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We consider 5d Yang–Mills–Higgs theory with a compact ADE-type gauge group G and one adjoint scalar 
field on R3,1 ×R+ , where R+ = [0, ∞) is the half-line. The maximally supersymmetric extension of this 
model, with five adjoint scalars, appears after a reduction of 6d N= (2, 0) superconformal field theory 
on R3,1 × R+ × S1 along the circle S1. We show that in the low-energy limit, when momenta along 
R

3,1 are much smaller than along R+ , the 5d Yang–Mills–Higgs theory reduces to a nonlinear sigma 
model on R3,1 with a coset G/H as its target space. Here H is a closed subgroup of G determined by the 
Higgs-field asymptotics at infinity. The 4d sigma model describes an infinite tower of interacting fields, 
and in the infrared it is dominated by the standard two-derivative kinetic term and the four-derivative 
Skyrme–Faddeev term.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

Quantum chromodynamics (QCD) as well as Yang–Mills theory 
are strongly coupled in the infrared limit, and hence the perturba-
tive expansion for them breaks down. In the absence of a quanti-
tative understanding of non-perturbative QCD, convenient alterna-
tives at low energy are provided by effective models among which 
nonlinear sigma models play an important role. A first model of 
this kind was introduced by Skyrme [1] for describing baryons as 
point-like solitons (see e.g. [2] for a review and references). The 
standard Skyrme model encodes pion degrees of freedom with an 
SU(2)-valued function on R

3,1. Its action contains the standard 
two-derivative sigma-model term as well as the four-derivative 
Skyrme term which stabilizes solitons against scaling.

A related model was introduced by Faddeev [3]. This is a sigma 
model on R3,1 with a coset space S2 = SU(2)/U(1) as its target 
space, and it also contains a four-derivative Skyrme-type term. 
Static Skyrme–Faddeev solitons are maps from R3 ∪ {∞} = S3 to 
the target space S2 and thus characterized by their homotopy 
class, the Hopf invariant. The cores of Skyrme–Faddeev solitons, 
sometimes called Hopfions, are twisted and knotted circles, in con-
trast to point-like cores of Skyrmions [4–8]. It is believed that 
the Skyrme model and its extension to other mesons provides a 
low-energy description of baryons, and that the Skyrme–Faddeev 
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model may describe glueballs [9] or stable closed vortices in vari-
ous areas of physics (see e.g. [10–12] and references therein). Both 
the Skyrme and the Skyrme–Faddeev model have been generalized 
to an arbitrary compact Lie group G and coset G/H , respectively 
(see e.g. [13–15]).

A classical problem of the standard Skyrme model was its dif-
ficulty to incorporate other mesons besides pions. This shortcom-
ing was overcome recently with an extended 4d Skyrme model 
obtained from 5d Yang–Mills theory derived from D-brane config-
urations in string theory and the holographic approach [16] (see 
e.g. [17–19] for reviews and references). This extended Skyrme 
model can also be reached from 6d N= (2, 0) superconformal field 
theory compactified on a circle to 5d super-Yang–Mills (SYM) the-
ory on R3,1 × I , where I = [−R, R] is a finite-length interval [20], 
upon forgetting the five adjoint scalar fields.

Here, we show that, like the extended Skyrme model, also an 
extended 4d Skyrme–Faddeev model can emerge in a low-energy 
limit of 5d SYM theory with Dirichlet boundary conditions [21,
22]. In contrast to the extended Skyrme model, for the extended 
Skyrme–Faddeev model one needs to keep one of the five adjoint 
scalars and also to modify the fifth dimension from I = [−R, R] to 
the half-line R+ = [0, ∞) � x4. The boundary conditions required 
for the reduction to R3,1 are encoded in Nahm equations along 
the fifth dimension [21,22]. In our case, the latter become “baby” 
Nahm equations on R+ for the remaining adjoint scalar φ ∈ g =
Lie G . Solutions to these equations were studied in [23]. The scalar 
is taken to approach an element τ of the Cartan subalgebra of g
in the limit x4 → ∞. The moduli space Mτ of solutions to the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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baby Nahm equation then becomes the adjoint orbit of τ . In other 
words, Mτ = G/H = {g τ g−1 | g ∈ G}, where H is the stabilizer of 
τ in G . This coset G/H becomes the target space for our 4d effec-
tive sigma model.

We start with 5d SYM theory on R3,1 × R+ and show how 
an extended Skyrme–Faddeev model appears rather naturally in 
the low-energy limit. Our derivation employs the adiabatic ap-
proach [24–30] based on Manton’s seminal paper [24]. This might 
give a clue to the construction of a 4d supersymmetric Skyrme–
Faddeev model, which seems to have not yet been completed. To 
this end one should keep three of the five adjoint scalars obey-
ing Nahm equations on R+ . To summarize, we demonstrate that 
not only the Skyrme model but also the Skyrme–Faddeev model 
as well as their extended versions emerge from the M5-brane sys-
tem of M-theory.

2. Yang–Mills and Higgs fields in five dimensions

Gauge fields and adjoint scalars Let Md be an oriented smooth man-
ifold of dimension d, G a compact ADE-type Lie group with g its 
Lie algebra, P a principal G-bundle over Md , A a connection one-
form on P and F = dA +A ∧A its curvature. We consider also the 
bundle of groups IntP = P ×G G (G acts on itself by internal au-
tomorphisms h 	→ ghg−1 with h, g ∈ G) associated with P and the 
bundle of Lie algebras AdP = P ×G g (adjoint action of G on g). 
These associated bundles inherit their connection A from P . Be-
sides A we will also consider g-valued scalar fields φ on Md , they 
are sections of the bundle AdP .

We denote by G the infinite-dimensional group of gauge trans-
formations,

G � f : A 	→ A f = f −1A f + f −1d f and

φ 	→ φ f = f −1φ f , (2.1)

which can be identified with the space of global sections of the 
bundle IntP . Correspondingly, the infinitesimal action of G is de-
fined by global sections ε of the bundle AdP ,

LieG � ε : δεA = DAε = dε + [A, ε] and

δεφ = [φ,ε] . (2.2)

The moduli space of pairs (A, φ) is defined as the quotient of the 
space of all such pairs by the action (2.2) of the gauge group G .

Space R3,1 × R+ We consider d=5 and Yang–Mills–Higgs the-
ory on M5 = R

3,1 × R+ with coordinates (xμ) = (xa, x4) for a =
0, 1, 2, 3, where xa ∈ R

3,1 and x4 ∈ R+ = [0, ∞). We introduce a 
family of flat metrics,

ds2
ε = gε

μν dxμdxν = ηab dxadxb + ε2(dx4)2 , (2.3)

where (ηab) = diag(−1, 1, 1, 1) and ε > 0 is a dimensionless pa-
rameter regulating the transition to the low-energy limit. Namely, 
for ε = 1 one has the standard Yang–Mills–Higgs theory on R3,1 ×
R+ . For small ε, momenta along R+ are much larger than mo-
menta along R3,1, and Yang–Mills–Higgs theory on R3,1 × R+ re-
duces to a non-linear sigma model on R3,1 that will be described 
below.

Note that the definition of infrared limit hiddenly introduces an 
arbitrary scale L into the model. In five dimensions this scale is 
provided by e2, where e is the (dimensionful) 5d gauge coupling. 
For physical application it is to be matched, e.g. to the nuclear 
scale. Here, the infrared region is defined by ε 
 1 for conve-
nience. For a dimensionful variant, one may absorb the length 
dimension of x4 into ε and take the infrared domain as ε 
 L.
Action functional For a g-valued gauge potential (connection) 
A and its gauge field (curvature) F on the principal bundle P
over R3,1 ×R+ we have the obvious splitting

A = Aa dxa +A4 dx4 and

F = 1
2Fab dxa ∧ dxb +Fa4 dxa ∧ dx4 . (2.4)

The fields A, F and φ are taken in the adjoint representation of 
g = Lie G . For the adjoint generators Ii of G we use the standard 
normalization tr(Ii I j) = −2δi j with i, j = 1, . . . , dimG .

For the metric tensor (2.3) we have (gμν
ε ) = (ηab, ε−2) and 

det(gε
μν) = −ε2. We denote by Fμν

ε the contravariant components 
raised from Fμν by gμν

ε and by Fμν those obtained by using 
gμν ≡ gμν

ε=1. We have Fab
ε = Fab and Fa4

ε = ε−2Fa4. We also 
rescale the Higgs field φ 	→ ε−1φ. The Yang–Mills–Higgs (YMH) ac-
tion functional on R3,1 × R+ with the metric (2.3) then takes the 
form

S = − 1

8e2

∫
R3,1×R+

d5x
√|det gε| tr

(
FμνFμν

ε + 2
ε2 DμφDμφ

)

= − 1

8e2

∫
R3,1×R+

d5x tr
(
εFabFab + 2

εFa4Fa4 + 2
ε DaφDaφ

+ 2
ε3 D4φD4φ

)
. (2.5)

There is no potential for φ in (2.5), as in the standard action for 
monopoles. Instead, nontrivial geometry for φ will appear from 
asymptotic conditions at infinity. The action (2.5) follows from the 
bosonic action of maximally supersymmetric Yang–Mills theory in 
five dimensions (see e.g. [22]) after putting to zero four of the five 
adjoint scalar fields.

3. Boundary conditions and moduli space of vacua

Conditions at x4 = 0 and at x4 → ∞ For convenience let us intro-
duce a dimensionless fifth coordinate z and dimensionless field 
components,

z = x4/L and Az = L Ax4 as well as ϕ = L φ .

(3.1)

The boundary of M5 = R
3,1 × R+ consists of Minkowski space 

R
3,1
0 = ∂M5 at z = 0. Infinity z → ∞ is parametrized by Minkowski 

space R3,1∞ at z = ∞. For the g-valued fields (A, ϕ) on R3,1 × R+
we have to impose boundary (at z = 0) and asymptotic (for 
z → ∞) conditions. We make the following choice [31],

Aa(xa, z=0) = 0 and{
∂zϕ(xa, z) + [Az(xa, z),ϕ(xa, z)]}∣∣z=0 = 0 , (3.2)

Aμ(xa, z→∞) = 0 and ϕ(xa, z→∞) = τ (xa) ∈ t⊂ g ,

(3.3)

where t is a Cartan subalgebra of the Lie algebra g. Such a class of 
conditions is parametrized by a Minkowski-space g-valued func-
tion τ and has been imposed e.g. in studies of the Nahm equations 
on R+ (see e.g. [32,33,23]).
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Gauge group We employ the notation I := R+ and consider the 
group G = C∞(R3,1 × I, G) as well as its restriction GI to I
obtained by fixing xa ∈ R

3,1 to some arbitrary value, i.e. GI ∼=
C∞(I, G). The true group of gauge transformations has to preserve 
the chosen boundary and asymptotic conditions (3.2) and (3.3) (see 
e.g. [34]). This is not the case for G but for its subgroup

G0 = {
h ∈ G : h(xa, z=0) = h(xa, z→∞) = Id

}
. (3.4)

In the following, we shall need two larger subgroups, which pre-
serve (3.2) but not the asymptotics (3.3), namely

G1 = {
h ∈ G : h(xa, z=0) = Id but h(xa, z→∞) ∈ G

}
and

(3.5)

Gτ = {
h ∈ G : h(xa, z=0) = Id and h(xa, z→∞) ∈ H

}
,

(3.6)

where H is the stabilizer of τ in t under the adjoint action. Clearly, 
G0 ⊂ Gτ ⊂ G1 ⊂ G , and the transformations from Gτ respect the 
asymptotics (3.3) only for Az and ϕ .

For the Lie algebras g and h of the Lie groups G and H , respec-
tively, we have g = h ⊕m and choose m to be orthogonal to h with 
respect to the Cartan–Killing form. We assume that the adjoint or-
bit G/H is reductive, which means that [h, m] ⊂ m. When H is the 
maximal torus T in G , the coset space G/T is the orbit of maximal 
dimension.

We denote by G1
I and Gτ

I the restrictions of the groups G1 and 
Gτ to the half-line I = R+ by fixing xa ∈ R

3,1. It follows from the 
definitions of GI , G1

I and Gτ
I that

GI/G1
I ∼= G and G1

I/Gτ
I

∼= G/H (3.7)

since the elements of these groups differ only either at z = 0 or 
at z = ∞. Correspondingly, the definitions of G , G1 and Gτ imply 
that

G/G1 ∼= C∞(R3,1, G) and G1/Gτ ∼= C∞(R3,1, G/H) .

(3.8)

Yang–Mills–Higgs model on R+ Our consideration of the low-
energy limit ε → 0 of the YMH model (2.5) is based on the 
adiabatic approach which for YMH theories was introduced in 
the seminal paper [24] by Manton (for brief reviews see e.g. [30,
35] and references therein). In the adiabatic approach one should 
firstly restrict the YMH theory (2.5) to I and classify solutions 
on I not depending on xa ∈ R

3,1 and secondly declare that their 
moduli, which parametrize such solutions, depend on xa ∈ R

3,1

and derive the effective action for these moduli functions.
From the action (2.5) it follows that for ε → 0 and Aa = 0 the 

equations of motion read

∂aAz = 0 = ∂aϕ and ∂zϕ + [Az,ϕ] = 0 . (3.9)

The conditions (3.2) and (3.3) become

Az(z=∞) = 0 and ϕ(∞) = τ ∈ t⊂ g , (3.10)

while the boundary condition (3.2) at z=0 is satisfied due to (3.9). 
For regular elements τ (when H is the maximal torus T in G), 
solutions to (3.9) and (3.10) were described in [23]. We adapt the 
construction to non-regular τ .
Equation (3.9) is solved by

Az = h−1∂zh and ϕ = h−1ϕ(0)h where h(z) ∈ GI .

(3.11)

However, h(z) and h−1(0)h(z) define the same solution, so we may 
impose h(0) = Id or, equivalently, take h(z) ∈ G1

I . Then from (3.10)
and (3.11) we obtain that

ϕ(∞) = h−1(∞)ϕ(0)h(∞) = τ

⇒ ϕ(0) = h(∞) τ h−1(∞) . (3.12)

As H is the stabilizer of τ under the adjoint G-action,

h0 τ h−1
0 = τ for h0 ∈ H , (3.13)

we may locally factorize

h(∞) = m h0 ⇒ ϕ(0) = m τ m−1 ∈ G/H

for h0 ∈ H and m ∈ G/H , (3.14)

so that MI = G/H is the moduli space of solutions to (3.9).

Moduli space of vacua One arrives at the same vacuum moduli 
space MI = G/H for YMH theory on R+ by noting the one-to-
one correspondence between Az on R+ and h(z) ∈ G1

I given by 
the first formula in (3.11) and its “inverse”

h(z) = P exp
( z∫

0
Aydy

)
, (3.15)

where P denotes path ordering. The gauge subgroup Gτ
I acts on 

Az and ϕ(z) (and hence on the solution space G1
I � h(z)) by

Gτ
I � f : Az 	→ A f

z = f −1Az f + f −1∂z f ,

ϕ 	→ ϕ f = f −1ϕ f ⇒ h 	→ h f = hf . (3.16)

Hence, the moduli space of solutions (3.11) is MI = G1
I/Gτ

I
∼=

G/H , and one can define the principal Gτ
I -bundle

q : G1
I

Gτ
I−→ G/H with h(z) 	→ m (3.17)

for m ∈ G/H defined in (3.14).

4. Infinitesimal change of solutions (Az, ϕ)

Linearized equations Suppose we have a solution (Az, ϕ) to (3.9), 
which belongs to the moduli space MI = G/H from (3.17). Then 
(δAz, δϕ) will be a tangent vector to G/H at the point (Az, ϕ) if

Dzδϕ + [δAz,ϕ] = 0 (4.1)

and

DzδAz + [ϕ, δϕ] = 0 , (4.2)

where Dz = ∂z + [Az, · ]. Equation (4.1) means that (δAz, δϕ) be-
long to the tangent space T

(Az,ϕ)
G1
I of the solution space G1

I , and 
(4.2) says that (δAz, δϕ) is orthogonal to the gauge modes (cf. [26]
for a similar discussion regarding the moduli space of monopoles 
in R

3). Below we will explain this in more detail.
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Geometry of G/H We consider the adjoint orbit (3.14). Let us 
choose a basis {Ii} for the Lie algebra g in such a way that 
{I ı̄} for ı̄ = 1, . . . , dim G/H form a basis for m and {I

ı̂
} for ı̂ =

dim G/H + 1, . . . , dim G provide a basis for h. For the total Lie al-
gebra we have g = h ⊕m and tr(I ı̄ I

ı̂
) = 0.

The space G/H consists of left cosets g H , and the natural pro-
jection g 	→ g H is denoted by

π : G
H−→ G/H . (4.3)

On G/H there exists an orthonormal frame of left-invariant one-
forms {eı̄} which locally provides the G-invariant metric

ds2
G/H = δı̄j̄ eı̄ej̄ = δı̄j̄ eı̄

αej̄
β dXαdXβ =: gαβ dXαdXβ

for α,β = 1, . . . ,dim G/H , (4.4)

where Xα are local coordinates on G/H . The principal H-bundle 
(4.3) supports a unique G-invariant connection, the so called 
canonical connection [36–38],

AG/H = eı̂ I ı̂ = eı̂
ı̄ I ı̂ eı̄ = eı̂

α I ı̂ dXα . (4.5)

The one-forms ei = (eı̄ , eı̂ ) obey the Maurer–Cartan equations,

deı̄ = − f ı̄

ĵ k̄
eĵ ∧ ek̄ − 1

2 f ı̄

j̄ k̄
ej̄ ∧ ek̄ and

deı̂ = − 1
2 f ı̂

ĵ k̂
eĵ ∧ ek̂ − 1

2 f ı̂

j̄ k̄
ej̄ ∧ ek̄ . (4.6)

The curvature of the canonical connection (4.5) follows as

FG/H = − 1
2 f ı̂

j̄ k̄
I ı̂ ej̄ ∧ ek̄ = − 1

2 f ı̂

j̄ k̄
I ı̂ ej̄

αek̄
β dXα ∧ dXβ . (4.7)

Variation of (Az, ϕ) Recall that the solution space G1
I to (3.9) is 

a group, and the moduli space MI = G1
I/Gτ

I is labelled locally 
by coset coordinates X = {Xα}. Let us pick a coset representative 
m(X) ∈ G1

I , which is a section of the bundle (3.17) over a point X ∈
G/H . Multiplication from the left by a group element h ∈ G1

I will 
generally carry m(X) into a section m(X ′) over another point X ′ , 
so that

h m(X) = m(X ′) f with f ∈ Gτ
I . (4.8)

This yields formulae for the infinitesimal changes of Az and ϕ , 
which live in LieG1

I =m ⊕ LieGτ
I ,

∂αAz = δαAz + δεα Az = δαAz + Dzεα and

∂αϕ = δαϕ + δεαϕ = δαϕ + [ϕ,εα] , (4.9)

where ∂α = ∂/∂ Xα . The pair (δαAz, δαϕ) belongs to the tangent 
space T(Az,ϕ)MI ∼= m, and εα are g-valued gauge parameters gen-
erating the infinitesimal gauge transformation (δεα Az, δεαϕ) which 
represents the gauge part of the variation and sits in LieGτ

I . The 
orthogonality of (δαAz, δαϕ) and (δεα Az, δεαϕ) is achieved by im-
posing the condition (4.2) for any α = 1, . . . , dim G/H .

5. Skyrme–Faddeev model in the infrared limit of 5d YMH

Coset space sigma model We return to the YMH model (2.5) on 
R

3,1 × R+ and non-vacuum fields (Aa, Az, ϕ). The adiabatic ap-
proach considers the collective coordinates X = {Xα} as dynamical 
fields, Xα = Xα(x), where x = {xa}. Their low-energy effective ac-
tion is derived by expanding

Aμ = Aμ

(
X(x), z

)+ . . . and ϕ = ϕ
(

X(x), z
)+ . . . (5.1)
and keeping only the first terms in the YMH action (2.5) [24–26,
28,20]. Thereby one obtains an effective field theory which will be 
a non-linear sigma model describing maps X :R3,1 → G/H .

With the map X we pull back the adiabatic fields

Az = Az
(

X(x), z
) =: Az(x, z) and

ϕ = ϕ
(

X(x), z
) =: ϕ(x, z) (5.2)

by a slight abuse of notation from G/H to R3,1. Thus, we have to 
include a dependence on xa in the formulae of Sections 3 and 4. 
In particular, multiplying (4.9) by ∂a Xα , we obtain

∂aAz = (∂a Xα)δαAz + Dzεa and

∂aϕ = (∂a Xα)δαϕ + [ϕ,εa] , (5.3)

where εa = (∂a Xα) εα is the pull-back of εα to R3,1. From (5.3) it 
follows that

Faz = ∂aAz − DzAa = (∂a Xα)δαAz − Dz(Aa−εa) , (5.4)

Daϕ = ∂aϕ + [Aa,ϕ] = (∂a Xα)δαϕ − [ϕ,Aa−εa] . (5.5)

In the moduli-space approximation, Fa4 and Daϕ are tangent to 
MI (see e.g. [24–26]). This can be achieved by putting

Aa = εa
(

X(x), z
)
. (5.6)

Then, substituting (5.4) and (5.5) into the action (2.5) and remem-
bering (3.1), we arrive at

Skin = − 1

4e2ε

∫
R3,1×R+

d5x ηab tr (Fa4Fb4 + DaφDbφ)

= 1

2e2εL

∫
R3,1

d4x ηab gαβ ∂a Xα∂b Xβ , (5.7)

where

gαβ = − 1
2

∞∫
0

dz tr
(
δαAzδβAz + δαϕδβϕ

) = δı̄j̄ eı̄
αej̄

β (5.8)

are the components of the metric (4.4) on G/H pulled-back to 
R

3,1. Thus, this part of the action (2.5) reduces to the standard 
non-linear sigma model on R3,1 with the coset G/H as target 
space.

Skyrme–Faddeev term The last term in the action (2.5) vanishes 
since D4φ = 0 for any xa ∈ R

3,1 due to second equation in (3.9). It 
remains to evaluate the first term in the action (2.5). For this we 
notice that Aa = εa = (∂a Xα)εα depend on Xα(x) and z and that

εa(z=0) = 0 and εa(z=∞) ∈ h . (5.9)

The asymptotics (5.9) at z → ∞ does not agree with the asymp-
totic conditions (3.3) for the components Aa . The reason is that, 
when we turn from YMH theory on R+ to YMH theory on R3,1 ×
R+ , the group of gauge transformations are reduced from Gτ to 
G0. To preserve (3.3) we switch from Aa to Âa via

Aa = εa = f −1 Âa f + f −1 ∂a f with some f ∈ Gτ . (5.10)

The conditions (5.9) for Aa translate to

Âa(z=0) = 0 and Âa(z=∞) = 0 (5.11)

since f (z=0) = 0 and f (z=∞) ∈ H and Aa(z=∞) = f −1 ∂a f ∈ h.
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Recall that

Âa = (∂a Xα) ε̂α where εα = f −1 ε̂α f + f −1 ∂α f .

(5.12)

This ε̂α dXα is a one-form on the base G/H of the fibration with 
value in the Lie algebra LieG0. One can always decompose ε̂α as

ε̂α = ζ(z) eı̂
α I ı̂ + ε0

α , (5.13)

where Aα = eı̂
α I ı̂ are the components of the unique G-equivariant 

connection (4.5) in the bundle (4.3), and ζ(z) is a real-valued func-
tion on R+ such that ζ(0) = 0 = ζ(∞). One can view (5.13) as a 
definition of ε0

α . Then for Âa we have

Âa = ζ(z)(∂a Xα)eı̂
α I ı̂ + (∂a Xα)ε0

α = ζ(z)Aa + ε0
a . (5.14)

We remark that Aa is a composite field since the canonical connec-
tion (4.5) has a fixed dependence on the coordinates Xα on G/H , 
which is known explicitly if one chooses G/H = SU(n+1)/U(n), 
SU(n+1)/U(1)n or similar. On the other hand, ε0

a is not compos-
ite.

The curvature of Â computes to

f F f −1 = F̂ = dÂ+ Â∧ Â = F + � , (5.15)

where

F = ζ dA +ζ 2 A ∧ A = 1
2 Fab dxa ∧dxb and (5.16)

� = dε0 + ε0 ∧ ε0 + ζ(A ∧ ε0 + ε0 ∧ A) = 1
2 �ab dxa ∧ dxb .

(5.17)

We will see in a moment that the term F in (5.15) yields a 
Skyrme–Faddeev type term for a generic coset space G/H . On the 
other hand, the curvature � in (5.15) describes g-valued one-forms 
with non-vanishing mass terms from the coupling to the com-
posite field A in (5.17). A consideration of these fields is beyond 
the scope of our paper, which contents itself with identifying the 
Skyrme–Faddeev model as part of the low-energy limit of 5d SYM 
on R3,1 × R+ . The discarded term � will yield corrections analo-
gous to the tower of meson fields in the extended Skyrme model 
(see e.g. [16,19]).

For the components Fab from (5.16) and (4.5)–(4.6) we obtain

Fab = (
ζ(ζ−1) f ı̂

ĵ k̂
eĵ
αek̂

β − ζ f ı̂

j̄ k̄
ej̄
αek̄

β

)
I ı̂ ∂a Xα∂b Xβ . (5.18)

Substituting (5.15) into the action and discarding all �ab terms, the 
first term in (2.5) produces

SSF = − ε

8e2

∫
R3,1×R+

d5x trFabFab

= εL

4e2

∫
R3,1

d4x ηacηbd ∂a Xα∂b Xβ∂c Xγ ∂d Xδ

×
{

a1 f ı̂

l̂k̂
f ĵ

m̂n̂
el̂
αek̂

βem̂
γ en̂

δ + a2 f ı̂

l̂k̂
f ĵ

m̄n̄ el̂
αek̂

βem̄
γ en̄

δ

+ a3 f ı̂

l̄k̄
f ĵ

m̄n̄ el̄
αek̄

βem̄
γ en̄

δ

}
δı̂ĵ , (5.19)

with numerical coefficients

a1 =
∞∫

0

dz ζ 2(ζ−1)2 , a2 =
∞∫

0

dz ζ 2(ζ−1) and

a3 =
∞∫

dz ζ 2 (5.20)
0

The integrals (5.20) are finite for a suitably chosen function ζ(z)
such as ζ(z) = exp(−z)(1 − exp(−z)). The expression (5.19) for 
the Skyrme–Fadeev-type term holds true for generic cosets G/H . 
It considerably simplifies when H = T is the Cartan torus in G , be-
cause then f ı̂

ĵ k̂
= 0, and one has only the a3 term in (5.19). For 

G/T = SU(2)/U(1), this term coincides with the standard Skyrme–
Faddeev term of the CP 1 sigma model.

To summarize, in the infrared limit the Yang–Mills–Higgs ac-
tion (2.5) on R3,1 × R+ is reduced to the effective action of the 
Skyrme–Faddeev model

Seff = Skin + SSF , (5.21)

where Skin and SSF are given by (5.7), (5.8) and (5.19).

Note added after review

By similar methods, the authors recently obtained the standard
4d Faddeev and Skyrme models in an infrared limit of 4d Yang–
Mills–Higgs theory. Breaking the gauge group G to a subgroup H
results in a Higgs vacuum manifold G/H , which coincides with 
the Faddeev sigma-model target. The coset may be chosen to be a 
group manifold, e.g. G/H � U(N), in which case the standard U(N)

Skyrme model emerges [39].
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