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Abstract: Alignment of optical components is crucial for the assembly of optical systems to
ensure their full functionality. In this paper we present a novel predictor-corrector framework for
the sequential assembly of serial optical systems. Therein, we use a hybrid optical simulation
model that comprises virtual and identified component positions. The hybrid model is constantly
adapted throughout the assembly process with the help of nonlinear identification techniques and
wavefront measurements. This enables prediction of the future wavefront at the detector plane
and therefore allows for taking corrective measures accordingly during the assembly process if
a user-defined tolerance on the wavefront error is violated. We present a novel notation for the
so-called hybrid model and outline the work flow of the presented predictor-corrector framework.
A beam expander is assembled as demonstrator for experimental verification of the framework.
The optical setup consists of a laser, two bi-convex spherical lenses each mounted to a five
degree-of-freedom stage to misalign and correct components, and a Shack-Hartmann sensor for
wavefront measurements.
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1. Introduction

The alignment of optical components is crucial for the assembly of optical systems in order to
ensure certain performance criteria. Examples for such optical systems range from lithographic
equipment [1] to interferometers [2, 3], and fourier-transform infrared spectrometers [4]. Small
alignment deviations can lead to wavefront errors that can significantly impact the performance
of such devices or even render them entirely useless. To date, the vast majority of commercial
optical systems are assembled by employing passive alignment approaches. Therein, optical
components are equipped with passive adjustment mechanisms and are manually fine-adjusted
via heuristic approaches [5, 6]. This, in turn, leads to high labor cost and increased production
cost as well as increased manufacturing time. Therefore, ongoing research concentrates on active
(also: automatic) alignment approaches that utilize computer-aided feedback and active driving
mechanisms [7–10].
Inferring optical component positions solely from detector measurements is a challenging

task. This identification process requires (at least partial) knowledge of the underlying model
of the optical system. For systems with simple components (spheric, rotationally symmetric
lenses with large radii where decentration is negligible) one can utilize analytic models (such
as the extended ray-transfer matrix) [11, 12] for the evaluation of misalignments but for more
complex systems or systems with non-negligible decentration one has to resort to full numerical
ray-tracing simulations. Supervised learning techniques such as neural networks are able to
provide a model-free approach to identify misalignments [13].
Feedback for the identification process can be either intensity-based by employing a CCD

camera [14–16] or wavefront-based [17] by employing a (Shack-Hartmann) wavefront sensor.
Linear identification techniques compute the Jacobian of the wavefront deviation w.r.t. position
deviations. The positions of the components can then be retrieved by utilizing the pseudoinverse
of the Jacobian. However, the pseudoinverse is often ill-conditioned and therefore amplifies
measurement noise. Furthermore, this limited approach is only valid within a small region around
the linearization point and does not consider axes-coupling [18, 19]. A nonlinear approach to the

                                                                                                  Vol. 26, No. 8 | 16 Apr 2018 | OPTICS EXPRESS 10670 



identification problem consists of constructing a merit function that needs to be minimized in order
to yield the respective optical component positions [20–22]. The corresponding optimization
problem can be minimized by standard derivative-free optimization algorithms. A dynamic
approach for the identification is to use Kalman filtering techniques [16,17]. For the alignment of
interfering beams, differential wavefront sensing became popular which senses phase differences
within a quadrant photo diode [23–25].

While several work flows have been proposed for the active alignment in assembly processes
[25, 26], our presented approach offers a tight integration of simulation and experimental data.
This is done by utilizing identification techniques in order to update a simulation model that runs
in parallel with the assembly process. This yields a systematic approach enabling the possibility
of assessing predicted wavefront errors and therefore process-integrated conformance testing.
These can be used in order to correct either the simulation model or the real physical positions of
the optical components during the assembly process. The key contributions of this paper can be
summarized as:

• Presentation of a predictor-corrector framework for the systematic alignment of optical
components during assembly processes

• Presentation of a hybrid optical model including novel notation

• Simultaneous model adaptation by identification and virtual wavefront prediction during
the assembly process

• Correction of virtual or real positions of optical components during the assembly process
based on future tolerance assessment (conformance testing)

The proposed framework can be applied e.g. to small series production of optical systems. For
large scale productions it is economically sustainable to intensively quantify the system including
all tolerances on all optical parameters before deploying production. For small series production,
however, the cost-benefit ratio is higher due to smaller quantities and thus a lower revenue.
Here, the proposed predictor-corrector framework can give insight by predicting the wavefront
and correcting components during the assembly which facilitates custom production without
cost-intensive tolerance analysis beforehand. Furthermore, positioning systems for optical system
are highly specialized and expensive tools. By lowering the tolerances it is possible to utilize a
more generic and cheaper positioning system.

This paper is organized as follows. Sec. 2 presents the proposed predictor-corrector framework
and outlines its notation and work flow. Sec. 3 provides experimental validation of our presented
predictor-corrector framework by utilizing a beam expander as demonstrator. Sec. 4 concludes
the paper with a short summary and future work.

2. Predictor-corrector framework

In this section we will present the predictor-corrector framework and its fundamental concepts.
For this, the underlying hybrid model and its corresponding notation is subsequently outlined.
Afterwards, the process flow and its core components are described in more detail.

2.1. Notation for hybrid model

In this paper, we consider optical systems with serial topology (i.e. no beam splitting) consisting
of n static optical components. A light source (i=0) and a detector (i=n+1) are placed in the
optical train as first and last component, respectively. These components will be considered fixed
without loss of generality throughout the remainder of this paper.

Before assembling an optical system, a nominal optical system is given by an initial optical
design laid out to satisfy certain desired requirements (e.g. maximum allowable wavefront error
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tolerance). Each optical component is then assigned a (virtual) position xS,i ∈ Rnd for i = 1, ..., n
from the simulation which is pre-determined by the nominal design. Therein, nd denotes the
degrees of freedom of the optical component. If no positioning uncertainties and tolerances were
present, the assembly process would yield the nominal design. However, since such uncertainties
are non-negligible in real-world assembly processes, the actual positions deviate from the nominal
positions. Therefore, we can similarly define actual optical component positions x∗i ∈ Rnd for
i = 1, ..., n that adhere to the real system. These actual positions can be found by means of
identification (see Sec. 2.3).

By making this distinction between virtual and actual positions, we can define a hybrid model
that comprises both quantities. For every assembly step i, the i-th component is identified while
the remaining n − i components are virtual and are to be added in the upcoming assembly steps.
For better readability, we can define a set of identified positions X∗i ∈ Rnd×i by

X∗i := (x∗1, ..., x
∗
i )

and a set of virtual positions XS,i ∈ Rnd×(n−i) by

XS,i := (xS,i+1, ..., xS,n).

The combination yields a set of hybrid positions XH,i ∈ Rnd×n defined as

XH,i := (X∗i ,XS,i)

for each assembly step i = 0, ..., n. Two special cases arise for

(i) i = 0 where the hybrid model degenerates to the nominal (completely virtual) design
XH,0 := (X∗0,XS,0) = XS,0, and

(ii) i = n where the hybrid model degenerates to the (completely assembled) identified optical
system XH,n := (X∗n,XS,n) = X∗n.

2.2. Work flow of the predictor-corrector framework

The presented predictor-corrector framework consists of a discrete work flow. The framework is
briefly outlined here for the i-th assembly step and the core steps are described in more detail in
Sec. 2.3-2.5. In this paper, we choose to encode the wavefront in form of Zernike coefficients
z ∈ Rnz which are obtained after mapping the positions of optical components by the nonlinear
function h : Rn×nd → Rnz as

z = h(X). (1)

They are by default referenced to the detector coordinate frame in this paper. It should be noted
that the presented framework works independently from the chosen wavefront representation.
Since we consider only static optical components, the wavefront and therefore the coefficients are
solely dependent on their positions without being time-dependent. Figure 1 depicts the proposed
work flow of the predictor-corrector framework which can be summarized as follows:

1. Placement of optical component
The i-th optical component is brought into the optical train by virtual insertion into the
simulation model and simultaneous physical insertion into the real system by a positioning
system. The desired position of the i-th lens is given by Xn

H,i−1 of the previous assembly
step/initial optical system design. It should be noted that the positioning of the optical
component is subject to uncertainty (due to limited positioning accuracy) and the actual
placement corresponds to a draw from a probability distribution.
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Fig. 1. Flow diagram of the proposed predictor-corrector framework.

2. Sensor measurements
After the optical component i has been inserted, real measurements z from the wavefront
sensor can be obtained.

3. Model update
The obtained sensor measurements z can be used to update the virtual position xS,i to
conform to the real position x∗i (model identification step) which leads to an update of
the hybrid set XH,i←XH,i−1. This step will be described in more detail in Sec. 2.3.

4. Prediction
Virtual completion of the model allows for a prediction of the wavefront at the detector
given the hybrid set XH,i (prediction step) which yields the wavefront if all remaining
components would be placed according to their nominal positions (i.e. no positioning
errors).

5. Conformance testing and correction calculation
In this step, the predicted wavefront from the previous step can be assessed by choosing
an appropriate metric. If tolerance criteria from the previous step are not met, the virtual
or real system needs to be altered accordingly (conformance testing & correction step).
There are three options to do so:

(I) Future correction: Correct error in the virtual model by re-alignment of optical
components to be assembled

(II) Current correction: Correct position of current optical component by calculation of a
positional correction term and applying it to the system. If multiple such iterations
are required during a configuration, these will be called cycles thereafter.

(III) Past correction: Correct error by going one step back in the assembly procedure and
correct previous optical component position.

2.3. Model identification step

The model identification step consists of solving the inverse problem of the mapping (1). Given a
wavefront measurement, the goal is to retrieve the position(s) of the current optical component(s)
x ∈ X by

X = h−1(z). (2)
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In this paper we follow a nonlinear approach to solve (2). This can be realized by an optimization
problem with a nonlinear merit function J [20,22] that is minimized w.r.t. the current component
position

x∗ = arg min
x∈X

J(X, z) (3)

with weighted quadratic merit function

J(X, z) = ‖z − h(X)‖W =
√
(z − h(X))TW (z − h(X)). (4)

The weights incorporated in the diagonal weighting matrix W = diag(w1, ...,wnz ) can be used for
example to discount the influence of higher-order aberrations. Solving (3)-(4) can be realized by
any derivative-free optimization algorithm (Levenberg-Marquardt, Nelder-Mead, Particle Swarm,
Genetic Algorithms, Damped Least-Squares etc.). The interested reader is referred to [27] for a
recent comparative study on such solvers.

2.4. Prediction step

This step consists of a simple forward simulation based on the identified and virtual component
positions. A single simulation zp = h(XH,i) is executed to predict the wavefront at the detector
based on the hybrid set.

2.5. Conformance testing and correction step

In this step, the predicted wavefront error of the optical system given the hybrid set XH,i can
be assessed by choosing an appropriate metric (typically, root-mean-square error (RMS) or
peak-to-valley (PV)). In this paper, we chose the wavefront deviation expressed as the weighted
norm of Zernike coefficient differences (weighted RMS) at the detector to be below a certain
tolerance

‖zd − zp ‖W = ‖zd − h(X∗i ,XS,i)‖W ≤ TOL. (5)

Therein, zd are the Zernike coefficients corresponding to a desired wavefront which should be
achieved at the completion of the predictor-corrector framework and are specified by the initial
optical design (see Sec. 2.1). If (5) holds, the next assembly step can be executed. If not, corrective
measures need to be taken. In order to avoid physical assembly/correction steps we prioritize
virtual position corrections on the future components to be assembled. If this is not possible, a
correction of the current component should occur which may not yet be fixed and therefore can
easily be manipulated. If this step is not feasible, a step back in the assembly process needs to be
made. The three correction options can be formalized as:

(I) Future correction
An optimization problem similar to the identification step needs to be solved

X̂S,i = arg min
XS, i ⊂XH, i

J(XH,i, zd).

However, here we keep the real components fixed and only optimize over all remaining
virtual components. The outcome allows to reassess the tolerance specification (5) with
updated virtual positions by

‖zd − h(X∗i , X̂S,i)‖W ≤ TOL. (6)

If (6) holds we can update the simulation model and execute next assembly step. It should
be noted that this step potentially incurs a high computational load if the remaining number
of optical components is large since the search space increases exponentially with the
number of components. This can be mitigated by
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• Reducing the prediction horizon by limiting the number of components to be
considered in the future correction step

• Reducing the adjustment DOF for the remaining components

(II) Current correction
If both (5) and (6) are violated, we try to change the component of the current assembly
step. This leads to an optimization problem over the current optical component

x̂i = arg min
xi ∈XH, i

J(XH,i, zd).

Again, the predicted tolerance can be reassessed by

‖zd − h(X∗i−1, x̂i,XS,i)‖W ≤ TOL. (7)

If (7) holds, we reiterate the first step of the current cycle (placement of optical component)
with the updated current optical component position x̂i .

(III) Past correction
If (5), (6) and (7) are violated, the current optical component needs to be removed and the
error needs to be corrected by going one step back in the assembly procedure.

In conclusion to this section, the proposed predictor-corrector framework is shown in Alg. 1. If
TOL is chosen too low, the framework (see Fig. 1) might get stuck in an infinite loop. To address
this issue, we introduce an additional iteration counter iter that is incremented for each physical
correction. The algorithm will then terminate after a user-specified maximum iteration itermax

has been exceeded.

3. Experimental verification with beam expander

In order to verify the presented predictor-corrector framework, a beam expander (as exemplary
demonstrator) is assembled. While the proposed framework is intended for all optical systems
where the individual optical components can be modeled with sufficient accuracy, a simple
two-lens system is analyzed hereafter.

3.1. Experimental setup

The experimental setup (see Fig. 2(a)) consists of a laser (λ = 532 nm) followed by an adjustable
neutral-density filter in order to prevent sensor damage at different configurations. For beam
shaping, two bi-convex NBK-7 lenses with 50 mm and 100 mm focal length are used in the
experiments, respectively. Each lens is mounted inside a tip-tilt stage with 15° travel at 1 °/rev
resolution. Furthermore, these are mounted on top of XYZ stages with a maximum travel of
±2 mm with a fine resolution of ±300 µm. The rigid interconnection of these stages results in a
5-DOF stage for each lens. These positioning stages are equipped with metric taps which can be
used to alter the position/orientation according to the calculations made by the predictor-corrector
framework. A Shack-HartmannWavefront Sensor (ThorlabsWFS150-5Cwith a 150 µmmicrolens
array pitch) is placed at the end of the optical train. The fitting pupil for obtaining the Zernike
coefficients with constant diameter of 3 mm is centered w.r.t. the CCD sensor (4.2 × 4.2 mm2).
The diameter has been chosen to sufficiently capture enough emitted laser light for all feasible
position combinations with the employed 5-DOF stages such that a Zernike fitting process is
always possible at the model identification steps. Furthermore, the wavefront sensor is equipped
with an additional extension tube including a 532 nm bandpass filter to mitigate the impact of
ambient light and therefore reduce measurement noise.
For simulations, the well-known ray tracing software ZEMAX OpticStudio (in sequential

mode) is used and called via MATLAB. The beam divergence is accounted for in the simulation
model.
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Algorithm 1 Predictor-Corrector Framework (PCF)
procedure PCF(XS,0, zd , itermax , TOL)

i = 1,XH,0 ← XS,0, iter = 0
while i ≤ n ∧ iter ≤ itermax do

Placement of virtual and real optical component in optical train at xi ∈ XH,i−1
Obtain wavefront sensor measurement z
x∗i = arg minxi J(XH,i−1, z) .Model Identification
XH,i ← (X∗i−1, x

∗
i ,XS,i), zp ← h(XH,i) . Update & Predict

if ‖zd − zp ‖W > TOL then . Tolerance Verification
X̂S,i = arg minXS, i

J(XH,i, zd) . Future Correction
XH,i ← (X∗i , X̂S,i), zp ← h(XH,i) . Update & Predict
if ‖zd − zp ‖W > TOL then . Tolerance Verification

x̂i = arg minxi J(XH,i, zd) . Current Correction
XH,i−1 ← (X∗i−1, x̂i,XS,i), zp ← h(XH,i) . Update & Predict
if ‖zd − zp ‖W > TOL then . Tolerance Verification

XH,i−2 ← XH,i−1
i ← i − 1 . Return to Previous Assembly Step

else
i ← i, iter ← iter + 1 . Try Correction & Increment Counter

end if
else

i ← i + 1 . Proceed to Next Assembly Step
end if

else
i ← i + 1 . Proceed to Next Assembly Step

end if
end while
return X∗n = XH,n . Assembled and Identified Optical System

end procedure

Lenses Tip/Tilt Gimbals

3-DOF Stages

5-DOF
Laser Mount

Wavefront
Sensor

z

x
y

(a)

0

1

2

Laser SensorLens 1 Lens 2

x*1
xS,2

xS,1 xS,2

x*1
x*2

(b)

Fig. 2. Experimental beam expander setup (a, ND filter not depicted) and schematic depiction of
the three configurations (0,1,2) during the beam expander assembly process (b).

3.2. General description of beam expander experiments

Since the optical system consists of two optical components, there are three possible configura-
tions. Configuration 0 represents the initial phase before any optical element has been placed,
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configuration 1 represents the configuration with the first lens inserted, and configuration 2
represents the phase where both optical elements have been inserted into the optical train, see
Fig. 2(b). For the optimization problem (3)-(4), we will use the first nz = 10 normalized Zernike
standard polynomials (see Tab. 1) given in waves and choose W as a truncated diagonal identity
matrix that dismisses piston and uniformly weights higher-order coefficients since we do not
prefer a certain aberration to be compensated. The Nelder-Mead algorithm will be chosen as

Table 1. Utilized Zernike standard polynomials with corresponding coefficients.

Zernike coefficients zi Normalization factor Zernike standard polynomials Zi(ρ, θ)
z1 1 1
z2 2 ρ cos(θ)
z3 2 ρ sin(θ)
z4

√
3 2ρ2 − 1

z5
√

6 ρ2 sin(2θ)
z6

√
6 ρ2 cos(2θ)

z7 2
√

2 (3ρ3 − 2ρ) sin(θ)
z8 2

√
2 (3ρ3 − 2ρ) cos(θ)

z9 2
√

2 ρ3 sin(3θ)
z10 2

√
2 ρ3 cos(3θ)

optimization algorithm. Initially, laser and detector are manually aligned and calibrated such that
a planar wavefront is detected by the wavefront sensor. The stages and gimbals, however, are not
pre-adjusted and are subject to alignment tolerances. The following optical systems are to be
assembled (initial optical design):

• Experiment (a): Lens 1 and 2 at "zero" position, desired wavefront with coefficients
zd = (0, ..., 0) and weighted RMS tolerance given by TOL = λ/7.

• Experiment (b): Lens 1 at "zero" position and lens 2 tilted by 5° around the y-axis which
leads to a desired wavefront with coefficients zd = (0, 1.52, 0, ..., 0) and weighted RMS
tolerance given by TOL = λ/3.

The maximum iteration counter is set to five (itermax = 5).

3.3. Experimental results

Tab. 3 shows the results for the experiments (a) and (b) with hybrid lens positions according to
Sec. 2. The lens positions are given w.r.t. their respective nominal coordinate system from CAD
design. The predicted cost is evaluated according to (4) as J(X, zd) where X are positions given
by the first and second lens in the respective columns. Due to the spherical aberration caused by
the spherical lenses, the initial predicted cost is non-zero. The correction steps are applied to the
lenses with the help of the Cartesian stages and tip/tilt gimbals according to xc = x∗ − x̂ during a
cycle.
In experiment (a), the tolerance on the predicted cost is violated in the first configuration

after the model update step which results in XH,1 = (x∗1, xS,2). Fig. 3 shows the corresponding
identification procedure (selected Zernike coefficients of this are given in Tab. 2) and Fig. 4(a)
the wavefront measurement. The correction step leading to XH,1 = (x∗1, x̂S,2) shows how a change
in the second lens position results in a predicted cost below the desired tolerance threshold (c.f.
Fig. 4(b) for the predicted and corrected wavefront). The correction is applied to the system and the
following model update step (resulting in XH,2 = (x∗1, x

∗
2) with utilized wavefront measurement

seen in Fig. 4(c)) again shows a violation on the tolerance of the predicted cost. This can be
rectified by the correction in the second cycle (see XH,2 = (x∗1, x̂2) and Fig. 4(d) for the predicted
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Fig. 3. Identification step (model update) in first assembly step of experiment (a): Iteration of
cost function value (a) and corresponding predicted wavefront deviation (reconstructed from
Zernike coefficient error) and simulated/obtained wavefront at iteration 0 (maximum wavefront
error 22.83 waves) (b)-(c) and iteration 120 (maximum wavefront error 1.41 waves) (d)-(e). A
selection of corresponding Zernike coefficients for this identification process are given in Tab. 2

and corrected wavefront). Another identification step (see XH,2 = (x∗1, x
∗
2) and Fig. 4(e)) shows

that the desired tolerance is met after applying the correction.
The results of experiment (b) are similar, except that the first model update phase shows that

the predicted cost is kept below the user-defined tolerance.
In this demonstrator, the changes in the wavefront are more sensitive to despace/decentration

than to tip/tilt which leads to relatively high errors for identified tip/tilt values. This becomes
evident when performing a sensitivity analysis for both configurations. Linearization of (1) leads
to δz = Si · δxi , where Si is the sensitivity matrix for the i-th configuration w.r.t. xi . For our
demonstrator, these sensitivity matrices are

S1 =

©­­­­­­­­­­­­­­«

0 0 0 0 −0.12
−33.51 0 0 −2.05 0

0 −33.51 2.05 0 0
0 0 0 0 −0.07
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®®®®®®®®®®¬
and S2 =

©­­­­­­­­­­­­­­«

0 0 0 0 0.57
75.63 0 0 1.58 0

0 75.63 −1.58 0 0
0 0 0 0 0.33
0 0 0 0 0
0 0 0 0 0
0 0.02 −0.01 0 0

0.02 0 0 0.01 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®®®®®®®®®®¬
. (8)

This also shows that the inclusion of higher-order polynomials will not increase accuracy in the
optimization phases (identification/correction calculation) for this demonstrator.
However, at the completion of the predictor-corrector framework the desired wavefront is

achieved (which is essential in assembling optical systems) even if values do not perfectly
correspond to real values. It should be noted that we only care about achieving a desired wavefront
and not absolute positioning precision of each optical component.
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Table 2. Iteration of first four Zernike coefficients (in waves) at selected iterations (1, 5, 10, 50,
80, 120) during the first identification step in experiment (a). The remaining Zernike coefficients
(z5 - z10) are zero since they do not influence the wavefront (see sensitivity matrix S1 from (8)).

zd 1z 5z 10z 50z 80z 120z
1.8100 -4.7952 -4.7952 -4.7952 -4.7948 -4.7950 -4.7951
0.1190 0 0.0009 0.0025 0.3576 0.1760 0.1189
0.6950 0 -0.0013 -0.0060 -0.5332 -0.7160 -0.6949
-2.7684 -2.7685 -2.7685 -2.7685 -2.7683 -2.7684 -2.7684

(a) (b) (c)

(d) (e)

Fig. 4. Two consecutive predictor-corrector cycles in experiment (a): Measured wavefront in
configuration 1 (a) followed by the predicted and subsequently corrected wavefront in simulation
(b). The same is done in the second assembly step where a wavefront is obtained (c), and
subsequent prediction-correction simulation calculations (d). The wavefront of the assembled
beam expander is shown in (e).
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Table 3. Iterative assembly process for the beam expander in experiment (a) and (b). Values for
lens positions provided by initial design / simulation (blue) and values provided by identification
(red). The corresponding predicted cost (green if below tolerance, red if above tolerance) is
shown below.

Experiment (a)
XH,0= XH,1 = XH,1 = XH,2 = XH,2 = XH,2 =
(xS,1, xS,2) (x∗1, xS,2) (x∗1, x̂S,2) (x∗1, x

∗
2) (x∗1, x̂2) (x∗1, x

∗
2)

Configuration 0 1 2

Lens 1

x/mm 0 -1.36E-2 -1.36E-2 -1.36E-2 -1.36E-2 -1.36E-2
y/mm 0 1.14E-1 1.14E-1 1.14E-1 1.14E-1 1.14E-1
z/mm 0 -7.21E-3 -7.21E-3 -7.21E-3 -7.21E-3 -7.21E-3
θx /° 0 6.18E-2 6.18E-2 6.18E-2 6.18E-2 6.18E-2
θy /° 0 8.67E-2 8.67E-2 8.67E-2 8.67E-2 8.67E-2

Lens 2

x/mm 0 0 -1.64E-2 -3.60E-1 -5.20E-2 -0.22
y/mm 0 0 1.10E-1 6.34E-1 8.55E-2 -5.68E-2
z/mm 0 0 -1.44E-3 1.41E-2 1.04E-2 1.10E-2
θx /° 0 0 -7.72E-2 -6.37E-1 -1.11 -1.10
θy /° 0 0 1.10E-1 8.27E-1 1.60 1.54

Pred. Cost J/λ 1.9E-03 1.56 1.50E-3 8.94 7.66E-3 1.10E-1

Experiment (b)
XH,0= XH,1 = XH,1 = XH,2 = XH,2 = XH,2 =
(xS,1, xS,2) (x∗1, xS,2) (x∗1, x̂S,2) (x∗1, x

∗
2) (x∗1, x̂2) (x∗1, x

∗
2)

Configuration 0 1 2

Lens 1

x/mm 0 2.91E-3 2.91E-3 2.91E-3 2.91E-3 2.91E-3
y/mm 0 4.03E-3 4.03E-3 4.03E-3 4.03E-3 4.03E-3
z/mm 0 -2.60E-3 -2.60E-3 -2.60E-3 -2.60E-3 -2.60E-3
θx /° 0 -1.80E-3 -1.80E-3 -1.80E-3 -1.80E-3 -1.80E-3
θy /° 0 -9.17E-4 -9.17E-4 -9.17E-4 -9.17E-4 -9.17E-4

Lens 2

x/mm 0 0 0 -6.39E-2 1.48E-1 3.75E-1
y/mm 0 0 0 1.16E-1 3.46E-3 -5.89E-3
z/mm 0 0 0 -2.47E-1 -5.01E-2 -3.46
θx /° 0 0 0 -2.94E-2 -2.98E-2 -5.37E-1
θy /° 5 5 5 -3.96E-1 -1.84 7.135

Pred. Cost J/λ 5.42E-2 8.63E-2 8.63E-2 3.04 4.19E-3 2.52E-1
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4. Conclusion and future work

In this paper we have presented a predictor-corrector framework for the sequential assembly of
optical systems. For this, a hybrid model (including novel notation) has been introduced which
allows for a prediction of the future wavefront during the assembly process. With a metric-based
assessment of the predicted wavefront error, appropriate correction measures can be taken during
the assembly process. This is done by corrections of future virtual components to be assembled,
the current optical component, or going one step back in the assembly process. In general, virtual
corrections are preferred over actual corrections in order to minimize production time and cost.
The proposed approach has been validated utilizing a beam expander for two different nominal
lens configurations. Both experiments lead to a wavefront that is below a given wavefront error
tolerance at the completion of the predictor-corrector work flow. Tip/tilt values deviate from
actual values due to higher sensitivity in translational directions which is a problem inherent to
the chosen demonstrator and model identification algorithm.
Future work will consider more complex systems (multiple and diverse optical components

as well as underlying parallel topology). For optical systems with less adjustment DOF for
each component, the presented approach can be utilized to investigate the benefits of adding
additional adjustment DOF to certain optical components in order to increase performance during
its assembly. For this, a distinction between physical DOF and virtual DOF could be made.
Efficiently searching a large optimization space in the future correction step when an optical
system has many optical components can be addressed by employing dimensional reduction
strategies such as principal component analysis. Furthermore, the nonlinear optimization can be
replaced by a filtering techniques in order to improve accuracy in the model identification step.
This will potentially reduce the number of cycles within an assembly step and improve overall
model accuracy.
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