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Zusammenfassung

Das Ziel der geophysikalischen Strömungsdynamik is das Studium der natürlich
vorkommenden Ströme auf der Erde. Die meisten Probleme, die entsthen sind
am oberen Ende der Skala wo entweder die Rotation der Erde oder Dichteunter-
schiede (warme und kalte Luftmassen, frische und Salzwasser) oder beide von Be-
deutung sind. In dieser Hinsicht umfasst die geophysikalischen Strömungsdynamik
rotierende-stratifizierte Flüssigkeitsströmungen.

Die vorligiende Dissertation setzt sich aus elf Forschungsarbeiten zusammen,
die sich wiederum in zwei Teilen aufteilen lasen. Der erste Teil der Dissertation
widmet sich dem Studium von nicht-linearen Kapillar-Gravitationswellen, die an
der Oberfläche der Rotationsströmungen, mit rauen Verwirbellungen, oder an der
oberfläche von Strömungen, mit einer vertikalen Schlichtung (stetig bzw. unstetig),
wandern. Der Schwerpunkt liegt auf der Entwicklung einer exakte Existenztheorie
für Lösungen.

Die im zweiten Teil der Disertation gesammelten Arbeiten untersuchen die Ex-
istenz und die qualitative Eigenschaften der äquatorialen geophysikalischen Wasser-
strömungen mit Coriolis Effekte in der sogenannten f -Ebene Approximation. Außer-
dem werden wir mehrere explizite Lösungen angeben, die äquatoriale Wasserström-
ungen in der f -Ebene Aproximation in verschiedene geophysikalischen Szenarien -
Tiefwasserwellen, Randwellen, geschichtete Strömungen - beschreiben, und deren
Eigenschaften analysieren.
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Abstract

The object of geophysical fluid dynamics is the study of naturally occurring flows
on the Earth. Most of the problems that arise are at the large-scale end, where
either the rotation of the Earth or density differences (warm and cold air masses,
fresh and saline waters) or both are of importance. In this regard, geophysical fluid
dynamics comprises rotating-stratified fluid flows.

This thesis consists of eleven research papers which are grouped into two parts.
The first part is dedicated to the study of nonlinear capillary-gravity water waves
traveling at the surface of rotational flows with rough vorticities or of flows with a
vertical layering (continuous resp. discontinuous) of density, the emphasis being on
developing a rigorous existence theory.

The papers collected in the second part of the thesis investigate the existence
and the qualitative properties of equatorial geophysical water flows with Coriolis
effects in the so-called f -plane approximation. In this part we also present several
explicit solutions describing equatorial water flows in the f -plane approximation
in different geophysical scenarios −deep-water waves, edge waves, stratified flows−
and we analyze their properties.
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Introduction

Geophysical fluid dynamics refers to all naturally occurring fluid motions.
Two important features that are common to many of the phenomena studied
in this field are the rotation of the fluid due to the Earth’s rotation and
the stratification. This thesis consists of eleven research papers which are
grouped into two parts. The first part is dedicated to the study of nonlinear
capillary-gravity water waves traveling at the surface of flows with rough
vorticity or of flows with a vertical layering of density. The papers collected
in the second part of the thesis investigate the existence and the qualitative
properties of geophysical water flows with Coriolis effects in the so-called f -
plane approximation. The waves that we consider are exact, some of them
also explicit, solutions to the Euler equations. The derivation of the Euler
equations in a reference frame which rotates with the Earth – and where
the Coriolis and the centrifugal force naturally appear – is presented, for
the sake of completeness, at the beginning of the second part of the thesis.
Though the Coriolis force is quite small, for large-scale movement of water
in the ocean its effects are noticeable while the effects due to the centrifugal
force can be neglected.

The mathematical model considered in the first part of the thesis de-
scribes the propagation of periodic water waves over a rotational, inviscid
and incompressible fluid, under the influence of gravity and capillary forces.
Moreover, the water waves we are dealing with in Paper 1 are stratified,
meaning that the fluid density varies with the height. Physically, the density
of the fluid may vary due to several factors, such as the salinity, tempera-
ture, pressure, oxygenation (see the discussion in the references [19, 29] of
Paper 1). Also the surface tension plays a key role for small- to medium-
amplitude water waves, and in particular for wind waves. Using global bifur-
cation techniques we constructed in Paper 1 a global continuum of steady
periodic stratified water waves, which is either unbounded or contains a
wave of largest admissible amplitude, and which extends the local bifurca-
tion curves found in the reference [19] of Paper 1. Furthermore, we obtained
a description of the behavior of the stratified water waves solutions along
the global continuum.

The study in Paper 2 was motivated on one hand by the physical setting
of wind generated waves, which possess a thin layer of high vorticity (see
the references [37, 39] of Paper 2) adjacent to wave surface. On the other
hand, as a combined effect of the gravitational forces exerted by the Moon,
Sun, and the rotation of the Earth, in the near-bed region of oceans there
may exist strong tidal currents which are responsible for the transportation
of sediments (see reference [38] of Paper 2). We established in this paper
the existence of two-dimensional periodic capillarity-gravity water waves
with an arbitrary bounded vorticity distribution. This was achieved by
presenting a novel weak interpretation to the height function formulation of
the water waves problem. This new formulation enabled us to establish the
existence of weak solutions to the problem. Moreover, we proved that these
solutions are in fact strong solutions to the problem, describing waves with
a real-analytic free surface. Assuming merely integrability of the vorticity
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function, we showed that any weak solution corresponds to a flow having
real-analytic streamlines.

In Paper 3 we considered two-dimensional internal periodic water waves
traveling at the interface between two fluid layers with different, but con-
stant, densities, under the rigid lid assumption. In this context, the fluids
have constant vorticity and we constructed internal traveling waves with
a critical layer and stagnation points in both gravity and capillary-gravity
regimes. Besides, we proved, without excluding the presence of stagnation
points, that if the vorticity function associated to each fluid in part is real an-
alytic, bounded, and non-increasing, then capillary-gravity steady internal
waves are a priori real-analytic. In particular, irrotational capillary-gravity
water waves possess a real-analytic surface even if stagnation points are
present, in contrast to the case of gravity waves with a stagnation point at
their crest where the free surface is only Lipschitz continuous but not C1

(see the reference [28] of Paper 5).
In the second part of the thesis we considered water flows influenced by

the Coriolis force. We present firs the equation of motion in a coordinate
frame rotating with uniform angular velocity we motivate that flows close
to the Equator can be described by the so-called f -plane approximation of
the geophysical model. This approximation will be used in all the remaining
papers of this thesis.

1. The geophysical water wave problem and its f-plane
approximation

The motion of a fluid layer located on the Earth’s surface is also influ-
enced by Earth’s rotation around the polar axis. From a theoretical point
of view, the equations governing geophysical fluid processes can be derived
with respect to inertial reference frame (that are fixed with respect to distant
stars). However, the most natural reference system to describe geophysical
fluid motions is one which rotates with the Earth. The phenomena them-
selves are not affected by the choice of the frame, but the description of
the phenomena depends on the chosen frame. For an observer in a rotating
frame the objects fixed in the inertial frame will appear to rotate and to
accelerate (due to the curvature of their apparent trajectory).

We now derive the equations of motion for a inviscid fluid located on the
surface of the Earth entirely in terms of quantities directly observed from
a rotating frame (as presented in [2, 3, 4]). The influence of the rotation
of the attraction exerted by the Moon and Sun on the motion of the fluid
are neglected so that we may fix an (orthogonal) inertial frame OXY Z with
O the center of mass of the Earth and the Z axis pointing towards the
North Pole. The OXY plane coincides with the Earth’s equatorial plane,
see Figure 1. The Earth rotates with constant angular velocity

ω = 73 · 10−6rad/s,

and we let Ω := (0, 0, ω) denote the rotation vector of Earth round the polar
axis toward east

The equations of motions of an inviscid fluid in this inertial reference
frame are derived in most of the elementary fluid-dynamics books and consist
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of the continuity equation

∂tρ+∇ · (ρu) = 0(1)

and the conservation of momentum equation

ρ
du

dt
= −∇p+ ρ∇Φ(2)

where ρ∇Φ is the body force (Φ is a potential by which conservative body
forces, such as gravity, can be represented), and

d

dt
=

∂

∂t
+ u · ∇

is the total derivative with respect to time in the inertial reference frame.
We have denoted by ρ the density of the fluid, p is the pressure, and u is
the velocity field.

We now choose, following [[4], page 15] a (orthogonal) reference frame
{P, e1, e2, e3} with P located on the Earth’s surface which rotates with the
Earth. We want to express the equations of motion (1)-(2) in this moving
reference frame. To this end, we consider first a vector A having constant
magnitude but rotating with angular velocity ω and denote by α the vector
between A and Ω. In a small time ∆t, A is rotated through the angle
∆θ = ω∆t, see Figure 2.

It then follows that the small change in A is given by

A(t+ ∆t)−A(t) ≡ ∆A = n∆θ|A| sinα+O((∆θ)2),

where

n =
Ω×A

|Ω×A| .
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Letting ∆t→ 0, we obtain

lim
∆t→0

∆A

∆t
=
dA

dt
= |A|ω sinα

Ω×A

|Ω×A| ,

and since |Ω×A| = |A|ω sinα we get, for a vector of fixed magnitude, that

(3)
dA

dt
= Ω×A.

Both observers will see the same vector A because the definition of the
vector A does not depend on the coordinate frame. However, an observer
who is fixed in the rotating reference frame would see no change in A, while
an observer in a non-rotating frame would see the change in A as described
by (3), that is (dA

dt

)
I

= 0 and
(dA
dt

)
R

= Ω×A.

The subscript I states for inertial frame and R for the rotating frame. We
note that the rate of change of Ω is the same in both frames because Ω×Ω
vanishes identically.

We consider now an arbitrary vector B. Following [[4], page 16], in the
rotating frame the vector B can be written as

B = B1e1 +B2e2 +B3e3,

where Bj = B · ej, j = 1, 2, 3. Then, the rate of change of B in the rotating
frame is given by (

dB

dt

)
R

=
dB1

dt
e1 +

dB2

dt
e2 +

dB3

dt
e3,

since the unit vectors are fixed in length and direction. In the non-rotating
reference frame, the components of B and the unit vectors are all changing
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with time, therewith the rate of change of B is(
dB

dt

)
I

=
dB1

dt
e1 +

dB2

dt
e2 +

dB3

dt
e3 +B1

de1
dt

+B2
de2
dt

+B3
de3
dt

=

(
dB

dt

)
R

+B1Ω× e1 +B2Ω× e2 +B3Ω× e3

=

(
dB

dt

)
R

+ Ω× (B1e1 +B2e2 +B3e3)

=

(
dB

dt

)
R

+ Ω×B,

by (3). We have thus shown that

(4)

(
dB

dt

)
I

=

(
dB

dt

)
R

+ Ω×B.

As before, the rates of change with time of the same vector B are per-
ceived differently by the observers in the rotating and non-rotating frame,
respectively.
The conservation of momentum equation in the rotating frame.
Let r be the position vector of an arbitrary fluid element. Then, from (4)
we have (

dr

dt

)
I

=

(
dr

dt

)
R

+ Ω× r,

so that the velocity uI seen in the non-rotating reference frame is equal to
the velocity uR observed in the rotating frame plus the velocity imparted
to the fluid element by the Earth rotation Ω× r :

(5) uI = uR + Ω× r.

Using (4) and (5) and the observation that the rate of change of Ω is 0, we
obtain that(

duI

dt

)
I

=

(
duI

dt

)
R

+ Ω× uI

=

(
duR

dt

)
R

+ Ω×
(
dr

dt

)
R

+ Ω× (uR + Ω× r)

=

(
duR

dt

)
R

+ 2Ω× uR + Ω× (Ω× r).

Together with (2) we obtain that the conservation of momentum equation
in the rotating frame is

ρ
(du
dt

+ 2Ω× u
)

= −∇p+ ρ∇Φ−Ω× (Ω× r).

Compared to the momentum equation in the inertial frame there are two
new terms that appear:
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• the Coriolis acceleration1 −2Ω×u which always perpendicular to
the velocity;
• the centrifugal acceleration2−Ω × (Ω × r) = ω2r⊥, whereby r⊥

denotes the perpendicular distance vector from the rotation axis to
the position of the fluid particle at r, cf. Figure 3. The centrifu-
gal force depends only on the rotation rate and the distance of the
particle to the rotation axis. Even at rest with respect to the ro-
tating planet, particles experience an outward pull. In the absence
of rotation, gravitational forces keep the matter together to form a
spherical body. The outward pull caused by the centrifugal force
distorts this spherical equilibrium and the planet assumes a slightly
flattened shape. On the Earth the distortion is very slight because
gravity by far exceeds the centrifugal force: the equatorial radius is
6378 km, slightly greater than the polar radius of 6357 km.

Ω

O

r⊥

r

Figure 3

The f-plane approximation of the geophysical water wave problem.
We now assume that the Earth is a perfect sphere of radius R = 6371 km.
Therefore we can choose spherical coordinates to parametrize the Earth’s
surface: φ ∈ [−π/2, π/2] is the latitude and θ ∈ [−π, π] is the longitude.
Moreover, we choose the rotating reference frame such that P is located at
latitude φ, e3 is the vector OP/|OP |, the vector e1 points horizontally due
east and e2 horizontally due north. Letting (x, y, z) denote the coordinates
in the frame {P, e1, e2, e3} and writing u = (u, v, w), we have that

Ω =ω cosφ e2 + ω sinφ e3

2Ω× u =2ω(w cosφ− v sinφ) e1 + 2ωu sinφ e2 − 2ωu cosφ e3,

Ω× (Ω× r) =− ω2x e1 + ω2 sinφ((z +R) cosφ− y sinφ) e2

− ω2 cosφ((z +R) cosφ− y sinφ) e3,

as r = (x, y, z +R).

1”Gaspard Gustave Coriolis (1792-1843) was born in France and trained as an engineer. He
began a career in teaching and research at age 24. Fascinated by the problems related to rotating
machinery, he was led to derive the equations of motions in a rotating framework of references.

The result of these studies was presented to the Académie des Sciences in the summer of 1831. In
1838, Coriolis stopped teaching to become director of studies at the Ecole Polytechnique, but his

health declined quickly and he died a few short years later”. (cited from reference [2].)
2Here we follow [2].
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For equatorial motions, that is for φ = 0, an eastward motion (that is,
in the same direction as the rotation of the sphere) provides an upward
acceleration known as the Eötvös effect as −2Ω × u = 2ωu e3. Moreover,
a particle at latitude φ in the Northern Hemisphere and moving eastwards
will be pulled to the right (southwards) due by the Coriolis force as

−2Ω× u = −2ωu sinφ e2 + 2ωu cosφ e3.

To write down the momentum equation in the f -plane approximation, we
still have to express the gravity force in the rotating reference frame. A fluid
particle positioned at (x, y, z) with respect to {P, e1, e2, e3} is attracted by
the center of mass of the Earth, its gravity acceleration being defined as

g = −GmEr

|r|3 = −gR2GmEr

|r|3

where G is the universal gravitational constant, mE is the mass of the Earth,
and g = 9.81m/s2 is the gravity of Earth. Summarizing, the conservation
of momentum equation reads as

ut + uux + vuy + wuz + 2ω(w cosφ− v sinφ) = −px
ρ

+ ω2x− gR2x

|r|3 ,

vt + uvx + vvy + wvz + 2ωu sinφ = −py
ρ
− ω2 sinφ((z +R) cosφ− y sinφ)

−gR
2y

|r|3 ,

wt + uwx + vwy + wwz − 2ωu cosφ = −pz
ρ
− gR2(z +R)

|r|3
+ω2 cosφ((z +R) cosφ− y sinφ).

The terms

f := 2ω sinφ and f∗ := 2ω cosφ

are called Coriolis parameter and reciprocal Coriolis parameter, re-
spectively.

Let L be a characteristic length scale of the motion and U a horizontal
velocity scale characteristic of the motion. The period it takes a fluid particle
with velocity U to transverse the distance L is L/U. If that period of time
is much less than the period of rotation of the Earth, the fluid can scarcely
sense the Earth’s rotation over the time scale of the motion. Hence, the
rotation is important if L/U ≥ ω−1, condition which can be expressed in
terms of the Rossby ε as follows

ε :=
U

2ωL
≤ 1.

The Gulf Stream has velocities of order U = 1m/s, the characteristic hori-
zontal scale being L = 100km, cf. [4]. The corresponding Rossby number is
ε = 0.07, so that the Earth rotation influences the fluid motion. Another ex-
ample where Coriolis forces are important is the tsunami of December 2004
which hat a wavelength of λ = 100 km, while the characteristic velocities
were of order U = 1km/h (it is the speed of the wave which is very large
720km/h, cf. [1]), so that ε = 0.019.
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For fluid flows with characteristic horizontal scale of 100km we can neglect
all the terms in the right hand sides of the equations in the previous system
which contain ω2 as their are comparable to

ω2R = 0.03m/s2.

If the observer is within 1◦ = π/180 = 0, 017 rad from the Equator (or
equivalently 110 km), we can estimate

sinφ ≈ φ ≈ 0, cosφ ≈ cos 0 = 1,

so that f =≈ 0, f∗ ≈ 2ω. Taking into account that

R2|(x, y, z)|
|r|3 ≤ 0, 045,

R3

|r|3 ≈ 1,

for fluid motions near the Equator the geophysical water wave problem can
be approximated by the following system

ut + uux + vuy + wuz + 2ωw = −px
ρ
,

vt + uvx + vvy + wvz = −py
ρ
,

wt + uwx + vwy + wwz − 2ωu = −pz
ρ
− g,

which is know (together with the conservation of mass equation) as the
f-plane approximation.

In Paper 4 we present an exact explicit Gerstner-type solution describing
geophysical equatorial periodic water waves over a rotational flow. In the
Paper 5 it is shown that this solution can be modified to obtain a family
of exact Gerstner-type solutions to the f -plane approximation describing
waves over uniform horizontal currents. The particle paths in the presence
and absence of the Coriolis force were also analyzed in dependence of the
current strength.

In Paper 6 we provided an explicit exact solution to the edge wave problem
in the f -plane approximation. This edge wave solution describes three-
dimensional waves that propagate along the shoreline and whose amplitude
decays rapidly offshore. In the Paper 7 we showed that the exact solutions
presented in the Papers 4 and 6 can be modified to describe also geophysical
waves on flows with a vertical density stratification.

The explicit Gerstner-type solutions whose flow was described in the Pa-
per 5 have the property that the pressure is constant along each streamline.
In Paper 8 we proved that any solution of the f -plane approximation for
equatorial geophysical deep water waves which has the property that the
streamlines are isobaric and do not possess stagnation points, belong to this
family of Gerstner-type waves. Furthermore, for waves over a flat bed, we
showed that there are only laminar flow solutions with these properties.

In the Papers 9 and 10 we dealt with periodic finite-depth equatorial
wind waves in the f -plane approximation. Using local bifurcation theory
we proved in Paper 9 the existence of steady, periodic two-dimensional sur-
face water waves in the equatorial region which have a general underlying
vorticity distribution. Furthermore, we derived explicit dispersion relations
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for the flow in the case where the vorticity is constant. Additionally, in the
10th Paper, we presented a symmetry result which states that the symmet-
ric waves are characterized by the fact that the wave surface has only one
crest per period.

In Paper 11 we considered the two-dimensional equatorial water-waves
problem with constant vorticity in water of finite depth. Within the frame-
work of small-amplitude waves, we derived the dispersion relation and we
found analytic solutions to the nonlinear differential equation system de-
scribing the particle paths beneath such waves. Moreover, we shown that
the solutions obtained are not close curves and we provided also some re-
marks on the stagnation points.
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