Zur Stereochemie des freien Elektronenpaares in Verbindungen des vierwertigen Tellurs: Verzerrtes TeCl₆²⁻-Oktaeder in [H₃N(CH₂)₃NH₃]TeCl₆, regulär oktaedrisches Anion in [H₃N(CH₂)₃NH₃]SnCl₆

On the Stereochemistry of Lone Pair Electrons in Compounds with Tetravalent Tellurium: Distorted $\text{TeCl}_6^{2^-}$ -Octahedron in $[\text{H}_3\text{N}(\text{CH}_2)_3\text{NH}_3]\text{TeCl}_6$, Regular Octahedral Anion in $[\text{H}_3\text{N}(\text{CH}_2)_3\text{NH}_3]\text{SnCl}_6$

Walter Abriel* und Claudia Friedrich

Institut für Anorganische Chemie und SFB 173 der Universität Hannover, Callinstraße 9, D-3000 Hannover

Z. Naturforsch. 40b, 1691-1697 (1985); eingegangen am 30. August 1985

Lone Pair Electrons, Tellurates, Stannates, Crystal Structure

Using 293 K diffractometer intensity data, the structures of $[H_3N(CH_2)_3NH_3]TeCl_6$ and $[H_3N(CH_2)_3NH_3]SnCl_6$ have been determined by single crystal X-ray technique and refined to a final R_w of 0.027 and 0,029, respectively. The yellow crystals of the tellurate are orthorhombic (space group Pnma) with a = 22.952(2), b = 7.5414(4), c = 7.801(1) Å and Z = 4. This structure contains distorted TeCl₆²⁻ octahedra (distances Te-Cl min. 2.426(1), max. 2.672(1) Å) with approximate 2mm point symmetry. In contrast, the SnCl₆²⁻ ion in the second title compound is octahedral with only small deviations from m³ m symmetry (distances Sn-Cl mean: 2.438(3) Å). The colourless crystals of this tin compound are orthorhombic (space group Pnma) with a = 17.6082(9), b = 7.1809(3), c = 10.190(1) Å and Z = 4. Considering the TeX₆²⁻ (X = Cl, Br, I) salts known to date, a distorted species is an exception, although a distortion is predicted by the VSEPR theory. The results agree with the rules for the appearance of a static stereochemical effect of the lone pair electrons in the TeX₆²⁻ species.

Einführung

Für Systeme der Form AX₆E (sechs bindende, ein nichtbindendes Elektronenpaar in der Valenzschale des Zentralatoms) wird nach der VEPA-Theorie [1] eine verzerrt-oktaedrische Koordination erwartet. Für XeF₆ [2] und das isoelektronische IF₆⁻ [3] kann eine solche durch spektroskopische Untersuchungen und Röntgenbeugungsexperimente nachgewiesen werden. Die analogen Anionen TeX₆²⁻ (X = Cl, Br, I) mit 14 Elektronen in der Valenzschale des Te-Atoms zeigten nach ersten Kristallstrukturanalysen überraschend eine reguläre oktaedrische Struktur [4]. Sie wurde über Raman-Spektroskopie [5], NQR-Spektroskopie [6] und Elektronenspektren [7] bestätigt. Folglich klassifizierte Gillespie diese Systeme als von der VEPA-Regel ausgenommen [8].

Die IR-aktiven Schwingungen T_{1u} (ν_3 und ν_4) des TeX₆²⁻-Oktaeders sind jedoch verhältnismäßig breit, ein Hinweis auf vibronische Kopplung zwischen dem Grundzustand (Konfiguration $a_{1g}\sigma^*$) und dem ersten angeregten Zustand (Konfiguration $a_{1g}\sigma^*$, $t_{1u}\sigma^*$) [9]. Erwartungen, über Kristallstrukturanalysen bei

Temperaturen bis herab zu 12 K eine verzerrte Spezies nachweisen zu können, wurden jedoch bei Untersuchungen an Rb_2TeBr_6 nicht erfüllt [10]. Wie Pearson [11] vermutete, wird die oktaedrisch gemittelte dynamische Struktur durch ein hochsymmetrisches Kristallfeld stabilisiert, das bei den Phasen A_2TeX_6 (A = K, NH₄, Rb, Cs; X = Cl, Br, I) mit einer Antifluorit-Anordnung der Kationen und Anionen realisiert ist.

Der Übergang von der dynamisch verzerrten Struktur des TeX₆²⁻-Ions (gemittelte Symmetrie m3m) zu einer statisch verzerrten Spezies sollte durch eine entsprechende Erniedrigung der Symmetrie des Kristallfeldes erreicht werden. Eine kürzlich vorgestellte Strukturanalyse an Ca(H₂O, HF)₇TeBr₆ [12] bestätigte diese Überlegung, es resultierte ein statisch verzerrtes Anion mit 2mm-Symmetrie. Spekulationen von Dahan und Lefèbvre-Soubeyran [13] über den Einfluß von Wasserstoffbrückenbindungen bei einer Verzerrung des TeX₆²⁻-Oktaeders wurden im Zusammenhang mit Untersuchungen an (enH₂)TeCl₆ und (enH₂)SnCl₆ [14] zurückgewiesen. In der zuletzt zitierten Arbeit wurden erstmals die Regeln für die Realisierung einer statischen Verzerrung bzw. Nichtverzerrung (= dynamische Verzerrung mit gemitteltem regulärem Oktaeder) formu-

^{*} Sonderdruckanforderungen an Priv.-Doz. Dr. W. Abriel. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0340-5087/85/1200-1691/\$ 01.00/0

liert. Für die Aufstellung dieser Regeln wurden die wichtigsten Ergebnisse der hier vollständig wiederzugebenden Untersuchungen an den Titelverbindungen bereits mitberücksichtigt. Der Vergleich mit den entsprechenden Verbindungen mit SnX₆²⁻-Anionen (ein AX₆-System mit nur bindenden Elektronenpaaren in der Valenzschale des Zentralatoms) ist wünschenswert, da diese Systeme einen Standard für die Diskussion von Bindungsabständen und -winkeln vorgeben.

Experimentelles

TeO₂ und 1,3-Diaminopropan werden in äquimolaren Mengen in möglichst wenig heißer, konzentrierter Salzsäure gelöst. Aus den vereinigten Lösungen bilden sich die gelben Kristalle des Tellurats nach mehrstündigem Stehenlassen bei Raumtemperatur. Nach Abtrennen des Produkts kann es durch Umkristallisieren in konz. HCl weiter gereinigt werden; die Kristalle werden über KOH getrocknet. Für die Darstellung des Stannats wird analog verfahren (Edukte SnCl₄ und 1,3-Diaminopropan). Unter den hier primär gewachsenen farblosen Kristallen sind bereits Individuen ausreichender Güte für eine röntgenographische Untersuchung vorhanden. Im Gegensatz dazu sind die Kristalle des Tellurats stark gestört. Erst nach langsamer Kristallisation aus der kalten Lösung über KOH (drei bis vier Wochen) kann ein geeignetes Exemplar gewonnen werden. Das Tellurat ist gegenüber Luftfeuchtigkeit wesentlich empfindlicher als die Alkalihexahalogenotellurate(IV) und (enH₂)TeCl₆ [14]; hydrolytische Zersetzung erfolgt nach einigen Minuten (Farbwechsel gelb nach farblos).

Präzessionsaufnahmen mit in Glaskapillaren eingeschlossenen Einkristallen lieferten die groben Abmessungen der Elementarzelle, Laue-Symmetrie und die gesetzmäßigen Auslöschungen. Für beide Verbindungen wurde die Raumgruppe Pnma (#62) im Verlauf der Strukturverfeinerung bestätigt. Wei-

Tab. I. Daten zur Kristallstrukturanalyse.

	[H ₃ N(CH ₂) ₃ NH ₃]TeCl ₆	$[H_3N(CH_2)_3NH_3]SnCl_6$
Kristallform (Flächen)	Plättchen nach {100}, mit (111),	Plättchen nach {100}, mit {010}, {001}
	(111), (111), (111)	0.024
Kristallabmessung [mm]	$0,038 \times 0,76 \times 0,38$	$0,034 \times 0,28 \times 0,19$
Rontgenographische Dichte [g·cm]	2,049	2,101
Diffractometer	beide: SIEMENS-SIOE AED 2, Mo	$K\alpha$ -Strahlung, Graphit-Monochromator
Bestimmung der Gitterkonstanten	20	20
aus Anzahl Reflexen	38	30
$\lim_{\theta \to 0} \theta$ -Bereich	9–18,5°	11,4-23,3°
Gitterkonstanten bei 293 K	a = 22,952(2), b = 7,5414(4),	a = 17,6082(9), b = 7,1809(3),
	c = 7,801(1) A	c = 10,190(1) A
Intensitätsmessung:		
max. sin θ/λ [A ⁻¹]	0,5944	0,5947
Bereich für h, k, l	9,9,9 bis 28,9,9	4,9,4 bis 20,9,12
Scan-Modus, min. Scan-Winkel, max.		
Scan-Zeit	Ω , 1,6°, 36 s	$\Omega, 1,2^{\circ}, 36 \text{ s}$
Referenzreflexe	431, 632, 431	723, 723, 723
Intensitätsschwankung	<1,6%	<1%
Anzahl der gemessenen Reflexe	3939	3521
unabhängige Reflexe	1190	1231
beobachtete Reflexe	1190	1010
Kriterium für beobachtete Reflexe	F > 0	$F > 2\sigma(F)$
R _{int}	0,069	0,054
Absorptionskorrektur:		
$\mu [\rm cm^{-1}]$	31,27	29,67
min./max. Transmission	0,32-0,89	0,58-0,91
Strukturmodell	Schweratome über direkte Methoden	, C,N-Bestimmung über ⊿F-Synthesen
Strukturverfeinerung:		, ,
abschließender R-Wert	0.044	0.042
$R_{\rm w} = \Sigma \Delta F \sqrt{w} / \Sigma F_{\rm o} \sqrt{w} \text{ mit } w = 1 / (\sigma(F))^2$	0.027	0.029
max. $ \Delta /\sigma$ im letzten Verfeinerungszykl.	< 0.002	< 0.002
max, und min, $\Delta o [e]/Å^3$]	0.270.2	0.30.27
[••••••]	·,=·, ·,=	0,0, 0,2

tere Daten zur Kristallstrukturanalyse können der Tab. I entnommen werden*.

Atomformfaktoren für die neutralen Atome wurden den Internationalen Tabellen [15] entnommen. Zur Strukturlösung und Verfeinerung diente das Programm STRUCSY aus dem Software-Paket des Diffraktometers. Fourier-IR-Spektren von beiden Verbindungen wurden mit einem FIR 720 M (Beckmann Instruments) aufgezeichnet (Nujol-Verreibung auf Polyethylenplatten).

Ergebnisse und Diskussion

Die Atomkoordinaten für (PDA)TeCl₆ ((PDA)²⁺=[H₃N(CH₂)₃NH₃]²⁺) und (PDA)SnCl₆ sind in Tab. II aufgeführt, die wichtigsten interatomaren Abstände und Winkel in Tab. III und IV.

Abb. 1 zeigt die Packung der Anionen (verzerrte Oktaeder) und Kationen (Ketten mit Konforma-

Tab. II. Lageparameter (×10⁴) und äquivalente isotrope Temperaturfaktoren (×10⁴) mit Standardabweichung der letzten Stelle in Klammern. $U_{aqu} = 1/3 (U_{11}+U_{22}+U_{33})$.

	X	у	z	$U_{aqu} \left[\text{\AA}^2 ight]$
1. [H ₃]	N(CH ₂) ₃ NH ₃]	TeCl ₆ (Rau	imgruppe Pnma	a)
Te	1145.7(2)	2500	2189,4(6)	477
Cl(1)	475,9(6)	4793(2)	3120(2)	799
Cl(2)	1862,0(6)	5040(1)	1067(2)	732
Cl(3)	621(1)	2500	-704(1)	829
Cl(4)	1657(1)	2500	5007(3)	962
N(1)	9209(3)	2500	652(9)	889
N(2)	7828(3)	2500	5585(9)	997
C(1)	9084(4)	2500	2476(13)	1039
C(2)	8471(4)	2500	3046(10)	914
C(3)	8398(4)	2500	4893(11)	889
2. [H ₃]	N(CH ₂) ₃ NH ₃]	SnCl ₆ (Rau	mgruppe Pnma	n)
Sn	8534,2(4)	2500	3358,9(6)	306
Cl(1)	9877(2)	2500	2787(3)	536
Cl(2)	7203(2)	2500	3888(3)	510
Cl(3)	8776(1)	4903(2)	5006(2)	454
Cl(4)	8310(1)	4943(2)	1768(2)	453
N(1)	-7237(5)	2500	-4012(8)	426
N(2)	-4961(5)	2500	-1877(8)	483
C(1)	-6545(8)	2500	-3251(12)	811
C(2)*	-5850(8)	1808(19)	-3740(13)	452
C(3)	-5099(6)	2500	-3329(11)	562

* Lagenbesetzungsfaktor 1/2.

$\begin{array}{c} Te-Cl(1) & (2) \\ -Cl(2) & (2) \\ -Cl(3) \\ -Cl(4) \end{array}$	×) ×)	2,426(1) 2,672(1) 2,558(2) 2,492(2)	$\begin{array}{c} Cl(3) - Te - C\\ Cl(3) - Te - C\\ Cl(1) - Te - C\\ Cl(2) - Te - C\\ Cl(3) - Te - C\\ Cl(3) - Te - C\\ Cl(4) - Te - C\\ Cl(1) - Te - C\\ \end{array}$	l(2) l(4) l(1) l(2) l(1) l(1) l(2)	$\begin{array}{c} 90,03(5)\\ 180,0(1)\\ 90,92(5)\\ 91,60(4)\\ 88,01(5)\\ 92,00(5)\\ 88,71(4) \end{array}$
Cl-Cl-Abstän	ide im Ar	nion	Kürzester Ab	stand zwische	n Anionen
$\begin{array}{c} Cl(1) - Cl(1) \\ - Cl(3) \\ - Cl(4) \\ - Cl(2) \\ Cl(2) - Cl(4) \\ - Cl(3) \\ - Cl(2) \end{array}$	$(2 \times)$ $(2 \times)$ $(2 \times)$ $(2 \times)$	3,458(2) 3,464(3) 3,538(2) 3,568(2) 3,652(3) 3,700(2) 3,831(2)	Cl(1)-Cl(1)Cl(2)-Cl(2)Cl(1)-Cl(3)Cl(2)-Cl(4)	(2×) (2×)	3,668(2) 3,710(2) 3,748(2) 3,960(2)
Abstände und	Winkel i	m Kation			
N(1)-C(1)N(2)-C(3)C(1)-C(2)C(2)-C(3)		$1,45(1) \\ 1,42(1) \\ 1,48(1) \\ 1,45(1)$	N(1)-C(1)-C(2)-C(2)-C(2)-C(3)-D(2)	C(2) C(3) N(2)	118,9(8) 114,2(8) 119,1(8)
Kürzeste Abstände Kation-Anion					
$\begin{array}{c} N(1)-Cl(2) \\ -Cl(3) \end{array}$	(2×)	3,359(6) 3,409(7)	N(2) - Cl(2) - Cl(2)	$(2\times)$ $(2\times)$	3,201(6) 3,282(6)

Heruntergeladen am | 07.12.18 15:03

Angemeldet

Bereitgestellt von | Technische Informationsbibliothek Hannover

Tab. III. Interatomare Abstände [Å]

und Winkel [°] in $[H_3N(CH_2)_3NH_3]$ TeCl₆.

^{*} Eine Liste der beobachteten Strukturfaktoren und der Koeffizienten der anisotropen Temperaturfaktoren kann beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51602, der Autoren und des Zeitschriftenzitats angefordert werden.

Sn-Cl(1) -Cl(2) -Cl(3) (2×) -Cl(4) (2×) Mittelwort	2,435(4) 2,405(4) 2,445(2) 2,421(2) 2,429(3)	Mit Librationskorrektur 2,447 2,416 2,453 2,429 2,438		Tab. IV. Interatomare Abstände [Å] und Winkel [°] in [H ₃ N(CH ₂) ₃ NH ₃]SnCl ₆ .
Witterwert	2,429(3)	2,456		
$\begin{array}{c} Cl-Cl-Abstände im A\\ Cl(1)-Cl(4) & (2\times)\\ & -Cl(3) & (2\times)\\ Cl(2)-Cl(4) & (2\times)\\ & -Cl(3) & (2\times)\\ Cl(3)-Cl(4)\\ Cl(3)-Cl(3) \end{array}$	Anion 3,431(3) 3,442(3) 3,398(3) 3,456(4) 3,400(3) 3,451(2)	Kürzeste Abstände zwisc Cl(1)-Cl(3) (2×) Cl(2)-Cl(4) (2×) Cl(3)-Cl(3) Cl(4)-Cl(4)	chen Anionen 3,763(3) 3,578(3) 3,730(2) 3,509(2)	
Winkel im Anion Cl(1)-Sn-Cl(4) Cl(1)-Sn-Cl(2) Cl(3)-Sn-Cl(3) Cl(4)-Sn-Cl(4)	89,89(7) 179,1(1) 89,80(6) 92,87(6)	Cl(1)-Sn-Cl(3) Cl(2)-Sn-Cl(3) Cl(3)-Sn-Cl(4)	89,72(7) 90,91(7) 88,66(6)	
Abstände und Winke N(1)-C(1) N(2)-C(3) C(1)-C(2) C(2)-C(3) C(2)-C(2)	l im Kation 1,44(2) 1,50(1) 1,41(2) 1,47(2) 0,99(2)	N(1)-C(1)-C(2) C(1)-C(2)-C(3) C(2)-C(3)-N(2)	123(1) 124(1) 115,2(9)	
Kürzeste Abstände K N(1)-Cl(3) $(2\times)$ -Cl(4) $(2\times)$ -Cl(4) $(2\times)$	Lation-Anion 3,442(8) 3,448(7) 3,489(7)	N(2)-Cl(3) (2×) -Cl(3) (2×)	3,393(7) 3,400(8)	

Abb. 1. Projektion der Struktur von $[H_3N(CH_2)_3NH_3]$ TeCl₆ auf (001). Unterschiedliche Strichstärken dokumentieren die unterschiedlichen Höhen der über Wasserstoff-Brückenbindungen (Symbol Punkt-Strich) verknüpften Kation-Anion-Gruppen. Die Elementarzelle ist gestrichelt eingezeichnet, wichtige Abstände in Å.

tion "all staggered") in der Kristallstruktur von (PDA)TeCl₆. Die Koordinationsverhältnisse der Ionen untereinander erinnern an den Kochsalz-Tvp. Die Anionen kommen sich mit einem minimalen Cl-Cl-Kontakt von 3,67 Å ähnlich nah wie in den A₂MX₆-Phasen mit Antifluorit-Struktur (in (NH₄)₂TeCl₆: 3,64 Å [16]). Es werden zwei kurze (2,43 Å), zwei lange (2,67 Å) und zwei mittlere (2,49 bzw. 2,56 Å) Atomabstände Te-Cl im Anion gemessen. Deren Mittelwert von 2,541(1) Å entspricht ziemlich genau dem Te-Cl-Abstand in der regulär oktaedrischen Spezies (wie etwa in $(NH_4)_2 TeCl_6$ [16] oder $(enH_2) TeCl_6$ [14]). Die geringe Abweichung der Winkel Cl-Te-Cl von 90 bzw. 180° wird im SnCl₆²⁻-Ion bei den Winkeln Cl-Sn-Cl (z.B. in (PDA)SnCl₆ und (enH₂)SnCl₆ [14]) ähnlich beobachtet. Bei Gleichheit der Abstände Te-Cl(3) und Te-Cl(4) würde annähernd die Punktsymmetrie $2 \text{ mm}(C_{2y})$ für das Anion zutreffen. Die Aufhebung der Entartung der T_{1u}-Schwingung (ν_3) des Oktaeders wird im FIR-Spektrum durch drei Banden bei 221, 224,5 und 227,5 cm⁻¹ dokumentiert.

Tab. V gibt einen Überblick über eine Auswahl von Te-Cl-Atomabständen; die entsprechenden Werte aus dieser Untersuchung sind mitaufgeführt. Mit der Separierung der Te-Cl-Abstände im Anion des (PDA)TeCl₆ ändert sich der Charakter der einzelnen Bindungen: Ein größerer ionischer Bindungsanteil kann für das Paar Te-Cl(2) mit dem langen Abstand (2,67 Å) angenommen werden; der 3,0-Å-Abstand in Te₆O₁₁Cl₂ wird dem Ionenpaar $(-O)_3$ Te⁺Cl⁻ zugeordnet. Damit erhöht sich die Basizität des Cl(2)-Teilchens. Der kurze Abstand

Tab. V. Dispersion der Te-Cl-Atomabstände.

Ion/Verbindung	Abstand [Å]	Literatur	
$\begin{array}{c} {\rm TeCl_3}^+ \ {\rm TeCl_3AlCl_4} \\ {\rm TeCl_4} \\ {\rm TeCl_6}^{2-} \ ({\rm PDA}){\rm TeCl_6} \\ {\rm TeCl_4} \\ {\rm Te_6O_{11}Cl_2} \\ {\rm H_3Fe_2({\rm TeO_3})_4Cl} \\ ,{\rm Rodalquilarit}^{*} \end{array}$	2,28 2,32* 2,43 2,49 2,54 2,56 2,67 2,93** 3,0 3,06	 [17] [18] diese Arbeit [16] diese Arbeit diese Arbeit [18] [19] [20] 	

* Endständig; ** Cl-Brücke.

Cl(2)-N(2) mit 3,2 Å ist deshalb nicht verwunderlich. Nach Wells [21] kann dieser als Wasserstoffbrücken-Kontakt Cl-H-N angesehen werden. Für das andere Stickstoffatom des Kations (N(1)) dagegen können keine vergleichbaren Wechselwirkungen diskutiert werden.

Auch für (PDA)SnCl₆ kann eine Ionenpackung analog der NaCl-Struktur beobachtet werden (Abb. 2), diese weicht allerdings im Vergleich mit der Packung in (PDA)TeCl₆ noch mehr von der "idealen" Topologie ab. Augenfällig ist der Unterschied in der Konformation der Kohlenwasserstoffkette und in der Position dieser Kette gegenüber dem Anion. In der Zinnverbindung liegen die (Nichtwasserstoff-)Atome des Kations mit Ausnahme des Atoms C(2) in der Spiegelebene. Durch die positionelle Fehlordnung von C(2) werden die üblichen Bindungsabstände und -winkel realisiert, dabei ist der hintere Teil der Kette (C(1) bis N(2)) ekliptisch angeordnet, der vordere Teil (C(3) bis N(1)) orientiert sich auf Lücke. Die kürzesten Abstände N-Cl sind mit 3,39 Å länger als eine bindende Wechselwirkung über Wasserstoffbrücken. Offensichtlich führen letztere bei (PDA)TeCl₆ zu der im Vergleich mit (PDA)SnCl₆ unterschiedlichen Orientierung der Ionen zueinander; bei gleichen Bindungsverhältnissen zwischen Kationen und Anionen sollte wie bei den Phasen $(enH_2)MCl_6$ (M = Sn, Te) [14] Isotypie resultieren. Das SnCl₆²⁻-Anion kann als regulär oktaedrisch bezeichnet werden. Die geringen Abweichungen von der idealen m3m-Symmetrie ergeben sich zwangsläufig bei einer Strukturverfeinerung mit einer niedrigeren Punktsymmetrie des Zentralteilchens. Im FIR-Spektrum werden die Banden ν_3 (311 cm⁻¹) und ν_4 (159 cm⁻¹) der T_{1u}-Oktaederschwingungen registriert. Die Temperaturfaktoren des SnCl₆²⁻-Ions können unter Annahme von Libration der starren Gruppe berechnet werden (Programm XANADU [22]). Der R-Index für die Übereinstimmung der beobachteten mit den berechneten Uii beträgt 0,08, ein Wert, der die Richtigkeit dieses Modells für (PDA)SnCl6 noch mäßig gut belegt (daraus berechnete korrigierte Sn-Cl-Abstände sind in der Tab. IV mitaufgenommen). Für das TeCl₆²⁻-Ion in (PDA)TeCl₆ wird in einem analogen Verfahren ein R-Wert von 0.16 berechnet; hier kann nicht mehr von einem starren komplexen Anion gesprochen werden!

Die an anderer Stelle [14] abgeleiteten und formulierten Regeln für das Auftreten (bzw. für die

Abb. 2. Projektion der Struktur von $H_3N(CH_2)_3NH_3SnCl_6$ auf (010); gezeigt ist der Inhalt einer Elementarzelle. Unterschiedliche Strichstärken dokumentieren die unterschiedlichen Höhen der Schwerpunkte der Ionen (dünner Strich: y = 1/4; dicker Strich: y = 3/4). Das Atom C(2) ist fehlgeordnet, die Kohlenwasserstoffkette tritt mit diesem Atom aus der Spiegelebene heraus (Höhenangaben in 1/100 der b-Achse).

Verhinderung) eines statischen stereochemischen Effekts bei TeX_6^{2-} -Spezies sind mit der hier vorgestellten Struktur des (PDA)TeCl₆ bestätigt.

Regel Nr. 3 besagt:

Mit dem Te-Atom auf einem Gitterpunkt mit azentrischer Punktsymmetrie folgt eine statische Verzerrung des TeX_6^{2-} -Anions. Die resultierende Symmetrie ist 4mm, 2mm oder 3m entsprechend den drei unabhängigen Komponenten der T_{1u}-Deformationsschwingung des Oktaeders.

Obwohl die Punktsymmetrie des Sn-Atoms in (PDA)SnCl₆ die gleiche ist wie die des Te-Atoms in (PDA)TeCl₆ (m), wird das $SnCl_6^{2-}$ -Ion als AX₆-System erwartungsgemäß nicht verzerrt.

Für die Aufzeichnung der FIR-Spektren danken wir Herrn Dr. H. Ehrhardt, Universität Hannover.

- R. J. Gillespie und R. S. Nyholm, Q. Rev. Chem. Soc. 10, 339 (1957).
- [2] K. Seppelt und D. Lentz, Progr. Inorg. Chem. 29, 172 (1982).
- [3] K. O. Christe, Inorg. Chem. 11, 1215 (1972).
- [4] I. D. Brown, Can. J. Chem. 42, 2758 (1964).
- [5] D. M. Adams und D. M. Morris, J. Chem. Soc. (A) 1967, 2067.
- [6] N. N. Greenwood, in: Nature et Propriétés des Liaisons de Coordination, S. 104–116. Paris: Editions du CNRS (1970).
- [7] D. A. Couch, C. J. Wilkins, G. R. Rossman und H. B. Gray, J. Am. Chem. Soc. 92, 307 (1970).
- [8] R. J. Gillespie, Molekülgeometrie, Verlag Chemie, Weinheim 1975.
- [9] D. J. Stufkens, Rec. Trav. Chim. Pays-Bas 89, 1185 (1970).
- [10] W. Abriel und J. Ihringer, J. Solid State Chem. 52, 274 (1984).
- [11] R. G. Pearson, Symmetry Rules for Chemical Reactions, Wiley & Sons, New York 1976.
- [12] W. Abriel und H. Ehrhardt, Angew. Chem. 96, 965

(1984) und Angew. Chem., Int. Ed. Engl. 23, 963 (1984).

- [13] F. Dahan und O. Lefèbvre-Soubeyran, Acta Crystallogr. B 32, 2863 (1976).
- [14] W. Abriel, Acta Crystallogr., im Druck.
- [15] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham 1974.
- [16] A. C. Hazell, Acta Chem. Scand. 20, 165 (1966).
- [17] B. Krebs, B. Buss und D. Altena, Z. Anorg. Allg. Chem. 386, 257 (1971).
- [18] B. Buss und B. Krebs, Inorg. Chem. 10, 2795 (1971).
- [19] W. Abriel, Z. Naturforsch. 36b, 405 (1981).
- [20] Y. Dusausoy und J. Protas, Acta Crystallogr. B 25, 1551 (1969).
- [21] A. F. Wells, Structural Inorganic Chemistry, S. 357, Clarendon Press, Oxford 1984.
- [22] P. Roberts und G. Sheldrick, unveröffentlicht.

Heruntergeladen am | 07.12.18 15:03