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Abstract 
 

Purpose of this project is a) the evaluation of the Thrust Specific Fuel Consumption (TSFC) 

of jet engines in cruise as a function of flight altitude, speed and thrust and b) the determina-

tion of the optimum cruise speed for maximum range of jet airplanes based on TSFC charac-

teristics from a). Related to a) a literature review shows different models for the influence of 

altitude and speed on TSFC. A simple model describing the influence of thrust on TSFC 

seems not to exist in the literature. Here, openly available data was collected and evaluated. 

TSFC versus thrust is described by the so-called bucket curve with lowest TSFC at the bucket 

point at a certain thrust setting. A new simple equation was devised approximating the influ-

ence of thrust on TSFC. It was found that the influence of thrust as well as of altitude on 

TSFC is small and can be neglected in cruise conditions in many cases. However, TSFC is 

roughly a linear function of speed. This follows already from first principles. Related to b) it 

was found that the academically taught optimum flight speed (1.316 times minimum drag 

speed) for maximum range of jet airplanes is inaccurate, because the derivation is based on 

the unrealistic assumption of TSFC being constant with speed. Taking account of the influ-

ence of speed on TSFC and on drag, the optimum flight speed is only about 1.05 to 1.11 the 

minimum drag speed depending on aircraft weight. The amount of actual engine data was ex-

tremely limited in this project and the results will, therefore, only be as accurate as the input 

data. Results may only have a limited universal validity, because only four jet engine types 

were analyzed. One of the project's original value is the new simple polynomial function to 

estimate variations in TSFC from variations in thrust while maintaining constant speed and 

altitude. 

  



 

 

 

 

 

 

 

DEPARTMENT OF AUTOMOTIVE AND AERONAUTICAL ENGINEERING 

 

Characteristics of the Specific Fuel Consumption 

for Jet Engines 
 

Task for a Project 

 

Background 

The Specific Fuel Consumption (SFC) of a jet engine c is defined per thrust and called more 

precisely also Thrust-specific Fuel Consumption (TSFC). This common definition comes 

from the fact that thrust (and not power) is measured on jet engine test stands. Engine effi-

ciency is however related to power. It follows from first principles that c must depend on the 

speed of the aircraft V (or Mach number). The most simple representation of this is a linear 

function c = ca 
.
 V + cb. Other operating conditions that have an influence on TSFC are thrust 

(equal to aircraft drag in unaccelerated horizontal cruise flight) as well as all parameters that 

depend on flight altitude (air temperature, pressure, density, speed of sound). Some of these 

parameters are included in a model by HERRMANN, which unfortunately does not account for 

thrust. 

 

Task 

The task of this project is to investigate TSFC dependencies especially with respect of thrust. 

Following subtasks have to be considered: 

 Explain the principles of specific fuel consumption. Investigate TSFC dependency on 

speed and on altitude. 

 Do a literature review of models for the estimation of TSFC dependency on thrust. 

 Do a literature review of data sources providing TSFC dependency on thrust. 

 Analyze the data and find a way to estimate the influence of thrust on TSFC. 

 Evaluate the importance of including the thrust dependency on TSFC in calculations. 

 Re-evaluate the optimum speed for the maximum range with the investigated TSFC 

dependencies and compare the result with the "classically" taught optimum aircraft 

speed. 

 

The report has to be written in English based on German or international standards on report 

writing. 
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1  Introduction 
 

1.1  Motivation 

 

This Project is based on Scholz 2017, where the author’s conclusion is that the academically 

taught optimum speed for maximum range needs to be reconsidered. In the memo, the author 

points out, that the Power Specific Fuel Consumption (PSFC) can be considered constant, 

however, the Thrust Specific Fuel Consumption (TSFC) is dependent on True Air Speed 

(TAS). The PSFC and TSFC are coupled by the factor of TAS. If the Breguet-Range-

Equation is written for both cases it delivers different results for the optimum speed for the 

maximum range. In case of constant PSFC, the result is the minimum drag speed, in case of 

constant TSFC, the result is 1,316 times the minimum drag speed, which is the conventional 

academically taught version. In the frame of this problem, the dependencies of the TSFC on 

altitude, flight speed and thrust need to be investigated and the resulting optimum speed for 

the maximum range has to be recalculated. 

 

 

 

1.2  Definitions 

 

Thrust Specific Fuel Consumption (TSFC) 

To compare the performance and efficiency of different engines, one can divide the mass flow 

of fuel by the thrust that is produced by the engine. The TSFC, therefore, shows how much 

fuel the engine needs for a unit of thrust. The smaller the TSFC, the better the efficiency of 

the jet engine. 

 

 
T

m
cTSFC F

T


  (1.1) 

 

Jet Engines 

Jet engines are air-breathing propulsion systems that are used to power and propel aircraft. A 

compressor compresses the air; heat is added in the combustion chamber and the air leaves 

through a turbine which powers the compressor. The excess energy results in thrust. The 

thermodynamic principle is called the Brayton Cycle. In turbofan engines, the turbine also 

powers fan blades that accelerate surrounding air masses that bypass the engine. The ratio be-

tween the air masses that bypass the engine to the air masses that go through the engine is 

called bypass ratio. Nowadays the trend goes towards high bypass ratio engines since they are 

more fuel efficient. 
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1.3  Objectives 

 

The objectives of this project are to give the reader a good overview of TSFCs dependencies 

on parameters as found in the Breguet Range Equation. The dependencies on altitude, speed 

and drag (and hence thrust) have to be investigated including their importance for aircraft de-

sign and performance. Other parameters of the engine such as the bypass ratio or the overall 

pressure ratio will not be investigated since they are basically fixed as a design choice and 

less related to flight conditions in cruise. Furthermore, the optimum speed for maximum 

range has to be numerically calculated based on the investigated TSFC dependencies. 

 

 

 

1.4  Literature 

 

The basis for this project is Scholz 2017 and an Excel-File by Prof. Scholz, which compares 

the TSFC models from Herrmann 2010 and Roux 2002. Both have adjusted previous mod-

els. While Herrmann adjusted the model from Torenbeek 1982 by changing the numerical es-

timation of efficiencies for single elements in the turbofan engine, Roux adjusted a model 

from Mattingly 1996 to fit the SI units instead of the imperial system. 

 

Nowadays the main goal in aviation is to keep down the fuel consumption. This is because of 

environmental responsibility but mainly because of Direct Operation Costs (DOC). The math-

ematics behind it is quite simple: The more fuel you burn, the more expensive the flight will 

be. That is the reason why engine manufacturers protect their most valued data, the TSFC, 

like nothing else. You can find a lot of data on thrust, geometry or basic assembly; however, it 

is insanely difficult to find actual data on fuel consumption. Multiple engine manufacturers 

compete in the global aviation market and do not want their main selling point to be openly 

available.  

 

In the course of this project a few literature sources were obtained, where a relation between 

thrust and TSFC is presented. One of these sources is Hill 1992, where data from Rolls-Royce 

can be seen. Another one is Mattingly 1996, who published data from Pratt & Whitney. Fur-

thermore, numerical simulations of turbofan engines were obtained from Risse 2014 and 

Scholz 2018a. 

 

In Schulz 2007, the author gives a good overview of the literature about TSFC. It covers dif-

ferent approaches by different authors on how TSFC may be estimated for aircraft design. 

There are multiple approaches for TSFC change due to speed or altitude. Unfortunately, he 

does not cover the TSFC dependency on thrust in great detail.  
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General equations on drag, range, and performance are from Young 2001, where everything 

is collected in form of lecture notes for flight mechanics. 

 

 

 

1.5  Structure 

 

The main part of this project is structured as follows: 

 

Chapter 2  explains fundamentals of fuel consumption and range calculation. Further-

more, two different derivations of optimum speed for maximum range, with 

different results, are shown. Additionally, a program that was used through-

out this project is presented. With the program, the user may extract data 

from a graph whose origin data is not available. 

 

Chapter 3  shows the dependency of TSFC on altitude change, while speed and thrust 

are being kept constant. 

 

Chapter 4  shows linear and non-linear models to describe TSFC dependency on speed, 

while maintaining constant altitude and thrust. 

 

Chapter 5  evaluates the influence that thrust change has on TSFC, while speed and al-

titude are being kept constant. Multiple data sources are identified and ana-

lyzed which ultimately results in an equation that allows estimating the 

TSFC dependency on thrust under cruise conditions. 

 

Chapter 6  re-evaluates the optimum speed that aircraft have to fly to reach their maxi-

mum range. The TSFC dependencies from Chapter 3 through 5 are the basis 

for this numerical optimization. 
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2  Fundamentals 
 

2.1  Definitions of Thrust, Speed, and Altitude 

 

Thrust 

Thrust is the force that moves the aircraft through the air. It is the force that overcomes the 

drag on the aircraft. In cruise flight, the thrust equals the drag, hence there is no acceleration 

of the aircraft. Air-breathing engines generate thrust by accelerating masses of gas. According 

to Newton’s third law, the force gets generated in the opposite direction in which the gas is 

accelerated. In the combustion chamber, fuel is burnt and heat is added to the gas. The gas 

expands and accelerates out of the rear of the engine, pushing the aircraft forward. 

 

Speed 

Often, speed and velocity get confused. While speed is a scalar and consists of distance and 

time, velocity is a vector and consists of distance, time and direction of motion. For example, 

negative velocities are possible, while negative speeds are not. The average speed gets calcu-

lated as the distance over time, while the average velocity gets calculated by displacement 

over time. If an Olympic runner, for example, runs exactly one lap, he might have an average 

speed of 10 m/s while having an average velocity of 0 m/s. In this project, however, the terms 

speed and velocity are used interchangeably. They are both used in an effort to maintain dif-

ferent conventions at the same time. For example, the flight speed is called true airspeed 

(TAS), while in several equations from flight mechanics a V for velocity is used. From a 

physical point of view, the interchangeability of both terms may not be correct. However, in 

this project velocity and speed will actually turn out to be identical, since the focus is set on 

level cruise flight. Usually, aircraft travel on a straight line during cruise and therefore dis-

tance and displacement are identical. Moreover, there is a difference between TAS and 

ground speed. TAS is the speed with which aircraft move through the surrounding air, while 

ground speed is the speed of aircraft over the ground. For example, if an aircraft has a TAS of 

100 m/s and there is a headwind of 100 m/s, the ground speed will be 0 m/s. In this project, 

when speeds or velocities are mentioned they represent the TAS. 

 

Altitude 

Altitude is the height above sea level. Generally, changing altitude results in changing ambi-

ent conditions. In the troposphere, the ambient pressure, temperature, and density will de-

crease with increasing altitude. In the stratosphere, the temperature remains constant, while 

the pressure and density further decrease with increasing altitude. In this project, the Interna-

tional Standard Atmosphere (ISA) is used as a basis for calculating densities and temperatures 

in different altitudes. 
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2.2  Power Specific Fuel Consumption (PSFC) 

 

The comparison of efficiency and performance of turboprop engines is usually done with the 

PSFC. It is the mass flow of fuel divided by the power outtake of the engine. The PSFC, 

therefore, shows how much fuel the engine needs for a unit of power. The smaller the PSFC, 

the better the efficiency of the engine. 

 

 
P

m
cPSFC F

P


  (2.1) 

 

Since the power of an aircraft equals the thrust times velocity (P = T V), the connection be-

tween PSFC and TSFC is 

 

 VccTSFC PT   . (2.2) 

 

 

 

2.3  Breguet Range Equation 

 

In the derivation of the range equation, assumptions must be made. According to 

Young 2001, there are usually three flight schedules that are considered. The Breguet Range 

Equation considers the flight schedule where velocity V and lift coefficient CL are being kept 

constant while the altitude h may vary. Since the altitude has to vary to keep the other pa-

rameters constant, this flight schedule is also named cruise-climb. The derivation of this range 

equation is the easiest and in terms of aircraft design the most elegant version, since you are 

able to see the influences each parameter has on the range. However, due to Air Traffic Con-

trol (ATC), this flight schedule cannot actually be flown. You are assigned a speed and an al-

titude by the ATC, the CL, therefore, changes due to reduced weight which is a result of burnt 

fuel. A common practice is the step climb, where the pilot requests new flight levels as fuel is 

burnt. This simulates a cruise-climb and that is why the relative error of the Breguet Range 

Equation can be ignored. 

  

 









2

1ln
m

m

gc

VE
R

T

 (2.3) 

 

Considering (2.2), the Breguet Range Equation may also be written as: 

 

 









2

1ln
m

m

gc

E
R

P

 (2.4) 
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Where: 

 E is the gliding ratio L/D 

 g is the gravitational acceleration 

 m1 is the starting mass 

 m2 is the final mass 

 V is the velocity 

 

 

 

2.4  Optimum Speed for Maximum Range 

 

2.4.1  Academically Taught Derivation 

 

The optimum speed for maximum range follows from a maximum Specific Air Range (SAR). 

SAR is defined as the distance travelled per unit fuel mass consumed. The inverse 1/SAR is 

the fuel consumption, which has to be minimized (Young 2001). 

 

 
V

Dc

T

Tc

V

Q

dt

dx

dt

dm

dx

dm

F

F 




























  (2.5) 

 

The minus sign in (2.5) stems from the fact that the change in fuel mass dmF is negative. In 

the academically taught derivation, cT (TSFC) is considered to be constant (Young 2001). 

Therefore, the range is a maximum when D/V gets minimized. D is a function of speed and 

must, therefore, be estimated by 
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Where: 

 D is the drag 

 CD0 is the zero-lift drag coefficient 

 ρ is the density 

 S is the wing area 
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 V is the true airspeed 

 W is the weight of the aircraft 

 e is the Oswald factor 

 A is the aspect ratio that can be calculated by 

 

 
S

b
A

2

  (2.8) 

 

 where b is the wingspan 

 

With (2.7) then follows: 
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 mdopt V
A

B
V  316,13 4

1

14  (2.10) 

 

with       4

1

1

A

B
Vmd 

   .

  

 

 

 

2.4.2  Derivation Using PSFC 

 

According to Scholz 2017, there could also be a different derivation of the optimum speed for 

the maximum range. He states that TSFC is a linear function of speed and because of (2.2) it 

is a better assumption to consider cP (PSFC) to be constant then considering cT (TSFC) to 

be constant. Based on (2.5) we can write 

 

 Dc
V

Dc

dx

dm
P

F 









   .

 (2.11) 

In (2.11) only drag D needs to be minimized for a minimum fuel consumption and maximum 

Specific Air Range (SAR). The speed for minimum drag is simply the minimum drag speed 

Vmd and therefore, the optimum speed is in this case 
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1

1
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B
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2.5  Data Extraction with WebPlotDigitizer 

 

For this project, no numerical data on TSFC were available. Hence, diagrams from multiple 

publications had to be re-engineered into numerical data to be able to perform further analyses 

on the provided information. In order to do the re-engineering, multiple programs were tested 

and the WebPlotDigitizer turned out to be the best fit for this project. While other programs 

might have been more advanced in terms of digitalization of polar plots or comparable diffi-

cult plots, they were also more complicated to handle and often not entirely open source. The 

WebPlotDigitizer is open source, easy to handle and its limited capabilities are more than 

enough for the plots that needed to be digitalized during this project. As of June 2018, the 

program may be accessed through a browser under Rohatgi 2018. 

 

 
Fig. 2.1 WebPlotDigitizer on the example of a graph from Hill 1992 (p. 197) 

 

In Fig. 2.1 the reader can see a screen capture of the program’s interface. Once an image is 

uploaded to the program an initial calibration of both axes needs to be done. Two points on 

each axis have to be selected with the cursor. A dialog box will pop up and values for the se-

lected four points need to be entered, at this stage, the user can enter whether the axes are 

scaled linearly or logarithmically. After the calibration is done, data may be extracted from 

the picture. 

 

On the left-hand side, the different datasets can be managed and the calibration of the axes 

can be adjusted or completely redone. On the right-hand side, the different tools for the data 
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extraction are displayed. One can choose between a box and a pen to highlight the area in 

which the program is looking for data to extract. The selected area can be adjusted by erasing 

certain parts of it, this allows the user to select the entire plot at first and only erase the un-

wanted area. Once an area is selected, either a foreground or background color is selected, so 

that the program can properly identify the targeted curve. Additionally, the algorithm for data 

extraction can be chosen. In this project “Averaging Window” was used in each scenario. 

Values for delta x and delta y have to be entered, the smaller the entered values, the higher the 

density of points on the curve. Finally, the program may be executed by clicking “Run”. De-

pending on how accurately the area was selected, the generated points will be distributed on 

surrounding curves as well as on the targeted curve. In the example of Fig. 2.1, one can see 

that some generated points are slightly off. On the right-hand side, there are tools to add, re-

move or adjust any given point. The magnifying glass in the top right corner helps with the 

accuracy of this task. To complete the data extraction, the data viewer can be opened on the 

left-hand side. The sortation and separation, as well as the formation of the data, can be ad-

justed and finally, the data may be downloaded as a CSV file. 

 

The program is very well documented. For further information or detailed video tutorials on 

how to properly use the program, one may click “Help” in the upper left corner.  
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3  TSFC Dependency on Altitude 
 

Up to the tropopause air temperature drops with altitude. Jet engines benefit from a big 

temperature difference between maximum internal temperatures (limited by engine material) 

and outside air temperature. For this reason jet engine efficiency increases with altitude up to 

the tropopause. Hence, a drop of TSFC with altitude can be expected. However, this was not 

reflected in the literature review. Furthermore, since jet transport airplanes usually cruise 

in the stratosphere where temperature is constant with altitude only little variations of 

TSFC with altitude are expected in the stratosphere where these aircraft cruise. 

 

According to Schulz 2007, there are only a few models to describe the TSFC dependency on 

altitude most of them can be traced back to one of only two equations. In this project, the fo-

cus is set on TSFC during cruise flight, since the aim is to see its influence on the range equa-

tion. A common altitude for cruise flight of a civil passenger aircraft is somewhere between 

25000 ft and 40000 ft. A further literature review has shown that in between those boundaries 

the TSFC varies but little with altitude (Scholz 2017, Hill 1992, Mattingly 1996). The rela-

tive variations depend on the model or the author but in general they are only about 1% ... 2%. 

These variations are certainly of interest for airlines, which are operating existing aircraft, 

however, for preliminary sizing in aircraft design there are so many assumptions being made 

that the TSFC dependency on altitude may be neglected. 
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4  TSFC Dependency on Speed 
 

4.1  Linear Models 

 

The model from Mattingly 1996 that was adjusted by Roux 2002 and Scholz 2017 states that 

the TSFC is linearly dependent on the speed of the aircraft. Models collected by Schulz 2007 

state the same correlation between speed and TSFC. In Fig. 4.1 multiple models for TSFC 

calculation are compared and the general trend of linearity can be seen. 

 

In Fig. 4.2 one can see different types of engines and their qualitative TSFC dependencies on 

Mach number. Since we are only interested in subsonic flight, one may say that all types of 

engines are linearly dependent on the speed of the aircraft. A small exception would be the 

turboprop; however, turboprops will usually not be operated above Mach 0.6 in which case 

the curve may still be seen as linear. The linear function that will later be used is from Scholz 

2017: 

 baT cVcc   (4.1) 

 

Where: 

 81038.3 ac
 
kg/(Ns) 

 
)(

1004.1 05

hT

T
cb

 kg/(Ns) 

 T0 = 288.15 K 

 T(h) is the temperature in altitude h 

 

 
Fig. 4.1 Estimation of TSFC by different models (Roux 2002, p. 38) 
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Fig. 4.2 TSFC characteristics of typical aircraft engines (Mattingly 1996, p.29) 

 

 

 

4.2  Non-Linear Models 

 

The model from Herrmann 2010 that is based on Torenbeek 1982 does not resemble a line-

ar function. Nonetheless, in Scholz 2017 a comparison between Herrmann 2010 and Roux 

2002 is made in which one can see that the model of Herrmann 2010 can also roughly be 

seen as linear, even though it technically is not (Fig. 4.3).  

 

The calculations in Fig. 4.3 were done with a bypass-ratio (BPR) of 5.0, which counts as a 

High-BPR turbofan. Comparing Fig. 4.2 with Fig 4.3, one can see that Herrmann 2010 

might be the better fit for the actual TSFC calculation. It is almost also linear, but it is slightly 

bending upwards just as it does for high BPR turbofans in Fig. 4.2. 
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Fig. 4.3 Comparison between Roux and Herrmann in 11000 m (after Scholz 2017) 

 

Additionally, it might be easier to find the right input for the model from Herrmann 2010 

than for the linear approach. In Herrmann 2010, one has simply to enter the Mach cruise 

number, the cruise altitude, the BPR of the engine and the take-off thrust. These are data that 

are usually available in the course of aircraft design. In opposition, for the linear approach, 

one has to have two TSFC values for two cruise velocities. It is obviously possible to simply 

use the adjusted values that are provided in Scholz 2017; however, in that case, every turbo-

fan would have the same slope for TSFC as well as the same TSFC at 0 m/s. The reducing ef-

fects of higher BPR which can be seen in Fig. 4.4 would not be taken into account.  

 

The model from Herrmann was published by Scholz 2013. An Excel file with the model is 

also provided in a dataset at Harvard Dataverse that is accompanying this report. The link to 

the dataset is given on the second page of this report. 
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Fig. 4.4 Effects of Mach, BPR, Altitude on TSFC (Roux 2002, p.31) 
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5  TSFC Dependency on Thrust 
 

5.1  Sources for Data Extraction 

 

Four sources were obtained, where diagrams show the relationship between thrust and TSFC 

while maintaining a constant speed and altitude. Table 5.1 is an overview of the specifications 

of the different turbofans that are subjects in the sources. Three of them are quite similar in 

thrust since all of them found application on the Boeing 747. Only one engine is a little bit 

smaller and found application on the Airbus A320 and A319. All of the four engines are high 

BPR turbofans. 

 

Table 5.1 Engine Specifications of the four sources (Meier 2005) 

Engine Thrust BPR Manufacturer Application Year 

 kN     

JT9D-70/-70A 236 4.9 Pratt & Whitney 747 1969 

      

RB211 family 170-260 4.3-5.0 Rolls-Royce 747, 757, 767 1970s-2000s 

      

V2527-A5 118 4.8 IAE A319, A320 1993 

      

RB211-524-D4 236 4.4 Rolls-Royce 747 1972 

 

  



26 

 

 

The first source is Fig. 5.1 from Mattingly 1996. It shows actual data from the JT9D-70/-70A 

turbofan from Pratt & Whitney. The diagram shows data for both Mach 0.8 as well as Mach 

0.9 for the altitudes 30000 ft and 35000 ft. All four curves were found to be suitable for the 

project since they are in the range of common cruise altitude and common cruise Mach num-

ber. 

 

 
Fig. 5.1 JT9D-70/-70A turbofan cruise TSFC (Mattingly 1996, p. 25) 
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The second source is Fig. 5.2 from Hill 1992. It shows typical data from a turbofan of the 

RB211 family from Rolls-Royce. The diagram shows four curves with constant TAS of 200, 

300, 400 and 500 knots. The altitude is being kept constant at 30000 ft for all TAS. All four 

curves were chosen to be suitable for the project since they are as well in the range of com-

mon cruise altitude and common cruise TAS.  

 

 
Fig. 5.2 Typical RB211 turbofan performance (Hill 1992, p. 197) 

 

 

The third source is Fig. 5.3a from Risse 2014. The reference is a presentation about key data 

from CeRAS (Central Reference Aircraft data System). In CeRAS the RWTH Aachen Uni-

versity remodeled the A320; hence they also remodeled the fitting V2527-A5 turbofan from 

the joint venture IAE. The source is therefore not actual data, however, the data is said to be 

very similar to the original A320 data. In Fig. 5.3a the TSFC was modeled for a cruise Mach 

number of 0.78 and a cruise altitude of 35000 ft. One can see the performance with or without 

power off-takes. For this project, only the curve with power off takes was found to be suitable 

for data extraction, since the data from the other sources resemble actual data, where power 

off takes are always included. Moreover, the two curves are almost identical; they are only 

shifted a little bit on the y-axis. In a dimensionless depiction, both curves would look almost 

identical.  

 

Similar to Fig. 5.3a is Fig. 5.3b from Risse 2016. Fig. 5.3b shows a similar shape and was not 

evaluated here for that reason. 
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Fig. 5.3a Performance of the V2527-A5 turbofan (Risse 2014, p. 6) 

 

Fig. 5.3b SFC bucket curves at cruise design conditions (M = 0.85, 35000 ft, ISA), 

 with and without the influence of average off-takes (Risse 2016, p. 129) 
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Finally, the fourth source is Fig. 5.4 from Scholz 2018a. TSFC of the RB211-524-D4 turbo-

fan from Rolls Royce was remodel at Cranfield University with a program called 

Turbomatch. The calculations were made for an altitude of 10000 m and Mach numbers from 

0.0 to 0.8 – giving nine different curves. For this project, only the curves with a Mach number 

higher or equal to Mach 0.4 were found suitable for the data extraction. This decision was 

made because Mach numbers smaller than Mach 0.4 are uncommon for cruise. Even Mach 

0.4 might be an unrealistic cruise speed, but it may be helpful as the lower boundary.  

 

 
Fig. 5.4 Performance of the RB211-524-D4 turbofan (Scholz 2018a) 

 

 

 

5.2  Comparison of Extracted Data 

 

To properly compare the data from the four sources they were digitalized with 

WebPlotDigitizer as explained in Chapter 2.5. Afterwards, the data had to be processed to be 

dimensionless. The lowest point of each bucket curve was chosen as the design mark. The 

values of TSFC were divided by the lowest TSFC and the values of the thrust were divided by 

the thrust at the point with the lowest TSFC. In doing that, it is possible to see the relative 

values for TSFC of thrust. In Fig. 5.5 all 14 datasets from the four sources are put together. It 

is clearly visible that the curves share the same tendencies.  
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Fig. 5.5 Dimensionless TSFC over thrust from extracted data 

 

 

 

5.3  Importance of TSFC Variation Due to Thrust Change 

 

In this project, the focus is set on cruise flight. That is the reason why Fig. 5.5 has to be fur-

ther evaluated since the thrust during cruise will not be increased or decreased by 50%. 

 

Each aircraft is perfectly matched with its engine. The assumption is made that when TSFC is 

at its minimum, the aircraft is in the middle of its flight. In level cruise flight the thrust of the 

engines equals the drag on the aircraft. The drag for the entire aircraft can be estimated by 

(2.6). The total drag then must be divided by the number of engines on the aircraft to get the 

thrust of each engine. To get the thrust deviations of a mix of different sized aircraft, the Air-

bus A320, A330, A350 and A380 were selected as a basis for the calculation. The specifica-

tions for each aircraft can be found in Table 5.2. The thrust for each engine was calculated for 

maximum take-off weight (MTOW) and maximum zero-fuel weight (MZFW) since those two 
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configurations are the heaviest and lightest. The thrust for each engine was also calculated for 

the mean of MTOW and MZFW so that a deviation from that value could be calculated. 

 

The Oswald factor for each aircraft was estimated to be 0.85. The zero-lift drag coefficient 

was estimated to be 0.02 for each aircraft. Even though we assume a step-climb, the density 

was set to 0.3692 kg/m³, which is according to ISA conditions in the tropopause.  

 

Table 5.2 Aircraft Specifications (A320 2018, A330 2017, A350 2018, A380 2016) 

 A320 A330 A350 A380 

Mach Number in Cruise 0,78 0,82 0,85 0,85 

TAS in 11 km [m/s]  230 242 250 250 

Wing Area [m²] 120 362 442 845 

Wing Span [m] 34 60 65 80 

MZFW [kg] 55560 175000 196000 369000 

Average Mass [kg] 64530 208500 238000 472000 

MTOW [kg] 73500 242000 280000 575000 

No. of Engines [-] 2 2 2 4 

Take-Off Thrust [kN]a 110 310 370 350 
a
 per Engine 

 

The calculated thrust for the light, medium and heavy configurations as well as the deviations 

from both light to medium and heavy to medium can be seen in Table 5.3. Most of the aircraft 

have a maximum deviation of around 10%, even the worst case scenario is still under a devia-

tion of 15% which means that the scale of Fig. 5.5 does not help in evaluating the influence of 

thrust variations.  

 

Table 5.3 Thrust variations in cruise flight for multiple aircraft 

 Thrust per engine in configuration Deviation  

Aircraft Light 

(MZFW) 

Medium 

(average) 

Heavy 

(MTOW) 

Light to medium Heavy to medium 

 kN kN kN % % 

A320 16.65 18.37 20.34 9.36 9.72 

A330 53.31 59.26 66.25 10.04 10.55 

A350 65.20 71.93 79.98 9.37 10.06 

A380 65.36 75.93 89.09 13.92 14.77 
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Fig. 5.6 Dimensionless TSFC data (green) over thrust for cruise flight with curve fit (blue) and 

curve fit through 100% relative thrust and 100% relative TSFC (black with red dots) 

 

In Fig. 5.6 the axes have been scaled according to the expected thrust variations. The data 

points are no longer separated by their source. A regression for the data was made for a se-

cond order polynomial function with free coefficients. The resulting equation is given in 

Fig. 5.6. Since the curve has to yield 100% relative TSFC for 100% relative thrust the adapted 

polynomial y = ax²+bx+c with c = 1-a-b is 
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In (5.3) the reference value for the TSFC is the minimum TSFC value, while the reference 

value for the thrust is the thrust at the same condition, where the TSFC is at its minimum. The 

coefficient of determination R² drops to 0.58 which shows that there is a good amount of un-

certainty. However, if one looks at Fig. 5.6 it can be seen that a common general trend is cov-

ered by the function.  

 

The magnitude of the influence can be evaluated by taking the worst-case scenario from Ta-

ble 5.3 and the worst-case scenario from Fig. 5.6. In that scenario, there would still only be a 

variation in TSFC of less than 1%. For normal cruise operation of commercial aircraft, the 

impact of thrust variation would only be a fraction of a percent. Therefore it is fair to say 

that there is no need to include the effect of thrust on TSFC into account for aircraft de-

sign calculations. 
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Fig. 5.6 is in general agreement with a figure published by Young 2018 (presented here as 

Fig. 5.7). Since Young 2018 has only published lately, the information from Fig. 5.7 has not 

been included in the numerical evaluation. 

 

 
Fig. 5.7 Typical cruise TSFC versus thrust relationship normalized with respect to the optimum 

(or lowest) TSFC condition (Young 2018) 
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6 Numerical Optimum Speed for Max Range 
 

Cruise of jet airplanes if optimized for maximum range by maximizing Specific Air Range 

(SAR). Details were given in Chapter 2. If SAR is maximized this means also that for a given 

flight distance we get minimum fuel consumed. 

 

In Chapters 3 through 5 it was shown that TSFC = f (T, h, V) can be reduced to TSFC = f (V). 

That information stands in contrast to the academically taught optimum speed from Chap-

ter 2.4.1, where TSFC was considered to be constant. 

 

To numerically optimize the speed for maximum range, (2.5) will once again be reviewed. To 

maximize the range, the full term 

 

 
V

mVDVcT ),()(
 (6.1) 

 

will have to be minimized. Everything in (6.1) is dependent on the speed V. Drag, D = f (V) 

can easily be calculated from the speed polar by (2.6). The speed polar shows the primary in-

fluence of speed on drag. Further details as the influence of Mach number on induced drag 

and the addition of wave drag are ignored in this project. 

 

The calculation was once again done for three different mass configurations, m, for each air-

craft, given in Table 5.2 with a density of 0.3692 kg/m³ in 11 km altitude. The minimum drag 

speed was calculated by (2.12). 

 

For cT = f (V) two models were presented; a linear and a non-linear approach. The linear ap-

proach is Equation (4.1) and the non-linear approach is the one from Herrmann 2010, pub-

lished in Scholz 2013. For the latter model take-off thrusts are required. In accordance with 

current engine options, the following were selected: A320: 110 kN, A330: 310 kN, A350: 

370 kN, A380: 350 kN. Further parameters for the method from Herrmann included an alti-

tude of 11000 m and a BPR of 5.0. Aim is not a detailed calculation of the named aircraft. 

These aircraft are only taken to get somewhat realistic numbers for a generic type of calcula-

tion. 

 

In Table 6.1 the results of the numerical calculation for optimum speed can be seen as well as 

the factor between the optimum speed and the minimum drag speed. This allows comparing 

these results with the academically taught derivation. 

 

The linear model for TSFC has an optimum of Vopt = 1.15 Vmd for almost every aircraft and 

each weight class. However, there is a tendency to decrease to Vopt = 1.14 Vmd in the heavy 

configuration. These results can be further improved, once data for an actual engine is availa-
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ble. It would allow reconfiguring ca and cb in (4.1) and be more accurate in TSFC estimation. 

Hence, the optimum speed might shift a little bit and it would fit the aircraft more precisely. 

 

The non-linear model for TSFC has an optimum of Vopt = 1.05…1.11 Vmd depending on the 

weight configuration. The factors are lower for heavy aircraft and increase towards higher 

values, once aircraft get lighter. On average Vopt = 1.09 Vmd would be a good estimation. 

 

As it was expected from Fig. 4.3, the results of both models are quite close to one another, the 

results after Herrmann being somewhat smaller. Both models combined would bring an opti-

mum speed of approximately Vopt = 1.12 Vmd. 

 

 

Table 6.1 Optimum speeds according to different models 

  Herrmann Roux-Scholz 

Aircraft Vmd Vopt Vopt/Vmd Vopt Vopt/Vmd 

 m/s m/s - m/s - 

A320      

Light 185.2 204.5 1.10 213.5 1.15 

Medium 199.6 217.5 1.09 229.0 1.15 

Heavy 213.0 229.5 1.08 243.5 1.14 

      

A330      

Light 187.8 207.0 1.10 216.5 1.15 

Medium 204.9 222.5 1.09 235.0 1.15 

Heavy 220.8 236.5 1.07 252.0 1.14 

      

A350      

Light 181.6 201.0 1.11 209.5 1.15 

Medium 200.1 218.5 1.09 229.5 1.15 

Heavy 217.1 233.5 1.08 248.0 1.14 

      

A380      

Light 191.0 210.0 1.10 220.0 1.15 

Medium 216.0 232.5 1.08 247.0 1.14 

Heavy 238.4 251.5 1.05 270.5 1.13 

 

 

.  
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7 Summary and Conclusions 
 

In the course of this project, it was found that the TSFC is a function of altitude, speed, and 

thrust. A further literature review has shown that the TSFC dependency on altitude may be 

neglected since it has only little influence in the range of altitudes where passenger aircraft 

usually cruise. The TSFC dependency on speed was presented in a linear and non-linear 

model and it was shown that the linear model is similar to the non-linear model. Hence, be-

cause of its simplicity, the linear model might preferably be used for a first estimation. Further 

actual data of an engine would greatly improve the linear model so far that it might fit quite 

accurately. Since it was clearly visible that the TSFC grows with increasing speed, the idea of 

a constant TSFC was not further discussed. The third dependency that was investigated is the 

TSFC dependency on thrust while maintaining a constant speed and altitude. No model for 

this dependency could be found, which is why data was extracted from multiple sources. The 

sources were filtered to only cover cruise speeds and altitudes. A regression for the data was 

made and even though it did not fit perfectly, it covered the similarities of the different 

curves. Based on this data, a new function (Equation 5.3) was found to calculate the TSFC 

dependency on thrust as 
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Moreover, it showed that in the worst case scenario, thrust variations result in less than 1% of 

TSFC change. On that account, it was found that there is no need to take the effect of thrust 

on TSFC into account. Conclusively, it was found that for estimations under cruise flight 

conditions, TSFC can be seen as a function of speed only. 

 

Two principally different derivations of optimum speed for maximum range were shown. If 

TSFC is considered constant Vopt = 1.316 Vmd. In contrast, if PSFC is considered constant 

Vopt = 1.00 Vmd. Since the real SFC characteristic is a mixture of these two extremes, the ex-

pectation was to find the true factor in the range 1.00…1.316. With both the linear and non-

linear model for TSFC dependency on speed the optimum speed for the maximum range was 

numerically calculated. Indeed, results proved this hypothesis. The linear model showed an 

optimum speed of Vopt = 1.15 Vmd, while the non-linear model showed different optimum 

speeds depending on aircraft weight that were between Vopt = 1.05…1.11 Vmd. 

 

These results show that jet aircraft have to fly about 9% faster than minimum drag 

speed to achieve minimum fuel consumption. 

 

This project only considered drag, D = f (V) calculated from the speed polar (2.6). Further de-

tails as the influence of Mach number on induced drag and the addition of wave drag were ig-

nored. It can be recommended to start another study where the aerodynamic effect of 
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Mach number on drag is modeled. Scholz 2018b has simplified aerodynamic methods for 

the calculation of the Oswald factor including the Mach-effect and for wave drag estimation 

that could be applied. Taking these effects into account drag would show a stronger drag in-

crease with speed. This would mean that the optimum speed is reduced even more towards 

the minimum drag speed Vmd. This means that the effect shown in this project would most 

probably come out even more pronounced. 

 

In reality, the TSFC dependencies are extremely complicated and an analytical solution is al-

most impossible. Collecting big amounts of data on engines helps to optimize conditions and 

develop future generations of engines. That is the reason why the manufacturers are doing just 

that and also keep their data as secret as possible. 
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