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Abstract 

The use of wireless communication technologies for the intercommunication of body-worn appli-

cations is increasing rapidly nowadays. In accordance with the ongoing miniaturization of weara-

ble devices, the interaction between the antenna and the user becomes more and more intense. As 

a result of the inability of the traditional free-space antenna theory to describe the excitation of 

on-body surface waves, this has so far led to insufficient insights into the development of such 

body-centric systems. Hence, the aim of this thesis is to derive on-body antenna parameters and 

physically motivated EM propagation models that can be used to develop scalable path gain mod-

els as well as optimized design strategies. 

Considering planar dissipative surfaces, an intuitive propagation model is discussed, which fol-

lows the classical Sommerfeld problem. An appropriate solution for quasi-static ranges is adapted 

and consulted to discuss basic principles of electromagnetic propagation of on-body line-of-sight 

scenarios for selected frequencies between 400 MHz and 60 GHz. Based on these results, an an-

tenna de-embedding is introduced in the course of this thesis, which is capable of modeling the 

average radiated antenna far field. Furthermore, a decomposition of the total on-body far field into 

a TM field component and a TE one is discussed to define two equivalent electric dipole sources. 

This approach enables the definition of the on-body directivity as well as the effective antenna ar-

ea to discuss the radiation properties of the corresponding antenna geometry in terms of on-body 

communications. While this approach is primarily limited to line-of-sight propagations, a cylin-

drical dielectric phantom is introduced to cover non-line-of-sight links as well. In this case, the in-

troduced de-embedding method is used to model the quasi-static range while the bended propaga-

tion path is treated by an adapted cylindrical model, which emphasizes the TM/TE-related far 

field decomposition of the planar model. Finally, the theory that is derived is verified by numeri-

cal full human body examples as well as by measurement setups in an anechoic chamber. 

Keywords: Body Area Networks, On-Body, Antenna Theory  



 

Zusammenfassung 

Funkapplikationen im und am Körper werden zunehmend in unterschiedlichen Lebensbereichen 

eingesetzt. Die fortschreitende Miniaturisierung solcher Geräte führt häufig dazu, dass der Nutzer 

selbst zum prägenden Teil der Funkanwendungen wird. Die primär der Körperkontur folgenden 

Übertragungsstrecken sind hierbei nicht durch herkömmliche Freiraumfunkfelddämpfungsmodel-

le nachzubilden, da der dominante Ausbreitungsmechanismus auf Oberflächenwellen zurückzu-

führen ist. Ziel der vorliegenden Dissertation ist die Definition adaptierter Antennenparameter 

und die Entwicklung skalierbarer physikalisch motivierter Kanalmodelle. 

Die theoretischen Grundlagen zur Wellenausbreitung entlang ebener verlustbehafteter Grenz-

schichten werden durch das klassische Sommerfeldproblem eingeführt. Diesbezüglich wird eine 

Lösung für den quasi-stationären Funkfeldbereich aufgezeigt und zur Diskussion grundlegender 

elektromagnetischer Ausbreitungsphänomene im Frequenzbereich zwischen 400 MHz und 

60 GHz herangezogen. Basierend hierauf wird eine Methode zum Antennen-de-embedding vor-

gestellt, welche die Abschätzung des durchschnittlich zu erwartenden Antennenfernfeldes ermög-

licht. Des Weiteren wird das körpergebundene Fernfeld in eine TM und eine TE Komponente zer-

legt, um seine Wirkung auf zwei äquivalente elektrische Dipole abzubilden. Dieser Ansatz ermög-

licht die Definition von On-Body Antennenparameter, u.a. Direktivität und Antennenwirkfläche, 

welche zur systematischen Klassifikation körpergetragener Antennen herangezogen werden. 

Während dieser Ansatz hinreichend zur Beschreibung direkter Ausbreitungspfade verwendet 

werden kann, ist ihre Verwendung bei gekrümmten Ausbreitungspfaden durch das zugrunde ge-

legte ebene Modell beschränkt. Diese Limitation wird durch Einführung eines zylindrischen 

Phantommodells umgangen, indem das ebene Modell zur Modellierung des quasistationären 

Feldbereichs verwendet wird und das Zylindermodel weiter entfernte Distanzen beschreibt. Die 

Modellentwicklung wird hierbei komplementär zum TM/TE-Ansatz des ebenen Modells gehalten. 

Die gesamte Theorie wird durch numerische Ganzkörpersimulationen und Messungen in einer 

Antennenmesskammer verifiziert. 

Schlagwörter: Körpergebundene Funknetzwerke, On-Body, Antennentheorie 
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Chapter 1  

Introduction 

1.1 Background 

The intercommunication of body-worn applications by use of wireless communication 

technologies is increasing rapidly nowadays. Related to [Hal06] and [Hal10], these ap-

plications range from security technologies, multimedia products and telemetric sports 

applications to healthcare systems. In addition, the ongoing miniaturization of wearable 

computer systems, such as smartphones, enables a multidisciplinary combination of 

these fields of application. A good indicator of the underlying heterogeneity is the large 

variation in covered frequency bands. Depending on the specific wireless system, the 

frequency of interest may range from the MICS band (Medical Implant Communication 

Service) at 400 MHz, over several ISM bands (Industrial Medical Scientific) in the lower 

GHz range, up to 60 GHz [Cha13] and 94 GHz [Pel12]. One common aspect of body-

worn applications is the need for low-profile antennas, which is a primary demand to re-

alize integrated and user-convenient systems. As a consequence thereof, the antenna 

properties as well as the propagation channel are physically connected to the body of the 

user. This fact prohibits the usage of the traditional free-space antenna theory to describe 

the resulting propagation scenario, where, for instance, the path gain can be directly cal-

culated by the Friis formula from the separated antenna and channel characteristics. In-

stead, in terms of on-body communications, the antenna and channel characteristics over-

lap with each other. This exacerbates the problem to find a representative theoretical de-

scription to model the behavior of each component and their contribution to the total 



1. Introduction 

2 

communication link. Inevitably, this has so far led to insufficient insight into the devel-

opment of body-centric applications. To circumvent this problem, a common approach 

entails the modeling of the entire on-body link, consisting of transmitting antenna, hu-

man body and receiving antenna, as a whole. Typically, this is realized by complex nu-

merical simulations or measurement set-ups of the entire system [Abb12]. While this ap-

proach delivers a concrete solution of a specific setup, minor insight is obtained regard-

ing the general radiation and propagation mechanisms. More general information on how 

different configurations of antennas and channel behave can be obtained by the systemat-

ic variation of various setup parameters using statistical analysis [Gal11]. Despite the 

fact that this method extends the results that are obtained to a wider application field, it is 

still limited to the specific setups under test. To compensate this, a metric-like radiation 

characteristic would be preferable, which would give an adequate measure to evaluate 

the radiated power flow along the body curvature. The first steps into this direction are 

realized in [Akh10] and [Ber14]. These approaches use electromagnetic near-field obser-

vations of different antenna configurations in the presence of the human body to estimate 

the wave species of the related on-body far field. The aim of this thesis is to sharpen this 

approach, i.e. to realize an antenna de-embedding with connected antenna parameters. 

With this, antenna and channel characteristics can be characterized independently by 

concentrated measures and can be combined to model the desired communication setup. 

Moreover, the measures can be consulted to evaluate a specific antenna configuration or 

to derive general design demands for the applications desired. 

1.2 Objective of this Work 

The primary objective of this thesis is to define on-body antenna parameters and physi-

cally motivated EM propagation models, which enable the derivation of scalable path 

gain models as well as optimized design strategies. The key point of the underlying ap-

proach is the separation of the on-body far field into its wave species, i.e. into a transver-

sal magnetic and transversal electric field component, for line-of-sight (LOS) as well as 

for non-line-of-sight conditions (NLOS). 
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The main issues in this thesis are: 

 Uniformed Norton surface wave theory 

 Enhanced model to solve the EM field around cylindrical dielectric structures 

 Basics to model body-centric wireless applications 

 Definition of concentrated on-body antenna measures 

 Parameter discussion of related EM propagation effects 

 Uniform theory to model LOS as well as NLOS on-body links 

 Verification by numerical examples and measurement setups 

1.3 Content and Organization of the Thesis 

Chapter 2 takes up the basics of the Sommerfeld problem, the enhancements in terms of 

Norton surface waves, and the adaption to quasi-static ranges. Hereby, a unified theory is 

intended to deliver an adequate recapitulation of the thematic complex and to model the 

on-body antenna field as well as the derivation of related measures. 

While the Sommerfeld theory is based on a planar propagation model, Chapter 3 dis-

cusses the solution of the electromagnetic field of a small dipole sources near a dissipa-

tive dielectric cylinder to represent heavily bended body surfaces. The solution derived is 

developed in such a way that the results can be adapted to the planar model of Chapter 2. 

In general, the presented antenna de-embedding approach can be realized by different 

methods. In our case, the selected solution is based on the FDTD method to calculate the 

electric current distribution on the corresponding antenna structure. Hence, Chapter 4 

summarizes the basic concepts of this numerical method and illustrates modeling consid-

erations through different examples. In addition, basic measures are listed that are essen-

tial to model electromagnetic propagation effects in terms the wireless body-centric 

communications. 

The basic concept of the developed de-embedding technique is presented in Chapter 5. 

While the first part discusses a volume cell-based approach to model the on-body far 

field of arbitrarily shaped antennas, the second part suggests a separation of the radiated 
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field into its TM and TE components. Based on this approach, two equivalent sources are 

defined to represent an on-body antenna by its connected antenna parameters. This theo-

ry is evaluated with reference to the example of different antenna concepts and the accu-

racy of our achieved path gain model is evaluated by the FDTD method as well as by an 

equivalent measurement setup in an anechoic chamber. 

Up to this point, the defined on-body antenna theory is capable of only modeling line-of-

sight links. To enhance the applicability in terms of propagation links into body shad-

owed regions, the so-called non-line-of-sight links, the planar model is modified in 

Chapter 6. In this case, the line-of-sight technique is used to model the antenna coupling, 

i.e. the antenna near field. In terms of farther distances, separated propagation channel 

measures are consulted, which are based on the TM and TE field solution of dielectric 

cylinders of Chapter 3. By this, NLOS links can be modeled by scalable propagation pa-

rameters. 
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Chapter 2  

The Electromagnetic Field on a Dissipative Planar 

Dielectric Surface 

The solution of the radiated electromagnetic field of an antenna located above a dissipa-

tive planar surface is of interest in terms of its wide range of applications. The first at-

tempts to find an adequate method of description can be traced back to the origins of ra-

dio science itself. The basis to calculate the radiated field of terrestrial communication 

setups was laid by Arnold Sommerfeld at the beginning of the 20th century [Som09]. At 

this early stage, the primary intention was laid onto the general far field description of an 

antenna located directly on the earth. The results indicate a ground wave at far distances, 

which is guided by the air-ground interface and significantly surpasses the wave compo-

nents that are directly propagating through the air. In the following years, the solution 

was verified and modified by several authors. Kenneth Norton especially reshaped this 

work to find a clear separation of the connected wave components. Moreover, his contri-

bution enables an interpretation of the radiated field by the superposition of an electro-

magnetic space and ground-bound wave [Nor37]. While, up to this point, the related re-

search focused on terrestrial communications, the following work was also motivated by 

layered media, as can be found in dielectric substrates. Major contributions to this theory 

were made by many authors, and the reformulations and approximations made by James 

R. Wait, in particular, generalized the underlying theory [Wai61]. These definitions were 

used by Peter Bannister to enhance the range of applicability of the derived theory to 

quasi-static ranges [Ban78]. The focus of recent research aspects can be found on plas-

monics [Mic16], as well as on body-centric communications [Akh10]. In terms of body-
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centric communications, the theory is consulted to model the influence of the user with 

respect to the communication link, where the model seems to be a promising starting 

point to represent more complex scenarios step by step [Gri10]. As seen in Fig. 2-1, the 

general approach models the propagation path along the human body by an equivalent 

dielectric half-space. 

 

Fig. 2-1 General geometry of a planar dissipative dielectric phantom of infinite size to model the domi-
nant propagation effects of line-of-sight paths along the human body in free space. 

In terms of the Norton surface wave theory, the general contribution of this thesis is split 

into two parts. This chapter deals with the origin of the theory, briefly summarizes the 

theoretical background as well as defines a unified theoretical background. It starts with 

the original Sommerfeld problem, and then leads to the modifications made by Norton 

and Bannister. The benefits in terms of body-centric communications are discussed in 

Chapter 5 by the definition of derived antenna measures and the analysis of general 

propagation aspects by parameter variations. Finally, the evidence of the theory is evalu-

ated for different numerical examples, where the practical relevance is underlined by 

measurements. In addition, the related mathematical field equations, i.e. the solution of 

the final Bannister approach, is listed in the appendix. 
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2.1 Helmholtz Equation and Vector Potential of an Electric 

Source 

The electric current distribution of a radiating antenna structure can be linked to the re-

lated radiated antenna field. A probate method is to derive the electromagnetic field val-

ues by the source-related vector potentials. The potential functions may be given by the 

vector function A, which is commonly used nowadays. An equivalent approach, which 

was commonly used in the past, is the description by the Hertz potential Π. Both descrip-

tion methods are, in general, equivalent. As seen in [Bal05], knowing the electric current 

distribution J of the source p, assuming a negligible small magnetic current contribution, 

the vector potential A can be expressed by 

2 2    A A J . (2.1) 

Here, the magnetic field quantities are connected to the vector A with 

1


 H A , (2.2) 

and, using the Lorentz condition, to the electric field  

1
( )j j


    E A A . (2.3) 

The propagation constant γ of the propagation medium is defined by the material param-

eters ε, μ, σ and the angular frequency ω through 

22 j   . (2.4) 

In terms of body-centric communications, we assume now a magnetic transparent body, 

i.e. the permeability μ is equal to the free space permeability μ0 throughout the following 

context. The permittivity, on the other hand, can either be real or complex. If the free 

space case is discussed, then the permittivity ε0 of vacuum is assumed.  

2.1.1 Connection to the Hertz Vector Potential 

Corresponding to [Str41], the vector potential A is linked through its time derivative to 
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the Hertz potential Π with 

t






Π

A . (2.5) 

Also, we can rearrange (2.5) and use the equivalent notation in the frequency domain to 

enable a direct calculation of the field quantities (2.2) and (2.3) from the Hertzian vector 

potential  

jA Π . (2.6) 

As a comparison of (2.5) and (2.6) reveals, a solution of (2.1) is indeed independent from 

the used vector potential formulation. In the following context, we follow the solution 

approach of A. Sommerfeld and his successors, who use a formulation based on the 

Hertz vector potential. Using (2.6), the magnetic field of (2.2) can be expressed in terms 

of the Hertzian vector potential by 

j H Π . (2.7) 

An equivalent formulation can be found for the electric field. In this case, if we assume 

(2.4) for free space conditions, (2.3) can be expressed by 

2
0 ( )   E Π Π . (2.8) 

 

2.2 Approach of Arnold Sommerfeld 

The first discussion of a Hertzian dipole located above a planar dissipative ground was 

solved by A. Sommerfeld [Som09, Som26]. The general geometry is shown in Fig. 1, 

where the dipole is located at the coordinate origin, i.e. just above the dissipative medi-

um. 
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Fig. 2-2 Sommerfeld geometry [Som26]: Hertzian dipole on a dissipative medium. 

The electromagnetic field of the defined geometry may be calculated by (2.7) and (2.8), 

solving the differential equation of the Hertzian vector potential Π: 

2 2 0  Π Π , (2.9) 

where γ denotes the complex propagation constant of the corresponding medium. If the 

distance between the coordinate system origin and an arbitrary observation point is ex-

pressed in cylindrical coordinates by R = (z2+ρ2)1/2, a solution of (2.9) is given by a z-

orientated Hertzian dipole with momentum p with 

0

.
4

R

z

p e

j R



 



Π e  (2.10) 

In general, (2.10) can be found using the general potential function [Bal05], where the 

Hertzian vector potential is acquired by the use of (2.6). To find an appropriate solution 

of (2.9) in terms of the geometry, as shown in Fig. 2-2, (2.10) has to fulfill the following 

boundary conditions for the free space (γ0) and the dissipative ground (γ1) regions: 

2 2
0 0 0

2 2
1 1 1

for 00

for 0,0

z

z




    

    
 (2.11) 
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0 1

0 0 0 1
2 2
0 1

for 0,z

z z

 
 

   


     

 (2.12) 

0

1

0 0, ,
for

0 0, , ,

z r z

z r z

    

    
 (2.13) 

0 0

1 1

0

0

1

1

has to be finite and continuous,

involving its first derivative.

R

R

e

R

e

R










  



  

 (2.14) 

A detailed discussion of the equations given above is presented in [Som26]. Here, equa-

tions (2.11) to (2.14) are given as an elementary reference to determine the electromag-

netic field of a radiating source near a dissipative planar ground. Other, extended ap-

proaches follow the same procedure to formulate the related field equations. Even in the 

case of a stratified medium, the solution of (2.9) has to satisfy the boundary conditions 

related to the additional layers. A detailed solution is presented in [Wai98] and is dis-

cussed for a given on-body scenario in [Lea09]. The further analysis assumes a homoge-

neous ground in general. 

2.2.1 General Solution by the Example of a Normally Orientated Hertzian Dipole 

In the following, Sommerfeld’s original work—considering a normally orientated Hertz-

ian dipole, positioned directly on the surface—is briefly summarized to show the general 

procedure to calculate the related field quantities. As shown in [Som26], to solve (2.9), 

the total Hertz vector potential can be led back to the effect of two components: a prima-

ry excitation and a secondary one. The primary Hertz vector potential is related to the 

potential function of a Hertzian dipole in free space. While the vector potential within the 

ground is zero, in general, the potential function of a Hertzian dipole can be interpreted 

as an infinite sum of weighted Bessel functions within the corresponding media 

[Wey19]. In our case, this yields  
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0 2 2
S 0

S

S
0,prim S S2 2

0 0 0 S 0

( ) d 0,
4 4

R
zp e p

J e z
j R j


 




  

     


 



   


  (2.15)

1,prim 0 0z   . (2.16)

Generally speaking, the right side of (2.15) is called the Sommerfeld integral. Consistent 

with Fig. 2-2, γ0 denotes the propagation constant of free space. The variable λS has been 

introduced by Sommerfeld as an integration constant and should not be misinterpreted 

with the electric wave length at this point. The secondary excitation component, as de-

noted in [Som26], can be defined along (2.15) by assuming the arbitrary functions f0 and 

f1. This results in: 

2 2
S 0

S

S
0,sec 0 S S S2 2

0 0 S 0

( ) ( ) d 0
4

zp
f J e z

j

 




   

   


 



  


 , (2.17) 

2 2
S 1

S

S
1,sec 1 S S S2 2

0 0 S 1

( ) ( ) d 0
4

zp
f J e z

j

 




   

   


 



  


 . (2.18) 

The arbitrary functions f0 and f1 depend on the media parameters of medium 0, i.e. free 

space, and Medium 1, the dissipative ground. As stated by Sommerfeld, the primary, i.e. 

direct excitation component of the source, is now given in the form of (2.10), while the 

secondary excitation term, which is related to the influence of the ground, is expressed 

by (2.17) and (2.18). The total Hertzian vector potential results from the superposition of 

(2.15) and (2.17), resp. (2.16) and (2.18) and can be written by 

0 2 2
S 0

S

0 0 S S S S

0 0

( ) ( ) d 0
4

R
zp e

f J e z
j R


 



    
 


 



 
    

  
 , (2.19) 

1 2 2
S 1

S

1 1 S S S S

0 0

( ) ( ) d 0
4

R
zp e

f J e z
j R


 



    
 


 



 
    

  
 . (2.20) 

The exact expression of f0 and f1 can be found by satisfying the boundary conditions 

(2.11) to (2.14) at z = 0. Finally, the resultant magnetic and electric field components can 

be found using (2.7), resp. (2.8). A more general solution, considering an antenna with 
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significant effective antenna height above the ground, is discussed in the next paragraph. 

With this, the results have a wider range of applicability and some complex problems, 

which are related to the position of the source on the surface, are avoided. If the field 

quantities for an antenna at h = 0 are required, the corresponding field equations of the 

next paragraph (and the appendix) can be used. 

2.3 Hertzian Vector Potential 

Descending from the origins of this theory, where the major focus was on terrestrial 

communications, a vertical dipole orientation and a horizontal one were introduced with-

in the original terminology. This terminology reaches down to the present days, and may 

be sufficient over a wide range of applications. But, if we compare Norton’s and Bannis-

ter’s formulations, even the terminology of the horizontal dipole differs—as the dipole of 

Bannister is rotated by 90° in comparison with Norton’s definition. In addition, if we as-

sume body-centric scenarios, the use of the terminology “vertical” may either refer to the 

ground or the body surface, and this ambiguity may yield misleading interpretations. 

 

Fig. 2-3 Definition of three general dipole orientations in terms of body-centric propagations. in relation 
to the body surface and an observation path: (a) normal, (b) tangential longitudinal, (c) tangential transversal. 

In the following, we define an observation path which proceeds at constant height paral-

lel above the dissipative dielectric half-space. In general, we distinguish between a nor-

mal and tangential antenna orientation in relation to the ground (later body) surface. In 

addition, the tangential orientation is distinguished in relation to the applied observation 

path, a longitudinal (long) and transversal (trans) alignment; see Fig. 2-3. 

(a) (b) (c)

z

y

xϕ

Dissipative Ground

p2Path p3p1
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2.3.1 Normally Orientated Small Electric Dipole 

As seen in [Nor37], Kenneth Norton has solved (2.9) for Hertzian dipoles at a certain ef-

fective antenna height h above the dissipative ground. In comparison with the Sommer-

feld geometry, shown in Fig. 2-2, the geometry of Norton, as seen in Fig. 2-4, includes 

not only the direct path R0, but also consists of the reflected propagation path R1. This 

approach enables an intuitive discussion of the far field behavior. 

 

Fig. 2-4 Norton geometry [Nor41]: Hertzian dipole in free space above a dissipative medium at effective 
antenna height h. 

The solution of (2.9) is based on the general method of Sommerfeld to satisfy (2.11)–

(2.14), where the primary excitation considers the effect of the direct path R0 as well as 

the reflected propagation path R1. In this case, the Hertzian vector potential of a normally 

orientated dipole source consists only of a z-component and can be given by 

0 0 0 1

0

1

S

( )
0 S S S

00 0 1 0
0 1

1

2
( ) d

4

R R
u z h

z

p e e
e J

j R R
u u

 



   
 


 
 



 
 
     
 
  

p
, (2.21) 

where R0, R1, u0, u1, γ0, and γ1 are defined by 
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2 2 2
0

2 2 2
1

2 2 2
0 S 0

2 2 2
1 S 1

2 2
0 0 0

2
1

2
0 1 0 1

( )

,

.

,

( ) ,

,

,

R z h

R z h

u

u





 

 

   

    

  

  



 

 

 



 (2.22) 

Other than the original formulations of Norton, which employ a normalization factor to 

determine the radiated field in terms of the connected source, this formulation is linked 

to the dipole momentum p = Iℓ as defined in [Ban84b]. 

2.3.2 Tangentially Orientated Small Electric Dipole 

The corresponding tangentially orientated vector potential solution of (2.9) possesses a 

component in x-direction as well as a component in z-direction [Nor37]. Following the 

steps along to (2.15)–(2.20) as seen in [Som26], the x-component of the vector potential 

is  

0 0 0 1

0

2
S

( )
0 S S S

0 0 1 1 00

2
( ) d

4

R R
u z h

x

p e e
e J

j R R u u

 



   
 

 
 



 
    

  
p

, (2.23) 

where R0, R1, u0, u1, γ0, and γ1 are defined by (2.22). The z-component of the vector po-

tential is 

0

2
S

( ) 21 0
0 S S S2 2

0 1 0 0 10

2 ( )
cos '( ) d

4
u z h

z

u up
e J

j u u

    
   


 




 

p

, (2.24) 

using again the definitions of R0, R1, u0, u1, γ0, and γ1 of (2.22). In addition, J0’ denotes 

the recurrence function of the first kind Bessel function J0. 

2.4 Calculation of the Electromagnetic Field 

Considering the lower ISM frequency bands, the length of the propagation path along the 

human body is in the range of the electromagnetic free space wave length. Considering 

the results of the previous formulations, which is restrict to distances of several free 
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space wave lengths, the general use of these formulations is limited to smaller ranges. A 

suitable solution of this problem is given by Peter R. Bannister. The formulation derived 

is based on the extension of Norton’s formulation for the quasi-static-range, i.e. below a 

free space wave length but larger than a penetration depth of the ground. The underlying 

theory assumes a finitely conducting ground of the depth d/2 where an additional layer of 

a perfect ground is inserted. Resulting from the added image plane, the solution includes 

an additional reflection path R2 and reveals additional equation terms, which are capable 

of representing the underlying electromagnetic effects. 

 

Fig. 2-5 Bannister geometry [Ban84b]: Hertzian dipole above a dissipative medium at effective antenna 
height h. 

Considering the solution of the tangentially orientated small electric dipole p2 which 

points in propagation direction (x-direction), the total Hertzian vector potential can be 
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expressed using (2.23) and (2.24) by 

2 2 2
x x z z

  
p p p

Π e e . (2.25) 

While the divergence of the vector potential (2.25) is given by 

2 2 2

1
( cos )x z

z
 

 
 

    
 p p p

Π , (2.26) 

we can express the recurrence function of (2.24) by its ρ-derivative and apply the z-

derivative of the second term of (2.26). Using (2.22), we can show that  

    2 2
1 0 1 0 1 0u u u u      , (2.27) 

and, therefore, reformulate (2.26) into 

00 0 0 1

2
S

( )2
0

0 S S S2 2
0 0 1 1 0 0 10

cos
2 ( ) d

4

u z hR R ep e e
J

j R R u u

 




   

    

   



 
    

   
p

Π . (2.28) 

Solving the modified Sommerfeld integral of (2.28) now, the related electric and magnet-

ic field quantities can be found directly with the help of (2.7) and (2.8). In addition, if we 

consider a normally orientated small dipole and calculate the corresponding divergence 

by (2.26), the solution shows a remarkable similarity with (2.28). This enables the use of 

similar steps to solve the corresponding modified Sommerfeld integral to calculate the 

connected field quantities. 

2.4.1 Approach for Quasi-Static to Far Field Ranges adapted from P. Bannister 

The calculation of the electromagnetic field from the equations given above is, in gen-

eral, feasible. However, the solution of the Sommerfeld integral and its ρ-derivation es-

pecially may not be evident by itself. Therefore, the following paragraph aims for a re-

formulation of (2.28) in terms of quasi-static ranges to far field ranges and follows the 

example of [Ban84b]. In contrast to the underlying derivations of P. Bannister, the dis-

cussed topic is rearranged into two sections. The first section lists common definitions 

and approximations with respect to the corresponding references and the second part 

deals with the reformulation of (2.28). 
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First, we consider the material difference Δ between the propagation constant of the die-

lectric ground γ1 and free space γ0, which is also related to the reflection index n [Bal89]. 

In general, we can define the material difference Δ by 

2
20

2 2
1

1

n




    (2.29) 

and we can show in addition that  

2
1 0    . (2.30) 

Furthermore, assuming a high difference between the media, i.e. |n2| >> 1, we can set the 

definition of u1 of (2.22) equal to γ1. Under this assumption, (2.30) leads to 

2
1 0u    . (2.31) 

Taking into account the media-related term of the integral of (2.28), we can show that 

2
1

2 2
0 1 0 0 0 1

1 1

( )

u

u u u u u u


 

 
. (2.32) 

Using the approximation of (2.31), this leads to 

0
2 2

0 1 0 0 0 1

1 1

( )u u u u u u


 

 
. (2.33) 

As demonstrated in [Ban78], [Ban80], [Ban81], [Ban82] the condition |n2| >> 1 leads to 

the approximation  

01 0

1 0

u du u
e

u u





, (2.34) 

and so also to 

01 0 0

1 0 1 0

2
1 1 u du u u

e
u u u u


   

 
, (2.35) 

where d can also be approximated by the dielectric properties of the ground with 
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1

2
d


 . (2.36) 

Along with [Som26], considering Sommerfeld’s integral  
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and as shown in [Ban80], [Ban81], [Ban82], in addition to (2.35), the Hertzian vector po-

tential in x-direction of (2.23) can be reduced to 
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where R2 is defined by  22 2
2R d z h    . Taking (2.38) into account, the divergence of 

the Hertzian vector potential (2.28) can be reformulated as 
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where IDIV is given by 
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If we now apply (2.32) and (2.37) to (2.40), IDIV can be developed into 
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Using (2.31), (2.41) can be approximated by 
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As shown in [Ban84b], since |γ0Δ| << 1, the integral P has only a significant contribution 

when |γ0R1| >> 1. Along with [Wai61] and [Wai96], when |γ0R1| >> 1 and |γ0Δ| << 1 are 

satisfied, the integral P of (2.41) can be expressed by 

 
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1

1
1 ( ) ,

2

R
e

P F w
R

 
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�
 (2.43) 

where the Sommerfeld attenuation function is defined by 

 ( ) 1 erfc ,wF w j we j w    
   (2.44) 

and the numerical distance w by 
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1sin
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R
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
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Owing to our assumption |n2| >> 1, the Fresnel reflection coefficient Γ|| for vertical polar-

izations can be reduced to 

1

1

sin
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
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where the angle ψ1 is defined by 

1tan
z h





 . (2.47) 

Using (2.43) to (2.47), the integral (2.42) of (2.39) can be expressed by 
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Now, using the expression of (2.47), we can reformulate (2.39) as 
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The factor A, as defined in (2.47), has been developed from (2.46), where the equality of 
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||
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2 sin

 



 (2.50) 

is used. Under consideration of (2.50), we can eliminate the Fresnel reflection coefficient 

Γ|| and express A as function of the angle ψ1 by 
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. (2.51) 

While the factor A is of major importance if the magnetic field values have to be calcu-

lated, Bannister defines a factor that comes in handy if the electric field is of interest. 

Following [Ban84b], the corresponding factor B is defined by 
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Bannister has illustrated that the factor A of (2.51) is different from unity only if two 

conditions are fulfilled. First of all, the angle ψ1 has to be very small, and in the second 

place, the Sommerfeld attenuation function F(w) has to be different from unity. There-

fore, it is evident that A, resp. B, is a far field Norton surface-wave term only. In this 

case, all derivatives of A, resp. B, can be neglected which are not far field terms. Follow-

ing this example, i.e. assuming far field conditions for |n2| >> 1 and |Δ sinψ1| << 1, the 

derivative of the last term of (2.49) can be approximated as 
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 (2.53) 

Combining the approximation of (2.53) with (2.49) we achieve 
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Considering (2.32), (2.54) can be used to reformulate (2.24) to 
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 (2.55) 

where I21 has a major contribution for small numerical distances w and I22 has an impact 

for large numerical distances. We can also write 
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where I21 is defined by 
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and I22 by 
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The ρ-derivate of (2.57) is then given by 
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If now (2.35) is used, (2.59) can be reformulated to 

 0 0

S

2
( ) S21

1 S S2
00

1 ( ) du d u z hI
e e J

u


  




  




  

  , (2.60) 

where [Ban81] and [Ban82] can be used to solve the integral of (2.60). The result is then 

given by 
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Here, the corresponding angles ψ1 and ψ2 are defined by 
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Along with [Ban84b], we can now reformulate (2.61) into 
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. (2.63) 

As seen from the definitions of (2.62), the benefit of this notation is the clear separation 

of the (2.61) into the path R2 and R1, representing the quasi-static range term and a far 

field range term. 

To solve the ρ-derivative of (2.58), we can first use the solution of (2.41) and the approx-

imation of (2.36) to express (2.58) by 
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where d denotes the depth of the image plane as defined in Fig. 2-5. Considering (2.64), 

the related ρ-derivative is 
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Considering (2.51), (2.55), (2.61), and (2.65), the z-component of the Hertzian vector po-

tential can be reformulated as 
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Considering our solutions (2.38), (2.54) and (2.65), we can now calculate the electro-

magnetic field quantities, applying (2.7) and (2.8). Using the same procedure and ap-

proximations, a solution of all electric dipole orientations is feasible. As shown by 

[Ban84b], even magnetic dipoles can be solved. However, owing to the fact that the solu-

tion of electric dipoles is sufficient for the desired scope of this thesis, the related equa-

tions are listed only in the appendix, while the solutions of the magnetic dipoles are unat-

tended at this point.  

2.4.2 Electromagnetic Field Quantities and Minor Reformulations  

The general solution of the Hertzian vector potential depends—in general—on the orien-

tation of the Hertzian dipole in terms of the ground and the suggested coordinate system. 

At this point, we follow the proposed theory of P. Bannister, the solution of which is 

based on the normally orientated dipole p1 and the tangential dipole p2; see Fig 2-3. As 

demonstrated in the previous paragraph, considering (2.7) and (2.8), the general solution 

procedures of (2.21), (2.23), and (2.24) lead to field quantities of [Ban84a] and 
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[Ban84b]. In contrast with the references, we perform two minor reformulations of the 

listed field equations of Bannister. Focusing on the outer factor, i.e. suppressing the fac-

tor within the square brackets, we can express (2.66) by 
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As the following example illustrates, (2.67) can be denoted as a function of the propaga-

tion constant γ0 and the intrinsic impedance of free space η0 by 
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(2.68) 

This reformulation is considered for all further solutions. In addition, the field equations 

are restructured in such a way that the attenuation of the field can be led back to a spatial 

and a ground-wave attenuation term. This enables a direct comparison with other propa-

gation scenarios, e.g. the free space or in-body case. To achieve such an adaption, the 

definitions of (2.62) are used with 
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 (2.69) 

Defining the unit-less electric and magnetic field attenuation terms NE, resp. NH, we can 

describe the electric field components, in general, by 
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where { , , }z   , and magnetic field components by 
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In fact, both attenuation terms depend on the corresponding dipole orientation as well as 

on all connected quantities, like frequency, dielectric properties of the ground and effec-

tive dipole height. Corresponding to the three basic dipole orientations, as defined in 

Fig. 2-3, Table 2-1 shows the related field quantities defined by (2.70) and (2.71), where 

the attenuation factors are listed in Appendix C. 

TABLE 2-1   
ELECTRIC AND MAGNETIC FIELD COMPONENTS 

OF THE THREE BASIC DIPOLE ORIENTATIONS 
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2.5 Separation of Wave Components 

The following paragraph discusses the benefits of Norton’s contribution and corresponds 

to [Gri14b]. 

One key point of K. Norton’s approach [Nor37] is that the radiated electromagnetic field 

of a Hertzian dipole on or above a dissipative planar ground can be decomposed into a 

space wave component and a so-called Norton surface wave component. While the space 

wave component consists of the direct and ground-reflected wave components, the Nor-

ton surface wave can lead back to effects of the media boundary. In the past, the nature 

of this wave component was discussed controversially [Wai89]. Therefore, the terminol-

ogy of these wave components was set by IEEE standard 211-1997 [Iee98], using its ef-

fect, and not directly by the cause. In this standard, the Norton surface wave component 

is defined as the difference that occurs between the total radiated electromagnetic field 

and the geometric optical field. 

The total field can, therefore, be written as a superposition of the electric field compo-

nents of the direct wave EDW, the ground reflected component ERW, and the Norton sur-

face wave component ESW: 

�total DW RW SW

Norton Surface WaveSpace Wave

.E E E E  
�����

 
(2.72) 

The sum of the first and second terms of (2.72) is often called space wave. For an anten-

na height of h = 0, the direct wave and the ground reflected wave cancel each other out 

and only a Norton surface wave is excited. As seen in the previous section, the corre-

sponding components can be directly identified by the connected path variables of 

(2.69), where the indices 0, 1, and 2 of the path and angle factors indicate the direct, 

ground-reflected and quasi-static terms of our solution in Appendix C. The remaining 

term, in general a function of the Sommerfeld attenuation term F(w), is then the Norton 

surface wave component. The general geometry in terms of this terminology is shown in 

Fig. 2-6. 
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Fig. 2-6 Modified Norton Geometry [Nor41]: Ground wave separation into space and surface wave com-
ponents for propagation paths parallel to the ground surface. 

Based on (2.21)–(2.24), Norton has derived in [Nor41] an expression for the magnitude 

of the electric field E1/3 generated by a dipole antenna, located at the effective antenna 

height h above the ground. As indicated by the indices, the related solution deals with a 

normal dipole orientation as well as with a tangential one: to be exactly p1, resp. p3. Con-

sidering the geometry of Fig. 2-6, i.e. the propagation path proceeds parallel along the 

surface, and his solution leads to 
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 (2.73) 

 

As defined by Norton, in (2.73), the value U1/3 is a normalization factor which represents 

primarily the dipole excitation, and can be, in principle, defined by our right-sided factor 

in (2.70) as well. The Fresnel plane-wave reflection coefficient of the boundary between 

the free space and the dissipative ground is defined by Γ1/3 and related as well to the di-

pole orientations, while in (2.73), the Sommerfeld attenuation function is denoted by 
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 ( ) 1 erfc ,wF w j we j w    
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where the numerical distance w is 
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 (2.75) 

Both definitions are equivalent to our definitions in (2.44) and (2.45). Considering 

(2.75), the numerical distance w can be understood as an effective distance, taking into 

account the antenna height, the frequency and the constitutive parameters on both sides 

of the boundary. 

Notice that (2.73), (2.74) and (2.75) are not exactly conformal to the formulation dis-

cussed by Norton. In fact, these expressions correspond to the definitions of Wait and 

Bannister [Ban84b], [Ban79] which enable a consistent terminology in the scope of the 

whole theory presented above. In principle, the definition of (2.74) yields Norton’s ex-

pression by a factor of minus one in front of the square root for a complex conjugate nu-

merical distance. A closer look at how Norton derived (2.73) in [Nor41] reveals simplifi-

cations where he neglects electric field components of second and third order, which 

vanish for far distances. Therefore, his assumptions are partially equivalent to the ap-

proximations of Bannister, i.e. neglecting only the quasi-static derivations, and so are 

valid only for the far field region. From Norton’s perspective, this is fair enough for ter-

restrial propagation over large distances. In the scope of on-body propagation, such far 

field limitations, e.g. referring to distances which are greater than a wavelength, would 

be quite restrictive, but can help in the identification of the major propagation effects. 

For a stratified medium, the solution of (2.21)–(2.24) has to consider additional propaga-

tion paths related to the reflections at the multilayer boundaries. A detailed approach is 

presented in [Wai98] and discussed for a given on-body scenario in [Lea09]. Our further 

analysis assumes a homogeneous ground. 
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Chapter 3  

The Electromagnetic Field on a Dissipative Dielec-

tric Cylinder 

With the planar far field model of Chapter 2 in mind, the effect of the curvatures of small 

degree along the human body surface may result in a wider, irregularly distributed spread 

around the modeled average mean value [Nor41]. Therefore, the model is still applicable 

if the bending radius is significantly larger than a free space wave length. Otherwise, a 

suitable solution to model diffraction effects of bended non-line-of-sight propagation 

links may be given by the general diffraction theory (GDT) [Bal05]. But in case of body-

centric propagations, the small distance between radiation source, i.e. the antenna struc-

ture, and the body, prohibits the adequate transfer of this theory and may be limiting. 

In terms of non-line-of-sight propagations along bended body curvatures, an intuitive 

model is given by a dissipative dielectric cylinder to represent the human body curvature 

[For10], [Alv11]. To find a straightforward solution to this geometry, the following ap-

proach is restricted to paths which progress at a fixed height—in general, the effective 

antenna height h—above the cylinder surface. In addition, the assumed path is chosen in 

such a way that the coordinates are transverse to the cylinder axis. Owing to the origin of 

the underlying approach tangentially polarized sources can be modeled only. In this 

manner, both sources are distinguished by their alignment in relation to the propagation 

path, a parallel and a perpendicular orientation. Contrary to the solution of line-of-sight 

propagation scenarios, which are based on Hertzian potential equations, the following 

approach leads back to a scattering problem. As illustrated by [Bal89], the total electro-
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magnetic field, denoted by Etotal and Htotal, can be decomposed into an excitation-related 

incident field and a geometry-related scattered field. Therefore, the expression of the 

electric field yields 

total inc sct E E E , (3.1) 

where the incident and scattered components are represented by Einc and Esct. The mag-

netic field can be expressed by equivalent sub-indices by  

total inc sct H H H . (3.2) 

According to the symmetric cylinder geometry, the incident component, as well as the 

scattered component, can be modeled by a superposition of Bessel functions of different 

kind and order. Owing to the nature of the underlying geometry, the initial solution is de-

rived for line sources, as stated by [Che90]. General notation remarks and definitions are 

given in the following chapter. The extension to point sources is made analogous to 

[For10] by the use of the inverse Fourier transformation in kz-domain, while the explicit 

solution of both tangentials to the cylinder surface aligned sources is derived at the end 

of the chapter. 

3.1 General Definitions and Denotations 

The underlying model assumes a dissipative dielectric cylinder of infinite length and ra-

dius a in free space. The cylinder axis is aligned in z-direction at the origin of the coordi-

nate system. Therefore, the transverse solution path can be found within the xy-plane. 

The general geometry is shown in Fig. 3-1, where the solution is restricted to a parallel 

path proceeding with constant distance h around the cylinder surface. 
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Fig. 3-1 General geometry of a dielectric cylinder of infinite length aligned in z-direction in free space to 
model the dominant propagation effects of non-line-of-sight paths around the human body.  

3.1.1 Electric Field of a Line Source in Free Space 

At first, the incident field can be led back to an infinite electric line source in free space, 

which proceeds in z-direction, and is shifted by the special vector r’(ρ’,ϕ’): see Fig. 3-2. 

 

 

Fig. 3-2 Electric line source aligned in z-direction. The position of the source is defined within the xy-
plane at z = 0 by the vector r’(ρ’,ϕ’).  

Due to the given symmetry, which is connected to the electric current distribution in z-

direction, the electric field consists of only a z-component. Corresponding to [Bal89], the 

electric field can be given, using the addition theorem of Hankel functions with 
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where γ0 denotes the propagation constant of free space and Iz the magnitude of the elec-

tric current of the line source. As intended, we consider only on-body propagation paths, 

meaning the solution space can be found at ρ = ρ’ in general. Therefore, the following 

solution only considers the first term of (3.3), and thus, is restricted to ρ < ρ’. The re-

stricted electric field is then given by 

line ( ')
0( )e jm

z m m

m

E C J   






   (3.4) 

while the factor Cm is related only to the position and excitation of the source. In case of 

a current Iz in z-direction, it is defined by 

2
(2)0

0

0

( ')
4

z

m m

I
C H


 


 . (3.5) 

If the outer space is of interest, i.e. ρ > ρ’, and the second term of (3.3) is focused, an 

equivalent expression can be found following the same solution concept. 

3.1.2 Connection between Line and Point Sources 

The form of (3.4) implies that a superposition of infinite harmonic Bessel function ele-

ments is sufficient to describe the related electric field of an infinite expanded line 

source. Contrariwise, it seems evident to follow the effect of a single point source from 

the solution of a corresponding line source. As demonstrated in detail in [For10], this can 

be realized by applying an inverse Fourier transformation in kz-domain with  

point line1
d

2
z

z

k

k






 E E . (3.6) 

Having lossless media in mind, in the following context, the propagation constant γ is 

expressed by the equivalent definition of the wave-number k, which are linked to each 

other by γ = jk. In addition, without the loss of generality, we assume different wave 
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numbers in ρ- and z-directions, kρ resp. kz, which are generally related by  

2 2
zk k k   . (3.7) 

The corresponding reformulation of (3.4) yields 

line ( ')( )e e zjk zjm

z m m

m

E C J k  
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
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   (3.8) 

with  

2

(2)

0

( ')
4

z

m m

k I
C H k




 . (3.9) 

Owing to the fact that a singularity occurs at kz = k, the integration of (3.6) is problematic 

if an analytical approach is intended. Alternatively, a solution can be achieved by a nu-

merical solution. Following [For10], a parabolic contour integral of the form 

    2
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 (3.10) 

is used in the complex kz plain to circumvent the singularity of (3.6) with distance C—

see Fig. 3-3. 

 

Fig. 3-3 Contour integral corresponding to [For10] in the complex kz-plain to avoid the singularity at 
kz = k0.  

In the following context, the applied theory is, in general, related to line sources. How-

ever, having the connection to point sources via (3.6) in mind, and because of the signifi-
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cance of point sources in the scope of the evaluated antenna properties, we shall primari-

ly address these sources in the following context. 

3.2 Transversal Components of the Electromagnetic Field 

Till now, only the electric field component has been considered. The electromagnetic 

field components that are transversal to the z-direction can be found within the xy-plane. 

Generally, the transverse electric field Es is then given by 

s E E    E e e , (3.11) 

and the transverse magnetic field Hs by 

s H H    H e e . (3.12) 

Along with [Che90], the transverse electromagnetic field values are linked to the z-

components by 

 s s s2

1
z z z zjk E j H

k

    E e , (3.13) 

 s s s2

1
z z z zjk H j E

k

    H e . (3.14) 

By letting s z
z


  


e the operator s  represents the transverse Nabla-operator with 

s

1
   

 
  

 
e e . (3.15) 

As seen later, we can generally assume a Bessel or Hankel function as the driving ele-

ment behind the field components of our geometry. Keeping this fact in mind, we can 

solve (3.13) and (3.14) using the corresponding derivative. In this case, the transverse 

electric field components are 

2

1 z
z z

E m
E jk H

k





 

 
    

, (3.16)  
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. (3.17) 

 

Analogously, we can reformulate the transverse magnetic field components  

2

1 z
z z

H m
H jk E

k





 

 
    

, (3.18) 
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. (3.19) 

 

3.3 Tangential Transversal Orientated Source 

To evaluate the electromagnetic field distribution of a point source polarized in the z-

direction, we consider the infinite electric line source of the previous paragraph with cur-

rent flow Iz near an infinite, z-directed dielectric cylinder. In terms of the underlying ge-

ometry, the source is polarized parallel to the cylinder surface and perpendicular to the 

on-body path and the position is defined by the spatial vector r’(ρ’,ϕ’). The general setup 

is depicted in Fig.3-4.  

 

Fig. 3-4 An infinite electric line source aligned in z-direction is positioned parallel to a dissipative dielec-
tric cylinder of infinite length.  

The cylinder is assumed to consist of a homogenous dissipative dielectric with propaga-

tion constant γt, and the outer space is considered to have perfect free space properties. 
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3.3.1 Incident Field Components 

As shown by [For10], the incident electric field of this geometry can be led back to (3.4), 

which describes the electric field of the line source in free space, i.e. the presence of the 

dielectric cylinder is neglected. Owing to the underlying geometry, the electric field con-

sists only of a z-component. In terms of on-body propagations, we have limited the solu-

tion space to radii greater than the cylinder radius a and smaller than the position dis-

tance of the source ρ’. The electric field can be expressed by 

inc ( ')( )e e 'z

z

jk zjm

z m m

m

E C J k a 
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

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I

, (3.20) 

where Cm is defined by (3.5). Because of the transverse nature of the field components, 

the magnetic field can be acquired by using (3.18) and (3.19). Since Hz is zero, the equa-

tions can be reduced to 
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Therefore, the related magnetic field components of this geometry are 
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 . (3.24) 

3.3.2 Scattered Field Components 

As shown in [For10], the scattered electromagnetic field components on the cylinder, i.e. 

ρ < a, can be obtained from the Helmholtz equations using the separation of variables. 

Assuming our z-directed electric line source, the electric field consists only of a z-

component  
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The coefficient A’m depends on the excitation and position of the source, as well as on 

the properties and size of the cylinder. And an explicit solution is given in Subchap-

ter 3.3.4. Using (3.21) and (3.22), the transverse components of the scattered magnetic 

field can be given with 
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3.3.3 Total Field Components 

As internally stated by (3.1) and (3.2), the total electromagnetic field results from the su-

perposition of the incident and scattered fields. If we combine the results of (3.20) and 

(3.25), the total electric field of the z-directed source is  

total
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In the same way, the corresponding magnetic field values result from the superposition 

of (3.23)–(3.24), and (3.26)–(3.27)  
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As seen, the total field shows a TE-characteristic within our suggested solution space in 

the xy-plane. This can be stated for the z-orientated line source as well as for the related 

point source. 
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3.3.4 Coefficient Calculation by Applied Boundary Conditions 

To calculate the electromagnetic field values outside the cylinder, the coefficient A’ is 

required to determine the scattered field contribution. Along with [For10], the coeffi-

cients are calculated by the boundary conditions which are related to the continuous field 

values of the tangential components. In addition, the z-components of the total field with-

in the cylinder can be assumed as a superposition of Bessel function elements. In case of 

the line source Iz, this results in: 
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, (3.30) 

where ktρ is the wave number in ρ-direction within the dielectric cylinder. The factor Am 

depends on the excitation and the geometry, and can be seen as a weighting factor of the 

field values within the cylinder. According to (3.22), the tangential magnetic field com-

ponent in ϕ-direction can be calculated, and is of the form: 
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If we now suppress the sigma sign, as well as the factors ( ')e e zjk zjm    , the boundary condi-

tions can be expressed in matrix notation 
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where the factors κtε and κε are defined by 
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The solution of (3.32) is then given by 
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3.4 Tangential Longitudinal Orientated Source 

Along with the evaluation in [For10], an equal solution of a source orientated in 

ϕ-direction can be deduced by a simple substitution of Iz by Iϕ. But—in contradiction to 

the proposed approach—we restrict our intended solution to the xy-plane. This enables 

the description of on-body paths by a far less extensive solution of the related boundary 

conditions to determine the connected coefficients. The modified approach uses, in prin-

ciple, a similar procedure as deduced in terms of the z-orientated source. The initial ge-

ometry of a ϕ–polarized line source at r’(ρ’,ϕ’) is shown in Fig. 3-4, while Fig. 3-5 de-

picts the corresponding tangential longitudinal point source. 

 

Fig. 3-5 A line source orientated in ϕ-direction is positioned parallel within the xy-plane in such a way 
that a dissipative dielectric cylinder of infinite length is encircled with contestant spacing ρ’-a. 

At first, the incident and scattered field components are derived, where the total field re-

sults from a superposition of both components. The explicit coefficients are calculated at 

the end of the paragraph. 
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3.4.1 Incident Field Components 

The incident magnetic field of a ϕ-orientated source can directly be given by neglecting 

the presence of the dielectric cylinder. This enables, in comparison with (3.20), a similar 

expression, considering now the z-component of the magnetic incident field. If we re-

strict our solution space to the xy-plane at z = 0, the incident magnetic field only consists 

of z-component. In this case, it can be described by the use of an infinite number of Bes-

sel functions, with 
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Here, the factor Dm is defined in relation to the excitation of the source by  
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Because of the transverse nature of the field components, the electric field can be ac-

quired using (3.16) and (3.17). Since Ez is zero, the equations can be reduced to 
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Therefore, the outer transverse components of the electric field that arises from (3.37), is 

given by 
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3.4.2 Scattered Field Components 

Analogous to (3.25), the scattered z-component of the magnetic field, which results from 

the presence of the ϕ-directed line source near the dielectric cylinder, can be modeled by 

Hankel functions. Assuming the geometry-related scaling factor B’m the corresponding 

formulation yields 
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Following (3.39) and (3.40), the connected transverse electric field components can be 

calculated from (3.43), with 
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The factor B’m depends on the size of the dielectric cylinder and the dielectric properties. 

A detailed solution is shown in the following paragraph. 

3.4.3 Total Field Components 

Corresponding to (3.1) and (3.2), the total electromagnetic field of the ϕ-orientated elec-

tric line source results from the superposition of incident and scattered field components. 

In terms of the magnetic field, with (3.37) and (3.43) in mind, the total field is 

total
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z z
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 
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H H

. (3.46) 

The total electric field results from the superposition of (3.42), (3.42), (3.44), and (3.45) 

and is, therefore, 
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As seen from (3.46) and (3.47), the electromagnetic field within the xy-plane shows, in 

terms of a ϕ–polarized source, a TM characteristic. 

3.4.4 Coefficient Calculation by Applied Boundary Conditions 

To determine the scattered field outside the cylinder, the coefficients B’m are required. 

Along with the z-orientated source, the coefficient is calculated by the boundary condi-

tions, which are related to the continuous field values of the tangential components. 

Again, the z-components of the total magnetic field within the cylinder can be assumed 

as a superposition of Bessel function elements. In case of the line source Iϕ, this results 

in: 

total ( ')
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, (3.48) 

where ktρ is the wave number in ρ-direction within the dielectric cylinder. The factor Bm 

depends on the excitation and the geometry. According to (3.40), the tangential electric 

field component in ϕ-direction can be calculated from (3.48), and is of the form 
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. (3.49) 

Analogous to (3.32), we suppress the sigma sign, as well as the factors ( ')e e zjk zjm     to 

formulate the boundary conditions in matrix notation 

(2)
t

(2)
tμ t μ μ

( ) ( ) ( )

'' ( ) ' ( ) ' ( )
mm m m m

mm m m m

BJ k a H k a D J k a

BJ k a H k a D J k a

  

    

     
            

, (3.50) 

where the factors κtμ and κμ are defined by 

t
tμ
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The solution of (3.50) is then given by 
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Chapter 4  

Basics of Model Body-Centric Communications 

and Related Applications 

The basis of model body-centric applications comprises the general scope of this chapter. 

While the previous chapters define elementary theoretical models, the purpose of this 

chapter is to summarize general modeling aspects. In addition, the basics of a numerical 

method—the so-called FDTD Method—is introduced, which is used in the following 

chapters to model complex body-centric propagation scenarios by a combined theoreti-

cal-numerical approach as well as to calculate the current distribution on several antenna 

geometries. One major benefit of this approach is the reduction of the required numerical 

computation effort, which is typically connected to the solution of body-centric propaga-

tion scenarios. On the other hand, the conventional approach, i.e. the numerical solution 

of corresponding full human body models, provides a solid method of verification of the 

on-body antenna and propagation theory, discussed hereinafter. 

At first, the chapter specifies important electromagnetic field quantities which are valua-

ble measures to characterize underlying propagation effects of body-centric applications. 

In terms of the previous chapters, in particular, this enables the transfer of the summa-

rized theory to specific applications at commonly used frequencies. In addition, derived 

from the well-known Debye equation, the Gabriel parameters are referred, which provide 

the basis to model the dissipative nature of dielectric human body tissues by the Cole-

Cole equation. Based on this equation, the values of upper dermis tissue types, e.g. hu-

man skin, muscle and fat, are listed, and two numerical anatomically inspired human 

body phantoms are referred to. At last, general remarks toward the underlying coordinate 
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systems are given, as well as numerical modeling aspects and related numerical effects. 

 

Fig. 4-1 General steps to model body-centric communication setups: Example shows the radiated electric 
field component on the IT’IS voxel model ‘Duke’ at 2.45 GHz for different orientations of a half-wave di-
pole. 
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4.1 Propagation Constant and Related Quantities 

As seen in Chapter 2, the complex propagation constant is an important measure to de-

fine the propagation mechanisms along a dissipative dielectric half-space. Related to 

[Bal89], one can define the complex propagation constant γ of dissipative dielectric me-

dia by its real part, the attenuation constant α, and its imaginary part, the phase constant 

β, by 

j    . (4.1) 

On the other hand, as seen by (2.4), the propagation constant can be defined by the media 

parameters, i.e. equivalent conductivity σ, permittivity ε and permeability μ, by 

22 j   . (4.2) 

Because of the equivalent nature of these definitions, the real and imaginary parts can be 

led back to the media parameters as well. In this case, the attenuation constant α is de-

fined by 

1
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 (4.3) 

and the phase constant by 
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. (4.4) 

While the definition of the wave number is typically used to define wave propagation 

mechanisms, the dissipative nature of human tissues and the related electromagnetic ef-

fects may benefit from an equivalent notation in terms of the complex propagation con-

stant, which is related to the wave number k by 

jk  . (4.5) 
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4.1.1 Connected Quantities 

As demonstrated in [Bal89], many physical propagation phenomena that may occur by 

the interaction of electromagnetic waves with a dielectric medium can be traced back to 

the corresponding electromagnetic properties. Therefore, mechanical and electromagnet-

ic properties are linked to each other with the definition of the complex parameters. Ow-

ing to the descent of the connected values from TEM wave propagations, these quantities 

are limited in terms of the complex nature of body-centric propagations. But—as demon-

strated later—even single transversal modes, such as the TM or TE case, can be suffi-

ciently approximated with these quantities and so provide feasible measures. 

In this case, the wave length λ is connected to the phase constant by 

2



  (4.6) 

and the skin depth δ to the attenuation constant by 

1



 . (4.7) 

The phase velocity c of an electromagnetic wave within a certain medium can be calcu-

lated by 

c



 , (4.8) 

while the intrinsic impedance is defined by its material parameters by 

i

j

j




 



, (4.9) 

Considering (4.9), the intrinsic impedance of free space is η0 = 376.730 Ω. As stated 

above, the quantities (4.1)–(4.9) are listed at this point only. Their detailed relationship 

with specific physical properties is extensively discussed in [Bal89]. 
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4.2 Modeling Aspects of Biological Tissues 

The dielectric properties of biological tissues have been well investigated during the pro-

gress made in the last century. Leading results were introduced by Schwan and Foster in 

1957, in which originate the frequency-dependent dielectric properties of biological tis-

sues to physical causes at the cellular level. A valuable reference to their work is given in 

[Gab94a–c], where the key aspects of their results are listed, summarized and used for 

further investigations. Related to [Bal89], the general definition of the complex permit-

tivity is given by 

       Re Imj       . (4.10) 

While ε(ω) = ε0∙εr(ω), the relative permittivity εr can be defined with help of (4.10) by 

         r r

0

Re Imr j
 

     


   , (4.11) 

with ε0 = 8.854∙10-12 AsV-1m-1. In terms of general mathematical aspects, the sign of the 

imaginary part of the permittivity, compare (4.10) and (4.11), is in principle free to be 

chosen. But in general convention, a negative sign is used to express the losses of dissi-

pative dielectrics, and therefore, in terms of a lossless dielectric, the imaginary part van-

ishes. Related to [Bal89], the complex permeability μ is defined by 

       Re Imj       . (4.12) 

With magnetic fields in mind, biological tissues are nearly transparent and lossless and in 

general agreement [Bal89], it is assumed that the real part of the relative permeability is 

one and the imaginary part vanishes. Using (4.12), the permeability of biological systems 

can, therefore, be set to 

  7 -1 -1
0 4 ·10 As mV      . (4.13) 

Along with [Bal89], the equivalent conductivity is defined by 

 Ims a s         , (4.14) 
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where σ denotes the total or equivalent conductivity. As seen from (4.14), it can be bro-

ken down into a static component σs and a frequency-dependent component σa, the so-

called alternating component.  

 

Fig. 4-2 Dielectric properties of human skin, fat, and muscle tissues as functions of the frequency: 
(a) Real part of the relative permittivity; (b) Equivalent conductivity. 

The frequency dependency can be led back to the rotation of dipole momentums, which 

aspires an alignment corresponding to the alternating field. This effect is also called die-

lectric hysteresis. The static conductivity of body tissues is in comparison to conductor’s 

low and can primarily lead back to the minor flow of ions. But if the tissues are exposed 

to an alternating electromagnetic field, the alternating conductivity rises drastically with 
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frequency. In this case, the tissue tends to absorb the energy of an electromagnetic wave, 

converts it into thermal heat, and, as a result, the penetration depth decreases with in-

creased frequency. As examples, the permittivity and conductivity of muscle, fat and 

skin tissue are shown in Fig. 4-2. 

4.2.1 Cole-Cole Dispersion Approximation and Gabriel Parameters 

Along with [Gab94a–c], the relative permittivity below 100 Hz reaches values around 

106 to 107. Above this frequency threshold, the relative permittivity decreases in three 

significant steps: the so-called α-, β-, γ-dispersion regions. Relatively seen, these relaxa-

tion regions occur at low, middle and high frequencies. Within the corresponding fre-

quency regions, the underlying dispersion effect is dominant and other physical effects or 

the neighboring dispersion regions have a minor impact on the behavior of dielectric 

properties. An example is the δ-dispersion, which is—in the following considerations—

neglected. The γ-dispersion occurs primarily within the gigahertz region and can be 

traced back to the polarization of water molecules. The β-dispersion dominates the fre-

quency range from a few hundred hertz to the kilohertz range. The major driving physi-

cal effect is the polarization of cell membranes, where the membrane limits the ion flow 

from outer cell regions to the interior. In addition, polarization effects of whole protein- 

and other macromolecules contribute to this dispersion region. The low frequency α-

dispersion region is associated with the diffusion of ions, which is located on the outer 

cell membrane. And last of all, biological tissues have a low number of mobile ions, 

which result in a low ionic conductivity. A connected time constant τ can be assigned to 

each of these relaxation regions. Along to [Gab94c], this leads to the well-known Debye 

equation, a first order approximation of the complex permittivity ε as function of the an-

gular frequency ω 

 
1

s

j

 
  







 


, (4.15) 

where ε∞ denotes the permittivity at ωτ << 1 and εs the permittivity at ωτ >> 1. The inten-

sity of the dispersion is hereby given by Δε = εs – ε∞. To cover more dispersion regions, 

(4.15) is extended by the distribution parameter α. This factor describes the bandwidth of 

the related relaxation region and extends the Debye equation to the Cole-Cole equation 
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in the manner of 
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. (4.16) 

To finalize the combination of all three dispersion regions, (4.16) is extended to four 

summation terms. In addition, the sum is extended by the ionic conductivity term σi to 

cover the static conductivity of body tissues. This leads to the multiple Cole-Cole equa-

tion of the form 
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 . (4.17) 

The constants Δεn, τn, αn with n = {1, 2, 3, 4}, ε∞, and σi are the so-called Gabriel parame-

ters. Related to [Gab94b–c], measures of various tissues samples enabled the calculation 

and definition of the parameters of more than 40 different human tissue types. A table of 

these values is found in Appendix B, while explicit values are also available at [IAP] and 

[ITI]. In terms of the proceeding content of this thesis, all corresponding dielectric pa-

rameters are based on (4.17) and Appendix B. 

4.2.2 Properties of Human Dermis Tissues 

In terms of modeling aspects of waves that propagate along the human body surface, 

dermis tissues are of major interest. With this aspect in mind, especially skin, fat, and 

muscle tissue are focused on, and the frequencies considered correspond to the MICS 

(Medical Implant Communication Service) standard at 400 MHz, and the ISM (Industrial 

Medical Scientific) frequencies around 1 GHz, 2.45 GHz and 5.4 GHz. Because of the 

increasing interest in 60 GHz WBAN applications, this frequency range is considered as 

well. Using (4.6), (4.7), and (4.17), the connected quantities are derived and listed in Ta-

ble 4-1. 
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TABLE 4-1   
BASIC QUANTITIES OF HUMAN DERMIS TISSUES 

Symbol Unit Value to corresponding frequency 

f  GHz 0.4 1 2.45 5.4 60 

0  mm 750 300 122 56 5 

r,muscle  1 57.1 54.8 52.7 49.0 12.9 

r,fat  1 5.58 5.45 5.28 4.99 3.13 

r,skin  1 46.8 40.9 38.0 35.4 7.98 

muscle  S m-1 0.80 0.98 1.74 4.49 52.8 

fat  S m-1 0.04 0.05 0.10 0.27 2.82 

skin  S m-1 0.69 0.90 1.46 3.38 36.4 

muscle  mm 52.6 40.7 22.3 8.36 0.41 

fat  mm 309 232 117 44.5 3.37 

skin  mm 55.3 38.5 22.6 9.46 0.47 

muscle  mm 95 40 17 8 1.2 

fat  mm 313 128 53 25 2.8 

skin  mm 102 44 19 9 1.4 

 

It can be observed that the properties of muscle and skin tissue correspond to the so-

called high water content tissues due to their high conductivity and permittivity. At 

60 GHz especially, the low penetration depth of the skin tissue indicates that the wave 

propagation is primarily affected by the skin. 

4.3 Coordinate System 

As a comparison of Chapters Two and Three reveals, the applied coordinate systems are 

not congruent with each other: see Fig. 4-1. This can be traced back to the underlying 

geometries, which can be solved efficiently for the suggested alignment of the coordinate 

systems. If we restrict our considerations only to the line-of-sight or non-line-of-sight 

case, this mismatch may be neglected. But if a combined propagation path—which con-

sists of both cases—is required, the coordinate systems have to be adapted to each other. 
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Fig. 4-3 Underlying geometries to model on-body propagation paths proceeding parallel above the sur-
face at height h; (a) Coordinate system of the planar model, (b) Coordinate system of the cylinder model. 

 

Having on-body propagations in mind, i.e. the propagation path proceeds at a fixed 

high h parallel to the body, an alignment of the coordinate systems orientated to the body 

surface seems evident. In this case, we can define two tangential and one identical nor-

mal orientations in relation to the body surface. Here, the two tangential orientations are 

differentiated into a longitudinal direction and a transversal one. The suggested defini-

tion is shown in Fig. 4-2 with reference to the example of the electric field, where the 

sub-index “n” denotes a normal orientation and “t” a transversal orientation, which is di-

vided into transversal (trans) and longitudinal (long). 

 

 

Fig. 4-4 Coordinate system defined in relation to the body surface to match the line-of-sight (LOS) and 
non-line-of-sight (NLOS) propagation model in terms of on-body propagation scenarios. 
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With this definition, we can define identical transformation pairs that transfer the inde-

pendent systems of Fig. 4-3 into the coincident system, as defined in Fig. 4-4. In the case 

of the electric field strength, the transformation pairs of Table 4-2 are found. 

TABLE 4-2   
COORDINATE SYSTEM TRANSFORMATION TABLE 

Surface related 
Coordinates 

Planar Model 
Coordinates 

Cylinder Model 
Coordinates 

     En Ez Eρ 

     Et,trans Eϕ Ez 

     Et,long Eρ Eϕ 

 

Equivalent transformation pairs can also be found in case of the magnetic field strength 

and the power flux density. 
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4.4 The FDTD Method 

Till now, a large variety of numerical methods was used to solve the Maxwell equations 

for all kinds of high-frequency applications. One of these approaches, a volume-based 

solution technique approximates the partial differential terms of the Maxwell equations 

by finite differences in the time domain. The so-called FDTD method (finite differences 

in time domain) is a well-established numerical approach that can be optimized for a 

wide range of different geometries and electromagnetic problems. One realization of this 

method is given by the commercial software EMPIRE XCcell [EMP], which provides 

the solution to spatial well-known geometries of finite size and defined medium parame-

ters. Within the solution space, precisely defined fields can be determined to excite the 

structure. During the progress of the thesis, all numerically calculated values and quanti-

ties are based on this method. 

4.4.1 The Basic FDTD Algorithm 

The realization of the FDTD approach shows a wide range of different implementations, 

while the core algorithm stays the same. The following elementary descriptions are based 

on [Gus06]. It follows closely the theoretical description, starting with the differential 

Maxwell equations—which are given by 

t


 


B

E , (4.18) 

t


  


D

H J . (4.19) 

If we can assume linear, isotropic, and non-dispersive media, the equations 

0 r B H , (4.20) 

0 r D E , (4.21) 

J E  (4.22) 

Are applicable. Considering (4.18) to (4.22), all field quantities, i.e. electric field E and 

magnetic field H, are connected to the medium parameters. In Cartesian coordinates, we 
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can generally define the electric field by 

x x y y z zE E E  E e e e  (4.23) 

and the magnetic field by 

x x y y z zH H H  H e e e . (4.24) 

Related to (4.20), (4.21), and (4.22), the Maxwell differential equations of the electric 

(4.18) and magnetic field (4.19) can be reformulated into six connected partial differen-

tial equations. Under consideration of (4.23) and (4.24), this results in 
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. (4.30) 

4.4.2 Discretization in Space 

Equations (4.25) to (4.30) are continuous functions of the space coordinates x, y, z and 

time t. If we now define a spatial sampling size in each coordinate direction, i.e. Δx, Δy, 

Δz, we can formulate a discrete formulation of the field equations, where the electric and 

magnetic field components are still orthogonally aligned to each other. Using these sub-

divisions, the whole solution space can be divided—or discretized—into cubic cells, the 
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so-called voxels. Within these cells, the electric field components can be found on the 

edges and the magnetic field components in the face of each cell. With reference to 

Fig. 4-5, such a cell is illustrated in dark gray. Otherwise, if we chose the light-gray illus-

trated cell definition, both electric and magnetic field components would switch their rel-

ative positions within the cell. 

 

Fig. 4-5 [Gus06]: Electric and magnetic field components within the FDTD mesh. Each cell edge corre-
sponds to spatial coordinate, beginning in this example with (i,j,k) in the left bottom corner. 

If we limit our observations to one face of a cell, we can see that each field component of 

the electric field is encircled by the two transverse field components of the magnetic 

field and vice versa. This behavior is closer depicted in Fig. 4-6 and is a direct conse-

quence of Faraday’s law of induction as well as Ampère’s law. Related to [Gus06], this 

concept was introduced by K. Yee in 1966. Therefore, these spatial cells are called Yee 

cells. 
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Fig. 4-6 [Gus06]: Two-dimensional slice through a spatial cell to illustrate the circular orientation of the 
field components to each other: (a) Magnetic field component Hz encircled by transverse electric field com-
ponents Ex and Ey; (b) Electric field component Ez encircled by transverse electric field components Hx 
and Hy. 

Using this kind of spatial discretization, the electric and magnetic field components are 

delocalized to each other by a half-cell width. If we now choose the indices (i,j,k) from 

the natural numbers to allocate the corresponding cells, see Fig.4-5, and assume discrete 

functions of E and H, the partial spatial derivations can be replaced by central differ-

ences. In this case, the partial differentiation in x-direction is 
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An approximation of the spatial derivation ∂Ey/∂x by the difference ΔEy/Δx is shown in 

Fig. 4-7. Therefore, the discrete function ΔEy is known for each sampled step of size Δx 

in x-direction. The spatial differences in the middle of each interval can be estimated by 

a linear interpolation between the direct left- and right-sided neighbors. Corresponding 
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expressions can be found in y- and z-directions. 

 

Fig. 4-7 [Gus06]: Approximation of the partial derivative by differences and linear interpolation of values 
at half-cell width. 

4.4.3 Discretization in Time 

Related to the Maxwell equations [Gus06], the time derivative of the electric field is 

linked to the spatial derivative of the magnetic field. In reverse, the time derivative of the 

magnetic field is connected to the curl of the electric field. To find a time-dependent ex-

pression of the field functions, the time width Δt is defined. In the next step, the time de-

rivative is exchanged by differences, while the electric field is calculated at each time 

step n∙Δt, and the magnetic field vales are calculated at step sizes that are relatively shift-

ed by a half step, i.e. at (n + 0.5)∙Δt. In this case, the time derivative of the electric field 

can be approximated by 
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In (4.35) to (4.37), the upper indices of the electric field values define the corresponding 

time step, while the lower index describes the spatial position within the FDTD mesh. In 

the same way, the magnetic field can be found with 
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Considering (4.35) to (4.40), it is obvious that the current flow density has to be calculat-

ed at the same time step indices as the magnetic field values. Therefore, the current flow 

density is calculated at (n + 0.5)∙Δt by averaging the electric field values at neighboring 

indices. By this, the current flow density J is given by 
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The expressions of (4.35) to (4.43) that have been developed can now be used to refor-
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mulate (4.25) into 
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A rearrangement delivers then the x-component of the electric field as a function of pre-

vious electric and magnetic field values with 
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This recursive expression can be also found for the remaining electric and magnetic field 

values and are listed in Appendix D. The algorithm described by these equations is the 

so-called Leap Frog algorithm. Following this algorithm, the electric and magnetic field 

values of the spatial mesh grid can be calculated for discrete time values. If now, we as-

sume the time step t = 0, a finite excitation is initiated, the resulting reaction of further 

time steps of the defined geometry can be calculated within the defined space volume. A 

schematic illustration of the algorithm is shown in Fig. 4-8. 
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Fig. 4-8 [Gus06]: Leap Frog Method; Electric field values are calculated at time steps t = n∙Δt and mag-
netic field values at t = (n + 0.5)∙Δt. 

 

4.4.4 Numeric Stability and Dispersion 

The equations given above represent the core algorithm of the FDTD method. To ensure 

sufficient reliability of the technique, certain criteria relating the discretization in time 

and space have to be fulfilled. Along with [Gus06], one major criterion to ensure numer-

ical stability is the limitation of the time step size Δt. In terms of an equally discretized 

solution space, the Courant criterion limits the step size by 
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where Δx, Δy, Δz defines the spatial increment in x-, y-, and z-direction and c the velocity 

of the electromagnetic wave in the corresponding medium as defined by (4.8). Equation 

(4.46) ensures that the distance c∙Δt does not exceed the diagonal of a discretization cell. 

In other words, the fact that the passed distance of an electromagnetic wave within the 

time Δt is smaller than a cell width is ensured. As a consequence thereof, a smaller reso-

lution of the discretization size implies a smaller time step size and so more iterations of 

the algorithm to complete. If, for instance, the transit of an electromagnetic wave through 

the solution space has to be solved, the time required to travel through the space is sub-
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divided into more time steps if the spatial resolution is reduced. As seen from Table 4-1, 

the dielectric parameters of human tissues are a function of the frequency and, consider-

ing (4.8), the related change in the propagation velocity has to be considered if a simulat-

ing geometry has to be solved that includes dissipative human body tissues. 

Another detailed analysis of the FDTD method shows that the spatial discretization can 

lead to anisotropic propagation velocities of a propagating wave [Gus06], the so-called 

numeric dispersion. While this effect does not necessarily cause numeric stability prob-

lems, the different propagation velocities in different directions can cause—especially 

within large solution spaces—significant errors of the calculated electromagnetic field 

values. To limit this error, the condition 

minmax( , , )
10

x y z


    , (4.47) 

should be fulfilled. This means that the largest discretization width should not exceed a 

tenth of the smallest occurring wave-length λmin of the media within the solution space.  

4.4.5 Anatomical Human Body Models 

Based on [Chr10] and [Gos14], the following numerical calculations use anatomically 

inspired human phantoms to model the electromagnetic behavior of the human body. 

Based on magnetic resonance imaging data of various probands, the underlying human 

bodies are reconstructed by voxel models, where each corresponding spatial cell is as-

signed to the connected dielectric tissue type. The resolution cell width of the used voxel 

models is limited to 0.5 mm, while the used voxel size in this thesis is 2 mm. The dielec-

tric properties of each tissue type are calculated by the Cole-Cole Equation (4.17) for the 

solution frequency of interest using the Gabriel parameters of Appendix B. 

As seen in Fig. 4-9, two models are used—a male model called Duke and a female model 

called Ella. Both phantoms are integrated into the commercial software Empire [EMP], 

as well as the dielectric property estimation by the Gabriel parameters. Another feature, 

which is implemented into this simulation environment, is the so-called “body poser.” 

This algorithm enables the adaption of different body postures of the voxel phantom, i.e. 

a wide range of other postures can be emulated [EMP]. With this, even complex position 
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variations—e.g. walking, running and sitting—can be modeled. 

 

 

Fig. 4-9 Numerical human body phantoms: (a) Male model ‘Duke’; (b) Female model ‘Ella’. 

4.4.6 Vast Solution Spaces and Appropriate Boundary Conditions 

Related to the principles of the FDTD method, several boundary conditions are available 

to enclose the numerical simulation space [Gus06]. Typical conditions are, for instance, a 

perfect electric conductor (PEC), a specific impedance matched (in general, the intrinsic 

free space impedance η0), or a so-called absorbing boundary. While the first and second 

conditions are valuable for specific geometries, the last condition is very important to 

emulate general free space conditions. Taking the third boundary condition into consid-

eration, a finite number of layers accomplishes an impedance matching from the related 

medium impedance to PEC conditions, thereby enabling the termination of an electro-

magnetic wave of arbitrary incidence angle. The numbers of additional cell layers, which 

are necessary to realize the matching, depend on the incident angle. Within Empire, the 
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number can be chosen between 4 and 16 [EMP]. In general, an acute angle requires more 

layers than a perpendicular incident angle. Such acute angles occur in the first place if 

the simulation space is extremely expanded in one direction, i.e. the ratio between the 

edge lengths is very high and may result in non-negligible numerical errors. To compen-

sate this effect, the sizes in the two remaining space directions have to be increased as 

well. Having the modeling of wireless applications under the consideration of whole hu-

man bodies in mind, this can result in vast numerical models. To investigate the influ-

ence of these parameters in relation to the numerical error, a specific numerical setup is 

used. 

 

Fig. 4-10 Evaluation setup to determine the numerical error arising from solution space size. 

As shown in Fig. 4-10, a normally orientated half-wave dipole is positioned above a dis-

sipative dielectric half space, Medium A, with an effective antenna height of a quarter 

free space wave length at f = 2.45 GHz. The dielectric parameters of the ground layer, 

Medium B, are set to muscle tissue. The evaluation path proceeds parallel above the sur-

face at the effective antenna height, where the numerically calculated electric field is 

compared with the analytically calculated field values based on the Bannister equations 

of Appendix C. The dimension of the solution space is dependent on Δby and Δbz, as de-

fined in Fig. 4.10, while the length is fixed to 12 wave lengths and the thickness of the 

muscle tissues is set to five penetration depths. The boundary conditions are set to ab-

sorbing layers, and the absolute difference between the numerically and theoretically cal-

culated electric fields is calculated at r = 4λ, r = 6λ, and r = 12λ. The results are shown in 
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Table 4-3 for eight layers and in Table 4-4 for 16 layers.   

TABLE 4-3   
ABSOLUTE DIFFERENCE, 8 LAYERS 

Δby [λ-1] Δbz [λ-1] 
Absolute Difference [dBV] 

r(4λ) r(6λ) r(12λ) 
1 0.5 0.078 0.98 5.74 

1 1 0.086 1.05 6.51 

1 3 0.077 1.04 6.21 

4 0.5 0.014 0.03 0.72 

4 1 0.023 0.01 0 

4 3 0.019 0.05 0.25 

10 0.5 0.014 0.02 0.34 

10 1 0.023 0.01 0 

10 3 0.015 0.02 0.13 

 

TABLE 4-4   
ABSOLUTE DIFFERENCE, 16 LAYERS 

Δby [λ-1] Δbz [λ-1] 
Absolute Difference [dBV] 

r(4λ) r(6λ) r(12λ) 
1 0.5 0.069 0.11 1.96 

1 1 0.063 0.08 1.92 

1 3 0.071 0.09 1.91 

4 0.5 0.03 0 0 

4 1 0.023 0.01 0 

4 3 0.036 0.01 0.02 

10 0.5 0.03 0 0.16 

10 1 0.023 0.01 0.11 

10 3 0.031 0 0.1 

 

As can be seen from Table 4-3 and Table 4-4, the number of layers has a major effect on 

the results if the width and height of the evaluation path are small in comparison with the 
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length, especially at far path distances. Related to the dipole orientation, the simulation 

space width has a stronger influence on the error as the height. The following numerical 

derivations within the thesis use a tradeoff between these values, and therefore, 16 ab-

sorbing layer are used in accordance with a setup space, which is set to Δby = 4λ and 

Δbz = 1λ. Notice that if a dissipative dielectric is in contact with an absorbing boundary 

condition, this may lead to addition numerical effects. These effects can be neglected if a 

setup is chosen analogous to Fig. 4-10. But in terms of in-body scenarios, i.e. the antenna 

as well as the path under test is located within the dissipative body tissue, these setups 

may lead to severe resonance effects. These harmonics can lead back to an electrical 

short circuit of the boundary by the conductive dielectric medium. To avoid these har-

monics, an FDTD excitation pulse with a small DC component should be used. 

4.4.7 End Criterion Estimation 

The recursive nature of the FDTD method implies the need for an end criterion to finish 

the calculation of the electromagnetic field values by the equations of Appendix D. 

Therefore, it is necessary to find the minimum number of time steps when the results 

converge to the geometry-related solution. One method to identify whether the algorithm 

has achieved that goal is to test the remaining energy [Gus06]. Here, it has to be ensured 

that the remaining energy of the defined excitation at t = 0 vanishes within the solution 

space. Otherwise, the calculated field values suffer from non-negligible numerical errors. 

In general, the underlying FDTD software [EMP] estimates the remaining energy, which 

is stored within the electromagnetic field of the solution space, by reference measure-

ments. These reference measurements are realized by the calculated difference between 

the initialized excitation pulse and the currently approaching energy at the excitation po-

sition. If this difference falls below a certain threshold, the algorithm is terminated at the 

corresponding time step. This end criterion is convenient for solutions of geometries siz-

es around a few wave lengths, i.e. the energy distribution within the solution space can 

be assumed to be equal. But having a solution space in the scale of the human body in 

mind, this definition may cause large numerical errors. If we, for instance, assume a 

propagation path along the front side of the human body, e.g. from upper chest to leg of 

the ‘Duke’ model of Fig. 4-9, the related distance is approximately 1.5 m. In terms of the 
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ISM frequency band at 2.45 GHz, this corresponds to about 12 free space wave lengths. 

To compensate this influence, the related end criterion has to be adjusted, i.e. the termi-

nation threshold has to be lowered, or the number of time steps has to be increased. In 

practice, the related adaption of the threshold in terms of simulation space and frequency 

is difficult to be realized by this method. Therefore, the minimum number of required 

time steps is approximated by the geometry itself. The spatial extension of the numerical 

simulation grid, seen in terms of electrical wave lengths, increases with frequency. As 

seen in Table 4-1, the dielectric losses within the human body increase with frequency as 

well and so cause a rapid decay of the stored field energy within the phantom model. 

This fact implies that the phantom can be treated as non-resonant dielectric structure. 

Therefore, the accuracy of the numerical algorithm within the free space medium around 

the phantom suffers more from an electrical large simulation space as the interior of the 

body would. Assuming a dielectric medium, a traveling electromagnetic wave takes the 

time increment ∂t to pass the distance increment ∂r. As seen in [Bal89], this is related to 

the propagation velocity c by 

r
t

c


  . (4.48) 

If we define the maximum possible propagation distance Lmax within the solution space, 

the related time t can be calculated for free space conditions using (4.48) by 

max

0

L
t

c
 , (4.49) 

where c0 ≈ 3∙108 m/s is the propagation velocity of free space. Assuming the cubic FDTD 

mesh structure, Lmax can be approximated by the diagonal width of the cubic simulation 

space. as defined in Fig. 4-11. In this thesis, it is assumed that the FDTD algorithm can 

be terminated if a related electromagnetic wave has passed 4∙Lmax. If we assume the ex-

ample of Fig. 4-11 and follow (4.49), the algorithm ends after 26 ns. This value can be 

seen as the upper bound. If the space can be reduced, e.g. to a specific body part, (4.49) 

yields a shorter end criterion time value, which can lead back to the reduced values 

of Lmax. 
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Fig. 4-11 End criterion definition of the FDTD method in terms of body-centric wireless applications: Ap-
proximation of the maximum spatial size Lmax ≈ 2 m of the Duke phantom. 

4.4.8 Estimation of Memory Allocation 

As seen from the core algorithm equations of Appendix D, the FDTD method requires 

three electric and three magnetic field values for each spatial mesh point to process the 

recursive calculation for each time step. As seen above, the spatial dimension of the 

mesh depends on the connected medium parameters as well as on the frequency. At high 

frequencies, in particular, the demand for allocated memory increases drastically, and so 

the numerical modeling of full human body models becomes resource- and time-

consuming. Related to [EMP], Empire requires 4 Bytes to store an electromagnetic field 

value as float value, i.e. each mesh node requires 24 Bytes of allocated memory. In prin-

ciple, the same memory has to be allocated to store the tissue parameters of each cell, 

where the used method holds these values on the fly with a caching rate of about 90 %. 

Eventually, the PML boundary require 48 byte to store the complex values of each layer 

mesh cell. Table 4-5 shows the memory demand as a function of the frequency. The un-

derlying calculation assumes a simulation space size of 0.568 m x 0.34 m x 1.878 m 

(Duke voxel model), which is equally divided into underlying mesh cells. Corresponding 

to (4.47), 10 cells per wave length are assumed, while the wave length of muscle tissue is 

presumed. Furthermore, at each boundary, there are 10 addition cells envisaged to repre-

sent the boundary and related spacing issues.  
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TABLE 4-5   
ESTIMATED MEMORY DEMAND OF THE DUKE PHANTOM 

f [GHz] Number of field values [1] Estimated Memory [GB] 

0.10 104,629 0.0047 

1.00 8,329,422 0.2774 

5.00 660,113,558 18.610 

10.0 4,228,023,277 115.76 

60.0 199,595,578,933 5324.1 
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Chapter 5  

Modeling Line-of-Sight On-Body Propagations 

With wireless body-centric communications in mind, the close proximity of the human 

body may have a significant impact on the antenna as well as on the channel properties. 

This fact links both characteristics to each other and increases the effort in terms of a 

purposeful antenna design. A straightforward solution is the consideration of the whole 

propagation scenario, which includes the antennas as well as the propagation medium, 

i.e. the human body in general. Therefore, a scenario-specific description might be pro-

vided by measurements or numerical calculations of the entire transfer function, includ-

ing transmitting antenna, channel and receiving antenna [Abb12]. More general infor-

mation on how different configurations of antennas and channel behave can be obtained 

by investigating various setups using statistical analysis [Gal11]. In this case, specific pa-

rameters are varied, such as body shape, frequency, body position, antenna position or 

polarization. As a consequence thereof, the combination variety of all parameters may 

lead to resource-consuming measurement campaigns. Moreover, the achieved results are 

restricted to the underlying setup parameters and are, in principle, limited if a transfer to 

other applications is intended, as the impact of the different variation parameters is a 

function of the other parameters as well. Therefore, all suitable setup configurations have 

to be systematically modeled to estimate the general performance of a featured applica-

tion. Unfortunately, these methods yield only implicit information in respect of the entire 

system design and it is difficult to draw conclusions e.g. about an optimized antenna de-

sign. Therefore, more analytical insights would be desirable. 

To deal with this problem, a modeling technique would be feasible that is defined corre-
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sponding to the free space antenna theory, i.e. to separate the wireless propagation link 

into independent antenna and channel parameters to achieve an equivalent model with 

replaceable and scalable parameters. As seen in Fig. 5-1, the following chapter aims for 

separated antenna and channel characterization theory for line-of-sight on-body applica-

tions. 

 

Fig. 5-1 Systematic modeling of a wireless on-body propagation link: Separated equivalent antenna and 
channel models are combined to describe the propagation path. 

The first part discusses the general feasibility of transferring the Sommerfeld problem to 

body-centric communications. The second part utilizes common quantities that are asso-

ciated with this theory, such as the numerical distance of Sommerfeld, to discuss the 

line-of-sight on-body propagation channel for different BAN frequencies and tissue 

types. In this context, the radiated electromagnetic field is discussed with reference to the 

example of three basic dipole orientations that are later used to describe the radiated field 

of arbitrarily shaped on-body antennas. The next step combines the knowledge of the ra-

diated field species with its related basic dipole configurations to define two equivalent 

dipole sources. Related to these equivalent sources, the on-body directivity is defined as 
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well as the effective antenna area. Then, the defined on-body antenna parameters enable 

the calculation of the path gain, which is discussed for various dipole configurations, as 

well as for a planar inverted-F antenna. A final evaluation of the suggested theory in 

terms of the full human body is done numerically as well as by a measurement setup in 

an anechoic chamber. 

The general derivations of this chapter strictly follow [Gri14b]. 
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5.1 The Planar Model in Relation to Full Human Body Models 

As seen in Chapter 2, a well-established approach to model terrestrial wireless communi-

cation links is given by the solution to the Sommerfeld problem. Nevertheless, the gen-

eral assumption to model the complex topology of the earth by a homogeneous planar 

model seems far-fetched at first. But, as demonstrated by several contributors, e.g. K. 

Norton [Nor41], in case of terrestrial propagations, the model is capable of describing the 

average behavior of the assumed model quite well. Local contortions—for instance, re-

sulting from mountains and valleys, and regional fluctuations of the ground parameters, 

e.g. related to wood and lake areas—may disturb the local accuracy of the suggested 

model, but in relation to the whole propagation distance, these effects are minor fluctua-

tions of the average behavior. Therefore, the transfer of this theory to the topology of the 

human body and the general field of body-centric wireless applications as well seems 

promising. 

Within the scope of WBAN applications, the corresponding Norton theory has again 

gained attention. Here, the tissue of the body acts as a dissipative ground and due to the 

aim for low profile antennas, such as textile antennas [Cha12], the Sommerfeld approach 

seems inevitable. In this context, the radiation mechanism of a body-worn antenna is dis-

cussed at an operation frequency of 2.45 GHz for electrical small dipoles [Akh10]. The 

corresponding results are also applied to the design of a 60 GHz on-body antenna, which 

aims for a strong Norton surface wave excitation in [Wu10]. An analytical propagation 

model for the frequency range of 1 GHz to 10 GHz of a stratified skin, fat, and muscle 

tissue ground is presented in [Lea09]. This model is based on the solution of the Som-

merfeld approach by J. R. Wait [Wai96] for electrically small dipole antennas that are 

positioned vertically on the ground. Other approaches aim at an on-body far field de-

scription by the Norton theory to deduce body-centric antenna parameters and propaga-

tion models [Gri12a]. 

5.1.1 Comparison between Theoretical and Numerical Models 

In addition to the references given above, the feasibility of the planar model of Chapter 2 

is shown by a numerical on-body example setup. The considered propagation paths lead 

along the human voxel phantoms “Duke” and “Ella,” and are numerically calculated by 
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the FDTD method. In addition, the theoretically modeled electromagnetic field of an 

equivalent scenario is calculated by the Poynting vector, using (2.70) and (2.71). In gen-

eral, the large variety of wireless body-centric application leads to a wide spectrum of 

possible scenarios. In terms of this thesis, the investigated scenarios are related to the 

ISM band at 2.45 GH and, therefore, cover one of the most utilized frequency bands. 

Moreover, the curvature and radii of the human body is within the scale of free space 

wave length and, therefore, a challenging test of the suggested planar model in relation to 

the anatomy of the human body. The underlying numerical voxel phantoms and defined 

propagation paths are shown in Fig. 5-2. The effective antenna height is set to a quarter 

free space wavelength.  

 

Fig. 5-2 Defined evaluation paths on numerical voxel model (a) Duke, and (b) Ella on trunk, arm, and leg 
body parts. 

This value is chosen as an upper bound, while, in reality, most applications can be as-

sumed to be tightly bound to the body. To enable a direct comparison of the results with 

the Bannister solution, normal orientated half-wave dipoles are used. The power flux 
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density of the defined paths is shown in Fig. 5-3, where the planar model values are 

based on the field quantity terms of Table 2-1 for p1 and the ground medium is set to 

muscle tissue properties. To achieve a good comparability, the model is normalized to 

1 dBWm-2 at a distance of dp = 0.1 m. 

 

Fig. 5-3 Numerically calculated magnitude of the power flux density versus distance for different evalua-
tion paths and voxel models in comparison to a planar muscle tissue model. Parameters: Normally orientated 
half-wave dipole, f = 2.45 GHz, h = λ/4. 

As seen from Fig. 5-3, the model is capable of representing the average mean value of 
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the paths under test, and hence implies the applicability of the suggested model. The ma-

jor problem, which arises from this modeling technique, is the unknown normalization 

factor of the planar model. The definition of an appropriate factor in terms of a unified 

antenna theory is shown in the context of the next chapter. 

5.2 Norton Surface Waves in Context of Body-Centric Applica-

tions 

While each individual antenna concept is connected to a specific response of the line-of-

sight channel, which is discussed in the following paragraph, the intention of this para-

graph is to discuss general channel aspects. Descending from the basic field equations of 

the planar on-body model, comparing (2.70) and (2.71), the propagation of the radiated 

ground wave is, in general, a function of the frequency, the constitutive parameters of the 

ground, the effective antenna height, and the antenna polarization. The variations in these 

quantities are discussed to identify the general on-body far field behavior and to link 

general antenna configurations to desired radiation mechanisms. 

5.2.1 Applicability in Terms of Human Dermis Tissues  

To ensure the applicability of the planar on-body model, the Bannister theory has to be 

verified in terms of surface near tissue types, muscle, skin and fat. Muscle especially is a 

commonly used tissue type to model the average losses in body-centric propagation sce-

narios [Hal06]. When it comes to higher frequencies, the skin and fat layers might be 

more relevant. As seen in Chapter 2, descending from the connected derivation proce-

dure, the main requirement to ensure the applicability of the field factors of Table 2-1 is 

to guarantee a sufficient high material difference n = γ1/γ0. As shown in [Ban84b], in 

practical applications, this demand is satisfied for n2 > 10. Table 5-1 shows the corre-

sponding tissue ratios, which are based on the multiple Cole-Cole equation (4.17) and the 

connected Gabriel parameters of Appendix B for the selected frequencies. 

In coincidence with Table 4-1, the defined frequency range of interest reaches from 

0.4 GHz to 60 GHz, and common WBAN frequencies are selected from this range. The 

values related to the condition n2 > 10 imply a good applicability of the Bannister equa-

tions to muscle and skin tissues, while the fat tissue results show borderline values, espe-
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cially for f = 60 GHz. 

TABLE 5-1   
APPLICABILITY OF THE BANNISTER THEORY IN TERMS OF HUMAN DERMIS TISSUES 

Symbol Unit Value to corresponding frequency 

f  GHz 0.4 1 2.45 5.4 60 

2
musclen  1 67 58 54 51 20 

2
fatn  1 6 5 5 5 3 

2
skinn  1 56 44 39 37 14 

 

5.2.2 Numerical Distance of Fat, Muscle and Skin Tissue 

According to [Som26] and [Nor37], the Norton surface wave is closely connected to the 

air-ground boundary due to the fact that a small component of the Poynting vector points 

toward the ground to preserve the wave. Nevertheless, this component is relatively small, 

and the main component of the energy flux is directed along the surface. In conjunction 

with the fact that for far distances the major part of the space wave is reflected away 

from the ground, the Norton surface wave adds a substantial contribution, especially for 

long-range on-body communications. 

 

TABLE 5-2   
NUMERICAL DISTANCE OF HUMAN DERMIS TISSUES 

Symbol Unit Value to corresponding frequency 

f  GHz 0.4 1 2.45 5.4 60 

musclew  1 0.12 0.36 0.95 2.21 61.7 

fatw  1 1.43 3.79 9.62 22.3 388 

skinw  1 0.15 0.48 1.30 3.04 93.1 

muscle  [°] -58 -72 -76 -73 -39 

fat  [°] -72 -80 -82 -80 -75 

skin  [°] -57 -68 -74 -72 -36 
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A very important factor to estimate the capability of a strong surface wave excitation is 

given by the numerical distance defined by A. Sommerfeld [Som26]. As shown in (2.73) 

and (2.74), the Sommerfeld attenuation function F is part of the Norton surface wave 

component and, therefore, a large numerical distance results in a weak surface wave. As 

defined by (2.75), the numerical distance is a function of the constitutive parameters of 

the ground, the frequency and the effective antenna height. Table 5-2 shows the corre-

sponding values of the numerical distance w at certain WBAN frequencies between 

0.4 GHz and 60 GHz at an effective antenna height of h = 0 for typical body surface tis-

sues. The depicted values are separated in magnitude |w| und phase component φ. It can 

be observed from Table 5-2 that the magnitude of the numerical distance varies extreme-

ly, depending on the tissue parameters. For instance, at f = 0.4 GHz, the numerical dis-

tance of muscle and fat differs approximately by a factor of 12. This fact implies that tis-

sues having low conductivity, such as low water content tissues, are less capable of sup-

porting a dominant Norton surface wave. In order to illustrate the relationship between 

the tissue parameters and the frequency dependency, Fig. 5-4 shows the Sommerfeld at-

tenuation function versus the numerical distance for muscle and fat tissue at selected fre-

quencies. 

 

Fig. 5-4 [Gri14b]: Sommerfeld attenuation function for a ground consisting of muscle and fat tissue; 
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h = 0; R1  [0.03, 2] m; f = 0.4 GHz, 2.45 GHz and 60 GHz. 

5.2.3 Ratio of the Norton Surface Wave to the Space Wave in Relation to Tissue 

Type and Frequency 

In order to identify the dominant wave type of common on-body scenarios, the ratio of 

the space wave component and the Norton surface wave component is calculated. The 

variation of the body tissue is modeled by a ground consisting of the high water content 

tissue muscle and the low water content tissue fat. Because of the fact that the Bannister 

equations are not suitable to analyze the ratio for low water content tissues, the ratio is 

calculated using Norton’s solution (2.73). Therefore, the results are limited to distances 

greater than one free space wave length. To cover even WBAN scenarios with far com-

munication links the maximum observation distance is set to 2 m, which is more than the 

total body height of the “Duke” voxel model. The frequencies of interest are set to 

0.4 GHz, 2.45 GHz, and 60 GHz, while the corresponding effective antenna heights are 

set to 0/4. 

 

Fig. 5-5 [Gri14b]: Ratio of space wave and Norton surface wave above muscle and fat tissue for different 
frequencies; h = λ0/4; f = 0.4 GHz, 2.45 GHz and 60 GHz 

Figure 5-5 shows the ratios derived for the normally orientated dipole p1 and suggests 

some interesting practical implications: In order to cover small on-body distances, an an-
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tenna design which yields a strong space wave excitation may be desired while a com-

munication link over large distances may benefit from a strong Norton surface wave. Es-

pecially for fat tissue, this observation takes on a greater significance due to the large 

numerical distances. Related to the results at f = 0.4 GHz, the space wave is much more 

dominant than the Norton surface wave for both tissue types. At frequencies around 

f = 2.45 GHz, a balanced wave combination of the total field is shown at medium ranges 

for muscle tissue. At f = 60 GHz, a strong Norton surface wave can be identified for 

propagation distances above 0.05 m. This implies a significant contribution of the Norton 

wave component for WBAN applications within this frequency range. 

5.2.4 Ratio of the Norton Surface Wave to the Space Wave in Relation to the Ef-

fective Antenna Height 

At the lower frequencies considered above, slight variations of the effective antenna 

height have a negligibly small influence on the Norton surface wave excitation. In this 

case, the variations are comparatively small in relation to the free space wavelength. On 

the contrary: at 60 GHz, even a movement by one millimeter is within the range of a 

quarter of a wave length—see Table 4-1—and results therefore in altered radiation prop-

erties.  

As defined by (2.75), the numerical distance is connected to the effective antenna height 

by the angle ψ1. In order to evaluate the influence of the effective antenna height, the 

Norton surface wave to space wave ratio is calculated for normal dipole orientation p1 at 

different effective antenna heights by (2.73). The corresponding frequency is set to 

f = 60 GHz and the constitutive parameters are set to a skin tissue equivalent due to the 

small penetration depth at this frequency (see Table 4-1). For effective heights above a 

quarter of one free space wavelength, the calculated values in Fig. 5-6 indicate a domi-

nant space wave over the whole observation range. Moreover, the results imply a domi-

nant Norton surface wave excitation only for antennas, which are closely bound to the 

body surface. For instance, in the scope of 60 GHz textile antennas, the results imply a 

sensitive relationship between the height and the related wave form. 
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Fig. 5-6 [Gri14b]: Ratio of space wave and surface wave above skin tissue ground for different effective 
antenna heights h; f = 60 GHz. 

 

5.3 Radiated Antenna Field of Body-Worn Antennas 

In conjunction with the approach of Bannister in [Ban84a] and [Ban84b], the basic an-

tenna setup assumes a small electric dipole with constant current distribution, which is 

positioned on or above the surface at the effective antenna height h. Related to the validi-

ty discussion above, this solution is applicable for a wide range of high water content tis-

sues, where we primarily use in the following an equivalent human muscle tissue medi-

um. In conjunction with Chapter 2, the propagation constant of free space is denoted by 

γ0, the propagation constant of the body tissue is γ1, and the free space impedance is de-

fined by η0. In general, we assume RMS values where a time-harmonic dependency is 

assumed and the corresponding factor exp(jωt) is omitted. The general schematic of on-

body antenna setup is shown in Fig. 5-7. 
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Fig. 5-7 [Gri15b]: General on-body setup consisting of an antenna at effective height h above a dissipa-
tive dielectric body. 

The key results presented in the remaining chapter are a combination of [Gri14b] and 

[Gri15b]. Therefore, the content is revised and rearranged at some points to feature an 

adequate recapitulation of the whole theory in closed form. 

5.3.1 Electric Dipole Antennas 

Related to the discussed solution of Sommerfeld geometry by the Hertz potential, the re-

sulting equations deliver a straightforward description of small electric dipole antennas. 

Based on the defined basic dipole orientations of Fig. 2-3, the radiated electric field 

components of all three configurations are discussed. Figure 5-8 shows the electric field 

components of the normally p1-orientated half-wave dipole (f = 2.45 GHz) located above 

a muscle tissue ground along an observation path parallel to the surface at the effective 

antenna height h = λ0/4. The corresponding observation path proceeds in x-direction and 

is unchanged for all three basic examples. The values obtained by the Bannister model 

using (2.70) are compared to a numerical simulation based on the FDTD method [EMP]. 

In order to evaluate the accuracy of the model with reference to the numerical data, the 

Bannister description of the electric field has been normalized to the FDTD field values 

at maximum distance. 
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Fig. 5-8 [Gri14b]: Electric field components of a normal half-wave dipole above muscle tissue ground; 
f = 2.45 GHz; h = λ0/4; Dipole axis: p1 

It can be observed from Fig. 5-8 that the Bannister model approximates the field very 

well, even quite close to the dipole. In contrast to the normally orientated dipole, the 

electric field generated by a tangential dipole above the tissue does not exhibit a radial 

symmetry. In this case, according to [Akh10], the related radiation mechanism suggests a 

discussion of two orthogonal horizontal dipole orientations. In our case, we use the re-

maining two defined dipole orientations p2 and p3. 

As shown in Fig. 5-9, the first case corresponds to the horizontal dipole, as discussed by 

Norton in [Nor37]. The axis of the dipole is orientated tangential transversal to the path 

direction in y-direction and is also positioned above a muscle tissue ground at the effec-

tive height h = λ0/4. The results of the second tangential case are shown in Fig. 5-9. Here, 

the axis of the half-wave dipole is orientated in x-direction at h = λ0/4 and is, therefore, 

aligned transversal longitudinal to the observation path. The electric field values of both 

scenarios are calculated by the normalized Bannister solution (2.70) and verified numeri-

cally using the FDTD method [EMP]. 
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Fig. 5-9 [Gri14b]: Electric field components of a tangential longitudinal orientated half-wave dipole 
above muscle tissue ground; f = 2.45 GHz; h = λ0/4; Dipole axis: p2 

If, in addition, the magnetic field values are obtained by (2.71), the tangential transversal 

dipole p3 shows a TE characteristic, while the tangential longitudinal dipole p2 shows a 

TM characteristic. According to [Akh10], this behavior implies that the excited field 

specie can be changed either by a rotation of the tangential dipole axis or by a definition 

of another path direction. In comparison, the normal dipole p1 shows an omnidirectional 

TM characteristic. If both TM characteristics are compared, i.e. p1 and p2, the TM wave 

resulting from the tangential dipole is quite weak due to the diminishing direct wave 

component, since in this orientation the field is primarily excited by the images of the di-

pole within the ground. 
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Fig. 5-10 [Gri14b]: Electric field components of a tangential transversal orientated half-wave dipole above 
muscle tissue ground; f = 2.45 GHz; h = λ0/4; Dipole axis: p3 

 

The results indicate that the Bannister solution is capable of modeling the quasi-static 

range with good accuracy, even for realistic antenna configurations. In terms of the Nor-

ton theory, this means that even critical distances below one wavelength can be treated 

by this model. Despite the fact that Bannister restricts his solution of (2.70) and (2.71) to 

distances larger than 10 penetration depths of the ground [Ban78], the derived values in-

dicate a sufficient applicability even for smaller distances that are above one penetration 

depth. 

5.3.2 Arbitrarily Shaped Antennas 

Strictly speaking, the Norton surface wave theory is defined only for small dipole anten-

nas. To model larger and more complex antennas, our approach is to discretize the large 

antenna structure down into a finite number of small electric dipoles. Owing to the cubic 

mesh grid of the FDTD method, it seems evident to break down the electric current flow 

density on a numerically calculated antenna structure into a cluster of small electric di-

poles.  
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Fig. 5-11 [Gri15b]: (a) General antenna structure with corresponding current density; (b) Segmentation of 
the antenna structure into M cells; (c) Group of M equivalent electric dipole sources. 

Hereto, as shown in Fig. 5-11, the antenna structure is divided into M space cells. As-

suming a perfectly conducting antenna, the total radiated field can then be expressed by 

the superposition of the field formulation of M small electric dipoles at position r0,m with 

m  {1,2,...,M}. Related to the arbitrary antenna shape each dipole element can be arbi-

trarily orientated itself: see Fig. 5-12. The dipole momentum pm of cell m can be separat-

ed into three orthogonal dipoles p1,m, p2,m, and p3,m which correspond to the chosen coor-

dinate system. By the assumption of Cartesian coordinates, the decomposition yields 

2, 3, 1,m m x m y m z
p p p  p e e e , (5.1) 

where Fig. 5-12 depicts the orthogonal dipole components in relation to the origin. 

 

Fig. 5-12 [Gri15b]: Separation of the dipole momentum pm into three Cartesian components p1, p2, and p3. 

In the following context, the FDTD method [EMP] is used to calculate the current densi-

ty distribution J(r0) on the antenna structure. The related dipole moment pm of (5.1) then 

results from a multiplication of this value with the spatial cell dimensions. 

The radiated field of each dipole results from the superposition of the three canonical di-
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poles within the underlying cell—namely, p1,m, p2,m, and p3,m. These definitions are coin-

cident with our basic dipoles, as defined in Fig. 2-3. Based on direct transformation from 

cylindrical to Cartesian coordinates, the superimposed electric antenna field can be ex-

pressed by (2.70) with 

 E E E1 0 0
1 1, 1,y 1,z4 x x y z

p
N N N

 


  E e e e , (5.2) 

 E E E2 0 0
2 2,x 2,y 2,zcos( ) sin( ) cos( )

4 x y z

p
N N N

 
  


  E e e e , (5.3) 

 E E E3 0 0
3 2,x 2,y 2,zsin( ) cos( ) sin( )

4 x y z

p
N N N

 
  


  E e e e , (5.4) 

where N1
E, resp. N2

E, corresponds to the electric field factor functions of Table 2-1 with 

unit [1]. In an equivalent manner, we can find the magnetic field comments using (2.71) 

with 

 H H H1 0
1 1, 1, 1,4 x x y y z z

p
N N N




  H e e e , (5.5) 

 H H H2 0
2 2, 2, 2,sin( ) cos( ) sin( )

4 x x y y z z

p
N N N


  


  H e e e , (5.6) 

 H H H3 0
3 2, 2, 2,cos( ) sin( ) cos( )

4 x x y y z z

p
N N N


  


   H e e e , (5.7) 

where N1
H, resp. N2

H, corresponds to the electric field factor functions of Table 2-1 with 

unit [1]. 

In the final step, the radiated electromagnetic field of the complete antenna structure fol-

lows from the superposition of the corresponding M cells. Therefore, the summation of 

the related field components of the basic dipoles defined by (5.2), (5.3), and (5.4) at posi-

tion r0,m is 

3
total

0,
1 1

( ) ( )
M

m

m


 

 E r E r r . (5.8) 

In an equivalent manner, the total magnetic field can be calculated using (5.5), (5.6), and 
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(5.7) by 
3

total
0,

1 1

( ) ( )
M

m

m


 

 H r H r r . (5.9) 

With respect to the desired properties of the field formulation, the corresponding terms 

(5.2)–(5.7) may also be chosen from Norton’s solution. Here, we have chosen Bannis-

ter’s air-to-air formulation that is applicable from quasi-static ranges to far field distanc-

es. Owing to the fact that for far field distances, the underlying formulations of Bannister 

converge into the formulation of Norton, the method used may also be based on Norton’s 

electric dipole model [Nor37] if far field distances are only of interest. In this case, the 

tangential dipole, as defined by Norton, is rotated through 90° compared to the Bannister 

definition, i.e. in this case, the field description of p2 and p3 have to be exchanged by 

each other. 

Considering (5.1)–(5.9), the knowledge of the excited currents on the antenna body ena-

bles a description of the radiated electromagnetic on-body field. Throughout the paper, 

we are using the full wave simulation software [EMP], which is based on the FDTD 

method, to calculate the current distribution on the antenna structure. The simulations are 

done for antennas in the presence of a body phantom, i.e. the antennas are positioned 

near an anatomically correct human body voxel model or near a tissue equivalent sur-

face, to include the coupling between body and antenna. The numerical model includes 

the antenna structure and the ground where the computational domain is terminated by 

open boundary conditions at a distance of two wave lengths from the antenna center. The 

general setup is shown in Fig. 5-13. 
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Fig. 5-13 [Gri15b]: General setup to model the radiated on-body field by the FDTD method. As depicted, 
the current distribution on the antenna structure is segmented into a finite number of space cells. Each seg-
ment represents a small dipole element for the application of the Bannister model. 

To ensure a clear differentiation between the current distribution that is wanted on the 

antenna structure and the induced currents within the phantom, our method benefits from 

a spacing between antenna and phantom. Consequently, this approach loses sharpness if 

the antenna structure is positioned in direct contact with the phantom. Apart from this, 

the generality of our approach enables the modeling of various antenna types as long as 

these can be approximated by a finite number of small electric dipoles and is not restrict-

ed to the validation examples below. 
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5.4 On-Body Antenna Parameters 

The approach presented above enables insight into the underlying radiated electromag-

netic field of body-worn antennas. Nevertheless, a comparison of the related radiation 

characteristic with the electromagnetic field distribution is difficult to realize. The fol-

lowing section will discuss an approach to define concentrated on-body antenna parame-

ters. The primary focus aims at a possible definition of the equivalent on-body directivity 

and the on-body effective antenna area. 

5.4.1 Far Field Distance 

Depending on the selected far field model, the applicability of the underlying formula-

tion is restricted to distances which are above a certain limit. As seen in Chapter 2, this 

distance is related to the chosen approach to calculate the Hertz vector and is a function 

of the frequency and the dielectric material parameters of the body. In case of the Norton 

formulation, as described in [Ban84a], a distance can be identified as part of the far field 

if the following equation is satisfied: 

 
1

2 2 2
0 ( ) 1z h     . (5.10) 

Norton’s formulation is, therefore, valid for distances above a few free space wave 

lengths and defines the far field in general terms of on-body communications. However, 

this distance may be not practical for many of the short on-body paths present in some 

on-body communication links. Here, the quasi-static range of Bannister’s solution ena-

bles a quite accurate modeling starting from distances of a few penetration depths of the 

ground [Gri14b]. 

5.4.2 Far Field Components 

As seen above, for on-body propagation paths, e.g. the observation path r proceeds paral-

lel to the body surface in x direction, the basic dipoles p1 and p2 have a TM far field 

characteristic, and the dipole p3 has a TE characteristic. Related to (5.2)–(5.7), an anten-

na of arbitrary shape has a characteristic that is a superposition of the corresponding 

sources and their associated field values. For valid distances, it follows from (5.8) and 
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(5.9) that the power flux density S can be calculated by the Poynting vector from the su-

perimposed field values by 

   **
1 2 3 1 2 3       S E H E E E H H H . (5.11) 

In general, the field values (5.11) can then be separated into their TM and TE compo-

nents as follows: 
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   
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. (5.12) 

Equation (5.12) can also be written as 

*
1, 2, 3,

* *
1, 2, 3,

*
1,z 2,z 3,z

0 0

0 0

0 0

E E H

H H E

E E H

  

  

      
                 
             

S . (5.13) 

or expressed in matrix notation 

     
TM TE

* *
1 2 1 2 3 3     

S S

S E E H H E H
����������� �����

. 
(5.14) 

Equation (5.14) shows that the total far field power flux density can be expressed by the 

summation of the TE and TM power flux densities. 

5.4.3 Equivalent Electric Sources Approach 

Equation (5.12) implies that the far field of an arbitrary on-body antenna can be decom-

posed into its corresponding TM and TE wave components. Furthermore, we take (5.14) 

into account that we can model the total power flux density of the original source by two 

equivalent sources, a TM source and TE one. The TE source can be modeled by a small 

dipole pTE that is aligned tangentially to the body surface and perpendicular to the obser-

vation direction. The TM source pTM can either be represented by a tangential dipole, the 

axis of which is aligned in observation direction, or by a normally oriented dipole. In this 
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manner, we have chosen the normally oriented dipole as the equivalent source, and the 

corresponding setup is shown in Fig. 5-14. This source is selected because the related far 

field of a tangential dipole source, which is aligned in the direction of propagation, is 

negligibly small in comparison to the source components of the other two directions. As 

a comparison of Fig. 5.8 and Fig. 5.9 reveals, this can lead back to the significantly 

weaker radiated power in direction of the dipole axis. 

 

Fig. 5-14 [Gri15b]: Normally oriented pTM and tangentially oriented pTE equivalent electric dipoles to 
model the TM and TE far field. 

In order to verify this assumption in terms of body-worn antennas, STM is independently 

calculated for both TM sources. If we assume the far field of a low-profile antenna, i.e. 

the effective antenna height is almost zero, or alternatively let the distance converge to 

infinity, the space wave will vanish. The resulting field then consists only of the Norton 

surface wave component. If we now calculate the general solution of (5.14) 

* *
TM z zE H E H     S e e  (5.15) 

and follow the air-to-air far field formulation in [Ban84a], keeping the assumptions given 

above in mind, the direct and reflected path distances converge into the distance ρ and 

the reflection coefficient of the ground (2.46) becomes minus one. With these assump-

tions, the power flux density STM,1 of the normal electric dipole pnorm is 

0

22
20 0 norm 2

TM,1 2 2
( )

4
z

p
F w e

 


 
 

     S e e  (5.16) 

and STM,2 of the tangential electric dipole ptang,long, which is aligned along the observation 

direction, is 
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0

22
2 20 0 tang,long 2

TM,2 2 2
( ) .

4 z

p
F w e

 


 

 
     S e e  (5.17) 

In (5.16) and (5.17), F(w) denotes the Sommerfeld surface wave attenuation factor which 

is defined by 

 ( ) 1 erfc ,wF w j we j w    
   (5.18) 

where w denotes the numerical distance, which is in this case 

20 sin .
2

w
 

    (5.19) 

In (5.16), (5.17), and (5.19), Δ defines the ratio of the two propagation constants of the 

media, i.e. free space and body tissue, which is defined by 

0

1

.



   (5.20) 

A comparison of (5.16) and (5.17) reveals that the radiated power flux density of the tan-

gential dipole differs from the corresponding normally oriented dipole by the factor |Δ|2 

if we assume the same magnitude of dipole momentums, i.e. pnorm = ptang,long. This implies 

that we can model the general TM far field, which may result from both sources, by a 

single equivalent TM source. 

To evaluate how sufficient this assumption is, we calculate the deviation between the 

power flux density of pnorm and ptang,lomg by the use of the complete Bannister equations 

(2.70) and (2.71). To achieve a matching of both values for infinite distance, Snorm,ρ is 

corrected by the factor |Δ|2. By a normalization to |Stang,long,ρ| the deviation is 

2
norm, tang,long,

f

tang,long,

| |
.

S S
d

S

 



 
  (5.21) 

In this respect, Fig. 5-15 shows the deviation at 2.45 GHz for muscle tissue as a function 

of the effective antenna height and the distance. Both values are normalized to the free 

space wave length. As seen from the results, the error is negligible for low effective 

heights at moderate distances and, therefore, proves a good applicability in terms of low 
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profile on-body antennas. Moreover, the calculated error, which may arise by a descrip-

tion of ptang,long through pnorm, becomes significant if the antenna shows a dominant tan-

gential current distribution pointing in the direction of the observation. In all other cases, 

i.e. considering antennas with mixed distributions, the contribution of ptang,long is domi-

nated by the normal current pnorm due to the factor |Δ|2 in (5.17). 

 

Fig. 5-15 [Gri15b]: Approximation of the error that can occur by using a normally oriented dipole source 
to express a tangential dipole which is aligned along the observation direction to describe the TM on-body 
field; the underlying muscle tissue parameters are based on Table 4-1. 

 

5.4.4 On-Body Directivity 

Based on the results of the previous paragraph, which state that two equivalent electric 

sources may sufficiently describe the on-body antenna far field, a definition of related di-

rectivity parameters seems evident. In general, the total radiated field of an antenna can 

be separated in the same way as described by (5.13) in the underlying TM and TE field 

components by 
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The solution of (5.22) is then given by 
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(5.23) 

which implies that we need two quantities to describe the total power flux density S, i.e. 

STM and STE. 

In contrast to the free space case, the power flow is directed into two directions. Conse-

quently, two quantities are required to describe each power flux density component. 

However, a comparison of (5.16) and (5.17) reveals that the ratio between the ρ- and z-

components is constant for far distances. Therefore, one value per equivalent source is 

sufficient to describe the radiation properties of the antenna in terms of the TM and TE 

wave species. Our definition links the excited TM field to an equivalent dipole with 

normal orientation, where the TE component is associated with a tangential dipole whose 

axis is perpendicularly orientated to the observation direction. Because the power flow in 

ρ direction is significantly larger—by the factor Δ—we use this component to define the 

directivity. According to (5.23), we can define the TM directivity DTM as the ratio of the 

TM power flux densities at far field distances by 

 
 

 
 

*
zTM,

TM ff ff
TM, TM,

ReRe

Re Re

E HS
D

S S



 


   (5.24) 

where Sff
TM denotes the power flux density of the normal equivalent electric dipole 

source pTM with same effective height and radiated power Prad. 

In the same way, the TE directivity DTE is defined using the ratio of the TE power flux 

densities by 
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 
 

 
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*
zTE,
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ReRe
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D

S S



 

   (5.25) 

where Sff
TE denotes the power flux density of the equivalent tangential perpendicular 

electric dipole pTE. In this context, the equivalent power flux density is calculated by the 

Poynting vector of the equivalent electromagnetic field values. Analogous to (5.2) and 

(5.4), the equivalent electric far field can be expressed in terms of the defined dipole ori-

entations by 

 ff E E E0 rad
TM 1, 1, 1,z

P

4
zN N N   




  E e e e  (5.26) 

and  

 ff E E E0 rad
TE 2, 2, 2,

P
sin( ) cos( ) sin( )

4
z zN N N   


  


  E e e e  (5.27) 

where the magnitude of the equivalent dipole momentum is represented by 

2 rad
iso 2

0 0

4
.

P
p


 

  (5.28) 

Using (5.5) and (5.7), the equivalent magnetic far field follows from the same assump-

tion. 

Considering the results given above, the following steps are required to derive the on-

body directivity: At first, the currents on the antenna body are calculated in the presence 

of the human body by a full-wave approach. Then, the related far field is modeled for all 

on-body directions as a function of the observation angle ϕ. To calculate the directivity 

DTM(ϕ) and DTE(ϕ), the corresponding field is separated into TM and TE components. 

Finally, each value is normalized to the far field model of the equivalent dipoles pTM and 

pTE of Fig. 5-14 for each observation angle. Equation (5.28) is used to calculate the mag-

nitude of the equivalent dipole momentums, where the radiated power Prad of the antenna 

is known from the initially used full-wave method. 

At this point, the defined directivity values enable a direct evaluation of the antenna per-

formance in terms of on-body propagations. Here, DTM and DTE define a direct measure 
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to compare the antenna under test in terms of the wave species of a normal, resp. tangen-

tial perpendicular, Hertzian dipole. If we e.g. find an antenna with high DTM value, the 

antenna excites a far field containing a strong Norton surface wave component which 

tends to follow the curvature of the human body. In reverse, if the antenna exhibits a 

high DTE value, the corresponding space wave component tends to be reflected away 

from the body, which may be advantageous in terms of off-body communications. 

5.4.5 On-Body Effective Antenna Area 

As seen from (5.16) and (5.17), the z component primarily maintains the Norton surface 

wave, while the major power flow in the far field is directed parallel to the body surface 

in ρ direction. Therefore, the received power PRX, which is available at a receiving an-

tenna, is proportional to the power flux density Sρ. Neglecting the power flux density in 

z-direction, a definition of the effective TM and TE on-body antenna area seems evident 

by the canonical definition in [Bal05] for plane waves. The on-body effective antenna 

area can then be defined by the ratio of the received power to the power flux density as 

well as by the directivity, as defined above for the TM component by 

 
RX,TM

eff,TM TM2
0TM,Re

P
A D

S 




    (5.29) 

and for the TE component by 

 
RX,TE

eff,TE TE2
0TE,Re

P
A D

S 




   . (5.30) 

The total available power PRX at a receiving antenna is then given by the summation of 

the power delivered by the TM and TE field components, namely 

RX RX,TM RX,TEP P P  . (5.31) 

5.4.6 On-Body Path Gain 

The path gain of an on-body propagation scenario, consisting of a transmitting antenna 

TX and a receiving antenna RX, can be calculated directly using (5.24)–(5.31). If we, for 
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instance, set the radiated power of the transmitter to unity, the path gain PG is 

 

 

ff
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0
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
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
. (5.32) 

In this case, the equivalent dipole momentum of our far field description becomes 

2ff
iso 2

0 0

4
p


 

 . (5.33) 

to result in a conformal expression in terms of units. 

It is inevitable to use the same Bannister parameters, i.e. frequency, ground parameters, 

effective antenna height, to calculate the antenna directivity values and the equivalent an-

tenna far field. However, despite this restriction, (5.32) enables an evaluation of wireless 

on-body links by concentrated antenna parameters. Considering all results of the current 

chapter, this means that the current distributions on the antennas can be used to model 

the whole on-body propagation power budget. Thereby, different antenna combinations 

can be analyzed on the same on-body channel efficiently. Even if a modified channel is 

required, e.g. if the tissue parameters of the ground have to be adjusted, the correspond-

ing adaption can be done with small effort by a recalculation of the antenna current dis-

tribution and the related antenna parameters. In this respect, a variation of the target fre-

quency can be done, which enables the discussion of wide band antenna structures in 

terms of on-body communications for discrete frequency points. By this, even the disper-

sive nature of human tissues is included in the deduced antenna parameters. 

5.4.7 Estimation of the Effective Antenna Height 

As seen above, the derived antenna parameters are calculated assuming the normal and 

tangential equivalent on-body sources of Fig. 5-14. Therefore, strictly seen, the corre-

sponding values are restricted to the chosen equivalent sources setup, i.e. frequency, co-

ordinate origin, tissue type, and effective height. While we have in principle the free 

choice of defining these values, a careful selection of parameters that are linked to the 

underlying setup is preferable. Thereby, insight into related propagation mechanisms, 
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e.g. the dominate wave form, is enabled. With dipole antennas in mind, we estimate the 

effective antenna height by the geometrical center of the dipole. In the context of arbi-

trarily shaped antenna structures, such a direct relationship is not feasible in general. 

In our case, we use a method to estimate the effective antenna height by the current dis-

tribution on the segmented antenna structure. For this purpose, we calculate a weighting 

factor si of each spatial cell, which sets the current density in z direction in relation to the 

total current density of the cell. If we multiply the height of each cell with the corre-

sponding weight factor, the effective height of the antenna arises from normalization to 

the total sum of all weight factors to 

0, ,
1
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


. (5.34) 

 

5.4.8 Example: Antenna: Half-Wave Dipole 

In the following section, the on-body radiation characteristic is discussed using the ex-

amples of differently orientated electric half-wave dipoles. In this context, the on-body 

2D radiation patterns are calculated by the directivity formulations of (5.24) and (5.25) 

using the numerically calculated current distribution on the antenna structure in the pres-

ence of a body phantom by the FDTD software [EMP]. The human body is represented 

by muscle tissue parameters that are taken from Table 4-1, and the effective antenna 

height of the equivalent sources is set to the center of the dipole. The axes of the dipole 

antennas are described by two angles in conjunction with spherical coordinates with θa 

and ϕa, as defined in Fig. 5.16, where the initial axis is aligned in z direction with θa = 0° 

and ϕa = 0°. 
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Fig. 5-16 [Gri15b]: Definition of the inclination angles θa and ϕa of a tilted dipole above a human body 
phantom at effective antenna height h. In addition, the schematic shows the on-body radiation pattern of the 
antenna, which is based on the equivalent sources at the antenna center. 

The canonical dipole orientations of Bannister’s formulation are discussed by half-wave 

dipoles at 2.45 GHz. The effective antenna height is set to a quarter of a free space wave 

length. Because of the thickness of the rod, the antenna is slightly shorter than a half 

wave length, and, therefore, an intersection with the phantom is avoided. As depicted by 

Fig. 5-17, the calculated directivity parameters indicate a TM field which equally radi-

ates in all directions by the normally orientated dipole. The tangential dipole exhibits a 

mixed excitation, where the maximum of the radiated TM field and TE field is directed 

parallel, resp. perpendicular, to the dipole axis. In comparison, the difference of the max-

imum TM values of both orientations is around 20 dB, while the corresponding theoreti-

cal value |Δ|2 of (5.17) suggests a difference of 17.5 dB. This difference results from the 

numerically calculated field values and is related to the finite spatial segmentation of the 

antenna structure. In terms of the high dynamic range between the maximum TM and TE 

field values especially, the calculated value of the TE directivity includes a larger numer-

ical error than the related TM values. Despite this aspect, the 2D on-body radiation pat-

tern reveals the relationship between the antenna orientation and the resulting electro-

magnetic wave form. 
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Fig. 5-17 [Gri15b]: Radiation pattern based on the on-body directivity of differently oriented electric half-
wave dipoles (h = λ0/4, f = 2.45 GHz, γmuscle = (44.8 + j 376) m-1); Solid line: DTM; Dashed line: DTE; 
(a) Normal; (b) Tangential; (c) tilted by 30°; (d) tilted by 60°. 

As can be seen from the radiation patterns, the antenna polarization is directly linked to 

the excited wave form. If, for instance, the normally orientated dipole is tilted toward the 

body surface, we can increase the magnitude of the TE wave component. As seen in 

Fig. 5-17, this is accompanied by a reduction in the TM component. In addition, we can 

observe a deformation of the initial omnidirectional TM pattern, where the difference be-

tween maximum and minimum values for θa = 30°, resp.  60°, is 1.6 dB, resp. 4.3 dB. In 

order to obtain a better insight into the relationship between the dipole orientation and 

the resulting radiation characteristic, various configurations are calculated. The results 
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are listed in Table 5-3, where the directivity is calculated for on-body paths in x direc-

tion. 

 
TABLE 5-3   

ON-BODY DIRECTIVITY OF TILTED HALF-WAVE DIPOLES IN X DIRECTION 

    Label   

Value Unit A B C D E F 

a  ° 0 90 90 45 45 45 

a  ° 0 0 90 0 45 90 

TMD  dB 0.90 -18.1 Inf. -3.99 -2.19 -1.69 

TED  dB Inf. Inf. 1.50 Inf. -4.33 -1.69 

    Label   

Value Unit G H I J K L 

a  ° 45 30 30 60 60 90 

a  ° 180 0 180 0 180 30 

TMD  dB -1.29 -1.32 0.29 -7.78 -3.37 -18.9 

TED  dB Inf. Inf. Inf. Inf. Inf. -5.9 

 

Using the directivity values of Table 5-3, the on-body path gain is calculated by (5.32). 

This enables a direct calculation of the on-body path gain of various dipole combina-

tions. In this context, we are using different setups, and calculate the path gain for a 

propagation distance of three free space wave lengths at 2.45 GHz in x direction. To veri-

fy the validity of the approach, the path gain is calculated using the FDTD software 

[EMP]. The validation setups are computed for the same distance and equal antenna ori-

entations. The path gain is calculated by the ratio of available power at the receiving an-

tenna to the transmitted power. 
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TABLE 5-4   
ON-BODY DIRECTIVITY OF TILTED HALF-WAVE DIPOLES IN X-DIRECTION 

    
 

Link   

Difference Unit AA CC AB AF AJ CL 

ΔPG dB 
0.1
7 

0.0
8 

7.5
2 

0.0
5 

1.6
7 

0.0
6 

 

The difference in the calculated path gain values of both methods is shown in Table 5-4. 

The results indicate that the theory is applicable to most of the combinations investigat-

ed. Only the scenario AB, where the link consists of a normally orientated transmitting 

dipole and a tangentially orientated receiving dipole, the axis of which points in x direc-

tion, shows a non-negligible error. As mentioned in the previous chapter, the inaccuracy 

is related to the two-source model we have selected that lacks the capability to describe 

the TM field of the tangential dipole by a normally orientated equivalent source for small 

antenna distances. However, if we increase the link distance e.g. to 10 free space wave 

lengths, the corresponding error is reduced to 3 dB and converges for an infinite distance 

to zero. 

To obtain a better insight into the general applicability of our approach, the path gain is 

modeled by the concentrated on-body antenna parameters for the link combinations FA, 

FC, and FL as a function of the distance. In this context, the dipole orientation F is cho-

sen due to the fact that equally weighted TM and TE waves are radiated in x direction. 

The FDTD validation setup is computed for the discrete antenna distances 0.3 m, 0.6 m, 

0.9 m, and 1.2 m—see upper schematic of Fig. 5-18. Again, the numerical path gain is 

calculated by the ratio of available power at the receiving antenna to the transmitted 

power. 
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Fig. 5-18 [Gri15b]: Calculated on-body path gain of different half-wave dipole configurations by the de-
duced antenna parameters in relation to numerically calculated values; f = 2.45 GHz; h = λ0/4; γ1 = (44.8 + 
j 376) m-1. 

The results shown in Fig. 5-18 indicate a good applicability of our approach. Even the 

link FL can be modeled accurately, although the receiving antenna is primarily aligned in 

the direction of the propagation. 

5.4.9 Example: Planar Inverted-F Antenna 

To verify the suggested approach in terms of more complex antenna structures, the on-

body antenna parameters of a specific planar inverted-F antenna are calculated. As in the 

previous example, we have calculated the currents on the antenna body by the FDTD 

method under the influence of the immediate vicinity of the human body and modeled 

the antenna parameters by (5.24)–(5.28). Details on the antenna concept itself are in 

[Gri14c] and the primary design parameters are shown in Fig. 5-19 and Fig. 5-20. 
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Fig. 5-19 [Gri15b]: Design parameters of an on-/off-body antenna concept, which was first presentenced in 
[Gri14c]; All measures are given in mm: (a) Planar inverted-F antenna feed for on-body communications at 
5.4 GHz. (b) Extension of the on-body antenna concept by an off-body feed at 2.45 GHz. 

 

 

Fig. 5-20 Planar inverted-F antenna feed for on-body communications at 5.4 GHz. The polyamide frame is 
used to fix the antenna position by an elastic band on the human body. 

The intention of the antenna concept is to enable a good on-body link performance. In 

addition, the antenna module has been extended by a secondary antenna structure that 

aims at off-body radiation at 2.45 GHz. As depicted by Fig. 5-21, the 2D radiation pat-

tern shows in the case of an active on-body feed a dominant and nearly omnidirectional 

TM radiation characteristic, indicating, therefore, a strong excitation of Norton surface 
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waves. This fact is related to the antenna feed, which excites a strong normal current dis-

tribution on the antenna body and so is preferable for on-body communications. On the 

other hand, the off-body feed shows a dominant TE component, which is preferable for 

off-body communication links. 

 

Fig. 5-21 [Gri15b]: On-body radiation pattern of a planar inverted-F antenna with active (a) on-body an-
tenna feed at 5.4 GHz and (b) off-body antenna feed at 2.45 GHz; Solid line: DTM; Dashed line: DTE. 

To verify the accuracy of the derived values, we calculate the path gain of an on-body 

link, which consists of two planar inverted-F antennas of Fig. 5-19a, by the derived an-

tenna parameters and (5.32). The verification of these results is done by the FDTD meth-

od [EMP] for eight discrete distance values. The related propagation path of the numeri-

cal model leads from the hip of the anatomical model “Duke” to the right foot. In addi-

tion, we have measured a corresponding propagation scenario in an anechoic chamber 

with two male volunteers of comparable body shape. The measurement is carried out us-

ing a vector network analyzer to trace the change of the transmission parameter between 

both antennas as a function of the distance to obtain the path gain. To ensure a minimal 

passive coupling between connecting cables and antennas, the cables have been directed 

as much as possible away from the propagation path. In addition, before performing each 

measurement, the cable positions have been varied in order to estimate the influence of 

the cables on our measurement results. Thereby, the cables are routed in such a way that 

each measurement is not significantly affected by changes of the cable positions. The 

(b) Off-body at 2.45 GHz(a) On-body at 5.4 GHz 
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corresponding results are shown in Fig. 5-22 and indicate a good applicability of the de-

veloped approach, even in terms of realistic propagation scenarios. In relation to the 

method presented in [Gri14c], the results show a better accuracy, which is related to the 

clear differentiation of the radiation characteristic in TM and TE component, where the 

preceding method only uses the total field. 

 

Fig. 5-22 [Gri15b]: On-body path gain of a planar inverted-F antenna concept along the leg of the numeri-
cal voxel model “Duke” at f = 5.4 GHz. The path gain has been modeled by the antenna parameters and is 
verified by numerical calculations and measurements. 

5.5 Limitations of the Theory  

Up to here, and in terms of the proceeding results, the underlying equations of Bannister 

assume a homogeneous flat ground. Having body-centric propagation scenarios in mind, 

this assumption is capable of describing the average mean value of the excited field if lo-

cal irregularities of the surface occur, and even local variations of the ground properties 

may be compensated. Norton has discussed both facts in terms of terrestrial applications 

in [Nor37], and we have verified this in terms of on-body propagations in [Gri14b]. Nev-

ertheless, this approach is primarily restricted to line-of-sight links along the human 
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body. In conjunction with [Hal06], the dielectric properties of the body are set to homo-

geneous muscle tissue, which is a common approach to model the human body at ISM 

bands below 10 GHz. If required, this model may even be adapted to a layered ground 

structure by the use of modified ground properties. In this context [Lea09] discusses a 

layered skin-fat-muscle tissue where the ground properties are modified by the surface 

impedance. 

Because our approach is based on a finite segmentation of the antenna within the FDTD 

solution space, antenna concepts of infinite size, e.g. ideal traveling wave antennas or 

slot antennas in infinite screens, cannot be modeled, and have to be approximated by 

their finite-size practical representatives. 

In terms of broad band antennas this method is applicable as long as the desired frequen-

cy band can be broken down into discrete frequency values, where the corresponding di-

electric parameters are adapted to each frequency step. Therefore, our approach is limited 

if time-domain quantities, e.g. pulse distortion, are of interest. 

 

Fig. 5-23 Magnitude of the electric field along an on-body path around the trunk of the voxel model 
“Duke” in relation to the planar LOS channel model based on the Bannister solution; Antenna: on-body at 
f = 5.4 GHz. 

The major drawback of the suggested theory is the lack of description of propagation 
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paths that lead into permanently shadowed body regions. One possible scenario may 

arise if a link proceeds around the human trunk. As shown in Fig. 5-23, where such a 

setup is numerically evaluated on the basis of the example of the “Duke” voxel model, 

the electric field decreases so rapidly that for further distances, the planar on-body chan-

nel model is not capable of following the channel behavior. While in terms of near dis-

tances, a good match is achieved, the far field seems to be to be founded on other physi-

cal principles. Therefore, an adapted on-body channel model for non-line-of-sight propa-

gation paths seems evident and is discussed in the next chapter. 
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Chapter 6  

Non-Line-of-Sight On-Body Propagations 

As seen in the previous chapters, the established on-body antenna theory is limited to 

line-of-sight propagation conditions. Therefore, in the context of the remainder of the 

thesis, a model for body-centric non-line-of-sight propagation conditions is developed. In 

this manner, that theory would be ideal that is compatible with the defined line-of-sight 

case, as well as with the derived on-body far field parameters. With this, scalable channel 

models would be acquired that are capable of dealing with nearly all available wireless 

propagation links along the human body. This implies, especially if we recall Fig. 5-1, an 

adapted NLOS far field model, which is compatible with the LOS planar model. A corre-

sponding example in the case of a NLOS propagation link around the human trunk is 

shown in Fig. 6-1. 

The following chapter is structured into two main sections. The first part discusses cylin-

drical models to describe the basic electromagnetic propagation effects of equivalent 

body-centric scenarios. Here, some general research attempts are introduced in brief, 

while in the course of the following work, the cylinder model of Chapter 3 is used. The 

second part adapts this cylindrical model to the planar model of Chapter 5, to describe 

propagation paths leading into body-shadowed non-line-of-sight regions. The main ob-

jective is, hereby, a good compatibility with the previously defined on-body antenna pa-

rameters. The defined theory is then evaluated by a propagation test scenario around the 

human trunk and verified by the FDTD method as well as by measurements in an ane-

choic chamber on the example of the planar inverted-F antenna, which is already dis-

cussed in terms of the planar LOS model of the previous chapter. 
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Fig. 6-1 Systematic modeling of a wireless on-body propagation link: Separated equivalent antenna and 
channel models are combined to describe the total propagation margin. 

6.1 The Cylindrical Model in Relation with Full Human Body 

Models 

In terms of body-centric communications, [For10] suggests the concept of a dissipative 

dielectric cylinder to model the path gain of propagation links around the human trunk 

and verifies the assumption by measurements on human test persons. The main benefit of 

this model is the availability of all field components for the whole solution space. The 

main drawback results from the solution concept itself, which is limited to tangential (in 

relation to the cylinder surface) antenna polarizations. This fact is especially restrictive if 

we have Norton’s derivations in mind, which state that a normal antenna polarization 

contributes significantly to the on-body propagation. 

Another NLOS approach is presented in [Alv11], which derives a corresponding cylin-
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drical model from the creeping wave theory of wireless terrestrial communications. In 

this context, [Wai60] indicates that bended dielectric surfaces are capable of preserving 

electromagnetic wave modes which travel in such non-line-of-sight regions, where the 

key points of the theory are summarized in [Wai98]. This model is adapted in [Alv11] to 

describe the path gain around the human trunk and is verified by measurements of spe-

cific antenna setups on human test persons, where the results indicate a good applicabil-

ity of the suggested model. The advantage of this model is a straightforward path gain 

model with relative less effort. In contrast, the model gives no direct insight into the sep-

arated field quantities for a specific antenna configuration and achieves the results only 

by approximation of free space antenna parameters and reference measurements. In addi-

tion, this fact makes it difficult to adapt the desired NLOS model to our derived on-body 

antenna parameters of Chapter 5. Keeping this aspect in mind, and especially the geo-

metric versatility of the first model, the following NLOS model is based on an adaption 

of the theory of [For10], and is discussed in the following. 

6.1.1 Comparison between Theoretical and Numerical Models 

As seen in Chapter 3, the suggested cylindrical model is capable of describing the radiat-

ed field of the tangential dipoles p2 and p3 along the on-body path dp. The corresponding 

setup is summarized in Fig. 6-2, where the related dipole is positioned in free space γ0 at 

effective antenna height h above the dissipative dielectric cylinder γ1 with radius a. 

 

Fig. 6-2 Evaluation setup to compare the tangential dipole orientations p2 and p3 of the cylindrical model 
in relation to equivalent FDTD models. 

z x

(a)
y

z x

(b)
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a
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To verify the cylinder model presented in Chapter 3, the magnitude of the power flux 

density along the on-body path dp is calculated by the model and the FDTD method. In 

terms of the cylindrical model, the radiated field of dipole p3 is calculated by (3.20)–

(3.27) using the related coefficients of (3.32), and the field of p2 by (3.37)–(3.47), con-

sidering (3.50). The cylinder radius is set to a = 0.15m to model a bending radius equal 

to the human trunk of the “Duke” voxel model and set to the properties of homogeneous 

muscle tissue at a solution frequency of f = 2.45 GHz. The effective antenna height is set 

to h = λ0/4. Further, the FDTD method assumes a half-wave dipole. To compensate loss-

es related to detuning effects and the directivity of the half-wave dipole, the far field 

model calculated by the cylindrical model is normalized to the results of the FDTD mod-

el at dp = 0.1 m. The results of both methods are shown in Fig. 6-3 for both antenna ori-

entations. 

 

Fig. 6-3 Magnitude of the power flux density along the path around the cylinder (a = 0.15 m, 
f = 2.45 GHz, γ1 = (44.8 + j 376) m-1). Lines: Calculated by the FDTD method; Doted values: Calculation 
based on the cylindrical model. 

0.1 0.2 0.3 0.4 0.5 0.6
-60

-50

-40

-30

-20

-10

0

10

20

dp [m]

S
[d

B
W

m
-2

]

p
3
: Model

p
3
: FDTD

p
2
: Model

p
2
: FDTD



6.2 Modeling of the Radiated NLOS Antenna Field 

123 

Considering the results, both methods show good agreement with each other, and, there-

fore, imply a good applicability of the cylindrical setup as an on-body far field model. 

The small fluctuations are related to numerical errors. In terms of the cylindrical model, 

these fluctuations can be led back to the discretization of the contour integral of Fig. 3-3 

as well as the representation of the Bessel and Hankel functions by an infinite number of 

elements. This error vanishes at the main field component and arises primarily from the 

weaker field components. As seen in [For10], the chosen contour has an effect on the so-

lution time as well as the numerical error. In our case, we have chosen a contour with 

C = 20, which results in a fast derivation time as well as the numerical error that occurs. 

6.2 Modeling of the Radiated NLOS Antenna Field 

To develop a consistent NLOS channel model, the total characteristic of the channel has 

to be broken down into a TM- and a TE-related NLOS far field. As defined in Fig. 5-14, 

to satisfy this demand, we need the equivalent dipole configurations pTM and pTE. As pTE 

corresponds to the tangential dipole orientation p3, unfortunately, pTM is defined using 

the dipole orientation p1. And here, as mentioned above, related to the solution of tan-

gential boundary conditions of (3.32) and (3.50), the cylindrical model is not capable of 

delivering a solution of the normal dipole orientation p1. In the following, a workaround 

for this problem is delivered, and a method to model the general radiated antenna far 

field for non-line-of-sight scenarios is defined. 

6.2.1 Analogy Considerations in Terms of the Planar Model  

In case of the planar model, as demonstrated in the previous chapter, we are capable of 

describing the radiated TM component of the antenna far field by one single dipole. This 

approach uses the fact that the far field of the dipole p1 and p2 converges into each other 

for sufficient far distances. If we consider the planar case as a cylinder with infinite radi-

us a, the effects of the primary propagations should nearly be the same if we slowly de-

crease the radius. Moreover, if we significantly decrease the bending radius, the 

weighting of the contribution wave modes may change in relation to the planar case, but 

the general wave form remains. This implies that in case of the cylindrical model, the 

tangential dipole orientation p2 can still describe the TM antenna far field and, therefore, 
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may deliver a TM NLOS far field model. To evaluate this assumption, the previous ge-

ometry of Fig. 6-2 is revisited, extended by the normal dipole orientation p1 and solved 

by the FDTD method. As the illustrated results in Fig. 6-4 reveal, the radiated power flux 

density of the dipoles p1 and p2 show at quasi-static distances significant differences in 

their field behavior, but for farther distances, e.g. at distances above 0.1 m, the field 

components decay parallel to each other while the magnitude of the orientation p3 drops 

in a significantly stronger manner. 

 

Fig. 6-4 Magnitude of the power flux density along the path around the cylinder (a = 0.15 m, 
f = 2.45 GHz, γ1 = (44.8 + j 376) m-1) calculated by the FDTD method of the three basic dipole orientations. 

The assumption is consolidated if we compare (3.28) and (3.29) with (3.46) and (3.47), 

where p2 shows a TM and p3 a TE radiation characteristic. This implies that the NLOS 

channel can be modeled as well as the planar model by a separated TM and TE antenna 

far field, where the dipole orientation p2, resp. p3, can be used to calculate the TM, resp. 

TE, far field behavior. Related to the theory, as described in Chapter 3, we are now ca-

pable of calculating the average electromagnetic field behavior around the human trunk 
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as a function of various parameters, e.g. frequency, effective antenna height and bending 

radius. 

6.2.2 Non-Line-of-Sight Far Field Model  

As discussed above, the possible separation of the NLOS on-body far field in TM and 

TE far field components enables a treatment of such scenarios as channel modification of 

the planar case. To realize the systematic model of Fig. 6-1, we can now use the derived 

on-body parameters of Chapter 5 to calculate the radiated antenna field. Owing to the 

underlying field equations, which are based on Bannister’s solution and so are applicable 

to quasi-static ranges, the solution is appropriate for planar path segments dp,1 near the 

antenna. Even for scenarios where the antenna is positioned in regions of small bending 

radii, the steady adaption of the electromagnetic field enables the description of the field 

within the quasi-static field range. The EM field along the following NLOS path segment 

dp,2 is than estimated by the cylindrical model and normalized to the underlying LOS 

values. The general procedure is illustrated in Fig. 6-5 where, on the example of an on-

body path around the human trunk the total observation path is systematically divided in-

to a planar and a cylindrical model. 

 

Fig. 6-5 On-body antenna and far field modeling: (a) General on-body propagation path dp,total leading 
around the human trunk; (b) Cylindrical far field model to model the NLOS path segment dp,2; (c) Planar 
model to model the coupling between antenna/human body and the quasi-static path segment dp,1. 
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As shown in [For10] and [Alv11], the field quantities related to an on-body path around 

a dissipative dielectric cylindrical surface decay exponential with increasing distances dp. 

Knowing this behavior, it enables a direct extraction of the average field attenuation fac-

tor from our cylindrical model. To normalize the NLOS description to the LOS model, 

we can now define the normalization distance dpn to calculate the related field quantity 

along the bended path dp. In case of the TM component, the related model function of the 

magnitude of the complex electric field is given by 

E,TM p pn( )

TM,NLOS TM,LOS pn( )
d d

E E d e
   , (6.1) 

where αE,TM is the complex attenuation function of the TM field component. Defining the 

complex TE attenuation function αE,TE, an equal expression can be given for the TE com-

ponent with 

E,TE p pn( )

TE,NLOS TE,LOS pn( )
d d

E E d e
   . (6.2) 

Equations (6.1) and (6.2) can be found for the magnitude values as well as for each field 

component. Finally, the total electric field results from the combined vector components 

of the TM and TE field with 

NLOS TM,NLOS TE,NLOS E E E . (6.3) 

Here, the normalization values ETM,LOS and ETE,LOS at normalization distance dpn are cal-

culated by the planar model, i.e. utilizing (5.26), resp. (5.27). In the same way, the mag-

netic field components can be modeled. Using the Poynting vector, the power flux densi-

ty can be calculated and, considering (5.29)–(5.31), even the path gain can be obtained in 

case of non-line-of-sight propagations. 

In general, the normalization distance is not equal to the maximum distance segment 

value dp,1 as defined by Fig. 6-5. Instead, the propagating wave has to converge from the 

planar geometry to the cylindrical geometry. Based on our calculations, it seems that this 

process takes place in terms of surface bound antennas along a distance of around a free 

space wave length, i.e. the normalization distance dpn should set to dp,1 + λ0. 
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6.2.3 Discussion on Channel Parameters as a Function of the Body Geometry 

The option to model the electric field quantities, and the linked values, by an intuitive 

exponential function enables a straightforward discussion of the NLOS channel charac-

teristic. This means that general setup parameters, such as frequency, effective antenna 

height, polarization, bending radius and tissue type, may be varied, and the resulting 

change in the attenuation function can be evaluated in terms of NLOS propagations. The 

discussion of the power flux density seems especially favorable, as it is by (5.32) directly 

related to the path gain. In conjunction with (6.1) and (6.2), we can define the magnitude 

of the power flux density by 

S p pn| |( )

NLOS LOS pn( )
d d

S S d e
   , (6.4) 

where |αS| is either calculated for the TM or TE case. On the example of a low-profile an-

tenna concept, i.e. the effective antenna height is set to a tenth of a free space wave 

length, Fig. 6-6 shows a discussion of the attenuation function as a function of the bend-

ing radius a for the TM and TE case. The frequency of interest is set to f = 2.45 GHz, 

f = 5.4 GHz, and f = 10 GHz, while the dielectric properties of the cylinder are assumed 

to be homogeneous muscle tissue. 

As seen from the results of Fig. 6-6, the attenuation decreases with increasing bending 

radius. While a radius of a = 0.05 m is within the range of the radius of a leg, a radius 

with a = 0.5 m tends to represent a slightly bended propagation path above the trunk. If 

we consider, for instance, the antenna concept of Fig. 5-19, i.e. the frequency is 5.4 GHz 

and we only consider a TM propagation, the first case shows in comparison to the second 

case a four times higher attenuation function, while the second case tends to converge to 

the attenuation behavior of the planar model. In addition, we can observe that the TE 

case suffers from stronger attenuation effects than the corresponding TM scenario. If we 

consider the variation in the frequency, the TM propagation link strength benefits from a 

lower attenuation factor, while the TE case shows the opposite dependency for small 

bending radii and adapts to the TE behavior for nearly planar propagation conditions. 
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Fig. 6-6 Absolute value of the NLOS attenuation coefficient αS of the magnitude of the power flux densi-
ty along an on-body path around a muscle tissue like cylinder with radius a for TM and TE propagations 
(path height h = λ0/10). 

6.2.4 Example: On-Body PIFA on Human Trunk 

In the following, the planar inverted-F antenna concept of Fig. 5-19 is used to evaluate 

the theory for a given on-body NLOS scenario. The radiating antenna is positioned on 

the belly of the human body. The receiving antenna is assumed to be moved around the 

trunk to the back. The general geometry is shown by an axial cut of the “Duke” voxel 

phantom in Fig. 6-7 at waist height. 

The approximated circumference of the “Duke” model at this cut level is around 0.72 m. 

Related to the approximated geometry, a planar model is assumed for distances below 

dp = 0.05 m, while further distances are modeled by a homogeneous muscle tissue like 

cylinder with radius a = 0.105 m. The whole on-body path dp is estimated to proceed at 

an effective antenna height of h ≈ λ0/10 which is approximated by (5.34). The normaliza-

tion distance is set at dpn = 0.05 m + λ0 ≈ 0.1 m. The general setup is evaluated by the 

FDTD method as well as by measurements in an anechoic chamber on two different test 
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persons using a vector network analyzer to trace the change of the transmission parame-

ter between both antennas as a function of the distance to obtain the path gain. Corre-

sponding to the measurements on the leg, a minimal coupling between connecting cables 

and antennas by sheath currents has been minimized as cable positions pointing away 

from the main link path. Also, before performing each measurement, the position of the 

cables is varied in order to minimize the influence of the cables on our measurement re-

sults. The test persons as well as the voxel model are positioned in such a way that the 

arms are lifted to the shoulder level to minimize disturbing reflections. The resultant path 

gain of all methods is shown in Fig. 6-7 and indicates a good applicability of the non-

line-of-sight approach that has been developed.  

 

Fig. 6-7 On-body path gain of a planar inverted-F antenna concept around the trunk of the numerical 
voxel model “Duke” at f = 5.4 GHz. Dotted line: Path gain below dp = 0.1 m has been modeled by the anten-
na parameters of the planar model; Solid line: Distances further than dp = 0.1 m are modeled by the cylindri-
cal model; Circle values: Evaluation values calculated by the FDTD method; Triangle values: Measurements 
in anechoic chamber. 
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Chapter 7  

Conclusion 

This thesis presents an approach that deals with certain key problems to model wearable 

wireless applications under the aspect of body-centric communications. Hereby, the fo-

cus is on a method to derive antenna body-centric parameters that can be used in an in-

tuitive manner, as known, by the well-established free space antenna theory. 

The results of the thesis indicate a good applicability of the Bannister model to on-body 

propagations, especially for high water content tissues like muscle and skin. Moreover, 

quantities like the numerical distance and the ratio of the space wave to the Norton sur-

face wave are useful measures to evaluate the propagation mechanisms of a certain ap-

plication field. Particularly advantageous is the fact that the numerical distance offers a 

direct insight into the body-centric propagation mechanisms, including frequency and 

media parameters, without the need for the closed solution of related field equations. 

Furthermore, the ground wave theory enables a determination of optimal coupling condi-

tions, either for the excitation of Norton surface wave or space waves, which are valua-

ble for the purpose of antenna design. 

In addition, a method to model the radiated on-body field of arbitrarily shaped antennas 

by a combined numerical and analytical approach is presented. It includes a definition of 

the corresponding on-body directivity and on-body effective antenna area. Based on the 

TM and TE field components, this enables the definition of a 2D on-body radiation pat-

tern, which is discussed through canonical and realistic examples. This antenna de-

embedding concept enables the calculation of the on-body path gain under the premise 

that they can be sufficiently approximated by a homogeneous planar ground. In compari-
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son with entire full-wave simulations of whole on-body links scenarios, including trans-

mitting antenna, channel, and receiving antenna, this approach enables a more flexible 

testing of different antenna configurations. Finally, it can help us gain a better under-

standing of which antenna characteristic should be used for a specific on-body channel. 

Because of the underlying planar phantom, the given theory is, in the first place, restrict-

ed to line-of-sight links. Despite this fact, the results reveal a dominant Norton surface 

wave component of antennas located in close proximity of the body surface. While the 

diffraction effects of the space wave component may have no notable contribution to 

non-line-of-sight links, the surface guided character of the Norton surface wave may help 

us reach shadowed body regions. For these scenarios, a transfer of the Norton surface 

wave theory in terms of a bended ground seems desirable, as the dominating wave spe-

cies seems to be preserved. 

To cover non-line-of-sight propagation cases, a dissipative dielectric cylinder model is 

used to estimate the corresponding radiated electromagnetic field as a function of the 

bending radii and other exchangeable parameters. The related field quantities can hereby 

be described by an exponential attenuation function, which can be treated as a related far 

field channel parameter of the planar model. This adaption allows the characterization of 

body-worn antennas even in case of non-line-of-sight propagations by TM- and TE-

equivalent far field parameters. Moreover, the combination of the LOS and NLOS mod-

els enable an evaluation of a huge number of possible on-body link combinations by 

scalable propagation parameters, while the defined antenna measures can be used to clas-

sify the related antenna performance in these scenarios. 
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Appendix A  

A1 Recurrence Formula of the Bessel Equation 

The recurrence formula B’m of a given Bessel or Hankel function of the first or second 

kind Bm is defined by [Ref_Chew] for cylindrical coordinates as follows: 
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B k B k B k

k
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The derivation of the Function Bm is, therefore, related to its recurrence formula by 
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Appendix B  

B1 Gabriel Parameters of Human Body Tissues 
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Appendix C  

C1 Ground Wave Attenuation Factors 

As seen from (2.70) and (2.71), the radiated electric and magnetic fields can be broken 

down into a spatial attenuation term, which is proportional to ρ-1, and a ground wave at-

tenuation function NE, resp. NH. While magnitude of the excitation is directly proportion-

al to the dipole momentum p = Iℓ, the dipole position and orientation has a major effect 

on the radiated wave specie and, therefore, affects the connected attenuation factors. As 

illustrated in Table 2-1, we have to distinguish between two major dipole orientations—a 

normal orientation p1 and a tangential orientation p2—to be capable of describing the ra-

diated field of our basic dipole orientations of Fig. 2-3. The defined factors are based on 

P. Bannister’s solution [Ban84a, Ban84b] of the Sommerfeld problem and are limited to 

media with |n2| > 10 in general. 

Normal dipole p1, attenuation factors of the electric field components: 
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Normal dipole, attenuation factors of the magnetic field components: 
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Tangential dipole p2, attenuation factors of the electric field components: 
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Tangential dipole p2, attenuation factors of the magnetic field components: 
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Appendix D  

D1 Recursive Field Components of the FDTD Method 

Corresponding to [Gus06], the recursive functions of the electric field values are 
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And the recursive functions of the magnetic field values are 
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