Identifizierung und Charakterisierung neuartiger α-Amylasen aus Basidiomycota für die Waschmittelindustrie

Von der Naturwissenschaftlichen Fakultät der

Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Florian Döring, M. Sc.

Referent: Prof. Dr. rer. nat. Dr.-Ing. habil. R. G. Berger

Korreferent: Prof. Dr. rer. nat. H.-P. Braun

Tag der Promotion: 16.10.2018

Danksagung

Herzlichst danken möchte ich meinem Doktorvater Herrn Prof. Dr. Dr. Ralf G. Berger für die wissenschaftliche Betreuung in Verbindung mit steter und offener Diskussionsbereitschaft, das entgegengebrachte Vertrauen und den eingeräumten Freiraum Bearbeitung des Themas sowie die Bereitstellung der hervorragenden zur Arbeitsbedingungen am Institut.

Mein weiterer Dank gilt Frau Dr. Diana Linke und Herrn PD Dr. Ulrich Krings für ihre herausragende Betreuung und allzeit offene Tür für Anliegen aller Art. Ihre geduldigen Erklärungen und wertvollen Tipps waren eine wesentliche Voraussetzung für das erfolgreiche Gelingen dieser Arbeit.

Herrn Prof. Dr. Hans-Peter Braun (Institut für Pflanzengenetik, Leibniz Universität Hannover) danke ich für die freundliche Übernahme des Korreferates und Frau Prof. Dr. Ursula Rinas (Institut für Technische Chemie, Leibniz Universität Hannover) für die Bereitschaft den Vorsitz meiner Disputation zu übernehmen.

Der Henkel AG & Co. KGaA und dem BMBF Cluster BIOKATALYSE2021 danke ich für die finanzielle Unterstützung der Arbeit durch das Projekt.

Des Weiteren gilt mein ausdrücklicher Dank allen Mitarbeiterinnen und Mitarbeitern des Institutes für Lebensmittelchemie für die hervorragende Arbeitsatmosphäre, gute sowie hilfsbereite Zusammenarbeit und die gemeinsam verbrachte Zeit. Unsere Gemeinschaft hat mir immer Freude bereitet.

Vorbemerkung

Die vorliegende Arbeit wurde im Zeitraum vom April 2014 bis Mai 2018 am Institut für Lebensmittelchemie der Leibniz Universität Hannover unter der Leitung von Herrn Prof. Dr. Dr. R. G. Berger angefertigt.

Teile dieser Dissertation wurden auf der Biokatalyse 2016 in Form eines Posters vorgestellt. Eine Patentanmeldung für eine α -Amylase mit einer verbesserten Waschleistung wurde 2017 veröffentlicht; fünf weitere sind aktuell (2018) in Vorbereitung.

Posterpräsentation:

Döring, F., Behrens, C., Leonhardt, R., Linke, D., Berger, R.G. (2016) Enzymes from Basidiomycota for industrial detergent applications, 8th International Congress on Biocatalysis, 28.8-1.9.2016, Hamburg, Deutschland.

Patent:

Mussmann, N.; O'Connell, T.; Herbst, D.; Berger, R. G.; L., Diana; Doering, F. Improved washing performance using a novel alpha-amylase from *Rhizoctonia solani* Ger. Offen. (2017), DE 102016208466 A1 20171123.

Inhaltsverzeichnis

Abkürzungsverzeichnis III Zusammenfassung V Abstract VI 1. Einleitung 1 1.1. Amylolytische Enzyme 1 1.2. α -Amylasen 2 1.3. Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4. Basidiomycota als Quelle für neuartige Enzyme 7 1.5. Ziele der Arbeit 10 2. Ergebnisse 11 2.1. Screening waschaktiver Enzyme 11 2.2. Hones fomentarius 21 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.2.3 Irpex lacteus 26 2.2.4 Lentinus strygosus 26 2.2.5 Pleurotus sajor-caju 26 2.2.6 Pycnoporus sanguineus 26 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3. Diskussion 37 3.1 Screening 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen	Inhalts	verzeichnis	I
Zusammenfassung V Abstract VI 1. Einleitung 1 1.1. Amylolytische Enzyme 1 1.2 α -Amylasen 2 1.3 Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Homes fomentarius 21 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus sajor-caju 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Tarmetes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3.1 Screening 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen Expres	Abkürz	zungsverzeichnis	III
Abstract VI 1. Einleitung 1 1.1 Amylolytische Enzyme 1 1.2 α -Amylasen 2 1.3 Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2. Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus sajor-caju 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3.1 Screening 37 31 3.2	Zusami	menfassung	V
1. Einleitung 1 1.1 Amylolytische Enzyme 1 1.2 α -Amylasen 2 1.3 Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteux 24 2.4 Lentinus strygosus 26 2.2.5 Pleurotus sajor-caju 26 2.2.6 Pycnoporus sanguineus 26 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylasen 30 2.4 Heterologe Expression der α -Amylasen 34 3.5 Vergleich der waschaktiven α -Amylasen 34 3.6 Versuc	Abstrac	ct	VI
1.1 Amylolytische Enzyme 1 1.2 α -Amylasen 2 1.3 Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus sajor-caju 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Trametes hirisuta 30 2.4 Heterologe Expression der α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3.0 Diskussion 37 3.1 Screening 37 <t< th=""><th>1. Eiı</th><th>nleitung</th><th>1</th></t<>	1. Eiı	nleitung	1
1.2 α -Amylasen 2 1.3 Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus sajor-caju 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3. Diskussion 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen	1.1	Amylolytische Enzyme	
1.3 Enzyme in der Waschmittelindustrie 5 1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.2.5 Pleurotus saiguineus 26 2.2.6 Pycnoporus sanguineus 26 2.2.7 Rhizoctonia solani 27 2.2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3. Diskussion 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Ver	1.2	α-Amylasen	
1.3.1 Anpassung der Enzyme für die Waschmittelindustrie 6 1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus saguineus 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3. Diskussion 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen Expression 45 4. Ausblick	1.3	Enzyme in der Waschmittelindustrie	5
1.4 Basidiomycota als Quelle für neuartige Enzyme 7 1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus sajor-caju 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3. Diskussion 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen Expression 45 4. Ausblick 51 5. Material 52	1.3.1	Anpassung der Enzyme für die Waschmittelindustrie	6
1.5 Ziele der Arbeit 10 2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.4 Lentinus strygosus 26 2.5 Pleurotus sajor-caju 26 2.6 Pycnoporus sanguineus 26 2.7 Rhizoctonia solani 27 2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3.0 Diskussion 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen Expression 45 4. Ausblick 51 5. Material und Methoden 52 5.1.1 Chemikalien und Reagenzien 52 5.1.2 <td>1.4</td> <td>Basidiomycota als Quelle für neuartige Enzyme</td> <td>7</td>	1.4	Basidiomycota als Quelle für neuartige Enzyme	7
2. Ergebnisse 11 2.1 Screening waschaktiver Enzyme 11 2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme 20 2.2.1 Fomes fomentarius 21 2.2.2 Fomitopsis pinicola 22 2.3 Irpex lacteus 24 2.2.4 Lentinus strygosus 26 2.2.5 Pleurotus sajor-caju 26 2.2.6 Pycnoporus sanguineus 26 2.2.7 Rhizoctonia solani 27 2.2.8 Trametes hirsuta 28 2.3 Vergleich der waschaktiven α -Amylasen 30 2.4 Heterologe Expression der α -Amylase-Gene 34 3. Diskussion 37 3.1 Screening 37 3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen Expression 45 4. Ausblick 51 5. Material und Methoden 52 5.1.1 Chemikalien und Reagenzien 52 5.1.2 Verwendete Puffer und Lösungen 52 5.1.3 Verwendete Medien 52 5.1.4 Antibiotika 53 5.1.5 DNA und Protein Längenstandards 54 5.1.7 Verwendete Vektoren 56	1.5	Ziele der Arbeit	
2.1Screening waschaktiver Enzyme112.2Molekularbiologische Identifizierung der waschaktiven Enzyme202.2.1Fomes fomentarius212.2.2Fomitopsis pinicola222.3Irpex lacteus242.4Lentinus strygosus262.5Pleurotus sajor-caju262.6Pycnoporus sanguineus262.7Rhizoctonia solani272.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Puffer und Lösungen525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	2. Er	gebnisse	
2.2Molekularbiologische Identifizierung der waschaktiven Enzyme202.2.1Fomes fomentarius212.2.2Fomitopsis pinicola222.3Irpex lacteus242.4Lentinus strygosus262.5Pleurotus sajor-caju262.6Pycnoporus sanguineus262.7Rhizoctonia solani272.8Trametes hirsuta282.3Vergleich der waschaktiven a-Amylasen302.4Heterologe Expression der a-Amylase373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.1	Screening waschaktiver Enzyme	
2.2.1Fomes fomentarius212.2.2Fomitopsis pinicola222.3Irpex lacteus242.4Lentinus strygosus262.5Pleurotus sajor-caju262.6Pycnoporus sanguineus262.7Rhizoctonia solani272.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454Ausblick515.Material525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2	Molekularbiologische Identifizierung der waschaktiven Enzyme	
2.2.2Fomitopsis pinicola222.2.3Irpex lacteus242.4Lentinus strygosus262.5Pleurotus sajor-caju262.2.6Pycnoporus sanguineus262.2.7Rhizoctonia solani272.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2.1	Fomes fomentarius	
2.2.3Irpex lacteus242.2.4Lentinus strygosus262.2.5Pleurotus sajor-caju262.2.6Pycnoporus sanguineus262.2.7Rhizoctonia solani272.2.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2.2	Fomitopsis pinicola	
2.2.4Lentinus strygosus.262.2.5Pleurotus sajor-caju.262.2.6Pycnoporus sanguineus262.2.7Rhizoctonia solani272.2.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion.373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	2.2.3	Irpex lacteus	
2.2.5Pleurotus sajor-caju.262.2.6Pycnoporus sanguineus262.2.7Rhizoctonia solani.272.2.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2.4	Lentinus strygosus	
2.2.6Pycnoporus sanguineus262.2.7Rhizoctonia solani272.2.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	2.2.5	Pleurotus sajor-caju	
2.2.7Rhizoctonia solani272.2.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2.6	Pycnoporus sanguineus	
2.2.8Trametes hirsuta282.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2.7	Rhizoctonia solani	
2.3Vergleich der waschaktiven α -Amylasen302.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.7Verwendete Vektoren56	2.2.8	Trametes hirsuta	
2.4Heterologe Expression der α -Amylase-Gene343.Diskussion373.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Vektoren56	2.3	Vergleich der waschaktiven α -Amylasen	
3. Diskussion373.1 Screening373.2 Molekularbiologische Identifizierung waschaktiver Amylasen383.3 Versuche zur Heterologen Expression454. Ausblick515. Material und Methoden525.1 Material525.1 Material525.1.1 Chemikalien und Reagenzien525.1.2 Verwendete Puffer und Lösungen525.1.3 Verwendete Medien525.1.4 Antibiotika535.1.5 DNA und Protein Längenstandards545.1.6 Verwendete Vektoren56	2.4	Heterologe Expression der α-Amylase-Gene	
3.1Screening373.2Molekularbiologische Identifizierung waschaktiver Amylasen383.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Vektoren56	3. Dis	skussion	
3.2 Molekularbiologische Identifizierung waschaktiver Amylasen 38 3.3 Versuche zur Heterologen Expression 45 4. Ausblick 51 5. Material und Methoden 52 5.1 Material 52 5.1.1 Chemikalien und Reagenzien 52 5.1.2 Verwendete Puffer und Lösungen 52 5.1.3 Verwendete Medien 52 5.1.4 Antibiotika 53 5.1.5 DNA und Protein Längenstandards 54 5.1.6 Verwendete Vektoren 55	3.1	Screening	
3.3Versuche zur Heterologen Expression454.Ausblick515.Material und Methoden525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	3.2	Molekularbiologische Identifizierung waschaktiver Amylasen	
4. Ausblick515. Material und Methoden525.1 Material525.1.1 Chemikalien und Reagenzien525.1.2 Verwendete Puffer und Lösungen525.1.3 Verwendete Medien525.1.4 Antibiotika535.1.5 DNA und Protein Längenstandards545.1.6 Verwendete Oligonukleotide555.1.7 Verwendete Vektoren56	3.3	Versuche zur Heterologen Expression	
5. Material und Methoden .52 5.1 Material .52 5.1.1 Chemikalien und Reagenzien .52 5.1.2 Verwendete Puffer und Lösungen .52 5.1.3 Verwendete Medien .52 5.1.4 Antibiotika .53 5.1.5 DNA und Protein Längenstandards .54 5.1.6 Verwendete Oligonukleotide .55 5.1.7 Verwendete Vektoren .56	4 . A 1	shlick	
5.1Material525.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	5 M	aterial und Methoden	52
5.1Material525.1.1Chemikalien und Reagenzien525.1.2Verwendete Puffer und Lösungen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	51	Material	52
5.1.1Similar of the recipilities of the r	5.1.1	Chemikalien und Reagenzien	52
5.1.2Verwendete Fuller und Losangen525.1.3Verwendete Medien525.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	512	Verwendete Puffer und Lösungen	52
5.1.4Antibiotika535.1.5DNA und Protein Längenstandards545.1.6Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	5.1.2	Verwendete Medien	52 57
5.1.5DNA und Protein Längenstandards545.1.6Verwendete Oligonukleotide555.1.7Verwendete Vektoren56	5.1.4	Antibiotika	53
5.1.6 Verwendete Oligonukleotide 55 5.1.7 Verwendete Vektoren 56	5.1.5	DNA und Protein Längenstandards	54
5.1.7 Verwendete Vektoren	5.1.6	Verwendete Oligonukleotide	
	5.1.7	Verwendete Vektoren	

L	ebensl	auf11	11
7	. An	hang	85
6	. Lite	eraturverzeichnis	74
	5.2.4.3	3 Vektordesign und Verifizierung von CRISPR-Ereignissen	71
	5.2.4.2	2 Transformation von A. oryzae und Selektion der Transformanten	71
	5.2.4.1	Kultivierung und Lagerung von A. oryzae	70
	5.2.4	CRISPR/Cas9	70
	5.2.3	Expressionsversuche in K. phaffii	70
	5.2.2.1	1 Bioinformatische Arbeiten	69
	5.2.2.1	0 Amplifizierung der Zielgene (gene fishing)	68
	5.2.2.9	Mengenbestimmung von Nukleinsäuren	68
	5.2.2.8	Horizontale Gelelektrophorese	67
	Reakti	onen	67
	5.2.2.7	Aufreinigung von DNA aus Plasmidpräparation und nach enzymatis	schen
	5.2.2.6	5 Kolonie-PCR	66
	5.2.2.5	Transformation von E. coli	66
	5.2.2.4	Herstellen chemisch kompetenter E. coli	65
	5.2.2.3	Anlegen einer Dauerkultur von <i>E. coli</i>	65
	5.2.2.2	2 Bestimmung der OD ₆₀₀	65
	5.2.2.1	Anlegen einer Flüssigkultur von E. coli	65
	5.2.2	Molekularbiologische Arbeiten	65
	5.2.1.8	Analyse der Hydrolyseprodukte	64
	5.2.1.7	Proteinidentifizierung mittels ESI-MS/MS	64
	5.2.1.6	5 Zymografie	63
	5.2.1.5	5 SDS-PAGE	62
	5.2.1.4	Reinigung der waschaktiven Enzyme	61
	5.2.1.3	3 Waschtests	60
	5.2.1.2	2 Assay zur Aktivitätsbestimmung	60
	5.2.1.1	Kultivierung der Basidiomycota	60
	5.2.1	Screening nach waschaktiven α -Amylasen	60
	5.2	Methoden	60
	5.1.9	Verwendete Organismen	57
	5.1.8	Enzyme	

Abkürzungsverzeichnis

AS	Aminosäure
ABTS	2,2'-Azino-bis-(3-ethylbenzthiazolin-6-sulfonsäure)
BLAST	Basic local alignment search tool
Cas9	CRISPR-associated nuclease 9
CAZy	Carbohydrate-active enzymes
cDNA	complementary (komplementäre)DNA
CRISPR	Clustered Regulary Interspaced Short Palindromic Repeats
Da	Dalton
DMSO	Dimethylsulfoxid
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
EDTA	Ethylenediaminetetraacetic acid (Ethylendiamintetraessigsäure)
ESI-MS/MS	Elektrospray-Ionisations-Tandem-Massenspektrometrie
FPLC	Fast protein liquid chromatography
HIC	Hydrophobe Interaktionschromatografie
HPLC	High performance liquid chromatography
IEF	Isoelektrische Fokussierung
IEX	Ion exchange chromatography
IUBMB	International union of biochemistry and molecular biology
LB	Lysogeny broth (Lysogene Brühe)
MWCO	Molecular weight cut off
NCBI	National center for biotechnology information
	(Nationales Zentrum für Biotechnologische Informationen)
Ni-NTA	Nickel-nitrilotriacetic acid (Nickel-Nitrilotriessigsäure)
PAGE	Polyacrylamid-Gelelektrophorese
PCR	Polymerase chain reaction (Polymerase-Kettenreaktion)

pI	isoelektrischer Punkt
QTOF	Quadrupole time of flight (Quadropol-Flugzeitmassenspektrometer)
RT	Raumtemperatur
SDS	Sodium dodecyl sulfate
SEC	Size exclusion chromatography
SNL	Standardnährlösung
ssDNA	single stranded (Einzelstrang-) DNA
TRIS	Tris(hydroxymethyl)-aminomethan
U	Unit (µmol min ⁻¹)
UV	Ultraviolett
v/v	Volume by volume
w/v	Weight by volume
YEPD	Yeast extract peptone dextrose (Hefeextrakt Pepton Glucose)

Zusammenfassung

Der Einsatz von Enzymen in Waschmittelformulierungen steigt seit Jahrzehnten beständig an. Zu den am meist verwendeten Enzymen gehören die α -Amylasen, wobei deren bakterieller Ursprung überwiegt. Zudem sind Pilze in der Lage eine Vielfalt an extrazellulären Enzymen zu bilden, um sich ihren Lebensraum zu erschließen. In der vorliegenden Arbeit wurden neuartige pilzliche α -Amylasen für den Einsatz in Waschmittelformulierungen gesucht. Insgesamt wurden dabei über 50 verschiedene Basidiomycota kultiviert und deren Sekretom nach waschaktiven α -Amylasen gescreent. Dafür wurden sowohl Aktivitätsassays als auch Applikationsstudien durchgeführt. Es stellte sich heraus, dass mit Rhizoctonia solani, Trametes hirsuta, Irpex lacteus, Fomes fomentarius, Fomitopsis pinicola, Pleurotus sajor-caju, Pycnoporus sanguineus und Lentinus strygosus acht Stämme α -Amylasen mit einer verbesserten Waschleistung produzierten. Es gelang dabei nach einer Reinigung mittels IEX und anschließender Analyse mittels SDS-PAGE sowie Zymografien, die waschaktiven Enzyme zu separieren und mittels Massenspektrometrie zu identifizieren. Anhand der durchgeführten de-novo Sequenzierung konnten die α -Amylasen von R. solani, T. hirsuta, I. lacteus, F. fomentarius, F. pinicola, und P. sanguineus identifiziert werden. Ausgehend von den korrespondierenden Genomdaten wurden Primer abgeleitet und schließlich die codierenden Gene amplifiziert. Bei einem Vergleich der α -Amylasen zeigte sich, dass Amylasen mit einer Stärke bindenden Domäne, der CBM20, die besten Waschleistungen im isoaktiven Vergleich erzielten. Von sechs identifizierten α-Amylasen weisen R. solani, T. hirsuta, F. fomentarius und F. pinicola diese Domäne auf, was verglichen mit der natürlichen Auftrittswahrscheinlichkeit von zehn Prozent eine Anhäufung zeigt. Der Versuch einige ausgewählte α -Amylase-Gene in Komagataella phaffii zu exprimieren, führte nicht zum gewünschten Erfolg, auch nicht mit Hilfe von molekularbiologischen Varianten, wie der Anpassung der codon usage, der Änderung der Signalsequenzen oder der Produktion als Fusionsprotein. Daher sollte mit Aspergillus oryzae ein neuer Expressionsstamm designt werden, bei welchem mittels der CRISPR-Technik die wirtseigenen Amylasen ausgeknockt werden sollten. Nach der Sequenzierung der Genombereiche, stellte sich heraus, dass es zu keinen CRISPR vermittelten Deletionen im Bereich der Zielgene gekommen war.

Abstract

For decades, there is a continuous increase in the usage of enzymes in detergent formulations. α -Amylases, especially of bacterial origin, are one of the most used enzymes. Also fungi can produce a variety of extracellular enzymes to tap their habitats. In the present work, it was searched for novel fungal α -amylases as ingredients for detergent formulations. In total, over 50 different Basidiomycota were cultivated and their secretome was screened for washing active amylases. Therefore, activity assays and application tests were performed. It was shown, that Rhizoctonia solani, Trametes hirsuta, Irpex lacteus, Fomes fomentarius, Fomitopsis pinicola, Pleurotus sajor-caju, Pycnoporus sanguineus and Lentinus strygosus produced α -amylases with an improved washing efficiency. After purification by means of IEX and analysis by means of SDS-PAGE and zymography the wash active enzymes were separated and subsequently identified by use of mass spectrometry. The de-novo sequencing led to an identification of the α -amylases from R. solani, T. hirsuta, I. lacteus, F. fomentarius, F. pinicola, and P. sanguineus. Primer were designed from the corresponding genome data. Afterwards the coding genes were amplified. The comparison of the α -amylases showed that α -amylases with a starch binding domain, the CBM20 domain, had the best washing performance in iso-active comparison. The identified α -amylases from R. solani, T. hirsuta, F. fomentarius and F. pinicola possessed this domain. This is an accumulation compared to the natural probability of occurrence. Since the try to express some selected α -amylases genes into Komagataella phaffii was not successful, a new expression strain was designed with Aspergillus oryzae. In this the host amylases should be knocked out using the CRISPR technique. After sequencing of the genome regions it was apparent that there were no deletions through CRSPR in the area of the target genes.

Keywords: Screening, secretome, Basidiomycota, α -amylase, detergent

1. Einleitung

1.1 Amylolytische Enzyme

Stärke zählt zu den Hauptspeicherprodukten von Pflanzen und dient somit als wichtiger Bestandteil des Kohlenstoffkreislaufes. Sie setzt sich dabei aus zwei Polykondensaten zusammen, der Amylose, einer unverzweigten α -1,4-glycosidisch verknüpften Glucosekette und dem Amylopektin, welches zusätzlich zu den α -1,4-Verknüpfungen auch α -1,6verknüfte Seitenketten aufweist. Das Amylopektin hat mit 70 - 90 % einen höheren Anteil verglichen zur Amylose mit 10 - 30 % (Kossmann & Lloyd, 2000; Pérez & Bertoft, 2010). Die Anteile von Amylopektin und Amylose variieren zwischen den Pflanzenarten. Form und Größe der Stärkekörner sind ebenfalls von ihrem Ursprung abhängig und weisen Durchmesser von 0,1 bis 200 µm auf (Pérez & Bertoft, 2010).

Stärke abbauende Enzyme kommen ubiquitär in Pflanzen, Pilzen und anderen Eukaryoten, Bakterien und Archaea vor (Lombard *et al.*, 2014). Zu den amylolytischen Enzymen zählen unter anderem α -Amylasen, α -Glucosidasen, β -Amylasen, Pullanasen und Isoamylasen. Alle genannten Enzyme sind in der Lage, Stärke als Substrat abzubauen. Dabei agieren sie an unterschiedlichen Orten des Polysaccharids (Møller & Svensson, 2016). Im Vergleich zu allen anderen amylolytischen Enzymen sind Pullanasen in der Lage, die α -1,6-Verknüpfungen zu hydrolysieren (Abbildung 1.1).

Abbildung 1.1 Amylopektin mit den spaltbaren glycosidischen Verbindungen. Rote Pfeile zeigen für α -Amylase spaltbare Verbindungen an, blaue Pfeile die für β -Amylasen, gelbe Pfeile für α -Glucosidasen und grüne Pfeile für Pullanasen spaltbare Verbindungen nach (Møller & Svensson (2016).

Amylasen sind in der Lage, Stärke in diverse Produkte wie Dextrine oder kleinere Moleküle wie Maltose zu hydrolysieren. Bereits 1811 wurden erstmals Stärke abbauende Enzyme von Kirchhoff entdeckt. Es dauerte jedoch über ein Jahrhundert, bis 1930 Ohlsson die Einteilung in α - und β -Amylasen vornahm (Gupta *et al.*, 2003). Mit durchschnittlich 25 µm Größe ist das Stärkekorn als Substrat etwa 3000 mal größer als die α -Amylase selbst. (Dhital *et al.*, 2017).

Die katalytische Domäne der α -Amylasen setzt sich aus acht parallelen β -Faltblättern zusammen, welche von acht α -Helices umschlossen sind. Die $(\alpha/\beta)_8$ -Struktur wird von variablen Schleifen umgeben, die in ihrer Länge und Zusammensetzung variieren können. Die Gesamtheit dieser Struktur wird als Domäne A bezeichnet. In der Primärstruktur wird diese Domäne A nach dem dritten β -Faltblatt von der Domäne B unterbrochen, welche in der 3D-Struktur des Enzyms leicht vor der Domäne A hervorsteht. In der Domäne B sind sehr oft Calciumionen gebunden, die die Stabilität des Enzyms erhöhen (Gopinath et al., 2017). Diese Domäne zeichnet sich durch mehrere β -Faltblätter aus, die keiner besonderen Ordnung unterliegen. Die Größe und Struktur dieser Domäne ist zwischen den α -Amylasen sehr variabel (Prakash & Jaiswal, 2010). Die nach innen liegende Seite der Domäne formt einen Großteil der Substratbindetasche (Prakash & Jaiswal, 2010). Am C-Terminus der α -Amylasen sitzt die Domäne C. Diese weist repetitive β -Faltblattstrukturen auf, die auch als Greek key motif bezeichnet werden (Machius et al., 1995). Die katalytisch aktiven Aminosäuren befinden sich über die komplette Sequenz verteilt. Am Ende des dritten β -Faltblattes der Domäne A befindet sich ein Histidin, welches mit dem Substrat interagiert. Das vierte β -Faltblatt beinhaltet die an der Reaktion (Abbildung 1.3) beteiligte Asparaginsäure während das fünfte β -Faltblatt die beteiligte Glutaminsäure trägt. Das siebte β -Faltblatt weist ein Histidin und eine Asparaginsäure auf, welche Wasserstoffbrückenbindungen mit dem Substrat eingehen können (Prakash & Jaiswal, 2010) (Abbildung 1.2). Weiterhin gehören α -Amylasen zu den Metallo-Enzymen (MacGregor et al., 2001) und zeigen eine Vielzahl von Amylasen mit Strukturen für stabilisierende Ca²⁺ oder Cl⁻ Ionen (Nielsen and Borchert, 2000).

Abbildung 1.2 Abfolge der Domänen A, B und C von α-Amylasen (Gopinath *et al.*, 2017). Darunter ist eine 3D-Struktur einer α-Amylase mit den Domänen A (grün), B (rot) und C (blau) dargestellt (Prakash & Jaiswal, 2010).

Der Vorgang der α -Amylase vermittelten Hydrolyse von Stärke ist einzigartig. Im Vergleich zu anderen amylolytischen Enzymen können α -Amylasen zufällige α -1,4-glycosidische Bindungen spalten und sind damit nicht von reduzierenden Zuckerresten abhängig (Gupta *et al.*, 2003). Es wurde allerdings gezeigt, dass eine optimale Substratbindung vorliegt, wenn Maltose die Abgangsgruppe darstellt (Brayer *et al.*, 2000). Die Hydrolyse von Stärke beinhaltet den Abbau eines unlöslichen Substrats zu wasserlöslichen Produkten wie Maltose, Maltotriose und weiteren Oligosacchariden, welche sowohl α -1,4- als auch α -1,6-Bindungen aufweisen können (Li *et al.*, 2004; Souza & Magalhães, 2010). Bei der Hydrolyse von Stärke im aktiven Zentrum des Enzyms sind maßgeblich die beiden Aminosäuren Glutaminsäure und Asparaginsäure beteiligt. Die Spaltung eines Polysaccharid erfolgt in insgesamt fünf Teilschritten (van der Maarel *et al.*, 2002) (Abbildung 1.3). Der glycosidische Sauerstoff wird von der Glutaminsäure protoniert. Dies induziert einen nukleophilen S_N1-Angriff der Asparaginsäure am C1-Kohlenstoff des Polysaccharids (Kuriki & Imanaka, 1999). Es entsteht eine "Oxocarbenium-Ion"-artige Zwischenstufe mit kovalenten Bindungen. In einem dritten Schritt wird die kovalente Bindung durch den Angriff eines Wasser- oder Glucosemoleküls zerstört. Die "Oxocarbenium-Ion"-Zwischenstufe bildet sich erneut aus. Durch die Übertragung eines Wasserstoffatoms von einem Wassermolekül auf das Glutamat wird die Bindung wieder gespalten. Die Glucose-Aspartat-Oxocarbenium-Ion-Bindung wird so durch eine neue OH-Gruppe ersetzt. Da das Zwischenprodukt zwei Mal neu gebildet wird, wird dieser Mechanismus auch "*double displacement mechanism*" genannt (Koshland, 1953; Prakash & Jaiswal, 2010).

Abbildung 1.3 Reaktionsschema der fünf Teilschritte der enzymatischen Stärkehydrolyse mit der zweifachen Ausbildung der "Oxocarbenium-Ion"-artigen Zwischenstufe (Prakash & Jaiswal, 2010).

Der Abbau von Stärke und anderen schwer wasserlöslichen Polysacchariden ist aus enzymatischer Sicht eine Herausforderung, da die Substratkette für das aktive Zentrum oft schwer zugänglich ist. Stärke abbauende Enzyme weisen des Öfteren sehr Stärkebindedomänen auf (starch-binding domains, SBDs), welche die Bindung an Stärkekörnern oder anderen Substraten vermitteln. Die SBDs unterteilen sich dabei in neun Familien von Kohlenhydrat-Binde-Modulen (carbohydrate-binding module, CBM) (Christiansen et al., 2009). Die generelle Zuordnung der CBMs in die einzelnen Familien basiert auf deren Sequenzähnlichkeiten auf Aminosäurebasis sowie deren Strukturähnlichkeiten und unterteilt sich mittlerweile in 54 verschiedene Familien. Im Sekretom von Pilzen wurde zuerst die CBM20 Familie entdeckt, welche die am besten untersuchte ist. Diese Domäne ist sehr oft mit katalytischen Domänen der GH-Familien 13, 14, 15 und 77 verknüpft. Das wachsende Interesse an dieser Familie spiegelt sich in den Einträgen der CAZy Datenbank wieder. Waren es 2009 noch etwas über 300 Einträge, so sind es 2018 bereits 1343 Einträge (http://www.cazy.org/CBM20_all.html, letzter Aufruf 10.04.2018). Die bakteriellen CBMs sind mit 1053 Einträgen am meisten vertreten, gefolgt von den eukaryotischen Bindedomänen (267) sowie denen der Archaea (7) und 16 nicht klassifizierten CBM20.

Die grundlegende Funktion der SBD ist die Bindung an Stärkekörner. Dies ermöglicht dem Enzym eine Interaktion mit dem unlöslichen Substrat. Des Weiteren führt es das Substrat zum katalytischen Zentrum des Enzyms und kann so die Oberfläche des Stärkekorns aufbrechen (Rodríguez-Sanoja *et al.*, 2005).

1.3 Enzyme in der Waschmittelindustrie

Die Nachfrage nach Enzymen steigt stetig an. Wurde 2016 die 5-Milliarden-Marke des weltweiten Umsatzes mit Enzymen für die industrielle Anwendung überboten, so wird für 2021 ein Umsatz von 6,7 Milliarden US-Dollar prognostiziert (BBC Market Research Report, Januar 2017). Der Weltmarkt für Waschmittel wird voraussichtlich von einem Umsatz von 8,8 Milliarden US-Dollar in 2017 auf geschätzte 10,8 Milliarden US-Dollar bis 2022 anwachsen (BBC Market Research Report, Mai 2018).

Enzyme nehmen auch in der Waschmittelindustrie eine immer größer werdende Rolle ein (Niyonzima & More, 2014). Grupta et al. (2003) beschreiben eine mögliche Verringerung der Waschtemperatur in der Gegenwart von Enzymen. In aktuellen Waschmittelformulierungen finden sich Vertreter mehrerer Enzymklassen. Peptidasen, Amylasen, Lipasen und Cellulasen gehören zu den bekanntesten Enzymen (Gaubert et al., 2016). Des Weiteren werden auch Mannanasen und Pektinasen Waschmitteln zugesetzt (Wagner Seite 125). Peptidasen wurden bereits 1913 vom deutschen Chemiker Otto Röhm für das Entfernen proteinhaltiger Flecken als aktive Reinigungskomponente in Waschmitteln eingesetzt (Showell, 1999; Vojcic et al., 2015). Das erste kommerziell erhältliche Waschmittel mit dem Zusatz einer bakteriellen Peptidase kam von den Gebrüdern Schnyder 1959 auf den Markt (Vojcic *et al.*, 2015). α-Amylasen nehmen mit 30 % Marktanteil den zweiten Platz nach den Peptidasen unter den zugesetzten Waschmittelenzymen ein (Niyonzima & More, 2014) und sind seit 1975 in Waschmitteln zu finden (Wagner Seite 128). Die Hälfte des Anteils machen dabei α -Amylasen der Spezies *Bacillus* aus (Schallmey *et al.*, 2004). Die Nachfrage nach α -Amylasen mit verbesserten Eigenschaften für die Detergenzindustrie steigt konstant an, da momentan verwendete α -Amylasen noch nicht alle geforderten Eigenschaften aufweisen. Der biotechnologische Fokus bei den Screenings und der molekularbiologischen Optimierung von α-Amylasen lag auf der von der Waschmittelindustrie geforderten pH-Stabilität und der Aktivität bei hohen Temperaturen. Da sich jedoch der Waschprozess in den letzten Jahren hin zu niedrigeren Waschtemperaturen entwickelt hat, ist die Entwicklung von Waschmittelenzymen mit einem weiten Temperaturbereich, auch unterhalb von 20 °C in den

Vordergrund gerückt (Vojcic *et al.*, 2015; Madhavan *et al.*, 2017). Novozymes bietet mit Duramyl[®], Termamyl[®] und Stainzyme[®] drei waschaktive α -Amylasen an. Genencore International vertreibt die PurafectOxAm und ABEnzymes das BIOTOUCH[®] AML 900 (Niyonzima & More, 2014).

Die Zugabe von α -Amylasen zu Waschmitteln kann die Fleckentfernung stärkehaltiger Verschmutzungen verbessern. Oftmals sind diese Anschmutzungen auf körnige oder nur teilweise verkleisterte Stärke zurückzuführen. Diese kristallinen Strukturen zu zerstören erfordert den Einsatz hoher Temperaturen und einen Überschuss an Wasser (Wang & Copeland, 2013). Diese Studie zeigt ebenfalls, dass die Verkleisterung bei Temperaturen von 50 – 80 °C beginnt, aber noch nicht abgeschlossen ist. Dies hat zur Folge, dass Anschmutzungen von verarbeiteten Lebensmitteln oftmals nicht vollständig verkleisterte Stärke beinhalten. Für die Entfernung der Verschmutzungen bei modernen Waschprogrammen mit Temperaturen unterhalb der Verkleisterungstemperatur ist die enzymatische Hydrolyse der Stärke unumgänglich.

Da sich Enzyme als natürliche Biokatalysatoren nicht in ihren Reaktionen verbrauchen, erzielen sie eine sehr gutes Volumen-zu-Wirkungs-Verhältnis (Ahuja *et al.*, 2004). Des Weiteren verringert sich mit ihrer Zugabe zum Waschmittel neben der Waschzeit auch der Energieverbrauch (Hasan *et al.*, 2006).

1.3.1 Anpassung der Enzyme für die Waschmittelindustrie

Enzyme müssen sowohl eine hohe Aktivität als auch eine hohe Spezifität aufweisen. Zusätzlich müssen die Biokatalysatoren stabil gegenüber harschen Bedingungen sein (Madhavan *et al.*, 2017). Enzyme sind in Waschmittelformulierungen Inhaltsstoffen wie anionischen Tensiden (SDS), nicht-ionischen Tensiden (Tween 20, 40, 60, 80, Triton X), Natriumhypochlorit, Wasserstoffperoxiden sowie Natriumperboraten ausgesetzt (Niyonzima & More, 2014; Mussmann *et al.*, 2017). Eine α -Amylase für den Einsatz in Waschmittel muss demnach stabil und kompatibel mit Emulgatoren, Bleichen und Oxidationsmitteln in geringen Konzentrationen sein. Zusätzlich muss das Enzym ein weites Temperaturoptimum sowie eine Toleranz gegenüber alkalischen Bedingungen aufweisen (Niyonzima & More, 2014).

Um diesen Ansprüchen gerecht zu werden, ist die Suche nach neuartigen Enzymen für die Waschmittelindustrie seit Jahrzehnten im Gange. Die zielgerichtete Evolution (*directed*

evolution) hat den großen Vorteil einer enormen Geschwindigkeit im Vergleich zu der natürlichen Evolution (Wang et al., 2012). Bei dieser Variante wird zuerst eine Mutanten-Bibliothek erstellt. Diese wird beforscht und es folgt die Auswahl der Mutanten mit einer verbesserten Enzymeigenschaft. Abschließend erfolgt die Identifizierung des mutierten Gens. Jedoch generiert diese Vorgehensweise einen enorm hohen Aufwand, allein die Anzahl der zu untersuchenden Mutanten betreffend. Werden beispielsweise nur 10 Aminosäuren verändert, ergibt sich daraus eine Anzahl von 2010 Mutanten (Madhavan et al., 2017). Aufgrund dessen bietet es sich an, zielgerichtete Mutationen durchzuführen. Diese erhöhen die Spezifität, Stabilität, Aktivität, Löslichkeit und Produktion von Proteinen (Winkler & Kao, 2014). Ziel dieser gerichteten Mutation kann die Erhöhung von Disulfidbrücken oder die Erhöhung der posttranslationalen Modifikationen wie Glycosidierungen sein. Ebenso werden nach außen ragende Loop-Strukturen oftmals gekürzt und im Allgemeinen ein kompakteres Enzym angestrebt, um die Thermophilie zu erhöhen. Negativ geladene Aminosäurereste erhöhen die Aktivität bei höheren Temperaturen ebenfalls (Vojcic et al., 2015). Diese Erkenntnisse werden genutzt, um im Gegenzug die Aktivität der Enzyme bei geringeren Temperaturen zu erhöhen. Das Verhältnis von geladenen und ungeladenen Aminosäuren wird angepasst, um die Löslichkeit oder die Bindung an das Substrat in der spezifischen Anwendung zu verbessern. Neben der Änderung der Aminosäuren wird oftmals die DNA-Sequenz geändert, um die Expression zu steigern. Präferierte Codons werden verwendet, ebenso werden GC-Gehalte angepasst. Um eine bessere Bindung der Ribosomen an die mRNA zu ermöglichen, wird der 5' untranslatierte Bereich oftmals sehr AT-reich gestaltet (Gilis, 2006; Prakash & Jaiswal, 2010; Liszka et al., 2012; Vojcic et al., 2015). Das de novo Design von Enzymen ist die neueste Form der Proteinanpassung. Dazu wird zuerst das aktive Zentrum des Enzyms erstellt. Für die Berechnungen muss sowohl der Reaktionsmechanismus als auch die Interaktion zwischen dem katalytischen Zentrum und dem Substrat bekannt sein. Grundlage für die Berechnungen bilden Proteindatenbanken. Wenn sowohl das aktive Zentrum als auch das Rückgrat des Enzyms erstellt wurden, werden verschiedenste Mutationen im aktiven Zentrum simuliert und die Bindung zum Substrat berechnet. Aus diesem Prozess generierte Enzyme können dann heterolog produziert und getestet werden (Madhavan et al., 2017).

1.4 Basidiomycota als Quelle für neuartige Enzyme

Für die Suche nach Enzymen für die Waschmittelindustrie sind intrazelluläre Proteine nicht von primärem Interesse, da diese bei physiologischen Umgebungsbedingungen ihre höchste

Aktivität aufweisen und insbesondere keine hohe Toleranz gegenüber alkalischen pH-Werten zeigen (Madhavan *et al.*, 2017).

Pilze sekretieren eine große Vielfalt an Enzymen (Gopinath *et al.*, 2017). Die Sekretion ermöglicht eine Analyse des Kulturüberstandes während der Kultivierung sowie eine direkte Ernte der Enzyme ohne die Gefahr einer Zelllyse (Krupodorova *et al.*, 2014). Verglichen mit Bakterien zeigen Pilze oftmals ein anderes Arsenal an Enzymen (Erjavec *et al.*, 2012). Es wird davon ausgegangen, dass 99 % der mikrobiellen Vielfalt unter Laborbedingungen nicht dargestellt werden kann (Madhavan *et al.*, 2017). Basidiomycota hingegen wachsen auf vielen unterschiedlichen Substraten wie industriellen Nebenströmen und besetzen in der Natur biologische Nischen (Da Lage *et al.*, 2004; Polizeli & Rai, 2013). Ungeachtet der vorliegenden Substrate sekretieren Basidiomycota eine Vielzahl unterschiedlicher Enzyme, um sich ihren Lebensraum zu erschließen (Bouws *et al.*, 2008).

Zusätzlich unterliegen die sekretierten Enzyme posttranslationalen Modifikationen und weisen sehr oft Glycosidierungen auf, die die Löslichkeit und die Stabilität der Proteine verbessern (Shental-Bechor & Levy, 2008; Welinder & Tams, 2010). Des Weiteren besitzen pilzliche Enzyme eine große Toleranz gegenüber einem pH-Wert von zwei bis elf (Polizeli & Rai, 2013).

Zeitgleich ist die Suche nach kalt-aktiven Enzymen in den Fokus gerückt (Santiago *et al.*, 2016). Es gibt noch keinen Beweis für Pilzwachstum über 45 °C (Morgenstern *et al.*, 2012), sodass davon ausgegangen werden kann, dass die zu untersuchenden Enzyme bei niedrigen Temperaturen aktiv sein werden.

Bei den Vorteilen ist es nicht überraschend, dass die Basidiomycota immer mehr in den Fokus der Forschung geraten. Davon ausgehend, dass es in etwa 1,5 Millionen Arten im Reich der Pilze gibt und davon weniger als 10 % beschrieben worden, lässt sich das große Potential erahnen. Hinzu kommt, dass etwa 70 % der beschriebenen Arten aus dem Phylum der Ascomycota stammen und damit die Forschung an den Basidiomycota bisweilen drastisch unterrepräsentiert ist (Blackwell, 2011; Schmidt-Dannert, 2016).

Basidiomycota dienen allerdings nicht nur als Quelle für neuartige Enzyme, sondern rücken immer weiter in den Fokus der Gentechnik. Bereits seit mehreren Jahrzehnten können Basidiomycota wie beispielsweise Coprinopsis cinerea, Flammulina velutipes, Grifola *Hypsizygus marmoreus*, *Phanerochaete chrysosporium*, frondosa, *Pleurotus* sp. modifiziert werden. Die Agrobakterium-vermittelte Transformation gentechnisch (mittlerweile neu bezeichnet als Rhizobium radiobacter) wurde dabei erfolgreich für H. marmoreus, F. velutipes, G. frondosa (Hatoh et al., 2013), P. chrysosporium (Li & Zhang, 2005) sowie für P. ostreatus (Ding et al., 2011) und Rhizoctonia solani gezeigt (Wu & Brien, 2009). Lyophyllum decastes wurde mittels Partikel-Bombardment erfolgreich transformiert (Sunagawa et al., 2007). Diese Transformationstechniken haben den zufälligen Insertionsort der Fremd-DNA gemeinsam. Mit dem Aufkommen der CRISPR-Technik war es möglich zielgerichtet das Genom von Basidiomycota zu modifizieren. Die Bezeichnung CRISPR ergibt sich aus *Clustered regulary interspaced short palindromic repeat* (Adli, 2018). Bereits 1987 wurde diese Genstruktur in E. coli und 1993 in Mycobakterien gefunden. Erst im Jahr 2002 wurde diese Abfolge von variablen Nukleotiden mit einer Länge von 23 bis 47 Basen sowie der Unterbrechung dieser durch palindromische Sequenzwiederholungen von 21 bis 72 Basen als CRISPR bezeichnet. Als Werkzeug für die Gentechnik wurde diese Methode 2012 durch Emmanuelle Charpentier und Jennifer Doudna bei der Erforschung des Immunssystems verschiedener Bakterien und Archaea entdeckt. Dieses beruht darauf, dass die variablen Bereiche Sequenzabschnitte von Phagen-DNA abdecken. Für den Einsatz als Genschere in der Molekularbiologie werden CRISPR-assozierte Nukleasen wie beispielsweise die Cas9- oder Cpf1-Nuklease verwendet (Adli, 2018; Clarke et al., 2018). Für die Genomeditierung werden sehr oft crRNA und tracrRNA in einem selbsthyridisierenden RNA-Strang vereint (single guide RNA, sgRNA). Die sgRNA muss frei von einem poly-A-Teil sowie vom 5'Cap sein. Dafür wird diese entweder mittels eines U6-Promotors transkribiert oder gezielt von Ribozymen prozessiert (Schuster et al., 2016). Für die Modifizierung von Eukaryoten wird der Endonuklease eine Signalsequenz angehängt, sodass diese in den Zellkern transportiert wird (Nødvig et al., 2015). Das Prinzip dieser Technik beruht auf einem Strangbruch der DNA und der anschließenden Reparaturmechanismen. Sehr oft kommt es dabei zum non-homologous end joining (NHEJ) des DNA-Stranges (Clarke et al., 2018). Bei der Zusammenführung der DNA kommt es dabei häufig zu Deletionen, welche eine Gen-knockout zur Folge haben. Seltener kommt es zur homology directed repair (HRD), bei der der betroffene Genabschnitt mittels homologer

10

Rekombination, bei gleichzeitiger Vorlage eines Templates, zum Austausch des Genabschnittes führt (Nødvig *et al.*, 2015; Adli, 2018).

Diese Technik wurde bereits erfolgreich in verschiedenen Basidiomycota angewendet. Zum einen wurde ein Laccase-Gen von *Agaricus bisporus* inaktiviert, sodass die Fruchtkörper sich nicht mehr braun färben (Waltz, 2016). *Ustilago mayidis* wurde ebenfalls erfolgreich gezielt gentechnisch modifiziert (Schuster *et al.*, 2016). Der Modellorganismus *Coprinopsis cinerea* konnte ebenfalls mit CRISPR/Cas9 editiert werden. Die Nutzung dieser Technik bei der gleichzeitig steigenden Anzahl der vollständig sequenzierten Genome von Basidiomycota ermöglicht die Etablierung der gentechnischen Modifikation dieses Phylums. So können Synthese-Wege verändert werden und Biotransformationen mit höheren Ausbeuten erzielt werden. Es ist ebenso denkbar Basidiomycota als Expressionswirte zu nutzen, da diese eine effiziente Proteinsekretion bieten. Ähnlich wie bei Pflanzen kann das Glycosidierungsmuster angepasst werden (Sukenik *et al.*, 2018), um die Forschung an oral applizier baren Vakzinen weiter voran zu treiben (Pérez-Martínez *et al.*, 2015).

1.5 Ziele der Arbeit

Der Einsatz von Enzymen in Waschmitteln hat in den letzten Jahrzehnten enorm an Bedeutung hinzugewonnen. Die größtenteils aus bakteriellen Ursprungs stammenden α -Amylasen, die heutzutage in Waschmitteln zu finden sind, erfüllen noch nicht alle Anforderungen. Ein Teilziel war es, Basidiomycota und deren Sekretom nach neuartigen α -Amylasen für die Waschmittelindustrie zu beforschen. Mittels Applikationsstudien sollte der Nachweis der Verbesserung der Waschleistung erbracht werden. Die dafür verantwortlichen Enzyme sollten identifiziert sowie deren korrespondierende Gensequenz amplifiziert werden. Eine heterologe Überexpression der identifizierten Gene in einem Expressionswirt und die Charakterisierung der resultierenden Enzyme waren weitere Teilziele.

2. Ergebnisse

2.1 Screening waschaktiver Enzyme

Für das Screening nach neuartigen α -Amylasen für die Verwendung im Waschmittel wurden 51 Basidiomycota untersucht. Die Kultivierung wurde wie in 5.2.1 beschrieben durchgeführt. Es erfolgte eine tägliche Probenahme, mit welcher sowohl Stärkegehalt als auch α -Amylase-Aktivität untersucht wurden. Zeigte sich eine α -Amylase-Aktivität, wurde ein erster Waschtest über 16 h bei 30 °C durchgeführt. Insgesamt zeigten 19 Basidiomycota, verglichen mit der Negativkontrolle, eine Verbesserung der Waschleistung. Diese Kandidaten wurden bis zum Tag der höchsten Aktivität kultiviert und der Kulturüberstand aufkonzentriert. Mit dem so erhaltenden Kulturüberstand wurden aktivitätsgleiche Waschtests mit einer Aktivität von 100 mU (5.2.1.2) durchgeführt und die Bleichung der Läppchen wurde mittels Farbmessgerät detektiert (5.2.1.3). Hierbei stellten sich mit Rhizoctonia solani, Trametes hirsuta, Irpex lacteus, Fomes fomentarius, Fomitopsis pinicola, Pleurotus sajor-caju, Pycnoporus sanguineus und Lentinus strygosus insgesamt acht Basidiomycota heraus, welche sowohl beim Waschleistungstest am Institut für Lebensmittelchemie (Hannover) als auch beim Kooperationspartner Henkel AG & Co. KGaA (Düsseldorf) überzeugen konnten. Die Ergebnisse des Screenings sind in der Tabelle 2.1 zusammengefasst. Zeigten Kulturüberstände bei 30 °C und 16 h Inkubation keine Aufhellung der Teststoffe, wurde diese beim Test bei 40 °C nicht mehr berücksichtigt.

Tabelle 2.1 Waschleistung bei 30 °C für 16 h und bei 40 °C für 1 h der getesteten Basidiomycota.Beurteilt wurde die Verbesserung der Waschleistung zur Negativkontrolle ohne die Zugabe vonEnzym. Sehr gute Waschleistung ++, sichtbare Waschleistung +, keine Waschleistung -.InterneBasidiomycotaAbkürzungWaschleistungWaschleistung

Interne	
Nr.	

30 °C, 16 h 40 °C, 1 h

1	Armillaria mellea	Ame	-	
6	Collybia fusipes	Cfu	-	
14	Lepista nuda	Lnu	-	
17	Fomitopsis pinicola	Fpi	++	++
18	Ganoderma applanatum	Gap	-	
19	Trametes versicolor	Tve	+	-
20	Gloeophyllum odoratum	God	-	
23	Ischnoderma benzoinum	Ibe	-	

25	Lentinula edodes	Led	+	-
52	Piptoporus betulinus	Pbe	-	
64	Pleurotus lampas	Pla	-	
71	Pycnoporus sanguineus	Psan	++	++
72	Phaeolus schweinitzii	Psch	-	
76	Polyporus umbellatus	Pum	-	
79	Sparassis crispa	Scr	-	
80	Serpula lacrymans	Sla	+	-
81	Tyromyces floriformis	Tfl	-	
83	Trametes suaveolens	Tsu	-	
88	Wolfiporia cocos	Wco	-	
206	Laetiporus sulphureus	Lsu	-	
213	Agrocybe aegerita	Aae	-	
218	Pleurotus ostreatus	Pos	+	-
231	Tremella mesenterica	Tme	-	
232	Flammulina velutipes	Fve	++	+
241	Phallus impudicus	Pim	-	
246	Grifola frondosa	Gfr	-	
248	Fomes fomentarius	Ffo	++	++
250	Stereum rugosum	Sru	-	
257	Auriporia aurea	Aau	-	
262	Schizophyllum commune	Sco	+	-
265	Psilocybe cubensis	Pcu	-	
272	Gloeophyllum trabeum	Gtr	++	+
275	Irpex lacteus	Ila	++	++
276	Funalia trogii	Ftr	-	
277	Ganoderma lucidum	Glu	-	
280	Coprinus comatus	Cco	-	
284	Pleurotus sajor-caju	Psaj	++	++
286	Polyporus squamosus	Psq	-	
291	Postia placenta	Ppi	-	
292	Microporus affinis	Maf	-	
293	Ustilago maydis	Uma	-	
295	Agaricus bisporus	Abi	-	

299	Hypholoma sublateritium	Hsu	-	
300	Lentinus strygosus	Lst	++	++
305	Trametes gibosa	Tgi	-	
308	Trametes hirsuta	Thi	++	++
309	Rhizoctonia solani	Rso	++	++
311	Hymenochaete rubiginosa	Hru	-	
312	Asterostroma cervicolor	Ace	-	
314	Phellinus pini	Ppi	-	
315	Phanerochaete chrysosporium	Pch	++	+

Die Basidiomycota *R. solani, T. hirsuta, I. lacteus, F. fomentarius, F. pinicola, P. sajor-caju, P. sanguineus* und *L. strygosus*, welche die größte Verbesserung der Waschleistung zeigten (Tabelle 2.1), stammen aus dem Reich der Agaricomycotina, wobei vier der Familie der Polyporaceae (*F. fomentarius, T. hirsuta, L. strygosus, P. sanguineus*) und mit *I. lacteus* und *F. pinicola* insgesamt sechs der Ordnung der Polyporales zuzuordnen waren. Die Aufteilung der Basidiomycota mit dem höchsten Potential für die Anwendung in Waschmittelformel ist in der Abbildung 2.1 dargestellt.

Abbildung 2.1 Übersicht der Systematik der Basidiomycota, welche waschaktive α -Amylasen sekretieren.

Der Zeitpunkt der höchsten Aktivität schwankt bei den Basidiomycota zwischen 48 h (*R. solani*) und 158 h (*F. fomentarius*) (Tabelle 2.2).

Interne Stammnummer	Basidiomycota	Zeit der höchsten Aktivität
17	Fomitopsis pinicola	96 h
71	Pycnoporus sanguineus	86 – 102 h
248	Fomes fomentarius	134 – 158 h
275	Irpex lacteus	72 h
284	Pleurotus sajor-caju	134 h
300	Lentinus strygosus	86 – 102 h
308	Trametes hirsuta	72 h
309	Rhizoctonia solani	48 h

 Tabelle 2.2 Auflistung der acht Basidiomycota mit der besten Waschleistung und deren

 Zeitpunkt maximaler Aktivität während der Kultivierung.

Für die weitere Analyse und der Identifizierung der waschaktiven Enzyme wurde der Kulturüberstand mittels FPLC gereinigt. Dazu wurden zunächst die isolektischen Punkte der stärkeabbauenden Enzyme bestimmt. Darauf aufbauend folgte eine chromatographische Trennung mittels Anionen-Austauscher (5.2.1.4). Alle Fraktionen wurden nach der Trennung mittels Aktivitätsassay (5.2.1.2) untersucht. Dabei stellte sich heraus, dass eine IEX-Auftrennung der Kulturüberstände ausreichte, um die waschaktiven Enzyme zu isolieren. Für die Basidiomycota *F. fomentarius*, *F, pinicola*, *I. lacteus*, *L. strygosus*, *R. solani* und *T. hirsuta* eluierte die Stärke abbauende Aktivität bei 10 % Natriumchlorid. Bei *P. sanguineus* eluierte diese bei 20 % Natriumchlorid (Abbildung 2.2).

Abbildung 2.2 FPLC-Chromatogramme für die IEX Reinigung der Kulturüberstände von Ffo (A), Thi (B) und Psan (C). Die schwarze Linie zeigt den Stufengradienten der erhöhten NaCl Zugabe. In rot ist die Leitfähigkeit dargestellt. Die Messung der Proteinmenge ist mit der blauen Linie dargestellt. Die blauen Rechtecke zeigen die Fraktion mit α -Amylase-Aktivität sowie Waschaktivität an. Als Puffer A wurde 20 mM Bis-Tris, pH 7 verwendet. Für den Elutionspuffer B wurde 1 M NaCl zum Puffer A hinzugegeben.

Wie in den Chromatogrammen (Abbildung 2.2) sichtbar, führte eine stufenweise Erhöhung der NaCl Zugabe zu einer Basislinien getrennten Fraktionierung der in den Proben enthaltenen Proteine. Die ersten vier Fraktionen zeigen den ungebundenen Durchfluss an.

Die Fraktionen der jeweiligen teilgereinigten Kulturüberstände mit detektierter Amylaseund Waschaktivität (Abbildung 2.2) wurden zusammengelegt und aufkonzentriert (5.2.1.4). Die Retentate der jeweiligen Proben wurden anschließend mittels SDS-Page (Abbildung 2.4) und Zymografie (Abbildung 2.3) analysiert.

M1 Thi Ffo Psan Psaj Ila Lst

Abbildung 2.3 Semi-native PAGE mit den teilgereinigten Kulturüberständen von Thi (26 μ g), Ffo (31 μ g), Psan (40 μ g, Psaj (40 μ g), Ila (41 μ g) und Lst (26 μ g). In das Trenngel wurde 1 % (w/v) Stärke einpolymerisiert. Die Auftrennung erfolgte bei 4 °C und 10 mA für 3 h 20 min. Nach einer Inkubation von 4 h bei RT wurde das Gel mit Lugol'scher Lösung gefärbt.

Abbildung 2.4 SDS-PAGE der teilgereinigten Kulturüberstände von Thi (26 µg), Ffo (31 µg), Psan (40 µg), Psaj (40 µg), Ila (41 µg) and Lst (26 µg). Die Auftrennung erfolgte bei RT und 12 mA für 2 h. Das Gel wurde silber-gefärbt mit einer Entwicklungszeit von 60 min. Als Marker wurden 7 µL des Precision Plus Protein[™] Unstained Protein Standard (Biorad, Hercules, Kalifornien) verwendet (M1).

Die Zymografie (Abbildung 2.3) zeigte nach der Färbung der einpolymerisierten Stärke mit Lugol'scher Lösung Aktivität in allen Proben. Da ein denaturierender Proteinmarker verwendet wurde, dient dieser nur der Beschreibung der Proteine und lässt keinen Rückschluss über deren tatsächliche molare Masse zu. Eine Aufhellung zeigte sich bei allen Proben über der 100 kDa Markerbande. Des Weiteren zeigten sich nicht gefärbte Bereiche im niedermolekularen Bereich. Aufgrund der einpolymerisierten Stärke konnte das Gel nicht für eine weitere massenspektrometrische Analyse verwendet werden.

In der SDS-PAGE (Abbildung 2.4) waren für alle teilgereinigten Kulturüberstände von Thi, Ffo, Psan, Psaj, Ila und Lst mehrere Proteinbanden zuerkennen. Die meisten Banden fanden sich dabei im Bereich von 50 bis 100 kDa. Da das Silber gefärbte Gel nicht für die Analyse mittels Massenspektrometrie geeignet war, wurde ein weitere Elektrophorese parallel und mit gleichen Bedingungen durchgeführt. Das zweite Gel wurde mit Coomassie gefärbt und der Bereich zwischen 50 und 100 kDa wurde für die MS verwendet. Zusätzlich wurden alle sichtbaren Proteinbanden oberhalb von 100 kDa für die MS-Analyse ausgeschnitten.

Für die Verifizierung der Enzymaktivität wurden die Hydrolyseprodukte nach einer Inkubation von Stärke mit den jeweiligen Kulturüberständen bestimmt. Dabei wiesen alle teilgereinigten Kulturüberstände die gleichen Hydrolyseprodukte wie die Benchmark α -Amylase auf (Abbildung 2.5). Es zeigte sich dabei, dass von den jeweiligen teilgereinigten Kulturüberständen als auch von der Benchmark α -Amylase sowohl Glucose (Retentionszeit 27 min), Maltose (Retentionszeit 22,5 min) als auch Oligosaccharide gebildet wurden. Eine Auftrennung war hierbei bis zum achtfach-Zucker möglich.

Abbildung 2.5 HPLC-Chromatogramme nach der Hydrolyse von Stärke. Dextrin wurde als Standard verwendet (A), Stärke als Kontrolle (B), 30 min Inkubation von Stärke mit teilgereinigtem Kulturüberstand von *R. solani* (C) und eine Positivkontrolle mit einer 30 minütigen Inkubation mit Benchmark α -Amylase (D). HPLC-System bestehend aus einem binären Pumpensystem (Agilent 1200, Agilent Technologies, Waldbronn), einem Triathlon-Autosampler (Spark Holland, Emmen, Niederlande), einem Säulenofen, sowie einem Corona CAD-Detektor (ESA Biosciences) und einem LaChrom L-7490 RI-Detektor (Merck). Es wurde die Merck Polyspher Na 300x7.8 Säule verwendet. Die Chromatographie erfolgte mit Wasser als Eluenten bei einem Fluss von 0,5 mL min⁻¹ und bei 85 °C. Injiziert wurde jeweils ein Volumen von 20 µL.

Zusätzlich wurde ein weiterer Waschleistungstest mit isoaktiv eingesetzten teilgereinigten Proben durchgeführt. Für die Waschleistungsvergleiche wurden die teilgereinigten Kulturüberstände erneut aufkonzentriert. Die Detergenzlösung wurde in 20 mM Bis-Tris (pH 7) verdünnt. Die Endkonzentration des Waschmittels nach Zugabe der Enzymlösung betrug 4,58 g L⁻¹. Der Waschversuch wurde jeweils mit 100 mU iso-aktiv durchgeführt. Für die Kontrolle wurden Wasser anstelle von Enzymlösung verwendet. Diese Waschtests dienten als Grundlage für spätere Patentanmeldungen (Abbildung 2.6 und Abbildung 2.7).

Abbildung 2.6 Applikationsstudie mit den teilgereinigten Kulturüberständen von Rso, Thi, Fpi, Ffo, Ila, Psan, Psaj und Lst. Eingesetzt wurden jeweils 100 mU. Die Inkubation erfolgte bei 40 °C und 350 UpM für 1 h bei pH 7.

Da die visuelle Beurteilung der gewaschenen Stoffe nicht ausreichend war, wurden diese zusätzlich mit einem Farbmessgerät vermessen (ColorLite sph900, ColorLite GmbH, Katlenburg-Lindau). Das Gerät wurde gegen weißes Papier kalibriert. Die Verbesserung der Waschleistung wurde in Bezug zur Kontrolle ohne Enzymzugabe gezeigt (Abbildung 2.7).

Abbildung 2.7 Ergebnisse der Farbmessung der mit teilgereinigtem Kulturüberstand (jeweils 100 mU) von Rso (7), Thi (6), Fpi (5), Ffo (4), Ila (3), Psan (2) und Psaj (1) gewaschenen Läppchen. Es wurde gegen weißes Papier kalibriert, die Kontrolle (Blank) ist ohne die Zugabe von Enzym geschwaschener Stoff (A). Die Probe von Lst wurde nicht berücksichtig, da die Mittelwertabweichungen zu hoch waren. Vergrößerter Ausschnitt der Farbmessungsergebnisse (B).

Beim Waschleistungstest zeigten Rso und Thi die beste Aufhellung der Läppchen. Die Kulturüberstände von Fpi, Ffo und Ila zeigten in etwa die gleiche Aufhellung. Die Messungen der Stoffe, welche mit Kulturüberstand von Psan und Psaj inkubiert wurden, zeigten eine schwächere Aufhellung (Abbildung 2.7). Der Kulturüberstand von Lst wies die im Vergleich geringste Verbesserung des Waschergebnisses auf (Abbildung 2.6). Die Farbmessung ergab zu große Schwankungen, sodass die Ergebnisse von Lst in der Abbildung 2.7 nicht berücksichtigt wurden.

2.2 Molekularbiologische Identifizierung der waschaktiven Enzyme

Die SDS-Gele (Abbildung 2.4) waren die Grundlage sowohl für die Überprüfung der Reinigung als auch für die Identifizierung der waschaktiven Enzyme. Die einzelnen Proben der teilgereinigten Kulturüberstände wurden elektrophoretisch separiert, mit Coomassie gefärbt und die Proteinbanden zwischen 50 kDa und 250 kDa ausgeschnitten. Es folgte ein tryptischer Verdau und eine anschließende Analyse mittels LC-MS/MS-Analyse. Die *de novo* sequenzierten Peptide wurden bioinformatisch mittels MASCOT-Software mit Proteindatenbanken abgeglichen (Tabelle 2.4). Es wurden nur Peptide mit einem Score von mindestens 50 berücksichtigt. Da mit der MASCOT-Software nur die Proteindatenbanken erstellt. Dazu wurden alle verfügbaren Daten für Fpi, Ila, Psan und Rso von der JGI Platform im Fasta-Format übernommen und als Datenbank hinterlegt. Da die Genomdaten von Psaj, Lst und Thi zu diesem Zeitpunkt nicht vorlagen, wurden Sequenzen nah verwandter Arten in die eigene Datenbank übernommen. Dazu wurden die Proteomdaten von drei *Lentinus* sp., drei *Pleurotus* sp. und neun *Trametes* sp. in die Datenbank übernommen (Tabelle 2.3).

Basidiomycota	Genome
L. strygosus	Lentinus tigrinus ALCF2SS1-6 v1.0
	Lentinus tigrinus ALCF2SS1-7 v1.0
	Lentinus tigrinus v1.0
P. sajor-caju	Pleurotus eryngii ATCC 90797 v1.0
	Pleurotus ostreatus PC15 v2.0
	Pleurotus ostreatus PC9 v1.0
T. hirsuta	Trametes betulina CIRM-BRFM 1801 v1.0
	Trametes cingulata BRFM 1805 v1.0
	Trametes gibbosa CIRM-BRFM 1770 v1.0
	Trametes ljubarskyi CIRM1659 v1.0
	Trametes maxima CIRM-BRFM 1813 v1.0
	Trametes meyenii CIRM-BRFM 1810 v1.0
	Trametes polyzona CIRM-BRFM 1798 v1.0
	Trametes pubescens FBCC735
	Trametes versicolor v1.0

Tabelle 2.3 Genome für die Erstellung der Datenbanken.

Es konnten für die Basidiomycota *F. fomentarius*, *F. pinicola*, *I. lacteus*, *R. solani* und *T. hirsuta* Peptide für α -Amylasen identifiziert werden (Tabelle 2.4).

Basidiomycota	Peptide
Ffo	HIATGDIANIL
Fpi	FATSDGSSPACDTGD
Ila	ANVFVTNHDTE
Lst	Keine Peptidtreffer
Psaj	Keine Peptidtreffer
Psan	Keine Peptidtreffer
Rso	VFVSNHDTERG
Thi	LAQYGNDLLSLGADGLRLDASKHIPVGDIANILSR
	KETDGSVVWESDPNR

Tabelle 2.4 Übersicht der *de novo* sequenzierten Peptide für pilzliche α-Amylasen.

2.2.1 Fomes fomentarius

Da für *Fomes fomentarius* zum Zeitpunkt der Arbeit kein öffentliches Genom vorlag, wurde ein noch nicht annotiertes der Arbeitsgruppe von Dr. Harald Kellner (TU Dresden) verwendet. Auf dessen Grundlage wurde die Datenbank für diesen Stamm erstellt und die mittels MS/MS erhaltenden Peptide gegen diese abgeglichen. Da keine Annotierung vorhanden war, wurden alle von der MASCOT-Software erhaltenden Proteinsequenzen mittels Blastp gegen die NCBI-Datenbank abgeglichen. Es wurde erfolgreich eine α -Amylase identifiziert und das korrespondierende Gen mittels tblastn im Genom von *F. fomentarius* identifiziert.

Nachdem das Gen identifiziert und der Genomabschnitt in SnapGene konvertiert wurde, erfolgte die Erstellung der Primer. Das Gen wurde ausgehend von Peptidtreffer zunächst teilweise von genomoischer DNA amplifiziert, bis es schließlich vollständig amplifiziert wurde.

Die waschaktive α-Amylase des Basidiomyceten *Fomes fomentarius* wurde erfolgreich von cDNA amplifiziert und mittels Sequenzierung verifiziert (FfoAmy). Die verwendeten Primer waren zum einen der Vorwärtsprimer 5' ATGTCTCCTTGGTCCAAGCTTGTTG GGCTC 3' und zum anderen der Rückwärtsprimer 5' TTATCTCCAGGAAGAAGAAGAA

TTCTGAGT 3[°]. Das Gen setzte sich aus 1770 codierenden Basen zusammen, welche im Genom durch zwölf Introns unterbrochen waren. Der Vergleich zum Referenzgenom (JGI) zeigte eine Sequenzidentität von 99 %. Das resultierende Protein wies 589 Aminosäuren auf, welche einer berechneten molaren Masse von 62 kDa entsprachen. Das Enzym trug die Cellulose-Bindedomäne CBM20 am C- Terminus.

>Ffo α-Amylase CDS

ATGTCTCCTTGGTCCAAGCTTGTTGGGCTCACGAGCCTCGGCGCCCTGTTCTCAGCCGCTGGCGCTGCGCC AGATATTCGAGTGGTCATGGGACAGCGTCGCCACCGAGTGCACCAACTTCATCGGGCCTGCCGGGTATGGG ATACACGCTCACCTCCAAGCGTGGCAATCGCGACCAATTTGCGAACATGATCAATACCTGCCATGCCGCCG GTGTTGGTGTCATCGTTGACACTATTTGGAACCACATGGCCGGCGTCGAATCTGGCACGGGCGTTGCTGGG TCCTCCTTTACGCACTACAACTACCCAGGCATCTATCAAACCCAGGATTTCCATCACTGCGGCCTTACCAG CGGTGACGACATCGTCGACTACTCTAGCCGAGCTCAAGTCCAAACGTGTGAGCTTGTCAACCTTGCCGACC TCGCAACTGATACCGAGTACGTTCGGAGCCGCCTTGCTGCGTACGGAAACGACCTCTTGTCGCTGGGCGCC GATGGCTTCCGTCTCGACGCCGCGAAACATATCGCTACTGGTGACATTGCCAACATCTTGTCGAGGTTGAA CTCTACCCCATATATCTCGCAAGAGGTCATTTATGGCGCTGGCGAGCCGGTCACTCCTAGCGAATACACCG GCAATGGTGATGTCCAGGAATTCCGGTACACCTCGGCTATAAAGGATGCTTTCCTAAACGGCGATATCTCC AGCCTTCAAAGTTTTGACAATCGCGGTTGGGTGGCAGGCTCAGGCGCGAATGTGTTCGTCGTAAACCATGA CGCTTGCGCATCCATATGGTACACCGACGATCCTGTCCAGCTACAGTGGCTTCACCAATACCGATGCTGGT GCACCCAATGGTGGGGCTGGGACGTGCTCAGGCAGCGGTGGATCGAACGGATGGCTGTGTCAGCACCGTTG GACCGCGTTTGCCGGCATGGTTGGCTTCAGGAACAACGTCGGCAACGCGGCGCTTACCAACTGGCAGTCAC CTCAAGGTCGACAGATCGCCTTTGGTCGCGGCGCATTGGGCTTTGTCGCTATCAATAACGACGACTCTGCT TGGTCGACGACGTTCACGACTCAGCTTCCCGACGGCTCATACTGCGATGTTGTCAGTGGCGCGCGTCTTCTGG CCGTCGCGATCCACCGGCGCGCGAAGGGCAGTAGCAACAACGGCGGTGGCGGCGGAGaCAACGTCACTGTA AACTTCTCTGTAACCGCCACAACCACATTCGGCGAGAACATCTTCCTCGTCGGAAGCATTTCACAGCTCGG AAGCTGGAACGCCGCGAACGCCATCGCATTGTCTTCTGCTTCGTACCCGACGTGGACCGTGTCGGTCAGCA TTCCCGCAAGCACTACCTTTGAGTACAAATTCATCAGGAAAGAGACTGATGGAAGCATCGTGTGGGAGTCC GATCCCAACCGTTCTGCCACAACCCCCCTCTGCGGGTACTCAGAATCTTTCCTCTTCCTGGAGA**TAA** >Ffo α-Amylase Proteinsequenz **MSPWSKLVGLTSLGALFSAAGA**APFLRSTDGHSLAARAPSTNKTVIVQIFEWSWDSVATECTNFIGPAGYG FVQVSPPAEHIQGSQWWTDYQPVSYTLTSKRGNRDQFANMINTCHAAGVGVIVDTIWNHMAGVESGTGVAG SSFTHYNYPGIYQTQDFHHCGLTSGDDIVDYSSRAQVQTCELVNLADLATDTEYVRSRLAAYGNDLLSLGA DGFRLDAAKHIATGDIANILSRLNSTPYISQEVIYGAGEPVTPSEYTGNGDVQEFRYTSAIKDAFLNGDIS SLQSFDNRGWVAGSGANVFVVNHDTERNGDSLNNNSPSNTYVTATIFSLAHPYGTPTILSSYSGFTNTDAG APNGGAGTCSGSGGSNGWLCQHRWTAFAGMVGFRNNVGNAALTNWQSPQGRQIAFGRGALGFVAINNDDSA WSTTFTTQLPDGSYCDVVSGASSGGNCSGTSITVSGGSFSATVPARSAVAIHTGAKGSSNNGGGGGDNVTV NFSVTATTTFGENIFLVGSISQLGSWNAANAIALSSASYPTWTVSVSIPASTTFEYKFIRKETDGSIVWES DPNRSATTPSAGTQNLSSSWR*

2.2.2 Fomitopsis pinicola

Genom- und Proteomdaten für *F. pinicola* waren sowohl bei NCBI als auch bei JGI verfügbar. Die Auswertung der MASCOT-Ergebnisse zeigte eine α -Amylase in der

teilgereinigten Probe, welche bis *dato* als hypothetisches Protein verzeichnet war (Abbildung 2.8). Ein Bastp dieser Sequenz bestätigte, dass es sich bei diesem um eine α -Amylase handelte. Das mittels MS/MS identifizierte Peptid deckte die korrespondierende Aminosäuresequenz zu zwei Prozent ab.

```
Protein sequence coverage: 2%

Matched peptides shown in bold red.

1 MWGSLLAASA LAASALAATT AEWQQRSIYQ LVTDRFATSD GSSPACDTGD

51 RVYCGGSWQG VINKLDYIQY MGFDAVWISP VVKNLEGSTG DGYSYHGYWA

101 VDQNSVNEHF GTADDLNALS SALHARGMYL MVDVVVNHMA ANTLPPDYST

151 FTPFSAESDF HTFCWITDYN NQTNVEQCWL GDSSVPLADC DTEANNVVDF

201 FYNWIGELRA NYTVDGFRID TLKHVRQTFW PDFQTNAGVY AVGEVFDGDV

251 NYVSPYTEVI DGVLDYPTYY QLTSAFESTS GSIQNLVDVI QSAQSTYSTK

301 LFQVATFLEN QDNPRFQSIT TDQGLVKNAM TWPFIADGIP ILYYGQEQGY

351 TGGNDPDNRE ALWLSGYEEN KPLVQHARIL NAARKAAIAA SSSFLSTAVT

401 FPLVGSNTLA ASKYPLLSLL SNVGASGTPA WDVSSGTGYD EGTELIDALT

451 CTTYTAESSG SVSVTGSSGD PVILLPTSAY NASYCSELTG TNSTGSSDTV

501 SVTFEVEYNT TYGENLYLTG SVAELVDWSV DDALLMSSAD YPTWSLTVDL

551 PPSTALQYKY LTKYNGDVTW EDDPNNELTT FASGSVTQSD SWH
```

Abbildung 2.8 Hypothetisches Protein (KE504255.1) mit dem rot markierten, identifizierten Peptid.

Nach der Blastp Suche mit der Blosum62 Matrix wurde zum identifizierten Peptid das korrespondierende Protein mit der ID 1038982 (JGI) gefunden. Das korrespondierende Gen auf dem *scaffold_134:33521-35901* wurde analysiert und in SnapGene konvertiert.

Die waschaktive α-Amylase aus *F. pinicola* (FpiAmy) wurde mittels des Primerpaares ATGTGGGGCAGCCTTCTCGCAGCCTCTGC und TCAATGCCAGCTGTCGCTCTGC GTGACG erfolgreich amplifiziert und durch eine Sangersequenzierung verifiziert. Das Gen setzte sich aus 1782 codierenden Basen zusammen, welche in einem Protein mit 593 Aminosäuren und einer molaren Masse von 64,4 kDa resultierten. Die Gensequenz wies elf Introns auf und zeigte zum Referenzgenom eine Identität von 96,3 %. FpiAmy zeigte eine Cellulose-Bindedomäne am C-Terminus.

CGAGAACCAGGACAACCCGCGGTTCCAGAGTCTTACCACTGATCAAGGCCTAGTGAAGAACGCGATGGCGT GGCCGTTTATCGCGGATGGCATCCCCATTCTTTACTACGGTCAGGAGCAAGGCTACACTGGCGGCAACGAC CCCGATAACCGTGAAGCGCTGTGGCTGTCCGGATACGAGGAAAACAAGCCTCTCGTGCAGCACGCCCGCAT CCTCAACGCTGCCCGCAAGGCCGCCATCGCCGCCAGCAGCAGCTTCCTCTCCACCGCCGTGACCTTCCCGT CGGTGGGCAGCAACACGCTCGCCGCGCCCCAAATACCCCGCTGCTCCTCGCTCCTGACCAACGTAGGCGCAAGC GTGCACGACGTACACCGCTGGGAGCAGCGGCAGCGTGAGCGTCACGGGCAGTAGCGGGGGACCCCGTCATCC TGCTCCCGACGAGCGCATACAACGCGTCGTACTGCAGCGAGCTGACGGGCACGGACTCGACCGGCAGCTCG GACACGGTGTCGGTGACGTTCGAGGTGGAGTACAACACGACGTACGGCGAGAATTTGTATCTCACCGGCTC CGTCTCTGAGCTCGTGGACTGGTCCGTCGATGACGCACTCCTTATGTCGTCCGCCGACTACCCGACCTGGA GCCTGACGGTGGACCTCCCCCCGAGCACCGGCGATCCAGTACAAGTATCTGACGAAGTACAATGGCGACGTC ACGTGGGAGGACGACCCCAACAACGAGCTCACGACGCCTGCGAGCGGCTCCGTCACGCAGAGCGACAGCTG GCAT**TGA** >Fpi α -Amylase Proteinsequenz MWGSLLAASALVASALAATTAEWQQRSIYQLVTDRFATSDGSSPACDTGDRVYCGGSWQGVINKLDYIQYM GFDAIWISPVVKNLEGSTGDGYSYHGYWAVDQNSVNEHFGTADDLNALSSALHARGMYLMVDVVVNHMAAN TLPPDYSTFTPFSSESDFHTFCWITDYDNQTNVEQCWLGDSSVPLADCDTEADNVIDFFYNWIGELRANYT VDGFRIDTLKHVRQTFWPDFQTNAGVYAVGEVFDGDVNYVSPYTEVIDGVLDYPTYYQLTSAFESTSGSIQ NLVDVIQSAQSTYSTMLFQVATFLENQDNPRFQSLTTDQGLVKNAMAWPFIADGIPILYYGQEQGYTGGND PDNREALWLSGYEENKPLVQHARILNAARKAAIAASSSFLSTAVTFPSVGSNTLAASKYPLLSLLTNVGAS GMPVWDVSSGTGYDEGTELIDALTCTTYTAGSSGSVSVTGSSGDPVILLPTSAYNASYCSELTGTDSTGSS DTVSVTFEVEYNTTYGENLYLTGSVSELVDWSVDDALLMSSADYPTWSLTVDLPPSTAIQYKYLTKYNGDV TWEDDPNNELTTPASGSVTQSDSWH*

2.2.3 Irpex lacteus

Im teilgereinigten Kulturüberstand von *I. lacteus* konnte ein Peptid einer α -Amylase identifiziert werden (Abbildung 2.9). Die dazugehörige Aminosäuresequenz entstammte einer α -Amylase aus *Pleurotus ostreatus*. Die Sequenz konnte zu zwei Prozent abgedeckt werden.

Protein sequence coverage: 2%

Matched peptides shown in **bold red**.

```
1MRLTWYSPALFAVGTFVQCAKSAPQSSLGTLADRAPSGAKLVIIQMFEWT51WDSVAAECTSFIGPAGYGFVQVSPPAEHIQGSQWWTDQQVSYTLNSKRG101NRSQFANMVSTCHSAGVKVITDTIFNHMAGVESGTGVGGSSFTHYNYPGI151YQTQDFHHCGLEPGDDIVNYSNRLEVQTCELVNLADLATDTEYVRGRLAA201YANDLRSLGVDGFRLDAVKHIASGDLANILSNVTGPFYVTQEVIFGAGEA251VQPSEYVDIGDVQEFRYTSELKNAFSGGGIANLQDLENRGWVTGSKANVF301VTNHDTERNGASLNANSPSNTYVTATIFSIAHPYGTPTILSSYSGFTNTD351AGAPNGGVGTCSGTGGANGWFCQHRWVAFSGMVGFRNTVGSAGITNWVSP401QSQQIAFGRGSAGFVAINNADSSWTATFATSLPAGAYCDVISGSANAGTC451SGLSITVAGGSFSATVPARSAIAIHTGATGTGSGNGNGGSDTVAVTFEET501ATTILGENIYLVGSIPQLGVWVPEAAILLSAATYPVWRVVNIPAGTSF1551YKFIRKETDGGVVWESDPNRQLTVGASGTQTVSSWK
```

Abbildung 2.9 Rot markiertes identifiziertes Peptid und die in der NCBI-Datenbank passende Sequenz einer α-Amylase aus *Pleurotus ostreatus* (KDQ30003.1).

Für diesen Basidiomycota war kein Genom vorhanden, jedoch ein Transkriptom. Da die Konvertierung in SnapGene in 129.000 Einzeldateien resultierte und damit Blast-Suchen nicht möglich waren, wurde das komplette Transkriptom in die lokale Blast Software geladen. Das identifizierte Peptid diente als Grundlage für einen tblastn. Dieser resultierte in

der Identifizierung der korrespondierenden CDS, welche in SnapGene konvertiert wurde. Auf Grundlage dessen wurden, ausgehend vom Peptidtreffer, Primer zu den jeweiligen Enden der Sequenz abgleitet und das Gen partiell von genomischer DNA amplifiziert. Nach der vollständigen Amplifizierung des Gens mit allen Introns, erfolgte die Amplifizierung der CDS von cDNA.

Irpex lacteus wies eine aus 480 Aminosäuren bestehende waschaktive α -Amylase (IlaAmy) auf, welche sich aus 1443 codierenden Basen zusammensetzte. Auf genomischer Ebene war das Gen von fünf Introns unterbrochen. Erfolgreich amplifiziert wurde das Gen mittels der Primer 5' ATGGTCAAGTTGACACTCCCTTTCG 3' und 5' TTATGAGAGCTTGGCG TTGGTATGAATGGC 3'. Diese α -Amylase zeigte keine Cellulose-Bindedomäne und hatte eine berechnete molare Masse von 51 kDa.

>Ila α-Amylase CDS

ATGGTCAAGTTGACACTCCCTTTCGTTCTCGCCGCCGTCAGCTCTATGGCGGCGGGCATTGTCATCCCCGA GAACAGTGCTCTCGAAACCCGCTCTACTGGCCAGTCCAAGGCTGTCATCGTTCAGATGTTTGAGTGGACTT GGGACAGTATCGCGTCCGAGTGCACCAACTTCCTCGGGCCCGCCGGGTACGGTTATGTTCAGACGAGTCCT CCTCAGGAGCACGTCACTGGCAACCAGTGGTGGACTGATTACCAGCCCGTCTCGTATACCCTCACCTCGAA ACACTATCTTCAACCATATGACTGGCTCCGACTCGGGCACTGGTGTTGCTGGCTCGTCGTACACCCACTAC AACTACCCTGGTATCTACCAAAACCAGGACTTCCATCACTGTGGGCTGGAGCCCAATGACGATATTGTCAA TTATGACAATGCTGTGGAAGTCCAGACGTGCCAGTTGGAAGGACTTGCAGATTTGGCTACCGATACAGAAT GCTTCTAAGCACATTGCCGTGACTGACCTTACCAATATCACCTCTCGCCTGAATGGCTCTCCTTACCTCAC AGTTCCGTTACACAACCGCTCTCAAGAACGCTTTCTTGAACGGAGCTATCAACGGCCTACAAAGCTTCGAC TGCCCTCACCAACTCCTCACCTTCCAATACCTACGTTCTTGCCACCATATTCTCCCTCGCCCACCCTACG GCACTGTCACCGTCCTCTCATCCTATTCCGGCTTCGACACCAACTCTGATGCAGGCGCACCCAACGGCGGC ACCGGTACTTGCTCTGGCACCGGCGGCTCCAACGGCTGGTTCTGCCAGCATCGATGGATTGCTTTCCAGGG TATGACTGCCTTCAGGAACACTGTCGGCAGTGCTGCCATCGCCAACTGGCAGACTGGTCAGAACTCGCAAA TCGCCTTCGACCGTGGTACCGCTGGGTTCGTTGCTATCAACACGCCGACTCGCAGTGGGATGCCACCTGG AAGACTGGCTTGCCCGACGGTGTGTACTGCAACGTCATCTCCGGCGTCTTCTCGAGTGGTTCGTGCTCCGG TGGCACTGTCACTGTCAAGAACGGTGGTCAAATCCCCTACAACTTGTCTTCTCGCAATGCTGTCGCCATTC ATACCAACGCCAAGCTCTCA**TAA**

>Ila *a*-Amylase Proteinsequenz

MVKLTLPFVLAAVSSMAAGIVIPENSALETRSTGQSKAVIVQMFEWTWDSIASECTNFLGPAGYGYVQTSP PQEHVTGNQWWTDYQPVSYTLTSKRGNRSQFANMISTCHKAGVKVIADTIFNHMTGSDSGTGVAGSSYTHY NYPGIYQNQDFHHCGLEPNDDIVNYDNAVEVQTCQLEGLADLATDTEYVRSRLAQYGNDLLSLGVDGLRLD ASKHIAVTDLTNITSRLNGSPYLTQEVIYGEGEPITPNQYVGIGDVQEFRYTTALKNAFLNGAINGLQSFD NLGWVSGDKANVFVTNHDTERNGAALTNSSPSNTYVLATIFSLAHPYGTVTVLSSYSGFDTNSDAGAPNGG TGTCSGTGGSNGWFCQHRWIAFQGMTAFRNTVGSAAIANWQTGQNSQIAFDRGTAGFVAINNADSQWDATW KTGLPDGVYCNVISGVFSSGSCSGGTVTVKNGGQIPYNLSSRNAVAIHTNAKLS*

2.2.4 Lentinus strygosus

Die Analyse des teilgereinigten und waschaktiven Kulturüberstandes von *L. strygosus* zeigte eine α -Amylase-Aktivität. Es wurde nach der Analyse der Mascot-Datensätze kein Peptid für eine α -Amylase detektiert. Da für *L. strygosus* keine Genomdaten vorhanden waren, wurden Proteinsequenzen der vorhandenen Genome von *Lentinus* sp. (Tabelle 2.3) verwendet, um ein Sequenzalignment zu erstellen. Konservierte Bereiche wurden genutzt, um degenerierte Primer zu erstellen. Die durchgeführten PCRs führten nicht zu der Amplifizierung eines α -Amylasegens. Eine Analyse der Expressionsmuster für α -Amylase war somit nicht möglich.

2.2.5 Pleurotus sajor-caju

Der Kulturüberstand von *P. sajor-caju* zeigte eine α -Amylase-Aktivität. Es wurden nach der Auswertung der Mascot-Daten keine Peptide für α -Amylasen identifiziert. Da für diesen Basidiomycota keine Genomdaten vorhanden waren, wurde ein Sequenzalignment auf Aminosäureebene mit allen bekannte α -Amylasen aus *Pleuroten* erstellt (Tabelle 2.3), um konservierte Bereiche zu lokalisieren. Ausgehend von zwei konservierten Bereichen wurden mehrere degenerierte Primer abgeleitet, um korrespondierende α -Amylasegene von *P. sajorcaju* zu amplifizieren. Die verschiedensten PCR-Varianten führten nicht zu den erwarteten Ergebnissen, sodass keine α -Amylase im Genom von *P. sajor-caju* identifiziert wurde. Somit war eine Expressionsanalyse der α -Amylasegene nicht möglich.

2.2.6 Pycnoporus sanguineus

Für diesen Basidiomycota konnten keine Peptidtreffer für eine α -Amylase detektiert werden. Da das Genom vollständig vorlag, war es möglich, alle vier α -Amylasen zu identifizieren, erfolgreich von genomischer DNA zu amplifizieren und mittels Sangersequenzierung zu verifizieren. Ausgehend von isolierter RNA am Tag der höchsten Waschaktivität und der anschließenden cDNA-Synthese konnte eine waschaktive α -Amylase aus *Pycnoporus sanguineus* identifiziert werden (PsanAmy). Diese wurde mit dem Primerpaar 5'ATGCTACGCCTCACGCTCCTTGCCTCT 3' und 5'TCAGACAATGATGAGGCTG GATTGCGCAGC 3' amplifiziert. Die drei übrigen α -Amylase-Gene wurden zu diesem Zeitpunkt nicht exprimiert. Das Enzym setzte sich aus 530 Aminosäuren zusammen, welche eine berechnete molare Masse von 57 kDa ergaben. Codiert wird das von sieben Introns unterbrochene Gen von 1593 Basen, welche verglichen mit dem Referenzgenom eine Identität von 97,2 % aufwiesen.

2.2.7 Rhizoctonia solani

In dem teilgereinigten Kulturüberstand von *R. solani* wurde ein Peptid für eine α -Amylase identifiziert (Tabelle 2.4). Die Proteinsequenz (KEP45305.1) stammte von dem sequenzierten *R. solani*-Isolat 123E. Da am Institut für Lebensmittelchemie der Stamm *R. solani* AG-3 vorhanden war und diese in den Genomdaten Unterschiede aufwiesen, wurden degenerierte Primer für die Amplifizierung des Zielgens von genomischer DNA erstellt. Nach der erfolgreichen Verifizierung des α -Amylasegens wurde die korrespondierende CDS von cDNA amplifiziert.

R. solani wies eine waschaktive α -Amylase auf, welche mit Hilfe der Primer 5' ATGTTTGAGTGGTCATGGGATAGTATTGCT 3' und 5' TCACCGCCAAGTATCG CTAAGCGTCAA 3' amplifiziert und nach einer Sangersequenzierung verifiziert wurde. Das Enzym setzte sich aus 536 Aminosäuren zusammen, welche zu einer berechneten molaren Masse von 56,4 kDa führte. Das Gen wurde von 16 Introns unterbrochen und zeigte

eine Sequenzidentität von 74,9 % zum Referenzgenom. Am C-Terminus wies die α -Amylase eine CBM20 Struktur auf.

>Rso α-Amylase CDS

ATGTTTGAGTGGTCATGGGATAGTATTGCTGCAGAATGCACCAGCTTCATCGGTCCTGCTGGATATGGATA GTTGGTGTGATTGCAGATACTCTGTTAAACCATATGGCCGGTATCGATAGTGGAACTGGCGTTGCCGGGTC TTCGTTCACGCACTATAACTACCCCGGAATCTACCAGACCCAGGACTTCCATCACTGCGGCCTGGAATCAG GTGACGACATAGTCAACTATAGCAATCGCGTCGAAGTCCAGACTTGCGAACTGGTGAACCTGGCTGACCTT GCTACTGATACCGAGTATGTGCGTGCTCGGCTTGCAACCTACGTAAACGATCTACTGTCGTTGGGTGTGGT AGGCCTACGACTTGATGCCGCGAAACATATTCCTGCTGGTGACATTGCCAACATTCTTGGTCGTTTGAGTT CGGCACCCTATGTTACTCAAGAGGTTATTTATGGCAGCGGAGAGCCGATTCAACCCTCGGAATATACCGGG AATGGTGATGTACAGGAGTTCCGCTACACATCGGCACTTCAGAGTGCTTTCCAGAGTGGTGGGGATCTCATC ACTGAACGATCTTGACAGCAGAGGATGGGTTTCTTCCAGCAATGCGAATGTATTTGTCTCCAACCACGATA CCGAACGAGGCGGGTCGTCTCTTAACTACAAGTCTGGCTCGACCTACACACTTGCTCACATCTTCATGCTT GCATACCCTTATGGAACTCCTACCGTCTTGTCTTCTTACACCTTCTCAGACAACGATGCTGGCAGTCCATC GAGTGGTGCAGGCTCTTGCTCCGGATCTGGCGGTGCGAACGGATGGCAATGCCAGCACCGCTGGACTGCAA CAGATTGCCTTTGGTCGCGGGTCCACTGGGTTTGTAGTTATCAACAACGCGGACTCTGCATGGACCAGGAC GTTCACGACACCCCTCGCTGCCAACTCATACTGCGACATAATCTCCGGGGCAGCAGGAACTAGTGGGACGT GTACTGGAGCATCGTACACGATCTCCGGTGGAACCTTTACCGCTACAGTCCCTGCGAGGTCTGCAATTGCT TTGTTTACTGGGGCGATTGGGTCCGGATCGAGCAATAGCGGATCCGTGTCTATCTCTTTCAGTGTATATGC AGAGACCACTTTTGGTGACAATATCTTCGTGTCTGGAAGTATTTCGCAACTCGGTACATGGGCACCAGGTA GCTCGATCGCAATGTCCTCAGCTTCCTATCCTACATGGACTGCCACTGTGACTCTCCCAGCTGGTACTGCG TTCTCTTATAAATATCTCCGTAAGACCTCCAGCGGCACGGTCGTATGGGAATCGGATCCTAACCGCTCTGC TACCGCCTCCTCGTCCGGCACATTGACGCTTAGCGATACTTGGCGG**TGA** >Rso α-Amylase Proteinsequenz MFEWSWDSIAAECTSFIGPAGYGYVQVSPPAEHITGSQWWTDYQPVSYILTSKRGSRSQFQNMITTCKAAG VGVIADTLLNHMAGIDSGTGVAGSSFTHYNYPGIYQTQDFHHCGLESGDDIVNYSNRVEVQTCELVNLADL ATDTEYVRARLATYVNDLLSLGVVGLRLDAAKHIPAGDIANILGRLSSAPYVTQEVIYGSGEPIQPSEYTG NGDVQEFRYTSALQSAFQSGGISSLNDLDSRGWVSSSNANVFVSNHDTERGGSSLNYKSGSTYTLAHIFML AYPYGTPTVLSSYTFSDNDAGSPSSGAGSCSGSGGANGWQCQHRWTAIAGMVKWRNGVTGSVNNWVTGTNQ QIAFGRGSTGFVVINNADSAWTRTFTTPLAANSYCDIISGAAGTSGTCTGASYTISGGTFTATVPARSAIA LFTGAIGSGSSNSGSVSISFSVYAETTFGDNIFVSGSISQLGTWAPGSSIAMSSASYPTWTATVTLPAGTA FSYKYLRKTSSGTVVWESDPNRSATASSSGTLTLSDTWR*

2.2.8 Trametes hirsuta

Es zeigte sich nach der Auswertung der Mascot-Daten mit der selbst erstellten *Trametes* sp. Proteindatenbank, dass die identifizierten Peptide mit einem Score von mindestens 50 zu den Genomdaten von *T. versicolor* passten. Zwei Peptide konnten der α -Amylase EIW55835.1 zugeordnet werden, welche zudem in der NCBI Datenbank hinterlegt war. Diese beiden Peptide deckten die Aminosäuresequenz zu acht Prozent ab (Abbildung 2.10).

Protein sequence coverage: 8%

Matched peptides shown in **bold red**.

1	MSKWIKLAAL	TALGVFFTAA	DARPAPFDAG	ADAHSLHTRA	PTGSKDVIIQ
51	MFEWTWDSVA	SECTNFIGPA	GYGFVQVSPP	QETIQGDQWW	TDYQPVSYIL
101	TSKRGSRTSF	ANMITTCHAA	GVGVIVDTIW	NHMAGVDSGT	GIAGSSFTHY
151	VYPGIYQNQD	FHHCGLEPGD	DIVNYDNAVE	VQTCELVNLA	DLATDTEYVR
201	GRLAQYGNDL	LSLGADGLRL	DASKHIPVGD	IANILSRLNR	TVYITQEVIF
251	GSGEPITPNQ	YTGNGDVQEF	RYTSALKDAF	SGSGISSLQD	FENRGWVPGT
301	GANVFVVNHD	TERNGNSLNN	NSPSNTYVTA	MIFSLAHPYG	TPSILSSYTG
351	FTNTDLGAPN	GGTGTCSGSG	GINGWLCQHR	WTAVAGMVGF	RNQVGSAALN
401	NWVAPQSQQI	AFGRGSLGFV	AINNADSAWT	STFTTSLPDG	TYCDVVSGQT
451	SGTTCTGSSF	TVSSGSLSAT	VPARSAIAVH	TGQLGTGSGS	GTGSGGSTTP
501	SGSVTVNFAE	TATTTFGENI	FLVGSIAQLG	TWNTANAIAL	SSASYPTWTV
551	SVSIPAGTTF	QYKFIR KETD	GSVVWESDPN	R QATAPASGT	STLSGSWR

Abbildung 2.10 Aminosäuresequenz der α-Amylase aus *T. versicolor* (AN: EIW55835.1). Die identifizierten Peptide von *T. hirsuta* sind rot markiert.

Das Genom von T. hirsuta lag nicht annotiert bei NCBI vor. Die Peptide konnten allerdings eindeutig einem Genombereich zugeordnet werden. Ausgehend von diesem wurde der Sequenzbereich zwischen den bekannten Peptiden mit degenerierten Primern erfolgreich amplifiziert. Dazu war es nötig, für beide Primer am 3' Ende die letzten drei Codons variabel zu gestalten. Der verifizierte Genabschnitt zeigte eine Sequenzidentität von 63 % zum Referenzgenom. Mit dem erhaltenden Sequenzabschnitt konnte das 3' Ende spezifisch amplifiziert werden. Die fehlenden ca. 600 Basen des 5' Endes des Gens konnten auch nicht unter der Verwendung verschiedener degenerierter Primer und Touchdown-PCRs amplifiziert werden. Da die Abweichung zwischen dem Referenzgenom und dem T. hirsuta Stamm der Stammsammlung des Instituts für Lebensmittelchemie so groß war, wurde das nächstliegende Gen *upstream* zu der α -Amylase mittels Blastn identifiziert. Es handelte sich dabei um eine ATP-Synthase, welche einen sehr konservierten C-Terminus aufwies. In diesem Bereich wurde ein Vorwärtsprimer abgeleitet sowie ein sequenzspezifischer Rückwärtsprimer für das α -Amylasegen. Mit dieser Kombination konnte das 5' Ende des α -Amylasegens vollständig amplifiziert und sequenziert werden. Mit diesen Sequenzinformationen konnte die waschaktive α -Amylase des Basidiomyceten Trametes *hirsuta* erfolgreich von cDNA amplifiziert und mittels Sequenzierung verifiziert (ThiAmy) Die Primer werden. verwendeten waren zum einen der Vorwärtsprimer 5' ATGTCAAACTGGGTCAAGCTCGC 3' und zum anderen der Rückwärtsprimer 5' TCACCGCCAGCTGGACGTGA 3'. Der codierende Bereich des Gens setzte sich aus 1800 Basen zusammen, welche im Genom durch acht Introns unterbrochen waren. Der Vergleich zum Referenzgenom (NCBI) zeigte eine Sequenzidentität von 63 %. Das

resultierende Protein wies 599 Aminosäuren auf, welche eine berechnete molare Masse von 63,1 kDa entsprachen. Das Enzym trug die Cellulose-Bindedomäne CBM20 am C-Terminus.

>Thi α-Amylase CDS
ATG TCAAACTGGGTCAAGCTCGCCGCACTCGCCGCCCTCGGAGTGTTCTGCACCGCCGCCGTCGACGCCCG
CCCTACTGTCTTTGACGCCGGTGCGGACGCACACTCGCTGCATGCCCGGGCCCCCTCCGGCAGCAAGGATG
TCATCATCCAGATGTTTGAGTGGAACTGGGACAGCGTCGCTGCCGAGTGCACTAACTTCATCGGCCCCGCC
GGGTACGGCTTCGTGCAAGTGAGCCCGCCCCAGGAGACCATCCAGGGCGCGCAGTGGTGGACCGACTACCA
GCCGGTGTCGTACACGCTCACTGGGAAGCGGGGGGGCGACCGCTCCCAGTTTGCGAACATGATTACTACGTGCC
ACGCCGCGGGCGTCGGCGTGATCGTTGACACCATCTGGAACCACATGGCGGGCG
ACCGCCGGCTCGTCCTTCACGCACTACAACTACCCCGGCATCTACCAAAACCAGGACTTTCACCACTGCGG
CCTCGAGCCGGGCGATGACATCGTCAACTACGACAACGCGGTTGAGGTCCAGACCTGCGAGCTTGTCAACC
TCGCTGACCTCGCCACCGACACGGAGTATGTGCGCGGTCGCCTTGCCCAGTACGGAAACGACCTGCTCTCG
CTCGGTGCCGATGGCCTGCGTCTTGACGCTTCCAAACACATTCCTGTGGGCGACATCGCGAACATCCTGTC
TCGCCTCAGTCGCTCTGTCTACATCACCCAGGAAGTCATCTTTGGGGCCGGCGAGCCCATCACGCCGAACC
AGTACACCGGGAACGGCGACGTTCAGGAGTTCCGCTACACCTCTGCGCTAAAGGACGCCTTCTTGAGCTCG
GGCATATCCAACCTGCAGGACTTCGAAAACCGTGGATGGGTACCTGGCTCGGGCGCCAACGTGTTCGTCGT
CAACCATGACACCGAGCGGAACGGCGCGCGCGCGCGAACAACAACTCGCCTTCGAACACCTACGTCACCGCGA
CGATCTTCTCGCTCGCACACCCGTACGGCACGCCCACGATCCTCTCCTCGTATGATGGCTTCACGAACACC
GACGCCGGCGCGCGAACAACAACGTCGGCACATGCTCGACCAGCGGTGGTGCGAACGGGTGGCTCTGCCA
GCACCGCTGGACCGCGATCGCCGGCATGGTCGGCTTCCGCAACAACGTCGGCAGCGCTGCACTCAACAACT
GGCAGGCCCCGCAGTCGCAGCAGATTGCGTTCGGTCGCGGCGCACTTGGCTTCGTCGCGATCAACAACGCC
GACTCGGCCTGGTCTACGACGTTCACCACTTCCCTCCCCGATGGTTCCTACTGCGATGTCATCAGCGGCAA
GGCCTCCGGCAGTAGCTGCACCGGTTCTTCGTTCACCGTCTCCGGCGGGAAGCTGACCGCCACGGTCCCGG
CGCGTAGCGCCATCGCCGTGCACACCGGTCAGAAAGGTTCTGGTGGTGCCACGCCCACCTCCGCCCCTAGT
ACTACACCAACCAGCGGCACTGTCAGCGTGACCTTCGCTGAGCAGGCGACGACCACCTTCGGCGAGAACAT
CTTCCTCGTCGGCAGTATTTCGCAGCTCGGGAACTGGAACCCGGCCAGCGCGATCGCCCTGTCCTCTGCGG
CGTACCCTACGTGGTCTGTGTCTGTGAACATTCCCGCCGGAACGACCTTCCAGTACAAGTTCATCCGCAAG
GAGACGGACGGTAGCGTCGTCTGGGAGTCGGACCCCAACCGCCAGGCTACCGCGCCCGCGTCCGGTACCAC
CACGCTCACGTCCAGCTGGCGG TGA
>Thi α-amylase Proteinsequenz
MSNWVKLAALAALGVFCTAAVDARPTVFDAGADAHSLHARAPSGSKDVIIQMFEWNWDSVAAECTNFIGPA
GYGFVQVSPPQETIQGAQWWTDYQPVSYTLTGKRGDRSQFANMITTCHAAGVGVIVDTIWNHMAGVDSGTG
TAGSSFTHYNYPGIYQNQDFHHCGLEPGDDIVNYDNAVEVQTCELVNLADLATDTEYVRGRLAQYGNDLLS
LGADGLRLDASKHIPVGDIANILSRLSRSVYITQEVIFGAGEPITPNQYTGNGDVQEFRYTSALKDAFLSS
GISNLQDFENRGWVPGSGANVFVVNHDTERNGASLNNNSPSNTYVTATIFSLAHPYGTPTILSSYDGFTNT
DAGAPNNNVGTCSTSGGANGWLCQHRWTAIAGMVGFRNNVGSAALNNWQAPQSQQIAFGRGALGFVAINNA
DSAWSTTFTTSLPDGSYCDVISGKASGSSCTGSSFTVSGGKLTATVPARSAIAVHTGQKGSGGATPTSAPS
TTPTSGTVSVTFAEQATTTFGENIFLVGSISQLGNWNPASAIALSSAAYPTWSVSVNIPAGTTFQYKFIR <mark>K</mark>
ETDGSVVWESDPNRQATAPASGTTTLTSSWR*

2.3 Vergleich der waschaktiven α-Amylasen

In Tabelle 2.5 sind alle identifizierten waschaktiven α -Amylasen aufgelistet. FfoAmy, FpiAmy, RsoAmy und ThiAmy wiesen die Bindedomäne CBM20 auf. Die jeweiligen Signalpeptide hatten eine Länge von 17 bis 23 Aminosäuren. Die berechneten molaren Massen erstreckten sich von 51 kDa für α -Amylasen ohne die CBM20 bis hin zu 64,4 kDa.

a-Amylase	AS	Molare Masse	Signalpeptid	CBM20	pI
FfoAmy	589	62,0 kDa	22 AS	Ja	4,2-4,5
FpiAmy	593	64,4 kDa	17 AS	Ja	4,5
IlaAmy	480	51,0 kDa	19 AS	Nein	4,2-3,5
PsanAmy	530	57,0 kDa	17 AS	Nein	4,5
RsoAmy	536	56,4 kDa	23 AS	Ja	3,5
ThiAmy	599	63,1 kDa	23 AS	Ja	3,5

Tabelle 2.5 Zusammenfassung der identifizierten α -Amylasen. Aufgeführt sind deren Aminosäureanzahl, berechneter molare Masse, die Länge des Signalpeptides, das Vorhandensein der CBM20 sowie deren experimentell bestimmter pI.

Zur Lokalisierung konservierter Bereiche wurde ein Alignment den identifizierten α -Amylasen durchgeführt (Abbildung 2.11).

IlaAmy	MVKLTLPFVLAAVSSMAAGIVIPENSALETRSTGQSKAVIVQMFE
RsoAmy	MFE
ThiAmy	MSNWVKLAALAALGVFCTAAVDARPTVFDAGADAHSLHARAPSGSKDVIIQMFE
FfoAmy	MSPWSKLVGLTSLGALFSAAGAAPFLRSTDGHSLAARAPSTNKTVIVQIFE
FpiAmy	MW-GSLLAASALVASALAATTAEWQQRSIYQLVTDRFATSDGSSPACDTGDRVYCG
PsanAmy	ML-RLTLLASLLAASAFAASPDQWRNRSIYQLVTDRFATSDGSSPACDTSQRQYCG
IlaAmy	WTWDSIASECTNFLGPAGYGYVQTSPPQEHVTGNQWWTDYQPVSYTLTSKRG
RsoAmy	WSWDSIAAECTSFIGPAGYGYVQVSPPAEHITGSQWWTDYQPVSYILTSKRG
ThiAmy	WNWDSVAAECTNFIGPAGYGFVQVSPPQETIQGAQWWTDYQPVSYTLTGKRG
FfoAmy	WSWDSVATECTNFIGPAGYGFVQVSPPAEHIQGSQWWTDYQPVSYTLTSKRG
FpiAmy	GSWQGVINK-LDYIQYMGFDAIWISPVVKNLEGSTGDGYSYHGYWAVDQNSVNEHFG
PsanAmy	GTWQGIVKK-LDYIQNMGFDAIWISPIVANLEGNTSYGEAYHGYWTQNINALNSHFG .*:.: : .:: *:. : ** : * : :*: :.: *
IlaAmy	NRSQFANMISTCHKAGVKVIADTIFNHMTGSDSGTGVAGSSYTHYNYPGIYQNQDFHHCG
RsoAmy	SRSQFQNMITTCKAAGVGVIADTLLNHMAGIDSGTGVAGSSFTHYNYPGIYQTQDFHHCG
ThiAmy	DRSQFANMITTCHAAGVGVIVDTIWNHMAGVDSGTGTAGSSFTHYNYPGIYQNQDFHHCG
FfoAmy	NRDQFANMINTCHAAGVGVIVDTIWNHMAGVESGTGVAGSSFTHYNYPGIYQTQDFHHCG
FpiAmy	TADDLNALSSALHARGMYLMVDVVVNHMAANTLPPDYSTFTPFSSESDFHT
PsanAmy	SADDLKALSDALHKRGMYLMVDVVVNHMAGTADPPNFSAFQPFSSQSNYHS
	.:: : : *: ::.*.: ***: *:: :::*
IlaAmy	LEPNDDIVNYDNAVEVQTCQLEGLADLATDTEYVRSRLAQYGNDL-LSLGVDGLRL
RsoAmy	LESGDDIVNYSNRVEVQTCELVNLADLATDTEYVRARLATYVNDL-LSLGVVGLRL
ThiAmy	LEPGDDIVNYDNAVEVQTCELVNLADLATDTEYVRGRLAQYGNDL-LSLGADGLRL
FfoAmy	LTSGDDIVDYSSRAQVQTCELVNLADLATDTEYVRSRLAAYGNDL-LSLGADGFRL
FpiAmy	FCWITDYDNQTNVEQCWLGDSSVPLADCDTEADNVIDFFYNWIGELRANYTVDGFRI
PsanAmy	ECFISNYDNQTEVEQCWLGDKNVPLVDLDTEDTNIVSAMNTWVSTLASNFSVDGLRI * :*:*: * * * *.* *: : : : . * . *
IlaAmy	DASKHIAVTDLTNITSRLNGSPYLTQEVIYGEGEPITPNQYVGIGDVQEFRYTTALKNAF
RsoAmy	DAAKHIPAGDIANILGRLSSAPYVTQEVIYGSGEPIQPSEYTGNGDVQEFRYTSALOSAF
ThiAmy	DASKHIPVGDIANILSRLSRSVYITQEVIFGAGEPITPNQYTGNGDVQEFRYTSALKDAF
FfoAmy	DAAKHIATGDIANILSRLNSTPYISQEVIYGAGEPVTPSEYTGNGDVQEFRYTSAIKDAF

FpiAmy PsanAmy	DTLKHVRQTFWPDFQTNAGVYAVGEVFDGDVNYVSPYTEVID-GVLDYPTYYQLTSAF DTVKHVRKDFWPDFAKASGVFTIGEVLHNETDYVSAYTEVID-SVLDYPTWFPLVAAF
	*: **: :: : **: : :* :: : **
IlaAmy RsoAmy ThiAmy	LNGAINGLQSFDNLGWVSGDKANVFVTNHDTERNGAALTNSSPSNTYVLATIFS QSGGISSLNDLDSRGWVSSSNANVFVSNHDTERGGSSLNYKS-GSTYTLAHIFM LSSGISNLQDFENRGWVPGSGANVFVVNHDTERNGASLNNNSPSNTYVTATIFS
FpiAmy	ESTSGSIQNLVDVIQSAQSTYSTMLFQVATFLENQDNPRFQSLTTDQGLVKNA
PsanAmy	QTTGGNLSALSATVQQAQSAYKNGEFMTGSFLENHDQPRFQSLTQDDALIRNA :. * *: *: * *
IlaAmy	LAHPYGTVTVLSSYSGFDTNSDAGA-PNGGTGT-CSGTGGSNGWFCQHRWIA-
RsoAmy ThiAmy FfoAmy	LAYPYGTPTVLSSYT-FS-DNDAGS-PSSGAGS-CSGSGGANGWQCQHRWTA- LAHPYGTPTILSSYDGFT-NTDAGA-PNNNVGT-CSTSGGANGWLCQHRWTA- LAHPYGTPTILSSYSGFT-NTDAGA-PNGGAGT-CSGSGGSNGWLCOHRWTA-
FpiAmy	MAWPFIADGIPILYYGQEQGYTGGNDPDNREALWLSGY-EENKPLVQHARILNAARKAAI
PsanAmy	MTWPFVQDGVPIMYYGQEQSYGGGPDPANREALWLSGY-VEDKPLVKHVQAMNGARKAAI :: *: : ** * * : :* * *
IlaAmy	FQGMTAFRNTVGSAAIANWQTGQNSQIAFDRGTAG
RsoAmy	
ThiAmy FfoAmy	
FpiAmy	AASSSELSTAVTEPSVGSN-TLAASKYPLLSLLTNVGASGMPVWDVSSGTGYD
PsanAmy	SANSNYLTTAVKFLSSGSESTLAVSKPPMLALLTNGGSSSNPSWSVPS-AGFS : · · *
IlaAmy	FVAINNADSQWDATWKTGLPDGVYCNVISGVFS-SGSCSGGTVTVKNGGQIPYNLSSRNA
RsoAmy	FVVINNADSAWTRTFTTPLAANSYCDIISGAAGTSGTCTGASYT-ISGGTFTATVPARSA
FfoAmy	FVAINNADSAWSTTFTTSLPDGSICDVISGKA-SGSSCTGSSFT-VSGGKLTATVPARSA FVAINNDDSAWSTTFTTQLPDGSYCDVVSGAS-SGGNCSGTSIT-VSGGSFSATVPARSA
FpiAmy	GSVSVTG-SSGDPVILLPTSAY
PsanAmy	GGVSVQG-SAGSPQVLMPVSSL * * ·· · · · · · · · · · · · · · · · ·
IlaAmv	VAIHTNAKLS*
RsoAmy	IALFTGAIGSGSSNSGSVSISFSVYAETTFGDNIFVSGSISQLGTWAPGS
ThiAmy	${\tt IAVHTGQKGSGGATPTSAPSTTPTSGTVSVTFAEQATTTFGENIFLVGSISQLGNWNPAS}$
FfoAmy	VAIHTGAKGSSNNGGGGGDNVTVNFSVTATTTFGENIFLVGSISQLGSWNAAN
FpiAmy PsanAmy	NASYCSELTGTDSTGSSDTVSVTFEVEYNTTYGENLYLTGSVSELVDWSVDD SKSGNVCSSLATGGQASSARGWFGGAVESLPLI-AAFLLAGWAAQS
	*
IlaAmy	
RsoAmy	SIAMSSASYPTWTATVTLPAGTAFSYKYLRKTSSGTVVWESDPNRSATASSSGTLTLSDT
ThiAmy	AIALSSAAYPTWSVSVNIPAGTTFQYKFIRKETDGSVVWESDPNRQATAPASGTTTLTSS
FIOAMY FriAmy	AIALSSASIPTWTVSVSIPASTTFEIKFIKKETDGSIVWESDPNKSATTPSAGTQNLSSS ALLMSSADVPTWSLTVDLPPSTATOVKYLTKY-NCDVTWEDDPNNELTTPASGSVTOSDS
PsanAmy	SLIIV*
TlaAmv	
RsoAmy	WR*
ThiAmy	WR*
FfoAmy	WR*
FpiAmy	WH*
PsanAmy	

Abbildung 2.11 Alignment der sechs α-Amylasen aus Rso, Fpi, Thi, Ila, Ffo und Ila, welches mit Clustal Omega (European Bioinformatics Institute, Hinxton, UK) durchgeführt wurde. Aus dem Alignment geht hervor, dass sich die meisten Sequenzunterschiede im Bereich des N- und des C-Terminus befinden. Lücken innerhalb der Sequenzen treten entweder nur bei Fpi und Psan auf oder geschlossen bei Rso, Thi, Ila und Ffo. Die prozentuale Anzahl an identischen Aminosäuren zwischen den einzelnen α -Amylasen ist in Tabelle 2.6 dargestellt. Die Amylasen von Fpi und Psan unterscheiden sich von den anderen vier α -Amylasen am meisten und weisen untereinander verglichen dazu mehr identische Aminosäuren auf. Die α -Amylasen von Thi und Ffo zeigen die höchste Anzahl identischer Aminosäuren und unterscheiden sich im Vergleich zur RsoAmy in etwa der gleichen Größenordnung. Die IlaAmy zeigt zu Psan und Fpi die meisten Sequenzunterschiede und im Vergleich zu den restlichen dreien Identitäten im Bereich von 65,8 % bis ca. 69 %.

	Prozentualer Anteil der jeweils identischen Aminosäuren					
α-Amylase	IlaAmy	RsoAmy	ThiAmy	FfoAmy	FpiAmy	PsanAmy
IlaAmy	100					
RsoAmy	65,8	100				
ThiAmy	68,9	71,8	100			
FfoAmy	68,8	70,5	78,3	100		
FpiAmy	21,2	27,5	27,7	27,9	100	
PsanAmy	21,1	21,8	21,7	22,0	56,9	100

Tabelle 2.6 Darstellung der prozentual identischen Aminosäuren der einzelnen α -Amylasen untereinander in Form einer Matrix.

Zur Visualisierung der Sequenzgemeinsamkeiten wurde ein phylogenetischer Baum in Form eines Phenogramms erstellt (Abbildung 2.12). Bei dieser Abbildung zeigt sich, dass sich die Amylasen von Fpi und Psan von den restlichen α -Amylasen am meisten unterscheiden. Die vier Enzyme von Rso, Ffo, Thi und Ila bilden einen eigenen Abschnitt. Die α -Amylasen von Thi und Ffo sind sich am ähnlichsten und bilden einen gemeinsamen Ast. An diese beiden schließt sich die IlaAmy an. Den größten Sequenzunterschied innerhalb dieser Gruppe weist die RsoAmy auf. Bei diesem Vergleich ist das Vorhandensein der CBM20 unerheblich, da sowohl Psan als auch Ila diese Domäne nicht aufweisen, jedoch in unterschiedlichen Ästen zu finden sind.

Abbildung 2.12 Basierend auf dem Alignment (Abbildung 2.7) erstellter phylogenetischer Baum (Drawgram Version 3.696, www.phylogeny.fr).

2.4 Heterologe Expression der α-Amylase-Gene

Die α-Amylase-Gene von *R. solani*, *F. pinicola* und *P. sanguineus* sollten heterolog im Expressionsorganismus *K. phaffii* erfolgen. Für jedes Konstrukt wurden 94 Transformanten auf Aktivität getestet (5.2.3). Die jeweiligen Gene wurden klassisch kloniert, entweder in das pHIL-S1-Vekorsystem oder den pPIC9k Vektor. Die linearisierten Plasmide wurden entweder in *K. phaffii* GS115 (Tabelle 2.7) oder *K. phaffii* SM1168 (Tabelle 2.8) eingebracht.

Gen	Signalsequenz	Spacer	N-terminaler	Native
			His-tag	Signalsequenz
FpiAmy	α-Faktor	-	-	Х
	α -Faktor	-	-	-
PsanAmy	α-Faktor	-	-	Х
	α -Faktor	-	-	-
RsoAmy	α -Faktor	-	-	Х
	α -Faktor	-	-	-
RsoAmy	-	-	-	Х
Codon optimiert				
	α -Faktor	-	-	Х
	α -Faktor	-	-	-
	a-Faktor	-	Х	Х

Tabelle 2.7 Expressionskonstrukte für die heterologe Produktion in *K. phaffii* GS115. Eingebrachte Sequenzen sind mit einem X markiert.

α -Faktor	-	Х	-
α -Faktor	Х	Х	Х
α -Faktor	Х	Х	-
α -Faktor	Х	-	-
PHO1	-	Х	Х
PHO1	-	Х	-
Inulinase	-	Х	Х
 Inulinase	-	Х	-

 Tabelle 2.8 Expressionskonstrukte f
 ür die heterologe Produktion in K. phaffii SMD1168.

 Eingebrachte Sequenzen sind mit einem X markiert.

Gen	Signalsequenz	Spacer	N-terminaler	Native
			His-tag	Signalsequenz
RsoAmy	-	-	-	Х
Codon optimiert				
	α -Faktor	-	-	Х
	α -Faktor	-	-	-
	α -Faktor	-	Х	Х
	α -Faktor	-	Х	-

Keines der verwendeten Expressionskonstrukte (Tabelle 2.7 und Tabelle 2.8) führte zur Produktion einer aktiven heterologen α -Amylase in *K. phaffii*. Des Weiteren wurde zum Ende der Kultivierung ein Zellaufschluss durchgeführt. Es konnte ebenfalls keine intrazelluläre α -Amylase-Aktivität in einem der Konstrukte festgestellt werden.

Um einen systematischen Fehler auszuschließen, wurde ein Fusionsprotein aus einer bereits erfolgreich heterolog produzierten Laccase aus *Pleurotus pulmonarius* mit der Codon optimierten RsoAmy-Sequenz kloniert. Als Linker für beide Enzyme wurde der $3 \times GGGGS$ Linker (Elleuche, 2015) verwendet. Es konnte bereits 24 h nach der ersten Methanolinduktion eine extrazelluläre Laccase-Aktivität festgestellt werden. Diese erhöhte sich bis zum letzten Kultivierungstag nach 96 h auf 12,5 U L⁻¹. Es konnte zu keiner Zeit eine α -Amylase-Aktivität, weder extra- noch intrazellulär, detektiert werden. Eine Analyse des gereinigten heterologen Fusionsproteins mittels semi-nativer SDS-PAGE zeigte eine Bande unterhalb der erwarteten 40 kDa unter semi-nativen Bedingungen (Abbildung 2.13).

Abbildung 2.13 Coomassie gefärbte semi-native SDS-Page des His-*tag* gereinigten Fusionsproteins bestehend aus Laccase und α -Amylase (links) sowie semi-native PAGE derselben Probe mit ABTS-Aktivitätsfärbung (rechts). Pfeil zeigt die erwartete ABTS gefärbte Laccase-Bande. Elektrophoretische Trennung erfolgte bei 10 mA und 4 °C für 3 h.

Für die heterologe Produktion einer α -Amylase in *K. phaffii* GS115 oder *K. phaffii* SMD1168 wurden 20 verschiedene Expressionskonstrukte erstellt und insgesamt über 2300 Transformanten auf Enzymaktivitäten untersucht.

Da sich der Expressionswirt *K. phaffii* für die heterologe Produktion der α -Amylasen als nicht geeignet erwies, sollte mit *A. oryzae* ein neuer Expressionswirt getestet werden. Da dieser für eine hohe wirtseigene Amylase-Produktion bekannt ist und dadurch die Selektion sowie die Bestimmung der Aktivität der Transformanten erschwert ist, sollte der Stamm mutiert werden. Ziel war es, mit der CRISPR-Technik die wirtseigenen α -Amylasen zu deletieren, sodass keine Produktion dieser stattfindet.

Die Transformation wurde wie in 5.2.4.2 beschrieben durchgeführt. Nach der Selektion mit HygromycinB wurden die Transformanten drei Mal auf CDZ-Platten übersetzt. Waren diese zu ca. 75 % bewachsen, wurde Mycel für die DNA-Isolierung entnommen. Nach der anschließenden PCR (5.2.4.3) erfolgte die Sequenzierung der Genomabschnitte. Dabei wurden insgesamt 15 Transformanten partiell sequenziert. Bei keiner der Transformanten kam es zu einer CRISPR-vermittelten Mutation. Aufgrund einer fehlenden zweiten Selektionsmöglichkeit wurden keine weiteren Transformanten im besagten Genomabschnitt sequenziert.

3. Diskussion

In der vorliegenden Arbeit sollten neuartige α -Amylasen aus Basidiomycota identifiziert werden, welche sich für einen Einsatz in Waschmitteln eignen. Dazu wurden Stämme aus der Basidiomyceten-Sammlung des Instituts für Lebensmittelchemie (Hannover) in stärkehaltigem Medium kultiviert. Die Analyse der Kulturüberstände mittels Aktivitätsassays und Applikationsstudien sollte Aufschluss darüber geben, ob geeignete α -Amylasen sekretiert wurden. Es folgte eine Teilreinigung der vielversprechendsten Kulturüberstände mit einer anschließenden Identifizierung der a-Amylasen und deren korrespondierender Gensequenzen. Abschließend sollten die identifizierten Gene in einem geeigneten Wirtsorganismus über exprimiert und die daraus resultierenden Enzyme charakterisiert werden.

3.1 Screening

In dieser Arbeit wurden acht von 51 getesteten Basidiomycota identifiziert, welche eine Verbesserung der Waschleistung bei 40 °C und einer Stunde Waschzeit bei Stärkeanschmutzen herbeiführten. Es stellte sich heraus, dass diese auf die Präsenz von α -Amylasen zurückzuführen war (Abbildung 2.5). Dabei zeigte sich, dass die teilgereinigten Kulturüberstände von T. hirsuta und R. solani die besten Waschleistungen aufwiesen (Abbildung 2.7). Im Allgemeinen wiesen die verschiedenen Pilze die höchste α -Amylasen-Aktivität im Zeitraum von 48 h bis 158 h nach dem Kultivierungsbeginn auf. Die Schwankungen für den Zeitpunkt der höchsten α -Amylase-Aktivität sind darauf zurückzuführen, dass die Aktivitätslevel der verschiedenen Pilze signifikant voneinander abweichen können (Arana-Cuenca et al., 2004). Für die untersuchten Basidiomycota gab es zum Zeitpunkt dieser Arbeit keine Patente oder Veröffentlichungen mit dem Fokus auf eine Anwendung oder ein Potential von Amylasen in Waschmittelformulierungen. In der Literatur wurde mittlerweile der R. solani-Stamm AG-4 als Amylase-Produzent mit einem Potential für Waschmittelanwendungen beschrieben (Uzun et al., 2017), die identifizierte α -Amylase des LCI-Stammes R. solani-AG-3 ist jedoch bereits durch eine Patentanmeldung der Henkel AG geschützt (Mussmann et al., 2017). Des Weiteren wurden amylolytische Aktivitäten und deren Einfluss auf Wachstumsraten für T. hirsuta und P. sanguineus beschrieben (Bolhassan, 2013) ebenso wie die Sekretion von α -Amylasen für F. fomentarius (Krupodorova et al., 2014). Vier von acht waschaktiven α-Amylasen stammen von Vertretern aus der Familie der Polyporaceae und wiederum sechs der acht Basidiomycota stammen aus der Ordnung der

Polyporales. Allein den Polyporaceae gehören mehr als 1800 Arten an und bieten damit ein enormes Potential für weitere Screenings (Kirk et al., 2002). Ebenso ist diese Familie der Basidiomycota als ein Favorit für Kandidaten in Bezug auf industrielle Anwendungen beschrieben (Binder et al., 2013). Es wurden vielfach erfolgreiche Screenings für Enzyme der Polyporales durchgeführt, darunter sind unter anderem Ligninperoxidasen (Peláez et al., 1995), Laccasen (Arana-Cuenca et al., 2004), Pectinasen (Xavier-Santos et al., 2004) sowie Cellulasen und Xylanasen (Guillén et al., 2011) zu finden. Das Potential für waschaktive Enzyme aus der Ordnung der Polyporales wurde am Bespiel zweier Peroxidasen aus Bjerkandera adusta gezeigt (Linke et al., 2015). Dies begründet nochmals die Notwendigkeit, dass alle im Institut für Lebensmittelchemie vorhandenen Basidiomycota der Familie der Polyporaceae in dieser Arbeit untersucht wurden. Dass eine α -Amylase von einem Vertreter der Gattung *Pleurotus* stammt, ist wenig überraschend, da Enzyme dieser Gattung oftmals ihr Potential in industriellen Applikationen unter Beweis gestellt haben (Struch et al., 2016). Auch die mögliche Anwendung in der Detergenzindustrie ist sowohl für eine Laccase (Behrens et al., 2017) als auch für eine Peptidase (Leonhardt et al., 2016) aus Pleuroten beschrieben worden.

3.2 Molekularbiologische Identifizierung waschaktiver Amylasen

Basierend auf dem sauren isoelektischen Punkten der α -Amylasen (Tabelle 2.5) konnten diese mittels einer Anionen-Austausch-Chromatographie teilgereinigt werden (SDS-PAGE) (Freer, 1993). Nach der Analyse der Proteinbanden mittels LC-MS/MS konnten sechs α -Amylasen auf Proteinebene identifiziert werden. Im Anschluss wurden die korrespondierenden Gensequenzen erfolgreich amplifiziert (2.2). Für die Identifizierung der verbleibenden Amylasen aus P. sajor-caju und L. strygosus sollte eine mindestens zweistufige Reinigung erfolgen, um die Enzyme von Interesse weiter zu isolieren und zu konzentrieren. Eine Fällung der Proteine mittels Ammoniumsulfat mit einer anschließenden HIC-FPLC kann sehr gute Trennergebnisse liefern (Pandey et al., 2000). Im Falle von P. sanguineus könnte eine feinere Abstufung des Elutionsgradienten zu einer besseren Trennung der Proteine führen, besonders wenn man beachtet, dass die Stärke abbauende Aktivität im Vergleich zu allen anderen Kandidaten erst bei 20 % Natriumchlorid eluierte.

Nach der Separierung der teilgereinigten Kulturüberstände mittels SDS-PAGE wurden die Proteinbanden von 50 bis 120 kDa ausgeschnitten und es erfolgte eine Analyse der Proteine mithilfe der Massenspektrometrie. Es wurden dabei in sechs der acht teilgereinigten

Kulturüberstande α -Amylasen detektiert. Zusätzlich wurde in jedem Kulturüberstand eine Glucoamylase detektiert, was die Freisetzung von Glucose während der Stärkehydrolyse erklärt (Abbildung 2.5). Zum einen steigt die Produktion von Glucoamylasen mit der Freisetzung von Maltose an (Møller & Svensson, 2016), welche durch die α -Amylase aus Stärke freigesetzt wird. Zum anderen weisen Glucoamylasen eine ähnliche molare Masse verglichen mit a-Amylasen auf (Pandey, 1995; Norouzian et al., 2006). Um Glycosidierungen und deren Einfluss auf die Massenspektrometrie auszuschließen, wurden alle Proben deglycosidiert. Es ist allerdings möglich, dass nicht alle Proteine deglycosidiert wurden. Dies könnte die ausbleibenden Nachweise für α-Amylasen in den Proben von P. sajor-caju und L. strygosus erklären. Die Nachweisgrenze bei der Gelfärbung mit Coomassie kann bei glycosidierten Proteinen nach oben verschoben werden (Osset et al., 1989). Aus diesem Grund wurden die Proben zusätzlich silbergefärbt (Møller & Poulsen, 2002) und auch die nicht Coomassie gefärbten Gelbereiche in der Größenordnung von 50 -80 kDa mittels Massenspektrometrie analysiert. Ein Einfluss der möglichen Glycosidierungen auf die Massenspektrometrie durch das Auftreten von Artefakten ist allerdings nicht ausgeschlossen (Lottspeich & Engels, 2012).

Die Auswertung der Massenspektrometrie-Daten und die erhaltenen Proteintreffer erläutern jedoch nicht das Phänomen, dass in der Zymografie Stärke abbauende Enzyme bei 100 -250 kDa sowie im Bereich 50 – 75 kDa detektiert wurden. Eine gewisse Schwankung erklärt sich dadurch, dass die Proben für die Zymografie nicht deglycosidiert wurden und somit höhere molare Massen zu erwarten sind. Des Weiteren trennen sich bei der Zymografie die Proteine nicht nur nach der Größe, sondern auch nach ihrer Konformation und Ladung auf. Das Auftreten von zwei Stärke abbauenden Fraktionen in der Zymografie (Abbildung 2.3) könnte auf eine mögliche Dimerisierung Stärke abbauender Enzyme in Gegenwart ihres Substrates zurückzuführen sein (Mehta & Satyanarayana, 2013; Hameed et al., 2017). Eine Analyse mittels Massenspektrometrie konnte aufgrund der einpolymerisierten Stärke nicht durchgeführt werden. Es bleibt daher Spekulation, warum sich zwei Stärke abbauende Fraktionen in der Zymografie zeigten. Zum einen ist es möglich, dass die Inkubation über vier Stunden ausreichend war, dass auch die identifizierten Glucoamylasen viel Stärke abbauten und diese somit nicht mehr mit der Lugol'schen Lösung angefärbt wurde. Zum anderen ist es denkbar, dass die Stärke abbauenden Enzyme während der Auftrennung unterschiedlich stark mit der Stärke wechselwirkten und sich dadurch eine Trennung ergab. Des Weiteren sind synergistische Effekte zwischen den α -Amylasen und den Glucoamylasen

nicht auszuschließen. Während der elektrophoretischen Trennung kann das Substrat durch die α -Amylasen teilweise abgebaut worden sein. Dies würde die leichte Aufhellung im Bereich der Laufbahnen erklären. Eine Trennung von Glucoamylasen und α -Amylasen ist aufgrund der sehr ähnlichen isoelektrischen Punkte als auch der in etwa gleich großen molaren Massen schwierig.

Auf Grundlage der Ergebnisse der Massenspektrometrie konnten die verschiedenen de novo sequenzierten Peptide in sechs Fällen passenden α -Amylasen zugeordnet werden. Mittels Genominformationen wurden die korrespondierenden Gene von cDNA amplifiziert und mit Sangersequenzierungen verifiziert. Dabei traten Unterschiede zwischen den Genomdaten und den Sequenzierungsergebnissen von 1 % bis 37 % auf. Die hohe genetische Vielfalt ist zum einen auf den Lebenszyklus der Basidiomycota zurückzuführen (Wallen & Perlin, 2018), zum anderen hat aber auch der Fundort der einzelnen Pilze einen Einfluss auf die genetische Diversität. So wurden genetische Unterschiede für den Basidiomyceten Schizophyllum commune gezeigt, bei denen jeweils zwölf Pilzisolate aus den USA und zwölf weitere aus Europa stammten (Baranova et al., 2015). Der Basidiomycet R. solani weist ebenfalls eine hohe genetische Varianz auf. Zum einen unterteilt sich diese Art in acht verschiedene Stämme, wobei nicht alle Stämme miteinander kompatibel sind (Fiers et al., 2011). Dies wiederum eröffnet die Diskussion, ob es sich bei den R. solani Stämmen überhaupt um eine gemeinsame Art handelt. Die natürliche Mutationsrate wurde ebenfalls untersucht, die die Sequenzabweichungen zwischen Genomdaten und den erhaltenen Sequenzierungsergebnissen erklärt (Clark & Anderson, 2004). Es konnte zudem festgestellt werden, dass die Populationen mit einer höheren genetischen Varianz und der dikaryotischen Lebensweise die größere Fitness aufwiesen (Clark & Anderson, 2004). Speziell α -Amylasen, die nicht essentiell für den Metabolismus, aber vorteilhaft für das Überleben sind, weisen oft mehrere Kopien in einem Genom auf (Chen et al., 2012). Dies hat zur Folge, dass sich Mutationen nur dann durchsetzen, wenn die daraus resultierenden Unterschiede des Proteins sich positiv auf Parameter wie Stabilität oder pH-Optimum auswirken (Erjavec et al., 2012). Auch wenn α -Amylasen konservierte Bereiche aufweisen, so liegt die Sequenzidentität bei den restlichen Aminosäuren nur bei 10 % (Janecek, 1994). Selbst hochkonservierte Bereiche wie die ITS – Genomabschnitte weisen eine Variation bis zu 17,3 % auf (Nilsson et al., 2008).

Der Vergleich der sechs identifizierten α -Amylasen zeigt, dass vier Enzyme (RsoAmy, ThiAmy, FfoAmy, FpiAmy) eine CBM20 aufweisen (Tabelle 2.5). Die natürliche

Auftrittswahrscheinlichkeit liegt jedoch bei 10 % (Machovic & Janecek, 2006). Dies lässt vermuten, dass es einen positiven Einfluss dieser Domäne auf den Stärkeabbau auf Stoffen geben kann. Zudem sind die identifizierten CBMs sehr konserviert (Abbildung 3.1). Diese Akkumulation nach einem Screening von über 50 Basidiomycota lässt den Rückschluss auf eine verbesserte Bindung an die Stärkeverschmutzung zu. Es wurde gezeigt, dass Enzyme mit dieser Domäne Stärkekörner abbauen können (Jia *et al.*, 2017). Die Zugänglichkeit von Enzym und Anschmutzung ist entscheidend für die Verbesserung des Waschprozesses. Um die Aktivität von Enzyme zu verbessern, wurde diese Domäne bereits erfolgreich an amylolytische Enzyme ohne eine CBM-Domäne fusioniert (Walker *et al.*, 2015). Die Fusion der CBM20 mit einer Glycosyltransferase zeigte signifikante Verbesserungen der katalytischen Effizienz. Neben der Erhöhung der spezifischen Aktivität, konnte ebenso die Bindung an Stärkekörner verbessert werden (Jia *et al.*, 2017). Darüber hinaus konnte gezeigt werden, dass bei der heterologen Produktion einen Enzyms mit CBM21 eine kostengünstige Reinigung für technische Enzyme möglich ist (Lin *et al.*, 2009).

FpiAmy RsoAmy FfoAmy ThiAmy	VSVTFEVEYNTTYGENLYLTGSVSELVDWSVDDALLMSSADYPTWSLTVDLPPSTAIQYK VSISFSVYAETTFGDNIFVSGSISQLGTWAPGSSIAMSSASYPTWTATVTLPAGTAFSYK VTVNFSVTATTTFGENIFLVGSISQLGSWNAANAIALSSASYPTWTVSVSIPASTTFEYK VSVTFAEQATTTFGENIFLVGSISQLGNWNPASAIALSSAAYPTWSVSVNIPAGTTFQYK *::.* **:*::: **:*:* * .:: :*** ****: :* :* .*:.**	60 60 60 60
FpiAmy	YLTKY-NGDVTWEDDPNNELTTPASGSVTQSDSWH 94	
RsoAmy	YLRKTSSGTVVWESDPNRSATASSSGTLTLSDTWR 95	
FfoAmy	FIRKETDGSIVWESDPNRSATTPSAGTQNLSSSWR 95	
ThiAmy	FIRKETDGSVVWESDPNRQATAPASGTTTLTSSWR 95 :: * .* :.**.*** *: ::*: . :.:*:	

Abbildung 3.1 Sequenzalignment der vier identifizierten CBM20 ohne deren Schleifenstruktur zwischen der Domäne C und der eigentlichen CBM20.

Die Vorhersage von 3D-Modellen ist für die Verbesserung von Stabilität, Aktivität und Spezifität essentiell (Berman *et al.*, 2000). Für die Voraussage von Proteinstrukturen muss mindestens eine Sequenzidentität von 25 % vorliegen (Dolan *et al.*, 2012). Diese Sequenzidentitäten weisen alle sechs identifizierten α -Amylasen auf (Tabelle 2.6), sodass deren 3D-Strukturen miteinander verglichen werden können. Für die Vorhersage wurde die Plattform I-TASSER verwendet (Roy *et al.*, 2010). Da RsoAmy und PsanAmy zueinander die größten Sequenzunterschiede aufweisen, wurden deren Strukturen miteinander verglichen (Abbildung 3.2).

Abbildung 3.2 Überlagerung der 3D-Modelle von Psan (blau) und Rso (gold). Die Pfeile zeigen strukturelle Unterschiede der PsanAmy zur RsoAmy. Diese nach außen ragenden Strukturen zeigt die RsoAmy nicht. Zudem weist die RsoAmy die CBM20 auf.

Die Überlagerung der 3D-Modelle von Rso und Psan, welche sich sowohl in dem Vorhandensein der CBM20 als auch in 78 % der Aminosäuren unterscheiden, zeigt, dass die Struktur der α -Amylasen dennoch sehr konserviert ist (Abbildung 3.2). Die typischen Domänen A, B und C sind deutlich zu erkennen und überlagern sich sehr stark.

Für eine Erfindungsmeldung müssen Amylasen 70 % Sequenzidentität zu der Amylase AA560 aufweisen (Svendsen *et al.*, 2010; Mussmann *et al.*, 2017). Für einen Vergleich der ThiAmy und RsoAmy mit einer bereits patentierten α -Amylase mit Bezug zur Detergenzapplikation wurden sowohl ThiAmy (blau) als auch RsoAmy (gold) an eine α -Amylase (rosa) aus dem Patent EP2264160 (Sequenz 11, Svendsen *et al.*, 2010) mittels UCSF Chimera 1.11.2 verglichen (Abbildung 3.3). Die Referenzamylase (rosa) stammt aus *Bacillus* sp. und weist keine Stärke bindende Domäne auf (Sequenz 11, Svendsen *et al.*, 2010). Für eine bessere Übersichtlichkeit wurden daher die CBM20 von RsoAmy und ThiAmy ausgeblendet. Zusätzlich wurden die für α -Amylasen bekannten Domänen A, B und C markiert. In der Struktur der Domäne A, welche das aktive Zentrum beinhaltet, zeigte sich eine sehr konservierte Struktur der drei Amylasen. Die Domäne C wies ebenfalls eine sehr hohe Deckung der Proteinstrukturen auf, wobei die äußerste Schleife der Referenzamylase weiter nach außen gefaltet ist. Die größten Unterschiede waren in den Strukturen der Domäne B vorhanden. Diese bildet zum Teil die Substratbindetasche. RsoAmy und ThiAmy zeigten

eine sehr hohe Deckung der Strukturen, während die Referenzamylase mehr β -Faltblätter und größere Schleifenstrukturen aufwies.

Abbildung 3.3 Überlagerung der RsoAmy (gold), ThiAmy (blau) und AA560 α -Amylase (rosa) (HI973417.1). Da die AA560 α -Amylase keine CBM20 aufweist, wurden diese für eine bessere Übersicht von RsoAmy und ThiAmy ausgeblendet. Die α -Amylase Domänen A, B und C wurden markiert.

Der Vergleich der Strukturen der ThiAmy, RsoAmy mit der Referenzamylase kann Ansatzpunkte für Mutation bieten. Nachträglich herbeigeführte Mutationen können die 3D-Struktur maßgeblich verändern. Die Möglichkeit, Aminosäuresequenzen mittels zielgerichteter Mutationen zu verändern, zielt auf die Erhöhung der Spezifität, Stabilität, Aktivität, Löslichkeit und Produktion von Proteinen ab (Winkler & Kao, 2014). Oftmals werden durch gerichtete Mutationen die Anreicherung von Disulfidbrücken oder die Veränderung der posttranslationalen Modifikationen wie Glycosidierungen angestrebt. Ebenso werden nach außen ragende *Loop*-Strukturen gekürzt und im Allgemeinen ein kompakteres Enzym bevorzugt, um die Thermophilie zu erhöhen. Negativ geladene Aminosäurereste erhöhen die Aktivität bei höheren Temperaturen ebenfalls (Vojcic *et al.*, 2015). Wird ein patentiertes Enzym gentechnisch verändert, ergeben sich zwangsläufig Änderungen in der Proteinstruktur. Eine Identifizierung derzeit in Waschmittel befindlicher Enzyme kann angelehnt an Gaubert *et al.* (2016) mittels LC-MS/MS erfolgen. Das Vorhandensein der CBM20 bei vier von sechs identifizierten α -Amylasen weist auf deren Einfluss bei der Verbesserung des Wascheffektes hin. Die Aminosäuresequenz der vier identifizierten CBM20 zeigte viele identische oder ähnliche Aminosäuren (Abbildung 3.1).

Die Ähnlichkeiten in den Aminosäuresequenzen führen zu einer konservierten Struktur dieser Domäne (Abbildung 3.4). Da alle identifizierten CBM20 eine nahezu identische Struktur aufweisen, kann ein positiver Einfluss auf den Wascheffekt postuliert werden. Die RsoAmy, ThiAmy, FpiAmy und FfoAmy unterscheiden sich in der Länge und Struktur der Aminosäuresequenz zwischen der CBM20 und der Domäne C (Abbildung 3.4).

Abbildung 3.4 Überlagerung der vier identifizierten CBM20 sowie deren angehängte Schleifenstruktur bis zur Domäne C der jeweiligen Amylase. RsoAmy (blau), ThiAmy (gold), FfoAmy (rosa), FpiAmy (grün).

Die Unterschiede zwischen den einzelnen Schleifen können verschiedene Ursachen haben (Abbildung 3.4). Die Erstellung der Modelle wurde mit mehreren Algorithmen berechnet, und die Ausbildung der Struktur ist abhängig von der Proteinstruktur der Domäne C (Roy *et al.*, 2010). Da die C-Domänen sich zwischen den einzelnen Amylasen unterscheiden, führt das bei der Berechnung der frei beweglichen Schleifen zu Abweichungen. Zudem weisen die Aminosäuresequenzen zwischen der Domäne C und der CBM20 unterschiedliche Längen auf. Dieses beeinflusst ebenfalls die freie Ausrichtung der Schleifen. Zudem führen Sequenzunterschiede zu unterschiedlichen Strukturen. Da die ThiAmy und die RsoAmy sowohl eine lange als auch eine kürzere Aminosäuresequenz zwischen der Domäne C und der CBM20 aufweisen und diese die besten Waschleistungen zeigten, lässt die Länge der Schleifenstruktur kein direkten Rückschluss auf die Waschleistung zu.

Die Waschversuche und die Vergleichstests, vor allem beim Kooperationspartner Henkel AG & Co. KGaA, zu etablierten und sequenzoptimierten Enzymen zeigt das enorme Potential der α -Amylasen aus Basidiomycota. Zielgerichtete Mutationen, wie sie bereits beschrieben worden sind, können die Waschleistung der α -Amylasen weiter verbessern. So zeigten Yang *et al.* (2013) am Beispiel der α -Amylase von *B. subtilis* und deren Mutation der Histidine His275, His293 und His310 zu Asparaginsäure eine Verbesserung des kcat/Km-Wertes um das 16-fache.

3.3 Versuche zur Heterologen Expression

Die heterologe Produktion der identifizierten α -Amylasen RsoAmy, PsanAmy und FpiAmy sollte in K. phaffii durchgeführt werden. Gründe waren zum einen ein fehlgeschlagener Expressionsversuch einer Glucoamylase aus R. solani in Escherichia coli und zum anderen die zum Zeitpunkt der Arbeit höhere Anzahl an Publikationen von Enzymen in K. phaffii verglichen zu E. coli. K. phaffii war früher unter dem Namen Pichia pastoris bekannt. Die Art wurde jedoch bereits 1995 zu Komagataella geändert (Yamada et al., 1995). 2005 wurde K. phaffii noch einmal unterteilt. Die Isolate französischen Ursprungs wurden zu K. pastoris klassifiziert. Die in dieser Arbeit verwendeten amerikanischen Isolate (GS115 und SMD1168) wurden K. phaffii zugeordnet (Kurtzman, 2005). K. phaffii weist im Gegensatz zu E. coli einen Glycosidierungsapparat auf. Der signifikante Einfluss von Glycosidierungen wurde beispielsweise an einer Laccase aus *Lentinus* sp. gezeigt. Die mutierte Laccase, welche einen durch Punktmutation herbeigeführten Wegfall einer Glycosidierungsstelle aufwies, zeigte nur noch 5 – 40 % Aktivität im Vergleich zur Wildtyp-Variante (Maestre-Reyna *et al.*, 2015). Das pPIC9 und PHIL-S1 Vektorsystem wurde gewählt, da beide mit dem AOX1 Promotor, einem induzierbaren und sehr gut beforschten Promotor, versehen sind. Dieser wird bereits erfolgreich seit 1985 verwendet (Cregg et al., 1985; Piva et al., 2017; Zahrl et al., 2017). Die induzierbare Expression hat den Vorteil, dass die Wachstumsphase unabhängig von der Phase der heterologen Produktion ist. Zudem wird der AOX1 Promotor durch Glucose sehr stark reprimiert, sodass keine ungewollte Expression stattfindet. Des Weiteren ist durch die Kultivierung in YEPD für 72 h eine hohe Zellzahl garantiert (Ahmad et al., 2014; Zahrl et al., 2017). Es konnte keine aktive α -Amylase heterolog mit dem pPIC9 Vektorsystem produziert werden. Um ein Ausbleiben der heterologen Produktion aufgrund der codon usage oder starker Sekundärstrukturen der mRNA auszuschließen, wurde die

Sequenz der RsoAmy für K. phaffii Codon optimiert. Dies führte zu einer Reduktion des GC-Anteils. Zusätzlich wurden die von K. phaffii präferierten Codon-Tripletts gewählt. Bereits Wang et al. (2015) zeigten, dass eine Anpassung der codon usage die Ausbeute des rekombinanten Proteins um das bis zu 2,6-fache steigern kann. Da auch die Anpassung der RsoAmy-Sequenz nicht die erwarteten Ergebnisse brachte, wurde das Signalpeptid ausgetauscht. Der α -Faktor, welcher zu einem posttranslationalen Transport ins Endoplasmatische Retikulum (ER) führt, wurde gegen die wirtseigene saure Phosphatase-Signalsequenz (PHO1) ersetzt (pHIL-S1 Vektor, Abbildung 5.4). Diese führt zu einem cotranslationalem Transport. Dadurch muss es zu keinem Einsatz von Chaperonen im Cytoplasma kommen, um eine Fehlfaltung des translatierten heterologen Proteins zu verhindern. Zudem wird durch die Verwendung eines anderen Signalpeptides das heterologe Protein nicht von der Kex2p Peptidase prozessiert (Govindappa et al., 2014). Die Aminosäureabfolge EAEA des α -Faktors muss zudem von der STE13 Peptidase prozessiert werden. Dieser Vorgang kann vom N-Terminus des heterologen Proteins allerdings inhibiert werden (Ahmad et al., 2014). Auch die Versuche mit dem PHO1-Signalpeptid führten nicht zu einer erfolgreichen Produktion des Proteins, ebenso wenig wie die Verwendung des Inulinase-Signalpeptids sowie der Produktionsversuch lediglich mit dem nativen Signalpeptid der RsoAmy. Da in der Arbeitsgruppe bereits erfolgreich basidiomycetische Enzyme mit dem Zusatz einer Kozak-Sequenz produziert werden konnten (Kelle et al., 2014; Leonhardt et al., 2016), wurde diese Sequenz als Zwischensequenz vor die CDS des Codon optimierten RsoAmy-Gens kloniert. Bei diesen Varianten blieben ebenfalls die erwarteten Ergebnisse aus.

Um einen systematischen Fehler bei den Expressionsversuchen mit *K. phaffii* auszuschließen, wurde vor die Codon-optimierte RsoAmy-Sequenz das Gen einer bereits erfolgreich heterolog produzierten Laccase kloniert (Behrens *et al.*, 2017). Es konnte jedoch nur eine Laccase-Aktivität und keine amylolytische Aktivität detektiert werden. Eine Analyse des His-*tag* gereinigten Fusionsproteins (Abbildung 2.13) zeigte, dass der größte Teil des heterologen Proteins kleiner war als erwartet. Es war nur eine schwache Bande bei der erwarteten molaren Masse zu erkennen. Dies erklärt auch die geringe Aktivität im Vergleich zur Publikation von Behrens *et al.* (2017). Ein unvollständiges Vorliegen des Fusionsproteins kann mehrere Ursachen haben. Zum einen kann es aufgrund von ungünstigen Sekundärstrukturen der mRNA unvollständig translatiert worden sein (Ahmad *et al.*, 2014; Madhavan *et al.*, 2017). Zum anderen ist es möglich, dass das heterologe Protein

nach der Translation und während des Transports durch Peptidasen prozessiert und dadurch in der Peptidlänge gekürzt wurde (Puxbaum et al., 2015). Madhavan et al. (2017) meinten, dass der größte Nachteil des Screenings die heterologe Produktion sei. So ist aufgrund der gewählten Vektoren ein Problem mit der Promotorerkennung zwar ausgeschlossen, da jeweils nur die Gene von Interesse hinter den vielfach verwendeten AOX1 Promotor kloniert wurden. Die Ineffizienz der Translation, die mögliche Fehlfaltung der Proteine sowie die gehinderten posttranslationalen Modifikationen bleiben jedoch Fehlerquellen bei der heterologen Expression. Die heterologe Produktion des Fusionsproteins resultierte in einem produzierten Enzym, welches größtenteils eine niedrigere molare Masse aufwies, als erwartet wurde (Abbildung 2.13). Bei der heterologen Produktion von Proteinen kann es zu einer Überladung des ERs kommen. Dabei können nicht korrekt gefaltete Proteine die unfolded protein response (UPR) auslösen. Diese geht sehr oft mit der ER-associated degradation (ERAD) einher (Hohenblum et al., 2004; Puxbaum et al., 2015). Im ER bindet das Protein Kar2 ungefaltete oder nicht korrekt gefaltete Proteine (Abbildung 3.5). Liegen keine oder nur sehr wenige ungefaltete Protein im ER vor, ist das Protein Kar2 an der Endoribonuklease Ire1 assoziiert. Löst sich dieser Proteinkomplex, da sich ungefaltete Proteine im ER akkumulieren, wird Ire1 autophosporyliert und somit aktiviert. Diese spalten die im Cytoplasma befindliche HAC1 mRNA, sodass der Transkriptionsfaktor translatiert werden kann (Zahrl et al., 2017). Dieser induziert die Expression von UPR-Genen, welche für Chaperone codieren. Erhöht sich die Anzahl von Faltungshelfern im ER und verringert sich die Anzahl der nicht gefalteten Proteine, ist Kar2 wieder an Ire1 gebunden, welches somit inaktiviert wird. Ist Kar2 zu lange an einem Protein gebunden wird die ERAD ausgelöst. Das nicht korrekt gefaltete Protein wird in das Cytosol transportiert, wo eine Ubiquitinierung des Proteins stattfindet. Dieses löst einen Transport ins Proteasom aus, wo das falsch gefaltete Protein schließlich abgebaut wird (Puxbaum et al., 2015).

Abbildung 3.5 Einfluss der Methanolzugabe (MeOH) auf die Zelle. MeOH aktiviert zum einen Transkriptionsfaktoren, die an den *AOX*1 Promotor binden und die Expression der Alkoholoxidasegene 1 und 2 zur Folge hat. Des Weiteren ist der Abbau von MeOH in den Peroxisomen gezeigt. Neben dem Nukleus ist der ER dargestellt. Kommt es in Folge einer MeOH induzierten Expression zu einer Akkumulation von ungefalteten Proteinen im ER, bindet Kar2 an diese. Ist dieses nicht mehr an Ire1 assoziiert, wird Ire1 autophosphoryliert und kann die im Cytosol befindliche mRNA des Hac1 Gens spließen. Das translatierte Protein aktiviert im Zellkern zusätzlich die Expression weiterer Faltungshelfergene, sodass die Anzahl ungefalteter Proteine im ER abnimmt, bis Kar2 wieder frei wird und an Ire1 binden kann (Vogl & Glieder, 2013).

Es ist demnach möglich, dass die geringe Konzentration an heterologem Fusionsprotein und das Ausbleiben einer Produktion einer einzelnen α -Amylase auf die UPR und den ERAD zurückzuführen sind.

Die heterologe Überexpression kann zu einer Überladung des ERs führen, welche durch die Aktivierung von *HAC*1 nicht bewältigt werden kann. Daher wurde bereits mehrmals *HAC*1 erfolgreich überexprimiert, sodass die Anreicherung von nicht gefaltetem heterologen Protein im ER ausbleibt (Ahmad *et al.*, 2014; Zahrl *et al.*, 2017). Es wurde aber auch gezeigt, dass die Überexpression von Faltungshelfern zu einer Reduzierung der Sekretion führen kann oder gar keinen Effekt hat (van der Heide *et al.*, 2002). Die Veränderung der Hydrophobizität eines Enzyms kann ebenso einen Einfluss auf den ERAD-vermittelten Proteinabbau haben (Puxbaum *et al.*, 2015). Um eine erfolgreiche heterologe Produktion zu erzielen, wäre es denkbar, Punktmutationen durchzuführen, welche die Löslichkeit des Zielenzyms erhöhen. Dies führte beispielsweise bei der Mutation der α -Amylase aus *Bacillus licheniformis* und der anschließenden Produktion in *E. coli* zu einer zweifach erhöhten Ausbeute (Wang *et al.*, 2016). Neben dem ERAD-vermittelten Abbau der heterologen α -Amylasen kann auch eine

Fehlleitung des Enzyms zur Vakuole und dem damit verbundenen Abbau stattgefunden haben (Zahrl *et al.*, 2017).

Die Degradation der heterologen Proteine kann ebenso unabhängig von den Vorgängen im ER stattgefunden haben. Es kann zur Proteolyse während des Vesikeltransports gekommen sein (Werten & Wolf, 2005; Ahmad et al., 2014). Der letzte Schritt der Sekretion, die Fusion des Transportvesikels mit der Zellmembran, endet mit der Diffusion des Proteins durch die Zellmembran. Diese kann eine Barriere darstellen, muss es jedoch nicht (Zahrl et al., 2017). Wäre eine heterologe Amylase in der Zellmembran verblieben, hätte Aktivität nach dem Zellaufschluss erwartet werden können. Es ist allerdings möglich, dass an der Zellmembran assoziierte Peptidasen das Enzym abgebaut haben. Die Peptidase pep4 gehört zu diesen protelytisch aktiven Enzymen an der Zellmembran. Der K. phaffii Stamm SMD1168 ist eine knockout-Variante, bei dem das korrespondierende Gen der pep4 mutiert wurde. Um auszuschließen, dass die heterologe RsoAmy durch die pep4 abgebaut wurde, wurden Expressionsversuche in SMD1168 durchgeführt (Tabelle 2.8). Diese führten nicht zu einer heterologen Produktion der RsoAmy. Da nur eine Membran assoziierte Peptidase in dem SMD1168 Stamm entfernt wurde, ist ein Abbau an der Membran theoretisch noch möglich. Die Ursache für das Ausbleiben der heterologen Amylasen scheint jedoch eher im ER oder Cytosol zu liegen. Es ist denkbar, dass die mRNA der RsoAmy nicht vollständig translatiert wird und das Fusionsenzym daher kleiner als erwartet ist. Ebenso ist ein ungewollter Abbau der Amylasen im ER möglich oder eine Spaltung des Fusionsproteins durch proteolytische Aktivitäten.

Da die heterologe Produktion einer waschaktiven α -Amylase in *K. phaffii* fehlschlug, wurde ein neuer Expressionswirt ausgewählt. Dieser sollte den Ursprungsorganismen der α -Amylasen phylogenetisch näher sein, weshalb *A. oryzae* ausgewählt wurde. Dieser Wirt ist eine der Hauptquellen für die industrielle Herstellung von α -Amylasen und zudem vollständig sequenziert. Des Weiteren ist *A. oryzae* als Expressionswirt etabliert (Lubertozzi & Keasling, 2009). Da dieser für seine hohe wirtseigene α -Amylase-Produktion bekannt ist (Gopinath *et al.*, 2017), sollte *A. oryzae* mit der CRISPR-Technik mutiert werden. Ziel dabei waren die beiden α -Amylasegene, sodass ein Screening späterer Transformanten erleichtert wäre. Grundlage dieses Versuchs war die Publikation von Nødvig *et al.* (2015). Die getesteten Transformanten zeigten keine Mutationen in den gewünschten Genabschnitten. Der ausbleibende Erfolg kann auf die zu geringe Anzahl sequenzierter Transformanten zurückzuführen sein. Zusätzlich besteht die Möglichkeit der Mutation von nichtZielsequenzen, welche nur durch eine vollständige Genomsequenzierung nachweisbar wären. Mutierte nicht-Zielsequenzen wurden bereits beschrieben, ebenso Methoden diese zu minimieren (Kadam *et al.*, 2018; Yin *et al.*, 2018). Nicht-Zielsequenzen könnten begünstigt sein, da das zugrunde liegende Genom für die Suche des *Protospacers* nicht das von *A. oryzae* selbst war. Aufgrund des Mangels des in die verschiedenen Online-Programme geladenen Genoms musste auf das von *A. niger* zurückgegriffen werden. Die Eingabe der Zielsequenz stammte jedoch von *A. oryzae*. Das Experiment sollte wiederholt werden, wenn in den Online-Programmen zur Bestimmung der *Protospacer*-Sequenz das Genom von *A. oryzae* aufgenommen wurde. Zusätzlich empfiehlt es sich für einen erneuten Versuch ein Zielgen zu wählen, welches einen morphologischen Effekt hat oder ein Reportgen zu inserieren, um die Genveränderung in der Zielsequenz leichter zu selektieren. Denkbar wären hier Resistenzgene oder Reporterproteine wie eGFP oder dsRED.

4. Ausblick

Die in dieser Arbeit erzielten wissenschaftlichen Erkenntnisse zeigen das umfassende Potential von Basidiomycota zur Sekretion von waschaktiven α -Amylasen auf und eröffnen eine Vielfalt an möglichen Anschlussarbeiten. Neben der Identifizierung der waschaktiven α -Amylasen aus Lst und Psaj könnten sich diese in erster Linie mit der heterologen Expression der Amylasen beschäftigen. Dazu kann wiederum die gentechnische Veränderung von A. oryzae mittels CRISPR in den Fokus geraten, um zum einen die Expression der wirtseigenen Amylasen per Gen-knock-out zu verhindern und somit eine erleichterte Selektion der erfolgreich generierten Transformanten zu erzielen. Zum anderen könnten weitere Peptidase-Gene deletiert werden, sodass eine wirtseigene Produktion dieser verringert wird oder gar ausgeschlossen werden kann. Die Selektion der Transformanten mit einem Reportergen oder der Insertion einer Resistenz mit anschließender Selektion würden sich dazu anbieten. Wenn die heterologe Expression basidiomycetischer Amylase-Gene etabliert ist, kann die Charakterisierung resultierenden Enzyme und ihrer CBM20 Aufschluss geben, inwieweit diese das Waschergebnis beeinflusst. Dazu könnten darüber Deletionsvarianten der α -Amylasen mit CBM20 kloniert werden und die Waschleistung der Enzyme mit und ohne diese Bindedomäne direkt verglichen werden. Alternativ können die verschiedenen Bindedomänen an ein oder mehrere α -Amylase-Gene fusioniert werden, um somit die Bindeunterschiede der jeweiligen Domänen zu charakterisieren und zu vergleichen. Zeigt sich ein positiver Effekt einer oder mehrerer CBM20-Domänen, können diese ebenfalls an andere waschaktive Enzyme wie Peptidasen oder Lipasen fusioniert werden. So kann getestet werden, ob bessere Waschleistungen generiert werden. Für die weitere Auswahl, welche der sechs identifizierten α -Amylasen sich am besten für den Einsatz in einem Waschmittel eignen, müssen diese biochemisch charakterisiert und verglichen werden. Dazu gehören neben der Bestimmung des Temperatur- und pH-Optimums auch verschiedene Stabilitätsversuche, vor allem in Gegenwart von Waschmittelformulierungen.

5. Material und Methoden

5.1 Material

5.1.1 Chemikalien und Reagenzien

Die in dieser Arbeit verwendeten Chemikalien wurden von den Firmen AppliChem GmbH (Darmstadt), Carl Roth GmbH & Co KG (Karlsruhe), Merck (Darmstadt), Serva Electrophoresis GmbH (Heidelberg) und Sigma-Aldrich (St. Louis, MO, USA) bezogen. Abweichende Hersteller werden im Folgenden angegeben.

5.1.2 Verwendete Puffer und Lösungen

Sämtliche Puffer und Medien (Tabelle 5.1) wurden mit zweifach demineralisiertem Wasser angesetzt, welches mit dem Reinstwassersystem Synergy (Millipore, Darmstadt) aufbereitet wurde. Die Einstellung der pH-Werte erfolgte mit dem pH-Meter 827 pH lab (Metrohm, Filderstadt).

Puffer bzw.	Zusammensetzung	Anwendungsbereich
Lösung		
50x TAE-Puffer	2 M Tris Ultra Pure, 50 mM EDTA,	Agarosegelelektrophorese
	pH 8, 5,71 % Essigsäure	
Roti TM –Gelstain	10 % (v/v) Stammlösung in H_2O	Agarosegelelektrophorese
Färbelösung (Carl		
Roth GmbH & Co		
KG (Karlsruhe))		
dNTP-Mix	je 2,5 mM dATP, dTTP,	PCR
(Thermo Scientific)	dCTP, dGTP	

Tabelle 5.1 Puffer und Lösungen.

5.1.3 Verwendete Medien

Für die Kultivierung der Pro- und Eukaryoten kamen unterschiedliche Medien zum Einsatz. Deren Zusammensetzung ist in Tabelle 5.2 aufgelistet. Die Medien wurden mittels eines Dampfautoklaven für 20 min und 121 °C sterilisiert. Aufgrund der Hitzeinstabilität der Antibiotika (Tabelle 5.3), wurden diese nach dem Autoklavieren unter sterilen Bedingungen zu den Medien gegeben. Für die Herstellung von Festmedien wurde diesen vor dem Autoklavieren 1,5 % (w/v) Agar-Agar hinzugegeben.

Medium	Zusammensetzung	Anwendungsbereich
LB-Medium (Luria-Bertani)	1 % (w/v) Trypton	Anzucht von E. coli
	0,5 % (w/v) Hefeextrakt	
	1 % NaCl; pH 7,0	
YPD	1 % (w/v) Hefeextrakt	Anzucht von K. phaffii
	2 % (w/v) Pepton	
	2 % (w/v) Dextrose	
BMMY	1 % (w/v) Hefeextrakt	Anzucht von K. phaffii
	2 % (w/v) Pepton	
	100 mM Kaliumphosphat-	
	Puffer pH 6,0	
	1,34 % YNB	
	4 x 10 ⁻⁵ % Biotin	
	1 % (v/v) Methanol	
SNL	3 % (w/v) Glucose	Kultivierung Basidiomycota
	0,45 % (w/v) Asparagin	
	0,3 % (w/v) Hefeextrakt	
	0,15 % (w/v) KH ₂ PO ₄	
	0,05 % (w/v) MgSO ₄	
	0,1 % (v/v) Spurenelement-	
	Lösung	

 Tabelle 5.2 Zusammensetzung sowie Anwendungsbereich der Medien.

 Madium
 Zusammensetzung an getzung getzung

5.1.4 Antibiotika

Für die Anzucht der E. coli–Zellen wurde Ampicilin verwendet (Tabelle 5.3).

Tabelle 5.5 Emgesetztes Antibiotikum zur Selektion der Dakterien.			
Antibiotikum	Lösungsmittel	Stammkonzentration	Arbeitskonzentration
Ampicilin	H ₂ O	100 mg mL ⁻¹	100 µg mL ⁻¹

Tabelle 5.3 Eingesetztes Antibiotikum zur Selektion der Bakterien.

5.1.5 DNA und Protein Längenstandards

Die verwendeten DNA- und Protein-Größenstandards sind in Abbildung 5.1 und Abbildung 5.2 aufgeführt.

Abbildung 5.1 verwendeter DNA Längenstandard. GeneRuler 1 kb DNA Ladder (Thermo Scientific).

a sector of	– 250 kD	
	- 150	
-	- 100	100
-	- 75	- 75
_	- 50	- 50
-	- 37	- 37
=	- 25 - 20	<u> </u>
-	- 15	- 15
-	- 10	- 10

Abbildung 5.2 Proteinstandards der Firma Bio-Rad (Hercules, Kalifornien). Links der vorgefärbte Precision Plus Protein[™] Dual Color Standard (Biorad, Hercules, Kalifornien), rechts der Precision Plus Protein[™] Unstained Protein Standard (Biorad, Hercules, Kalifornien).

5.1.6 Verwendete Oligonukleotide

Alle für die Versuchsdurchführungen verwendeten und durch die Firma Eurofins Genomics GmbH (Ebersberg) synthetisierten Oligonukleotide sind in Tabelle 5.4 aufgeführt.

Bezeichnung	Sequenz $(5' \rightarrow 3')$	Bemerkung
Rso_for	ATGTTTGAGTGGTCATGGGATAG	Vorwärtsprimer RsoAmy
	TATT	
Rso_rev	TCACCGCCAAGTATCGCTAAGC	Rückwärtsprimer RsoAmy
	GTC	
Fpi_for	ATGTGGGGGCAGCCTTCTCGCAG	Vorwärtsprimer FpiAmy
Fpi_rev	TCAATGCCAGCTGTCGCTCTGCG	Rückwärtsprimer FpiAmy
	TGACG	
Psan_for	ATGCTACGCCTCACGCTCCTTGC	Vorwärtsprimer PsanAmy
	СТСТ	
Psan_rev	TCAGACAATGATGAGGCTGGAT	Rückwärtsprimer PsanAmy
	TGCGCAGC	
Ila_for	ATGGTCAAGTTGACACTCCCTTT	Vorwärtsprimer IlaAmy
	CG	
Ila_rev	TTATGAGAGCTTGGCGTTGGTAT	Rückwärtsprimer IlaAmy
	GAATGGC	
Thi_for	ATGTCAAACTGGGTCAAGCTCG	Vorwärtsprimer ThiAmy
	C	
Thi_rev	TCACCGCCAGCTGGACGTGA	Rückwärtsprimer ThiAmy
Ffo_for	ATGTCTCCTTGGTCCAAGCTTGT	Vorwärtsprimer FfoAmy
	TGGG	
Ffo_rev	TTATCTCCAGGAAGAGGAAAGA	Rückwärtsprimer FfoAmy
	TTCTGA	
M13	GTAAAACGACGGCCAGT	Sequenzierprimer
M13r	CAGGAAACAGCTATGAC	Sequenzierprimer
5'AOX	GACTGGTTCCAATTGACAAG	Sequenzierprimer
3'AOX	GCAAATGGCATTCTGACATCC	Sequenzierprimer
	Bezeichnung Rso_for Rso_rev Fpi_for Fpi_rev Psan_for Psan_rev Ila_for Ila_for Ibi_for Thi_for Thi_rev Ffo_for Ffo_for Ffo_Afor M13 M13	BezeichnungSequenz (5' \rightarrow 3')Rso_forATGTTTGAGTGGTCATGGGATAG TATTRso_revTCACCGCCAAGTATCGCTAAGC GTCFpi_forATGTGGGGGCAGCCTTCTCGCAG TGACGFpi_revTCAATGCCAGCTGTCGCTCTGCC TGACGPsan_forATGCTACGCCTCACGCTCCTTGC CTCTPsan_revTCAGACAATGATGAGGCTGGAT TGCGCAGCIla_forATGGTCAAGTTGACACTCCCTTT CGIla_revTTATGAGAGCTTGGCGTTGGTAT GAATGGCThi_forATGTCAAACTGGGTCAAGCTCG CThi_revTCACCGCCAGCTGGACGTGA Ffo_forFfo_forATGTCTCCTTGGTCCAAGCTTGT TGGGFfo_forTTATCTCCAGGAAGAGGAAAGA TTCTGAM13GTAAAACGACGGCCAGTM13GACTGGTTCCAATTGACAAG S'AOXSAQXGCAAATGGCATTCTGACATCC

Tabelle 5.4 Verwendete Oligonukleotide sowie deren Bezeichnung.

5.1.7 Verwendete Vektoren

Für die Sequenzierung der amplifizierten Gene wurde diese in den pUC57 Vektor kloniert. Dieser wurde mittels EcoRV linearisiert, sodass eine Selektion der Transformanten mit einem Blau-Weiß-Screening durchgeführt werden konnte (Abbildung 5.3). Für die heterologe Expression wurden die Zielgene in pPIC9- oder pHIL-S1-Vektoren kloniert (Abbildung 5.4).

Abbildung 5.3 pUC57 Vektor für die Klonierungen von PCR-Fragmenten in die EcoRV-Schnittstelle mit anschließendem Blau-Weiß-Screening.

Abbildung 5.4 Vektoren für die Expression von Genen in *K. phaffii* unter dem induzierbaren AOX1-Promotor. pPIC9 weist dabei den α -Faktor aus *S. cerevisiae* als Signalsequenz auf, während pHIL-S1 die Signalsequenz der sauren Phosphatase aus *K. phaffii* trägt.

5.1.8 Enzyme

Im Folgenden werden alle verwendeten Enzyme und deren Verwendungsgebiet aufgeführt (Tabelle 5.5).

Hersteller	Konzentration	Verwendung
Thermo Scientific	2 U μL ⁻¹	Klonierung,
		Sequenzierung
Thermo Scientific	$5 \text{ U} \mu \text{L}^{-1}$	Kolonie-PCR
Thermo Scientific		Klonierung
Thermo Scientific	$10 \text{ U} \mu L^{-1}$	Klonierung
Thermo Scientific	$5 \text{ U} \mu \text{L}^{-1}$	Klonierung
Thermo Scientific	$1 \text{ U } \mu \text{L}^{-1}$	RNA-Reinigung
Nippon Genetics	200 U µL ⁻¹	cDNA Synthese
	Hersteller Thermo Scientific Thermo Scientific Thermo Scientific Thermo Scientific Thermo Scientific Thermo Scientific Nippon Genetics	HerstellerKonzentrationThermo Scientific $2 \ U \ \mu L^{-1}$ Thermo Scientific $5 \ U \ \mu L^{-1}$ Thermo Scientific $10 \ U \ \mu L^{-1}$ Thermo Scientific $10 \ U \ \mu L^{-1}$ Thermo Scientific $1 \ U \ \mu L^{-1}$ Thermo Scientific $5 \ U \ \mu L^{-1}$ Thermo Scientific $200 \ U \ \mu L^{-1}$

5.1.9 Verwendete Organismen

Folgend sind alle in dieser Arbeit verwendeten Organismen in aufsteigender Reihenfolge bezüglich ihrer Komplexität aufgeführt.

Für Klonierungsarbeiten wurden E. coli-Zellen des Typs Top10 verwendet (Tabelle 5.6).

E. coli Stamm	Hersteller	Genotyp
Top10	InVitrogen	F- mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 araD139 Δ (araleu)7697 galU galK rpsL (StrR) endA1 nupG

Tabelle 5.6 Verwendete E. coli Stämme.

Expressionsversuche wurden in verschiedenen Stämmen von K. phaffii durchgeführt (Tabelle 5.7).

K. phaffii Stamm	Hersteller	Genotyp
GS115	InVitrogen	his4
SMD1168	InVitrogen	his4, pep4

Tabelle 5.7Verwendete K. phaffii-Stämme.

Für das Screening von neuartigen waschaktiven α -Amylasen wurden insgesamt 51 Basidiomycota (Tabelle 5.8) verwendet.

Interne Nummer	Basidiomycota	Abkürzung
1	Armillaria mellea	Ame
6	Collybia fusipes	Cfu
14	Lepista nuda	Lnu
17	Fomitopsis pinicola	Fpi
18	Ganoderma applanatum	Gap
19	Trametes versicolor	Tve
20	Gloeophyllum odoratum	God
23	Ischnoderma benzoinum	Ibe
25	Lentinula edodes	Led
52	Piptoporus betulinus	Pbe
64	Pleurotus lampas	Pla
71	Pycnoporus sanguineus	Psan
72	Phaeolus schweinitzii	Psch
76	Polyporus umbellatus	Pum
79	Sparassis crispa	Scr
80	Serpula lacrymans	Sla
81	Tyromyces floriformis	Tfl
83	Trametes suaveolens	Tsu
88	Wolfiporia cocos	Wco
206	Laetiporus sulphureus	Lsu
213	Agrocybe aegerita	Aae
218	Pleurotus ostreatus	Pos
231	Tremella mesenterica	Tme
232	Flammulina velutipes	Fve
241	Phallus impudicus	Pim

Tabelle 5.8 Verwendete Basidiomycota sowie deren interne Nummer und Abkürzung.

246	Grifola frondosa	Gfr
248	Fomes fomentarius	Ffo
250	Stereum rugosum	Rsu
257	Auriporia aurea	Aau
262	Schizophyllum commune	Sco
265	Psilocybe cubensis	Pcu
272	Gloeophyllum trabeum	Gtr
275	Irpex lacteus	Ila
276	Funalia trogii	Ftr
277	Ganoderma lucidum	Glu
280	Coprinus comatus	Cco
284	Pleurotus sajor-caju	Psaj
286	Polyporus squamosus	Psq
291	Postia placenta	Ppi
292	Microporus affinis	Maf
293	Ustilago maydis	Uma
295	Agaricus bisporus	Abi
299	Hypholoma sublateritium	Hsu
300	Lentinus strygosus	Lst
305	Trametes gibosa	Tgi
308	Trametes hirsuta	Thi
309	Rhizoctonia solani	Rso
311	Hymenochaete rubiginosa	Hru
312	Asterostroma cervicolor	Ace
314	Phellinus pini	Ppi
315	Phanerochaete chrysosporium	Pch

5.2 Methoden

5.2.1 Screening nach waschaktiven *α*-Amylasen

5.2.1.1 Kultivierung der Basidiomycota

Die Kultivierung erfolgte bei 24 °C. Die Pilze wurden zunächst auf festem SNL-Medium (Tabelle 5.2), welchem 1,5 % (w/v) Agar-Agar hinzugesetzt wurde, kultiviert. Für das Screening wurde die im Medium enthaltene Glucose durch Stärke ersetzt. Nach dem Übersetzen eines ein cm² großem Mycelstücks auf das stärkehaltige Medium erfolgte eine erneute Kultivierung, bis die Mediumoberfläche ca. 75 % bewachsen war. Das Screening erfolgte in der submers-Kultivierung. Dafür wurden 125 mL stärkehaltiges SNL-Medium in einem 300 mL Erlenmeyer Kolben überführt und ein cm² Pilzmycel wurde in dem Medium homogenisiert. Die anschließende Kultivierung erfolgte bei 24 °C und 150 UpM.

5.2.1.2 Assay zur Aktivitätsbestimmung

Als Substrat für die Bestimmung der Amylase-Aktivität diente Stärke nach Zulkowsky (Merck, CAS-Nr. 9005-84-9). Diese wurde mit einer Konzentration von 1 % (w/v) in 20 mM Kalium-Phosphatpuffer (pH 7) gelöst. 100 μ L Substrat wurden 50 μ L Enzym hinzugegeben und für 30 min bei 37 °C inkubiert. Die Reaktion wurde mit der Zugabe von 100 μ L DNSA-Lösung (12 g Natrium-Kalium-Tartrat, 8 mL 2 M NaOH, 96 mM 3,5-Dinitrosalicylsäure, 12 mL H₂O (Miller, 1959)) sowie einer Inkubation von 20 min bei 80 °C gestoppt. Die Absorption wurde anschließend bei 540 nm gemessen.

5.2.1.3 Waschtests

Der Waschtest wurde mit standardisiert verschmutzten Läppchen (C-27-048, Center for Test Materials B.V., Vlaardingen, Niederlande) durchgeführt. Die Stoffe wurden ausgestanzt und nach der Überführung in eine Mikrotiterplatte mit Detergenz und Enzymlösung inkubiert. Die Endkonzentration der enzymfreien Waschmittelmatrix betrug 4,58 g L⁻¹. Das Detergenz wurde zum einen in destilliertem Wasser angesetzt oder direkt im angegebenen Puffer verdünnt. Die Inkubation erfolgte stets bei 350 UpM für 16 h bei 30 °C oder für 1 h bei 40 °C. Nach dem Waschvorgang wurden die Stoffe mit destilliertem Wasser gespült und im Dunklen bei 37 °C getrocknet. Danach erfolgten die visuelle Bewertung sowie die Messung mit einem Farbmessgerät (ColorLite sph900, ColorLite GmbH, Katlenburg-Lindau).

5.2.1.4 Reinigung der waschaktiven Enzyme

Um die Konzentration der Enzyme in den Kulturüberständen zu erhöhen wurde diese mit Centricons® Plus-70 (MWCO 10000, Merck Millipore, Darmstadt) bei $3500 \times g$ und 4 °C zentrifugiert.

Für die Reinigung der waschaktiven Enzyme mittels Ionenaustauschchromatografie wurden zuvor die isoelektrischen Punkte (pI) der Amylasen bestimmt. Der pI wurde mit analytischer IEF mit anschließender *Overlay*-Zymografie ermittelt. Dazu wurden die Kulturüberstände auf IEF-Gele gegeben (SERVALYT[™] PRECOTES[™] gels (pH 3-10), SERVA Electrophoresis GmbH, Heidelberg) und mit der HPE[™] BlueHorizon[™] elektrophoretisch getrennt. Die Auftrennung erfolgte bei max 2000 V, 20 mA und 3500 Vh bei 4 °C. Die Auftrennung erfolgte für vier bis fünf Stunden. Wurden die Proben neben dem Marker im Schmetterlings-Stil aufgetragen, konnte das Gel geteilt werden und eine Hälfte mit Coomassie G für eine Stunde gefärbt werden. Die andere Hälfte wurde mit 1 %iger stärkehaltiger Agarose (1 % (w/v)) überzogen. Nach einer Inkubation von einer Stunde bei RT wurde die Zymografie mit Lugol'scher Lösung gefärbt und die pI der stärkeabbauenden Enzyme bestimmt.

Die Auftrennung der unbekannten Amylasen wurde mit der Ionenaustauschchromatografie durchgeführt. Aufgrund der erhaltenen sauren pI wurden ein starker Anionenaustauscher (1 mL QXL) und ein schwacher Anionenaustauscher (1 mL DEAE) getestet. Beide stammen von GE Healthcare, Chalfont St Gilles. Die Säulen wurden mit einem NGCTM Chromatografiesystem (Bio-Rad Laboratories GmbH, Hercules, CA USA) und der dazugehörigen ChromLapTM Software verbunden.

Die verwendete Methode teilt sich in die Schritte Equilibrierung, Probenauftrag, Waschen und Elution auf. Alle Schritte wurden bei 4 °C und einem konstanten Fluss von 1 mL pro Minute durchgeführt. Alle Proben dieser Methode wurden in 3 mL Fraktionen gesammelt und bis zur weiteren Analyse bei 4 °C gelagert. Für die initiale Equilibrierung wurden die Säulen mit 5 mL Puffer A (20 mM Bis-Tris, pH 7) gespült. Es folgte der Probenauftrag mit bis zu 10 ml gepufferter Enzymlösung. Um nicht bindende Proteine zu entfernen folgte ein Waschschritt mit 21 mL Puffer A. Die Elution erfolgte mit der schrittweisen Erhöhung von Puffer B (20 mM Bis-Tris, 1 M NaOH, pH 7): 0 bis 5 % (18 ml), 10 % (21 ml), 20 % (21 ml), 30 % (12 ml), 50 % (9 ml), 70 % (9 ml) und 100 % (15 ml). Das in Klammern angegebene Volumen bezieht sich auf die Puffermenge mit der die Säule bei jedem Schritt gespült wurde.

5.2.1.5 SDS-PAGE

Die SDS-PAGE wurde nach Laemmli (1970) denaturierend oder semi-nativ durchgeführt. Die verwendeten Lösungen sowie die Zusammensetzung der Gele sind der Tabelle 5.9 und der Tabelle 5.10 zu entnehmen. Für die semi-native PAGE wurde auf die Zugabe von SDS in den Gelen verzichtet. Die Proben wurde 1:1 mit dem jeweiligen Ladepuffer versetzt. Bei der denaturierenden SDS-PAGE wurden die Proben nach der Zugabe des Ladepuffers für 10 min °C bei 95 inkubiert. Das aufgetragene Volumen sowie die gemessene Proteingesamtkonzentration und die Auftrennungskonditionen sind den jeweiligen Ergebnissen zu entnehmen. Die Proteinbanden wurden im Anschluss an die Auftrennung mittels Instant Blue (Expedeon, Cambridgeshire, Großbritannien) angefärbt. Die Bestimmung der molekularen Massen der Proteine erfolgte anhand des Precision Plus Protein Standard (Bio-Rad, Hercules, Kalifornien) und dem linearen Zusammenhang der relativen Auftrennungsstrecke zur logarithmierten molekularen Masse.

Lösung	Komponente	Konzentration
APS-Lösung	Ammoniumperoxodisulfat	0,4 g L ⁻¹ (1,75 mM)
Elektrophorese-	Tris	3,02 g L ⁻¹ (25 mM)
Laufpuffer	Glycin	14,42 g L ⁻¹ (192 mM)
	SDS	1,0 g L ⁻¹ (3,5 mM)
Probenpuffer	Tris-HCl pH 6,8	23,64 g L ⁻¹ (150 mM)
(nativ bzw.	Dithiothreitol (im denaturierenden Puffer)	30,85 g L ⁻¹ (200 mM)
denaturierend, 2fach	Glycerol	20 % (v/v)
konzentriert)	SDS	40 g L ⁻¹ (139 mM)
	Bromphenolblau	25 mg L ⁻¹

Tabelle 5.9 Verwendete Lösungen und deren Zusammensetzung für die SDS-PAGE.
Komponente	Trenngel	Sammelgel
ddH ₂ O	2,15 mL	1,45 mL
Acrylamid / Bisacrylamid (37,5:1)	1,5 mL	243,5 μL
1,5 M Tris pH 8,8	1,25 mL	
1,5 M Tris pH 6,8		250 μL
10 % (w/v) SDS	50 µL	20 µL
APS-Lösung	13 µL	10 µL
TEMED	4 μL	4 µL

Tabelle 5.10 Zusammensetzung der SDS-Gele.

Um eine höhere Sensitivität zu erreichen, wurden Gele silbergefärbt. Die Zusammensetzung der Lösungen ist in der Tabelle 5.11 dargestellt. Die Entwicklungszeit der Gele ist den jeweiligen Abbildungsunterschriften zu entnehmen.

Lösung	Zusammensetzung
Lösung 1	30 % Ethanol
	10 % Essigsäure
Lösung 2	20 % Ethanol
Lösung 3	$20~mg~Na_2S_2O_3\times 5~H_2O$ in $100~mL~H_2O$
Lösung 4	200 mg AgNO ₃ in 100 mL H ₂ O
Lösung 5	3 g Na ₂ CO ₃
	25 μL Formaldehyd
	$1,25~mg~Na_2S_2O_3\times 5~H_2O$
Lösung 6	50 mL 8 % Tris
	50 mL 4 % Essigsäure

Tabelle 5.11 Zusammensetzung der Lösungen der Silberfärbung.

5.2.1.6 Zymografie

Für die Zymografien wurden die Gele wie in 5.2.1.5 beschrieben semi-nativ vorbereitet. Zusätzlich wurde in die Gele 1 % (w/v) Stärke nach Zulkowsky polymerisiert. Nach der elektrophoretischen Auftrennung bei 4 °C und 10 mA wurden die Gele in Phosphat-Puffer bei pH 7 für 4 h bei 30 °C inkubiert. Zur Visualisierung der Amylasen wurde die Stärke im Gel mit Lugol'scher Lösung gefärbt. Bereiche, welche sich nicht färbten, weisen dabei auf eine vollzogene Stärkehydrolyse hin.

5.2.1.7 Proteinidentifizierung mittels ESI-MS/MS

Nach der IEX und der SDS-PAGE wurden Proteinbanden aus dem Gel ausgeschnitten. Sie wurden mit 30 % EtOH bei 60 °C für 10 min entfärbt. Es erfolgte eine tryptische Hydrolyse und die daraus resultierenden Peptide wurden extrahiert und gereinigt.

Die Sequenzierung erfolgte anschließend mittels Nano-LC-QTOF MS/MS (maXis impact, Bruker Daltronik). Vor der eigentlichen MS-Messung wurde eine Flüssigchromatografie mit einer EASY nLC II mit Autosampler (Bruker Daltronik, Bremen) durchgeführt. Es wurden folgende Komponenten und Bedingungen gewählt: C18-A1 3PCS-Vorsäule (Thermo Fisher Scientific, Bremen), CP3-61271-00 0,1 mm × 150 mm Magic C18AQ 3 μ 200 Å (Michrom Bioresources, Inc., Auburn, CA). Die Chromatografiebedingungen waren dabei Eluent A: ddH₂O + 0,1 % (ν/ν) Ameisensäure und Eluent B: ACN + 0,1 % (ν/ν) Ameisensäure bei einem Fluss von 500 nL min⁻¹ und einem Gradienten von 0 min 95 % A, 25 min 5 % A, 40 min 5 % A.

Die Ionisierung erfolgte im ESI⁺-Modus. Es wurden vorzugsweise mehrfach geladene Precursor-Ionen in einem Massenbereich von m/z 400 bis 1400 ausgewählt und anschließend mittels CID (collision induced dissociation) fragmentiert. Die Datenaufnahme der MS und MS/MS-Spektren erfolgte mit OTOF Control 1.5 (Bruker Daltronik) und die Auswertung der Spektren mit DataAnalysis 4.1 und ProteinScape 3.0 (Bruker Daltronik). Für die Peptiddatenbanksuche wurde der Mascot Algorithmus verwendet (Mascot 2.4.0 search engine, Matrix Science) Die Suche erfolgte in den wöchentlich aktualisierten Proteindatenbanken SWISSPROT und NCBI auf einen Inhouse Mascotserver). Folgende Parameter wurden für die Auswertung eingegeben: globale Modifikationen, Carbamidomethylierung (variabel); Oxidation (M, Variable), eine erlaubte Fehlspaltstelle; Vorläuferionenmassentoleranz: 10 ppm; Fragmentionen-Massentoleranz, 0,05 Da; Peptid-Ladung, 1^+ , 2^+ , 3^+ ; Mindestpeptidlänge, 4; Mascot Score > 50.

5.2.1.8 Analyse der Hydrolyseprodukte

Für die Analyse der Produkte aus der Stärkehydrolyse wurden 800 µL 1 %ige Stärke mit 200 µL Enzymmischung der angegebenen Aktivität für eine Stunde bei 40 °C und 350 UpM inkubiert. Es folgte eine Probenahme nach 20 und 60 min, welche bei 80 °C für zehn min inaktiviert wurden. Nach dem Abkühlen wurden die Proben mittels 0,45 µm Cellulose-Acetat-Filter filtriert. In allen Experimenten wurde das HPLC-System bestehend aus einem binären Pumpensystem (Agilent 1200, Agilent Technologies, Waldbronn), einem Triathlon-

Autosampler (Spark Holland, Emmen, Niederlande), einem Säulenofen, sowie einem Corona CAD-Detektor (ESA Biosciences) und einem LaChrom L-7490 RI-Detektor (Merck) verwendet. Es wurde die Merck Polyspher Na 300x7.8 Säule verwendet. Die Chromatographie erfolgte mit Wasser als Eluenten bei einem Fluss von 0,5 mL min⁻¹ und bei 85 °C. Injiziert wurde jeweils ein Volumen von 20 µL.

5.2.2 Molekularbiologische Arbeiten

5.2.2.1 Anlegen einer Flüssigkultur von E. coli

Die Kultivierung von *E. coli* erfolgte in LB-Medium (Tabelle 5.2). Dieses wurde mit einem nach der bakteriell vorliegenden Resistenz gewählten, selektierendem Antibiotikum versetzt (Tabelle 5.3). Für das Animpfen einer Kultur wurden verschiedene Volumina verwendet. Die Kultivierung erfolgte über Nacht bei 37 °C und 180 UpM.

5.2.2.2 Bestimmung der OD₆₀₀

Die optische Dichte von Bakterienkulturen wurde mittels des BioSpectrometer kinetic (Eppendorf, Hamburg) ermittelt. Zur Nullwertbestimmung diente das Medium, in welchem die Bakterien jeweils angezogen wurden. Die Messung erfolgte mittels einer Bestrahlung von 1 mL Bakterienkultur mit einer Wellenlänge von 600 nm.

5.2.2.3 Anlegen einer Dauerkultur von E. coli

Um eine langfristige Lagerung von Bakterienkulturen zu gewähren, wurde eine Glyceroldauerkultur angelegt. Dazu wurde eine Flüssigkultur bis zu einer OD₆₀₀ von 0,8 bis 0,9 (5.2.2.2) angezogen. Unter sterilen Bedingungen wurden 750 μ L der Bakterienkultur mit 250 μ L 86 %igem Glycerin versetzt, gevortext und sofort in flüssigem Stickstoff schockgefroren. Die Lagerung erfolgte bei -80 °C.

5.2.2.4 Herstellen chemisch kompetenter E. coli

Alle folgenden Arbeitsschritte, die ein Öffnen von Reaktionsgefäßen beinhalteten, wurden unter sterilen Bedingungen durchgeführt. Für die Herstellung chemisch kompetenter *E. coli* Bakterien wurden zunächst 50 mL Medium mit 1 mL einer Übernachtkultur angeimpft. Es folgte eine Kultivierung bei 37 °C und 180 UpM bis eine OD₆₀₀ von 0,3 bis 0,4 erreicht wurde. Die Hauptkultur wurde auf zwei 50 mL Reaktionsgefäße aufgeteilt und für 10 min bei 5000 × g und 4 °C zentrifugiert. Der Überstand wurde verworfen und die Bakterienpellets

wurden je in 12,5 mL 100 mM CaCl₂ aufgenommen und gevortext. Es folgte eine erneute Zentrifugation für 10 min bei 5000 × g und 4 °C, wobei nach dieser der Überstand wiederum verworfen wurde. Die Bakterienpellets wurden in 2,5 mL kaltem 100 mM CaCl₂ aufgenommen. Es folgte eine einstündige Lagerung auf Eis. Abschließend wurden 436 μ L 86% Glycerin hinzugegeben, invertiert und in 1,5 mL Reaktionsgefäße mit je 50 μ L Bakterien-Glycerin-Lösung aliquotiert und sofort in flüssigem Stickstoff schockgefroren. Die Lagerung erfolgte bei -80 °C.

5.2.2.5 Transformation von E. coli

Für die Transformation wurden chemisch kompetente *E. coli* Zellen verwendet (5.2.2.4). Diese wurden auf Eis aufgetaut. Es sollte entweder ein Plasmid oder ein Ligationsansatz in die Zellen gebracht werden. Dazu wurde 1 μ L eines Plasmids oder 2 μ L bzw. 5 μ L eines Ligationsansatzes auf 50 μ L kompetente Zellen gegeben. Der jeweilige Ansatz wurde für 10 min auf Eis inkubiert. Es folgte der Hitzeschock für 45 s bei 42 °C im Wasserbad. Anschließend ruhten die Zellen 2 min auf Eis, bevor zu jedem Ansatz 500 μ L auf 30 °C vorgewärmtes LB-Medium (Tabelle 5.2) hinzugegeben wurde. Es folgte eine 45 minütige Inkubation bei 37 °C und 180 UpM, ehe der komplette Ansatz auf Festmedium mit entsprechendem Antibiotikum ausplattiert wurde. Abschließend wurde bei 37 °C über Nacht inkubiert.

5.2.2.6 Kolonie-PCR

Die Durchführung einer Kolonie-PCR ermöglicht eine Überprüfung hinsichtlich potentiell positiver Klone in Bezug auf die einzubringende DNA.

Dafür wurden unter sterilen Bedingungen Bakterienkolonien mit einer Pipettenspitze auf eine Masterplatte übertragen. Anschließend wurden Koloniereste von der Pipettenspitze in ein mit $10 \,\mu\text{L}$ demineralisiertem Wasser befülltes 0,2 mL Reaktionsgefäß aufgenommen. Nach einer zehnminütigen Inkubation der Kolonien bei 95 °C wurden die Bakteriensuspensionen in einer Perfect Spin Mini Zentrifuge mit 2000 x g für 20 s abzentrifugiert. Für den PCR-Ansatz (Tabelle 5.12) wurden 2 μL des Überstandes verwendet.

Reagenz	Volumen
10 x DreamTaq Reaction Buffer	2 µ1
dNTP-Mix (je 2,5 mM)	1,6 µL
Primer (10 µM)	0,5 µL
Primer (10 µM)	0,5 µL
DreamTaq DNA Polymerase (5 U μ L ⁻¹)	0,2 μL
Bakteriensuspension	2 µl
H ₂ O	ad 20 μ L

Tabelle 5.12	Zusammensetzung der	r Kolonie-PCR.
Pagganz		Volum

Tabelle 5.13 Temperaturprofil der Kolonie-PCR.					
Reaktionsschritt	Temperatur [°C]	Dauer [s]			
Initiale Denaturierung	95	60			
Denaturierung	95	30			
Primer-Anlagerung	Х	30	× 35		
Elongation	72	60 / kb	J		
Finale Elongation	72	600			

5.2.2.7 Aufreinigung von DNA aus Plasmidpräparation und nach enzymatischen Reaktionen

Die Plasmidpräparationen erfolgten ausschließlich aus E. coli. Für Klonier- und Sequenzierungsarbeiten sowie für Kontrollversuche, wie die Linearisierung durch Restriktionsendonukleasen, wurde die Plasmid-DNA mittels innuPREP Plasmid Kit 2.0-System (Analytik Jena, Jena) gereinigt. Für die DNA Aufreinigung nach enzymatischen Reaktionen, wie PCR oder Restriktionsverdau, wurde das innuPREP DOUBLEpure Kit von Analytik Jena (Jena) verwendet. Alle Arbeitsschritte wurden nach dem mitgelieferten Protokoll durchgeführt. Lediglich die Elution erfolgte in unterschiedlichen Volumina.

5.2.2.8 Horizontale Gelelektrophorese

Um DNA Fragmente nach ihrer Größe aufzutrennen, wurden diese mittels horizontaler Gelelektrophorese aufgetrennt. Dazu wurden entweder 1 % ige oder 0,8 % ige Agarosegele angefertigt. Für die Herstellung der Agarosegele wurde die Agarose in 1 × TAE-Puffer (Tabelle 5.1) aufgekocht und anschließend polymerisiert. Wurde RotiSafe™ (Tabelle 5.1) verwendet, musste dies vor dem Polymerisieren des Gels hinzugegeben werden. Als Laufpuffer wurde ebenfalls $1 \times TAE$ -Puffer verwendet.

5.2.2.9 Mengenbestimmung von Nukleinsäuren

Die Konzentration von Nukleinsäuren musste zum einen für Klonierungsschritte sowie für Sequenzierungen bestimmt werden. Die Messung erfolgte mittels Eppendorf BioSpectrometer kinetic (Eppendorf, Hamburg). Für die Messung wurden 1,5 µL der gelösten DNA eingesetzt. Die Messung der Probe erfolgte bei einer Wellenlänge von 260 nm. Des Weiteren wurden die Absorptionen bei 230 nm und 280 nm gemessen. Die Quotienten aus den beiden Absorptionswerten mit dem Wert der Messung bei 260 nm geben einen Rückschluss auf den Grad der Verunreinigung der Probe.

5.2.2.10 Amplifizierung der Zielgene (gene fishing)

Für die Isolierung der mRNA wurden 200 mg Mycel aus der Submerskultivierung mittels Zentrifugation vom Kulurüberstand getrennt.

Die Isolierung der RNA wurde mit dem *innuSPEED Bacteria/Fungi RNA Kit* (Analytik Jena) nach dem Standardprotokoll durchgeführt. Die anschließende Synthese der cDNA erfolgte mit der *FastGene Reverse Transcriptase* (Nippon genetics) mit einem 3' oligo dT Primer. Die Synthese wurde nach dem Standardprotokoll bei 48 °C durchgeführt. Alle anschließenden PCRs wurden mit der *Phusion High-Fidelity DNA Polymerase* (Thermo scientific) durchgeführt (Tabelle 5.14, Tabelle 5.15). Die PCR-Produkte wurden, wie in 5.2.2.7 beschrieben, gereinigt und für 12 h bei 4 °C in pUC57-Vektor kloniert, welcher mittels *Eco*RV linearisiert wurde.

Tabelle 5.14 Zusammensetzung der PCR.				
Reagenz	Volumen			
5 x HF Reaction Buffer	5 µl			
dNTP-Mix (je 2,5 mM)	1,6 µL			
Primer (10 µM)	1 µL			
Primer (10 µM)	1 µL			
Phusion DNA Polymerase (5 U μ L ⁻¹)	0,2 μL			
cDNA	1 µl			
H ₂ O	ad 20 µL			

Tabelle 5.15 Temperaturprofil der PCR.					
Temperatur [°C]	Dauer [s]				
98	30				
98	10)			
Х	30	} >			
72	30 / kb	J			
72	300				
	profil der PCR. Temperatur [°C] 98 98 x 72 72 72	profil der PCR. Temperatur [°C] Dauer [s] 98 30 98 10 x 30 72 30/kb 72 300			

5.2.2.11 Bioinformatische Arbeiten

Für die Auswertung der erhaltenen Daten wurden die in der Tabelle 5.16 aufgelisteten Programme und Web Tools verwendet.

Software	Anbieter	Verwendung
SnapGene 4.1	GSL Biotech	Visualisierung, Aufbereitung von
		Vektorkarten, Primerdesign, in
		silico-Klonierung
Intas 3.39.2	INTAS Science Imaging Instruments GmbH	Geldokumentation
Blast	National Center for Biotechnology Information	Sequenzanalyse
LAlign	h.EMBnet.org	Alignment von Sequenzen
Clustal omega	https://www.ebi.ac.uk	Alignment von Sequenzen
I-TASSER	University of Michigan	Protein-Strukturvorhersage
UCFS Chimera 1.11.2	University of California	Visualisierung Proteinstrukturen

 Tabelle 5.16 verwendeten Programme und Web Tools f
 ür bioinformatische Arbeiten.

5.2.3 Expressionsversuche in K. phaffii

Die Expressionskonstrukte wurden auf Basis der pPIC9 und des pHIL-S1 Vekorsystems erstellt. Dafür wurde den Vorwärtsoligonukleotiden am 5' Ende die Sequenz der Restriktionssschnittstelle *Eco*RI und dem Rückwärtsoligonukleotid für die Sequenz der Restriktionsschnittstelle *Not*I am 5' Ende angehängt. Zusätzliche wurden allen Oligonukleotiden vor den Restriktionsschnittstellen die Überhange GAAT hinzugefügt. Nach der Plasmidisolation (5.2.2.7) wurde diese entweder mit *SacI* oder *AvrII* linearisiert und gereinigt. Für die Transformation wurde jeweils 1 µg linearisiertes Plasmid (5.2.2.9) verwendet.

Kompetente *K. phaffii-*Zellen wurden mit einer Elektroporation von 2000 V für 5 ms (MicroPulser Electroporator, Bio-Rad, Hercules, Kalifornien) entsprechend dem Protokoll von Lin-Cereghino *et al.* (2005) transformiert. Die Selektion erfolgte auf His⁻-Platten, welche für 48 bis 72 h bei 28 °C inkubiert wurden.

Das Screening der *K. phaffii*-Transformanten wurde in 96-*deep-well*-Platten durchgeführt. Für die Vorkultur wurden die Zellen einzeln in die Vertiefungen der Platte überführt und in 600 μ L YPD-Medium bei 28 °C und 320 UpM für 72 h kultiviert. Nach einer Zentrifugation für 10 min bei 2000 × g wurden das Medium entfernt und durch 600 μ L BMMY mit 1 % (v/v) Methanol ersetzt. Die Zellen wurden für 96 h bei 20 °C und 320 UpM kultiviert. Für die tägliche Probenahme wurden die Zellen wie oben beschrieben zentrifugiert. Nach der Entnahme der Probe wurde den Zellen frisches Medium mit 1 % (v/v) Methanol hinzugefügt.

5.2.4 CRISPR/Cas9

Für die CRISPR-Experimente wurde der *A. oryzae* Stamm NSAR1 gewählt. Dabei handelt es sich um eine vierfach auxotrophe Mutante (niaD⁻, sC⁻, argB⁻, adeA⁻). Alle im Folgenden beschriebenen Arbeiten wurden unter sterilen Bedingungen durchgeführt.

5.2.4.1 Kultivierung und Lagerung von A. oryzae

Die kurzeitige Lagerung des Stammes erfolgte auf DPY-Platten (20 g L⁻¹ Dextrin aus Kartoffelstärke, 10 g L⁻¹ Polypepton, 5 g L⁻¹ Hefeextrakt, 5 g L⁻¹ KH₂PO₄, 0,5 g L⁻¹ MgSO₄, 20 g L⁻¹ Agar-Agar). Die Platten wurden für sechs bis acht Tage bei 28 °C inkubiert und danach bei 4 °C gelagert. Für die Langzeitlagerung wurden Konidien einer bewachsenen Masterplatte in 2-3 mL Wasser suspendiert und zu gleichen Teilen mit 70 %igem sterilen

Glycerin vermischt und mit flüssigem Stickstoff gefroren, Die Lagerung erfolgte bei -80 °C. Für Transformationen bzw. erneute Kultivierung der bei -80 °C gelagerten Proben wurden 250 μ L der Glycerolkultur auf DPY-Platten ausplattiert und bei 28 °C für sechs Tage kultiviert.

5.2.4.2 Transformation von A. oryzae und Selektion der Transformanten

Für die Transformation wurden Konidien von bewachsenen und sporulierenden DPY-Platten in 50 mL GN-Medium überführt (20 g L⁻¹ Glucose, 10 g L⁻¹ Fleischextrakt, 5 g L⁻¹ Hefeextrakt, 10 g L⁻¹ NaCl, pH 7,5) und über Nacht bei 28 °C in einem Schikanekolben schüttelnd inkubiert. Die gekeimten Konidien wurden mit einer sterilen Gaze (Miracloth, Merck Millipore) gefiltert. Anschließend erfolgte die Protoplastierung. Dazu wurden die gefilterten Konidien in 10 mL Protoplastierungslösung (10 mg mL⁻¹ Lysing Enzymes from Trichoderma harzianum, Sigma Aldrich L1412) aufgenommen und in ein 50 mL Reaktionsgefäß überführt. Nach einer Inkubation von 3 h bei RT und unter leichtem Schwenken, wurden die Protoplasten wiederum filtriert. Das Filtrat wurde bei $3000 \times g$ für 5 min zentrifugiert, um die Protoplasten zu pelletieren. Die Protoplasten wurden schrittweise in Lösung 1 (0,8 M NaCl, 10 mM CaCl2, 50 mM Tris-HCL, pH 7,5) resuspendiert. Die Konzentration und die Qualität der Protoplasten wurden mikroskopisch überprüft. Pro Transformationsansatz wurden 100 µL der Protoplasten mit 5 µg Plasmid gemischt und für 20 min auf Eis inkubiert. Es folgte die Zugabe von 1 mL Lösung 2 (60 % (w/v) PEG 4000, 0,8 M NaCl, 10 mM CaCl2, 50 mM Tris-HCl, pH 7,5) und eine erneute Inkubation bei RT für 20 min. Der Transformationsansatz wurde in 5 mL geschmolzenem Top-Medium CZD/S (30 g L⁻¹ Saccharose, 1 g L⁻¹ K₂HPO₄, 0,5 g L⁻¹ KCl, 3 g L⁻¹ NaNO₃, 0,5 g L⁻¹ MgSO₄, 0,01 g L⁻¹ FeSO₄, 1 M Sorbitol, 0,5 g L⁻¹ Adenin, 1.5 g L⁻¹ Methionin, 1 g L⁻¹ (NH₄)₂SO₄, 8 g L⁻¹ Agar-Agar) aufgenommen und auf CZD/S-Platten (30 g L⁻¹ Saccharose, 1 g L⁻¹ K₂HPO₄, 0,5 g L⁻¹ KCl, 3 g L⁻¹ NaNO₃, 0,5 g L⁻¹ MgSO₄, 0,01 g L⁻¹ FeSO₄, 1 M Sorbitol, 0,5 g L⁻¹ Adenin, 1.5 g L⁻¹ Methionin, 1 g L⁻¹ (NH₄)₂SO₄, 15 g L⁻¹ Agar-Agar) überführt. Nach einer Inkubation bei 28 °C für bis zu fünf Tage wurden die Transformanten auf neue CZD/S-Platten überführt und vereinzelt. Diese Prozedur wurde ein weiteres Mal wiederholt.

5.2.4.3 Vektordesign und Verifizierung von CRISPR-Ereignissen

Sowohl der Vektor als auch die experimentelle Durchführung wurden von Nødvig *et al.* (2015) adaptiert. Der verwendete Vektor (Abbildung 5.5) trägt eine HygromycinB-Resistenz, um die Transformanten zu selektieren. Die Cas9-Endonuklease ist für *Aspergillus niger* Codon-optimiert. Die *guide* RNA (sgRNA) ist dahin gehend optimiert, dass diese an den

Enden *Loop*-Strukturen (*hammerhead structures*) ausbildet, welche von Ribozymen erkannt und prozessiert werden. Der Expressionsvektor muss im Bereich des Protospacers an die Zielsequenz angepasst werden.

Abbildung 5.5 pFC334 Vektor. Hervorgehoben sind die Bereiche des *Protospacers* und die strukturgebenden Sequenzbereiche der *guide* RNA.

Für die Vorhersage der Protospacer-Sequenz wurde die Software E-CRISP (http://www.ecrisp.org/E-CRISP/) verwendet. Da zum Zeitpunkt des Versuchs kein A. oryzae Genom zur Verfügung stand, wurde das Genom von A. niger (Aspergillus niger CADRE.31) als Grundlage verwendet. Zwei vorgeschlagene Protospacer-Sequenzen konnten für das Gen der wirtseigenen α -Amylase verwendet werden, sodass zwei Vektorkonstrukte erstellt wurden. 5' Die verwendeten Oligonukleotide waren zum einen GCGGACTGGCGATCGCAATCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG GACGAGCTTACTCGTTTCGTCCTCACGGACTCATCAGGCG GCT 3' und 5' GACCGGTGATGTCTGCTCAAGCGGGGT 3' sowie für das zweite Konstrukt 5' GAGATGCCTACCATGGCTACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG GCT 3'. Die Protospacer-Sequenzen sind unterstrichen markiert. Die PCR-Bedingungen, die anschließende Phosphorylierung sowie Ligation und Transformation der E. coli-Zellen wurden der zweiten EMP-Klonierung von Ulrich et al. (2012) angepasst.

Nach der Transformation und Selektion (5.2.4.2) wurde gDNA isoliert und mittels PCR das Zielgen amplifiziert. Dazu wurden die Oligonukleotide 5' GATTCTGCTGTCTCGGCT 3' und 5' ATATCGTGCCTCTCCTGC 3' verwendet. Die PCR Produkte (5.2.2.10) wurden

gereinigt (5.2.2.7) und extern sequenziert. Die Sequenzierungsergebnisse wurden in SnapGene an das Zielgen *alignt*, um Deletionen zu identifizieren.

6. Literaturverzeichnis

- Adli M. (2018) The CRISPR tool kit for genome editing and beyond. *Nature communications*, **9**, 1911. DOI: 10.1038/s41467-018-04252-2.
- Ahmad M., Hirz M., Pichler H. & Schwab H. (2014) Protein expression in *Pichia pastoris*: Recent achievements and perspectives for heterologous protein production. *Applied microbiology and biotechnology*, **98**, 5301–5317. DOI: 10.1007/s00253-014-5732-5.
- Ahuja S.K., Ferreira G.M. & Moreira A.R. (2004) Utilization of enzymes for environmental applications. *Critical reviews in biotechnology*, 24, 125–154. DOI: 10.1080/07388550490493726.
- Arana-Cuenca A., Roda A., Téllez A., Loera O., Carbajo J.M., Terrón M.C. & González
 A.E. (2004) Comparative analysis of laccase-isozymes patterns of several related
 Polyporaceae species under different culture conditions. *Journal of basic microbiology*,
 44, 79–87. DOI: 10.1002/jobm.200310324.
- Baranova M.A., Logacheva M.D., Penin A.A., Seplyarskiy V.B., Safonova Y.Y.,
 Naumenko S.A., Klepikova A.V., Gerasimov E.S., Bazykin G.A., James T.Y. &
 Kondrashov A.S. (2015) Extraordinary Genetic Diversity in a Wood Decay Mushroom. *Molecular biology and evolution*, 32, 2775–2783. DOI: 10.1093/molbev/msv153.
- Behrens C.J., Linke D., Allister A.B., Zelena K. & Berger R.G. (2017) Variants of PpuLcc, a multi-dye decolorizing laccase from *Pleurotus pulmonarius* expressed in *Pichia pastoris*. *Protein expression and purification*, **137**, 34–42. DOI: 10.1016/j.pep.2017.06.014.
- Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N.
 & Bourne P.E. (2000) The Protein Data Bank. *Nucleic acids research*, 28, 235–242.
- Binder M., Justo A., Riley R., Salamov A., Lopez-Giraldez F., Sjökvist E., Copeland A., Foster B., Sun H., Larsson E., Larsson K.-H., Townsend J., Grigoriev I.V. & Hibbett D.S. (2013) Phylogenetic and phylogenomic overview of the *Polyporales. Mycologia*, 105, 1350–1373. DOI: 10.3852/13-003.
- Blackwell M. (2011) The fungi: 1, 2, 3 ... 5.1 million species? *American journal of botany*, **98**, 426–438. DOI: 10.3732/ajb.1000298.
- Bolhassan M.H. (2013) Diversity of *Polyporales* in the Malay Peninsular and the application of *Ganoderma australe* (Fr.) Pat. in biopulping of empty fruit bunches of elaeis guineensis.

- Bouws H., Wattenberg A. & Zorn H. (2008) Fungal secretomes--nature's toolbox for white biotechnology. *Applied microbiology and biotechnology*, **80**, 381–388. DOI: 10.1007/s00253-008-1572-5.
- Brayer G.D., Sidhu G., Maurus R., Rydberg E.H., Braun C., Wang Y., Nguyen N.T., Overall C.M. & Withers S.G. (2000) Subsite mapping of the human pancreatic alphaamylase active site through structural, kinetic, and mutagenesis techniques. *Biochemistry*, **39**, 4778–4791.
- Chen W., Xie T., Shao Y. & Chen F. (2012) Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi. *PloS one*, 7, e49679. DOI: 10.1371/journal.pone.0049679.
- Christiansen C., Abou Hachem M., Janecek S., Viksø-Nielsen A., Blennow A. & Svensson B. (2009) The carbohydrate-binding module family 20--diversity, structure, and function. *The FEBS journal*, 276, 5006–5029. DOI: 10.1111/j.1742-4658.2009.07221.x.
- Clark T.A. & Anderson J.B. (2004) Dikaryons of the basidiomycete fungus *Schizophyllum commune*: Evolution in long-term culture. *Genetics*, **167**, 1663–1675. DOI: 10.1534/genetics.104.027235.
- Clarke R., Heler R., MacDougall M.S., Yeo N.C., Chavez A., Regan M., Hanakahi L., Church G.M., Marraffini L.A. & Merrill B.J. (2018) Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. *Molecular cell*, **71**, 42-55.e8. DOI: 10.1016/j.molcel.2018.06.005.
- Cregg J.M., Barringer K.J., Hessler A.Y. & Madden K.R. (1985) *Pichia pastoris* as a host system for transformations. *Molecular and cellular biology*, **5**, 3376–3385.
- Da Lage J.-L., Feller G. & Janecek S. (2004) Horizontal gene transfer from Eukarya to bacteria and domain shuffling: The alpha-amylase model. *Cellular and molecular life sciences : CMLS*, **61**, 97–109. DOI: 10.1007/s00018-003-3334-y.
- Dhital S., Warren F.J., Butterworth P.J., Ellis P.R. & Gidley M.J. (2017) Mechanisms of starch digestion by α-amylase-Structural basis for kinetic properties. *Critical reviews in food science and nutrition*, **57**, 875–892. DOI: 10.1080/10408398.2014.922043.
- Ding Y., Liang S., Lei J., Chen L., Kothe E. & Ma A. (2011) Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in *Pleurotus ostreatus*. *Microbiological research*, **166**, 314–322. DOI: 10.1016/j.micres.2010.07.001.

- Dolan M.A., Noah J.W. & Hurt D. (2012) Comparison of common homology modeling algorithms: Application of user-defined alignments. *Methods in molecular biology* (*Clifton, N.J.*), 857, 399–414. DOI: 10.1007/978-1-61779-588-6_18.
- Elleuche S. (2015) Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications. *Applied microbiology and biotechnology*, **99**, 1545–1556. DOI: 10.1007/s00253-014-6315-1.
- Erjavec J., Kos J., Ravnikar M., Dreo T. & Sabotič J. (2012) Proteins of higher fungi--from forest to application. *Trends in biotechnology*, **30**, 259–273. DOI: 10.1016/j.tibtech.2012.01.004.
- Fiers M., Edel-Hermann V., Héraud C., Gautheron N., Chatot C., Le Hingrat Y., Bouchek-Mechiche K. & Steinberg C. (2011) Genetic diversity of *Rhizoctonia solani* associated with potato tubers in France. *Mycologia*, **103**, 1230–1244. DOI: 10.3852/10-231.
- Freer S.N. (1993) Purification and characterization of the extracellular alpha-amylase from *Streptococcus bovis* JB1. *Applied and environmental microbiology*, **59**, 1398–1402.
- Gaubert A., Jeudy J., Rougemont B., Bordes C., Lemoine J., Casabianca H. & Salvador A. (2016) Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry. *Analytical and bioanalytical chemistry*, 408, 4669–4681. DOI: 10.1007/s00216-016-9550-8.
- Gilis D. (2006) *In silico* analysis of the thermodynamic stability changes of psychrophilic and mesophilic alpha-amylases upon exhaustive single-site mutations. *Journal of chemical information and modeling*, **46**, 1509–1516. DOI: 10.1021/ci050473v.
- Gopinath S.C.B., Anbu P., Arshad M.K.M., Lakshmipriya T., Voon C.H., Hashim U. & Chinni S.V. (2017) Biotechnological Processes in Microbial Amylase Production. *BioMed research international*, 2017, 1272193. DOI: 10.1155/2017/1272193.
- Govindappa N., Hanumanthappa M., Venkatarangaiah K., Periyasamy S., Sreenivas S., Soni R. & Sastry K. (2014) A new signal sequence for recombinant protein secretion in *Pichia pastoris. Journal of microbiology and biotechnology*, **24**, 337–345.
- Guillén Y., Palfner G. & Machuca A. (2011) Screening for lignocellulolytic enzymes and metal tolerance in isolates of wood-rot fungi from Chile.
- Gupta R., Gigras P., Mohapatra H., Goswami V.K. & Chauhan B. (2003) Microbial αamylases: A biotechnological perspective. *Process Biochemistry*, **38**, 1599–1616. DOI: 10.1016/S0032-9592(03)00053-0.
- Hameed U., Price I., Ikram-Ul-Haq, Ke A., Wilson D.B. & Mirza O. (2017) Functional characterization and crystal structure of thermostable amylase from *Thermotoga*

petrophila, reveals high thermostability and an unusual form of dimerization. *Biochimica et biophysica acta*, **1865**, 1237–1245. DOI: 10.1016/j.bbapap.2017.06.015.

- Hasan F., Shah A.A. & Hameed A. (2006) Industrial applications of microbial lipases. *Enzyme and Microbial Technology*, **39**, 235–251. DOI: 10.1016/j.enzmictec.2005.10.016.
- Hatoh K., Izumitsu K., Morita A., Shimizu K., Ohta A., Kawai M., Yamanaka T., Neda H., Ota Y. & Tanaka C. (2013) Transformation of the mushroom species *Hypsizigus marmoreus*, *Flammulina velutipes*, and *Grifola frondosa* by an *Agrobacterium*-mediated method using a universal transformation plasmid. *Mycoscience*, 54, 8–12. DOI: 10.1016/j.myc.2012.08.002.
- Hohenblum H., Gasser B., Maurer M., Borth N. & Mattanovich D. (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant *Pichia pastoris*. *Biotechnology and bioengineering*, **85**, 367–375. DOI: 10.1002/bit.10904.
- Janecek S. (1994) Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases. *European journal of biochemistry*, **224**, 519–524.
- Jia X., Guo Y., Lin X., You M., Lin C., Chen L. & Chen J. (2017) Fusion of a family 20 carbohydrate-binding module (CBM20) with cyclodextrin glycosyltransferase of *Geobacillus* sp. CHB1 improves catalytic efficiency. *Journal of basic microbiology*, 57, 471–480. DOI: 10.1002/jobm.201600628.
- Kadam U.S., Shelake R.M., Chavhan R.L. & Suprasanna P. (2018) Concerns regarding 'off-target' activity of genome editing endonucleases. *Plant physiology and biochemistry* : *PPB. DOI:* 10.1016/j.plaphy.2018.03.027.
- Kelle S., Zelena K., Krings U., Linke D. & Berger R.G. (2014) Expression of soluble recombinant lipoxygenase from *Pleurotus sapidus* in *Pichia pastoris*. *Protein expression and purification*, **95**, 233–239. DOI: 10.1016/j.pep.2014.01.004.
- Kirk O., Borchert T.V. & Fuglsang C.C. (2002) Industrial enzyme applications. *Current Opinion in Biotechnology*, **13**, 345–351.
- Koshland D.E. (1953) Stereochemistry and the Mechanism of Enzymatic Reactions. *Biological Reviews*, **28**, 416–436. DOI: 10.1111/j.1469-185X.1953.tb01386.x.
- Kossmann J. & Lloyd J. (2000) Understanding and Influencing Starch Biochemistry. *Critical Reviews in Plant Sciences*, **19**, 171–226. DOI: 10.1080/07352680091139204.
- Krupodorova T., Ivanova T. & Barshteyn V. (2014) Screening of extracellular enzymatic activity of macrofungi. *Journal of Microbiology, Biotechnology and Food Sciences*, 2014, 315–318.

- Kuriki T. & Imanaka T. (1999) The concept of the alpha-amylase family: Structural similarity and common catalytic mechanism. *Journal of bioscience and bioengineering*, **87**, 557–565.
- Kurtzman C.P. (2005) Description of *Komagataella phaffii* sp. nov. and the transfer of *Pichia pseudopastoris* to the methylotrophic yeast genus *Komagataella*. *International journal of systematic and evolutionary microbiology*, **55**, 973–976. DOI: 10.1099/ijs.0.63491-0.
- Leonhardt R.-H., Krings U., Berger R.G. & Linke D. (2016) Heterologous production of the stain solving peptidase PPP1 from *Pleurotus pulmonarius*. *Bioprocess and biosystems engineering*, **39**, 845–853. DOI: 10.1007/s00449-016-1564-2.
- Li J.H., Vasanthan T., Hoover R. & Rossnagel B.G. (2004) Starch from hull-less barley: V. In-vitro susceptibility of waxy, normal, and high-amylose starches towards hydrolysis by alpha-amylases and amyloglucosidase. *Food Chemistry*, **84**, 621–632. DOI: 10.1016/S0308-8146(03)00287-5.
- Li W. & Zhang Y.-z. (2005) *Agrobacterium tumefaciens*-mediated transformation of the white-rot basidiomycete, *phanerochaete chrysosporium*. *Wei sheng wu xue bao = Acta microbiologica Sinica*, **45**, 784–787.
- Lin S.-C., Lin I.-P., Chou W.-I., Hsieh C.-A., Liu S.-H., Huang R.-Y., Sheu C.-C. & Chang M.D.-T. (2009) CBM21 starch-binding domain: A new purification tag for recombinant protein engineering. *Protein expression and purification*, **65**, 261–266. DOI: 10.1016/j.pep.2009.01.008.
- Lin-Cereghino J., Wong W.W., Xiong S., Giang W., Luong L.T., Vu J., Johnson S.D. & Lin-Cereghino G.P. (2005) Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast *Pichia pastoris*. *BioTechniques*, **38**, 44, 46, 48.
- Linke D., Leonhardt R., Eisele N., Petersen L.M., Riemer S., Nimtz M. & Berger R.G. (2015) Carotene-degrading activities from *Bjerkandera adusta* possess an application in detergent industries. *Bioprocess and biosystems engineering*, **38**, 1191–1199. DOI: 10.1007/s00449-015-1361-3.
- Liszka M.J., Clark M.E., Schneider E. & Clark D.S. (2012) Nature versus nurture: Developing enzymes that function under extreme conditions. *Annual review of chemical and biomolecular engineering*, **3**, 77–102. DOI: 10.1146/annurev-chembioeng-061010-114239.

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M. & Henrissat B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic acids research*, 42, D490-5. DOI: 10.1093/nar/gkt1178.

Lottspeich F. & Engels J.W. (2012) Bioanalytik. Springer-Verlag.

- Lubertozzi D. & Keasling J.D. (2009) Developing Aspergillus as a host for heterologous expression. *Biotechnology advances*, 27, 53–75. DOI: 10.1016/j.biotechadv.2008.09.001.
- MacGregor E.A., Janeček Š. & Svensson B. (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. *Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology*, **1546**, 1–20. DOI: 10.1016/S0167-4838(00)00302-2.
- Machius M., Wiegand G. & Huber R. (1995) Crystal structure of calcium-depleted *Bacillus licheniformis* alpha-amylase at 2.2 A resolution. *Journal of molecular biology*, 246, 545–559. DOI: 10.1006/jmbi.1994.0106.
- Machovic M. & Janecek S. (2006) Starch-binding domains in the post-genome era. Cellular and molecular life sciences : CMLS, 63, 2710–2724. DOI: 10.1007/s00018-006-6246-9.
- Madhavan A., Sindhu R., Binod P., Sukumaran R.K. & Pandey A. (2017) Strategies for design of improved biocatalysts for industrial applications. *Bioresource technology*, 245, 1304–1313. DOI: 10.1016/j.biortech.2017.05.031.
- Maestre-Reyna M., Liu W.-C., Jeng W.-Y., Lee C.-C., Hsu C.-A., Wen T.-N., Wang A.H.-J. & Shyur L.-F. (2015) Structural and functional roles of glycosylation in fungal laccase from *Lentinus* sp. *PloS one*, **10**, e0120601. DOI: 10.1371/journal.pone.0120601.
- Mehta D. & Satyanarayana T. (2013) Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of *Geobacillus thermoleovorans*. *PloS one*, **8**, e73612. DOI: 10.1371/journal.pone.0073612.
- Miller G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. *ANALYTICAL CHEMISTRY*, **31**, 426–428.
- Møller H.J. & Poulsen J.H. (2002) Staining of Glycoproteins/Proteoglycans in SDS-Gels.
 In: *The Protein Protocols Handbook* (ed. by J.M. Walker), pp. 773–778. Humana Press, Totowa, NJ.

- Møller M.S. & Svensson B. (2016) Structural biology of starch-degrading enzymes and their regulation. *Current opinion in structural biology*, **40**, 33–42. DOI: 10.1016/j.sbi.2016.07.006.
- Morgenstern I., Powlowski J., Ishmael N., Darmond C., Marqueteau S., Moisan M.-C., Quenneville G. & Tsang A. (2012) A molecular phylogeny of thermophilic fungi. *Fungal biology*, **116**, 489–502. DOI: 10.1016/j.funbio.2012.01.010.
- Mussmann N., O'Connell T., Herbst D., Berger R.G., Linke D. & Döring F. (2017) Improved washing performance using a novel alpha-amylase from *Rhizoctonia solani*.
- Nilsson R.H., Kristiansson E., Ryberg M., Hallenberg N. & Larsson K.-H. (2008) Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. *Evolutionary Bioinformatics*, 4, EBO.S653. DOI: 10.4137/EBO.S653.
- Niyonzima F.N. & More S.S. (2014) Detergent-compatible bacterial amylases. *Applied biochemistry and biotechnology*, **174**, 1215–1232. DOI: 10.1007/s12010-014-1144-3.
- Nødvig C.S., Nielsen J.B., Kogle M.E. & Mortensen U.H. (2015) A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. *PloS one*, **10**, e0133085. DOI: 10.1371/journal.pone.0133085.
- Norouzian D., Akbarzadeh A., Scharer J.M. & Moo Young M. (2006) Fungal glucoamylases. *Biotechnology advances*, 24, 80–85. DOI: 10.1016/j.biotechadv.2005.06.003.
- Osset M., Piñol M., Fallon M.J., Llorens R. de & Cuchillo C.M. (1989) Interference of the carbohydrate moiety in coomassie brilliant blue R-250 protein staining. *Electrophoresis*, 10, 271–273. DOI: 10.1002/elps.1150100412.
- Pandey A. (1995) Glucoamylase Research: An Overview. *Starch Stärke*, 47, 439–445.
 DOI: 10.1002/star.19950471108.
- Pandey A., Nigam P., Soccol C.R., Soccol V.T., Singh D. & Mohan R. (2000) Advances in microbial amylases. *Biotechnology and applied biochemistry*, **31** (Pt 2), 135–152.
- Peláez F., Martínez M.J. & Martínez A.T. (1995) Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. *Mycological Research*, 99, 37–42. DOI: 10.1016/S0953-7562(09)80313-4.
- Pérez S. & Bertoft E. (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. *Starch - Stärke*, **62**, 389–420. DOI: 10.1002/star.201000013.

- Pérez-Martínez A.S., Acevedo-Padilla S.A., Bibbins-Martínez M., Galván-Alonso J. & Rosales-Mendoza S. (2015) A perspective on the use of *Pleurotus* for the development of convenient fungi-made oral subunit vaccines. *Vaccine*, **33**, 25–33. DOI: 10.1016/j.vaccine.2014.10.059.
- Piva L.C., Bentacur M.O., Reis V.C.B., Marco J.L. de, Moraes L.M.P.d. & Torres F.A.G. (2017) Molecular strategies to increase the levels of heterologous transcripts in *Komagataella phaffii* for protein production. *Bioengineered*, 8, 441–445. DOI: 10.1080/21655979.2017.1296613.
- Polizeli M.d.L.T.M. & Rai M., editors (2013) *Fungal enzymes*. CRC Press, Boca Raton, FL.
- Prakash O. & Jaiswal N. (2010) alpha-Amylase: An ideal representative of thermostable enzymes. *Applied biochemistry and biotechnology*, **160**, 2401–2414. DOI: 10.1007/s12010-009-8735-4.
- Puxbaum V., Mattanovich D. & Gasser B. (2015) Quo vadis? The challenges of recombinant protein folding and secretion in *Pichia pastoris*. *Applied microbiology and biotechnology*, **99**, 2925–2938. DOI: 10.1007/s00253-015-6470-z.
- Rodríguez-Sanoja R., Oviedo N. & Sánchez S. (2005) Microbial starch-binding domain. *Current opinion in microbiology*, **8**, 260–267. DOI: 10.1016/j.mib.2005.04.013.
- Roy A., Kucukural A. & Zhang Y. (2010) I-TASSER: A unified platform for automated protein structure and function prediction. *Nature protocols*, 5, 725–738. DOI: 10.1038/nprot.2010.5.
- Santiago M., Ramírez-Sarmiento C.A., Zamora R.A. & Parra L.P. (2016) Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. *Frontiers in microbiology*, 7, 1408. DOI: 10.3389/fmicb.2016.01408.
- Schallmey M., Singh A. & Ward O.P. (2004) Developments in the use of *Bacillus* species for industrial production. *Canadian journal of microbiology*, **50**, 1–17. DOI: 10.1139/w03-076.
- Schmidt-Dannert C. (2016) Biocatalytic portfolio of Basidiomycota. *Current opinion in chemical biology*, **31**, 40–49. DOI: 10.1016/j.cbpa.2016.01.002.
- Schuster M., Schweizer G., Reissmann S. & Kahmann R. (2016) Genome editing in *Ustilago maydis* using the CRISPR-Cas system. *Fungal genetics and biology : FG & B*, 89, 3–9. DOI: 10.1016/j.fgb.2015.09.001.

- Shental-Bechor D. & Levy Y. (2008) Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. *Proceedings of the National Academy of Sciences* of the United States of America, **105**, 8256–8261. DOI: 10.1073/pnas.0801340105.
- Showell M.S. (1999) Enzymes, Detergent. In: Encyclopedia of bioprocess technology: Fermentation, biocatalysis, and bioseparation (ed. by M.C. Flickinger). Wiley, New York, NY.
- Souza P.M. de & Oliveira Magalhães P. de (2010) Application of microbial α-amylase in industry - A review. *Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]*, **41**, 850–861. DOI: 10.1590/S1517-83822010000400004.
- Struch M., Krahe N.-K., Linke D., Mokoonlall A., Hinrichs J. & Berger R.G. (2016) Dose dependent effects of a milk ion tolerant laccase on yoghurt gel structure. *LWT - Food Science and Technology*, **65**, 1144–1152. DOI: 10.1016/j.lwt.2015.10.004.
- Sukenik S.C., Karuppanan K., Li Q., Lebrilla C.B., Nandi S. & McDonald K.A. (2018)
 Transient Recombinant Protein Production in Glycoengineered *Nicotiana benthamiana*Cell Suspension Culture. *International journal of molecular sciences*, **19. DOI:**10.3390/ijms19041205.
- Sunagawa M., Murata H., Miyazaki Y. & Nakamura M. (2007) Transformation of Lyophyllum decastes by particle bombardment. Mycoscience, 48, 195–197. DOI: 10.1007/S10267-007-0345-9.
- Svendsen A., Andersen C. & Thisted, T. and von der Osten, C. (2010) Alpha-amylase variant with altered properties.
- Ulrich A., Andersen K.R. & Schwartz T.U. (2012) Exponential megapriming PCR (EMP) cloning--seamless DNA insertion into any target plasmid without sequence constraints. *PloS one*, **7**, e53360. DOI: 10.1371/journal.pone.0053360.
- Uzun U., Demirci E. & Yildirim Akatin M. (2017) Purification and characterization of *Rhizoctonia solani* AG-4 strain ZB-34 α-amylase produced by solid-state fermentation using corn bran. *Turkish Journal of Biochemistry*, **0**, 29. DOI: 10.1515/tjb-2017-0159.
- van der Heide M., Hollenberg C.P., van der Klei I.J. & Veenhuis M. (2002) Overproduction of BiP negatively affects the secretion of *Aspergillus niger* glucose oxidase by the yeast *Hansenula polymorpha*. *Applied microbiology and biotechnology*, **58**, 487–494.
- van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. *Journal of biotechnology*, **94**, 137–155.

- Vogl T. & Glieder A. (2013) Regulation of *Pichia pastoris* promoters and its consequences for protein production. *New biotechnology*, **30**, 385–404. DOI: 10.1016/j.nbt.2012.11.010.
- Vojcic L., Pitzler C., Körfer G., Jakob F., Ronny M., Maurer K.-H. & Schwaneberg U.
 (2015) Advances in protease engineering for laundry detergents. *New biotechnology*, 32, 629–634. DOI: 10.1016/j.nbt.2014.12.010.
- Walker J.A., Takasuka T.E., Deng K., Bianchetti C.M., Udell H.S., Prom B.M., Kim H., Adams P.D., Northen T.R. & Fox B.G. (2015) Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. *Biotechnology for biofuels*, 8, 220. DOI: 10.1186/s13068-015-0402-0.
- Wallen R.M. & Perlin M.H. (2018) An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. *Frontiers in microbiology*, 9, 503. DOI: 10.3389/fmicb.2018.00503.
- Waltz E. (2016) Gene-edited CRISPR mushroom escapes US regulation. *Nature*, 532, 293.DOI: 10.1038/nature.2016.19754.
- Wang J.-R., Li Y.-Y., Liu D.-N., Liu J.-S., Li P., Chen L.-Z. & Xu S.-D. (2015) Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from *Bacillus licheniformis* in *Pichia pastoris*. *BioMed research international*, **2015**, 248680.
 DOI: 10.1155/2015/248680.
- Wang M., Si T. & Zhao H. (2012) Biocatalyst development by directed evolution. *Bioresource technology*, **115**, 117–125. DOI: 10.1016/j.biortech.2012.01.054.
- Wang P., Qin W., Xu J., Yan Y., Tian J., Wu N. & Yao B. (2016) Enhancing the soluble expression of an amylase in *Escherichia coli* by the mutations related to its domain interactions. *Protein expression and purification*, **120**, 35–41. DOI: 10.1016/j.pep.2015.12.010.
- Wang S. & Copeland L. (2013) Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. *Food & function*, 4, 1564– 1580. DOI: 10.1039/c3fo60258c.
- Welinder K.G. & Tams J.W. (2010) Effects of glycosylation on protein folding, stability and solubility. Studies of chemically modified or engineered plant and fungal peroxidases. In: *Carbohydrate bioengineering: Proceedings of an international conference, Elsinore, Denmark, April 23-26, 1995* (ed. by S.B. Petersen, B. Svensson & S. Pedersen), pp. 205–210. Elsevier, Amsterdam, New York.

- Werten M.W.T. & Wolf F.A. de (2005) Reduced proteolysis of secreted gelatin and Yps1mediated alpha-factor leader processing in a *Pichia pastoris* kex2 disruptant. *Applied and environmental microbiology*, **71**, 2310–2317. DOI: 10.1128/AEM.71.5.2310-2317.2005.
- Winkler J.D. & Kao K.C. (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. *Genomics*, **104**, 406–411. DOI: 10.1016/j.ygeno.2014.09.006.
- Wu J. & Brien P.A.O.' (2009) Stable transformation of *Rhizoctonia solani* with a modified hygromycin resistance gene. *Australasian Plant Pathology*, **38**, 79. DOI: 10.1071/AP08081.
- Xavier-Santos S., Carvalho C.C., Bonfá M., Silva R., Capelari M. & Gomes E. (2004) Screening for pectinolytic activity of wood-rotting basidiomycetes and characterization of the enzymes. *Folia microbiologica*, **49**, 46–52.
- Yamada Y., Matsuda M., Maeda K. & Mikata K. (1995) The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: The proposal of Komagataella gen. nov. (Saccharomycetaceae). *Bioscience, biotechnology, and biochemistry*, **59**, 439–444. DOI: 10.1271/bbb.59.439.
- Yang H., Liu L., Shin H.-d., Chen R.R., Li J., Du G. & Chen J. (2013) Structure-based engineering of histidine residues in the catalytic domain of α-amylase from *Bacillus subtilis* for improved protein stability and catalytic efficiency under acidic conditions. *Journal of biotechnology*, **164**, 59–66. DOI: 10.1016/j.jbiotec.2012.12.007.
- Yin Y., Wang Q., Xiao L., Wang F., Song Z., Zhou C., Liu X., Xing C., He N., Li K., Feng Y. & Zhang J. (2018) Advances in the Engineering of the Gene Editing Enzymes and the Genomes: Understanding and Handling the Off-Target Effects of CRISPR/Cas9. *Journal of biomedical nanotechnology*, **14**, 456–476. DOI: 10.1166/jbn.2018.2537.
- Zahrl R.J., Peña D.A., Mattanovich D. & Gasser B. (2017) Systems biotechnology for protein production in *Pichia pastoris*. *FEMS yeast research*, **17. DOI:** 10.1093/femsyr/fox068.

7. Anhang

α-Amylase aus Fomes fomentarius (Ffo)

DNA-Sequenz (Signalpeptidsequenz unterstrichen):

ATGTCTCCTTGGTCCAAGCTTGTTGGGCTCACGAGCCTCGGCGCCCTGTTCTCAGCCGCTG GCGCTGCGCCGTTCCTCCGTTCGACTGACGGTCACTCGTTGGCTGCCCGCGCTCCTTCCAC AAACAAAACGGTCATCGTCCAGATATTCGAGTGGTCATGGGACAGCGTCGCCACCGAGTGC ACCAACTTCATCGGGCCTGCCGGGTATGGGTTTGTTCAAGTGAGCCCTCCGGCGGAGCACA TCCAGGGCAGTCAATGGTGGACGGACTACCAGCCGGTCTCATACACGCTCACCTCCAAGCG TGGCAATCGCGACCAATTTGCGAACATGATCAATACCTGCCATGCCGCCGGTGTTGGTGTC ATCGTTGACACTATTTGGAACCACATGGCCGGCGTCGAATCTGGCACGGGCGTTGCTGGGT CCTCCTTTACGCACTACAACTACCCAGGCATCTATCAAACCCAGGATTTCCATCACTGCGG CCTTACCAGCGGTGACGACATCGTCGACTACTCTAGCCGAGCTCAAGTCCAAACGTGTGAG CTTGTCAACCTTGCCGACCTCGCAACTGATACCGAGTACGTTCGGAGCCGCCTTGCTGCGT ACGGAAACGACCTCTTGTCGCTGGGCGCCGATGGCTTCCGTCTCGACGCCGCGAAACATAT CGCTACTGGTGACATTGCCAACATCTTGTCGAGGTTGAACTCTACCCCATATATCTCGCAA GAGGTCATTTATGGCGCTGGCGAGCCGGTCACTCCTAGCGAATACACCGGCAATGGTGATG TCCAGGAATTCCGGTACACCTCGGCTATAAAGGATGCTTTCCTAAACGGCGATATCTCCAG CCTTCAAAGTTTTGACAATCGCGGTTGGGTGGCAGGCTCAGGCGCGAATGTGTTCGTCGTA TCACTGCTACGATCTTCTCGCTTGCGCATCCATATGGTACACCGACGATCCTGTCCAGCTA CAGTGGCTTCACCAATACCGATGCTGGTGCACCCAATGGTGGGGCTGGGACGTGCTCAGGC AGCGGTGGATCGAACGGATGGCTGTGTCAGCACCGTTGGACCGCGTTTGCCGGCATGGTTG GCTTCAGGAACAACGTCGGCAACGCGGCGCTTACCAACTGGCAGTCACCTCAAGGTCGACA GATCGCCTTTGGTCGCGGCGCATTGGGCTTTGTCGCTATCAATAACGACGACTCTGCTTGG TCGACGACGTTCACGACTCAGCTTCCCGACGGCTCATACTGCGATGTTGTCAGTGGCGCGT GGTGCCTGCGAGAAGCGCCGTCGCGATCCACACCGGCGCGAAGGGCAGTAGCAACAACGGC GGTGGCGGCGGAGaCAACGTCACTGTAAACTTCTCTGTAACCGCCACAACCACATTCGGCG AGAACATCTTCCTCGTCGGAAGCATTTCACAGCTCGGAAGCTGGAACGCCGCGAACGCCAT CGCATTGTCTTCTGCTTCGTACCCGACGTGGACCGTGTCGGTCAGCATTCCCGCAAGCACT ACCTTTGAGTACAAATTCATCAGGAAAGAGACTGATGGAAGCATCGTGTGGGAGTCCGATC CCAACCGTTCTGCCACAACCCCCTCTGCGGGTACTCAGAATCTTTCCTCTTCCTGGAGATA Α

Aminosäure-Sequenz (Signalpeptid unterstrichen, MS-Hit rot):

MSPWSKLVGLTSLGALFSAAGAAPFLRSTDGHSLAARAPSTNKTVIVQIFEWSWDSVATEC TNFIGPAGYGFVQVSPPAEHIQGSQWWTDYQPVSYTLTSKRGNRDQFANMINTCHAAGVGV IVDTIWNHMAGVESGTGVAGSSFTHYNYPGIYQTQDFHHCGLTSGDDIVDYSSRAQVQTCE LVNLADLATDTEYVRSRLAAYGNDLLSLGADGFRLDAAKHIATGDIANILSRLNSTPYISQ EVIYGAGEPVTPSEYTGNGDVQEFRYTSAIKDAFLNGDISSLQSFDNRGWVAGSGANVFVV NHDTERNGDSLNNNSPSNTYVTATIFSLAHPYGTPTILSSYSGFTNTDAGAPNGGAGTCSG SGGSNGWLCQHRWTAFAGMVGFRNNVGNAALTNWQSPQGRQIAFGRGALGFVAINNDDSAW STTFTTQLPDGSYCDVVSGASSGGNCSGTSITVSGGSFSATVPARSAVAIHTGAKGSSNNG GGGGDNVTVNFSVTATTTFGENIFLVGSISQLGSWNAANAIALSSASYPTWTVSVSIPAST TFEYKFIRKETDGSIVWESDPNRSATTPSAGTQNLSSSWR*

Aligments:

Auf DNA- Ebene:

>>LCI						(1770	nt)
Water	man-Egge	ert score:	8724; 182	27.3 bits;	E(1) < 0		
99.0%	identity	7 (99.0% s:	imilar) in	1782 nt or	verlap (1-1	L782:1-1770))
		10	20	30	40	50	60
JGI	ATGTCTC	CTTGGTCCA	AGCTTGTTGG	GCTCACGAGC	CTCGGCGCCC	IGTTCTCAGCO	CGCT
	::::::	•••••	•••••		•••••	: : : : : : : : : : :	:::
LCI	ATGTCTC	CTTGGTCCA	AGCTTGTTGG	GCTCACGAGC	CTCGGCGCCC	IGTTCTCAGCO	CGCT
		10	20	30	40	50	60
		70	80	90	100	110	120
JGI	GGCGCTG	GCGCCGTTCC	FCCGTTCGAC	IGACGGTCAC:	ICGTTGGCTG	CCCGCGCTCCT	TCC
	::::::	•••••					:::
LCI	GGCGCTG	GCGCCGTTCC	FCCGTTCGAC	rgacggtcac:	ICGTTGGCTG	CCCGCGCTCCI	TCC
		70	80	90	100	110	120
		130	140	150	160	170	180
JGI	ACAAACA	AAACGGTCA	ICGTCCAGATA	ATTCGAGTGG	ICATGGGACAC	GCGTCGCCACC	CGAG
	::::::						:::
LCI	ACAAACA	AAACGGTCA	FCGTCCAGATA	ATTCGAGTGG	FCATGGGACAC	GCGTCGCCACO	CGAG
		130	140	150	160	170	180
		190	200	210	220	230	240
JGI	TGCACCA	ACTTCATCG	GCCTGCCGG	GTATGGGTTT	GTTCAAGTGAG	GCCCTCCGGC	GGAG
	::::::						::::
LCI	TGCACCA	ACTTCATCG	GCCTGCCGG	GTATGGGTTT	GTTCAAGTGA	GCCCTCCGGC	GAG
-		190	200	210	220	230	240
		250	260	270	280	290	300
JGI	CACATCO	CAGGGCAGTCA	AATGGTGGAC	GACTACCAG	CCGGTCTCATA	ACACGCTCACC	CTCC
001							
LCT	CACATCO	CAGGGCAGTC	ATGGTGGAC	GACTACCAG	CCGGTCTCATA	ACACGCTCACC	СТСС
201	0110111-00	250	260	270	280	290	300
		200	200	2,0	200	290	000
		310	320	330	340	350	360
JGT	AAGCGTO	GCAATCGCG	ACCAATTTGC	GAACATGATC	ATACCTGCCZ	ATGCCGCCGGT	GTT
001							
LCT	AAGCGTG	GCAATCGCG		GAACATGATC	ATACCTGCC	ATGCCGCCGGT	'GTT
TOT	11100010	310	320	330	340	350	360
		510	520	550	510	550	000
		370	380	390	400	410	420
TGT	CCTCTCZ						120 CTT
UGI							
тст			••••••••••••••••••••••••••••••••••••••				
ТСТ	GGIGICF	270	200	200	JOO	110	120
		370	300	390	400	410	420
		120	110	150	160	170	100
тот	COMCCOM	43U 1000000000000000000000000000000000000	440	430	400	4/U 2003.003.000000	400
JGI	GCIGGGI				AICIAICAAAC		CAI
тат							
ТСТ	GCIGGGI		GCACTACAA				LCAT
		430	440	450	460	4/0	480
		100	500	F10	520	E 2 0	E 4 0
тот		490					540
JGT	CACTGCC	JGCCTTACCA(JUGGTGAUGA	LATCGTCGAC'	TACTCTAGCC	JAGCTCAAG'I'(CAA
.							::::
ТСТ	CACTGCO	GCCTTACCA	GCGGTGACGA	CATCGTCGAC	ractictagcco	JAGCTCAAGTC	CAA
		490	500	510	520	530	540
		EEO	FCO	E Z O	EOO	FOO	<u> </u>
		330	000	J/U		090	000

JGI	ACGTGTC	GAGCTTGTCA	ACCTTGCCGA	CCTCGCAACI	GATACCGAG	TACGTTCGG	GAGCCGC
тот							
TCT	ACGIGIO	550	560	570	580	590	600
		610	620	630	640	650	660
JGI	CTTGCTG	GCGTACGGAA	ACGACCTCTT	GTCGCTGGGC	CGCCGATGGC	TTCCGTCTC	GACGCC
LCT	СТТССТС	GCGTACGGAZ	ACGACCTCTT	'GTCGCTGGG	CGCCGATGGC'	····· TTCCGTCTC	GACGCC
		610	620	630	640	650	660
тот	CCCAAAC	670 - געאערכייני	680 Стсстсасат	690 ישכככא אכאשכ	700 יששכשככאככי	710 דידירא ארידיריי	720
UGI	:::::::			:::::::::::	:::::::::::	:::::::::	::::::
LCI	GCGAAAC	CATATCGCTA	ACTGGTGACAT	TGCCAACATC	CTTGTCGAGG	ITGAACTCI	ACCCCA
		670	680	690	700	710	720
		730	740	750	760	770	780
JGI	TATATCI	rcgcaagago	GTCATTTATGG	CGCTGGCGAG	GCCGGTCACT	CCTAGCGAA	TACACC
	::::::			:::::::::	::::::::	: : : : : : : : :	:::::
LCI	TATATCI		GTCATTTATGG	CGCTGGCGAG	GCCGGTCACT	CCTAGCGAA	TACACC
		/30	740	/50	/60	//0	/80
		790	800	810	820	830	840
JGI	GGCAATO	GGTGCGCAAI	CCTCGAGTTA	TTATACATTC	CCGGTACACC	ICGGCTATA	AAGGAT
тот							::::::
LCI	GGCAATO		800	ATTC	810	rcggctata 820	AAGGAT
		, , , ,	000		010	020	
		850	860	870	880	890	900
JGI	GCTTTCC	CTAAACGGCO	GATATCTCCAG	CCTTCAAAGI	TTTGACAAT	CGCGGTTGG	GTGGCA
LCI	GCTTTCC	CTAAACGGCO	GATATCTCCAG	CCTTCAAAGI	TTTGACAAT	:::::::: CGCGGTTGG	::::: GTGGCA
LCI	:::::: GCTTTCC 830	CTAAACGGCC 840	GATATCTCCAG 850	::::::::::::::::::::::::::::::::::::::	2:::::::::::::::::::::::::::::::::::::	CGCGGTTGG 880	::::: GTGGCA
LCI	:::::: GCTTTCC 830	CTAAACGGCO 840	GATATCTCCAG 850	CCTTCAAAGI 860	:::::::::: TTTTGACAAT(870	CGCGGTTGG 880	GTGGCA
LCI	GCTTTCC GCTTTCC 830	CTAAACGGCG 840 910	GATATCTCCAG 850 920	CCTTCAAAGI 860 930	::::::::: TTTGACAAT 870 940	CGCGGTTGG 880 950	GTGGCA 960
LCI JGI	GCTTTCC GCTTTCC 830 GGCTCAC	CTAAACGGCC 840 910 GGCGCGAATC	GATATCTCCAG 850 920 GTGTTCGTCGT	::::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	GTGGCA 960 TCGCTC
LCI JGI LCI	GGCTCAC	210 SGCGCGAATC SGCGCGAATC	GATATCTCCAG 850 920 GTGTTCGTCGT GTGTTCGTCGT	::::::::: CCTTCAAAGT 860 930 PAAACCATGAC :::::::::: PAAACCATGAC	:::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG	CGCGGTTGG 880 950 AACGGCGAT	960 TCGCTC TCGCTC
LCI JGI LCI	GCTTTCC 830 GGCTCAC :::::: GGCTCAC 890	910 GGCGCGAATC GGCGCGAATC 900	GATATCTCCAG 850 920 GTGTTCGTCGT GTGTTCGTCGT GTGTTCGTCGT 910	CCTTCAAAGT 860 930 PAAACCATGAC PAAACCATGAC 920	27TTGACAAT 870 940 CACGGAAAGG 2ACGGAAAGG 2ACGGAAAGG 930	CGCGGTTGG 880 950 AACGGCGAT AACGGCGAT 940	GTGGCA 960 TCGCTC ::::: TCGCTC
LCI JGI LCI	:::::: GCTTTCC 830 GGCTCAC ::::::: GGCTCAC 890	210 210 340 350 360 360 360 360 370	GATATCTCCAG 850 920 GTGTTCGTCGT CGTTCGTCGT GTGTTCGTCGT 910 980	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC :::::::::: PAAACCATGAC 920 990	:::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010	:::::: GTGGCA 960 TCGCTC ::::: TCGCTC 1020
LCI JGI LCI JGI	GCTTTCC 830 GGCTCAC :::::: GGCTCAC 890 AATAACA	2TAAACGGCC 840 910 GGCGCGAATC SGCGCGAATC 900 970 AATTCTCCCT	GATATCTCCAG 850 920 GTGTTCGTCGT GTGTTCGTCGT GTGTTCGTCGT 910 980 CCCAACACCTA	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC :::::::::: PAAACCATGAC 920 990 TGTCACTGCT	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC	:::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG	960 TCGCTC ::::: TCGCTC 1020 CATCCA
LCI JGI LCI JGI	GGCTCAC GGCTCAC GGCTCAC GGCTCAC 890 AATAACA	910 910 GGCGCGAATC 900 970 AATTCTCCCT	SATATCTCCAG 850 920 STGTTCGTCGT STGTTCGTCGT 910 980 SCCAACACCTA	::::::::::::::::::::::::::::::::::::::	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC	::::::::::::::::::::::::::::::::::::::	:::::: GTGGCA 960 TCGCTC ::::: TCGCTC 1020 GCATCCA :::::
LCI JGI LCI JGI LCI	:::::: GCTTTCC 830 GGCTCAC ::::::: GGCTCAC 890 AATAACA ::::::: AATAACA	210 210 240 910 230 240 240 240 240 240 240 240 24	920 920 920 5TGTTCGTCGT 5TGTTCGTCGT 910 980 5CCAACACCTA 5CCAACACCTA 970	::::::::: CCTTCAAAGT 860 930 PAAACCATGAC ::::::::: PAAACCATGAC 920 990 TGTCACTGCT ::::::::::: TGTCACTGCT	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG :::::::::: ICGCTTGCG	960 TCGCTC TCGCTC TCGCTC 1020 CCATCCA
LCI JGI LCI LCI	:::::: GCTTTCC 830 GGCTCAC :::::: GGCTCAC 890 AATAACA :::::: AATAACA 950	210 210 210 2910 292 292 292 292 292 2970 2070 20	54747CTCCAG 850 920 57GTTCGTCGT 57GTTCGTCGT 910 980 57CCAACACCTA 57CCAACACCTA 970	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC :::::::::: PAAACCATGAC 920 990 TGTCACTGCT ::::::::::: TGTCACTGCT 980	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG ::::::::: ICGCTTGCG 1000	960 97CGCTC 2TCGCTC 2TCGCTC 1020 3CATCCA 3CATCCA
LCI JGI LCI JGI LCI	:::::: GCTTTCC 830 GGCTCAC ::::::: GGCTCAC 890 AATAACA ::::::: AATAACA 950	2112 210 210 230 2310 2310 2310 2310 231	SATATCTCCAG 850 920 STGTTCGTCGT STGTTCGTCGT 910 980 SCCAACACCTA SCCAACACCTA 970 1040	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC :::::::::: PAAACCATGAC 920 990 TGTCACTGCT ::::::::::: TGTCACTGCT 980 1050	:::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG 1000 1070	960 960 TCGCTC ::::: TTCGCTC 1020 GCATCCA ::::: GCATCCA
LCI JGI LCI LCI JGI	GGCTCAG GGCTCAG S30 GGCTCAG 890 AATAACA S50 TATGGTA	::::::::::::::::::::::::::::::::::::::	E E E E E E E E E E E E E E E E E E E	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC ::::::::: PAAACCATGAC 920 990 TGTCACTGCT :::::::::: TGTCACTGCT 980 1050 CTACAGTGGC	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 TACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG :::::::::: ICGCTTGCG 1000 1070 ACCGATGCT	960 TCGCTC TCGCTC TCGCTC 1020 CCATCCA SCATCCA 1080 CGGTGCA
LCI JGI LCI JGI LCI JGI	CGCTTACC GCTTTCC 830 GGCTCAC S90 AATAACA CCCCC AATAACA 950 1 TATGGTA CCCCCC	::::::::::::::::::::::::::::::::::::::	54747CTCCAG 850 920 57GTTCGTCGT 57GTTCGTCGT 910 980 57CCAACACCTA 57CCAACACCTA 970 1040 ATCCTGTCCAG 57CCACCCAG 57CCACCCAG	::::::::::::::::::::::::::::::::::::::	:::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT	::::::::::::::::::::::::::::::::::::::	960 960 TCGCTC ::::: TCGCTC 1020 GCATCCA ::::: GCATCCA 1080 CGGTGCA :::::
LCI JGI LCI LCI JGI LCI	:::::: GCTTTCC 830 GGCTCAC :::::: GGCTCAC 890 AATAACA ::::::: AATAACA 950 1 TATGGTA ::::::: TATGGTA 1010	::::::::::::::::::::::::::::::::::::::	E:::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT :::::::::: CTTCACCAAT 1050	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG :::::::::: 1000 1070 ACCGATGCT :::::::::: ACCGATGCT 1060	960 960 TCGCTC ::::: TCGCTC 1020 GCATCCA :::::: GCATCCA 1080 CGGTGCA ::::::
LCI JGI LCI LCI JGI LCI	:::::: GCTTTCC 830 GGCTCAC ::::::: GGCTCAC 890 AATAACA ::::::: AATAACA 950 1 TATGGTA ::::::: TATGGTA	::::::::::::::::::::::::::::::::::::::	54747CTCCAG 850 920 57GTTCGTCGT 57GTTCGTCGT 910 980 57CCAACACCTA 57CCAACACCTA 970 1040 ATCCTGTCCAG 1030	::::::::::::::::::::::::::::::::::::::	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT :::::::::: CTTCACCAAT 1050	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG 1000 1070 ACCGATGCT ::::::::: ACCGATGCT 1060	960 TCGCTC TCGCTC TCGCTC 1020 CATCCA SCATCCA 1080 CGGTGCA SGGTGCA
LCI JGI LCI JGI LCI LCI	:::::: GCTTTCC 830 GGCTCAC :::::: GGCTCAC 890 AATAACA 950 1 TATAGGTA ::::::: TATGGTA 1010	::::::::::::::::::::::::::::::::::::::	54747CTCGTCCAG 57677CGTCGTCGT 57677CGTCGTCGT 57677CGTCGTCGT 910 980 57677CGTCGTCGT 910 980 57677CGTCCTGTCCAG 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 5770 1040 5770 5	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC :::::::::: PAAACCATGAC 920 990 TGTCACTGCT :::::::::: TGTCACTGCT 980 1050 CTACAGTGGC ::::::::::: GCTACAGTGGC 1040	::::::::: TTTGACAAT 870 940 CACGGAAAGG :::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT :::::::::: CTTCACCAAT 1050	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG ::::::::: ICGCTTGCG 1000 1070 ACCGATGCT ::::::::: ACCGATGCT 1060 1130	960 960 TCGCTC ::::: TTCGCTC 1020 GCATCCA ::::: GCATCCA 1080 CGGTGCA ::::: CGGTGCA
LCI JGI LCI JGI LCI LCI JGI	:::::: GCTTTCO 830 GGCTCAO ::::::: GGCTCAO 890 AATAACA 950 1 TATGGTA ::::::: TATGGTA 1010	::::::::::::::::::::::::::::::::::::::	54747CTCGTCGT 54747CTCCAG 850 920 57GTTCGTCGT 910 980 57CCAACACCTA 970 1040 ATCCTGTCCAG 1040 ATCCTGTCCAG 1030 1100 56GACGTGCTC	:::::::::: CCTTCAAAGT 860 930 PAAACCATGAC ::::::::: PAAACCATGAC 920 990 TGTCACTGCT :::::::::: TGTCACTGCT 980 1050 CTACAGTGGC :::::::::::: CTACAGTGGC 1040 1110 CAGGCAGCGGT	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT ::::::::: CTTCACCAAT 1050 1120 CGGATCGAAC	::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG 1000 1070 ACCGATGCT :::::::::: ACCGATGCT 1060 1130 GGATGGCTG	960 TCGCTC TCGCTC TCGCTC 1020 CATCCA CATCCA 1080 CGGTGCA 1080 CGGTGCA 1140 TGTCAG
LCI JGI LCI JGI LCI JGI LCI LCI	::::::: GCTTTCC 830 GGCTCAC ::::::: GGCTCAC 890 AATAACA ::::::: AATAACA 950 1 TATGGTA ::::::: TATGGTA 1010 1 CCCAATC :::::::: CCCAATC	::::::::::::::::::::::::::::::::::::::	54747CTCCAG 850 920 57GTTCGTCGT 57GTTCGTCGT 910 980 57CCAACACCTA 57CCAACACCTA 970 1040 ATCCTGTCCAG 1030 1100 5GGACGTGCTC 5GGACGTGCTC	::::::::::::::::::::::::::::::::::::::	:::::::::: TTTGACAAT 870 940 CACGGAAAGG :::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT :::::::::: CTTCACCAAT 1050 1120 CGGATCGAAC	::::::::::::::::::::::::::::::::::::::	960 TCGGCA TCGCTC TCGCTC 1020 CATCCA CATCCA CATCCA 1080 CGGTGCA 1140 TGTCAG CTGTCAG
LCI JGI LCI JGI LCI JGI LCI JGI	CCCAATC CCCAATC CCCAATC CCCAATC CCCAATC CCCAATC CCCAATC CCCAATC CCCAATC 1070	::::::::::::::::::::::::::::::::::::::	54747CTCGTCGT 54747CTCGTCGT 5767TCGTCGT 5767TCGTCGT 5767TCGTCGT 910 980 5767TCGTCGTCGT 910 980 5767TCGTCGTCGT 910 980 5767TCGTCGTCCTA 970 1040 5770 1040 5770 1040 5770 1040 5770 1040 5770 570	::::::::::::::::::::::::::::::::::::::	<pre>:::::::::: TTTGACAAT 870 940 CACGGAAAGG :::::::::: CACGGAAAGG 930 1000 CACGATCTTC :::::::::: CACGATCTTC 990 1060 CTTCACCAAT :::::::::: CTTCACCAAT 1050 1120 CGGATCGAAC ::::::::::: CGGATCGAAC 1110</pre>	:::::::::: CGCGGTTGG 880 950 AACGGCGAT :::::::::: AACGGCGAT 940 1010 ICGCTTGCG ::::::::::: ICGCTTGCG 1000 1070 ACCGATGCT ::::::::::: ACCGATGCT 1060 1130 GGATGGCTG ::::::::::: GGATGGCTG 1120	960 TCGCTC TCGCTC 1020 CATCCA CATCCA 1080 CGGTGCA 1080 CGGTGCA 1140 TGTCAG TGTCAG
LCI JGI LCI JGI LCI JGI LCI	:::::: GCTTTCC 830 GGCTCAC 830 AATAACA 950 AATAACA 950 TATGGTA :::::: TATGGTA 1010 CCCAATC ::::::: CCCAATC	::::::::::::::::::::::::::::::::::::::	E:::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	::::::::: TTTGACAAT 870 940 CACGGAAAGG ::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT ::::::::: CTTCACCAAT 1050 1120 CGGATCGAAC :::::::::::	:::::::::: CGCGGTTGG 880 950 AACGGCGAT ::::::::: AACGGCGAT 940 1010 ICGCTTGCG :::::::::: ICGCTTGCG 1000 1070 ACCGATGCT :::::::::: ACCGATGCT 1060 1130 GGATGGCTG ::::::::::: GGATGGCTG	960 TCGCTC ::::: TCGCTC ::::: TCGCTC 1020 CATCCA ::::: CATCCA ::::: CGTGCA :::::: TGGTGCA :::::: TGTCAG ::::::
LCI JGI LCI JGI LCI JGI LCI JGI	GGCTCAC 830 GGCTCAC 11111 GGCTCAC 890 AATAACA 11111 AATAACA 950 11111 TATGGTA 1010 1100 1100 1000 1000 1000 1000	::::::::::::::::::::::::::::::::::::::	SATATCTCCAG 850 920 GTGTTCGTCGT STGTTCGTCGT 910 980 CCCAACACCTA 970 1040 ATCCTGTCCAG 1030 1100 GGGACGTGCTC 1090 1160 TTGCCGCCAT	::::::::::::::::::::::::::::::::::::::	:::::::::: TTTGACAAT 870 940 CACGGAAAGG :::::::::: CACGGAAAGG 930 1000 CACGATCTTC ::::::::: CACGATCTTC 990 1060 CTTCACCAAT :::::::::: CTTCACCAAT 1050 1120 CGGATCGAAC 1110 1180 CAGGAACAAC	::::::::::::::::::::::::::::::::::::::	960 TCGCTC ::::: TCGCTC ::::: TCGCTC 1020 CATCCA ::::: CATCCA ::::: CGTGCA 1140 TGTCAG ::::: TGTCAG ::::: TGTCAG

LCI	CACCG 1130	TTGGACCGCG 1140	TTTGCCGGC 1150	ATGGTTGGCT: 1160	TCAGGAACAA 1170	CGTCGGCAAC. 1180	GCGGCG
JGI	CTTAC	1210 Caactggcag	1220 TCACCTCAA	1230 GGTCGACAGA	1240 ICGCCTTTGG	1250 TCGCGGCGCA	1260 ATTGGGC
	:::::					: : : : : : : : : :	:::::
LCI	CTTAC 1190	CAACTGGCAG 1200	TCACCTCAA 1210	GGTCGACAGA 1220	ICGCCTTTGG 1230	TCGCGGCGCA 1240	TTGGGC
		1270	1280	1290	1300	1310	1320
JGI	TTTGT	CGCTATCAAT	AACGACGAC	TCTGCTTGGT	CGACGACGTT	CACGACTCAG	CTTCCC
	:::::	: : : : : : : : : :	::::::::	::::::::::	: : : : : : : : : :	::::::::::	:::::
LCI	TTTGT	CGCTATCAAT	AACGACGAC	TCTGCTTGGT	CGACGACGTT	CACGACTCAG	CTTCCC
	1250	1260	1270	1280	1290	1300	
		1330	1340	1350	1360	1370	1380
JGI	GACGG	CTCATACTGC	GATGTTGTC	AGTGGCGCGT	CTTCTGGAGG	CAACTGCTCC	GGTACA
	:::::	: : : : : : : : : : :	::::::::		: : : : : : : : : : : :	:::::::::	:::::
LCI	GACGG0 1310	1320	1330	AGTGGCGCGT 1340	1350	CAACTGCTCC 1360	GGTACA
		1390	1400	1410	1420	1430	1440
JGI	TCCAT	CACCGTCTCT	GGCGGTTCG	TTCAGCGCGA	CGGTGCCTGC	GAGAAGCGCC	GTCGCG
	:::::	: : : : : : : : : : :	::::::::		: : : : : : : : : : :	: : : : : : : : : : :	:::::
LCI	TCCAT(1370	LACCGTCTCT 1380	GGCGGTTCG 1390	TTCAGCGCGA0 1400	CGGTGCCTGC 1410	GAGAAGCGCC 1420	GTCGCG
		1450	1460	1470	1480	1490	1500
JGI	ATCCA	CACCGGCGCG	AAGGGCAGT	AGCAACAACG	GCGGTGGCGG	CGGAGGCAAC	GTCACT
	:::::	: : : : : : : : : : :	::::::::		: : : : : : : : : : :	::::: ::::	:::::
LCI	ATCCA		AAGGGCAGT	AGCAACAACG	GCGGTGGCGG	CGGAGACAAC	GTCACT
	1430	1440	1450	1460	14/0	1480	
		1510	1520	1530	1540	1550	1560
JGI	GTAAA	CTTCTCTGTA	ACCGCCACA	ACCACATTCG	GCGAGAACAT	CTTCCTCGTC	GGAAGC
тст	CTAAA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
ПСТ	1490	1500	1510	1520	1530	1540	.GGAAGC
		1570	1580	1590	1600	1610	1620
JGI	ATTTC	ACAGCTCGGA	AGCTGGAAC	GCCGCGAACG	CCATCGCATT	GTCTTCTGCI	TCGTAC
тат							:::::
ТСТ	1550	ACAGCICGGA 1560	AGCTGGAAC 1570	1580	LCATCGCATT 1590	1600	TCGTAC
	1000	1000	10/0	1000	1000	1000	
	~~~~~~	1630	1640	1650	1660	1670	1680
JGI	CCGAC	GTGGACCGTG	TCGGTCAGC	ATTCCCGCAA	GCACTACCTT	TGAGTACAAA	TTCATC
LCT	CCGAC	GTGGACCGTG	TCGGTCAGC	ATTCCCGCAA	GCACTACCTT	TGAGTACAAA	TTCATC
201	1610	1620	1630	1640	1650	1660	
		1690	1700	1710	1720	1730	1740
JGI	AGGAA	AGAGACTGAT	GGAAGCATC	GTGTGGGAGT	CCGATCCCAA	CCGTTCTGCC	CACAACC
	:::::	: : : : : : : : : :	: : : : : : : : :		: : : : : : : : : :	: : : : : : : : : :	:::::
LCI	AGGAA	AGAGACTGAT	GGAAGCATC	GTGTGGGAGT	CCGATCCCAA		CACAACC
	TOIO	TOOU	TOAO	TIOO	1/10	I / Z U	
		1750	1760	1770	1780		
JGI	CCCTC	IGCGGGTACT	CAGAATCTT	TCCTCTTCCT	GGAGATAA		
тат							
пСТ	1730	1740	1750	1760	1770 1		

# $\alpha$ -Amylase aus Fomitopsis pinicola (Fpi)

DNA-Sequenz (Signalpeptidsequenz unterstrichen):

ATGTGGGGCAGCCTTCTCGCAGCCTCTGCcCTCGtGGCTTCCGCGCTTGCTGCGACTACGG CGGAaTGGCAGCAaCGCTCGATCTACCAGCTCGTCACGGATAGaTTCGCqACCTCGGAcGG CTCqTCGCCCGCTTGCGACACCGGCGATCGCGTGTATTGTGGcGGGTCGTGGCAGGGqGTC ATCAATAAGCTGGATTACATCCAGTACATGGGCTTCGACGCCaTCTGGATtTCACCAGTCG TGAAGAACCTAGAAGGcAGCACGGGAGATGGCTACTCGTACCATGGATACTGGGCGGTCGA CCAGAACTCGGTCAACGAGCACTTCGGCACTGCAGACGAtCTGAATGCCCTTAGcAGCGCG TTGCACGCGCGCGGGATGTACCTGATGGTCGAcGTCGTCGTGAACCACATGGCGGCCAACA CGCTCCCGCCGGACTACTCGACCTTCACGCCGTTCAGCtCCGAGTCGGACTTCCACACCTT CTGCTGGATCACGGACTACqACAACCAGACGAACGTCGAGCAGTGCTGGCTCGGCGACTCG AGCGTGCCGCTCGCGGACTGCGACACcGAGGCTqACAACGTcaTCGACTTCTTCTACAACT GGATCGGCGAGCTCCGCGCGAACTACACTGTGGATGGtTTCAGGATCGACACGCTGAAGCA TGTCAGGCAGACGTTCTGGCCaGAtTTCCAGACcAACGCGGGCGTGTACGCCGTCGGTGAG GTCTTTGAcGGCGACGTGAACTAtGTTTCGCCCTACACTGAGGTtATCGACGGAGTGTTGG ACTACCCGACGTACTATCAGCTCACCTCCGCCTTCGAGTCCACCAGCGGCTCAATTCAGAA CCTCGTCGACGTGATTCAGTCTGCGCAGTCcACTTACTCCACGAtGCTCTTCCAAGTCGCG ACqTTcCTCGAGAACCAGGACAACCCGCGGTTCCAGAGTcTTACCACtGAtCAAGGCCTaG TGAAGAACGCGATGqCqTGGCCGTTtATCGCGGATGGCATCCCCATtcTtTACTACGGTCA GGAGCAAGGCTACACTGGCGGCAACGACCCCGATAACCGTGAAGCGCTGTGGCTGTCCGGA TACGAGGAAAACAAGCCtCTCGTGCAGCACGCCCGCATCCTCAACGCTGCCCGCAAGGCCG CCATCGCCGCCAGCAGCAGCTTCCTCTCCACCGCCGTGACCTTCCCGTcGGTGGGCAGCAA CACGCTCGCCGCGTCcAAATACCCGCTGCTCTCGCTCCTGAcCAACGTAGGCGCAAGCGGC AtgcccgtTTGGGACGTCTCCTCGGGAACGGGATACGACGAGGGCACGGAGCTGATTGAtG CGCTCACGTGCACGACGTACACCGCTGqGAGCAGCGGCAGCGTGAGCGTCACGGGCAGTAG CGGqGACCCCGTCATCCTGCTcCCGACGAGCGCATACAACGCGTCGTACTGCAGCGAGCTG ACGGGCACGqACTCGACCGGCAGCTCGGACACGGTqTCGGTGACGTTCGAGGTGGAGTACA ACACGACGTACGGCGAGAATTTGTATCTCACCGGCTCCGTCtCTGAGCTCGTGGACTGGTC CGTCGAtGACGCaCTCCTtATGTCGTCCGCcGACTACCCGACCTGGAGCcTGACGGTGGAC CTCCCCCCGAGCACGGCGATCCAGTACAAGTAtCTgACGAAGTACAATGGCGACGTCACGT GGGAGGACGACCCCAACAACGAGCTCACGACqCCtGCGAGCGGCTCCGTCACGCAGAGCGA CAGCTGGCATTGA

AS-Sequenz (Signalsequenz unterstrichen, MS-Hit rot markiert):

MWGSLLAASALVASALAATTAEWQQRSIYQLVTDRFATSDGSSPACDTGDRVYCGGSWQGV INKLDYIQYMGFDAIWISPVVKNLEGSTGDGYSYHGYWAVDQNSVNEHFGTADDLNALSSA LHARGMYLMVDVVVNHMAANTLPPDYSTFTPFSSESDFHTFCWITDYDNQTNVEQCWLGDS SVPLADCDTEADNVIDFFYNWIGELRANYTVDGFRIDTLKHVRQTFWPDFQTNAGVYAVGE VFDGDVNYVSPYTEVIDGVLDYPTYYQLTSAFESTSGSIQNLVDVIQSAQSTYSTMLFQVA TFLENQDNPRFQSLTTDQGLVKNAMAWPFIADGIPILYYGQEQGYTGGNDPDNREALWLSG YEENKPLVQHARILNAARKAAIAASSSFLSTAVTFPSVGSNTLAASKYPLLSLLTNVGASG MPVWDVSSGTGYDEGTELIDALTCTTYTAGSSGSVSVTGSSGDPVILLPTSAYNASYCSEL TGTDSTGSSDTVSVTFEVEYNTTYGENLYLTGSVSELVDWSVDDALLMSSADYPTWSLTVD LPPSTAIQYKYLTKYNGDVTWEDDPNNELTTPASGSVTQSDSWH*

#### Alignments:

>>LCI	1782 bp					(1782	nt)
Water	nan-Egge:	rt score:	8316; 44	1.0 bits; 1	E(1) < 5.	7e-127	
96.3%	identity	(96.3% s:	imilar) in	1782 nt o	verlap (1-	1782:1-178	2)
		1.0	2.0	20	10	FO	<u> </u>
тот	лысыссо			30	40	5U mmccmcccc	60 maga
JGI	ATGTGGGG	GCAGCCITIC	ICGCAGCCIC:	IGCGCICGCG	JUTTUUGUGU	TIGCIGCGAC	TACG
тст							
ПСТ	AIGIGGG	10	20	30	10	50	EDAI
		10	20	50	40	50	00
		70	80	90	100	110	120
JGT	GCGGAGT	GGCAGCAGC	GCTCGATCTA	CCAGCTCGTC	ACGGATAGGT	TCGCCACCTC	GGAT
001	:::::::::::::::::::::::::::::::::::::::						:::
LCI	GCGGAAT	GGCAGCAAC	GCTCGATCTA	CCAGCTCGTC	ACGGATAGAT	TCGCGACCTC	GGAC
		70	80	90	100	110	120
		130	140	150	160	170	180
JGI	GGCTCAT	CGCCCGCTT	GCGACACCGG	CGATCGCGTG	TATTGTGGTG	GGTCGTGGCA	GGGT
	::::: :	: : : : : : : : :	: : : : : : : : : :	: : : : : : : : : :	:::::::::::::::::::::::::::::::::::::::	: : : : : : : : : :	:::
LCI	GGCTCGT	CGCCCGCTT	GCGACACCGG	CGATCGCGTG	TATTGTGGCG	GGTCGTGGCA	GGGG
		130	140	150	160	170	180
		190	200	210	220	230	240
JGI	GTCATCA	ATAAGCTGG	ATTACATCCA	GTACATGGGC'	ITCGACGCCG	TCTGGATCTC	ACCA
	::::::						::::
LCI	GTCATCA	ATAAGCTGG	ATTACATCCA	GTACATGGGC'	ITCGACGCCA	TCTGGATTTC	ACCA
		190	200	210	220	230	240
		250	200	070	200	200	200
тот	CTCCTCN .	200 200 200					
UGI	GICGIGA	AGAACCIAG/	AAGGGAGCAC	JGGAGAIGGC	IACICGIACC.	AIGGAIACIG	
тст	CTCCTCA:						
ПСТ	GICGIGA	250	260	270	280	290	300
		200	200	270	200	290	000
		310	320	330	340	350	360
JGI	GTCGACC	AGAACTCGG	TCAACGAGCA	CTTCGGCACT	GCAGACGACC	TGAATGCCCT	TAGT
		:::::::::					:::
LCI	GTCGACC	AGAACTCGG	TCAACGAGCA	CTTCGGCACT	GCAGACGATC	TGAATGCCCT	TAGC
		310	320	330	340	350	360
		370	380	390	400	410	420
JGI	AGCGCGT	TGCACGCGC	GCGGGATGTA	CCTGATGGTC	GATGTCGTCG	TGAACCACAT	GGCG
	::::::		: : : : : : : : : : :	: : : : : : : : : : :	:: ::::::	: : : : : : : : : :	::::
LCI	AGCGCGT	TGCACGCGC	GCGGGGATGTA	CCTGATGGTC	GACGTCGTCG	TGAACCACAT	GGCG
		370	380	390	400	410	420
						. – .	
	~~~~~~~	430	440	450	460	470	480
JGI	GCCAACA	CGCTCCCGC	CGGACTACTC	GACCITICACG	CCGIIICAGCG	CCGAGTCGGA	CTTC
T 0 T							
LCI	GCCAACA			JACCTTCACG		CCGAGTCGGA	400
		400	440	400	400	4/0	40U
		190	500	510	520	530	510
JIGT		ュノV 中C中GC中GCA:	UUU TCACGCACTA			JJU AGCAGTCCTC	040 0700
001							

LCI	CACACC	ITCTGCTGGA	TCACGGACTA	CGACAACCAG	ACGAACGTCG	AGCAGTGCTG	GCTC
		490	500	510	520	530	540
		FFO	5.00	530	500	500	<u> </u>
TGT	CCCCAC	JOU TCCACCCTCC	Ud C CCCTCCCCCA		38U Caccemaaca		600 CTTC
001	::::::						::::
LCI	GGCGAC	ICGAGCGTGC	CGCTCGCGGA	CTGCGACACC	GAGGCTGACA	ACGTCATCGA	CTTC
		550	560	570	580	590	600
TOT		610	620	630	640	650	660
JGI	TTCTAC	AACTGGATCG	GCGAGCTCCG	GCGAACTAC	ACTGTGGATG	GCTTCAGGAT	CGAC
LCT	ттстас		GCGAGCTCCG	CCCAACTAC	ACTGTGGATG	GTTTCAGGAT	CGAC
TOT	11011101	610	620	630	640	650	660
		670	680	690	700	710	720
JGI	ACGCTG	AAGCATGTCA	GGCAGACGTT	CTGGCCGGAC	ITCCAGACTA	ACGCGGGGCGT	GTAC
тат							
LCI	ACGCTG	AAGCATGTCA	680	ETGGCCAGAT.	700	ACGCGGGGCGT 710	GTAC 720
		070	000	090	700	710	120
		730	740	750	760	770	780
JGI	GCCGTC	GGTGAGGTCT	TTGATGGCGA	CGTGAACTAC	GTTTCGCCCT	ACACTGAGGT	CATC
	:::::			: : : : : : : : : :		: : : : : : : : : :	:::
LCI	GCCGTC	GGTGAGGTCT	TTGACGGCGA	CGTGAACTAT	GTTTCGCCCT	ACACTGAGGT	TATC
		730	740	750	760	770	780
		700	000	010	020	020	010
JGT	CACCCA					030 177626777727	040 CAGC
001							::::
LCI	GACGGA	GTGTTGGACT	ACCCGACGTA	CTATCAGCTC	ACCTCCGCCT	TCGAGTCCAC	CAGC
		790	800	810	820	830	840
тот	CCOMON	850 850	860	870 23 mm c 3 c m c m c m c m c m c m c m c m	880	890	900
JGI	GGCICA	·····		JAIICAGICI(GAAG
LCI	GGCTCA	ATTCAGAACC'	TCGTCGACGT	GATTCAGTCT	 GCGCAGTCCA	CTTACTCCAC	GATG
		850	860	870	880	890	900
		910	920	930	940	950	960
JGI	CTCTTC	CAAGTCGCGA	CCTTTCTCGA	GAACCAGGAC	AACCCGCGGT	TCCAGAGTAT	TACC
тст							
ТСТ	CICIIC	910	920	930	940	950	960
		510	520	550	510	500	500
		970	980	990	1000	1010	1020
JGI	ACCGAC	CAAGGCCTGG	TGAAGAACGC	GATGACATGG	CCGTTCATCG	CGGATGGCAT	CCCC
	:: ::	: : : : : : : : :		:::: : :::	:::::	:::::::::	::::
LCI	ACTGAT	CAAGGCCTAG	TGAAGAACGC	GATGGCGTGG	CCGTTTATCG	CGGATGGCAT	
		970	980	990 .	1000	1010	IUZU
		1030	1040	1050	1060	1070	1080
JGI	ATCTTG	TACTACGGTC	AGGAGCAAGG	CTACACTGGC	GGCAACGACC	CCGATAACCG	TGAA
	:: :					: : : : : : : : : :	::::
LCI	ATTCTT	TACTACGGTC	AGGAGCAAGG	CTACACTGGC	GGCAACGACC	CCGATAACCG	TGAA
		1030	1040	1050 2	1060	1070	1080
		1000	1100	1110	1100	1120	1140
тст	CCCCmc				LTZU Smccmccacc		1140 CCTC
UGT			GAIACGAGGA			ACGUUGUAT	
LCI	GCGCTG	IGGCTGTCCG	GATACGAGGA	AAACAAGCCT	CTCGTGCAGC	ACGCCCGCAT	CCTC
-							
		1090	1100	1110 :	1120	1130	1140

		1150	1160	1170	1180	1190	1200
JGI	AACGCT	GCCCGCAAG	GCCGCCATCGC	CCGCCAGCAG	CAGCTTCCTC	TCCACCGCCGT	GACC
	:::::	::::::::::		•••••	•••••		::::
LCI	AACGCT	GCCCGCAAG	GCCGCCATCGC	CGCCAGCAG	CAGCTTCCTC	ICCACCGCCGT	GACC
		1150	1160	1170	1180	1190	1200
		1010	1000	1000	1040	1050	1000
		1210	1220	1230	1240	1250	1260
JGI	TTCCCG	TTGGTGGGCA	AGCAACACGCI	CGCCGCGTC	TAAATACCCG	CTGCTCTCGCT	CCTG
	::::::	: :::::::					::::
LCI	TTCCCG		AGCAACACGCI				10CTG
		1210	1220	1230	1240	1250	1260
		1070	1000	1000	1200	1 2 1 0	1 2 2 0
тот	700770			IZ9U CCCCTTCCCA			
JGI	AGCAAC			GGCIIGGGA		GAACGGGAIA	CGAC
TCT							CGAC
ПСТ	ACCAAC	1270	1280	1290	1300	1310	1320
		1270	1200	12,50	1300	1010	1920
		1330	1340	1350	1360	1370	1380
JGT	GAGGGC	ACGGAGCTGA	TTGACGCGCI	'CACGTGCAC	JACGTACACCO		CGGC
001	::::::						
LCI	GAGGGC	ACGGAGCTGA	TTGATGCGCI	CACGTGCAC	GACGTACACCO	GCTGGGAGCAG	CGGC
201	0110000	1330	1340	1350	1360	1370	1380
		1390	1400	1410	1420	1430	1440
JGI	AGCGTG	AGCGTCACGO	GCAGTAGCG	GCGACCCCGT	CATCCTGCTG	CCGACGAGCGC	ATAC
	:::::	: : : : : : : : : :					::::
LCI	AGCGTG	AGCGTCACGO	GCAGTAGCGO	GGACCCCGT	CATCCTGCTC	CCGACGAGCGC	ATAC
		1390	1400	1410	1420	1430	1440
		1450	1460	1470	1480	1490	1500
JGI	AACGCG	TCGTACTGCA	AGCGAGCTGAC	CGGGCACGAA	CTCGACCGGCA	AGCTCGGACAC	GGTT
	:::::	: : : : : : : : : :		••••••	• • • • • • • • • • • •		:::
LCI	AACGCG	TCGTACTGCA	AGCGAGCTGAC	CGGGCACGGA	CTCGACCGGCA	AGCTCGGACAC	GGTG
		1450	1460	1470	1480	1490	1500
		1510	1520	1530	1540	1550	1560
JGI	TCGGTG	ACGTTCGAG	GTGGAGTACAA	ACACGACGTA	CGGCGAGAATI	TGTATCTCAC	CGGC
	:::::						::::
LCI	TCGGTG	ACGTTCGAG	STGGAGTACAA	ACACGACGTA	CGGCGAGAATT	TTGTATCTCAC	CGGC
		1510	1520	1530	1540	1550	1560
		1 - 7 0	1 - 0 0	1 - 0 0	1 (0 0	1 (1 0	1 () (
тот	macama				10UU CCCCCCCCCCCCCCCC		
JGI	100G10	GUIGAGUIU	JIGGACIGGI(CGICGACGA		AIGICGICCGC	GGAC
TCT	 TCCCTC						
ПСТ	ICCGIC	1570	1580	1590	1600	1610	1620
		1370	1000	1550	1000	1010	1020
		1630	1640	1650	1660	1670	1680
JGT	TACCCG	ACCTGGAGCI	TGACGGTGGZ		TAGCACGGCGZ	TCCAGTACAA	GTAC
001	::::::						:::
LCT	TACCCG	ACCTGGAGCO	CTGACGGTGGA		GAGCACGGCGA	TCCAGTACAA	GTAT
201	1110000	1630	1640	1650	1660	1670	1680
		1690	1700	1710	1720	1730	1740
JGI	CTCACG	AAGTACAATO	GCGACGTCAC	CGTGGGAGGA	CGACCCCAAC	ACGAGCTCAC	GACT
	:: :::						:::
LCI	CTGACG	AAGTACAATO	GCGACGTCAC	GTGGGAGGA	CGACCCCAAC	ACGAGCTCAC	GACG
		1690	1700	1710	1720	1730	1740
		1750	1760	1770	1780		

Aminosäure-Ebene

>>LCI	593 bp					(5)	93 aa)
Water	man-Egg	ert score	: 3879;	770.8 bits	; E(1) <	0	
97.3%	identit	y (99.3%	similar)	in 593 aa	overlap (1	-593:1-59	3)
		10	20	30	40	50	60
JGI	MWGSLL	AASALAASA	LAATTAEW	ORSIYOLVTD	RFATSDGSSI	ACDTGDRVY	CGGSWQG
	::::::						::::::
LCT	MWGSTIT	AASALVASA	LAATTAEWO	ORSTYOLVTD	RFATSDGSSI	PACDTGDRVY	CGGSWOG
101	IIIIODILL	10	20	30	40	50	60 60
		ŦŬ	20	50	10	00	00
		70	80	90	100	110	120
тот	UTNIVI D			JU JI ECOMODOVO	TOO		
JGT	VINKLD	IIQIMGEDA	VWISPVVN	NTEG2IGDGI2	INGIWAVDQI	SVILLEGIA	DDLNALS
LCI	VINKLD	Y LQYMGF DA	LWISPVVKI	NLEGSTGDGYS	YHGYWAVDQI	ISVNEHFGTA.	DDLNALS
		70	80	90	100	110	120
		130	140	150	160	170	180
JGI	SALHAR	GMYLMVDVV	VNHMAANTI	LPPDYSTFTPF	SAESDFHTFO	CWITDYNNQTI	NVEQCWL
	:::::		::::::::		:.:::::::		: : : : : : :
LCI	SALHAR	GMYLMVDVV	VNHMAANTI	LPPDYSTFTPF	SSESDFHTF	CWITDY <mark>D</mark> NQT	NVEQCWL
		130	140	150	160	170	180
		190	200	210	220	230	240
JGT	GDSSVP	LADCDTEAN	NVVDFFYN	WIGELRANYTV	DGFRIDTIK	IVROTEWPDE	OTNAGVY
001							
тст	CDSSVP			MICFIPANVTV			
ПСТ	0000011		200	210	220	230 230	21011001
		100	200	210	220	230	240
		250	260	270	200	200	200
тот	31700170				200		200
JGI	AVGEVE.	DGDVNIVSP	YTEVIDGVI	LDIPTIQLTS	AFESTSGSI	2NLVDVIQSA	2STISTK
LCI	AVGEVE.	DGDVNYVSP	YTEVIDGVI	LDYPTYYQLTS	AFESTSGSI	QNLVDVIQSA	2STYSTM
		250	260	270	280	290	300
		310	320	330	340	350	360
JGI	LFQVAT	FLENQDNPR	FQSITTDQ	GLVKNAMTWPF	IADGIPILYY	GQEQGYTGGI	NDPDNRE
	:::::	: : : : : : : : :	:::::::		:::::::::		::::::
LCI	LFQVAT	FLENQDNPR	FQSLTTDQ	GLVKNAM <mark>A</mark> WPF	IADGIPILYY	GQEQGYTGGI	NDPDNRE
		310	320	330	340	350	360
		370	380	390	400	410	420
JGT	ALWISG	YEENKPLVO	HARTINAAF	RKAATAASSSF	LSTAVTEPLA	GSNTLAASK	YPLUSTU
001			•••••				
тст	AT WT CC			••••••••••••••••••••••••••••••••••••••			
ТСТ	ATMT2G			200	LOIAVIELOV	A10	11011111
		570	200	220	400	410	420
		120	4.4.0	4 5 0	1.0	170	100
TOT	0	430	440	430	400	4 / U	480
JGT	SNVGAS	GTPAWDVSS	GTGYDEGTI	SLIDALTCTTY	TAESSGSVS	TGSSGDPVI	ььрт'SAY
	. : : : : :	: :.::::	:::::::::	: : : : : : : : : : : :	:: ::::::		:::::::

LCI	TNVGASC	G <mark>MPV</mark> WDVSSG1	FGYDEGTELII	DALTCTTYTA(SSGSVSVTGS	SSGDPVILLPT	SAY
		430	440	450	460	470	480
		490	500	510	520	530	540
JGI	NASYCSE	ELTGTNSTGSS	SDTVSVTFEVE	EYNTTYGENLY	YLTGSVAELVI	DWSVDDALLMS	SAD
	::::::	••••••	•••••	•••••	• • • • • • • • • • • •		:::
LCI	NASYCSE	ELTGT <mark>D</mark> STGSS	SDTVSVTFEVE	EYNTTYGENLY	LTGSV <mark>S</mark> ELVI	OWSVDDALLMS	SAD
		490	500	510	520	530	540
		550	560	570	580	590	
JGI	YPTWSLI	VDLPPSTAI	QYKYLTKYNGI	OVTWEDDPNNE	ELTTPASGSVI	rqsdswh	
	::::::	••••••••				: : : : : : :	
LCI	YPTWSLI	VDLPPSTAI	QYKYLTKYNGI	OVTWEDDPNNE	ELTTPASGSVI	rqsdswh	
		550	560	570	580	590	

α -Amylase aus Irpex lacteus (Ila)

DNA-Sequenz (Signalpeptidsequenz unterstrichen):

ATGGTCAAGTTGACACTCCCTTTCGTTCTCGCCGCCGTCAGCTCTATGGCGGCGGGCATTG TCATCCCCGAGAACAGTGCTCTCGAAACCCGCTCTACTGGCCAGTCCAAGGCTGTCATCGT TCAGATGTTTGAGTGGACTTGGGACAGTATCGCGTCCGAGTGCACCAACTTCCTCGGGCCC GCCGGGTACGGTTATGTTCAGACGAGTCCTCCTCAGGAGCACGTCACTGGCAACCAGTGGT GGACTGATTACCAGCCCGTCTCGTATACCCTCACCTCGAAGCGCGGCAACCGATCACAGTT TGCTAACATGATCTCCACTTGCCACAAGGCGGGCGTCAAGGTTATCGCAGACACTATCTTC AACCATATGACTGGCTCCGACTCGGGCACTGGTGTTGCTGGCTCGTCGTACACCCACTACA ACTACCCTGGTATCTACCAAAACCAGGACTTCCATCACTGTGGGCTGGAGCCCAATGACGA TATTGTCAATTATGACAATGCTGTGGAAGTCCAGACGTGCCAGTTGGAAGGACTTGCAGAT TTGGCTACCGATACAGAATACGTCCGCAGTAGGCTCGCGCAGTATGGTAACGATCTGCTTT GGTGAGCCTATCACCCCCAACCAATACGTCGGCATTGGTGATGTTCAAGAGTTCCGTTACA CAACCGCTCTCAAGAACGCTTTCTTGAACGGAGCTATCAACGGCCTACAAAGCTTCGACAA AACGGTGCTGCCCTCACCAACTCCTCACCTTCCAATACCTACGTTCTTGCCACCATATTCT CCCTCGCCCACCCCTACGGCACTGTCACCGTCCTCTCATCCTATTCCGGCTTCGACACCAA CTCTGATGCAGGCGCACCCAACGGCGCCACCGGTACTTGCTCTGGCACCGGCGGCTCCAAC GGCTGGTTCTGCCAGCATCGATGGATTGCTTTCCAGGGTATGACTGCCTTCAGGAACACTG TCGGCAGTGCTGCCATCGCCAACTGGCAGACTGGTCAGAACTCGCAAATCGCCTTCGACCG TGGTACCGCTGGGTTCGTTGCTATCAACAACGCCGACTCGCAGTGGGATGCCACCTGGAAG ACTGGCTTGCCCGACGGTGTGTACTGCAACGTCATCTCCGGCGTCTTCTCGAGTGGTTCGT GCTCCGGTGGCACTGTCACTGTCAAGAACGGTGGTCAAATCCCCTACAACTTGTCTTCTCG CAATGCTGTCGCCATTCATACCAACGCCAAGCTCTCATAA

Aminosäure-Sequenz (Signalpeptid unterstrichen):

MVKLTLPFVLAAVSSMAAGIVIPENSALETRSTGQSKAVIVQMFEWTWDSIASECTNFLGP AGYGYVQTSPPQEHVTGNQWWTDYQPVSYTLTSKRGNRSQFANMISTCHKAGVKVIADTIF NHMTGSDSGTGVAGSSYTHYNYPGIYQNQDFHHCGLEPNDDIVNYDNAVEVQTCQLEGLAD LATDTEYVRSRLAQYGNDLLSLGVDGLRLDASKHIAVTDLTNITSRLNGSPYLTQEVIYGE GEPITPNQYVGIGDVQEFRYTTALKNAFLNGAINGLQSFDNLGWVSGDKANVFVTNHDTER NGAALTNSSPSNTYVLATIFSLAHPYGTVTVLSSYSGFDTNSDAGAPNGGTGTCSGTGGSN GWFCQHRWIAFQGMTAFRNTVGSAAIANWQTGQNSQIAFDRGTAGFVAINNADSQWDATWK TGLPDGVYCNVISGVFSSGSCSGGTVTVKNGGQIPYNLSSRNAVAIHTNAKLS*

Aligments:

DNA-Ebene

>>LCI	1443 bp					(1443	nt)
Water	man-Egger	t score:	6675; 481	l.4 bits; H	E(1) < 2.5	5e-139	
95.8%	identity	(95.8% si	imilar) in	1443 nt ov	verlap (1-1	1443:1-1443)
		10	20	30	40	50	60
JGI	ATGGTCAA	GTTGACAC	ICCCTTTCGT	GCTCGCCGCC	GTCAGCTCCA	IGGCGGCAGGC	ATT
	:::::::	:::::::	: : : : : : : : : :	:::::::::			:::
LCI	ATGGTCAA	GTTGACAC	ICCCTTTCGT	TCTCGCCGCC	GTCAGCTCTA	rggcggcgggc	ATT
		10	20	30	40	50	60
		70	80	90	100	110	120
JGI	GTCATCCC	CGAGAACA	GTGCTCTCGAA	AACCCGCTCTA	ACTGGCCAGT	CCAAGGCTGTC	ATC
	:::::::	:::::::	•••••	•••••	•••••		:::
LCI	GTCATCCC	CGAGAACA	GTGCTCTCGA	ACCCGCTCT	ACTGGCCAGT	CCAAGGCTGTC	ATC
		70	80	90	100	110	120
	1	.30	140	150	160	170	180
JGI	GTTCAGAI	GTTCGAGT	GGACTTGGGA	TAGTATCGCG	FCCGAGTGCAG	CCAACTTTCTC	GGA
	:::::::	::: ::::	: : : : : : : : : : :	:::::::::	•••••		::
LCI	GTTCAGAI	GTTTGAGT	GGACTTGGGA	CAGTATCGCG	FCCGAGTGCA	CCAACTTCCTC	GGG
	1	.30	140	150	160	170	180
	1	.90	200	210	220	230	240
JGI	CCCGCCGG	GTACGGTT	ATGTCCAGAC	GAGCCCTCCT	CAGGAGCACG	FCACTGGCGAC	CAG
	:::::::	::::::::	••••	•••••••••	•••••		:::
LCI	CCCGCCGG	GTACGGTT	ATGTTCAGAC	GAGTCCTCCT	CAGGAGCACG	FCACTGGCAAC	CAG
	1	.90	200	210	220	230	240
	2	250	260	270	280	290	300
JGI	TGGTGGAC	CTGATTACC	AGCCCGTCTC	GTATATCCTCA	ACCTCGAAGC	GCGGCAACCGA	TCA
	:::::::	::::::::	•••••	•••••	•••••	: : : : : : : : : : : :	:::
LCI	TGGTGGAC	CTGATTACCA	AGCCCGTCTC	GTATACCCTCA	ACCTCGAAGC	GCGGCAACCGA	TCA
	2	250	260	270	280	290	300
	3	310	320	330	340	350	360
JGI	CAGTTTGC	TAACATGA	ICTCCACTTG	CCACAAGGCG	GGCGTCAAGG	TATCGCAGAC	ACT
	:::::::	::::::::	•••••	•••••	•••••		:::
LCI	CAGTTTGC	TAACATGA	ICTCCACTTG	CCACAAGGCG	GGCGTCAAGG	TATCGCAGAC	ACT
	3	310	320	330	340	350	360
	3	370	380	390	400	410	420
JGI	ATCTTCAA	CCATATGA	CTGGCTCCGA	CTCGGGCACT	GGTGTCGCTG	GCTCGTCGTAC	ACC
	:::::::	:::::::	•••••		•••••		:::
LCI	ATCTTCAA	CCATATGA	CTGGCTCCGA	CTCGGGCACT	GGTGTTGCTG	GCTCGTCGTAC	ACC
	3	370	380	390	400	410	420
	4	130	440	450	460	470	480
JGI	CACTACAA	CTACCCTG	GTATCTACCA	AAACCAGGAC	TTCCATCACT	GTGGGCTGGAG	CCC
	:::::::	:::::::	: : : : : : : : : : :		• • • • • • • • • • • •		:::

LCI	CACTACA	ACTACCCTG	GTATCTACCA	AAACCAGGAC	TTCCATCACT	GTGGGCTGGAG	GCCC
		430	440	450	460	470	480
		490	500	510	520	530	540
JGI	AATGACO	GATATTGTCA	ATTACGACAA	IGCTGTGGAA	GTCCAGACGT	GCCAGTTGGAA	AGGA
	::::::	: : : : : : : : : : :	:::: :::::	: : : : : : : : : : :	: : : : : : : : : :	: : : : : : : : : : :	::::
LCI	AATGACO	GATATTGTCA	ATTATGACAA	IGCTGTGGAA	GTCCAGACGT	GCCAGTTGGAA	AGGA
		490	500	510	520	530	540
		550	560	570	580	590	600
JGI	CTTGCAC	GATTTGGCTA	CCGATACGGA	GTACGTTCGC	AGTAGACTCG	CTCAGTATGGG	GAAC
	::::::		:::::::::::	::::: :::		: :::::::	:::
LCI	CTTGCAC	GATTTGGCTA	CCGATACAGA	ATACGTCCGC	AGTAGGCTCG	CGCAGTATGGI	TAAC
		550	560	570	580	590	600
		610	620	630	640	650	660
JGI	GATCTG	CTTTCCCTAG	GAGTCGACGG	ACTCAGATTG	GATGCCTCTA.	AGCACATCGCO	CGTG
	::::::			: : : : : : : : : : : : : : : : : : : :			::::
LCI	GATCTG	CTTTCCCTGG	GAGTGGACGG	ACTCAGGCTG	GATGCTTCTA.	AGCACATTGCO	CGTG
		610	620	630	640	650	660
		670	680	690	700	710	720
JGI	ACTGACO	CTTACCAATA	FCACCTCTCG	ICTGAATGGT	ICTCCTTACC	TCACTCAGGAG	GTC
	::::::			:::::::			::::
LCI	ACTGACO	CTTACCAATA	FCACCTCTCG	CCTGAATGGC	ICTCCTTACC	TCACTCAGGAG	GTC
		670	680	690	700	710	720
		730	740	750	760	770	780
JGI	ATCTAC	GGCGAGGGTGA	AGCCTATCAC	ICCCAATCAG	FACGTTGGCA	TTGGTGATGTI	CAA
	:::::	:: :::::::		::::: ::			::::
LCI	ATCTATO	GGTGAGGGTGA	AGCCTATCAC	CCCCAACCAA	TACGTCGGCA	TTGGTGATGTI	CAA
		730	740	750	760	770	780
		790	800	810	820	830	840
JGI	GAGTTCO	CGTTACACCA	CCGCTCTCAA	GAACGCTTTC	ITGAACGGAG	CTATTAACGGC	CCTA
	::::::		: : : : : : : : : : :	: : : : : : : : : : :			::::
LCI	GAGTTCO	CGTTACACAA	CCGCTCTCAA	GAACGCTTTC	ITGAACGGAG	CTATCAACGGC	CCTA
		790	800	810	820	830	840
		850	860	870	880	890	900
JGI	CAGAGCO	CTCGACAACC	TTGGCTGGGT	TTCGGGTGAC	AAGGCCAATG	TCTTCGTTACO	CAAT
	:: :::	:::::::::		:::::::::			:::
LCI	CAAAGCT	TCGACAACC	TTGGCTGGGT	GTCGGGTGAC	AAGGCTAACG	TCTTCGTTACO	CAAC
		850	860	870	880	890	900
		910	920	930	940	950	960
JGI	CACGACA	ACAGAGCGCA	ATGGCGCTGC	GCTCACCAAC	FCCTCACCTT	ССААТАССТАС	CGTT
	::::::		: :: :::::	:::::::::			::::
LCI	CACGACA	ACAGAGCGAA	ACGGTGCTGC	CCTCACCAAC	ICCTCACCTT	ССААТАССТАС	CGTT
		910	920	930	940	950	960
		970	980	990	1000	1010 1	L020
JGI	CTCGCCA	ACCATATTCT	CTCTCGCCCA	FCCCTACGGC	ACTGTCACCG	TCCTCTCATCO	CTAT
	:: ::::		: ::::::::	:::::::::			::::
LCI	CTTGCCA	ACCATATTCT	CCCTCGCCCA	CCCCTACGGC	ACTGTCACCG	TCCTCTCATCO	CTAT
		970	980	990	1000	1010 1	L020
	1	L030 1	1040 3	1050 2	1060	1070 1	L080
JGI	TCCGGCT	TTCGACACCA	ACTCTGACGC	GGGCGCACCT	AACGGCGGCA	CCGGTACTTGO	CTCT
	::::::		:::::::::::	:::::::	: : : : : : : : : :		::::
LCI	TCCGGC	TCGACACCA	ACTCTGATGC	AGGCGCACCC	AACGGCGGCA	CCGGTACTTGC	CTCT
	-	1020	1040	1050 .	1060	1070 1	080
	_	1030 .	1040	1050	1000	10/0	

тот	CCCACC	1090	1100	1110	1120	1130	1140
JGI	GGCACC		ACGGCIGGII	CIGCCAACA.	ICGAIGGAIIC	GCIIICCAGGG	1AIG
LCI	GGCACC	GGCGGCTCCA	ACGGCTGGTI	CTGCCAGCA	ICGATGGATTO	GCTTTCCAGGG	TATG
		1090	1100	1110	1120	1130	1140
		1150	1160	1170	1100	1100	1200
JGT	ACCGCC	TIDU TTCACCAATA					
001	:: :::						:::
LCI	ACTGCC	TTCAGGAACA	ACTGTCGGCAG	GTGCTGCCAT	CGCCAACTGG	CAGACTGGTCA	GAAC
		1150	1160	1170	1180	1190	1200
		1010	1000	1000	1040	1050	1000
TGT	TCCCAC		122U Caccecetae				IZ6U CTCC
UGI	:::::		SACCOGOGIAC				::::
LCI	TCGCAA	ATCGCCTTCO	GACCGTGGTAC	CGCTGGGTT	CGTTGCTATCA	ACAACGCCGA	CTCG
		1210	1220	1230	1240	1250	1260
		1050	1	1	1.0.0.0	1010	
тат	03.0 m 00	1270	1280	1290	1300	1310	1320
JGI	CAGTGG	GATGCCACCT	GGAAGACTGO	GCTTGCCCGA		I'GCAACGTCAT	
LCI	CAGTGG	GATGCCACCI	GGAAGACTGO	GCTTGCCCGA	CGGTGTGTACT	IGCAACGTCAT	CTCC
		1270	1280	1290	1300	1310	1320
		1330	1340	1350	1360	1370	1380
JGI	GGCGTC	TTCTCGAGT	GGTTCGTGCT(CCGGTGGCAC	FGTCACTGTC <i>i</i>	AGAACGGTGG	TCAA
LCT	GGCGTC	ттстссасто	GTTCGTGCTC	CGGTGGCAC	rgtcactgtcz	AGAACGGTGG	••••
101	000010	1330	1340	1350	1360	1370	1380
		1390	1400	1410	1420	1430	1440
JGI	ATCCCC	TACAACTTGI	CTTCTCGCAP	TGCTGTCGC	CATTCATACCA	ACGCCAAGCT	CTCA
тот							
ТСТ	AICCCC	1390	1400	1410	1420	1430	1440
		1000	T 100	T 1 T V	T 12 0	1100	1110

JGI	TAA
	:::
LCI	TAA

Auf Aminosäure-Ebene

>>LCI	480 bp				(48	0 aa)
Water	man-Eggert scor	e: 2537;	931.7 bits,	; E(1) <	0	
99.4%	identity (99.8%	similar)	in 480 aa d	overlap (1-480:1-480)
	10	20	30	40	50	60
JGI	MVKLTLPFVLAAVS	SMAAGIVIPI	ENSALETRSTG	QSKAVIVQM	FEWTWDSIASE	CTNFLG
		:::::::::		: : : : : : : : : :		:::::
LCI	MVKLTLPFVLAAVS	SMAAGIVIP	ENSALETRSTG	QSKAVIVQM	FEWTWDSIASE	CTNFLG
	10	20	30	40	50	60
	70	80	90	100	110	120
JGI	PAGYGYVQTSPPQE	HVTGDQWWTI	DYQPVSYILTSI	KRGNRSQFA	NMISTCHKAGV	KVIADT

97

	::::::		••••	:::: :::::	: : : : : : : : : : :	: : : : : : : : : : :	::::
LCI	PAGYGYV	/QTSPPQEHV	IGNQWWTDYQI	PVSYTLTSKR	GNRSQFANMI	STCHKAGVKVJ	IADT
		70	80	90	100	110	120
		130	140	150	160	170	180
JGI	IFNHMTO	GSDSGTGVAG	SSYTHYNYPG	IYQNQDFHHC	GLEPNDDIVN	YDNAVEVQTCÇ)LEG
	::::::		•••••	: : : : : : : : : : :	: : : : : : : : : :		::::
LCI	IFNHMTO	GSDSGTGVAG	SSYTHYNYPG	IYQNQDFHHC	GLEPNDDIVN	YDNAVEVQTCÇ)LEG
		130	140	150	160	170	180
		190	200	210	220	230	240
JGI	LADLATI	DTEYVRSRLA	QYGNDLLSLGV	/DGLRLDASK	HIAVTDLTNI	TSRLNGSPYLT	CQEV
	::::::		: : : : : : : : : : :				::::
LCI	LADLATI	DTEYVRSRLAG	QYGNDLLSLGV	/DGLRLDASK	HIAVTDLTNI	TSRLNGSPYLT	CQEV
		190	200	210	220	230	240
		250	260	270	280	290	300
JGI	IYGEGEE	PITPNQYVGI	GDVQEFRYTTA	ALKNAFLNGA	INGLQSLDNL	GWVSGDKANVI	FVTN
	::::::		•••••			•••••	::::
LCI	IYGEGEE	PITPNQYVGI	GDVQEFRYTTA	ALKNAFLNGA	INGLQSFDNL	GWVSGDKANVI	TVTN
		250	260	270	280	290	300
		310	320	330	340	350	360
JGI	HDTERNO	GAALTNSSPSI	NTYVLATIFSI	LAHPYGTVTV	LSSYSGFDTN	SDAGAPNGGTO	GTCS
	::::::		•••••			•••••	::::
LCI	HDTERNO	GAALTNSSPSI	NTYVLATIFSI	LAHPYGTVTV	LSSYSGFDTN	SDAGAPNGGTO	GTCS
		310	320	330	340	350	360
		370	380	390	400	410	420
JGI	GTGGSNO	GWFCQHRWIA	FQGMTAFRNTV	/GSAAIANWQ'	TGQNSQIAFD	RGTAGFVAINN	JADS
	::::::		•••••			•••••	::::
LCI	GTGGSNG	GWFCQHRWIA	FQGMTAFRNT	/GSAAIANWQ'	TGQNSQIAFD	RGTAGFVAINN	JADS
		370	380	390	400	410	420
		430	440	450	460	470	480
JGI	QWDATWK	KTGLPDGVYCI	NVISGVFSSGS	SCSGGTVTVK	NGGQIPYNLS	SRNAVAIHTNA	AKLS
	::::::					•••••	::::
LCI	QWDATWK	KTGLPDGVYCI	NVISGVFSSGS	SCSGGTVTVK	NGGQIPYNLS	SRNAVAIHTNA	AKLS
		430	440	450	460	470	480
α -Amylase aus Pycnoporus sanguineus (Psan)

DNA-Sequenz (Signalpeptidsequenz unterstrichen):

ATGCTACGCCTCACGCTCCTTGCCTCTGCTTGCCGCGTCCGCCTTCGCGGCCTCTCCGG ATCAATGGCGGAATCGGTCAATaTACCAGTTGGTAACAGATCGATTCGCCACCTCGGATGG GTCAAGTCCTGCATGCGATACCTCCCAGCGCCAGTATTGTGGccGGTACTTGGCAAGGCATC GTCAAGAAGCTCGATTACATCCAGAACATGGGCTTCGATGCtaTcTGGATCTCCCCTATTG TCGCGAACTTGGAGGGAAAtACGTCTTACGGTGAAGCCTATCATGGGTACTGGACGCAGAA CATtAACGCGCTTAATTCACACTTCGGTAGCqCGGATGATCTCAAGGCGCTGAGcqaTGCT CTGCAŁAAACGCGGCATGTACCTGATGGTCGAcGTCGTCGTGAACCACATGGCqGGCACCG CGGATCCTCCCAAtTTCTCTGCGTTCCAGCCATTTTCTTCTCAATCAAACTAtCACTCCGA GTGCTTCATATCGAACTACGACAACCAAACcqAqGTCGAGCAATGCTGGcTGGGAGACAAG AATGTTCCCTTGGTqGATTTGGAtACtGAGGATaCGAACATCGTCAGCqCCATGAACACTT GGGTATCCACTTTGGCTAGCAACTTCAGCGTCGATGGCCTTCGGATCGACACTGTCAAACA CGTGCGGAAGGATTTCTGGCCTGATTTCGCCAAGGCTTCGGGTGTCTTCACGATAGGCGAG GTCCTTCATAACGAGACAGaCTATGTGTCAGCATACACTGAGGTGATTGATAGCGTACTGG ACTATCCTACaTGGTTCCCACTCGTGGCAGCtTTTCAAACCACGGGGGGGCAATCTGTCAGC GCTCTCCGCCACTGTACAaCAAGCCCAGTCGGCCTACAAGAACGGCGAATTcATGACCGGT TCTTTCCTCGAGAACCACGACCAACCTCGGTTCCAGTCtCTTACCCAGGACGACGCTTTGA TCAGGAATGCAATGACATGGCCATTCGTTCAAGACGGAGTGCCTATCATGTACTATGGTCA qGAACAGTCTTACGGTGGAGGGCCTGACCCAGCCAATCGCGAAGCCTTATGGCTGTCCGGa TACGTCGAAGACAAACCTCTCGTcAAACACGTGCAGGCAaTGAACGGCGCAAGaAAGGCqG CCATATCAGCGAACAGCAACTACCTCACTACTGCGGTtAAGTTTTTGTCCAGCGGCtCCGA ATCTACTCTTGCCGTCTCAAAACCACCCATGCTCGCTCTTCTCACCAATGGCGGCAGTTCC TCCAATCCGTCATGGTCTGTTCCAAGTGCCGGCTTCAGCGCGAAtGAGGAACTTGTCGATG TGTTGACCTGCAGCAAGCTCAATGCGGATAGCAACGGAGGTGTGAGCGTGCAAGGGTCTGC TGGGAGTCCTCAGGTCCTCATGCCGGTTTCGTCGTTGAGCAAGTCCGGGAACGTGTGCTCG AGCCTCGCGACGGGCGGTCAGGCCTCGTCTGCGCGCGGATGGTTCGGaGGCGCAGTGGAGT CGCTGCCACTCATCGCGGCtTTCTTGCTCGCCGGTTGGGCTGCGCAATCCAGCCTCATCAT TGTCTGA

Aminosäure-Sequenz (Signalpeptid unterstrichen):

MLRLTLLASLLAASAFAASPDQWRNRSIYQLVTDRFATSDGSSPACDTSQRQYCGGTWQGI VKKLDYIQNMGFDAIWISPIVANLEGNTSYGEAYHGYWTQNINALNSHFGSADDLKALSDA LHKRGMYLMVDVVVNHMAGTADPPNFSAFQPFSSQSNYHSECFISNYDNQTEVEQCWLGDK NVPLVDLDTEDTNIVSAMNTWVSTLASNFSVDGLRIDTVKHVRKDFWPDFAKASGVFTIGE VLHNETDYVSAYTEVIDSVLDYPTWFPLVAAFQTTGGNLSALSATVQQAQSAYKNGEFMTG SFLENHDQPRFQSLTQDDALIRNAMTWPFVQDGVPIMYYGQEQSYGGGPDPANREALWLSG YVEDKPLVKHVQAMNGARKAAISANSNYLTTAVKFLSSGSESTLAVSKPPMLALLTNGGSS SNPSWSVPSAGFSANEELVDVLTCSKLNADSNGGVSVQGSAGSPQVLMPVSSLSKSGNVCS SLATGGQASSARGWFGGAVESLPLIAAFLLAGWAAQSSLIIV* Aligments:

Auf DNA- Ebene:

		490	500	510	520	530	540
		550	560	570	580	590	600
JGI	GGAGACA	AGAATGTTCC	CCTTGGTAGA	ITTGGACACC	GAGGATTCGA	ACATCGTCAG	CACC
LCI	GGAGACA	AGAATGTTCC	CTTGGTGGA	TTTGGATACT	GAGGATACGA	ACATCGTCAG	CGCC
-		550	560	570	580	590	600
		610	620	630	640	650	660
JGI	ATGAACA	ACTTGGGTATC	CACTTTGGC	FAGCAACTTCA	AGCGTCGATG	GCCTTCGGAT	CGAC
LCI	ATGAACA	ACTTGGGTATC	CACTTTGGC	TAGCAACTTC	AGCGTCGATG	GCCTTCGGAT	CGAC
		610	620	630	640	650	660
		670	680	690	700	710	720
JGI	ACTGTCA	AACACGTGCO	GGAAGGATTT	CTGGCCTGAT	FTCGCCAAGG	CTTCGGGTGTC	CTTC
LCI	ACTGTCA	AACACGTGCO	GGAAGGATTT	CTGGCCTGAT	 ITCGCCAAGG	CTTCGGGTGTC	CTTC
		670	680	690	700	710	720
		730	740	750	760	770	780
JGI	ACGATAG	GCGAGGTCCI	TCATAACGA	GACAGGCTAT	GTGTCAGCAT	ACACTGAGGT	GATT
LCI	ACGATAC	GCGAGGTCCI	TCATAACGA	GACAGACTAT	GTGTCAGCAT	ACACTGAGGT	GATT
		730	740	750	760	770	780
		790	800	810	820	830	840
JGI	GATAGCO	GTACTGGACTA	ATCCTACTTG	GTTCCCACTC	GTGGCAGCGT	TTCAAACCAC	GGGG
тет							::::
ПСТ	GAIAGCO	790	800	810	820	830	840
JGT	GGCAATO	850 Thercageger	860 CTCCGCCAC	870 FGTACAGCAA	880 Geograge	890 Cetacaagaad	900 GGC
001	:::::::						::::
LCI	GGCAATC	CTGTCAGCGCI	CTCCGCCAC	IGTACAACAA	GCCCAGTCGG	CCTACAAGAA(CGGC
		000	000	070	000	090	900
		910	920	930	940	950	960
JGI	GAATTTA	ATGACCGGTTC	CTTTCCTCGA	GAACCACGAC	CAACCTCGGT	ICCAGTCCCT1	TACC
LCI	GAATTCA	TGACCGGTTC	CTTTCCTCGA	GAACCACGAC	CAACCTCGGT	ICCAGTCTCT	TACC
		910	920	930	940	950	960
		970	980	990	1000	1010 1	L020
JGI	CAGGACO	GACGCTTTGAI	CAGGAATGCA	AATGACATGG	CCATTCGTTC	AAGACGGAGTO	GCCT
тст							
ПСТ	CAGGACC	970	980	990 1	1000	1010 1	L020
	1	030 1	040	1050	1060	1070 1	
JGI	ATCATGI	ACTATGGTCA	AGAACAGTC	TACGGTGGA	GGGCCTGACC(CAGCCAATCG	CGAA
	::::::		::::::::				::::
LCI	ATCATG1	ACTATGGTCA	AGGAACAGTC	TTACGGTGGA	GGGCCTGACC(CAGCCAATCGC 1070 1	CGAA
	L					1010	2000
TOT	1	.090 1	100	1110	1120	1130 1	L140
JGT	GCCTTAT	GGCTGTCCGG	JCTACGTCGAA	AGACAAACCT(ACGTGCAGGC	ACTG
LCI	GCCTTAI	GGCTGTCCGG	GATACGTCGA	AGACAAACCT	CTCGTCAAAC	ACGTGCAGGCA	AATG
	1	.090 1	100 1	1110 1	1120	1130 1	L140

JGI	AACGGC	1150 GCAAGGAAGG	1160 GCCGCCATATO	1170 Cagcgaacago	1180 CAACTACCTC	1190 ACTACTGCGGT	1200 CAAG
LCI	AACGGC	::::::::::::::::::::::::::::::::::::::	GCGGCCATAT	CAGCGAACAG	CAACTACCTC	ACTACTGCGGT	::: TAAG 1200
		1210	1220	1230	1240	1250	1260
JGI	TTTTTG	TCCAGCGGCA	ACCGAATCTA	CTCTTGCCGT	CTCAAAACCA	CCCATGCTCGC	TCTT
LCI	TTTTTG	TCCAGCGGCT 1210	ICCGAATCTAC 1220	CTCTTGCCGT(1230	CTCAAAACCA 1240	CCCATGCTCGC 1250	TCTT 1260
JGI	CTCACC	1270 AATGGCGGCA	1280 AGTTCCTCCAA	1290 ATCCGTCATG	1300 GTCTGTTCCA	1310 AGTGCCGGCTT	1320 CAGC
	:::::	:::::::::					::::
LCI	CTCACC	AATGGCGGCA 1270	AGTTCCTCCA 1280	ATCCGTCATGO 1290	GTCTGTTCCA 1300	AGTGCCGGCTT 1310	CAGC 1320
JGI	GCGAAC	1330 GAGGAACTTO	1340 GTCGATGTGT	1350 IGACCTGCAG	1360 CAAGCTCAAT	1370 GCGGATAGCAA	1380 CGGA
	:::::						::::
LCI	GCGAAT	GAGGAACTTG 1330	GTCGATGTGT: 1340	IGACCTGCAG 1350	CAAGCTCAAT(1360	GCGGATAGCAA 1370	CGGA 1380
		1390	1400	1410	1420	1430	1440
JGI	GGTGTG	AGCGTGCAAG	GGTCTGCTG	GGAGTCCTCA	GGTCCTCATG	CCGGTTTCGTC	GTTG
LCI	GGTGTG	AGCGTGCAAG	GGTCTGCTG	GGAGTCCTCA	GGTCCTCATG	CCGGTTTCGTC	GTTG
		1390	1400	1410	1420	1430	1440
101		1450	1460	1470	1480	1490	1500
JGI	AGCAAG	TCCGGGAACG	JTGTGCTCGA	JCCTCGCGAC	JGGCGGTCAG	JCCTCGTCTGC	:::
LCI	AGCAAG	TCCGGGAACO	GTGTGCTCGA	GCCTCGCGAC	GGGCGGTCAG	GCCTCGTCTGC	GCGC
		1450	1460	1470	1480	1490	1500
		1510	1520	1530	1540	1550	1560
JGI	GGATGG	TTCGGCGGCG	GCAGTGGAGT	CGCTGCCACT	CATCGCGGCG	ITCTTGCTCGC	CGGT
LCI	GGATGG	TTCGGAGGCO	GCAGTGGAGT	CGCTGCCACT	CATCGCGGCT	 ITCTTGCTCGC	CGGT
		1510	1520	1530	1540	1550	1560
		1570	1580	1590			
JGI	TGGGCT	GCGCAATCCA	AGCCTCATCA	FTGTCTGA			
LCI	TGGGCT	GCGCAATCCA	AGCCTCATCA	ITGTCTGA			
		1570	1580	1590			

Aminosäure-Ebene

>>LCI	strain 5	30 bp				(530 aa)
Water	man-Egge	ert score:	3473; 802	2.4 bits; 1	E(1) < 0	
98.1%	identity	√ (99.8% si	imilar) in	530 aa ove	erlap (1-53	30:1-530)
		10	20	30	40	50 60
JGI	MLRLTLI	ASLLAASAFA	AASPDQWRNRS	SIYQLVTDRFA	ATSDGSSPACI	DTSQRQYCGGTWQ0
	::::::	:::::::::			•••••	
LCI	MLRLTLI	ASLLAASAFA	AASPDQWRNRS	SIYQLVTDRFA	ATSDGSSPACI	DTSQRQYCGGTWQ
		10	20	30	40	50 60
					1.0.0	
		70	80	90	100	110 120
JGI	IVKKLDY	IQNMGFDAV	WISPIVANLE	GNTSYGEAYH	GYWTQDINALI	NSHFGSTDDLKALS
тат						
ТСТ	IVKKLDI	IQNMGFDALV	NISPIVANLE(OO	JIWTQNINALI	110 120
		70	80	90	100	110 120
		130	140	150	160	170 190
JGT	SATHKBU			IFGDEODEGG	TOO JONARGECEI	
001	•••••	••••••••	••••••			
T.C.T	DATHKRG		NHMAGTADPPN	JESAFOPESS)SNYHSECFTS	SNYDNOTEVEOCWI
TOT		130	140	150	160	170 180
		100	110	100	100	1,0 10
		190	200	210	220	230 240
JGI	GDKNVPI	VDLDTEDSNI	IVSTMNTWVST	LASNFSVDG	LRIDTVKHVR	KDFWPDFAKASGVI
	::::::					
LCI	GDKNVPI	VDLDTEDTN	IVSAMNTWVS	LASNFSVDG	LRIDTVKHVR	KDFWPDFAKASGVI
		190	200	210	220	230 240
		250	260	270	280	290 300
JGI	TIGEVLE	INETGYVSAY	TEVIDSVLDY	PTWFPLVAAF	QTTGGNLSALS	SATVQQAQSAYKNO
	::::::	••••			•••••	•••••
LCI	TIGEVLH	INET <mark>D</mark> YVSAY	FEVIDSVLDY	PTWFPLVAAF	QTTGGNLSALS	SATVQQAQSAYKNO
		250	260	270	280	290 300
		310	320	330	340	350 360
JGI	EFMTGSF	LENHDQPRFQ	QSLTQDDALIF	RNAMTWPFVQI	DGVPIMYYGQI	EQSYGGGPDPANRI
	::::::	•••••			•••••	
LCI	EFMTGSF	LENHDQPRFQ	QSLTQDDALIF	RNAMTWPFVQI	DGVPIMYYGQI	EQSYGGGPDPANRI
		310	320	330	340	350 360
		270	200	200	100	410 400
TOT		370	380	390	400	410 420
JGI	ALWLSGY	VEDKPLVKH	VQALNGARKAA	AISANSNYL'I''	I'AVKFLSSGTI	STLAVSKPPMLA
тот						
ТСТ	ALWLSGI	270	200	ALSANSNILI. 200	100	410 A20
		370	300	390	400	410 420
		130	110	150	160	170 180
TGT	LTINCCSS	SUDGMGVDG	ACESANEELVI	4JU VI.TCSKI.NAI		
001		•••••••	•••••••••		•••••••••	•••••••••••••••
LCT	LTNGGSS	SNPSWSVPS	AGESANEELVI	OVI.TCSKI.NAI	DSNGGVSVOGS	SAGSPOVLMPVSSI
101	LINCODE	430	440	450	460	470 480
						100
		490	500	510	520	530
JGI	SKSGNVC	SSLATGGQAS	SSARGWFGGA	/ESLPLIAAFI	LLAGWAAQSSI	LIIV
	::::::				· · · · · · · · · · · · · ·	::::
LCI	SKSGNVC	SSLATGGQAS	SSARGWFGGA	/ESLPLIAAFI	LLAGWAAQSSI	LIIV
		490	500	510	520	530

α -Amylase aus Rhizoctonia solani (Rso)

DNA-Sequenz (Signalpeptidsequenz unterstrichen):

ATGTTTGAGTGGTCATGGGATAGTATTGCTGCAGAATGCACCAGCTTCATCGGTCCTGCTG GATATGGATATGTCCAGGTGTCTCCCCCAGCCGAACACATCACCGGCTCGCAGTGGTGGAC TGACTATCAGCCTGTTTCGTACATACTTACCTCGAAGCGAGGGAGCAGAAGCCAGTTCCAG AATATGATTACCACGTGCAAGGCTGCCGGGGTTGGTGATTGCAGATACTCTGTTAAACC ATATGGCCGGTATCGATAGTGGAACTGGCGTTGCCGGGTCTTCGTTCACGCACTATAACTA CCCCGGAATCTACCAGACCCAGGACTTCCATCACTGCGGCCTGGAATCAGGTGACGACATA GTCAACTATAGCAATCGCGTCGAAGTCCAGACTTGCGAACTGGTGAACCTGGCTGACCTTG CTACTGATACCGAGTATGTGCGTGCTCGGCTTGCAACCTACGTAAACGATCTACTGTCGTT GGGTGTGGTAGGCCTACGACTTGATGCCGCGAAACATATTCCTGCTGGTGACATTGCCAAC AGCCGATTCAACCCTCGGAATATACCGGGAATGGTGATGTACAGGAGTTCCGCTACACATC GGCACTTCAGAGTGCTTTCCAGAGTGGTGGGATCTCATCACTGAACGATCTTGACAGCAGA GGATGGGTTTCTTCCAGCAATGCGAATGTATTTGTCTCCAACCACGATACCGAACGAGGCG **GGTCGTCTTTAACTACAAGTCTGGCTCGACCTACACACTTGCTCACATCTTCATGCTTGC** ATACCCTTATGGAACTCCTACCGTCTTGTCTTCTTACACCTTCTCAGACAACGATGCTGGC AGTCCATCGAGTGGTGCAGGCTCTTGCTCCGGATCTGGCGGTGCGAACGGATGGCAATGCC AGCACCGCTGGACTGCAATCGCAGGAATGGTCAAGTGGCGCAATGGAGTGACTGGCAGTGT CAACAACTGGGTCACCGGTACCAACCAGCAGATTGCCTTTGGTCGCGGGTCCACTGGGTTT GTAGTTATCAACAACGCGGACTCTGCATGGACCAGGACGTTCACGACACCCCTCGCTGCCA ACTCATACTGCGACATAATCTCCGGGGCAGCAGGAACTAGTGGGACGTGTACTGGAGCATC GTACACGATCTCCGGTGGAACCTTTACCGCTACAGTCCCTGCGAGGTCTGCAATTGCTTTG TTTACTGGGGCGATTGGGTCCGGATCGAGCAATAGCGGATCCGTGTCTATCTCTTTCAGTG TATATGCAGAGACCACTTTTGGTGACAATATCTTCGTGTCTGGAAGTATTTCGCAACTCGG TACATGGGCACCAGGTAGCTCGATCGCAATGTCCTCAGCTTCCTATCCTACATGGACTGCC ACTGTGACTCTCCCAGCTGGTACTGCGTTCTCTTATAAATATCTCCCGTAAGACCTCCAGCG GCACGGTCGTATGGGAATCGGATCCTAACCGCTCTGCTACCGCCTCCTCGTCCGGCACATT GACGCTTAGCGATACTTGGCGGTGA

Aminosäure-Sequenz (Signalpeptid unterstrichen):

MFEWSWDSIAAECTSFIGPAGYGYVQVSPPAEHITGSQWWTDYQPVSYILTSKRGSRSQFQ NMITTCKAAGVGVIADTLLNHMAGIDSGTGVAGSSFTHYNYPGIYQTQDFHHCGLESGDDI VNYSNRVEVQTCELVNLADLATDTEYVRARLATYVNDLLSLGVVGLRLDAAKHIPAGDIAN ILGRLSSAPYVTQEVIYGSGEPIQPSEYTGNGDVQEFRYTSALQSAFQSGGISSLNDLDSR GWVSSSNANVFVSNHDTERGGSSLNYKSGSTYTLAHIFMLAYPYGTPTVLSSYTFSDNDAG SPSSGAGSCSGSGGANGWQCQHRWTAIAGMVKWRNGVTGSVNNWVTGTNQQIAFGRGSTGF VVINNADSAWTRTFTTPLAANSYCDIISGAAGTSGTCTGASYTISGGTFTATVPARSAIAL FTGAIGSGSSNSGSVSISFSVYAETTFGDNIFVSGSISQLGTWAPGSSIAMSSASYPTWTA TVTLPAGTAFSYKYLRKTSSGTVVWESDPNRSATASSSGTLTLSDTWR* Aligments:

Auf I	DNA- Eb	ene:					
>>LCI Water	1611 bp cman-Egg	ert score:	4470;	365.0 bits;	E(1) <	(16 3.7e-104	11 nt)
74.9%	identit	y (74.9% s	similar)	in 1632 nt	overlap (109-1737:1	-1611)
JGI	110 ATGTTC	120 GAATGGAGTI	130 GGGATAGCA	140 ATTGCGGCAGA	150 .gtgtaccaa	160 CTTCATTGGC	CCCGCG
LCI	ATGTTT	GAGTGGTCA1 10	GGGATAGTA 20	ATTGCTGCAGA 30	atgcaccag 40	CTTCATCGGT 50	CCTGCT 60
JGT	170 GGCTAT	180 GGATTCGTCC	190 CAGGTTTCT(200 CCTCCAGCGGA	210 GCATATTGC	220 TGGTTCGCAA	TGGTGG
001	:: :::				::::::	:: :::::	::::::
LCI	GGATAT	'GGATATGTCC 70	CAGGTGTCTC 80	CCCCCAGCCGA 90	ACACATCAC 100	CGGCTCGCAG 110	TGGTGG 120
_	230	240	250	260	270	280	
JGI	ACCGAT	TACCAACCGO	GTCTCATACA	ACACTGACTTC	GAAGCGGGG	TAATAGGAGT	CAGTTC
LCI	ACTGAC	TATCAGCCTO 130	GTTTCGTACA 140	ATACTTACCTC 150	GAAGCGAGG 160	GAGCAGAAGC 170	CAGTTC 180
	290	300	310	320	330	340	
JGI	CAGAAT	ATGGTCAGCA	AATGCAAG	AGTGCTGGGGT	CGGGGTCAT	TGCGGATACC	ATATTC
LCI	CAGAAT	ATGATTACCA	CGTGCAAG 200	GCTGCCGGGGT 210	TGGTGTGAT 220	TGCAGATACT	CTGTTA
		190	200	210	220	230	210
JGI	350 AACCAC	360 ATGGCTGGTA	370 ATCGAGGGT	380 GGGACGGGAGT	390 TGCGGGATC	400 TTCTTTTACC	CACTAT
LCI	AACCAT	ATGGCCGGTA 250	ATCGATAGTO 260	GGAACTGGCGT 270	TGCCGGGTC 280	TTCGTTCACG 290	CACTAT 300
	410	120	120	440	150	160	
JGI	AACTAC	CCTGGAATAI	ACCAGACT	CAAGACTTCCA	.CCACTGTGG	CTTGCAGCCC	GGAGAC
LCI	AACTAC	CCCCGGAATCT	ACCAGACCO	CAGGACTTCCA	TCACTGCGG	CCTGGAATCA	GGTGAC
		310	320	330	340	350	360
тот	470 CDCDWC	480 СПСА 2 СПАПА	490	500 CCMCD D CMCCD	510	520	
JGI	GACAIC	GICAACIAIA		: :::::::::	AACGIGCGA		:: ::
LCI	GACATA	GTCAACTATA 370	AGCAATCGCO 380	GTCGAAGTCCA 390	GACTTGCGA 400	ACTGGTGAAC 410	CTGGCT 420
	530	540	550	560	570	580	
JGI	GATCTA	GCGACCGAGA	CCGAATAT	GTTCGTGGCAA	GCTTGCAGC	TTATGCCAAT	GATCTC
LCI	GACCTT	GCTACTGATA 430	ACCGAGTATO 440	GTGCGTGCTCG 450	GCTTGCAAC 460	CTACGTAAAC 470	GATCTA 480
	590	600	610	620	630	640	
JGI	CTGTCC	TTGGGTGTGG	TAGGGCTCC	CGCCTTGATGC	TGCCAAACA	CATTGCGTCT	GGTGAT

LCI	CTGTCO	GTTGGGTGTG	GTAGGCCTAC	GACTTGATG	CCGCGAAACA	FATTCCTGCI	GGTGAC
		490	500	510	520	530	540
	650	6.60	67.0	600	600		
тот	650	66U	6/U	680	690 2000 20 00 20 00		
JGI	ATTGCC		GGCAGACTAA		····		ATCITI
тст							••••••••••••••••••••••••••••••••••••••
ПСТ	AIIGCO	550	560	570	580	590	600
		000	300	570	300	000	000
	710	720	730	740	750	760	
JGI	GGGAGC	CGGAGAGCCO	ATCTTACCTI	CGGAATATA	CTGGCAATGG	CGACGTACAG	GAGTTC
	:: :::		:: ::::		: :: :::::	:: :::::	::::::
LCI	GGCAGO	CGGAGAGCCO	GATTCAACCCI	CGGAATATA	CCGGGAATGG	IGATGTACAG	GAGTTC
		610	620	630	640	650	660
	770	780	790	800	810	820	
JGI	CGCTAC	CACCTCGACC	CATTCAGAATG	GCATTCCAGA	GCGGCGGAAT	CTCGTCTTTG	GAATGGG
	:::::		::::::::::	: :::::::	: :: :: ::		:: :
LCI	CGCTAC	CACATCGGCA	CTTCAGAGTG	GCTTTCCAGA	GTGGTGGGAT	CTCATCACTO	AACGAT
		670	680	690	/00	/10	720
	0.2.0	0.4.0	0 5 0	0.00	070	000	
тот	83U CUUCAC	040 77777777777777777777777777777777777		000 יכשככשככשכ	0/0 مسم ۲ ۲ ۲ ۲ ۲ ۲	000 הכההכסאאאכ	
OGI		· · · · · · · ·			• •• ••••		
LCT	CTTGAC	CAGCAGAGGA		· · · · · · · · · · · · · · · · · · ·		 FGTCTCCAAC	CACGAT
201	0110110	730	740	750	760	770	780
	890	900	910	920	930	940	
JGI	ACAGAG	GCGTAACGGI	GCATCGCTCA	CCTACAAAT	CTGGGTCTATA	ATATACGCTI	GCTCAT
	:: ::	:: :::	: :: :: :	::::::::	:::: :: :	:: :: :::	:::::
LCI	ACCGAF	ACGAGGCGGG	TCGTCTCTTA	ACTACAAGT	CTGGCTCGAC	CTACACACTI	GCTCAC
		790	800	810	820	830	840
			. – .				
тот	950	960 980	970 970	980	990	1000	
JGT	GTATTC	CATGTTAGCT	TATCOTTATE	GAACTCCCA			ATTCTCA
тст							
ПСТ	AICIIC	850	860	870	880	890	000
		000	000	070	000	090	500
	1010	1020	1030	1040	1050	1060	
JGI	AACAAC	CGATGCTGGI	AGCCCCTCGA	ATGGTGCTG	GATCATGTTC	IGGCTCCGGA	GGTGCC
	:::::		:: :: ::::	:::::::::	: :: :: ::	:: :: ::	:::::
LCI	GACAAC	CGATGCTGGC	CAGTCCATCGA	GTGGTGCAG	GCTCTTGCTC	CGGATCTGGC	GGTGCG
		910	920	930	940	950	960
	1070	1080	1090	1100	1110	1120	
JGI	AATGGO	GTGGCAATGC	CAACACCGAI	GGGGCGCCG	TTGCAGGAAT	GGTCAAATGO	CGCAAC
тат	:: ::						
LCI	AACGGA	ATGGCAATGC		GGACTGCAA		JGTCAAGTGG 1010	
		970	900	990	1000	IUIU	1020
	1130	1140	1150	1160	1170	1180	
JGT	GGAGTO	GACCGGCAGC	CATTAATAACT	GGGTCAGTG	GTACGAACCA	GCAAATCGCC	TTTTGGT
001	:::::						::::::
LCI	GGAGTO	GACTGGCAGI	GTCAACAACI	GGGTCACCG	GTACCAACCA	GCAGATTGCC	TTTGGT
		1030	1040	1050	1060	1070	1080
	1190	1200	1210	1220	1230	1240	
JGI	CGAGGI	TTCAAGTGGA	TTTGTAGTAA	TCAATAACG	CCGACTCTGCA	ATGGACTAGO	ACATTC
	:: ::	:: : :::	:::::::::::::::::::::::::::::::::::::::	::::::::	: ::::::::		:: :::
LCI	CGCGGG	GTCCACTGGG	TTTGTAGTTA	TCAACAACG	CGGACTCTGCA	ATGGACCAGO	ACGTTC
		1000	1100	1110	1120	1120	1110

JGT	1250 ACAAC	1260	1270 GCTAACTCG	1280 Гастбтбат	1290 GTGGTCTCCGG	1300	TTGGT
001	:: ::	: :::::	•••••••	:::::::::	: :::::::	:: : :	: ::
LCI	ACGAC	ACCCCTCGCT 1150	GCCAACTCA 1160	FACTGCGAC 1170	ATAATCTCCGG 1180	GGCAGCAGGAAG 1190	CTAGT 1200
JGI	1310 GGCAAG	1320 GTGCACTGGT	1330 GCCTCGTACA) 13 ACGGTTTCC	40 135 GGGGGATCCTT	0 1360 CACCGCGACGG	ГСССТ
LCI	GGGAC	GTGTACTGGA 1210	GCATCGTACA 1220	ACGATCTCC 1230	GGTGGAACCTT 1240	TACCGCTACAG 1250	ГСССТ 1260
JGI	1370 GCCAAG	1380 GTCTGCTATA	1390 GCCCTTTTCA) 14 ACTGGCGCG	00 141 ATTGGAACAGG	0 1420 ATCTGGAAATGO	GGGGA
тст					····· · · · · · · · · · · · · · · · ·		
ПСТ	GCGAG	1270	1280	1290	1300	1310	1320
JGI	1430 GGCGGZ	1440 Aggaggaggt	1450 GGGGGGATCT) 14 GTCACCGTC	60 147 AACTTTCGAGT	0 1480 AAACGCAGAAAC	CCACT
LCI	TCCG	: TT	: ::: GTCTA 133(ATCTCTTTC)	: :: AGTGT 1340	ATATGCAGAGAG 1350	CCACT
JGI	1490 TTTGGG	1500 Cgataacatt	151(TTCCTTGTT) 15 Ggaagttta	20 153 TCACAGCTCGG	0 1540 CACATGGGCTCO	CAGCT
LCI	::::: TTTGG 1360	:: :: :: IGACAATATC 1370	TTCGTGTCTC 1380	::::::: GGAAGTATT 1390	:: :: ::::: TCGCAACTCGG 1400	TACATGGGCACO 1410	CAGGT
JGI	1550 AGTTCO	1560 Gattgcaatg	157(TCTTCGGCT) 15 Icttaccct	80 159 ACATGGACCGT	0 1600 CAGCGTATCCA	ICCCG
	:: ::		:: :: :::	:: :: :::		:: :: : :	::::
LCI	AGCTCO 1420	GATCGCAATG 1430	TCCTCAGCT 1440	I450	ACATGGACTGC 1460	CACTGTGACTC 1470	FCCCA
JGI	1610 GCGGGG	1620 Cactgcgttt	1630 TCCTACAAG) 16 FATATTCGA	40 165 AAGACTGCAAG	0 1660 TGGATCGGTGG	FATGG
LCI	:: :: GCTGG 1480	::::::: IACTGCGTTC 1490	:: :: :: TCTTATAAA 1500	::: : :: [ATCTCCGT 1510	AAGACCTCCAG 1520	CGGCACGGTCG 1530	FATGG
JGI	1670 GAATCO	1680 GGATCCTAAC	1690 CGCAGCGCC) 17 ACTGCTCCA	00 171 TCATCTGGCAG	0 1720 TTCGACCTTGA	ATGAC
LCI	GAATCO	GATCCTAAC		ACCGCCTCC	TCGTCCGGCAC	: ::: : : ATTGACGCTTAC	:: GCGAT
	1720	1220	U9CT	13/0	TORA	T2A0	
JGI	ACTTG	GCGATAA					
LCI	ACTTGO 1600	GCGGTGA 1610					

Aminosäure-Ebene

>>LCI	536 bp										(536	aa)
Water	man-Egg	ert s	core:	2441	; 80	01.2	oits;	E(1)	< 0			
82.7%	identit	y (95	.4% s	imila	ır) in	n 543	aa c	overlap	<mark>p (</mark> 37	-578:1	-536))
	40		50		60		70		80		90	
JGI	MFEWSW	DSIAA	ECTNF	IGPAC	GYGFVĢ	QVSPP.	AEHIA	AGSQWW	rdyqp'	VSYTLI	SKRGI	IRSQF
	:::::	::::	::::	:::::	::.:	: : : : :	::::		: : : : :	::: ::	::::	. : : : :
LCI	MFEWSW	DSIAA	ECTSF	IGPAG	GYGYVĢ	2VSPP.	AEHII	GSQWW:	FDYQP	VSYILI	'SKRGS	SRSQF
		10		20		30		40		50		60
	100		110		100		1 0 0		1 4 0		1 5 0	
TOT	100		110		120	FRAGE	130		140		150	
JGI	QNMVSK	CKSAG	JVGVIA	DTTEN	IHMAG.	LEGGT	JVAGS	SFTHY	NYPGI	YQTQDE	HHCGI	JQPGD
тот												
ТСТ	QNMITT	CKAAG 70	JVGVIA		IHMAG.	LDSGT	JVAGS	100	NIPGI	IQTQDE 110	HHCGI	120
		70		00		90		100		II0		120
	160		170		1.8.0		100		200		210	
JGT	TANATA	NRAEV	T / U OTCEL		100 1.2 TE		I J O		LSTGV	VGT.RT.I	ZIO ZIO	
001	•••••	•••••		•••••	•••	•••••	••	• • • • •	•••••			• ••
LCT	DTVNYS	NRVEV	OTCEL	VNLAT	ימידאונ	reyvr	••••• Art.an	וזממעצי	LSLGV	VGLRLI)AAKH"	 I PAGD
101	DIVINIO	1.30	21011	140		1.50		160		170	/1 11 11 (11 1	180
		200		210		200		200		1,0		200
	220		230		240		250		260		270	
JGI	IANILG	RLTSR	PYITO	EVIFO	SGEP	ILPSE	YTGNO	GDVOEFI	RYTST	IONAFO	SGGI	SSLNG
	::::::	::.:	::.::	:::::	::::	: :::	: : : : :		: : : : .	. : . : : :		::::
LCI	IANILG	RLSSA	PYVTQ	EVIYO	SGEP	IQPSE	YTGNO	GDVQEFI	RYTSA	LQSAFÇ	SGGIS	SSLND
		190		200		210		220		230		240
	280		290		300		310		320		330	
JGI	LENRGW	IASGG	ANVFV	ANHDI	ERNG	ASLTY	KSGSI	YTLAH	JFMLA	YPYGTI	TVLS	SYTFS
	::::	:	::::	. : : : :	::.:	. : : . :	::::	:::::	. : : : :	:::::	:::::	:::::
LCI	LDSRGW	VSSSN	IANVFV	SNHDI	ERGG	SSLNY	KSGSI	YTLAH:	IFMLA	YPYGTI	TVLS	SYTFS
		250		260		270		280		290		300
							. – .					
	340		350		360		370		380		390	
JGI	NNDAGS	PSNGA	GSCSG	SGGAN	IGWQCQ	2HRWG.	AVAGN	IVKWRNO	GVTGS	INNWVS	GTNQÇ	QIAFG
	. : : : : :	::.::	:::::	:::::	::::	::::	:.::		:::::	.::::.	:::::	:::::
LCI	DNDAGS	PSSGA	GSCSG	SGGAN	IGWQCÇ	2HRWT.	AIAGN	IVKWRNO	GVTGS	VNNWVI	'GTNQÇ	2IAFG
		310		320		330		340		350		360
	400		110		120		120		440		450	
тот	400 DCCCCE	, 7, 7 T N I N I		mpmpn	420 100 1 7 7	MOVO	430	יסע_פכע	440 770mc	7 0 2 10 10	400 2009 Er	מזזיית היו
JGI	KGSSGF	•••••			. I SLAA			JDV-SGC	JACIG	ASIIVS	GGSE I	
тст	RCSTCF	•••••		••••• ידם ידים	י ג דסידי		•••••		· · · ·		CCTT	
ПСТ	KGSIGI	370	IADSAW	380		300	DIISC	400	91C1G	ASIII: 410)GGILI	420
		570		500		550		100		410		720
	460		470		480		490)	500		510	
JGI	AKSAIA	LFTGA	IGTGS	GNGGG	GGGGG	GSVT	VNFRV	, /NAETTI	FGDNI	FLVGSI	SOLG	TWAPA
001	:.::::		::.::	. : . :		::.	: :	::::	:::::	:. ::.		
LCI	ARSAIA	LFTGA	IGSGS	SNSG-		SVS	ISFSV	/YAETTI	FGDNI	FVSGSI	ISOLG:	rwapg
		430		440			4	150	4	60	~ 47	70
	520		530		540		550)	560		570	
JGI	SSIAMS	SASYP	TWTVS	VSIPA	GTAFS	SYKYI	RKTAS	GSVVWI	ESDPN	RSATAE	SSGS	STLND
	:::::	:::::	:::	:::	::::	::::.	:::::	:.:::	:::::	:::::	:::.	::.:
LCI	SSIAMS	SASYP	TWTAT	VTLPA	GTAFS	SYKYL	RKTSS	GTVVWI	ESDPN	RSATAS	SSGTI	LTLSD
	48	0	49	0	50	00	5	510	5	20	53	30

JGI	TWR
	:::
LCI	TWR

α -Amylase aus Trametes hirsuta (Thi)

DNA-Sequenz (Signalpeptidsequenz unterstrichen):

ATGTCAAACTGGGTCAAGCTCGCCGCACTCGCCGCCCTCGGAGTGTTCTGCACCGCCGCCG TCGACGCCCGCCCTACTGTCTTTGACGCCGGTGCGGACGCACACTCGCTGCATGCCCGGGC CCCCTCCGGCAGCAAGGATGTCATCATCCAGATGTTTGAGTGGAACTGGGACAGCGTCGCT AGGAGACCATCCAGGGCGCGCAGTGGTGGACCGACTACCAGCCGGTGTCGTACACGCTCAC TGGGAAGCGGGGCGACCGCTCCCAGTTTGCGAACATGATTACTACGTGCCACGCCGCGGGC CCGCCGGCTCGTCCTTCACGCACTACAACTACCCCGGCATCTACCAAAACCAGGACTTTCA CCACTGCGGCCTCGAGCCGGGCGATGACATCGTCAACTACGACAACGCGGTTGAGGTCCAG ACCTGCGAGCTTGTCAACCTCGCTGACCTCGCCACCGACACGGAGTATGTGCGCGGTCGCC TTGCCCAGTACGGAAACGACCTGCTCTCGCTCGGTGCCGATGGCCTGCGTCTTGACGCTTC CAAACACATTCCTGTGGGCGACATCGCGAACATCCTGTCTCGCCTCAGTCGCTCTGTCTAC ATCACCCAGGAAGTCATCTTTGGGGCCGGCGAGCCCATCACGCCGAACCAGTACACCGGGA ACGGCGACGTTCAGGAGTTCCGCTACACCTCTGCGCTAAAGGACGCCTTCTTGAGCTCGGG CATATCCAACCTGCAGGACTTCGAAAACCGTGGATGGGTACCTGGCTCGGGCGCCAACGTG TTCGTCGTCAACCATGACACCGAGCGGAACGGCGCGTCGCTGAACAACAACTCGCCTTCGA ACACCTACGTCACCGCGACGATCTTCTCGCTCGCACACCCGTACGGCACGCCCACGATCCT TGCTCGACCAGCGGTGGTGCGAACGGGTGGCTCTGCCAGCACCGCTGGACCGCGATCGCCG GCATGGTCGGCTTCCGCAACAACGTCGGCAGCGCTGCACTCAACAACTGGCAGGCCCCGCA GTCGCAGCAGATTGCGTTCGGTCGCGCGCGCACTTGGCTTCGTCGCGATCAACAACGCCGAC TCGGCCTGGTCTACGACGTTCACCACTTCCCTCCCCGATGGTTCCTACTGCGATGTCATCA GCGGCAAGGCCTCCGGCAGTAGCTGCACCGGTTCTTCGTTCACCGTCTCCGGCGGGAAGCT GACCGCCACGGTCCCGGCGCGTAGCGCCATCGCCGTGCACACCGGTCAGAAAGGTTCTGGT TCGCTGAGCAGGCGACGACCACCTTCGGCGAGAACATCTTCCTCGTCGGCAGTATTTCGCA GCTCGGGAACTGGAACCCGGCCAGCGCGATCGCCCTGTCCTCTGCGGCGTACCCTACGTGG TCTGTGTCTGTGAACATTCCCGCCGGAACGACCTTCCAGTACAAGTTCATCCGCAAGGAGA CGGACGGTAGCGTCGTCTGGGAGTCGGACCCCAACCGCCAGGCTACCGCGCCCGCGTCCGG TACCACCACGCTCACGTCCAGCTGGCGGTGA

Aminosäure-Sequenz (Signalpeptid unterstrichen):

MSNWVKLAALAALGVFCTAAVDARPTVFDAGADAHSLHARAPSGSKDVIIQMFEWNWDSVA AECTNFIGPAGYGFVQVSPPQETIQGAQWWTDYQPVSYTLTGKRGDRSQFANMITTCHAAG VGVIVDTIWNHMAGVDSGTGTAGSSFTHYNYPGIYQNQDFHHCGLEPGDDIVNYDNAVEVQ TCELVNLADLATDTEYVRGRLAQYGNDLLSLGADGLRLDASKHIPVGDIANILSRLSRSVY ITQEVIFGAGEPITPNQYTGNGDVQEFRYTSALKDAFLSSGISNLQDFENRGWVPGSGANV FVVNHDTERNGASLNNNSPSNTYVTATIFSLAHPYGTPTILSSYDGFTNTDAGAPNNNVGT CSTSGGANGWLCQHRWTAIAGMVGFRNNVGSAALNNWQAPQSQQIAFGRGALGFVAINNAD SAWSTTFTTSLPDGSYCDVISGKASGSSCTGSSFTVSGGKLTATVPARSAIAVHTGQKGSG GATPTSAPSTTPTSGTVSVTFAEQATTTFGENIFLVGSISQLGNWNPASAIALSSAAYPTW SVSVNIPAGTTFQYKFIRKETDGSVVWESDPNRQATAPASGTTTLTSSWR*

Lebenslauf

PERSÖNLICHE DATEN

Florian Döring

23.01.1988 in Potsdam

SCHULBILDUNG

1994 - 2000	Grundschule Karl Hagemeister, Werder (Havel)
2000 - 2007	Ernst-Haeckel-Gymnasium, Werder (Havel)
06/2007	Abitur; Prüfungsfächer: Deutsch, Geschichte, Mathematik, Biologie

WEITERER WERDEGANG

07/2007 - 06/2008	Freiwillig verlängerter Grundwehrdienst Logistikbataillon 172 14547 Beelitz
10/2008 - 09/2011	Studium Bachelor of Science Pflanzenbiotechnologie
09/2010 – 09/2011	Wissenschaftliche Abschlussarbeit (Bachelorarbeit) "Zum Auftreten sekundärer Symbionten in <i>Sitobion avenae</i> unter besonderer Berücksichtigung des vertikalen Transfers und Hitzeschock"; Institut für Pflanzenkrankheiten und Pflanzenschutz, Abteilung Entomologie, Leibniz Universität Hannover
10/2011 - 11/2013	Studium Master of Science Pflanzenbiotechnologie
09/2012 - 11/2013	Wissenschaftliche Abschlussarbeit (Masterarbeit) "Benyviren als Vektoren für die Expression heterologer Proteine in <i>Nicotiana benthamiana</i> "; Institut für Pflanzengenetik, Abt. II, AG molekulare Biochemie, Leibniz Universität Hannover
04/2014 - 05/2018	Wissenschaftlicher Mitarbeiter (Promotion) Institut für Lebensmittelchemie Leibniz Universität Hannover
06/2018 -	Prozessingenieur ProBioGen AG 13086 Berlin