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Towards Modeling Phase Center Variations for
Multi-Frequency and Multi-GNSS

Tobias Kersten*, Steffen Schon

Abstract

With the Hannover concept of absolute field calibration of GNSS antennae the determination of receiver antenna
Phase Center Variations (PCV) can be done routinely for the GPS and GLONASS L1 and L2 frequencies,
respectively. The need of multi-GNSS and multi-frequency applications - demanded by a broader navigation
community - tends to a combined estimation of receiver antenna depending properties for various frequencies
and systems. This approach is only advantageous if inter-frequency and inter-system biases are known and
continuously considered.

In this contribution we investigate steps towards a concept for multi-system-calibration. After a short introduction
to the absolute field calibration procedure, the mathematical model as well as adjustment concept will be
presented. We show that test results suggest that the receiver demodulation may have an impact on the
estimated PCV.

The correlation analysis of the multi-frequency multi-GNSS approach underlines that (1) the correct consideration
of the mathematical correlations between the parameters to up to 25%, (2) The receiver clock links the results
from different frequencies and (3) PCV for different GNSS systems can be computed in a common adjustment

since the inter-system correlations are below 1-2%.
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Introduction

In many applications precise positioning is required with an
accuracy level that demands to consider systematic errors
of the receiver antenna itself. These effects are caused by
inhomogeneities of the electrical phase center of the receiver
antennae. They are parameterized by:

1. the vector between the physically well defined antenna
reference point (ARP) and the mean phase center, i.e.
the phase center offset (PCO),

2. an azimuth o and elevation ¢ = 7/2 — z depending
phase correction A (¢t,z), where z denotes the zenith
angle.

Then the phase center variations (PCV) are described in an
antenna system [€;],,; with its origin at the ARP. The base
vector [€]]4n points to the antenna north marker, [€;],,, to the
east, and [é3],,, completes [€}]4n and [€3]4n to a left-hand
coordinate system. Assuming a well levelled and orientated
antenna, the antenna’s coordinate system coincides with the
local topocentric system. Then the antenna frequency depen-
ding PCV pattern is the variation between an ideal spherical
and a real measurable phase front, parameterized in terms of
the azimuth o and zenith angle z of the line-of-sight [é]/ for a
satellite j, cf. Figure 1.

PCV(a,z) = [¢])/ - PCO+ A (a,z) 4))

Each antenna has its individual features. Consequently
the variations are individual and should be tested for every
antenna model and frequency, respectively.

PCVs were determined successfully and routinely since
2000 by the Hannover concept of absolute field calibration
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Figure 1. Geometric relations of PCV.

as described in detail in [1]. This approach uses the actually
available, modulated GNSS signals in the field while calibra-
tion in anechoic chambers rely on synthetic signals, cf. [2]
and [3].

Fundamental discussions by [4] and [5] as well as [6]
and [7], to note only few, contributed to the international
acceptance of absolute PCVs. Since 2005 they are an an
international standard not only for the International GNSS
Service (IGS), but also for global and regional geodetic net-
work applications, like e.g., the EPN (EUREF Permanent
GNSS Network), [8] or SAPOS (Satellite Positioning Service
of the Federal Republic of Germany).

Individual, absolute phase center variations are up to now
determined irrespectively of the receiver in use. However it
can be expected that receiver depending properties have a,
perhaps significant, impact on the estimated PCVs.

This situation will further accentuate in multi-GNSS and
multi-frequency receivers.

On the one hand it is well known that already for GPS
L2, individual internal tracking algorithms, depending on the
manufacturer are applied for signal acquisition and tracking.

For Galileo variations and different observations are pro-
vided to the user of high end equipment depending on the
manufacture’s tracking strategy. For example the Javad Delta
TRE-G3T receiver, used as standard equipment in our appli-
cations, tracks all public GPS/GLONASS signals as well as
Galileo. The signals E1 and E5a are tracked by a combined
tracking loop. Otherwise the E1 CBOC signal from GIOVE
A/B is tracked by a combined tracking loop for BOC(1,1)
and BOC(6,1) with a proprietary correlator technique. Howe-
ver for instance the used LEICA receiver GRX1200+GNSS
provides the tracking of GPS, GLONASS and SBAS as well
as GIOVE A and B. The GRX receiver supports the codes
on L1 C/A and L2C as well as carrier phases L1 P, L2 P(Y)
and LS. In addition GIOVE signals E1-B&C and ESa-1&Q
as well as ESb-1&Q and E5ab AItBOC can be tracked with a
prototype of the firmware. This situation of multi-frequency
receiver will further accentuate with new upcoming signals,
where each receiver uses specific and proprietary demodula-
tion schemes.

receiver 1

receiver 2

el receiver 3
M1 receiver 4

M1 receiver 5

Figure 2. Common clock experiments to analyse the impact
of different receiver equipment on the estimated Phase Center
Variations.

On the other hand GLONASS does not permits the access
to the precise P code on both frequencies since this code with
a length of more than 33 Mio. chips was decrypted in 1989
by some scientists [9]. Based on the fact that GLONASS uses
Frequency Division Multiple Access (FDMA) to identify the
corresponding satellite, the frequencies are defined as follows,

Ly: fi=1602+k-9/16MHz, A = 19cm,

2
Ly: fr— 1246 +k-7/16MHz, A = 24cm, 2)

with k being the frequency channel number with a range of k =
(=7,...,46) . The difference of mean GLONASS and GPS
carrier phase frequency is ~ 22MHz for the actual GLONASS
constellation. Therefore GLONASS PCV were long times
replaced by GPS PCV. Now GLONASS PCYV are considered
for a mean frequency.

In this contribution we focus on the functional modeling of
receiver antenna PCV. In a first part we analyse the impact of
different receiver on the calibration results of high end GNSS
antennae. To this end calibration experiments were carried out
using the Hannover concept of absolute field calibration. We
used several reference station receivers in combination with
different reference station antennae which show high repea-
tability of individual PCV determination although geometric
properties differ. In a second part we review the mathematical
model of PCV estimation in order to extend it properly for a
multi-frequency and multi-GNSS approach.

1. Receiver dependent Aspects

1.1 Experimental Set-up

For our tests, the set of widely used reference station equip-
ment is shown in table 1. All receivers support the tracking
of actual GPS as well as GLONASS L1 and L2 frequencies.
To reduce the impact of the individual receiver clock error, an
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Figure 3. Impact of several reference station equipment on GPS PCV estimation. The dotted lines show the minimum and

maximum variations in azimuth respectively.

Table 1. GNSS reference station Equipment used during the
analysis.

antenna frequency
Trimble Zephyr Geodeticl ~GPS  L1L2
GLO LI1L2
Leica AR25 R2 LEIT GPS LIL2LS
GLO L1L2L3
GAL  E2-LI1-E1 E5a,b E6 AltBOC
Leica AR25 R3 LEIT GPS LI1L2LS
GLO L1L2L3
GAL E2-L1-El ESa,b E6 AltBOC
Topcon CRG3 SCIS GPS LIL2LS
GLO L1L2
receiver frequency
Javad DELTA TRE-G3T GPS L1/L2/LS, GLO L1/L2,
GAL E1/ES
JPS LEGACY GPS L1/L2, GLO L1/L.2
LEICA GRX1200+GNSS GPS L1/L2/L5, GLO L1/L2
GAL E1/ESab
Septentrio AsteRx2DR GPS L1/L2, GLO L1/L.2
Topcon NET G3A GPS L1/L2/L5, GLO L1/L2
Trimble NETRS GPS L1/L2, GLO L1/L2

external rubidium frequency standard was used as a common
clock. The set up is depicted in Figure 2.

All receiver were connected to one antenna in a sense
of a zero baseline and calibration values were calculated si-
multaneously for every unit. The processing and control is
performed by an external PC.

For a meaningful determination of PCV parameters the

precise robot was calibrated. Calibrations were done with a
LEICA laser tracker LTD 640 at the Geodetic Institute, Leib-
niz University Hannover (GIH) using an economic distribution
of significant robot positions. Parameters like arm length or
angle offsets were determined and applied to the robot. The-
refore the robot can reach an accuracy of approximate 0.25
mm for every position.

To reach the right signal strength at the Trimble Zephyr
Geodetic I antenna, a special power supply was used to feed
the antenna with 125mA whereby the Javad Delta TRE-G3T
receiver only supports 100mA.

1.2 Processing Strategy

A standard PCV determination with the Hannover concept of
absolute field calibration is used. Within this process GNSS
measurements were carried out with an antenna mounted on
a precise robot. The antenna is rotated and tilted underneath
the current GNSS constellation. Measurements of up to 6000-
8000 epochs in 6-8 hours were done whereby the antenna is
rotated and tilted around one virtual point, the a priori mean
PCO. To perform a homogeneous distribution of measure-
ments over the antenna’s hemisphere, the orientation of the
antenna changes on subsequently epochs.

In standard analysis the PCVs obtained from each receiver
were described by spherical harmonics with an expansion of
degree n = 8 and order m = 5 to determine elevation as well
as azimuth depending variations.

Please note that the description of PCV according to Fi-
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gure | has several degrees of freedom. Without loss of gene-
rality and for a consistent comparison of different PCVs, the
values have to be transformed to one common PCO and were
then re-centered at zenith to zero. Therefore the PCO obtained
from the calibration with Javad Delta TRE-G3T serves as re-
ference. Finally the APCV were calculated with respect to the
PCYV obtained from Javad Delta TRE-G3T, used as reference.

1.3 Results of the Calibration Experiments

Some results of the experiments for two antennae are shown in
Figure 3 for GPS and in Figure 4 for GLONASS, respectively.
Equipment depending variations appear although equal set-
tings (tracking loops, etc.) and a common clock were applied.

For GPS L1 the variations are in a range of up to 0.5 —
0.8mm and therefore hard below the significance level of
0.3 mm provided by the precise calibration unit itself.

As depicted in Figure 3b and 3e the variation on GPS L2
are obviously in a band of 1 — 1.2mm. The enhanced varia-
tions spectra on GPS L2 are explainable by the proprietary
tracking algorithms for the P(Y) code. Although the elevation
depending variations are in a range of 1 mm, the azimuth de-
pended variations are smaller than 0.5 mm over the elevation
range.

By forming the ionosphere free linear combination the
characteristics are dominated by the L2 signal and are in a
range of 2 mm.

For GLONASS, the variations on the frequency L1 are
within a range of 0.5 —0.8mm (cf. Figure 4a and 4d) and
hereby in the same range as for GPS. Individual characteristics
can be assigned to the individual antenna.

Based on the fact that both precision codes on the GLO-
NASS frequencies are unencrypted, the variations are more
homogeneous in combination with different receivers. The
differences which are detectable at zero elevation (cf. Figure
4b and 4e) reflects to the different estimated PCO, which differ
up to I mm. As it is noticeable from Figure 4 the variantions
of the APCV are more homogeneous than those determined
for GPS (cf. Figure 3).

The ionosphere free linear combination for GLONASS
shows a similar behaviour with maximal variations of up to
2mm at elevations > 30° as shown in Figures 4c and 4f.

From these first investigations we can see that small but
significant receiver depending variations exist. It can be ex-
pected that for the new and upcoming signals the differences
will increase due to different demodulation schemes. To be
prepared for multi-frequency, multi-GNSS applications the
Hannover concept of the absolute and individual antenna cali-
bration must be extended. In parallel we review the current
methodology.

2. Modelling and Estimation of PCV
Parameters
2.1 Observation Model

To get access to the observables we take a short look to the un-
differenced phase observation CIDij in meters for the frequency

f from station A to satellite j.
@) =p] +c(8ta — 8t)) + ANy, ,
+ (85, —8¢)) + T}, — 17, 3)
+MP] +PCVy, +¢],
with the geometric distance pi, the speed of light c, the recei-

ver and satellite clock error 674 and St/ resp., the tropospheric
T}, and ionospheric /4, delay, the ambiguity term Ny, the har-

dware delays in receiver (8 @y, ) and satellite (& (p]j;) the phase
multipath term MP]:A, the phase center variations PCVy, and

additional measurement noise 8};.
SD) (1) = @}, — @), )

By forming single differences SDA‘ (1) on a short baseline of
approximate 8 m between stations A and B at every epoch #,
effects introduced by the satellite and by distance depending
factors are nearly eliminated. Applying time differences to
the single differences from equation (4) like

ASD), (1) =5SD}, (1) —SD}, (1) )

we obtain access to the observation equation for each fre-
quency

ASD =c-A8ta g(ty,ty11) +APCV] (t;,1,41)
+AMP,Z{,B(ZLJI+1) +Ad£,3(haf1+1)
+ATf{,B(tlvtl+l) _AI/{B(Z‘L;IH»])

+ AP (1,1 1) + PWUL (t,141)

(6)

with the differential receiver clock error ¢ - Adta p(f;,ti41), the

topography of PCV pattern APCV} (1,,1,+1) considered in the
mathematical formulation (9) and the additional differential
error terms. Due to the short time offset between consecutive
epochs of maximal 5 sec and the short station seperation of
approximate 8 m, the terms ATfjA L(ttig1) and AI}A Lt t)
vanish. In addition, the ambiguity term is climinated as well
as the PCV pattern on station B. The multipath term at station
B is also eliminated and at the station A largely reduced .

The internal receiver depended hardware delay is up to
now not modelled and assumed to be below the significance
level of 0.25 mm.

It is obviously that PCV information for the antenna under
test at station A on the robot can only be determined by chan-
ging the antenna orientation between subsequent epochs. The
phase wind up correction PWU /{ (ty,t141) according to [10]
has to be considered as a result of the rotation of a tilted an-
tenna, which is carried out with the precise robot. Station
coordinates as well as satellite coordinates are held fixed.

The differential geometric range Ap; ,(t,,7,41) is influen-
ced by the robot model itself. The corrections were determi-
ned by a precise calibration of the robot with a LEICA laser



Towards Modeling Phase Center Variations for Multi-Frequency and Multi-GNSS — 5/8

DPCV L1[0.1 mm]
DPCV L2 [0.1 mm]
|

—Rx-A

Rx-B
sk . =o=Rx-C|:
== Rx-D

=@=Rx-E

DPCV L [mm]

0 15 30 a5 60 75 ES) 0 15 30
Elevation [°]

(a) TRM41249 L1

45
Elevation [°]

(b) TRM41249 L2

60 75 90 0 15 30 45 60 75 %
Elevation [*]

(€) TRM41249 LO

DPCV L1 [0.1 mm]
DPCV L2 (0.1 mm]

DPCV L [mm]

Rx-B -5

0 15 30 45 60 75 920 0 15 30
Elevation [°]

(d) LEICA AR25R2 L1

45
Elevation [°]

(e) LEICA AR25R2 L2

60 75 90 0 15 30 45 60 75 %
Elevation [°]

(f) LEICA AR25 R2LO

Figure 4. Impact of several reference station equipment on GLONASS PCV estimation. The dotted lines showing the

minimum and maximum variations in azimuth respectively.

tracker LTD 640 in a laboratory to the 0.25mm level. The
correction values for angle offsets, arm length of robot modu-
les, weighting coefficients and module defined offsets were
determined and directly applied to the robot control. For some
constellation of modules the deviation from the nominal po-
sition can reach up to 10 — 13 mm if the corrections were not
applied. The accuracy to reach the same point under different
module constellations is 0.25 mm.

2.2 Mathematical Formulation

Based on the physical characteristics of the receiver antenna as
an omni-directional/spherical radiator it is obvious to describe
variations from this ideal surface by an expansion over a
sphere.

As already discussed at equation (6) the PCV pattern of
the antenna under test can only be determined by changing
the orientation in azimuth ¢g + Aa and zenith z = zg + Az
between subsequently epochs #,,¢,1.

f(a,Z) = PCV(Aa7AZatl+1) _PCV(aO7Z07tl) (7)

An arbitrary function PCV (a,z) can be expand into a series
of fully normalized harmonics as described in the following.
A very good introduction is given by [11].

PCV(OQZ) — nf”nz:'" {Anman(a,Z) +Bnm§nm(a,z)}
n=0m=0
Run(at,z)| _ [cos(mar)
{Snm(ohj) } o { Sin(moc) }Nnman (COS(Z))

®

with fully normalized spherical harmonic functions Ry,,(¢,7)
and Snm(a ,2), the degree n and order m of expansion, the
zenith angle z and azimuth « of a satellite in the topocentric
system as defined in (1), the normalization factor N,,,, the
associated Legendre functions P, (cos(z)), and finally the
unknown fully normalized spherical harmonic coefficients
A,m and By, [11].

This approach is physically meaningful since variations
in elevation as well as in azimuth are considered. To prevent
singularity of the normal equation system (NEQS) one has
to keep in mind, that the absolute element Ago cannot be
estimated since it is an unknown scale factor, the coefficients
B, are equal zero since sin(0- @) = 0 and that the PCV are
centered in the zenith to zero, PCV(at,z =0) :=0.

The unknown parameter A,,, and B,,, are determined by
a least squares adjustment

lj +v;= AjX, 9

with the vector Ij of observations, the residual vector vj, the
Jacobi matrix A;j and the unknown vector X. The index j de-
note the aggregation of observations to satellite j over epochs
t,. This common adjustment problem is solved by

-
X = (Z{AjTPjAj}> Y {AjPL;} 10)
J J

=N"In,

with the weighting matrix of observables Pj, the NEQS matrix
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N and the absolute term n. For a combination of different
frequencies in one common adjustment (10) can be easily
expand to block matrices.

In the following GPS L1 is parameterized in a matrix
A1 and GPS L2 in a matrix Aj, respectively. The NEQS is
generated sequentially for every epoch and satellite with diffe-
rent antenna orientations as described by (10). This approach
results into the following NEQS considering a differential
receiver clock error for every epoch (matrix B).

ATP1A4 0 ATP;B,
N= 0 ATPA, ATP,B, a1
BIP;A; BJP;A; BJP;B;+BIP;B,

Depending on the receiver clock behaviour also different mo-
dels could be possible, like e.g. polynomial clock models as
well as frequency depending receiver clock modelling.

2.3 Correlation Analysis

To prevent an over-parametrization in a formulation for multi-
GNSS multi-frequency a closer look to the impact of addi-
tional unknowns onto the estimation parameters is needed.
The differential receiver clock errors can be eliminated from
equation (11). For this we combine the NEQS in the following

way,
Nit Niz| [x1| _ |m
Na1 Nz |x2 ny|’
with Nyj; being the NEQS of the unknowns for one GNSS
system and both frequencies, Nj; including all differential
clock parameters.
To eliminate unnecessary parameters from (12) we first

build the cofactor matrix for the reduced system and use the
matrix identity.

12)

-1
Qxx, = Nl_ll + [Nﬁan (sz - N21N1_11N12)

NZINIII} (13)

QX1X1 QX1X1 + QX1X1

The cofactor matrix of the unknowns Qx,x, includes the com-
plete stochastic information according to equation (12) caused
of the substitution. The matrix QXIX] contains the complete in-
formation of the substituted clock parameters as an correction.
With this concept we can determine the impact of additional
unknowns to the estimation of unknown PCV parameters.

Based on (13) correlation matrices for different spherical
harmonic expansions can be calculated and compared. We
now compare two different expansions (3,3) and (8,8) for
a typical calibration scenario of GPS L1 and L2, cf. Figure
5. The correlation matrix for an expansion of m =n =3 is
depicted in Figure 5b, for an expansion of m = n = 8 in Figure
Sc, respectively.

It can be seen that K¢ has a block structure as schemati-
cally indicated in Figure 5a. The blocks correspond to the L1
and L2 frequencies respectively. The matrix Kg,¢, indicates

the inter-frequency correlations. The unknown parameters are
sorted, first all A,,, followed by B,,,,..

For an expansion m = n = 3 correlations of up to 99%
appear (cf. Figure 5b). Especially parameters, like e.g.,
(A10,A20), (A11,A21) and (A39,A20) are highly negative corre-
lated. For the coefficients of B,,, the same systematic appears,
e.g. (B11,B21), (B31,B21). Otherwise some coefficients show
high positive correlation, like e.g., (A19,430), (A11,A31) as
well as (Bj1,B31). These systematic is to be continued by
increasing the degree and order of spherical harmonic expan-
sion, as depicted exemplarily for an expansion of n =m = 8
(cf. Figure 5¢). Low correlations in the range of 1 - 3% appear
for mixed A,,,, and B, coefficients.

The matrix Ky, ¢, shows additional inter frequency cor-
relations of up to 10%. They are caused by the differential
receiver clock error that links the L1 and L2 observations.

If applying a multi-GNSS approach by expanding the
methodology to GLONASS PCV parametrization, the block
structure of the correlation matrix is continued, cf. Figure
6. The inter-frequency correlations caused by the considera-
tion of the differential receiver clock error remain unchanged.
These correlations are in the range of up to 7 — 10%. It has
to be noticed that additionally inter-system correlations ap-
pear. They are in the order of a magnitude of 1 —2%. Thus
these correlation have no significant impact on the estimated
unknowns.

2.4 Impact of Covariance Information
Up to now we did not consider the covariance information
of the observations, i.e. the weight matrix of observation P
equates the identity matrix E. However mathematical correla-
tions due to single differencing as well as elevation depending
weights should be considered.

Based on the covariance matrix of the undifferenced phase
observations

Cu = diag(c?), (14)

with the empirical standard derivation o; for the observation at
epoch t; the complete covariance matrix for time differenced
single differences Cagp can be calculated by the variance
covariance propagation law. With an adequate functional
matrix for the time differences,

-1 1 0 0
0 -1 1 0 0
Fo 0 -1 1 0 0
(15)
0 0 0 0 0 -1 1

Casp =F CyF"

This approach results into a irreducible tridiagonal matrix,
which has to be inverted for every satellite. Thanks to the
special structure of Cpgp the inverse can be calculated di-
rectly and analytically without explicit construction of the
covariance matrix of the time differenced single differences.
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Figure 5. Images of correlation matrices K¢ of different expansions. In the common adjustment of two frequencies one
differential receiver clock error per epoch is taken into account. A clear block structure depending on the individual set up of

different frequencies can be noticed.

As described in detail by [12] it is only required to know
the first and the last column vectors % and V to calculate the
inverse C;SlD. For the case of the covariance matrix Cagp
from equation (15) with equal weighted observations, this
yields a tridiagonal band matrix as depicted in Figure 7a.

The inverse of this matrix can be calculated analytically
with a simple loop for p > x [12].

r—x+1

(Casploz =P — " (16)

with r = ¢ (row = columns) being the maximum dimension of
Casp and p and y the indices for row and column respectively.
An example of the structure of the weight matrix can be found
in Figure 7 for 50 epochs.

For an analysis of the impact of the complete covariance
information on the correlations the use of P = E versus Casp

coefficients A

50 100 150 200 250 300
coefficients Anm, B

nm

Figure 6. Correlation matrix of combined multi-frequency
and multi-GNSS approach. In one common adjustment
GLONASS and GPS frequencies L1 and L2 are considered
with an additionally clock parameter which is estimated per
epoch. The expansion of spherical harmonics is n = m = 8.
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Figure 7. Images of the covariance matrix of time
differenced single differences and its inverse are depicted
exemplary for 50 epochs. The explicit construction of matrix
Casp is not needed.

is compared for m = n = 8. For seek of simplicity we consider
here in a first step only the so called geometry impact for one
frequency, i.e. no receiver clock error is estimated. According
to the previous analysis, the correlation matrix is computed
and the differences to the correlation matrices are depicted in
Figure 8.

It can to be seen that the consideration of additional cova-
riance information have an impact of up to 25% on the corre-
lations between the high spherical harmonic coefficients of
A, and B,,, whereas lower order coefficients are not affected.
A significant impact is to be recognized on the coefficients
Apm—max Whereby the impact on the correlations of the Ao
coefficients vanish. As depicted in Figure 8 block structure
appears which is indicated by the combination of even and
odd degree of the spherical harmonic coefficients. The sign
convention follows a systematics and the degree of correlation
and decorrelation depends on degree of the spherical harmo-
nic coefficients, which can be taken form the table 2. For
example the combination of even and odd degree yields a
positive sign whereby the combination of odd/odd as well as
even/even relates to a negative sign for the correlations.

Furthermore it is shown that the higher the order of the
coefficients, the higher the expected correlations are, i.e. +11%
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Figure 8. Matrix AKg showing the impact of the full
covariance information to the estimated spherical harmonic
coefficients.

Alo,Agz, +11% (AIQ,A43) and +25% (Alo,Agg).

The values for the impact on coefficients B, are simi-
lar to those for A, like e.g. —2% (Bg3,Bas), —2% (B11,B76)
and —12% (Bs31,Bsg). Please note that the signs for the coeffi-
cients B, show not such systematics like for An?m.

Table 2. Sign convention for correlation and decorrelation
parameter.

degree of coefficients  sign examples relativ
from to
even - odd + +11%A10,A2) +2%  +14%
+25%(A10,As8) 0%  +25%
+7%(A55,A83) -1% +6%
odd - odd - —10%(A11,A33) 3%  +13%
710%(A33,A52) -1% +11%
—12%(A53,A7()) +3% -8%
even - even - —11%(A22,A40) 2% -13%
—4%(A2,Auq) -2% -6%
—7%(A22,Ag3) +2 % -6%
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