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1 Introduction

In recent years, mainly motivated by the study of higher-dimensional models with “curved”

rigid supersymmetries (see e.g. [1]), there was a growth of activity in supersymmetric me-

chanics (SM) models underlain by some semi-simple superalgebras treated as deformations

of flat one-dimensional supersymmetries with the same number of supercharges. The sim-

plest superalgebra of this kind is su(2|1) (and its central-charge extension ŝu(2|1)), which
is a deformation of rigid N =4, d=1 supersymmetry by a mass-dimension parameter m.

The first examples with a worldline realization of su(2|1) supersymmetry were considered

more than 10 years ago (prior to [1] and related works) in [2, 3] and in [4] (where it was

named “weak d=1 supersymmetry”). The corresponding worldline su(2|1) multiplets had

d=1 field contents (2,4,2) and (1,4,3).1

A systematic superfield approach to su(2|1) supersymmetry was worked out in [6–8]

and [9]. The models built on the multiplets (1,4,3), (2,4,2) and (4,4,0) were studied

at the classical and quantum level. Recently, su(2|1) invariant versions of super Calogero-
Moser systems were constructed and quantized [10–12]. The common notable features of

all these models are:

• Oscillator-type Lagrangians for the bosonic fields, with m2 as the oscillator strength,

• Wess-Zumino type terms for the bosonic fields, of the type ∼ im(żz̄ − z ˙̄z),

• At the lowest energy levels, wave functions form atypical su(2|1) multiplets, with

unequal numbers of the bosonic and fermionic states.

It was of obvious interest to move one step further and to consider mechanics models

with analogous deformations of N =8, d=1 supersymmetry. In contrast to N =4 super-

symmetry, in the N =8 case there exist two different possibilities for deformation due to

the existence of two different superalgebras with eight supercharges: su(2|2) and su(4|1),
with R-symmetry algebra su(2)⊕ su(2) or su(4)⊕ u(1), respectively.2 The su(2|2) models

have been considered in [13] by analogy with the su(2|1) case, on the basis of the appropri-

ate superfield worldline formalism, as deformations of flat N =8 SM models [14–18]. They

were built on the off-shell multiplets (3,8,5), (4,8,4) and (5,8,3). One class of (5,8,3)

actions represents a massive deformation for the same multiplet in the flat case [19, 20].

Another class enjoys superconformal OSp(4∗|4) invariance. Remarkably, the superconfor-

mal group OSp(4∗|4) is a closure of its two different SU(2|2) subgroups, with deformation

parameters m and −m. So any SU(2|2) invariant action involving only even powers of m

is automatically superconformal. Based on this observation, the general SU(2|2) action of

the multiplet (3,8,5) was shown to be superconformal.

1Our notation follows ref. [5]: bold numerals denote, respectively, the number of physical bosonic,

physical fermionic and auxiliary bosonic degrees of freedom in the given supermultiplet.
2In the su(2|2) case one can also add two central charges.
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It turns out that some admissible multiplets of flat N =8 supersymmetry do not have

SU(2|2) analogs, most importantly the so called “root” N =8 multiplet (8,8,0). The

significance of this root multiplet derives from the fact that all other flat N =8 multiplets

and their invariant actions can be obtained from the root one and its general actions through

appropriate covariant substitution of the auxiliary fields (or Hamiltonian reductions, in

the Hamiltonian formalism) [17] as a generalization of the phenomenon found in [5] at the

linearized level.3 Deforming the flat (8,8,0) multiplet has remained an open problem.

In the present paper we show that the latter becomes possible within the alternative

SU(4|1) deformation. Interestingly, there exist two such root SU(4|1) multiplets, which are

complementary to each other in the sense that the SU(4) assignments of their fermionic

and bosonic components are interchanged. Namely, in one multiplet, the bosonic d=1

fields are in 1 ⊕ 1∗ ⊕ 6 of SU(4) (eight real fields) and the fermionic fields in 4 ⊕ 4∗

(4 complex fields), while in the other multiplet the bosonic fields are in 4 ⊕ 4∗ and the

fermionic fields in 1⊕ 1∗ ⊕ 6. In the “flat” N =8, d=1 limit they go over to two different

8-dimensional multiplets of the SO(8) R-symmetry related by triality (see, e.g., [22, 23]).

These two multiplets are analogs of the mutually “mirror” N =4 multiplets (4,4,0), for

which bosonic and fermionic components form doublets with respect to different SU(2)

factors of the SO(4) R-symmetry. For this reason it is natural to treat the two root

SU(4|1) (8,8,0) multiplets as “mirror” to each other.

The main incentive of our paper is constructing invariant actions for both types of

the (8,8,0) multiplets. To this end, we will use a manifestly SU(4|1) covariant superspace
formalism along with the SU(2|1) superfield approach, in which the extra SU(4|1)/SU(2|1)
transformations are realized in a hidden way. In some cases, it is simplest to use the

component approach. The point is that SU(4|1) possesses many non-equivalent worldline

supercosets, including the harmonic ones [24], and it is not easy to decide which superfield

formalism is most adequate for one or another SU(4|1) multiplet. We utilize several versions

of such an extended superfield approach for constructing invariant actions.

The paper is organized as follows. In section 2 we present the superalgebra su(2|1) and
describe the relevant worldline supercosets. In section 3, on the example of flat N =8, d=1

supersymmetry, we discuss three possible (8,8,0) multiplets, which are not equivalent if

the SO(8) R-symmetry is broken, and argue that only two of them can be extended to the

deformed SU(4|1) case. The various superfield and component descriptions of the first ver-

sion of the SU(4|1) (8,8,0) multiplet are the subject of section 4. We find three different

classes of invariant actions for this multiplet, including an OSp(8|2) invariant one, with an

R-symmetry enhanced to SO(8). The analogous treatment of the second version of the mul-

tiplet (8,8,0) is given in section 5. We show that its general invariant action is superconfor-

mal and equivalent to the superconformal action of the first version. Summary and outlook

are given in section 6. An appendix A contains details of calculating the invariant actions

in the appropriate harmonic SU(4|1) superspaces, and in appendices B and C the off-

shell actions for the SU(4|1) multiplets (6,8,2) and (7,8,1) are presented. The full set of

(anti)commutation relations of the conformal superalgebra osp(8|2) is given in appendix D.

3As an aside, the multiplet (8,8,0) has a puzzling relationship with the octonion algebra [21].

– 2 –



J
H
E
P
0
8
(
2
0
1
8
)
1
9
3

2 Supergroup SU(4|1) and its worldline realizations

We consider SU(4|1) supersymmetry as a deformation of the standard N =8, d=1 su-

persymmetry [14–17]. The superalgebra su(4|1) is given by the following non-vanishing

(anti)commutators:

{
QI , Q̄J

}
= 2mLI

J + 2δIJH,
[
LI
J , L

K
L

]
= δKJ LI

L − δILL
K
J ,

[
LI
J , Q

K
]
= δKJ QI − 1

4
δIJQ

K ,
[
LI
J , Q̄L

]
=

1

4
δIJQ̄L − δILQ̄J ,

[
H, QK

]
= −3m

4
QK ,

[
H, Q̄L

]
=

3m

4
Q̄L . (2.1)

Here, LI
J are the generators of the R-symmetry group SU(4), and the capital indices

I, J,K,L (I =1, 2, 3, 4) refer to the SU(4) fundamental (“quark”) representation and its

conjugate. H is the U(1) generator. In the contraction limit m = 0 the above superalgebra

goes over to the SU(4) covariant form of the flat N =8, d=1 superalgebra. This limiting

superalgebra actually possesses an enhanced R-symmetry group SO(8) which mixes QI

with Q̄J (they are joined into SO(8) spinor). In what follows we will not need the explicit

form of these enhanced SO(8)/SU(4) transformations, except for their realizations on the

covariant “flat’ spinor derivatives.

The basic real SU(4|1), d=1 superspace is defined as the coset superspace

SU(4|1)
SU(4)

∼
{
QI , Q̄J , L

I
J ,H

}
{
LI
J

} , (2.2)

with the coset parameters being the superspace coordinates:

ζ =
{
t, θI , θ̄

J
}
, (θI) = θ̄I . (2.3)

One could define these coordinates within the standard exponential parametrization of the

supercoset. However, it will be more convenient to use another parametrization, the one

associated with the purely fermionic coset SU(n|1)/U(n) defined in [30] (see also [31]). We

uplift the U(1) group from the stability subgroup U(4) into the numerator and consider an

extension of the SU(4|1)/U(4) coordinate set by a time coordinate t. Thus this U(1) gen-

erator is associated with the Hamiltonian. Following to [30], one can then write generators

of (2.1) acting on the extended coset (2.2) as

QI =
∂

∂θI
− 2mθ̄I θ̄K

∂

∂θ̄K
+ iθ̄I∂t , Q̄J =

∂

∂θ̄J
+ 2mθJθK

∂

∂θK
+ iθJ∂t ,

LI
J =

(
θ̄I

∂

∂θ̄J
− θJ

∂

∂θI

)
− δIJ

4

(
θ̄K

∂

∂θ̄K
− θK

∂

∂θK

)
,

H = i∂t −
3m

4

(
θ̄K

∂

∂θ̄K
− θK

∂

∂θK

)
. (2.4)

Then, odd transformations corresponding to these supercharges are given by

δθI = ǫI + 2m ǭKθKθI , δθ̄J = ǭJ − 2mǫK θ̄K θ̄J , δt = i
(
ǭKθK + ǫK θ̄K

)
. (2.5)
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According to [30], one can define the integration measure as

dζ := dt d4θ d4θ̄
(
1 + 2mθ̄KθK

)3
. (2.6)

It is easily checked to be invariant under the transformations (2.5).

Note that the Hamiltonian in (2.4) is not a pure time derivative. One could pass to

the new parametrization of superspace as

θ̃I = θI e
3imt/4,

¯̃
θI = θ̄Ie−3imt/4, t = t , (2.7)

in which the Hamiltonian takes the standard form H = i∂t. The advantage of the

parametrization (2.3) is the simplest form of the transformations (2.5). So, in what follows

it will be convenient to deal with such a simple parametrization. Due to the non-standard

form of the Hamiltonian in this parametrization, all transformations and θ-expansions of

the SU(4|1) superfields will be accompanied by the factors like e±3imt/4.

2.1 Chiral superspaces

The supergroup SU(4|1) admits two mutually conjugated complex supercosets which can

be identified with the left and right chiral subspaces:

ζL = (tL, θI) , ζR =
(
tR, θ̄

J
)
. (2.8)

The left coordinate tL is related to the real time coordinate t via

tL = t+
i

2m
log

(
1 + 2mθ̄KθK

)
. (2.9)

Then we check that the left chiral space ζL is closed under the supersymmetry transfor-

mations

δθI = ǫI + 2m ǭKθKθI , δtL = 2iǭKθK . (2.10)

The invariant left chiral measure is defined as

dζL := dtL d
4θ e−3imtL , δ (dζL) = 0 ,

∫
dζL θIθJθKθL e3imtL = εIJKL . (2.11)

2.2 Reduction to SU(2|1), d=1 superspace

One can consider reduction of the superspace (2.2) to the SU(2|1) superspace. It is per-

formed on the superspace coordinates (2.3) as

{
t, θi, θ̄

i
}
, (θi) = θ̄i, i = 1, 2. (2.12)

Limiting to the ǫ1 and ǫ2 transformations in (2.5), we obtain the reduced SU(2|1) super-

symmetric transformations which coincide with those found in [6]:

δθi = ǫi + 2m ǭkθkθi , δθ̄j = ǭj − 2mǫkθ̄
kθ̄j , δt = i

(
ǭkθk + ǫkθ̄

k
)
. (2.13)
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Respectively, the superalgebra (2.1) contains as a subalgebra the extended su(2|1)+⊃ u(1)

superalgebra:

{
Qi, Q̄j

}
= 2mIij +mδijF + 2δijH,

[
Iij , I

k
l

]
= δkj I

i
l − δilI

k
j ,

[
I ij , Q

k
]
= δkkQ

i − 1

2
δijQ

k,
[
Iij , Q̄l

]
=

1

2
δijQ̄l − δilQ̄j ,

[
H, Qk

]
= −3m

4
Qk,

[
H, Q̄l

]
=

3m

4
Q̄l ,

[
F,Qk

]
=

1

2
Qk,

[
F, Q̄l

]
= −1

2
Q̄l . (2.14)

Here, SU(2) generators of SU(2|1) are defined as

Iij = Li
j −

1

2
δijF. (2.15)

The combination H+
m

2
F can be identified with the internal U(1) generator of SU(2|1),

while F becomes an external R-symmetry U(1) generator.

The explicit expressions for the covariant spinor derivatives Dk, D̄k corresponding to

the basic real coset of SU(2|1) defined in [8] and parametrized by the coordinates (2.12)

with the transformation properties (2.13) are given by

Di = e−3imt/4

{[
1 +mθ̄kθk −

3m2

8
(θ)2

(
θ̄
)2
]

∂

∂θi
−mθ̄iθj

∂

∂θj
− iθ̄i∂t

− m

2
θ̄iF̃ −mθ̄j

(
1−mθ̄kθk

)
Ĩij

}
,

D̄j = e3imt/4

{
−
[
1 +mθ̄kθk −

3m2

8
(θ)2

(
θ̄
)2
]

∂

∂θ̄j
+mθ̄kθj

∂

∂θ̄k
+ iθj∂t

+
m

2
θjF̃ +mθk

(
1−mθ̄lθl

)
Ĩkj

}
, (2.16)

where

ĨijD̄l = δil D̄j −
1

2
δijD̄l , ĨijDk =

1

2
δijDk − δkjDi,

F̃ D̄l =
1

2
D̄l , F̃Dk = −1

2
Dk. (2.17)

In what follows we will avoid using the explicit form of the SU(4|1) counterparts of these
derivatives, though they can be straightforwardly constructed by applying the standard

coset (super)space machinery.

3 SU(4) covariant formulations of (8, 8, 0) multiplet in flat N =8

supersymmetry

Prior to the discussion of the superfield description of the root (8,8,0) multiplets in SU(4|1)
supersymmetry, we will consider SU(4) covariant form of its defining constraints in the

standard flat N =8 superspace, bearing in mind that the deformation to SU(4|1) mechanics

must respect R-symmetry SU(4).

– 5 –
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Such constraints can be written in the two superfield forms, both preserving not only

SU(4) but also a non-manifest SO(8) R-symmetry.4

In the first formulation one deals with a chiral superfield Φ and an antisymmetric

tensor superfield Y IJ satisfying the constraints5

D̄J Φ = 0 , DI Φ̄ = 0 , D̄ID̄J Φ̄ =
1

2
εIJKLDKDLΦ ,

√
2DI Y JK = −εIJKL D̄L Φ̄ ,

√
2 D̄J YKL = εIJKLDI Φ ,

(Y IJ) = YIJ =
1

2
εIJKL Y KL, (Φ) = Φ̄ , (3.1)

where the flat covariant derivatives are defined as

DI =
∂

∂θI
− iθ̄I∂t , D̄J = − ∂

∂θ̄J
+ iθJ∂t . (3.2)

It is straightforward to check that (3.1) is covariant under the non-manifest SO(8)/SU(4)

symmetry transformations realized as

δDI = −
√
2ΛIJD̄J + iλDI , δD̄J =

√
2 Λ̄IJD

I − iλ D̄J , (3.3)

δΦ = −Λ̄IJYIJ − 2iλΦ , δΦ̄ = −ΛIJYIJ + 2iλ Φ̄ ,

δYIJ = ΛIJ Φ+ Λ̄IJ Φ̄ , (3.4)

where the antisymmetric complex 4× 4 matrix

ΛIJ =
1

2
εIJKL ΛKL, Λ̄IJ =

1

2
εIJKL Λ̄KL, (3.5)

accommodates just 12 real parameters of the coset SO(8)/U(4) and λ is the real

U(1) ∼ SO(2) parameter. One can check that indeed

ΦΦ̄ +
1

2
Y IJYIJ = inv . (3.6)

Another form of the SU(4) covariant superfield description of the multiplet (8,8,0)

involves the general superfield V I which is subject to the constraints

DIV J =
1

2
εIJKL D̄K V̄L , D(I V J) = 0 , D̄(K V̄L) = 0 ,

DI V̄J =
1

4
δIJD

K V̄K , D̄JV
I =

1

4
δIJD̄KV K (V I) = V̄I . (3.7)

The non-manifest SO(8)/SU(4) transformations of V I leaving covariant the system (3.7)

are written this time as

δV I =
√
2 Λ̄IJ V̄J − iλ V I , δV̄J = −

√
2ΛIJV

I + iλ V̄J . (3.8)

4In general, flat constraints defining the multiplet (8,8,0) can be given many equivalent forms. For

instance, in [15], they were written in SU(2)×SU(2)×SU(2)×SU(2) covariant form. The common feature

of all these formulations is the hidden covariance of the constraints under the full R-symmetry group of

N =8 superalgebra, the group SO(8).
5For further use, we introduce the antisymmetric tensor εIJKL ≡ ε[IJKL], such that

ε
1234 = ε1234 = 1 , ε

IJKL
εIJKL = 24 .

– 6 –
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These transformations, together with the transformations of the covariant derivatives (3.3),

preserve the constraints (3.7). One can also see that

V I V̄I = inv. (3.9)

It is rather easy to check that the constraints (3.1) leave in the bosonic sector of Φ, Y IJ

just the complex bosonic field φ(t) and tensorial field yIJ(t) which are first components of

these superfields and transform as 1 and 6 of SU(4). The physical fermions are defined

as DIΦ|θ=0 and transform as 4 of SU(4). In the case of the constraints (3.9) the SU(4)

assignment of the physical fields changes to the opposite: the physical bosons are the first

components of V J and transform as 4, while fermions are defined as D̄KV K |θ=0, D
K V̄K |θ=0,

D[IV J ]|θ=0 and transform as 1 ⊕ 1∗ ⊕ 6. Thus, two (8,8,0) multiplets have “inverted”

SU(4) contents: the contents of bosons and fermions of the first version coincide with those

of fermions and bosons in the second one.

In order to better understand the interplay between the two forms of the (8,8,0) mul-

tiplet, we note that the fermionic superfield DI Φ transforms precisely as V I . It is easy

to check that it satisfies the constraints (3.7) as a consequence of (3.1). Analogously, the

fermionic superfields −2
√
2DIV J and DK V̄K possess the same transformation properties

as Y IJ and Φ̄, respectively. It is also straightforward to check that such fermionic super-

fields satisfy (3.1) as a consequence of (3.7). In other words, by the first multiplet one

can construct the “derivative” fermionic multiplet satisfying the Grassmann-odd version

of the second multiplet constraints (3.7). After establishing this correspondence, we could

consider (3.7) for some new independent Grassmann-even superfield V I and so come to the

system (3.7) as an alternative description of the (8,8,0) multiplet with the same Grass-

mann parities for the component fields as in the first version, but with “inverted” SU(4)

assignments of these components. Its fermionic “derivative” satisfies the constraints (3.1).

This interplay between two (8,8,0) multiplets resembles a similar feature of “mirror-

ing” of (4,4,0) multiplets in the standard (flat) N =4 mechanics [25, 26]. The bosonic

and fermionic components of the mutually mirror (4,4,0) multiplets form doublets with

respect to different SU(2) factors of the full SO(4) R-symmetry group and are equivalent up

to switching the roles of these two commuting SU(2) groups. However, there is an essential

difference. In the N =4 case the bosonic fields of the mutually mirror (4,4,0) multiplets

are doublets of different R-symmetry SU(2) groups (the same is true for fermionic fields).

As is seen from (3.6) and (3.9), in the N =8 case the relevant fields form 8-dimensional

irreps of the same full R-symmetry SO(8) and differ only in their assignments with respect

to the fixed U(4) ⊂ SO(8). So these two descriptions are associated with different embed-

dings of U(4) into SO(8). The first version corresponds to splitting SO(8) → SO(2)×SO(6)

and representing the SO(8)-multiplet of superfields as a sum of SO(2) and SO(6) vectors.

Then SU(4) is identified with SO(6), the additional R-symmetry U(1) with SO(2), while Φ

and Y IK with the corresponding SO(2) and SO(6) vectors. The second version corresponds

to splitting SO(8) → SO(4) × SO(4)′ and representing the relevant SO(8) superfield set

as a sum of two 4-vectors. The diagonal SO(4) is identified with the “minimally embed-

ded” SO(4) ⊂ SU(4), and two 4-vectors are joined into a complex fundamental spinor V I

of SU(4).
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Actually, the hidden SO(8) symmetry reveals the triality [22] between bosonic fields,

fermionic fields and covariant derivatives. This triality interrelates the three irreducible

fundamental representations of SO(8), viz. the vector representation and two spinorial

ones.6 All three representations can be written in the SU(4) × U(1) ∼ SO(6) × SO(2)

notation [23] as

vector 1 1 ⊕ 1∗−1 ⊕ 6 0 ,

spinor 4 1/2 ⊕ 4∗
−1/2 ,

spinor 4−1/2 ⊕ 4∗1/2 , (3.10)

where the subscript index refers to the U(1) charge. Comparing this with the U(4) as-

signments of the bosonic and fermionic fields of the (8,8,0) multiplets, as well as of the

covariant derivatives, we observe that just these SO(8) representations are realized on the

quantities in question.

Supposing that the roles of two spinor representations can be switched, in flat N =8,

d=1 supersymmetry we can introduce yet a third multiplet (8,8,0) living on a different

superspace, with the covariant derivatives defined as

D̃IJ =
1

2
εIJKL D̃KL,

(
D̃IJ

)
= D̃IJ , D̃, ¯̃D =

(
D̃
)
, (3.11)

and so belonging to the vector representation. However, an SU(4) covariant formulation of

this third (8,8,0) multiplet is beyond our purpose because the SU(4|1) covariant derivatives
are SU(4) spinors by definition. So, this third option does not admit a generalization to

SU(4|1) supersymmetry, in contrast to the first two.

In the case of the constraints (3.1), the bosonic fields belong to the SO(8) vector

representation, and the fermionic fields form SO(8) spinor. For the multiplet given by (3.7)

the picture is reversed, that is, the bosonic fields form an SO(8) spinor and the fermionic

fields are combined into SO(8) vector. So, from the standpoint of SO(8) R-symmetry, due

to the triality property, both (8,8,0) multiplets can be considered as equivalent, once the

spinorial representation of the covariant spinor derivatives has been fixed and one deals

with SO(8) invariant actions for these multiplets (for more detail, see section 5.4).

The crucial point of the equivalence just discussed is the hidden SO(8) covariance

of both sets of constraints (3.1) and (3.7). In the case of SU(4|1)-deformed mechanics

there is no SO(8) R-symmetry, only U(4) remains. For this reason one cannot expect

the corresponding counterparts of the two “flat” (8,8,0) multiplets to be equivalent to

one another.7

6To be more exact, the triality property is inherent to the group Spin(8).
7In the flat case the N =8 supersymmetric Lagrangians are not obliged to simultaneously respect the full

SO(8) symmetry. So for SO(8) non-invariant Lagrangians the equivalency of different (8,8,0) multiplets

may be broken in the flat case too.
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4 The SU(4|1) multiplet (8, 8, 0): first version

The first version of the multiplet (8,8,0) is defined by the SU(4|1) covariant constraints

D̄J Φ = 0 , DI Φ̄ = 0 , D̄ID̄J Φ̄ =
1

2
εIJKLDKDLΦ ,

√
2DI Y JK = −εIJKL D̄L Φ̄ ,

√
2 D̄J YKL = εIJKLDI Φ ,

(Y IJ) = YIJ =
1

2
εIJKL Y KL, (Φ) = Φ̄ , (4.1)

where Φ is a chiral superfield and Y IJ is an antisymmetric tensor superfield. In the flat

limit, when m → 0, D̄J → D̄J , DI → DI , this set of constraints becomes the set of

superfield constraints (3.1) defining the standard N =8, d=1 multiplet (8,8,0) [15], such

that only SU(4) ⊂ SO(8) is manifest.

In what follows, we avoid calculation of the deformed covariant derivatives DI , D̄J

(they in general involve complicated U(4) connection terms) and consider the multiplet

(8,8,0) in the chiral superspace description, harmonic superspace description and SU(2|1)
superfield approach.

4.1 Chiral superfield

We consider the chiral superfield Φ given by the general θ-expansion

Φ (tL, θI) = φ+
√
2 θKχKe3imtL/4 + θIθJA

IJe3imtL/2 +

√
2

3
θIθJθKξIJKe9imtL/4

+
1

4
εIJKL θIθJθKθLB e3imtL , AIJ ≡ A[IJ ], ξIJK ≡ ξ[IJK]. (4.2)

The superfield Φ transforms as a singlet of the stability subgroup SU(4), i.e. δsu(4)Φ = 0.

Taking into account (2.10), we can find the transformations of its components under the

odd generators:

δφ = −
√
2 ǫKχKe3imt/4,

δχI =
√
2 ǭI

(
iφ̇
)
e−3imt/4 −

√
2 ǫKAIKe3imt/4,

δAIJ = 2
√
2 ǭ[I

(
iχ̇J ] +

m

4
χJ ]

)
e−3imt/4 −

√
2 ǫKξIJKe3imt/4,

√
2

3
δξIJK = 2 ǭ[K

(
iȦIJ ] +

m

2
AIJ ]

)
e−3imt/4 − εIJKL ǫLB e3imt/4,

εIJKL δB =
8
√
2

3
ǭ[L

(
iξ̇IJK] +

3m

4
ξIJK]

)
e−3imt/4. (4.3)

The general supersymmetric action can be written as a sum of integrals over chiral sub-

spaces [13, 18] as

Schiral =

∫
dtLchiral = −1

4

[∫
dζLK (Φ) +

∫
dζR K̄

(
Φ̄
)]

, (4.4)
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where the overall coefficient −1/4 is chosen for further convenience. The component form

of this SU(4|1) invariant is found to be

Schiral = −1

4

∫
dt

{
6B ∂φK + εIJKL

[
2

3
χLξIJK +

1

2
AIJAKL

]
(∂φ)

2K

− εIJKLAIJχKχL (∂φ)
3K +

1

6
εIJKL χIχJχKχL (∂φ)

4K + c.c.

}
. (4.5)

This invariant does not display the kinetic term of the fields in (4.2) and so must be

treated as a kind of “pre-action” for the (8,8,0) multiplet. The genuine action appears

after imposing some extra SU(4|1) covariant conditions on the components in (4.2). Of

course they should follow from the rest of the superfield constraints (4.1), but it is easier

to guess their form directly at the component level, requiring the final field content to be

(8,8,0) and resorting to the SU(4|1) covariance reasonings.

In this way we find that the components of the chiral superfield (4.2) must be subjected

to the following additional constraints

AIJ =
√
2
(
iẏIJ − m

2
yIJ

)
, (yIJ) = yIJ =

1

2
εIJKL yKL,

ξIJK = −εIJKL

(
i ˙̄χL − 5m

4
χ̄L

)
, (χI) = χ̄I ,

B =
2

3

(
¨̄φ+ 2im ˙̄φ

)
. (4.6)

The odd SU(2|1) transformations are realized on this minimal set of fields as:

δφ = −
√
2 ǫIχ

Ie3imt/4, δφ̄ =
√
2 ǭI χ̄I e

−3imt/4,

δyIJ = −2 ǭ[IχJ ]e−3imt/4 + εIJKLǫK χ̄L e3imt/4,

δχI =
√
2 ǭI

(
iφ̇
)
e−3imt/4 − 2 ǫJ

(
iẏIJ − m

2
yIJ

)
e3imt/4,

δχ̄I = −
√
2 ǫI

(
i ˙̄φ
)
e3imt/4 + 2 ǭJ

(
iẏIJ +

m

2
yIJ

)
e−3imt/4. (4.7)

They are consistent with the transformations (4.3) and leave invariant the constraints (4.6).

4.2 The final action

Substituting the constraints (4.6) into the pre-action (4.5), we find the correct component

Lagrangian in the form

LSK = g1

[
φ̇ ˙̄φ+

1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
− 5m

4
χK χ̄K − m2

8
yIJyIJ

]

− im

4

(
φ̇ ∂φg1 − ˙̄φ∂φ̄g1

)
yIJyIJ + 2im

(
φ̇ ∂φ̄K̄ − ˙̄φ∂φK

)

+
1√
2

(
iẏIJ − m

2
yIJ

)
χIχJ ∂φg1 +

1√
2

(
iẏIJ +

m

2
yIJ

)
χ̄I χ̄J ∂φ̄g1

− i

2

(
φ̇ ∂φg1 − ˙̄φ∂φ̄g1

)
χK χ̄K − 1

24
εIJKL χ̄I χ̄J χ̄K χ̄L ∂φ̄∂φ̄g1

− 1

24
εIJKL χIχJχKχL ∂φ∂φg1 . (4.8)
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We observe that the complex fields φ parametrizes a special Kähler (SK) manifold with

the metric

g1
(
φ, φ̄

)
= ∂φ∂φK (φ) + ∂φ̄∂φ̄K̄

(
φ̄
)
. (4.9)

4.3 Supercharges

The matrix models based on the multiplet under consideration, in the case of the simplest

target space metric g = 1 (i.e for the free model), were studied in [28]. Here, we consider a

one-particle model generalized to the general SK metric (4.9) and find the relevant classical

SU(4|1) supercharges. Poisson (Dirac) brackets are written as

{φ, pφ} = 1,
{
φ̄, pφ̄

}
= 1,

{
yKL, pIJ

}
=

1

2

(
δKI δLJ − δLI δ

K
J

)
,

{
χI , χ̄J

}
= −i δIJ (g1)

−1 ,

{
pφ, χ

I
}
=

1

2
(g1)

−1 ∂φg1 χ
I ,

{
pφ̄, χ

I
}
=

1

2
(g1)

−1 ∂φ̄g1 χ
I ,

{pφ, χ̄J} =
1

2
(g1)

−1 ∂φg1 χ̄J ,
{
pφ̄, χ̄J

}
=

1

2
(g1)

−1 ∂φ̄g1 χ̄J . (4.10)

Then the Noether supercharges are given by

QI = e3imt/4

{
2χ̄K

[
pIK +

i

2
mg1 y

IK − i

6
√
2
εIKLM χ̄Lχ̄M ∂φ̄g1

]

−
√
2χI

(
pφ − 2im∂φ̄K̄ +

i

4
m∂φg1 y

KLyKL +
i

2
∂φg1 χ

K χ̄K

)}
,

Q̄J = e−3imt/4

{
2χK

[
pJK − i

2
mg1 yJK − i

6
√
2
εJKLMχLχM ∂φg1

]

−
√
2 χ̄J

(
pφ̄ + 2im∂φK − i

4
m∂φ̄g1 y

KLyKL − i

2
∂φ̄g1 χ

K χ̄K

)}
. (4.11)

Taking into account the brackets (4.10), these supercharges close on the following bosonic

generators

HSK = (g1)
−1

(
pφ − 2im∂φ̄K̄ +

i

4
m∂φg1 y

IJyIJ +
i

2
∂φg1 χ

K χ̄K

)

×
(
pφ̄ + 2im∂φK − i

4
m∂φ̄g1 y

IJyIJ − i

2
∂φ̄g1 χ

K χ̄K

)

+
1

2g1

[
pIJ − i√

2

(
χIχJ∂φg1 +

1

2
εIJKLχ̄K χ̄L ∂φ̄g1

)]

×
[
pIJ − i√

2

(
χ̄I χ̄J ∂φ̄g1 +

1

2
εIJMN χMχN∂φg1

)]

+ g1

[
5m

4
χK χ̄K +

m2

8
yIJyIJ

]
+

m

2
√
2

(
yIJχ

IχJ ∂φg1 − yIJ χ̄I χ̄J ∂φ̄g1
)

+
1

24
εIJKL χ̄I χ̄J χ̄K χ̄L ∂φ̄∂φ̄g1 +

1

24
εIJKL χIχJχKχL ∂φ∂φg1 , (4.12)

LI
J = 2i

(
yIKpJK − δIJ

4
yKLpKL

)
+ g1

(
χI χ̄J − δIJ

4
χK χ̄K

)
, (4.13)
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in full agreement with the superalgebra (2.1). The quantum version of these SU(4|1)
(super)charges can be straightforwardly constructed and will be presented elsewhere.

4.4 Harmonic superspace description

We consider the harmonic coset of SU(4|1) with the harmonic part SU(4)
[SU(2)×SU(2)×U(1)] [32].

The relevant harmonic variables are u
(+)I
a , u

(+)i
I , u

(−)a
I , u

(−)I
i where i = 1, 2 and a = 1, 2

are the indices of the fundamental representations of the subgroup SU(2) × SU(2). The

unitarity and unimodularity conditions are written as

u
(+)i
K u

(−)K
j = δij , u

(−)a
K u

(+)K
b = δab , u

(−)a
J u(+)I

a +u
(+)i
J u

(−)I
i = δIJ ,

u
(−)a
K u

(−)K
j =u

(+)i
K u

(+)K
b =0 , εIJKLεij u

(+)i
K u

(+)j
L +2εabu(+)I

a u
(+)J
b =0 . (4.14)

Defining the harmonic projections of the SU(4|1) Grassmann coordinates as

θ(+)
a = θI

(
u(+)I
a +mθ̄(+)kθ(+)

a u
(−)I
k

)
, θ

(−)
i = θI u

(−)I
i ,

θ̄(+)i = θ̄J
(
u
(+)i
J +mθ̄(+)iθ(+)

c u
(−)c
J

)
, θ̄(−)a = θ̄Ju

(−)a
J ,

tA = t+ i
(
θ̄(−)aθ(+)

a − θ̄(+)iθ
(−)
i

) [
1−m

(
θ̄(−)aθ(+)

a + θ̄(+)iθ
(−)
i

)]
, (4.15)

one can find that they transform as

δθ
(−)
i = ǫ

(−)
i + 2m

[
ǭ(−)cθ(+)

c

(
1 +mθ̄(+)kθ

(−)
k

)
+ ǭ(+)kθ

(−)
k

]
θ
(−)
i ,

δθ̄(−)a = ǭ(−)a − 2m
[
ǫ(+)
c θ̄(−)c + ǫ

(−)
k θ̄(+)k

(
1 +mθ̄(−)cθ(+)

c

)]
θ̄(−)a,

δθ(+)
a = ǫ(+)

a +mǫ
(−)
k θ̄(+)kθ(+)

a + 2m ǭ(−)cθ(+)
c θ(+)

a ,

δθ̄(+)i = ǭ(+)i −m ǭ(−)cθ(+)
c θ̄(+)i − 2mǫ

(−)
k θ̄(+)kθ̄(+)i,

δu
(+)i
I = −Λ

(+2)i
b u

(−)b
I , δu

(−)I
i = 0 ,

δu
(+)I
b = Λ

(+2)i
b u

(−)I
i , δu

(−)b
I = 0 ,

δtA = 2i
(
ǫ
(−)
k θ̄(+)k + ǭ(−)cθ(+)

c

)
, (4.16)

where

Λ(+2)i
a = m

(
ǫ(+)
a θ̄(+)i + ǭ(+)iθ(+)

a

)
+m2

(
ǫ
(−)
k θ̄(+)k + ǭ(−)cθ(+)

c

)
θ̄(+)iθ(+)

a ,

ǫ
(−)
i = ǫI u

(−)I
i , ǫ(+)

a = ǫI u
(+)I
a , ǭ(+)i = ǭJu

(+)i
J , ǭ(−)a = ǭJu

(−)a
J . (4.17)

We observe the existence of the analytic subspace closed under the SU(4|1) supersymmetry

ζA =
{
tA, θ

(+)
a , θ̄(+)i, u(+)I

a , u
(+)i
I , u

(−)a
I , u

(−)I
i

}
. (4.18)

Its integration measure is given by

dζ
(−4)
A = dtA du d2θ(+) d2θ̄(+) ⇒

⇒ δ
(
dζ

(−4)
A

)
= 2 dζ

(−4)
A Λ(0), Λ(0) = m

(
ǫ
(−)
k θ̄(+)k − ǭ(−)cθ(+)

c

)
. (4.19)
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The only harmonic derivative D(+2)i
a preserving the analytic subspace reads

D(+2)i
a = u(+)K

a

∂

∂u
(−)K
i

− u
(+)i
K

∂

∂u
(−)a
K

− 2iθ̄(+)iθ(+)
a ∂A

+mθ̄(+)iθ(+)
a

(
θ̄(+)k ∂

∂θ̄(+)k
− θ(+)

c

∂

∂θ
(+)
c

)

+
m2

4
εijεab

(
θ(+)

)4
(
u
(−)K
j

∂

∂u
(+)K
b

− u
(−)b
K

∂

∂u
(+)j
K

)
, (4.20)

where
(
θ(+)

)4
=

(
θ̄(+)

)2 (
θ(+)

)2
= θ̄(+)kθ̄

(+)
k θ(+)

c θ(+)c. (4.21)

The remaining harmonic covariant derivatives prove undeformed:

D(0) = u
(+)k
K

∂

∂u
(+)k
K

+ u(+)K
c

∂

∂u
(+)K
c

− u
(−)K
k

∂

∂u
(−)K
k

− u
(−)c
K

∂

∂u
(−)c
K

+ θ(+)
c

∂

∂θ
(+)
c

+ θ̄(+)k ∂

∂θ̄(+)k
,

Di
j = u

(+)i
K

∂

∂u
(+)j
K

− u
(−)K
j

∂

∂u
(−)K
i

+ θ̄(+)i ∂

∂θ̄(+)j

−
δij
2

(
u
(+)k
K

∂

∂u
(+)k
K

− u
(−)K
k

∂

∂u
(−)K
k

+ θ̄(+)k ∂

∂θ̄(+)k

)
,

Da
b = u

(−)a
K

∂

∂u
(−)b
K

− u
(+)K
b

∂

∂u
(+)K
a

− θ
(+)
b

∂

∂θ
(+)
a

− δab
2

(
u
(−)c
K

∂

∂u
(−)c
K

− u(+)K
c

∂

∂u
(+)K
c

− θ(+)
c

∂

∂θ
(+)
c

)
. (4.22)

One can check that

Λ(+2)i
a = D(+2)i

a Λ(0), εabεij D(+2)j
b Λ(+2)i

a = m2 δ
(
θ(+)

)4
,

δ
(
θ(+)

)4
= 2

(
δθ̄(+)k

)
θ̄
(+)
k θ(+)

c θ(+)c + 2 θ̄(+)kθ̄
(+)
k θ(+)

c

(
δθ(+)c

)
, (4.23)

and

δD(+2)i
a = Λ(+2)i

c Dc
a − Λ(+2)k

a Di
k −

Λ
(+2)i
a

2
D(0). (4.24)

4.4.1 Analytic harmonic superfield

The relevant analytic harmonic superfield is defined by the conditions

D(+2)i
a Y (+2) = 0 , Di

jY
(+2) = Da

bY
(+2) = 0 , (4.25)

and it transforms as

δY (+2) = Λ(0)Y (+2). (4.26)
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It can be obtained by the “harmonization” of the superfield Y IJ satisfying the constraints

D(KY I)J = 0 , D̄(K YI)J = 0 . (4.27)

These constraints in fact define the multiplet (6,8,2). On the other hand, they are part

of the full set of the constraints (4.1) defining the multiplet (8,8,0). Indeed, the solution

of (4.25)

Y (+2) = y(+2) + 2iθ̄(+)iθ(+)aẏia − θ̄(+)kθ̄
(+)
k θ(+)

a θ(+)aÿ(−2)

+ θ̄
(+)
i u

(+)i
K χKe−3imtA/4 + θ̄(+)iθ̄

(+)
i θ(+)

a u
(−)a
K

(
iχ̇K +

m

4
χK

)
e−3imtA/4

+ θ(+)au(+)K
a χ̄K e3imtA/4 + θ(+)

a θ(+)aθ̄(+)iu
(−)K
i

(
i ˙̄χK − m

4
χ̄K

)
e3imtA/4

+
1√
2

(
θ̄(+)iθ̄

(+)
i D e−3imtA/2 + θ(+)

a θ(+)aD̄ e3imtA/2
)
, (4.28)

reveals the field content (6,8,2), where

y(+2) =
1

2
εab u(+)I

a u
(+)J
b yIJ +

m2

4

(
θ(+)

)4
y(−2) ,

yia = u(+)I
a u

(−)J
i yIJ , y(−2) =

1

2
εij u

(−)I
i u

(−)J
j yIJ . (4.29)

The component fields transform as

δD = −
√
2 ǫI

(
iχ̇I − 3m

4
χI

)
e3imt/4, δD̄ = −

√
2 ǭI

(
i ˙̄χI +

3m

4
χ̄I

)
e−3imt/4,

δyIJ = −2 ǭ[IχJ ]e−3imt/4 + εIJKLǫK χ̄L e3imt/4,

δχI =
√
2 ǭID e−3imt/4 − 2 ǫJ

(
iẏIJ − m

2
yIJ

)
e3imt/4,

δχ̄I =
√
2 ǫID̄ e3imt/4 + 2 ǭJ

(
iẏIJ +

m

2
yIJ

)
e−3imt/4. (4.30)

The substitution D = iφ̇ in these transformations gives just the transformations (4.7) of the

multiplet (8,8,0). Thus this substitution ensures the validity of the additional constraints

imposed on the superfield Y IJ . We conclude that the SU(4|1) multiplet (8,8,0) admits

an alternative description within harmonic SU(4|1) superspace.

4.4.2 Invariant action via harmonic superspace

Introducing the shifted superfield

Y (+2) = Ŷ (+2) + c(+2),

c(+2) =
1

2
εab u(+)I

a u
(+)J
b cIJ +

m2

4

(
θ(+)

)4
c(−2), c(−2) =

1

2
εij u

(−)I
i u

(−)J
j cIJ ,

δŶ (+2) = Λ(0)
(
Ŷ (+2) + c(+2)

)
+ εabεij Λ

(+2)i
a

(
D(+2)j

b c(−2)
)

− 1

4
εabεij c

(−2)
(
D(+2)j

b Λ(+2)i
a

)
, (4.31)
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we calculate the invariant action (see appendix A) as

S(6,8,2) =
1

16

∫
dζ

(−4)
A L(+4),

L(+4) =
Ŷ (+2)Ŷ (+2)

(
1 + c(−2)Ŷ (+2)

)4 +
m2

2

(
θ(+)

)4


1− 1− c(−2)Ŷ (+2)

(
1 + c(−2)Ŷ (+2)

)5


 . (4.32)

This action of the multiplet (6,8,2) is in fact superconformal with respect to the super-

group SU(4|1, 1) (see appendix B). The relevant metric is SO(6) invariant and given by

g2 =

[
1

2
yIJyIJ

]−2

. (4.33)

Substituting D = iφ̇, one can finally find the bosonic truncation of the component La-

grangian for the multiplet (8,8,0):

Lbos. = g2

(
φ̇ ˙̄φ+

1

2
ẏIJ ẏIJ − m2

8
yIJyIJ

)
. (4.34)

Calculation of all terms in harmonic superspace is rather complicated. We skip all these

calculations and write the full component Lagrangian (4.50) in the next subsection by

employing SU(2|1) superfields.

4.5 SU(2|1) superfield approach

To simplify the construction of SU(4|1) invariant actions, it will be convenient to em-

ploy SU(2|1) superfield approach elaborated in [6–9]. We split the multiplet (8,8,0) into

SU(2|1) multiplets as a sum of the conventional multiplet (4,4,0) and the “mirror” mul-

tiplet (4,4,0) [9]. To obtain such a decomposition, we need to single out the ǫ1 and ǫ2
subvariety of the transformations of (4.7) corresponding to the SU(2|1) superspace trans-

formations (2.13). The SU(2|1) covariant constraints given below involve the covariant

derivatives (2.16).

4.5.1 The standard multiplet (4, 4, 0)

Introducing the new notations

x11 := y14, x12 := y13, x21 := y24, x22 := y23,

ξ1 := χ̄3 , ξ2 := −χ̄4 , ξ̄1 := χ3, ξ̄2 := −χ4,

(xia) = εab εij x
jb, (ξa) = ξ̄a , (ξa) = ξ̄a , (4.35)

we obtain the same deformed transformations as in [9]:

δxia = −
(
ǫiξae3imt/4 + ǭiξ̄ae−3imt/4

)
,

δξa = ǭk (2iẋak +mxak) e
−3imt/4, δξ̄a = ǫk

(
2iẋka −mxka

)
e3imt/4. (4.36)
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The indices i=1, 2 and a=1, 2 correspond to the fundamental representations of the sub-

group SU(2)× SU(2) ⊂ SU(4).

The corresponding superfield qia obeys the SU(2|1) covariant constraints

D(kqi)a = D̄(kqi)a = 0 , F̃ qia = 0 , (qia) = qia . (4.37)

These constraints are solved by

qia=

[
1+

m

2
θ̄kθk−

5m2

16

(
θ̄
)2

(θ)2
]
xia+

(
1+

m

4
θ̄kθk

)(
θiξae3imt/4+θ̄iξ̄ae−3imt/4

)

+i
(
θ̄kθiẋak−θ̄iθkẋ

ka
)
−iθ̄kθk

(
θiξ̇ae3imt/4−θ̄i ˙̄ξae−3imt/4

)
+
1

4

(
θ̄
)2

(θ)2 ẍia, (4.38)

where the following conventions for the Grassmann monomials were employed: (θ)2 = θiθ
i,(

θ̄
)2

= θ̄iθ̄i.

4.5.2 The mirror multiplet (4, 4, 0)

The “mirror” (4,4,0) multiplet is defined by the transformations

δz = −ǫkψ
ke3imt/4, δz̄ = ǭkψ̄k e

−3imt/4,

δy = −ǫkψ̄
ke3imt/4, δȳ = −ǭkψk e

−3imt/4,

δψi = ǭi (2iż) e−3imt/4 + ǫi (2i ˙̄y −mȳ) e3imt/4,

δψ̄i = −ǫi (2i ˙̄z) e
3imt/4 + ǭi (2iẏ +my) e−3imt/4, (4.39)

where

√
2 z := φ ,

√
2 z̄ := φ̄ , y := y34, ȳ := y12,

ψ1 := χ1, ψ2 := χ2, ψ̄1 := χ̄1 , ψ̄2 := χ̄2 . (4.40)

These transformations differ from those given in [9]. In the present case, Pauli-Gürsey

SU(2) symmetry is broken. For this case the SU(2|1) superfield constraints defining the

mirror (4,4,0) multiplet are written as

D̄iZ = D̄iY = 0 , DiZ̄ = DiȲ = 0 ,

DiZ = −D̄iȲ , DiY = D̄iZ̄,

F̃Z = 0 , F̃ Y = Y. (4.41)

Their solution reads

Z = z + θiψ
ie3imt/4 + iθ̄jθj ż − (θ)2

(
i ˙̄y − m

2
ȳ
)
e3imt/2 + θ̄jθjθi

(
iψ̇i − 3m

4
ψi

)
e3imt/4

− 1

4

(
θ̄
)2

(θ)2 (z̈ + 2imż) ,

Y = y + θiψ̄
ie3imt/4 + θ̄jθj

(
iẏ +

m

2
y
)
+ i (θ)2 ˙̄z e3imt/2 + θ̄jθjθi

(
i ˙̄ψi − m

4
ψ̄i
)
e3imt/4

− 1

4

(
θ̄
)2

(θ)2
(
ÿ + imẏ +

3m2

4
y

)
. (4.42)
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4.5.3 SU(2|1) superfield action

The construction of SU(4|1) invariant actions in terms of the SU(2|1) superfields (4.38),

(4.42) goes as follows. The general SU(2|1) superfield action can be written as

S =

∫
dt d2θ d2θ̄

(
1 + 2mθ̄kθk

)
f
(
Z, Z̄, Y Ȳ , qiaqia

)
. (4.43)

The target space metric g is defined according to [17] as

g = ∆2f = −∆1f , f = f
(
z, z̄, yȳ, xiaxia

)
, g = g

(
z, z̄, yȳ, xiaxia

)
,

∆1f +∆2f = 0 ⇒ ∆1g +∆2g = 0 , (4.44)

where

∂ia = ∂/∂xia, ∆1 = εikεab∂ia∂kb ,

∂z =
∂

∂z
, ∂z̄ =

∂

∂z̄
, ∂y =

∂

∂y
, ∂ȳ =

∂

∂ȳ
, ∆2 = 2 (∂z∂z̄ + ∂y∂ȳ) . (4.45)

Since SU(2|1) supersymmetry implies SU(2) × U(1) symmetry, the function f and g are

functions of the following coordinate monomials: z, z̄, yȳ, xiaxia.

Requiring SU(4) invariance of the corresponding component action amounts to the

constraints:

m
(
ȳg + 2∂yf + xia∂ia∂yf

)
= 0 ⇒ m (xia∂y − ȳ∂ia) g = 0 ,

m
(
yg + 2∂ȳf + xia∂ia∂ȳf

)
= 0 ⇒ m (xia∂ȳ − y∂ia) g = 0 . (4.46)

These constraints admit three different solutions:

1) Special Kähler manifold metric (4.9)

f1 =
1

2

[
z̄∂zK (z) + z∂z̄K̄ (z̄)

]
− 1

16

(
xiaxia + 4yȳ

) [
∂z∂zK (z) + ∂z̄∂z̄K̄ (z̄)

]
,

g1 =
1

2

[
∂z∂zK (z) + ∂z̄∂z̄K̄ (z̄)

]
=⇒ g1 = ∂φ∂φK (φ) + ∂φ̄∂φ̄K̄

(
φ̄
)
. (4.47)

2) SO(6)-invariant metric (4.33)

f2 =
1

4

(
xiaxia

)−1
log

(
2yȳ + xiaxia

)
,

g2 =
(
2yȳ + xiaxia

)−2
=⇒ g2 =

[
1

2
yIJyIJ

]−2

. (4.48)

3) SO(8)-invariant metric

f3 = −1

8

(
xiaxia

)−1 (
2zz̄ + 2yȳ + xiaxia

)−1
,

g3 =
(
2zz̄ + 2yȳ + xiaxia

)−3
=⇒ g3 =

[
φφ̄+

1

2
yIJyIJ

]−3

. (4.49)
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The first solution (4.47) reproduces the Lagrangian (4.8) with the metric (4.9). Other

solutions correspond to new SU(4|1) invariant actions.
The second solution (4.48) gives the Lagrangian

LSO(6) = g2

[
φ̇ ˙̄φ+

1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
− m

4
χK χ̄K − m2

8
yIJyIJ

]

− i√
2

˙̄φ∂IJg2 χ
IχJ − i√

2
φ̇ ∂IJg2 χ̄I χ̄J + i

(
ẏIK ∂JKg2 − ẏJK ∂IKg2

)
χI χ̄J

− 1

2
∂IJ∂

KLg2 χ
IχJ χ̄K χ̄L , (4.50)

where

∂IJ =
∂

∂yIJ
, ∂IJy

KL =
1

2

(
δKI δLJ − δLI δ

K
J

)
, ∂IJ (yKL) =

1

2
εIJKL . (4.51)

Substitution iφ̇ = D gives SU(4|1) invariant Lagrangian for the multiplet (6,8,2), which

is in fact superconformal, with the relevant group SU(4|1, 1) (see appendix B).

The third solution (4.49) exhibits an invariance under the maximal R-symmetry group

SO(8) and produces the component Lagrangian

LSO(8) = g3

[
φ̇ ˙̄φ+

1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
+

m

4
χK χ̄K − m2

8
yIJyIJ

]

− i√
2

˙̄φ∂IJg3 χ
IχJ − i√

2
φ̇ ∂IJg3 χ̄I χ̄J + i

(
ẏIK ∂JKg3 − ẏJK ∂IKg3

)
χI χ̄J

+
1√
2

(
iẏIJ − m

2
yIJ

)
∂φg3 χ

IχJ +
1√
2

(
iẏIJ +

m

2
yIJ

)
∂φ̄g3 χ̄I χ̄J

− i

2

(
φ̇ ∂φg3 − ˙̄φ∂φ̄g3

)
χK χ̄K − im

2

(
φ̇ φ̄− ˙̄φφ

)
g3

+
m

4

(
φ∂φg3 + φ̄ ∂φ̄g3

)
χK χ̄K − 1√

2

(
χIχJ ∂IJ∂φg3 + χ̄I χ̄J ∂

IJ∂φ̄g3
)
χK χ̄K

− 1

24

(
εIJKL χIχJχKχL ∂φ∂φg3 + εIJKL χ̄I χ̄J χ̄K χ̄L ∂φ̄∂φ̄g3

)

− 1

2
∂IJ∂

KLg3 χ
IχJ χ̄K χ̄L +

1

2
∂φ∂φ̄g3 χ

I χ̄Iχ
J χ̄J . (4.52)

4.6 Superconformal symmetry

Redefining the component fields in (4.52) as

φ → φ e−imt/2, χI → χI e−imt/4,

φ̄ → φ̄ eimt/2, χ̄I → χ̄I e
imt/4, (4.53)
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we eliminate all the deformed terms proportional to m and write the Lagrangian in SO(8)

invariant formulation:

Lconf = g3

[
φ̇ ˙̄φ+

1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
− m2

4

(
φφ̄+

1

2
yIJyIJ

)]

− i√
2

˙̄φ∂IJg3 χ
IχJ − i√

2
φ̇ ∂IJg3 χ̄I χ̄J + i

(
ẏIK ∂JKg3 − ẏJK ∂IKg3

)
χI χ̄J

+
i√
2

(
ẏIJ χ

IχJ ∂φg3 + ẏIJ χ̄I χ̄J ∂φ̄g3
)
− i

2

(
φ̇ ∂φg3 − ˙̄φ∂φ̄g3

)
χK χ̄K

− 1

24

(
εIJKL χIχJχKχL ∂φ∂φg3 + εIJKL χ̄I χ̄J χ̄K χ̄L ∂φ̄∂φ̄g3

)

− 1√
2

(
χIχJ ∂IJ∂φg3 + χ̄I χ̄J ∂

IJ∂φ̄g3
)
χK χ̄K

− 1

2
∂IJ∂

KLg3 χ
IχJ χ̄K χ̄L +

1

2
∂φ∂φ̄g3 χ

I χ̄Iχ
J χ̄J . (4.54)

As a result, we obtain OSp(8|2) superconformal Lagrangian of the trigonometric type8 that

contains only m2 terms. Since the new Lagrangian (4.54) is an even function of m, it is

invariant under two types of SU(4|1) transformations, with the deformation parameters

m and −m:

δφ = −
√
2 ǫIχ

Ieimt, δφ̄ =
√
2 ǭI χ̄I e

−imt,

δyIJ = −2 ǭ[IχJ ]e−imt + εIJKLǫK χ̄L eimt,

δχI =
√
2 ǭI

(
iφ̇+

m

2
φ
)
e−imt − 2 ǫJ

(
iẏIJ − m

2
yIJ

)
eimt,

δχ̄I = −
√
2 ǫI

(
i ˙̄φ− m

2
φ̄
)
eimt + 2 ǭJ

(
iẏIJ +

m

2
yIJ

)
e−imt, (4.55)

δφ = −
√
2 ηIχ

Ie−imt, δφ̄ =
√
2 η̄I χ̄I e

imt,

δyIJ = −2 η̄[IχJ ]eimt + εIJKLηK χ̄L e−imt,

δχI =
√
2 η̄I

(
iφ̇− m

2
φ
)
eimt − 2 ηJ

(
iẏIJ +

m

2
yIJ

)
e−imt,

δχ̄I = −
√
2 ηI

(
i ˙̄φ+

m

2
φ̄
)
e−imt + 2 η̄J

(
iẏIJ − m

2
yIJ

)
eimt. (4.56)

In the closure of these transformations, we obtain superconformal algebra osp(8|2) spanned
by 16 supercharges and 31 bosonic generators (see appendix D),9 where the conformal

Hamiltonian Hconf is defined as

Hconf = H− m

2
F. (4.57)

The generators F IJ and F̄IJ produce SO(8)/U(4) transformations realized as

δχI =
√
2 Λ̄IJ χ̄J , δχ̄I =

√
2ΛIJχ

J ,

δφ = −Λ̄IJyIJ , δφ̄ = −ΛIJyIJ , δyIJ = ΛIJφ+ Λ̄IJ φ̄. (4.58)
8Here we follow the terminology suggested in [33].
9In the limit m=0 the Lagrangian (4.54) goes into the one invariant under the “parabolic” realization

of OSp(8|2), as it was given in [34].
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5 The SU(4|1) multiplet (8, 8, 0): second version

The second version of the multiplet (8,8,0) is described by a complex bosonic superfield

V I satisfying

DIV J =
1

2
εIJKL D̄K V̄L , D(I V J) = 0 , D̄(K V̄L) = 0 ,

DI V̄J =
1

4
δIJDK V̄K D̄J V

I =
1

4
δIJD̄KV K (V I) = V̄I . (5.1)

In the flat superspace limit m → 0, these constraints go over to the SU(4) covariant

constraints (3.7) specifying another form of the flat N =8, d=1 multiplet (8,8,0).

To avoid calculation of the deformed covariant derivatives DI and D̄J , we instead

consider harmonization of part of these constraints, viz.

D̄(K V̄L) = 0 , DI V̄J =
1

4
δIJDK V̄K , (5.2)

with the rest of constraints being solved at the component level.

5.1 Harmonic superspace

The option for harmonic superspace relevant to the given case uses the harmonic variables

on SU(4)/[SU(3)×U(1)] [32]. The set of these harmonic variables is given by u
(+)α
I , u(+3)I ,

u
(−)I
β , u

(−3)
I , where the index α = 1, 2, 3 refers to the SU(3) fundamental representation.

The harmonics satisfy the following unitarity and unimodularity conditions:

u
(−3)
I u(+3)I = 1 , u

(+)α
I u

(−)I
β = δαβ , u

(+)α
J u(−)I

α + u
(−3)
J u(+3)I = δIJ ,

u
(+)α
I u(+3)I = u

(−3)
I u(−)I

α = 0 , εIJKLu
(+)α
I u

(+)β
J u

(+)γ
K u

(−3)
L = εαβγ . (5.3)

As in the previous case, we define the new coordinates

θ(+3) = θI

(
u(+3)I +mθ̄(+)αθ(+3)u(−)I

α

)
, θ(−)

α = θI u
(−)I
α ,

θ̄(+)α = θ̄J
(
u
(+)α
J +mθ̄(+)αθ(+3)u

(−3)
J

)
, θ̄(−3) = θ̄Ju

(−3)
J ,

tA = t+ iθ̄(−3)θ(+3) − iθ̄(+)αθ(−)
α

[
1−mθ̄(+)βθ

(−)
β +

4m2

3

(
θ̄(+)βθ

(−)
β

)2
]
. (5.4)

They transform as

δθ(−)
α = ǫ(−)

α + 2m
[
ǭ(+)βθ

(−)
β + ǭ(−3)θ(+3)

(
1 +mθ̄(+)βθ

(−)
β

)]
θ(−)
α ,

δθ̄(−3) = ǭ(−3) − 2mǫ
(−)
β θ̄(+)β θ̄(−3),

δθ(+3) = ǫ(+3) +mǫ(−)
α θ̄(+)αθ(+3),

δθ̄(+)α = ǭ(+)α +m ǭ(−3)θ̄(+)αθ(+3) − 2mǫ
(−)
β θ̄(+)β θ̄(+)α,

δu(+3)I = Λ(+4)αu(−)I
α δu

(−3)
I = 0 ,

δu
(+)α
I = −Λ(+4)αu

(−3)
I δu

(−)I
β = 0 ,

δtA = 2i
(
ǫ(−)
α θ̄(+)α + ǭ(−3)θ(+3)

)
, (5.5)
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where

Λ(+4)α = m
(
ǫ(+3)θ̄(+)α + ǭ(+)αθ(+3)

)
+m2ǫ

(−)
β θ̄(+)β θ̄(+)αθ(+3),

ǫ(−)
α = ǫI u

(−)I
α , ǫ(+3) = ǫI u

(+3)I , ǭ(+)α = ǭJu
(+)α
J , ǭ(−3) = ǭJu

(−3)
J . (5.6)

It is straightforward to see that the analytic subspace

ζA =
{
tA, θ

(+3), θ̄(+)α, u
(+)α
I , u(+3)I , u

(−)I
β , u

(−3)
I

}
, (5.7)

is closed under the transformations (5.5). Its integration measure

dζ
(−6)
A = dtA du dθ(+3) d3θ̄(+) e3imtA/2 (5.8)

transforms as

δ
(
dζ

(−6)
A

)
= mdζ

(−6)
A

(
ǫ(−)
α θ̄(+)α − 3 ǭ(−3)θ(+3)

)
. (5.9)

The harmonic derivatives are found to be

D(+4)α = ∂(+4)α − 2iθ̄(+)αθ(+3)∂A − m

6
θ̄(+)αθ(+3)D0 +mθ̄(+)αθ(+3)θ̄(+)β ∂

∂θ̄(+)β
,

Dα
β = ∂α

β + θ̄(+)α ∂

∂θ̄(+)β
−

δαβ
3

θ̄(+)γ ∂

∂θ̄(+)γ
,

D0 = ∂0 + θ̄(+)α ∂

∂θ̄(+)α
+ 3 θ(+3) ∂

∂θ(+3)
, (5.10)

where

∂(+4)α = u(+3)K ∂

∂u
(−)K
α

− u
(+)α
K

∂

∂u
(−3)
K

,

∂α
β = u

(+)α
K

∂

∂u
(+)β
K

− u
(−)K
β

∂

u
(−)K
α

−
δαβ
3

(
u
(+)γ
K

∂

∂u
(+)γ
K

− u(−)K
γ

∂

u
(−)K
γ

)
,

∂0 = u
(+)α
K

∂

∂u
(+)α
K

− u(−)K
α

∂

u
(−)K
α

+ 3

(
u(+3)K ∂

∂u(+3)K
− u

(−3)
K

∂

∂u
(−3)
K

)
. (5.11)

Note that

D(+4)αΛ = Λ(+4)α, Λ = m
(
ǫ(−)
α θ̄(+)α − ǭ(−3)θ(+3)

)
. (5.12)

The harmonic analytic superfield V̄ (+3) defined on (5.7) satisfies the harmonic con-

straints

D(+4)αV̄ (+3) = 0 , Dα
β V̄

(+3) = 0 , D0V̄ (+3) = 3V̄ (+3). (5.13)

It can be treated as a harmonization of the superfield V̄I defined by (5.2), where Grassmann

analyticity constraints are provided by

u(+3)Ku(+3)LD̄(K V̄L) = D̄(+3) V̄ (+3) = 0 , u
(+)α
I u(+3)JDI V̄J = D(+)αV̄ (+3) = 0 . (5.14)
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The full set of the constraints (5.1) operates with the set of superfields V (+)α, V (−3), V̄ (+3)

and V̄
(−)
α living on the full harmonic superspace (5.4) . Here we consider just the superfield

V̄ (+3) treated as an unconstrained deformed harmonic superfield satisfying the analyticity

conditions (5.13) . The rest of constraints on V̄ (+3) will be imposed below “by hand” at

the component level, like in the previous cases.

The general expansion of V̄ (+3) reads

V̄ (+3) = z̄I u
(+3)I +

√
2 θ(+3)χ e3imt/4 + 2 θ̄(+)αχJI u

(+3)Ju(−)I
α e−3imt/4

+ 2 θ̄(+)αθ(+3)
(
i ˙̄zK +

m

4
z̄K

)
u(−)K
α

+ εIJKL θ̄(+)αθ̄(+)βCKu(+3)Lu(−)I
α u

(−)J
β e−3imt/2

+ εαβγ θ̄
(+)αθ̄(+)β θ̄(+)γπ e−9imt/4

− 2 θ̄(+)αθ̄(+)βθ(+3)
(
iχ̇IJ +

m

2
χIJ

)
u(−)I
α u

(−)J
β e−3imt/4

− 2

3
εIJKL θ̄(+)αθ̄(+)β θ̄(+)γθ(+3)

(
iĊL +

3m

4
CL

)
u(−)I
α u

(−)J
β u(−)K

γ e−3imt/2,

(5.15)

where

χIJ ≡ χ[IJ ] . (5.16)

Taking into account the transformation rule

δD(+4)α = −
(
1

3
Λ(+4)αD0 + Λ(+4)βDα

β

)
− m

6

(
ǭ(+)αθ(+3) − ǫ(+3)θ̄(+)α

)
D0

+
m2

6
ǫ
(−)
β θ̄(+)β θ̄(+)αθ(+3)D0, (5.17)

the superfield V̄ (+3) transforms as

δV̄ (+3) = ΛV̄ (+3) − m

2

(
ǫ(−)
α θ̄(+)α + ǭ(−3)θ(+3)

)
V̄ (+3). (5.18)

This superfield transformation law amounts to the following component transformations

δz̄J = −2 ǭKχJK e−3imt/4 −
√
2 ǫJχ e3imt/4,

δχ =
√
2 ǭK

(
i ˙̄zK +

3m

4
z̄K

)
e−3imt/4,

δχIJ = εIJKL ǭKCL e−3imt/4 − 2 ǫ[I

(
i ˙̄zJ ] −

m

4
z̄J ]

)
e3imt/4,

δCI = εIJKLǫJ

(
iχ̇KL − m

2
χKL

)
e3imt/4 − 3 ǭIπ e−3imt/4,

δπ =
2

3
ǫK

(
iĊK − 3m

4
CK

)
e3imt/4. (5.19)

From the transformation properties of V̄ (+3) one can draw the conclusion that the construc-

tion of a “pre-action” similar to (4.5) cannot be performed within the analytic harmonic

superspace. We conjecture that such a construction could become possible after taking

account of the additional set of c constraints defining the multiplet (8,8,0). Then the

action can probably be constructed in the full harmonic superspace approach (see [19]).
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At the component level, the rest of the constraints (5.1) impose the relations

(z̄I) = zI , (χ) = χ̄ , (χIJ) =
1

2
εIJKLχKL = χIJ ,

CI = iżI +
m

4
zI , π = −

√
2

3
(i ˙̄χ+mχ̄) . (5.20)

The final form of the deformed transformations is

δzI = 2 ǫKχIK e3imt/4 +
√
2 ǭI χ̄ e−3imt/4 ,

δz̄J = −2 ǭKχJK e−3imt/4 −
√
2 ǫJχ e3imt/4,

δχ =
√
2 ǭK

(
i ˙̄zK +

3m

4
z̄K

)
e−3imt/4,

δχ̄ = −
√
2 ǫK

(
iżK − 3m

4
zK

)
e3imt/4,

δχIJ = 2 ǭ[I
(
iżJ ] +

m

4
zJ ]

)
e−3imt/4 − εIJKLǫK

(
i ˙̄zL − m

4
z̄L

)
e3imt/4, (5.21)

where

(zI) = z̄I , (χ) = χ̄ , (χIJ) = χIJ =
1

2
εIJKL χKL. (5.22)

5.2 SU(2|1) superfield formulation

Once again, we split the given multiplet into SU(2|1) multiplets as (4,4,0)⊕ (4,4,0).

The first multiplet is associated with the fields

xi1 := zi, x2i := z̄i , ξ1 := 2χ12, ξ̄1 := 2χ12 , ξ2 :=
√
2χ , ξ̄2 :=

√
2 χ̄ , (5.23)

such that

δxiA = −ǫiξA e3imt/4 − ǭiξ̄A e−3imt/4,

δξ1 = 2 ǭk
(
iẋ1k +

m

4
x1k

)
e−3imt/4, δξ̄1 = 2 ǫk

(
iẋk1 −

m

4
xk1

)
e3imt/4,

δξ2 = 2 ǭk
(
iẋ2k −

3m

4
x2k

)
e−3imt/4, δξ̄2 = 2 ǫk

(
iẋk2 +

3m

4
xk2

)
e3imt/4. (5.24)

This first multiplet (4,4,0) is accommodated by a superfield qiA obeying the SU(2|1)
covariant constraints

D(kqi)A = 0 , D̄(kqi)A = 0 , F̃ qiA = −1

2
(σ3)

A
B qiB , (qiA) = qiA . (5.25)

As distinct from (4.37), Pauli-Gürsey SU(2) symmetry is broken. Taking into account (2.16),

we solve these constraints as

qiA =

[
1 +

m

2
θ̄kθk −

5m2

16

(
θ̄
)2

(θ)2
]
xiA − iεkl

(
θ̄iθl + θ̄lθi

)(
ẋkA +

im

4
(σ3)

A
B xkB

)

− iθ̄kθk

(
θiξ̇A e3imt/4 − θ̄i ˙̄ξA e−3imt/4

)

+
(
1 +

m

4
θ̄kθk

)(
θiξA e3imt/4 + θ̄iξ̄A e−3imt/4

)

+
m

4
θ̄kθk

(
θiξB e3imt/4 − θ̄iξ̄B e−3imt/4

)
(σ3)

A
B

+
1

4

(
θ̄
)2

(θ)2
(
ẍiA +

im

2
(σ3)

A
B ẋiB − m2

16
xiA

)
. (5.26)
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The second (mirror) multiplet (4,4,0) is formed by the fields

y1 := z4, y2 := z3, ȳ1 := z̄4 , ȳ2 := z̄3 , ψi1 := 2χi4, ψi2 := 2χi3, (5.27)

with the SU(2|1) transformations

δya = −ǫiψ
ia e3imt/4, δȳa = −ǭiψ

ia e−3imt/4,

δψia = 2 ǭi
(
iẏa +

m

4
ya
)
e−3imt/4 − 2 ǫi

(
i ˙̄ya − m

4
ȳa
)
e3imt/4. (5.28)

The superfield SU(2|1) constraints defining the mirror (4,4,0) multiplet are written as

D̄iY a = DiȲ a = 0 , DiY a = D̄iȲ a,

F̃ Y a =
1

2
Y a, F̃ Ȳ a = −1

2
Ȳ a, (Y a) = Ȳa . (5.29)

They are solved by

Y a=

[
1+

m

4
θ̄kθk−

7m2

64

(
θ̄
)2

(θ)2
]
ya+iẏa

[
θ̄kθk−

3m

8

(
θ̄
)2

(θ)2
]
− 1

4

(
θ̄
)2

(θ)2 ÿa

+θkθ
k
(
i ˙̄ya−m

4
ȳa
)
e3imt/2+

[(
1−m

2
θ̄kθk

)
θiψ

ia+iθ̄kθkθiψ̇
ia
]
e3imt/4,

Ȳ a=

[
1+

m

4
θ̄kθk−

7m2

64

(
θ̄
)2

(θ)2
]
ȳa−i ˙̄ya

[
θ̄kθk−

3m

8

(
θ̄
)2

(θ)2
]
− 1

4

(
θ̄
)2

(θ)2 ¨̄ya

+θ̄kθ̄k

(
iẏa+

m

4
ya
)
e−3imt/2+

[(
1−m

2
θ̄kθk

)
θ̄iψ

ia−iθ̄kθkθ̄iψ̇
ia
]
e−3imt/4. (5.30)

5.3 Invariant Lagrangian

The general SU(2|1) invariant action is written as

S =

∫
dtL =

1

2

∫
dt d2θ d2θ̄

(
1 + 2mθ̄kθk

)
f
(
Y aȲa, q

iAqiA
)
. (5.31)

Requiring it to be SU(4) invariant produces the following conditions:

∆y = −2 εab∂a∂̄b , ∂a = ∂/∂ya, ∂̄b = ∂/∂ȳb,

∆x = εijεAB∂iA∂jB , ∂iA = ∂/∂xiA,

G := ∆yf = −∆xf ⇒ (∆y +∆x)G = 0 , (5.32)

m
(
2∂af + ȳaG+ xiA∂iA∂af

)
= 0 ⇒ m (ȳa∂iA − xiA∂a)G = 0 ,

m
(
2∂̄af − yaG+ xiA∂iA∂̄af

)
= 0 ⇒ m

(
ya∂iA + xiA∂̄a

)
G = 0 . (5.33)

The unique solution of these equations is given by

f =
1

4
(yaȳa)

−1

(
yaȳa +

1

2
xiAxiA

)−1

+ c1 (y
aȳa)

−1 (xiAxiA
)−1

+ c2
(
xiAxiA

)−1 ⇒

⇒ G =

(
yaȳa +

1

2
xiAxiA

)−3

. (5.34)
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Here, the terms with the constants c1 and c2 do not affect the metric G, since it is a

harmonic function. One can check that these terms drop out of the component Lagrangian,

which is finally written as

L =

[
żI ˙̄zI +

i

2
χIJ χ̇IJ +

i

2
(χ ˙̄χ− χ̇χ̄)− im

4

(
żI z̄I − zI ˙̄zI

)
+

m

4
χχ̄− 3m2

16
zI z̄I

]
G

+ i
(
żI∂JG− ˙̄zJ ∂̄

IG
)
χIKχJK − m

4

(
zI∂JG+ z̄J ∂̄

IG
)
χIKχJK

+
i

2

(
żI∂IG− ˙̄zI ∂̄

IG
)
χχ̄+ ∂J ∂̄

IGχIKχJKχχ̄+
1

3
∂J ∂̄

IGχIKχLKχLMχJM

−
√
2

3
∂I∂JG χ̄χIKχJLχKL −

√
2

3
∂̄I ∂̄JGχχIKχJLχ

KL, (5.35)

where

G =
(
zI z̄I

)−3
. (5.36)

5.4 Superconformal symmetry

By analogy with the section 4.6, one can redefine the component fields as

zI → zIe−imt/4, z̄I → z̄I e
imt/4, χ → χ eimt/2, χ̄ → χ̄ e−imt/2, (5.37)

after which the Lagrangian (5.35) becomes an even function of m. As a result, we obtain

OSp(8|2) superconformal Lagrangian that is equivalent to (4.54):

Lconf =

[
żI ˙̄zI +

i

2
χIJ χ̇IJ +

i

2
(χ ˙̄χ− χ̇χ̄)− m2

4
zI z̄I

]
G+ i

(
żI∂JG− ˙̄zJ ∂̄

IG
)
χIKχJK

+
i

2

(
żI∂IG− ˙̄zI ∂̄

IG
)
χχ̄+ ∂J ∂̄

IGχIKχJKχχ̄+
1

3
∂J ∂̄

IGχIKχLKχLMχJM

−
√
2

3
∂I∂JG χ̄χIKχJLχKL −

√
2

3
∂̄I ∂̄JGχχIKχJLχ

KL. (5.38)

In the same way, this Lagrangian is invariant under two types of ǫI and ηI transformations

which close on the superalgebra osp(8|2) (D.1)–(D.3) :

δzI = 2 ǫKχIK eimt +
√
2 ǭI χ̄ e−imt, δz̄J = −2 ǭKχJK e−imt −

√
2 ǫJχ eimt,

δχ =
√
2 ǭK

(
i ˙̄zK +

m

2
z̄K

)
e−imt, δχ̄ = −

√
2 ǫK

(
iżK − m

2
zK

)
eimt,

δχIJ = 2 ǭ[I
(
iżJ ] +

m

2
zJ ]

)
e−imt − εIJKLǫK

(
i ˙̄zL − m

2
z̄L

)
eimt, (5.39)

δzI = 2 ηKχIK e−imt +
√
2 η̄I χ̄ eimt, δz̄J = −2 η̄KχJK eimt −

√
2 ηJχ e−imt,

δχ =
√
2 η̄K

(
i ˙̄zK − m

2
z̄K

)
eimt, δχ̄ = −

√
2 ηK

(
iżK +

m

2
zK

)
e−imt,

δχIJ = 2 η̄[I
(
iżJ ] − m

2
zJ ]

)
eimt − εIJKLηK

(
i ˙̄zL +

m

2
z̄L

)
e−imt. (5.40)
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We see that the Lagrangians (4.54) and (5.38) have conformally flat metrics g3 and G

which both depend on the quadratic SO(8) invariants of the same power −3. The fields zI

and z̄J can be reexpressed, by a linear transformation, through the bosonic fields yI
′J ′

, φ

and φ̄ of the first multiplet (8,8,0), where I ′ and J ′ label the fundamental representation

of a different SU(4)′ subgroup of the SO(8) symmetry, such that it intersects with the

first SU(4) in a common SU(3) subgroup. After an analogous linear transformation of the

fermionic fields, the Lagrangian (5.38) will coincide with (4.54). So both superconformal

Lagrangians are indeed equivalent. This feature of equivalence of (8,8,0) multiplets in the

presence of exact SO(8) symmetry was already noted in the end of section 3.

6 Summary and outlook

We have shown the existence of two non-equivalent “root” multiplets (8,8,0) of deformed

N =8 supersymmetry associated with the supergroup SU(4|1). We described them in mul-

tiple ways with worldline superfields and in components and derived invariant actions for

them. Some of these actions are superconformally OSp(8|2) invariant. For a non-trivially

interacting example we gave the explicit form of the (classical) SU(4|1) supercharges. We

also obtained the SU(4|1) invariant actions for the off-shell multiplets (6,8,2) and (7,8,1)

(in appendices B and C) from the (8,8,0) actions, reconfirming the root interpretation

of the (8,8,0) multiplets for N =8 mechanics. The (6,8,2) action was shown to exhibit

superconformal SU(4|1, 1) invariance.
As for further applications of these results, the most appropriate arena might be pro-

vided by supersymmetric matrix models (see, e.g., [35–37]). These possess SU(4|2) invari-
ance, hence multi-particle mechanics based on SU(2|2) ⊂ SU(4|2) or SU(4|1) ⊂ SU(4|2)
may appear as some truncation of such matrix models. The matrix models studied so far

lead to free worldline multiplets and actions. Our approach allows one to generate non-

trivial interactions, which hopefully may be interpreted as effective actions with quantum

corrections taken into account. An important ingredient of matrix models is a gauging

of appropriate isometries by non-propagating gauge multiplets. To promote this to the

SU(4|1) superfield language, one needs to define suitable gauge superfields generalizing

those used in [38, 39] or [10].

Another problem for the future is finding an action including both types of deformed

(8,8,0) multiplets and inquiring the ensuing target-space geometry.
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A Some calculations

Here we collect the necessary identities for calculation of the function L(+4) in the invariant

action (4.32). We represent it as an infinite series:

L(+4) =
∞∑

n=0

an

(
c(−2)

)n (
Ŷ (+2)

)n+2
+m2

(
θ(+)

)4
∞∑

n=1

bn

(
c(−2)Ŷ (+2)

)n
. (A.1)

All the identities below are given up to terms with a total harmonic derivative D(+2)i
a . In

addition, one must take into account the definitions (4.31). Each term in the variation

of the series (A.1) also contains transformations compensating the measure transforma-

tions (4.19), i.e.

δ
(
Ŷ (+2)

)2
=4Λ(0)

(
Ŷ (+2)

)2
+2Λ(0)c(+2)Ŷ (+2)+2εabεijΛ

(+2)i
a D(+2)j

b c(−2)Ŷ (+2)

− 1

2
εabεij c

(−2)Ŷ (+2)
(
D(+2)j

b Λ(+2)i
a

)
, (A.2)

δ
(
c(−2)

)n(
Ŷ (+2)

)n+2
=(n+4)Λ(0)

(
c(−2)

)n(
Ŷ (+2)

)n+2

+(n+2)Λ(0)c(+2)
(
c(−2)

)n(
Ŷ (+2)

)n+1

+
(n+2)

(n+1)
εabεijΛ

(+2)i
a D(+2)j

b

(
c(−2)

)n+1(
Ŷ (+2)

)n+1

− (n+2)

4
εabεij

(
D(+2)j

b Λ(+2)i
a

)(
c(−2)

)n+1(
Ŷ (+2)

)n+1

=(n+4)Λ(0)
(
c(−2)

)n(
Ŷ (+2)

)n+2

+nΛ(0)
(
c(−2)

)n−1(
Ŷ (+2)

)n+1

− (n+3)(n+4)

4(n+1)
εabεij

(
D(+2)j

b Λ(+2)i
a

)(
c(−2)Ŷ (+2)

)n+1
(A.3)

where

Λ(0)
(
c(−2)

)n
c(+2) = −1

4
Λ(0)

(
c(−2)

)n (
εabεij D(+2)i

a D(+2)j
b c(−2)

)

=
1

4
Λ(+2)i
a

(
c(−2)

)n (
εabεij D(+2)j

b c(−2)
)

+
n

4
Λ(0)

(
c(−2)

)n−1 (
εabεij D(+2)j

b c(−2)
)(

D(+2)i
a c(−2)

)

=
1

4 (n+ 1)
Λ(+2)i
a εabεij D(+2)j

b

(
c(−2)

)n+1

+
n

4
Λ(0)

(
c(−2)

)n−1 (
εabεij D(+2)j

b c(−2)
)(

D(+2)i
a c(−2)

)
. (A.4)

We also use the identity (cIJcIJ = 4)

Λ(0)

[
c(−2)c(+2) +

1

2
εabεij

(
D(+2)j

b c(−2)
)(

D(+2)i
a c(−2)

)]
=

1

4
cIJcIJ Λ

(0) = Λ(0) . (A.5)
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Thus, the series is invariant when

a0 = 1 , a1 = −4a0 , a2 =
a0 5!

2! 3!
, an =

(−1)n (n+ 3)!

n! 3!
,

bn =
(n+ 2) (n+ 3) an−1

4n
= −(−1)n (n+ 2) (n+ 3)!

n! 4!
. (A.6)

Using these relations, the above series can be summed up to the expression

L(+4) =
Ŷ (+2)Ŷ (+2)

(
1 + c(−2)Ŷ (+2)

)4 +
m2

2

(
θ(+)

)4


1− 1− c(−2)Ŷ (+2)

(
1 + c(−2)Ŷ (+2)

)5


 . (A.7)

For calculating the component Lagrangians, we use the following identities (up to total

harmonic derivatives):

c(−2)ŷ(+2) =
1

12
cIJ ŷIJ ,

(
c(−2)ŷ(+2)

)2
=

1

80

[(
cIJ ŷIJ

)2 − 2

3
ŷIJ ŷIJ

]
,

(
c(−2)ŷ(+2)

)3
=

1

400

[(
cIJ ŷIJ

)3 − 3

2
ŷKLŷKL cIJyIJ

]
,

(
c(−2)ŷ(+2)

)2n
=

12 (2n)! (2n)!

22n (2n+ 2)! (2n+ 3)!

×
n∑

k=0

(−1)k (2n− k + 1)!

k! (2n− 2k)!

(
ŷKLŷKL

)k (
cIJ ŷIJ

)2n−2k
,

(
c(−2)ŷ(+2)

)2n+1
=

12 (2n+ 1)! (2n+ 1)!

22n+1 (2n+ 3)! (2n+ 4)!

×
n∑

k=0

(−1)k (2n− k + 2)!

k! (2n− 2k + 1)!

(
ŷKLŷKL

)k (
cIJ ŷIJ

)2n−2k+1
. (A.8)

Using them, one obtains

∂2

∂ŷ(+2)∂ŷ(+2)

[
ŷ(+2)ŷ(+2)

(
1 + c(−2)ŷ(+2)

)4

]
=

∞∑

n=0

(n+ 1) (n+ 2) an

(
c(−2)ŷ(+2)

)n

= 2

(
1 +

cIJ ŷIJ
2

+
ŷIJ ŷIJ

4

)−2

= 8

[
1

2
yIJyIJ

]−2

,

∞∑

n=1

bn

(
c(−2)Ŷ (+2)

)n
= −1

2

(
1 +

cIJ ŷIJ
2

+
ŷIJ ŷIJ

4

)−1

= −
[
1

2
yIJyIJ

]−1

. (A.9)

B The multiplet (6, 8, 2)

As was already mentioned, the multiplets (6,8,2) and (8,8,0) are related to each other

by the substitution iφ̇ = D. The same substitution is admissible in the Lagrangian (4.50).
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Then, the SU(4|1) invariant action (4.32) is given by

L(6,8,2) = g2

[
1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
+DD̄ − m

4
χK χ̄K − m2

8
yIJyIJ

]

+
1√
2
D̄ ∂IJg2 χ

IχJ − 1√
2
D∂IJg2 χ̄I χ̄J + i

(
ẏIK ∂JKg2 − ẏJK ∂IKg2

)
χI χ̄J

− 1

2
∂IJ∂

KLg2 χ
IχJ χ̄K χ̄L , g2 =

[
1

2
yIJyIJ

]−2

. (B.1)

One can obtain a superconformal Lagrangian by making the following substitutions of the

component fields in (B.1)

D → D eimt/2, D̄ → D̄ e−imt/2, χI → χI eimt/4, χ̄I → χ̄I e
−imt/4. (B.2)

The resulting Lagrangian

Lconf = g2

[
1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
+DD̄ − m2

8
yIJyIJ

]

+
1√
2
D̄ ∂IJg2 χ

IχJ − 1√
2
D∂IJg2 χ̄I χ̄J + i

(
ẏIK ∂JKg2 − ẏJK ∂IKg2

)
χI χ̄J

− 1

2
∂IJ∂

KLg2 χ
IχJ χ̄K χ̄L (B.3)

is an even function of m and so is superconformal. Its form is typical for Lagrangians with

the trigonometric realizations of superconformal groups.

It can be shown that the superconformal group of (B.3) is SU(4|1, 1). On the one

hand, the transformations (4.30) become

δD = −
√
2 ǫI

(
iχ̇I −mχI

)
eimt/2, δD̄ = −

√
2 ǭI (i ˙̄χI +mχ̄I) e

−imt/2,

δyIJ = −2 ǭ[IχJ ]e−imt/2 + εIJKLǫK χ̄L eimt/2,

δχI =
√
2 ǭIB e−imt/2 − 2 ǫJ

(
iẏIJ − m

2
yIJ

)
eimt/2,

δχ̄I =
√
2 ǫIB̄ eimt/2 + 2 ǭJ

(
iẏIJ +

m

2
yIJ

)
e−imt/2, (B.4)

and leave the Lagrangian (B.3) invariant. On the other hand, new SU(4|1) transformations

leaving invariant (B.3) are defined by replacing m → −m in (B.4) :

δD = −
√
2 ηI

(
iχ̇I +mχI

)
e−imt/2, δD̄ = −

√
2 η̄I (i ˙̄χI −mχ̄I) e

imt/2,

δyIJ = −2 η̄[IχJ ]eimt/2 + εIJKLηK χ̄L e−imt/2,

δχI =
√
2 η̄IB eimt/2 − 2 ηJ

(
iẏIJ +

m

2
yIJ

)
e−imt/2,

δχ̄I =
√
2 ηIB̄ e−imt/2 + 2 η̄J

(
iẏIJ − m

2
yIJ

)
eimt/2. (B.5)

Introducing the conformal Hamiltonian as

H′

conf = H+
m

2
F, (B.6)
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the superconformal algebra su(4|1, 1) amounts to the following set of (anti)commutators
{
QI , Q̄J

}
=2δIJH′

conf+2mLI
J−mδIJF,{

SI , S̄J

}
=2δIJH′

conf−2mLI
J+mδIJF,{

QI , S̄J

}
=2δIJT

′,
{
SI , Q̄J

}
=2δIJ T̄

′, (B.7)

[
LI
J ,L

K
L

]
= δKJ LI

L−δILL
K
J ,

[
T ′, T̄ ′

]
=2mH′

conf ,
[
H′

conf ,T
′
]
=−mT ′,

[
H′

conf , T̄
′
]
=mT̄ ′, (B.8)

[
LI
J ,Q

K
]
= δKJ QI− 1

4
δIJQ

K ,
[
LI
J , Q̄L

]
=

1

4
δIJQ̄L−δILQ̄J ,

[
LI
J ,S

K
]
= δKJ SI− 1

4
δIJS

K ,
[
LI
J , S̄L

]
=

1

4
δIJ S̄L−δILS̄J ,

[
F,QI

]
=

1

2
QI ,

[
F,Q̄J

]
=−1

2
Q̄J ,

[
F,SI

]
=

1

2
SI ,

[
F,S̄J

]
=−1

2
S̄J ,

[
H′

conf ,Q
I
]
=−m

2
QI ,

[
H′

conf , Q̄J

]
=

m

2
Q̄J ,

[
H′

conf ,S
I
]
=

m

2
SI ,

[
H′

conf , S̄J

]
=−m

2
S̄J ,

[
T ′, Q̄J

]
=mS̄J ,

[
T ′,SI

]
=mQI ,

[
T̄ ′, S̄J

]
=−mQ̄J ,

[
T̄ ′,QI

]
=−mSI . (B.9)

Note that the “parabolic” realization of the superconformal group SU(4|1, 1) on the unde-

formed multiplet (6,8,2) was given in [40]. The corresponding superconformal Lagrangian

can be obtained as the m=0 limit of (B.3).

C The multiplet (7, 8, 1)

The substitution
√
2 iφ̇ = C − iẋ in (4.7) gives SU(4|1) transformations of the multiplet

(7,8,1):

δC = −ǫI

(
iχ̇I − 3m

4
χI

)
e3imt/4 − ǭI

(
i ˙̄χI +

3m

4
χ̄I

)
e−3imt/4,

δx = ǫIχ
Ie3imt/4 − ǭI χ̄I e

−3imt/4,

δyIJ = −2 ǭ[IχJ ]e−3imt/4 + εIJKLǫK χ̄L e3imt/4,

δχI = ǭI (C − iẋ) e−3imt/4 − 2 ǫJ

(
iẏIJ − m

2
yIJ

)
e3imt/4,

δχ̄I = ǫI (C + iẋ) e3imt/4 + 2 ǭJ
(
iẏIJ +

m

2
yIJ

)
e−3imt/4. (C.1)

The same substitution is admissible in the Lagrangian (4.50). In this way we obtain the

SU(4|1) invariant Lagrangian for the multiplet (7,8,1):

L(7,8,1) = g2

[
ẋ2

2
+

1

2
ẏIJ ẏIJ +

i

2

(
χK ˙̄χK − χ̇K χ̄K

)
+

C2

2
− m

4
χK χ̄K − m2

8
yIJyIJ

]

+
C

2

(
∂IJg2 χ

IχJ − ∂IJg2 χ̄I χ̄J

)
+

iẋ

2

(
∂IJg2 χ

IχJ + ∂IJg2 χ̄I χ̄J

)

+ i
(
ẏIK ∂JKg2 − ẏJK ∂IKg2

)
χI χ̄J − 1

2
∂IJ∂

KLg2 χ
IχJ χ̄K χ̄L ,

g2 =

[
1

2
yIJyIJ

]−2

. (C.2)
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The corresponding action is not invariant with respect to the superconformal group F(4)

inherent to the multiplet (7,8,1) [41] because (C.2) cannot be brought to a form in which

it depends only on m2. On the other hand, since F(4) includes SU(4|1) as a subgroup,

we expect the existence of an alternative, F(4) superconformal, action for the SU(4|1)
multiplet (7,8,1). At the component level, such a system has recently been constructed,

without giving an action however [42].

D Superconformal algebra osp(8|2)

Superconformal algebra osp(8|2) is given by the following non-vanishing (anti)commutators:

{
QI , Q̄J

}
=2δIJHconf+2mLI

J+mδIJF,{
SI , S̄J

}
=2δIJHconf−2mLI

J−mδIJF,{
QI ,SJ

}
=2mF IJ ,

{
Q̄I , S̄J

}
=2mF̄IJ ,{

QI , S̄J

}
=2δIJT,

{
SI , Q̄J

}
=2δIJ T̄ , (D.1)

[
LI
J ,L

K
L

]
= δKJ LI

L−δILL
K
J ,

[
LI
J ,F

KL
]
= δKJ F IL+δLJF

KI− 1

2
δIJF

KL,

[
LI
J , F̄KL

]
=

1

2
δIJ F̄KL−δIK F̄JL−δILF̄KJ ,

[
F IJ , F̄KL

]
= δIKLJ

L−δILL
J
K+δJLL

I
K−δJKLI

L+
(
δIKδJL−δILδ

J
K

)
F,

[
F,F IJ

]
=F IJ ,

[
F,F̄IJ

]
=−F̄IJ ,[

T, T̄
]
=4mHconf , [Hconf ,T ] =−2mT,

[
Hconf , T̄

]
=2mT̄ , (D.2)

[
LI
J ,Q

K
]
= δKJ QI− 1

4
δIJQ

K ,
[
LI
J , Q̄L

]
=

1

4
δIJQ̄L−δILQ̄J ,

[
LI
J ,S

K
]
= δKJ SI− 1

4
δIJS

K ,
[
LI
J , S̄L

]
=

1

4
δIJ S̄L−δILS̄J ,

[
F̄IJ ,Q

K
]
= δKI S̄J−δKJ S̄I ,

[
F IJ , Q̄L

]
= δJLS

I−δILS
J ,

[
F̄IJ ,S

K
]
= δKI Q̄J−δKJ Q̄I ,

[
F IJ , S̄L

]
= δJLQ

I−δILQ
J ,

[
F,QI

]
=

1

2
QI ,

[
F,Q̄J

]
=−1

2
Q̄J ,

[
F,SI

]
=

1

2
SI ,

[
F,S̄J

]
=−1

2
S̄J ,

[
Hconf ,Q

I
]
=−mQI ,

[
Hconf , Q̄J

]
=mQ̄J ,[

Hconf ,S
I
]
=mSI ,

[
Hconf , S̄J

]
=−mS̄J ,[

T,Q̄J

]
=2mS̄J ,

[
T,SI

]
=2mQI ,

[
T̄ , S̄J

]
=−2mQ̄J ,

[
T̄ ,QI

]
=−2mSI . (D.3)

The supercharges QI , Q̄J together with the generators LI
J and H = Hconf +

m
2 F form the

subalgebra su(4|1) +⊃ u(1) in osp(8|2), with F being an additional external R-symmetry

U(1) generator. The second set of SU(4|1) supercharges SI , S̄J extends this subalgebra to

the full superconformal algebra osp(8|2). The latter involves twelve additional R-symmetry
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generators F IJ ≡ F [IJ ], F̄IJ ≡ F̄[IJ ] which, together with the U(4) generators LI
J , F , form

the full R-symmetry algebra o(8). Additional conformal generators are T̄ , T , such that

three bosonic generators Hconf , T̄ and T constitute the conformal d=1 subalgebra o(2, 1).

Actually, the parameter m drops out from the superconformal algebra after performing

redefinitions similar to those made in [8] for the case of the N =4, d=1 superconformal

algebra D(2, 1;α).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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