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Preface

The presented thesis collects thoughts and experimental results I obtained during my Ph.D. stud-
ies at the German Institute of Rubber Technology (DIK) in the group of Prof. Manfred Klüppel
from May 2014 to May 2018. Within this period I worked on several projects, both publicly and
privately funded. I started my studies with a project aiming to improve the wear properties of rub-
ber rollers (“Verbesserung der Gebrauchs- und Verschleißeigenschaften von gummierten Walzen
in der Druckindustrie”) which granted me great scientific freedom and the possibility to learn the
basics about rubber compounding and characterization. Then a privately funded projects named
“Ozone Protection of Tire Side Walls by Paraffin Waxes” followed, teaching me that there is room
for optimization in every detail of modern technology. The next project, funded by a big tire com-
pany, was called “DIK Material Model” and dealt with the improvement of a micromechanical ma-
terial model for filled elastomers developed at the DIK. Up to the completion of this thesis I worked
on the privately funded community project “Reinforcement Mechanisms of NR/Silica Composites”.
The latter two titles outline the scope of this work: Understanding and modeling the interplay of
nanoscopic fillers and polymer, as well as self reinforcement occurring in natural rubber (NR).

The main results are written down in 5 publications, all but one authored by me as first author.
In chapter 3 a series of two articles investigating basic mechanisms of filler reinforcement is pre-
sented. The first article is about a new material model developed by myself. It fits a variety of dif-
ferent compounds at different temperature and speeds and I hope that it will be used for finite ele-
ment calculations in the future. The second article in chapter 3 is about the interaction of polymer-
analogue gases with common fillers used in rubber industry. While I developed the whole data
treatment and presentation, I want to thank F. Fleck for the extensive amount of experimental
data he left to me. In chapter 4 I present a series of 3 articles investigating strain induced crystal-
lization in natural rubber. The first one lays the foundations for online calorimetric measurements
of strain induced crystallization. It was written in large parts by T. Spratte, an excellent Bachelor
student supervised by me and M. Wunde. In the second publication I worked out these foundations
towards a reliable, fast and mature method. The last article is about a micromechanical theory of
strain induced crystallization in natural rubber. Although based on relatively simple physical con-
cepts it takes aspects into account which were probably overlooked by previous authors. The theory
answers some of the open questions regarding the thermodynamics of crystallization in NR.
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Abstract

This thesis is dedicated to reinforcement mechanisms in filled and strain-crystallizing elastomers.
First of all, a constitutive model for filled elastomers is presented. It is based on the non-affine tube
model whose length measure is heterogeneously constraint by the filler particles. The model suc-
cessfully describes a variety of compounds for different deformation modes, speeds and tempera-
tures. When increasing crosslink density or amount of filler systematically, the parameters evolve
in a physically reasonable manner. Moreover an extension and simplification of the model is pre-
sented, greatly improving its performance in Finite-Element applications. To further support the
modeling hypothesis the interaction of different industrial grade carbon blacks and silicas with
polymer-analogue gases is analyzed by means of static gas adsorption. The isotherms are decon-
volved into a surface energy distribution using a specifically designed algorithm. Probing the sam-
ples with different gases reveals the different polar- and dispersive interaction capabilities of silica
and carbon black. Chain desorption from the fillers surface is identified as a possible origin of me-
chanical hysteresis at large strains. Self reinforcement due to strain-induced crystallization (SIC)
in natural rubber is analyzed by comparing the measured temperature increase upon deformation
with a hypothetical temperature calculated from the mechanical response. The difference of both
temperatures is attributed to crystallization. The method is applied to differently crosslinked and
filled compounds and is shown to deliver fast, easy and reproducible results. Incorporation of filler
changes the behavior of crystallization in accordance with the assumption of heterogeneous strain
amplification. Cyclic loading at elevated strains reveals vanishing hysteresis in the degree of crys-
tallinity, which is indicative of a different crystallization mechanism. Additionally, a theory of SIC
is derived which relates mechanical response, crystal size and degree of crystallization using a min-
imal set of parameters. It takes into account the entropy loss due to attaching a chain to a crystal
and naturally explains the constant crystal length and constant crystallization strain onset observed
by many authors. The reinforcing effect of SIC is attributed to an intrinsic strain regulation mecha-
nism.

Keywords: rubber reinforcement, static gas adsorption, filler-polymer interaction, constitutive
modeling, strain-induced crystallization

v



Betreuer: Prof. Dr. rer. nat. habil. Manfred Klüppel Jan Plagge

On the Reinforcement of Rubber by Fillers and Strain-Induced
Crystallization

Kurzfassung

Das Thema dieser Arbeit sind Verstärkungseffekte in gefüllten und dehnungskristallisierenden
Elastomeren. Zunächst wird ein konstitutives Modell für gefüllte Elastomere präsentiert. Es basiert
auf dem nicht-affinen Röhrenmodell, dessen Längenmaß heterogen durch Füllstoffpartikel verstärkt
wird. Das Modell reproduziert das mechanische Verhalten verschiedener Mischungen bei verschiede-
nen Deformationsmoden, Geschwindigkeiten und Temperaturen. Bei variierender Vernetzungsdichte
oder Füllstoffanteil verhalten sich die Modellparameter physikalisch sinnvoll. Zusätzlich wird eine
Erweiterung des Modells gezeigt, die eine Nutzung in Finite-Elemente-Programmen vereinfacht. Zur
Stützung der Modellhypothesen wird die Wechselwirkung verschiedener industriell genutzter Ruße
und Silicas mit polymeranalogen Gasen mittels statischer Gasadsorption analysiert. Aus den Ad-
sorptionsisothermen konnte mit Hilfe eines für diesen Zweck geschaffenen Algorithmus eine Ober-
flächenenergieverteilung errechnet werden. Durch die Messung mit verschiedenen Gasen wurde die
Oberflächenenergie bezüglich polarer und disperser Anteile untersucht. Es zeigt sich, dass Ketten-
desorption von der Füllstoffoberfläche eine Ursache für mechanische Hysterese bei großen Dehnun-
gen sein könnte. Selbstverstärkung durch Dehnungskristallisation in Naturkautschuk wird unter-
sucht, indem die durch Deformation hervorgerufene Temperaturänderung mit einer aus der mecha-
nischen Antwort errechneten hypothetischen Temperatur verglichen wird. Die Temperaturdifferenz
wird Kristallisation zugeschrieben. Die Methode wird an verschieden vernetzten und gefüllten Mis-
chungen validiert und liefert auf einfache Weise reproduzierbare Ergebnisse. Füllstoffe verändern
das Kristallisationsverhalten in einer Weise, die sich im Rahmen von heterogener Verstärkung ver-
stehen lässt. Bei zyklischer Belastung um hohe Dehnungen verschwindet die Hysterese im Kristalli-
sationsgrad, was auf eine Veränderung des Kristallisationsmechanismus schließen lässt. Weiterhin
wird eine Theorie der Dehnungskristallisation entwickelt, die mechanische Antwort, Kristallgröße
und Kristallisationsgrad über ein minimales Set von Parametern in Verbindung setzt. Die Theo-
rie zeigt, dass ein Polymer allein durch die Anbindung an den Kristall einen großen Teil seiner En-
tropie einbüßt. Dieser Effekt erklärt auf natürliche Weise die konstante Kristallgröße und die von
der Vernetzungsdichte unabhängige kritische Dehnung, bei der Kristallisation in Naturkautschuk
beginnt. Der Verstärkungseffekt der Dehnungskristallisation wird einem intrinsischen Dehnungs-
regulierungsmechanismus zugeschrieben.

Stichwörter: Verstärkte Elastomere, statische Gasadsorption, Füllstoff-Polymer Wechselwirkung,
konstitutive Modellierung, dehnungsinduzierte Kristallisation
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CB Carbon Black
CCA Cluster-Cluster Aggregation
DC Direct Current
DFM Dynamic Flocculation Model
DIK Deutsches Institut für Kautschuktechnologie e. V.
DMA Dynamic-Mechanical Analysis
DSC Dynamic Scanning Calorimetry
EPDM Ethylene Propylene Diene Rubber
FE Finite Element
HNBR Hydrogenated Nitrile Butadiene Rubber
MORPH Model of Rubber Phenomenology
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SAXS Small Angle X-Ray Scattering
SBR Styrene Butadiene Rubber
SIC Strain-Induced Crystallization
WAXS Wide Angle X-Ray Scattering
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1
Introduction

1.1 Setting the Scene

Figure 1.1: A tapped Hevea tree,
cameroon.

Rubber and mankind have a long history. The first reports of
rubber usage date back several thousands of years to mesoamer-
ican cultures, where the latex coming from the Hevea tree was
used for making sports balls [1]. After discovery of the new
world, in 1770 Joseph Priestly showed that the material was
ideal to rub off pencil from paper and thus invented the term
”rubber”. Industrial use of rubber started 1832 in Peru, based
in large parts on the exploitation of native american population
[2]. Several attempts to increase rubber production using Hevea
plantations failed, because the fungus Microcyclus ulei infested
the trees. In 1876 the englishman Henry Wickham smuggled
about 70000 Hevea seeds to England. Many small trees grown
from the seeds were shipped to Malaysia, but only 8 survived.
These 8 trees are the ancestors of all rubber plantations in asia
today [3]. Around this time rubber was mainly used for water-
proof clothing and shoes, but it had an essential drawback: At high temperature it became sticky
and at low temperature stiff. This problem was resolved by Charles Goodyear in 1839, who acciden-
tally discovered vulcanization by trying to dissolve rubber in boiling sulfur, allowing the production
of shape conserving rubber articles of great strength [3]. Driven by the success of automobiles, in
1909 the first synthetic rubber was invented by Fritz Hofmann. During World War II almost all
natural rubber was under control of the axis powers, forcing the US army to develop an alternative
supply. The result was styrene-butadiene rubber, a copolymer which is still very important today.

Nowadays, elastomers are omnipresent in everyday life – be it tires, seals, floors, rubber bands
or several other products. Each product class has its own set of requirements and specifications,
ranging from chemical-environmental stability over biocompatibility and non-toxicity to mechani-
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cal toughness or elasticity, in most cases a combination of them. This thesis mostly deals with the
latter field of properties.

Mechanical durability of elastomers can be obtained by selecting a polymer which is able to with-
stand high mechanical loads. Indeed, vulcanized natural rubber is extremely elastic and durable,
unmatched by almost every synthetic polymer. The reason for that is still under discussion, but
believed to be due to an effect called strain-induced crystallization: By stretching, the material is
microscopically aligned, facilitating the formation of crystals which in turn locally increase the ma-
terials toughness. This complex interplay of phase transition and mechanical properties is one of
the main topics of the thesis.

Another possibility to increase mechanical strength is to add nanoscopic particles, called fillers.
In fact, most technical rubber is black because of up to 50 vol. % carbon black. In the last 20 years,
silica (silicon dioxide) increasingly replaced carbon black as filler in car tires, because it decreases
viscoelastic losses while simultaneously increasing wet grip, paving the way for environmental friendly
“green” tires. Under loading the finely dispersed particles locally increase strain of the surrounding
polymer matrix in consequence of their occupied volume. Additionally, if particle concentration
is high enough, they form a secondary, comparably stiff network, greatly increasing the materials’
stiffness and, in the case of carbon based fillers, conductivity. The largest contribution to mechani-
cal strength probably originates from reorganization of filler clusters, slippage of polymer chains or,
more general, local breaking points which locally limit stress before it becomes too high. Again, the
exact mechanism is not clear, even though there is a great variety of theories. This thesis aims to
give an overview and offers an explanation by a physically motivated model which can be used in
finite element simulations.

1.2 Technical Elastomers

1.2.1 Polymers and Polymer Types

The term polymer is greek and means “many parts”. Thus, it denotes a macromolecule made up
of many primary units joined together, called monomers. Most industrial monomers are relatively
simple organic compounds mainly made up of carbon and hydrogen, even though there are some
famous exceptions like Teflon (which replaces hydrogen by fluorine) or silicone rubber (where sil-
icon and oxygen make up the polymers backbone). In this thesis we mainly deal with three poly-
mers which are in wide industrial use: Natural rubber, ethylene propylene diene rubber and styrene-
butadiene rubber. In this section the chemical structure and physicochemical properties of each
polymer will be briefly explained.

Natural Rubber As the name suggests, natural rubber is harvested by tapping Hevea trees,
mostly growing in south asia. It was the first rubber to be used and still has up around 40 % mar-
ket share [4].

From a chemical point of view natural rubber (NR) is polyisoprene, consisting of many isoprene
units covalently linked together as shown in Fig. 1.2a. The linking can be done in two ways: In cis-
conformation both neighboring monomers are on the same side, resulting in straight chains and

3



Figure 1.2: Chemical structure of the polymers used in this work. (a) cis-1,4-polyisoprene, the main constituent
of natural rubber. (b) Ethylene Propylene Diene (EPDM) rubber. The x and y indicate the content of ethylene
and propylene, respectively. The diene component (z) is added to allow sulfur vulcanization using the double C-C
bond. (c) Styrene-Butadiene Rubber (SBR). The x and y indicate the content of butadiene in different conforma-
tions. The styrene component (z) is added to control viscoelastic properties.

highly flexible materials. The trans-conformation occurs, when they are on opposite sides, creat-
ing chains resembling a sawtooth with inferior elastic bulk properties. Most synthetic isoprene has
up to 98 % cis content, while natural rubber consists of more than 99.9 % cis [5]. Due to its un-
saturated double bond in the backbone natural rubber has relatively low chemical and thermal re-
sistance [4]. The mechanical and wear properties of NR are outstanding, making it the polymer of
choice for heavy duty articles like truck tires or conveyor belts.

Ethylene Propylene Diene Rubber (EPDM) is polymerized from three different monomers,
a so-called terpolymer as shown in Fig. 1.2b. The ethylene content varies from 45% to 85% and con-
trols the polymers ability to crystallize. EPDM with less than 55% of ethylene is called amorphous.
At high ethylene content there are large crystalline domains, inducing thermoplastic behavior. Typ-
ically 2.5% to 12.5% dienes are used to add carbon double bonds, which are crucial for sulfur vul-
canization. Because of its saturated backbone, EPDM is chemically and thermally resistant, while
maintaining a good elasticity. It is used e. g. for seals, hoses, tubing and electrical insulation [4].

Styrene Butadiene Rubber (SBR) is a copolymer made from 1.3-butadiene and styrene. The
ring-shaped styrene visible in Fig. 1.2c induces strong internal friction, such that the styrene con-
tent is used to control the viscoelastic properties of the material. SBR can be made from emul-
sion, called E-SBR or from solution, named S-SBR. Historically, polymerization by emulsion came
first, creating highly branched macromolecules. In contrast, solution polymerization creates linear
molecules of almost uniform size, making it a good choice for automobile tires where elasticity is of
major importance [6]. Generally, it is more stable concerning environmental influences than NR but
performs worse than EPDM [4].
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1.3 Polymer Crosslinking

Even though raw natural rubber resembles a solid body it is, in a physical sense, a liquid made up
of highly entangled macromolecules. Thus, it will flow on very long timescales. Its liquid-like nature
comes to light at elevated temperatures. The discovery of vulcanization was probably the greatest
milestone in rubber history, because polymer chains are connected during the process. These con-
nections, called crosslinks, prevent flowing of the system and transform the liquid-like polymer melt
into a solid body.

In the tradition of Charles Goodyear, most diene rubbers are still vulcanized via sulfur or sul-
fur based accelerators. The diene component is a requirement for sulfur vulcanization, because
crosslinks are established by addition of sulfur to the dienes double bond. The diene may occur in
the polymers backbone, e. g. in SBR and NR, or in a side chain as is the case in EPDM. Elemen-
tary sulfur usually has the shape of S8-rings. Before vulcanization can start the rings have to open
which takes a long time, prevents industrial use of pure sulfur and consequently motivated the de-
velopment of a great series of accelerators [7]. Sulfur based vulcanizates have good mechanical prop-
erties, but their thermal resistance is limited due to the dissociation energy of sulfur-sulfur bridges
of 251 kJ/mol [4].

Peroxide vulcanization does not require carbon double bonds. During the process a peroxide
molecule dissociates thermally into radicals which are transferred to the polymer via substitution
of hydrogen atoms or addition to the carbon double bond. The polymer radical may react further
in terms of crosslinking or chain scission, depending on the chemical composition of the polymer
[8–10]. Peroxide vulcanizates have good thermal resistance and less compression set, but exhibit
poorer mechanical properties [4].

1.4 Reinforcing Fillers

In general, the terminus filler denotes insoluble particles which are added in a significant amount
to a matrix material. This is done to change the properties of the composites or for cost savings,
because fillers are often less expensive than the matrix material. In rubber industry a great variety
of fillers are in use, ranging from relatively large particles like chalk or silicate over nanoscopic sil-
ica and carbon black to new generation fillers like carbon nanotubes and graphenes. Large particles
have a comparably low relative surface area which yields low interaction with the matrix. For this
reason, this class of fillers is called inactive and is mainly used for cost savings [4]. Nevertheless, the
platelet-like shape of some silicates reduces gas permeability significantly [4]. Nanoscopic particles,
predominantly carbon black and silica, are in wide use in a variety of rubber articles. By correct
composition they greatly increase mechanical properties, reduce swelling in solvents and improve
UV-stability. Additionally, carbon black allows for electrical conductivity [11] which is especially im-
portant to lead away quasistatic load in cars via the tires. The mechanical reinforcement is shown
exemplary using carbon black filled EPDM in Fig. 1.3. Tensile strength increases almost by an or-
der of magnitude by adding 20 vol. % of carbon black. The corresponding recipe can be found in
Tab. 1 of publication 1. The mechanism of mechanical reinforcement is still under discussion. Nev-
ertheless, it is well known that the specific surface area of a filler, usually measured in m2/g [12],
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Figure 1.3: (a) Exemplary experimental data showing the improvement of tensile strength and elongation at
break in the case of carbon black filled EPDM. (b) Evaluation of the curves presented in (a) in terms of elonga-
tion of break and tensile strength. The solid lines are guides for the eyes.

as well as the fillers structure, usually measured by the amount of oil a given amount of carbon
black can absorb [13], can be positively correlated to mechanical reinforcement. In both cases this
is attributed to increased physical polymer-filler interaction [14]. Additionally, active fillers tend
to build mechanically stable and, in the case of carbon based fillers highly conductive, secondary
network. The breakdown of this network is responsible for the Payne effect, a pronounced decrease
in stiffness after small (periodic) deformation, as discussed in chapter 1.5.1. Even at high strains
(> 100%), filled elastomers continue to soften. This observation, called Mullins effect, is explained
by the slipping of polymer chains or the successive breakdown of carbon black network structure,
see chapter 1.5.2.

The introduction of silica as a filler for passenger car tires can be regarded as the last milestone
in tire development. Up to this point, tires were filled almost exclusively with carbon black, restrict-
ing tire manufacturers to balance physical properties within the famous magic triangle: rolling re-
sistance, wet traction and abrasion. The emerging silica technology allowed to decrease rolling resis-
tance and increase wet traction while maintaining sufficient abrasion resistance. This was achieved
by chemical coupling of the silica particles to S-SBR using appropriate silanes. The majority of en-
ergy efficient tires is similar to this original Michelin formulation [15]. Nevertheless, silica technol-
ogy fails in combination with the mechanically unmatched natural rubber, preventing energy effi-
cient truck tires.

1.4.1 Rubber Mixing

A requirement for good mechanical properties is a sufficient dispersion of the filler into the ma-
trix. Most fillers tend to form larger structures due to cohesive forces which have to be broken dur-
ing mixing. For carbon black, the mixing process can be split up into three parts. In the first one,
called the subdivision process, larger chunks of filler are broken down mechanically by the mixer
into smaller parts, called agglomerates. After this stage polymer is able to penetrate into the filler.
Being highly viscous, the polymer transfers large shear forces into the agglomerates, forcing them to
break up into smaller aggregates. The latter process is called disperse mixing. Aggregates represent
the smallest unbreakable entity of carbon black within the scope of forces acting in rubber mate-
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rials. Thus, the following step is a mere displacement of aggregates, ideally up to a state of equal
distribution, called distributive mixing [4, 14].

1.5 Stress Softening

1.5.1 The Payne Effect

Highly filled elastomers, which have never been deformed before, are very stiff. This is attributed to
the formation of a percolated and comparably stiff filler network. When increasing strain above a
threshold of about 0.1 %, the modulus strongly decreases with deformation amplitude, correspond-
ing to the breakdown of the filler network. It was named after A. R. Payne, who was the first to
give a detailed description of the phenomenon for carbon black [16]. The Payne effect is fully re-
versible on the timescale of hours to days [17]. First works assumed direct contact of filler aggre-
gates [18] or short ranged Van-der-Waals interaction [19]. More recent works identified glassy poly-
mer bridges within the filler particles [20]. The phenomenon was also discussed in the context of
jamming transitions [21]. In the popular Kraus model [22] the rate of carbon-carbon contact break-
age is assumed to be proportional to the number of contacts and to a powerlaw increasing with
amplitude. In contrast, the rate of contact formation is set proportional to the number of broken
contacts and antiproportional to the same powerlaw. Identifying the number of contacts with G′

and the rate of contact breakage with G′′ Kraus is able to successfully describe the behavior of both
moduli with increasing amplitude, although the physical foundations of the model are disputed.
Recently, Paynes work was investigated and extended by Hentschke, who introduced scaling argu-
ments about filler morphology into the model [23].

The physical picture of breaking and reaggregating carbon black structures was also investigated
by dielectric measurements carried out by Steinhauser et al., showing that aggregation happens ac-
cording to Cluster-Cluster-Aggregation (CCA) mechanisms [14, 24, 25]. Moreover, Tunnicliffe et
al. have shown that surface deactivation of carbon black via graphitization strongly increases filler
networking. The authors confirmed the well known result that Payne effect decreases with increas-
ing temperature. The latter is more pronounced for graphitized samples [26]. It was shown recently
that the development of these networks, called flocculation, can be understood qualitatively by em-
ploying models from game theory [27].

1.5.2 The Mullins Effect

For filled elastomers, the low strain stress softening is rather well understood in terms of the Payne
effect. At large strains, after the breakdown of the percolated filler network, the material contin-
ues to soften. This effect was first observed by Bouasse [28] and coworkers and later investigated
by Mullins who gave his name to the phenomenon [29, 30]. Apart from filled elastomers also some
semicrystalline and strain-crystallizing polymers exhibit this property [31, 32]. Softening is usually
most pronounced after surpassing the maximum previous load for the first time. Consecutive load-
ing cycles further reduce the materials stiffness. Although many authors assume complete softening
after 5 to 10 cycles, experimental data on mechanical relaxation at fixed load suggests that soft-
ening will not stop on timescales usually investigated in mechanical experiments [33]. An example
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Figure 1.4: (a) Example of a material experiencing Mullins effect: 40 phr carbon black (N339) filled, sulfur cured
EPDM. Continuous stretching (virgin curve) and multihysteresis experiment, consisting of repeated loading of
increasing strain levels. (b) Corresponding strain protocol.

showing Mullins effect in 40 phr carbon black filled EPDM rubber is given in Fig. 1.4. The recipe
can be found in Tab. 1 of publication 1. It is clearly visible that the material becomes softer when
strain surpasses the previous maximum. Moreover, the high-strain cycles have residual strain at
zero stress. Studies on filled silicone rubber have repeatedly shown that Mullins effect is anisotropic
[34–36]. The authors exposed a large sample to uniaxial strain. Afterwards, smaller uniaxial sam-
ples were cut from the large sample and tested again. Samples cut orthogonal to the previous stretch-
ing direction showed almost no softening effect. Diani and coworkers found, the mechanical re-
sponse of carbon black filled SBR previously exposed to 200 % strain recovers completely after 17
hours at 80 ◦C in vacuo [37]. A similar result was found for carbon black filled NR heated to 95 ◦C
in vacuo by Lara-Abbes et al. [38]. In contrast, storage of carbon black filled rubber over 4 weeks
at room temperature induces only minor recovery [39]. Thus, at room temperature Mullins effect is
often considered to be irreversible damage. It was found that Mullins effect may also be influenced
by filler surface modification. In the group of M. Klüppel ionic liquids [40] were used on highly
reinforcing carbon blacks. Depending on polymer polarity an increase or decrease in stiffness and
hysteresis could be achieved. In the same group the effect of carbon black deactivation via surface
graphitization on the dielectric and mechanical properties was investigated [11]. Graphitized blacks
yielded less reinforcement and higher elongation at break.

The origin of the Mullins effect is still not clear [37]. For this reason a variety of physical con-
cepts exists:

• Some of the first works tried to explain Mullins softening by the breakage of polymer chains
or crosslinks due to overstretches of shorter chains between filler particles [41, 42]. More than
40 years later, chain scission was found in filled SBR using electron spin resonance [43].

• The idea of breaking links does not fit the result that Mullins effect is reversible. Therefore,
Houwink et al. [44] proposed that polymer chains slide on the fillers surface and rearrange
at reduced network stress. A combination of permanent link breakage and reversible links is
used also in modern approaches [45]. In fact, very recent molecular dynamics simulations on
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large filler polymer networks have revealed that chain sliding may be one of the main reasons
for Mullins softening [46].

• Another class of models focuses on the breakdown or rearrangement of local carbon black
structure [22, 47], which decreases geometric constraints imposed on the polymer matrix
and results in softening the material. The rearrangement and recovery of the carbon black
network during deformation was shown to occur via dielectric spectroscopy [24] and online
Direct-Current (DC)-measurements [48]. Moreover, structural changes of the filler network
in silica filled SBR during deformation was measured by means of Ultra-Small-Angle X-Ray
Scattering (USAXS) [49]. Similar results were found using molecular dynamics simulations
[46, 50]. The same authors observed rotation of anisotropic aggregates under load. X-ray
photon correlation spectroscopy (XPCS) has shown that uncoupled silica particle diffusion
velocity in strained samples is more than one order of magnitude larger than for comparable
carbon black filled samples [33]. The velocity profile of carbon black particles could be inter-
preted in terms of carbon black rotation, too. Filler particle diffusion in entangled polymer
melts was investigated theoretically by Cai et al. [51], who investigated different timescales
corresponding to hopping, diffusion and caging. Moreover, it was experimentally shown that
diffusivity greatly reduces with an increase in particle to mesh size ratio [52]. These find-
ings indicate that filler mobility in the matrix might play a key role for the understanding
of Mullins effect.

• Disentanglement phenomena might play a role.

• Recently, a rather abstract model proposed by Wulf and Ihlemann [53] attributes reinforce-
ment and softening to less local emergent phenomena, e. g. larger scale reorganization.

While most models give a simple answer to the increase in modulus, e. g. by local overstretches
of the polymer matrix due to adsorption on filler or hydrodynamic/volume exclusion effects, physi-
cal ideas about the increase in elongation at break and tensile strength are rare. This is astonishing,
as both quantities are closely related to the durability of the material.
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2
Modeling of Elastomers

2.1 Some Continuum Mechanics

The upcoming rubber models involve continuum mechanical quantities. For this reason some foun-
dations are briefly reviewed here.

The undeformed (reference) coordinates of a material point inside a continuum shall be denoted
Xi. After deformation the material point is displaced to coordinates xi. If the current state is in
equilibrium the current position vector x is a function solely dependent on the reference configura-
tion X. This is written as

x = x(X) (2.1)

In particular it has to be kept in mind that x(X) is a function of X [54, 55]. Assuming that the
xi are continuous we can express the differential change in position xi in terms of the undeformed
coordinates Xj as

dxi =
∑
j

∂xi
∂Xj

dXj (2.2)

This can be rewritten as
dx = FdX with Fij =

∂xi
∂Xj

(2.3)

The tensor F is called deformation gradient and measures the change in length of infinitesimal line
segments. The goal of this chapter will be the derivation of a free energy density which character-
izes the energy stored in the continuum at given strain. In classical mechanics potential energy is
usually expressed, to first order, as quadratic in length scales. This motivates the usage of the left
Cauchy Green tensor

B = FFT (2.4)

as a strain measure. It is symmetric by construction and can be shown to be positive definite, guar-
anteeing positive eigenvalues [54, 55]. As they are positive, the eigenvalues can be written as λ2

i

which is the square of the so-called principal stretch λi.
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The left Cauchy Green tensor B is a symmetric second order tensor and has three principal in-
variants, which do not change upon change of the coordinate system. These are

I1 = λ2
1 + λ2

2 + λ2
3 (trace)

I2 = λ2
1 λ

2
2 + λ2

2 λ
2
3 + λ2

1 λ
2
3 (trace of adjoint) (2.5)

I3 = λ2
1 λ

2
2 λ

2
3 (determinant)

Thus, if a material is isotropic its free energy density W has to depend solely on these invariants.
The first invariant I1 can be envisioned as the squared length of a hypothetical vector inside the
continuum. Accordingly, the second invariant I2 may be interpreted as being proportional to the
average area spanned by the components of the vector. The third invariant measures the change in
volume of the corresponding hypothetical cuboid. In rubber, the change in volume with respect
to stretch is usually negligible, such that I3 ≈ 1. The latter approximation may be dropped, if
a material model is used for high pressure simulations or stems from compressible materials (e.g.
foamed rubber).

From the free energy density a variety of mathematically equivalent stress measures can be calcu-
lated. Two of them are especially important and shall be explained briefly.

Cauchy stress (or true stress) measures stress with respect to an area in the deformed configu-
ration. It is a symmetric tensor and is often denoted σ. For compressible isotropic materials it can
be calculated from the free energy density W using

σij =
3∑

n=1

λn

λ1 λ2 λ3

∂W

∂λn
b
(n)
i b

(n)
j (2.6)

where b(n) denotes the n-th eigenvector of the left Cauchy Green tensor B [55].

First Piola Kirchhoff stress (or engineering stress) measures stress with respect to an area
in the undeformed configuration. It is often used, because in experiments the undeformed configu-
ration (e.g. undeformed cross section of the sample) is easier to access than the deformed configura-
tion. In contrast, it is difficult to process in FE-code as it is an unsymmetric tensor [55]. It is often
denoted as P and can be calculated from Cauchy stress via

P = J F−1 · σ (2.7)

with J = det(F) =
√
I3 = λ1λ2λ3 quantifying volume changes and F being the deformation gradi-

ent.

2.2 The Gauss Chain Model

The physical behavior of polymers emerges from the collective motion of all linked monomers. The
degrees of freedom of a monomer can be split into two categories. The first one collects random

11



Figure 2.1: Visualization of the bond rotation potential of ethane [56]. Configurations that maximize hydrogen
distance are energetically favorable. The red marked hydrogen is an indicator for the torsion angle.

motion and fluctuation around bond potentials which only allows minor changes of the overall struc-
ture and thus will be ignored. The second category contains larger structural changes due to change
of potential minima. This happens, because most monomers contain single carbon-carbon bonds
which can be freely rotated around the axes. Nevertheless, not every rotational position is energet-
ically favorable, because the distance of the remaining parts of the monomers constituents changes.
For example, hydrogen-hydrogen interaction is repulsive, such that potential minima are defined by
states with maximum hydrogen distance. This is visualized for the example of ethane in Fig. 2.1.
At low temperatures, the rotational angles of lowest energy will be chosen, whereas at high tem-
peratures thermal energy kB T increases and thermal fluctuation competes potential driving force,
allowing access to higher energy states.

Following these thoughts, the orientations of consecutive monomers are correlated due to the
limitations in bond rotation. By adding more and more monomers, the orientation of the starting
monomer will be “forgotten”, or more precisely, the orientations decorrelate. By introducing a coor-
dinate along the polymers contour l and the corresponding tangent vector e(l) we define the correla-
tion function

K(∆l) = ⟨e(l)e(l +∆l)⟩l ≃ exp (−∆l/lp) = ⟨cos θ(∆l)⟩l (2.8)

where the angular brackets ⟨·⟩l denote an average over the whole contour. θ(∆l) is the angle en-
closed by monomers with spacing ∆l. The persistence length lp is the length scale on which seg-
ment orientation decorrelates. This is visualized for a hypothetical polymer, whose monomers al-
ways enclose an angle of 30◦ in Fig. 2.2.

For the sum of N decorrelated, or statistically independent, quantities Xi we can use the central
limit theorem on a random variable Y defined as

Y =
N∑
i=1

Xi (2.9)

If all Xi are distributed according to the same probability distribution PX and N is large, the prob-
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Figure 2.2: (a) Example of the decorrelation described via Eq. (2.8). Successive monomers (blue) always enclose
an angle of ± 30◦. After about six monomers the connecting vector (red) is decorrelated, meaning that the angle
between two vectors can be arbitrary. (b) Visualization of the decorrelation function corresponding to (a) and
exponential fit.

ability distribution PY will always converge to a gaussian with defined shape [57]

PY (Y ) =
1√

2π σ2
Y

exp

[
− 1

2σ2
Y

(Y − Ȳ )2
]

(2.10)

where σ2
Y = N σ2

X and Ȳ are the variance and mean value of Y , respectively. The Xi are now iden-
tified with the step length of statistically independent polymer segments of Kuhn length b = 2 lp

[58], which will be explained later. By combining n of them we obtain the probability density of the
end-to-end vector r as the product of three random walks, one in each direction of space

P (r) =

(
3

2π n b2

)3/2

exp

(
−3

2

r2

n b2

)
(2.11)

This is derived in more detail in many textbooks [57]. Eq. (2.11) holds for all polymers irrespec-
tive of their microstructure, the only assumption being the decorrelation of segment orientation.
Take into account that there is a finite probability for all r, even for rs larger than the contour size
L = n b, which is physically impossible. This error occurs, because segments are not statistically in-
dependent anymore, if the contour becomes straight. It can be corrected using Lagrange multipliers,
forcing the total contour length to be equal L, which leads to the famous Langevin statistics [59].

From Eq. (2.11) the entropy of a Gauss chain can be derived via S = kB log Ω. The total num-
ber of conformations Ω is expressed as the (normalized) probability distribution P (r) multiplied by
number of realizations of the undeformed chain. The latter is given by the number of possible con-
formations of the statistical segment c1 to the power of the number of segments n. Moreover, it is
antiproportional to the discretization of phase space V. The entropy is then given as

S = kB log Ω = kB log

(
cn1
V

P (r)

)
≃ kB

(
n c2 − logV +

3

2
log

(
3

2π n b2

)
− 3

2

r2

n b2

)
(2.12)
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where c2 = log(c1). Within the present modeling there are no internal energy contributions. Then,
the mechanical response is calculated from the free energy F = −T S. By taking the derivative with
respect to r we get a retracting force

f = −dF
dr = −3 kBT

r

n b2
(2.13)

The temperature proportionality in Eq. (2.13) tells us about a property inherent to all polymers,
called entropy elasticity: Polymers retract, because stretched conformations are less likely to occur
than coiled conformations. Of course, the proportionality in temperature fails below crystallization-
or glass temperature. Entropy elasticity is fundamentally different from elasticity in most other
materials, where force results from displacements in interatomic potentials (e. g. in steel). Bond po-
tentials in technical elastomers contribute in a similar way to elasticity, but their effect is limited:
In most technical polymers like SBR and NR the contribution of bond potentials ranges from 0 to
20 % [60]. In technical elastomers with many additives and additional ingredients (especially fillers)
the behavior is much more complex and entropy elasticity may be superimposed by additional ef-
fects.

For many purposes it is interesting to know about the mean length of the polymers end-to-end
vector. As the average ⟨r⟩ vanishes due to isotropy we have to rely on the mean squared displace-
ment ⟨r2⟩. This can be calculated as the second moment of Eq. (2.11):

r2⟨⟩ := ⟨r2⟩ =
∞∫
0

r2 P (r) 4πr2 dr = b2 n (2.14)

where r⟨⟩ = b
√
n is the mean displacement. As shown in Fig. 2.3 it is close to the maximum of the

probability distribution P (r) for scalar r, when increase in phase space volume (sphere shell ∝ r2)
is taken into account. Thus, it is also a measure of the most probable distance of the polymers end
from its beginning. For this reason it is commonly used to define the size of a polymer coil.

Werner Kuhn used Eq. (2.14) to define the Kuhn length b: It is the step length of the random
walk constructing the polymer. It is closely related to the persistence length via b = 2 lp [58]. This
is not surprising, because the persistence length quantifies the length scale at which polymer orien-
tation decorrelates which is a prerequisite for random walk statistics.

Figure 2.3: Probability to find the
end of the polymer coil in a sphere
shell with radius r.

Moreover, Eq. (2.14) may be used to heuristically derive an
expression for the average spacing between junctions in a net-
work made up of connected Gauss chains. The connection of
two chains can be either physical, e.g. by entanglements or weak
physical interactions, or chemical, e.g. by chemical crosslinks.
At the present stage we treat every network junction as perma-
nent and ignore its specific nature. We have seen, that the end
of a chain of N segments of length b is, most probably, located
in distance r⟨⟩(N) =

√
Nb of its origin. As we assume statis-

tically independent segments, this relation holds also for every
(gaussian) subchain with n < N . After triggering the crosslink-
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ing process (e. g. by temperature), the crosslinking process is taking place by randomly connecting
polymers with respect to space and time. After crosslinking, the network node is, in a first approx-
imation, fixed in space. As the polymer subchain is most probably the distance r⟨⟩(n) away from
the last junction when crosslinking happens, we can state, that the average distance between two
crosslinks is r0 = r⟨⟩(n) =

√
n b, with subchains of n segments between them. This relation will

prove useful in the upcoming chapters.

2.3 The Neo-Hooke Model

In this section the Gauss chain model is extended to a simple network. The network is represented
by a parallel connection of Gauss chains of arbitrary spatial orientation with n statistical segments
and end-to-end distance distributed according to gaussian statistics. Formally, the free energy of a
single Gauss chain is averaged over all possible chain configurations. In reality, these Gauss chains
can be identified with subchains between two network nodes. Interaction between subchains is ne-
glected. The affinely deformed end-to-end vector of a chain can be expressed in terms of spherical
coordinates as

rλ =

λ1 0 0

0 λ2 0

0 0 λ3


cos θ cosφ

cos θ sinφ

sinφ

 r (2.15)

where the λi denote the macroscopic deformation ratio in i-direction. Eq. (2.15) states that the
orientation vector of the chain will deform in the same way as the whole sample. This is called
affine deformation and is a rough, but the most simple approximation. If isotropic conditions are
assumed the orientation in the network will be random, thus we have to average over all possible di-
rections θ and φ as well as the vector length r. The latter is distributed according to P (r) as given
in Eq. (2.11). The free energy of a single chain F = −T S can be expressed by the entropy given in
Eq. (2.12). Finally, the averaged free energy per chain is scaled by the number of elastically active
chains in the material νc. Altogether we have

WNH = νc ⟨F ⟩rλ ≡ νc

⟨
kBT

3

2

r2

n b2

⟩
rλ

(2.16)

= νc
3 kBT

2n b2

∞∫
0

dr P (r)

π∫
0

dφ
2π∫
0

sin θdθ r2
(
λ2
1 cos

2 θ cos2 φ+ λ2
2 cos

2 θ sin2 φ+ λ2
3 sin

2 θ
)

=
νc
2
kBT (λ

2
1 + λ2

2 + λ2
3) =

νc
2
kBT I1 =

G

2
I1 (2.17)

where “≡” means that we omitted all terms independent of r, because they will vanish after differ-
entiation with respect to stretch. I1 = λ2

1 + λ2
2 + λ2

3 is the first invariant of the left Cauchy Green
deformation tensor [55]. The quantity G = νc kBT is called the modulus of the material, measuring
the magnitude of the materials mechanical response. It is proportional to temperature T , reflecting
the entropy elasticity of the underlying polymer chains. Eq. (2.17) is the energy density of a Neo
Hookean material, the most basic rubber model available. Nevertheless, it is still in wide use in FE
codes because of its efficiency, stability and simplicity.
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The most common way to characterize the mechanical response of rubber is a uniaxial stretching
test. Rubber is almost incompressible which means that the volume of a hypothetical cuboid with
dimensions λi has constant volume, so λ1 λ2 λ3 ≈ 1. By setting λ1 = λ and requiring symmetry with
respect to the two other dimensions, we find

λ1 = λ and λ2 = λ3 = 1/
√
λ (2.18)

By putting Eq. (2.18) into Eq. (2.17) we can easily derive stress by differentiation with respect to
stretch*

PNH =
dWNH

dλ = G

(
λ− 1

λ2

)
(2.19)

where PNH is the first Piola Kirchhoff stress, also known as engineering stress, which measures
stress with respect to the cross section of the undeformed sample (see section 2.1).

2.4 The Mooney Rivlin Model

From Eq. (2.17) we see that the transition from one chain to an affinely deformed networks yields a
free energy density solely dependent on the first invariant I1 of the left Cauchy Green deformation
tensor B. As explained in section 2.1 this may be understood intuitively, because I1 = λ2

1+λ2
2+λ2

3 is
the norm of a hypothetical length measure (elongation of a chain) within the sample. For isotropic
systems a well-defined free energy density may depend on all invariants of B. Keeping in mind that
I3 ≈ 1, the famous Mooney-Rivlin material law [61] for incompressible rubber is given as a linear
superposition of I1 and I2:

WMR = C1 (I1 − 3) + C2 (I2 − 3) (2.20)

The “-3” occurring after both invariants ensures that the energy stored in an undeformed material
is zero. It shall be noted here that the experimentally accessible physical quantity is stress which is
the derivative of energy. Thus, an arbitrary additive constant (e. g. −3 (C1 + C2)) does not change
physics and is commonly done to adhere to conventions.

Engineering stress for uniaxial deformation is calculated by plugging in Eq. (2.18) and differenti-
ating with respect to λ

PMR = 2C1

(
λ− 1

λ2

)
+ 2C2

(
1− 1

λ3

)
(2.21)

The Mooney Rivlin model describes uniaxial test data for small strains (λ ≤ 3) rather good, but
overestimates stress for biaxial loading [62]. If Eq. (2.21) is directly fitted to experimental data,
there is great uncertainty in the numerical value of C2. As can be seen from the formula, this is due
to the effect that the C2 related stress term only changes significantly at low strains. For an equally
weighted fitting measure over the whole strain range the model is linearized by dividing stress by
λ− 1/λ2:

PMR
λ− λ−2

= 2C1 + 2C2
1

λ
(2.22)

*The “simple” differentiation method (differentiating with respect to λ after plugging in a parameterized
first invariant) has to be used with care. It fails for more advanced material laws, e. g. Eq. (2.25). For a gen-
eral concept to derive stresses from free energy densities the reader is referred to section 2.1 or a continuum
mechanics book [55].
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Figure 2.4: (a) Mooney Rivlin fits of a uniaxially stretched, sulfur cured NR at 60 ◦C. (b) Linearized Mooney
Rivlin fit. Only data up to λ = 2.5 was used for fitting in both cases.

Plotting PMR/(λ − λ−2) vs. 1/λ allows to directly read 2C1 from the offset and 2C2 from the slope
of the fitted line. An example is shown in Fig. 2.4.

By comparing 2C1 with the modulus G = νc kBT = 2C1 of the Neo-Hooke model the Mooney
Rivlin fit is often used to determine the number of elastically active chains νc, which is a measure
for crosslink density [63]. The C2 term is attributed to the effect of physical chain entanglements.
Although being an established procedure for easy quantification of crosslink density of unfilled rub-
bers, the model neglects fluctuations of crosslinks. This is corrected for by the phantom model [57]
or more advanced approaches, which allow to calculate crosslink fluctuations by means of entanglement-
and crosslink contributions [64, 65].

2.5 The Extended Non-Affine Tube Model

The previously presented Neo-Hooke model includes the assumption that chains are not interacting
and can slip through each other, called phantom chains [66–69]. Topological constraints exist only
in terms of rigid crosslinks. First attempts to explain the C2 term of the successful Mooney-Rivlin
model included the assumption of constraints acting on the fluctuating crosslinks [65, 70, 71]. The
knowledge about the equivalence of stochastic processes and path integrals occurring in quantum
mechanics allowed the formulation of constraints acting on all polymer segments [72], called tube
constraint. Within that framework a variety of tube models emerged [73–79]. The non-affine tube
model [80, 81] presented here was validated by various experimental techniques [81]. It is derived
using statistical mechanical methods on the hamiltonian

H

kbT
=

3

2b

L∫
0

ds
(
∂r(s)

∂s

)2

+
∑
i

L∫
0

dsΩ2
i (ri(s)−Ri(s))

2 (2.23)

where the first integral generates gaussian chain statistics and the sum represents the tube con-
straints. It is crucial to note here that a polymer network is a quenched system, requiring to av-
erage the free energy of a hypothetical chain over all possible conformations. As lined out for the
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gaussian chain in Eq. (2.16) this requires averaging over the logarithm of the partition function Z.
In many cases, the calculation is feasible only using the famous replica trick [78]. For the detailed
calculation we refer the reader to one of the references [80, 81]. The potential scaling parameter in
i-direction can be related to the tube diameter di and statistical segment length b via Ωi =

√
b d−2

i .
In the principal axis system, the tube diameter is expressed in terms of the principal stretches λi

and equilibrium tube diameter d0

di = d0 λ
αβ
i (2.24)

The first exponent α = 1/2 defines the non-affine relation of stretch and tube diameter. With the
second exponent β = 0 . . . 1 the model can be adjusted to the swelling and network defect degree
as well as relaxation level of the tube. For sufficiently crosslinked samples it was found to be β ≈ 1

[80, 81]. Moreover, the model was extended to reproduce strain hardening by Vilgis [81, 82]. The
total free energy of the non-affine tube model is then

W (Ī1, Ī
∗) =

Gc
2

[(
1− 1

n̂

)
Ī1

1− 1
n̂ Ī1

+ log

(
1− 1

n̂
Ī1

)]
+ 2Ge Ī

∗(−β) (2.25)

Ī1 := I1 − 3 = λ2
1 + λ2

2 + λ2
3 − 3 (2.26)

Ī∗(β) :=
1

β2

(
λβ
1 + λβ

2 + λβ
3 − 3

)
(2.27)

where the generalized invariant I∗(β) is introduced. For small strains and β = 2 the model repro-
duces the Mooney-Rivlin model. The quantities Gc and Ge are crosslink- and entanglement modu-
lus, respectively. They can be expressed in terms of molecular quantities as follows

Gc = Ac νc kBT (2.28)

Ge =
β2

4
√
6
νs kBT

(
b

d0

)2

= β2G∗
e (2.29)

where Ac is a microstructural factor quantifying the constraints acting on crosslinks. For Ac = 1,
crosslinks are fixed (affine model), while for Ac = 1/2 crosslinks are allowed to fluctuate freely
(phantom model limit). The statistical segment density can be expressed as νs = Ms/(ρNA), with
segment molar mass Ms and density ρ. A plot showing a fit of the non-affine tube model to natu-
ral rubber for different β is shown in Fig. 2.5. Marckmann and Verron performed extensive bench-
marking on a variety of phenomenological and physically-derived rubber models [62]. The non-affine
tube model turned out to be the best compromise of fitting quality, predictive capability and num-
ber of parameters.

2.6 The Dynamic Flocculation Model

Most models are valid only for the pure polymer matrix. However, most technical rubber articles
contain fillers which greatly increase the materials complexity as outlined in chapter 1.4. The Dy-
namic Flocculation Model (DFM) [47] aims to capture the additional phenomena occuring in filled
rubber: stress softening, increased hysteresis and permanent set. The polymer matrix is described
by the non-affine tube model given by Eq. (2.25). Filler is assumed to interact with the polymer
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Figure 2.5: Fit of the non-affine tube model to sulfur cured NR at 60 ◦C, giving Gc = 0.31 MPa, Ge = 0.27 MPa
and n=104. The high temperature is chosen to suppress crystallization. (a) Uniaxial fit (β = 1). (b) Entangle-
ment stress contribution for uniaxial loading. The different curves correspond to variation of β. The special (but
unphysical) case of β = 2 gives identical stress as the C2 term of the Mooney-Rivlin model. (c) Same plot for
biaxial loading.

matrix in two different ways. Stiff filler clusters consisting of several aggregates increase local strain
by hydrodynamic amplification. If stress surpasses a cluster-dependent critical load, the cluster
breaks apart into aggregates and has a greatly reduced amplifying effect. At low strains, the broken
clusters are assumed to reaggregate into loser soft clusters which do not amplify but take over the
network stress. When stress gets large enough the soft clusters break, too, dissipating their energy.
The latter process causes hysteresis.

The free energy is defined as the sum of an elastic contribution of the rubber matrix WR given
by the free energy density of the non-affine tube model (Eq. (2.25)) and the contribution from soft
filler clusters WA.

WDFM(εµ, εµ,min/max) = (1− Φeff)WR(εµ, εµ,min/max) + ΦeffWA(εµ, εµ,min/max) (2.30)

where Φeff is the effective filler volume fraction which is larger than the true filler volume fraction
due to occluded rubber [47]. The εµ,min/max = λµ,min/max − 1 measure the maximum and minimum
deformation in each direction of space µ. Hydrodynamic strain amplification is implemented by
assuming that the macroscopic stretch λµ translates into an amplified microscopic stretch κµ:

λµ = 1 + εµ → κµ = 1 +Xµ εµ (2.31)

via a hydrodynamic amplification factor Xµ in direction µ. The requirement of rubber incompress-
ibility holds for macroscopic as well as microscopic stretches, such that

∏
µ λµ =

∏
µ κµ = 1. This

poses constraints on Xµ that can be fulfilled by rewriting

κµ = λr
µ with r = log(1 +Xmax εf )/ log(1 + εf ) (2.32)

where Xmax and εf refer to the respective values in the direction of maximum strain (in principal
axes system). Note that Eq. (2.32) implicitly assumes the remaining two dimension to deform iden-
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Figure 2.6: Cluster size distribution ϕ(x) as defined in Eq. (2.34). Black clusters have never been broken (called
stiff or virgin clusters) and are assumed to amplify the material. Red clusters (called soft or broken) have already
been broken and are responsible for hysteresis.

tically. Additionally, it may induce discontinuities when the direction of maximum principal strain
changes (e.g. in two sided shear experiments). The amplification factor Xmax depends on the all-
time maximum and minimum strain, and on the details of the cluster structure within the network

Xmax = 1 + cΦ
2

3−df
eff

 x1,min∫
0

xdw−dfϕ(x)dx+

∞∫
x1,min

ϕ(x)dx

 (2.33)

where c = 2.5 is a constant motivated by the Einstein relation for spherical inclusions [83] and
Φeff is the effective filler volume fraction. The latter is larger than the real filler volume fraction
Φ mainly due to rubber occluded from mechanical deformation. The quantities dw ≈ 3.1 and df ≈
1.8 are anomalous diffusion coefficient and fractal dimension of filler clusters respectively [47, 84].
x1,min is the size of the largest cluster which survived the maximum previous strain given in units of
primary particle size. The cluster size distribution ϕ(x) in Eq. (2.33) is chosen as a Smoluchowski
type, because it reflects the outcome of cluster-cluster aggregation (CCA) occuring during carbon
black flocculation inside the rubber matrix [85]:

ϕ(x) =
4x

x20
exp

(
−2

x

x0

)
(2.34)

with x0 being the average cluster size. The distribution is sketched in Fig. 2.6. Using Eq. (2.34) and
approximating dw − df ≈ 1 the integral in Eq. (2.33) can be carried out analytically [47]. The size of
the largest surviving cluster x1,min is calculated via

xµ,min =
sv

σ̂R,µ(εµ,max; εµ,min)
(2.35)

where sv is the strength of virgin (never broken) filler-filler bonds which are assumed to consist
of glassy polymer bridges. The denominator is the maximum relative stress the sample has ever
experienced within its deformation history. It is defined by

σ̂R,µ(εµ; εµ,min) = σR,µ(κµ)− σR,µ(κµ,min) (2.36)

where σR is the first Piola-Kirchhoff stress derived from the free energy density of the non affine
tube model given by Eq. (2.25). In order to adhere to the nomenclature used in most works on the
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DFM [40, 47, 86] the first Piola Kirchhoff stress is denoted “σ” instead of “P” here. The occurrence
of the minimum stress allows additional stress softening when changing the deformation direction,
e. g. during two-sided shear deformation.

Hysteresis is generated by already broken soft clusters, see Fig. 2.6. Soft clusters are assumed
to be in mechanical equilibrium with their elastic surrounding and correspondingly store energy.
Upon stretching, soft clusters in stretching direction µ break down and dissipate the stored energy.
During sample relaxation these clusters reaggregate, while the lateral dimension is expanded and
induces lateral cluster breaking. The soft clusters’ stress contribution in direction ν is given as

σA,ν =

∂εµ/∂t>0∑
0

= σ̂R,µ(εµ; εµ,min)

∫ xµ(εµ,εµ,min)

xµ(εµ,max,εµ,min)

dεµ
dεν

ϕ(x)dx (2.37)

where dεµ/dεν transforms the stress contributions from lateral directions into axial direction. For
uniaxial load (λ1 = λ, λ2 = λ3 = 1/

√
λ), this can be expressed as

dεµ
dεν

= −1

2
(1 + ε1)

−3/2 (2.38)

The integral boundaries xµ define the fraction of intact soft clusters. They are defined as

xµ(εµ, εµ,min) =
sd

σ̂R,µ(εµ; εµ,min)
(2.39)

in analogy to Eq. (2.35), but with a lower bonding strength sd < sv for the already broken clusters.
The sum selects the direction where strain is increasing. The total energy is then expressed as

σν = (1− Φeff)σR,ν(κν) + Φeff σA,ν + σset (2.40)

where stress was split up into matrix- and filler contribution according to their contribution to to-
tal volume. Residual stress is introduced via σset and has to be adjusted by empirical functions. If
temperature dependence is neglected a convenient functional form is

σset = sset,0
(√

εmax −
√
|εmin|

)
(2.41)

A fitting example is presented in Fig. 2.7. The 5th cycle of each strain step was extracted and used
for fitting to guarantee equilibrated conditions. The model fits uniaxial data up to 140 % strain
rather well. At larger strains the model deviates from experiment.

Viscoelasticity and continuous damage was recently added to the model by Ragunath et al. [86].
It shall be noted, that the free energy density of the DFM shown in Fig. 2.30 has to be seen as a
starting point for the calculations in this chapters. It does not represent the free energy stored in
the material, because amplified strain is inserted after the stress functional is calculated from the
free energy density.
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Figure 2.7: (a) Fit of the DFM to EPDM sample P/CB of publication 3.2 measured at 20 mm/min and 23 ◦C.
Parameters are Gc = 0.32 MPa, Ge = 1.36 MPa, Φeff = 0.32, x0 = 14.5, sv = 38.0 MPa, sd = 37.3 MPa,
n = 17.3 and sset,0 = 0.45. (b) Fit to EPDM sample S/CB of publication 3.2 measured at 20 mm/min and 23 ◦C.
Parameters are Gc = 0.63 MPa, Ge = 1.66 MPa, Φeff = 0.35, x0 = 5.1, sv = 68.3 MPa, sd = 50.9 MPa, n = 20.3
and sset,0 = 0.50.
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With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk.

John von Neumann

3
Investigation and Modeling of Filler

Reinforcement

3.1 Introduction

This chapter deals with the understanding and modeling of filler reinforcement. For a review on the
physics and modeling approaches of rubber amplification the reader is referred to chapters 1 and 2.

In the first of the upcoming publications a physically plausible but still efficient material model
for filled elastomers is developed. Thus, the paradigms are twofold: (1) The model shall be built on
physical principles which are simple enough to capture the main effects of the arbitrarily complex
filler-polymer interplay, but allow a compact mathematical description. This approach deliberately
neglects the details of microscopic interactions and focuses on their emergent behavior. (2) Some
compromises are done to keep the mathematics suitable for FE-codes. This involves application of
the strain amplification concept to a frame-independent local strain measure.

In that sense, the model may be placed in between phenomenological models like the Model of
Rubber Phenomenology (MORPH) [87], being a collection of formulas without physical reference,
and physically derived ones like the Dynamic Flocculation Model (DFM) [88] which are often math-
ematically inconsistent in a continuum mechanical sense. Reinforcement is modeled by introduc-
ing differently strain-amplified polymer-filler domains, corresponding to a microscopically inhomo-
geneously material. The material softens, when the most amplified domains break down and re-
form less amplified. The heterogeneity in amplification is explicitly taken into account and is not
averaged-out as done in the DFM (see section 2.6) [47]. Hysteresis is introduced via a dynamic
breakdown and reaggregation mechanism, which is described by driven diffusion out of a poten-
tial well. This mechanism is sensitive to deformation rate and temperature. Again, the details of
the structures breaking down and reaggregating are not specified. The publication shows that the
model is able to capture the behavior of filled rubber at different deformation modes with a rela-
tively small set of 7 physically motivated fitting parameters. With two additional parameters it is
able to describe the effect of temperature and varying deformation rate. Recently, the hyperelastic
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Figure 3.1: (a) Photograph of the BELSORP Max adsorption automaton used in this work and (b) scheme of its
internal structure [91]: After gas input through valve A the molar amount of gas inside Vs is calculated from an
appropriate equation of state. Then valve C is opened and the gas adsorbs on the samples surface. After equili-
bration the adsorbed amount of gas is calculated from pressure P2, Vs and Vd and the equation of state. This is
procedure is repeated, successively increasing pressure P2.

part of the model was implemented in the commercial FE software Abaqus [89] and has proven to
be efficient and easy to handle. Nevertheless, the model contains some uncommon mathematical
concepts which are replaced in this thesis after presentation of the publications.

The results of model fitting happening in publication 1 show that the deformation-driven break-
down and reaggregation mechanism is characterized by energy barriers around 100 kJ/mol and
length scales of about 5 nm. These values suggest the polymer-filler interface to be the origin of
hysteresis. For this reason the second publication deals with the investigation of polymer-filler inter-
action via static gas adsorption* using different polymer-analogue gases, carbon blacks and silicas.
Static gas adsorption is a well established method for surface characterization, especially known for
the BET surface area per gram of sample [12]. The BET surface area is obtained by giving gaseous
nitrogen to a sample of defined mass and measuring the amount sticking to the surface using the re-
maining gas pressure. After saturation of the surface its area is calculated from the adsorbed molar
amount of nitrogen and the corresponding surface occupation per mole. This is done using the BET
equation, named after its inventors Brunauer, Emmett and Teller [90]. The adsorbed amount of gas
in dependence of pressure at constant temperature is called adsorption isotherm and is used to char-
acterize filler morphology in two ways: (1) The surface area accessible to the adsorptive. It can be
assumed to decrease for larger gas molecules, because they are unable to penetrate small cavities.
(2) The interaction energy of adsorptive and adsorbate, which depends on the polar and dispersive
components of each reactant. Generally, it will increase for larger gas molecules, because they have
a larger contact area. The ratio of interaction energy and surface occupation of each gas molecule
may be regarded as indicative for the interaction of the molecules constituents with the correspond-

*The terminus adsorption means that particles (the adsorptive) are attached to a surface (adsorbate)
while absorption means particle incorporation into a solid.
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ing filler. Measurements are performed using a BELSORP-max (BEL Japan) adsorption automaton
as shown in Fig. 3.1. The publication will show that the difference in (dispersive) polymer-filler in-
teraction alone is not able to explain the vastly different behavior of silica and carbon black in a
polymer matrix.

Moreover, the adsorption energies can be compared to the energy barrier of around 100 kJ/mol
related to mechanical hysteresis obtained from model fitting. The polymer is an amorphous EPDM†

consisting of 52 wt. % ethylene and 4.3 wt. % dienes. For a rough calculation it will be assumed
that it consists by half of ethylene and propylene. The adsorption energies of ethane‡ and propene
(propylene) on carbon black are found in publication 2 as 18.5 kJ/mol and 20.4 kJ/mol, respec-
tively, giving 19.5 kJ/mol for an average monomer. Thus, if we assume polymer adsorption and
desorption to be responsible for hysteresis, 100/19.5 ≈ 5 monomers define the typical length of
desorbed subchains. Given the length of a C-C bond of about 0.12 nm [92] and approximately 2.5
bonds per monomer, the chain segments have a length of 5 · 2.5 · 1.2nm = 1.5nm. This roughly cor-
responds to the length of statistical segments for many polymers [93]. The calculation shows that
physical chain adsorption and desorption on the scale of single statistical segments may be the pre-
dominant reason for mechanical hysteresis.

†Trade name Keltan 4450.
‡Ethane is sufficiently similar to ethylene for a simple estimate.
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a b s t r a c t

A novel physically based material model is presented that describes the complex stress-

strain behavior of filled rubbers under arbitrary deformation histories in a constitutive

manner. The polymer response is considered by the extended non-affine tube model.

Stress softening is taken into account via the breakdown of highly stressed polymer-filler

domains under load and homogenization of the medium. Set stress and hysteresis are

introduced via a continuous reformation mechanism, characterized by a single critical

stress parameter. The latter is predicted to be dependent on temperature and deformation

rate by means of Kramers escape rate. This is confirmed for a wide range of temperatures

and speeds by fitting to multihysteresis measurements carried out in a heat chamber.

Fitting parameters reveal that the mechanism responsible for hysteresis and set stress

takes place on the nanometer scale with energies of roughly 100 kJ/mol. The behavior of

the fitting parameters is analyzed for varying filler loadings and crosslinker concentrations

in EPDM. Simulations of the stress-strain response for several deformation modes are in

good agreement with experiments and its mathematical simplicity makes it very prom-

ising for applications with Finite Element Methods (FEM).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforced elastomers consisting of a polymer and a nano-structured filler like carbon black or silica are present almost

everywhere in our lives. The most prominent example is automotive tires, where its incredible wear- and fatigue properties

are still unmatched. An unfilled elastomer is almost ideally hyperelastic, e.g. exhibiting small hysteresis and weak rate de-

pendency. The incorporation of fillers greatly toughens and stiffens the polymer, but also creates memory-like material

properties as increased hysteresis and stress softening. For small dynamic deformations the latter effect is known as Payne-

Effect (Payne, 1962) and is attributed to the irreversible breakdown of a stiff, percolated filler network (Rendek and Lion,

2010). This effect was extensively described by Payne and investigated by Kraus (1984) and Medalia (1978). A similar phe-

nomenon can be observed for larger deformations, which was investigated by Mullins and Tobin (1965): The greater the

deformation the material was subject to, the softer the materials response. The change in the response is not immediate, but

requires several cycles to reach a steady state. The explanation for this effect is the complex interplay and structural rear-

rangement of filler particles and the polymer network, as reviewed in Vilgis et al. (2009). In particular, a breakdown or

slippage of adsorbed polymer chains at the filler surface (Dannenberg, 1975; Bueche, 1960) and disentanglement of chains
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adsorbed at the filler surface (Hamed and Hatfield, 1989) or a rearrangement of network junctions in filled systems (Payne

and Kraus, 1965) has been proposed. A constitutive model of stress-induced desorption of chains from the filler surface

has been derived by Govindjee and Simo based on a statistical mechanics approach (Govindjee and Simo, 1991, 1992). This

idea was recently extended to include deformation of filler aggregates as well, allowing the calculation of hysteresis

(Dargazany and Itskov, 2013). Reese (2003) built a material model on the basis of the Neo-Hooke material model, taking into

account breaking and reforming of chains by using several assumptions about chain distribution to arrive at a continuum level

description. Similarly, a FEmultiphase computational model was developed, explicitly embedding filler particles into a rubber

matrix. The model is able to reproduce Mullins effect on a macroscopic level (Sodhani and Reese, 2014). A more general yet

abstract approachwas chosen byWulf and Ihlemann (2015), who did computer simulations of a minimal rubbermaterial on a

molecular scale. In their work a small collection of generalized interactions was sufficient to generate typical rubber stress-

strain data. In addition to these physical approaches, there exists a wealth of phenomenological models. For example, Amin

et al. (2006)modeled thematerial by decomposing the deformation gradient into elastic and inelastic parts, using the concept

of the Zener model. From experiment, they find that both overstress as well as deformation measures are necessary to

accurately describe rubber viscosity.

However, experimental investigations of the DC-conductivity of cyclically loaded carbon black filled rubbers indicate that

the stress softening effect is closely related to a rearrangement or breakdown of filler clusters which strongly depends on the

interaction strength between polymer and filler (Stübler et al., 2011; Geberth and Klüppel, 2012; Geberth, 2013). An example

for carbon black filled natural rubber is shown in Fig.1, where the electrical resistance increases over 2 orders of magnitude by

increasing strain up to 100%. Like the mechanical data, resistance shows hysteresis and approaches a steady cycle after

repeated identical deformation.

The so called Dynamic-Flocculation-Model (DFM) derived by Klüppel at al. (Klüppel and Schramm, 2000; Klüppel, 2003;

Klüppel et al., 2005) states that the underlying mechanism of stress softening is hydrodynamic reinforcement by stiff filler

clusters, which immobilize a certain amount of polymer. By increasing the load, more and more filler clusters are broken,

decreasing the geometric constraints imposed on the polymer matrix. The hydrodynamic amplification factor is obtained by

integrating over a physically reasonable clusters size distributionwith an upper boundary depending on themaximum strain.

In addition, the broken clusters are dynamically re-aggregating and breaking during repeated loading up to a certain strain

level, thereby causing hysteresis which is a further typical effect found in experiments. The DFM was shown to be in good

agreement with experimental data for various elastomer nano-composites with carbon black or silica/silane filler systems at

different deformation modes (Lorenz et al., 2010; Lorenz and Klüppel, 2012). Recently, the aging behavior and the polymer-

filler interphase dynamics were successfully investigated by a DFM parameter study (Plagge and Klüppel, 2015; Fleck et al.,

2014). In addition, the temperature dependence of quasi-static stress-strain cycles could be well described by a simple,

physically based extension of themodel (Lorenz et al., 2012) and the strain rate and amplitude dependency was formulated in

finite viscoelasticity (Raghunath et al., 2016). Due to the complexity of the DFM, the breakdown and re-aggregation mech-

anism could only be formulated in the main axis systemwhichmakes it difficult to implement into a finite element code or to

calculate more complex deformation modes. So far, this could only be achieved by applying the so-called concept of

representative directions (Lorenz et al., 2012; Freund et al., 2011) but this requires large computation times. Therefore it

makes sense to simplify the breakdown and re-aggregation mechanism of the filler network in strained elastomers by

referring to a semi-empirical approach that generates the observed stress softening and hysteresis effects in a similar manner.

In this paper a model of stress softening and hysteresis is presented, which is built on physical principles and can easily be

calculated for arbitrary stress-strain histories and any complex deformation modes. The hyper-elastic rubber matrix is

modeled by the extended non-affine tube model (Heinrich and Kaliske, 1997; Klüppel and Schramm, 2000), and the un-

derlying mechanism of stress softening is considered to be hydrodynamic amplification of the rubber matrix by highly

Fig. 1. Mechanical stress and electrical resistance of a multihysteresis experiment with increasing strain level measured with a dumbbell sample. Taken from

(Geberth, 2013).
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constraint domains. The latter is described by considering a power law distribution of amplification factors with an upper

boundary depending on the maximum value of the first deformation invariant. The hysteresis is modeled by a generalized

network model with dynamically opening links which immediately close at zero stress. The critical stress is then found to be

the key quantity for an extension of the model regarding rate- and temperature dependent effects. Finally a constitutive

formulation of themodel is given and the global energy dissipation is discussed. In the second part of the paper the developed

concepts are then tested by a variety of experiments under uniaxial, equibiaxial and pure shear deformation for various

elastomer composites with different filler loadings and curing states.

2. Theory

2.1. Hydrodynamic amplification

For the elastic response the interaction between filler and polymer is implemented via the concept of hydrodynamic

amplification. The main idea can be traced back to Einstein who calculated the increase of viscosity in a viscous liquid due to

the presence of rigid spheres (Einstein, 1906). Smallwood used the analogy of the equations to identify spheres with filler

particles and liquid with the polymer matrix (Smallwood, 1944). Mathematically this is implemented via a hydrodynamic

amplification factor X, such that in linear theory

sfilled ¼ Xsunfilled ¼ XGunfilledε (1)

where Gunfilled is the modulus of the unfilled material and ε is engineering strain. When deriving this expression, it turns out

that the amplification factor X consists of a stress amplification factor as and a strain amplification factor ad, that both depend

on the filler volume fraction 4. For the energy density of the filled elastomerWfilled it can be shown (Einstein, 1906; Domurath

et al., 2012), that

WfilledðεÞ ¼ asWunfilled

 

a2dε
!

(2)

with ad ¼
1

1# 4
and as ¼ 1þ 4

2
(3)

such that in the linear regime withWunfilledðεÞ ¼ 1
2Gunfilledε

2 the total amplification X as defined in Eq. (1) can be calculated as

X ¼ a2das ¼
1þ 4

2

ð1# 4Þ2
¼ 1þ 2:54þ 442 þO

 

4
3
!

(4)

Eqs. (2) and (4) hold for perfectly spherical, evenly distributed spheres of arbitrary radius, which are hydrodynamically

decoupled. Strain amplification ad represents the increase in local strain as a consequence of a reduced deformable volume.

Hence, its origin is purely geometrical. Stress amplification as results from attractive filler-polymer boundary conditions and

their influence on the hydrodynamic equations. From this point of view it is reasonable, that the former one directly impacts

the local strain, while the latter one acts on the energy.

In the rubber community hydrodynamic amplification is often considered as pure strain amplification. This is in fact a good

approximation as the following calculation shows.

Solving Eq. (4) for 4 and omitting the unphysical solutions gives

4 ¼ 1#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24X þ 1
p

# 1

4X
(5)

Using this expression, we can express ad and as via Eq. (3) in terms of X:

ad ¼
1

6

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24X þ 1
p

þ 1
!

and as ¼
1þ 12X #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24X þ 1
p

8X
(6)

For Xz1 these expressions can be approximated as

ad;1z
ffiffiffiffi

X
p

and as;1z1 (7)

The asymptotic behavior for large X reads

ad;∞z

ffiffiffiffiffiffi

24
p

6

ffiffiffiffi

X
p

and as;∞z
3

2
#

ffiffiffiffiffiffi

24
p

8

1
ffiffiffiffi

X
p (8)
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Take into account, that both approximations are compatible with Eq. (4), because in both cases X ¼ a2
d
as holds. In the

following we are interested in a power-law approximation of the strain- and stress amplification factor for small X, so the first

approximation is chosen. From Fig. 2 it can be seen, that the approximation is reasonable. The result shows, that stress

amplification is of minor importance, especially for large X (or filler concentration 4).

2.2. Elastic energy density

The base of the elastic response is the physically motivated non-affine tube model developed by Heinrich et al. (Heinrich

et al., 1988). In a review by Marckmann and Verron it was compared to physical as well as non-physical rubber models and

shown to accurately describe several deformationmodes, even allowing to calculate biaxial and pure shear data from uniaxial

fits (Marckmann and Verron, 2006). Its energy density is given by

W
 

I1; I
'! ¼ Gc

2

"

%

1# 1
n

&

I1

1# 1
nI1

þ log

'

1# 1

n
I1

(

#

þ 2GeI
'ð#bÞ (9)

I1 ¼ l21 þ l22 þ l23 # 3 (10)

I
'ðbÞ ¼ 1

b2

 

l#b1 þ l#b2 þ l#b3 # 3
!

(11)

The quantity I1 ¼ I1 # 3 is the first invariant of the left Cauchy Green tensor (Holzapfel, 2000), but shifted such that it is

zero at zero strain. It can be physically interpreted as a squared length deformation measure. I
'ðbÞ is a generalized invariant

taking into account the non-affine tube constraints imposed by neighboring polymer chains. The parameter b is supposed to

be between 0 and 1 and is a measure for the relaxation state of these constraints. It has been shown, that b ¼ 1 is reasonable

for sufficiently crosslinked samples (Klüppel and Schramm, 2000; Vilgis et al., 2009; Klüppel and Heinrich,1994), hence it will

be fixed to this value. Recently, the extended non-affine tube model has been reviewed by Behnke et al. (2011), whereby also

non.equilibrium branches were considered and thermo-mechanically coupled FEM problems were addressed. This demon-

strates, that the energy density given by Eq. (9) represents a fundamental framework for rubber elastic material behavior up

to large strains.

The first bracket term of Eq. (9) considers the elastically effective network junctions (cross-links and trapped entangle-

ments) with an elastic modulus Gc proportional to the density of network junctions. The second term describes topological

tube constraints in dense networks (packing effects), whereby the tube constraint modulus Ge is proportional to the

entanglement density of the polymer chains. The parenthetical expression in the first term refers to a non-Gaussian extension

of the tube model (Heinrich and Kaliske, 1997). It is taking into account the finite chain extensibility of the polymer network

with n being the number of statistical chain segments between two successive network junctions. For the limiting case n ¼ I1,

the free energy density Eq. (9) exhibits a singularity, which is reached when the chains between successive network junctions

are stretched, totally. For the moduli Gc and Ge, the following relations regarding molecular material parameters hold:

Gc ¼ AcnckBT Ge ¼
b2
ffiffiffi

6
p nekBT (12)

Here, nc and ne are the inter-junction- and inter-entanglement chain densities, respectively, Ac is a micro-structure factor

that describes the fluctuations of network junctions (Ac 0.67; Klüppel and Heinrich (1994)), kB the Boltzmann constant and T
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Fig. 2. Plot of the split-up of the total amplification factor X into strain (ad) and stress (as) amplification and corresponding power-law approximations ad;1 and

as;1 .
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the absolute temperature. The linear increase of the moduli Gc and Ge with temperature T reflects the entropic origin of

rubber elasticity. We want to amplify global strain

ffiffiffiffi

I1

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l21 þ l22 þ l23 # 3

q

linearly, as was already outlined in (Bergstrom

and Boyce, 1999). This is in contrast to previous works, where the microscopic strain in a specific (principal) direction is

amplified (Lorenz and Klüppel, 2012). This new definition is independent of direction and avoids problems occurring from

rotating coordinate systems and changes in maximum strain directions within deformation history. Additionally, it ensures

constant volume. Entanglements and tube constraints (I') are amplified in the same way. This can be explained by looking at

the expansions of both invariants of an incompressible material with l3 ¼ 1=ðl1l2Þ around l1 ¼ l2 ¼ 1 up to second order:

I1 ¼ 4
 

ðl1 # 1Þ2 þ ðl2 # 1Þ2 þ ðl1 # 1Þðl2 # 1Þ
!

þO
 

ð…Þ3
!

I
' ¼ ðl1 # 1Þ2 þ ðl2 # 1Þ2 þ ðl1 # 1Þðl2 # 1Þ þ O

 

ð…Þ3
!

In consequence both invariants coincide by a multiplicative factor of 4, justifying a similar treatment for low strains.

According to Einstein (1906); Domurath et al. (2012) energies are amplified using the strain and stress amplification

factors ad and as according to Eq. (2). Taking into account the approximation given by Eq. (7) we can replace

W
 

I1; I
'!

/asW
 

a2dI1; a
2
dI
'!

zW
 

XI1;XI
'!

(13)

The consistency of this idea can be shown by the example of an incompressible Neo-Hooke material for uniaxial strain,

which is in fact the linear expansion of Eq. (9):

WNH ¼
C1
2
I1/WNH ¼

C1
2
XI1 (14)

which results in a first Piola-Kirchhoff-stress of

P11;NH ¼ C1

 

l1 # l#21
!

/P11;NH ¼ XC1

 

l1 # l#21
!

(15)

So the resulting stress is amplified linearly (which isn't surprising because differentiation is a linear operation). In fact, the

amplification concept is valid in linear elasticity only, but it is assumed to describe hyperelastic behavior as well.

Filled elastomers are a highly heterogeneous material. In this model it is assumed, that there are heavily amplified stiff

domains coexisting with softer domains, represented by larger and smaller amplification factors. At a certain stress, stiff

domains break up and reorganize in an energetically more favorable state with a smaller amplification factor X. We assume a

power law amplification-factor distribution, which can bemotivated from percolation theory and is always normalized to 1 in

the interval ½Xmin;Xmax):

PXðXÞ ¼ X#c$
c# 1

X
1#c
min

# X
1#c
max

(16)

Indeed, in percolation theory a power law distribution of particles numbers per cluster is realized close to the percolation

threshold Ps * s#t, with exponent t ¼ 1þ d=df (Stauffer and Aharony,1994). Substitution of the cluster size x * sdf then gives

for the distribution of cluster sizes Px * x#t=df . For d ¼ 3 the fractal dimension is df ¼ 2:5 yielding t ¼ 2:2 and t=df ¼ 0:9. The

Huber-Vilgis approach of hydrodynamic amplification (Huber and Vilgis, 1999) connects the cluster size x with the ampli-

fication factor X of strongly interpenetrating clusters, X * xdw#df with dw ¼ 3:8 being the anomalous diffusion exponent of the

percolated system. For the amplification factor distribution PX * X#t=ðdf ðdw#df ÞÞ this delivers an exponent equal to 0.68. The

amplification factor distribution PXðXÞ is fully defined by the slope c and upper and lower borders Xmin and Xmax. The lower

border is set to 1

Xmin ¼ 1

because, thinking of differently amplified domains, there should be regions within the elastomer which aren't amplified at all

(e.g. because there is no filler present).

From Eq. (9) it is obvious that the energy density of the non-affine tube model diverges at I1 ¼ n. Physically, this corre-

sponds to fully stretched polymer chains. As we have replaced I1 by XI1 we have to solve
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XdivI1;max ¼ n/Xdiv ¼
n

I1;max

(17)

to get, at given I1;max, the amplification factor at which the energy density diverges. The largest amplification factor present in

the compound has to be below Xdiv. The function relating the maximum amplification factor Xmax to the deformation history

is chosen to be

Xmax ¼ max

 

Xmin;
n

I1;max þ g

!

<maxðXmin;XdivÞ (18)

where I1;max is the largest value of the first invariant within the deformation history. The free parameter g determines the

maximum amplification factor of the system before any deformation XmaxðI1;max ¼ 0Þ ¼ n=g. With this definition of Xmax the

material is always isotropic. Note that Xmax immediately decreases when increasing maximum strain. Thus, there are no

continuous damage effects implemented up to now. A relaxation mechanism for Xmax is under investigation.Nowwewant to

do the average of the amplified energy density according to the power law amplification factor distribution (Eq. (16)). This can

be understood as a superposition of the stress response of differently amplified domains, as visualized in Fig. 3. Remember

that Xmax ¼ XmaxðI1;maxÞ is the quantity determining stress-softening via the breakdown and reorganization of highly

amplified domains. Doing the average we obtain

WX

 

I1; I
'
;Xmax

!

¼
Z

Xmax

Xmin

dX PXðXÞW
 

XI1;XI
'!

(19)

The integration can be carried out in closed form and is discussed in Appendix A. Take into account, that the averaging by

integration corresponds to a parallel connection of all domains. This is questionable, but data on macroscopic moduli of

heterogeneousmaterials is scarce and a parallel connection is the easiest mathematical implementation. In previous works by

Klüppel (Klüppel et al., 2005; Lorenz et al., 2012) an internal average WX *Wð〈X〉Þ was used to take the diversity of

microscopic structure into account. Here, the average is external WX * 〈WðXÞ〉 and thus allows the distinct effects (like

upturn) of the most amplified domains to come to light. Altogether, the Mullins effect is implemented in the following way:

+ Before any deformation, XmaxðI1;max ¼ 0Þ ¼ n=g is large and the materials contains many domains of highly amplified

rubber.

+ Increasing the strain yields increasing invariants, resulting in the breakdown of the most amplified domains.

+ The broken down domains reorganize less amplified. This is implemented naturally via the normalization of PXðXÞ to 1,
resulting in equipartition of the broken down domains in the interval ½Xmin;Xmax):

+ Subsequent cycles with I1 < I1;max don't change Xmax anymore.

2.3. Elastic stress

The elastic component of first Piola-Kirchhoff stress is calculated as

Fig. 3. (a) Amplification factor distribution PX ðXÞ for different upper borders. Lowering the upper border increases the average height of the distribution. (b)

Visualization of the inhomogeneous distribution of amplification factors (red X), depending on local filler structure (black particles). By increasing load, highly

constrained domains break down and reorganize less amplified. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Pel ¼ JselF
#T (20)

with J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðBÞ
p

. The left Cauchy-Green Tensor is defined as B ¼ F
T
F . The deformation gradient ðFÞij ¼ dxi=dXj is a measure

for the change of the original coordinates Xj to new coordinates xi due to deformation (Holzapfel, 2000). The elastic Cauchy

stress is calculated according to the formula

ðselÞij ¼
X

n¼1

3 ln
l1l2l3

vWX

vln
b
ðnÞ
i

5b
ðnÞ
j

(21)

where bðnÞ are the eigenvectors of the left Cauchy-Green Tensor B and WX is given by Eq. (19).

The principal strains for the three most simple deformation states are

Uniaxial : l1 ¼ l l2 ¼ 1
.

ffiffiffi

l
p

l3 ¼ 1
.

ffiffiffi

l
p

Pure Shear : l1 ¼ l l2 ¼ 1 l3 ¼ 1=l

Equibiaxial : l1 ¼ l l2 ¼ l l3 ¼ 1
.

l2
(22)

In these cases the vectors bðnÞ represent the cartesian coordinate system and thematerial is assumed to be incompressible.

2.4. Hysteresis and set stress

Besides Mullins effect, pronounced hysteresis and set stress are properties characteristic for filled rubbers. Both phe-

nomena have the same origin and shall be modeled by one simple mechanism in the following. It is assumed, that polymer-

filler structures inside the rubber are successively breaking down on average at a certain force and immediately rebind at zero

stress. This is visualized in Fig. 4. When increasing strain this mechanism generates an additional force component, thus

increasing the total force. On the way back it decreases the total force, generating hysteresis. Set stress is created by the

remaining stressed structures at zero strain. At this point it is worth mentioning, that the rebinding process is assumed to be

reorganization on a microscopic scale, while the breakdown and reorganization of domains as described in Section 2.2 takes

place on much larger energy and time scales. Variables corresponding to a single energetically and spatially well defined

structure shall be denoted by the superscript ~ from now on. The rebinding process can be formulated as

~f hys ¼ felðεÞ #
X

j

q
 

fel # fel;j

!h

fel;j # fel;j#1
i

(23)

where fel;j denotes the force imposed on the structure by the elastic rubber matrix at the j-th breaking point and qðxÞ is the
Heaviside step function. Take into account, that ~f hys becomes zero if fel ¼ fel;j cj. Assuming that the rebinding occurs

completely random, but on average at a critical stress of ~f c ¼ 〈fel;j # fel;j#1〉j, the intervals between two rebinding events

Dj ¼ fel;j # fel;j#1

are distributed exponentially according to

Fig. 4. (a) Scheme of the proposed hysteresis mechanism: Rubber-filler structures are stretched up to a critical force (sc) at which they are on average breaking

down. Then they immediately rebind and can be stretched again. The residual stress of these structures at zero strain creates set stress. (b) The rebinding process

can be modeled as diffusion in a periodical potential driven by an external force f.
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PDðDÞ ¼
1
~f c
e#D

2

~f c (24)

This assumption is in accordance with the statistical nature of the rebinding events, see Fig. 4. By rewriting Eq. (23) in

terms of Dj and doing the average according to PD in Fourier space we can express Eq. (23) in a convolution-like manner

~f hys ¼
Z

#∞

2

d20e#ð2#2
0Þ
2

~f c
dfelð20Þ
d20

with 2 ¼
Z

jdfelj ¼
Z

#∞

t

dt0
3

3

3

_f elðt0Þ
3

3

3 (25)

wherewe introduced the intrinsic time 2, which is monotonically increasing but stays constant when elastic stress is constant.

The derivation is lengthy, but can be found in Appendix B. Eq. (25) can also be understood intuitively: Having an ensemble of

randomly rebinding structures with same ~f c, there will be structures which are highly stressed (large D) and slightly stressed

(small D) present at the same time, weighted by Eq. (24). So on average, the responsewill be the force history, weighted by an

exponential memory kernel which is a direct consequence of Eq. (24).

In reality therewon't be just one critical force ~f c within the material, because of its geometric and energetic complexity. So

the kernel isn't necessarily an exponential as in Eq. (25) but could be any function decreasing sufficiently fast resulting from

an average over the single critical force ~f c. In general, this can be expressed by introducing the kernel k〈~f c〉
ð2Þ.

fhys ¼
Z

#∞

2

d20k
〈~f c〉
ð2# 2

0Þdfelð2
0Þ

d20
(26)

2.4.1. Memory Kernel - averaging over microscopic structure

Now we assume, that there is a typical energy scale Eb (e.g. a monomer-filler or filler-filler bond energy) which has to be

overcome to break a rubber-filler structure. This energy has to be equal to the work done on the structure. Introducing the

critical stress ~sc ¼ ~f c=
~A we get:

Eb ¼ ~f c
~d ¼ ~sc

~A~d ¼ ~sc
~V/~sc ¼

Eb
~V

where ~A represents the molecular cross section, ~d the force-induced displacement and ~V the excited volume of the structure.

We choose an exponential distribution of the excitation volumes with average volume V to ensure a converging kernel. The

energy barrier Eb is assumed to have a characteristic constant value, which can be considered as the average of a peaked

distribution. Integrating over the exponential (single critical stress) kernel results in a power-law kernel

k
〈~f c〉
ð2Þ ¼

Z

0

∞

d~V
1

V
e#

~V
Ve
#2 ~V

Eb ¼ 1

V

Z

0

∞

d~Ve
#~V

'

2

Eb
þ1

V

(

¼ 1

1þ 2V
Eb

¼ 1

1þ 2

sc

where we introduced the average critical stress sc ¼ V
Eb
. Finally, the hysteretic part of the stress can be expressed as

fhys ¼
Z

#∞

2

d20
1

1þ 2#20
sc

dfelð20Þ
d20

with 2 ¼
Z

jdfelj ¼
Z

#∞

t

dt0
3

3

3

_f elðt0Þ
3

3

3 (27)

Up to here it remains unclear which continuum mechanical stress measure corresponds to fel. The first Piola Kirchhoff

stress is calculated with respect to the reference cross section, thus being similar to a force. Additionally, the physical idea is

based on reforming entities, such that the force affecting an entity should not depend on the strain dependence of its cross

section. It is better understood as an ensemble of springs rather than a continuum. For these reasons, we identify fel with a

scalar measure of the first Piola Kirchhoff stress

fel ¼ Pel (28)

2.4.2. Temperature- and rate dependency

We can imagine the breaking and rebinding mechanism as a stress-induced hopping over a (in first approximation pe-

riodical) potential barrier, as visualized in Fig. 4b. The crossing of the potential barrier Eb is driven by an external force f. If no
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force is present, there should be the same amount of un- and rebinding events. According to Kramer the hopping rate can be

approximated as (H€anggi et al., 1990)

r± ¼
D

2pkBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jU 00 ðaÞjjU 00 ðbÞj
q

e
#EbHfd

kBT

with diffusion constant D and second spatial derivatives of the potential U in the minimum x ¼ a and maximum x ¼ b. Eb is

the barrier height and d the average distance between two minima. The force f can be calculated once again as f ¼ scA, with

the average molecular area of the structure A. Again we introduce the average excited volume

V ¼ Ad

In fluids and polymers on length scales below the distance of network nodes the diffusion constant is DfkBT , so we

simplify the equation to

r± ¼ r0e
#EbHscV

kBT

with r0 being the jump rate without any potential (athermal limit). The net jump rate in force direction is the difference of

hopping forward and hopping backward rate

r ¼ rþ # r# ¼ r0e
# Eb

kBT

0

B

@
e
þscV

kBT # e
#scV

kBT

1

C

A
¼ 2r0e

# Eb
kBTsinh

'

scV

kBT

(

(29)

From Eq. (29) it is obvious, that an increase in the applied critical stress sc yields a larger escape rate. But sc was defined to

be the average stress at which the hysteresis generating structures break down. So the formula should be interpreted the

other way: sc has to be chosen such that the escape rate or escape timescale is the same as the rate of deformation or

timescale of deformation, respectively. The timescale of deformation can be expressed as rd ¼ aRd, where Rd

:

%
s

;

is the

deformation rate from the sample and a

:

1
%

;

is an unknown proportionality factor.

Given that, we can solve for sc

scðRd; TÞ ¼
kBT

V
sinh#1

0

B

@

aRd
2r0

e
Eb
kBT

1

C

A
(30)

z
1

V
ðEb þ kBTlogðaRd=r0ÞÞ (31)

where the approximation holds if the forces scV[kBT are much larger than thermal energy. The logarithmic dependence

already indicates that the hysteresis part is only weakly dependent on deformation rate Rd. Equation (30) relates set stress and

hysteresis to temperature and rate via 3 parameters, V, Eb and a=r0, which can be determined on one single sample with

multihysteresis experiments at different rates and temperatures. We want to point out, that this mechanism relies on a

constant-velocity v deformation on amicroscopic scale, where the hopping timescale t and the hopping distance d are related

by v ¼ d=t ¼ dr. It doesn't capture the relaxation of a stressed non-equilibrium state into the energy minimum (force induced

hopping in the time domain).

2.5. Total stress

The hysteretic stress is calculated using the elastic Piola Kirchhoff stress. With Eq. (27) we get

 

Phys

!

ij
¼

Z

#∞

2

d20
1

1þ 2ij#20ij
sc

dðPelÞij
 

2
0
ij

!

d20
with 2ij ¼

Z

#∞

t

dt0
3

3

3

3

 

_Pel

!

ij
ðt0Þ
3

3

3

3

(32)

with Pel defined by Eq. (20) and Eq. (21). The total stress is the weighted sum of both contributions

P ¼ ð1# fÞPel þ fPhys (33)
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f is a fitting parameter, which should be proportional to the true filler volume fraction 4. It measures the fraction of the

composite material responsible for elastic or hysteretic response. An example is shown in Fig. 5. Due to the convolution in Eq.

(32) the model is not coaxial.

2.6. Energy dissipation

Energy dissipation can be calculated straightforward at every given point in stress-strain history. As the structure breaking

is driven by the external force, the breaking energy has to be equal to the mechanical work applied to the hysteretic part. In

fact, this is not entirely true but a good approximation: From the averaging done to Eq. (27) it is clear, that some of the

structures are assumed to have breaking stresses larger than the applied stress. These structures contribute elastically. Tt can

be calculated using the contraction of the dissipative component of the first Piola-Kirchhoff stress Phys and the deformation

gradient F (Holzapfel, 2000)

dWhys ¼
 

Phys

!

ij
dF ji ¼

 

JF#1shys
!

ij
dF ji (34)

The other dissipative component is a consequence of the Mullins-effect. The energy lost by breaking the fraction of highly

stressed polymer-filler domains in the amplification factor range ½Xmax # dXmax;Xmax) is, up to first order

dWmul ¼ #
Z

Xmax#dXmax

Xmax

dX0PðX0ÞW
 

X0I1;X
0I
'! ¼ #PðXmaxÞW

 

XmaxI1;XmaxI
'!
dXmax (35)

Using Eq. (18) we can express dXmax in terms of the change of the maximum of the first invariant, which can be directly

related to the strain tensor, so we get

dWmul ¼ PðXmaxÞW
 

XmaxI1;XmaxI
'! n
%

gþ I1
&2
dI1;max (36)

The total dissipated energy is the sum of both contributions

dWdiss ¼ dWhys þ dWmul (37)

An example is presented in Fig. 6. There, the dissipated energy is compared to the stored energy corresponding to thework

integralWmech ¼
Z t

0
dt0sðt0Þ _lðt0Þwhich is equal to the dissipated energy at the closure of each cycle. Take into account, that it

looks like there is energy production at the turning points of each cycle. This is due to the energy stored in robust structures,
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Fig. 5. Example with arbitrary model parameters. The elastic part (red) shows stress softening and stays on the same curve after the first cycle. The hysteretic part

(blue) exhibits a stress-offset generating set stress. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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which haven't been broken within the cycle and are naturally included by spacial- and temporal averages over the primitive

(exponential) memory kernel given in Eq. (25). Although this effect is rather small it prevented us from doing a rigorous

thermodynamic validation via the Clausius-Duhem inequality, because this elastic contribution cannot clearly be separated

from the hysteretic part.

2.7. Parameter overview

In total the basic model is defined by 7 fitting parameters, all of which have physical meaning.

+ Gc is the crosslink modulus, a measure for the chemical and physical crosslink contribution to the total modulus. The

crosslink modulus scales the upturn (high strain) part of the stress-strain curve.

+ Ge measures the contribution of trapped (non resolvable) entanglements to the modulus. This contribution is visible at

small strains.

+ n is the distance, measured in segment lengths, between two trapped entanglements. It can be regarded as an inverse

measure of network density. In the original tube model nz40 for sufficiently crosslinked samples. Physically, the stress-

strain curve diverges when chains become fully stretched, such that a small n yields an early diverging stress-strain curve.

+ g defines the all time maximum amplification factor via XmaxðI1;max ¼ 0Þ ¼ n=g.

+ f scales elastic and hysteretic stress contributions and thus the amount of hysteresis. In this theory all inelastic effects are

attributed to the presence of filler, such that this quantity should scale with filler content.

+ c is the exponent of the amplification factor distribution. With rising filler content it should decrease, because more filler

results in more constrained domains. A smaller exponent also yields a more pronounced Mullins effect.

+ sc is the average critical stress at which rubber-filler structures break down and reform. It scales the amplitude de-

pendency of the hysteretic stress component.

3. Experimental methods

3.1. Sample preparation

To identify model parameters and check the foundations of the model several model compounds weremade. Carbon black

(CB, grade N339) as well as silane (Si-266) coupled silica was used (Si, grade U7000) together with different rubbers, i. e.

amorphous Ethylene Propylene Diene Rubber (EPDM, trade name Keltan 4450) and Styrene Butadiene Rubber (SBR). Sulfur

(S) curing with accelerator CBS (N-Cyclohexyl-2-benzothiazole sulfenamide) and coactivator DPG (Diphenyl Guanidine) as

well as Dicumyl Peroxide curing (DCP) in combination with Triallyl Isocyanurate (TAIC) was used. For aging protection N-

Isopropyl-N0-phenyl-p-phenylenediamine (IPPD) or 2,2,4-Trimethyl-1,2-Dihydroquinoline (TMQ) was added to sulfur or

peroxide compounds, respectively. The complete compounds in units of phr (parts per hundred rubber) are given in Table 1.

Compounding was carried out using an internal mixer (Werner and Pfleiderer GK 1,5E) at 50 rpm. After a relaxation period of

at least 16 h samples were vulcanized up to t90% time (measured with a vulcameter) at temperatures of 150
.
C (sample SBB),

160
.
C (sample S/CB, S/Si) and 170

.
C (sample P/CB).
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Fig. 6. Stored (blue) and dissipated (red) energy of material P/CB (see Fig. 11) according to Eq. (37) for the shown strain protocol. As expected stored energy and

dissipated energy coincide at the closure of each cycle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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3.2. Measurement procedure

Multihysteresis measurements were carried out using a Zwick 1445 universal testing facility. Multihysteresis means, that a

sample is stretched/compressed to different strain levels several times (mostly 3 to 5 times) with a constant rate of

displacement. Axially symmetric dumbbell samples (15 mm diameter) or flat S2 samples were used for uniaxial testing. S2,

pure shear and equibiaxial samples and the measurement gear can be seen in Fig. 7. Strain was recorded with an optical

system, tracking two reflecting points on the samples surface.

To check Eq. (30) uniaxial multihysteresis tests are performed from at least 0%e60% strain in a heat chamber after at least

1 h of heating time. Sometimes large strains couldn't be tested, because some samples collapsed. The three compounds were

measured at rates and temperatures given in Table 2. Every data point was obtained using a fresh dumbbell-sample.

Table 1

Composition of the investigated model compounds in phr (per hundred rubber).

Short name Polymer Filler ZNO St.Ac. X-Link/Accel. Anti-Age

EPDM S-SBR/BR N339 U7000/Si-266 S CBS DPG IPPD

S/CB 100 50 3 1 1.8 2.4 1.5 1.5

S/Si 100 50/5 3 1 1.8 2.4 1.5 1.5

SBB 85/15 60 3 1 1.7 2.5 1.5

DCP TAIC 70% TMQ

P/CB 100 50 1.5 1.5 1.0

Fig. 7. Measurement setup for uniaxial (S2 sample) deformation (a), equibiaxial deformation (b) and pure shear (c). In the background of (b) and (c) the heat

chamber used for measurement at elevated temperatures is visible.

Table 2

List of speeds and temperatures together with corresponding sc fitting results for all samples.

Rc

h

mm
min

i

T [
.
C] sc [10

#1 MPa]

S/CB S/Si P/CB

20 23 1.43 2.17 4.10

50 1.10 1.29 2.20

70 0.82 1.15 1.53

110 0.65 0.89 0.93

100 23 1.52 2.69 4.86

70 0.95 1.09 1.94

90 0.74 1.16 1.58

110 0.74 0.88 1.1

500 23 1.88 3.11 5.95

50 1.56 2.11 3.67

70 1.22 1.77 2.63

110 0.88 1.67 1.63
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4. Results and discussion

4.1. Variation of materials and deformation modes

The model was fitted to Eq. (33) via an unconstrained Marquardt-Levenberg Algorithm. Except for resampling the data to

10,000 points to ensure monotonically increasing/decreasing strains no pretreatment was done. Dependent on the sample

the data points defining a new maximum strain level (virgin curve) were excluded from fitting.

Several fits are presented in Fig. 11, showing very good agreement with experiment. The model isn't able to reproduce

continuous damage effects, hence there is an almost immediate transition from the virgin curve (before stress softening) to

a steady cycle. The fits of sulfur and peroxide cured EPDM stress-strain data, shown in Fig. 11a and b, were done on data

obtained by measurements on dumbbell samples. At zero strain there is a residual set stress, which is underestimated by

the fit (see inset). Except of this, fit quality at larger strains is very good. Fig. 11c was obtained using a dumbbell sample, too,

but measured in stretching, compression and internal cycles (decreasing strain levels). Except of the additional stress

softening in compression, all characteristics including internal cycles are captured well by the model. In Fig. 11d a flat S2-

sample was used. In the graph this is visible, because the down cycle stops at zero stress to avoid a bending of the sample.

The fit successfully reproduces the measurement up to 400% strain. The inset shows, that there are deviations at strains

below 40%.

Fig. 8. (a) Fits of uniaxial stress-strain measurements of EPDM samples with 10 phr and 60 phr N339 carbon black. (b) Corresponding fit parameters of samples

with 0, 10, 20, 40, 50 and 60 phr carbon black against the true filler volume fraction 4.
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As described in Section 3.1 samples with 0, 10, 20, 40, 50 and 60 phr carbon black were prepared. All samples could be

stretched up to at least 300%. Fitting was done up to 300% using the same set of starting parameters for all samples. For the

unfilled rubber the non-affine tube model with b ¼ 1 was used, see Eq. (9). In Fig. 8 fits for the 10 phr and 60 phr samples are

shown, together with the fitting parameters for all samples. The crosslink-modulus Gc is increasing with increasing amount of

carbon black. This is expected due to the additional crosslinking points provided by the fillers surface. Neglecting the unfilled

sample, the entanglement modulus Ge is more robust with regard to carbon black concentration but decreasing with

increasing filler load. Probably filler particles are preventing entanglements. The distance between network nods n as well as

the weighting parameter f are increasing almost linearly with filler content. The increase of the latter can be understood

intuitively, because all hysteresis is attributed to the presence of filler. The linear increase of n will be discussed later. The

distribution exponent c is decreasing with filler content, which is reasonable because a greater amount of filler will create a

wider distribution of amplification factors. The parameter g determining the global maximum amplification factor via

XmaxðI1;max ¼ 0Þ ¼ n=g is decreasing with filler content, increasing the maximum amplification factor. Additionally, g de-

termines the occurrence of the upturn. It can be predicted by setting I1 ¼ g (see Eq. (18)). For the sample with 10 phr carbon

black this yields lz2:1, for the 60 phr filled sample lz1:75, which roughly fits the visual impression in Fig. 8a. The critical

stress of breaking structures sc decreases with increasing filler load. An interpretation is difficult, because the exact molecular

origin is not known. Probably hysteresis for slightly filled samples is due to softer rubbery structures while at larger filler

volume fractions more brittle filler dominated structures are the main source of hysteresis.

Additionally, samples with varying amount of curatives were prepared. As before, an amorphous EPDM filled with 50 phr

N339 carbon blackwith sulfur amount between 0.3 and 1.8 phr was used. Accelerators were scaled proportionally, see Table 1.

In addition to uniaxial tests pure shear and equibiaxial measurements were carried out for each curing agent level. Fitting was

done to all deformation modes at once (see Eq. (22)), thus generating one universal parameter set. Examples for weakly and

strongly crosslinked compounds are shown in Fig. 9. The set of fitting parameters is rather robust against variation of initial

parameters and the most physical set almost always gives the best fit. This may be due to the physical basis of the model,

being a strong argument for the correctness of the assumptions. Fitting parameters for all compounds are presented in Fig. 10.

The crosslinkmodulus is monotonically increasing with sulfur concentration. In contrast, the entanglementmodulus is rather

Fig. 9. Fit to several simple deformation modes for a weakly crosslinked sample (0.68 phr sulfur) and strongly crosslinked sample (1.8 phr sulfur).
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constant. The distance between network nods n is monotonically decreasing, as can be expected from physics. f is almost

constant, matching the constant filler volume fraction. The exponent of the amplification distribution c as well as g are almost

constant, too, probably for the same reason. Critical stress sc is decreasing, corresponding to looser, probably almost viscous

structures at less dense networks. All parameters with an intuitive response to a denser network show the expected behavior.

In general, the parameter f scaling the elastic and inelastic part is too large to identify it with a filler volume fraction.

Nevertheless, it has been shown, that a proportionality of true filler volume fraction and f can be found.

From Fig. 11 it can be seen, that fitting parameters crucially depend on fitting range and/or deformation mode (e. g.

compression in 11c). In particular, the moduli are larger and n is smaller for low strain fits, e. g. nz15 for Fig. 11a and b in

contrast to n / 100 for large strain fits as given by Figs. 11 and 8b. This indicates, that simple uniaxial measurements to low

strains probably don't provide enough information to fully describe the materials mechanical behavior. Fits of the non-affine

tube model to unfilled sufficiently crosslinked rubbers result in nz20…60 (Syed et al., 2016; Klüppel et al., 2001) (depending

on rubber type), being far lower than n obtained from large strain fits with the newmodel. So another interpretation may be

appropriate: Looking at the energy density Eq. (9) it can be seen, that, from amathematical point of view, amplification can be

envisioned as modulus amplification and network condensing

Gc/XGc Ge/XGe n/n=X

With this more general idea in mind the large fitted n is just the distance between entanglements of the least amplified

domains. In fact, Ducrot et al. found that superimposing differently prestretched networks greatly enhances the polymers

toughness and adds pronounced stress softening, comparable to the presence of filler (Ducrot et al., 2014). Their claim is, that

themost prestretched (minority) subnetwork are limiting stress by successively breaking downwith increasing load, whereas

the lesser stretched (majority) networks prevent crack formation. This mechanism, although supposed here to be induced by

filler, is formally implemented via the breakdown and reorganization of domains described by Eq. (18). Moreover, hysteresis

can be found in unfilled polymers as well, e. g. crystallizing polymers (e. g. natural rubber) and thermoplastics (Srivastava

et al., 2010). Especially in the latter case it can be attributed to a rearrangement of structure induced by external force.

This is formally similar to the hysteresis mechanism proposed here.

The new interpretation is also more compatible with findings of Rault (Rault et al., 2006) who has shown by means of

NMR, that microscopic strain amplification alone isn't able to explain the great increase in modulus (macroscopic amplifi-

cation factor). He concludes, that additional filler induced crosslinks make up for the missing part of the modulus, which is

implemented here as the increase in crosslink modulus Gc.

Wulf and Ihlemann (2015), (Wulf, 2016) presented simulations of a self organizing abstract rubber model, where stress

softening and hysteresis arise naturally as an emergent phenomenon on the basis of a small set of physical interactions. The

model presented here implements the same ideas in an analytically treatable manner, although a splitting of macroscopic

reorganizations (breakdown and reorganization of domains) and microscopic reorganizations (breakdown and rebinding of

smaller structures) had to be done.

Fig. 10. Fitting parameters of parallel fitting to uniaxial, pure shear and equibiaxial measurements. The EPDM compound is filled with 50 phr N339 carbon black.

Accelerators (DPG, CBS) are scaled proportionally.
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4.2. Temperature and rate dependency

To check the validity of Eq. (30) several dumbbell samples of compound S/CB, S/Si and P/CB were investigated at different

temperature and strain rates (see Table 2). Before stress-strain measurement, samples S/Si and P/CB were stored at 120
.
C for

8 h in an air ventilated oven to ensure that every major chemical reaction occurring below 120
.
C has taken place. Samples S/

CB were stored at 130
.
C for 20 h. From the theory described in Section 2.4.2 temperature and rate effects are implemented

only via scðRd; TÞ, see Eq. (30). To check the validity of this idea, all parameters which are assumed to be independent on

temperature and rate are fixed to isolate the effect of temperature and rate on sc. These are n;g;c;f. Crosslink- and entan-

glement modulus Gc and Ge can be temperature dependent, so they are left free for fitting. The fixed parameters are deter-

mined by performing a completely free fit of data sets measured at 100 mm/min and temperatures of 23
.
C, 70

.
C and 110

.
C

and taking the average of the fit parameters. They are given in Table 3. Some samples showed significantly reduced elongation

at break at elevated temperatures. For this reason all samples of type S/CB were fitted up to 60% strain, samples S/Si up to 80%

and samples P/CB up to 140% strain. Thermal expansion was taken into account by using an thermal expansion coefficient of

5:5$10#41K, which represents an average value for moderately filled elastomers (Mark, 2007).

In Fig. 12 a constrained fit with fixed parameters n, g, c and f for sample P/CB is presented, showing very good agreement

with data over a wide range of temperatures and deformation rates. It can be seen, that hysteresis decreases with increasing

temperature and lower deformation rates. The free fitting parameters Gc, Ge and n are given in Fig. 13. The fit of Eq. (30) to sc
obtained from fits to different rates and temperatures is shown for sample P/CB and S/CB in Fig.13a. Detailed numerical data is

Fig. 11. Fit of the model to several uniaxial measurements. (a) Sulfur-cured EPDM/carbon black, measured on a dumbbell. (b) Peroxide-cured EPDM/carbon black,

measured on a dumbbell. (c) Sulfur-cured SBR/BR/carbon black with compression and with internal cycles (decreasing strain levels), measured on a dumbbell. (d)

Sulfur-cured EPDM/silica, measured on a S2-sample. Fitting parameters are shown in the insets. The influence of every parameter on the fitted curves is explained

in Section 2.7.
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given in Table 2. It turns out, that sc increases with strain rate and decreases with temperature. With R2 ¼ 0.896 for P/CB and

R2 ¼ 0.920 for S/CB the model describes the experiment well, given the simplicity of the assumptions. The moduli are pre-

sented in Fig. 13b with Ge being rather temperature insensitive and Gc showing a significant trend towards larger values with

increasing temperature. The increase of the cross-link modulus Gc is in line with the entropic character of rubber elasticity as

given by Eq. (12). However, for the topological constraint modulus Ge, which should also scale linear with the absolute

temperature T, a second effect showing the opposite trend plays a role, which delivers the apparent temperature

Table 3

Fitting results of Eq. (30) to data given in Table 2. Average Ge and line fit data of Gc from Fig. 13b as well as set of fixed parameters for

all samples.

S/CB S/Si P/CB

V [nm3] 375 ± 77 182 ± 53 106 ± 26

V1/3 [nm] 7.2 ± 0.5 5.7 ± 0.6 4.7 ± 0.4

Eb [kJ/mol] 104 ± 23 83 ± 26 118 ± 31

logðr0=aÞ½) 30 ± 6 25 ± 8 38 ± 10

R2 [] 0.920 0.804 0.896

Ge [MPa] 2.35 1.44 0.94

a [MPa] #0.201 #0.236 #0.057
b [MPa/K] 0.0022 0.0018 0.0012

Gc [MPa] aþb T
f[] 0.55 0.37 0.42

g[] 0.41 0.87 1.26

c[] 2.43 2.51 2.79

n [] 7.92 10.8 14.4

Fig. 12. Constrained fits of sample P/CB for different speeds and amplitudes. g ¼ 1:26, f ¼ 0:42, n ¼ 14.4 and c ¼ 2:79 were kept fixed at the average values

obtained from previous fits. Hysteresis decreases with increasing temperature and increases with larger deformation rate. Free fitting parameters are presented in

Fig. 13.
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independency. This so-called constraint release effect is described by the parameter b in Eq. (12) and considers long-time

relaxations of the network, which are more pronounced at high temperatures (Heinrich et al., 1988). It appears that this

parameter, which can assumed to be close to b ¼ 1 for sufficiently cross-linked networks, decreases slightly with increasing

temperature delivering the observed temperature dependence of Ge. Additionally, there could be thermal effects acting on the

amplifying filler network, which aren't modeled and thus are taken into account by a variation of the moduli.

The fitting results including the active volume V, the length scale V1/3, the barrier height Eb and the logarithm of the

modified stress-free jump rate logðr0=aÞ, which can be viewed as a measure for the mobility of the particles in question are

given in Table 3. It turns out that the length scale is near 5 nm, which may be identified with the average size of filler-filler

contacts. The barrier energy of all samples is around 100 kJ/mol, which is close to the adsorption energy of small hydrocarbon

molecules. In particular the adsorption energy of 1-butene on carbon black is about 24 kJ/mol (Klüppel et al., 2016), such that

the result hints toward rebinding events of small chain segments on the filler particles. Alternatively, it could be identified

with the adhesion energy of filler-filler contacts. Note, that these contacts are mediated by strongly bound polymer chains at

the filler surface forming some kind of immobilized polymer bridges between adjacent filler particles (Vilgis et al., 2009;

Klüppel, 2003). It has to be mentioned, that the results are weakly dependent on fitting range and the choice of fixed pa-

rameters. Nevertheless it is remarkable, that all parameters with an obvious physical meaning have plausible values.

To show the ability to describe temperature- and rate dependent rubber behavior simulations of the response of sample S/

CB are shown in Fig. 14. There, only the fixed set of parameters, the scmodel function (Eq. (30)) and the linear approximation

Fig. 13. (a) Fit of Eq. (30) to sc obtained from measurements at different rates and temperatures for sample P/CB (left) and S/CB (right). (b) Crosslink and

entanglement modulus Gc and Ge of the same measurements. Gc is significantly dependent on temperature, whereas Ge is not. The dependence on rate (stacked

symbols) is less pronounced and less systematic.
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to Gc was used. As for the other systems S/Si and P/CB overall agreement to experiment is very good. The deviations in the

central 70 +C plot originate from an outlier in Fig. 13b.

5. Conclusion and outlook

A new model has been developed that accurately describes stress-strain data for various compounds and deformation

states, even up to large strains/compressions and internal cycles. An energy functional including stress-softening is provided,

which greatly simplifies calculations and allows to use the model for methods requiring stored energy. Hysteresis and set-

stress are included via a rate- and temperature dependent rebinding mechanism. It is implemented using a convolution

operation, which is inherently stable and performant. It's speed, accuracy and stability make the model suitable for FE-

implementation.

The model has been derived using physical plausible assumptions about the materials microstructure. This approach

guarantees the consistency of the equations and ensures, that fitting parameters show an expectable and physically

reasonable behavior. This has been proven by successively increasing filler content or curing agent level while fixing all other

quantities. The former yields a rising crosslink modulus, larger fraction of hysteretically active material and an overall more

amplified material. The latter mainly results in an increase of crosslink modulus and a decrease of the distance between

network nods while quantities describing the condition of the filler network stay constant.

Finally it was shown, that temperature and rate dependency can be modeled by a simple force driven diffusion process,

interrelating both parameters on a basic physical level. Fitting results indicate, that hysteresis is generated on the nanometer

scale at energy levels of around 100 kJ/mol. The results show, that upcoming modeling approaches should incorporate this

close connection of rate (or time) and temperature rather than modeling both phenomena separately.

The fitting parameter determining the average spacing of network knots n turns out to be far larger than expected. This can

be explained by assuming domains to be differently “crosslinked” in contrast to be differently amplified, which fits concepts

explaining toughening and stress softening by the assumption of “sacrificing entities” (Ducrot et al., 2014). This is also in

accordancewith recent simulations viewing rubber behavior dominated by emergent reorganization effects rather than being

explainable by averaging microscopic structure (Wulf and Ihlemann, 2015; Wulf, 2016).

It should be possible to generalize rate and temperature-dependency of hysteresis and set stress to a more general

relaxation mechanism in the time domain formulated by differential equations also taking into account continuous damage

effects. The foundations are already worked out and will be addressed in an upcoming publication. Additionally, anisotropic

stress softening shall be included, which is a distinct feature of particle-reinforced elastomers (Machado et al., 2012).

Mullins effect is known to be reversible at elevated temperatures (Diani et al., 2009). Since hysteresis was shown to be

temperature sensitive as well, both phenomena probably can be modeled by the same physical process, but on different

scales. Given that, description of the whole spectrum of rubber characteristics by an underlying universal mechanism should

be possible.
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Appendix A. Energy density

Following Eq. (9)
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Here the term before the integral is the normalization of the X-distribution function PX (X),W denotes the antiderivative of

the integrand, which is given as
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2F1ða; b; c; zÞ is a hypergeometric function, as defined in (Weisstein, 2016):

2F1ða; b; c; zÞ ¼
GðcÞ

GðbÞGðc# bÞ

Z

1

0

tb#1ð1# tÞc#b#1

ð1# tzÞa
dt (A.4)

with ReðcÞ>ReðbÞ>0∧jargð1 " zÞj<p

with the Gamma function GðxÞ. From parameter comparison of Eq. (A.3) and Eq. (A.4) it is easy to see, that

a ¼ 1 b ¼ 1 " c c ¼ 2 " c z ¼ 1

n
XI1

For this parameter combination the definition Eq. (A.4) becomes

2F1ð1;1 " c;2 " c; zÞ ¼ ð1 " cÞ
Z
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The derivative respective z can then be simplified by product integration

d
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With this identity the integrand in Eq. (A.2) follows from Eq. (A.3) by differentiation.

Appendix B. Derivation of the exponential convolution from discrete rebinding events

We define the Fourier transform to be symmetric
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where the latter equation is called the convolution theorem. For better readability, the ~ is omitted and fourier transforms are

identified by the argument. We start off with a general analytical expression for a variable xðtÞ, which is evolving as externally
prescribed by x(t), but is set to zero at coordinates ftjg, where t shall denote a monotonincally increasing, time-like coordinate
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(B.4)

with the step function q(t"tj). The most obvious example would be a spring, where the zero elongation position is shifted at

ftjg such, that the stress/strain is zero at this point. It corresponds to the special case of Eq.(23) by setting x(t) ¼ t.

This expression can be Fourier-transformed1
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Next we assume, that the rebinding events occur completely random. When randomly placing N events on a rod with

length Nt ¼ t, then the probability density of event-spacings D is given as

PðDÞ ¼ 1

t
e"D=t (B.7)

where t is the average spacing between rebinding events.

Now we can easily construct the tj from a collection of positive intervals fDjg
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where t ¼ 0 can be set arbitrary. The goal is now to get an average expression of Eq. (B.6) in terms of over the intervals fDjg,
like
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To do so, let's take a closer look at a single averaged exponential
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1 In fact, a d(u) term coming from the Fourier transform of the step function is omitted here. It turns out to be zero after doing the average, as can easily

be seen by analogous calculation.
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The calculation is now straightforward, going on from Eq. (B.9). Using tj"1 ¼ tj " Dj
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Let's now take a closer look at the expressions in the []-bracket. We start by noticing, that there are infinitely many

rebinding events before and after t ¼ 0, because we assume a stationary infinite process. Afterwards the geometric series
PN
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1"a is used
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The two terms in the brackets just differ in the sign of the complex number. Hence, they can be rewritten in polar form,

yielding

¼ lim
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2
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The prefactor has the shape lim
N/∞

1
xð1þx2ÞN , becoming zero for every xs0. Therefore, the expression can be expanded up to

linear order in ðu0 " uÞt. Using arctanðxÞzx this exactly results in the sinc-representation of the Dirac d-distribution
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The relation derived above can now be used to greatly simplify Eq. (B.15). We end up with the surprisingly simple result
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which is a product of a Maxwell-like element with the original data. In time-space, the product can be translated into a

convolution
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being exactly the generalization of Eq. (25).
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ABSTRACT

The surface of various carbon black and silica grades is characterized via static gas adsorption using different gases.

From decomposition of the adsorption isotherm into distinct energetic contributions, the adsorption energy distribution as

well as the surface area are obtained. The decomposition is done by an iterative expectation maximization algorithm

specifically designed for this problem. It is found that the adsorption isotherms of the various gases differ significantly in the

low-pressure regime, leading to characteristic energy distributions with distinct maxima. As expected, the mean adsorption

energy generally increases with the cross section of the gases, and systematic deviations are found reflecting the polar and

dispersive interaction characteristics of silica and carbon black, respectively. The surface fractal dimension of two different

carbon black grades is estimated using the yardstick method. The obtained values 2.6 and 2.7 agree with previous findings

that the carbon black surfacemorphology is very rough. The adsorption of CO2 on both carbon blacks delivers unexpectedly

low values of the monolayer coverage or specific surface area, indicating that mainly high energetic sites of the surface are

covered. In consequence, compared with N2, a relatively high value of the mean adsorption energy is found. For both

investigated silicas, themean adsorption energy scales with the quadrupolemoments of CO2 andN2, which is indicative of a

large polar contribution to interaction energy. [doi:10.5254/rct-18-82628]

INTRODUCTION

Carbon black and silica are widely used filling materials in the rubber industry, greatly

improving the toughness and wear resistance of elastomers. The latter, in particular, has become

more important in recent years as a crucial component of environmentally friendly tires. This is

related to a tailor-made polymer–filler interaction via silane coupling or covering agents,1 which

allows the control of viscoelastic hysteresis losses for improved rolling resistance and wet traction

of tires. The reinforcement mechanism of fillers is still under discussion. Lorenz et al.2 assume the

filler network stores and dissipates energy by constantly breaking down and reforming, while other

authors treat fillers as binding points, allowing the elastomer to attach and detach under load.3Some

other works treat the filler–polymer interaction in a less specific way, describing it as a large-scale

reorganization phenomenon.4,5 The low-strain amplification was shown to mainly depend on filler

structure.6 In most approaches, the affinity of polymer and filler particles is an important ingredient

that can be quantified by the filler’s specific surface area and surface activity (e.g., binding energy of

filler and polymer). Both quantities control polymer–filler phase bonding and the strength of the

filler–filler interaction. For carbon black, they are affected by the surface roughness on small-length

scales and the energy site distribution in relation to the polymer matrix under consideration.7While

this is generally true also for silica, the surface chemistry (especially silanol groups) may be

regarded as the key factor determining the polymer–filler interaction.8,9 It was demonstrated by

equilibrium gas-adsorption measurements on different carbon black grades that the surface

roughness, characterized by the surface fractal dimension, is similar for all carbon blacks

irrespective of their specific surface area and DBP number.10 These results confirm previous

findings that all furnace black grades adsorb the same amount (or number) of polymer chains per

unit surface area.11 Therefore, the contribution of the surface roughness cannot explain specific

reinforcing effects caused by different carbon black grades, andmore attention is given to energetic
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contributions of the surface activity in explaining mechanical and electrical properties of carbon

black–filled elastomers. Nonequilibrium inverse gas-chromatography investigations performed in

the 1990s12 indicate a relationship between the dispersive surface energy contribution and the

primary particle size and deliver hints for a heterogeneous surface energy distribution. In addition,

(grafted) silica was investigated,9,13 highlighting the difference in adsorption of unpolar

hydrocarbons and polar probes such as benzene. Another way to characterize surface activity is

contact anglemeasurements. Using theWilhelmymethod, silica samples exhibit large polar surface

energy components, while carbon black interacts almost purely dispersively.8

Previous studies on carbon black10 and graphenes14 have shown that equilibrium gas

adsorption is able to give information about specific surface area and surface activity as well as

about energetic andmorphological roughness. In this work, we want to provide an overview of this

method and focus on the influence of different gases on the adsorption characteristics of various

silica and carbon black grades. The difference between silica and carbon black with respect to their

more or less dispersive and polar interaction characteristics is especially highlighted. The gases

vary in size (molecular area) and polarity. They are chosen to give information about the dispersive

and polar interaction characteristics of adsorbed polymer chains on carbon black and silica,

respectively.

THEORY

A simple theory describing adsorption of multiple gas layers on energetically homogeneous

surfaces is the extended BET theory named after its inventors Brunauer Emmet and Teller. It is

given by

hðh;WÞ ¼ N

Nm

¼ 1

1ÿ h
ÿ 1

1þ ðKFGðW; hÞ p0 ÿ 1Þ h with h ¼ p=p0

where h(h,W) is called the surface coverage ranging from 0 (no coverage) over 1 (monolayer) to

values.1 for multilayer adsorption.N is the adsorbedmolar amount of gas per unit pass of sample.

Accordingly, Nm is the molar capacity of a gas monolayer per unit mass given in mol/g. The

pressure p0 (given in kPa) is the saturation pressure, so h¼p/p0 is called the dimensionless relative

pressure. The constantKFG (given in 1/kPa) is defined in terms of the Langmuir constantKL, which

can be approximated15 as

KLðWÞ ¼ NArs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmRT
p exp

W

RT

� �

with Avogadro’s number NA, ideal gas constant R, sample temperature T (given in K), molar mass

m, molecular cross section r (in nm2), and mean adsorption time s » 10–12s.16 W denotes the

binding energy of surface and gas molecules. The original BET theory assumes zero interaction

between neighboring adsorbed molecules. Fowler and Guggenheim17 included this interaction by

introducing

KFGðW; hÞ ¼ KLðWÞexp h zX

RT

� �

Here, z is the coordination number (e.g., the number of neighbors), whichwas set to z¼4 in this

work. The interaction energy of two neighboring adsorbed molecules X¼Hv/(4z) (in kJ/mol) is

estimated using the enthalpy of vaporizationHv.
17 Equation 1 depends on surface coverage h itself

but has to be plugged into Eq. 1 to determine surface coverage, such that numerical methods are

required to solve for h.
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In reality, few surfaces are energetically homogeneous. Heterogeneities can be of chemical

origin (e.g., in terms of polarity) or of morphological origin (i.e., cavities or ‘‘summits’’). A well-

established approach is to reconstruct the isotherm Nexp obtained by experiment by a model

isotherm Nmod, defined as a superposition of BET isotherms with different adsorption energiesW

(see Eq. 1):

NexpðhÞ ’ NmodðhÞ ¼
Z

‘

0

hðh;WÞFðWÞ dW

where the integral limits implicitly include the assumption of purely attractive interaction. Note that

the left-hand side given inmol/g is the data from themachine, which has to be reproduced as good as

possible by the model isotherm Nmod, which is constructed as the sum of many BET isotherms

h(h,W) with different adsorption energiesW. The function F(W) is the surface energy distribution

and is not normalized. This is the quantity of interest. Unfortunately, the integral cannot be inverted

analytically to solve for F(W), such that numerical methods have to be employed. An algorithm

specifically designed for the solution of this equation is an expectation maximization algorithm

given by Stanley and Guiochon.18 The iteration scheme for the kth iteration step of F(W) is

Fkþ1ðWiÞ ¼ FkðWiÞ

X

j

hðhj;WiÞ NexpðhjÞ
NmodðhjÞ

X

j

hðhj;WiÞ
for all i

with hi and Wi being the discretized relative pressure and adsorption energy, respectively. After

sufficient iterations, the experimental isothermNexp(hj)’Nmod(hj) for all j. Then,
NexpðhjÞ
NmodðhjÞ ’ 1; such

that the left and right side of the equation coincide and a fixed point of iteration is reached. The

surface area is hidden in the normalization constant of F(W) and can be identified with the global

monolayer capacity Nm,g. The normalized energy distribution reads

f ðWÞ ¼ FðWÞ
Nm;g

with Nm;g ¼
Z

‘

0

FðWÞ dW

The specific surface area S (in m2/g) and mean adsorption energy hWi (in kJ/mol) are then

given as

S ¼ Nm;g NA r and hWi ¼
Z

‘

0

W f ðWÞ dW

where the molecular area r is calculated from liquid bulk density q at adsorption temperature and

molar mass m according to16,19

r ¼ 2
ffiffiffi

3
p m

4
ffiffiffi

2
p

NA q

� �2=3

By continuing iteration of Eq. 5, the experimental isotherm can be reproduced to almost

arbitrary precision up to the point where measurement errors are reproduced as well, generating

artifacts in the energy distribution. A frequently used method is to keep iterating until the deviation

of model and data is of the same order as the experimental error. Unfortunately, this cannot be done

here, becausemachine precision is not exactly known andmodel deviations due to neglected effects

(e.g., capillary condensation at high pressures) introduce systematic errors. Therefore, we start with

a flat distribution F(W)¼ const. and perform 1000 iterations each time.

SURFACE STRUCTURE BY STATIC GAS ADSORPTION 511

(4)

(5)

(6)

(7)

(8)



In addition, the data were evaluated following the classical BET approach as outlined in, for

example, Adamson andGast.16For this purpose, Eq. 1without the Fowler–Guggenheim correction

is rewritten in its linear form

y ¼ 1

Nð1=hÿ 1Þ ¼
cÿ 1

Nm c
hþ 1

Nm c
¼ A hþ B

with h ¼ p=p0 and c ¼ KL p0

where c is called the BET constant. We want to point out that the Fowler–Guggenheim correction

has a strong impact on surface area aswell as interaction energy. Nevertheless, it is neglected for the

classical BET evaluation to allow comparison with other literature. When plotting the linearized

data (y vs h), the data are usually linear for pressures h¼p/p0’ 0.05 . . . 0.20.Doing a linear fit in this

regime according to y¼A hþB, the BET surface area is calculated as

Nm ¼ 1

Aþ B

SBET ¼ Nm NA r

where Nm is the monolayer capacity of a hypothetical energetically homogeneous surface.

EXPERIMENTAL

Gas adsorption measurements were carried out using a BELSORP-max (BEL Japan Inc.,

Osaka, Japan) volumetric adsorption machine from 0.1 Pa up to atmospheric pressure,

corresponding to h¼ 10–6 . . . 1. Adsorptives are N2, CO2, ethane, propene, and 1-butene. The

latter three are rather unpolar hydrocarbons and resemble in this respect most polymers. Standard

carbon black grades N339 and N550 and silicas VN2 and Z1165, which are in wide technical use

(e.g., in tire treads) were investigated. To clean the filler surfaces of impurities, all carbon black and

silica samples were heated in a vacuum for 3 h at 300 8C and 100 8C, respectively. Adsorption

measurements started at lowpressure after reaching a pressure of~10–8 bar,whichwas achieved by

using a turbo molecular pump for at least 12 h. The leakage rate without pumping was~10–7 bar/

min. During measurement, the sample glass with filler inside was kept at a condensation

temperature of the gas using a thermostat (ethane, propene, and 1-butene), a liquid nitrogen bath

(N2), or an acetone bath filled with dry ice (CO2).

RESULTS AND DISCUSSION

Figure 1 shows normalized adsorption isotherms and fitted isotherms for all samples and gases

against the relative pressure h¼p/p0. The pressure p0 is 101.3 kPa at temperatures 77.2 K, 194.7 K,

184.6 K, 225.5 K, and 266.9 K for N2, CO2, ethane, propene, and 1-butene, respectively. It can be

seen that the adsorption automaton delivers reliable results for pressures p/p0½ 5�10–6 such that the
lower fit limit was set to this pressure. The overall fitting quality is good for all gases and samples. It

is worth mentioning here that the slope of the curves cannot be taken as a direct measure for the

interaction, as the molar mass and molecular area of the gases influence the Langmuir constant

(which is the initial slope; see Eq. 2).

The surface area of the sample is directly influenced by the molecular area of the gas. For all

gases except CO2, the molecular area was calculated via Eq. 8. The surface area of CO2 varies

strongly in the literature,20,21 mostly being in the range of~0.17 nm2. Here, r(CO2)¼0.178 nm2

from the latter reference is chosen, because it is close to the value r(CO2)¼0.179 nm2 calculated
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from Eq. 8 when using the density of liquid CO2 at the lowest pressure allowing a liquid state (517

kPa).

Specific surface area S, BET surface area SBET, andmean adsorption energy hWi (see Eq. 7) are
shown in Table I. Remember that the BET surface area is calculated without Fowler–Guggenheim

self-interaction, whichmay change the surface area if adsorbant self-interaction plays an important

role (e.g., due to weak interaction with the filler). As expected, the surface area of N550 is always

smaller compared with N339, and the BET surface areas SBET obtained with nitrogen are in

accordance with previous findings.10,22 Energy distributions for both carbon black and silica

samples are shown in Figure 2. Shape and energy level of the ethane, propene, and 1-butene

distributions are in line with results for hydrocarbons with a longer carbon chain (e.g., alkanes C5-

C10 and cyclohexane) found in Refs. 23 and 24 by means of inverse gas chromatography. In

addition, the same authors investigated adsorption of benzene (polar probe) on VN2. The shape of

the resulting energy distribution closely resembles the one we obtained with CO2. As expected,

energy distributions shift to larger energies with increasing size of the gas molecules. Within

measurement precision N339 and N550 are indistinguishable, confirming the universal, self-affine

nature of carbon black surfaces.7,10 For the silica surfaces, differences are more pronounced,

showing a rather complex energy landscape with distinct maxima for CO2. This indicates an

energetically heterogeneous surface that may be related to patches of silanol groups on the silica

surface being more sensitive for polar molecules.

FIG. 1. — Normalized adsorption isotherms (symbols) and fitted model isotherms (solid lines) for all samples and gases

investigated. For the two carbon blacks N339 (a) and N550 (b), the CO2 isotherm is clearly below all other gases. This is not

the case for silica samples VN2 (c) and Z1165 (d), where CO2 is between 1-butene and N2.
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As explained before, CO2 seems to bemuchmore attractive to silica than to carbon black. This

can be seen well in Figure 3a, where mean adsorption energy is plotted against molecular area.

Surprisingly, this effect is evenmore pronounced in the specific surface area, as shown in Figure 3b.

For silica, the mean adsorption energy as well as specific surface area obtained with CO2 is larger

than the surface area and mean adsorption energy obtained with the smaller N2 molecule. This

might be due to the linear shape of CO2 in combinationwith its larger quadrupolemoment, favoring

interactionwith the hydroxylated (and thus polar) silica surface and probably allowing themolecule

to penetrate easily into cavities. The electric quadrupolemoment quantifies the ability of electrically

neutral and unpolar particles to interact via coulomb forces due to charge inhomogeneities. In fact,

the quadrupole moment of N2 and CO2was found to beÿ4.72 � 10–40 Cm2 andÿ13.4 � 10–40 Cm2,

respectively.25 It has been shown that the dispersive component of the surface energy of

hydroxylated silica ranges between 10%23 and 50%8 of the comparable carbon black, which

exhibits almost purely dispersive interaction. Thus, it is reasonable to attribute the major part of the

interaction energy to specific surface energy caused by the dipole-quadrupole interaction. From this

point of view, the ratio of silica-CO2 and silica-N2 interaction energy should be comparablewith the

TABLE I

MOLECULAR AREA r CALCULATED ACCORDING TO EQ. 8 FOR ALL GASES
a

r, nm2

N2 CO2 Ethane Propene 1-Butene

0.163 0.178 0.222 0.256 0.308

S½m2

g
�=SBET½m2

g
�

N339 85.0/86.9 39.2/53.6 69.2/72.7 65.2/67.8 61.0/64.6

N550 38.6/39.4 18.0/25.1 30.2/30.9 29.8/31.1 27.4/28.9

VN2 137.2/143.0 161.8/165.1 / / 87.5/96.5

Z1165 150.9/156.9 227.5/229.0 / / 68.6/77.1

hWi½ kJ
mol
�=Ws½ J

m2�
N339 8.2/0.08 14.9/0.14 18.5/0.14 20.5/0.13 23.6/0.13

N550 8.3/0.08 15.1/0.14 18.5/0.14 20.3/0.13 23.8/0.13

VN2 7.9/0.08 18.8/0.18 / / 22.3/0.12

Z1165 8.5/0.09 19.5/0.18 / / 21.7/0.12

a The value for CO2 is taken fromRef. 20. Surface area S andmean interaction energy hWi are calculated according to Eq. 7.
In addition, the BET surface area SBET and specific surface energy Ws¼hWi/(NA r) are given.

FIG. 2.—Normalized energy distributions for carbon black (a) and silica (b) samples. For all samples, energy distributions

become broader and shift to larger energies with increasing size of gas molecules.
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ratio of their quadrupole moments being 13.4/4.72 » 284%. From the data in Table I, the ratio of

interaction energies is found to be 18.8/7.9» 238% for VN2 and 19.5/8.5» 229% for Z1165 in fair

agreement with the above expectation. The deviations may be due to the remaining dispersive

interaction. This finding again highlights that the silica–polymer interaction is crucially affected by

the charge distribution of the adsorbant: even a quadrupole moment, which represents weak short-

range interaction, suffices to dominate the interaction over the disperse components. On the other

hand, the same line of reasoning for carbon blacks N339 and N550 leads to a change of interaction

energy, which should be (as a rough approximation) proportional to the ratio of the molecular areas

ofCO2 andN2, which is 0.178 nm
2/0.163 nm2

» 109%.The ratio calculated fromTable I is 14.9/8.2

» 15.1/8.3» 182% for bothN339 andN550. This value seems to be too high, or in other words, the

difference in CO2 interaction energy between carbon black and silica is far smaller than their

chemical compositions suggest. The problem may be resolved by noticing that adsorption sites

where no adsorption takes place (e.g., because they are energetically not attractive) do not

contribute to the energy distribution function at all. Looking at the specific surface energies, this

assumption becomes reasonable: surprisingly, the CO2 surface area of N339 and N550 is 44% and

47% of their N2 surface area, respectively. Given that both molecules have roughly the same

molecular area, this means that more than half of the adsorption sites available on both carbon

blacks remain unoccupied by CO2. Hence, the energy distribution is biased such that it includes

only high-energy sites. These sites may be due to chemically bonded hydrogen and oxygen groups

that survived the heating process. Studies by gas chromatography–mass spectrometry and SIMS

have found a remarkable amount of up to 3% hydrogen and oxygen groups at various carbon black

surfaces even after heating at 1173 K in an inert atmosphere.26 As we heated carbon black up to

573.15 K, the amount of these groups may be higher in our samples. Possibly, these rather polar

‘‘impurities’’ act as nucleating points for CO2, maybe even allowing local condensation/multilayer

adsorption. This is supported by the following discussion about the samples’ BET surface area

measured with CO2, revealing the great influence of self-interaction of CO2.

In Figure 4b, the ratio of surface S determined by Eq. 7 and the BET surface SBET is shown. It

turns out that the BET surface is always slightly larger than its generalization S. Exceptions are the

pairs carbon black/CO2 and silica/1-butene, where SBET is 30%and 10% larger than S, respectively.

The main difference in SBET and S is the inclusion of self-interaction via Eq. 3 in S, so the deviation

may be traced back to highly self-interacting gas molecules, supporting the hypothesis of polar

adsorption spots on carbon black, where CO2 aggregates in consequence of its strong self-

interaction. In contrast to the findings for carbon black,where S(CO2), S(N2), theCO2 surface area

of VN2 and Z1165 increases to 118% and 151% of its N2 value, respectively. Inverting the

FIG. 3. — Mean adsorption energy hWi (a) and specific surface area S (b) against molecular area.
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argumentation above, this indicates that nitrogen is unable to occupy all adsorption sites on silica, or

stated reversely, that CO2 is able to occupy adsorption sites not available to N2 (possibly silanol

groups). Nevertheless, it has to be kept in mind that the molecular area of CO2 is relatively

uncertain, reflected in a relatively wide spreading of literature values. In addition, the unknown

arrangement of CO2 molecules on the sample’s surface should have a great influence on the

effective molecular area because of its linear shape. A close arrangement comparable to the solid

phasewill decreasemolecular area and thus themeasured surface area.Wewant to point out that the

increase in CO2 surface area is especially pronounced for Z1165, so that it seems to be more polar

than VN2. This finding is supported when looking at N2 and 1-butene surface area. Compared with

N2, the 1-butene surface area of both silicas is greatly reduced, especially for Z1165. This can be

explained again by unoccupied adsorption sites or by a different fractal surface roughness. The

weight loss after 2 h heating at 105 8C taken from the data sheet of VN2 is 5.5%, while for Z1165, it

was found to be 7%.27As the weight loss is attributed to water desorption, it is indicative of Z1165

being more polar, even if normalized by N2 surface area of the samples.

The dependence of the specific surface area on molecular size can be quantified by a fractal

dimension. In Figure 5a, the monolayer capacity Nm,g is plotted against the molecular area of the

adsorbant for both carbon blacks investigated. As carbon black exhibits a self-similar surface

FIG. 4. — BET plots of selected samples (a) and ratio of surface area and BET surface area (b).

FIG. 5. — (a) Logarithmic monolayer capacity against logarithmic molecular area. The solid line is a linear fit over ethane,

propene and 1-butene data delivering the surface fractal dimension. The open symbols are no hydrocarbons and are excluded

from the fit. (b) Specific adsorption energyWs against molecular area.

516 RUBBER CHEMISTRY AND TECHNOLOGY, Vol. 91, No. 2, pp. 509–519 (2018)



structure, the monolayer capacity should decrease according to10

logðNm;gÞ ¼ ÿDS

2
logrþ const:

where 2�DS� 3 is the surface fractal dimension. The fractal dimension was determined using the

hydrocarbons ethane, propene, and 1-butene only, because of their similar interaction behavior. For

silica, no adsorption data using ethane and propene were available, such that the fractal dimension

cannot be determined. A fractal dimension of 2 corresponds to a flat surface, while a surface with a

fractal dimension near 3 folds so much that it almost covers three-dimensional space. The fractal

dimensions obtained are 2.76 6 0.04 and 2.6 6 0.2 for N339 and N550, respectively, in close

agreement with the results from Schröder et al.10

To compare adsorption energies regarding polymer–filler and filler–filler interaction, the

specific binding energy per unit area of coveragewas calculated usingWs¼hWi/(NAr). The results

are shown in Figure 5b. It can be seen that the interaction energy of all hydrocarbons on carbon

black is aboutWs» 0.13 J/m2. The cleavage energy of graphite planes was recently estimated28 to

be 0.37 J/m2, representing an upper bound for the binding energy of carbon black particles.

Although this energy is greater by a factor of 3, both energies are of the same order of magnitude,

allowing the dispersion of carbon black into polymers with similar polarity as the gases

investigated. It is worth noting that some authors believe chemical bonds between carbon black and

polymers to be responsible for their great overall compatibility.29As we are investigating physical

bonding only, this effect is out of the scope of this work. For N2, a much smaller specific interaction

energy is found on both type of fillers, indicating that it is less tightly bound independent of the

dispersive or polar components of the filler. The very high specific surface energyWs» 0.18 J/m2 of

CO2 on silica is not surprising because of the strong quadrupolar interaction and possibly better

coverage of themore polar surface constituents such as silanol groups. This fits the observation that

silica is dispersible into polar polymers (e.g., polyethylene-oxide),30,31without further treatment of

the silica surface. Surprisingly, the interaction energy of hydrocarbons on silica isWs» 0.12 J/m2

and is thus quite similar to their interaction energy with carbon black. Nevertheless, it is widely

known that silica in unpolar polymers is hardly dispersible and forms large, stiff superstructures due

to strong clustering.32 For this reason, the problems of dispersing silica into unpolar polymers must

be attributed to strong silica–silica interaction, governing silica clustering, although the polymer–

silica interaction is on a similar level as the polymer–carbon black interaction. In fact, it has been

shown that untreated silica particles move on long-time scales even in vulcanized (unpolar) rubber

compounds,33whereas carbon black does not.Given these results, the great success of silica surface

modification using silanes probably has to be interpretedmore in terms of reducing the silica–silica

affinity than increasing the polymer–silica interaction. Unfortunately, a value quantifying the

binding energy of silica particles is hard to find because of dispersive and specific contributions as

well as a surface chemistry (e.g., degree of hydroxylation) that is not well defined.

CONCLUSION

It has been shown that static gas adsorption is a powerful tool to characterize surfaces in several

aspects on a molecular scale. Nitrogen surface areas are in good agreement with the literature and

decrease with increasing size of probe molecules, proving the pronounced roughness of the

samples. For both carbon blacks investigated, the surface fractal dimension is about 2.7. CO2

adsorption measurement reveals that silica is more polar than carbon black, in accordance with its

surface chemistry. In particular, Z1165 seems to be far more polar than VN2 silica in accordance

with technical specifications. The great decrease in carbon black surface area when using CO2

compared with nitrogen surface area is explained by incomplete CO2 surface coverage, probably

SURFACE STRUCTURE BY STATIC GAS ADSORPTION 517



because of the remaining polar surface impurities. In addition, for the rather incompatible pair CO2/

carbon black, self-interaction of the gas molecules on the filler surface seems to be important. The

difference in polarity may be investigated even better by using carbonmonoxide (CO), which has a

dipole moment and should therefore be more sensitive regarding filler polarity. Specific adsorption

energy has been found to be constant for all hydrocarbons investigated and is very similar for carbon

black and silica. The difference in specific adsorption energies of hydrocarbons on silica and carbon

black is too small to explain their vastly different behavior in a polymer matrix. Thus, the greater

self-interaction of polar silica particles than of carbon black seems to be the reason for increased

phase separation, which in turn is responsible for the bad dispersibility and mechanical

performance. Thus, the focus should possibly shift toward reducing the silica–silica interaction

rather than improving polymer–silica affinity.
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4J. Plagge and M. Klüppel, Int. J. Plast. 89, 173 (2017).

5H. Wulf and J. Ihlemann, Constit. Models Rubber IX 305 (2015).

6S. M. Smith and D. S. Simmons, RUBBER CHEM. TECHNOL. 90, 238 (2017).
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3.4 Outlook and Supplementary Information

As outlined in section 3.1, the model contains some uncommon mathematical concepts. First, the
free energy density WX contains non-elementary functions which are costly to evaluate and rarely
implemented. Second, hysteresis is calculated by using convolutions which can only be evaluated
by integrating the materials history. In commercial FE code and industrial application speed and
stability are of crucial importance. For this reason this section deals with resource efficient approxi-
mations. Moreover, an extension of the model based on experimental findings on stress relaxation is
presented.

3.4.1 A simpler free energy density integration

The calculation of the amplified energy density occurring in Eq. (19) of publication 1 is carried out
as

WX(I1, Xmax, Xmin) =

Xmax∫
Xmin

dX PX(X)W (XĪ1, XĪ∗) (3.1)

with the amplification factor distribution P (X) ∝ X−χ and amplified energy density of the non-
affine tube model W (XĪ1, XĪ∗) defined by Eq. (2.25). It involves integrals of the form∫

dXX−χ X

1− 1
nX Ī1

(3.2)

which can be solved analytically only by means of non elementary functions like incomplete beta
functions or hypergeometric functions. For the sake of efficiency, the non-affine tube model given by
Eq. (2.25) is reduced to a minimal functional form

W (Ī1, Ī
∗) =

Gc
2

[(
1− 1

n

)
Ī1

1− 1
n̂ Ī1

+ log

(
1− 1

n
Ī1

)]
+ 2Ge Ī

∗(−β) (3.3)

→ Ŵ (Ī1, Ī
∗) =

Gc
2

Ī1

1− 1
n Ī1

+ 2Ge Ī
∗(−1) (3.4)

where we assumed n ≫ 1. Additionally, we assume sufficiently crosslinked networks (β = 1 [80, 81]).
The log(·) term is omitted, because for n ≫ 1 and low strains log(1 − Ī1/n) ≈ Ī1/n ≈ 0 and
for large strains the 1/(1 − Ī1/n) term diverges faster than the corresponding logarithm. In the
previous model the impact of less amplified domains was probably overestimated which is visible in
the curvature of predicted virgin loading curves. This can be accounted for by introducing an offset
parameter c in the distribution

P̂ (X) = (X + c)−χ · χ− 1

(Xmin + c)1−χ − (Xmax + c)1−χ
(3.5)
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Figure 3.2: Check of the approximation given by Eq. (3.8). Default parameters are χ = 2.5, Ī1/n = 0.1 and
c = 0. Variations of these parameters are shown in (a), (b) and (c), respectively.

For c = 0 the original distribution P (X) is recovered. The amplified free energy density is then
defined as

ŴX(Ī1, Xmax, Xmin) =

Xmax∫
Xmin

dX P̂X(X) Ŵ (XĪ1, XĪ∗) (3.6)

The integration can be simplified by taking a closer look on the problematic integrand∫
dX (X + c)−χ · X

1− X Ī1
n

=

∫
dX (X + c)−χX︸ ︷︷ ︸

f(X)

· 1

1− X Ī1
n︸ ︷︷ ︸

g(X)

(3.7)

For large X → n/Ī1 the function f(X) becomes small (if χ > 1) and g(X) diverges. In contrast,
for small X, where f(X) is largest, the second integrand g(X) is close to 1. Altogether, the integral
may be approximated by∫

dX f(X)g(X) ≈
∫

dX
[
f(X) · 1 + f(n/Ī1) · g(X)

]
(3.8)

The approximation is evaluated in Fig. 3.2 and seems to reproduce the original behavior well. It
can be expected that the remaining deviations are compensated by a slight change in fitting param-
eters. Using Eq. (3.8) the integration can be carried out analytically using elementary functions.
The result is

ŴX(Xmax, Xmin) ≈
1

2

1

(Xmin + c)1−χ − (Xmax + c)1−χ
·[

Gc Ī1 + 4Ge Ī∗

χ− 2

(
(c+Xmin)

1−χ(c+ (χ− 1)Xmin)− (c+Xmax)
1−χ(c+ (χ− 1)Xmax)

)
(3.9)

+Gc
n2(χ− 1)

Ī1

(
c+

n

Ī1

)−χ

log

(
Ī1Xmin − n

Ī1Xmax − n

)]
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From this, all elastic stress contributions can be calculated by suitable differentiation. It was im-
plemented by Klein and Baaser into the FE software Abaqus and shown to be up to 4 times faster
than the corresponding energy density with hypergeometric functions [89].

3.4.2 Convolution-free time independent hysteresis

The convolution defined by Eq. (27) given in publication 1 requires storage of the whole deforma-
tional history of the sample. Additionally, it requires numerical integration for each timestep. This
section is devoted to an alternative formulation using differential equations. The relaxation kernel

G(t) = 1/(1 + t)α (3.10)

coincides with the kernel used in Eq. (32) if α = 1. It shall be approximated by a Prony series, such
that

1

(1 + t)α
=

∫ ∞

0
dτ H(τ) e−

t
τ (3.11)

with a relaxation spectrum H(τ). According to the procedure used by Williams and Ferry [94] the
first order approximation to the distribution H(τ) is obtained by converting the exponential to a
step function

e−
t
τ ≈

1 if t < τ

0 if t ≥ τ
(3.12)

Using this, Eq. (3.11) is rewritten as

1

(1 + t)α
≈

∫ ∞

t
dτ H(τ) (3.13)

Differentiation on both sides gives an approximate expression for H(t)

− α

(1 + t)α+1
≈ −H(t) (3.14)

Inserting this into Eq. (3.11) gives

1

(1 + t)α
≈

∫ ∞

0
dτ α

(1 + τ)α+1
exp

(
− t

τ

)
=

∫ 1

0
dn exp

(
− t

n−1/α − 1

)
(3.15)

where the last step involves substitution of the integrand. Converting the integral to a sum we ob-
tain

1

(1 + t)α
≈ 1

N − 1

N−1∑
n=1

exp

(
− t

(n/N)−1/α − 1

)
(3.16)

Thus, power law relaxation is obtained by choosing relaxation times according to τn = (n/N)−1/α −
1. The convolution with exponentials can be converted directly into a set of suitable differential
equations. This is done in the framework of Greens functions, where solutions u(t) of inhomoge-
neous differential equations can be expressed by convolution of Greens function (here: exponential)
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with the corresponding inhomogeneity v(t). More formally

u̇ = −1

τ
u+ v̇ ⇔ u(t) =

∞∫
0

dt′ e−
1
τ
(t−t′)v(t′) (3.17)

In Eq. (27) of publication 1 the convolution is carried out with respect to intrinsic time ς, which is
running when stress changes. Expressing the corresponding kernel by exponentials gives

1

1 + ς
σc

≈ 1

N − 1

N−1∑
n=1

exp

(
− ς

σc,n

)
with σc,n = σc

(
N

n
− 1

)
(3.18)

The equation can now be replaced by differential equations of the form

dfhys,n
dς = − 1

σc,n
fhys,n +

dfel
dς and fhys =

1

N − 1

N−1∑
n=1

fhys,n (3.19)

These differential equations do not require storage of the materials history.

3.4.3 Stress Relaxation of Filled Elastomers

When holding filled elastomers at constant strain, stress usually decreases with time. Many authors
have found that carbon black filled compounds relax logarithmically [33, 95]. The same was re-
ported for semicrystalline polymers [31]. Theoretical investigations indicate that logarithmic stress
relaxation may generally be explained by strongly interacting entities on the microscopic level [96].
Dynamic-Mechanical Analysis (DMA) measurements at small strains on SBR filled with up to 90
phr coupled silica have shown that the low-frequency modulus scales around ∼ ω0.15, with a ten-
dency towards lower exponents for the highly filled samples [97]. This corresponds to a slowly relax-
ing power law ∼ t−0.15 in the time domain, which is close to logarithmic relaxation.

In Fig. 3.3 the derivative of stress for carbon black (N339) filled EPDM with different sample ge-
ometries, filler amounts and temperatures is shown. Data was pretreated using a Savitzky-Golay
filter to allow smooth differentiation. The derivative was taken to get rid of the additive constant
which eventually represents the constant stress approached at large times. This was done, because
an additive constant to a power law spoils the determination of slope in a log-log representation.
For all samples the derivative of stress decayed close to dσ/dt ∝ t−1, irrespective of sample ge-
ometry, amount of filler, strain and temperature. This corresponds to a logarithmic stress decay
σ(t) ∝ − log(t). It is worth noting that, unlike a powerlaw, the logarithm − log(t) will never ap-
proach a constant value, which means that the sample would approach zero stress after sufficiently
long time.

In the following logarithmic relaxation is derived from detachment of polymer chains from the
filler surface. It shall be noted that, although the mathematics is temptingly simple, it is all but
clear that polymer detachment is in fact responsible for the softening observed.

If one end of a polymer chain is adsorbed on the filler surface, while the other end is kept fixed at
distance r, there is a retracting force f(r, n), e g. defined by the Gauss statistics given by Eq. (2.13).
The number of statistical segments n only counts the segments in the free chain, because it can be
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Figure 3.3: Stress decay of EPDM filled with different amounts of carbon black (N339) at different temperatures.
The pure shear sample at 80 ◦C was stretched up to 50% strain, all other samples up to 120 % strain. The recipe
can be found in tab. 1 of publication 1.

safely assumed that adsorbed segments will not contribute to the polymers elasticity. If chain seg-
ments desorb from the filler surface the chain will be relaxed. The change in force reads

ḟ =
df
dn ṅ ∝ −ṅ (3.20)

where df/dn < 0, because an increase of polymer chain segments relaxes the chain (e g. for a Gauss
chain we get df

dn ∝ − r
n2 = − f

n). The rate of detachment from the filler surface is identified with ṅ

and is approximated by Kramers escape rate out of the fillers attractive potential [98]

ḟ =
df
dn ṅ =

df
dn r0 exp

(
−Eb − f d

kBT

)
(3.21)

with r0 [1/s] being the diffusivity without energy barrier Eb and d being a length scale quantifying
the range of the attractive potential . This differential equation can be solved when approximating
that df

dn is constant in time compared to the much more variable exponential term. For the Gauss
chain with df

dn ∝ − r
n2 the approximation becomes more precise, if r is constant (which is one of our

prerequisites) and rather constant n. The latter will hold after large relaxation times.
With the initial condition f(0) = f0 we get the solution of the differential Eq. (3.21) as

f(t) = f0 −
kBT

d
log

[
1− r0 d

kBT

df
dne

f0 d−Eb
kBT t

]
(3.22)

≃ A−B log(t) for large t (3.23)

with A = Eb
d − kBT

d log
(
− r0 d

kBT
df
dn

)
and B = kBT

d . This is the desired result.
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3.4.4 Continuous Damage

According to section 3.4.3 filled and many crystallizing polymers exhibit logarithmic stress relax-
ation. Within the framework of publication 1, relaxation can be modeled as a decrease of the max-
imum amplification factor. Physically, the amplification factor may be related to shorter (and thus
“stiffer”) chains due to adsorption on filler particles, inclusion in crystals or geometric constraints
imposed by the filler network on the polymer matrix. With the first mechanism in mind§, it is easy
to imagine that X could be antiproportional to the number of segments in a network chain par-
tially adsorbed on a filler particle. If stress is applied, the most stretched chains, corresponding to
the maximum amplification factor Xmax desorb and relax. In analogy to section 3.4.3, the evolution
of the maximum amplification factor can be written using Kramers escape rate [98, 99] as

Ẋmax = r+ − r−(V σmax) = r0,+ e−
Eb,+
kBT − r0,− e−

Eb,−−V σmax
kBT ≈ r0

(
e−

Eb
kBT − e−

Eb−V σmax
kBT

)
(3.24)

where r+ [1/s] represents the hopping rate into a potential well, corresponding to an increase of
amplification, and r− is the force driven hopping rate out of the potential well, corresponding to de-
creasing amplification¶. Potential energy barriers are denoted Eb,±. The energy stored in the most
stretched attached polymer σmax V includes the corresponding stress σmax and the excited volume
V . The approximation done in Eq. (3.24) involves r0,+ ≈ r0,− = r0 and Eb,+ ≈ Eb,− = Eb. This
ensures that Ẋmax(σmax = 0) = 0, meaning that there is no change in maximum amplification
factor when there is no applied force. Polymers will probably detach from the fillers surface under
rather high load. This means that the stress measure σmax just has to capture correctly the highly
strained state. Looking at the energy density of the reduced non-affine tube model in Eq. (3.4) it
becomes apparent that it may be modeled using the crosslink contribution only, because only the
crosslink contribution is responsible for strain hardening. Stress σmax is then approximated propor-
tional to the crosslink contribution of the free energy density divided by a suitable strain measure
Λ. The energy stored in the most stretched chains V σmax can be expressed as

V σmax = V
1

c1

1

Λ

Gc
2

I1Xmax

1− I1 Xmax
n

=
1

c̃1

1

Λ
kBT

I1Xmax

1− I1 Xmax
n

=
1

c̃1
kBT

√
I1Xmax

1− I1 Xmax
n

(3.25)

where Λ :=
√
I1 =

√
λ2
1 + λ2

2 + λ2
3 is chosen to make the expression invariant to the choice of coor-

dinate system and deformation state, and c̃1 is a dimensionless proportionality constant. When the
energy barrier is high compared to kBT almost no jumping over the barrier occurs without external
force. Formally, this corresponds to r0 exp (−Eb/kBT ) ≪ 1 meaning that only the term scaled by

§It has to be noted again that there are a variety of other mechanism for stress softening under discussion.
The calculation presented here selects chain desorption as a modeling paradigm. The same formalism could
describe breakdown of filler structure at a certain load.

¶Physically, the force induced decrease in amplification is observable as Mullins effect. Accordingly, the in-
crease of amplification may be physically identified with recovery of the Mullins effect as described in section
1.5.2.
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Figure 3.4: Model fit to peroxide cured EPDM filled with 50 phr N339 carbon black. The elastic response is de-
rived from the free energy density given by Eq. (3.9) and the maximum amplification factor is evolved according to
the continuous damage scheme defined by Eq. (3.26). Hysteresis is not modeled. Parameters are Gc = 0.11 MPa,
Ge = 0.20 MPa, n = 50.51, χ = 3.16, c = 3.81, c̃2 = 22.9, c̃1 = 13.1.

V σmax survives. This allows to rewrite Eq. (3.24) in a simplified, more phenomenological form

Ẋmax = −1

s exp

−c̃2 +

√
I1 Xmax

1− I1 Xmax
n

c̃1

 with c̃2 =
Eb
kBT

− log(r0 · s) (3.26)

For numerical reasons it may be sensible to check that Xmax never surpasses a maximum value:

Xmax(t) ≡ min (Xmax(t), X∞) with X∞ =
n

I1,max + γ
(3.27)

where X∞ is defined in analogy to Eq. (18) of publication 1. Otherwise the exponential occuring in
Eq. (3.26) may generate extreme values which overstrain numerical integrators of the FE software.
Eq. (3.26) was derived using many assumptions which may be physically questioned. It should be
regarded as a physically motivated, heuristic expression, which generates logarithmic relaxation
and softening while being compact and efficient. An example fit with continuous damage and us-
ing the simplified free energy density given by Eq. (3.9) is shown in Fig. 3.4. Integration of the
amplification-defining evolution Eq. (3.26) was carried out numerically using an explicit Euler step
without the regularization mechanism described in Eq. (3.27). Viscoelasticity and hysteresis are
not included. The model fits the data fairly well, especially at large strains. Stress at low strains is
slightly underestimated. This may be resolved when viscoelasticity is introduced. By including the
exponential corresponding to r+, which quantifies the regeneration rate of Mullins effect, the partial
recovery observable in Fig. 3.4b at around 10000 s could probably be modeled.
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If you’re not confused, you don’t understand
things very well.”

Charlie Munger

4
Self-Reinforcement due to Strain-Induced

Crystallization

4.1 Introduction

Natural rubber exhibits unique properties in terms of wear and mechanical strength. Even unfilled
it exhibits mechanical strength larger than many filled synthetic polymers. An example comparing
NR to SBR using the same vulcanization system is provided in Fig. 4.1a and b. Although the re-
sponse of both polymers is similar in the low strain regime, unfilled SBR fails below 5 MPa, while
NR reaches up to almost 20 MPa.

At room temperature natural rubber is amorphous and highly elastic. But, as is widely known
in industry, storage of uncured NR for long times significantly below room temperature results in a
“hardening” of the material [100]. In fact, the corresponding timescale of crystallization was found
to range between years at 14 ◦C [100] and hours at about -25◦C, the latter being valid for both
filled and unfilled compounds [101]. The introduction of chemical crosslinks was shown to greatly
reduce crystallization speed [5]. When subjected to strain network chains are oriented and can un-
dergo crystallization more easily [102], allowing natural rubber to crystallize in the temperature
interval of 25◦C-70◦C where durable rubber components are needed. Except of NR only a few poly-
mers exhibit this property, e. g. Hydrogenated Nitrile Butadiene Rubber (HNBR) with acrylonitrile
content of about 35% [103, 104] and EPDM [105]. In tire industry it is common to blend natural
rubber with high cis butadiene rubber (BR). With a cis content of up to 98 % the latter is able to
crystallize at maximum speed at about -50 ◦C. Kang et al. investigated strain-induced crystalliza-
tion (SIC) at room temperature in different blends of NR and BR via Wide Angle X-Ray Scatter-
ing (WAXS) [106]. While NR was clearly crystallizing under strain BR did not. An earlier study of
Toki and coworkers revealed that temperature has to be reduced below 0 ◦C to observe SIC in BR
[107]. Obviously, besides a regular structure, the thermodynamic parameters of the polymer have to
be finely adjusted to allow SIC at technically relevant temperatures.

Most authors agree that SIC is responsible for NRs high strength [108]. Accordingly, there is a
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variety of theories, but no general consensus on the exact reinforcement mechanism. Some ideas
involve

1. Strain-induced crystallites act similar to nanoscopic filler particles due to their small size
[109].

2. Crystallites behave as multifunctional crosslinks, increasing network strength when strain is
too large [110].

3. Crystallites are of fibrillar shape, forming in direction of strain. This is assumed to relax the
surrounding matrix wherever strain is too large [111, 112].

Figure 4.1: (a) Sulfur cured natural rubber filled with varying amount of carbon black N339. (b) SBR com-
pounds with identical vulcanization system. The data was obtained by Matthias Wunde at DIK. (c) Slowly
stretched NR cured with 1.0 phr sulfur and CBS during loading and unloading. The material shows softening com-
parable to Mullins effect for filled rubber. (d) Corresponding strain protocol.

These theories are non-exclusive, such that the emerging behavior of crystallite populations in-
side the material may be caused by a combination of all of them. Usually, SIC is investigated by
means of WAXS which involves placing a stretching machine into a suitable X-Ray beamline. The
experimental setup is rather complicated. Especially when high spatio-temporal resolution is re-
quired there is need for a sufficiently strong X-Ray source usually provided in large national accel-
erator facilities. The scattering pattern allows insight into the degree of crystallinity, the geometry
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of crystals, crystal orientation and even the orientation of the amorphous phase. The results can be
summarized as follows

1. Crystal size parallel to stretching direction is around 10 nm but slightly depends on crosslink
density. It could be related to the volume of an average network cell, so growth limitation
due to network constraints seems to be reasonable. Moreover, it is rather independent of
strain, while the remaining lateral dimensions slightly grow with strain. Fully grown crys-
tals have a platelet-like shape [113–116]. The rather constant size of crystals gives rise to the
assumption that an increase in crystallinity is mainly due to an increase in number of crystals
[113].

2. Crystallization exhibits strong hysteresis with respect to strain. Onset is relatively indepen-
dent on crosslink density at about 350% strain, while offset strain decreases with decreasing
crosslink density. The hysteresis in crystallinity can be correlated to mechanical hysteresis of
unfilled NR [32, 110, 115]. An example is shown in Fig. 2 and 6 of publication 4.

3. Despite the growth in non-stretching directions, the main part of crystallinity increase during
stretching seems to be due to the formation of new crystals [113].

4. Crystal growth is probably induced by fibrillar crystal nuclei in direction of stretch [113, 117].
Electron microscopy has shown that chain folding of grown crystals is still possible at 900%
strain [116].

5. Amorphous phase orientation is reduced when crystals appear. After SIC onset, it is almost
constant during further loading. The effect is even more pronounced during unloading of the
sample [111, 112]. Mechanically, this is visible as a stress plateau as can be seen in fig. 4.1c.

6. The introduction of fillers changes the shape of the crystallinity curve and shifts the on- and
offset strains of SIC towards lower strains. This is attributed to strain amplification effects
[110, 115].

7. In fracture mechanics, natural rubber based samples exhibit extraordinarily high crack re-
sistance. They show crack deviation and “zigzag” like cracks in contrast to linear cracks ob-
served in noncrystallizing polymers. Via WAXS it was observed that crystallinity strongly in-
creases in the vicinity of the crack tip. The authors assume that the “zigzag” like path occurs
from avoiding the crystalline region [118, 119]. Moreover, crack resistance increases under
preload [120].

The present introduction covers just a fraction of the available literature. For more details the
reader is referred to the upcoming works.

The first two publications in this chapter are devoted to the quantification of SIC by a newly de-
veloped method which is based on the comparison of true temperature and mechanically calculated
temperature of the sample. The difference is attributed to the phase transition occuring during
SIC. The first manuscript develops the foundations of the method. It is tested on uncured as well
as silica- and carbon black filled natural rubber. Recently, an adaption of this work was published
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by Le Cam [121]. The second paper refines the method, delivering results quantitatively compara-
ble to WAXS measurements. Moreover, the effect of filling degree and prestrain is analyzed. It is
shown that fillers shift the onset of crystallization towards lower strains. The shape of crystallinity
vs. strain curves changes from triangular to tube-like. Heterogeneous strain amplification is pro-
posed to explain the phenomenon. This is in accordance with the assumption of an amplification
factor distribution used in publication 1. Cyclic loading around high strains exhibits vanishing hys-
teresis, indicating that crystals grow and melt only partially in this strain regime instead of com-
plete melting and successive nucleation.

The third work presents a microscopic theory on SIC during melting and formation of the last
and first crystallites. It shows that a large amount of entropy is required for a chain to attach to
a crystal, which was probably overlooked or mistakenly neglected by many authors. This may ex-
plain the constant crystal size in direction of stretch as well as the independence of SIC strain on-
set on crosslink density. A fit to an established dataset [32, 110, 122] shows that enthalpy of fu-
sion depends slightly on crosslink density and differs at loading and unloading. The enthalpy of
fusion is an important parameter for the evaluation concept presented in the previous publications,
such that its dependency on material history should be taken into account in future works. In the
end, the publication proposes a scheme for a life-cycle of an NR crystallite during a strain cycle
in accordance with the hypothesis of incomplete crystal growth and melting when cycling at large
strains.
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a b s t r a c t

Strain-induced crystallization (SIC) in unfilled and carbon black or silica filled Natural Rubber (NR) with

and without silane is investigated. The method introduced in this paper is based on measurements of the

surface temperature during tensile test, whereby SIC is quantified by dividing the produced heat into

different contributions, namely the dissipative heat, entropy-related reversible heat and crystallization

enthalpy. It turns out that there is pronounced SIC in unfilled and carbon black filled NR, while silica/

silane systems show less SIC. The degree of crystallinity correlates with the tensile strength of the

samples. For silica/silane systems at the same strain level self-reinforcement by SIC is less pronounced

possibly due to a lower crosslink density or strain amplification factor. Because of its simplicity, the

method developed here is a promising option to investigate SIC on a broad experimental scale and

provides an alternative access next to well-established methods like WAXS.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Strain-induced crystallization (SIC) is an important property of

natural rubber (NR), which is a stereoregular polymer consisting of

~99.9% cis-poly-isoprene and thus can crystallize partially. If

exposed to large strains, the polymer chains align in amore ordered

way and entropy decreases supporting the formation of crystallites

[1e3]. These crystallites can have fibrillar or lamellar shape [4]

remaining quite small (roughly 10 nm) [5e7] and therefore may

act in a similar way as nanoscopic fillers or physical cross-links. This

implies a kind of self-reinforcement of the rubber which is believed

to be the reason of its extraordinary toughness and tear resistance.

Accordingly, NR plays a major role in rubber industry, especially for

the production of truck tyres, because it strengthens the rubber in

highly strained regions and therefore impedes the formation of

cracks. Since the development of the green tyre technology for

passenger cars, i.e. the replacement of carbon black by silica/silane

filler systems, there is great interest in combining the unmatched

wear properties of NR with the energy-saving potential of green

tyres. Furthermore, silica/silane filled rubbers allow the design of

tailor made viscoelastic properties for vibration control systems,

since stiffness and dissipative losses can be tuned by the silane type

used [8]. Unfortunately, in terms of wear properties, silane coupled

NR/silica compounds performworse than comparable carbon black

filled compounds. The microscopic origin of this apparent in-

compatibility of NR and silica/silane filler systems is still unknown.

One reason could be the presence of natural ingredients as proteins

and phospholipids in NR, which could disturb the silica-silane re-

action during the mixing process [9e11]. Another reason could be

the lower crystallization efficiency in the presence of silica/silane

filler systems, as recently conjectured from SIC measurements at

variously filled NR samples [12], which may be related to a lower

internal straining of the polymer chains due to less stable silica

clusters in comparison to carbon black. Investigations of strain

amplification in silica and carbon black filled rubbers have shown

that the strain amplification factor at same filler loading is generally

smaller for silica/silane systems delivering a lower stress level at

large strains and a less pronounced Payne effect (comp. e.g.

Fig. 10.18 in Ref. [28]). In addition, the crystallization degree de-

pends on the dispersion state of the filler which may be much

different for both filler systems.
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The effect of filler on crystallization efficiency is a question of

high technological relevance which will be addressed in the pre-

sent paper. Thereby, wewill refer to a new evaluation procedure for

SIC based on temperature measurements at stretched samples. A

number of measurement techniques, such as differential scanning

calorimetry (DSC), nuclear magnetic resonance spectroscopy

(NMR) and mainly wide-angle X-ray scattering (WAXS) are used by

several authors [5e7,13e21] for the characterization of SIC. In

particular, it was demonstrated by WAXS measurements that the

size of the crystallites remains small on the nanoscale and increases

only slightly after the onset of SIC. The crystallite length (L002 in

stretching direction) was found in the range of 8e10 nm, almost

independent of stretching ratio, while the lateral dimensions in-

crease slightly with stretching ratio after the onset of SIC, from 4 to

8 nm ðL200Þ and 2e3 nm ðL120Þ, respectively [6]. Similar results

were obtained by other authors [5] and also for various carbon

black and silica filled NR [7], indicating that the entanglementmesh

size of the polymer network limits the crystal growth above the

critical onset strain of SIC. Indeed, from the mean spacing of en-

tanglements in the relaxed state, d0 ¼ 5:14 nm [22], the mesh size

in stretching and lateral directions can be estimated by referring to

the non-affine tube model of rubber elasticity, which was shown to

fit the stress-strain response of unfilled NR in the non-SIC regime

very well [23]. This model is based on a non-affine deformation law

of entanglement spacing (in spatial direction i ¼ 1, 2, 3),

di ¼ d0 l
1=2
i

, resulting from a partial relaxation of entanglements

upon stretching. With this, the mesh size well above the onset of

SIC, e.g. at stretching ratio l1 ¼ 6, is obtained as d1 ¼ 12:6 and

d2 ¼ 3:3 nm in stretching and lateral directions, respectively. Of

cause this rough estimate assumes incompressibility and does not

take the volume shrinkage into account appearing upon crystalli-

zation. Nevertheless, it is in fair agreement with the above cited

results of crystallite size, confirming that the entanglement spacing

of the polymer network limits the crystal growth in highly

stretched NR. Note that more or less the same mesh size is realized

for filled systems indicating that it limits crystal growth in the same

manner.

According to WAXS measurements the onset of SIC at room

temperature (20 #C) decreases slightly from 350% to 250% strain

with increasing crosslink density of peroxide cured, unfilled NR [18]

and decreases successively with filler loading down to 100% strain

for highly filled NR [14,15]. It appears that in the presence of fillers,

crystallization is amplified, since regions of polymer between non-

deformable filler particles can be exposed to higher local strains

than external strain. This results from hydrodynamic strain

amplification that increases with filler concentration strain in

analogy to the increase of viscosity of a liquid due to rigid inclusions

[24,25] implying that the onset of SIC is shifted to smaller strain

values. With increasing temperature, SIC is more and more sup-

pressed and the onset of crystallization for unfilled and filled NR

increases up to 500% and 200% strain at 60 #C, respectively [15]. In
addition, the crystallization rate decreases significantly with

increasing ambient temperature and the overall crystallinity de-

creases by about 80% if the temperature increases from 10 #C to

60 #C [15]. For sufficiently cured unfilled NR with Mc < 7.000 g/mol,

the crystallization rate also decreases with crosslink density since

the chain mobility decreases [5]. The chain orientation of unfilled

and filled stretched NR networks has been estimated by measuring

the line splitting of quadrupolar NMR spectra [15] and by evalu-

ating the anisotropy of the amorphous halo obtained from WAXS

measurements [13,16,19]. The data show that the orientation levels

out just at the onset of SIC indicating that the chains in the vicinity

of the crystals relax partly. This has been correlated with a soft-

ening effect of the mechanical stress due to additional free chain

length associatedwith the chain alinement in the crystals [13,16]. In

all measurements a pronounced hysteresis of SIC was found, almost

independent of filler loading, which correlates with the mechanical

hysteresis [13,15] and is mainly due to differences in melting and

crystallization temperature [26]. The characteristic nucleation time

of SIC at room temperature was found to be very small in the range

of 20 ms [16,17]. Recently, the kinetics of crystal growth was

investigated by WAXS measurements on harmonically and rapidly

stretched unfilled and filled NR samples in the millisecond range

[20,21,32]. It was found that the crystal growth can be well

described by a diffusion-limited process with an Arrhenius-like

thermal activation rate constant. The activation energies are in

the range of 20e50 kJ/mol, reflecting the typical dynamics of

entangled polymer chains. Dependent on temperature and final

strain level, crystallite growth levels out almost completely after a

fewminutes. This is in contrast to the very large crystallization time

of NR in the un-stretched state below crystallization temperature.

The crystallization half-life time at 0 #C is about 260 h, but this

value decreases significantly with strain showing already a half-life

time of 110 h at 25% stretching [1]. Finally, we point out that the

crystallization time of uncured NR in the un-stretched state is still

about three orders of magnitude larger than for a high-cis poly-

butadiene rubber (BR) [2]. At present it remains unclear how this

affects the SIC properties at large strains delivering the unique

mechanical toughness and strength of NR, which is much lower for

BR though the topological constraints due to entanglements are

very similar for both rubbers.

In the present paper, SIC of NR is evaluated at relatively large

strain rates of 0.5 s$1, which is still slow compared to the charac-

teristic nucleation time of SIC in the range of 20 ms. Uniaxial cyclic

stress-strain measurements will be done at unfilled and carbon

black or silica filled NR samples with and without silane coupling

agent. Online temperature measurements performed with an IR

camerawill be used to evaluate the strain dependent crystallization

of the samples, which is an exothermal process increasing the

temperature. This will be distinguished from the entropy related

heating due to the mechanical work done at the samples and the

heat losses. In the next section a basic consideration of thermo-

mechanical processes taking place in strain-crystallizing rubbers

is reviewed and the evaluation procedure is explained.

2. Thermal heating of strain-crystallizing rubbers

Entropy elasticity is an essential property of rubber and de-

scribes the appearance of an entropic restoring force upon

stretching. In the stretched state the polymer chains are aligned,

which means that there are less possible conformations than in the

relaxed state, where the entropy gains its maximum and the

polymer chains form coils. Accordingly, for entropy elastic rubbers

under adiabatic conditions the whole work done on the system is

transferred intomicroscopic kinetic energy and no potential energy

is stored. Thus the internal energy of entropy elastic systems is

purely kinetic, being measurable as temperature [1,2]. In contrast,

in steel mainly potential energy is stored upon stretching.

Considering the first law of thermodynamics:

dU ¼ dW þ dQ (1)

for an adiabatic process ðdQ ¼ 0Þ and assuming no energetic con-

tributions to the internal energy, it becomes clear, that all work

done at the system will increase the sample temperature:

dU ¼ cprdTmech ¼ dW ¼ sdε (2)

Here, Tmech refers to the temperature increase due to mechanical
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work done on the system, s is stress and ε engineering strain. The

sample density r and heat capacity cp are assumed to be inde-

pendent of strain and temperature as listed in Table 1. For strain

crystallizing rubbers the internal energy density also contains po-

tential energy stored in the crystallites. Accordingly, it can be

decomposed into the energetic contribution of crystallization and

the entropic contribution:

dU ¼ dUkin $ dUcryst (3)

with

dUkin ¼ cprdTIR (4)

The subscript IR indicates, that this is the “true” temperature

measured by the infrared camera. The negative sign in eq. (3) in-

dicates that crystallization is an exothermal process. The release of

crystallization energy leads to a reversible warming-up of the

rubber, since the same amount of heat is consumed during melting

of the crystallites under relaxation. The crystallization energy

density can again be expressed in terms of density and heat

capacity:

dUcryst ¼ cprdTcryst (5)

This delivers the temperature contribution of strain induced

crystallization.

In reality adiabatic conditions are hard to realize and there is

heat exchange with environment. In our case heat loss

dQloss ¼ $dQ is caused by thermal radiation and convection. The

higher the temperature difference between sample and environ-

ment the larger the heat losses. This cooling effect is considered by

noticing, that heat transfer from rubber to environment is, to first

order, proportional to the temperature difference to ambient

temperature DT ¼ TIR $ T0. In addition, heat transfer is propor-

tional to the surface area S of the approximately two dimensional

flat cuboid sample (Fig. 1) with dimensions a0; b0; c0 and c
0
≪b

0
< a0.

For uniaxial loading a0 ' l and b0 ' c0 ' 1=
ffiffiffi

l
p

, such that we

obtain:

S ¼ 2ða0
$b0 þ b0

$c0 þ a0
$c0Þz2a0

$b0 ' l
1

ffiffiffi

l
p ¼

ffiffiffi

l
p

(6)

where l ¼ 1þ ε is the strain ratio of the sample. Altogether, for

cyclically strained rubbers lost energy can be calculated as an in-

tegral over time t:

Qloss ¼ cprTloss ¼ a

Z

t

0

DTðt0Þ
ffiffiffiffiffiffiffiffiffiffi

lðt0Þ
q

dt0 þ b (7)

where a is a proportionality factor collecting heat-transfer con-

stants and capacities and b is a constant collecting higher order

terms and systematic errors, e. g. an offset of the infrared camera.

Reformulating the first law of thermodynamics, we can now

write a temperature balance equation:

dTcryst ¼ dTIR þ dTloss $ dTmech (8)

or

TcrystðtÞ ¼ TIR tð Þ þ
Z

t

0

h

a DT
$

t’
%

ffiffiffiffiffiffiffiffiffiffi

l
&

t’
'

q

$ s

$

t’
% dε

&

t’
'

dt’

i dt’

cpr
þ b

cpr

(9)

Since at room temperatures no crystallites are present at zero

strain, Tcryst is zero at these points: Tcrystðε ¼ 0Þ ¼ 0. So the equa-

tion can be rewritten for zero strain:

0 ¼ TIRðε ¼ 0Þ þ Tlossðε ¼ 0Þ $ Tmechðε ¼ 0Þ (10)

The free parameters a and b can be fitted such, that this equation

is fulfilled at each point where ε ¼ 0.

3. Experimental

3.1. Materials

Four batches of purified natural rubber (Pale Crepe) have been

prepared in an internal mixer containing different filler systems: 50

phr carbon black N330, 50 phr silica (Ultrasil U7000, Evonik)

without silane, 50 phr silica with 4.17 phr silane coupling agent

TESPT (Si69) and an unfilled sample. Additionally, all samples

contain activator (3 phr ZnO and 1 phr stearic acid), antioxidant (1

phr IPPD), accelerator (1.5 phr CBS) and cross-linker (1.5 phr

sulphur). For comparison, a solution styrene-butadiene rubber (S-

SBR) filled with 50 phr N330 and cured with 1.2 phr sulphur as well

as 2.0 phr CBS was prepared.

Vulcanization curves have been recorded for each batch and the

cross-linking was done by compression moulding at 160 #C up to

the t90 time obtained by vulcameter measurements. A sketch of the

shape of the tensile test samples used for temperature measure-

ments can be seen in Fig.1. The dimensions are 2.5 cmwidth, 6.5 cm

length and 0.15 cm thickness.

The heat capacities and densities of all materials have been

determined with differential scanning calorimetry (DSC) and

buoyancy measurements with a pycnometer, respectively. The re-

sults for the samples used are listed in Table 1.

3.2. Instruments and procedures

A mechanical analysis of the different samples has been per-

formed by standard tensile test with S2-type samples (Zwick UPM-

03). For this purpose 3 tensile specimens per batch have been

stretched until fracture and the stress-strain curves have been

recorded. In addition, cyclic stress-strain measurements with 5

cycles first up to 300% and then 450% strain were performed with

Table 1

Heat capacity and mass density of the sample pool.

Sample cp [J/g K] r [g/cm3]

NR 1.78 0.93

NR/N330 1.52 1.11

NR/U7000 1.55 1.14

NR/U7000 þ Si69 1.57 1.14

SBR/N330 1.49 1.09

Fig. 1. Geometric shape of the tensile test samples. A square is marked in the middle

by reflection points for evaluating the mean surface temperature by IR.
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S3A-type samples in a heating chamber at 23 #C, 60 #C and 100 #C.
The strain was measured via an optical system consisting of two

cameras tracking fixed light reflection points on the samples. The

velocity of the machine was 200 mm/s corresponding to a

stretching rate of about 0.15 s$1.
The influence of filler type on the crystallization process has

been investigated by periodic stretching of the samples shown in

Fig. 1 over four cycles from the relaxed state to 350% strain for the

filled and 600% strain for the unfilled rubber, respectively. To

minimize thermal losses, the cross-head velocity was chosen to be

as fast as possible, 2000 mm/min, corresponding to a strain rate of

0.5 s$1. At the turning points the tensile testing machine de-

celerates and accelerates again, delivering a more or less pro-

nounced relaxation of the samples (compare Fig. 4). A thermal

imaging camera (Jenoptic Vario Therm) was used to record the

behaviour of surface temperature with a sampling rate of 1 Hz. The

camera was positioned in a distance of 1 m from the sample and

operated with an emissivity coefficient of ε* ¼ 1. It is known, that

the emission of black rubber is close to black body radiation, e. g.

ε* ¼ 0.95 [27]. Since the exact value is not known, we rely on ab-

sorption of the measurement error into constant b in eq. (7). Fig. 2

shows an example of two infrared images at different strain values.

Four light reflection points were glued on the samples in a square of

1 cm ) 1 cm to indicate a reference area. Consequently, the average

surface temperature in this area was calculated.

4. Results and discussion

Fig. 3 shows the stress-strain curves up to rupture of the

investigated NR composites at room temperature with 50 phr filler

in comparison to unfilled NR. It shows that the stress level as well as

the tensile strength of the samples strongly depends on filler type.

As expected, the best mechanical performance is observed for the

sample filled with carbon black, which is the standard industrial

filler e.g. for truck tire tread compounds. For the NR/silica/silane

system stress values and also the tensile strength are lower though

the maximum strain is somewhat larger. The worst mechanical

performance among the reinforced samples is found for the NR/

silica system without silane coupling agent.

Examples of stress-strain curves (unfilled and CB filled) ob-

tained under fast repeated cycling at 0.5 s$1 are shown in Fig. 4,

whereby the strain history is depicted in the inset. Both curves have

in common that the first cycle shows the strongest hysteresis

compared to the following ones. This behaviour is especially sig-

nificant for the carbon black filled samples and is related to stress

softening due to the irreversible breakdown of the filler network

also denotedMullins-effect [28,29]. Furthermore, rearrangement of

the filler network during the first cycle results in a significantly

larger release of energy than in the later cycles.

Integration of the measured stress-strain curves shown in Fig. 4

yield the energy density, whereby the area in the hysteresis loops

represents the energy dissipated irreversibly as heat due to internal

friction. In addition heat is stored reversibly in the entropy-elastic

stretched polymer chains. The stored and dissipated heat results

in an increase of sample temperature, which can be calculated from

thework integral via division by sample density r and heat capacity

cp Accordingly, the mechanical work done on the rubber delivers a

temperature increase Tmech if no heat loss is considered:

Tmech tð Þ ¼
X

i

signð _εiÞ
Z

εi

0

s

r cp
dε with signð_εÞ ¼ ±1 for _ε

>
< 0

(11)

Here, each half-cycle is integrated separately with different sign,

taking into account that part of the stored energy is retrieved

during retraction of the samples. Note that the corresponding

integration over time used in eq. (9) delivers the changing sign for

stretching and retraction direction in agreement with eq. (11). The

temperature TmechðtÞ calculated with eq. (11) from the measured

stress-strain cycles is shown in Fig. 5 for various samples. In addi-

tion, the detected IR-temperature is shown. It appears that the

measured surface temperature shows an analogous behaviour

compared to the mechanically calculated temperature. In partic-

ular, the first peak, which represents the first stress-strain cycle,

shows the highest rise in temperature. However, the mechanically

calculated temperature shows some difference: the maximum

temperature increases with each cycle and is systematically higher

than the measured temperature. This is due to heat losses into the

surrounding, which are not considered in the calculation under

adiabatic conditions. The heat losses and the corresponding loss

temperatures are calculated with eq. (7) and fitted such, that the

sum of the measured IR temperature and the loss temperature are

equals the mechanical temperature of the relaxed samples at ε ¼ 0

(eq. (10)).

The results in Fig. 5 show, that the measured temperature cor-

rected by temperature loss (IR þ loss) is higher than the one

calculated from mechanical hysteresis. Since Tmech contains both

the irreversible dissipative contribution and the reversible contri-

bution arising from entropic changes during stretching of the

rubber, the additional third contributionmust be related to SIC. The
Fig. 2. Infrared images of two differently elongated states. The four reflection points

marking the area for evaluating the mean surface temperature are visible.

Fig. 3. Stress-strain curves at 0.15 s$1 up to rupture of variously filled and unfilled NR

samples, as indicated.
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degree of crystallization KðtÞ is calculated by transforming the

temperature deviation Tcryst from eq. (9) to the SIC related energy

via heat capacity and density and dividing it by the crystallization

enthalpy of the polymer component per unit volume (excluding

filler):

KðtÞ ¼ rcpTcrystðtÞ
$

1$ Ffiller

%

DHcryst;NR

(12)

Here, r and cp are given in Table 1 and Ffiller represents the filler

volume fraction. The crystallization energy of natural rubber is

approximated by the enthalpy of fusion DHcryst;NR ¼ 61 J=cm3 [30].

This approximation is justified by a relative change in volume of

about DVa$cz $ 10% from amorphous to crystalline state, which is

based on an estimated volume change of highly elongated NR of

about 3% and approximately 30% degree of crystallinity [1,31]. The

internal pressure lies in the range of pz20 MPa, such that

p Va$cz$ 2 J/cm3. As this is most probably an overestimation we

assume DHcryst;NR and the crystallization energy to be roughly the

same within the range of experimental errors. We point out that

this approach neglects surface tension effects of the molten-

crystalline interface. Including them would require detailed

knowledge about the amount and shape of crystallites, which isn't

available. Moreover it is known, that NR exhibits a maximum

crystallinity of about 30%. As DHcryst;NR was derived comparing

WAXS to DSC data there are necessarily surface effects included in

the value.

The calculated degree of crystallization is plotted in dependence

of strain for the second, third and fourth cycle in Fig. 6. Obviously,

all samples show a pronounced crystallinity, which depends on the

filler type. Similar to the mechanical data shown in Fig. 4 also the

crystallinity exhibits a hysteresis, i.e. the crystallinity obtained for

the up-cycle to maximum elongation differs from the back cycle to

the relaxed state. The fact that the crystallinity during stretching is

lower than during retraction indicates that the melting of crystal-

lites happens delayed compared to the formation of crystallites.

Metastable states during formation and melting of crystallites have

been proposed as a possible reason for unstretched polymers [26].

Furthermore, the onset of crystallization seems to be roughly the

same for all filled samples and is located at around 200% elongation.

For the unfilled sample it appears at about 420% strain. This in-

dicates that the polymer chains between the non-deformable filler

particles are exposed to locally higher strain than the external

strain and that the details of the filler are of minor importance

concerning SIC onset. The silica filled sample without silane

coupling shows significantly less crystallization (4%) compared to

the other samples, while carbon black filled NR shows the highest

degree of crystallization (10%) followed by the silica/silane system

(8%). This ranking agrees with the findings of Chenal et al. [7],

though the silica-polymer coupling had a weaker influence on

crystallinity. The results also agree regarding carbon black filled

samples which show a slightly increased crystallinity compared to

(coupled) silica filled ones. Our data indicate that the maximum

crystallinity of the filled samples scales roughly with the stress

level at 350% strain of the tensile test data shown in Fig. 3, which is

mainly attributed to differences in strain amplification [28]. How-

ever, it is not clear from these findings whether strain amplification

by non-deformed filler units is the only mechanism governing SIC.

The increased stress level may also be attributed to a higher

apparent crosslink density due to additional polymer-filler cou-

plings. We point out that this is expected to reduce the crystallinity,

because a smaller mash size should hinder SIC. This is confirmed by

unfilled NR, which tends to exhibit lower crystallinity at higher

degrees of crosslinking at fixed strain [5,7].

A systematic deviation from the thermo-mechanical model of

Section 2 is the “negative crystallinity” observed in Fig. 6, which is

clearly seen in the medium stretching regime for the unfilled but

also for the filled samples. It could be an effect of non-entropic

energetic contributions whereby potential energy is stored, e.g.

rotation of carbon bonds, temporary network bonds or stretching of

filler clusters, although the latter case seems to be of minor

importance, since the problem occurs for unfilled NR, as well.

Temporary network bonds are less favorable in stretched states,

because each bond represents an additional crosslink, thus

lowering the entropy. A further reason for energy-elastic contri-

butions could be attractive chain interactions close to the cross-

links, which are separated upon stretching, or long time relaxation

mechanisms due to slowly relaxing network defects, which act

similar to temporary network bonds. The “negative SIC”might also

shift the onset of crystallization to somewhat larger values

compared to the crystallization onset found with the WAXS

method at 350% strain for sulfur cured unfilled NR and 150% strain

for 50 phr carbon black filled NR, both at 40 #C [15]. The obtained
maximum crystallinities of about 9% at 600% strain for unfilled NR

and about 10% at 350% strain for carbon black filled NR differ from

the majority of WAXS studies showing larger crystallinities by a

factor of up to 2 [6,15]. However, also from WAXS investigations

large deviations of crystallinity are found by various authors using

different evaluation procedures, e.g. 10% at 600% strain for unfilled

Fig. 4. Stress-strain cycles for unfilled (a) and carbon black filled NR (b) at 0.5 s$1 up to 600% and 350%, respectively. Strain histories are shown in the inset.
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Fig. 6. Degree of crystallinity vs. strain under cyclic loading for variously filled NR samples, as indicated.

Fig. 5. Temperature variations for unfilled and filled NR samples, as indicated, measured by infrared camera (IR) as compared to mechanical evaluations (mech) calculated with eq.

(11), loss temperatures (loss) calculated according to eq. (7) and fitted such, that the sum of IR and loss temperature (IR þ loss) equals the mechanical temperature (mech) at the

minima where ε ¼ 0 (eq. (10)). The difference between temperature (IR þ loss) and (mech) is a measure of crystallinity, which is positive due to the exothermal character of SIC.
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NR [14], which agrees fairly well with our estimate. In addition, the

energetic contribution mentioned may be a systematic offset,

shifting the whole crystallinity curve to lower values.

The differences between our data from IR-measurement and

WAXS data from different authors can also result from the different

NR types used. A purified, high molar mass type (Pale Crepe) was

used in our studies while other authors applied non-purified

standard NR types with reduced chain length (SMR, SVR, SIR…)

or the high molar mass type (RSS1). Also, many WAXS studies use

strain rates up to 2 decades slower than in the present work, which

could explain a larger crystallinity, although SIC is reported to take

place on generally small timescales compared to our deformation

speed [16,17,32]. Due to the fast deformation rates we used in our

studies, an increase of sample temperature up to 20 #C takes place
(see Fig. 5), which in turn suppresses crystallization. A temperature

shift from 20 #C to 40 #C in unfilled natural rubber has been re-

ported to decrease crystallinity from 16% to about 12% [13]. We

point out, that the pronounced increase in crystallinity for the

carbon-black and silica/silane systems at maximum strain can be

related to the fast relaxation processes at the upper turning point of

each cycle. At these points the testing machine has to slow down to

allow a continuous change of direction, which yields a strong

decrease in stress (due to relaxation) at almost constant strain (see

Fig. 4). It is clear, that this relaxation process should dissipate en-

ergy, but isn't captured immediately by the work integral, since

dεz0 at the turning points (see eq. (11)). Hence at these points

calculated temperatures will stay below reality, generating an

overestimation of crystallinity. On the other side, the strong me-

chanical relaxation of the samples can also be a result of the crys-

tallization process itself, since the strong chain alinement in the

crystals implies relaxation of the surrounding chains. This softening

effect of the mechanical stress due to additional free chain length,

associated with the strong orientation of chain segments in

the crystals [13,16,19], can considered to be an important homog-

enization mechanism in highly stretched polymer domains,

possibly delivering the extraordinary ultimate properties of strain-

crystallizing elastomers. It compares to the stress homogenization

mechanism in highly reinforcing filled rubbers, where stress peaks

in a more or less heterogeneously cross-linked rubber matrix are

balanced by the rupture of filler clusters [28,29].

The S-SBR compound with carbon black shows no significant

SIC, as can be seen in Fig. 7. Indeed, for the statistical co-polymer S-

SBR no crystallinity is expected, confirming the applied procedure.

The observed deviations from zero in Fig. 7b) below 300% strain are

in the range of experimental errors, while the negative peak above

300% strain seems to be a systematic deviation. This compares to

the negative crystallinity contributions in Fig. 6, indicating that the

thermo-mechanical approach in Section 2 exhibits some in-

sufficiencies at medium and high strains as previously discussed.

The SIC-induced stress softening effect discussed above can be

observed in more detail by referring to the temperature dependent

stress-strain cycles for carbon black and silica/silane filled natural

rubber shown in Fig. 8. Here, the fifth cycles of repeated stretching

from 50% up to 300% and afterwards from 50% up to 450% are

compared for 23 #C, 60 #C and 100 #C. A closer look on the me-

chanical data shows that with increasing temperature the mean

initial slope of stress-strain cycles increases, which can be related to

the entropic character of rubber elastic stress, being proportional to

the absolute temperature. In addition, the hysteresis decreases

significantly with increasing temperature since SIC is suppressed at

high temperatures. The remaining hysteresis at 100 #C becomes

significantly smaller and is probably related to the filler alone.

However, we also observe that the stress-strain cycles at medium

strain become more flat with decreasing temperature. This SIC-

induced stress softening effect is associated with additional free

chain length in consequence of chain alinement during the for-

mation of crystals [13]. Especially for the large cycles, the stress in

the down-cycle is more or less plateauelike between 100% and

300% strain, indicating that the chain stretching remains almost

constant during melting of the crystals in the retraction phase. A

further effect is the upturn of stress-strain cycles at large strain,

which appears at smaller strain with decreasing temperature. This

stress hardening effect is related to the finite extensibility of

network chains and seems to be affected by the formation of

crystals, as well, since more crystals deliver shorter chains.

Accordingly, the upturn is more-steep for strain crystallizing

polymer networks since the apparent chain density increases when

crystallites are formed. For both filler types, carbon black and silica/

silane, a quite similar qualitative behaviour is observed in Fig. 8.

However, the stress level is about a factor 2 smaller for the silica/

silane system. This indicates that the strain amplification factor

resulting from hard-rigid filler structures in both system is also

similar since SIC is controlled by the internal strain of the rubber

matrix. Accordingly, the different stress level seems to be related to

a lower cross-linking density of the silica/silane system, though the

same vulcanization system was used. A reason could be a

Fig. 7. Measured and calculated temperature contributions as in Fig.5(a) and degree of crystallinity vs. strain (b) for S-SBR with 50 phr carbon black.
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pronounced adsorption and interaction of the accelerator CBS with

the silica surface delivering a reduced cross-linking density

compared to carbon black. Whether this interpretation is correct or

not will be investigated in future tasks.

We finally point out that the evaluation method for SIC devel-

oped in this paper is based on simple thermodynamic assumptions

and does not refer to a microscopic picture of crystallite formation,

growth andmelting. Onemajor advantage of themethod presented

here is its simplicity and the fact that it works based on a small

number of assumptions. With this method we're unable to distin-

guish crystal amount and crystal size, we only measure the total

crystalline fraction. A first microscopic theory of SIC based on en-

tropy elasticity has been developed about 70 years ago by Flory

[33]. Recently, this concept was extended in a phase field model by

Laghmach et al. [34] by focusing on topological constraints to

quantify effects of entanglements and cross-links on the crystallite

growth. In this work, surface tension effects play a central role

implying that additional assumptions about crystal dimensions and

shape are required. An advanced microscopic concept of SIC must

take into account the nucleation and growth of the crystals

differing from the melting process, which possibly can explain the

complex stress-strain cycles of unfilled and filled NR in dependence

of crosslink density and temperature (comp. Fig. 8). So far, such

theory is still missing though it is strongly demanded for a better

understanding of high performance technical rubber goods based

on strain crystallizing elastomers.

5. Summary and conclusions

It has been shown that on-line temperature measurements

during cyclic tensile testing of unfilled and filled NR together with

the evaluation of mechanical work done at the systems can be used

to characterize the degree of strain-induced crystallization (SIC).

The mechanical work consists of a purely elastic part and a dissi-

pated energy part that both can be calculated by integration of the

stress-strain-curves. The former delivers a temperature increase

upon stretching due to the entropic origin of rubber elasticity that

is fully reversible upon retraction. The latter one is equal to the

dissipated heat which is consequently converted into an irrevers-

ible increase of temperature. Considering a correction of heat losses

into the surrounding, the difference in calculated and corrected

temperature can be finally converted into a degree of crystallinity. A

drawback of this method is the appearance of a negative degree of

crystallinity for medium strains, which could be explained by en-

ergetic elastic contributions not captured by the purely entropy

elastic model.

The results obtained from this evaluation procedure demon-

strate that the onset of crystallization is roughly the same for all

filled NR samples. The carbon black filled NR shows the highest

degree of crystallization followed by the silica/silane system at

equal strain level, while silica filled NR without silane coupling

agent shows the lowest crystallinity. The maximum crystallinity of

the filled samples at 350% strain correlates with the stress level of

the tensile test data during first stretching. A lower self-

reinforcement by SIC for the silica/silane system compared to car-

bon black at the same strain level is also concluded from temper-

ature dependent stress-strain cycles, which can be related to a

lower crosslink density and/or less strain amplification by non-

deformed filler units. For carbon black filled S-SBR samples no

crystallinity is detected in the range of experimental errors, con-

firming the applied procedure. The SIC evaluation method devel-

oped here is a promising option to investigate synergetic

interactions between filler networking and SIC, especially to un-

derstand the poorer fatigue and wear properties of silica/silane

filled NR composites compared to carbon black filled NR.
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A B S T R A C T

Strain induced crystallization is essential to the physicochemical properties of polymer materials, but is difficult

to investigate, as it usually requires X-ray sources in combination with stretching machines. We improve and

validate a recently developed method which allows the calculation of the crystallinity index using easily

available thermography and stress-strain data. For natural rubber, the method is shown to be reproducible and

delivers results quantitatively comparable to spectroscopic methods such as wide angle X-ray scattering. The

incorporation of different amounts of carbon black is shown to increase the level of crystallization and to change

the shape of the strain-crystallization curves. Additionally, crystallinity during partial retraction is investigated

and reveals that crystallization characteristics change at sufficiently high strain.

1. Introduction

Strain-Induced-Crystallization (SIC) is a well-known phenomenon

observable in many polymers. The most prominent example may be

natural rubber (NR), where SIC is assumed to be responsible for its

outstanding mechanical properties [13–15]. While NR works fine filled

with carbon black, comparable silica filled compounds perform less

well, especially in terms of wear. The reason for that is still under

discussion and may be related to depression of SIC and/or inadequate

choice of coupling agents [7].

HNBR with ACN content larger than roughly 35% and high level of

hydrogenization is able to crystallize under strain [12], while NBR is

not. This indicates that HNBRs great mechanical strength is also due to

SIC. Apart from that, SIC may occur in many other polymers (among

them EPDM).

In contrast to crystallization in unstretched polymers, which is easy

to quantify by methods such as DSC [6] or XRD, the evaluation of SIC

requires much larger experimental effort. The problems start with

constructing a sample holder, which allows setting precise strains or

stresses, but fits the DSC machine or X-ray beam. When using X-ray, the

distinction between amorphous- and crystalline diffraction pattern is

difficult, because the amorphous background becomes anisotropic

under strain [5].

Recently, we have shown that SIC can be quantified by combining

mechanical characterization and thermography [8]. The method pre-

sented was able to capture the characteristics of SIC but lacked accuracy

and precision. In this work, we present crucial improvements which

increase reproducibility to a level comparable or superior to X-ray

measurements. In contrast to DSC and most X-ray applications, it can be

carried out online at almost arbitrarily high speed. Additionally, the

interplay of SIC and filler, as well as SIC during partial unloading, are

investigated.

1.1. Evaluation procedure

The energy of crystallization is determined by balancing the me-

chanical energy input W , internal energy U and heat exchange with

environment Q. The internal energy can be split up into an kinetic part,

which measures the excitation of the microscopic degrees of freedom

such as vibration, translation and rotation in terms of heat capacity cp,

density ρ, sample temperature T and the energy stored in potentials.

The latter is identified with the energy gain from crystallization and is

labeledUc. In differential form, the first law of thermodynamics (given

per volume) is written as

− = +c ρ T U W Qd d d dp c (1)

where the negative sign of Uc indicates, that crystallization is an exo-

thermal process. The total crystallization energy is calculated by re-

arranging Eq. (1)

∫= − −U c ρ T W Q( d d d )c p (2)

The parameterization of the integral is best done by measurement

time t . For the mechanical energy inserted into the sample per volume
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we get

∫ ∫= = ′ ′ ′W t W t σ t λ t( ) d d ( ) ˙ ( )

t

0 (3)

with σ and λ being appropriate stress and strain measures (e. g. en-

gineering stress and strain). The greatest uncertainty in the present

treatment comes from the heat exchange with the environment. Heat

flow is to a first order proportional to the temperature difference from

the environment = −T t T t T t∆ ( ) ( ) ( )0 , where T t( )0 is environment

temperature and to the surface area S of the sample. For a cuboid

sample volume with dimensions × ×x x x ,1 2 3 we have a surface area

= + +S x x x x x x2 2 21 2 2 3 3 1. For a platelet-like sample with > ≫x x x1 2 3

this simplifies to ≃S x x2 1 2.

In the case of uniaxial strain with = = =λ λ λ λ λ, 1/1 2 3 and

∝ ∝x λ x λ,1 1 2 2 we get ∝S λ .

The heat exchange with environment per volume is then given as

∫ ∫= = − ′ ′ ′ − ′ ′Q t Q t a t T t T t λ t( ) d d ( ) ( ( ) ( )) ( )

t

0

0

(4)

with a t( ) being an unknown proportionality factor. Note that it has the

dimension of  W/(m K)3 . It can be compared to the heat transfer coef-

ficient α usually given in W/(m K)2 by multiplying by the thickness of

the sample =α d a. From Eq. (2) the total energy of crystallization

reads

∫= ′ ′ − ′ ′ + ′ ′ − ′ ′U t t c ρ T t σ t λ t a t T t T t λ t( ) d [ ˙ ( ) ( ) ˙ ( ) ( )( ( ) ( )) ( ) ]c

t

p

0

0

(5)

The quantities cp and ρ are experimentally accessible (and may even
be made temperature dependent). Sample temperature T t( ) and am-

bient temperature T t( )0 are measured directly by an infrared camera.

From this, the unknown function a t( ) can be determined if the energy

stored in crystallites at a specific point in time is known. For natural

rubber and many other strain crystallizing polymers, crystallinity is

zero at zero strain and ambient temperature. If ti denote the points in

time where crystallinity is zero, we have ≈U t( ) 0c i for all ti. This implies

that:

∫
≈ = −

= ′ ′ − ′ ′ + ′ − ′ ′

+ +
+

U t t a U t U t

t c ρ T t σ t λ t a T t T t λ t

0 ∆ ( , , ) ( ) ( )

d [ ˙ ( ) ( ) ˙ ( ) ( ( ) ( )) ( ) ]

c i i i c i c i

t

t

p i

1 1

0

i

i 1

(6)

Note that we set =a t a( ) i for t in the interval +t t[ , ].i i 1 If ambient

temperature was not measured over time, as is the case for some of our

measurements, it can be treated similarly: →T t T( ) i0 0, in +t t[ , ]i i 1 .

Equation (6) can be solved for ai (and T i0, ) by suitable numerical

methods. In fact, ai (and T i0, ) should be functions smoothly varying in

time. For this reason, the solution for ai (and T i0, ) of

⎜ ⎟≈ + ⎛
⎝

− ⎞
⎠

+
−

−
U t t a C

a a

a
0 ∆ ( , , )c i i i

i i

i
1

1

1

2

(7)

is determined (an equivalent term for T i0, is added, if necessary). The

variable >C 0 defines the strength of smoothing/regularization. For

=C 0, the algorithm optimizes the ai such, that =+U t t a∆ ( , , ) 0c i i i1 ,

even if this involves highly fluctuating ai and overshooting calculated

temperatures inside a cycle. Introducing C enforces solutions which

both tolerate small deviations from =+U t t a∆ ( , , ) 0c i i i1 due to inexact

assumptions and smoothly varying ai. For ≫C 1 the algorithm will

neglect U∆ c and generate constant a .i In this work =C 10, because in

this regime ai as well as crystallinity cycles are smooth and do not vary

much with variation ofC. The total energy of crystallization can then be

composed from the discretized function ai (and T i0, )

∫∑= ′ ′ − ′ ′

+ ′ − ′ ′
≤

+
U t t c ρ T t σ t λ t

a T t T t λ t

( ) d [ ˙ ( ) ( ) ˙ ( )

( ( ) ( )) ( ) ]

c

t t t

t t

p

i

min( , )

0

i i

i 1

(8)

where the minimum function is a formality which takes into account

that the measurement doesn't have to end with zero crystallinity.

From equation (8), we can calculate the crystallinity index as

=
−

K t
U t

H
( )

( )

(1 Φ )∆
c

filler cryst (9)

with the filler volume fraction Φfiller and enthalpy of fusion H∆ cryst for

the pure polymer, which is close to the energy of fusion due to small

volume changes and internal pressures on phase transition. From Eq.

(2), we can see that the temperature of a non-crystallizing polymer

( = ∀U t t( ) 0 )c is calculated according to

= +
T t

W t Q t

ρ c
( )

( ) ( )
nc

p (10)

which will be useful later to visually compare the true sample tem-

perature (from thermography) to the hypothetical one of a non-crys-

tallizing polymer. The difference is proportional to U t( ),c and thus a

direct measure of crystallinity.

For reliable determination of SIC, two conditions regarding sample

geometry have to be fulfilled. First, the surface to volume ratio has to be

small to avoid heat exchange with environment, which is corrected only

approximately. Second, an inhomogeneous temperature profile and

heat buildup inside the sample due to inserted mechanical energy have

to be avoided. This can be achieved by reducing the sample dimensions.

To fulfill both conditions, the timescale of heat diffusion has to be in the

same range as the timescale of the experiment. It can be estimated by

assuming a single temperature deviation in the middle of the sample

=x 0. The solution of the heat diffusion equation.

∂
∂

− ∂
∂

= =T

t
κ
T

x
T x δ x0 and ( , 0) ( )

2

With the Dirac delta distribution δ x( ) gives the solution

= −⎛
⎝

⎞
⎠T x t

πκ t
( , )

1

4
e

x
κ t4

2

which is called the fundamental solution (or Greens function) of the

heat diffusion equation. Looking at the exponent, we see that the

timescale of diffusion scales as ≈τ x κ/(4 )2 . For rubber,

≈ ⋅ −κ 1.5 10 m /s7 2 [11]. As we have heat sinks/sources on both sides of

the sample, we have to take half of the sample thickness for x . With

= ≈ ⋅ −x d/2 1 10 m3 we get ≈τ 1.7 s, which is of the same order of

magnitude as the time required for one deformation cycle. In addition,

the temperature homogeneity depends on the radiating boundary

condition:

= − −∂
∂ h T T( )
T

x 0 for =x d/2 (sample surface).

With =h α κ c ρ/( )p , where α is the heat transfer coefficient that can

be set to   = ⋅ ≈α a d 40W/(m K)2 , which is a common value for rubber

[11] and is also found in the results section. Using  ≈c ρ 1.7 J/(cm K)p
3

(see Table 1), we get ≈h 160 1/m. From this, we can extrapolate the

maximum temperature deviation in the middle of the sample by

≈ − ⋅ ≈ ⋅ ⋅ =−T h T T
d

∆ ( )
2

170
1

m
10 K 10 m 1.7 K0

3

where we assumed a temperature difference from sample surface to

environment of 10 K.

The 1.7 K represent an upper bound, as the temperature profile is

more flat than linear extrapolation from the samples' borders.

2. Experimental

Vulcanizates based on natural rubber (pale crepe), Standard
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Vietnam Rubber (SVR) and Styrene-Butadiene Rubber (SBR) were

prepared. Additives were 3 phr (parts per hundred rubber) zinc oxide, 1

phr stearic acid and 1.5 phr N-isopropyl-N-phenyl-p-phenylendiamine

(IPPD) as ageing protection. As filler, 20 phr, 40 phr or 60 phr N339

carbon black was added. The compounds were cured with 0.5, 1.0 or

1.5 phr sulfur and same amount N-cyclohexylbenzothiazole-2-sulphe-

namide (CBS). Curing was done in a heated press at 150 °C up to t90%
time, which is defined as the time where 90% of vulcameter stress is

reached.

Strip samples with approximate dimensions 100× 15×2mm3

were stretched at 2000mm/min ( ≈ε̇ 0.4 /s) using a Zwick universal

testing machine. Temperature profiles were recorded using a micro-

epsilon TIM640 IR camera operated with an emissivity factor of 0.95.

The temperature was averaged over a rectangular area within the front

side of the sample. For some measurements, room temperature was

recorded by placing black paper next to the sample inside the field of

view of the camera. Note, that sample cooling given by Eq. (4) crucially

depends on the temperature difference from room temperature. For this

reason, the latter should be tracked near the sample. Additionally, the

same device should be used to account for systematic errors involved in

temperature determination by IR cameras. A schematic representation

of the sample setup is shown in Fig. 1.

Heat capacity and density were measured via DSC and a pycn-

ometer, respectively, at 23 °C. They are given in Table 1.

3. Results and discussion

First, an example of the method described in the theory section is

presented. In Fig. 2 the crystallinity evolution of a 1.5 phr sulfur/CBS

cured SVR rubber is shown. The sample was drawn several times to

450% strain. The corresponding stress-strain curve was used to calcu-

late a hypothetical temperature according to Eq. (10). Obviously, the

hypothetical temperature is often lower than the measured one, in-

dicating crystallization. By means of Eq. (10) the crystallinity index is

determined using an enthalpy of fusion of 61 J/cm3 [2]. Ambient

temperature was fitted. With increasing strain, crystallinity remains

zero up to roughly 350%. Then, crystal nucleation sets in and induces

rapid growth of the crystallinity index. In the mechanical data, this is

visible as a kink. When decreasing strain, crystals successively melt

until the last crystal melts at about 180% strain.

To validate reproducibility, 3 SVR samples were punched out of the

same vulcanizate and measured successively up to 450% strain. As

shown in Fig. 3, there are minor deviations in maximum crystallinity,

whereas on- and offset are nearly constant. They were determined by

fitting lines to the linear slopes during loading and unloading. Max-

imum crystallinity is found to be ±(14.3 1.0) %, on- and offset are

( ±351 3) % and ( ±181 8) %, respectively. Similar compounds in-

vestigated by WAXS at same strain yield ∼11% crystallinity (TSR 20,

1.2 phr sulfur, 1.9 phr CBS) [9], ∼14% crystallinity (SMR, 1.5 phr

sulfur, 2 phr CBS) [19] and ∼11.5% crystallinity (1.2 phr sulfur, 1.2

phr accelerator) [4]. For more precise quantification of the uncertainty

a greater series of samples is required.

In Fig. 4, the method was applied to SBR cured with 1.5 phr sulfur

and CBS and filled with 50 phr N330 carbon black. SBR is unable to

crystallize due to steric hindrances and will be used as a benchmark for

this reason. In Fig. 4b, the calculated and measured temperatures are

shown. The calculated temperature is systematically higher than the

measured one. This can possibly be explained by intramolecular energy

elastic contributions like twisting and torsion of bonds, which aren't

accounted for in our model. For this reason, the crystallinity equivalent

(using the enthalpy of fusion of NR, to allow comparison) becomes

negative. The force fraction f f/e of energy elasticity of SBR and NR is

usually found to be between 0 and 0.2 [17]. Nevertheless, the max-

imum deviation from zero is about −2% crystallinity at peak stress,

including eventual stress softening effects and uncertainties of DSC and

density measurements. This is a consequence of the relatively large

amount of energy involved in crystallization, reducing the relative error

due to unknown energy elastic contributions. It is worth noting that the

measurement speed was increased during measurement (see Fig. 2b).

The resulting crystallinity equivalent seems to be independent of speed,

indicating the validity of the calculation of Q t( ).

To further investigate the effect of measurement speed on crystal-

lization and to validate the fitting of ambient temperature, a single

sample made up of natural rubber (pale crepe), cured with 1.0 phr

sulfur and CBS stretched to 500% strain several times. This was done

successively at a measurement speed of 0.5m/min, 1.0m/min and

2.0 m/min, corresponding to stretching rates of roughly 0.1 1/s, 0.2 1/s

and 0.4 1/s. The result with fitted ambient temperature is shown in

Fig. 5a. By decreasing measurement speed, the degree of crystallinity

increases. Even although the majority of crystals forms on the timescale

of ms [3], it is known that crystallinity increases slowly on the timescale

of seconds [1]. It is worth noting that the increase in crystallinity is

particularly pronounced close to the melting (decreasing strain). This

indicates that larger, and thus more stable, crystallites may form at

lower speeds. Nevertheless, two alternative explanations can be given:

Table 1

Heat capacity and density of the compounds investigated.

Rubber Sulfur/CBS

[phr]

Filler [phr] cp [J/g

K]

ρ [g/cm3] c ρp [J/cm3

K]

NR (SVR) 1.5/1.5 0 1.62 0.943 1.53

NR (pale

crepe)

1.0/1.0 0 1.64 0.942 1.54

NR (pale

crepe)

1.5/1.5 0 1.61 0.945 1.52

NR (pale

crepe)

1.0/1.0 20 (N339) 1.51 1.019 1.54

NR (pale

crepe)

1.0/1.0 40 (N339) 1.40 1.082 1.51

NR (pale

crepe)

1.0/1.0 60 (N339) 1.35 1.136 1.53

SBR 1.5/1.5 50 (N330) 1.36 1.136 1.54

Fig. 1. (a) Schematic representation of the measurement setup and (b) experimental realization.
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By decreasing the measurement speed, the average sample temperature

is closer to room temperature due to increased time to exchange heat

with the environment. WAXS studies carried out by Rault et al. [4,19]

show that a temperature shift of 10 °C may change the degree of crys-

tallinity by up to one fifth of its value. Thus, the observed increase in

crystallinity may be explained by a lower sample temperature. This can

be checked by carrying out measurements at elevated ambient tem-

perature and reduced speed.

Additionally, the calculation of heat exchange Q t( ) is only approx-

imate and the error will increase with increasing measurement time (to

the next minimum, where Q t( ) is set to the correct value).

In Fig. 5b, crystallinity of the same data was evaluated using mea-

sured ambient temperature T t( )0 . The result is almost identical to

Fig. 5a, indicating that fitting T0 gives a very good approximation. This

is supported in Fig. 5c and d Where the T i0, and T t( )0 as well as the

corresponding coefficients ai are shown to be similar.

The method also allows analysis of crystallinity for stress-strain

cycles which do not end with zero crystallinity. Nevertheless, it has to

be ensured that the corrective term Q t( ) is reset sufficiently often to

allow for precise determination of heat exchange. For this reason, it is

crucial to go to low strains after a certain period of time.

In Fig. 6, an unfilled natural rubber (pale crepe) cured with 1.5 phr

sulfur/CBS was drawn to different increasing strain levels 5 times each.

Then, strain was decreased according to the same protocol. Finally, the

sample was drawn 5 times from 450% to 500%, then from 400% to

500%, and so on. In between, the correction was reset by going from

500% to 30% strain. The strain-time protocol is also shown in Fig. 6b.

Red dots denote reset points.

The stepwise increase in maximum strain reveals that crystallites

appear around 300% maximum strain (green curve in Fig. 6c), which is

clearly below the large strain onset of crystallization commonly found

to be around 350% [3,5]. Mechanically, this goes along with an in-

crease in hysteresis as well as the occurrence of stress softening. On

further increasing maximum strain, the crystallization onset shifts to

larger strains, while the offset remains almost fixed slightly below

200%. In contrast, during unloading (decreasing strain), the onset re-

mains constant. Mechanically, all cycles are enclosed by an enveloping

curve during unloading, such that the shift in crystallization onset

Fig. 2. (a) Stress-strain data of sulfur cured SVR rubber, (b) calculated temperature profile (color) and measured sample temperature (grey). Red dots indicate points of zero crystal-

lization, where Q t( ) is reset. (c) Degree of crystallinity. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Crystallinity of 3 sulfur cured, unfilled

SVR samples punched out of the same vulcani-

zate. Sample 2 corresponds to the example shown

in Fig. 2. The red lines are used to determine

crystallization on- and offset strain. (For inter-

pretation of the references to color in this figure

legend, the reader is referred to the Web version

of this article.)

Fig. 4. (a) Stress-strain data of sulfur cured, 50 phr N330 filled SBR, (b) calculated temperature profile (color) and measured sample temperature (grey). Red dots indicate points of zero

crystallization, whereQ t( ) is reset. (c) Equivalent degree of crystallinity using the enthalpy of fusion of natural rubber. (For interpretation of the references to color in this figure legend,

the reader is referred to the Web version of this article.)
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Fig. 5. (a) Measurement speed variation for an

unfilled natural rubber (Pale Crepe), crosslinked

with 1.0 phr sulfur/CBS. Ambient temperature T0

fitted. (b) Same plot, but using measured ambient

temperature. (c) Comparison of fitted and mea-

sured ambient temperature. (d) Comparison of

heat transfer coefficient a for fitted and measured

ambient temperature.

Fig. 6. (a, b) Stress-strain measurement of natural rubber (Pale Crepe) cured with 1.5 phr sulfur/CBS. The red dots denote the strain minima, where crystallinity is zero. (c, d, e)

Crystallinity for the increasing and decreasing strain part, as well as internal cycles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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might be due to stress softening.

Surprisingly, the crystallinity during internal cycles shown in Fig. 6e

exhibits far less hysteresis. For low strain amplitudes (e. g. from 450%

to 500%) hysteresis seems to vanish. Similar results were found by

means of WAXS [9]. This indicates that either crystallites are melting

only partially and continuously grow again during loading, or that the

timescale of nucleation is much smaller than the timescale of the ex-

periment. Additionally, the five internal cycles don't collapse onto one

line, but exhibit a trend towards larger crystallinity. This finding may

be explained by continuing crystallization, decreasing sample tem-

perature or uncertainties in the dissipation correction (because of the

relatively infrequent reset points). Nevertheless, at larger amplitudes (e.

g. from 200% to 500%) the cycles collapse again, such that continuing

crystallization is most probable. Mechanically, this hypothesis is sup-

ported by a lower stress level with decreasing strain (see red cycle in

Fig. 6a). The height of the retracting stress plateau was explained by the

degree of crystallization [16].

The impact of filler loading on SIC is investigated in Fig. 7. There,

crystallization of natural rubber (pale crepe) crosslinked with 1.0 phr

sulfur/CBS filled with 0, 20, 40 and 60 phr N339 carbon black is pre-

sented. Without any filler, crystallinity evolves similarly as shown in

Fig. 6c. Filled with 20 phr of filler, the samples crystallinity curve

changes from triangular shape towards a more tube-like shape. Prob-

ably, this is due to different strain levels within the sample as a con-

sequence of spatially heterogeneous strain amplification. In fact, a re-

cently proposed model is able to precisely describe the mechanical

behavior of rubber using this assumption [10].

The turning point at maximum strain is less sharp, such that max-

imum crystallinity seems to be reached on the way back slightly below

maximum strain. Indeed, such results were found using WAXS [4]. For

40 and 60 phr carbon black this trend continues. Additionally, crys-

tallinity seems to decrease close to maximum strain. As can be seen in

the figure, this effect becomes smaller with every stress-strain cycle. We

think that this is related to the pronounced mechanical relaxation of

sufficiently filled elastomer composites, which possibly involves energy

elastic contributions not accounted for up to now. With increasing

amount of filler, the crystallization onset shifts to larger strains. In

principle, this allows the calculation of a strain amplification factor. As

this quantity depends on maximum applied strain, this is rather com-

plex and out of the scope of this work. In Fig. 8, the maximum of the

crystallinity curve with respect to filler loading at different strain levels

is presented. Take into account that the maximum of crystallinity does

not coincide with maximum strain for the filled samples. The degree of

crystallinity of the unfilled sample is close to the value∼17% at 550%

strain obtained in Ref. [4] for a slightly different compound (1.2 phr

sulfur and accelerator). Crystallinity increases with increasing filler

loading in accordance with literature [4,18], but saturates and even-

tually decreases afterwards. The filler loading of saturation decreases

with increasing strain. This also indicates that, at low strains, the filler

network locally overstretches large parts of the network, thus in-

creasing the average crystallinity. At larger strains, the corresponding

constraints break down and the network more and more resembles the

unfilled sample. Finally, the presence of carbon black may hinder

crystallization, resulting in a decrease of crystallinity with more filler.

For the 60 phr N339 measurement, it is all but clear that crystal-

linity is zero at minimum strain. Because of this, the measurement has

to be interpreted with care.

4. Conclusions

A method to determine SIC from thermography and mechanical

data is presented. It was shown to be reproducible and accurate, deli-

vering reliable and fast information about different types of NR,

Fig. 7. Crystallinity of natural rubber (Pale

Crepe) crosslinked with 1.0 phr sulfur/CBS for

varying amount of N339 carbon black.

Fig. 8. Maximum of crystallinity for different strain levels and amounts of carbon black.

Data taken from Fig. 7.
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differently crosslinked and filled. It may easily be used on other poly-

mers. The method works fine with or without knowledge of ambient

temperature. Speed has a significant influence on the measured degree

of crystallinity. It has to be clarified whether this is due to continuing

crystallization or non-ideal measurement conditions. Mechanical stress

softening also impacts crystallization behavior. Additionally, crystal-

lization during incomplete cycles exhibits reduced hysteresis and in-

creases with time. The latter effects are rarely studied and deserves

further investigation. Crystallization of filled samples can also be

quantified, showing a transition from triangular-shape crystallinity

curves to tube-like curves. This is interpreted in terms of differently

amplified domains. We want to highlight, that the whole evaluation

procedure can also be carried out in a heated cabinet to investigate SIC

at arbitrary temperatures. This will be treated in future works.
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A Theory Relating Crystal Size, Mechanical Response, and Degree of
Crystallization in Strained Natural Rubber
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Deutsches Institut für Kautschuktechnologie e.V., Eupener Str. 33, 30519 Hannover, Germany

ABSTRACT: It is widely believed that the extraordinary
mechanical properties of natural rubber (NR) are mainly caused
by its ability to crystallize at large strains. While several authors
believe crystallites working equivalent to nanoscopic filler
particles in terms of amplification and filler networking, recent
works have identified a crystal-induced strain regulation process
as a possibility to explain its outstanding properties. We present a
theory that is able to quantitatively describe crystal formation
and melting in stretched NR in dependence of temperature and
cross-link density. The theory gives reasons for the constant
crystals length observed in NR and answers the question why crystallization onset strain is independent of cross-link density. It is
tested on the data set of Trabelsi (2003), Albouy (2005), and Rault (2006) reproducing stress−strain data, degree of crystallinity,
and crystal sizes at different temperatures using a physically well-defined set of parameters. Additionally, a scheme for NR
crystallization involving linear and folded chain crystals is drawn.

■ INTRODUCTION

Natural rubber (NR) is a crucial ingredient to a great variety of
rubber goods, most importantly to heavy duty rubber articles
like truck tires or belts. Its unmatched mechanical properties in
terms of wear and tear strength are believed to be due to strain-
induced crystallization (SIC) and/or due to natural ingredients
like proteins and phospholipids.1,2 If NR is exposed to large
strains, the conformational entropy of polymer chains is
reduced, allowing the formation of small crystallites. The
crystallization kinetics and crystallite size evolution as well as
total crystalline fraction were extensively analyzed by means of
wide-angle X-ray spectroscopy (WAXS). The crystallites’ length
parallel to stretching direction was found to be constant around
10 nm for both filled and unfilled elastomers, slightly
depending on cross-link density.3−6 The crystals volume
could be related to the volume of an average network mesh
cell, defined by cross-link spacing,7 indicating that cross-links or
trapped entanglements limit crystal growth. Additionally, the
length of the crystallites seems to be rather independent of
applied strain.5−7 With increasing strain, crystallites slightly
grow in directions perpendicular to strain, but the main part of
additional total crystallinity is due to the formation of new
crystallites.3 The morphology of strain-induced crystals is still
not totally clear. Electron microscopic pictures obtained at
room temperature suggest chain folding crystallites even at high
strains.6 Nevertheless, many authors assume fibrillar nuclei,3,8

probably allowing the growth of chain folded crystals on their
surface.
Without strain, NR crystallizes on the time scale of hours

around −25 °C, and the total fraction of crystals in cured as
well as uncured NR was found to be limited at about 40%.9 In
contrast, SIC occurs on time scales of roughly 20 ms at room
temperature, which is fast compared to time scale of typical

mechanical experiments. The time scale of SIC can be
described by a diffusion-controlled rate law.10,11 Comparable
to many other polymers, the phase transition of NR exhibits
great hysteresis: Crystals need high strain to appear but melt at
much lower strains. In analogy to cold crystallization, many
authors refer to this process as supercooling.7,12,13 Surprisingly,
the onset strain for crystallization appears to be almost
independent of strain,5,7,14 while offset strain increases with
increasing cross-link density. The second observation can easily
be explained with a larger size of crystals for loose networks,
increasing the melting temperature according to the Gibbs−
Thomson equation.15 The first observation conflicts classical
rubber elasticity theory, as pointed out by Flory,13 and is still a
matter of dispute. Tosaka2 assumes network heterogeneities to
be responsible for this effect. The reason why SIC increases the
mechanical strength of NR is still under discussion. Because of
their size, crystallites may act as multifunctional cross-links12 or
nanoscopic fillers.16 Recently, the evaluation of the WAXS
amorphous halo allowed to determine amorphous polymer
orientation.17,18 The results indicate that after crystallization
onset the amorphous polymer phase has constant average
orientation, irrespective of strain. On a mechanical level this is
visible as a stress plateau. The authors refer to this effect as a
strain regulation process.18 Similar results were found by NMR
measurements.12 Many observations are collected in the review
of Huneau.19

There is a great variety of theories aiming to describe SIC.
The famous approach of Flory13 treats rubber in a single Gauss
chain picture and the crystal as linear, weighing their respective
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entropic and energetic contributions. It correctly describes
temperature dependency of crystallization but fails in
reproducing the mechanical response of NR and the depend-
ence on cross-link density. Gaylord20 followed a similar
approach but introduced folded crystals. Several other models
deal with different assumptions on crystal geometry and
relation to the polymer matrix. Kroon21 and Mistry22 developed
semiempirical constitutive models allowing to reproduce whole
hysteresis cycles. These models are based on a splitting of the
rubber matrix into crystalline and elastic phases in a similar way
as presented here but differ in the treatment of the evolution of
the crystalline phase. An overview about existing theories of
SIC is found in ref 8. In this work we present a new
microscopic theory that treats SIC in a simple but physically
reasonable way. It aims to answer some of the remaining
questions concerning SIC of natural rubber. (1) Why do
crystals always have the same length, irrespective of strain and
temperature? (2) Why is crystallization onset strain rather
independent of cross-link density? (3) What is the morphology
of NR crystals? (4) What is the life- cycle of a crystallite during
cyclic loading? The model is fitted to the excellent data set of
Trabelsi,7 Albouy,23 and Rault,12 providing mechanical and
WAXS data for different compounds at several temperatures.

■ A MICROSCOPIC THEORY OF SIC

The theory section is split into five parts. First, Flory’s theory is
shortly reviewed, focusing on his assumptions and the
difference to the present work. Afterward, some general
calculations concerning serial connections of Gaussian chains
are performed. Then, the entropy cost of attaching a chain to a
crystal is calculated. Using this result, a linear network of
crystalline and noncrystalline chains is investigated. It turns out
that the whole linear network can be described by one
replacement chain. In the end the transition to continuum
mechanics is done by averaging the replacement chain over
three directions in space. The three modeling steps are
visualized in Figure 2.
Flory’s Theory.13 Flory’s theory on SIC paved the way for

numerous other microscopic theories. His theory is based on
the assumptions that (i) crystallization occurs in thermody-
namic equilibrium, (ii) the formation of crystal nuclei induces
negligible changes in entropy, (iii) crystallites are all oriented in
stretching direction, (iv) each chain traverses the crystal in the
direction of stretching, and (v) Gaussian statistics is employed
despite its obvious deficiencies at large strains. Additionally, he
implicitly assumes that (vi) the network can be described by a
continuously crystallizing representative chain. Commenting on
this, he expressed concerns:13 “This interpretation of λ
[remaining amount of amorphous chain] may be reasonably
satisfactory for low degrees of crystallinity, but it is beset with
doubts, partly of intuitive origin, when a substantial fraction of
the material becomes crystalline. A literal extension [...] to the
system as a whole would imply that nucleation is restricted to
the initial crystallization interval, further crystallization there-
after being restricted to longitudinal growth of existing
crystallites.”
The model presented below takes over assumptions i, iii, iv,

and v, mainly for the sake of analytically feasible calculations
but also to avoid unnecessary assumptions, even though the
assumption of equilibrium necessarily requires to distinguish
thermodynamic parameters for loading and unloading. It is
worth noting here that the terminus equilibrium is used in the
context of a locally stable state. If the system would be always in

the global free energy minimum, hysteresis would be impossible
by construction (without introducing explicit dissipative
mechanisms). Assumption ii and vi are dropped and replaced
by the result that crystal nucleation costs a significant amount
of entropy. Building on this, it is shown that spawning of fully
grown individual crystals is thermodynamically more favorable
than growth of existing ones. It will be shown that a linear array
of individual crystals is mathematically equivalent to a
replacement chain with a growing crystallite but a chain-
length-dependent entropy of fusion.

Serial Connections of Gaussian Chains. The probability
distribution of the end-to end vector r ⃗ of an ideal polymer chain
with segment length b and number of statistical segments n is
given by the well-known Gauss approximation15
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The nontranslational part of chain entropy is defined as the
logarithm of accessible states Ω, which is given by
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with Cf counting the number of conformations each segment
may take in the melt and sf = kB log Cf being the corresponding
entropy.
For the sake of more compact notation we define the unit

length to be b = 1 and kB = 1, converting the final results back
to SI units.
Now we serially connect two ideal chains with end to end

vectors r1 and r2 and number of statistical segments m1 and m2.
Both end-to-end vectors may be reduced in length by the
constants c1 and c2, which will later be identified with crystal
lengths. The deformational entropy (neglecting the term
containing sf for the time being) of both chains then reads
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Fixing the end-to-end distance to r1 + r2 = R and maximizing
the entropy (with respect to the remaining internal coordinate,
e.g., r1) then yields
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This equation can be applied recursively to give the
generalization of an arbitrary number of serially connected
chains in equilibrium
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where the ≡ indicates that the equation holds in equilibrium
only.

Attachment of a Chain to a Crystal. Equation 4
represents the entropy of two chains with end-to-end distance
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R reduced by c1 and c2. The cj = ηγjnj (where j is 1 or 2 here) are
the lengths of crystals in stretching direction, with γj being the
degree of crystallization of the corresponding chain ranging
from 0 to 1. The strain reduction parameter η quantifies which
fraction of the crystalline polymer spans distance in the
direction of strain. For example, η = 1 corresponds to fibrillar
(linear) crystals in direction of strain, whereas η = 1/3
corresponds to chains folded one time. The mj = nj − γjnj
represent the remaining segments in the amorphous chain part.
Inserting these expression into eq 4 gives

ηγ ηγ

γ γ γ π

γ π

−
− +

− + −
+

−

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R n n

n n n n n n

n n

3

2

( ( ))

( ) ( )

3

2
log

3

2( )

3

2
log

3

2( )

1 1 2 2
2

1 1 1 2 2 2 1 1 1

2 2 2 (6)

If a chain with n segments crystallizes and generates two
subchains on each side of the crystallite while maintaining the
same end-to-end distance, the condition n1 + n2 = n has to be
fulfilled. At fixed η, maximization of entropy gives γ = γ1 = γ2
and n1 = n2 = n/2. This means that the crystal will preferably
spawn in the middle of a chain with equally sized remaining
amorphous chains on each side. This is visualized in Figure 1.

From the maximization of eq 6 we get the deformational
entropy of a chain (composed of two subchains) that is
attached to a crystal of length ηγn:
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In contrast, the entropy of an unattached chain with number of
segments n and end-to-end distance r is given as
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Note that for an infinitesimal crystal γ = 0 we get the entropy
cost for forcing the chain to make a detour to a specific point in
space (crystal surface)
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showing that the mere attachment of the chain requires a large
amount of entropy, even if the crystal is in direction of stretch.
This is visualized in Figure 1 and contradicts Flory’s theory,
who assumed that there is no entropy change upon attachment
of a chain to a crystal (see above). To the best of our

knowledge, he and many other authors of the time neglected
the change in conformational entropy due to chain attachment
because they focused on the r-dependent part of entropy
(∼−3/2 r2/n) only, where a randomly placed cross-link (new
crystal) only changes the overall entropy at strains deviating
from the strain of its formation.24 Instead, this simple
calculation confirms the intuitive idea that the chain looses
conformational entropy if it anchors at a crystal surface.

From a Single Chain to a Linear Network. Using eqs 8
and 7, the total deformational entropy of a one-dimensional
linear network of k chains of which kc are crystalline can be
expressed as
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The network is visualized in Figure 2a. By introducing the
discrete step function (H[n] = 1 for n ≥ 0 and H[n] = 0
otherwise), we can combine the r-dependent sums of crystalline
and noncrystalline chains
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Assuming an equilibrated network, we can use eq 5 to bunch
together the r-dependent terms collected in eq 12a
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where R = ∑i=1
k ri is the (fixed) total elongation of the linear

network. The average replacement chain (see Figure 2b) is
defined by the average quantities
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which tells us that network crystallinity ν may be continuously
increasing, even though experimental results clearly show that
individual crystals form spontaneously. The latter observation is
taken into account by the step function H[kc − i], switching on
the crystallinity of chain i if it belongs to the crystalline fraction.
r is the average end-to-end distance of a network chain, and n is
the average number of segments. We point out that eq 14 may
be seen as a justification of numerous approaches in the

Figure 1. Sketch of the attachment of a single chain between two
network nodes (red dots) to a preexisting or emerging crystal. Forcing
the chain to be at the crystals surface reduces the number of possible
conformations (gray lines) and consequently the entropy of the chain.
Afterward, the subchains integrate into the crystal.
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literature, which model continuously growing crystals within
the chain.8,13,20,22 An extension of the model could involve
varying η, depending on the direction of the chain relative to
the crystal. The serial connection of an ensemble of chains
differently likely to crystallize would be a natural explanation for
the nonlinear shape of crystallization curves close to SIC onset
and offset.
While eq 12a can be expressed exactly by average quantities,

the log terms in eq 12b have to be evaluated using assumptions.
Approximating the number of segments and the microscopic
single chain crystallinity by their respective averages ni = n and
γi = γ, we get
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The crystallinity of the network ν is the product of microscopic
single-chain crystallinity γ and fraction of crystalline chains kc/k,
so that ν = γkc/k. The latter equation can be used to eliminate
kc:
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In general, less than 40% of the chains are incorporated in the
crystal, such that γ < 0.4 and log(1 − γ) ≈ −γ. Using this
approximation, we get
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The simplifications derived above are used to simplify the total
deformational entropy of the (linear) network SD given by eq
12. The total deformational entropy of the replacement chain
sD = SD/k then reads
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where ν ≤ γ because ν = γ corresponds to the case where every
network chain is crystalline (kc = k). In the limit of zero
network crystallization ν = 0 we obtain the usual Gauss chain
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We would like to highlight that eq 19 allows to calculate the
deformational entropy of a replacement chain with total degree
of crystallinity ν, which is composed of noncrystalline chains
and crystalline chains with microscopic chain crystallinity γ.
The difference between ν and γ is illustrated in Figure 2. As this
theory assumes thermodynamic equilibrium, the free energy of
the system shall be minimized with respect to the microscopic
degree of crystallinity γ. Investigating the deformational entropy
of the replacement chain given by eq 19 in the interval γ ∈ [0,
1] it becomes obvious that the free energy will be minimal for γ
→ 1. This means that crystalline chains would not have any
amorphous segments anymore. As outlined in the Introduction,
it is widely known that NR crystals are limited in size at about
10 nm and size scales roughly with mesh size defined by cross-

link spacing. Additionally, for fibrillar crystals, 10 nm
corresponds to roughly ten incorporated statistical segments
(assuming a statistical segment size of b = 0.934 nm25), which is
far less than the typical number of 50−150 segments between
cross-links usually observed for natural rubber.
Obviously, crystal growth is limited by processes not

captured up to now. It is assumed that crystals are hindered
in growth by surrounding chains because entanglements and
cross-links have to be pushed out of it. This is visualized in
Figure 3. We collect the influence of the surrounding by

introducing a repelling entropic potential. The potential is
proportional to the number of crystalline chains kc. The
remaining is expanded into a Taylor series, giving SP(x) = kc(κ0
+ κ1x + κ2/2 x

2 + ...) where x is a measure for crystal length.
The latter has to be dimensionless because otherwise higher
order terms in the expansion would give arbitrary powers of
dimensions. Two length scales are available to make x
dimensionless: the segment length b, which will most certainly
not affect crystal growth, and the network mesh size =d n b,
which was successfully related to crystal size as pointed out in
the Introduction. The latter is chosen, defining

ηγ= =x l d nb n b/ /( ). There should be no entropy penalty
for zero length crystals, so that SP(x = 0) = 0. Moreover, when
holding the number of crystalline chains kc constant, the
repelling force opposed to growth should be vanishing for small

crystals, which gives = =x( 0) 0
S

x

d

d
P . These conditions imply

κ0 = κ1 = 0. The remaining potential is capped above quadratic
order. We set κ ≡ κ2. For the replacement chain the potential sP
is given by (in SI)

Figure 2. Visualization of the three modeling steps: (a) building a
linear network of partially crystalline chains; (b) replacement by an
average chain; (c) taking into account spatial distribution of chains and
expressing crystallinity in terms of measurable, continuum crystallinity.

Figure 3. Illustration of the repelling entropic potential sP. Small
crystal nuclei are not hindered by the entropic potential originating
from entangled and cross-linked chains (small blue arrows). If the
crystal becomes too large, the entropic potential will prevent further
crystal growth (large blue arrows).
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where we used the definition of ν = kc/kγ to eliminate kc. The
dimensionless quantity κ is an unknown fit parameter. It should
be a measure for the amount of constraints opposed to crystal
growth, e.g., entanglement density. Additionally, it may be
related to the fact that larger crystals require a larger detour for
chains not ideally aligned in crystal direction. Given this, eq 21
should represent a good approximation in consideration of
limited knowledge of the detailed processes involved.
Altogether, the total entropy of the replacement chain is

composed of the deformational entropy sD defined by eq 19,
the repelling entropic potential sP, and the conformational
entropy sC resulting from the degrees of freedom of each
noncrystalline segment. The latter is given in analogy to eq 2 as
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with sf being the entropy of fusion of one statistical polymer
segment. Moreover, the enthalpy gain due to crystal formation
is
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with the enthalpy of fusion per segment hf.
Equilibrium is defined by the free energy f. It is composed of
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where (in SI)

θ η κγ
γ

π
= − + − + = − ̃⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟h k T

s

k n n

n
h s T

3 3

2
log

6
f

f

f fB
B

2

(27)

collects all terms scaling with network crystallinity ν, despite its
effect on the strain term. Take into account that the entropy
punishment due to crystal formation (∼log(nπ/6)/n) decreases
with the number of segments n. To compare the obtained
entropy of fusion with literature, it is useful to define the
effective entropy of fusion as follows:
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which corrects the entropy of fusion of one segment by the
entropy lost due to decreasing mobility of the remaining chain
and the repelling potential.
Micro−Macro Transition. The transition to a polymer

network is carried out by splitting up the network into three
orientational domains as shown in Figure 2c and assuming
affine deformation. The first one is directed into the direction

of maximum strain λ1, while the two other ones are
perpendicular. The end to end vectors of the domains are
deformed affinely from their length at zero strain: ri=λi r0. Each
domain may be crystalline with crystallinity fraction νi. The
average free energy is then given as

λ ν λ ν λ ν⟨ ⟩ = + +f f r f r f r
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we can easily see that the crystallinity of the whole sample can

be identified by ω ν ν ν= + +( )
1

3 1 2 3 . We will call ω

continuum crystallinity from now on. Experimental results
show that crystals are highly oriented in direction of strain,7

such that it appears reasonable to assume that only the domain
in direction of strain is crystalline. This can be formalized as ν2
= ν3 = 0, thus giving ν1 = 3ω. The r-dependent part of eq 30
can be simplified as
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where the latter approximation is exact for strains below
crystallization onset (ν1 = 0) and becomes more precise for λ1
≫ λ2 ≈ λ3, which is usually fulfilled above crystallization onset
for uniaxial strain. The approximation was done to make the
model invariant to rotation of the coordinate system. Using
=r n0 , the average free energy then reads (in SI)
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with I1 = λ1
2 + λ2

2 + λ3
2 being the first strain invariant known

from continuum mechanics. The average free energy ⟨f⟩ can be
minimized with respect to the degree of crystallinity of
individual chains γ to get a measure for the length of the
crystallites. Quantities defining the minimum of the free energy
density will be denoted with an asterisk from now on. Note that
θ(γ) incorporates all dependencies on γ. Minimization gives (in
SI)
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with l* being the length of the crystal. Take into account that l*
is independent of the first strain invariant I1 = λ2 + 2/λ and
temperature T. In fact, numerous studies have shown the length
in stretching direction of the crystallite to be insensitive to
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strain, although the remaining dimensions weakly depend on
it.3−5 Additionally, the extension of crystallites was shown to be
almost independent of temperature.6

Note also that the enthalpy of fusion does not appear in the
equation, too. This is because the length is solely determined by
balancing the entropic need for long crystals (because of the
entropy punishement of chain attachment) and the entropy
loss due to displacement of the surrounding network.
The continuum crystallinity ω measuring the number of

crystalline chains is still unknown. Inserting γ* and minimizing
the averaged free energy ⟨f⟩ with respect to ω gives (in SI)
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Crystallization starts when ω* becomes larger than 0. From
ω*(I1*) = 0, we get the crystallization onset strain in terms of
the first invariant (in SI)
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The total free energy density of the network F(I1) can be
calculated from the average free energy given by eq 33 by
multiplication with the number density of elastically active
chains νc. This is the central quantity of this work, as its
minimum defines the materials behavior. Before crystallization
onset at I1* crystallization is ω = 0, afterward ω = ω*(I1):
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where the first case is equivalent to the neo-Hookean material
model. Stress is derived from the given free energy density
using continuum mechanical methods (see e.g. ref 26).

■ RESULTS AND DISCUSSION

To validate the model described in the previous section, we use
data obtained by Trabelsi,7 Albouy,23 and Rault.12 They
investigated the same natural rubber recipes containing 2 g of
stearic acid, 5 g of ZnO, and 1 g of antioxidant (6PPD) per 100
g of natural rubber. The rubber was cross-linked semiefficiently
using 0.8, 1.2, and 2.0 g of sulfur and accelerator (CBS) for
samples I, II, and III, respectively. The number of monomers
between two cross-links has been determined via swelling to be
335, 238, and 145, respectively.
In contrast to the authors, we will use the number of

statistical segments instead of the number of monomers
between cross-links. Using the molar mass of NR statistical
segments Ms = 128.6 g/mol27 and the molar mass Mm = 68.12
g/mol of isoprene, we can assume that a segment consists on
average of Ms/Mm = 1.89 isoprene units. Thus, we get the
number of statistical segments n1 = 177 for sample I, n2 = 126
for sample II, and n3 = 77 for sample III.
Alignment measurements12 indicate that first crystallites

grow into stretching direction, such that we set the strain
reduction factor η = 1. Until otherwise noted, we will keep this
assumption. This also means that the crystallizing chains are
assumed to be aligned perfectly in direction of stretch. Usually,
crystallization occurs at large strains (aligning the chains), such
that this approximation feels appropriate.

The authors performed extensive WAXS studies during static
and dynamic loading at different temperatures. They
determined the crystal sizes in stretching direction (l002) at
room temperature for all three samples7 as well as
crystallization onset and offset strain, degree of crystallinity,
and the mechanical response.
Their data are now evaluated in three steps. (1) Experimental

crystal size is fitted to eq 34 to determine its sole fitting
parameter κ, which scales the entropy punishment due to
crystal growth. Using this parameter (2) the model is fitted to
SIC onset and offset strains of all samples and different
temperatures using eq 36. This allows to determine all
thermodynamic parameters of the model and to deduce
information about crystal geometry. The model is fully
determined, then. Finally, (3) the parameters obtained are
used to calculate the mechanical response and degree of
crystallinity around crystallization onset and offset.
The fit of step 1 is shown in Figure 4, together with crystal

sizes obtained by other authors,3,4 determining κ = 4.76.

Segment length of NR was set to b = 0.934 nm.25 The accuracy
of the fit retrospectively justifies the choice of the entropic
potential given in eq 21.
Additionally, the authors determined the onset and offset

strain at different temperatures by extrapolating the crystallinity
curve to zero (sample I)12 or by investigating the kinks in the
stress−strain curve (sample II).23 Onset and offset at room
temperature for samples I, II, and III were extracted from the
data provided by Trabelsi.7 The onset and offset strains were
converted to the first invariant using the assumption of perfect
uniaxial loading: I1* = λ*2 + 2/λ*. The data obtained is fitted to
eq 36 to determine the remaining model parameters: The
entropy of crystal formation per segment sf is assumed to be the
same during crystal melting (offset) and crystal formation
(onset), as it should be independent of crystal size and
geometry. In contrast, the enthalpy of fusion per segment hf
may be influenced by crystal size because larger crystallites are
less impacted by surface energy. Thus, hf is set free for onset
and offset and each sample. It will be related to crystal size later.
The parameter κ scaling the entropy punishment due to growth
of crystallites is set to the value obtained in Figure 4 for all
samples and crystal melting/formation. Data and fit are shown
in Figure 5. The model fits the data rather good, except at low
temperatures. There it has to be taken into account that the
SIC offset at temperatures ≲20 °C were sometimes

Figure 4. Crystal length l* ≡ l002 in stretching direction vs chain length
in statistical segments obtained by various authors. The model fit to
data from Trabelsi7 given by eq 34 is also shown. The curve is fully
determined by the parameter κ = 4.76.
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extrapolated by the authors due to inverse yielding effects
(which will be discussed later), and the crystallization
mechanism may already resemble cold crystallization.6 Thus,
the corresponding data points involve some uncertainties. From
the enthalpy and entropy of fusion per segment the
corresponding macroscopic quantities (per gram of sample)
can be calculated according to

= = ̃ = ̃H
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h S
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s
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s
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s (38)

with Avogadro’s constant NA and the molar mass of statistical
segmentsMs = 128.6 g/mol.27 The effective entropy of fusion S ̃f
is calculated from the corresponding microscopic value given by
eq 28. All converted fitted result are given in Table 1. It is

crucial to note that Hf as presented here is an effective value
including surface tension. It can be expressed as follows:
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where Hf,0 = 65.3 J/g is the bulk enthalpy of fusion determined
on the un-cross-linked melt,28 l is crystal length, a and b are the
remaining cuboid dimensions, σ is the lateral surface energy,
and σe is the end surface energy (where chains leave) of the

crystallite. WAXS data suggest that NR crystallites are of
platelet-like shape with l constant respective strain while a and
b increase with proceeding crystallization. Additionally, it is
found that b ≈ a/3.3,4 Using the latter, we can solve eq 39 for a

σ
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8
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Knowing l from the data of Trabelsi7 (see Figure 4) for each
specimen, we can use eq 40 to determine the lateral size of the
crystal close to nucleation and melting. The lateral free surface
energy of unstrained purified NR melts, crystallized by cooling
below the equilibrium melting point, was estimated by
Kawahara29 to be σ = 0.013 J/m2. While the lateral interface
of strain-induced crystals and lamellar crystals usually occurring
in the quenched melt is probably similar, the end surface energy
σe may be different because crystals in the melt usually are of
lamellar type and SIC crystals do not fold to the same extent.
For un-cross-linked NR it was estimated by the same authors to
be σe = 0.024 J/m2. Gros et al.30 argue that end surface energy
for strain crystallizing, cross-linked NR is close to zero. Thus,
the end surface energy is rather uncertain, such that we
calculate a using both σe = 0.024 J/m2 and σe ≈ 0. The result is
given in Table 1 as well. It turns out that the crystal dimensions
a ≈ 4.5 nm and b ≈ a/3 ≈ 1.5 nm at crystallization onset are
rather independent of cross-link density. This indicates that
always the same amount of chains participate in forming the
nucleus, although nucleus length l depends on cross-link
density. As the number of chains initially available for
nucleation should be independent of cross-link density (on a
scale much smaller than mesh size), this results feels intuitively
correct. It is a direct consequence of the larger entropy
punishment for chain attachment at larger cross-link densities;
otherwise, a larger network strain (at constant SIC onset strain)
would have to be compensated by smaller, less stable nuclei
with a smaller net enthalpy of fusion, when holding onset strain
constant.
In previous models a larger network strain (for higher cross-

linked samples) would result in a smaller SIC onset strain. This
was already pointed out by Flory13 and other authors19 and
seemed to contradict experimental evidence.
We also see from Table 1 that crystal dimensions prior to

melting are larger than shortly after SIC onset. Moreover,
crystal dimensions increase with decreasing cross-link density.
This indicates that the last melting crystals perfected their
ordering. Crystal sizes close to onset and offset as given in
Table 1 roughly coincide with the dimensions at onset and
offset strain observed by Candau.3

The entropy of fusion of uncured NR of NR can be
calculated from the literature data using 0 = Hf,0 − TmS, where
melting temperature is Tm = 309 K.29 The result S = 0.211 J/(g
K) is 5−10% off from the effective entropy of fusion S̃f given in
Table 1.
It has to be kept in mind that all results given in Table 1 are

derived using many assumptions, especially the micro−macro
transition may be questioned: In eq 33 the factor 3 directly
emerges from splitting the network in three representative
chains in each direction of space. Changing the averaging
process will change this factor and scale hf and sf accordingly.
Using eq 37 and the parameters defined in Table 1, the

mechanical response can be derived. The number of elastically
active chains is computed via νc = ρ/(Msn) with ρ ≈ 0.92 g/
cm3 being the density of natural rubber. The results are

Figure 5. (a) Onset strain of SIC measured7,12,23 for differently cross-
linked samples I−III at different temperatures and converted to the
first strain invariant I1* = λ*2 + 2/λ*. The solid lines correspond to a fit
to eq 36. (b) Same for the offset of SIC. It has to be kept in mind that
deviations of data and model strain appear squared due to the
definition of I1.

Table 1. Collection of the Fitting Results Originating from
Figures 4 and 5a

sample 1 2 3

fixed parameters

n 177 126 77

η 1

κ 4.76 (from Figure 4)

fitted parameters

Hf up [J/g] 38.0 38.3 37.6

Hf down [J/g] 44.3 43.3 42.1

Sf [J/(g K)] 0.129

calculated parameters

a up [nm] 4.1 (4.7) 4.2 (5.1) 4.1 (5.2)

a down [nm] 5.4 (6.5) 5.1 (6.4) 4.9 (6.5)

S ̃f [J/(g K)] 0.184 0.191 0.203
aThe lateral crystal sizes a are derived from the corresponding
enthalpy of fusion Hf during onset (up) and offset (down) via eq 40.
The surface tension is set to σe = 0 (σe = 0.024 J/cm2).
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compared to experimental data for samples I and II in Figure 6.
At intermediate temperatures and strains below strain harden-

ing the model reproduces the experiment fairly well. The
deviations at low temperatures may be traced back to invalid
model assumptions (partial “cold crystallization”) and/or errors
due to extrapolation of crystallization offset. At high temper-
atures probably a smaller fraction of polymer is able to undergo
SIC, preventing a complete stress homogenization and thus the
“melting stress plateau” observable during unloading. For
sample II a complete deformation cycle is shown in Figure 6b.
While the stress plateau during release is described fairly well,
the decrease in stress upon beginning of SIC is overestimated.
Probably, the network and crystallites need some additional
driving force to rearrange for perfect stress homogenization.
Similarly, the degree of crystallinity can be calculated using

eq 35 and the parameters from Table 1. The result and
comparison to data of sample II is shown in Figure 7. In Figure

7b the model prediction is shown up to the value of
crystallinity, which is possible without chain folding. It is
defined by γ = l/(nb) = 0.091, 0.102, and 0.125 for samples I, II,
and III, respectively. The formula assumes that every chain of
contour length nb passes one time through a crystal. For small
crystallinities, the model predicts the experimental data fairly
well, given the numerous assumption involved. At larger
crystallinities the model fails because larger and thus more
stable crystallites may change the overall crystallization
mechanism (see discussion later).
Now the effect of crystal phase morphology on degree of

crystallinity is investigated. As explained in the Theory section,

η = 1 corresponds to fibrillar crystals aligned in stretching
direction. For η < 1 just a fraction of the crystalline chain
reduces strain of the amorphous phase; e.g., η = 1/3
corresponds to chains folded one time. A value below 1 may
be beneficial when the surrounding network hinders further
fibrillar (linear) crystal growth, but additional crystalline
fraction will give a net negative free energy. This may happen
when crystals become large enough to allow energetically
attractive chain folding on the surface. The thermodynamic
validity of chain folding is determined by the free energy
density given by eq 33. The energetical minimum depends
crucially on enthalpy of fusion hf, which is in turn related to the
dimensions of the crystallites via eq 40 (using σe ≈ 0).
Minimization with respect to η analytically requires much
effort, such that we do it numerically. Varying the size of the
crystal a the minimum of eq 33 with respect to ω and η for
different strains λ is shown in Figure 8. Again, minimum

quantities ω* and η* are indicated by an asterisk. Two things
become obvious. (1) For all strains above crystallization onset λ
≈ 4.5 crystallinity increases upon increasing the crystals
dimensions. At a critical crystal dimensions, which is lower
than the crystals size a determined close to crystallization offset
(see Table 1), all curves discontinuously jump to maximum
crystallinity, indicating a kind of phase transition. The critical
crystal dimension is a function of temperature and almost
independent of strain, consistent with results from X-ray and
electron microscopy obtained by Luch and Yeh,31 who stated
“These results strongly suggests that temperature (...) is the
primary, if not the only, variable which directly decides lamellar
stability, although applied stress and/or strain may affect the
rate and ease with which lamellae form”. Interestingly, for
strains below crystallization onset λ ≈ 4.5 the phase transition
occurs discontinuously if crystals are sufficiently large, their
critical size depending on strain. (2) The explanation is given
by the observation that up to critical crystal size a the optimum
strain reduction parameter η* equals 1, corresponding to linear
crystals. After surpassing the threshold it discontinuously jumps
to a constant smaller value, see Figure 8b. The larger the strain,
the larger the remaining η*. In fact, η* is chosen such that the

deformational entropy ηω∼ −nI n( 3 )1
2 becomes zero. In

reality, there will always be a remaining deformational entropy
because also chain folding crystallites are restricted by the
surrounding matrix. Additionally, the formation of loops
requires additional entropy,32 which is not taken into account.
To conclude, it may be said that the derivations above indicate

Figure 6. (a) Mechanical response during unloading of sample I (data
from ref 23) and corresponding response derived from eq 37 and the
parameters given in Table 1. (b) Mechanical response of sample II
(data from ref 12) and calculated response for onset and offset of SIC.

Figure 7. (a) Crystallinity of sample II at different temperatures (taken
from ref 12). (b) Same data and crystallinity reproduced from eq 35
using parameters from Table 1 for onset (dashed) and offset (solid) of
SIC. Data for 10 °C is omitted for better visibility.

Figure 8. (a) Continuum crystallinity ω* and (b) strain reduction
factor η* corresponding to the minimum of free energy (eq 33) at
different strains λ and crystal sizes a for sample II. Remaining
parameters are taken from Table 1 (using σe = 0), and temperature is
set to 23 °C. Above a critical crystal dimension, which is independent
of strain, crystallinity increases and chains are folding.
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that chain folding becomes possible when crystals are
sufficiently large. There will certainly be no discrete jump to
maximum crystallinity (as found here) because this would
require recrystallization of the total fibrillar crystals to lamellar
type. Instead, lamellar chains may grow on top of the fibrillar
nucleus, such that the quantitative values in Figure 8 have to be
interpreted with care.
Now a scheme of NR crystallization is drawn. Take into

account that the model derived above is strictly valid only near
crystallization onset and offset, where the enthalpy of fusion
was fitted. Thus, many of the observations below are deduced
from combining results and experience from the modeling with
careful interpretation of the large amount of literature data
available on the topic.

• Upon increasing strain the entropy punishment for
crystal formation decreases. At onset strain λ ≈ 4.5 first
crystals consisting of a few chains are thermodynamically
stable. Onset strain is largely independent of n because
the entropy punishment (per segment) for attaching to a
crystal becomes smaller for longer chains, compensating
for the lower network strain. The entropy punishment
for crystal attachment also explains why full-length
crystals appear: It is thermodynamically more favorable
to grow one crystal as long as possible than to grow two
smaller ones because the attachment cost has to be paid
only once. Formally, this results from the minimization
of eq 33 with respect to microscopic (single chain)
crystallinity γ at fixed macroscopic crystallinity ω, giving γ
as large as possible, only restricted by the repelling
entropic potential sP. Macroscopic crystallinity ω is
proportional to the number of crystalline chains kc and
single chain crystallinity γ. Thus, at constant macroscopic
crystallinity, an increasing microscopic crystallinity goes
along with a decrease of crystalline chains.

• By further increasing strain crystals increase in number
and rapidly thicken. The thickening in directions
perpendicular to stretching as well as the increase in
number of crystals was shown via WAXS by various
authors.3,4 This happens because the enthalpy gain for
attaching to an already present crystal is larger than
forming a new one. With increasing crystal size the
effective enthalpy of fusion per segment increases until
the threshold visualized in Figure 7 is reached, where the
linear crystals may act as a nucleus for folded chain
crystals. We will refer to the degree of crystallinity
defining the point as crystallinity threshold from now on.
Luch et al. found fibrillar crystals in un-cross-linked
natural rubber at −28 °C at strains up to 900%.6

Although experiments evaluated here were done at a
much larger temperature, network strain will certainly be
much larger due to cross-linking. We argue that the
transition to chain folding has to set in when the
crystallinity of the crystallizable polymer fraction
approaches γ, meaning that all crystallizable polymer
traverses a fibrillar crystal one time. To increase
crystallization further, the polymer necessarily has to
fold. Indeed, numerous WAXS studies on moderately
cross-linked samples3,7,12,23 and calorimetric ap-
proaches33,34 clearly show a kink in the crystallinity
curve for loading as well as unloading at about 6 ± 3%
crystallinity, dependent on cross-link density.3,7,18

Mechanically, these points seem to correspond to the

beginning/end of the stress plateau. Presumably this
happens because folded chain crystals are not equally
effective in regulating strain and the regulation process is
overcompensated by the increase in cross-link density
due to crystal formation, as originally proposed by
Flory.13 Candau3 investigated incomplete stretching
cycles. If the lower strain limit of a strain cycle is larger
than the crystallinity threshold, the crystallinity curve
shows almost no hysteresis. Similar effects can be seen in
crystallinity curves obtained by thermography.34 A
vanishing hysteresis is indicative of continuous attach-
ment/detachment to crystals instead of new crystals
spawning and disappearing. In that sense, crystallization
above the crystallinity threshold may be similar to “cold
crystallization” in unstretched polymers31 with nuclei
already present (explaining the faster crystallization rate
and vanishing hysteresis). The model presented here is
unable to reproduce the kink, created by chain folding,
because a change in strain reduction factor η goes along
with complete recrystallization of the crystal. A crystal
consisting of a fibrillar nucleus with chains folded on top
cannot be modeled using this framework.

• During strain release the chain folded crystalline parts
melt first. The last folded chain detaches at roughly the
same degree of crystallinity as the first folded chain
attached because the thermodynamic stability of chain
folded crystals depends only on crystal size (and thus on
chains included in crystals, which scales with ω) and not
on strain. This is deduced from the result of Figure 8.

• Below crystallization threshold crystals are only stable
due to the strain regulation effect. Whenever strain is
released, the need for crystalline chains vanishes and they
detach. Most probably, this will induce the melting of the
corresponding crystallites, as chain detachment decreases
the overall stability of the crystal. We suggest that during
unloading larger domains of comparably high crystallinity
are present than during loading, which is closer to the
global free energy minimum, yields a more effective
strain regulation effect, and could explain the inverse
yielding observable in loosely cross-linked samples.7 This
is also supported by the fact that crystal size obtained by
the model close to SIC offset is larger than at SIC onset,
as shown in Table 1. Thus, the large hysteresis both in
crystallinity and strain can be safely attributed to a
supercooling effect.

■ CONCLUSION

A physically simple model of SIC was presented. Despite its
obvious simplifications (e.g., restriction to Gauss chains without
finite extensibility), it is able to reproduce stress, degree of
crystallinity, and length of the crystallites. The crucial difference
to previous works is the consideration of entropy punishment
for attachment to a crystal, which seems to resolve the mystery,
that SIC onset is independent of strain. Also, it takes into
account the relationship of single chain microscopic crystallinity
and measurable macroscopic crystallinity. The corresponding
calculation shows that a series of individual crystals may be
approximated by a continuously growing crystal, justifying the
foundation of many other models. Concerning the questions
posed in the introduction the following answers can be given:
(1) Crystals always have the same length because it is
determined by the purely entropic competition between
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forming a crystal as large as possible and the repelling entropic
force of the surrounding matrix. As both contributions scale
with temperature the thermodynamic equilibrium is independ-
ent of it. The consistency of the modeling approach indicates
that the repelling entropic potential does not depend on strain.
It is worth investigating if this is truly the case. (2)
Crystallization onset strain is rather independent of cross-link
density because higher network strain in dense networks is
compensated by a larger punishment for chains attaching to the
crystal. (3) Modeling results and comparison with experiments
in the literature show that chain folding is almost indispensable
for the large values of crystallinity usually found. Motivated by a
phase transition found in the model we propose that chains fold
on the surface of fibrillar crystals, when the latter are sufficiently
large. This also naturally explains why strain hardening occurs:
Chain folded crystals span less distance per segment spent, thus
regulating strain less effectively. (4) At onset strain crystal
nuclei made up of a few stretched chains emerge, the number of
chains being independent of cross-link density. These crystals
thicken until chain folding becomes possible and folded chains
attach to the surface. At unloading, folded chains detach rather
continuously from the crystal surface. Afterward, fibrillar
crystals successively melt. Between crystal formation and
melting crystals may rearrange such that the strain regulation
process becomes most effective. We believe that the latter effect
is the predominant reason for NRs toughness because it will
automatically homogenize the mechanical load in the rubber
material. SIC will certainly increase the effective cross-link
density of the material. Presumably, this also affects the
particularly strong strain hardening of NR compounds7,13

followed by the stress plateau. The increase in cross-link density
is not taken into account up to now and will be a task for future
works.
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4.5 Outlook and Supplementary Information

The publications presented above present techniques for the quantification and modeling approaches
for the understanding of SIC in natural rubber. Even though an explanation for constant SIC onset
strain and crystal size was presented there are many open questions.

Strain hardening going along with SIC as observed in Fig. 4.1c is not understood. The in-
crease of effective crosslink density due to bundling of chains in crystals offers an intuitive expla-
nation [102, 110], but opens new questions: It is all but clear how to relate the crystalline fraction
to crosslink density. Moreover, it has to be clarified which physical quantity determines the onset
of strain hardening, as SIC induced crosslinking and hardening competes with the strain regula-
tion process. Chain folding crystals at high strains could shift the balance towards crosslinking, but
there is little evidence except the works of Luch and coworkers [116, 123, 124] and the theoretical
investigations presented above.

The role of finite chain extensibility needs further discussion, too. Although Flory rejected the
idea in his early works [102] almost complete chain stretching would naturally induce strain hard-
ening. In particular, crystal growth decreases the number of free chain segments and shortens the
amorphous chain. On the other hand a highly stretched chain would make the formation of crystals
in stretching direction even more beneficial.

Crosslink density heterogeneities were proposed by Candau et al. [113] to explain the
successive appearance of crystals of almost uniform size with strain: Wherever local strain is high
enough, crystals will spawn. When increasing strain, the less crosslinked domains begin to crystal-
lize. Although crosslink density heterogeneities will certainly play a role, it may be of minor im-
portance for the understanding of SIC in natural rubber: The formation of crystals will decrease
matrix strain in the surrounding which was neglected by Candau and coworkers. The strain equili-
bration following this process will prevent locally larger strains. The work presented above suggests
that SIC controls strain such that it is internally constant. This is, during retraction, in accordance
with experimental findings.

Non-equilibrium states are common in polymer melts. In cold crystallization, crystal geome-
try and crystallization kinetics is highly dependent on the materials history [58]. This is attributed
to the highly viscous character of the material due to entanglements. In this context, the large hys-
teresis in crystallinity occuring during SIC is not surprising: Crystals prior to melting are larger
and more stable than shortly after formation, as derived in publication 5. Nevertheless, this concept
does not provide an explanation for the experimental fact that SIC onset is usually followed almost
directly by the strain hardening regime, while during retraction a pronounced plateau with greatly
reduced stress appears. In the following a scheme is presented which allows to explain the hysteresis
cycle by the emergent strain-reduction potential of crystal agglomerations.

At crystallization onset strain crystals become locally favorable. This means that crystals will
spawn randomly within the matrix, wherever strain is large enough and chains are directed appro-
priately. These crystals locally reduce matrix strain, but their effect is limited to their immediate
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Figure 4.2: Sketch of the proposed hysteresis-generating crystallization mechanism. Red areas are reduced in
local strain due to the presence of crystals. (a) During loading there are no crystals at low strains. (b) Above crys-
tallization onset, first strain-induced crystals appear in the matrix wherever local strain and polymer configuration
admits it. This corresponds to a random parallel-serial connection of crystalline and non-crystalline chains, prevent-
ing a pronounced stress plateau/strain regulation effect. (c) Upon further stretching, enough crystals spawned to
form larger crystalline domains. In parallel configuration, these crystals are able to control strain of larger parts of
the material. (d) During unloading, isolated crystals melt first. The larger crystalline domains stay intact, because
they reduce matrix strain most effectively, thus decreasing the free energy. (e) Crystalline domains stay intact at
strains where crystals were not present during loading because overall free energy is lower.

surrounding. An equivalent spring network would consist of random parallel-serial connections. For
this reason, the crosslinking effect dominates and the material hardens. During strain hardening
crystals continue to spawn randomly. If there are enough crystals close together, they may syner-
getically control strain of larger domains. This can be envisioned as crystalline chains connected in
serial to the amorphous part on a larger scale. For this reason these collection of crystals will sur-
vive lower strains during unloading and generate a stress plateau. In fact, Trabelsi et al. could dis-
tinguish the crystalline and amorphous parts of quasistatically released NR by eye and named the
phenomenon “inverse yielding effect” [32]. The whole process is sketched in Fig. 4.2. In the scope
of thermodynamics, the state during unloading is closer to equilibrium even though the crystal ar-
rangement is less random. The entropy loss due to non-random arrangement of crystals is compen-
sated by an overall lower matrix strain.

Fig. 4.1c shows that NR exhibits behavior similar to Mullins effect. During first loading (envelop-
ing virgin curve) the onset of SIC at about 350%̇ strain is directly followed by strain hardening,
whereas the mechanical cycles of the softened material show a pronounced plateau after SIC on-
set. In the scope of the mechanism presented above this indicates that the material remembers the
thermodynamically ideal configuration of crystals. In fact, Sommer and coworkers have found via
molecular dynamics simulations that remains of crystals may survive heating above the melting
transition and self-seed crystals when cooled again [125, 126].
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5
Conclusion and Outlook

The physical mechanism of polymer reinforcement was analyzed by means of different experimen-
tal as well as modeling approaches. Filler surface area and energy distribution were analyzed using
static gas adsorption and automatized data evaluation. A new physically motivated constitutive
material model for filled elastomers was developed. The model consciously avoids to explain rubber
explanation by a specific mechanism. Instead, it assumes rubber to consist of several differently am-
plified domains which break down and reaggregate less amplified under load. Hysteresis was mod-
eled by structures breaking and reforming under load. The breakdown is described by force driven
diffusion over a potential barrier. The model fits data in different deformational states, at differ-
ent speeds and temperatures very well. The mathematics was designed such that it is portable to
FE code. Remaining flaws concerning exotic and inefficient mathematics were resolved in this work.
Moreover, a physically reasonable scheme on the basis of detaching chains for continuous damage
effects was elaborated and tested. A model fit to samples deformed at different speeds and tem-
perature shows that the energy barrier related to hysteresis is about 100 kJ/mol. Consequently,
polymer-filler investigation was quantified via static gas adsorption and automatized data evalua-
tion using different polymer-analogue gases. The binding energy of ethane and propene to carbon
black was found to be around 20 kJ/mol, showing that segments of about 5 monomers detaching
and attaching to the filler surface could be responsible for hysteresis. Previous results concerning
the surface fractal dimension of carbon black were confirmed. Silica exhibits a much higher sur-
face occupation and adsorption energy than carbon black when probing with quadrupolar CO2

molecules. In contrast, the interaction energy with hydrocarbons is similar for both carbon black
and silica. Although uncoupled silica tends to aggregate in an unpolar matrix the latter result in-
dicates that the better reinforcing potential of carbon black cannot be attributed exclusively to a
better physical interaction.

Self reinforcement due to strain induced crystallization was measured by comparing the heating
caused by deformation to the true temperature which originates also from melting and crystalliza-
tion inside the material. The method was shown to be a fast and cost efficient alternative to es-
tablished scattering experiments. The crystallinity vs. strain curve of carbon black filled samples
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differs in shape from the curve of unfilled samples, suggesting heterogeneous strain amplification
as assumed in the amplification model presented in publication 1. Moreover, hysteresis in degree of
crystallinity is reduced when cycling around strains above crystallization onset strain. A theory was
developed, which explains the occurrence of many small crystals of uniform size by the fact that
chains pay entropy to attach to a crystal, but crystals are limited in growth by the surrounding
matrix. The same mechanism may answer the long standing question, why strain induced crystal-
lization starts at the same strain for differently crosslinked samples. The model allows to reproduce
the degree of crystallinity and mechanical data fairly well and delivers hints for a fibrillar-lamellar
phase transition at high degrees of crystallinity.

The results presented in this thesis give rise to many new questions. Some of them are outlined
below.

• Mullins effect of carbon black filled rubber is reversible at temperatures above room tempera-
ture. Regeneration starts to speed up at temperatures above 100 ◦C [127]. Moreover, as also
found in this work, physical interaction of classical diene rubbers is similar to carbon black
and silica, but the reinforcing effect of carbon black is much higher. This suggests that chem-
ical binding of polymer and carbon black may play a crucial role. Bound rubber studies [127]
and squalene-fullerene model systems show [128] that chemical bondings exist under thermo-
oxidative conditions. Nevertheless, the authors are uncertain concerning their role in rubber
reinforcement. It needs to be clarified, whether Mullins effect originates from chain slippage,
caused by breaking physical bonds, chain desorption ultimately limited by the strength of
chemical bonds or different mechanism like carbon black cluster breakage [47, 129]. This ques-
tion may be addressed by detailed Mullins effect recovery measurements. Heat flux during re-
covery may be detectable using Dynamic Scanning Calorimetry (DSC) and could offer insight
into the exact temperature and energy scales of the reactions involved. Squalene-carbon black
model compounds could help to quantify the amount of chemical bonds and their strength in
vitro.

• The origin of logarithmic stress relaxation is not understood. Successive chain desorption was
proposed as a mechanism in this work and the resulting equations generate the desired be-
havior. Nevertheless, an experimental verification is still lacking and another mechanism, e. g.
breakdown of filler structure, could prove to be the main cause [33, 47]. Moreover it would
need to be clarified, whether chains desorb continuously or single chains are teared off the
fillers surface, giving the logarithmic stress decay only as a collective behavior.

• The theory about SIC presented in this work reveals that enthalpy of fusion of NR crystals
differs between loading and unloading. This has to be taken into account in the thermome-
chanical evaluation scheme. Additionally, the latter has to be calibrated using WAXS or simi-
lar techniques in parallel on the same sample.

• Altogether, a general concept for rubber reinforcement does not exist. While the increase in
modulus, often referred to as amplification, may be understood via filler networking and hy-
drodynamic amplification, the increase in elongation and stress at break is not understood.
Several concepts exist which often refer to local energy dissipation mechanisms [37, 130].
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Probably the proposed self reinforcement mechanism of natural rubber due to local strain
regulation may serve as a guiding line to understand filler reinforcement. It is tempting to use
the analogy of crystals giving additional chain length by spanning distance more effectively
and fillers relaxing the chain by desorption of chain segments.

These question may serve as a starting point for future works. I hope that this thesis contributed
to obtain a coherent picture of rubber reinforcement.
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