Refinement of the crystal structure of diindium disilicate, $\mathbf{I n}_{2}\left(\mathbf{S i}_{2} \mathbf{O}_{7}\right)$

G. R. Patzke*, R. Wartchow and M. Binnewies
Universität Hannover, Institut für Anorganische Chemie, Callinstr. 9, D-30167 Hannover, Germany

Received September 14, 1999, CSD-No. 409452

Abstract

$\mathrm{In}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}$, monoclinic, $\mathrm{Cl} 2 / m 1$ (No. 12), $a=6.626$ (1) \AA, $b=8.604(1) \AA, c=4.707(1) \AA, \beta=102.94(2)^{\circ}, V=261.5 \AA^{3}$, $Z=2, R_{\mathrm{gt}}(F)=0.025, w R\left(F^{2}\right)=0.059, T=300 \mathrm{~K}$.

Source of material

Single crystals of indium disilicate were grown as a side product by chemical vapour transport of $\mathrm{Ga}_{2} \mathrm{O}_{3}$ and $\mathrm{In}_{2} \mathrm{O}_{3}$ in a closed quartz ampoule. Hydrogen chloride was used as transport agent and a mixture of $\mathrm{Ga}_{2} \mathrm{O}_{3}(3.3 \mathrm{mmol})$ and $\mathrm{In}_{2} \mathrm{O}_{3}(5.0 \mathrm{mmol})$ as source material. After two days of heating in a temperature gradient ($1073 \mathrm{~K} \rightarrow 1273 \mathrm{~K}$), chemical transport was continued for 6 days using the inverted gradient. Gallium indium oxide was deposited as main product in the crystallization zone. Single crystals of indium disilicate were formed via reaction of $\mathrm{In}_{2} \mathrm{O}_{3}$ with the quartz wall in small amounts.

Discussion

The crystal structure of $\mathrm{In}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ is closely related to the thortveitite type which crystallizes in the monoclinic system (space group $C 2 / m, Z=2$). Previous structural studies have been performed by Hagenmuller et al. [1] based on Rietveld refinements of X-ray powder diffraction data. The starting parameters for our refinement were taken from [1], which implies an origin shift of $001 / 2$ compared to the original description of the thortveitite structure [2], but is in agreement with the TYPIX database [3].
The $\mathrm{Si}-\mathrm{O}$ distances range from 161 pm to 164 pm , the In - O distances from 211 pm to 225 pm . The $\mathrm{Si}-\mathrm{Ol}-\mathrm{Si}^{\prime}$ angle in the $\mathrm{Si}_{2} \mathrm{O}_{7}$ group is 180° forced by the centre of symmetry. It might be possible that we observe the average structure of a disordered $\mathrm{Si}_{2} \mathrm{O}_{7}$ group with a bonding angle unequal to 180°. But from the fact that the anisotropy of the displacement ellipsoid of Ol is rather moderate we conclude that the deviation of this angle from 180° is only small.

Table 1. Data collection and handling.

Crystal:	colourless rod, size $0.04 \times 0.07 \times 0.17 \mathrm{~mm}$
Wavelength:	Mo K_{α} radiation $(0.71073 \AA)$
$\mu:$	$92.59 \mathrm{~cm}^{-1}$
Diffractometer, scan mode:	S Stoe IPDS, 200 exposures, $\Delta \varphi=1.5^{\circ}$
$2 \theta_{\text {max: }}$	56.04°
$N(h k l)_{\text {measured }}, N\left(h k l l_{\text {unque }}:\right.$	1296,298
Criterion for $l_{\text {obs }}, N(h k l)_{\text {gt }}:$	$I_{\text {obs }}>2 \sigma\left(I_{\text {obs }}\right), 287$
$N(\text { param })_{\text {refined: }}$	32
Programs:	SHELXL-93 [4], CIF2SX [5]

Table 2. Atomic coordinates and displacement parameters (in \AA^{2}).

Atom	Site	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\operatorname{In}(1)$	$4 g$	0	$0.30771(4)$	0	$0.0059(3)$	$0.0040(3)$	$0.0044(3)$	0	0	$0.0008(2)$
$\operatorname{Si}(1)$	$4 i$	$0.2203(2)$	0	$0.4101(3)$	$0.0049(7)$	$0.0048(8)$	$0.0016(8)$	0	0	
$\mathrm{O}(1)$	$2 c$	0	0	$1 / 2$	$0.007(3)$	$0.020(4)$	$0.015(3)$	0	$0.0007(5)$	0
$\mathrm{O}(2)$	$4 i$	$0.3902(6)$	0	$0.7177(9)$	$0.009(2)$	$0.007(2)$	$0.003(2)$	0	$0.005(2)$	0
$\mathrm{O}(3)$	$8 j$	$0.2348(5)$	$0.1564(4)$	$0.2183(7)$	$0.008(1)$	$0.006(1)$	$0.006(1)$	$0.002(1)$	$0.001(2)$	0

[^0]Acknowledgment. Computing facilities of RRZN (Hannover) were used.

References

1. Gaewdang, T.; Chaminade, J. P.; Gravereau, P.; Garcia, A.; Fouassier, C.; Pouchard, M.; Jacquier, B.; Hagenmuller, P.: Structural Investigations and Luminescence of $\mathrm{In}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ and $\mathrm{In}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$. Z. Anorg. Allg. Chem. 620 (1994) 1965-70.
2. Zachariasen, W.H.: The structure of thortveitite, $\mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$. Z. Kristallogr. 73 (1930) 1-6.
3. Cenzual, K.; Gladyshevskii, R.; Parthe, E.: TYPIX database. Gmelin-Institut, Frankfurt, 1995.
4. Sheldrick, G. M.: SHELXL-93, a program for refining crystal structures. University of Göttingen, Germany 1993.
5. Farrugia, L. J.: CIF2SX, program to extract a SHELX-ins-file from a CIF. University of Glasgow, England 1997.

[^0]: * Correspondence author
 (e-mail: patzke@mbox.aca.uni-hannover.de)

