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Estimating Beta

Fabian Hollstein and Marcel Prokopczuk*

Abstract

We conduct a comprehensive comparison of market beta estimation techniques. We study
the performance of several historical, time-series model, and option-implied estimators for
estimating realized market beta. Thereby, we find the hybrid methodology of Buss and
Vilkov to consistently outperform all other approaches. In addition, all other approaches,
including fully implied and dynamic conditional beta, based on generalized autoregressive
conditional heteroskedasticity (GARCH) models, are dominated by a simple beta estimate
based on historical (co-)variances and an approach based on the Kalman filter. Our conclu-
sions remain unchanged after performing several robustness checks.

I. Introduction

Ever since the development of the capital asset pricing model (CAPM) by
Sharpe (1964), Lintner (1965), and Mossin (1966) and the arbitrage pricing theory
(APT) by Ross (1976), the concept of beta (i.e., the covariation of an asset with the
relevant risk factors) has played a crucial role in financial economics. For many
applications, such as asset pricing, portfolio choice, or risk management, market
beta is the single most important parameter of interest. However, beta factors are
not directly observable, and hence they need to be estimated.

The main contribution of this paper is that we are, to the best of our knowl-
edge, the first to provide a comprehensive and thorough empirical study on the
performance of a wide range of market beta estimation techniques, including
several historical, time-series model, and option-implied estimation approaches.
Additionally, we propose a new estimator for beta that corrects option-implied
volatilities for the volatility risk premium.

Our main results can be summarized as follows: The approach proposed
by Buss and Vilkov (BV) (2012), combining option-implied with historical re-
turn information, turns out to outperform all other methods in estimating realized
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beta (based on daily return data). We determine outperformance in two dimen-
sions: 1) informational efficiency and ii) estimation accuracy. The BV approach is
shown to be informationally more efficient in encompassing regressions compared
with all other approaches, and it yields the lowest out-of-sample estimation errors,
employing the root mean squared error (RMSE) criterion. The simple historical
benchmark model as well as an approach based on the Kalman filter and a ran-
dom walk (RW) are shown to work comparatively well, whereas GARCH-based
models of dynamic conditional beta and fully option-implied approaches produce
serious errors. We further show that the BV approach works so well mainly be-
cause, in combining historical and option-implied information, it ensures that the
estimates are adjusted to be unbiased in their value-weighted cross-sectional av-
erages.

The most basic approach to estimate beta is to simply estimate covariances
and variances from a time series of historical return data. However, this ap-
proach faces the problem that beta coefficients exhibit significant time variation
(e.g., Blume (1975), Ferson and Harvey (1991), (1993)). To address this concern,
several approaches (e.g., GARCH based) have been developed to capture this vari-
ability. More recently, it has been suggested that one could incorporate informa-
tion from the options market, where all information available to investors should
be contained in today’s prices, thereby overcoming the inertia inherently gener-
ated by historical estimates, even when applying a rolling-window approach.

Regarding volatility estimation, which is closely related to beta estimation,
numerous studies have been performed. Regarding the performance of the option-
implied versus the historical volatility estimation approach, the results of early
studies differ (e.g., Canina and Figlewski (1993), Fleming (1998), and Christensen
and Prabhala (1998)). More recently, there seems to be a consensus that implied
volatility (IV) estimates are to be favored.

Jiang and Tian (2005) show that model-free IV outperforms at-the-money
(ATM) IV and historical volatility. Frijns, Tallau, and Tourani-Rad (2010) and
Taylor, Yadav, and Zhang (2010)' show a superior performance of IV compared
with different time-series models. Prokopczuk and Wese Simen (2014) show that
adjusting for the volatility risk premium improves the performance of IV. Thus,
there exists ample evidence on the performance of volatility estimators.?

Surprisingly, however, the estimation of beta has received considerably less
attention in the literature. Faff, Hillier, and Hillier (2000) find a superior perfor-
mance of time-series models (especially of those using the Kalman filter) over
historical estimates for beta in an in-sample analysis, although they do not present
any out-of-sample evidence.

The relative underrepresentation of research studying beta estimation in the
extant literature might, to some extent, be caused by the fact that beta requires
information on correlations, which is not as easily obtained from options as is

"For the 1-month horizon estimator.

2Other papers on volatility estimation include those by Jorion (1995), Guo (1996), Poon and
Granger (2003), Szakmary, Ors, Kim, and Davidson (2003), Martens and Zein (2004), Agnolucci
(2009), and Charoenwong, Jenwittayaroje, and Low (2009).
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information on volatilities. Only very recently have several authors developed
option-implied approaches to estimate beta.

Chang, Christoffersen, Jacobs, and Vainberg (2012) develop such an option-
implied approach and show that it often outperforms the historical beta in a cross-
sectional analysis. Baule, Korn, and SaBning (2016) compare various different
fully implied beta estimators. They obtain the best performance using betas based
on implied variances. However, Chang et al. (2012) do not compare their approach
for implied betas directly to other existing approaches, and Baule et al. (2016)
compare the performance of fully implied estimators only among one another and
to the simple historical estimator relying on a small Dow Jones Industrial Average
(DJIA) 30 sample.

Buss and Vilkov (2012) propose another implied approach imposing a cor-
rection on historical correlations and compare it with historical, hybrid, and the
Chang et al. (2012) implied beta estimator. However, they do not examine the
performance of time-series models and other fully implied beta estimation tech-
niques. Furthermore, they limit their attention to a comparatively long horizon of
1 year. Very recently, Engle (2014) and Bali, Engle, and Tang (2015) show that
dynamic conditional beta does well in a cross-sectional analysis.

The remainder of this paper is organized as follows: Section II describes our
data set and methodology, providing an overview of the approaches considered.
In Section III we present our empirical results. Section IV checks the robustness
of our results, and Section V presents our conclusions.

[I. Data and Methodology

A. Data

We base our study on the Standard & Poor’s (S&P) 500 market index and
its constituents for the sample period between Jan. 1, 1996 and Dec. 31, 2012.°
Additionally, we perform a robustness analysis on a sample based on the DJIA.*
We obtain daily and monthly price data as well as data on dividend payments and
shares outstanding from the Center for Research in Security Prices (CRSP) for the
period from Jan. 1, 1994 until Dec. 31, 2012.5:¢ To be able to compute historical
and time-series model estimates right from the start of our study period and to
perform a portfolio sorting using nonoverlapping data, these data start 2 years
before the main sample period.

3The starting date of our study is thereby determined by the start of the OptionMetrics database in
Jan. 1996.

“The sample period for the DJIA data set begins on Jan. 1, 1998, because options on the DJIA
are traded no earlier than Oct. 1997 at the Chicago Board of Options Exchange (CBOE). We do not
start before the beginning of the new year to avoid spurious findings caused by potentially small initial
trading volumes in the new market.

>The data for monthly estimators, which can be found in the Internet Appendix (available at
www.jfqa.org), start on Jan. 1, 1986.

®Data on the DJIA are not available through CRSP; therefore, we obtain price data from the
Bloomberg database.
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Options data are from the IvyDB OptionMetrics Volatility Surface that
directly provides implied volatilities for standardized delta levels and maturities.’
We use options with approximately 6 months to maturity because we want to ob-
tain 6-month estimates for beta. As a robustness check, we also repeat the analysis
with options of approximately 1, 3, and 12 months to maturity. We select out-of-
the-money (OTM) options, namely, puts with deltas larger than —0.5 and calls
with deltas smaller than 0.5. Thereby we obtain options data for 438 stocks in
1996 growing to 493 stocks in 2010 out of the 500 contained in the S&P 500 at
each respective date. On average, options data on 472 stocks are available. Data
on the risk-free rate are collected from the IvyDB zero-curve file.

B. Option-Implied Moments

Several of the beta estimation approaches are based on option-implied
moments. Therefore we follow Bakshi, Kapadia, and Madan (BKM) (2003), who
make use of the property that any payoff can be spanned using a continuum of
OTM puts and calls (Bakshi and Madan (2000)), and Jiang and Tian (2005) to
compute model-free option-implied volatility, skewness, and kurtosis.® For that,
we first compute ex-dividend stock prices. Second, for any given stock and trad-
ing day, we interpolate implied volatilities using a cubic spline across moneyness
levels (K /S, strike-to-spot), equally spaced between 0.3% and 300%, to obtain a
grid of 1,000 implied volatilities (Chang et al. (2012)). Implied volatilities outside
the range of available strike prices are extrapolated using the value for the smallest
(largest) available moneyness level (as in Jiang and Tian (2005) and Chang et al.
(2012)). The volatilities are used to compute Black—Scholes (1973) option prices
for calls, C(-),if K/S > 1 and puts, P(-), if K/S < 1. These are used to obtain the
prices of the volatility (QUAD), the CUBIC, and the quartic (QUART) contract
(Jiang and Tian (2005)):

K s S
—ln[E]) 2<1+1n|:E:|>
—=—=2(C(r,K)dK + ————=2P(7,K)dK,
0

(1) QUAD =2 =2

o K KT\?
61n[§]—3(1n[§}>
(2) CUBIC = C(z.K)dK
N
2
§ 61{%} +3 (m[%])
+ P(z,K)dK,
0

Il
v\
l\)8
-

"IvyDB uses a kernel-smoothing algorithm and reports only standardized options “if there exists
enough option price data on that date to accurately interpolate the required values.” For more details,
refer to the IvyDB technical document.

8Note that Jiang and Tian (2005) compute implied volatility only. The procedure for skewness, and
kurtosis, though, is equivalent.

80500091060122005/£101°0L/B1010p//:5dNnY

*SWIR3/2100/6.10°8bplIquIRY MMM//:Sd11Y 18 3ge|ieAR ‘SN JO SWI3) 310D aBpLiquie) ay3 03 193gns ‘£ 1:01:E L 38 8L0Z 23d 1 UO “Y3y301|qIgSuoiIewIoju] aYdsiuyda] "a403/6.10 abpliquied mmmy//:sdiy wody papeojumoq


https://doi.org/10.1017/S0022109016000508
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Hollstein and Prokopczuk 1441

2 3
“ia(n[]) -+(n[5])
(3) QUART = C(t,K)dK
] 2 3
§ 12<1n[%]) +4<ln|:%]>
P(z,K)dK.

The integrals are approximated, following Dennis and Mayhew (2002), using
a trapezoidal rule. The option-implied moments can be computed as:

o da o' (=0 r/ (T-1) ! (T=1)
“) ne = &/ 1- = —QUAD— ——CUBIC — — —QUART,
5 ©9 = ¢ "QUAD - (%),
© SKEWC — e"lf‘T*”CUB{C — 3% T-IQUAD +2(1?)* ’
[e7/7-QUAD — (k2"
@ KURT - ¢ T-OQUART — 42" T="CUBIC + 6(1.?)%" T-"QUAD — 3(1uQ)* ’

[e"! T-9QUAD — (1)

where r," denotes the risk-free rate; 7' —¢ is the time to maturity of the contract;
and (09)?, SKEW?, and KURT® are the option-implied variance, skewness, and
kurtosis, respectively. In the following, we use the respective values obtained to
compute beta estimates that require option-implied moments.

C. Beta Estimation
1.  Realized Beta

Following Andersen, Bollerslev, Diebold, and Wu (2006), we use daily log
returns to compute realized beta (RB):’

N

8 .
( ) IBJJ Zi'v:] rl\z/l,r

where r;, and ry, . refer to the (excess) return of asset j and the market (excess)
return at time t, respectively. N is the number of observations during the time
period under investigation.

Andersen et al. (2006) show that under weak regularity conditions only is this
a consistent measure for the true underlying integrated beta. Although Hansen and
Lunde (2006) strongly advise using realized volatility when evaluating volatility
models, we follow that spirit using ex post realized beta to evaluate all the respec-
tive ex ante estimates obtained using the different beta estimation methods.

k)

2. Historical Beta

Closely related to the approach just described, we compute historical esti-
mates (HIST) in the usual way, following Fama and MacBeth (FM) (1973) and
many others, regressing an asset’s (excess) return on the market (excess) return:
COV(rj,rvrM,r)

var(ry..)

(9) ﬂj.t =

9We refer to past realized beta as a possible ex ante beta estimation technique as HISTg.
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We utilize beta estimated using 1 year of daily returns as, for example, in Baker,
Bradley, and Wurgler (2010)."°

3. Dynamic Conditional Beta

We estimate both dynamic conditional beta with GARCH models for the
(co-)volatilities and AR-type models that impose certain factor dynamics directly
on the beta series. We refer to both types as time-series models.

We consider dynamic conditional beta (Engle (2014), Bali et al. (2015))
using a dynamic conditional correlation (DCC) GARCH model as proposed by
Engle (2002) and Cappiello, Engle, and Sheppard (2006), incorporating the em-
pirically well-established leverage effect (by allowing for an asymmetric effect
of positive and negative return innovations), as well as an asymmetric reaction
of correlations on innovations in variances.!" First, univariate volatility models
are estimated as proposed by the Glosten, Jagannathan, and Runkle (GJR) (1993)
GARCH:

(10) = pta,
(11) a, ~ N(0,07),
(12) B o= o+ @+ ylolr <pa, + B,

where 7, is the daily (monthly) asset return, u is the mean return, and a, represents
the return innovations. I, _;[r,_; < u] is an indicator function taking the value of 1 if
r,_; is lower than u, and O otherwise.

The return innovation series is assumed to be conditionally (on the time 7 — 1
information set, J,_;) normally distributed with mean 0 and conditional covari-
ance matrix H,, which can be decomposed as shown in equation (13). Once the
univariate models are estimated, standardized residuals €;, =a;,/ \/}T,, (with h;,
being the respective variance element in H,) can be used to estimate the correla-
tion parameters (see Cappiello et al. (2006)):

(13) Ht - DtPIDh
(14) P = 00,0/,
(15) Q, = (P—APA—BPB—GNG)+Ae e A

+ G,nt—ln;qG +B'Q,.,B,

where D; is a diagonal matrix containing the standard deviations of the individ-
ual assets; A, B, and G are k x k parameter matrices; n, =I[€;, <0J]oe€, isak x 1
indicator function where o denotes the Hadamard product (element-wise multipli-
cation); and Q7 is a diagonal matrix containing the square roots of the respective
diagonal elements of Q,, ensuring that P, is a valid correlation matrix.

We use the model in the bivariate case (i.e., k=2) for each estimation
including an asset-return series and that of the market index at a rolling estima-
tion window of 1 year for daily returns, thereby computing an estimate for the

1"We also test the standard FM (1973) beta computed using 5 years of monthly return data. The
results (and results for other monthly beta estimators) can be found in the Internet Appendix (available
at www.jfqa.org).

See Black (1976), Christie (1982), and many others.
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respective beta in each month of our sample period.'> We choose a rolling window
instead of an expanding window to allow for structural changes to be incorporated
more quickly. The estimation of all time-series models is conducted by maximum
likelihood. Using the parameter estimates, we iteratively estimate the covariances
and betas for all days until the end of the forecast horizon. The time ¢ estimate is
then obtained as the average beta over the forecast horizon.

For robustness, we also test the constant conditional correlation (CCC)
model of Bollerslev (1990), neither imposing a dynamic structure on correlations
(only on the volatilities) nor an asymmetric effect of return innovations, thereby
leaving more degrees of freedom for the estimation process.

4. Kalman Filter Models

We also include approaches directly imposing a factor structure on beta and
using the Kalman filter (see, e.g., Pagan (1980) and Black, Fraser, and Power
(1992)). As underlying dynamics, we consider a random walk (equation (16),
RW), a random walk with drift (equation (17), RWp), an AR(1) (equation (18),
AR), and an ARMA(1,1) (equation (19), ARMA) model. In all four cases, the
standard CAPM security market line is taken as the measurement equation, and
the transition equation describes the chosen model for the dynamic evolution of
beta in state-space form:

(16) BY = Biate,

a7 BiP = o+ B e

(18) B = ¢ €

(19) Bt = Bt €t 01

We estimate the models analogous to those for dynamic conditional beta, and also
use 1 year of daily returns.

A drawback when using the time-series models (both GARCH and Kalman)
is that the stability of the model structure has to be assumed. Ghysels (1998) shows
that if the factor structure hypothesized is inherently misspecified, the errors made
may even increase compared with a static factor model, which might be the major
concern regarding this class of estimators. Nevertheless, a superior performance
of the time-series model estimators is certainly possible if the true dynamics are
approximated sufficiently well.

5.  Option-Implied and Hybrid Betas

Siegel (1995) points out that an implicit beta could be obtained directly
through the use of exchange options, an option to exchange the shares of a firm
for the shares of a market index. Unfortunately, however, these exchange options
are currently not traded. Thus, one has to rely on some identifying assumption in
order to obtain an implicit beta and thereby make use of the inherently forward-
looking information that can be obtained from option prices. It should be taken
into consideration, though, that the implied approaches yield estimates (at least

2For monthly estimators, we use the monthly returns of the past 60 months instead of the past
1 year of daily returns. The results on monthly estimators can be found in the Internet Appendix
(available at www.jfqa.org).
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partially) under the risk-neutral probability measure, which is likely to differ from
the actual physical probability measure if these sources of risk are priced in the
market."

We consider several possibilities for option-implied betas, making use of
the model-free implied moments discussed previously. These include the hybrid
approach of French, Groth, and Kolari (FGK) (1983), which directly combines
historical correlations and option-implied volatilities, and that of Buss and Vilkov
(2012), who use the property that the implied variance of the market index has
to be the same as the implied variance of the value-weighted portfolio of all mar-
ket constituents (first relation), and combine that with a technical condition for
implied correlations to translate from physical (/0,-1;,,) to risk-neutral correlations
(pg’,), namely, pg’, =p/,—a,(1—pf ). Combining the two relations and solv-
ing for ¢, implied correlations can be computed. Thus, a beta estimate under the
risk-neutral probability measure, Q, is obtained by

61% ZzN=| (wi,taigpg,z)

(o11,)°

where o_/?, and 03# denote the implied volatilities obtained in equation (5) for
individual stocks and the market index, respectively,'® and w;, denotes the weight
of the N individual assets in the market index at a certain point in time. One
main disadvantage of this approach is the fact that it requires information on all
the constituents of the index considered. The estimates are likely to be biased
if implied volatilities are not available for all stocks of which the market index
consists.

Additionally, we investigate the fully implied approach by Chang et al.
(CCJV) (2012) that relies solely on options data. Their estimator is given by

21 BENY = ( SKEW;, )1/3 (ﬂ) ,

M SKEW,,, Oms
using the identifying assumption that the skewness of the idiosyncratic shock
equals 0, with SKEW;, and o, denoting the implied skewness and volatility of
individual stocks and with j=M those of the market index, respectively.'® As
pointed out by Chang et al. (2012), the first part of equation (21) can be regarded
as a correlation proxy.

Further, fully implied estimators for beta also rely on certain assumptions on
the return moments. A first approach makes use of the restriction made by Skintzi

(20) B,

b}

13See, for example, Carr and Wu (2009) and Driessen, Maenhout, and Vilkov (2009) for literature
on the price of volatility and correlation risk, respectively.

4We make sure both that the matrix is a correlation matrix (all correlations not exceeding 1 and the
matrix being positive definite) and that it matches with empirical observations, namely, that implied
correlations are higher than empirical ones and that the correlation risk premium is higher for lowly
correlated stocks. For more details, refer to Buss and Vilkov (2012).

SHereafter, to avoid the notation getting too messy, we suppress the superscript Q for risk-neutral
moments.

!*Note that equation (21) yields an estimate only if the individual stock’s skewness is negative
given the usually observed negative skewness of the market. This is an obvious shortcoming, especially
for practical purposes.
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and Refenes (SR) (2005), who impose the assumption that the return correlation
is identical for all stocks in the cross section. This yields the estimator

W;,0j; + Zi;&j Wi 1010100

2
Oy

(22) By

Kempf, Korn, and SaBning (2015) propose two further possibilities that are
related to the previous approaches. The first approach assumes that the propor-
tion of idiosyncratic variance is equal for all stocks in the cross section (KKS1),
resulting in
o

(23) KKSI — Jot .
IB” Z,N=1 W; 10,

Second, they propose a beta estimator imposing the restriction that the proportion
of idiosyncratic kurtosis is identical for all stocks in the cross section (KKS2).
This yields:

KURTYs ;
(24) ﬁjl'([KSZ — = U US,j.t —
| > wi KURT g,

i=1

where KURT s ;, is the unscaled kurtosis as obtained in Section II.B, equation
(7)_17

6. Risk Premium Adjustment

The option-implied approaches estimate beta under the risk-neutral probabil-
ity measure. However, in most situations we are interested in beta under the phys-
ical probability measure. We therefore propose a new hybrid estimator for beta
that employs forward-looking information from option prices and, at the same
time, corrects for volatility risk premia. To obtain this estimator, we follow the
procedure in Prokopczuk and Wese Simen (2014) to implement an adjustment for
the volatility risk premium. For that, we compute average variance risk premia for
a period of just under 2 years: '

1 tog?
25 ARVRP? = EERLI
(25) i 504 — Z RV?

i=t—504 Joi+T

where ARVRP?, denotes the average relative variance risk premium from ¢ — 504
tot—1, 0}, is the model-free implied variance of asset j at time i for the
period until i 47 as obtained in equation (5), RV;“ +. 18 the realized variance
over the time period ranging from i to i + 7, and t denotes the estimation hori-

zon. To compute the risk premium adjustment we require at least 100 nonmissing

7Note that in equation (7) the kurtosis is scaled. To obtain the unscaled fourth moment, one has to
multiply equation (7) by the squared implied variance. The implied variance is provided in equation
).

"8For the risk premium adjustment for evaluation horizons of 3 months or fewer, we compute
average variance risk premia for a period of just under 1 year.
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observations of both o7, and the corresponding RVLJ 4.+ We then obtain the
risk-premium-adjusted implied volatility RMFIV, ; for each point in time ¢ as:

Oj:

(26) RMFIV, .
ARVRP;,

The risk-premium-adjusted beta (RP_ADJ) is then computed by using the histor-
ical correlation p;, and risk-premium-adjusted implied volatilities for individual
assets and the market index:

RMFIV;,

27 RP,ADJ — o —
@7 b Pit > RMFIV,,,

[ll.  Empirical Results

A. Summary Statistics and Correlation Analysis

Panel A of Table 1 reports summary statistics on the different beta estima-
tion techniques. It can be seen that the value-weighted average beta over all stocks
in the S&P 500 (MEAN,,,), a quantity that theoretically has to be equal to 1, is
substantially different from that value in some cases, suggesting that approaches
that experience such deviations likely yield biased estimates. Whereas the value-
weighted average beta of RW is very close to 1, those of RWp, AR, ARMA, and
the GARCH DCC and CCC are far off, with values of 1.06, 0.98, 1.04, 0.93, and
1.04, respectively. Looking at approaches employing information from the options
market, we find that the value-weighted averages of especially the hybrid FGK
and the fully implied CCJV, as well as SR and RP_ADJ, also are clearly different
from 1, with values of 0.84, 1.15, 1.04, and 1.02, respectively. By construction,
the quantity is exactly equal to 1 for BV, KKS1, and KKS2, whereas it is relatively
close for HIST and HIST,. The time-series model betas RW, RW, ARMA, and
DCC are shown to vary strongly, with minimum values smaller than —8 and max-
imum values greater than 16, potentially inducing large errors for these extreme
values. Furthermore, by construction, the fully implied CCJV, SR, KKS1, and
KKS2 cannot adopt negative values, casting some doubt on their performance.

Panel B of Table 1 presents the sample correlation coefficients among betas
obtained with different estimation techniques on the basis of their estimates for
individual assets. We note very high correlations greater than 0.9 among the fully
implied estimates (namely, KKS1, KKS2, and SR), FGK, and the risk-premium-
adjusted estimates (RP_ADIJ), HIST and HIST,, as well as among HIST and
RP_ADJ. When comparing the remaining estimators, in many cases the correla-
tions are only moderate or quite low. The smallest correlation among the estimates
of the remaining approaches is observed between DCC and CCJV, amounting to
only 0.39. This shows that the estimated values vary substantially across the dif-
ferent approaches, providing evidence for the need to study their performance
further.

B. Information Content

A common way to evaluate the performance of ex ante estimates is the
Mincer—Zarnowitz (1969) regressions. We therefore regress the 6-month (ex post)
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TABLE 1
Summary Statistics and Sample Correlations

Table 1 provides summary statistics on the different beta estimation techniques in Panel A. All methods utilize (if neces-
sary) daily return data and estimate beta for 6 months. The sample period spans from Jan. 1996 (beginning with estimates
for Feb. 1996) until Dec. 2012. No. of Obs. denotes the number of monthly estimates; Mean and MEAN,,, are the equal-
and value-weighted averages of the estimates over the entire sample period, respectively. Std. Dev., Median, Min., and
Max. present further summary statistics on the overall standard deviation, median, minimum, and maximum estimate,
respectively. Panel B presents the sample correlation coefficients among the different beta estimation techniques on the
basis of individual estimates.

Panel A. Summary Statistics

No. of Obs. Mean MEAN,., Std. Dev. Median Min. Max.
RW 98,179 1.0036 1.0026 0.5720 0.9313 —29.0756 19.8332
RWp 98,179 1.0713 1.0618 0.7650 0.9807 —36.2117 24.7961
AR 98,179 0.9662 0.9753 0.7770 0.8349 —2.0388 20.9860
ARMA 98,179 1.0547 1.0369 1.0053 0.8724 —8.6868 48.6730
DCC 98,176 0.9511 0.9304 0.8068 0.8648 —13.9973 16.7336
cce 98,179 1.0731 1.0430 0.7009 0.9348 —0.6028 17.9049
HIST 98,243 1.0022 1.0033 0.4680 0.9360 —0.6675 4.6485
HISTe 98,630 1.0021 1.0015 0.5036 0.9344 —0.9818 7.7906
FGK 94,889 0.8473 0.8436 0.3927 0.7998 —0.8230 5.7060
RP_ADJ 90,190 1.0321 1.0206 0.5208 0.9498 —0.8554 5.5901
BV 95,043 1.0427 1.0000 0.3756 0.9870 —0.4646 6.9280
CCJV 89,530 1.2211 1.1505 0.4706 1.1579 0.0220 6.2420
SR 95,755 1.1077 1.0391 0.3693 1.0297 0.1215 6.2270
KKS1 95,755 1.1074 1.0000 0.3733 1.0260 0.1237 6.2000
KKS2 95,755 1.1038 1.0000 0.3635 1.0258 0.1341 6.3583

Panel B. Sample Correlation Coefficients

RW RW, AR ARMA DCC CCC HIST HIST; FGK RP_ADJ BV CCJV SR KKS1 KKS2

1.00 091 076 068 054 0.64 082 085 0.79 080 077 052 061 061 061 RW
1.00 079 070 051 060 0.76 0.86 0.74 075 072 049 058 057 057 RWp

1.00 0.67 044 052 068 0.76 0.66 068 064 043 049 048 048 AR
1.00 041 048 059 068 057 060 057 040 048 047 047 ARMA

1.00 071 059 057 0.56 055 053 0.39 045 044 044 DCC

1.00 0.71 0.68 0.66 066 0.64 048 056 056 056 CCC

1.00 0.93 0.90 092 0838 058 069 0.68 0.68 HIST

1.00 0.87 0.88 0.84 057 067 066 0.66 HISTs

1.00 095 089 067 071 070 070 FGK
1.00 080 0.4 0.74 073 0.73 RP_ADJ

100 070 0.88 0.88 0.87 BV

100 0.77 0.77 0.77 CCJV

100 1.00 099 SR

1.00 1.00 KKS1

1.00 KKS2

realized beta on the different (ex ante) beta estimates in the following way:
(28) ﬂfr = a + bgt,T + €

where B, denotes the realized beta in the period ranging from ¢ to T, and ¢, r
stands for one beta estimate in univariate regressions or a vector of several beta
estimates in encompassing regressions. With the approach in equation (28) we
can test for the informational efficiency and unbiasedness of the respective esti-
mates.'” As Hansen and Lunde (2006) show, using logarithmically transformed
variables for the regressions, although making the regression procedure less sen-
sitive to outliers (Pagan and Schwert (1990)), often leads to inconsistent rankings
of the estimation models if an unbiased but imperfect proxy for the true evaluation
variable is used. They further show that level Mincer—Zarnowitz regressions are

19 Although the value-weighted average betas we examine in Section IILA indicate that some ap-
proaches are biased on average, with the portfolio approach we employ here, we can test for unbiased-
ness on a rather individual level.
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robust to (mean 0) errors in the proxy. Consequently, we stick to levels instead of
logs to obtain results that are more robust.

Unbiasedness is tested in univariate regressions by performing an F-test, im-
posing the joint hypothesis of a being equal to 0 and b being equal to 1. For an
unbiased model, we should not be able to reject the underlying hypothesis. In-
formational efficiency can be tested in encompassing regressions by constraining
the slope parameters of alternative estimators to 0, thereby determining if the re-
spective approaches contain information beyond that of a baseline model. If, in
encompassing regressions, one estimator is to be more informative, it must have a
significant slope estimate, and the explanatory power must rise compared with the
restricted model. Additionally, we test the joint hypothesis of one slope parameter
being equal to 1 and the second slope parameter being equal to 0. The underly-
ing hypothesis of this test states that one approach fully subsumes all information
contained in the other approach it is tested with.

To conduct our analysis, we follow the approach suggested by Fama and
MacBeth (1973). At the end of each month, we form five value-weighted portfo-
lios out of the individual stocks in our sample. We sort the stocks according to
their estimate for historical beta (of equation (9)) obtained in an estimation period
(sorting period) strictly before the estimation period of the historical beta serving
as one beta estimate in an ascending order and compute estimates as well as re-
alizations for beta for each of these portfolios.”® This approach ensures that we
obtain a certain range in the estimated values and delivers results that are compa-
rable. At the same time, this avoids a bias in our analyses related to a potential
errors-in-the-variables problem. To keep the analysis comparable, we can include
only those estimates in our sample where all approaches yield an estimate.”!

To keep the presentation manageable, we select at least one approach from
each model family to perform our main analysis. We select historical (HIST), the
Kalman filter random walk (RW), DCC GARCH (DCC), the hybrid FGK and
BYV, the fully implied CCJV and KKS1, and the risk-premium-adjusted (RP_ADJ)
approach, and we consider the remaining methods in the robustness analysis in
Section I'V. In all analyses, we evaluate the approaches using realized beta during
the subsequent 6 months. Table 2 presents the regression results for daily estima-
tion approaches.?

Panel A of Table 2 presents the results of the univariate regressions for each
estimation approach and each of the five portfolios. It can be seen that in most
cases the intercept estimate is significantly (at 5%)> different from 0, and the

2For example, using daily data and estimating beta at the end of Jan. 1996, evaluating it in Feb.
1996, the estimation of historical beta uses return data from Feb. 1995 until the end of Jan. 1996. The
portfolio sorting is carried out according to the estimate for historical beta using return data between
Feb. 1994 and the end of Jan. 1995. If historical return data are not available, the quantity is set to 1.
The procedure for monthly analysis is performed accordingly, starting with the first sorting period in
Feb. 1986.

2I'The major cause of reduction results from the impossibility of computing the CCIV (2012) beta
in some cases, as pointed out in Section II.C, and the general unavailability of sufficient options and
return data (see Section IIL.A).

22 A further analysis on the approaches using monthly return data can be found in the Internet
Appendix (available at www.jfqa.org).

ZFurther mentions of (non-)significance will always refer to the 5% significance level.
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estimate for the slope coefficient is significantly different from 1. Only the ap-
proaches HIST, RW, KKS1, and BV yield nonsignificant values for some portfo-
lios. The joint hypothesis of a being equal to 0 and b being equal to 1 is rejected
in any case, suggesting that the approaches yield biased estimates. HIST and RW
obtain the lowest values for the F-test, but still the null hypothesis of unbiased-
ness is strongly rejected. For each portfolio except the last, BV yields the highest
adjusted R?, followed by RW and HIST, indicating that those three approaches ex-
hibit the highest explanatory power. RP_ADJ has the highest explanatory power
for portfolio 5. Noteworthy also are the particularly poor performances of DCC
and CCJV, yielding very high values for the F'-statistic and obtaining values for
the adjusted R? that are below 0.35 for all portfolios.

Looking at the results of the encompassing regressions in Panel B of Table 2,
we find that DCC obtains a rather poor performance, with HIST and BV being
informationally more efficient for all portfolios, meaning that in bivariate regres-
sions the coefficients for the latter are significantly different from 0, whereas those
of DCC are not. The BV approach yields a significant slope parameter in every
case and is informationally more efficient compared with most other beta esti-
mation approaches. Whenever the slope parameters of other methods competing
with BV are significantly different from 0, they are economically not very large.
Only FGK and RP_AD)J yield statistically significant and economically large es-
timates for one portfolio in a joint encompassing regression together with BV.
The explanatory power increases in every case when adding the BV beta to all
other models. The hypothesis that one approach subsumes all information con-
tained in another approach (indicated by the tests F; and F>) is rejected in most
cases. There are some cases, though, where the hypothesis that BV subsumes all
information contained in, for example, HIST, DCC, or KKS1 cannot be rejected.
Combining HIST and the fully implied KKS1, the latter is shown to contain some
additional information, making a significant contribution in three out of five cases
and, at least slightly, increasing the explanatory power. Comparing FGK and its
risk-premium-adjusted counterpart, RP_ADJ, the results are not clear. FGK is fa-
vored for two portfolios, and RP_ADJ is favored for one, so it remains unclear if
the risk premium adjustment yields an improvement.” In addition, looking at the
univariate regressions, further analysis shows that the intercept estimates for FGK
and RP_ADJ do not differ significantly. This also conflicts with the possible view
that an uniform bias may consistently be removed.

In contrast, comparing our risk-premium-adjusted beta estimator with the
BV approach, the latter performs clearly better. Whereas our approach corrects
implied volatilities for the well-established variance risk premium and therefore
obtains an estimate under the physical probability measure, the BV approach cor-
rects for the risk premium at the level of correlations in the opposite direction and
obtains an estimate under the risk-neutral probability measure. Given that realiza-
tions under the real-world probability measure are of interest, this is somewhat

**Note that for univariate regressions, the ¢-statistics of the slope coefficients test the hypothesis
of those being equal to 1 and not, as is usually done, equal to 0. In the multivariate regressions, the
t-statistics refer to the usual hypothesis that the parameters are equal to 0.

ZHowever, one has to keep in mind that the regression may not be too informative; given the very
high correlations between the two, serious problems related to multicollinearity arise.
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surprising. A potential explanation is offered by Chang et al. (2012), who show
that for certain parameter constellations, the bias caused by the use of risk-neutral
moments can be quite small. In other words, in the case of beta, there are biased
moments in both the numerator and the denominator, and the two effects may
cancel out.

Overall, our results on estimators based on daily return data suggest that
the Buss and Vilkov (2012) approach yields the informationally most efficient al-
though not entirely unbiased estimates. Furthermore, the random walk approach,
the simple historical estimator, and KKS1 are shown to possess some informa-
tional efficiency when compared with the remaining approaches.

C. Estimation Accuracy

Turning the focus on out-of-sample estimation accuracy, we employ the loss
function most commonly applied in the literature, namely RMSE, to evaluate the
performance of the different beta estimation techniques:

n

1
(29) RMSE = o Z (,Bfr - Ct,T)z.

t=1

Here, n is the number of estimation windows, . again denotes the realized
beta over a period from ¢ until 7', and ¢, ; is the respective beta estimate. Patton
(2011) shows that only the mean squared error (MSE) criterion, as opposed to
other commonly used loss functions such as mean average error (MAE), mean
average percentage error (MAPE), and mean squared percentage error (MSPE),
is robust to the presence of (mean 0) noise in the evaluation proxy, so we choose
this loss function.?

Table 3 summarizes the estimation errors using daily return data. We observe
that BV yields the smallest average RMSE over the five portfolios (as indicated by
italic font), followed by RW and HIST. The fully implied CCJV and the GARCH
DCC achieve the worst and second-worst performance, respectively. Adjusting
for the volatility risk premium clearly reduces the average estimation error (com-
paring RP_ADJ to FGK). Overall, both FGK and RP_ADJ, as well as KKS1, can
be found in the mid-range regarding the estimation accuracy.

To further examine the results, we analyze whether the differences we ob-
serve are statistically significant. The remainder of Table 3 presents the average
differences in RMSE in the upper triangular matrix and the respective median dif-
ferences in the lower triangular matrix. We compute the difference between the
errors of the model [name in row] and those of the model [name in column]. The
absolute numbers in parentheses indicate the percentage of portfolios for which
the difference is statistically significant (e.g., 0.4 indicates that the differences
for two out of five portfolios are significant). If the differences are significant
for all five portfolios, the figure is printed in bold font. Significance is tested by
the modified Diebold—Mariano (Harvey, Leybourne, and Newbold (1997)) and the

20We present the results on other loss functions, including MAE, MAPE, and MSPE, in the Internet
Appendix (available at www.jfqa.org).
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TABLE 3
Estimation Errors: 6-Month Horizon, Daily Data

Table 3 reports the out-of-sample estimation errors of competing estimators, using daily return data, for realized beta
over the horizon of 6 months for each portfolio. We build five quintile portfolios into which the stocks are allocated in an
ascending order according to their historical beta in the sorting period (taking place directly before the estimation period
for historical beta without overlap and with equal length). We determine portfolio betas and returns as value-weighted
averages. The first row reports the average RMSE of the estimation models over the five portfolios. The lowest errors
among all approaches are indicated by italic font. The remainder of the table reports the difference in estimation errors.
The upper triangular matrix reports the differences in root mean squared estimation, averaged over the five portfolios.
Similarly, the lower triangular matrix reports the average median difference of estimation errors. We compute the differ-
ence between the errors of the model [name in row] and those of the model [name in column]. The absolute numbers in
parentheses indicate the percentage of portfolios for which the difference is significant (e.g., 0.4 indicates that the differ-
ences for two out of five portfolios are statistically significant). If the differences are significant for all five portfolios, the
figure is printed in bold font. Significance is tested by the modified Diebold-Mariano and the Wilcoxon signed-rank tests
for the upper and lower triangular matrices, respectively. The sign indicates the direction of the significant differences.

HIST RW DCC FGK CCIV KKS1 BV RP_ADJ
Avg. 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718
HIST 0.0079  -0.1295  —0.0822  -0.1402  -0.0323 0.0217  —0.0337
(0.0) (-1.0) (—0.8) (-0.8) (=0.4) (0.2) (-0.6)
RW 0.0002 ~0.1374  —0.0901 —0.1482  —0.0403 0.0138  —0.0416
(~0.4) (-1.0) (-1.0) (-0.8) (-0.2) ©.2) (-0.6)
DCC 0.0639 0.0637 00473  -0.0108 0.0972 0.1512 0.0958
(1.0) (1.0) (0.0) (0.0) (0.6) (1.0) (0.8)
FGK 0.1001 0.0999 0.0362 —0.0581 0.0499 0.1039 0.0485
(1.0) (1.0) 0.2) (—0.6) (0.6) (1.0) 0.2)
ceV 0.1143 0.1141 0.0504 0.0142 0.1079 0.1620 0.1066
(1.0) (1.0) (0.6) (0.4) (0.8) (1.0) (1.0)
KKS1 0.0113 00110  —0.0526  —0.0888  —0.1031 0.0541 —0.0013
(0.4) (0.6) (—0.8) (—0.8) (-1.0) (0.8) (-0.2)
BV —0.0111 —0.0113  —0.0750  —0.1112  —0.1254  —0.0224 —0.0554
(~0.6) (~0.6) (-1.0) (-1.0) (-1.0) (-1.0) (—0.6)
RP_ADJ 0.0256 0.0254  —00383  -0.0745  —0.0888 0.0143 0.0367
(0.8) (0.8) (-1.0) (-1.0) (-1.0) (0.2) (1.0)

Wilcoxon signed-rank tests for the upper and lower triangular matrix, respectively.
The sign indicates the direction of the significant differences.

We find that BV always obtains lower average root mean and median squared
errors than the other methods. These differences are statistically significant for
all portfolios compared with DCC, FGK, and CCJV, and at least three portfolios
compared with KKS1 and RP_ADJ, whereas when comparing with HIST and RW,
the RMSE of BV is significantly lower for one portfolio, and the root median SE
is significantly lower for three portfolios. HIST and RW yield significantly lower
estimation errors than all other methods, except BV and KKS1, for at least three
out of the five portfolios, and than KKS1 for at least one portfolio. Overall, the
evidence indicates that the BV approach obtains the best out-of-sample accuracy,
followed by RW and HIST.

IV. Robustness

A. More Portfolios

We test whether the results obtained so far are robust to building more port-
folios. Thus, we build 10, 25, and 50 portfolios, and in the limit we also consider
the case of individual stocks. Table 4 reports the results, which are quite similar to
our previous findings. We observe that the average errors in general increase with
the number of portfolios. Independently of the number of portfolios, BV always
obtains the lowest average RMSE, yielding the lowest error for a minimum of
60% when building portfolios. In the case of estimates for individual stocks, BV
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TABLE 4
Estimation Errors: More Portfolios

Table 4 reports the RMSE values of the competing estimators, using daily return data, for realized beta over the horizon of
6 months, for different counts of portfolios. Each month, we form N portfolios, with N amounting to 5, 10, 25, and 50, and
in the limit we also consider the case of solely individual assets (in this case we compute the values of the loss functions
for each asset in every month of our sample period individually and average over all errors). The stocks are allocated
into N portfolios in an ascending order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). The numbers in parentheses denote the
count (as percentages) of portfolio series for which a certain approach yields the lowest error among those presented in
the table. For each loss function, the lowest average errors among all approaches are indicated by italic font.

HIST RW DCC FGK CCJV KKS1 BV RP_ADJ
5 Portfolios
Avg. RMSE 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718
(0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.60) (0.20)
10 Portfolios
Avg. RMSE 0.1518 0.1474 0.2868 0.2273 0.2901 0.1854 0.1304 0.1837
(0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.80) (0.00)
25 Portfolios
Avg. RMSE 0.1735 0.1787 0.3260 0.2397 0.3099 0.2075 0.1540 0.1998
(0.00) (0.12) (0.00) (0.00) (0.00) (0.00) (0.84) (0.04)
50 Portfolios
Avg. RMSE 0.1975 0.2131 0.3683 0.2558 0.3323 0.2340 0.1808 0.2198
(0.10) (0.02) (0.00) (0.00) (0.00) (0.00) (0.80) (0.08)
Individual Assets
Avg. RMSE 0.5374 0.5866 0.8309 0.5592 0.6616 0.5826 0.5363 0.5379
(0.09) (0.12) (0.13) (0.17) (0.15) (0.13) (0.08) (0.11)

also obtains the lowest average RMSE, although not much can be stated because
each approach has its share where it yields the lowest errors, indicating that all
approaches work well for some stocks. Overall, the BV, HIST, and RW approaches
also perform best when increasing the number of portfolios.

B. Different Horizons

To further examine the robustness of our results, we perform the evaluation
using different time horizons, namely 1, 3, and 12 months. We estimate the values
for option-implied methods using options with approximately 1 (3, 12) month(s)
to maturity and adjust the horizon for time-series models to the respective time
frame, evaluating all the methods using realized beta over the subsequent 1, 3,
and 12 months, respectively.

Panel A of Table 5 reports the estimation errors of our main methods and
their significance for the 1-month evaluation period. We find that using this evalu-
ation horizon yields the same result, with BV, HIST, and RW being the approaches
with the best out-of-sample estimation accuracy. BV obtains the lowest average
RMSE. Comparing the mean and median differences of the estimation errors,
only in relation to KKS1, HIST and RW do not yield a significantly lower error,
at least for 80% of the portfolios, whereas BV always does. For some portfolios,
BV yields significantly lower median errors compared with HIST and RW. The
results for 3 and 12 months in Panels B and C are qualitatively equal. BV always
obtains the lowest average RMSE, with significantly lower errors in many cases
compared with the other approaches.

Summing up, when changing the evaluation period to 1, 3, or 12 months, BV,
RW, and, to a slightly lesser extent, HIST are still the best approaches.
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C. Further Models for Implied Beta

We examine further possible beta estimators utilizing information from op-
tion prices. Looking at Panel A of Table 6, we find KKS2, based on implied kur-
tosis, to obtain quite similar results as KKS1, based on implied volatilities. Both
yield a little higher estimation errors than SR, which is also based on implied
volatilities, whereas all three yield substantially lower estimation errors com-

TABLE 5
Estimation Errors: Different Horizons, Daily Data

Table 5 reports the out-of-sample estimation errors of competing estimators, using daily return data, for realized beta
over horizons of 1 (Panel A), 3 (Panel B), and 12 (Panel C) months for each portfolio. We build five quintile portfolios into
which the stocks are allocated in an ascending order according to their historical beta in the sorting period (taking place
directly before the estimation period for historical beta without overlap and with equal length). We determine portfolio
betas and returns as value-weighted averages. In each panel, the first row reports the average RMSE of the estimation
models over the five portfolios. The lowest errors among all approaches are indicated by italic font. The remainder of the
panels report the difference in estimation errors. The upper triangular matrices report the differences in root mean squared
estimation errors, averaged over the five portfolios. Similarly, the lower triangular matrices report the average root median
difference of estimation errors. We compute the difference between the errors of the model [name in row] and those of
the model [name in column]. The absolute numbers in parentheses indicate the percentage of portfolios for which the
difference is significant (e.g., 0.4 indicates that the differences for two out of five portfolios are statistically significant). If
the differences are significant for all five portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold-Mariano and the Wilcoxon signed-rank tests for the upper and lower triangular matrices, respectively. The sign
indicates the direction of the significant differences.

Panel A. 1 Month

HIST RW DCC FGK cCv KKS1 BV RP_ADJ
Avg. 0.1637 0.1515 0.2231 0.2193 0.4285 0.2051 0.1483 0.1977
HIST 00122  -00594  —00556  —0.2648  —0.0414 00153  —0.0340
(0.0) (~0.8) (-0.8) (-0.8) (-0.2) (0.0) (-0.8)
RW ~0.0022 00717  —00678 02770  —0.0536 0.0031 ~0.0462
(-0.2) (-1.0) (-1.0) (-1.0) (~0.4) (0.0) (-0.8)
DCC 0.0375 0.0397 00038  —0.2053 0.0181 0.0748 0.0254
(1.0) (1.0) (0.0) (~0.8) (0.4) (1.0) (0.0)
FGK 0.0525 0.0547 0.0150 ~0.2092 0.0142 0.0709 0.0216
(1.0) (1.0) (0.0) (-0.8) (0.4) (1.0) (0.0)
cCV 0.1550 0.1572 0.1175 0.1025 0.2234 0.2801 0.2308
(1.0) (1.0) (1.0) (0.8) (0.8) (1.0) (0.8)
KKS1 0.0189 0.0211 —0.0186  -0.0336  —0.1361 0.0567 0.0074
(0.4) (0.6) (~0.4) (—0.4) (-1.0) (0.6) (0.0)
BV —0.0041  —0.0020  -0.0417  -00567  -0.1592  —0.0231 —0.0493
(~0.4) (-0.2) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8)
RP_ADJ 0.0340 00362  -0.0035  -00185  —-0.1210 0.0151 0.0382
(0.8) (0.8) (0.0) (-0.6) (-1.0) (0.4) (0.8)

Panel B. 3 Months

HIST RW DCC FGK CCJv KKS1 BV RP_ADJ
Avg. 0.1380 0.1281 0.2259 0.2057 0.3335 0.1771 0.1191 0.1791
HIST 00100  —0.0879  —00676  —0.1955  —0.0391 0.0189  —0.0411
(0.0) (-1.0) (-0.8) (~0.8) (~0.2) (0.0) (-0.8)
RW —0.0031 —0.0979  -0.0776  —0.2054  —0.0491 0.0089  —0.0511
(—0.4) (-1.0) (-1.0) (-1.0) (~0.2) (0.0) (-0.8)
DCC 0.0494 0.0525 00203  —0.1075 0.0488 0.1068 0.0468
(1.0) (1.0) (0.0) (~0.8) (0.4) (1.0) (0.4)
FGK 0.0784 0.0815 0.0289 -0.1278 0.0286 0.0866 0.0265
(1.0) (1.0) (0.2) (-0.8) (0.4) (1.0) (0.0)
cCuv 0.1313 0.1344 0.0818 0.0529 0.1564 0.2144 0.1544
(1.0) (1.0) (0.8) (0.6) (0.8) (1.0) (0.8)
KKS1 0.0151 00182  -00343  -00633  -0.1162 00580  —0.0020
(0.6) (0.6) (~0.6) (-0.6) (-0.8) (0.8) (-0.2)
BV —0.0087  —0.0056  —0.0581 —0.0871 —0.1400  —0.0238 ~0.0600
(~0.6) (-0.2) (-1.0) (-1.0) (-1.0) (-1.0) (-0.6)
RP_ADJ 0.0305 00336  -00189  -0.0479  —0.1008 0.0154 0.0392
0.8) (1.0) (~0.6) (-0.8) (-1.0) (0.4) (1.0)

(continued on next page)
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TABLE 5 (continued)
Estimation Errors: Different Horizons, Daily Data

Panel C. 12 Months

HIST RW DCC FGK CCJv KKS1 BV RP_ADJ
Avg. 0.1488 0.1423 0.3374 0.2307 0.2674 0.1677 0.1227 0.1895
HIST 0.0065  -0.1886  -0.0820  -0.1187  —0.0190 0.0261 —0.0407
(0.0) (-1.0) (—0.8) (-0.8) (0.0) (0.2) (~0.4)
RW —0.0019 ~0.1951 -0.0884  —0.1251 —0.0254 0.0196  —0.0471
(0.0) (-1.0) (-1.0) (-1.0) (-0.2) 0.2) (-0.6)
DCC 0.0714 0.0734 0.1067 0.0700 0.1697 0.2147 0.1479
(1.0) (1.0) (0.0) 0.2) (0.8) (1.0) (1.0)
FGK 0.1003 0.1023 0.0289 —0.0367 0.0630 0.1080 0.0413
(1.0) (1.0) (-0.2) (-0.2) (0.8) (1.0) (0.0)
CCJV 0.1188 0.1208 0.0474 0.0185 0.0997 0.1447 0.0780
(1.0) (1.0) 0.2) (0.0) (0.8) (1.0) (0.8)
KKS1 0.0054 0.0073  —0.0660  —0.0950  —0.1135 0.0450  —0.0217
(0.4) (0.4) (-0.8) (~0.8) (-1.0) (0.8) (-0.2)
BV —0.0163  —0.0144  —00877  -0.4167  —0.1352  —0.0217 —0.0667
(~0.6) (~0.6) (-1.0) (-1.0) (-1.0) (-1.0) (—0.4)
RP_ADJ 0.0214 0.0234  —0.0500  —0.0789  —0.0974 0.0161 0.0378
(0.8) (1.0) (-1.0) (-1.0) (-1.0) (0.4) (0.6)
TABLE 6

Estimation Errors:
6-Month Horizon, Daily Data (Further Implied and DJIA)

Table 6 reports the out-of-sample estimation errors of competing estimators, using daily return data, for realized beta
over the horizon of 6 months for each portfolio. We build five (Panel A) and two (Panel B) portfolios into which the stocks
are allocated in an ascending order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We determine portfolio betas and returns
as value-weighted averages. In each panel, the first row reports the average RMSE of the estimation models over the five
(two) portfolios. The lowest errors among all approaches are indicated by italic font. The remainder of the panels report
the difference in estimation errors. The upper triangular matrices report the differences in root mean squared estimation
errors, averaged over the five (two) portfolios. Similarly, the lower triangular matrices report the average root median
difference of estimation errors. We compute the difference between the errors of the model [name in row] and those of
the model [name in column]. The absolute numbers in parentheses indicate the percentage of portfolios for which the
difference is significant (e.g., 0.4 indicates that the differences for two out of five portfolios are statistically significant).
If the differences are significant for all portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold-Mariano and the Wilcoxon signed-rank tests for the upper and lower triangular matrices, respectively. The sign
indicates the direction of the significant differences.

Panel A. Further Implied Estimators

HIST RW cCV SR KKS1 KKS2 FGK RP_ADJ BV

Avg. 0.1381 0.1301 0.2783  0.1674  0.1704 01720 02203  0.1718  0.1164

HIST 00079 -0.1402 —0.0293 -00323 -00339 -00822 -00337  0.0217
(0.0) (-0.8) (-0.2) (—0.4) (~0.4) (~0.8) (-0.6) 0.2)

RW 0.0002 —0.1482  —0.0372 -0.0403 -0.0419 -0.0901 -00416 00138
(—0.4) (~0.8) (-0.2) (-0.2) (-0.2) (-1.0) (-0.6) 0.2)

cCV 0.1143  0.1141 01110 01079  0.1063  0.0581 0.1066  0.1620
(1.0) (1.0) (0.8) (0.8) 0.8) (0.6) (1.0) (1.0)

SR 00153  0.0150  —0.0991 —0.0030 —0.0046 —0.0529 —0.0044  0.0510
(0.6) (0.4) (-1.0) (0.4) (0.4) (~0.6) (0.0) (0.8)

KKS1 00113 00110 —0.1031  —0.0040 —0.0016  —0.0499 —0.0013  0.0541
(0.4) (0.6) (-1.0) (-0.2) (~0.4) (~0.6) (-0.2) (0.8)

KKS2 00135 00133 —0.1008 -0.0018  0.0022 —0.0482 00003  0.0557
(0.4) (0.6) (-1.0) (-0.2) (0.4) (~0.6) (-0.2) (0.8)

FGK 0.1001 0.0999 -0.0142 00849 00888  0.0866 0.0485  0.1039
(1.0) (1.0) (—0.4) (0.6) (0.8) (0.8) 0.2) (1.0)

RP_ADJ 00256 00254 -0.0888 00103 00143 00121 -0.0745 0.0554
(0.8) ©.8) (-1.0) 0.2) 0.2) ©.2) (-1.0) (0.6)

BV 00111  —00113 —0.1254 —00263 -00224 —-00246 -0.1112 —0.0367
(—0.6) (~0.6) (-1.0) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0)

(continued on next page)
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TABLE 6 (continued)

Estimation Errors:
6-Month Horizon, Daily Data (Further Implied and DJIA)

Panel B. DJIA
HIST RW DCC CCJV SR KKS1 KKS2 FGK RP_ADJ BV
Avg. 0.1569 0.1558 0.2356 0.2627 0.2434 0.1798 0.1730 0.2067 0.1965 0.1560
HIST 0.0011 —-0.0787 -0.1058 -0.0865 —0.0229 —-0.0161 —0.0498 —0.0396 0.0009
(0.0) (-1.0) (-1.0) (—-0.5) (—-0.5) (-0.5) (-1.0) (—0.5) (0.0)
RW —0.0005 —0.0798 -0.1069 -0.0876 —0.0240 -0.0173 -0.0509 —0.0407 —0.0002
(0.0) (-1.0) (—0.5) (—-0.5) (—-0.5) (-0.5) (-1.0) (-0.5) (0.0)
DCC 0.0439 0.0444 —0.0271 —-0.0078 0.0558 0.0626 0.0289 0.0391 0.0796
(1.0) (1.0) (—0.5) (0.0) (0.5) (0.5) (0.0) (0.0 (0.5)
CCuv 0.0821 0.0826 0.0382 0.0193 0.0829 0.0897 0.0560 0.0662 0.1067
(1.0) (1.0) (0.5) (0.0) (1.0) (1.0) (0.5) (0.5) (1.0)
SR 0.0784 0.0789 0.0344 —0.0037 0.0636 0.0704 0.0367 0.0469 0.0874
(0.5) (0.5) (0.0) (-0.5) (0.5) (0.5) (0.0) (0.5) (0.5)
KKS1 0.0207 0.0212 -0.0232 -0.0614 —0.0577 0.0068 -0.0269 —0.0167 0.0238
(0.5) (0.5) (—0.5) (-1.0) (—-0.5) (1.0 (—0.5) (0.0 (0.5)
KKS2 0.0105 0.0110 -0.0334 -0.0716 -0.0679 —0.0102 —0.0337 —0.0235 0.0170
(0.5) (0.5) (—0.5) (-1.0) (—0.5) (-1.0) (—0.5) (—0.5) (0.5)
FGK 0.0650 0.0655 0.0211  —-0.0171 —0.0134 0.0443 0.0545 0.0102 0.0507
(1.0) (1.0) (0.0) (0.0) (0.0) (0.5) (0.5) (0.0 (0.5)
RP_ADJ 0.0318 0.0323 -0.0122 -0.0503 —0.0466 0.0111 0.0213 —-0.0332 0.0405
(1.0 (1.0) (-0.5) (—0.5) (0.0) (0.5) (0.5) (—0.5) (1.0)
BV 0.0093 0.0098 —0.0347 -0.0728 -0.0691 -0.0114 -0.0012 —0.0557 —0.0225
(0.5) (0.5) (-1.0) (-1.0) (—0.5) (-1.0) (—0.5) (-1.0) (-1.0)

pared with CCJV. However, HIST, RW, and BV still yield even lower errors. To
summarize, even the simple historical benchmark is to be preferred over all the
fully implied methods taken into consideration. The assumptions that have to be
made on (co-)moments for the fully implied estimators therefore seem to be in-
valid. BV, RW, and HIST, utilizing correlations from historical return data, con-
sistently outperform these models.
D. Option Liquidity

Because option-implied approaches strongly rely on precise estimates for the
option-implied moments, the rather poor performance could be caused by poor
quality of the options data, resulting in imprecise moment estimates. To check for
that, we repeat our analysis for all stocks contained in the DJIA 30.”” The DIJIA
includes 30 of the largest U.S. companies that both commonly have more options
traded (in terms of strike prices) and exhibit a much higher liquidity compared
with smaller stocks in the S&P 500.® Although Chakravarty, Gulen, and May-
hew (2004) find that option market price discovery is related to trading volume,
considering only very liquid options may yield more precise estimates for the
implied approaches.

The results are presented in Panel B of Table 6. We find that the fully implied
approaches CCJV, SR, KKS1, and KKS2 still obtain larger errors in comparison

2"Because some methods require information on all members of an index, it is not possible to just
select a subset of stocks from the S&P 500. Thus, we focus on an index that has significantly fewer
members than the S&P 500.

*Note that although the total turnover on S&P 500 index options is substantially higher than that
on DJIA index options, on average the daily total contract volume on DJIA index options of about
23,000 should be sufficiently high to obtain accurate moment estimates, even at the 6-month horizon.
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with HIST, RW, and BV.?’ The results further show that HIST, RW, and BV obtain
significantly smaller mean and median errors for at least one of the two portfolios.
Thus, even when restricting the sample to the DJIA, the fully implied models
are inferior to a simple historical estimate. The adjustment for the volatility risk
premium (RP_ADJ), which also may be better fitted for better-quality options
data, yields lower errors compared with FGK, whereas the differences are not
statistically significant in most cases. Finally, under the presumably better options
data, the average RMSE values of HIST, RW, and BV are approximately equal,
with RW yielding the lowest average RMSE. The RMSE values of HIST, RW, and
BV are significantly lower than those of the remaining approaches for at least one
of the two portfolios.

E. Further Time-Series Models

We investigate further models imposing a time-varying structure on beta,
namely, a random walk with drift, a first-order autoregressive (AR(1)) model, an
autoregressive moving average ARMA(1,1) model, and the CCC model of Boller-
slev (1990), as well as realized beta over the past 6 months (HIST;).* Lewellen
and Nagel (2006) argue that the results of short-term regressions provide condi-
tional parameters without the use of conditioning variables as long as the parame-
ters are relatively stable within that short period. Consequently, HISTs might de-
liver better conditional estimates than the simple historical estimator using 1 year
of historical return data.

In Table 7 we find RWp, AR, ARMA, and especially HIST to perform quite
well, whereas CCC is clearly outperformed.®' Furthermore, it can be seen that the
less complex structure as in CCC yields a slight improvement when comparing
the results to those of DCC. HISTy obtains a smaller average RMSE compared
to the historical estimate over 1 year, so short-term conditional estimates may
be better fitted. The average RMSE values of RWp, AR, and ARMA are only
moderate, but clearly higher than those of BV, which overall again yields the
lowest average RMSE. Regarding significance, we find that HIST, HISTs, RW,
and BV yield significantly lower errors than AR, ARMA, DCC, and CCC for at
least four portfolios. Only in rare cases are there significant differences among
the formerly mentioned approaches, but in these cases, they are mostly in favor of
BV. Overall we find, besides HIST and RW, HIST; to be a valuable alternative to
the BV approach.®

F. Bias Removal

As we discuss in Section III.A, some estimators are heavily biased with their
cross-sectional value-weighted average estimate for beta, a quantity that theoret-

The results for the 1-month horizon, where both the options on the index and those on the indi-
vidual assets should be more frequently traded, are qualitatively equal.

3Note that adding a drift in models (18) and (19) for AR and ARMA does especially affect ARMA
adversely for long horizons. Consequently, we only report the results of the models without drift.

3Note that the values change slightly compared to those in Table 3 because we are able to retain
more estimates when CCJV is not included in the analysis.

32The results for the 1-month horizon, where the conditional estimates of the time-series ap-
proaches are likely much more precise, are qualitatively equal. Overall, BV delivers a lower RMSE
compared with all time-series approaches.
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ically has to be equal to 1 if a full market index is used, being substantially dif-
ferent from that value. A possible improvement could be to try to remove the bias
implied by these deviations.™

A first simple method we try is to standardize the estimators in a way that
their cross-sectional value-weighted average exactly equals 1. For that, for each
approach, we simply divide each estimate by the cross-sectional value-weighted
mean beta of that approach at that time. We apply the technique on all estima-
tors except those that fulfill the condition already by construction (e.g., KKS1
and BV). The results are shown in Panel A of Table 8. Indeed, the simple bias
removal seems to be working, in particular for the two hybrid estimators FGK
and RP_ADJ, reducing their RMSE values almost to the level of BV, with a sig-
nificant difference for no portfolio, comparing BV to FGK.* Consequently, the
main benefit of the BV approach seems to be not the adjustment of correlations to
the risk-neutral probability measure but rather to ensure that the estimates com-
bining option-implied and historical return information are approximatively unbi-
ased in their cross-sectional average. For CCJV and DCC, the bias removal yields
a substantial improvement; however, these estimators are still inferior, whereas
the improvement is quite small for HIST and RW.

TABLE 7
Estimation Errors: 6-Month Horizon, Daily Data (Further Time-Series Models)

Table 7 reports the out-of-sample estimation errors of competing estimators, using daily return data, for realized beta
over the horizon of 6 months for each portfolio. We build five quintile portfolios into which the stocks are allocated in
an ascending order according to their historical beta in the sorting period (taking place directly before the estimation
period for historical beta without overlap and with equal length). We determine portfolio betas and returns as value-
weighted averages. The first row reports the average RMSE of the estimation models over the five portfolios. The lowest
errors among all approaches are indicated by italic font. The remainder of the table reports the difference in estimation
errors. The upper triangular matrix reports the differences in root mean squared estimation errors, averaged over the five
portfolios. Similarly, the lower triangular matrix reports the average median difference of estimation errors. We compute the
difference between the errors of the model [name in row] and those of the model [name in column]. The absolute numbers
in parentheses indicate the percentage of portfolios for which the difference is significant (e.g., 0.4 indicates that the
differences for two out of five portfolios are statistically significant). If the differences are significant for all five portfolios, the
figure is printed in bold font. Significance is tested by the modified Diebold-Mariano and the Wilcoxon signed-rank tests
for the upper and lower triangular matrices, respectively. The sign indicates the direction of the significant differences.

HIST HIST, RW RWp AR ARMA DCC cce BV
Avg. 0.1355 01283  0.1269  0.1870  0.1865  0.1899 02638 02572 0.1152
HIST 0.0072 00086 -0.0515 —0.0510 -0.0543 -0.1283 —0.1217 0.0203
(0.0) (0.0) (~0.4) (-0.8) (~0.8) (-1.0) (-0.8) ©.2)
HISTs  —0.0041 00014 -00587 -00582 —0.0616 —0.1356 —0.1289 0.0131
(-0.2) (0.0) (-1.0) (-1.0) (-1.0) (-1.0) (~0.8) ©.2)
RW ~0.0022 0.0019 —0.0601 —0.0596 —00630 -0.1370 —0.1303 0.0117
(-0.2) (0.0) (-0.8) (-1.0) (-1.0) (-1.0) (~0.8) ©.2)
RWp 00394 00435  0.0416 0.0005 —0.0029 -0.0769  —0.0702 0.0718
(0.8) (1.0) (1.0) (0.0) (0.0) (-0.8) (0.0) 0.8)
AR 0.0345 0.0385 00366 —0.0049 —0.0034 -0.0774  —0.0707 0.0713
(1.0) (1.0) (1.0) (-0.2) ©.2) (-0.8) (0.0) (0.8)
ARMA  0.0369 00410 00391  —0.0025 0.0024 ~0.0740  —0.0673 0.0746
(1.0) (1.0) (1.0) (-0.2) (-0.2) (-0.8) (-0.2) (0.8)
DCC 0.0638 0.0679 00660  0.0244 00293  0.0269 0.0067 0.1486
(1.0) (1.0) (1.0) (0.8) (0.8) (0.8) (0.0) (1.0)
cce 0.0338 00379 00360 —0.0055 —0.006 —0.0031 —0.0299 0.1420
(1.0) (1.0) (1.0) (0.0) (0.0) ©.2) (-0.8) (0.8)
BV —0.0137 —-0.0096 -0.0115 —0.0531 —0.0482 —0.0506 —0.0775 —0.0475
(~0.8) (-0.6) (~0.6) (-0.8) (-1.0) (—0.8) (-1.0) (—0.8)

33We thank an anonymous referee for suggesting this.
3 As can be seen in the Internet Appendix (available at www.jfqa.org), further analysis shows that
BV still is informationally more efficient compared with the bias-removed FGK and RP_AD]J.
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We also employ more refined bias-removal techniques in the spirit of Min-
cer and Zarnowitz (1969) using regression techniques as in equation (28).* In
a first approach we form portfolios as in Section III.B, obtain estimates for

TABLE 8
Bias Removal

Table 8 reports the out-of-sample estimation errors of competing bias-removed estimators, using daily return data, for
realized beta over the horizon of 6 months for each portfolio. We build five quintile portfolios into which the stocks are
allocated in an ascending order according to their historical beta in the sorting period (taking place directly before the
estimation period for historical beta without overlap and with equal length). We determine portfolio betas and returns as
value-weighted averages. Panel A presents the results on a simple bias removal, and Panels B and C present the results
on bias removals using regression techniques. In each panel, the first row reports the average RMSE of the estimation
models over the five portfolios. The lowest errors among all approaches are indicated by italic font. The remainder of the
tables report the difference in estimation errors. The upper triangular matrix reports the differences in root mean squared
estimation errors, averaged over the five portfolios. Similarly, the lower triangular matrix reports the average median
difference of estimation errors. We compute the difference between the errors of the model [name in row] and those of
the model [name in column]. The absolute numbers in parentheses indicate the percentage of portfolios for which the
difference is significant (e.g., 0.4 indicates that the differences for two out of five portfolios are statistically significant). If
the differences are significant for all five portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold-Mariano and the Wilcoxon signed-rank tests for the upper and lower triangular matrices, respectively. The sign
indicates the direction of the significant differences. BVYC refers to the noncorrected BV estimates.

Panel A. Simple Bias Removal

HIST RW DCC FGK CCJV KKS1 BV RP_ADJ
Avg. 0.1304 0.1263 0.1820 0.1200 0.1633 0.1704 0.1164 0.1272
HIST 0.0041 ~0.0516 00104  -0.0329  —0.0400 0.0141 0.0032
(-0.2) (-0.8) (0.4) (~0.4) (~0.4) 0.2) (0.0)
RW —0.0029 —0.0556 00063  —0.0370  —0.0441 0.0100  —0.0009
(0.0) (-1.0) ©.2) (~0.4) (—0.4) ©.2) 0.2)
DCC 0.0169 0.0199 0.0619 0.0187 0.0115 0.0656 0.0548
(1.0) (1.0) (1.0) (0.0) (0.0) (0.8) (0.8)
FGK —-0.0135  -0.0106  —0.0305 —0.0433  —0.0504 0.0037  —0.0072
(~0.6) (~0.4) (-1.0) (~0.6) (~0.4) (0.0) (—0.4)
ceV 0.0150 00180  —0.0019 0.0285 ~0.0071 0.0470 0.0361
(0.6) (0.6) (~0.4) (1.0) (0.0) ©.8) (0.4)
KKS1 0.0002 00122 —0.0077 0.0227  —0.0058 0.0541 0.0432
(0.4) (0.4) (~0.4) (0.6) (-0.2) ©.8) (0.4)
BV 00132  -0.0102  —0.0301 00004 00282  —0.0224 —0.0108
(~0.6) (~0.6) (-0.8) (0.0) (-1.0) (-1.0) (0.0)
RP_ADJ  -00093  -0.0064  —0.0263 00042  -0.0243  —0.0185 0.0038
(-0.2) (~0.4) (-1.0) (0.0) (~0.8) (-0.6) (0.6)

Panel B. Regression Technique

HIST RW DCC FGK cclv KKS1 BV RP_ADJ BVYC

Avg. 0.1941 01630 02595  0.1976  0.2461 0.1601 01286 02066  0.1203

HIST 00311 —0.0654 —0.0035 —0.0520  0.0340  0.0655 -0.0125  0.0738
(0.0) (~0.6) (~0.4) (~0.4) (0.0) (0.4) (—0.4) (0.4)

RW —0.0142 —0.0965 —0.0346  —0.0831 00029 00345 -0.0436  0.0427
(-0.6) (-1.0) (~0.8) (~0.4) (0.0) 0.2) (-0.6) ©.2)

DCC 0.0516  0.0657 00619 00134 00994  0.1310 00529  0.1392
(0.8) (1.0) (0.6) (0.0) (0.8) (1.0) (0.4) (1.0)

FGK 00207 00349 —0.0309 —0.0486 00374 00690 —0.0091 0.0773
(0.6) (0.8) (~0.6) (-0.2) (0.8) (0.8) (0.0) (0.8)

cCV 00320 00462 -0.0195 00113 00860 01176 00395  0.1258
(0.4) (1.0) (~0.4) (0.4) (0.6) (0.6) 0.2) (0.6)

KKS1 —0.0148  —0.0006 -0.0663 —0.0354 —0.0468 00316 —0.0465  0.0398
(-0.6) (-0.2) (-1.0) (~0.6) (-1.0) (0.0) (-0.8) (0.4)

BV ~0.0199  —0.0057 -0.0715 -0.0406 —0.0519 —0.0051 —0.0781 0.0082
(-1.0) (~0.4) (-1.0) (~0.8) (-1.0) (-0.2) (-0.8) (0.0)

RP_ADJ  0.0201 00342 -0.0315 -0.0006 —-0.0120  0.0348  0.0399 0.0863
(0.6) (0.8) (~0.6) (0.0) (~0.6) (0.8) (1.0) (0.8)

BVWC 00317 —0.0175 -00833 -0.0524 -00637 -00169 -0.0118 —0.0517

(-1.0) (~0.8) (-1.0) (-1.0) (-1.0) (-1.0) (~0.4) (-1.0)

(continued on next page)

3We consider further possibilities to try to remove bias in the Internet Appendix (available at
www.jfqa.org).
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TABLE 8 (continued)
Bias Removal

Panel C. Regression Technique Combining with HIST

HIST RW DCC FGK CCJv KKS1 BV RP_ADJ BYUC
Avg. 0.1941 01879 01998  0.1898  0.1765  0.1716 01367  0.1894  0.1203
HIST 0.0062 —0.0057 00043 00176 00224 00574 00047  0.0738
(0.0) (0.0) (~0.2) (0.0) (0.0) (0.4) (0.0) (0.4)
RW —0.0061 —0.0119  —0.0019 00114 00162 00512 —0.0015  0.0676
(-0.2) (0.0) (0.0) (0.0) 0.2) 0.2) (0.0) (0.6)
DCC 0.0044  0.0104 0.0099 00232  0.0281 0.0630 00104  0.0794
0.2) (0.4) (0.0) (0.0) (0.4) (0.6) (0.0) (0.6)
FGK —0.0011 0.0050  —0.0054 0.0133 00182  0.0531 0.0004  0.0695
(0.0) (0.2) (-0.2) (0.0) (0.6) (0.4) (0.0) (0.6)
ceV 00016 00077 -0.0027  0.0027 00049 00398 -00129  0.0562
(0.0) (0.0) (~0.4) (-0.2) (0.0) (0.4) (0.0) (0.8)
KKS1 00116 —0.0055 -0.0160 -0.0105 —0.0133 00349 -0.0178  0.0513
(-0.8) (—0.4) (—0.8) (~0.8) (-0.2) (0.0) (—0.4) 0.2)
BV —0.0202 00141 —0.0246 -00192 —00219 —0.0086 00527 00164
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.2) (0.0)
RP_ADJ  —0.0019 00042 -0.0062 —0.0008 —0.0035 00098 00184 0.0691
(0.0) (0.4) (~0.2) (0.0) (~0.2) (0.8) (1.0) (0.6)
BVWC —0.0317  -00256 -0.0360 -00306 —0.0333 —0.0201 —00115 —0.0298
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8) (-0.2) (-1.0)

each approach, and then perform the univariate regression for each approach sep-
arately, pooling all 60 (12 months times 5 portfolios) unadjusted ex ante estimates
for each approach i as well as the corresponding ex post realized portfolio beta
estimates during the 12 months # — 17 up to r —6 (because realized beta with a
6-month window is available only up to # — 6 at time ¢):

(30) ,BR = a, + bi,t,B,-UNADJ + €,

where BP™*P" is the vector of pooled initial portfolio beta estimates of one ap-
proach, and B® denotes the corresponding pooled realized beta vector. Subse-
quently, after obtaining the regression coefficients a;, and b, ,, we manipulate the
current estimates, inserting them into the equation

31 BY = au+buBR"

where B is the adjusted estimate of approach i and asset j at time ¢.

A second approach could be to try to remove the bias in the same spirit,
combining it with the estimate for historical beta (HIST). For that, we perform a
bivariate regression of portfolio realized beta on each approach and HIST over the
12 months ¢t — 17 up to t — 6. The final adjustment is then performed as follows:
(32 BT = Gy, + bl BN+ BESTHIST,,,
where HIST);, is the estimate for historical beta at time ¢, and b’g and bHIST are
the regression coefficients on the considered approach and HIST respectwely
The results for these approaches are presented in Panels B and C of Table 8.3

*Note that the results for the uncorrected BVYC differ from those in previous tables because the
bias correction first needs 17 months of data before it starts, delaying the start of the evaluation period.
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The results for the adjustment of equation (31) indicate an even slightly higher
average RMSE for BV, whereas all other approaches also yield (in many cases
significantly) higher RMSE values than the initial BV. The adjustment of equa-
tion (32), combining the estimates with HIST, yields an improvement for DCC
and the implied estimators FGK, CCJV, and RP_ADJ, indicating that not all in-
formation on historical returns is incorporated in these estimators. For all remain-
ing approaches, including BV, the combination with HIST yields a higher RMSE
compared with the simpler bias removal using equation (31).

Consequently, a simple bias removal is shown to be valuable in particular for
hybrid estimators. Furthermore, our results suggest that a regression-based bias
removal cannot further improve the performance of BV, HIST, and RW.

V. Conclusion

This paper examines the performance of a wide range of approaches to esti-
mating an asset’s market beta. Specifically, we investigate several constant and
time-varying models relying on historical return data and additionally several
methods including or solely relying on option-implied information.

In summary, estimators using historical information perform well only if
they do not make too strong structural assumptions, like the simple historical beta
and the Kalman filter approach with a random walk parametrization. In contrast,
models that make strong assumptions on the volatility and correlation processes
(like the GARCH-based DCC) are shown to produce very large errors.

Including information from option prices is shown to be valuable to some
extent. Fully implied methods, having the big advantage of employing the
forward-looking information from options markets, nonetheless adhere the
major shortcoming that they cannot attain negative values. Consequently, even the
models that are on average unbiased by construction (KKS1 and KKS2) produce
substantial errors. Avoiding strong and seemingly invalid identifying assumptions,
the hybrid approaches, combining historical return data with forward-looking
information from the options market, are shown to produce the lowest errors. In
particular, the hybrid approach of Buss and Vilkov (2012) consistently performs
best regarding informational efficiency as well as estimation accuracy. These re-
sults are shown to be robust both to building more portfolios and different estima-
tion horizons. Furthermore, we find that the main benefit of BV, compared with
other hybrid approaches, is that it ensures that the estimates are adjusted to be
unbiased in their value-weighted cross-sectional averages.

Overall, although the BV approach appears to be the method of choice, one
major shortcoming of this method (and other hybrid approaches that try a simple
bias correction) has to be borne in mind: the methodology requires information
on a full market index. Consequently, it cannot be employed for assets that are
not included in an index, or in cases where there is insufficient option-implied
information for all assets in the index. Therefore, whenever the BV approach is
not applicable, our results indicate that one should rely either on RW or a simple
estimate based on historical returns, because both quite consistently outperform
all other approaches.
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