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Information-theoretical quantities such as
statistical distinguishability typically result
from optimisations over all conceivable observ-
ables. Physical theories, however, are not gen-
erally considered valid for all mathematically
allowed measurements. For instance, quan-
tum field theories are not meant to be correct
or even consistent at arbitrarily small length-
scales. A general way of limiting such an
optimisation to certain observables is to first
coarse-grain the states by a quantum channel.
We show how to calculate contractive quantum
information metrics on coarse-grained equilib-
rium states of free bosonic systems (Gaussian
states), in directions generated by arbitrary
perturbations of the Hamiltonian. As an ex-
ample, we study the Klein-Gordon field. If the
phase-space resolution is coarse compared to
~, the various metrics become equal and the
calculations simplify. In that context, we com-
pute the scale dependence of the distinguisha-
bility of the quartic interaction.

The application of tools from quantum information
theory (QIT) to QFT is not an entirely straightfor-
ward matter. While standard physical applications of
a theory only requires that one be able to compute
expectation values of certain specific observables on
specific states, QIT often requires optimisations over
all possible states or observables. Hence, it requires
a very detailed understanding of the operational do-
main of validity of the theory under study.

The main formalism for QFT comes with several
unique features which can potentially complicate such
analysis, such as its lack of a Hilbert space or alge-
braic formulation, or the unavoidable use of diver-
gent asymptotic series. Moreover, most interacting
QFTs are not meant to be valid in the continuum.
Instead, they are defined only relative to an unphys-
ical ultraviolet regulator which can be thought of as
mimicking an underlying discrete space. The process
of renormalisation consists in running the parameters
of the theory as function of the regulator in such a
way that predictions are independent of it. But even
for the simplest interacting QFTs such as quantum
electrodynamics, this game fails below a certain finite

lengthscale.

Certainly, in an optimisation involving in princi-
ple all observables, one should avoid those for which
the theory’s predictions are not trusted. A simple
way to deal with this issue is to add a cutoff on all
momentum integrals involved in calculations, which
usually amounts to “tracing-out” the high momen-
tum modes [2, 10, 12]. Here, we want to examine
this question more carefully, by explicitly consider-
ing a physical (experimental) limit on the resolutions
(spatial or otherwise) of the accessible observables.

A very general way of “coarse-graining” a quantum
system consists in applying a quantum channel on its
density matrix. A quantum channel is a linear map
on operators which maps density matrices to density
matrices. In the absence of a well defined density ma-
trix, the channel can also be defined in the Heisenberg
picture, where it can be used, for instance, map ideal
observables (such as field operators) to realistic ones
characterised by finite resolutions (such as smeared
field operators). Below we introduce a specific class
of channels which does just that, but also introduces a
finite resolution on the measurement of local field val-
ues (quadratures). While the finite spatial resolution
makes high momenta effectively unobservable, a low
field value resolution hides high order polynomials in
the field [6, 7].

The quantity that we want to compute is the sta-
tistical distinguishability between two nearby quan-
tum states after being subjected to a given quantum
channel. Specifically, we want to compute the extend
to which the ground states (or Gibbs states) of two
Hamiltonians, H + εV1 and H + εV2 are effectively
distinguishable in terms of finite-resolutions measure-
ment, where the limited resolution is characterized by
a quantum channel. For simplicity the calculation is
to be performed to lowest order in ε, with H quadratic
in canonical variables (although perturbation theory
could be used to compute higher orders).

The concept of statistical distinguishability refers
to a class of quantities from which many other
information-theoretical quantities can be derived.
They have been used for instance for the characterisa-
tion of quantum phase transitions [10, 20], and in a re-
cently proposed approach to renormalisation [6, 7]. In
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addition, integrating such quantity along Hamiltonian
paths can be used to obtain bounds on ground-state
entanglement, as discussed in the outlook (Section 7).
The type of distinguishability metrics considered here
have also been connected to the emergent geometry
in relation to renormalization and the AdS/CFT cor-
respondance [18].

The paper is organized as follows. In Section 1 we
introduce distinguishability metrics on density matri-
ces. In Section 2, we derive a general formula for com-
puting how a perturbation of the Hamiltonian affects
the effective distinguishability of its ground state, or
Gibbs states (Eq. (24)).

Both sections are presented in terms of density ma-
trices for general quantum systems, with no specific
reference to quantum field theory. In order to apply
these to QFT, we use a formalism based on character-
istic functions typically used in quantum optics. This
is introduced in section 3.

In Section 4, the formula for the distinguishability
of Hamiltonian perturbations derived in Section 2 is
specialized to the case of Gaussian states and Gaus-
sian channels introduced in Section 3.

Those results are then applied to the Klein-Gordon
field in Section 5, yielding results which are analyzed
in Section 6. Specifically, we study the qualitative
influence of the resolution parameters on the asymp-
totic dependence of distinguishability metrics on scale
(which we define as the minimal spatial resolution).

1 Quantum information metrics
We focus on the calculation of quantum information
metrics which directly generalise the classical Fisher
information metric. These are Riemannian metrics on
the manifold of mixed states. Infinitesimally, these
metrics measure statistical distinguishability between
states, such as in the context of hypothesis testing or
parameter estimation.

In a C∗-algebraic framework, the main stage is the
algebra A generalising the set of linear operators on
a Hilbert space. A state is defined as a positive func-
tion ρ which assigns a probability ρ(A) to any effect
A, i.e., any self-adjoint element A ∈ A with spectrum
between 0 and 1. In finite dimension ρ can be repre-
sented by a density matrix ρ̂ such that ρ(A) = Tr(ρ̂A).

A Riemannian metric is defined by a scalar prod-
uct defined in the tangent space at every point of a
manifold. A tangent vector to a state ρ with density
matrix ρ̂ can be defined by a traceless self-adjoint op-
erator X (because, for ε small enough, ρ̂ + εX must
be also a density matrix). Hence we write the tangent
space at ρ̂ as

Tρ ≡ {X† = X,Tr(X) = 0}. (1)

The positivity constraint does not appear here be-
cause we are interested in the bulk of the manifold.

We will deal with boundaries (where the density ma-
trix is not full rank) by approaching them from the
bulk.

A metric associates to every ρ a positive linear op-
erator Ω−1

ρ on Tρ defining the scalar product

X,Y 7−→ Tr(XΩ−1
ρ (Y )). (2)

The quantity εTr(XΩ−1
ρ (X)) 1

2 is the distance be-
tween ρ̂ and ρ̂+ εX as ε→ 0.

Of particular interest are the Riemannian metrics
which are contractive under the action of any chan-
nel (see below). This contractivity is required for the
metric to represent any type of information-theoretic
quantity such as distinguishability. In fact, classically,
the contractivity condition selects a single metric: the
Fisher information metric.

In quantum theory, Petz and Sudár [15, 17] showed
that these contractive metrics are one-to-one with op-
erator monotone function θ : R+ → R+ such that
θ(t) = tθ(t−1) for all t > 0. An operator monotone
function has the property that, when applied to oper-
ators via functional calculus, θ(A) ≤ θ(B) whenever
A < B (i.e., B −A is positive).

The function θ defines the kernel Ω−1
ρ via its inverse

Ωρ as follows:

Ωρ = θ(LρR−1
ρ )Rρ, (3)

where Rρ(A) := Aρ̂ and Lρ(A) := ρ̂A for any matrix
A.

For instance, in classical probability theory, which
is equivalent to considering only density matrices di-
agonal in the same basis (the diagonal elements then
are a probability distribution), since superoperators
Rρ and Lρ commute, we obtain simply Ωρ = θ(1)Rρ.
The number θ(1) is an unimportant overall factor
which we can pick to be θ(1) = 1, leading to

Ωρ(A) = Aρ̂ (classical), (4)

which is independent of the function θ. The result-
ing metric on probability distributions is simply the
Fisher information metric. Therefore, the contrac-
tive metric parametrised by θ are all possible non-
commutative generalisations of the Fisher information
metric.

We will see that it is generally more convenient
to work in the cotangent space at ρ, namely the lin-
ear dual T ∗ρ of Tρ. It is the set of linear function-
als on the real vector space Tρ. These functionals
can be characterised by matrices A† = A through
X 7→ Tr(AX). Moreover, since Tr(X) = 0, we are
free to choose an additional constraint which we take
to be Tr(Aρ̂) = 0. In this manner, we simply have
Tr((ρ̂ + εX)A) = εTr(XA), which directly gives an
interpretation of the functional associated with A as
an observable. Moreover, this extra condition makes
sense in infinite dimension where the trace may not
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exists. Hence we write the cotangent space as

T ∗ρ ≡ {A† = A, ρ(A) = 0}. (5)

The metric induces also a scalar product on T ∗ρ which
is 〈A,B〉ρ = Tr(AΩρ(B)). In infinite dimension, we
can remove the trace by defining

Θρ := θ(LρR−1
ρ ), (6)

so that RρΘρ = Ωρ, leading to the expression

〈A,B〉ρ = ρ(AΘρ(B)), (7)

where we used the fact that [Rρ, Lρ] = 0. Observe
moreover, that if ρ is a thermal state e−βH , then
the superoperator LρR

−1
ρ simply yields the imaginary

time evolution:

LρR
−1
ρ (A) = ρAρ−1 = e−βHAeβH . (8)

One can freely move between the tangent
(Schrödinger) picture and the cotangent (Heisenberg)
picture by using the metric kernel Ω−1

ρ . Indeed, con-
tracting the metric with a tangent vector gives a
cotangent vector. Hence, if Ωρ(A) = X and Ωρ(B) =
Y , then

Tr(XΩ−1
ρ (Y )) = 〈A,B〉ρ. (9)

Particular contractive metrics which appear in the
literature are given by differentiating certain measure
of distinguishability which have operational interpre-
tations. That is, the geodesic distance matches the
corresponding measure to lowest order (in the dis-
tance).

For instance, differentiating the relative entropy
yields the Kubo-Mori metrics defined in Equ. (18)
below. It is of particular importance to us because
of its relation to first-order perturbation theory, as
explained in the next section.

Perhaps the most important metric is the Bures
metric, defined by θ(t) = (1 + t)/2 because it has sev-
eral nice features. Its geodesic distance has a closed
analytical form as the Bures distance [11]. It also
gives a tight bound on the variance of parameter esti-
mation [8, 16], and is as such usually called the quan-
tum Fisher information. Moreover, the Bures metric
is the smallest of the contractive metrics (normalised
by θ(1) = 1) [17].

We will also refer to the “square-root” metric de-

fined by θ(t) = t
1
2 , because it is especially easy to

compute.

2 Coarse-grained distinguishability
In what follows, given a linear “superoperator” E de-
fined on the algebra of observables, we write E∗ for
its “pre-dual”, namely its adjoint with respect to the
Hilbert-Schmidt inner product:

ρ(E(A)) = Tr(E(A)ρ̂) = Tr(A E∗(ρ̂)) (10)

for any observable A and any state ρ̂. We are par-
ticularly interested in the case where E is a unital
completely positive map, that is, E(1) = 1, and
(E ⊗ idn)(A) ≥ 0 for all A ≥ 0 and all finite ex-
tra dimension n. These conditions guarantee that
ρ ◦ (E ⊗ idn) (with density matrix (E∗ ⊗ id)(ρ̂)) is a
valid state whenever ρ is.

If E is such a unital completely positive map, it rep-
resents the action of a quantum channel in the Heisen-
berg picture, while E∗ represents the same trans-
formation in the Schrödinger picture. On infinite-
dimensional systems, E is always defined, but E∗ may
not be.

Let

ρ̂ := 1
Z
e−βH (11)

be the thermal state for the Hamiltonian H at inverse
temperature β. Geometrically, we want to compute
the information metrics pulled back to the manifold
of Hamiltonians.

Physically, this has the following interpretation.
Given the metric Ω−1

ρ which gives rise to the geodesic
distance d, and given the channel E , and the Hamilto-
nian H, we want to compute the coarse-grained dis-
tance

d
(
E∗(ρ̂λ1 ), E∗(ρ̂λ2 )

)
(12)

to lowest order in λ where

ρ̂λi = 1
Zi(λ)e

−β(H+λVi) (13)

are also normalised thermal states. For notational
convenience, we assume that

Tr(ρ̂(V2 − V1)) = 0. (14)

We have

d
(
E∗(ρ̂λ1 ), E∗(ρ̂λ2 )

)
= λ‖V2 − V1‖E,ρ +O(λ2) (15)

with

‖V ‖2E,ρ := β2Tr(E∗ΩSρ (V ) Ω−1
ρ◦EE∗Ω

S
ρ (V )) (16)

and ΩSρ (V ) is the first-order term in the imaginary
time Dyson series:

ΩSρ (V ) :=
∫ 1

0
ρ̂sV ρ̂1−sds

= 1
β

(∫ β

0
e−sHV esHds

)
ρ̂

= − 1
βZ

d

dλ
e−β(H+λV )|λ=0.

(17)

because ΩSρ (ρ) = 1) Incidentally, the inverse of

the superoperator ΩSρ also defines one of the mono-
tone metrics: the Kubo-Mori metric, defined from the
function

θS(x) =
∫ 1

0
xsds. (18)
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Equ. (16) needs to be reformulated in a way which
is tractable and suitable for the Gaussian and QFT
formalism. As we have seen in the previous section,
the metrics are easier to formulate in the Heisenberg
picture (i.e. on the cotangent space).

For this purpose it proves useful to define the map

Rρ := Ω−1
ρ◦EE∗Ω

S
ρ , (19)

which is the linearisation of the diffeomorphism H 7→
H ′ = log E∗(e−βH), where H ′ can be thought of as a
coarse-grained effective Hamiltonian since e−βH

′ =
E∗(e−βH). Note that the map H 7→ H ′ is the
renormalisation group transformation introduced in
Ref. [5].

This allows us to rewrite the norm in Equ. (16) as

‖V ‖2E,ρ = β2Tr(E∗ΩSρ (V )Rρ(V ))
= β2Tr(V ΩSρ ERρ(V ))

(20)

where we used the cyclicity of the trace and the fact
that the metrics are symmetric.

Writing
〈A,B〉ρ = Tr(AΩρ(B)) (21)

and
〈A,B〉Sρ = Tr(AΩSρ (B)) (22)

for the cotangent scalar products associated to the
two metrics, one can check that Rρ introduced above
is defined by the fact that it is the adjoint of E with
respect to these two scalar products as follows

〈A, E(B)〉Sρ = 〈Rρ(A), B〉ρ◦E (23)

for all cotangent observables A, B. Because of this,
we call 〈·, ·〉Sρ the source metric, and 〈·, ·〉ρ, which can
still be any of the contractive metrics, the target met-
ric. This is the expression that we use to compute the
effect of Rρ. We can then compute the distinguisha-
bility via

‖V ‖2E,ρ = β2〈V, ERρ(V )〉Sρ . (24)

For context, we note that if the both source and
target metrics were the square-root metric, then Rρ
would be a quantum channel, namely the transpose
channel [14], which is a useful approximate recovery
channel in quantum error correction [4, 13]. Clas-
sically, as both metrics reduce to the unique Fisher
metric, Rρ implements Bayesian inference from the
conditional probabilities defined by E , relative to the
prior ρ [6].

3 Gaussian states and channels
The theory of Gaussian states and Gaussian channels
can be formulated directly in an infinite-dimensional
setting with uncountable number of degrees of free-
dom using the formalism of CCR (canonical commu-
tation relations) C∗-algebras. For simplicity, and clar-
ity towards the intended audience, however, we do not

work in full abstract generality. However, we use a
formalism which should be relatively straightforward
to generalise if needed.

The beauty of the Gaussian formalism is that it pro-
vides a one-to-one mapping between questions about
a quantum system, to questions about a correspond-
ing classical system. It is a mathematically rigorous
formalisation of the quantisation of free fields.

3.1 CCR algebra
Accordingly, we start by considering a classical phase-
space, defined by a real vector space V equipped
with a symplectic product (an anti-symmetric bilin-
ear form) σ(f, g), f, g ∈ V . One may want to think of
these phase-space points f, g as classical fields. The
form σ(·, ·) must be non-degenerate in the sense that
if σ(f, g) = 0 for all f then g = 0. For simplicity, it
will be convenient to assume that V is equipped with
a real scalar product (f, g) which is such that we can
write σ(f, g) = (f,∆g) where ∆ is an anti-symmetric
real linear operator on V .

Below, we will need to consider transformations of
V corresponding to imaginary time evolution, which
requires that we work in a complexification of V ,
which we call V C, where the scalar product is ex-
tended to a sesquilinear form via

(f+ig, f+ig) := (f, f)+(g, g)−i(g, f)+i(f, g). (25)

The original V lives on as a subset of V C, and we call
f ∈ V a real vector of V C.

A general classical observable is any real function
on V , but we will focus only on observables which
are linear functions on V , because these are the only
ones which can be quantized unambiguously. An el-
ement f of the phase-space V can be mapped to a
linear observable Φf defined by Φf (g) := (f,∆g).
We extend Φ by linearity to the whole of V C, i.e.,
Φf+ig := Φf + iΦg if f, g ∈ V .

The form σ(·, ·), or equivalently ∆, defines the Pois-
son bracket on those linear classical observables via

{Φf ,Φg} = (f,∆g)1, (26)

for all f, g real, where 1(f) = 1 for all f .
The notation Φf we use is there to evoke the fact

that Φf should be thought of as a smeared field ob-
servable. To make this clear, let us consider an exam-
ple, where points of V are given by a pair of a field
and its canonical conjugate: f = (φ, π) ∈ V . Here,
the canonical field observable usually denoted “φ(x)”
would actually be the map on V which extract the
component φ(x) ∈ R from f , namely, the function
f 7→ φ(x). If the Dirac delta (δx, 0) was an element
of V , we could write φ(x) ≡ Φ((δx, 0)), although typ-
ically it is not, which is why we need this somewhat
more general formalism.

Those linear observables Φf for f ∈ V are the ones
that can be unambiguously “quantized” to operators
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Φ̂f . However, since these are unbounded operators, it
is mathematically more convenient to define instead
the objects that would correspond to the Weyl opera-

tors Wf = eiΦ̂f (also called displacement operators in
optics). Indeed, one can define the CCR algebraA(V )
associated with V as that generated by the elements
Wf defined by the relations WfWg = e−

i
2 (f,∆g)Wf+g

and W †f = W−f for all f ∈ V . One can show that the
resulting C∗-algebra is essentially unique, and the op-
eratorsWf are unitary for all f ∈ V . Once the algebra

is represented on a Hilbert space then the objects Φ̂f
can be also be defined as operators.

When extended to the complex V C, these relations
become

W †fWg = e
i
2 (f,∆g)Wg−f , and W †f = W−f , (27)

for all f, g ∈ V C.
If this algebra can be represented as that of

bounded operators on a Hilbert space H, such that
the unitary groups t 7→ W (tf) have generators, then
these are unbounded operators Φ̂f , such that

Wf = eiΦ̂f , (28)

satisfying the commutation relations

[Φ̂f , Φ̂g] = i(f,∆g)1. (29)

Hence, if these operators Φ̂f exist, we can think of
them as the quantizations of the classical observables
Φf . Moreover, like their classical counterparts, they
are linear in their argument:

Φ̂af+bg = aΦ̂f + bΦ̂g (30)

for all f, g ∈ V C and a, b ∈ C. For most calculations,
however, we only need to work with the Weyl opera-
tors Wf .

In the case of “second quantization”, such as non-
relativistic quantum field theory, the classical phase
space V is related to the Hilbert space H of “first
quantized” wavefunctions as follows: the real and
imaginary components of the wavefunction ψ play the
role of canonical conjugate variables. Hence V is just
H conceived as a real vector space. If 〈ψ|φ〉 denotes
the complex scalar product of H, we may use on V
the real scalar product (ψ, φ) := Re 〈ψ|φ〉. The sym-
plectic form is given by the linear operator ∆ = −2i1
as

σ(ψ, φ) = (ψ,∆φ) = 2 Im 〈ψ|φ〉. (31)

In this example, the complexification V C is not equal
to H (it has double the dimension). Consequently, we
avoid this formalism.

3.2 Gaussian states
It can be deduced from Equ. (27) that the whole
algebra of observables A(V ) is linearly spanned by

the Weyl operators Wf . Hence, a state ρ is entirely
characterised by its value on those. These values
are summarized by the state’s characteristic function
f 7→ ρ(Wf ).

A Gaussian state is one whose characteristic func-
tion is Gaussian: ρ(Wf ) = e−

1
2 (f,Af)+i(f,f0) for all

f ∈ V and some f0 ∈ V , where A is a symmetric bi-
linear operator on V . When extended by linearity on
V C, we therefore have

A† = AT = A = A. (32)

Example of Gaussian states are the thermal states of
free bosonic field theories. A similar formalism exists
for fermionic fields, but we treat only the bosonic case
in this paper. In what follows, we assume f0 = 0 for
simplicity, hence

ρ(Wf ) = e−
1
2 (f,Af) (33)

for all f ∈ V C. This equation together with Equ. (27)
allows one to compute the expectation value of any
operator. For instance, the expectation values of
products of smeared field operators can be evaluated
by successive differentiation of this expression. We
find

〈Φ̂†f Φ̂g〉ρ ≡ ρ(Φ̂†f Φ̂g)

= d2

dt ds
ρ(W †tfWsg)|t=s=0

= (f, (A+ i

2∆)g),

(34)

Hence the operator A determines (and is determined
by) the real part of the 2-point correlations functions.

The above expression also implies that the complex
operator A+ i

2∆ must be positive,

A+ i

2∆ ≥ 0, (35)

The operator A+ i
2∆ may be thought of as the Hamil-

tonian (rather than Lagrangian) version of the ther-
mal propagator. Here, we will call A the covariance
operator as is traditional in the Gaussian formalism.

3.2.1 Classical Gaussian states

The above formalism is almost identical for classical
statistical theories. The only difference is that ∆ = 0,
so that the field operators Φ̂f are commuting. In-
deed, the Poisson brackets plays no direct role at this
level. The Gaussian states can then be interpreted
as thermal states of free classical fields living in the
phase space V , for some Hamiltonian related to A.
Specifically, given the quadratic classical Hamiltonian
f 7→ 1

2 (f,Hf), we find that the corresponding ther-
mal state at inverse temperature β is the Gaussian
defined by the covarience operator

A = 1
β
H−1. (36)
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3.3 Gaussian channels
A channel in quantum theory refers to the most gen-
eral map from states to states which is consistent with
the probabilistic interpretation of the convex combi-
nation of states, as well as with the system being part
of a larger one. In the Heisenberg pictures, it must
be a linear map between algebras of observables that
is completely positive, and which preserves the iden-
tity. Classically, these map correspond to all stochas-
tic maps. In quantum theory, channels include uni-
tary transformation, but also maps which add noise to
the system, and correspond to the evolution of open
quantum systems. We will not go here into details
of this definition, because we will simply focus on a
special class of channels which map Gaussian states
to Gaussian states, the so-called Gaussian channels.

As with states, channels are characterised entirely
by their action on the Weyl operators. We consider
channels E with the following action

E(Wf ) = WXf e
− 1

2 (f,Y f) (37)

where X and Y are linear on V , i.e., real on V C:
XT = X† and Y T = Y †. We can easily check that this
maps Gaussian states to Gaussian states, provided
certain conditions on the linear operators X and Y .
If ρA is the Gaussian state defined by the covariance
matrix A, we obtain using Equ. (33) that

ρA(E(Wf )) = ρX†AX+Y (Wf ). (38)

From the requirement that X†AX + Y + i
2∆ ≥ 0 for

all A+ i
2∆ ≥ 0, we obtain the condition

Y − i

2X
†∆X + i

2∆ ≥ 0. (39)

We note that classically, with ∆ = 0, this simply
reduces to the condition Y ≥ 0.

4 Distinguishability near Gaussian
states
We now want to obtain the adjoint map Rρ using
Equ. (23) when ρ is a Gaussian. The strategy is to
evaluate all components in terms of the Weyl opera-
tors Wf , or more conveniently, in terms of the func-
tional

GAf := Wf e
1
2 (f,Af), (40)

Since those operators are not self-adjoint, we need to
extend the metric to all operators, making it sesquilin-
ear. Using Equ. (7), this is

〈A,B〉θρ := ρ(A†Θρ(B)). (41)

We will make use of the fact that, assuming A is the
covariance matrix of ρ,

ρ((GAf )†GAg ) = e(f,(A+ i
2 ∆)g), (42)

for all f, g ∈ V C. This can be computed directly using
Equ. (27) and Equ. (33).

Abbreviating

B = X†AX + Y (43)

for the covariance matrix of the coarse-grained state
ρ ◦ E (See Equ. (38)), we also have

ρ(E((GBf )†GBg )) = e(f,(B+ i
2 ∆)g). (44)

In terms of those functionals, Equ. (38) becomes sim-
ply

E(GBf ) = GAXf . (45)

The particular metric ΩSρ defined in Equ. (17), cor-
responds to the operator monotone function

θS(x) = x− 1
log x =

∫ 1

0
xsds. (46)

Recall that Θρ is given by applying θ (through func-
tional calculus) to the superoperators of imaginary
time evolution, namely the transformations X 7→
ρXρ−1 = e−βHXeβH . For a Gaussian state this
generates a group of (complex) canonical transforma-
tions which can be represented by linear operators RAs
(where A stands for the covariance matrix defining ρ)
on the complexified phase space:

e−sβHWfe
sβH = WRAs f

. (47)

Since ρ is invariant under the imaginary time evolu-
tion it defines, we have RTs ARs = A, hence

e−sβHGAf e
sβH = GARAs f (48)

Moreover, the fact that it is canonical means that
it preserves the symplectic form: (RAs )T∆RAs = ∆.
Another important property of these operators is
RAs = RA−s, from which we obtain that

(A+ i

2∆)RAs = (RAs )†(A+ i

2∆). (49)

Also, by computing the components of the map Gf 7→
ρGf = GRA

β
fρ from both expression, we obtain

(A+ i

2∆)RA1 = A− i

2∆. (50)

Explicitly, the Kubo-Mori metric is

〈GAf , GAg 〉Sρ =
∫ 1

0
e(f,(A+ i

2 ∆)RAs g)ds. (51)

Then the definition of Rρ in Equ. (23) becomes

〈Rρ(GAf ), GBg 〉ρ◦E = 〈GAf , E(GBg )〉Sρ = 〈GAf , GAXg〉Sρ

=
∫ 1

0
e(f,(A+ i

2 ∆)RAs Xg)ds.

=
∫ 1

0
e(RAs f,(A+ i

2 ∆)Xg)ds.

(52)
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Equ. (52) can be used to prove the following. Let
PnA be the linear space of polynomials obtained by
differentiating GA(f) with respect to its argument n
times, i.e.,

PnA :=
{∂nGAt1f1+···+tnfn

∂t1 . . . ∂tn

∣∣∣
0
: f1, . . . , fn ∈ V

}
(53)

where the subscript 0 indicates the the derivative is
evaluated at t1 = · · · = tn = 0. These are polynomials
of order n in the field operators. Moreover, the span
of P1

A to PnA is the space of all polynomials in the
fields of order n (or lower).

Because the exponent in the last term in Equ. (52)
is linear in both f and g, the whole expression is equal
to zero whenever one differentiates it with respect to
f and g a different number of times (at f = g = 0).
Moreover, Equ. (51) shows with the same argument
that PnA is orthogonal to PmA in terms of the Kubo-
Mori metric at ρ whenever n 6= m.

Similarly, if we assume that the target metric is
defined by an operator monotone function of the form
θ(x) =

∫
xsdµ(s), for some measure µ, which includes

the Kubo-Mori metric, Bures metric and square-root
metric, then we have explicitly,

〈GBf , GBg 〉ρ◦E =
∫

e(RBs f,(B+ i
2 ∆)g)dµ(s), (54)

which implies that PnB and PmB are orthogonal also
in terms of that target metric. Taken together with
the completeness of all these polynomials, this proves
that

Rρ(PnA) ⊆ PnB . (55)

Since also, for Equ. (45), E(PnB) ⊆ PnA, we obtain that
for any Gaussian channel E , and any Gaussian state
ρ with covariance operator A,

ERρ(PnA) ⊆ PnA. (56)

Moreover, since PnA is orthogonal to PmA whenever n 6=
m in terms of the Kubo-Mori metric 〈·, ·〉Sρ , then

〈Vn, ERρ(Vm)〉Sρ = 0 (57)

for any Vn ∈ PnA with n 6= m. This implies that we can
restrict the problem of computing the components of
the linear mapRρ to each subspace PnA independently.

With some extra assumption on ρ and the channel,
the same argument can yield a more detailed result
which will be useful below. Suppose that X, Y , A
and ∆ are all jointly block diagonal for some decom-
position V =

⊕
k Vk of the classical phase space (as-

suming that k is an integer for convenience). Let us
define the operator spaces

Pnk1<···<kn :=
{∂nGAt1f1+···+tnfn

∂t1 . . . ∂tn

∣∣∣
0
: fi ∈ Vki i = 1, . . . , n

}
.

(58)

Then, following the same argument as above, we see
that these spaces are all orthogonal to each other in
the Kubo-Mori metric at ρ, and also that

ERρ(Pnk1<···<kn) ⊆ Pnk1<···<kn . (59)

An example is the Klein-Gordon example studied be-
low, where k index momentum modes, and the spaces
Pnk1<···<kn are finite-dimensional, allowing for an ex-
act solution for each family of modes. However, for
some specific metrics, or with a rather innocuous sim-
plification, the solution can be made much more ex-
plicit.

4.1 Exact solution for square-root metric
The quantity ‖V ‖E,ρ, or more generally all compo-
nents of the coarse-grained metric, can be computed
exactly in full generality for the square-root metric,
defined by the function

θ(x) = x
1
2 , (60)

which yields

〈GBh , GBg 〉ρ◦E = e(RB1/2h,(B+ i
2 ∆)g). (61)

Indeed, we see from comparing this to Equ. (52) that

Rρ(GAf ) =
∫ 1

0 G
B
h(s)ds provided that h(s) is such that

for all 0 ≤ s ≤ 1 and for all f, g ∈ V ,

(RB1/2h(s), (B + i

2∆)g) = (RAs f, (A+ i

2∆)Xg), (62)

namely h(s) = Jsf where

Js := RB−1/2(B + i

2∆)−1X†(A+ i

2∆)RAs . (63)

It follows that

ERρ(GAf ) =
∫ 1

0
E(GBJsf )ds =

∫ 1

0
GAXJsfds, (64)

and

〈GAf , ERρ(GAg )〉Sρ =
∫ 1

0
ds〈GAf , GAXJsg〉

S
ρ

=
∫ 1

0
ds dt eR

A
t f,(A+ i

2 ∆)XJsg)

=
∫ 1

0
ds dt e(f,(RAt )†PRAs g)

(65)

where

P = (A+ i

2∆)XRB−1/2(B+ i

2∆)−1X†(A+ i

2∆). (66)

Note that P † = P because

RB−1/2(B + i

2∆)−1 = RB−1/4(B + i

2∆)−1(RB−1/4)†.
(67)
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One can then compute ‖V ‖2E,ρ for any operator V
by differentiation of the last expression in Equ. (65)
with respect to f and g. In general, one can write the
operator V as

V = DV
f G

A
f (68)

where DV
f is a differential operator with respect to the

observable f (we give some explicit examples below).
Using Equ. (16), this yields

‖V ‖2E,ρ = β2
∫ 1

0
DV
f D

V
g e

(f,P (s,t)g) ds dt, (69)

where
P (s, t) = (RAt )†PRAs . (70)

The result from the action of these differential opera-
tors on the exponential generator can be expressed in
terms of familiar Feynman diagrams, with the propa-
gator given by relevant components of P (s, t).

For instance, a differentiation of order n yields a
Feynman diagram with n edges in total, which repre-
sents a contraction of the operator∫ 1

0
P (s, t)⊗ · · · ⊗ P (s, t) ds dt. (71)

4.2 Exact solution for the classical Fisher met-
ric
All quantum contractive metrics reduce to the Fisher
information metric when all operators commute.
For our purpose, this implies ∆ = 0, as well as
Rs = 1 since the imaginary time evolution is trivial:
ρ−sXρs = ρ−sρsX = X for all X. Hence we can use
the above result to directly get the classical solution
simply by setting ∆ = 0 and R 1

2
= 1 in Equ. (66),

yielding

P = AXB−1X†A = AX(X†AX + Y )−1X†A

= A(A+ (X†)−1Y X−1)−1A,
(72)

and
〈GAf , ERρ(GAg )〉ρ = e(f,Pg), (73)

where we removed the S label since all metrics used
are the same Fisher metric in this case. This result is
equivalent to that obtained in Ref. [7].

4.3 Approximation for large noise
There are contexts where the channel, defined by X
and Y , is noisy enough that the coarse-grained propa-
gator is approximately independent of the imaginary
time s:

(B + i

2∆)RBs ' Kapp (74)

for any s ∈ [0, 1]. We will see below an example where
this is the case. In this case, no matter what target
metric we use,

〈GBh , GBg 〉ρ◦E ' e(h,Kappg), (75)

so that we can use the same method as in Section 4.1
to obtain

〈GAf , ERρ(GAg )〉Sρ '
∫ 1

0
ds dt e(f,(RAt )†PRAs g), (76)

with

P = (A+ i

2∆)XK−1
appX

†(A+ i

2∆). (77)

5 Example: Klein-Gordon field
The classical Klein-Gordon Hamiltonian can be writ-
ten as

H̃ = 1
2

∫
dx
(
π̃(x)2 + φ(x)(m2 − ∂2

x)φ̃(x)
)
, (78)

where π̃(x) and φ̃(x) are canonical conjugates. The
canonical change of variable

Φ̃k =
∫
dx
[
cos(kx)φ̃(x)− ω−1

k sin(kx)π̃(x)
]

(79)

Π̃k =
∫
dx
[
ωk sin(kx)φ̃(x) + cos(kx)π̃(x)

]
. (80)

(81)

yields the decoupled form

H̃ = 1
2

∫
dk(Π̃2

k + ω2
kΦ̃2

k). (82)

where ωk =
√
k2 +m2 and the Poisson bracket is

{Φ̃k, Π̃k′} = δ(k − k′)1. (83)

Instead of attempting to quantize this directly, we
consider the discretisation

H = 1
2
∑
k

1
Ld

(Π̃2
k+ω2

kΦ̃2
k) = 1

2
∑
k

(Π2
k+ω2

kΦ2
k), (84)

where

Φk = L−
d
2 Φ̃k and Πk = L−

d
2 Π̃k (85)

satisfy
{Φk,Πk} = 1. (86)

The “infrared regulator” Ld, where d is the dimension
of space, can be thought of as a volume. The original
theory with continuous momenta k is recovered for
L→∞.

The discrete Hamiltonian simply represents a dis-
crete set of decoupled harmonic oscillator. Therefore,
the corresponding quantum Hamiltonian is

H =
∑
k

ωka
†
kak (87)

where the sum is over some discrete set of modes k,
and [ak, a†k] = 1 and [ak, ak′ ] = 0 for k 6= k′. The
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quantum versions of the observables φk and πk, which
we denote by the same symbols, are

Φk =
√

1/2ω(a†k + ak),

Πk = i
√
ω/2(a†k − ak).

Since there is no interaction between modes k, the
Gibbs state is of the form ρ =

⊗
k ρk. In the basis

composed of the classical observables (Φk,Πk), the
symplectic form is

∆k =
(

0 1
−1 0

)
. (88)

Using the creation and annihilation operators, one can
easily find the expectation values of products of two
field operators, and hence the component of the co-
variance matrix Ak defining the state ρk:

Ak = 1
2 coth

(
βω
2
)( 1

ω k
0

0 ωk

)
. (89)

One can obtain the components of RAks by solving the
imaginary time equations for the harmonic oscillator,
which yields

RAks =
(

cosh(βωks) −iωk sinh(βωks)
i sinh(βωks)/ωk cosh(βωks)

)
. (90)

We could proceed using the real phase space co-
ordinates Φk and Πk. However, the coarse-graining
channel that we will use takes a simpler form in terms
of the complex variables

φk = 1
2(Φk + Φ−k) + i

2ωk
(Πk −Π−k), (91)

πk = 1
2(Πk + Π−k)− iωk

2 (Φk − Φ−k). (92)

(93)

These observables are the standard Fourier modes
used in scalar field theory. They are related to the
original fields φ̃(x) and π̃(x) simply through

φ̃(x) = lim
L→∞

L
d
2
∑
k

eikxφk, (94)

π̃(x) = lim
L→∞

L
d
2
∑
k

eikxπk. (95)

(96)

Together with (φ−k, π−k) = (φk, πk), this is just a
complex change of coordinate on the four-dimensional
subspace of V C corresponding to modes k and −k.
Recall that ∆ and A both define sesquilinear forms
on V C. Therefore, if we denote the components of
this coordinate change by the four-by-four matrix P ,
Ak ⊕ A−k transforms to P †(Ak ⊕ A−k)P in the new
coordinate system. One can check by direct calcula-
tion that they have the exact same form as before:
P †(Ak ⊕A−k)P = Ak ⊕A−k and P †(∆k ⊕∆−k)P =
∆k ⊕∆−k.

From now on, by “mode k” we mean either the
subspace of phase space spanned by (φk, πk), or the
corresponding subsystem in the quantum theory.

In order to proceed further, we need to fix a chan-
nel E via the operators X and Y . We use the linear
operator X defined by

Xφk = e−
1
2k

2σ2
φk, (97)

Xπk = e−
1
2k

2σ2
πk, (98)

(99)

The operator Y defines a sesquilinear form, which we
take to be block-diagonal Y =

⊗
k∈M Yk where Yk

can be represented by the matrix

Yk =
(
y2
φ 0
0 y2

π

)
. (100)

This is a variation of the channel used in Ref. [7],
but this operator Y is different as it couples the real
modes k and −k when expressed in terms of the co-
ordinates (φk, πk). The parameter σ characterises the
maximal precision at which space is resolved by the

observer, and the values L
d
2 yφ and L

d
2 yπ characterise

the precision at which the field and canonical field
values φ̃(x) and π̃(x) respectively are resolved at each
point in space.

But recall that X and Y must satisfy Equ. (39) in
order for ρ ◦ E to be a valid state, or, said differently,
for E(A) to be a positive effect whenever A is. On
mode k, the equation reduces to

Yk + (1− e−k
2σ2

) i2∆ ≥ 0. (101)

For k � 1/σ, this just implies that Yk ≥ 0. But for
k � 1/σ, this yields the non-trivial relation

y2
φy

2
π ≥ 1. (102)

This can be understood intuitively by looking at the
covariance matrix

Bk = X†kAkXk + Yk (103)

which defines the state Ek(ρk). When Xk ' 0, the
covariance matrix is just Yk, hence it must satisfy the
Heisenberg uncertainty relation given by Equ. (102).

It is possible to write Bk in the same form as Ak,
but in terms of redefined frequencies and tempera-
tures:

Bk = 1
2 coth

(β′kω′k
2
)( 1

ω′
k

0
0 ω′k

)
. (104)

Let us define

u2
k := y2

φ + ω−1
k

1
2 coth

(
βkωk

2
)
e−k

2σ2
, (105)

v2
k := y2

π + ωk
1
2 coth

(
βkωk

2
)
e−k

2σ2
. (106)

Then we have
ω′k = vk

uk
(107)
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and
β′k = uk

vk
2 coth−1(2ukvk). (108)

Moreover, assuming yφyπ � 1, which implies ukvk �
1 for all k, we obtain

β′k '
1
v2
k

. (109)

With these definitions, RBks is given simply by substi-
tuting ωk → ω′k and β → β′k in Equ. (90).

But since then β′kω
′
k ' 1√

ukvk
� 1, each mode k

is in the high temperature limit where all quantum
metrics reduce to the classical one. Indeed, we obtain
simply

RBs ' 1 +O(yφyπ)−1 (110)

for all s. This puts us in the situation described in
Section 4.3 with

Kapp =
⊕
k

(
u2
k 0

0 v2
k

)
. (111)

As an example let’s compute the distinguishabil-
ity of φk and πk, which are given by the first order
derivatives of GAf . Differentiating Equ. (76) once with
respect to f and g, we obtain that

Mk :=
(
〈φk, ERρ(φk)〉Sρ 〈φk, ERρ(πk)〉Sρ
〈πk, ERρ(φk)〉Sρ 〈πk, ERρ(πk)〉Sρ

)
= K†S

(
u−2
k 0
0 v−2

k

)
KSe

−k2σ2
(112)

where

KS =
∫ 1

0
(Ak + i

2∆)RAks ds = 1
β

(
1
ω2
k

0
0 1

)
. (113)

Hence we obtain from the diagonal components of Mk

that, with yφyπ � 1,

‖φk‖2E,ρ '
e−k

2σ2

ω4
ku

2
k

and ‖πk‖2E,ρ '
e−k

2σ2

v2
k

. (114)

For the calculations involved higher order polyno-
mials, we avoid doing the integrals over t and s by
considering only the zero temperature limit β → ∞.
Recall that, at finite temperature,

ΩSρ (V ) = −β−1 d

dt

e−β(H+tV )

Z
|t=0, (115)

for V self-adjoint and of zero expectation value. At
zero temperature, the state e−β(H+tV )/Z|t=0 should
become the projector on the ground state |Ωt〉 of the
quadratic Hamiltonian H perturbed by tV . Hence, if
we write |Ωt〉 = |Ω0〉+ t|Ω1〉+O(t2), we have

lim
β→∞

β〈W,V 〉Sρ = − d

dt
Tr(W |Ωt〉〈Ωt|)|t=0

= −〈Ω0|W |Ω1〉 − 〈Ω1|W |Ω0〉.
(116)

Moreover, from perturbation theory,

|Ω1〉 = −H−1V |Ω0〉, (117)

where H is the Hamiltonian, shifted so that the
ground state energy is zero, and H−1 is defined to
be zero on the ground state. Hence, we can rewrite
the Kubo-Mori metric at zero temperature, now for
the complexified version, as

lim
β→∞

β〈GAf , GAg 〉Sρ

= ρ((GAf )†H−1GAg ) + ρ(GAg H−1(GAf )†).
(118)

For our example, using the Hamiltonian,

H =
∑
k

ωka
†
kak, (119)

we can obtain the components of the metric in
the sector of distinct modes k1, . . . , kn at β = ∞.
From differentiating Equ. (118), using Equ. (42) and
Equ. (51), we obtain that

lim
β→∞

β

∫ 1

0

n⊗
j=1

(Akj + i

2∆)R
Akj
s

= 1∑
j ωkj

 n⊗
j=1

(A∞kj + i

2∆) +
n⊗
j=1

(A∞kj −
i

2∆)

 ,
(120)

where A∞k = limβ→∞Ak = 1
2

(
1
ωkj

0
0 ωkj

)
.

We used the fact that

∂t1 · · · ∂tn∂s1 · · · ∂sne
∑n

i,j=1
tisj(fki ,Pgkj )|ti=sj=0

=
∑
π

(fk1 , Pgkπ1) · · · (fkn , Pgkπn),

(121)

where the sum is over all permutations π of {1, . . . , n}.
From Equ. (76) and using the above results, we

can now obtain any component of the coarse-grained
metric. For instance, in distinct modes k1, . . . , kn, if
we denote the components of the Kubo-Mori metric
(given in Equ. (120)) by Kk1,...,kn , then the compo-
nents of the coarse-grained metric in our approxima-
tion are

Kk1,...,kn

n⊗
j=1

(
u−2
kj

0
0 v−2

kj

)
Kk1,...,kn e

−
∑

j
k2
jσ

2

.

(122)
We consider first the example of the mass term in

the Hamiltonian, namely

Ṽ2 = 1
2

∫
φ̃(x)2dx− c1 (123)
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where c ∈ R is there so that 〈Ṽ2〉ρ = 0. In terms of
the variables φk, this is V2 = 1

2
∑
k φkφ−k − c′1. In

terms of the generating operator GAf , this is just

V2 = −1
2
∑
k

∂2

∂s∂t
GAtφk+sφ−k |t=s=0. (124)

Indeed, the identity component is automatically ab-
sent from this expression due to the fact that poly-
nomials of different orders generated by GAf are auto-
matically orthogonal in terms of the Kubo-Mori met-
ric, and the fact that 〈V,1〉Sρ = 〈V 〉ρ.

Let’s use the shorthand P ts := (RAt )†PRAs , where
P is given by Equ. (77). By applying the above dif-
ferentiation to both f and g in Equ. (76), and using
Equ. (121), and the fact that (φk, P tsφk′) = 0 if k 6= k′,
we obtain (still for yφyπ � 1),

‖V2‖2E,ρ '
1
2
∑
k

∫
ds dt (φk, P tsφk)(φ−k, P tsφ−k)

= 1
2
∑
k

∫
ds dt (φk ⊗ φ−k, (P ts ⊗ P ts)φk ⊗ φ−k).

(125)

Using Equ. (120), each term of the sum can be com-
pute explicitly in the zero temperature limit. The
distinguishability density of Ṽ2, which we denote

d(Ṽ2) = lim
L→∞

L−d‖V2‖2E,ρ (126)

is then obtain simply by replacing the sum by an in-
tegral in Equ. (125), which is

d(Ṽ2) ' 1
25

∫
dk

e−2σ2k2

ω2
k

[
1

u4
kω

4
k

+ 1
v4
k

]
, (127)

where uk and vk are given by Equ. (105) and
Equ. (106), but in the limit β → ∞, i.e., with
coth

(
βωk

2
)
→ 1.

We also want to consider the quartic interaction
term

Ṽ4 = 1
4!

∫
φ̃(x)4dx− 1

2µ
2
∫
φ̃(x)2dx− c1, (128)

where the identity component compensates the opera-
tors’ non-zero expectation value, and the second term
is a counter term obtained from renormalisation (only
to first order in perturbation theory). It is needed be-
cause the quartic term alone yields expectation values
which diverge in the continuum limit (when an ultra-
violet cutoff is removed), and hence does not by itself
constitute a valid perturbation of the Hamiltonian in
the continuum.

An ultraviolet regularisation is given simply by

Ṽ4 = 1
4!

∫
Σ
dx

∂4

∂t4
GA
tφ̃(x)|t=0. (129)

This is due to the orthogonality of the polynomials
generated by GAf in terms of the Kubo-Mori met-

ric, which guarantees that adding Ṽ4 to the Hamil-
tonian has no influence on moments lower than four
(to first order in the coupling constant). In particu-
lar, this means that Ṽ4 does not influence the value
of the “macroscopic” mass that is defined from the
second moment in φ(x), which is the role played by µ
in Equ. (128).

To proceed, we need to express this interaction in
term of our variables φk. Observe that

∫
φ̃(x)4dx =∫

dk1 . . . dk4 δ(
∑
i ki) φ̃k1 . . . φ̃k4 . We use the infrared-

regulated operator

V4 = 1
4!

∑
k1,...,k4

δ(Σiki)
∂4GAΣitiφki
∂t1 · · · ∂t4

(130)

so that Ṽ4 = limL→∞ LdV4. Applying these deriva-
tives to Equ. (76) like in the previous example, we
obtain (still for yφyπ � 1),

‖V4‖2E,ρ '
1
4!
∑
k1...k4

∫
ds dt δ(Σiki)

4∏
i=1

(φki , P tsφki),

(131)
which yields at zero temperature

d(Ṽ4) ' 1
4! 26

∫
dk1 · · · dk4 δ(Σiki)

× e−σ
2Σik2

i

(Σiωki)2

[ 1∏
i v

2
ki

+ 1∏
i u

2
ki
ω2
ki

+
∑
π

1
u2
kπ(1)

u2
kπ(2)

v2
kπ(3)

v2
kπ(4)

ω2
kπ(1)

ω2
kπ(2)

]
,

(132)

where the products are over i = 1, . . . , 4 and the last
sum is over all six permutations π of the set {1, 2, 3, 4}
which are such that π(1) < π(2), and, of course, uk
and vk are taken at β =∞.

5.1 Classical version
For comparison, we also consider the same calculation
but for the classical Klein-Gordon field, that is,

Ak =
(

1
βω2

k

0
0 1

β

)
. (133)

The operator P from Equ. (72) is P = ⊕kPk with

Pk = A2
k(Ak + Yke

k2σ2
)−1. (134)

In particular,

(φk, Pφk) = 1
βω2

k + β2ω4
ky

2
φe
k2σ2 . (135)

We obtain

d(Ṽ2) = 1
2

∫
dk (φk, Pφk)2, (136)

Accepted in Quantum 2018-05-16, click title to verify 11



and

d(Ṽ4) = 1
4!

∫
dk1 · · · dk4 δ(Σiki)

4∏
i=1

(φki , Pφki).

(137)
This is the value of the “basketball” Feynman dia-
gram, albeit for a modified propagator. A partially
analytical solution for the standard propagator can
be found in Ref. [1]. However, one can use a more
versatile numerical method to evaluate it, such as ex-
plained in Section 6.1.

5.2 Comparison with regulated Bures metric
Other authors have considered the raw Bures met-
ric dependent on a sharp momentum cutoff, e.g., in
Ref. [10, 12]. This is equivalent to using a coarse-
graining channel E defined by Y = 0 and X the pro-
jector onto modes |k| ≤ 1/σ for some scale σ. Techni-
cally, the target algebra of E should not contain any
mode larger than 1/σ, or this would violate Equ. 39,
henceX is actually an isometry (satisfyingX†X = 1).
The resulting channel E then simply performs a par-
tial trace over all modes |k| > 1/σ.

In this section, we want to examine under what
conditions such a quantity would match, possibly ap-
proximately, the coarse-grained metrics we computed.

The “raw” distinguishability of a Hamiltonian
perturbation in the Bures metric 〈X,Y 〉ρ =
Tr(XΩ−1

ρ (Y )) is defined by

Ωρ(A) = 1
2(Aρ+ ρA). (138)

In the case where ρ is pure: ρ = |Ω0〉〈Ω0|, we can use
Equ. (118) to relate it to the Kubo-Mori metric as

lim
β→∞

β〈GAf , GAg 〉Sρ = 2〈H−1GAf +GAf H
−1, GAg 〉ρ.

(139)
What we want to compute is simply our coarse-
grained distinguishability when E = id. Note that
this does not imply Rρ = id because the “source”
metric (Kubo-Mori) is different from the target one
(Bures). Instead, we have

lim
β→∞

β〈R(GAf ), GAg 〉ρ = lim
β→∞

β〈GAf , GAg 〉Sρ

= 2〈H−1GAf +GAf H
−1, GAg 〉ρ.

(140)

Hence,

R(GAf ) = 2
β

(GAf H−1 +H−1GAf ) +O((1/β)0). (141)

Using also Equ. (118), the distinguishability is then

〈GAf , ER(GAg )〉Sρ = lim
β→0

2β〈GAf , GAg H−1 +H−1GAg 〉Sρ

= 2 ρ((GAf )†H−2GAg ) + 2 ρ(GAg H−2(GAf )†).
(142)

Hence components of this metric in distinct modes
k1, . . . , kn are given by the matrix

2(∑
i ωki

)2 [ n⊗
i=1

(Aki + i

2∆) +
n⊗
i=1

(Aki −
i

2∆)
]
. (143)

In order to compare to the components of the coarse-
grained metric in Equ. (122), observe that, for the
Klein-Gordon field state at β =∞,

(Ak ±
i

2∆)A−1
k (Ak ∓

i

2∆) = 0 (144)

(Ak ±
i

2∆)A−1
k (Ak ±

i

2∆) = 2(Ak ±
i

2∆). (145)

Hence, the raw Bures metric is given by the sub-
stitution u2

k → 1
2ω
−1
k , v2

k → 1
2ωk and X → 1 in

Equ. (122).
This suggests that, for the Klein-Gordon example,

our coarse-grained metric essentially matches the raw
metric (with a momentum cutoff) at zero temperature
when u2

k � ω−1
k and v2

k � ωk. This would violate the
uncertainty condition yφyπ � 1, but this condition
is not fundamental as it can be easily alleviated by
making yφ and yπ dependent on k.

6 Applications
6.1 Wilsonian relevance
An interacting QFT comes with a regulator such as a
momentum cutoff. In general, even if it may loosely
correspond to the energy beyond which the theory
loses validity, it is not considered to be physical, or at
least its value is not known. As such, the predictions
of the theory at low energies must be independent of
it. In general, the parameters of the theory (entering
the Hamiltonian) must be made dependent on the cut-
off so as to yield constant predictions. This function
of the Hamiltonian on the cutoff is the renormalisa-
tion group (RG).

Wilson argued that the RG can also be reinter-
preted in a different way [19]. As the energy cutoff
is lowered, the theory may simplify in the sense that
some “coupling constant” in the Hamiltonian, such
as the parameter λ in H + λV , tend to zero. Wil-
son interprets this as meaning that the term V is not
needed to make correct predictions at low energies.
Hence the simpler theory defined by the Hamiltonian
H is a good effective description of the system at low
energies.

A more detailed way of addressing the question of
whether V is detectable under certain experimental
constraints is of course the calculation of an actual
statistical distinguishability between H and H + λV
as a function of explicit resolution parameters.

Specifically, the quantity d(V ) defined in
Equ. (126), tells us how easy it is to distin-
guish a Gibbs state for H compared to one for
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H + εV , to lowest order in ε, as a function of the
various resolutions σ, yπ, yφ, per unit of volume. The
behaviour of d(V ) as a function of the “physical”
resolution parameter σ should tell us directly how
relevant V is: if it decreases as σ increases then one
may deem it “irrelevant”. But this doesn’t quite
work, because, since all distinguishability measures
are contractive, d(V ) always decreases as σ increases.
However, it is a density: it corresponds to the effec-
tive distinguishability of the term V for an observer
having access only to some fine volume. When the
resolution σ gets worse, the observer has effectively
access to fewer “pixels” per unit of volume, which is
why d(V ) decreases.

To meet the standard concept of relevance, we
should rather ask how the distinguishability of V de-
pends on σ if the observer still has access to the same
volume relative to σ. This means considering instead
the unitless quantity

δ(V ) := σdd(V ), (146)

which can now increase or decrease. This extra factor
σd serves the same purpose as the active rescaling of
the fields in Wilson’s approach to renormalisation.

More specifically, we are interested in the polyno-
mial behaviour of δ(V ) as a function of σ. Hence we
can directly extract the degree of the polynomial as

α(V ) := ∂ log δ(V )
∂ log σ . (147)

For instance, consider the case where yφ is small,
which also requires yπ large given the uncertainty re-
lations. We have, roughly,

d(Ṽ2) ∝
∫
|k|<1/σ

dk
1
ω4
k

(148)

Therefore, for σ � 1
m (or a massless theory), d(Ṽ2) =

O(σ4−d), and for σ � 1
m , d(Ṽ2) = O(σ−d). This

yields α(Ṽ2) ' 4 below the mass scale and α(Ṽ2) ' 0
above the mass scale.

This can be understood as follows: as the “pixel
size” σ increases, more information about the mass
is gained per pixel, until they reach the mass scale
(which is also the correlation length), at which point
no more new information is gained. Hence Informa-
tion about the mass is found in large scale features of
the state.

This corresponds to the Wilsonian analysis which
would say that Ṽ2 is relevant for a massless theory,
and marginal in a massive theory.

With a large field uncertainty yφ, the scaling is
qualitatively different. Indeed, below the mass scale,

d(Ṽ2) ∝
∫
|k|<1/σ

dk
1

y4
φω

6
k

, (149)

which yields α(Ṽ2) ' 6.

As a further illustration, we want to compute the
distinguishability scaling α(Ṽ4) for the φ4 interaction
term from Equ. (132). We can make a similar “back
of the envelop” analysis for the behaviour of d(Ṽ4) for
yπ very large and yφ vanishingly small. This is

d(Ṽ4) ∝
∫∑

i
k2
i
< 1
σ2

δ(Σiki) dk1 · · · dk4(
Σiωki

)2
ωk1 · · ·ωk4

. (150)

At m = 0, ωk = k. Counting the powers of k in-
side the integral yields the guess α(Ṽ4) ' 2(3− d) for
2 ≤ d ≤ 6, which can be verified using the numer-
ical method explained below. Hence we recover the
expected marginal dimension d0 = 3 above which the
φ4 interaction is irrelevant at large scales. However,
various other results can be obtained depending on
the field resolutions yφ and yπ, as can be anticipated
by the resulting different powers in ωk in Equ. (127).

In order to obtain an efficient numerical method to
evaluate the integrals, consider that, if

d(V ) =
∫
dKf(K), (151)

where K = (k1, . . . , kn), then

α(V ) = ∂ log d(V )
∂ log σ

= σ
1

d(V )

∫
dKf(K)∂ log f(K)

∂σ

= σ
〈∂ log f(K)

∂σ

〉
f
.

(152)

The last term involves an expectation value in terms
of the probability density K 7→ f(K)/

∫
dKf(K).

Defining
H(K) = − log f(K), (153)

the integral can be evaluated using the metropolis al-
gorithm for the classical Hamiltonian K 7→ H(K) at
temperature 1.

If we keep yφ and yπ independent of σ, those values
introduce two lengthscales in additions to the mass, at
which the behaviour of d(Ṽ4) changes. The effect of an
increase in yφ is shown in Figure 1. In this example
with four spatial dimensions (d = 4), an increased
value of yφ renders the interaction Ṽ4 relevant (α > 0)
instead of irrelevant (α < 0) below the mass scale for
σ < y2

φ.

6.2 Dimensionality reduction
An approach to renormalisation proposed in Ref. [6, 7]
consists in determining the eigenvalues and eigenvec-
tors for the linear map ERρ, which is self-adjoint with
respect to the source metric. The original interpre-
tation of the calculation was different, because Rρ
(which was then called R†ρ) occurred geometrically
as the pull-back induced by E on cotangent spaces
to states (we refer to Ref. [7] for details). However,
technically the calculations are identical.
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Figure 1: Scaling exponent α for the distinguishability of
the φ4 interaction as a function of the scale (resolution) σ,
where σ0 := 1/m is the correlation length. For both curves,
y2

π = 1010/σ0, and the dimension of space is d = 4. The
solid curve is for y2

φ = 10−3σ0 (a valued marked on the scale
axis by the vertical dotted line). For comparison, the dashed
curve is for the much smaller y2

φ = 10−7σ0, for which α
behaves essentially as predicted by Equ. (150), i.e., α ' −2
below the mass scale.

In that approach, the eigenvectors are interpreted
as observables, and the eigenvalues (which are always
in the interval [0, 1]) tell us how much these observ-
ables lose “distinguishability” under coarse-graining.
A smaller effective tangent space (to states) is given
by ignoring those observables which lose too much dis-
tinguishability, i.e., which are not “relevant” enough,
by deeming two tangent vectors effectively identical if
they give the same expectations values for the more
relevant observables.

For the Klein-Gordon field example, the compo-
nents of ERρ as a linear map can be determined using
the observations made at the end of Section 4, namely
that ERρ is block-diagonal, with each block associ-
ated with momentum modes k1, . . . , kn. For yπyφ � 1
and at zero temperature, one can directly see from
Equ. (122) that the components of one block are given
by the matrix

n⊗
j=1

(
u−2
kj

0
0 v−2

kj

)
Kk1,...,kn e

−
∑

j
k2
jσ

2

(154)

where the matrices Kk1,...,kn are equal to the right
hand side of Equ. (120).

For instance, for n = 1 one recovers the single-
mode result presented in Ref. [7] (at β → ∞). For
n = 2, and k1 = −k2 = k for simplicity, we obtain the
eigenvalue

η1 = e−2k2σ2

2βωku2
kv

2
k

+O(β−2)

with corresponding eigenvector (observable)

A1 = φkπ−k + π−kφk

and

η2 = e−2k2σ2

4β

[ 1
ω3
ku

4
k4 + ωk

v4
k

]
+O(β−2),

for
A2 = u4

kω
2
k|πk|2 − v4

k|φk|2.

The other two eigenvalues are of order β−2. Two or-
thogonal polynomials spanning that space are given
by

A3 = i(φkπ−k − π−kφk) and A4 = ω2
k|φk|2 + |πk|2.

7 Outlook
We developed a practical way of computing the effec-
tive distinguishability between Hamiltonian perturba-
tions, taking experimental limitations explicitly into
accounts. These resolutions parameters are needed
to obtain a finite measure of distinguishability. We
developed a calculation procedure applicable directly
to Gaussian states (free fields), to arbitrary perturba-
tions, and for all contractive metrics. Moreover, we
showed in the context of the Klein-Gordon field that
all contractive metrics give the same result provided
that the phase-space resolution is much coarser than
~.

Although the quantities computed, namely the
component of a metric, only give the distinguisha-
bility between a state and a perturbation of the state
to first order in the coupling constant, this can be
used in principle to compute geodesic distances be-
tween any two state (or at least upper bounds to it).
This is where the geometric nature of the formalism
becomes useful. For instance, the distinguishability
between a state ρAB on two systems A and B and the
product state ρA⊗ ρB (where ρA and ρB are reduced
states of ρAB) is a genuine measure of entanglement
when ρAB is pure, such as a ground state. This can
be used to compute an upper bound to the ground
state entanglement on any region A. For instance,
if ρ is the ground state of a local field Hamiltonian,
then a path to the product state ρA ⊗ ρAC may be
obtained by progressively increasing the field’s mass
on the boundary. In the purely Gaussian case, the
recent results in Ref. [3] may provide a more direct
route. However, our method can in principle be ex-
tended perturbatively beyond Gaussian states using
the approach proposed in Ref. [7] in the classical case.
Namely, a perturbation of a Gaussian state ρ yields
a perturbation of the linear map ERρ, whose compo-
nents can in principle be computed to each order.

A generalisation to fermionic fields should also be
possible using the fermionic Gaussian formalism, such
as developed in Ref. [9].
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