1014 W/cm2

(ratios not shown) the discrepancy is even larger. For low wavelengths (and high intensities
such that the cutoff energy is not too small), the agreement is better, see Figure 5.12. In terms
of the deviation of the derivative, ∆∂R as well as δ∂R are small for low wavelengths, as for
example evidenced by the left panel of Figure 5.12, where the ratios are approximately linear.
For high wavelengths ∆∂R and δ∂R are approximately constant, i.e. while the short ratio RG
is significantly higher than the autocorrelation counterparts, the shape of the curves match
reasonably for increasing wavelength (see also the left panel of Figure 5.10).

For the long trajectories, the deviations ∆R and δR are also small for low wavelengths and
initially increase with it. Above a certain wavelength, that slightly depends on the intensity,
the absolute deviation ∆R decreases with wavelength. This is the trend that we observed in
the right panels of Figures 5.6 and 5.10. For such high wavelengths the ratio itself becomes
small and the relative deviation is large, as can be seen in the upper-right panel of Figure
5.15. For the lowest intensity of 6 · 1013 W/cm2 and longest tested wavelength of 3000 nm, the
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Figure 5.15.: Same setting as in Figure 5.14 but for the relative deviations δR and δ∂R.

agreement is nearly perfect and also δR is small (lowest curves in the right panel of Figure 5.6).
Presumably δR also tends to zero for the higher intensities. A small but discernible trend is
visible in the upper-right panel of Figure 5.15. This was not tested, however. An interesting
scenario would be laser parameters where the autocorrelation reaches the vibrational period.
The erratic behaviour of the derivative deviations ∆∂R and δ∂R at low wavelengths stems from
LER interferences that reach above ω = 2.5 (which is the lower energy boundary considered in
the measures) for high intensities. Apart from that, ∆∂R and δ∂R behave similarly to ∆R
and δR for high wavelengths.

5.4.2. Parallel orientation

The deviation measures defined above are often not useful for the parallel orientation. The
height of the two-center maxima, in particular the second one, of RG may be significantly
higher than the autocorrelation counterparts (see for example the left panel of Figure 5.11)
and this effect dominates the graphs of the measures. However, for the cases where the second
maximum is not relevant, a good agreement as it can be seen in Figures 5.7 and 5.9 is reflected
in low deviation measures (note here that the first two-center maximum of the ratio is not
contained in the measures because it lies below ω = 2.5).

Instead, it is better to compare the positions of these maxima. In order to do this we evaluate
RG along Re ts, which gives us access to low energies. One has to keep in mind that this
region is prone to interference and an exact agreement of the maximum positions cannot be
expected. However, a general trend may still be visible if considered as a function of wavelength.
Figure 5.16 shows such a plot for the short trajectories and the first maximum. For the long
trajectories the maximum could not be reliably determined.

Indeed, the position of the maximum of RG follows the same trend as the autocorrelation
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Figure 5.16.: Harmonic energy of the first short-trajectory two-center maximum as a function of wavelength
(parallel orientation). Shown are the harmonic ratios RG (high-contrast solid line), Rc[CSPA] (high-contrast
dashed line), Rc[CSM] (low-contrast dotted-dashed line). The numbers in the legend indicate the intensity
in units of 1013 W/cm2. In both respective panels the length of the dashes indicate the intensity. Left: low
intensities Right: high intensities.

counterparts, i.e. it decreases with wavelength. This is to be expected because a higher
wavelength entails a longer excursion time of the electron, giving the nuclei more time to
separate. The higher internuclear distance that results from this corresponds to lower harmonic
energies of the two-center minimum, see Figures 4.8 and 4.14. Analogously, a short trajectory
with fixed harmonic energy has a decreasing excursion time for increasing intensity (see Figure
2.9). This gives the nuclei less time to separate and the internuclear distance is smaller, giving
a higher energy. This is also seen for RG for the low intensities in the left panel. For the high
intensities in the right panel the order is reversed for high wavelengths. This may be due to
LER interference. Also seen in Figure 5.16 is that Rc[CSPA] reproduces the position of the
maximum better than Rc[CSM] for most laser parameters.

In Figure 5.17 we show the position of the second two-center maximum of the ratios for both
the short and long trajectories. The discrepancy between the ratios is larger than for the first
maximum. The absolute position of RG is better reproduced by Rc[CSM] than Rc[CSPA]. For
the short trajectories, left panel, the position increases with wavelength for 3 · 1014 W/cm2 and
decreases with wavelength for 4 · 1014 W/cm2 in case of RG. This trend can also be seen for
Rc[CSPA], which is small but discernible in that scale.

5.5. Summary and Conclusion

When one is interested in HHG, the typical quantity of interest is the power spectrum Sspec of
the emitted radiation, as it can be calculated from the dipole acceleration with expression (5.1).
This quantity, however, does not allow to separate the contributions from the short and long
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orientation. Shown are the harmonic ratios RG (high-contrast solid line), Rc[CSPA] (high-contrast dashed
line), Rc[CSM] (low-contrast dotted-dashed line). Left: short trajectories Right: long trajectories.

trajectories, which are inextricably contained within Sspec. In order to study both contributions
separately, a time-frequency study with the help of a short-time Fourier transform (section
5.2.1) can be carried out. A special type of such a transform is the Gabor transform G. In
section 5.2.2 it was shown that it can be used to calculate trajectory-resolved ratios RG of
harmonic intensities.

The Gabor ratio RG is often prone to interference-related oscillations. In particular, the
low-energy region of G is complicated due to interference structures which were denoted as
“LER interference”. It hampers the study of low harmonic energies and settings with low
cutoff energies are therefore not accessible. Typically, the short ratio RG can be studied for
lower harmonic energies than the corresponding long ratio. For some settings, also higher
plateau energies may be inaccessible, an example being the short ratio RG for intensities below
2 · 1014 W/cm2 (see Figures 5.6, 5.7 and A.7, A.8). Where this particular interference structure
originates from, and if it is specific to our setting, is not known.

The goal of the calculation of RG was a comparison with ratios of vibrational autocorrelations of
two different types. One, Rc[CSM] from expression (5.4), uses the classical excursion times from
the well-established three-step model, a LCAO recombination matrix element and a heuristically
corrected electron return momentum. The other, Rc[CSPA] from expression (5.3), uses the
complex-valued times from the saddle-point approximated SFA theory, an exact recombination
matrix element and the correct electron return momentum as it follows from the saddle-point
equations. This comparison was done to test if the more elaborate approach of Rc[CSPA] offers
an improved description of the harmonic ratios over Rc[CSM].

The first observation is that Rc[CSM] works remarkably well considering its simplicity and it
often yields comparable results to the more exact approach of Rc[CSPA]. The differences lie in
the details. A good summary for the perpendicular orientation can be seen in Figures 5.14 and
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5.15. These show the deviation measures, defined in the beginning of section 5.4, for a selection
of laser parameters. The absolute, ∆R, as well as the relative, δR, deviations behave very
similar for both Rc[CSM] and Rc[CSPA]. For long wavelengths and high intensities Rc[CSPA]
yields slightly lower ∆R and δR and therefore a better agreement with the Gabor ratio RG. In
particular, the derivative of the harmonic ratio as a function of harmonic energy is often better
reproduced by Rc[CSPA], as evidence by ∆∂R and δ∂R in the lower panels in the Figures.
Examples of this can also be seen in the left panel of Figures 5.10 or 5.12. In this respect the
saddle-point approach is preferable.

Apart from interference-induced oscillations, RG often takes on significantly larger values than
the autocorrelation counterparts. The discrepancy increases with intensity and affects the short
trajectories in particular. For the long trajectories, increasing the wavelength reduced the
absolute deviation for all tested intensities and for both orientations. The wavelengths then fall
in the regime of small autocorrelation ratios well below unity (Figure 3.7).

The maxima of RG due to two-center interference in the parallel orientation may be much
higher and broader than for Rc[CSM] and Rc[CSPA]. The second of such maxima in particular
may be noticeably different between the Gabor and autocorrelation ratios while the first is
usually in better agreement. A comparison of the position of these maxima shows that the first
is better reproduced by Rc[CSPA] and the second by Rc[CSM].

In conclusion we can say that Rc[CSPA] does offer an improvement over Rc[CSM]. It is not
universally better for all tested laser parameters, but even in the cases where Rc[CSM] is closer
to RG than Rc[CSPA] is the latter not far off. In particular, qualitatively the ratio is better
reproduced by the saddle-point approach. There is, however, a noticeable discrepancy between
the Gabor and both autocorrelation ratios. Finding out the origin of this justifies further
studies.
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This chapter comprises the theoretical background needed to calculate alignment distributions
of diatomic molecules in strong laser pulses. Such distributions are needed for the comparison
of autocorrelation ratios with experimental data, which is done in chapter 8.

Although it may not be intended in experiments on high-harmonic generation, the molecular
ensemble under consideration can undergo an alignment process due to the influence of the
strong driving laser pulse. Because of the sensitivity of the harmonic spectrum to the angle
between the internuclear axis and the returning electron momentum [52, 53] as well as the
addition of contributions originating from different molecules, the macroscopic harmonic signal
may significantly depend on the degree of alignment. It is therefore sensible to gauge the extent
to which alignment plays a role in the specific conditions under study.

In case of polar molecules, i.e. molecules with a permanent dipole moment, the ensemble can
already be aligned with a static electric field [95], depending on the strength of that dipole
moment. The alignment of nonpolar molecules, in contrast, relies on inducing a temporal dipole
moment. This is a second-order effect in the electric field quantified by the polarizability. The
pulse intensities encountered in experiments on HHG (1013 W/cm2 − 1015 W/cm2) correspond to
electric fields for which this becomes relevant.

It is possible to induce rotational dynamics where neither electronic nor vibrational transitions
are resonantly excited. Specifically for the hydrogen molecule, the vibrational constant is
ω0 ≈ 4395 cm−1 [96]. The electronic transitions have energy differences even higher (see Figure
4.1 and consider that 0.1 a.u. ≈ 2.2 · 104 cm−1). Compare this to the photon energy of a 800 nm
laser pulse of 12500 cm−1. We will consider this nonresonant regime in more detail in section
6.2.2.

In the next section we will first introduce the two major regimes of alignment dynamics taking
place in strong laser pulses. After that the relevant case for HHG is investigated in more detail.

6.1. Alignment in a strong laser pulse

Strong-field experiments are usually carried out with pulsed lasers. Due to the large electric
fields involved, it is possible to align molecules which do not have a permanent dipole moment,
which is the case for the hydrogen molecule. A linearly polarized laser will cause a linear
molecule to align its molecular axis along the axis of polarization. This is because of the larger
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polarizability in the direction of the molecular axis, α‖, than perpendicular to it, α⊥. This is
conventionally measured in terms of the polarizability anisotropy defined as ∆α = α‖ − α⊥.
The higher the value of ∆α the more the molecule tends to be aligned by the laser pulse. The
presence of the pulse introduces an interaction potential into the Hamiltonian of the field-free
system which depends on α‖ and α⊥ (See 6.2.2). Depending on the pulse duration two limiting
cases can be distinguished, generally named the adiabatic and impulsive (or dynamic) limit.

The adiabatic limit holds if the pulse envelope has a temporal width large compared to the
rotational period of the molecular species. In this case the rotational motion can adiabatically
follow the changing laser intensity and the degree of alignment shows a profile close to the
shape of the envelope. This means that an initially randomly aligned ensemble smoothly enters
a state of alignment, with the maximum degree of alignment occurring at the peak of the
envelope. It then smoothly changes back to the isotropic angular distribution. In this case the
interaction potential can be considered quasi-static and allows the use of the time-independent
Schrödinger equation with the instantaneous value of the potential. The solutions are called
pendular states and approximate the solutions of the time-dependent Schrödinger equation at
the respective times.

In the impulsive limit the pulse envelope changes on a time scale much shorter than the
rotational period of the molecule. The ensemble cannot follow the rapidly varying laser intensity
(often referred to as a “kick”) and is left in a time-dependent coherent superposition of field-free
eigenstates which persists after the end of the pulse. In other words, the laser populates a
wide range of angular momentum eigenstates. This superposition undergoes a field-free time
evolution after the pulse which leads to recurring instants of high degree of alignment, so-called
revivals, as the different components of the state move in and out of phase. This process lasts
as long as the coherent superposition persists. Eventually, the ensemble will go back into its
initial isotropic distribution.

A comparison between both cases can be seen in Figure 6.1 where the degree of alignment (for
the definition see section 6.2.2) of nitrogen N2 is shown for two different sets of laser parameters.
The rotational period of N2 is Trot ≈ 8.4 ps. The half- and full-period revival peaks are clearly
visible. In this case also quarter-period revivals are present due to a disproportion of even- and
odd-numbered angular momentum states in the initial ensemble (see section 6.2.3).

For the hydrogen molecule the rotational period in the ground state, with a rotational constant
B0 ≈ 60.8 cm−1 [97], is

TH2
rot =

h

2B0
≈ 274 fs

which is approximately one order of magnitude larger than a typical pulse duration in strong-
field experiments of 30 fs. Since high-harmonic generation is a subcycle process we are interested
in the alignment distribution during the short, nonadiabatic laser interaction. The rotational
dynamics after the pulse, which is often exploited in experiments to achieve a high degree of
field-free alignment, is irrelevant in the present context.
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Figure 6.1.: Comparison of the degree of alignment 〈〈cos2(θ)〉〉 between impulsive (left panel) and adiabatic (right
panel) alignment limits for N2 with a temperature of 50 K. The pulse envelope has the form sech(2 ln(1+

√
2)t/τ).

The rotational constant is B0 = 1.989 cm−1 [98], giving a rotational period of Trot ≈ 8.4 ps. The laser
parameters in the impulsive limit are τ = 50 fs, 2.5 · 1013 W/cm2 and in the adiabatic limit τ = 50 ps,
2.5 · 1012 W/cm2. For details of the calculation see section 6.2.2. Inspired by Fig.1 of [98].

6.2. Theoretical model

In this section we want to give the technical details of how to model the laser-induced alignment
of a molecular ensemble. We will restrict our considerations to linear (diatomic) molecules and
a linearly polarized electric field of the laser pulse. In section 6.2.1 the linear rigid rotor is
introduced which is the foundation for the alignment consideration in section 6.2.2.

6.2.1. Field-free linear rigid rotor

In Born-Oppenheimer approximation the time-independent Schrödinger equation of the two
nuclei in the center-of-mass frame of the molecule allows separation into radial and angular
parts (analogue to the case of the hydrogen atom) [96,99]. The angular equation takes the form

Ĵ2

2I
Y (θ, φ) = EY (θ, φ)

with the squared angular-momentum operator in spherical coordinates

Ĵ2 = −
(

1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2(θ)

∂2

∂φ2

)

whose representation stems from the Laplace operator (i.e. θ is the polar angle and φ the
azimuthal angle). The moment of inertia I = µR2

0 depends on the reduced mass µ of the two
nuclei and is taken at the constant equilibrium internuclear separation R = R0. By fixing
R, no vibration and in particular no stretching during rotation is allowed. This is why it
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is called a rigid rotor. The solutions to this equation are the familiar spherical harmonics
Y (θ, φ) = Y m

j (θ, φ). The eigenenergies

EJ = B0J(J + 1) (6.1)

are independent of M = −J,−J+1, . . . , J and therefore the Jth state is (2J+1)-fold degenerate.
The rotational constant B0 is defined in terms of the moment of inertia

B0 =
1

2I

and therefore specific to the molecule. It is the single characteristic input of the rigid rotor.
Since it depends on the fixed internuclear distance R0 it completely determines the rotational
motion as long as the internuclear distance of the molecule can be approximated by its
equilibrium distance. It differs in higher vibrational states. Also, when high rotational
states J are excited additional higher-order terms need to be added to the energy (6.1), i.e.
EJ = B0J(J + 1) +D0J

2(J + 1)2 + . . . . This can be shown by introducing a centrifugal force
via adding a corresponding potential. This extends the model to the nonrigid rotor which we
are not concerned with in this work.

6.2.2. Nonresonant alignment of nonpolar linear molecules

There is quite extensive literature on molecular alignment available [98, 100–107] covering a
wide range of different aspects on the subject. We are interested in alignment distributions
during the action of the laser pulse, i.e. what is the probability that the molecular ensemble is
aligned at a certain angle θ. The theory presented here can primarily be found in [98,102] with
background information from [107].

Multiple different processes of aligning molecules exist. In the case of high intensities (where
perturbation theory is no longer applicable) one can distinguish between resonant and nonreso-
nant alignment. In the first case the frequency of the driving field is set near the energy of an
electronic or vibrational transition, i.e. Rabi oscillations are initiated. This produces rotational
wave packets in the participating electronic or vibrational states which can ultimately lead to
alignment (see e.g. [101]).

Our focus is on the nonresonant case, where the driving frequency is detuned from vibrational
and electronic transitions and energy transfer takes place via Raman scattering. Under such
conditions a nonpolar, homonuclear diatomic molecule experiences an interaction potential of
the form

Vint(θ, t) = −1

2
E(t)2(∆α cos2(θ) + α⊥) (6.2)

with the aforementioned polarizability anisotropy ∆α = α‖−α⊥ and perpendicular polarizability
α⊥. The angle θ is measured between the internuclear axis and the electric field vector. We
assume a linearly polarized field with amplitude E(t) = E0f(t) cos(ωt) and pulse envelope f(t).
This contribution is of second-order in the electric field. For a molecule with a permanent
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dipole moment a first-order potential of the form −dE(t) cos(θ) with dipole moment d would
be present.

If the pulse duration is much longer than the period of the carrier wave one usually uses an
averaged potential instead of (6.2)

V av
int (θ, t) = −E

2
0f(t)2

4
(∆α cos2(θ) + α⊥)

which only contains the time-dependence of the pulse envelope f(t). This expression is then
used as an additional potential in the Schrödinger equation of the rigid rotor

i
∂|ψ(θ, t)〉

∂t
=
(
B0Ĵ

2 + V av
int (θ, t)

)
|ψ(θ, t)〉, (6.3)

where the values of the polarizabilities are taken at the equilibrium distance R0. In the nonrigid
case the α’s depend on R. The solution of (6.3) is expanded in terms of field-free states

|ψJiMi〉(t) =
∑

J≥|Mi|

FJiJ(t)|JMi〉. (6.4)

This accounts for the population of possibly many angular momentum eigenstates J . Since M is
conserved in a linearly polarized field the expansion only includes states with the same magnetic
quantum number M = Mi as the initial rotational state. The initial angular momentum
quantum number is denoted by Ji. Inserting the ansatz (6.4) into (6.3) and projecting onto
field-free states gives a system of coupled equations for the coefficient functions FJiJ(t)

i
∂FJiJ(t)

∂t
= B0

{
(
J(J + 1)− f(t)2ω⊥

)
FJiJ(t)− f(t)2∆ω

∑

J ′

FJiJ ′(t)〈J ′Mi| cos2(θ)|JMi〉
}

(6.5)

where the polarizabilities have been rescaled ω⊥,‖ := α⊥,‖E
2
0/4B0. In addition, the orthonor-

mality of the spherical harmonics was used 〈J ′M |JM〉 = δJ ′J . The initial condition is
FJiJ(t0) = δJiJ .

The equations (6.5) are further simplified by taking into account that the matrix elements
〈J ′Mi| cos2(θ)|JMi〉 take on nonvanishing values only for J ′ = J − 2, J, J + 2 [108]. We then
arrive at

i
∂FJiJ(t)

∂t
= −B0

{
f(t)2

(
ω⊥ + ∆ωΛMJ

)
− J(J + 1)FJiJ(t)

+ ∆ωf(t)2
[
ΛMJ+FJi,J+2(t) + ΛMJ−FJi,J−2(t)

]}
(6.6)

with ΛMJ,± := 〈J ± 2,Mi| cos2(θ)|JMi〉 and ΛMJ analogous with J ′ = J .

The system of equations (6.6) can be solved numerically, for details see section B.2.5 in the
appendix. Once the coefficient functions FJiJ have been obtained the alignment distribution
can be calculated. For an ensemble of molecules in thermodynamic equilibrium the system is
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initially in a mixed state of different |JiMi〉 with coefficients given by the Boltzmann distribution.
Therefore, the final alignment distribution takes the form

σ(θ, t) =
1

Zr

∑

Ji

WJi

Ji∑

Mi=−Ji

|ψJiMi(θ, t)|2 (6.7)

with

WJ = e−B0J(J+1)/kBT . (6.8)

The temperature is given by T and kB is Boltzmann’s constant. The rotational partition
function

Zr =
∑

J

(2J + 1)e−B0J(J+1)/kBT

sums up all Boltzmann factors, including the degeneracy in terms of M , of the field-free rigid
rotor.

Note that the rotational wave packets ψJiMi(θ, t) are normalized

∫ 2π

0
dφ

∫ π

0
sin(θ)dθ |ψJiMi(θ, t)|2 = 1,

with azimuthal angle φ.

The degree of alignment, as shown in Figure 6.1, is conventionally defined as the expectation
value of the squared cosine

〈〈cos2(θ)〉〉(t) =
1

Zr

∑

Ji

WJi

Ji∑

Mi=−Ji

〈ψJiMi | cos2(θ)|ψJiMi〉(t) (6.9)

As will be shown in section 6.2.3, an additional statistical weight is needed to account for an
unbalanced ratio of even and odd J states in the initial molecular ensemble. This imbalance
stems from the nuclear spins of the constituent atoms of the molecule.

6.2.3. Nuclear spin statistics

Homonuclear diatomic molecules have a center of symmetry (inversion center) in the middle
between the two nuclei. A rotation around that center of 180° may be seen as an exchange of
both nuclei [109], given that the rest of the wave function is symmetric under such a rotation. In
this case, the total wave function ψtotal (including the spin) has to fulfil the exchange symmetry
condition, according to the Pauli principle, under rotation. This means a change of sign if the
nuclei are fermions and no sign change in case of bosons. Writing ψtotal

ψtotal = ψpos × ψspin
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6.2. Theoretical model

as a product of position and (total) spin wave functions, it becomes clear that the Pauli principle
may impose different symmetry requirements on the rotational part of ψpos, depending on the
total nuclear spin.

The hydrogen molecule H2 is a good example to demonstrate this. The hydrogen nucleus, i.e. a
single proton, is a fermion with a spin of 1/2. Hence, ψtotal is antisymmetric under exchange of
the nuclei. The total spin of both protons can take on the values 1 (parallel) or 0 (antiparallel).
The former is called ortho-hydrogen and the latter para-hydrogen.

In case of ortho-hydrogen, the total spin function ψspin is symmetric under exchange of the
nuclei. In the ground state, the electronic part of ψpos is symmetric under rotation. This
forces the rotational part of ψpos to be antisymmetric and therefore to only contain states
of odd quantum numbers J . Accordingly, in case of para-hydrogen, the rotational part is
symmetric and thus only contains states with even-numbered J , because the spin function is
antisymmetric.

A total spin of 1 can be realized by three different (symmetric) states (triplet states). In
contrast, a total spin of 0 is only possible in a single (antisymmetric) state (singlet state). In
thermodynamic equilibrium there are therefore three times as many states with total spin 1
than 0. This adds an additional statistical weight of 3/1 in favor of odd-numbered J to the
Boltzmann distribution in (6.7) and (6.9).

In general, for a molecule with inversion center and nuclear spin I, the ratio of statistical
weights for symmetric and antisymmetric nuclear spin states, in thermodynamic equilibrium, is
given by [109]

symmetric

antisymmetric
=
I + 1

I
. (6.10)

For hydrogen (I = 1/2) this gives the aforementioned ratio of 3/1 in favor of ortho-hydrogen.

Of relevance to the present work is also the case of the heavier isotope deuterium D2. Here the
nucleus is made up of a proton and neutron with a combined nuclear spin of I = 1. According
to (6.10) the ratio is 2/1 for symmetric nuclear spin states. Because of the bosonic nature of
the nucleus, the total wave function is of positive symmetry under exchange of the nuclei. The
electronic part of the position wave function is also of positive symmetry (as for H2). This
means that states with even-numbered J are more prevalent.

As a side note, the quarter-period revivals in the example of impulsive alignment of nitrogen N2

(in the left panel of Figure 6.1) are a consequence of such a statistical imbalance and are absent
if equal weights are chosen. The nuclear spin of nitrogen is I = 1, which ultimately leads to the
same ratio as for deuterium D2.

In the end the total alignment distribution (6.7) is modified to

σ(θ, t) =
1

Zr

∑

Ji

GJiWJi

Ji∑

Mi=−Ji

|ψJiMi(θ, t)|2. (6.11)

with additional weights GJ . The rotational partition function Zr is modified accordingly. The
same modification of the weighting also applies to the degree of alignment in (6.9).
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Figure 6.2.: Boltzmann weights WJ for H2 and D2 at a temperature of 293.15 K

6.2.4. Case of Hydrogen

In this section we want to study in a little more detail the case of the hydrogen molecule H2

and its heavier isotope D2. We are interested in the alignment distribution (6.11). As was
explained in the previous section 6.2.3 we have to account for the nuclear spin which introduces
the following isotope-dependent statistical weights

GH2
J =

{
1, J even

3, J odd
and GD2

J =

{
2, J even

1, J odd
.

The rotational constants are [97]

BH2
0 = 60.84 cm−1 and BD2

0 = 30.44 cm−1.

According to the Boltzmann coefficients (6.8) the ensemble temperature T has critical influence
on the total alignment distribution. The contribution of higher rotational states grows with
increasing temperature. In the limit of a cold ensemble T → 0 only the lowest rotational state
J = 0 is initially populated. Figure 6.2 shows the Boltzmann weights for H2 and D2 at room
temperature of about 293 K. The effect on the alignment distribution can be seen in Figure 6.3
which compares the results for both isotopes at two different intensities and temperatures at
the peak of a 30 fs laser pulse of sech-shape (see Figure description).

The results shown in Figure 6.3 can be intuitively understood. First, all curves have their
maximum at θ = 0, π (both are equivalent orientations for symmetry reasons in diatomic
molecules). This is the orientation along the electric field vector. Second, the heavy isotope
D2 experiences less alignment than H2 because of the higher moment of inertia which requires
more torque to gain a certain rotational energy in a fixed time span. Third, a higher intensity
leads to a more pronounced alignment of both isotopes since the field exerts a larger torque on
the molecules. Equivalently, the interaction potential (6.2) has a deeper well. Last, a lower
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Figure 6.3.: Alignment distribution σ of H2 (thin curves) and D2 (bold curves) at the peak of a pulse with
electric field envelope sech(2 ln(1 +

√
2)t/τ) with τ = 30 fs. The left panel shows the distribution for the low

intensity 1.5 · 1014 W/cm2 and the right panel for the high intensity 2 · 1014 W/cm2. Additionally, two different
temperatures are compared, 10−15 K (low contrast, dashed) and 293.15 K (high contrast, solid).

temperature leads to more alignment. Because more molecules are initially in the same state
with low rotational energy, it is more likely to align a larger portion of them.

We can conclude that, for the particular intensities studied here, at low temperatures there is
a significant difference in alignment between the two isotopes. This difference decreases with
increasing temperature.

6.3. Use in autocorrelation function

The general approach to including the molecular alignment distribution σ(θ, t) into the auto-
correlation is by considering it as a weighting function for the angle dependence that originates
from the recombination matrix element. For a linearly polarized electric field the angle-averaged
autocorrelation, with the ionization element set identically to one, dion ≡ 1, and the recom-
bination element given by the angle dependence as resulting from a LCAO approximation,
drec ≈ cos(kR cos(θ)/2), takes the form

C(ω) = 2π

∫ π

0
dθ sin(θ)σ(θ, ts(ω))Cθ(ω) (6.12)

where the factor 2π comes from the integration over the azimuthal angle. Note that such a
constant factor is not relevant for the ratio of autocorrelations. The autocorrelation for a
specific angle θ is

Cθ(ω) =

∫
dR cos

(
k(ω)R cos(θ)

2

)
χ∗0(R)U+

R (τs(ω))χ0(R).
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6. Molecular Alignment

The electron excursion time τs(ω) = ts(ω)− t′s(ω) is determined by the saddle-point ionization
and recombination times t′s(ω) and ts(ω), respectively. For the return momentum we use the
relation k(ω) =

√
2(ω − Ip), i.e. no heuristic modification as in chapter 5. The angle θ is

measured between the internuclear axis and the electric field vector. The direction of the
electron return momentum is taken to coincide with the electric field direction. χ0 is the
vibrational ground state of the neutral hydrogen molecule H2 and U+

R is the time-evolution
operator in the ground-state potential energy curve of the ion H+

2 .

The time-dependence of σ(θ, t) presents a problem in expression (6.12). The saddle-point
times are complex, which means the values of σ(θ, t) need to be known for complex arguments
t. While there might be a continuation into the complex plane, the fact that σ(θ, t) is only
known numerically makes this a formidable task. Taking the real part of the times is an
option, but it is not clear if this is appropriate. Another approach is to assume that the
major contribution to the macroscopic harmonic signal comes from the maximum of the pulse
envelope. This is questionable given that the envelope may be an important parameter in
experimental setups (see chapter 8). However, when the autocorrelation is evaluated within a
single cycle of full amplitude, it is inherently agnostic with regard to the overall pulse shape.
It is therefore plausible to choose the maximum of the envelope tmax as the relevant point in
time for alignment, as has been done for example in [29]. This approach implies that there are
trajectories which are most relevant in the sense that they have recombination times close to
tmax and therefore contribute the most. This enables us to use the alignment distribution at
that time, σmax(θ) := σ(θ, tmax), to estimate the influence of the alignment on the harmonic
signal. Expression (6.12) then reads

C(ω) = 2π

∫ π

0
dθ sin(θ)σmax(θ)Cθ(ω). (6.13)

In practice it is convenient to approximate sin(θ)σmax(θ) by a fit of the form

sin(θ)σmax(θ) ≈
N∑

n=1
n odd

λn sin(nθ) +
N∑

n=1
n even

µn cos(nθ)−
N∑

n=1
n even

µn. (6.14)

This has the advantage that if there are no dependencies of χ0 and U+
R on the angle θ, the

complete angle average

η(ω,R) :=

∫ π

0
dθ sin(θ)σmax(θ) cos

(
k(ω)R cos(θ)

2

)
(6.15)

can be evaluated analytically. The autocorrelation in this case

C(ω) = 2π

∫
dRη(ω,R)χ∗0(R)U+

R (τs(ω))χ0(R)

is then easy to work with since η(ω,R) is readily evaluated with the fit-parameters λn, µn as
input. These parameters are determined once for a given distribution σmax(θ). Even if the
analytical evaluation of η(ω,R) is not possible because of further angle dependencies, it is still
beneficial to use an analytic expression for sin(θ)σmax(θ). As for the number of terms necessary
in (6.14), a number of N = 3 turns out to be adequate. See appendix A.5 for a more detailed
description.
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6.3. Use in autocorrelation function

In case of a constant alignment distribution, i.e. a randomly aligned ensemble of molecules, the
function η simplifies to (see appendix section A.3)

ηrandom(ω,R) ∝
∫ π

0
dθ sin(θ) cos

(
k(ω)R cos(θ)

2

)

∝ sin(k(ω)R/2)

k(ω)R/2
. (6.16)
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7. Stark Effect

It is well known that an atomic or molecular system experiences a modification of its eigenenergies
and -states when subject to an external electric field. This phenomenon is called the Stark
effect or Stark shift. In high-harmonic generation, the electric field of the strong laser pulse may
have significant influence on the eigenstates of the system. For example, the ionic BO potential
is distorted by the laser during the continuum travel of the electron and therefore changes the
nuclear motion compared to the field-free potential. This in turn changes the time-dependent
vibrational autocorrelation, see chapter 3.

This chapter deals with the theory of the Stark effect and its application to the hydrogen
molecule and hydrogen molecular ion. It is the foundation for the study of experimental
harmonic ratios that we are concerned with in chapter 8.

7.1. Theory

7.1.1. Time-independent perturbation theory

The modification of the eigenenergies due to the electric field are usually described using standard
nondegenerate time-independent perturbation theory. In general, a perturbing potential W is
added to the unperturbed Hamiltonian H0 [110]

H(λ) = H0 + λW,

where the parameter λ measures the strength of the perturbation. This introduces corrections

to the eigenenergy E
(0)
n of a particular nondegenerate state |φn〉 of H0, given by

En(λ) = E(0)
n + λE(1)

n + λ2E(2)
n +O(λ3)

with

E(1)
n = 〈φn|W |φn〉 (7.1)

E(2)
n =

∑

m6=n

|〈φm|W |φn〉|2

E
(0)
n − E(0)

m

. (7.2)
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7. Stark Effect

7.1.2. DC Stark shift of energies

In the case of a constant external electric field the perturbation potential W is given by the
dipole interaction

λW = −F · d

with electric field F . The magnitude of F plays the role of the parameter λ. The atomic or
molecular electric dipole moment is given by d. [111,112]

According to (7.1) the first-order Stark shift is

E(1)
n = −F · 〈φn|d|φn〉.

This means that atoms and molecules with a permanent dipole moment µ := 〈φn|d|φn〉
experience a linear Stark shift. Using (7.2) the second-order Stark shift can be written as

E(2)
n = −F ·


−

∑

m 6=n

〈φm|d|φn〉 ⊗ 〈φn|d|φm〉
E

(0)
n − E(0)

m


F (7.3)

which can be interpreted as the electric field acting on the induced dipole moment αF . The
polarizability tensor

α = −2
∑

m 6=n

〈φm|d|φn〉 ⊗ 〈φn|d|φm〉
E

(0)
n − E(0)

m

(7.4)

contains the information about how the system is polarized when the inducing electric field

points in a certain direction. In total the Stark shift of the eigenenergy E
(0)
n up to second order

reads

En(F ) = E(0)
n − µ · F −

1

2
αF · F +O

(
F 3
)

= E(0)
n −

∑

i

µiFi −
1

2

∑

ij

αijFiFj +O(FiFjFk) (7.5)

7.1.3. AC Stark shift of energies

If the external electric field is not constant but a monochromatic wave it is possible to consider
the AC Stark shift (also dynamic Stark shift). It takes the frequency of the field into account,
i.e. the shifted energies depend not only on the electric field strength but also on its frequency.
One can distinguish between the resonant and nonresonant case depending on whether the
frequency matches the transition energy between the respective atomic or molecular states.
The shift is time-independent and can be considered as an averaged effect [113].

There are generally two ways to tackle this problem. The first uses a semiclassical approach
where the electric field is described classically and the relevant equations are solved via a
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7.1. Theory

Floquet method. The second involves a quantized electric field and is the approach that we
choose to discuss in this work. We proceed to follow the derivations published in [114, 115].
Another good reference is [116].

Because the field is quantized the total state of the system is a product of the state of the atom
or molecule (henceforth just called atom) and the state of the field. The total Hamiltonian
takes the form

H = H0 +Hint.

where H0 includes the Hamiltonians of the atom and the field, without the interaction between
the two, which is completely contained in Hint and is given by the dipole interaction

Hint = −d · F (r).

The dipole moment operator is named d. The electric field F (r) is taken in plane-wave
quantization and as a single mode of frequency ω

F (r) = i

√
2πω

V

(
aeik·r − a†e−ik·r)e.

The creation- and annihilation operators are denoted by a† and a, respectively, k is the wave
and e the polarization vector. The quantization volume of the field is given by V .

Let us introduce the atomic states |m〉 and the photon-number states |n〉, the product states
|m;n〉 := |m〉 ⊗ |n〉 give the eigenstates of H0

H0|m;n〉 = (Em + nω)|m;n〉.

The energy of the atomic state |m〉 is given by Em and the energy of n photons is simply nω.

The interaction Hint only directly couples atomic states of different symmetry because the
dipole moment operator is an odd function in position space. With “directly” it is meant that
states of the same symmetry are coupled only by multiple interactions. In case of the atomic
states a chain of interactions, each coupling states of different symmetry, is required to give a
total coupling of states with the same symmetry. In addition, only photon states that differ
by a single photon are directly coupled. This follows from the actions of the ladder operators
on the photon states a†|n〉 =

√
n+ 1|n + 1〉 and a|n〉 =

√
n|n − 1〉. In summary, the only

nonvanishing matrix elements of Hint are

H+
mm′;n = 〈m;n+ 1|Hint|m′;n〉 = −i

√
2π(n+ 1)ω

V
〈m|d · e|m′〉e−ik·r

H−mm′;n = 〈m;n− 1|Hint|m′;n〉 = −i

√
2πnω

V
〈m|d · e|m′〉eik·r

where the atomic states corresponding to m and m′ have different symmetry.
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Nonresonant case Considering Hint as a perturbation, we can apply time-independent per-
turbation theory. The first-order correction (7.1) vanishes because there is no coupling between
a state and itself. For the second-order correction (7.2) for the energy Em;n of the state |m;n〉
holds

E(2)
m;n = −

∑

m′

[
|H+

m′m;n|2
Em′ − Em + ω

+
|H−m′m;n|2

Em′ − Em − ω

]
(7.6)

This expression can be a little simplified. For large n � 1 it holds that
√
n+ 1 ≈ √n. This

leads to

|H+
mm′;n|2 ≈ |H−mm′;n|2 =

2πnω

V
|〈m|d · e|m′〉|2 (7.7)

=
F 2

0

4
|〈m|d · e|m′〉|2 (7.8)

where in the second step nω/V was taken to be the energy density of the electric field. In
atomic units it equals F 2

0 /8π with electric field strength F0. Expression (7.6) then reduces to

E(2)
m;n = −F

2
0

2

∑

m′

|〈m|d · e|m′〉|2 Em′ − Em
(Em′ − Em)2 − ω2

. (7.9)

It can be seen that (7.9), and also the nonsimplified expression (7.6), cover only nonresonant
field frequencies ω. If ω ≈ Em′ − Em the coupling between the states of energy Em and Em′ is
no longer a small perturbation and this approach breaks down.

In case of low field frequencies ω, i.e. if ω2 � (Em′ −Em)2 for all m′, the expression should go
over into the DC Stark shift. For ω = 0 and F 0 := F0e

E(2)
m;n = −1

2
F 0 ·

(∑

m′

〈m|d|m′〉 ⊗ 〈m′|d|m〉
Em′ − Em

)
F 0.

The sum in parentheses equals half of the polarizability tensor, α/2. For this, note that the
energies in the difference in the denominator are interchanged compared to (7.4). Accordingly

E(2)
m;n = −1

4
F 0 · αF 0, (7.10)

which means that we arrive at half of the second-order DC Stark shift (compare expression
(7.5)).

Resonant case Let us assume that the field frequency is close to the transition frequency
between two atomic states |1〉 and |2〉, i.e. ω ≈ E2 − E1, with E2 > E1. Other atomic states
may also be involved, but their coupling should be negligible in comparison. This holds true as
long as their transition energies are not close to ω.

Since perturbation theory is not applicable we have to resort to the direct diagonalization of
the total Hamiltonian H0 +Hint. The corresponding matrix in the subspace spanned by |m;n〉
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7.2. Hydrogen molecular ion

with m = 1, 2 and fixed n ∈ N looks like

(H0 +Hint) =




. . .

E1 + (n− 2)ω H−12;n−1

H+
21;n−2 E2 + (n− 1)ω H−21;n

H+
12;n−1 E1 + nω H−12;n+1

H+
21;n E2 + (n+ 1)ω H−21;n+2

H+
12;n+1 E1 + (n+ 2)ω

. . .




.

Here it becomes evident that a state |m;n〉 only couples with another state |m,n′〉 if n and n′

are either both even or odd. This means that there are two sets of states for a given m, namely
{|m;n〉 : n even} and {|m;n〉 : n odd} that do not couple. The matrix above contains one such
set. Which one depends on the parity of n. Considering that H±mm′;n = H∓∗m′m;n±1 it is also
clear that this matrix is hermitian, as it should be.

If we consider only the (direct) coupling of the state |1;n〉 with the states |2;n± 1〉 the problem
reduces to finding the eigenvalues of the 3× 3 matrix in the center of the above representation

(H0 +Hint) =



E2 + (n− 1)ω H−21;n

H−∗21;n E1 + nω H+∗
21;n

H+
21;n E2 + (n+ 1)ω




7.2. Hydrogen molecular ion

For HHG in H2 the nuclear dynamics of H+
2 is of particular importance, as can be seen by

means of the vibrational autocorrelation (see section 2.2.1). If one wants to study the influence
of the laser pulse on the motion of the nuclei during the continuum travel of the electron the
Stark shift of the ground-state potential energy curve (BO potential) should be calculated. We
will address this in this section.

7.2.1. Parallel DC Stark shift as dressed state

The hydrogen molecular ion H+
2 does not possess a permanent dipole moment. Following

section 7.1.1 we expect a Stark shift only in second order in the electric field. Since the laser
pulse is time-dependent the vibrational potential that the nuclei are subject to will acquire a
time-dependency as well. We will approach the Stark effect not with perturbation theory but
by solving the time-independent Schrödinger equation directly while including the electric field.
The solutions are also known as dressed states. In case of H+

2 this is readily done when the
state is expanded in field-free electronic eigenstates and including only the energetically lowest
two. This is a sensible approximation because these states are energetically well separated from
higher states, see Figure 4.2.
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7. Stark Effect

The Hamiltonian of an electron interacting with two frozen-in-place nuclei with internuclear
distance R and linearly polarized electric field of the laser F (t) takes the form

HR = T + VR(z) + zF (t)

where T is the kinetic energy of the electron and VR the potential due to the nuclei. The motion
of the electron is restricted to the direction z along the internuclear axis and the direction of
the field F (t) is aligned along that axis as well. This means that we are considering the parallel
Stark shift where the polarization of the molecule takes place along the internuclear axis. We
expand the state |ψR〉 in terms of the two energetically lowest field-free eigenstates |ψRg 〉 and

|ψRu 〉

|ψR〉 = cg(R)|ψRg 〉+ cu(R)|ψRu 〉.

The left side of the Schrödinger equation

HR|ψR〉 = ER|ψR〉

is

HR|ψR〉 = cg(R)
(
Eg(R) + zF0

)
|ψRg 〉+ cu(R)

(
Eu(R) + zF0

)
|ψRu 〉

with the field-free BO potentials Eg(R) and Eu(R), i.e. (T + VR)|ψRg,u〉 = Eg,u(R)|ψRg,u〉.
Projection onto |ψRg 〉 and |ψRu 〉 yields two coupled equations for the coefficients cg(R) and cu(R)

cg(R)Eg(R) + cu(R)F (t)〈ψRg |z|ψRu 〉 = ERcg(R)

cu(R)Eu(R) + cg(R)F (t)〈ψRu |z|ψRg 〉 = ERcu(R)

which can be written as a vector equation
(

Eg(R) F (t)D(R)
F (t)D(R)∗ Eu(R)

)(
cg(R)
cu(R)

)
= ER

(
cg(R)
cu(R)

)
.

The dipole-transition matrix element D(R) := 〈ψRg |z|ψRu 〉 is real-valued, i.e. D(R) = D(R)∗

where the asterisk denotes the complex-conjugate. The eigenvalues of the above matrix are

EDC
±
(
R,F (t)

)
=
Eg(R) + Eu(R)

2
± 1

2

√(
Eg(R)− Eu(R)

)2
+ 4F (t)2D(R)2. (7.11)

This expression gives the Stark-shifted potential energy curves in terms of the field-free potentials
Eg(R) and Eu(R), the electric field F (t) and the matrix element D(R). The modulus of the
latter can be approximated by the following expression [117]

|D(R)| = 0.4e−R +
R

2
. (7.12)

A comparison of this approximation with exact values taken from [118] can be seen in Figure
7.1.

For small values of the electric field strength F (t), specifically

F (t)2 �
(
Eg(R)− Eu(R)

)2
/4D(R)2,
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Figure 7.1.: Comparison of Left: exact [118] and approximated (7.12) dipole-transition matrix element D(R).
Right: exact parallel and perpendicular polarizability [119] and α+

‖ (R) (7.15).

we expect expression (7.11) to approach the results from perturbation theory (7.5) (see section
7.1.1). Expanding the square-root in (7.11) in a Taylor-series to first-order yields

EDC
±
(
R,F (t)

)
≈ Eg(R) + Eu(R)

2
± |Eg(R)− Eu(R)|

2

(
1 +

2F (t)2D(R)2

(
Eg(R)− Eu(R)

)2

)

=
Eg(R) + Eu(R)±

(
Eu(R)− Eg(R)

)

2
± D(R)2

Eu(R)− Eg(R)
F (t)2. (7.13)

In the second line we made use of the fact that Eu(R) > Eg(R) for all R and therefore
|Eg(R)− Eu(R)| = Eu(R)− Eg(R).

From expression (7.13) we see that there is no first order contribution in the electric field. We
are interested in the Stark shift of the ground-state potential curve Eg(R)

EDC
−
(
R,F (t)

)
≈ Eg(R)− 1

2
α+
‖ (R)F (t)2 (7.14)

with parallel polarizability

α+
‖ (R) = − 2D(R)2

Eg(R)− Eu(R)
(7.15)

which has the same form as in (7.4). It agrees well with values from [119], see Figure 7.1.

An example of a Stark-shifted potential curve is shown in Figure 7.2 for an electric field strength
F0 that corresponds to an intensity of 1.5 · 1014 W/cm2. It differs significantly from the field-free
curve. The asymptotic behaviour for large R is no longer constant and for this particular F0

the minimum resembles a saddle point. The Taylor-expanded expression (7.14) is accurate only
up to approximately 2.5. For larger distances the coupling between the two states becomes
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Figure 7.2.: Stark-shifted ground-state potential energy curves of H+
2 for an electric field strength F0 corre-

sponding to an intensity of 1.5 · 1014 W/cm2. Left: Parallel alignment Right: Perpendicular alignment. The
values for α+

⊥(R) are taken from [119].

too large (see Figure 7.1) and the dipole interaction is no longer a small perturbation. The
matrix-approach is better suited to describe the Stark shift for large internuclear distances.

For lower intensities the minimum survives and is bounded by a tunnel barrier while for larger
intensities the potential is practically only a falling slope. Figure 7.3 shows the potentials for
different intensities and for a wider range of internuclear distances.

Ionization potential The ionization potential Ip = V +
BO(R0)− E0 depends on the potential

energy curve of the ion V +
BO and therefore is dependent on the DC Stark shift. E0 and R0 are

the ground-state energy and equilibrium distance of the neutral (field-free) molecule H2. We
will study the influence of the parallel shift on Ip, because the perpendicular shift is negligible
in comparison (see next section 7.2.2).

The largest occurring shift during the time-dependent electric field F (t) happens at the field
maximum F0. Hence, we can use F0 to determine an upper bound for the shift induced by F (t).
In this regard, we define the DC shifted ionization potential analogously to the field-free one

IDC
p = V +DC

BO (R0)− E0. (7.16)

The DC shifted ground state potential energy curve of the ion is V +DC
BO (R) = EDC

−
(
R,F0

)
,

expression (7.11). Since both isotopes H+
2 and D+

2 have the same potential energy curve, the
DC shift, and therefore the change in ionization potential due to it, is independent of the
isotope.

In the left panel of Figure 7.4 we plot IDC
p of H2 as a function of orientation θ and intensity I

of the electric field. The picture shows the expected qualitative behaviour. Since we neglect
the perpendicular component, the shift is zero at θ = π/2 and thus IDC

p = Ip. Trivially, the
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7.2. Hydrogen molecular ion
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Figure 7.3.: Parallel Stark-shifted ground-state potential energy curves of H+
2 for a range of different electric

field strengths corresponding to the given intensities.

shift vanishes for zero intensity as well. It is only nonzero if the electric field has a parallel
component and the greatest deviation of IDC

p from Ip occurs for parallel alignment. It holds

that IDC
p < Ip because the ionic potential curve is distorted downwards. This can be seen for

example in Figure 7.3. We highlight the values for the intensities 1.5 and 2 · 1014 W/cm2 for
which we have experimental harmonic ratios (see section 8). Additionally, the higher intensity
4 · 1014 W/cm2 is pointed out for comparison as well. The relative change in Ip

δIDC
p =

IDC
p − Ip

Ip
(7.17)

for these three intensities is plotted in the right panel. The relative change is less than 2 % and
should therefore be negligible even for the high intensity 4 · 1014 W/cm2. But because the shift is
approximately quadratic in the electric field strength F0, see expression (7.14), it becomes not
only greater with increasing F0, but also changes more rapidly with it. This means that the
change in Ip will quickly become nonneglible for greater intensities.

7.2.2. Perpendicular DC Stark shift

Figure 7.1 also shows the perpendicular polarizability of H+
2 , i.e. when the electric field vector

is perpendicular to the internuclear axis. It has smaller values than the parallel polarizability,
especially for large internuclear distances where the difference between the two amounts to
several orders of magnitude.

This different behaviour can be understood by considering the definition of the polarizability as
the ratio of the induced dipole moment and the inducing electric field. For parallel alignment it
is easy to create a large separation of positive and negative charges within the molecule when
the electron density is shifted towards one nuclei. It therefore grows with increasing internuclear
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Figure 7.4.: Left: Dependence of the DC shifted ionization potential IDC
p of H2 on the field orientation θ and

intensity I. The lines mark the intensities 1.5 (green), 2 (orange) and 4 · 1014 W/cm2 (violet). Right: Relative
change δIDC

p as a function of θ for the three intensities highlighted in the left panel.

distance. For perpendicular alignment the distance between the nuclei is of less importance for
charge separation and a change in distance has less impact the higher that distance is.

An example of the second-order perpendicular Stark shift is shown in Figure 7.2. While the
parallel Stark shift changes the overall shape of the potential the perpendicular effect has only
little influence. The position of the minimum is slightly shifted to lower energy and larger
internuclear distance. The constant asymptotic character for large R of the field-free potential
approximately persists with a lower value. This can be seen from the nearly constant value of
the perpendicular polarizability as shown in Figure 7.1.

For a specific angle θ between the electric field vector and the internuclear axis the parallel Stark
shift will have significantly more influence on the potential than the perpendicular counterpart.
For nuclear dynamics taking place within the potential well it should therefore be acceptable
to neglect the perpendicular Stark shift. An angle dependence can then be simply taken into
account by multiplying the electric field strength F (t) with a factor cos(θ) in expression (7.11).
Hence, the potential energy curve acquires a time- and angle-dependence.

7.3. Hydrogen molecule

In this section we want to study the influence of the Stark effect on the vibrational ground state
of the neutral hydrogen molecule H2. This is the initial state for the nuclear dynamics taking
place in H+

2 , see section 2.2.1. In the ion, we calculate the DC Stark shift with a time-dependent
electric field to include the specific time-dependence of the potential energy curve that influences
the vibrational dynamics. In contrast, we calculate the AC Stark shift for the neutral molecule,
because its ground state should be less sensitive to the rapid oscillations of the electric field
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7.3. Hydrogen molecule

that lead to small shifts of the potential minimum in Figure 4.1.

7.3.1. AC Stark shift

First we want to check whether the laser frequency requires a nonresonant matrix diagonalization
or if the perturbation expression (7.9) can be used. The typical wavelength of the driving laser
in HHG is 800 nm which corresponds to an angular frequency of ω800 ≈ 0.05695. The lowest
electronic singlet state in terms of energy above the ground state is B1Σ+

u 2pσ (or 11Σ+
u 2pσ

in the notation of [77]). We will denote this state by B and the ground state by X in the
following. The minimum energy difference

EBX = min{EB(R)− EX(R) : R ≥ 0}
≈ 0.2807

lies above ω800. Note that this is the smallest energy difference that can occur between the
ground state and a higher singlet state. In particular the ratio

ω2
800

E2
BX

≈ 4.1 % (7.18)

shows that ω800 is nowhere close to the energy differences. It should therefore be adequate to
apply the theory for the nonresonant case.

Another consequence of the low ratio in (7.18) is that we can approximate the AC shift by the
DC shift, see equation (7.10) and the explanations in that section. This has the advantage that
we only need the polarizabilities α‖(R) and α⊥(R) which can be found in the literature [120,121].
Otherwise all potential energy curves and dipole-transition matrix elements of excited states
giving significant contributions in the sum of (7.9) would need to be known. While this is
without difficulty in the ion H+

2 , where the major contribution comes from the coupling between
the ground state 1sσg and only one excited state 2pσu, the situation is more complicated in H2,
as we will see in the following.

In the literature one can find potential energy curves and transition elements with the ground
state for some Σu and Πu states [77,78,122]. Because of the symmetry of Σ orbitals the only
nonvanishing component of the transition element for X → Σu is in the direction parallel to the
internuclear axis. If we set the z-axis along the internuclear axis and call the transition element
M , this means that only Mz is nonzero. With the same reasoning applied to the symmetry
properties of Π orbitals, the only nonvanishing component for X → Πu transitions, in case
of nonnegative angular momentum projection along z, is M+ = (Mx + iMy)/

√
2, while both

M− = (Mx − iMy)/
√

2 and Mz are equal to zero. The coupling with the Πu states therefore
yields perpendicular contributions. Hence, the parallel and perpendicular polarizabilities can
be written as

αPT
‖ = −2

∑

Σu

|Mz|2
EX − EΣu

with Mz = 〈Σu|dz|X〉

αPT
⊥ = −2

∑

Πu

|Mx|2
EX − EΠu

with Mx = 〈Πu|dx|X〉
(7.19)
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Figure 7.5.: Left: Parallel and perpendicular polarizabilities of the hydrogen molecule H2. Shown is a
comparison between exact values (solid lines) [120, 121] and values calculated with expressions (dashed-dotted
lines) (7.19). For the parallel case the six lowest Σu states are included and for the perpendicular case the
lowest four Πu states. It can be seen that this is insufficient to reproduce the exact values. More states
would need to be included. Right: AC-shifted ground state potential energy curves for parallel (θ = 0) and
perpendicular (θ = π/2) orientation of the electric field. The high contrast solid curves correspond to an
intensity of 1.5 · 1014 W/cm2 and the low contrast dashed curves to 4 · 1014 W/cm2.

where the respective sum goes over the available states. Since we do not cover all contributing
states here, these expressions are not exact and a comparison with exact values for the
polarizabilities serves as a benchmark for the accuracy that can be achieved with the states
at hand. The left panel of Figure 7.5 shows such a comparison. For the parallel case the six
lowest Σu states and for the perpendicular case the four lowest Πu states are included (see
Figure 4.1 for the potential energy curves). Apparently these are not sufficient to reproduce
the polarizabilities accurately and more states are needed. Compare with the corresponding
data for H+

2 in Figure 7.1 where the coupling with only one excited state reproduces the exact
polarizability adequately. It is therefore advantageous that the laser parameters allow us to
resort to the known static polarizabilities, because otherwise the calculations would not be as
accurate.

As a side note, Π states, and states with higher quantum number Λ = |ML| as well, are twofold
degenerate. Values of ML and −ML yield the same energy because of the axial symmetry of
the molecule, where ML is the projection of the orbital angular momentum of the electrons
about the internuclear axis. This means that for every term in the sum of αPT

⊥ there is another
with the same value because the two states have the same energy and (again for symmetry
reasons) the same modulus of the transition element Mx. Since Mx = M+/

√
2 for nonnegative

ML, we can calculate αPT
⊥ by using M+ instead of Mx in the formula in (7.19) and only sum

over half the states (with ML = 1) because the factors 2 and 1/(
√

2)2 cancel each other. We
therefore do not distinguish between ML and −ML when we talk about the six lowest Σu states,
for example.
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7.3. Hydrogen molecule

According to expression (7.10) we can write the AC-shifted potential energy curve as

V AC
BO (R) = VBO(R)− F 2

0

4

(
α‖(R) cos2(θ) + α⊥(R) sin2(θ)

)
(7.20)

where F0 is the amplitude of the electric field and θ the angle between the electric field vector and
the internuclear axis, as before. VBO is the vibrational ground state potential (X1Σ+

g 1sσ, see
again Figures 4.1 and 4.2). For the polarizabilities α‖, α⊥ we use the exact values from [120,121].

The right panel of Figure 7.5 shows the AC-shifted ground state potential energy curve for
parallel (θ = 0) and perpendicular (θ = π/2) orientation, for two electric field intensities
1.5 · 1014 W/cm2 and 4 · 1014 W/cm2. For these intensities the potential keeps its overall shape.
The potential well is shifted to higher internuclear distances, lower energies and is broadened,
which is reflected by the corresponding ground states of H2 in Figure 7.6. The asymptotic value
for large R is shifted down as well. Since the parallel and perpendicular polarizabilities have
the same value of α∞ = 9 [120,123] in the limit R→∞, the asymptotic shift

V AC
BO (R→∞) = VBO,∞ −

α∞F
2
0

4

is independent of the angle θ. The asymptotic value of VBO for R→∞ is VBO,∞ = −1.

Ionization potential In order to assess the influence of the Stark shift on the saddle-point
times, we plot in Figure 7.7 the dependence of the ionization potential IAC

p on the electric field
intensity and the orientation. We define

IAC
p = V +

BO

(
RAC

0

)
− EAC

0

in analogy to the field-free Ip. RAC
0 is the equilibrium distance and EAC

0 the ground state
energy of the AC-shifted potential. The left panel shows IAC

p for H2. It grows with increasing
field intensity and coincides with the field-free Ip for I = 0, as expected. Furthermore, the
parallel orientation leads to a greater IAC

p than the perpendicular orientation and the difference
grows with the field intensity (compare with expression (7.20) and Figure 7.5).

We highlight the same three intensities as in Figure 7.4 of the DC shift in H+
2 , namely 1.5, 2

and 4 · 1014 W/cm2. In the right panel the relative change

δIAC
p =

IAC
p − Ip

Ip
(7.21)

is shown for both isotopes H2 (thin lines) and D2 (thick lines). In contrast to the change in Ip

due to DC shift of H+
2 , the AC shifted ionization potential depends on the isotope because the

ground-state energy EAC
0 does so.

Even for the largest of the three intensities, the relative change amounts to just about 2 %.
Similar as for the DC shift in section 7.2, the change in Ip will grow quickly (i.e. quadratic)
with F0.
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7.4. Ionization potential

7.4. Ionization potential

In the previous sections about the Stark shifts in the ion and neutral molecules, we considered
the changes in the ionization potential Ip separately, i.e. the change caused by the DC shift
in the ion or that caused by the AC shift in the neutral molecule. In Figures 7.4 and 7.7 we
see that while the DC shift by itself reduces Ip, the AC shift increases it, and they do so by
approximately the same amount. This suggests that if both shifts are simultaneously included
in the calculations, the net change in Ip

δIAC/DC
p =

I
AC/DC
p − Ip

Ip

with

IAC/DC
p = V +DC

BO

(
RAC

0

)
− EAC

0 , V +DC
BO (R) = EDC

−

(
R,F0/

√
2
)

(7.22)

may be smaller than the individual changes δIAC
p , equation (7.21) and δIDC

p , equation (7.17).

It should be noted here that we use a time-dependent electric field F (t) in the DC shift of the
ion, expression (7.11), and not a constant electric field F0, as we did in analyzing IDC

p (7.16).
This means that every vibrational wave packet evolution on the potential energy curve of the
ion is triggered by an ionization event with a different instantaneous value of the ionization
potential. To account for this it should be sufficient to consider the average value of the DC shift
over one period of the electric field, instead of accounting for the time-dependency explicitly. To
this end, the square of a sinusoidal wave has an average value of 1/2, meaning that in equation
(7.22) we calculate V +DC

BO with F0/
√

2 instead of F0. This is analogous to the factor 1/2 that
enters the AC shift when it is approximated by the DC shift (7.10). The contribution from the

DC shift to I
AC/DC
p is therefore less than that shown in Figure 7.4 where the peak amplitude

F0 was used.

In Figure 7.8 we plot I
AC/DC
p and δI

AC/DC
p as before. Since we neglect the perpendicular

DC shift in H+
2 , the value for δI

AC/DC
p coincides with δIAC

p at θ = π/2. For smaller angles,
the two contributions lead to smaller changes than they do individually, as expected. The
minimum change occurs for parallel alignment, because here the individual changes had the
largest values with opposite signs. This leads to a value of approximately 1 % for the large
intensity 4 · 1014 W/cm2.
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8. Trajectory-Resolved High-Harmonic
Spectroscopy

The group of Pengfei Lan from the Huazhong University of Science and Technology in Wuhan,
China, were able to experimentally measure trajectory-resolved HHG spectra of H2 and D2,
and provided us with their data of harmonic ratios. We are thus able to test the validity of
harmonic ratios, calculated by means of saddle-point-time vibrational autocorrelations, against
the experiment. The collaboration resulted in a joint publication, see [59].

The experiment exploited the different phase properties of the harmonics initiated by short
and long trajectories. The dipole phase of a specific trajectory of order q, approximately
given by αjqI(r, t), acquires a temporal and spatial dependence via the laser pulse envelope
I(r, t). The coefficient αjq is dependent on the kind of trajectory (labelled by j). The temporal

dependence gives rise to a shifted harmonic frequency, ωq = qω0 + αjq
∂I(r,t)
∂t . In combination

with macroscopic phase-matching effects, one can identify a red-shifted harmonic frequency
with short trajectories, because they are phase-matched on falling edge of the pulse envelope.
In contrast, the long trajectories are phase-matched on the rising edge and can be identified
with a blue-shifted harmonic frequency.

The spatial dependence of I leads to a curved phase-front of the emitted harmonics. The
coefficient αjq is generally larger for the long trajectory, giving it a larger divergence angle than
the short trajectory. Both kinds of trajectories can therefore be distinguished in the spatial
domain as well. For the details concerning the experiment, see [59]. Additional literature on
the dipole phase of the trajectories can be found in [68–70].

In this chapter we present the theory part of the publication. The experimental data is shown in
Tables 8.1 and 8.2 for 1.5 · 1014 W/cm2 and 2 · 1014 W/cm2, respectively, and Figure 8.1 shows the
corresponding plots. In both cases the laser pulse is linearly polarized, has a central wavelength
of 800 nm and a duration of 30 fs. Also shown in the plots is the angle-averaged autocorrelation
ratio, with random alignment and with alignment distribution (see next section), calculated in
the field-free BO potential energy curve V+

BO (see also section 2.2.4). Although the agreement
is reasonable, the comparison suggests that the propagation on the field-free curve is not
sufficient to explain the slope of the ratio. The autocorrelation ratio for fixed parallel alignment
(θ = 0) does reproduce the slope very well and the overall agreement for the short trajectories
is noteworthy. However, the magnitude of the ratio for the long trajectories is too high, in
particular for the lower intensity. Additionally, there is likely no perfect parallel alignment of
the experimental molecular ensemble. The good agreement might therefore be coincidental.

This leads to the idea of PACER (Probing Attosecond dynamics by Chirp-Encoded Recollision)
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8. Trajectory-Resolved High-Harmonic Spectroscopy

Short trajectories

Energy Harm. Order Ratio

23.0487 14.8720 0.9695± 0.0263

26.1671 16.8842 0.9999± 0.0290

29.1135 18.7853 1.0110± 0.0379

32.3513 20.8745 1.0553± 0.0406

35.5373 22.9302 1.0994± 0.0495

38.6654 24.9486 1.1644± 0.0689

Long trajectories

Energy Harm. Order Ratio

23.4052 15.1020 1.1401± 0.0345

26.3705 17.0154 1.1700± 0.0351

29.4768 19.0197 1.1962± 0.0362

32.5653 21.0126 1.2049± 0.0381

35.6626 23.0110 1.2699± 0.0489

38.7539 25.0057 1.5415± 0.0896

Table 8.1.: Experimental trajectory-resolved ratios of harmonic intensities, D2/H2, for a wavelength of 800 nm
and an intensity of 1.5 · 1014 W/cm2. Note that due to a frequency-shift (see main text) the harmonic orders
are not integer values. Short trajectories (left table) are red- and long trajectories (right table) blue-shifted.

Energy Harm. Order Ratio, short Ratio, long

23.2470 15 0.9372± 0.0381 1.2183± 0.1158

26.3466 17 1.0150± 0.0641 1.2370± 0.1358

29.4462 19 1.0438± 0.0837 1.2863± 0.1568

32.5459 21 1.0811± 0.1017 1.3046± 0.1689

35.6455 23 1.1575± 0.1072 1.3895± 0.1969

38.7451 25 1.1446± 0.0862 1.2920± 0.1188

Table 8.2.: Experimental trajectory-resolved ratios of harmonic intensities, D2/H2, for a wavelength of 800 nm
and an intensity of 2 · 1014 W/cm2. The frequency-shift is not available for this set of data points, which is why
the harmonic orders are given as integers.

[28, 54, 124], which aims to find a potential that more accurately describes the vibrational
motion. The ultimate goal is to retrieve the nuclear dynamics of the ion during the continuum
excursion of the electron. The details are laid out below.

8.1. Theoretical model

The basis of our considerations is the ratio of the modulus-squared vibrational autocorrelations
evaluated at the saddle-point times for D2 and H2 (see chapter 3)

RC(ts, t
′
s) =

|C(ts, t
′
s)|2 Γ

(
Ip, E(Re t′s)

)∣∣
D

|C(ts, t′s)|2 Γ
(
Ip, E(Re t′s)

)∣∣
H

. (8.1)

The times t′s, ts and the ionization potential Ip are used for D2 in the nominator and for H2 in
the denominator. The ADK tunnelling rate is given by Γ(Ip, E) = exp

(
−2[2Ip]3/2/(3|E|)

)
.
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Figure 8.1.: Plots of the experimental trajectory-resolved harmonic ratios listed in Tables 8.1 and 8.2. The
wavelength is 800 nm. The dashed lines show the autocorrelation ratio as given in expression (8.5), i.e.
angle-averaged with random alignment (expression (6.16)) and with alignment distribution (expression (6.15)),
calculated in the exact BO potential energy curve. The agreement between these curves and the experimental
data is reasonable, but the slope is underestimated. Including the alignment distribution increases the slope
and the agreement with the experimental data. The remaining disagreement is the motivation of the PACER
method, as explained in the main text. Lower curves: Short trajectories. Upper curves: Long trajectories.

For the autocorrelation, we employ the form for a linearly polarized electric field with perpen-
dicular components neglected, equation (3.1). We set the ionization matrix element identically
to unity, dion ≡ 1. It then reads

C(ts, t
′
s) =

∫
dRd∗rec

(
ps(ts, t

′
s) +A(ts), R

)
χ∗0(R)U+

R (ts − t′s)χ0(R) (8.2)

with saddle-point momentum ps, A(t) = −
∫ t

dt′E(t′) and time-evolution operator U+
R for the

shifted ionic BO potential energy curve V+
BO (expression (2.22)). For details, refer to section

2.2.1 and chapter 3.

The recombination matrix element drec can be calculated analytically if the electronic ground
state is approximated by a linear combination of hydrogen ground states ψh [125, 126]. In
velocity form it takes the form (appendix A.1)

drec(k, R) =
2√

2(1 + s(R))
eE · k cos

(
kR cos(θ)

2

)
ψ̃h(k) (8.3)

where ψ̃h is the hydrogen ground state in momentum space and s(R) is the overlap of two
such ground states, separated by a distance of R. The angle between the momentum k and
the internuclear axis is denoted by θ. According to equation (2.25), the return momentum
ps(ts, t

′
s) +A(ts) of the electron, at which drec is evaluated in expression (8.2), can be written

as a function of harmonic frequency ω, kr(ω) =
√

2(ω − Ip), and is therefore isotope-dependent
via Ip. The difference in Ip between D2 and H2 is approximately 2.9 · 10−3. This is one order
of magnitude smaller than the photon energy of a 800 nm laser pulse (ω800 ≈ 5.695 · 10−2) and
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8. Trajectory-Resolved High-Harmonic Spectroscopy

even smaller compared to the generated high harmonics. It is therefore reasonable to neglect the
factors k and ψ̃(k) in drec, facilitating the computation. The leading term, although dependent
on R via s(R), is neglected as well. This leaves only the cosine expression cos(kR cos(θ)/2),
which is then substituted for drec in (8.2). It accounts for two-center interference effects during
recombination [52,53].

The laser pulse that drives harmonic generation simultaneously aligns the molecular ensemble.
The plots in Figure 6.3 in section 6.2.4 show the alignment distribution for the laser parameters
used here. It can be seen that there is a significant alignment at the peak of the pulse along
the laser polarization direction. We therefore include the alignment distribution in our PACER
calculations, see next section. The procedure is laid out in section 6.3. It results in the following
expression for the autocorrelation as a function of harmonic energy ω

C(ω) =

∫
dRη(ω,R)χ∗0(R)U+

R (τs(ω))χ0(R) (8.4)

with electron travel time τs(ω) = ts(ω)− t′s(ω) and the angle-average function η(ω,R), defined
in expression (6.15). The ratio RC in (8.1) as a function of harmonic frequency is then

RC(ω) =
|C(ω)|2 Γ

(
Ip, E(Re t′s)

)∣∣
D

|C(ω)|2 Γ
(
Ip, E(Re t′s)

)∣∣
H

. (8.5)

8.2. PACER

What is commonly understood as PACER is the procedure to find a BO potential energy curve
that reproduces the experimental data of harmonic ratios. Specifically, the requirement for that
energy curve is that the vibrational dynamics evolving on it lead to an autocorrelation ratio that
matches the experiment. In our case, that ratio is given by expression (8.5). This effectively
serves as a measuring tool for the ionic vibrational potential in the range of internuclear
distances that is accessible within the time range of the short and long trajectories. Once it
has been determined, the nuclear dynamics (i.e. the vibrational motion) can be retrieved by a
time propagation.

The motivation behind modifying the potential energy curve V+
BO is that the strong laser field

may distort it during HHG, thus influencing the vibrational motion. The modifications that
transform V+

BO to the new curve V+
PACER can then be studied in terms of, for example, Stark

effects or alignment distributions to identify the physical mechanism.

We introduce the same parametric set of curves as in [54] to model the potential

V+
PACER(R) =

1

R
− 1

2
+

α1

α2 +R
+

α3

α4 +R2
+ α5e

−α6R + α7e
−α8R2

+ V shift
BO .

which by construction has the correct asymptotic behaviour limR→0 V+
PACER(R) ' 1/R and

limR→∞ V+
PACER(R) = −1/2 + V shift

BO . However, the former needs to be adjusted to match the
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8.2. PACER

correct helium-limit of limR→0 V+
PACER(R) ' 1/R− 2 + V shift

BO . The parameter α7 can be fixed
to achieve this

α7 = −
(

3

2
+
α1

α2
+
α3

α4
+ α5

)
.

See appendix A.4 for more details. Furthermore, we fix α8 such that V+
PACER has the same

root as the field-free BO potential V+
BO, i.e. V+

PACER(R0) = 0, with R0 being the equilibrium
distance of H2. This guarantees that the (vertical) ionization potential Ip is the same for all
sets of parameter values. Otherwise, the saddle-point times would need to be recalculated for
every set of parameters that is encountered while optimizing the potential. In principle one
could allow for a variable ionization potential to account for a wider range of modifications the
laser could have on the vibrational motion, but we do not consider this here. For α8 the value is

α8 = − 1

R2
0

ln

(
1

α7

[
− 1

R0
+

1

2
− α1

α2 +R0
− α3

α4 +R2
0

− α5e
−α6R0 − V shift

BO

])

with α7 as above. This leaves us with six parameters α1, . . . , α6 for optimization. We use a
least-squares optimization algorithm [127] to determine them. Specifically, the sum of squared
residuals to minimize is

∑

n
short

rs(ωn)2 +
∑

n
long

rl(ωn)2

with residuals

rs,l(ωn) =
Rs,l

exp(ωn)−Rs,l
C (ωn)

Rs,l
err(ωn)

.

In this expression, n counts the experimental data points, RC is given by (8.5), Rexp and Rerr

are the experimental ratio and error. The indices s,l stand for short and long trajectories.
To increase the sample size, we perform a natural spline interpolation through the original
data points and use the interpolated values in the optimization. The energies at which the
interpolation is evaluated are given by ωn.

8.2.1. Results

The resulting potentials of the optimization, together with the corresponding values for
α1, . . . , α6, are shown in Figure 8.2. For the calculation we neglected the small deviation
of the harmonic frequencies from their integer values. The dashed line shows the exact ionic
BO potential V+

BO and the solid lines the optimized PACER potentials. It is important to note
that only a relatively small range of internuclear distances is actually probed by the procedure.
This range is marked by the transparent thick lines, which indicate how far the expectation
value of R evolves for the long trajectory of harmonic order 11 in H2. This is approximately
the longest long trajectory occurring in this setup. The values of the potentials outside these
ranges are therefore not physically relevant. The corresponding harmonic ratios are shown as
solid lines in Figure 8.3.
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Figure 8.2.: Left: Comparison between the field-free BO potential and the PACER potentials for the two
different intensities. Shown as transparent thick lines is the range of internuclear distances that the nuclei of
the ion cover during the electron excursion of the long trajectory that belongs to the 11th harmonic order
of H2. This is approximately the full range of R that can be probed with the available experimental data.
The values of the potentials smaller and larger than this range are not accessible and therefore technically
undetermined. Right: The numeric values of the potential parameters α1, . . . , α6.

One can see that the PACER ratios reflect the experimental ratios much better than the
field-free counterparts, in particular with regard to the slope. This is achieved by the steeper
gradient of the PACER potentials, see Figure 8.2, which leads to a more pronounced difference
of the nuclear motions between the two isotopes. This, in turn, results in a larger slope of the
harmonic ratio.

The extracted nuclear motions, i.e. the expectation value of R, for the 19th harmonic and
lower intensity, 1.5 · 1014 W/cm2, can be seen in Figure 8.4, determined by a time propagation
in the field-free BO and PACER potentials. In the left panel, the time axis is relative to the
moment after tunnelling. The dynamics of the nuclei during the tunnelling of the electron (see
also section 3.2.2) leads to the initial internuclear distance being dependent on the potential
and the isotope. If the classical ionization and recombination times were used (which are real)
the vibrational motion during tunnelling would not be included and all curves in the left panel
would start at the equilibrium distance of the neutral molecule.

The right panel of Figure 8.4 shows the complete step-wise time evolution of R in the complex
plane. One can see that, compared to the field-free BO potential, the nuclei separate more
quickly during tunnelling in the PACER potential and the separation is approximately linear.
Moreover, the nuclei also separate faster during the real time evolution following the tunnelling,
i.e. the solid curves are not just shifted up by the differences in initial internuclear distance but
also grow quicker than the dashed curves. This last fact is better seen in the left panel.

The long trajectories allow for a considerably larger time span and consequently for a greater
range of internuclear distances to be probed. For the specific example of the 19th harmonic
shown here, the time span is approximately doubled. The reached internuclear distance during

136



8.2. PACER

15 17 19 21 23 25

Harmonic order

1.0

1.1

1.2

1.3

1.4

H
ar

m
on

ic
ra

ti
o

1.5 · 1014 W/cm2

Random

Aligned

PACER

15 17 19 21 23 25

Harmonic order

1.0

1.1

1.2

1.3

1.4
2 · 1014 W/cm2

Figure 8.3.: Plots of the autocorrelations ratios resulting from the PACER potentials, together with the
experimental data. Also shown are the angle-averaged ratios calculated with the field-free BO potential, i.e.
the same curves as in Figure 8.1. The corresponding potentials can be seen in Figure 8.2. The PACER ratios
agree significantly better with the experiment. Lower curves: Short trajectories. Upper curves: Long
trajectories.
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Figure 8.4.: Time evolution of the internuclear distance for the 19th harmonic and intensity 1.5 · 1014 W/cm2.
Left: Evolution after tunnelling, i.e. from Re t′ to Re t. Thick lines are for D2 and thin lines for H2. The
origin of the time axis is set to the moment after tunnelling, i.e. to Re t′. The curves start at different R
because the tunnelling dynamics is dependent on the isotope and BO potential. The dashed lines are the
results for the field-free BO potential and the solid lines for the PACER potential. Right: Stepwise time
evolution from the ionization time t′ to the recombination time t, for the short trajectory of H2. Dashed and
solid lines are the results for the BO and PACER potential, respectively. The real time evolution between
Re t′ and Re t is the same as in top-left panel.
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that time is about 0.3 larger compared to the short trajectories in H2. It should be noted
that due to the nonlinear character of the saddle-point times (see Figure 2.8) as a function
of harmonic frequency and the overall intricate time evolution, the behaviour of the nuclear
dynamics cannot be easily generalized to all harmonic orders or even different laser parameters.

8.3. Stark effect

The shape of the PACER potentials in Figure 8.2 is reminiscent of the Stark shifted potentials
in Figures 7.2 and 7.3. The intent of this section is to investigate whether the Stark effect
(chapter 7) is sufficient to explain the difference between the PACER potentials and the field-free
potential.

In sections 7.2 and 7.3 the change in ionization potential due to the Stark effect was studied.
For the two intensities encountered here, it lies at or below 1 %, as can be seen in Figures 7.4,
7.7 and 7.8, which show the modifications of the ionization potential when the DC effect in the
ion and the AC effect in the neutral molecule are included separately or together. This in turn
changes the saddle-point times only marginally, which is shown in Figure 2.10. It is therefore
an appropriate approximation to neglect the modifications of the saddle-point times due to the
Stark effect. This significantly reduces the effort. We consider two cases, see below.

The ratios shown in this section are calculated via expression (8.5), with the autocorrelation
being given by the expressions below.

8.3.1. DC effect in the ion

Including only the DC Stark effect in the ion the BO potential V+
BO acquires an angle- and time-

dependence. The angle-dependence arises from the orientation-dependence of the polarizability
and the time-dependence from the electric field of the laser. The angle-average can then no
longer be written in a closed form via η(ω,R). Instead, the time-evolution operator U+

R becomes
dependent on θ and F (t)

CDC(ω) =

∫ π

0
dθ sin(θ)σmax(θ)

∫
dR cos

(
kr(ω)R cos(θ)

2

)
χ∗0(R)U+

R,F (t),θ

(
ts(ω), t′s(ω)

)
χ0(R)

(8.6)

where σmax is the alignment distribution evaluated at the peak of the laser pulse, see section 6.3.
Note that the integration over θ can also be done from 0 to π/2, because H+

2 is a symmetric
molecule. In particular, the transformation θ → π − θ leaves any θ-dependent components in
(8.6) invariant. The constant factor of 2 arising from the full integral from 0 to π is irrelevant
in the harmonic ratios.

The harmonic ratios resulting from CDC are shown in Figure 8.5, together with the PACER
ratios and the aligned angle-averaged ratios, expression (8.4). The DC ratio does not agree well

138



8.3. Stark effect

15 17 19 21 23 25

Harmonic order

1.0

1.1

1.2

1.3

1.4

H
ar

m
on

ic
ra

ti
o

1.5 · 1014 W/cm2

Aligned

PACER

DC

15 17 19 21 23 25

Harmonic order

1.0

1.1

1.2

1.3

1.4
2 · 1014 W/cm2

Figure 8.5.: Comparison of the PACER autocorrelation ratios with DC Stark shift ratios, where the autocorrela-
tion is calculated according to expression (8.6). Also shown is the angle-averaged field-free case with alignment
distribution. One can see that the (angle-averaged) DC effect does not bring the ratio into agreement with
the PACER ratio. With regard to Figure 8.6 one can conclude that the influence of the DC Stark shift mostly
vanishes in the angle-average. Lower curves: Short trajectories. Upper curves: Long trajectories.

with the PACER or experimental ratios. It mostly shifts the field-free ratios down for the long
and up for the short trajectories, but does not change the slope significantly. The difference
between the DC and aligned ratios is larger for the greater intensity. This is plausible, because
a greater intensity leads to a more pronounced distortion of the potential.

Similar to the field-free case, the situation is different if the DC ratio is evaluated for a fixed
angle of θ = 0, i.e. parallel alignment, Figure 8.6. The slope is again in very good agreement
with the experimental data and the short-trajectory ratio agrees well overall. However, the
ratio is too high for the long trajectories.

The large parallel polarizability of H+
2 means that the DC Stark shift bends down the potential

energy curve significantly in that orientation (Figure 7.3). This leads to a more pronounced
difference in the vibrational wave packet motions between D2 and H2. The result is an increased
slope that is visible in 8.6. The alignment distributions favor the parallel orientation (Figure
6.3), but the factor of sin(θ) in the angle-average suppresses it. The large influence of the
alignment distribution in parallel orientation therefore does not contribute much and the DC
effect mostly averages out.

8.3.2. Including the AC effect in the neutral molecule

When the AC effect in the neutral molecule is included in addition to the DC effect in the ion,
the distorted neutral potential leads to a modified vibrational ground state χ0,θ(R) (see Figure
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Figure 8.6.: Comparison of the PACER autocorrelation ratios with DC Stark shift ratios at fixed angle θ = 0,
i.e. parallel orientation. It is calculated according to expression (8.6), but without the integral over θ. Also
shown is the angle-averaged field-free case with alignment distribution. One can see that the parallel DC
effect yields a remarkable good agreement in case of the short trajectories. For the long trajectories, the slope
is in good agreement, but the ratio is too high. Lower curves: Short trajectories. Upper curves: Long
trajectories.

7.6) that becomes dependent on θ as well. The autocorrelation then reads

CAC/DC(ω) =

∫ π

0
dθ sin(θ)σmax(θ)

∫
dR cos

(
kr(ω)R cos(θ)

2

)
×

× χ∗0,θ(R)U+
R,F (t),θ

(
ts(ω), t′s(ω)

)
χ0,θ(R). (8.7)

The resulting ratio is shown in Figure 8.7. It can be seen that the AC effect leads to a shift
to lower ratios. The slope is changed only marginally. In particular, it is not sufficient to
explain the PACER ratios. The AC distortion of the neutral potential shifts the equilibrium
distance and thus the vibrational ground state to larger internuclear distances, in addition
to a broadening due to a wider potential well. The nuclei of the ion are therefore farther
apart at the time of ionization. Figure 8.7 shows that this does not lead to an increased slope.
The down-shift of the ratio happens for all angles θ. This is the reason why it survives the
angle-average.

8.4. Orientation dependence of ionization

Another factor that might play a role in the experiment is the dependence of the ionization
rate on the orientation relative to the laser. The ratio of ionization rates for parallel and
perpendicular alignment varies with internuclear distance of the molecule and intensity of the
laser. In order to probe the influence of this anisotropy on the ratio of harmonics calculated
via autocorrelations, we introduce a simple model based on results reported in [128,129]. For
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Figure 8.7.: Comparison of autocorrelation ratios with and without the AC effect (expression (8.7)) in the
neutral molecule included, in addition to the DC effect in the ion. Also shown are the PACER ratios. The AC
effect only shifts the ratios down, affecting their slope negligibly. Lower curves: Short trajectories. Upper
curves: Long trajectories.

the present laser parameters and an internuclear distance of 1.4 the ionization rate of H2 as a
function of the orientation angle θ has a shape close to that of an ellipse with length-ratio of the
semiaxes of approximately F0 = 1.32 in favor of parallel orientation. We define the following
weight function

Fion(θ) = F 2
0 cos2(θ) + sin2(θ)

which can be used to heuristically include the angle-dependence in the autocorrelation. Similar
to angle-average with the alignment distribution σmax(θ), we write the autocorrelation as

Cion(ω) =

∫ π

0
dθ sin θ

√
Fion(θ)

∫
dR cos

(
kr(ω)R cos(θ)

2

)
χ∗0(R)U+

R (τs(ω))χ0(R). (8.8)

Using the same function Fion(θ) for both H2 and D2, a comparison of the autocorrelation ratios
calculated with (8.8) with F0 either 1 (isotropy, random alignment) or 1.32 (anisotropy) is
shown in Figure 8.8. The difference grows larger with increasing harmonic order but the curves
are very close together and can be hardly distinguished in the given scale. Assuming that the
angle-dependence does not critically depend on the isotope, we conclude that the orientation
dependence of the ionization rate, for the present laser parameters, plays no significant role for
the harmonic ratio and can therefore be neglected.

8.5. Ammonia

To demonstrate the general validity of the autocorrelation method, the trajectory-resolved
measurements of harmonic ratios were also carried out with methane CD4/CH4 and Ammonia
ND3/NH3, see the supplemental material of [59]. For the latter, we aim to reproduce the
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Figure 8.8.: Comparison of autocorrelation ratios calculated with orientation-dependence of the ionization rate
(F0 = 1.32). Also shown are the ratios for random aligment (F0 = 1) and for the PACER potential. The
influence of the ionization anistropy is negligible. On this scale it can hardly be distinguished from the random
case.

experimental data as was done for D2/H2 above. The experimental ratios, for a wavelength of
800 nm and an intensity of 1.3 ·1014 W/cm2 are shown in Figure 8.9. The experimental conditions
only allowed for two harmonic orders to be measured. In contrast to H2, the ratio of the long
trajectories is decreasing with increasing harmonic order. It should be noted, however, that an
increase with harmonic order cannot be ruled out, given the size of the error bars.

8.5.1. Model and Results

In the calculations we use the models that also found application in [58,130]. More detailed
investigations of the potentials can be found in [131,132]. The potentials for the neutral molecule
and the ion that we use are shown in Figures 8.10 and 8.11. They are shifted (see below) such
that the correct adiabatic ionization potential (i.e. the difference in ground state energies of

the ion and neutral molecule) for NH3, INH3,ad
p ≈ 10.07 eV ≈ 0.3701 [133], is reproduced. Due

to the different nuclear masses (of the hydrogen atoms) this results in slightly different vertical
ionization potentials

INH3
p ≈ 0.39414 ≈ 10.73 eV

IND3
p ≈ 0.3947 ≈ 10.74 eV.

The 3 hydrogen and the single nitrogen atoms together form a triangular pyramid. The distance
of the nitrogen atom to the plane formed by the hydrogen atoms is denoted by the coordinate
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Figure 8.9.: Left: Plot of trajectory-resolved harmonic ratios for ND3 vs. NH3. The driving laser has a
wavelength of 800 nm and an intensity of 1.3 · 1014 W/cm2. Upper curves: Long trajectories. Lower curves:
Short trajectories. In contrast to D2/H2, the ratio for the long trajectories is decreasing with harmonic order.
Right: Table of numeric values shown in the left plot.
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Figure 8.10.: Shifted potential VNH3 for neutral ammonia molecule (left) with corresponding parameters (right),
where the functional form is given by expression (8.9). The coordinate x measures the distance of the nitrogen
atom to the plane formed by the 3 hydrogen atoms. The nitrogen atom can be located on either side of the
plane without changing the potential energy, which is why it is symmetric with respect to to x→ −x. The
(stable) equilibrium distance is |x0| ≈ 0.728. The ground states for NH3 (dashed) and ND3 (solid) are shown
(scaled by a factor of 0.005) at their respective energies.
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Figure 8.11.: Left: Shifted potential V
NH+

3
for the ammonia cation. The functional dependence is given by

expression (8.10), with K1 = 0.033386 and K2 = 0.0296437. Ionization removes the potential barrier of VNH3

at x = 0 and allows for oscillations of the nitrogen atom through the plane of the hydrogen atoms. The first 6
eigenstates for NH+

3 (dashed) and ND+
3 (solid) are shown (scaled by a factor of 0.0005) at their respective

energies. Inspired by Figure 1 of [58]. Right: Experimental harmonic ratios for ND3 vs. NH3, together with
the autocorrelation ratio (solid lines), which reproduces the experimental data well. For the details of the
calculations see the main text. Note that the autocorrelation ratio reproduces the decreasing ratio of the long
trajectories (upper curves) and the increasing ratio of the short trajectories (lower curves) with harmonic
order.

x, called the inversion coordinate. The unshifted potentials are given by

VNH3(x) =
10∑

n=0

aix
2i

VNH+
3

(x) = K1x
2 +K2x

4

The parameters for the ion are K1 = 0.033386 and K2 = 0.0296437 and the ones for the neutral
molecule are given in Figure 8.10. The shifted counterparts (that are used in the calculations)
are simply

VNH3(x) = VNH3(x) + V shift
NH3

(8.9)

VNH+
3

(x) = VNH+
3

(x) + V shift
NH+

3
(8.10)

with constant energy shifts

V shift
NH3

= −ENH3
0 + E

NH+
3

0 − VNH+
3

(x0)− INH3,ad
p

V shift
NH+

3
= −VNH+

3
(x0).

Here, ENH3
0 and E

NH+
3

0 are the ground state energies of the unshifted potentials. With these
shifts, the ionic potential is zero at the Franck-Condon point |x0|, analogue to the potentials of
hydrogen.

144



8.6. Conclusion

The distinctive feature of the model for the neutral molecule is a position-dependent reduced
mass that mimics changes of the bond-length in the real molecule when the nitrogen atom
moves

µ(x) = µ0 +
3mx2

r2
0 − x2

with µ0 =
3mM

3m+M
.

with mass of a 14N atom given by M ≈ 25526.04 and proton/deuteron mass m. The length r0

is the distance between the nitrogen and a hydrogen atom at x = 0, i.e. when all constituting
atoms lie in a plane. Because of the symmetric molecular geometry, the transformation x→ −x
does not change the potential energy. At x = 0, the neutral molecule is in an unstable
equilibrium and the nitrogen atom can move to either side of the plane for the system to reach
a stable equilibrium. The double well potential in the left panel of Figure 8.10 reflects this.
The (stable) equilibrium distance is |x0| ≈ 0.728.

Once the neutral molecule is ionized, the nitrogen atom can oscillate around x = 0, i.e. through
the plane of the hydrogen atoms, which no longer corresponds to a potential barrier. The
reduced mass of the ion is given by µ0.

The autocorrelation function is evaluated as

CNH3(ω) =

∫
dxχ∗NH3

(x)UNH+
3

(τs(ω))χNH3(x),

analogue to the case of hydrogen, but with transition matrix elements set to unity. The ground
state of the neutral molecule is given by χNH3 , the time-evolution operator for the ionic potential
VNH+

3
by UNH+

3
and the saddle-point excursion time by τs. The latter is evaluated via equations

(2.23), (2.24) and (2.25) with the vertical ionization potentials INH3
p and IND3

p for the two
isotopes. Finally the ratio is determined via (8.5).

The experimental ratios, together with the autocorrelation ratio are shown in the right panel of
Figure 8.11. There is a good agreement between them. In particular, the decreasing ratio of
the long trajectories with increasing harmonic order is reproduced.

8.6. Conclusion

The availability of trajectory-resolved harmonic ratios for D2 vs. H2 makes it possible to test the
validity of the saddle-point time autocorrelation ratios. Generally, the computed results agree
satisfactorily. Even one of the simplest models of random alignment with a LCAO recombination
element yields the correct general trend. In Figure 8.1, the dashed black curves reproduce most
the experimental data within the error bars and, in particular, shows an increase of the ratio
with harmonic order for both short and long trajectories. The principal disagreement lies in
the slope of the ratio, which is underestimated by the calculation.

The inclusion of the alignment distribution at the pulse peak as a weighting function in the
angle-average increases the slope and improves the agreement. This is an indicator that the
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alignment plays a role under the experimental conditions. It should be made clear, that using
the alignment distribution at the pulse peak may be questionable. Given that the parallel
orientation reproduces the experimental slope quite well (see Figures 8.1 and 8.6), the molecular
alignment seems to be an important ingredient in the model and may need closer investigation in
the future. Since the time-dependence of the pulse envelope is a crucial part of the experiment,
this becomes even more important.

The potentials found via PACER show the expected good agreement with the experimental
data points. For both intensities, it reproduces all points within the error bars except for the
highest order 25 for the long trajectories. With the potentials at hand, the nuclear dynamics
can be calculated easily via propagation of the vibrational wave-packet. Assuming that the
form of the PACER potentials is dictated by the influence of the laser on the field-free potential,
it is mandatory to investigate if the Stark effect is the physical mechanism. It turns out that
is not the case as the calculated ratios including the Stark effect do not lead to a significant
increase in slope. This holds for the DC effect in the ion and the additional inclusion of the AC
effect in the neutral molecule. Furthermore, a heuristic study of the orientation dependence of
the ionization rate does not improve the ratio in this regard either.

Concerning the PACER method, it should be noted that there is no mathematical rigorous
argument supporting the uniqueness of the acquired potentials. Apart from numerical accuracy,
it is conceivable that qualitatively different potentials exist that result in a similarly good
agreement with the experimental data.

To account for experimental uncertainties, we also tested slightly different intensities in order
to check if they lead to a better agreement with the experiment. The data points for the lower
intensity 1.5 · 1014 W/cm2 are slightly better reproduced by the autocorrelation ratios when the
intensity in the calculation is lowered by 10− 15 % (not shown). This is based on the model
that includes the angle-average with alignment distribution. This improvement mainly concerns
the long trajectories while the agreement for the short trajectories is still within the error
bars. However, the improvement is not significant and, in particular, does not lead to a better
agreement of the slope.

As an additional test of the method, the saddle-point time autocorrelation ratios can also
be compared with experimental data with other molecules as targets. In our case, we use
established models to check the calculated ratios for ammonia. There is a good agreement with
the experiment, see the right panel of Figure 8.11.
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9.1. Summary and Conclusion

The topic of the thesis at hand was HHG of the hydrogen molecule, H2. It is a well-known fact
that different isotopes of a molecular target exhibit different strengths of the emitted harmonics.
The nuclear mass enters the SFA theory via the vibrational autocorrelation function, which also
depends on the ionization and recombination times of the participating electron. These times,
after employing the saddle-point approximation, turn out to be complex-valued. This led to the
central focus of this thesis, namely the calculation of autocorrelation ratios with the complex-
valued ionization and recombination times originating from the saddle-point-approximated SFA
theory (section 2.2). The motivation for this was the question if it improves the agreement
of TDSE ratios (of D2 vs. H2) with the corresponding autocorrelation ratios. Of particular
interest in this regard was the separate study of the short and long trajectories. To this end
we considered the complex-time autocorrelation in detail (chapter 3) and tested its viability
in the calculation of harmonic ratios against TDSE solutions (chapter 5). Also considered in
this regard were the hitherto used real-valued times from the well-established semiclassical
three-step model. Furthermore, we compared the autocorrelation ratios with experimental data
(chapter 8).

The comparison with TDSE ratios was done by solving the TDSE numerically and extracting
the harmonic ratios from it via the Gabor transform (section 5.2.1), giving rise to the name
“Gabor ratio”. Such a short-time Fourier transform allowed us to separate the short and
long contributions. A specialty of the saddle-point autocorrelation was the use of an exact
dipole-transition recombination matrix element (section 4.5). For this we used numerically
exact electronic ground and scattering states as input. The model for these states is the same
that also underlies the TDSE calculations. Two such models were used, one for a parallel and
one for a perpendicular orientation of the internuclear axis to the linearly polarized electric
field vector. The classical autocorrelation made use of an analytical matrix element in LCAO
approximation and a heuristically corrected electron return momentum. The results showed
that the saddle-point autocorrelation ratio may improve the agreement with TDSE results (see
sections 5.3 and 5.4). However, this improvement is not for all laser parameters significant and
the classical approach works remarkably well. We found that the first maximum of the Gabor
ratio due to two-center interference is better reproduced by the saddle-point autocorrelation
and the second maximum is better reproduced by the classical approach. Important in this
regard is the finding that there may be a significant discrepancy between the Gabor and
autocorrelation ratios. For some laser parameters the agreement is remarkable, but for others
the Gabor ratios take on larger values than the autocorrelation counterparts. In particular, the
discrepancy seems to grow with intensity. The origin of this behaviour is not clear and requires
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further investigation. The Gabor ratio behaves differently in this respect for the short and long
trajectories. For the tested laser parameters, the short ratio showed an increasing deviation
with wavelength while the long ratio exhibits an decreasing deviation with wavelength once the
wavelength is large enough (Figures 5.14 and 5.15). As to the qualitative behaviour of the ratio
as a function of harmonic energy, the saddle-point approach yields better results. This can be
seen in the various Figures in section 5.3 and is also quantified by the deviation measures of
the derivatives.

The comparison with experimental data was made possible by a cooperation with the group
of Pengfei Lan from the Huazhong University of Science and Technology in Wuhan, China.
They provided us with experimental harmonic ratios of D2 vs. H2. This allowed the direct
comparison of the saddle-point autocorrelation ratios with the experiment. It turns out that
even a very simple model, with a LCAO-approximated recombination matrix element and
random alignment of the molecular ensemble, is able to satisfactorily predict the ratios and
their positive slope as a function of harmonic energy. The discrepancy lies in the value of
the that slope, which was underestimated by the autocorrelation ratio. Investigations showed
that parallel alignment of the molecular ensemble increases the slope and the agreement with
the experimental data. This motivated the calculation of alignment distributions (chapter 6)
and their inclusion in the autocorrelation calculations. The increased slope that resulted from
this approach still underestimates the slope of the experimental data. In order to determine
what is necessary to correctly reproduce the experiment, we resorted to the PACER method
that aims at finding BO potential energy surfaces such that the theoretical ratios match the
experimental ones. This can be seen as a measuring tool of the nuclear potential. The resulting
autocorrelation ratios fit the experiment very well and the corresponding potentials enabled us
to reconstruct the nuclear dynamics during the continuum excursion of the electron, including
what the motion looks like in complex time. Furthermore, having the correct potential at
hand prompted us to investigate the Stark effect (chapter 7) to see if it suffices to explain the
differences between the PACER potentials and the exact BO potential. It turns out that it has
surprisingly little influence on the harmonic ratios as its effect is reduced by the angle-average.
We extended our studies to the ammonia molecule, NH3, for which harmonic ratios could also
be measured in an experiment (carried out by Pengfei Lan et al. as well). The suitability of
the saddle-point autocorrelation ratios was further confirmed by reproducing the experimental
data very well.

All things considered, is it beneficial to use the complex-valued saddle-point times over their
classical counterparts? There is no definite answer to this question; it depends on the purpose.
The saddle-point autocorrelation yields viable results and we observed that it often better
reproduces the qualitative behaviour of the Gabor ratios as a function of harmonic energy than
its classical counterpart. It offers, however, not a universal improvement over the classical
approach and a case study of both models is the best course. An inherent difficulty of the
saddle-point approach is the need to evaluate time-dependent quantities at complex values, an
example being the molecular alignment distribution. The classical model does not pose such a
problem and has the considerable advantage that it is computationally simpler to calculate. The
ionization and recombination times can be determined from a simple classical simulation of a
Newtonian point particle. In contrast, finding the complex-valued solutions to the saddle-point
equations requires more initial effort, as does the complex-time time evolution itself, depending
on the numerical propagation scheme. To discuss the general properties of harmonic ratios, the
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classical approach is sufficient. For a more in-depth analysis, the benefits of the saddle-point
approach may be worth the additional effort.

9.2. Outlook

Regarding the results of chapter 5, there are still open questions. Why are the Gabor ratios
for some laser parameters significantly higher than the autocorrelation ratios? Physically
this means that the strengths of the emitted harmonics by D2 are underestimated by the
autocorrelation ratios (or H2 is overestimated), by both the saddle-point as well as classical
approach. The only major component of the autocorrelation not included in our results is the
ionization matrix element. The reason for not including it is that it diverges in the standard
version of the saddle-point approximation (for the relevant internuclear distances). Is it possible
that the ratio of autocorrelations does not deviate from the Gabor ratios when the ionization
element is included? According to the saddle-point equations, the kinetic electron momentum
at the moment of ionization is given by

√
−2Ip, i.e. dependent on the isotope. This introduces

an additional asymmetry between the isotopes into the ratio. Another possibility of including
the ionization element would be to not apply the saddle-point approximation to the ionization
time.

The investigation of the autocorrelation ratios in H2 could also be extended to tritium, T2, at
least in theory. Comparison of ratios of D2 vs. H2 and T2 vs. H2 might give more insight into
why the TDSE sometimes predicts a significantly higher ratio than the autocorrelations.

Investigating the contributions of the short and long trajectories separately could also be done
with the help of a two-color laser field. It has been shown [134] that such a setting can be used
to prevent either the short or long trajectories from returning to the parent ion, via control of
the phase between the two perpendicularly oriented fields. This could potentially make the
low-energy region of the long contributions accessible.

The Eikonal-Volkov approximation [43, 44], that includes the influence of parent ions potential
on the continuum electron, can be used to introduce corrections to the saddle-point times,
as was shown in [45]. It would be interesting to investigate if these corrections improve the
agreement between the saddle-point autocorrelation and TDSE ratios.

Concerning the comparison of autocorrelation and trajectory-resolved experimental ratios, the
experiment exploited the different phase properties of the short and long trajectories. These
properties depend on the time-dependent pulse envelope. However, the envelope was not
included in the saddle-point times, which were always calculated for a sinusoidal single-cycle
field. Given that the molecular alignment plays a nonnegligible role, this appears questionable.
It would be more correct to include the envelope into the autocorrelation calculations by using
different, envelope-dependent saddle-point times for the short and long trajectories. It is not
straightforward how one should approach this “envelope-resolved” HHG, however. A similar
argument can be made for the alignment distribution, which was taken to give the dominant
contributions at the maximum field strength.
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A. Additional Information

A.1. H2 LCAO dipole transition matrix elements with plane waves

The ground state of a H2 molecule can be approximated by a linear combination of hydrogen
ground states ψh(r) = 1√

π
e−|r|

ψLCAO
H2

(r) =
1√

2(1 + s(R))

[
ψh

(
r +

R

2

)
+ ψh

(
r − R

2

)]

with s(R) being the overlap between hydrogen ground states separated by a distance R

s(R) = 〈ψh(r −R/2)|ψh(r +R/2)〉
= e−R

(
3 + 3R+R2

)
/3.

A.1.1. Velocity form

In velocity form the dipole transition matrix element can be calculated as follows (the continuum
states |k〉 are given by plane waves)

dLCAO
V (k,R) =

〈
k
∣∣∣p
∣∣∣ψLCAO

H2

〉

=

∫
d3r e−ik·r(−i∇)ψLCAO

H2
(r)

= −i

[
e−ik·rψLCAO

H2
(r)
∣∣∣
∞

−∞
−
∫

d3r
(
∇e−ik·r)ψLCAO

H2
(r)

]
Partial integration

= i(−ik)

∫
d3r e−ik·rψLCAO

H2
(r) Boundary term vanishes

= k ψ̃LCAO
H2

(k)

=
1√

2(1 + s(R))
k
[
eik·R/2ψ̃h(k) + e−ik·R/2ψ̃h(k)

]
Shifted FT of ψh

=

√
2

1 + s(R)
k cos

(
k ·R

2

)
ψ̃h(k) (A.1)

151



A. Additional Information

∣∣∣dLCAO
V (k,R)

∣∣∣ for k ⊥ R

0.0 0.5 1.0 1.5 2.0 2.5

k

1

2

3

4

5

6

7

8

9

10
R

0

1

2

3

4

5

6

∣∣∣dLCAO
V (k,R)

∣∣∣ for k‖R

0.0 0.5 1.0 1.5 2.0 2.5

k

5

10

15

20

25

30

R

0

1

2

3

4

5

6

Figure A.1.: Modulus-squared velocity-form LCAO dipole-transition matrix element for perpendicular and
parallel orientation.

with the Fourier-transformed hydrogen ground state

ψ̃h(k) =

∫
d3r e−ik·rψh(r)

=
2π√
π

∫ ∞

0
dr r2

∫ π

0
dθ sin(θ) e−(ik cos(θ)+1)r

=
8
√
π

(k2 + 1)2
(A.2)

For perpendicular orientation

k ⊥ R :
∣∣dLCAO

V (k,R)
∣∣ =

√
2

1 + s(R)

∣∣∣k ψ̃h(k)
∣∣∣

= 8
√
π

√
2

1 + s(R)

k

(k2 + 1)2
.

The maximum is independent of R at kmax = 1/
√

3 ≈ 0.58.
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A.1.2. Length form

In length form the matrix element is

dLCAO
L (k,R) =

〈
k
∣∣∣r
∣∣∣ψLCAO

H2

〉

=

∫
d3r e−ik·rrψLCAO

H2
(r)

= i∇k

∫
d3r e−ik·rψLCAO

H2
(r)

= i∇kψ̃
LCAO
H2

(k)

= i

√
2

1 + s(R)

[
−R

2
sin

(
k ·R

2

)
ψ̃h(k) + cos

(
k ·R

2

)
∇kψ̃h(k)

]
(A.3)

with the Fourier-transformed hydrogen ground state ψ̃h(k) as in (A.2) and its derivative

∇kψ̃h(k) =
−32
√
π

(k2 + 1)3
k.

For perpendicular orientation

k ⊥ R :
∣∣dLCAO

L (k,R)
∣∣ =

√
2

1 + s(R)

∣∣∣∇kψ̃h(k)
∣∣∣

= 32
√
π

√
2

1 + s(R)

k

(k2 + 1)3
.

The maximum is independent of R at kmax = 1/
√

5 ≈ 0.45.

A.2. WKB approximation

A.2.1. Proof of WKB phase integral for the Coulomb potential

In order to show that
∫ x

0
dx′

√
k2 +

2

|x′| = x

√
k2 +

2

|x| +
sgn(x)

|k| ln

(
1 + k2|x|+ |kx|

√
k2 +

2

|x|

)
(A.4)

one can take the derivation of the right hand side for x 6= 0

∂(A.4)

∂x
=

√
k2 +

2

|x| + x
− sgn(x)
|x|2√

k2 + 2
|x|

+
sgn(x)

|k|




k2 sgn(x) + |k| sgn(x)
√
k2 + 2

|x| + |kx|
− sgn(x)

|x|2√
k2+ 2

|x|

1 + k2|x|+ |kx|
√
k2 + 2

|x|




︸ ︷︷ ︸
(∗)
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Figure A.2.: Modulus-squared length-form LCAO dipole-transition matrix element for perpendicular and
parallel orientation.

The first term is the original integrand. Therefore the remaining terms (∗) have to sum to zero.

Set w =
√
k2 + 2

|x| for convenience

(∗) = − 1

|x|w +
k2 + |k|w − |k||x| 1

w

|k|(1 + k2|x|+ |kx|w)

= − 1

|x|w +
k2w + |k|w2 − |k||x|

|k|w(1 + k2|x|+ |kx|w)

=
−
(
|k|+ k2|kx|+ k2|x|w

)
+ k2|x|w + |kx|w2 − |k|

|kx|w(1 + k2|x|+ |kx|w)

With w2 expanded to k2 + 2/|x| one sees that the numerator sums to zero. q.e.d.

A.2.2. Eikonal approximation of WKB phase integral

Asymptotically one can invoke the Eikonal approximation, assuming that the potential is
sufficiently small compared to k2. The square root expression occurring in the WKB integral
(4.14) can then be expanded to first order

√
k2 +

2

|x| = |k|
√

1 +
2

k2|x| ≈ |k|
(

1 +
1

k2|x|

)
+O

(
1

k4|x|2
)
.
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This then gives for the whole integral

φWKB
k (x) ≈ kx

(
1 +

1

k2|x|

)
+

sgn(x)

k
ln

(
1 + k2|x|+ k2|x|

(
1 +

1

k2|x|

))

≈ kx+
sgn(x)

k
+

sgn(x)

k
ln
(

2 + 2k2|x|
)

≈ kx+
sgn(x)

k
ln
(
2|kx|

)
︸ ︷︷ ︸

:=φCoulomb
k (x)

+ sgn(x)
1

k

[
1 + ln(|k|)

]

︸ ︷︷ ︸
:=φshift(k)

.

In the last line the constant term 2 was neglected in the logarithm.

A.3. Angle Average of LCAO dipole-transition matrix element in
velocity form

For the ratio of autocorrelations the relevant factor of the LCAO dipole-transition matrix
element in (A.1) is the cosine. Averaging this expression over all angle (φ, θ) ∈ [0, 2π]× [0, π]
between the momentum k and the internuclear axis R yields

〈
cos

(
k ·R

2

)〉
=

1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin(θ) cos

(
kR cos(θ)

2

)
k ·R = kR cos(θ)

=
1

4π
2π

(
− sin

(
kR cos(θ)

2

)
2

kR

)∣∣∣∣
π

0

=
sin(kR/2)

kR/2

A.4. Fixed parameters of PACER potential

The parametric set of curves for modelling the vibrational potential of H+
2 reads

V+
PACER(R) =

1

R
− 1

2
+

α1

α2 +R
+

α3

α4 +R2
+ α5e

−α6R + α7e
−α8R2

+ V shift
BO .

In order to ensure the correct limit for R→ 0 we fix α7 to get the limit of 1
R − 2 for the helium

ion He+ (which is a hydrogen-like atom with a nuclear charge of 2 and ground-state energy of
−2)

V+
PACER(R→ 0) ≈ 1

R
−1

2
+
α1

α2
+
α3

α4
+ α5 + α7 + V shift

BO

︸ ︷︷ ︸
!
=−2+V shift

BO

⇒ α7 = −
(

3

2
+
α1

α2
+
α3

α4
+ α5

)
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With α7 fixed we enforce V+
PACER(R0) = 0 and solve for α8

α8 = − 1

R2
0

ln

(
1

α7

[
− 1

R0
+

1

2
− α1

α2 +R0
− α3

α4 +R2
0

− α5e
−α6R0 − V shift

BO

])

A.5. Fit of H2 alignment distribution

In order to find an analytical expression of the numerically known alignment distribution σ(θ)
we introduce the following truncated Fourier series for η(θ) := sin(θ)σ(θ)

η(θ) = η0 +
N∑

n=1

λn sin(nθ) +
N∑

n=1

µn cos(nθ). (A.5)

Since H2 is a homonuclear molecule we can impose that η(θ)
!

= η(π − θ). This gives

λn sin(nθ)
!

= λn sin
(
n(π − θ)

)
= −λn sin(nθ − nπ) ⇒ λn = 0 for n even

µn cos(nθ)
!

= µn cos
(
n(π − θ)

)
= µn cos(nθ − nπ) ⇒ µn = 0 for n odd.

Additionally we know that η(0) = η(π) = 0 because of the factor sin(θ) in η(θ). This immediately
tells us that the sum of all nonzero cosine coefficients µn and η0 must be zero:

η0 +
N∑

n=1
n even

µn = 0

This reduces (A.5) to

η(θ) =
N∑

n=1
n odd

λn sin(nθ) +
N∑

n=1
n even

µn cos(nθ)−
N∑

n=1
n even

µn.

In practice a number of N = 3 is sufficient to adequately reproduce the numerical data. Figure
A.3 shows an example.

For the evaluation of the autocorrelation the angle average is important. The relevant integral
expression (see section 6.3) is

η(ω,R) =

∫ π

0
dθ sin(θ)σmax(θ) cos

(
k(ω)R cos(θ)

2

)
.
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A.6. Values of potential energy curves for small internuclear distances
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Figure A.3.: Comparison of numerical alignment data η(θ) and corresponding fit (N = 3) for an intensity of
2 · 1014 W/cm2 and a temperature of 293.15 K.

With the help of Mathematica, this expression, with N = 3, evaluates to

η(ω,R) =
1

k(ω)5R5
×

×
[

4
(
k(ω)4R4(λ1 + 3λ3 + 5λ5)− 32k(ω)2R2(λ3 + 21λ5) + 6144λ5

)
sin

(
k(ω)R

2

)

− 4π
(
k(ω)4R4(µ2 + 4µ4 + 9µ6)− 96k(ω)2R2(µ4 + 16µ6) + 30720µ6

)
J1

(
k(ω)R

2

)

+ 64k(ω)R
(
k(ω)2R2(λ3 + 5λ5)− 192λ5

)
cos

(
k(ω)R

2

)

− 96πk(ω)R
(
k(ω)2R2(µ4 + 6µ6)− 320µ6

)
J0

(
k(ω)R

2

)]
.

where Jα are the Bessel functions of the first kind.

A.6. Values of potential energy curves for small internuclear
distances

The extrapolation of potential energy curves presented this is section was not needed after
all. There are, in fact, publications where the data spans a sufficient range of internuclear
distances. [77, 78, 122, 135]. The results shown here are therefore not relevant for the main part
of this thesis and the reader may skip this section. Nevertheless, the instructions may be useful
for future work.
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Figure A.4.: Comparison between the modules-squared correct and distorted vibrational ground state of H2

when the corresponding potential energy curve is only given for R ≥ 1.

Molecular state United atom state United atom energy Eu.a.
0

X1Σ+
g 1s -2.903

B1Σ+
u 4p -2.031

C1Πu 2p -2.123

Table A.1.: Correlation between molecular states of H2 and united atom states of He where one electron is in
the given state while the other remains in the ground state, taken from [136]. The united atom energies are
from [137,138].

For the electronic ground state the BO potential energy curves for H2 and H+
2 are readily

available in the literature and also given for a usually sufficient range of internuclear distances.
The probably most comprehensive collection in this regard is given in [135]. However, the
energy curves for the excited states, if available at all, might not be given for the internuclear
distances needed. As an example, the lowest two singlet states with odd parity in H2 (namely
B1Σ+

u and C1Πu) are, as far as is known to us, only given for R ≥ 1. Although this is sufficient
to adequately calculate the vibrational ground states in these potentials, it causes problems
when combining them with the ground state curve (X1Σ+

g ) to determine a AC Stark shifted
potential. When restricting to R ≥ 1, the ground state curve is not suitable to determine a
vibrational state, as can be seen in Figure A.4.

Since recalculating the curves by ourselves would be too demanding it might be better to extend
the existing data for R < 1. For this we subtract the 1/R-term describing the interaction
between the two bare nuclei. Our primary interest lies on the two already mentioned electronic
states B1Σ+

u and C1Πu of H2. The original data is shown in Figure A.5. The correlation
between the molecular and united atom states can be retrieved from tables as given in [136].
For the states at hand the correlation can be seen in Table A.1.
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Figure A.5.: Initial data for potential energy curves without the 1/R interaction term. We wish to extend the
curves for B1Σ+

u and C1Πu to at least R = 0.5 to match the range of the curve for X1Σ+
g . The single points

at R = 0 are the corresponding united atom (Helium) energies, see Table A.1. The right panel shows the
region indiciated by the rectangle in the left panel.

For the purpose of this work and because of the 1/R-term, the accuracy of the potentials for
R→ 0 might not be as critical as for R ≥ 1. It is therefore probably sufficient to approximately
determine the potential for R → 0 and connect the resulting data smoothly to the data for
R ≥ 1, i.e. fill the gap for 0 < R < 1 shown in Figure A.5. A theory for short-range atomic
interactions is given in [139]. In the following we show the procedure we employ based on this
theory. For a detailed description the reader is encouraged to read the original work.

The potential energy curve of a system of two atoms of equal kind a small distance R apart
can be given as

E(R) = Eu.a.
0 + µW (R) +O(µ2) with µ =

Z2

(2Z)2
=

1

4

where Eu.a.
0 is the united atom energy and Z the nuclear charge. The first order coefficient is

given by

W (R) = Z

∫
d3r

(
1

r
− 1

|r −R|

)
ρ(r) (A.6)

with R = |R| and the electron density

ρ(r) =

Nel∑

i=1

〈ψu.a|δ3(r − ri)|ψu.a〉.

Nel is the number of electrons and |ψu.a〉 is the united atom state. The scalar product is taken
with respect to the electron coordinates ri.

Expression (A.6) can be simplified when considering a united atom state with specific principal
quantum number N , total orbital angular momentum quantum number L and its projection
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along the internuclear axis M . The internuclear axis is formed when the atoms are separated
to form a diatomic molecule. Its electron density ρN,L,M (r) is independent of φ and can be
expanded in Legendre polynomials Pk(cos θ) with even k

ρN,L,M (r) =

L∑

l=0

P2l(cos θ)ρN,L,M2l (r).

Since the M -dependence can be explicitly written in terms of Clebsch-Gordon coefficients
〈L1L2M1M2|LM〉

ρN,L,M2l (r) =
〈L, 2l,M, 0|L,M〉
〈L, 2l, L, 0|L,L〉 ρ

N,L,L
2l (r)

the electron density needs to be known only for different N and L. This allows for writing
W (R) in terms of the r-dependent expansion coefficients ρN,L,L2l (r)

W (R)(N,L,M ;R) = W0(N,L;R) +
L∑

l=1

〈L, 2l,M, 0|L,M〉
〈L, 2l, L, 0|L,L〉 W2l(N,L;R) (A.7a)

W0(N,L;R) = 4πZR2

∫ 1

0
ρN,L,L0 (Rt)(1− t)t dt (A.7b)

W2l(N,L;R) =
4πZR2l

4l + 1

[
−
∫ ∞

0

ρN,L,L2l (r)

r2l
r dr +R2

∫ 1

0

ρN,L,L2l (Rt)

(Rt)2l
(1− t4l+1)t dt

]

(A.7c)

For H2 the united atom is He. The states of He necessary for our calculations are given in Table
A.1. Because of the lack of exact analytical wave functions approximations are needed. The
easiest approach is to neglect the interaction between the two electrons and use hydrogen-like
orbitals for Z > 1 in a Slater-type expression

ψHe
nlm(r1, r2) =

1√
2

(
ψ100(r1)ψnlm(r2)− ψ100(r2)ψnlm(r1)

)
.

The wave function for a hydrogen-like atom (with reduced mass of the core and electron set to
1) reads [140]

ψnlm(r) = Rnl(r)Ylm(θ, φ)

Rnl =

√(
2Z

na0

)3 (n− l − 1)!

2n[(n+ l)!]
e−Zr/na0

(
2Zr

na0

)l
L2l+1
n−l−1

(
2Zr

na0

)

with the generalized Laguerre polynomials Lαn, the spherical harmonics Ylm and the Bohr radius
a0. Because of orthonormality the electron density takes the simple form

ρ(r) = |ψ100(r)|2 + |ψnlm(r)|2. (A.8)
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Figure A.6.: Extended potential energy curves. Both the left and the right panel show the same data but in
the right panel the sample points are not shown to get a better view of the curve.

Taking the electron density in (A.8) the only nonvanishing expansion coefficients ρN,L,M2l (r) for
(N,L,M) = (2, 1, 1) and (4, 1, 1) are

ρ2,1,1
0 (r) =

Z3

96πa5
0

e
− 2rZ

a0

(
96a2

0 + r2Z2e
rZ
a0

)

ρ2,1,1
2 (r) = − r2Z5

96πa5
0

e
− rZ
a0

ρ4,1,1
0 (r) =

1

5242880πa9
0

e
− 2rZ

a0

(
5242880a6

0Z
3 +

4

3
r2Z5e

3rZ
2a0

(
80a2

0 − 20a0rZ + r2Z2
)2
)

ρ4,1,1
2 (r) = − r2Z5

3932160πa9
0

e
− rZ

2a0

(
80a2

0 − 20a0rZ + r2Z2
)2
.

The value for the nuclear charge Z may be chosen less than 2 to accommodate for the screening
effect the electrons have on one another. The typical value for Helium is Z = 1.69 [141] which
we choose for the present calculations.

Figure A.6 shows the completed potential energy curves, determined with equations (A.7).
Specifically, in the left panel, the points around R = 0 are the calculated values at R = 0.05
and R = 0.1. These points, together with the original data, are interpolated with cubic splines.
The interpolation was done on an extended set of points, where the values for R > 0 are
duplicated for R < 0 to arrive at symmetric data. This is reasonable because negative values for
R correspond to interchanging the nuclei which should be the physically equivalent to R > 0. It
has the convenient effect that the curve is continuously differentiable with zero slope at R = 0.
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Figure A.7.: Harmonic ratios for the perpendicular orientation, a fixed intensity of 8 ·1013 W/cm2 and wavelengths
of 1800 nm, 2000 nm, 2200 nm, 2400 nm and 2600 nm. Shown are RG (high-contrast solid line), Rc[CSPA]
(high-contrast dashed line) and Rc[CSM] (low-contract dotted-dashed line). Same-color curves belong to the
same wavelengths; additionally, the length of the dashes indicate the wavelength. The short-trajectory ratio
RG exhibits an interference-related maximum, the position of which increases with wavelength. This hampers
a comparison with the autocorrelation ratios for this and also other intensities (see main text in section 5.3.1).
The long-trajectory ratio RG is free from such features and agrees well with the autocorrelation ratios for
increasing wavelength (apart from the LER interference that is generally present and appears here below
ω ≈ 1.5).

A.7. Harmonic ratios

This section contains additional pictures of autocorrelation and Gabor ratios (Figures A.7 and
A.8) as presented in chapter 5.
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Figure A.8.: Harmonic ratios for the parallel orientation with the same laser parameters as in Figure A.7.
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B. Numerical Implementation

This chapter is dedicated to the numerical implementations that underlie the results of this thesis.
The computationally intensive tasks such as time evolutions and eigenstate determinations were
done with the following algorithms implemented with the C programming language and compiled
with the C compiler from the GNU Compiler Collection [142]. For some basic operations, in
particular one-dimensional spline interpolation, but also the evaluation of functions such as
spherical harmonics and Bessel functions, the GNU Scientific Library (GSL) was used [143].

Most of the data analysis was done with the Python programming language, in particular with
the help of the libraries NumPy [144] and SciPy [145] for data structures and manipulation,
Matplotlib [146,147] for the creation of the pictures and also SymPy [148,149] for some small
analytical calculations. These and more libraries can be found packaged in (among others)
the Anaconda distribution for Python [150], which was used for this work. Furthermore, for
some data inspections and manipulations Gnuplot [151] was used, in addition to the GNU
implementations of the well-known Unix tools such as sed, gawk, grep and many others.
The whole thesis was written with the VIM text editor [152] and typeset with the TeX Live
distribution [153]. For version control Git was used [154]. All machines involved were running
GNU/Linux operating systems, primarily Ubuntu [155].

B.1. Numerical algorithms

In this section the algorithms used in the numerical calculations of this thesis are briefly outlined.
In the following the position-dependence of the wave function and operators is omitted where
possible for clarity.

B.1.1. Solving the time-dependent Schrödinger equation

Given a state ψ(t0) at time t0 which evolves according to the TDSE with time-dependent
Hamiltonian H(t)

i
∂ψ(t)

∂t
= H(t)ψ(t), (B.1)

the state of the system at any later time t > t0 can be formally written with the help of the
unitary (if H is hermitian) time-evolution operator U(t, t0)

ψ(t) = U(t, t0)ψ(t0).
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B. Numerical Implementation

Defining tn = t0 + n∆t with n = 0, 1, . . . , N − 1 and ∆t = (t− t0)/(N − 1), the above can be
written [156]

ψ(t) = U(tN−1, tN−2)U(tN−2, tN−3) . . . U(t2, t1)U(t1, t0)ψ(t0) (B.2)

The operator U satisfies the same equation (B.1) as ψ and is therefore in general just as difficult
to acquire. If the Hamiltonian is time-independent, however, it takes the form

U(t, t0) = exp(−iH(t− t0)).

Choosing ∆t in (B.2) small, compared to the timescale on which H(t) changes, motivates

U(tn+1, tn) ≈ exp

(
−iH

(
tn +

∆t

2

)
∆t

)

=: Un.

Un is also called the short-time propagator. Equation (B.2) can then be approximated by

ψ(t) ≈ UN−2UN−3 . . . U1U0ψ(t0).

Split-operator method

The split-operator method [157] is a special type of implementation of Un. In this thesis it is
used in the form

Un = exp(−i(T + Vn)∆t)

= exp

(
−iVn

∆t

2

)
exp(−iT∆t) exp

(
−iVn

∆t

2

)
+O

(
∆t3

)

with kinetic momentum operator T and

Vn = V

(
tn +

∆t

2

)
,

where V is the potential of the system. The exponential terms containing Vn act as a multipli-
cation in position space while T does so in momentum space. The split-operator propagation
scheme then implements the action of Un as follows:

1. Apply exp
(
−iVn

∆t
2

)
in position space to ψ(tn).

2. Fourier transform to momentum space.

3. Apply exp(−iT∆t).

4. Inverse Fourier transform back to position space.

5. Apply exp
(
−iVn

∆t
2

)
again.

What makes this scheme viable is the use of a Fast-Fourier transform implementation [158].
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Figure B.1.: Example of the absorbing mask function used in the numerical TDSE calculations. Here the grid
covers the interval [−819.2, 819.2]. The vertical dotted line indicates the beginning of the masking area. To
the left of it the function is 1, and to the right it falls off as cos1/n with n = 20 between 0 and π/2.

B.1.2. Absorbing mask at grid boundary

In the two-dimensional TDSE calculations of the parallel and perpendicular model an absorbing
mask is employed at the appropriate grid boundaries to avoid spurious effects in the wave
function. The wave function is multiplied, after every timestep, by a function that takes on the
value 1 in the center of the grid and decreases toward the grid boundary in the last 10 % of
the total grid points. Specifically, this is done for both boundaries of the electron dimension
and at the high boundary of the nuclear dimension (i.e. large internuclear distance). The low
boundary of the nuclear dimension does not need to be masked because the high values of the
BO potential energy curves prevents the wave function from reaching this boundary. On the
last 10 %, the function used is equal to cos(x)1/n with n = 20. An example is shown in Figure
B.1 for clarity.

B.1.3. Solving the time-independent Schrödinger equation

Stationary states with imaginary time evolution

Once a propagation scheme is implemented to solve the TDSE, it can also be used to find
stationary states of a system. The TDSE with time-independent Hamiltonian H

i
∂ψ(t)

∂t
= Hψ(t)

can be rewritten with t = −iτ and φ(τ) = ψ(−iτ) as

−∂φ(τ)

∂τ
= Hφ(τ).
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The time-evolution operator, that propagates forward a time range of τ , is exactly given by

U(τ) = exp(−Hτ).

Let {φj} be the eigenstates of H with eigenenergies Ej

Hφj = Ejφj .

Some initial state φini can be expanded in {φj}

φini =
∑

j

cjφj (B.3)

with cj = 〈φj |φini〉. Application of U(τ) gives

φ(τ) = U(τ)φini

=
∑

j

cjφj exp(−Ejτ).

Assuming that Ej < Ej+1 (for a nondegenerate system), it follows for sufficiently large τ

φ(τ)
τ�0≈ c0φ0 exp(−E0τ),

which gives the ground state of the system, φ0, after normalizing φ(τ). The eigenenergy E0

can be determined by propagating φ(τ) = φ0 one more timestep ∆τ

φ(τ + ∆τ) = exp(−E0∆τ)φ(τ),

hence

E0 = − 1

2∆τ
ln
(
〈φ(τ + ∆τ)|φ(τ + ∆τ)〉

)
.

In order to determine the first excited state, φ1, one can subtract the ground state portion
from the expansion (B.3) and repeat the procedure. In principle this subtraction has to be
done only once, but numerical inaccuracies require to do it repeatedly. In general, to calculate
the state φj , all coefficients ci with i < j have to vanish and cj needs to be nonzero.

Numerov’s method

The time-independent Schrödinger equation

Eψ(x) = − 1

2m
ψ′′(x) + V (x)ψ(x)

can be rewritten as

ψ′′(x) = −k(x)ψ(x) (B.4)
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with

k(x) = 2m
(
E − V (x)

)

and mass m. Sampling at equidistant points xn with stepsize ∆x, Numerov’s method gives
with ψn = ψ(xn) and kn = k(xn)

ψn =

(
2− 5∆x2

6 kn−1

)
ψn−1 −

(
1 + ∆x2

12 kn−2

)
ψn−2

(
1 + ∆x2

12 kn

) .

Hence, knowing the wave function at two grid points xn−2 and xn−1 enables one to calculate it
at xn. This formula can be derived by Taylor-expansion of ψn±1 around the point xn up to
fourth order, adding both results and simplifying the second and fourth derivative via equation
(B.4) and the three-point formula for the second derivative.

Shooting method

Given the one-dimensional Schrödinger equation

Eψ(x) = Hψ(x),

the calculation of a bound state ψ(x) constitutes a boundary-value problem, with boundary
conditions ψ(x→ ±∞) = 0. This problem can be approached with the shooting method by
treating it as an initial value problem. Starting on one side of the grid with an initial guess
for the energy E, say at −xb with xb � 0, ψ(−xb) = 0 and ψ′(−xb) 6= 0, the solution is
numerically integrated over the whole grid to find ψ(E;x). If the energy E is not the correct
eigenenergy of the bound state, the solution diverges, i.e. |ψ(xb)| � 0. The eigenenergy E
can be found by calculating the root of the function f(E) = ψ(E;xb). This is done with a
bisection algorithm. Once the energy E is found, it can be used to find ψ, again by numerical
integration from the starting values. Here, it is convenient to integrate from the left and right
grid boundaries, matching both solutions in the middle and normalizing.

In this work the shooting method is implemented via Numerov’s method shown above, where
the initial conditions are given by the value of ψ at two grid points.

B.1.4. Integration

Integrals of functions f(x, ψ(x)), sampled at grid points xn, are approximated by

∫
dxf(x, ψ(x)) =

∑

n

f(xn, ψ(xn))∆x.

An example is the norm of ψ. Any spurious contributions at the grid boundary are typically
irrelevant because in practice f is often a product containing ψ. In ψ, values at the grid boundary
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are suppressed by the aforementioned mask function. The grid spacing ∆x is generally chosen
small enough to resolve oscillations of ψ(x).

For integrals not containing ψ(x), over an interval [x0, xN−1] sampled at N points xn, the
following integration formula [159] is used

∫ xN−1

x0

dxf(x) = ∆x

[
3

8
f0 +

7

6
f1 +

23

24
f2 + f3 + · · ·+

+ fN−4 +
23

24
fN−3 +

7

6
fN−2 +

3

8
fN−1

]
+O

(
N−4

)
,

with fn = f(xn).

B.2. Numerical implementations and parameters

In this section it is outlined which numerical algorithm is used for a particular calculation,
together with the numerical parameters used. Convergence of the numerical results is gener-
ally tested by varying the numerical parameters and observing that the physical results are
independent of them.

B.2.1. Autocorrelation

Here the numerical implementation of the vibrational autocorrelation is outlined.

Numerical grid

The autocorrelation C(p, t, t′) as in expression (3.1) depends on a one-dimensional wave function
χ(R, t). All such wave functions (for H2 and D2) in this work are represented on a numerical
grid with parameters

Ra = 0.5,

∆R = 0.005,

NR = 6144,

where Ra is the low boundary of the grid, ∆R the grid spacing and NR the number of grid
points. The grid correspondingly extends to 31.215.
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Time evolution

For the time evolution, two different methods are used. They are applicable for real-valued as
well as complex-valued time propagations.

If χ(R, t) evolves on the (shifted) BO potential energy curve V+
BO(R), it is efficient to calculate

C(p, t, t′) via expansion in vibrational eigenstates χ+
ν of V+

BO, as in expression (3.2). Since the
ionization matrix element dion is set to unity, the corresponding set of expansion coefficients is
constant, cνion = 〈χ+

ν |χ0〉, also called Franck-Condon factors.

If the BO potential is time-dependent, for example when including the Stark shift, or changes
in every iteration of the PACER method, the split-operator propagation is used. For these
propagations the real-valued timestep is chosen as ∆t = 0.1. From this a complex-valued
timestep ∆tc is calculated for a given complex-valued excursion time τ of the electron as follows

∆tc =
τ

Nt
with Nt =

⌈ |τ |
∆t

⌉
,

i.e.

|∆tc| ≤ ∆t.

For every set of ionization and recombination times, the time evolution is calculated anew, i.e.
starting from the ground vibrational state of the neutral molecule.

Vibrational states

The vibrational ground state χ0 of VBO is calculated with the shooting method (see above).
The ionic vibrational states χ+

ν of V +
BO are calculated via imaginary time propagation (see also

above). The shifted potentials, such as V+
BO, have the same eigenstates. Only the energies are

affected by the shift.

Ammonia

The calculations for NH3 and ND3 are done on a numerical grid with parameters

xa = −1.36,

∆x = 0.002125,

Nx = 1280,

where xa is the low boundary of the grid, ∆x the grid spacing and Nx the number of grid
points. The numerical algorithms are the same as for H2 and D2.
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B.2.2. Saddle-point times

The real-valued times from the semiclassical three-step model (section 2.1) as well as the
complex-valued solutions to the saddle-point equations (2.23), (2.24), (2.25) were calculated
with Mathematica via its root-finding algorithms.

B.2.3. TDSE

This section outlines the numerical implementation of the two-dimensional TDSE calculations
underlying the Gabor ratios of chapter 5.

Numerical grid

The numerical grid parameters for the electron dimension x and the nuclear dimension R are

xa = −819.2, Ra = 0.5,

∆x = 0.2, ∆R = 0.05,

Nx = 8192, NR = 256,

where xa, Ra are the lower boundaries of the grid; ∆x, ∆R are the grid spacings and Nx, NR

are the number of grid points. The electron grid therefore extents to 819.2 and the nuclear grid
to 13.25.

Time evolution

The time evolution is done with split-operator propagation (see above). The timestep is
∆t = 0.02. The number of timesteps is chosen large enough to accommodate the length of the
laser pulse. For the mostly single-cycle pulses of chapter 5, this corresponds to the period of
one cycle.

Ground state

The ground states of the parallel and perpendicular potentials of chapter 4 are calculated with
imaginary time evolution (see above).

B.2.4. Dipole-transition matrix element

This sections outlines the numerical implementation of the dipole-transition matrix elements in
section 4.5. The evaluation of the matrix elements in the autocorrelation function is done via a
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two-dimensional spline interpolation [160] of the previously calculated values.

Numerical grid

The matrix element is, for both orientations, calculated on a numerical grid with the following
parameters for the electron dimension

xa = −2048,

∆x = 0.01,

Nx = 409600,

where xa is the lower boundary of the grid, ∆x the grid spacing and Nx the number of grid
points. The grid therefore extends to 2047.99. The grid is noticeably larger and finer than the
grid of the 2D TDSE calculations. This is because of the difficulties of resolving both low and
high electron momenta as explained in section 4.5.

For the perpendicular orientation, the parameters for the nuclear dimension are

Ra = 0.5,

∆R = 0.04,

NR = 500,

with Ra being the lower boundary, ∆R the grid spacing and NR the number of grid points.
The grid extents to 20.46. The autocorrelation is calculated on a larger grid and in order to
evaluate the matrix element for larger R, it is constantly continued with the value at R = 20.46.
This is appropriate since for the perpendicular orientation the matrix element changes very
slowly for large R (compare Figures 4.7, 4.10 and 4.11).

For the parallel orientation, the parameters are

Ra = 0.5,

∆R = 0.04,

NR = 800,

and the grid therefore extents to 32.46, which covers the entire grid of the autocorrelation
above.

Electronic ground and scattering states

The electronic ground state ψR for fixed internuclear distance R is calculated via the shooting
method (see above). The exact scattering states ψc

k do not require the determination of an
eigenenergy since their energy E is continuous and given as input, E = k2/2. They are
calculated with Numerov’s method (see also above), with initial conditions as explained in
section 4.5.2.
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B. Numerical Implementation

B.2.5. Alignment distribution

The calculation of alignment distributions and related quantities requires solving the set of
coupled differential equations (6.6) for the coefficient functions FJiJ(t). For this the ODE-
system implementation provided by the GSL [143] is used. In particular, the used algorithm is
the explicit embedded Runge-Kutta Prince-Dormand (8, 9) method, with an absolute error
of 10−6 and a relative error of 0 (see the GSL documentation). The values of ΛM

J,± and ΛM
J

are calculated with Mathematica. When dealing with spherical harmonics between different
implementations, one needs to make sure that the same conventions are used.
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[82] M. F. Ciappina, C. C. Chirilă and M. Lein, Influence of Coulomb continuum wave
functions in the description of high-order harmonic generation with H+

2 , Phys. Rev. A
75, 043405 (2007).

[83] A.-T. Le, R. R. Lucchese, S. Tonzani, T. Morishita and C. D. Lin, Quantitative rescattering
theory for high-order harmonic generation from molecules, Phys. Rev. A 80, 013401 (2009).

[84] E. V. van der Zwan and M. Lein, Molecular Imaging Using High-Order Harmonic
Generation and Above-Threshold Ionization, Phys. Rev. Lett. 108, 043004 (2012).

[85] A. Chacon, M. Lein and C. Ruiz, Asymmetry of Wigner’s time delay in a small molecule,
Phys. Rev. A 89, 053427 (2014).

[86] D. J. Griffith, Introduction To Quantum Mechanics (Prentice-Hall 1995).

[87] L. D. Landau and E. M. Lifshitz, Motion in a Coulomb field (spherical polar co-ordinates),
page 121 (Pergamon Press Ltd. 1965).

[88] L. D. Landau and E. M. Lifshitz, The theory of elastic scattering, page 469 (Pergamon
Press Ltd. 1965).

[89] H. R. Sadeghpour, J. L. Bohn, M. J. Cavagnero, B. D. Esry, I. I. Fabrikant, J. H. Macek
and A. R. P. Rau, Collisions near threshold in atomic and molecular physics, J. Phys. B:
At. Mol. Phys. 33, 5, R93 (2000).

[90] K. J. Reed, A. H. Zimmerman, H. C. Andersen and J. I. Brauman, Cross sections for
photodetachment of electrons from negative ions near threshold, J. Chem. Phys. 64, 4,
1368 (1976).
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imentellen und theoretischen Grundlagen, pages 159–177 (Springer Berlin Heidelberg
2006).

[100] B. Friedrich and D. Herschbach, Polarization of Molecules Induced by Intense Nonresonant
Laser Fields, The Journal of Physical Chemistry 99, 42, 15686 (1995).

[101] T. Seideman, Rotational excitation and molecular alignment in intense laser fields, J.
Chem. Phys. 103, 18, 7887 (1995).

[102] B. Friedrich and D. Herschbach, Alignment and Trapping of Molecules in Intense Laser
Fields, Phys. Rev. Lett. 74, 4623 (1995).

[103] T. Seideman, The analysis of magnetic-state-selected angular distributions: a quantum
mechanical form and an asymptotic approximation, Chem. Phys. Lett. 253, 3, 279 (1996).

[104] T. Seideman, Revival Structure of Aligned Rotational Wave Packets, Phys. Rev. Lett. 83,
4971 (1999).

[105] T. Seideman, New means of spatially manipulating molecules with light, J. Chem. Phys.
111, 10, 4397 (1999).

[106] T. Seideman, On the dynamics of rotationally broad, spatially aligned wave packets, J.
Chem. Phys. 115, 13, 5965 (2001).

[107] H. Stapelfeldt and T. Seideman, Colloquium, Rev. Mod. Phys. 75, 543 (2003).

[108] J. Ortigoso, M. Rodriguez, M. Gupta and B. Friedrich, Time evolution of pendular states
created by the interaction of molecular polarizability with a pulsed nonresonant laser field,
J. Chem. Phys. 110, 8, 3870 (1999).

[109] H. Haken and C. Wolf, Molekülphysik und Quantenchemie: Einführung in die exper-
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[117] C. C. Chirilă and M. Lein, Effect of dressing on high-order harmonic generation in
vibrating H2 molecules, Phys. Rev. A 77, 043403 (2008).

[118] D. R. Bates, The Oscillator Strength of H+
2 , J. Chem. Phys. 19, 9, 1122 (1951).

[119] D. M. Bishop and L. M. Cheung, Moment functions (including static dipole polarisabilities)
and radiative corrections for H+

2 , J. Phys. B 11, 18, 3133 (1978).

[120] J. Rychlewski, An accurate calculation of the polarizability of the hydrogen molecule and
its dependence on rotation, vibration and isotopic substitution, Molecular Physics 41, 4,
833 (1980).

[121] W. Kol/os and L. Wolniewicz, Polarizability of the Hydrogen Molecule, J. Chem. Phys.
46, 4, 1426 (1967).

[122] L. Wolniewicz and G. Staszewska, 1Σ+
u → X1Σ+

g transition moments for the hydrogen
molecule, J. Mol. Spectrosc. 217, 2, 181 (2003).

[123] L. I. Shiff, Quantum Mechanics, Third Edition (McGraw-Hill 1968).
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