
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 194.95.157.141

This content was downloaded on 03/08/2016 at 08:55

Please note that terms and conditions apply.

Truncation identities for the small polaron fusion hierarchy

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 043026

(http://iopscience.iop.org/1367-2630/15/4/043026)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Truncation identities for the small polaron
fusion hierarchy
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Abstract. We study a one-dimensional lattice model of interacting spinless
fermions. This model is integrable for both periodic and open boundary
conditions; the latter case includes the presence of Grassmann valued non-
diagonal boundary fields breaking the bulk U (1) symmetry of the model.
Starting from the embedding of this model into a graded Yang–Baxter algebra,
an infinite hierarchy of commuting transfer matrices is constructed by means
of a fusion procedure. For certain values of the coupling constant related to
anisotropies of the underlying vertex model taken at roots of unity, this hierarchy
is shown to truncate giving a finite set of functional equations for the spectrum
of the transfer matrices. For generic coupling constants, the spectral problem
is formulated in terms of a functional (or TQ-)equation which can be solved
by Bethe ansatz methods for periodic and diagonal open boundary conditions.
Possible approaches for the solution of the model with generic non-diagonal
boundary fields are discussed.
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1. Introduction

The small polaron model provides an effective description of the behavior of an additional
electron in a polar crystal [1, 2]. In one spatial dimension, this lattice system of interacting
spinless fermions can be constructed within the framework of the quantum inverse scattering
method [3] allowing us to compute the excitation spectrum by Bethe ansatz techniques, see
e.g. [4, 5]. By means of a graded generalization [6–8] of Sklyanin’s reflection algebra [9], it
was possible to provide the small polaron model with open boundary conditions (OBC) while
keeping its integrability intact. These integrable boundary conditions are encoded in c-number
valued 2× 2-matrix solutions to the reflection equations [10–12].

Diagonal boundary matrices correspond to boundary chemical potentials in the
Hamiltonian. In this case the small polaron model is equivalent to the spin-1/2 XXZ Heisenberg
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chain with boundary magnetic fields by means of a Jordan–Wigner transformation, similarly
as in the case of periodic boundary conditions (PBC) where this equivalence holds up to a
boundary twist depending on the particle number [4, 13]. As a consequence, the spectrum
of the open small polaron model can be obtained using Bethe ansatz methods [13–15]. For
general non-diagonal solutions to the reflection equations, this equivalence does not hold as
a consequence of the non-local nature of the Jordan–Wigner transformation. Furthermore, the
underlying grading implies that solutions to the reflection equations for the small polaron model
are super matrices [16]. In the corresponding Hamiltonian, the resulting additional boundary
terms do not conserve particle number and have anti-commuting scalars, i.e. odd Grassmann
numbers, as amplitudes. The fact that the U (1) symmetry of the model is broken implies that
in general there is no simple eigenstate (e.g. the Fock vacuum) of the model that can be used
as a reference state for the algebraic Bethe ansatz. Therefore, alternative approaches such as
functional Bethe ansatz methods have to be employed to analyze the spectrum of the model.
This situation is, in fact, very similar to the case of non-diagonal boundary magnetic fields in the
spin-1/2 Heisenberg chains: in the approaches used so far the solution of the spectral problem
relies on constraints between the boundary fields at the two ends of the chain or restrictions on
the anisotropy, or it is limited to small finite systems thereby reducing their usefulness to study
this system in the thermodynamic limit [17–25].

In a previous publication [26] we have investigated the applicability of Bethe ansatz
methods in the simpler case of a model of free fermions with similar open boundary
conditions. We found that for a certain class of non-diagonal boundary super matrices, a unitary
transformation on the auxiliary space allowed for an exact solution of the free fermion model.
Furthermore, the functional equations obtained there could be easily generalized to describe the
spectrum of the model for arbitrary non-diagonal boundary fields. Unfortunately, this approach
cannot be applied directly to the small polaron model.

In this paper we initiate a study as to whether the nilpotency of the off-diagonal boundary
parameters in a graded model allows us to bypass some of the problems arising in the case of the
spin-1/2 XXZ chain with non-diagonal boundary fields. Following ideas [17, 20] developed in
the context of the spin-1/2 XXZ Heisenberg chain and later generalized to the XYZ chain [27]
and integrable higher spin XXZ models [28], we adapt the fusion procedure [29–31] for the
transfer matrix of the quantum chain to the graded case of the small polaron model. We derive
the fusion hierarchy of functional equations for a commuting family of transfer matrices for
the small polaron model. Assuming the existence of a certain limit, we formulate the spectral
problem of this model for periodic and general open boundary conditions in terms of functional
TQ-equations. For periodic and diagonal open boundary conditions, these equations are shown
to coincide with the known result obtained from using the algebraic Bethe ansatz. For special
values of the interaction parameter related to roots of unity of the anisotropy parameter, we
derive truncation identities for the fusion of the relevant objects, in particular the transfer
matrices. Using these identities the fusion hierarchy reduces to a set of relations between finitely
many quantities.

2. The small polaron as a fundamental integrable model

Some materials exhibit a strong electron–phonon coupling that considerably reduces the
mobility of electrons within the conduction band. This interaction may be regarded as an
increase of the electron’s effective mass, thus giving rise to quasi-particles called polarons.
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If the electron is essentially trapped at a single lattice site, the corresponding quasi-particle is
said to be a small polaron. In this case, electron transport occurs either by thermally activated
hopping (at high temperatures) or by tunneling (at low temperatures).

In the case of PBC the N -site small polaron model is characterized by the Hamiltonian

H PBC
=

N∑
j=1

H j, j+1 with HN ,N+1 ≡ HN ,1 (2.1)

with a Hamiltonian density H j, j+1 defined as

H j, j+1 =−t
(

c†
j+1c j + c†

j c j+1

)
+ V

(
n j+1n j + n̄ j+1n̄ j

)
, (2.2)

where c†
k and ck label the creation, respectively annihilation, operators of spinless fermions

at site k, which are subject to the anticommutation relations [c†
`, ck]+ = δ`k . Moreover, it is

convenient to define number operators nk ≡ c†
kck = 1− n̄k . In this context, the parameters t

and V may be interpreted as hopping amplitude and density–density interaction strength,
respectively.

2.1. Construction within the quantum inverse scattering method framework

The small polaron model can be associated with a graded six-vertex model with anisotropy η
and R-matrix

R(u)=
1

sin(2η)


sin(u + 2η) 0 0 0

0 sin(u) sin(2η) 0
0 sin(2η) sin(u) 0
0 0 0 − sin(u + 2η)

 . (2.3)

R(u) is a solution to the Yang–Baxter equation (YBE)

R12(u− v)R13(u)R23(v)= R23(v)R13(u)R12(u− v) (2.4)

and enjoys several useful properties, such as

• P-symmetry

R21(u)≡ P12 R12(u)P12 = R12(u), (2.5a)

• T-symmetry

Rst1st2
12 (u)= Rist1ist2

12 (u)= R21(u), (2.5b)

• regularity

R12(0)= P12, (2.5c)

• unitarity

R12(u)R21(−u)= ζ(u), (2.5d)

where the scalar function ζ(u) is given by

ζ(u)≡ g(u)g(−u) and g(u)≡−
sin(u− 2η)

sin(2η)
.

Unitarity of an R-matrix is, of course, a direct consequence of its regularity.
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• Crossing symmetry

Rst2
21 (−u− 4η)Rst1

21 (u)= ζ(u + 2η), (2.5e)

• periodicity

R12(u +π)=−σ z
2 R12(u) σ

z
2 =−σ

z
1 R12(u) σ

z
1 . (2.5 f )

The periodicity R(u + 2π)= R(u) is obvious from definition (2.3).

The operations of partial super transposition sta and inverse partial super transposition ista as
well as the graded permutation operator Pab and the notion of super tensor product structures
are explained in appendix A. Unless stated otherwise, all embeddings are to be understood in a
graded sense, that is into a super tensor product structure. Considering the Yang–Baxter algebra
(YBA)

R12(u− v)T1(u)T2(v)= T2(v)T1(u)R12(u− v), (2.6)

this means that T1(u)≡ T (u)⊗s 1 and T2(v)≡ 1⊗s T (v).
The small polaron model constructed here is fundamental, i.e. the Lax-operators L j(u),

being local solutions to (2.6), are just graded embeddings of the above R-matrix (2.3),

L j(u)=
1

sin(2η)

(
sin(u)n j + sin(u + 2η)n̄ j sin(2η)c†

j

sin(2η)c j sin(u)n̄ j − sin(u + 2η)n j

)
. (2.7)

As a consequence of YBA’s co-multiplication property, a specific global representation, the so-
called monodromy matrix, can be constructed as a product of Lax-operators taken in auxiliary
space,

T (u)≡ L N (u) · . . . · L2(u) · L1(u), (2.8)

and gives rise to a family of commuting (super) transfer matrices

τ(u)≡ str { T (u) } ⇒ [τ(u), τ (v)]= 0 ∀u, v ∈ C, (2.9)

where str { ·} denotes the supertrace defined in appendix A. In particular, the PBC
Hamiltonian (2.1) with t = 1 and V =−cos(2η) is among these commuting operators,

H PBC
= − sin(2η)

d

du
ln τ(u)

∣∣∣∣
u=0

. (2.10)

2.2. Asymptotic behavior of the periodic boundary conditions (PBC) transfer matrix

By construction the monodromy matrix (and similarly the transfer matrix) is a Laurent
polynomial in z ≡ eiu , i.e. T (u)=

∑N
k=−N Tkzk . For z→∞ the Lax-operators (2.7) are

L j(u)≈
z

2i sin(2η)

(
n j + e2iηn̄ j 0

0 n̄ j − e2iηn j

)
(2.11)

and consequently the asymptotic behavior of the (super) transfer matrix is given by

τ(u)≈

(
z

2i sin(2η)

)N

eiNη

 N∏
j=1

(
e−iηn j + eiηn̄ j

)
−

N∏
j=1

(
e−iηn̄ j − eiηn j

) . (2.12)
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As the leading term comprises only diagonal operators, the first-order contributions to the
transfer matrix eigenvalues 3M(u) can easily be determined and are found to depend on the
total number of particles M ,

3M(u)≈ eiuN

(
eiη

ei 2η− e−i 2η

)N (
eiNηe−iM2η

− (−1)Me−iNηeiM2η
)
. (2.13)

This result will be used to fix the degree of the Q-functions in section 4.

3. Fusion of the R-matrix in auxiliary space

Given an R-matrix as a solution to the YBE (2.4), the fusion procedure [29–31] allows for
the construction of larger R-matrices as solutions to the corresponding YBEs, where larger
refers to the dimensionality of the auxiliary space involved. All that fusion requires is a pair of
complementary orthogonal2 projectors P+

12 and P−12 such that for a specific value of ρ ∈ C the
following triangularity condition holds for arbitrary spectral parameters u ∈ C:

P−12 R13(u) R23(u + ρ) P+
12 = 0. (3.1)

By virtue of this condition, it can be shown that the fused R-matrix, defined by

R(12)3(u)≡ P+
12 R13(u)R23(u + ρ)P+

12, (3.2)

satisfies the corresponding YBE

R(12)3(u− v) R(12)4(u) R34(v)= R34(v) R(12)4(u) R(12)3(u− v). (3.3)

It is easily found that the small polaron R-matrix (2.3) has two distinct singularities at u =±2η,

det{R(u)} = −
sin(u− 2η)

sin(2η)

(
sin(u + 2η)

sin(2η)

)3
!
= 0. (3.4)

At u =−2η the R-matrix gives rise to a projector onto a one-dimensional subspace,

P− ≡−
1

2
R(−2η)=

1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 . (3.5)

However, unlike in the case of the Heisenberg spin chain, the orthogonal projector P+ onto the
complementary three-dimensional subspace cannot be obtained from the R-matrix at the second
singularity,

P+
≡ 1− P− 6= 1

2 R(2η). (3.6)

Using this projector, fusion of two small polaron R-matrices in the auxiliary space can be
achieved by means of (3.2) with ρ = 2η,

R(12)3(u)≡ P+
12 R13(u)R23(u + 2η)P+

12. (3.7)

2 As usual, orthogonal means P+
12 P−12 = 0 whereas complementary refers to the property P+

12 + P−12 = 1.
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The resulting object R(12)3(u) is an 8× 8-matrix of rank 6 and may therefore be effectively
reduced to a 6× 6-matrix R�12�3(u) acting on a three-dimensional auxiliary space V�12� and
on a two-dimensional quantum space V3. Changing from the B F F B-graded3 canonical basis

B0 = {e1, e2, e3, e4}B F F B ≡ {|0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉}B F F B (3.8)

to the projectors’ B F B F-graded singlet/triplet eigenbasis

B± = { f1, f2, f3, f4}B F B F ≡

{
e1,

e2 + e3
√

2
, e4,

e2− e3
√

2

}
B F B F

, (3.9)

the matrix R(12)3(u) gains the advantageous shapeR�12�3(u)
0 0
0 0

i

j

= ( fi)
T
[
R(12)3(u)

]
f j , (3.10)

where R�12�3(u) is the only non-vanishing block. Explicitly, one finds

R�12�3(u)∝


2 sin(u+4η) 0 0 0 0 0

0 2 sin(u)
√

2 sin(4η) 0 0 0

0 2
√

2 sin(2η) 2 sin(u+2η) 0 0 0

0 0 0 −2 sin(u+2η) −2
√

2 sin(2η) 0

0 0 0
√

2 sin(4η) 2 sin(u) 0

0 0 0 0 0 2 sin(u+4η)

 . (3.11)

3.1. General construction of higher fused R-matrices

In general, higher fused R-matrices can be constructed employing the projection operators

P+
1...n ≡

1

n!

∑
σ∈Sn

Pσ . (3.12)

Here σ runs through all the elements of the permutation group Sn and Pσ is the permutation
operator corresponding to σ . Now the higher fused R-matrices are obtained as

R(1...n)q(u)≡ P+
1...n R1q(u) R2q(u + 2η) . . . Rnq(u + [n− 1] · 2η)P+

1...n. (3.13)

Just as for the first fusion step, it is convenient to apply a similarity transformation A(1...n) into
the eigenbasis4 of the projection operators,

A(1...n)R(1...n)q(u)A
−1
(1...n) ≡

R�1...n�q(u)

0
. . .

 . (3.14)

The first few (n = 1, 2, 3, 4) transformation matrices A(1...n) are explicitly given in appendix E.
By construction, all matrix elements of (3.14), except for those in the upper left 2(n + 1)×
2(n + 1) block, vanish. This block is referred to as the fused R-matrix R�1...n�q(u). As shown
in table 1, its fused auxiliary space has alternating gradation (bosonic, fermionic, etc).

3 This notation is explained in appendix A.
4 Since the projectors here are just the same as for the XXZ Heisenberg spin chain, the respective transformation
is simply given by the matrix of Clebsch–Gordan coefficients.
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Table 1. Gradation of the fused auxiliary spaces in the projector eigenbasis.

Auxiliary space: � 12� � 123� � 1234� � 12345� . . .

Grading: B F B B F B F B F B F B B F B F B F . . .

The periodicity property (2.5f) carries over to the fused R-matrices,

R�1...n�q(u +π)= (−1)n σ z
�n�R�1...n�q(u) σ

z
�n� (3.15)

with σ z
�n� being defined through

σ z
(n) ≡

n∏
k=1

σ z
k and A(12...n)σ

z
(n) A−1

(12...n) ≡

σ
z
�n�

∗

. . .

 . (3.16)

3.2. Fusion hierarchy for super transfer matrices

Since, by construction, the fused R-matrices again satisfy the YBE, they can be used to establish
further families of commuting operators as supertraces of fused monodromy matrices,

T(12...n)(u)≡ P+
12...n R(12...n)qN (u) · . . . · R(12...n)q2(u) R(12...n)q1(u) P+

12...n

= P+
12...nT(12...n−1)(u) Tn(u + [n− 1] · 2η) P+

12...n , (3.17)

A(12...n)T(12...n)(u) A−1
(12...n) ≡

T�12...n�(u)
c

0
. . .

 . (3.18)

Indeed, it is found that the (super) transfer matrices obtained from any fusion level n,

τ (n)(u)≡ str
(12...n+1)

{
T(12...n+1)(u)

}
= str

�12...n+1� { T�12...n+1�(u) } , (3.19)

commute with the transfer matrices of any other fusion level m, i.e.
[
τ (n)(u), τ (m)(v)

]
= 0 for all

u, v ∈ C and arbitrary n,m ∈ N0. A most interesting fact is that these fused transfer matrices
obey certain functional relations, known as fusion hierarchy. For the periodic boundary case,
the fusion hierarchy reads

τ (n)(u) τ (0)(u + [n + 1] · 2η)= τ (n+1)(u)+ δ(u + n · 2η)τ (n−1)(u), (3.20)

where δ(u)≡ δ{T (u)} labels the PBC super quantum determinant (SQD) defined in appendix D.
In contrast to ungraded models, such as the XXZ Heisenberg spin chain, this quantum
determinant is not proportional to the identity.

4. TQ-equations for PBC

After applying a shift u→ u− [n + 1] · 2η, the PBC fusion hierarchy (3.20) reads

τ (n)(u− [n + 1] · 2η) τ (0)(u)= τ (n+1)(u− [n + 1] · 2η)+ δ(u− 2η) τ (n−1)(u− [n + 1] · 2η). (4.1)
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As all operators in this equation mutually commute, it may equally well be read as an equation
for the eigenvalues3(n)(u) of the fused super transfer matrices. With3(u)≡3(0)(u) this yields

3(u)=
3(n+1)(u− [n + 1] · 2η)

3(n)(u− [n + 1] · 2η)
− (−1)N+Mζ N (u)

3(n−1)(u− [n + 1] · 2η)

3(n)(u− [n + 1] · 2η)
, (4.2)

where M is the number of particles in the system, such that the sign (−1)M depends on the
parity of the corresponding eigenstate (bosonic/fermionic). This peculiarity stems from the fact
that the PBC SQD (D.21a) cannot simply be treated as a scalar function but rather as an operator
that intersperses sign factors into the respective sectors. This may be illustrated by considering
the fusion hierarchy (4.1) in a diagonal basis for chain length N = 1,(

∗

∗

)(
∗

∗

)
=

(
∗

∗

)
+

(
+
−

)(
∗

∗

)
← B
← F.

(4.3)

Introducing the functions

Q̄(n)(u)≡3(n)(u− [n + 1] · 2η), (4.4)

the eigenvalues can be rewritten as

3(u)=
Q̄(n+1)(u + 2η)

Q̄(n)(u)
− (−1)N+Mζ N (u)

Q̄(n−1)(u− 2η)

Q̄(n)(u)
. (4.5)

Now factorize Q̄(n) according to

Q̄(n)
= χM(u)ϒ

N
n (u) · Q

(n)(u), (4.6)

where

χM(u)≡ eiπ(M+1) u
2η and ϒn(u)≡

n∏
k=0

sin(u− [n− k + 1] · 2η)

sin(2η)
. (4.7)

Assuming the existence of the limit Q(u)≡ limn→∞Q(n)(u), this yields

3(u)=

(
sin(u + 2η)

sin(2η)

)N Q(u− 2η)

Q(u)
− (−1)M

(
sin(u)

sin(2η)

)N Q(u + 2η)

Q(u)
. (4.8)

Due to the structure of the entries in the Lax-operators, the Q-functions as factorize as

Q(u)=
G∏
`=1

sin(u− λ`), (4.9)

where the integer G can be determined by considering the asymptotic behavior of 3(u). In the
limit z ≡ eiu

→∞, the leading contribution to (4.8) is

3(u)≈ eiNu

(
eiη

ei 2η− e−i 2η

)N [
eiNη e−iG 2η

− (−1)M e−iNη eiG 2η
]

(4.10)
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such that consistency with (2.13) immediately fixes G = M . The requirement for the
eigenvalues 3(u) to be analytic ultimately yields

Resλ j (3)= 0 ⇔

(
sin(λ j + 2η)

sin(λ j)

)N

=

M∏
`=1

sin(λ j − λ` + 2η)

sin(λ`− λ j + 2η)
, (4.11)

which are precisely the Bethe equations for this model [4, 5, 13]. Compared to the periodic XXZ
Heisenberg chain, these Bethe equations exhibit an additional sign, reflecting the different twist
in the boundary conditions appearing in the sectors with even and odd particle numbers through
the Jordan–Wigner transformation from the fermionic to the spin model.

5. Truncation of the PBC fusion hierarchy

In the case of the XXZ-model it has been observed that for certain values of the anisotropy η
the fusion hierarchy repeats itself after a finite number of steps. The small polaron model shares
this feature at values η = ηp where

ηp ≡
π/2

p + 1
. (5.1)

5.1. R-matrix truncation

The truncation identities for the R-matrices are found to be

R(p)q (u, ηp)=

−Mp(u) σ z
q

ζ(u)σ z
qR(p−2)

q (u + 2ηp, ηp)

Mp(u) (σ z
q )

p

 , (5.2)

where

R(p)q (u, η)≡ B�1...(p+1)�R�1...(p+1)�q(u) B−1
�1...(p+1)�,

Mp(u)≡

(
1/2

sin(2ηp)

)p sin([p + 1] u)

sin(2ηp)

(5.3)

with the transformation matrices B�1...n� explicitly given in appendix E up to n = 4.

5.2. Super transfer matrix truncation

For PBC the B-transformed fused monodromy matrix T (p)(u, η) of an N -site model with
quantum space H= Vq1 ⊗s Vq2 ⊗s · · · ⊗s VqN is defined as

T (p)(u, η)≡R(p)qN
(u, η) R(p)qN−1

(u, η) . . .R(p)q1
(u, η) (5.4)

= B�1...(p+1)�R�1...(p+1)�qN (u) . . . R�1...(p+1)�q1(u) B−1
�1...(p+1)�

= B�1...(p+1)�T�1...(p+1)�(u) B−1
�1...(p+1)�

and due to the cyclic invariance of the supertrace it yields the exact same transfer matrix

τ (p)(u, η)≡ str
�1...(p+1)�

{
T�1...(p+1)�(u)

}
= str

�1...(p+1)�

{
T (p)(u, η)

}
. (5.5)
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At η = ηp the truncation identity (5.2) for R-matrices gives

T (p)(u, ηp)

=

[−Mp(u)]N
∏1

i=N σ
z
qi

ζ N (u)
∏1

i=N σ
z
qi
R(p−2)

qi
(u + 2ηp, ηp)

[Mp(u)]N
∏1

i=N (σ
z
qi
)p


(5.6)

such that the truncation identity for the transfer matrices is found to be

τ (p)(u, ηp)= [−Mp(u)]
N

(
N∏

i=1

σ z
qi

)
− (−1)p[Mp(u)]

N

(
N∏

i=1

(σ z
qi
)p

)

−ζ N (u)

(
N∏

i=1

σ z
qi

)
τ (p−2)(u + 2ηp, ηp). (5.7)

6. The small polaron with open boundary conditions (OBC)

6.1. Reflection algebras and boundary matrices

The construction of integrable systems with open boundary conditions is based on
representations of the graded reflection algebra

R12(u− v)T −1 (u)R21(u + v)T −2 (v)= T
−

2 (v)R12(u + v)T −1 (u)R21(u− v) (6.1)

and the corresponding dual-graded reflection algebra

R̄12(v− u)T +
1 (u)

st1 R21(−u− v− 4η)T +
2 (v)

ist2 = T +
2 (v)

ist2 R12(−u− v− 4η)T +
1 (u)

st1 R̄21(v− u).

(6.2)

The relation between Rab(u) and the conjugated R-matrix R̄ab(u) is explained in appendix B.
c-number valued boundary matrices, compatible with the respective reflection equation, are
found to be [10–12] (see also [32] for the ungraded case of the XXZ chain)

K −(u)= ω−
(

sin(u +ψ−) α− sin(2u)

β− sin(2u) − sin(u−ψ−)

)
,

K +(u)= ω+

(
sin(u + 2η +ψ+) α+ sin(2[u + 2η])

β+ sin(2[u + 2η]) sin(u + 2η−ψ+)

) (6.3)

with normalizations ω± ≡ ω±(η) defined by

ω−(η)≡
1

sin(ψ−)
and ω+(η)≡

1

2 cos(2η) sin(ψ+)
. (6.4)

These matrices share the periodicity property of the R-matrix, i.e.

K ∓(u +π)=−σ z K ∓(u) σ z . (6.5)

Here the normalizations were chosen such that

K −(0)= 1 and str { K +(0) } = 1 , (6.6)
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but apart from this, the two solutions are related via

K +(u)=

[
1

2 cos(2η)
K −(−u− 2η) σ z

]
(	 → ⊕)

, (6.7)

where (	→⊕) marks the replacements (α−, β−, ψ−)→ (−α+, β+,−ψ+). In principle, the
parameters ψ± are arbitrary even Grassmann numbers but their invertability requires them to
have a non-vanishing complex part5. The remaining parameters α± and β± are odd Grassmann
numbers, being subject to the condition α±β± = 0.

Given the monodromy matrix T (u)= L N (u)L N−1(u) . . . L1(u), it is possible to construct
a further representation of the reflection algebra (6.1) as

T −(u)= T (u) K −(u) T̂ (u)≡

(
A(u) B(u)
C(u) D(u)

)
, (6.8)

with T̂ (u) being a shorthand notation for T−1(−u),

T̂ (u)≡ R−1
01 (−u) R−1

02 (−u) . . . R−1
0N (−u)

(2.5d)
=

1

ζ N (u)
R10(u) R20(u) . . . RN0(u) (6.9)

(2.5a)
=

(
1

ζ(u)

)N

R01(u) R02(u) . . . R0N (u),

resulting in an OBC super transfer matrix

τ(u)≡ str0

{
K +(u)T −(u)

}
. (6.10)

Expanding τ(u) around u = 0, one obtains a Hamiltonian featuring the same bulk part (2.2) as
the corresponding PBC Hamiltonian. Defining the shorthand N± ≡ 1

2 csc(2η) csc(ψ+) sin(2η±
ψ+), the resulting OBC Hamiltonian

H OBC
=

N−1∑
j=1

H j, j+1 +
1

2
cot(ψ−)

[
n̄1− n1

]
+
[
N+ n̄N −N− nN

]
+ csc(ψ−)

[
α− c1−β− c†

1

]
+ csc(ψ+)

[
α+ cN −β+ c†

N

]
(6.11)

is derived from the set of open boundary transfer matrices by

∂u τ(u)|u=0 = 2 H OBC + const. (6.12)

In the case of diagonal boundaries, i.e. α± = β± = 0, Bethe equations can be derived using the
algebraic Bethe ansatz. This allows for the computation of the transfer matrix eigenvalues and
eigenvectors (see appendix C respectively [13]). Here the eigenvalues coincide with those of the
spin-1/2 XXZ Heisenberg chain subject to (diagonal) boundary magnetic fields.

5 Such an additive part, that contains no nilpotent generators, is sometimes called the body of a Grassmann number.
It is to be distinguished from the soul of a Grassmann number, which contains only sums of products of nilpotent
generators.
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6.2. Properties of the OBC transfer matrix

As a consequence of the properties (2.5e), (2.5f) of the R-matrix and (6.5), (6.7) of the boundary
matrices, the transfer matrix (6.10) of the small polaron model enjoys several useful properties,
such as

• π -periodicity

τ(u +π)= τ(u) , (6.13a)

• crossing symmetry

ζ N (u) τ (u)= ζ N (−u− 2η) τ(−u− 2η). (6.13b)

In addition, τ(u) is normalized as

τ(0)= 1 (6.14)

and becomes diagonal in the semi-classical limit η→ 0:

τ(u)|η=0 =
(−1)N

sin(ψ−) sin(ψ+)

(
2 sin2(u) cos2(u) (β+α−−α+β−)σ

z
(N )

−
[
cos2(u) sin(ψ−) sin(ψ+)+ sin2(u) cos(ψ−) cos(ψ+)

]
·1
)
. (6.15)

The asymptotic behavior of the (super) transfer matrix in the limit z ≡ eiu
→∞ can be read off

from its construction: that of the Lax operators L j(u) is given in equation (2.11). Similarly, we
find

L−1
j (−u)=

4 sin(2η)

2i z

(
n j + e2iηn̄ j 0

0 n̄ j − e2iηn j

)
+O

(
1

z2

)
, (6.16a)

K −(u)=
ω−

2i

[
z2

(
0 α−
β− 0

)
+ z

(
eiψ− 0

0 −e−iψ−

)
+O

(
1

z

)]
, (6.16b)

K +(u)=
ω+e2iη

2i

[
z2 e2iη

(
0 α+

β+ 0

)
+ z

(
eiψ+ 0
0 e−iψ+

)
+O

(
1

z

)]
. (6.16c)

As a consequence, the asymptotics of the OBC transfer matrix (6.10) and of their eigenvalues is
given by

τ(u)= (−1)N ω
+ω−

4
e4iη (β+α−−α+β−) z4

N∏
j=1

(n̄ j − e2iηn j)(n j + e2iηn̄ j)+O(z2),

3±(u)=±(−1)N ω
+ω−

4
e4iη (β+α−−α+β−) z4 eiN 2η +O(z2).

(6.17)

The eigenvalues 3±(u) have been classified according to a parity which is determined by the
(diagonal) operator controlling the asymptotics of τ(u).
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Note that in the case of diagonal boundaries, i.e. α± = β± = 0, the O(z) terms of the K
matrices become the leading ones such that

τ(u)=−(−1)N ω
+ω−

4
e2iη z2

ei(ψ++ψ−)
N∏

j=1

(n j + e2iηn̄ j)(n j + e2iηn̄ j)

+ e−i(ψ++ψ−)
N∏

j=1

(n̄ j − e2iηn j)(n̄ j − e2iηn j)

+O(z),

3M(u)=−(−1)N ω
+ω−

4
e2iη z2

(
ei(ψ++ψ−) e4i(N−M)η + e−i(ψ++ψ−) e4iMη

)
+O(z). (6.18)

Here, as in the case of PBC, the asymptotic behavior of the transfer matrix eigenvalues can be
related to the (conserved) total number M of particles in the state.

6.3. Fusion of the boundary matrices

For the sake of readability, it is convenient to define the following ordered product of
R-matrices,

Rstring
i (u)≡

i∏
k=1

Rk,i+1(2u + [i + k− 1] · 2η), (6.19)

such that the fused K− boundary matrices may be written as

K −

(12...n)(u)≡ P+
12...n

[
n−1∏
i=1

K −

i (u + [i − 1] · 2η) Rstring
i (u)

]
K −

n (u + [n− 1] · 2η) P+
12...n

⇒ A(12...n)K
−

(12...n)(u) A−1
(12...n) ≡

K −

�1...n�(u)

0
. . .


(6.20)

(see also [17, 30, 31] for the XXZ model) where K−(12...n)(u) is a 2n
× 2n-matrix with K−

�1...n�(u)
being the only non-vanishing block of dimensions (n + 1)× (n + 1). There is a useful relation
between the fused K−- and K +-matrices that stems from (6.7),

K +
(12...n)(u)=

[(
1

2 cos(2η)

)n

K −

(n...21)(−u− n · 2η) σ z
(n)

]
(	 → ⊕)

⇒ A(12...n)K
+
(12...n)(u) A−1

(12...n) ≡

K +
�1...n�(u)

0
. . .

 , (6.21)

and defines the (n + 1)× (n + 1)-matrix K +
�1...n�(u) in the obvious way, where σ z

(n) was defined
in (3.16). Note that the order of all spaces in K−(n...21) is inverted. Thus, by changing the space
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labels according to i→ n + 1− i the fused right boundary matrix may explicitly be written as

K +
(12...n)(u)= P+

12...n

[
n−1∏
i=1

K +
n+1−i(u + [n− i] · 2η) R̄string

i (u)

]
K +

1(u) P+
12...n, (6.22)

R̄string
i (u)≡

i∏
k=1

R̄n+1−k,n+1−(i+1)(−2u + [i + k− 1− 2n] · 2η). (6.23)

The reason why the conjugated R-matrices (B.9) appear in this expression is that by commuting
the σ z-matrices, arising from (6.7), to the right, the relation

R̄ab(u)= σ
z
a Rab(u)σ

z
a = σ

z
b Rab(u)σ

z
b (6.24)

is employed, see (B.7).
Since [P+

(1...n), σ
z
(n)]= 0 and [σ z

(n), A(12...n)σ
z
(n)A

−1
(12...n)]= 0, the periodicity property (6.5)

carries over to the fused K−-matrices

K ∓

(12...n)(u +π)= (−1)n σ z
(n)K

∓

(12...n)(u)σ
z
(n), (6.25a)

K ∓

�12...n�(u +π)= (−1)n σ z
�n�K ∓

�12...n�(u)σ
z
�n�, (6.25b)

where the alternating sign results from successive application of (2.5f).

6.4. Fusion hierarchy for OBC

From the fused quantities, it is again possible to derive a family of commuting operators

τ (n)(u)≡ str
�1...n�

{
K +
�1...n�(u) T�1...n�(u) K −

�1...n�(u) T̂�1...n�(u + [n− 1] · 2η)
}

(6.26)

that extends the existing family of commuting super transfer matrices τ(u)= τ (1)(u) such that
[τ (i)(u), τ (k)(v)]= 0 for all i, j > 1. The quantity T̂�1...n�(u) appearing in (6.26) is related to
the fused object

T̂(1...n)(u + [n− 1] · 2η)= P+
1...n T̂1(u)T̂2(u + 2η) · . . . · T̂n(u + [n− 1] · 2η) P+

1...n

=

N∏
i=1

R(1...n)qi (u, η)

ζ(u)ζ(u + 2η) · . . . · ζ(u + [n− 1] · 2η)
(6.27)

In the usual way by restriction to the only relevant matrix block after applying the respective
A-transformation. In the case of general open boundaries, the fusion hierarchy for n > 1 is found
to be

τ (n)(u) · τ (1)(u + n · 2η)=−
τ (n+1)(u)

ξn(u)
+
1(u + [n− 1] · 2η)

ζ(2u + 2n · 2η)
· ξn−1(u)τ

(n−1)(u), (6.28)

where 1(u) labels the OBC SQD defined in (D.23) and

ξn(u)≡
n∏

k=1

ζ(2u + [n + k] · 2η). (6.29)

The structure of this fusion hierarchy can be further simplified by introducing the rescaled
quantities

1̃(u)≡
1(u)

ζ(2u + 2 · 2η)
and τ̃ (n)(u)≡−

(
n−1∏
i=1

ξ−1
i (u)

)
τ (n)(u) (6.30)
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with the convenient definitions τ̃ (0)(u)≡−τ (0)(u)≡ 1 and τ̃ (1)(u)≡−τ (1)(u) such that (6.28)
becomes

τ̃ (n)(u) · τ̃ (1)(u + n · 2η)= τ̃ (n+1)(u)− 1̃(u + [n− 1] · 2η) · τ̃ (n−1)(u). (6.31)

7. TQ-equations for OBC

As in the PBC case, the fusion hierarchy (6.31) provides a system of relations between the
eigenvalues 3̃(n)(u) of the fused (super) transfer matrices. Defining 3̃(u)≡ 3̃(1)(u) and after
shifting u→ u− n · 2η, this yields

3̃(u)=
3̃(n+1)(u− n · 2η)

3̃(n)(u− n · 2η)
− 1̃(u− 2η)

3̃(n−1)(u− n · 2η)

3̃(n)(u− n · 2η)
. (7.1)

Introducing the functions

h(n)(u) γ (n)(u) Q̃(n)(u)≡ 3̃(n)(u− n · 2η), (7.2)

where

γ (n)(u)≡
sin(2u + 2η)

sin(2u)

n∏
j=1

sin(2u− [2 j − 2] · 2η)

sin(2u− [2 j − 3] · 2η)
, (7.3a)

h(n)(u)≡−(−1)n
n∏

k=0

ω+ sin(u− k · 2η−ψ+) ·ω
− sin(u− k · 2η−ψ−), (7.3b)

the eigenvalues can be written as

3̃(u)= K+
δ(u)K

−

δ (u + 2η)
sin(2u)

sin(2u + 2η)

Q̃(n+1)(u + 2η)

Q̃(n)(u)

−
1̃(u− 2η)

K+
δ(u− 2η)K−δ (u)

sin(2u− 2η)

sin(2u− 4η)

Q̃(n−1)(u− 2η)

Q̃(n)(u)
,

(7.4)

where the functions K±α,δ(u) are defined in (C.7). Now assume that the limit Q̃(u)≡
limn→∞ Q̃(n)(u) exists and can be written as

Q̃(u)= f N (u)q̃(u) with f (u)≡ eiπ u
2η

sin(u− 2η)

sin(u)
. (7.5)

Resubstituting 3(u)=−3̃(u) by virtue of (6.30), we obtain a TQ-equation for the open small
polaron model

3(u)= Hα(u)
q̃(u− 2η)

q̃(u)
− Hδ(u)

q̃(u + 2η)

q̃(u)
, (7.6)

where the functions Hα(u) and Hδ(u) factorize the SQD (D.23) as

Hα(u)Hδ(u− 2η)= ζ−1(2u)1(u− 2η). (7.7)
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As discussed in appendix D, the contribution of the boundary matrices to the SQD 1(u) of the
small polaron model is identical for the diagonal and non-diagonal boundary fields. Therefore,
1(u) can be factorized in the parametrization (6.3) giving

Hα(u)≡
sin(2u + 4η)

sin(2u + 2η)
K+
α(u− 2η)K−α(u)

(
− sin2(u + 2η)

sin(u + 2η) sin(u− 2η)

)N

,

Hδ(u)≡
sin(2u)

sin(2u + 2η)
K+
δ(u)K

−

δ (u + 2η)

(
− sin2(u)

sin(u + 2η) sin(u− 2η)

)N

.

(7.8)

With this factorization of the SQD the TQ-equation (7.6) coincides with the known result (C.9)
for the diagonal boundary case obtained by means of the algebraic or coordinate Bethe ansatz
[13–15]. In this case the spectral problem for the M-particle sector of the small polaron model
can be solved using the factorized ansatz (C.8)

q̃(u)=
M∏
`=1

sin(u + 2η + ν`) sin(u− ν`), (7.9)

where the unknown parameters ν`, `= 1, . . . ,M , have to satisfy the Bethe equations (C.5).
For generic non-diagonal boundary matrices, an ansatz (7.9) leads to a constraint on

the boundary parameters (and the number M) which guarantees consistency between the
asymptotic behavior of the right-hand side of (7.6) and the known behavior of the transfer matrix
eigenvalues3±(u) (6.17). Using such a requirement, Bethe equations have been formulated for
the spectral problem of open (non-diagonal) XXZ and XYZ Heisenberg spin chains [20, 27, 28].
Unfortunately, in the present case of the small polaron model, the factorization (7.8) of the
quantum determinant does not reproduce the leading asymptotic behavior of the transfer matrix
eigenvalues for any non-diagonal boundary fields.

To proceed with the solution of the TQ-equation (7.6), one has to find a different
factorization of the quantum determinant satisfying (7.7) or to modify the ansatz (7.9) for
the Q-functions. Based on the dependence of the transfer matrix on the off-diagonal boundary
parameters in various limits (6.15), (6.17) and observations for small system sizes, we propose
that the Q-functions can be written as

q̃(u)= q(u)+ ρ(u) (β+α−−α+β−) (7.10)

in the case of non-diagonal boundary conditions with q(u) being the factorized expression (7.9)
as in the diagonal case and another unknown function ρ(u) depending on the anisotropy η and
the diagonal boundary parameters ψ±. To determine ρ(u) the ansatz (7.10) should be used in
the TQ-equation (7.6) together with the analytical properties of the transfer matrix eigenvalues,
in particular their asymptotic behavior (6.17).

8. Truncation of the OBC fusion hierarchy

From here on, for the sake of readability, some of the functions introduced above will be
equipped with a second parameter indicating for them to be taken at that particular value of
the anisotropy η. For instance, K±(u, ρ)≡ K±(u)|η→ρ and so on and so forth.
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8.1. K -matrix truncation

It is convenient to define the following functions,

µ±n(u)≡±δ {K
±(∓u− 2ηn, ηn)}

sin(2ηn)

sin(2u− 2 · 2ηn)

2n∏
k=2

sin(2u + k · 2ηn)

sin(2ηn)
, (8.1)

ν±n (u)≡∓
ω±n

µ±n(u)

(
ω±n

2

)n

sin([n + 1][u∓ψ±])
n∏

i=1

i∏
j=1

sin(2u + [i + j] · 2ηn)

sin(2ηn)
, (8.2)

where ω±n ≡ ω
±(ηn) and to introduce the shorthand notations

K−
�n�(u, η)≡ σ

z
�n� · K

−

�1...n�(u + 2η),

K+
�n�(u, η)≡ K +

�1...n�(u + 2η) · σ z
�n�.

(8.3)

The truncation identities for the boundary matrices can then be expressed as

C�1...n�K ±

�1...n�(u, ηn−1) C−1
�1...n�

= µ±n−1(u)

ν±n−1(∓u)
B�1...n−2�K±�n−2�(u, ηn−1)B

−1
�1...n−2� ∗

(±1)nν±n−1(±u)

.
(8.4)

8.2. OBC super transfer matrix truncation

In order to be compatible with the truncation identities for the boundary matrices, the R-matrix
truncation identities (5.2) need to be recast, this time employing the C transformation matrices

C�1...n�R�1...n�q(u, ηn−1) C−1
�1...n�

=

−Mn−1(u) σ z
q

ζ(u) σ z
qR(n−2)

q (u + 2ηn−1, ηn−1) ∗

Mn−1(u) (σ z
q )

n−1

 ,
(8.5)

where in slight contrast to definition (5.3)

R(n)q (u, η)≡ B�1...n�R�1...n�q(u) B−1
�1...n� (8.6)

such that for the single row monodromy matrix

T (n)(u, η)≡ C�1...n� R�1...n�qN (u) · . . . · R�1...n�q2(u)R�1...n�q1(u) C−1
�1...n� (8.7)

≡ C�1...n�T�1...n�(u) C−1
�1...n�, (8.8)

the truncation identity at η = ηn−1 reads

T (n)(u, ηn−1)

=

[−Mn−1(u)]N
∏1

i=N σ
z
qi

ζ N (u)
∏1

i=N σ
z
qi
R(n−2)

qi
(u + 2ηn−1, ηn−1) ∗

[Mn−1(u)]N
∏1

i=N (σ
z
qi
)n−1

 .
(8.9)
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Again it is convenient to introduce the C-transformed object

T̂ (n)(u, η)≡ C�1...n�T̂�1...n�(u) C−1
�1...n� (8.10)

to easily recognize the truncation identity

T̂ (n)(u + [n− 1] · 2ηn−1, ηn−1)=
1

ζ N (u) ζ N (u + 2ηn−1) . . . ζ N (u + [n− 1] · 2ηn−1)

×

[−Mn−1(u)]N
∏N

i=1 σ
z
qi

ζ N (u)
∏N

i=1 σ
z
qi
R(n−2)

qi
(u + 2ηn−1, ηn−1) ∗

[Mn−1(u)]N
∏N

i=1(σ
z
qi
)n−1

 .
(8.11)

Now that the individual truncation identities for all the objects involved in the construction
of the fused OBC super transfer matrix τ (n)(u) are known, it can be shown by simple matrix
multiplication6 of (8.4+), (8.9), (8.4−) and (8.11) that

τ (n)(u, ηn−1)= str
�1...n�


X +

Y ∗

X−

= X +
− str

�1...n−2� { Y }+ (−1)n X− (8.12)

with the placeholders X± and Y defined by

X± ≡ (±1)n
[

n−1∏
k=0

ζ−N (u + k · 2ηn−1)

]
M2N

n−1(u) µ
+
n−1(u)µ

−

n−1(u) ν
+
n−1(∓u)ν−n−1(±u) (8.13)

and

Y = φτn−1(u) B�1...n−2�K +
�1...n−2�(u + 2ηn−1) σ

z
�n−2�

(
N∏

i=1

σ z
qi

)
×T�1...n−2�(u + 2ηn−1) σ

z
�n−2� K −

�1...n−2�(u + 2ηn−1)

×

(
N∏

i=1

σ z
qi

)
T̂�1...n−2�(u + 2ηn−1 + [(n− 2)− 1] · 2ηn−1) B−1

�1...n−2�

= φτn−1(u) B�1...n−2�K +
�1...n−2�(u + 2ηn−1) T�1...n−2�(u + 2ηn−1)

×K −

�1...n−2�(u + 2ηn−1) T̂�1...n−2�(u + 2ηn−1 + [(n− 2)− 1] · 2ηn−1) B−1
�1...n−2�.

(8.14)

In the second step of equation (8.14), relation (D.22) has been employed to get rid of the σ z

factors such that (8.12) eventually yields the truncation identities for the OBC transfer matrices,

τ (n)(u, ηn−1)= φ
id
n−1(u) ·1−φ

τ
n−1(u) · τ

(n−2)(u + 2ηn−1, ηn−1), (8.15)

where φid
n (u) and φτn (u) are rather lengthy expressions given by

φid
n (u)=

[
n∏

k=0

ζ−N (u + k · 2ηn)

]
M2N

n (u) µ+
n(u)µ

−

n(u) [ν+
n(−u)ν−n (u)+ ν+

n(u)ν
−

n (−u)],

φτn (u)=

(
ζ(u)

ζ(u + n · 2ηn)

)N

µ+
n(u)µ

−

n(u). (8.16)

6 Due to the cyclic invariance of the supertrace, all the matrix objects in (6.26) may be conjugated by means of
the C-transformation without changing the actual super transfer matrix.
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In terms of the rescaled transfer matrices (6.31) it is reasonable to introduce

φ̃id
n (u)=−

[
n∏

i=1

ξ−1
i (u)

]
η=ηn

φid
n (u),

φ̃τn (u)=

[
n∏

i=1

ξ−1
i (u)

]
η=ηn

φτn (u)

[
n−2∏
i=1

ξi(u + 2ηn)

]
η=ηn

,

(8.17)

which yield the respective rescaled truncation identities

τ̃ (n)(u, ηn−1)= φ̃
id
n−1(u) ·1− φ̃

τ
n−1(u) · τ̃

(n−2)(u + 2ηn−1, ηn−1). (8.18)

9. Summary and conclusion

Starting from structures provided by the YBA (2.6) and the reflection algebra (6.1), (6.2), we
have set up the fusion hierarchies for the commuting transfer matrices τ (n)(u) of the small
polaron model with periodic and general open boundary conditions, respectively. Following
previous work on spin chains with non-diagonal boundary fields [20, 27, 28], we have obtained
TQ-equations for the eigenvalues of the transfer matrices by assuming the limit n→∞ of these
expressions to exist. These TQ-equations can be solved by functional Bethe ansatz methods in
the case of periodic and diagonal open boundary conditions. The resulting spectrum coincides
with what has been found previously using the algebraic Bethe ansatz [4, 5, 13–15] and was
to be expected as a consequence of the Jordan–Wigner equivalence of the small polaron model
with the spin-1/2 XXZ Heisenberg chain.

For generic non-diagonal boundary conditions, the U (1) symmetry of the model
corresponding to particle number conservation is broken. Therefore, the algebraic approach
cannot be applied as it uses the Fock vacuum as a reference state and relies on this being
an eigenstate of the system. This situation is well known from the (ungraded) spin-1/2 XXZ
Heisenberg chain with non-diagonal boundary fields where in spite of significant activities
a practical solution of the eigenvalue problem for generic anisotropies and boundary fields
is lacking. Here we have used the strategies employed previously for the XXZ chain to the
(graded) small polaron chain: apart from the formulation of the spectral problem in terms of a
TQ-equation, the fusion hierarchy can be truncated at a finite order for anisotropies being roots
of unity, ηp = π/(2(p + 1)) [17]. We have derived the corresponding truncation identities for the
small polaron model subject to all boundary conditions considered. Inspection of the R-matrices
obtained at the first few fusion levels suggests that it is possible to derive similar identities for
anisotropies given by integer multiples of ηp.

To actually compute eigenvalues of the transfer matrices, further steps have to be taken:
for anisotropies being roots of unity, the truncated fusion hierarchy can be analyzed following
the steps that have been established for the XXZ chain [33–35] where additional constraints
on the boundary fields may arise. For generic anisotropies the situation is more complicated:
in the ungraded XXZ chain, a (factorized) Bethe ansatz for the Q-function given in terms of
finitely many parameters such as (7.9) was possible only if the boundary parameters satisfy a
constraint [18–20, 23, 28]. For graded models such a constraint may be absent: in the rational
limit η→ 0 of the model considered here, the functional form of the Q-function remained
unchanged when off-diagonal boundary fields were added [26]. Similarly, the nilpotency of
the off-diagonal boundary fields may allow for a general solution of the small polaron model.
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As shown in appendix D, the SQD of this model depends only on the diagonal boundary
parameters which simplifies the factorization problem (7.7). In addition, the odd Grassmann
numbers parametrizing the off-diagonal boundary fields appear only in a specific combination.
Therefore, starting with the proposed ansatz (7.10) for the Q-function, the derivation of Bethe-
type equations appears to be possible in the generic case. These open questions shall be
addressed in a future publication.

A possible extension of the present work is to consider integrable higher spin chains
with generic boundary conditions. Such generalizations of an integrable model can be
constructed by application of the fusion method [29–31] in the quantum spaces of the
model in addition to fusion in auxiliary space as used in this paper for the derivation of
the fusion hierarchies (3.20) and (6.31). Starting from the spin-1/2 XXZ Heisenberg chain,
this leads to the hierarchy of integrable higher spin XXZ models [36–38] including the
spin-1 Fateev–Zamolodchikov model [39, 40]. Similarly, this method has been used for
the construction and solution of graded models based on higher spin representations of
super Lie algebras, see e.g. [41–45]. In the present context this would lead to integrable
generalizations of the small polaron model with general boundary conditions. The local
Hilbert spaces of these models have dimension (n/2|n/2) for n even and ((n + 1)/2|(n− 1)/2)
for n odd, see table 1. A quantum chain with local interactions can be constructed
from R-matrices acting on the tensor product of two copies of such a space. The
integrable open boundary conditions for these models are given in terms of the fused
K -matrices (6.20). Taking into account the gradation, the possible states can be identified
e.g. with the internal degrees of freedom of a fermionic lattice model with several local orbitals
to allow for a physical interpretation of the resulting quantum chain. For the higher spin XXZ
models with general open boundary conditions, the spectral problem has been studied by
Frappat et al [28] who found that the solution requires similar constraints as in the spin-1/2
case.
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Appendix A. Graded vector spaces

Fermionic lattice models exhibit a natural Z2 gradation on their local space of states, i.e.
V = V0⊕ V1 is equipped with a notion of parity,

p : Vi → Z2, p(vi) 7→ i ∈ {0, 1}. (A.1)

Let dim V0 ≡ m ∈ N and dim V1 ≡ n ∈ N be finite. Then V is said to have dimension (m|n) and
V0, V1 are called the homogeneous subspaces of V . An element v ∈ V is said to be even if
p(v)= 0 and is, respectively, called odd if p(v)= 1. While even elements of V correspond to
bosonic states, odd elements represent fermionic states. For instance, consider the case where
both of the homogeneous subspaces V0 and V1 are one dimensional such that the composite
local space of states V = V0⊕ V1 is spanned by just one bosonic and one fermionic state. Then
V is said to have B F-grading, where B F refers to an ordered basis of V in which the first basis
vector is associated with the bosonic state (B) whereas the second basis vector is associated
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with the fermionic state (F). Now consider the tensor product of two copies of V . Taking into
account the order of the basis states, the tensor product space will have B F F B-grading,

V ⊗ V = (V0⊕ V1)⊗ (V0⊕ V1)= (V0⊗ V0)︸ ︷︷ ︸
B

⊕ (V0⊗ V1)︸ ︷︷ ︸
F

⊕ (V1⊗ V0)︸ ︷︷ ︸
F

⊕ (V1⊗ V1)︸ ︷︷ ︸
B

. (A.2)

In the following, the conventions from [46] will essentially be adopted.
Let {e1, e2, . . . , em, em+1, . . . , em+n} be a homogeneous basis of V , i.e. each basis element

has distinct parity p(eα), and for convenience let this basis be ordered, such that the first m
elements span the even and the last n elements span the odd subspace of V ,

p(α)≡ p(eα)=

{
0 if 1≤ α 6 m,
1 if m + 1≤ α 6 m + n.

(A.3)

In order to deal with an algebra of linear operators, acting on the graded local space of states, it
is necessary to extend the concept of parity to End(V ), the space of endomorphisms of V . The
(m + n)× (m + n) basis elements of End(V ) will be labeled eβα and are defined through their
action on the above basis of V ,

eβαeγ ≡ δ
β
γ eα. (A.4)

By extending the definition of the parity function to

p(eβα)≡ p(α)+ p(β)mod 2, (A.5)

End(V ) becomes a Z2 graded vector space. A basis of the N -fold product space

End⊗N (V )≡ End(V )⊗End(V )⊗ · · ·⊗End(V )︸ ︷︷ ︸
N times

(A.6)

can most naturally be obtained by embedding the local basis elements eβα into this tensor product
structure. Moreover, End⊗N (V ) acquires a Z2 grading by a further extension of the definition of
the parity function,

p(eβ1
α1
⊗ eβ2

α2
⊗ · · ·⊗ eβN

αN
)≡ p(eβ1

α1
)+ p(eβ2

α2
)+ · · ·+ p(eβN

αN
)mod 2. (A.7)

When dealing with graded vector spaces, it is useful to replace the usual tensor product structure
by a so-called super tensor product. The symbol ⊗s will be used to distinguish this new
structure. With respect to a certain basis, the components of the super tensor product of two
operators A ∈ End⊗k(V ) and B ∈ End⊗l(V ), where k, l ∈ N, are explicitly defined through

(A⊗s B)αγβδ = (−1)[p(α)+p(β)]p(γ )AαβBγ

δ . (A.8)

As pointed out in [46], the super tensor product allows for a most convenient graded embedding
of the eβα into the j th subspace of End⊗N (V ),

e j ,
β
α ≡ 1⊗s( j−1)

⊗s eβα ⊗s 1⊗s(N− j). (A.9)

A graded version of the permutation operator P is defined by the relation

P(A⊗s B)= (B⊗s A)P. (A.10)

If (A.9) is employed as a basis for End⊗N (V ), the operator Pi j which permutes the i th and the
j th subspace can explicitly be constructed as

Pi j = (−1)p(β)ei ,
β
α e j ,

α
β . (A.11)
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In the following, the definitions of some well-known operations, namely the matrix transposition
and the trace operation, will be adapted to fit the needs of graded vector spaces. A nicely
motivated and much more elaborate list of matrix operations on graded vector spaces can found
in [16].

• Firstly, the super transposition of an element A ∈ End(V ) is defined by

(Ast)αβ = (−1)p(α)[p(α+β)] Aαβ . (A.12)

In contrast to the ungraded case, the super transposition is not an involution, i.e. applying
the super transposition twice does not yield the identity operation. As pointed out in [8], it
is therefore convenient to introduce an inverse super transposition,

(Aist)αβ = (−1)p(β)[p(α+β)] Aαβ . (A.13)

The partial super transposition, i.e. a super transposition on the j th subspace of End⊗N (V ),
is defined through

(A1⊗s · · · ⊗s A j ⊗s · · · ⊗s AN )
st j ≡ A1⊗s · · · ⊗s (A j)

st
⊗s · · · ⊗s AN . (A.14)

The partial inverse super transposition is defined analogously. Note that, as opposed to
ordinary partial matrix transpositions on ungraded vector spaces, the successive application
of partial super transpositions on all subspaces is generally not equal to a total super
transposition, i.e. (A1⊗s A2)

st1st2 6= (A1⊗s A2)
st .

• Secondly, the super trace of some A ∈ End(V ) is given by

str { A } ≡
∑
α

(−1)p(α)Aαα. (A.15)

For operators B ∈ End⊗N (V ), it is convenient to define a partial super trace on subspace
j as

str j { B }
α1 ...α j−1 α j+1 ... αN

β1 ...β j−1 β j+1 ... βN
≡

∑
γ

(−1)p(γ )B
α1 ...α j−1 γ α j+1 ... αN

β1 ...β j−1 γ β j+1 ... βN
. (A.16)

Appendix B. Relation to Bracken’s dual reflection algebra

According to [8] the dual reflection equation for quite general graded models reads

R12(v− u)K +
1(u)

˜̃R21(−u− v)ist1st2 K +
2(v)

= K +
2(v)R̃12(−u− v)ist1st2 K +

1(u)R21(v− u),
(B.1)

where ˜̃R21(λ)
ist1st2 =

([{
R−1

21 (λ)
}ist2

]−1
)st2

, (B.2)

R̃12(λ)
ist1st2 =

([{
R−1

12 (λ)
}st1
]−1
)ist1

. (B.3)
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By performing a super transposition on the first space and an inverse super transposition on the
second, i.e. by applying (.)st1ist2 to equation (B.1), one obtains the equivalent form

R21(v− u)st1ist2 K +
1(u)

st1 R̃12(−u− v)K +
2(v)

ist2

= K +
2(v)

ist2˜̃R21(−u− v)K +
1(u)

st1 R12(v− u)st1ist2 . (B.4)

In the case of the small polaron R-matrix as defined in (2.3), one finds

˜̃R21(λ)=
ζ(λ)

ζ(λ− 2η)
R12(λ− 4η), (B.5)

R̃12(λ)=
ζ(λ)

ζ(λ− 2η)
R21(λ− 4η). (B.6)

At this point it is convenient to introduce a shorthand, which will henceforth be referred to as a
conjugated R-matrix,

R̄ba(λ)≡ M−1
a Rba(λ) Ma (B.7)

with M being the so-called crossing matrix. For the small polaron model in particular, it is found
that M = σ z such that

R̄ab(λ)= Rsta istb
ba (λ)

(2.5a)
= Ristastb

ba (λ)

= R
st2a
ab (λ)= R

ist2a
ab (λ)= R

st2b
ab (λ)= R

ist2b
ab (λ).

(B.8)

Using this conjugated R-matrix (B.8), the dual reflection equation may be written as

R̄12(v− u)K +
1(u)

st1 R21(−u− v− 4η)K +
2(v)

ist2

= K +
2(v)

ist2 R12(−u− v− 4η)K +
1(u)

st1 R̄21(v− u)
(B.9)

and is graphically depicted by

K2(v) ist2
+

K1(u) st1
+

v+4η

-v

u+4η

-u

2

1

K2(v) ist2
+

K1(u) st1
+

2

1

v+
4η

u+4η

-v

-u
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Appendix C. Algebraic Bethe ansatz for diagonal boundaries

The reflection equation (6.1) gives 16 fundamental commutation relations for the quantum space
operators A, B, C and D, of which the following three are of particular interest,

B(u)B(v)= B(v)B(u), (C.1)

A(u)B(v)=
s0(u + v)s2(v− u)

s0(v− u)s2(u + v)
B(v)A(u)

+
ϑ(v)s2(0)

s2(u + v)
B(u)

{
s0(2v)s2(u + v)

ϑ(v)s0(u− v)s2(2v)
A(v)− D̃(v)

}
, (C.2)

D̃(u)B(v)=
s4(u + v)s2(u− v)

s0(u− v)s2(u + v)
B(v)D̃(u)−

s2(0)s4(2u)s0(2v)

ϑ(u)s2(2u)s2(u + v)s2(2v)
B(u)

×

{
ϑ(v)s2(2v)s2(u + v)

s0(2v)s0(u− v)
D̃(v)−A(v)

}
, (C.3)

using the abbreviation sk(λ)≡ sin(λ+ kη). To obtain the desired commutation relations, it is
necessary to make an ansatz for a shifted D-operator

D(λ)= ϑ(λ)D̃(λ)+φ(λ)A(λ) (C.4)

and to determine the scalar functions φ(λ) and ϑ(λ). It turns out that φ(λ)= s2(0)
s2(2λ)

while ϑ(λ)
remains arbitrary. Starting from the general boundary matrices given in (6.3), the diagonal case
can easily be obtained by setting α± = β± = 0. This leads to Bethe equations(

s2(ν j)

s0(ν j)

)2N

=
s2(ν j −ψ+)s2(ν j −ψ−)

s0(ν j +ψ+)s0(ν j +ψ−)

M∏
`=1
` 6= j

s4(ν j + ν`)s2(ν j − ν`)

s0(ν j + ν`)s−2(ν j − ν`)
(C.5)

and super transfer matrix eigenvalues7

3(u)= K−α(u)

(
K+
α(u)−

s2(0)

s2(2u)
K+
δ(u)

)(
s2(u)

s2(−u)

)N M∏
`=1

s0(u + ν`)s2(ν`− u)

s0(ν`− u)s2(u + ν`)

−K+
δ(u)

(
K−δ (u)−

s2(0)

s2(2u)
K−α(u)

)(
s2

0(u)

s2(u)s2(−u)

)N M∏
`=1

s4(u + ν`)s2(u− ν`)

s0(u− ν`)s2(u + ν`)
. (C.6)

Here K±α,δ(u) label the diagonal entries of the boundary matrices (6.3),

K−α(u)= ω
− sin(ψ− + u), K+

α(u)= ω
+ sin(u + 2η +ψ+),

K−δ (u)= ω
− sin(ψ−− u), K+

δ(u)= ω
+ sin(u + 2η−ψ+).

(C.7)

7 Note that this result corresponds to the one obtained by Umeno et al [13]. However, the authors of [13] seem to
have made a slight mistake when substituting their formula (57) into (61) to obtain (62), which should correctly
read

t (u)= +
sin(2u + 4η) sin(u + t+)

sin(2u + 2η)
A(u)−

sin(u + 2η− t+)

sin(2u + 2η)
D̃(u).
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Introducing the functions

q(u)≡
M∏
`=1

sin(u + 2η + ν`) sin(u− ν`), (C.8)

the eigenvalues (C.6) can be recast as

3(u)q(u)=K−α(u)

(
K+
α(u)−

s2(0)

s2(2u)
K+
δ(u)

)(
s2

2(u)

s2(u)s2(−u)

)N

q(u− 2η)

−K+
δ(u)

(
K−δ (u)−

s2(0)

s2(2u)
K−α(u)

)(
s2

0(u)

s2(u)s2(−u)

)N

q(u + 2η) .

(C.9)

Appendix D. Super quantum determinants

Consider a generic B F F B graded R-matrix of the shape

R(u)=


a(u + 2η) 0 0 0

0 a(u) a(2η) 0
0 a(2η) a(u) 0
0 0 0 −a(u + 2η)

 , (D.1)

where a(−u)= a(u) and a(0)= 0. At u =−2η such an R-matrix gives rise to a projector P−

onto a one-dimensional subspace

P− =−
1

2a(2η)
R(−2η)=


0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

 . (D.2)

Let T (u) be a representation of the graded YBA

R12(u− v) T1(u) T2(v)= T2(v) T1(u) R12(u− v) (D.3)

with the usual embeddings T1(u)≡ T (u)⊗s 1 and T2(v)≡ 1⊗s T (v), where

T (u)≡

(
T 1

1 (u) T 1
2 (u)

T 2
1 (u) T 2

2 (u)

)
B F

≡

(
A(u) B(u)
C(u) D(u)

)
B F

. (D.4)

The PBC SQD is defined as

δ {T (u)} ≡ str12

{
P−12T1(u) T2(u + 2η)

}
(D.5)

=
1

2
{C(u)B(u + 2η)− A(u)D(u + 2η)

− B(u)C(u + 2η)− D(u)A(u + 2η)}. (D.6)

At v = u + 2η and after dividing by a(2η), the graded YBA yields the commutation relations

C(u)B(u + 2η)− A(u)D(u + 2η)= C(u + 2η)B(u)− D(u + 2η)A(u), (D.7)

D(u)A(u + 2η)+ B(u)C(u + 2η)= D(u + 2η)A(u)−C(u + 2η)B(u), (D.8)

B(u)C(u + 2η)+ D(u)A(u + 2η)= B(u + 2η)C(u)+ A(u + 2η)D(u). (D.9)
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These relations can be used to simplify the SQD to

δ {T (u)} = −[A(u)D(u + 2η)−C(u)B(u + 2η)]. (D.10)

It remains to show that the SQD is a central element of the graded YBA, i.e. that it
supercommutes with all the other elements A(v), B(v), C(v) and D(v) for arbitrary v. Consider
the expression

R12(u− v)R13(u−w)R23(v−w)T1(u)T2(v)T3(w). (D.11)

Employing the graded YBE once, it is obvious that

(D.11)= R23(v−w)R13(u−w) [R12(u− v)T1(u)T2(v)] T3(w) (D.12)

v→ u + 2η ⇒−2a(2η)R23(u−w + 2η)R13(u−w)P
−

12T1(u)T2(u + 2η)T3(w). (D.13)

On the other hand, by applying the graded YBA relation twice, it is found that

(D.11)= T3(w) [R12(u− v)T1(u)T2(v)] R13(u−w)R23(v−w) (D.14)

v→ u + 2η ⇒−2a(2η)T3(w)P
−

12T1(u)T2(u + 2η)R13(u−w)R23(u−w + 2η). (D.15)

Equating (D.13) and (D.15) and multiplying from both sides with P−12 gives

{P−12 R23(u−w + 2η)R13(u−w)P
−

12}{P
−

12T1(u)T2(u + 2η)P−12}T3(w)

= T3(w){P
−

12T1(u)T2(u + 2η)P−12}{P
−

12 R13(u−w)R23(u−w + 2η)P−12},
(D.16)

where additional P−12 projectors have been inserted by virtue of the appropriate triangularity
conditions. After a change of basis to the P−12 eigenbasis via A12 as defined in (3.14), it is easy
to check that application of the supertrace str12{ . } yields

σ z
3 δ {T (u)} T3(w)= T3(w) σ

z
3 δ {T (u)} (D.17)

⇔
[
σ z

3 δ {T (u)} , T3(w)
]
= 0 (D.18)

⇔
[
δ {T (u)} , T i

j (w)
]
±
= 0. (D.19)

Similarly one may introduce the object

δ{T̂ (u)} ≡ str12{P
−

12T̂2(u) T̂1(u + 2η)} (D.20)

which obeys the exact same super commutation relations and by (6.9) turns out to be
proportional to the inverse of the above SQD. In particular for the considered N -site small
polaron model, it is found that

δ(u)≡ δ {T (u)} = −ζ N (u + 2η)
N∏

i=1

(−σ z
qi
), (D.21a)

δ̂(u)≡ δ{T̂ (u)} = −
1

ζ N (u)

N∏
i=1

(−σ z
qi
), (D.21b)

where qi labels the i th quantum subspace (see section 5.2). Moreover, the commutation
relation (D.18) extends to the fused quantities according to[

σ z
�n� δ {T (u)} , T

�1...n�(w)
]
= 0 (D.22)

with σ z
�n� being defined in equation (3.16).
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In the open boundary case, the place of δ{T (u)} is taken by another object 1(u) which
will most appropriately be called the OBC SQD. Generally, the SQD is what you get when you
alter the first fusion step such that, instead of creating a higher dimensional transfer matrix by
projection on a three-dimensional auxiliary space, you now create a lower dimensional object
by projecting onto the complementary one-dimensional space. In a sense, loosely speaking, you
do a reduction instead of a fusion and find that the open boundary SQD factors as follows,

1(u)≡ str12{P12K +
2(u + 2η)R̄12(−2u− 6η)K +

1(u)T
−

1 (u)R12(2u + 2η)T −2 (u + 2η)}

= δ {K +(u)} · δ {T (u)} · δ {K −(u)} · δ{T̂ (u)}

=

(
ζ(u + 2η)

ζ(u)

)N

δ {K +(u)} · δ {K −(u)} , (D.23)

where T −(u) was defined in (6.8) and

δ {K +(u)} ≡ str12{P
−

12 K +
2(u + 2η) R̄12(−2u− 3 · 2η) K +

1(u)}

= g(−2u− 6η) · det {K +(u)} , (D.24a)

δ {K −(u)} ≡ str12{P
−

12 K −

1 (u) R21(2u + 2η) K −

2 (u + 2η)}

= g(2u + 2η) · det {K −(u + 2η)} (D.24b)

with the function g(u) being introduced in the context of (2.5d). Since α± ·β± = 0, as mentioned
in section 6.1, the determinants det{K ±(u)} depend only on the diagonal boundary parameters
ψ±. This is different from the open XXZ chain, where two parameters for each boundary enter
the expression for the quantum determinant.

Appendix E. Transformation matrices

This appendix presents a collection of matrix representations of the various similarity
transformations employed in this paper. It is convenient to define the coefficients

an ≡

√
2n

n + 1

(
[n]q |η=ηn

)−1/2
and b =

(
[2]q |η=η2

[3]q |η=η3

)−1/2

, (E.1a)

where [n]q denotes the usual q-deformation of an integer n ∈ N defined by

[n]q ≡
qn
− q−n

q − q−1
with q ≡ e2iη, (E.1b)

and to set

A(1) ≡ B�1� ≡ C�1� ≡

(
1 0
0 1

)
, (E.1c)

A(12) =


1 0 0 0
0 1
√

2
1
√

2
0

0 0 0 1
0 1
√

2
−

1
√

2
0

 , (E.2a)

B�12� = diag(a2, 1, a2) (E.2b)
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C�12� = diag(a2, 1, 1), (E.2c)

A(123) =



1 0 0 0 0 0 0 0
0 1

√
3

1
√

3
0 1

√
3

0 0 0
0 0 0 1

√
3

0 1
√

3
1
√

3
0

0 0 0 0 0 0 0 1
0 2

√
2

3 −

√
2

3 0 −

√
2

3 0 0 0
0 −

√
2

3
2
√

2
3 0 −

√
2

3 0 0 0
0 0 0 2

√
2

3 0 −

√
2

3 −

√
2

3 0
0 0 0 −

√
2

3 0 2
√

2
3 −

√
2

3 0


, (E.3a)

B�123� = diag(a3, 1, 1, a3), (E.3b)

C�123� = diag(a3, 1, 1, 1), (E.3c)

A(1234) =

1
√

2



√
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
√

2
1
√

2
0 1

√
2

0 0 0 1
√

2
0 0 0 0 0 0 0

0 0 0 1
√

3
0 1

√
3

1
√

3
0 0 1

√
3

1
√

3
0 1

√
3

0 0 0

0 0 0 0 0 0 0 1
√

2
0 0 0 1

√
2

0 1
√

2
1
√

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2

0 3
2 −

1
2 0 −

1
2 0 0 0 −

1
2 0 0 0 0 0 0 0

0 −
1
2

3
2 0 −

1
2 0 0 0 −

1
2 0 0 0 0 0 0 0

0 0 0 5
3 0 −

1
3 −

1
3 0 0 −

1
3 −

1
3 0 −

1
3 0 0 0

0 −
1
2 −

1
2 0 3

2 0 0 0 −
1
2 0 0 0 0 0 0 0

0 0 0 −
1
3 0 5

3 −
1
3 0 0 −

1
3 −

1
3 0 −

1
3 0 0 0

0 0 0 −
1
3 0 −

1
3

5
3 0 0 −

1
3 −

1
3 0 −

1
3 0 0 0

0 0 0 0 0 0 0 3
2 0 0 0 −

1
2 0 −

1
2 −

1
2 0

0 0 0 −
1
3 0 −

1
3 −

1
3 0 0 5

3 −
1
3 0 −

1
3 0 0 0

0 0 0 −
1
3 0 −

1
3 −

1
3 0 0 −

1
3

5
3 0 −

1
3 0 0 0

0 0 0 0 0 0 0 −
1
2 0 0 0 3

2 0 −
1
2 −

1
2 0

0 0 0 0 0 0 0 −
1
2 0 0 0 −

1
2 0 3

2 −
1
2 0



,

(E.4a)

B�1234� = diag(a4, 1, b, 1, a4), (E.4b)

C�1234� = diag(a4, 1, b, 1, 1). (E.4c)
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