A Virtual Receiver Concept for Continuous GNSS based Navigation of Inland Vessels

- NAVITEC 2018 • ESA/ESTEC • Noordwijk -

Session: Precise Positioning

Tobias Kersten, Le Ren and Steffen Schön | Thursday, December 6th, 2018
Motivation • Inland Vessel Transport

Inland Waterway Transport (IWT)
- reliable, almost safe, eco-friendly and profoundly effective
- reducing traffic stress on rail and motorways
- future: combined transport (rail, waterway, motorway, regional & local)

Present transport vessel navigation
- precise navigation by GNSS in real-time kinematic RTK mode
- requires mobile data infrastructures / interfaces (RTCM, NTRIP, OSR/SSR)
- navigation precision required / available: 2-5 cm / \(\approx \text{dm} \)
Motivation • Inland Vessel Transport

Inland Waterway Transport (IWT)
▶ reliable, almost safe, eco-friendly and profoundly effective
▶ reducing traffic stress on rail and motorways (IWT: 240 mill. tons per year)
▶ future: combined transport (rail, waterway, motorway, regional & local)

Present transport vessel navigation
▶ precise navigation by GNSS in real-time kinematic RTK mode
▶ requires mobile data infrastructures / interfaces (RTCM, NTRIP, OSR/SSR)
▶ navigation precision required / available: 2-5 cm / ≈dm
Uelzen (GER): Skipper died cabin and steel cable collides as vessel entered lock
© 2017 kreiszeitung.de
Surwold/Emsland (GER): Vessel collides with bridge, skipper died. Thick fog possibly the cause.

© 2017 NWZonline.de
Virtual Receiver (VR) for Inland Waterway Transport

Scientific key questions

▶ safety relevant applications (e.g. collision security, driver assistance) require high accuracy (carrier phase)

▶ carrier phase & code observables affected by discontinuities, interruptions or complete loss-of-lock

▶ evaluating benefits for code based navigation (combining receiver antennas, assisting/aiding carrier phase ambiguity resolution)

Virtual Receiver - observation domain

▶ provides enlarged field of view (individual antennas)

▶ usable on arbitrary rigid navigation platform (satellite, aircraft, ferry, vessel)\(^a\)

▶ requires lever arm definition (accurate and precise)

\(^a\)Kube et al. (2018, 2012); Schön and Alpers (2018); Kersten et al. (2018)
Concept - Virtual Receiver (VR)

Step 1 / 8

Side view

Bridge

Top view

lever arm
Concept - Virtual Receiver (VR)

Virtual Receiver - position domain

- **input** observables from individual receiver antennas
- **position** solution - robust by strengthened satellite geometry
- **angles** transport rate (specific approach for inland vessels)
- **synchronisation** coordinate observations of individual antenna locations

Specifications to present approach

- **cost effective** no Inertial Navigation System (INS)
- **heading** consider transport rate (in-situ by moving baseline)
Concept - Virtual Receiver (VR)

Step 2 / 8

Side view

defraction / scattering

lever arm

Top view

Bridge

lever arm
Concept - Virtual Receiver (VR)

Step 3 / 8

Side view

interruption / loss-of-lock

lever arm

Top view

Bridge

lever arm
Concept - Virtual Receiver (VR)

Step 4 / 8

Side view

interruption/loss-of-lock

Top view

Bridge
Concept - Virtual Receiver (VR)

Step 5 / 8

Side view

defraction / scattering

interruption / loss-of-lock

Top view

Bridge
Concept - Virtual Receiver (VR)

Step 6 / 8

Side view

Top view

Kersten et al. | NAVITEC 2018 • ESA/ESTEC • Noordwijk | December 6th, 2018
Concept - Virtual Receiver (VR)

Step 7/8

Side view

[Diagram showing satellite and bridge with annotations: defraction/scattering, lever arm]

Top view

Bridge

lever arm

lever arm
Concept - Virtual Receiver (VR)

Step 8 / 8

Side view

Top view

lever arm

Bridge
Dedicated studies - the vessel MS Jenny

Kersten et al. (2018)

MS Jenny

- overall geometry: 100 m length, 9.5 m width, 3.16 m depth
- two GNSS units alongside the vessel at bow (FRNT) and stern (BACK)
- datasets recorded in summer 2016 and 2018 (under investigation)
 - **static**: mooring point Hannover, duration 1 hour (Kersten et al., 2018)
 - **kinematic**: trip westward from Hannover, duration 2.5 hours
Dedicated studies - the vessel **MS Jenny**

MS Jenny

- overall geometry: 100 m length, 9.5 m width, 3.16 m depth
- two GNSS units alongside the vessel at bow (FRNT) and stern (BACK)
- datasets recorded in **summer 2016 and 2018 (under investigation)**
 - **static**: mooring point Hannover, duration 1 hour (Kersten et al., 2018)
 - **kinematic**: trip westward from Hannover, duration 2.5 hours
Dedicated studies - trajectory for investigations

Experimental set-up

▶ sessions in 2016 (*static* and *kinematic*) investigated
▶ reference trajectory (double difference, phase based, NRCan and GrafNav)
▶ lever arm (FRNT - BACK) by tachymetre and RTK (57.346 m±2 cm)

Kersten et al. (2018)
Satellite visibility - kinematic session

Kersten et al. | NAVITEC 2018 • ESA/ESTEC • Noordwijk | December 6th, 2018
Findings for Virtual Receiver concept

- advantageous to strengthen the satellite geometry
- significant improvements for both, HDOP and VDOP
Code observables: position accuracy II - kinematic session

Results
Code observables: position accuracy II - kinematic session

Results

▶ static session
 ▶ available epochs: 100% (VR) and 99.9% (SA)
 ▶ HPE/VPE (VR): 0.70 m / 0.46 m
 ▶ HPE/VPE (SA): 1.02 m / 0.54 m

▶ kinematic session
 ▶ available epochs: 94.5% (VR) and 76.7% (SA)
 ▶ HPE/VPE (VR): 0.68 m / 0.48 m
 ▶ HPE/VPE (SA): 0.97 m / 0.71 m
Impact on carrier phases - kinematic session

(a) cycle slips in double differences

(b) repaired double differences

(c) GPS satellite G11

(d) GPS satellite G27
Impact on carrier phases - kinematic session - GPS G27

(a) cycle slips in double differences

(b) repaired double differences

(c) GPS satellite G27
Impact on carrier phases - kinematic session - GPS G11

(a) cycle slips in double differences

(b) repaired double differences

(c) GPS satellite G11
Summary and outlook

Summary

▶ concept of Virtual Receiver approach presented, which strengthens the satellite visibility / navigation geometry by up to 50%
▶ code-position accuracy (13-16%) improved
▶ number of epochs with valid solution (94% (VR), 77% (SA)) improved

Outlook and further work

▶ promising approach to avoid faults of the carrier phase ambiguity resolution due to enhanced observation continuity (ambiguity bridging)
▶ receiver clock modelling with chip scaled atomic clocks (CSACs) looks promising to derive reliable positions with special focus on the height component (Krawinkel and Schön, 2018)
▶ identify bridge (e.g. building structure) by characteristics of GNSS signal distortion
Dr.-Ing. Tobias Kersten
Institut für Erdmessung
Schneiderberg 50
D-30167 Hannover, Germany
phone + 49 - 511 - 762 5711
web http://www.ife.uni-hannover.de
mail kersten@ife.uni-hannover.de

Acknowledgement

Investigations of this project are driven by student project in Positioning and Navigation. The authors like to thank Lucy Icking, Sara Brakemeier, Arman Khami, Fabian Ruwisch and Vahid Aghajani. We grateful appreciate the support by the captain family Scheubner for their grateful support and familiar hosting during the GNSS campaigns.

Satellite visibility - static session

satellites

mean/min/max (SA): 8 / 7 / 10
mean/min/max (VR): 17.3 / 15 / 19
Code observables: position accuracy - static session

![Graphs showing HDOP and VDOP over time](image)

- **HDOP**
 - HDOP SA
 - HDOP VR

- **VDOP**
 - VDOP SA
 - VDOP VR

GPS Time [hours]

- 16:30
- 16:45
- 17:00
- 17:15
- 17:30

HDOP

- 0
- 1
- 2
- 3
- 4

VDOP

- 0
- 1
- 2
- 3
- 4