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Abstract. We report the suitability of an Einstein–Podolsky–Rosen entan-
glement source for Gaussian continuous-variable quantum key distribution at
1550 nm. Our source is based on a single continuous-wave squeezed vacuum
mode combined with a vacuum mode at a balanced beam splitter. Extending a
recent security proof, we characterize the source by quantifying the extractable
length of a composable secure key from a finite number of samples under the as-
sumption of collective attacks. We show that distances in the order of 10 km are
achievable with this source for a reasonable sample size despite the fact that the
entanglement was generated including a vacuum mode. Our security analysis
applies to all states having an asymmetry in the field quadrature variances, in-
cluding those generated by superposition of two squeezed modes with different
squeezing strengths.
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1. Introduction

Quantum key distribution (QKD) enables two remote parties to generate a shared key
which is guaranteed to be unknown to any potential eavesdropper. Discrete variable systems
implementing, for example, the famous BB84 protocol [1] are well established [2] and
commercial systems exist. Recently, also first commercial continuous variable (CV) systems
have been launched in which the field quadratures of laser light are measured by homodyne
detection. Compared to discrete variable systems, they have the advantage that for homodyne
detection PIN photo diodes can be used which are well developed and widely used
telecommunication components. They offer high bandwidth, low dark noise and high quantum
efficiencies. Most of todays CV QKD systems use prepare-and-measure schemes employing
coherent states with Gaussian or discrete modulation [3–7]. Prepare-and-measure schemes with
squeezed states have been considered in [8, 9]. The less common entanglement-based schemes
do not need signal modulation [10], and instead exploit directly the correlations in the field
quadratures of an Einstein–Podolsky–Rosen (EPR) entangled state. EPR entangled states are
usually generated by interfering two squeezed beams at a beam splitter [11–22].

An implementation of a suitable source for a CV entanglement-based scheme was shown
in [23] and a demonstration of a fully implemented table-top QKD system was given in [24].
In both cases the security analysis assumed an infinite number of measured samples which
is experimentally unfeasible. Security proofs for CV systems including the effect of a finite
number of samples were only recently published [25, 26]. In [27] an experiment including
finite-size effects was performed using Gaussian modulation and coherent states with a security
analysis under the assumption of collective attacks. The first quantitative security analysis
against coherent attacks, which also includes finite-size effects, was shown for a protocol using
EPR entangled states [26].

In this paper, we characterize EPR entangled states generated by superimposing a
squeezed vacuum mode with a vacuum mode at a balanced beam splitter in terms of
extractable key length. Using only one squeezed mode instead of two minimizes the necessary
resources and reduces the complexity of the setup. Our source is implemented at the
telecommunication wavelength of 1550 nm to, in principle, allow for efficient coupling to
existing telecommunication fiber networks. We calculate the extractable key rate as a function
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of measured samples for various communication distances through an optical fiber. We assume
that the source is located in the lab of an honest party such that only one part of the beam
is affected by transmission losses. The key rate is computed by applying the security proof
for composable security under the assumption of collective attacks including finite-size effects
given in [26] to states with asymmetric field quadrature variances. As asymmetries in the field
quadrature variances are experimentally unavoidable even for entanglement generated by two
squeezed modes, our analysis can also be applied to such states.

The paper is organized as follows, In section 2 we describe the protocol, give the security
definitions and extend the proof given in [26] to asymmetric states. Section 3 is devoted to the
details of the experimental setup. The main results are presented in section 4. The paper ends
with the conclusions in section 5.

2. Security analysis

In this section we extend the security proof for composable security against collective Gaussian
attacks including finite-size effects given in [26] toward two-mode squeezed states with an
asymmetry of the noise distributions of the field quadratures. By superimposing a squeezed
mode with a vacuum mode at a balanced beam splitter, the two output modes are still squeezed
in one quadrature which we assume to be the amplitude quadrature X , and anti-squeezed in the
orthogonal quadrature, the phase quadrature P .

2.1. Protocol

The protocol we use goes as follows:

(i) Preparation and measurement. Alice prepares an entangled state with her EPR source,
keeps one subsystem and sends the other to Bob. Both parties perform homodyne
measurements in either the X or P quadrature which is individually chosen at random. An
outcome of such a synchronous measurement is called a sample. This process is repeated
until 2N samples were recorded, forming two strings x ′′

A and x ′′

B of length 2N .

(ii) Sifting. In the second step Alice and Bob perform sifting, i.e. they communicate which
quadrature they measured. Samples measured with a different choice of quadrature are
discarded from x ′′

A and x ′′

B leaving Alice and Bob with strings x ′

A and x ′

B of length N in
average. The discarded data are used for parameter estimation.

(iii) Parameter estimation. In the third step Alice and Bob chose randomly a common subset
of length k from x ′

A and x ′

B which they reveal. From these data and the data discarded by
the sifting procedure, they reconstruct the covariance matrix. In particular, they estimate a
confidence set Cεpe with the property that with probability 1 − εpe the real covariance matrix
lies within Cεpe .

(iv) (Optional) Discarding X or P quadrature measurements. As the X and P quadrature
measurements of Alice and Bob are correlated with different strengths due to the
asymmetric nature of the bipartite entangled state, it might be beneficial to discard the
measurements performed in the P quadrature from the raw key. To take into account
all three possibilities, i.e. discarding X measurements, discarding P measurements and
discarding nothing at all, we introduce a parameter pX which describes the probability
of a sample being measured in the X quadrature. For taking both X and P quadrature
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measurements to generate a raw key pX ≈ 0.5 depending on the actual run. By discarding
all X measurements pX = 0 and 1 for dicarding all P quadrature measurements. The
number of samples left after this step is denoted by n.

(v) Binning. In the fourth step Alice and Bob group their unrevealed samples into bins(
−∞, −α{X,P} + δ{X,P}

)
,
(
−α{X,P} + δ{X,P}, −α{X,P} + 2δ{X,P}

)
, . . .,

(
α{X,P} − δ{X,P}, ∞

)
.

Each bin is assigned a unique bit combination so that after the conversion Alice and Bob
both have a bit string representing their raw key. In practice, we always choose α such
that for no sample the quadrature measurement exceeded α. In that sense, only δ is a free
parameter in the protocol.

(vi) Classical postprocessing. In the last step Alice and Bob perform error correction and
privacy amplification to extract ` secure bits. We assume that they execute a reverse
information reconciliation protocol (error correction) in which Bob only sends information
to Alice and denote the number of bits revealed by Bob by `EC. In the final privacy
amplification step both parties apply two-universal hash functions to reduce the key length
to ` bits, where ` is computed according to equation (3).

2.2. Security definitions

It is important to ensure that the key is secure in any further cryptographic sub-protocol like, for
instance, the one-time pad to securely transmit messages between Alice and Bob. To guarantee
this we use the composable security definitions from [28, 29]. In the following, we denote by
SA and SB the random variables associated with the final key of Alice and Bob at the very end
of the protocol.

Robustness. We call a protocol robust if it does not abort when no eavesdropper is present.
This ensures that the protocol is not trivial.

Correctness. A protocol is εc-correct if

Prob[SA 6= SB]6 εc.

If εc � 1, this implies that Alice’s and Bob’s key agree with high probability.

Secrecy. Let ωSB E denote the classical-quantum state of Bob’s final key SB and a possible
eavesdropper E . Such a state can always be written as

ωSB E =

∑
sB∈SB

p(sB)|sB〉〈sB| ⊗ω
sB
E ,

where p(sB) is the probability distribution of the key. We then call a protocol εs-secret if for any
eavesdropper E

ppass

2
‖ωSB E − τSB ⊗ ωE‖1 6 εs

holds. Here, ‖ · ‖1 is the trace norm, τSB is the uniform distribution over SB , ωE is the reduced
state of ωSB E and 1 − ppass is the probability that the protocol aborts.

Security. A protocol is ε-secure if it is εc-correct and εs-secret with εc + εs 6 ε.
For a detailed discussion of the above security conditions we refer to [30].
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2.3. Secure key rates

Let us consider the stage of the protocol before applying error correction and privacy
amplification. We call the remaining n samples at this stage the raw keys and denote the
corresponding random variables on Alice’s and Bob’s side by X n

A and X n
B . One can assume

that X n
A and X n

B are obtained by performing n times a quadrature measurement where amplitude
X is chosen with probability pX and phase P with pP = 1 − pX . Note that for the following
security discussion pX can be arbitrarily chosen. Let in the following En be the eavesdropper
system which can be infinite dimensional and ωXn

A Xn
B En the corresponding classical-quantum

state conditioned on the event that the protocol passes. It was shown in [31] that an εc-correct
and εs-secret key of length

max
ε1

[
H ε

min(X B|E)ω − `EC − log2

1

4ε2
1εc

]
(1)

can be extracted. H ε
min(X n

B|En)ω denotes the conditional smooth min-entropy of ωXn
B En for

ε 6 (εs − ε1)/2 introduced in [29] and generalized to infinite-dimensional systems in [31, 32].
Hence, it remains to obtain a lower bound on H ε

min(X n
B|En)ω for any possible eavesdropping

strategy.
Under the assumption of collective attacks, we can assume that the state ωXn

A Xn
B En has

tensor product structure, i.e. ωXn
A Xn

B En = ω⊗n
X A X B E . The smooth min-entropy of a product state

can then be approximated by the conditional von Neumann entropy H(X B|E)ω of ωX B E via the
asymptotic equipartition property [32]

H ε
min(X B|E)ω > nH(X B|E)ω −

√
n1, (2)

where n has to be sufficiently large and

1 = 4 log2

(
2

1
2 Hmax(X B)+1 + 1

)√
log2

2

ε2
.

In the next step, we use that the state ωX B E is of form ωX B E = pX |X〉〈X |θ ⊗ ωX
X B E + (1 −

pX)|P〉〈P|θ ⊗ ωP
X B E where ωX

X B E , ωP
X B E are the states obtained when the honest parties are

measuring amplitude or phase, respectively. The system denoted by θ is a classical register
which is assigned to the eavesdropper and keeps track which measurements were performed
by the honest parties. Using elementary properties of the von Neumann entropy, we can
now expand H(X B|Eθ)ω = pX H(X B|E)ωX + pP H(X B|E)ωP . Combining this estimation of the
smooth min-entropy with the assumption of Gaussian attacks, we can use the confidence set Cεpe

to obtain a lower bound on the key length given by

` = n inf
γ∈Cεpe

∑
θ

pθ H(X B|E)ωγ,θ −
√

n1 − `EC − log2

1

ε2
s εc

. (3)

Here, the infimum is taken over all states compatible with covariance matrices γ within the
confident set. For simplicity, we have chosen ε1 = εs/2 which can be justified by the fact that
for large enough n the term in the logarithm can be neglected. Note further that due to the
definition of Cεpe , the key length from equation (3) is now ε-secure with ε = εpe + εs + εc.

The von Neumann entropy for both quadratures θ = X, P can now be computed under
the non-restricting assumption that the eavesdropper holds the purification of Alice’s and Bob’s
state, that is, we assume that ω

γ

AB E is the purification of the Gaussian state ω
γ

AB with covariance
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matrix γ . It then follows by applying the definition of the conditional von Neumann entropy
H(X B|E) = H(X B E) − H(E) and the self-duality H(E)ωγ = H(AB)ωγ that

H(X B|E)ωγ,θ = H(E |X B)ωγ,θ + H(X B)ωγ,θ − H(AB)ωγ . (4)

As shown in [26, 33, 34]

H(E |X B)ωγ,X > H(E)ωγ,X (X=0) = H
(

A − C(MX B MX)MPCT
)
ωγ

and

H(E |X B)ωγ,P > H(E)ωγ,P (P=0) = H
(

A − C(MP B MP)MPCT
)
ωγ ,

where H(E)ωγ,{X,P}({X,P}=0) is the post-measurement state at the eavesdropper’s side when Bob
measured X = 0 or P = 0. The bipartite covariance matrix is written in block form, i.e.

γ =

(
A C

CT B

)
and MX = diag(1, 0) and MP = diag(0, 1) are the projectors to the X and P quadrature,
respectively. MP denotes the Moore–Penrose inverse.

To compute 1, we have to estimate Hmax(X B) which can be approximated by [32]

Hmax(X B)6 2 log2

(
√

pX

∑
y

√
ωX

X B
(y) +

√
(1 − pX)

∑
y

√
ωP

X B
(y)

)
,

where ωX
X B

and ωP
X B

are the probability distributions of Bob’s X and P quadrature
measurements, respectively.

While in a practical experiment the number of bits `EC can be directly measured for each
run, we need to estimate the leakage term here. We assume the term to be [35]

`EC = pX (H(X B)ωγ,X − β I (X A, X B)ωγ,X )

+ (1 − pX) (H(X B)ωγ,P − β I (X A, X B)ωγ,P ) ,

where β ∈ (0, 1) is the error correction efficiency and I (A, B) is the mutual information. In this
paper we will assume an error correction efficiency of β = 0.9 [36].

With these results the secure key rate r = `/n can be calculated by

r = inf
γ∈Cεpe

pX [H(E |X B)ωγ,X + H(X B)ωγ,X ]

+ (1 − pX) [H(E |X B)ωγ,P + H(X B)ωγ,P ]

− H(AB)ωγ −
1

√
n
1 −

`EC

n
−

1

n
log2

1

ε2
s εc

.

In the theoretical asymptotic limit for an infinite number of samples n → ∞ and perfect security
ε → 0, the key rate r tends to

r∞ = pX (β I (X A, X B)ωγ,X + H(E)ωγ,X (X=0) − H(AB)ωγ )

+ (1 − pX) (β I (X A, X B)ωγ,P + H(E)ωγ,P(P=0) − H(AB)ωγ ) .

Note that in the asymptotic limit the error correction protocol achieves the Shannen rate, and
thus, one could set β = 1. However, since we only use the asymptotic limit to compare the key
rate to the finite-size effects which are not connected to the efficiency of the error correction
protocol, we treat β as a constant over all sample sizes.
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2.4. Parameter estimation

To calculate the secure key rate we need to construct the confidence set Cεpe which is defined
such that the covariance matrix describing the real state lies within Cεpe with probability 1 − εpe.
As our states are two-mode squeezed vacuum states, the first moment vanishes and the state
is fully described by its covariance matrix. It is reconstructed during the parameter estimation
step from the discarded samples and the revealed common subset of length k using a maximum
likelihood estimator. The sample covariance matrix is then estimated by

γ̃µν =
1

nµν

nµν∑
i=1

xµ

i xν
i ,

where xµ

i and xν
i are the samples measured simultaneously by Alice and Bob in µ and ν

quadrature, respectively. nµν is the number of samples used for the covariance estimation which
might in our case be different for different entries. The distribution of the sample covariance
matrix γ̃ is given by [37]

nγ̃ ∼ W4(γ, n − 1),

where W4(γ, n − 1) is the Wishart distribution. Hence, the standard deviation for a single entry
of the covariance matrix takes the form

σµν ≈

√
γ̃ 2

µν + γ̃µµγ̃νν

nµν

.

For a large enough number of samples the confidence set is then constructed by

Cεpe =
{
γ |γ̃µν − zεpeσµν 6 γµν 6 γ̃µν + zεpeσµν

}
, (5)

where zεpe is chosen such that

1 − erf

(
zεpe
√

2

)
6 εpe

is fulfilled. Here, erf is the error function which is defined by

erf(x) =
2

√
π

∫ x

0
dt exp

(
−t2

)
.

3. Experiment

A schematic view of the experiment is shown in figure 1. The EPR entanglement source was
driven by a commercial 1 W 1550 nm fiber laser. Most of its power was frequency doubled in
a quasi-phase-matched periodically poled potassium titanyl phosphate (PPKTP) crystal [38]
and served as a pump for the squeezed-light source which consisted of a 1 × 2 × 9.3 mm3

PPKTP crystal. One of the end faces of the squeezed-light source’s crystal was curved with
a radius of curvature of 12 mm and coated with a high-reflective coating for both the pump
and the fundamental beam at 775 and 1550 nm, respectively. The other end face was flat and
anti-reflective coated for both wavelengths. Together with a coupling mirror with a radius of
curvature of 25 mm a hemilithic cavity was formed. The coupling mirror had a reflectivity
of 90% for 1550 nm and a reflectivity of 20% for 775 nm. With a 23 mm air gap between
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Figure 1. Schematic view of the experiment. The beam of a 1550 nm fiber laser
(red) was frequency doubled (yellow) and used as a pump for the squeezed-
light source. The squeezed beam was overlapped with a vacuum mode at a
50 : 50 beam splitter to produce a pair of EPR entangled beams. The field
quadratures of both beams were measured by balanced homodyne detection to
characterize the EPR source and to provide data points that can be used to extract
a secret quantum key from simultaneous measurements of the amplitude or phase
quadrature. AOM: acousto-optical modulator; PD: photo diode.

the crystal and the coupling mirror the cavity had a finesse of 60 at 1550 nm, a free spectral
range of 3.8 GHz and a full-width half-maximum linewidth of 63 MHz. The temperature of
the PPKTP crystal was tuned to about 50 ◦C to achieve quasi-phase matching. A sub-milliwatt
control beam that was coupled into the cavity through the high-reflective mirror was used to
lock both the length of the cavity and the phase of the pump. The output of the squeezed-
light source was split from the pump by a dichroic beam splitter and superimposed with a
vacuum mode at a balanced beam splitter to produce a pair of EPR entangled beams. The field
quadratures of these beams were measured by homodyne detection. For this each beam was
overlapped with a strong local oscillator of about 10 mW at a balanced beam splitter with a
visibility of about 99.5% and detected by a pair of custom-made PIN photo diodes with high
quantum efficiency. By changing the relative phase between the local oscillator and the quantum
field, the measured field quadrature could be chosen. Whereas for QKD Alice and Bob only
have to randomly measure the amplitude and phase quadrature, also a linear combination of
these is needed to reconstruct the full covariance matrix. Therefore, we implemented a single
sideband technique to be able to lock both homodyne detectors independently to any quadrature
angle. An 80 MHz frequency shifted beam, produced by an acousto-optical modulator, was
coupled into the squeezing path through the dichroic beam splitter and was phase locked to the
control beam leaking through it. The single sideband was detected by the homodyne detectors
and demodulated at 80 MHz. By choosing the phase of the electronic oscillator used for the
demodulation the homodyne detector could be set to measure any field quadrature angle.
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The outputs of both homodyne detectors were recorded simultaneously by a data
acquisition system for which they were demodulated with a double-balanced mixer at 8.3 MHz
and lowpass filtered with an anti-aliasing filter with a passband of 40 kHz. The data were
sampled with 14 bit resolution at a sampling rate of 500 kHz.

4. Experimental results

To characterize our EPR source we fully reconstructed the covariance matrix of the bipartite
state. The full reconstruction of the covariance matrix followed a protocol described in [23],
where the complete covariance matrix of a Gaussian state was measured for the first time. The
protocol goes as follows:

(i) Alice and Bob both measure the amplitude quadrature.

(ii) Alice and Bob both measure the phase quadrature.

(iii) Alice measures the amplitude quadrature, whereas Bob simultaneously measures the phase
quadrature.

(iv) Alice measures the phase quadrature, whereas Bob simultaneously measures the amplitude
quadrature.

(v) Alice and Bob both measure a linear combination of the amplitude and phase quadrature.
In our case we chose the 45◦ angle for both parties.

Following the protocol above we recorded 5 × 106 samples for each quadrature
combination using a pump power of 235 mW for the squeezed-light source which allowed the
observation of 11.1 dB squeezing and 16.6 dB anti-squeezing. From these data, we reconstructed
the covariance matrix which reads

0 =


0.541 0.135 0.459 −0.095
0.135 24.633 −0.037 −23.293
0.459 −0.037 0.548 0.264

−0.095 −23.293 0.264 23.840

 . (6)

One can directly see certain properties of the state from the entries in the matrix. The values on
the principal diagonal are the variances for the amplitude and phase quadrature measurements
at Alice’s and Bob’s detector. The diagonal entries of the two blocks in the upper right
and lower left give the strengths of the correlations in the amplitude quadrature and the
anti-correlations in the phase quadrature, respectively, between both detectors. In a perfect
orthogonal measurement, the remaining entries should turn out to be zero since they give the
covariance between amplitude and phase quadratures. The small deviations from zero show that
the measurements were not perfectly orthogonal but close. To verify that our source is indeed
an EPR source we calculated the EPR–Reid covariance product [39]

min
g

Var(X A − gX B) min
h

Var(PA − h PB) < 1,

which was 0.31 < 1 for our states setting a new benchmark with entanglement generated by a
squeezed mode superimposed with a vacuum mode. In comparison with [20] this was achieved
by reducing the optical loss and thus, by producing more squeezing. Furthermore, the excess
noise which was present in [20] was reduced.
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Using the recorded data we analyzed the feasibility to use our state for QKD. For
all calculations, we assumed the covariance matrix of equation (6) to be the reconstructed
covariance matrix in the parameter estimation phase of the QKD protocol, regardless for how
many samples the key rate was calculated. We then constructed the confidence set assuming k
samples were used to estimate the correlation terms between Alice and Bob in the covariance
matrix. All diagonal terms were assumed to be estimated by using the total of N samples
measured in one quadrature by each party. For all of the following simulations, the number
of samples k used for parameter estimation was optimized to yield a maximal secure key
length.

Figure 2(a) shows the calculated key rate for our state versus the total number of measured
samples when omitting all samples measured in the P quadrature (anti-squeezed quadrature),
i.e. pX = 1. The key rate is given in secure bits per measured sample, i.e. the total number of
samples before sifting. The parameters used for the calculation were εpe = εc = εs = 10−16 and
β = 0.9 for the efficiency of the error correction. α was chosen eight times the standard deviation
of the quadrature given by the covariance matrix of equation (6). Each curve in the figure was
calculated for a different number of bins which was taken as 2nbits by choosing an appropriate
δ. For nbits > 6 the asymptotic maximum of the key rate is reached. For 109 samples, which is
experimentally challenging but achievable [27], the key rate is already close to the maximum
value of about 0.18 bits per sample and even for 108 samples it is not much lower.

Figure 2(b) shows the same as figure 2(a) but with the samples from the X quadrature
omitted, i.e. pX = 0. To reach the asymptotic value for the key rate nbits > 8 is needed. In
comparison to the key rate for only the X quadrature samples the asymptotic key rate is lower
with about 0.08 bits per sample. Here, also about 109 samples are necessary to reach a value
close to the maximum and also for 108 samples the key rate is with about 0.06 bits per sample
not much lower.

In figure 2(c) samples from both X and P quadrature measurements were used to compute
the secure key rate, i.e. pX = 0.5. For the calculation we used nbits = 6 for the X quadrature
and nbits = 8 for the P quadrature. The key rate reaches 0.25 bits per sample for a large number
of measured samples which is similar to but not quite the sum of the key rates achieved when
omitting samples from one of the quadratures. This is due to the larger confidence set since less
samples were used for its construction.

When sending Bob’s part of the entangled state through an optical fiber the key rate
versus the distance is shown in figure 3. We assumed a coupling efficiency of 95% into the
optical fiber [40] and an optical loss of 0.2 dB km−1. To maximize the achievable distance we
omitted the samples from the P quadrature. Considering only samples from the P quadrature
would yield a maximal distance of only about 2 km and considering both X and P quadrature
measurements would yield about 8 km for an infinite number of samples. The parameters used
for the calculation were chosen as for figure 2, in particular nbits = 6 and εpe = 10−16. From
the figure we read that the absolute maximal distance for our state is about 37.5 km. Taking a
realistic number of samples [27] the reachable distance shrinks to about 9 km for 108 samples
and about 18 km for 109 samples. These values are limited by the parameter estimation. Curves
with a relaxed parameter estimation security parameter of εpe = 10−12 and 10−10 are shown for
108 samples in the figure. For εpe = 10−10 [25] the distance increases to about 10.5 km. For the
calculation we assumed that no excess noise is introduced by the fiber as stated in [41]. Excess
noise introduced by the electronic dark noise of the homodyne detectors is instead already
included in the reconstructed covariance matrix. As the error correction efficiency depends
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Figure 2. Secure key rate versus the number of measured samples. For each
number of samples on the x-axis the number of samples k used for parameter
estimation was optimized. (a) Includes only X quadrature measurements,
i.e. pX = 1. (b) Includes only P quadrature measurements, i.e. pX = 0. (c)
Includes both X and P quadrature measurements, i.e. pX = 0.5. nbits = 6 for the
X quadrature and nbits = 8 for the P quadrature.
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Figure 3. Key rate versus distance when sending one part of the entangled beam
through an optical fiber. The key rate is given as the number of secure bits
per measured samples, i.e. before sifting. We assumed a coupling efficiency of
95% into the optical fiber and an optical loss of 0.2 dB km−1. The curves are
plotted for different numbers of measured samples 2N . The parameter estimation
security was chosen εpe = 10−16 except for the dashed lines. Samples from the P
quadrature were omitted since otherwise only short distances would be possible
(see text).

on the given signal-to-noise ratio, the actually maximal achievable distance depends on the
availability of efficient error correcting codes [27].

5. Conclusion

We have presented an analysis of a Gaussian entanglement source involving a squeezed mode
and a vacuum mode regarding entanglement-based QKD under the assumption of collective
attacks including finite-size effects. While in the present experiment the entanglement has been
distributed on an optical table, coupling one part of the bipartite state into a standard optical
telecommunication fiber and building Bob’s detector remotely would allow for QKD in local-
area networks. The local oscillator for Bob’s homodyne detector could be served e.g. from an
auxiliary laser at Bob’s site which could be phase locked to the control beam accompanying the
entangled state. This scheme also ensures that phase noise introduced by the fiber is not crucial
below the unity-gain frequency of the phase-locked loop. Our analysis revealed that a distance
of more than 10 km is possible with a reasonable but challenging number of measured samples
of 109 even though a vacuum mode was included in the generation of the states.

The effective sampling rate without introducing any correlations between samples, was
25 kHz for the implemented data acquisition. Thus, measuring 108 samples would take about
66 min. Improving the data acquisition an effective measurement rate of about 1 MHz should
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be feasible with the setup, reducing the measurement time to about 2 min. The stability of our
setup exceeded 15 min and was only limited by large drifts caused by thermal fluctuations of
the environment which could not be compensated by the phase actuators. Hence, to be able to
measure 109 samples, actuators with larger ranges might be necessary. As for achieving a large
distance, only samples measured in the squeezed quadrature are used, a probability larger than
50% for measuring the squeezed quadrature compared to the anti-squeezed quadrature would
decrease the necessary measurement time. Since a squeezing bandwidth of more than 100 MHz
was already demonstrated [42], a QKD system involving a single squeezed-light source could
achieve significant overall key rates.

Although the restriction to a single squeezed input mode, as presented here, reduces the
complexity of the source, a full scheme with two squeezed fields superimposed at a balanced
beam splitter will achieve higher key rates. For the full scheme the achievable distance for
109 samples would be about 28 km in comparison to about 17 km for a single squeezed-light
source. While these values were calculated for an entangled state generated by two identical
squeezed modes, our security analysis provided here also allows the use of states generated
by squeezed modes with different squeezing strengths. Furthermore, the full scheme with two
squeezed vacuum modes is a promising candidate for the first implementation ever of a CV
QKD system which provides security under coherent attacks [26].
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