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Abstract

Given a hyperkidhler manifold M it is possible to construct a complex manifold Z, called its
twistor space which codifies in its holomorphic structure all the Riemannian and complex proper-
ties of M.

Following the works of Bielawski [6] and Bielawski-Schwachhofer [[10], [9], this thesis is con-
cerned with the study of manifolds of “higher degree” curves in twistor spaces that admit an
intermediate fibration onto TP!.

After an introductory chapter, we fix our focus on such manifolds of curves and prove that they
admit a hypercomplex (hyperkihler) structure. For each curve we construct a quadratic matrix
polynomial and show that it satisfies some appropriate reality condition. We also identify this
matrix polynomial with a [-hypercomplex structure, therefore justifying the title of this work.

We then make the choice of a complex structure on a manifold of curves and restate our study in
the frame of transverse Hilbert scheme of points on a complex surface. We recover using elemen-
tary techniques a result of Beauville and show some interpretation in the spirit of holomorphic
completely integrable systems.

After this, we shoe how the twistor space can be recovered once the manifold of curves and the
matrix polynomial are known.

Finally we explore the link between the moduli space of monopoles of charge 2 and the theory
of 7-invariant rank 2-bundles on elliptic curves, proving some partial result about the question

whether such bundles be decomposable or not.

Key Words: Hyperkihler manifold, twistor space, transverse Hilbert scheme, matrix polynomial,

spectral curve.






Zusammenfassung

Fiir eine gegebene hyperkihlersche Mannigfaltigkeit A/ kann man eine komplexe Mannigfaltig-
keit Z konstruieren, die Twistor Raum von M genannt wird, die die Riemannsche und komplexe
Eigenschaften von M in seiner holomorphen Struktur entschliisselt.

Nach den Artikeln von Bielawski [6] und Bielawski-Schwachhéfer [[10], [9], untersucht diese Ar-
beit Mannigfaltigkeiten von Kurven hoheren Grades, in Twistor Rdumen die eine mittlere Faserung
auf TPP! zulassen.

Nach einem einfiihrenden Kapitel konzentrieren wir uns auf solche Mannigfaltigkeiten von Kur-
ven und beweisen wir, dass sie eine hyperkdhlersche Struktur zulassen. Jeder Kurve weisen wir
ein quadratisches Matrixpolynom zu und zeigen, dass es eine entsprechende Realitdtsbedingung
erfiillt. AuBBerdem identifizieren wir dieses Polynom mit einer [-hyperkomplexe Struktur und mo-
tivieren damit den Titel dieser Arbeit.

Danach wihlen wir eine komplexe Struktur auf einer Mannigfaltigkeit von Kurven und beschrei-
ben unsere Untersuchungen im Rahmen von transversale Hilbert Schemata von Punkten auf einer
komplexen Flache. Mit elementarer Technik bekommen wir wieder ein Resultat von Beauville
und zeigen damit eine Verbindung mit der Theorie komplett integrierbarer holomorphen Syste-
men.

Nachher zeigen wir wie der Twistor Raum erneut konstruiert werden kann, falls uns die Mannig-
faltigkeit von Kurven und das Matrixpolynom bekannt sind.

SchlieBlich studieren wir die Verbindung zwischen Modulirdumen magnetischer Monopolen der
Ladung 2 und der Theorie von 7-invarianten Biindel von Rang 2 auf elliptischen Kurven und

beweisen ein partielles Resultat iiber die Frage, ob solche Vektorbiindel zerlegbar sind oder nicht.

Schliisselworter: Hyperkihlersche Mannigfaltigkeit, Twistor Space, Transversale Hilbert

Schema, Matrixpolynom, Spektrale Kurve.
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Introduction

The twistor construction ([33]], [24]) has proven itself an essential tool in the description of the
geometry of hyperkihler manifolds. In fact, it allows us to holomorphically encode in one com-
plex manifold Z, called the twistor space, all the complex and smooth data that are defined on a
hyperkihler manifold M . Although from the C* point of view Z is merely the Cartesian product
M x P!, from the holomorphic point of view Z is far from being a product space: it is, actually,
a complex manifold that comes with a holomorphic fibration p: Z — P! and a real structure
o: Z — Z that covers the antipodal map of the Riemann sphere. As described in [24], every
point m of the hyperkihler manifold M corresponds to a section P! — Z of $ which is real, i.e.
invariant under the real structure o . In other words every point of m describes a copy of P! inside
Z and M can be recovered as a 4n-real-dimensional of such sections.

In the frame and notation of [6], such copies of P! inside Z are real curves C C Z of degree
one which, having all normal bundle equal to C2" ® O(1), satisfy the cohomological stability
condition H*(C, N¢/z(—2)) = 0. In [6] Bielawski considers the natural questions of what hap-
pens when trying to describe the parameter M space of real cohomologically stable curves C' of
generic degree d inside a twistor space Z — P! It turns out that such space M is again a smooth
manifold and admits a hypercomplex structure or, under natural symplectic assumptions on the
fibres of Z — P!, a full hyperkihler structure.

Moreover, in [10] and [9] Bielawski and Schwachhofer introduced a wider geometry, which they
called pluricomplex geometry, of which the hypercomplex (hence the hyperkéhler) geometry is
a particular example. Given a 2n-dimensional real vector space V', they define a pluricomplex
structure on V' as an immersion K : P! — (V) of the Riemann sphere into the space of all
complex structures of V', such that the following hold:

o K*(V)=C"®O(-1)

o VE/K*(VO) =Cr e O(1).

il
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Adding the assumption

for all ¢ in P!, then we are exactly defining a hypercomplex structure on V.

When there exists a map A: P! — T'7(V) that lifts a hypercomplex structure K, i.e. such that
the composition of A with the canonical projection 7.7 (V) — V is a hypercomplex structure,
we call A a [-hypercomplex structure.

In this thesis we deal with those twistor spaces p: Z — P! that come with an intermediate
holomorphic fibration p: Z — TP!. We consider the parameter space M of all real cohomo-
logically stable curves C' C Z of degree d (again in the sense of [6]) such that the restriction
plc: C — C = p(C) C TP! is a biholomorphism. After the introductory chapter, where we
recall from [6] the existence of a hypercomplex (hyperkéhler) structure on M, we show that both
a [-hypercomplex structure and a family of endomorphisms of the tangent space to M (i.e. a
matrix polynomial once a basis has been chosen) which commute with all complex structures nat-
urally arise on M . We briefly show the interplay between such two objects and then focus to the
case when Z is three-dimensional. We continue by fixing one endomorphism in the family and
describing the related geometry by means of the transverse Hilbert scheme construction in the
spirit of the theory of completely integrable systems. We wish to remark here that the connection
between twistor theory and algebraically completely integrable systems dates back to Hitchin’s
works such as [23] and [22]]. Further, making use of the results obtained so far, we explain the
geometric construction yielding back the fibration p: Z — TP! once the hypercomplex manifold
M 1is known. Finally we recall from [3]] the theory of vector bundles on curves induced by matrix
polynomials and focus on the case of spectral curves of (strongly centred) magnetic monopoles of
charge 2. Such curves are elliptic and the induced vector bundle has rank 2: in view of the Atiyah
classification [2]] we focus on understanding whether in our case the induced bundle is or not a de-
composable one. The body of the thesis is divided into five chapters, whose precise development
is as follows.

In the first chapter we introduce all the foundational material that is necessary to our study. We
start by defining hypercomplex and hyperkidhler manifolds, then we give a detailed review of
Hitchin’s approach to the hyperkihler twistor theory and expose the hyperkihler quotient con-
struction and its links with twistor theory. After this, we focus our attention on [6] and introduce
Bielawski’s results about hyperkéhler manifolds of higher degree curves in twistor spaces, al-
ready focusing on twistor space fibring over TP'. We conclude the chapter with a review of
I-hypercomplex structures following [[10] and [9] focusing on their link with spectral curves in
TP

In Chapter 2 we focus on the manifold M of real, cohomologically stable, degree d curves C' (in
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the sense of [6]) such that the restriction p|c: C' — C = p(C) C TP! is a biholomorphism. For
each such curve we construct a matrix polynomial as a section of End (H"(C, N¢/z(—1))) ®
O(2) which we interpret as a l-hypercomplex structure. We state then a reality condition for A(()
and, letting the curve C' vary in M, prove that for every fixed ( € P! we can interpret A(¢) as
and endomorphism of (7"-°M) given by a section of End (H%(C, N¢/7(—1))), seen as a bundle
on M, which is holomorphic with respect to the complex structure /.

Chapter 3 is devoted to investigating the geometry related to the endomorphism A(¢) once a
complex structure I, i.e. a point ¢ € P! is fixed. By means of Proposition we can perform
the study in full generality and consider the generic case of a surface S projecting onto C via
a map p which is a holomorphic submersion outside a discrete set of points. We construct an
endomorphism A of the tangent space T S,[pd] to the Hilbert scheme of d points of S transverse
to p, which represents the analogous of A((), and prove the following proposition characterizing
all manifolds that arise as transverse Hilbert schemes of surfaces with a projection p: S — C

showing the above properties.

Theorem. Let W24 be a complex manifold of complex dimension 2d with the following proper-

ties.

(i) W comes with an endomorphism A: TW — TW such that at every point the eigenspaces
have complex dimension 2 and the characteristic polynomial is the square of the minimal

polynomial

(ii) Assume that the induced projection p: W — X = Cld is q surjective submersion on a
subset N C W such that W \ N has codimension at least 2 and that A is compatible with
W so that the diagram

W -4~ TWw 0.0.1)

o s

TX — TX.
is defined

(iii) The distribution D := Im(z — A) is integrable on the incidence manifold

W = {(z,w) € C x W| z is an eigenvalue of A} .

Then p: S = W/D — C is a surface projecting on C for which W is the length d Hilbert

scheme of points transverse to the projection.
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If, moreover, we assume the surface S to carry a holomorphic symplectic form w, then we prove
that w induces a holomorphic symplectic form €2 on S}[,d} recovering with more elementary meth-
ods a result of Beauville. Finally, in Section 3.3 we complete our characterisation with the fol-

lowing proposition.

Theorem. Let W be a complex manifold of complex dimension 2d endowed with an holomorphic
endomorphism of the tangent space T'W as in the previous theorem and let N C W be the subset
where the induced projection p: W — Cl s a surjective submersion. Assume also that W

possesses a symplectic form ) such that at every point of N
o O(A,)=9Q(,A)
e the vertical subbundle ker(dp) is maximal Q)-isotropic.
Then S = W/ D has a symplectic form induced by w.

Our aim in Chapter 4 is to describe how we can recover the fibred manifold p: Z — TP when
we are given the couple (M, A(C)) as initial data, as long as A(() satisfies some appropriate
integrability condition involving the distribution D = I'm(n — A(()) on the incidence manifold
Y ¢ ZHE R TP, where ZK is the hyperkihler twistor space of M. The main result of the
chapter is then as follows.

Theorem. Let M be a hypercomplex manifold of complex dimension 2d with the following prop-

erties.

1. M is equipped with an aquaternionic endomorphisms of its real tangent bundle such that
the associated real section A(() of (’)(2)694‘12 yields, for every ¢ € P', a holomorphic en-
domorphism of (T1OM) 1. with 2-dimensional eigenspaces and such that its characteristic

polynomial is the square of the minimal polynomial

2. Forevery ( there exists a subset N C M such that (M \ N¢) has codimension at least two,

[d]

the projection pc: W — Cl% is a surjective submersion on N and A(() is compatible

with puc.

3. Forevery ¢ and every X € kerdu¢ the condition V x A(¢) = 0 holds on N¢, being V the
Obata connection of W.

Then p: Z = Y/D — TP! is a complex 3-dimensional manifold projecting on TP, endowed
with a real structure o covering the antipodal map, for which M is the manifold of o -invariant
cohomologically stable degree d curves. The converse is also true, i.e. every such manifold of

curves in a twistor space p: Z — TP fulfils shows the above properties 1., 2., 3.
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Finally we recall in Chapter 5 some basic facts about the moduli spaces of monopole spectral
curves and show that, in the case of a curve that lies in the (double covering of) Atiyah-Hitchin
manifold, the endomorphism A(() can be written in a particular block-anti-diagonal form. From
this observation we are motivated to recall the Beauville isomorphism between conjugacy classes
of “regular” matrix polynomials and acyclic bundles of rank 2 and to consider the so-called 7-
bundles on curves inside the total space |O(2)]| of the vector bundle O(2) on P!. Due to their
importance as spectral curves of strongly centred charge 2 monopoles, we restrict our attention
to elliptic curves C' of the form (A? — az(¢) = 0) and consider the case of rank 2 acyclic vector
bundles defined on such curves by matrix polynomials of degree 2 in the form

Consider a monopole spectral curve C' in TP! and its lift C' inside the total space of L2\{0}.
The twist N¢/r2(—2) of the normal bundle to C' by O(—2) is, in the charge 2 case, one such
bundle and (see [29]) it is related to the restriction of the monopole bundle E to the curve via
N(—2) = EL|s once we identify C' and C. Now, as bundles of rank 2 on elliptic curves are
completely classified, we turn our interest into understanding whether £ and, in general, the 7-
bundles of rank 2 be or not decomposable vector bundles. Anyway, the study of vector bundles
of rank 2 appears to be more difficult to approach than the case of line bundle, hence we achieve

here only the following partial results.

Theorem. Let Ap (respectively Ag) denote the divisor of zeros of det(P(()) (respectively
det(Q(C))) on C taken with single multiplicity and assume them to be disjoint. Then sheaf of sec-
tions JF of the vector bundle induced by X (¢) is F = m*O(—=1)P?®[Ag] =2 m*O(-1)#?®[Ap],
where T is the projection |O(2)| — |O(4)| given by (¢, \) = (¢, A\2) restricted to the curve C.

Unfortunately, the restriction of the monopole bundle is induced by a block anti-diagonal ma-

trix polynomial X (¢) with Ap = A, In this case we have the following partial result.
Theorem. Let (1, ..., Cy be the zeros of det(P(C)) (and of det(Q(C)). If either

e Im(P(()) all coincide

o Im(P(G1)) = Im(P(C2)) = Im(P(¢3)) # Im(P(C4a))

o Im(P(G1)) = Im(P(C2)) and Im(P((2)) # Im(P(C3)) # Im(P(C4))

then F is the sheaf of sections of an indecomposable vector bundle of rank 2.

If Im(P(¢1)) = Im(P(¢2)) # Im(P((3)) = Im(P((4)) then F is decomoposable if and only
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ifalso Im(Q((1)) = Im(Q((2)) # Im(Q((3)) = Im(Q(C4)), otherwise it is indecomposable.

In the case when Im(P((;)) are four distinct lines in C? the question is still an open one.



Chapter 1

Hyperkahler Manifolds and their
Twistor Theory

Contents
[T.1 Hypercomplex and Hyperkédhler Manifolds| . . . . . ... ... ... .... 1
(1.2 Hyperkahler Twistor Theory| . . . .. ... ... ... ... ... ..... 2
(1.3 Hyperkahler Quotient Construction| . . . . . . .. . ... ... ....... 8
(1.4 Manifolds of higher degree curves in Twistor Spaces|. . . . . . . .. .. .. 11
[1.5 [-Hypercomplex structures| . . . . . . ... ... ... ... ........ 17

This introductory chapter is devoted to briefly collecting the basic results concerning the theory
of hypercomplex and hyperkdhler manifold and their twistor spaces, which will then play a central

role in the following chapters.

1.1 Hypercomplex and Hyperkihler Manifolds

We start the section with by defining the central objects to our exposition, that is hypercomplex

and hyperkdhler manifolds.

Definition 1.1. Let M be a smooth manifold of real dimension 4n equipped with a triple of
(almost) complex structure Iy, I, I3 that satisfy the quaternionic relations I? = I3 = I2 =
=1, I1Io = I3. We call the quadruple (M, I, I5, I3) a (almost) hypercomplex manifold

If, moreover, (M, I, I, I3) is equipped with a Riemannian metric g such that it is (almost) Kdihler

for each (almost) complex structure then it is called a (almost) hyperkihler manifold.

An immediate remark is the following.
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Remark 1.2. The triple of (almost) complex structures gives each tangent space to M the structure
of a quaternionic vector space, hence the requirement of the dimension of M to be a multiple of
4 in the definition.

A celebrated theorem of Obata contained in [31] states the following.

Theorem 1.3. Let M be a hypercomplex manifold. There exists a unique torsion-free affine

connection on M preserving all three complex structures I;,i = 1,2, 3.

Such a connection is called the Obata connection of M. The following property of the Obata

connection holds true (cf.[26]])

Proposition 1.4. The holonomy of the Obata connection is contained in G L, (H).
We now recall some equivalent conditions for a manifold M to be hyperkéhler
1. Each Kdihler form w; = g(I;-,-),1 = 1,2, 3 is closed

2. Each complex structure I; is parallel for the Levi-Civita connection V, thatis VI; = 0,
1=1,2,3.

3. The Riemannian holonomy of M is contained in Sp(n).

Remark 1.5. Since both hypercomplex and hyperkihler manifolds belong to the wider class of
quaternionic manifolds described by Salamon in [34] and [35]], for such manifolds we can write
TCM = E ® H where, in particular, E and H are globally defined vector bundles with fibres

isomorphic to C2" and C? respectively.

1.2 Hyperkihler Twistor Theory

In the present section we review in some detail the description of the twistor space as presented in
the classical article by Hicthin-Karlhede-Lindstrom-Rocek [24]].

Let M be areal 4n-dimensional hyperkdhler manifold with complex structures Iy, Is, Is. An
immediate observation is that if (a,b,c¢) € S? C R? then, thanks to the quaternionic relations
that the I;’s satisfy, al; + bls + cl3 is also a complex structure on M . This means that on a
hyperkéhler manifolds a whole 2-sphere of complex structures is actually defined, each of whose
is compatible with the Riemannian metric and the Levi-Civita connection. The aim of the twistor
construction is then to define a somewhat “’larger” manifold, namely the twistor space of M, that

encodes all the information about the complex structures and the metric of M into its complex
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and holomorphic structure. The first step in the construction of the twistor space is to see the
sphere 52 as the complex projective line P!, covered by the usual two patches Uy, U; with holo-
morphic coordinates ¢ and 5 that satisfy CN = 1/¢ on the intersection Uy N U;. By means of the
stereographic projection, we express a point of S? C R? as

(a7 b, C) = (1_C57 —i(C—E)a—(C+§)) . (1.2.1)

1
1+¢C
We define now the twistor space of M to be, from the C*° point of view, the Cartesian product

Z = M x P!, which we equip with an almost complex structure I defined as follows: if we

express the tangent space at (m, () € Z as T, \Z = T, M & TP', then we define

_(1—<51_z’<c—5>1_<<+§>
N T IR e

where I is the usual complex structure on the sphere given as multiplication by ¢ on the holo-

I3Jo> = (I¢, Io), (1.2.2)

morphic tangent space T;P!. At this point, the theorem of Newlander-Niremberg [30] shows the

following.

Proposition 1.6. The almost complex structure I on Z is integrable, therefore Z is a complex

manifold of complex dimension 2n + 1 and admits a system of complex coordinates.

The projection : Z — P! is then a holomorphic map and each map P,,: ¢ = (m, () is a section
of p.

Definition 1.7. The sections P,, are called twistor lines.

Remark 1.8. From a C* point of view Z = M x S?, therefore the normal bundle to a twistor
line P,, defined as Np

m

= TZ|p, /TPy is simply the product S? x T,,M. Anyway, from
the holomorphic point of view, Np, is not trivial and it is essential in order to invert the twistor

construction to determine what it is.

If we represent the I, I and I3 as acting on 1,,, M = C?" via the complex matrices

il, 0 0 -1, 0 —il,
) ) (1.2.3)
0 —il, 1, O —il, 0
then we can write [ as
1 (i1=¢0) 20
(1.2.4)

L\ 2 —i1- ).
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The above matrix describes the complex defined on T}, M by a point ¢ € P*. Every vector in the
+i-eigenspace over ¢ can therefore be written as (X + i(I3(X)) where X is a +i-eigenvector
for I;. Moreover, if ¢ is a 1-form of type (1, 0) for the complex structure I, then (¢ +iCI3(p))
has type (1,0) for the complex structure defined by ¢ € P!. A quick computation of the tran-
sition functions on Uy N Uy shows that the normal bundle to any twistor line is holomorphically
equivalent to the tensor product C2" @ O(1), which we will denote C2"(1). We will also keep
the notation O(k) to denote the pullback of O(k) from P! to Z via the projection p.

It is easy to see that the 2-form w4 = wa + w3 has type (2,0) with respect to complex structure
I, . Choosing an appropriate local basis {;} of forms of type (1,0) for I;, we can write

Wi =2 0iApitn (1.2.5)

from which we can construct the 2-form

w=2 (i —iCI3(0)) A (Pin — iCI3(Pisn)) - (1.2.6)

Of course w has type (2,0) with respect to the complex structure given by ¢ and, by expanding
in powers of ¢ and using the definitions of w; in terms of the metric g and the complex structure

1; it can be proved that
w = (W + iws3) + 2iCwr + ¢ (w2 — iws) . (1.2.7)

Remark 1.9. For every ¢ € P! we have defined a holomorphic complex symplectic form w on
each fibre of the projection p. Such forms are all covariantly constant and depend quadratically of
¢. We can therefore describe w as a section of the vector bundle /\2 T @ O(2) over Z, where

we mean
Tr = ker(dp): TZ — TP* (1.2.8)

to be the tangent along the fibres of the twistor projection. From now on we adopt the notation
N> TE(2) for N’ TE @ O(2).

Finally, the antipodal map on ¢ ++ —1/¢ defines an antiholomorphic involution on Z as

o: M xP' - M x P!

) (1.2.9)

(m. ) - (mé

that takes the complex structure [ to its opposite —/. Such a map is called a real structure and all

the holomorphic data encoded so far are compatible with it.
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Now, the main feature of twistor theory is that it allows us to reconstruct the hyperkéhler manifold
from the holomorphic properties of its twistor space. This is summarized in the following theorem,

the proof of which we also recall from [24].

Theorem 1.10. Let Z be a complex manifold of complex dimension 2n + 1 with the following

properties:
e 7 comes with a holomorphic fibration p: Z — P onto the complex projective line

o The fibration p admits a family of holomorphic section each of whose has normal bundle

isomorphic to C*"(1).

e There exists a holomorphic section w of /\2 T}.(2) which defines a holomorphic symplectic

form on each fibre.

e Z possesses a real structure o compatible with the previous data and covering the antipodal

map of P*.

Then the parameter space of M real sections is a manifold of real dimension 4n equipped with a

natural hyperkdhler metric and Z is its twistor space.

Remark 1.11. The above stated Theorem does not give exactly the inverse procedure to
the construction of the twistor space of a hyperkidhler manifold. Indeed, if we start from such a
complex 2n + 1-dimensional manifold Z, produce M and construct its twistor space we recover
Z . On the other hand, if we start from a hyperkihler manifold M, construct its twistor space Z
and then perform the procedure of Theorem |1.10| we might end up with a real 4n-dimensional
hyperkihler manifold M’, possibly consisting of several connected components and such that

M C M’. This consideration is somehow expressed in [36].

Proof of Theorem The steps in order to prove the claim are first to show that the parameter
space of all real sections, that we will again call twistor lines, is a smooth manifold and to compute
its dimension, then to construct a metric and finally to prove the hyperkihlerness of the latter.

Let P,, denote a twistor line corresponding to a point m € M. According to Kodaira’s defor-
mation theory (see [27]), an infinitesimal deformation of the section P,, of p: Z — P! can be
thought as a holomorphic section of the normal bundle N to F,, in Z. Precisely, if the cohomol-
ogy group H'(P!, N) vanishes, then every holomorphic section of the normal bundle N comes
from a deformation of the twistor line P, , thus making the space of all holomorphic sections
of p a complex manifold whose holomorphic tangent space at each point m is isomorphic to the

vector space H°(P,,, N) of all global sections of N on P,,. Since by assumptions we have
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N = C?"(1), the group H'(P', N) is isomorphic to C>* @ H'(P', O(1)) which of course van-
ishes.
Now, a global section of O(1) on the complex projective line is defined on Uy by a linear polyno-

mial in ¢, hence a holomorphic section s of N = C2"(1) on P,, is given as
s(¢) =a+ b where a,b € C" (1.2.10)

Since these sections form a vector space of complex dimension 4n then, by the theory of Kodaira,
the twistor line P, belongs to a 4n-dimensional family. The real (i.e. o-invariant) twistor lines
are then parametrized by a real submanifold M of real dimension 4n whose tangent space 1, M

at m satisfies
TCM = H°(P,,,N) = H(P,,, Tr), (1.2.11)

where, as usual, Tr stands for the tangent bundle to the fibres of p, i.e. the vertical bundle with
respect to p. We have therefore completed the first step by constructing the real manifold M and
describing its tangent space. We now have to define a metric ¢ on M and prove it is hyperkéhler.
First of all, since on P, the isomorphism T = C27(1) holds true, then T(—1) = C?". There-
fore (1.2.11]) can be rewritten as

TEM = HY(Py,, Tr(—1)) ® HY(P,,, O(1)) = C*" @ C2. (1.2.12)

Then, by hypothesis, we have that w € H°(Z, A*T%(2)) can be regarded as a 2-form with
values in O(2), therefore it defines a non degenerate skew-from on HY(P,,, Tr(—1)). Moreover,
the space H°(P,,,O(1)) = H°(P!,O(1)) is naturally endowed with a symplectic form (-, -)
defined by

(a1 + b1C, a2 + baC) = a1by — aghy. (1.2.13)

The tensor product of w and (-,-) together with (1.2.12)) define a complex scalar product g on
TEM given as

gla+bl,a+bl) =2w(a,b). (1.2.14)

We now need to describe the tangent space to real twistor lines, i.e. the space of real tangent
vectors. A small digression on real and quaternionic structures on vector spaces is here required.
Analogously to what we said before, a real structure on a complex vector space V is a complex-
antilinear (therefore real-linear) involution ¢: V' — V', while a quaternionic structure is a map
j: V. — V which is complex-antilinear and squares to —1. As 7 and j anti-commute on V' and

17 = k, an action of the quaternions is given on V'. An immediate remark is that the tensor product
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of two quaternionic structure on two vector spaces gives a real structure on the tensor product of
the vector spaces. If we now apply this observation to (I1.2.12), we can define a real structure on
TE M simply by tensoring two quaternionic structures defined respectively on HO(P,,, Tr(—1))
and H°(P,,, O(1)). The quaternionic structure on H°(P,, O(1)) is given as j(a+b() = —b+a(
and comes as the unique antilinear action on (1) that covers the antipodal map ¢ — —1/¢ on
IP!. The real structure o of Z preserves the vector bundle 7' as well as the decomposition (T.2.12)
hence induces a quaternionic structure j on the space HY(P,,, Tr(—1)). The real structure on
HY(P,,, Tr) is therefore

T(a+b¢) = j(b) — j(a)¢, wherea,b € H(Py,, Tr(-1)). (1.2.15)
A real tangent vector is then of the form
X =a—j(a)¢, wherea € H*(Py,, Tr(—1)) (1.2.16)

and the metric is given via (I1.2.14) as g(X, X) = —2w(j(a), j(a)). The compatibility of w with
o implies the positive definiteness of g. As a last step we must prove the hyperkihler property of
g. In order to do so it will be helpful to identify the 4n-dimensional Riemannian manifold that
we have constructed with an open set in any of the fibres of j: Z — P'. Consider then a real
holomorphic section of the normal bundle of P,, in Z, which we write as X = a — j(a)(, and

assume it vanishes at some point ¢ = (g € P'. Then, from the definition of g, we get

9(X, X) = —2w(Coj(a), j(a)) = —2Gw(j(a),j(a)) = 0 (1.2.17)

which means, as g is positive definite, that X is identically zero. Therefore a an infinitesimal
deformation of a real twistor line cannot vanish anywhere along the line. Geometrically this
means that real twistor lines “separate” points in each fibre of Z so neighbouring real lines can
only intersect the fibres of p in distinct points. As a consequence of this, M can be identified with
any of the fibres of 5. We now choose to identify M with the fibre Zy of p over ¢ = 0 in P!.
A real tangent vector X = a — j(a)( is then identified with the element a € HY(P,,, Tr(—1))
and, since Tr(—1) along P, is isomorphic to the trivial bundle C?", a is determined by its value
at any point ( € P! so, in particular, at ¢ = 0. So, if we read T as the tangent bundle to the
fibre Zp, the map X +— a is the differential of the identification of M with Zy. Clearly Zj is a
complex manifold, hence the identification of M with Zj defines a complex structure I, on M
which amounts to multiplying a by ¢. Hence

9(I(X),Y) = —w(ia, j(b)) — w(b, j(ia)) = —iw(a, j(b)) + iw (b, j(a))

= w(a, j(ib)) + w(ib, j(a)) = —g(X, L1 (Y)),

(1.2.18)
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i.e. the metric g is Hermitian with respect to the complex structure I; .

Consider now the form w on the fibre over ( = —1: this yields a form ¢_jon M defined as
v_1(X,)Y) =w(a+j(a),b+ j(b)). (1.2.19)
The same operation over ( = 1 yields
p1(X,Y) = w(a—j(a),b— (b)), (1.2.20)
and

(P11 = 941) (X, Y) = w(i(a),b) + wla, j(b)) = ig(11(X),Y)). (1.2.21)

DN |

Since ¢_1, @41 are both closed also g(I-,-) is closed, hence g is Kihler with respect to I;. The
same procedure repeated for the complex structures I> and I3 show g to be hyperkéhler. |

Remark 1.12. According to Remark 1.5} the splitting (T.2.12) allows us to write 7€M as E® H
where H is the trivial C? bundle on M and FE is the vector bundle whose fibre at each m € M
is B, = H*(P,,, Tp(—1)).

1.3 Hyperkihler Quotient Construction

Another central tool in the theory of hyperkdhler manifolds we are going to recall is the so-called
hyperkdhler quotient which extends the well-known symplectic (or Kihler) quotient construction
due to Marsden-Weinstein (cf. [[12]], [19]).

Assume that M is a 4n-dimensional hyperkidhler manifold, i.e. it is equipped with a Rie-
mannian metric g compatible with three covariantly constant complex structures Iy, I, I3 that
obey the quaternionic relations. Assume also that a compact Lie group G acts freely on M by
isometries, preserving the complex structures. Then G preserves the Kéhler forms w;, ¢ = 1,2,3
corresponding to the complex structures I; hence three moment maps p;: M — g* = (Lie(G))*

can be defined, which can be invariantly described as a single map
p: M — g* @ R3. (1.3.1)
The following theorem yields a generalization of Marsden-Weinstein’s result.

Theorem 1.13. The quotient metric on = 1(0) is hyperkdhler.
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Sketch of the Proof. We consider one complex structure, say I, with its Kdhler form w;. The

complex function
py = p2+ips: M — g*@C (1.3.2)
has the property
dp (L(Y)) = iduZ (V) (1.3.3)

for every fundamental vector field X and every tangent vector field Y, which imply that uf isa
holomorphic function for I;. Therefore N = 13" (0) = p5 *(0)Npzz *(0) is complex submanifold
of M with respect to the complex structure I; and the induced metric on M is Kidhler. The group
(G acts again on N : such action preserves the Kéhler form of /N and its moment map is clearly the
restriction of p1 to N. So, by the usual Marsden-Weinstein theorem on symplectic reduction, the
quotient metric on N Ny ' (0)/G = p~1(0)/G is Kihler with respect to I;. The same argument,
repeated for the complex structures I» and I3 completes the proof. |

Remark 1.14. The form w; = wy + iw3 has, as we said, type (2,0) with respect to I;. Being
covariantly constant, w; is holomorphic and can be proven to be complex non-degenerate, i.e.
w' # 0. Now, the action of the complexification GC preserves w, and admits j as a moment
map with values in g ® C. This means that the hyperkihler quotient 1 ~1(0)/G is the usual

symplectic quotient, this time in the holomorphic category.

There is of course some interplay between the hyperkihler quotient and the hyperkéhler twistor
constructions: in fact, a very natural question that can be asked is what kind of relation one has
between the twistor space Z of a hyperkdhler manifold M and the one Z of some quotient M of
M by the action of some Lie group G. If GG acts by isometries that preserve 1, Is, I3, then the
fundamental vector fields for the action of G are actually holomorphic on Z = M x S? with the
complex structure /. Assuming that the action extends to one of the complexified Lie group G,
the quotient construction yields the twistor space Z from Z by taking the holomorphic symplectic
quotient along each fibre of Z — P! with respect to the form w of Theorern Since w is a
section of A\ T%(2), the holomorphic moment map will be a holomorphic section of g* ® O(2)

over Z.

Example 1.1. A simple example of such an interplay is provided when a hyperkidhler manifold
M is acted on by the group S! In this case, assuming that the action complexifies to an action of
C* we can define, as explained above, a holomorphic moment map on each fibre of the twistor

space Z of M and encode all such maps into a holomorphic section of O(2) over Z. The toy
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example is given by the following S -action on C? defined as

p: St x C? = C?
| - (1.3.4)
(elt, (21,22)) — (eltzl,eﬂtzg),

where C? has been equipped with the complex structures I, I, I3 as in (I.2.3) and 21, zp are
the holomorphic coordinates for the complex structure ;. The I;-holomorphic moment map for
this action is then iz;22. From (I.2.2) and (1.2.4) we deduce that every vector of type (0, 1) for
the complex structure I is given as X — i¢I3(X) where X is a vector of type (0,1) for I;.
Since giving the space of vectors of type (0,1) for a complex structure is equivalent to giving
the complex structure itself, we notice that we are mapping the two-sphere inside the complex
Grassmannian Grc(1,2), which is also P{, via F': ( — [(—(,1)]. By choosing the appropriate
orientation on P! = P(C?), i.e. setting ( = a/b we have that F is a holomorphic map. Now, in
the spirit of we write TCC? = E ® H = C? @ C? where we read the right C? factor
as HY(P',0(1)) via (a,b) + a + b(. The (0,1) vectors for I consist then of the subspace
C? ® {sections of O(1) vanishing at ¢} . and we deduce from this that the forms of type (1, 0) for
each complex structure I are given by dz;+(dZ» and dzo—(dZ; . The triple (¢, 21+(Z2, 22—(Z1)
therefore gives a system of coordinates on the twistor space Z := P! x C? holomorphic for the
twisted complex structure [ ¢,y = ((IC);,; , (1p) C) of Z. Straightforward computations show that
the holomorphic section p of O(2) over Z is given by

w(C) = i(z1 + (Z2)(22 — C21), (1.3.5)

i.e. on each fibre of Z, p(() is ¢ times the product of the (-holomorphic coordinates. We remark

here that —ip(¢) is a section of O(2) which is real for the real structure

0(2) = 0(2)
_ (1.3.6)
1.7
“’"“( 3 c)

Remark 1.15. The more general theory of pluricomplex geometry described in [10] tells us that
pullback F*V%! of the —i-tautological eigenbundle on G (1,2) is isomorphic to C2 ® O(—1).

In general for a hypercomplex manifold

HY(Pp, Tr(-1)) @ O(-1) — HY(P,,, Tr)
(1.3.7)
(s, (a,b)) — (—a+b()s

is an isomorphism.
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1.4 Manifolds of higher degree curves in Twistor Spaces

Let Z be the twistor space of some hyperkihler manifold M : according to Definition[I.7|a twistor
line is an immersed P! inside Z. In this section we will consider a complex manifold Z of
complex dimension n + 1, which by analogy we will keep calling a twistor space, endowed with a
fibration p: Z — TP' and a real structure o that covers the antipodal map of the Riemann sphere
P! and study the relevant geometric properties of the manifold M of “higher degree” curves in Z
that satisfy appropriate cohomological conditions of stability. We now make the setting precise,
following [6] as main source.

As usual let P! be the complex projective line and consider a complex manifold Z, of complex
dimension dim¢ Z = n+ 1, fibring over the holomorphic tangent bundle to P* via a holomorphic
map p: Z — TP'. Assume also that a real structure, that is a antiholomorphic involution, be
defined on Z and that it covers the antipodal map of P!. By curve C' C Z we shall now mean
a compact, complex, one-dimensional subspace whose fibres over P! all have equal length (we
are interested in those subspace which have fibres of finite length). Let d € N \{0} and M be the

space of all curves C' C Z that satisfy the following requirements:

e ( is invariant under o
e p|c is a biholomorphism C — C = p|c(C) C TP!
e C is of degree d

e The cohomology H*(C, N¢yz(—2)) vanishes and H'(C, N¢/z) = 0 as well,
where we adopt the following conventions and notations:

e N,z stands for the sheaf of sections of the normal bundle of C' in Z.

e N¢yz(—2) stands for Ny @ Oz(—2), where Oz(—2) is the pullback of Op1(—2) over
Z via the projection p: Z — P! given by composing p with the base map TP' — P!.

e we say that C' has degree d meaning that the projection C' — P! is generically d: 1. This
is equivalent to saying that C' is the vanishing locus of a global section of Op1(2d), i.e of a
polynomial of the form 7+ a3 ({)n='+- - -4aq(¢) with (¢,7) the usual local coordinates
on TP! and a;(¢) a polynomial in ¢ of degree 2i foreachi =1,...,d.

We are now ready to describe the geometry of the manifold M .
Let MC denote the complexification of M, which is described exactly as above simply by re-
moving the hypothesis that the curves C' be o-invariant and let C' € M. By a general result of
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deformation theory (see [[18]) there is a canonical isomorphism T (M©) = H%(C, N¢/z) and
the condition H'(C, N¢ / z) = 0 implies that M is smooth at C', hence we will call M a manifold
from now on. Here we denote by 7> (M (C) the holomorphic tangent space to M at C, hence
Te (M©) =2 ToM ® C. Now, recalling the Euler sequence

0= 0(-2) - 0(-1)®C* =0 =0 (1.4.1)

~

and the fact that (P!, O(1)) =2 C2, we get the analogous exact sequence
0 — Ngyz(—2) = Neyz(—1) @ H(P',0(1)) = Ngjz — 0. (1.4.2)

Taking the cohomology of the sequence, together with the vanishing of H*(C, N¢,z(—2)), yields

the isomorphism
H(C, Neyz) = H(C, Neyz(—1)) @ HY(B, 0(1)) = HY(C, Noyz(~1) @ 2 (1.43)

We can therefore define an action of the unit quaternions on TCM as in the previous chapter. Let
I, I3, I3 be the complex structures on C? defined as in (T.2.3) by

Ii(a,b) = (ia,—ib), Iz(a,b) = (=b,a), Is(a,b)= (—ia,—ib). (1.4.4)

These correspond to left multiplication by the unit quaternions i, 7, k under the identification C? 22

H by (a,b) > a + jb. A whole 2-sphere of complex structures is therefore defined on C? by

le=17¢ (1=¢OhL —i(¢ =2 = (C+ Q) 13) - (1.4.5)

With some abuse of notation we define the P! of complex structures on TCM by acting on the
C? factor in the splitting (T.4.3) by

Ic: H'(C,N¢yz(—-1)) ® C* = H(C, N¢yz(—1)) ® C?
(1.4.6)
e® (a,b) = e® I¢(a,b).

The subspace (Tg’lM )I C T gM consisting of all vectors tangent to M at C' of type (0,1) is
¢
0 _ 0,12 -
therefore the tensor product H%(C, N¢/z(—1)) ® (T%'C?) I If we proceed as in Example
we obtain that (Tg’lM)I ~ F°(C, N¢/z(~1)) @ (—a,b), i.e. by virtue of ([Z3) and of the
¢

isomorphism C? = H(P!, O(1)), (a,b) — a + b the (0,1) tangent space at C' is exactly the
space H°(C, Ng /z|—C¢]) consisting of all sections of H 9%(C, N¢ /z) that vanish on the divisor
C¢ = C N Z, where Z is the fibre of Z over the point ¢ € P! along the map Z — TP! — P!.
Following [6] we will denote by this distribution by )¢ and state the next result.
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Proposition 1.16. The distribution Q)¢ defined above is integrable
Proof. The proof is given in [6][Proposition 3.4] |

A hypercomplex structure arises therefore naturally on the manifold M. We now turn our
attention to computing the dimension of M.
Fix ( € P! and a curve C € M and let s € H°(P!,O(1)) such that s(¢) = 0. Taking the

cohomology of the following exact sequence

evg

0 — N(-2) —= N(-1) — N(-1)|¢, —=0 (1.4.7)
yields an isomorphism
H®(C, N¢yz(—1)) = H(C¢, Noyz(=1)le,)- (1.4.8)

Since each fibre of N¢,; has rank n, then h(C, Ng,z(—1)) = dn. Therefore (I.43) implies
that TgM is a vector space of complex dimension 2dn which means that TcM is a real vector
space of real dimension 2dn, i.e. when M is not empty then dimg M = 2dn.

We can therefore summarize all the above results and reproduce [6][Theorem 3.5] as follows.

Theorem 1.17. Let Z be a (n + 1)-complex dimensional complex manifold endowed with a
holomorphic fibration p: Z — TP and a real structure o covering the antipodal map of P*.
The manifold M of o-invariant curves of degree d that satisfy the cohomological conditions
H*(C,Ngyz(-2)) =0= H(C, N¢yz) is, if not empty, a hypercomplex manifold of real dimen-

sion 2dn.

Remark 1.18. Let 7(TCM) denote the space of all possible complex structures on 7'M . The
definition of the 2-sphere of complex structures on M gives at every C' € M a holo-
morphic embedding F: P — J(TSM) or, equivalently, F': P1 — Grg,(C?%) as giving a
complex structure is equivalent to specifying its —i-eigenbundle. Let then V%! denote the tau-
tological —i-eigenbundle on Grg,(C29"). In analogy to Remark and [10], the pullback
F*V%1 s isomorphic to H(C, N¢/z(—1)) ® O(—1) via the map
HY(C,Ngyz(—1)) ® O(=1) = H(C,N¢yz) ® O
(1.4.9)
(t,(a,b)) — (—a + bC)t

where (a,b) € [ and [ is the fibre of O(—1) over [[].
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Remark 1.19. Thanks to (1.4.3) we have been able to equip M with a hypercomplex structure: if
we now construct the twistor space ZH % of M following Hitchin’s hyperkihler theory, we have

that at every m € M
TSM = H%(c, N, jznrc) = H (¢, Trp(—1)) @ HO(P', O(1)), (1.4.10)

where ¢,, denotes the section P — ZH7K associated to m, reconstructs the same hypercomplex

structure on M . Therefore we get a natural isomorphism
HO(C,Ngyz(—1)) = H (e, N, 1 (—1)) = HO (¢, Tp(—1)), (1.4.11)

where C'is as usual the curve in Z — TP! corresponding to m € M . Therefore, since Tr(—1)
is trivial on every twistor line, we have an induced vector bundle E on M, whose fibre at m € M
is HY(cm, Tp(—1)) = H°(C, Ngyz(—1)) (see for example [25]).
Now, following [24], we recall here that the only (anti)linear action on O(1) that covers the
antipodal map is the natural quaternionic structure, which induces the map
jr: HO(PY,O(1)) — HY (P, O(1))
B (1.4.12)
(a+b¢) = (=b+aQ)

that is also a quaternionic structure. Since the real structure o on Z induces a real structure, that
we still denote by o, on H(C, N¢/) and H°(C, N¢yz) = H(C, N¢yz(—1))@ HO (P!, O(1)),
then there exists a quaternionic structure jp: H°(C, Noyz(—1)) = H°(C, N¢yz(—1)) such that
0 =jp ® jm asamap of H'(C, N¢/z(—1)) ® C? to itself.

This gives a description of the real tangent space to M at C' as the space H°(C, N /7)° of all o-
invariant global sections of N 17 In terms of vector bundles over M, then, TR M = (E®H)?,
where H is the trivial C? bundle on M.

Observe now that for any C' € M and ¢ € P, the divisor C; is a complex space of complex
dimension 0 and length d, i.e. consists of d points, counting multiplicity. This suggests the
upcoming quick digression about (transverse) Hilbert schemes of points. For a complex manifold

X we define the full Hilbert scheme of d points in the following way.

Definition 1.20. Ler X be a complex manifold and d € N\. The Hilbert scheme X [l of d points
of X is the set of all 0-dimensional analytic subspaces of X of length d. In other words (see [lI]]),
an element of X% is by definition either

e an ideal sheaf T C Ox with dim O, /T = d

e asheaf S of Ox-modules with finite support, cyclic and with dim H°(X,S) = d.
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Following and adopting now the notation of [§]], let X be a complex manifold, C' a complex
one-dimensional manifold and p: X — C a surjective holomorphic map. We define the Hilbert

scheme of d points in X transverse to p as follows.

Definition 1.21. The length d Hilbert scheme of X transverse to p is the (open) subset XI[,d] of
the full Hilbert scheme X ] consisting of all 0-dimensional subschemes Z of length d such that

the map plz: Z — p(Z) is an isomorphism onto the scheme-theoretic image.

Remark 1.22. A practical interpretation of the transversality condition is the following: taken
ANS X][,d], if z € p(Z) C C is a point of multiplicity k, then it will correspond via p to a
point z € p~1(z) also of multiplicity k. A scenario with distinct points z1,...,z; € p~*(z) of
multiplicity k1, ..., k; respectively, with Z{Zl k; = k is excluded.

If, going back to our notation, we consider the fibre Z; of the twistor space Z over ( as playing
the role of the manifold X of Definition and TCIP’1 = C for the role of the one-dimensional
manifold C, then the same argument as in [8]][Proposition3.7] yields the following result.

Proposition 1.23. Let the couple (M, I;) denote the manifold M endowed with the complex
structure I; for a chosen ¢ € P'. The map

We: (M, 1) = (Zc)))
(1.4.13)
C— CC

is holomorphic and it is a local diffeomorphism of the smooth locus of (ZC);[)d]'

Remark 1.24. By Fogarty’s results exposed in [15], [16], if Z; is 2-dimensional then (ZC)M is

everywhere smooth, hence so is (Zg)Ld} .

We conclude the section by showing that, under some natural hypothesis on Z, a hyperkihler
metric can be defined on M.
The composition p of the projection p: Z — TP with the base map TP' — P! gives a map
Z — P'. We denote by T, /pr the tangent space to the fibres of such map and state the analogue
to [6][Theorem 3.11].

Theorem 1.25. Assume Z be a complex manifold of complex dimension 3 endowed with a fibra-
tion p: Z — TP and an antiholomorphic involuction o that covers the real structure of P'.
Assume, also, that a symplectic form w(C) with values in O(2) is given on the bundle Ty p1 and
that w is compatible with the real structure o, inducing a a symplectic structure on each fibre Z.

Then the hypercomplex manifold M has a (pseudo)-hyperkdhler metric.
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We now return once more to the splitting 7€M = E ® H, where E is the bundle on M
defined in Remark A result of Pedersen-Poon stated in [32] for hyperkéhler manifolds and
improved by Feix in [14] for hypercomplex manifold states that a correspondence exists between
hyperholomorphic bundles on a hyperkéhler (hypercomplex) manifold and holomorphic bundles
over its twistor space that fulfil the condition of being trivial on every twistor line. Therefore,
since the bundle Tr(—1) on ZHX satisfies such condition, it can be endowed with a (unique)
hyperholomorphic connection V. Moreover, since TCM = E @ H, we can consider the tensor
product connection V = V¥ @ V# , where V¥ is the trivial flat connection on H . By definition
the complex structures I;, ¢+ = 1,2,3 are preserved by V and [14]][Proposition 6] states the

following.

Proposition 1.26. The affine connection V = V¥ @ V has vanishing torsion.

Therefore V is the (complexified) Obata-connection of the manifold M .
Since E is the vector bundle over M induced by the bundle 7x#(—1) over Z7X | we can also
apply [6][Proposition 6.1] and get the following statement.

Proposition 1.27. The vector bundle E — M is equipped with a canonical linear connection
V'E such that, for every ¢ € P* and point m € M, if u is a local section of E with du(X) =0
for every X € Q¢ then also Vxu = 0 for every such X. Moreover, since ZHE has a real

0,1
¢

structure covering the antipodal map of P', the connection V'Y satisfies (V’E ) = 5< for every

¢ e P

Remark 1.28. Let II C M be the subset consisting of all twistor lines that run through a given
point z € Z HE Comparing the results of Pedersen-Poon [32] and Bielawski [6], it is immediate
to verify that the connections V¥ and V’¥ have the same horizontal distribution on II. Since V¥
is extended in a unique way to all M, it follows that V¥ = V' Therefore the Obata connection

is
V=vievi=vFevl (1.4.14)
Finally, we show that the dual connection (V’#)* has the same property of V7,
Proposition 1.29. Let E* be the dual bundle to E and (V¥)* the dual connection induced by

V¥ on E*. Then, if X is a vector in Q¢ and ¢ alocal section of E* for which dp(X) = 0 then
(V) ke =0.
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Proof. We recall that, by definition, if u is a local section of F
(VE)ke) (u) = dx(o(u) = ¢ (Vi u)
= (dx¢)(u) + p(dxu) — o(V'¢u) (14.15)
= o(dxu — V'Eu).

Now, let (e, ..., e2q) be alocal frame for E such that de; = 0, that is in particular dxe; = 0.
Writing u = ) u;e;, we get

(VE)xe) (w) =D ¢ (ui (dx — V) &) =0, (1.4.16)
hence the claim is verified. |

By the above proposition we conclude that the connection induced by V’¥ on the vector bundles

generated by E via direct sum, tensor product and dualisation all share the same defining property

as in Proposition[T.27]

1.5 1-Hypercomplex structures

Hypercomplex structures happen to carry more information than just the triple of quaternion-like
behaving complex structures as in Definition[I.I] As we have already anticipated in Remarks|[I.T

and the study of hypercomplex structures is contained in the more general frame of that
of pluricomplex structures. Although here we are not interested in the latter, we adopt its point
of view for this section and give a new and equivalent definition of hypercomplex structure on a

vector space.

Definition 1.30. Ler V' be a vector space of real dimension 2n. Denote by J (V') the space
GL(2n,R)/GL(n,C) of all complex structures of V', which we call the twistor space of V and
view as an open dense subset of the Grassmannian Gr, (V). A hypercomplex structure on V is

an immersion
K:P' = J(V) (1.5.1)
that satisfies the following conditions
o K*(VON) =2 O(—1) ® C", where VO is the tautological —i-eigenbundle on Gr,,(V°)

o VC/K*(VO1) >~ 0(1) 0 C”



18 1. Hyperkahler Manifolds and their Twistor Theory

o K(¢)=—K(—1/C) forevery € P,

These conditions force n to be even. In the spirit of the above definition we recall the following
definition from [9]].

Definition 1.31. Let V be a real vector space of dimension 2n. A I-hypercomplex structure on V'
isamap A: P' — TJ (V) such that w o A is a hypercomplex structure, where we denoted by
the projection TJ (V) — J(V).

The tangent space at a point J € 7 is described as
T;J(V)={X € End(V)| XJ +JX =0}, (1.5.2)

i.e. it is the set of all endomorphisms of V' that anti-commute with the complex structure .J. This
means that for a I-hypercomplex structure A, every A(() anti-commutes with K (().

Remark 1.32. A I-hypercomplex structure is a lift of a hypercomplex structure to the tangent bun-
dle TJ (V). Every hypercomplex structure defines naturally the trivial I-hypercomplex structure

as the zero section but, as shown in [9]], I-hypercomplex structures are usually non-trivial.

Consider now a non-trivial 1-hypercomplex structure A, denote by K the underlying hyper-
complex structure K = 7o A and take ¢ € P'. If we extend A(¢) to the complexification V'
of V by linearity, we can consider the map A(¢): VCO’1 — V¢ VCO’1 given by restricting A(() to
VCO’1 and then taking the natural projection to the quotient. As usual VCO’1 stands for the space of
vectors of type (0,1) for K (¢). Varying ¢, we have a bundle map A: Vo' — VC/V0:1 over the
image space K (P') c J(V).

If we set L¢ = Span { K ({') € K(P")| K(¢') o K(¢) + K(¢) o K(¢') = 0} then L is the fibre
of a holomorphic line bundle L over K (P!), with L = TP!. Define T'ot(L) to be the total space
of L and pull the bundles V! and V' /Y% back to T'ot(L). We will abuse notation and still de-
note such pullbacks by V%! and VC/V0%1. Since every element K ({') € L anti-commutes with
K((), it defines a map VCO’1 — V¢ Vco’l. Therefore, on T'ot(L) = TP we obtain a tautological
map Z: V%! — VC/V01 The situation is summarized by the following short exact sequence (of

sheaves)

A-T

Ve /ol F 0. (1.5.3)

Finally, let I be a locally trivializing section of L = TP! and 7 the fibre coordinate relative to it.
Then (T.5.3) can be seen as a sequence of sheaves on TP! given as

A(Q)—nI
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where, as usual, Opp1(1) denotes the pullback of O(1) via the projection TP — P!,

Observe that A is compatible with the natural real structure (¢,1) — (—1/¢, —7/¢?), that is
A(1/¢) = —A(¢)/C%. Moreover, if we consider the generic fibre of V%! and VC/V%! over a
point (¢,n) € TP, for an appropriate choice of basis Z is represented by the identity matrix and

fl(C ) by an n X n complex matrix. Therefore fl(( ) can have at most n different eigenvalues,
which means that fl(( ) — nZ is an isomorphism of the generic fibre i.e. the sheaf F, which we

call the characteristic sheaf of the 1-hypercomplex structure A, is supported on the curve

C = {(g,n) e TP!| ker(A(¢) — 5T) # 0} . (15.5)

We call C the characteristic curve of A and its degree the degree of A. As remarked in [9],
the sheaf F satisfies the conditions h°(F) = 2n and H*(F ® Opp1(—2)) = 0 and its space of
sections is equipped with an antilinear automorphism o that squares to the identity and covers the
real structure of TIP!. The significance of the sheaf F comes from the possibility of recovering the
l-hypercomplex structure A(¢) by knowing F, applying the following strategy. First we identify
the vector space V' with the o-invariant sections of . Then we observe that, due to the vanishing
of the cohomology H*(F ® Opp1(—2)), for any choice of two elements (g, (; € P!, we have the
isomorphism H%(F) = H%(D¢,,F) & H(D¢,, F), where D¢, stands for the divisor cut out by
(¢ — ¢;). In turn, this implies that the space H°(F)? of o-invariant sections of F be isomorphic
to H O(DCO, F) by evaluation at a point (5 € P! and this determines the complex structure J¢o
corresponding to {p € P'. Assume now for simplicity that C¢, = C' N Dy, consists of d distinct
points uq, ..., uq, for d = deg(C'), and identify the tangent space TCOIP’1 with the complex line
spanned by all complex structures .J; that anti-commute with J . Let J’ be a complex structure
fixed among those anti-commuting with J¢, : then we can identify the points u1,...,uq with the
elements n1.J',...,ngJ forsome n; € C,i = 1,...,d. We have therefore that

d
V = H(Dg,, F) = H(Cy,, F) = @ H ({ui}, F). (1.5.6)
i=1
Let 7; be the projection to the ¢-th summand in (I.5.6). Since every summand is invariant under
J¢, » they can be thought as complex subspaces of V' for the complex structure .J¢, . Therefore, for

every v € V', we recover A(() as

d
A(Go)(v) = me(fv)- (1.5.7)

Remark 1.33. For d = 1 the l-hypercomplex structure is just an ordinary hypercomplex structure
and we have V = HO(u,F), with u = C¢, for the characteristic curve C' of the sheaf F.
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Therefore, after fixing (o and choosing a complex structure .J* which anti-commutes with J¢,

A(Co)(v) =nJ". (1.5.8)
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In this chapter we consider the manifold M introduced in Section [I.4] and, for every ele-
ment C' € M, we construct a matrix polynomial A(¢) as a holomorphic section of the bundle
End(H°(C, N¢yz(—1))) ® O(2). We show that this can be interpreted as a l-hypercomplex
structure according to description of Section We prove then that A(() is real for the natural
real structure of O(2) and, recalling Remark we show that it induces an endomorphism of
the bundle £ on M which, for every fixed ¢ € P!, is holomorphic with respect to the complex
structure I.. We will still call this endomorphism A(().

2.1 Construction

As in Section let p: Z — TP! be our complex (n + 1)-dimensional twistor space, o its real
structure covering the antipodal map of P! and M the manifold of o -invariant degree d curves in
7 that satisfy the stability conditions H*(C, Neyz) = H*(C, N¢yz(—2)) = 0. We now put the
isomorphism (1.4.8) to use and apply a construction of Adams-Harnad-Hurtubise exposed in [1]]
which yields a linear endomorphism A(¢) of H%(C, N¢7(—1)) defined by a quadratic matricial

polynomial.

21
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Let ¢ € P!. Multiplication by  on H°(C¢, N¢ /z(=1)|c,) yields the commutative diagram

H°(C,N¢yz(—1)) — H°(C¢, Neyz(—1)le,)

A© | K
H°(C,N¢yz(—1)) — H(C¢, Neyz(—1)|e,)
@2.1.1)
If z; is a point of C¢ of multiplicity one, with p(z;) = ({,7;), then clearly we have (71)(s)) (2;) =
n(2i)s(zi) = mis(z;). If, instead, z; is a point of higher multiplicity in C¢, the section s is given
by its truncated power series centred in z; and (7(s)) will be given by the truncated power series
of the product s centred in z;.
Therefore, if C¢ consists of d distinct points (2;) with p(z;) = (¢,7;), then A(¢) will be diag-
onalizable with eigenvalues n;,7 = 1,...,d and sections of NC/Z(—l) vanishing at z;,j # 1
will be eigenvectors for ;. If, instead, C; has multiple points then A((), given in this case via

multiplication on truncated power series, will have a non-diagonal Jordan form.

Remark 2.1. Let P((,7) be the polynomial defining the curve C' = p(C') C TP! and denote by
ch 4(¢)(n) the characteristic polynomial of the endomorphism A(¢) of H °(C, Ne¢yz(—=1)). By
the above construction we observe that

chag)(n) = P(¢,m). (2.1.2)

We now have to show that A({) can be expressed as a quadratic polynomial with matricial

coefficients. To achieve this, we first need the following technical proposition.

Proposition 2.2. For ( € P! [et Céj ) denote the Jj-th formal neighbourhood of C¢. The restriction

map yields the isomorphism
H(C,Neyz(5 —1)) = HYCY  Neyz (- Dley). (2.1.3)

Proof. Exactly as in [1]], it is sufficient to tensor
§j+l

0—=0c(-1) = 0c(j) —= O (i) —=0 (2.1.4)

with N¢/7(—1) and take the long cohomology sequence. Again the result is a consequence of
H*(C,Neyz(~2)) = 0. I
Mimicking the proof of [1]][Proposition 2.5] we are now able to show the following.

Proposition 2.3. A(¢) = Ao+A1(+A2¢?, where A;: HY(C, Noyz(—1)) — HY(C, Ngyz(—1))

is a linear endomorphism.
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Proof. The space HO(TP', Opp:1(2)) is generated by 1,¢, (2, 7. Considering the Taylor expan-
sion A(¢) = Z?Zl A;C* + R(¢), we have that the truncated series 25:1 A;(; defines a map
HO(C, Ngyz(=1)) — HO(C, N¢yz(1)). In the same way, also multiplication by 7 defines a
mapping H%(C, N¢/7(—1)) — H°(C,N¢yz(1)). Taking the restriction to CéQ) we have two
maps H°(C, Ngyz(=1)) = HO(C(SQ), N¢yz(1)) that coincide due to their definition in (2.1.1).
Propositionimplies that R(¢) = 0, therefore the multiplication by 7 and 23:1 A;C* coincide
over C'. |

Remark 2.4. By considering a section s of (O(2) vanishing at (i, (2, in analogy to (1.4.7) we

have
OHN(_2).SH-NHN’CC1 @N|Cg2—>0 (2.1.5)
from which we have the cohomology isomorphism

HO(C, Neyz) = HP (cgl,Nc/Z\cgl) @ HO (Cﬁ,NC/Z%) . 2.1.6)

This implies that we can identify

T1’0M>
( c I

= 1 (C, Neyz1-C_y ) = H(Ce, Noyz(-1)lc) (2.1.7)
S

and consider A(() as a endomorphism of (Tcl,’OM ) ;
¢

Remark 2.5. The construction of A(¢) at C' yields a vector bundle endomorphism of the vector
bundle E defined in Remark|1.19] that we still denote A(().

Example 2.1. We recall from example that in the case of S' acting on a hyperkihler man-
ifold M we get an O(2)-twisted moment map . Therefore we can define a projection p from
the the twistor space Z of M to TP' = (O(2) by setting p = —iu. Now, the manifold M
can be recovered as parameter space of real curves in Z of degree one that satisfy our stabil-
ity conditions, as this is exactly equivalent to the hypothesis of Theorem This means that
for any curve C corresponding to a point m € M, the divisor p(C¢) only consists of the point
(¢, —ipm(€)). For every m, then the endomorphism A(() of the corresponding two-dimensional
space HY(C, N¢y7(—1)) is then simply given by the diagonal matrix —ifi, (¢)12.

2.2 A l-hypercomplex structure

We now see how A(() has an interpretation in terms of 1-hypercomplex structures. Assume that

dimc Z = 3 and consider, for the moment, the manifold M of curves of degree d = 1 that satisty
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the usual requirements of invariance and stability. We know that M is naturally a hypercomplex
manifold of dimension 4 and we have for C' € M
A(Q): H(C, Noyz(—1)) ® O(=1) = H(C, Neyz(~1)) ® O(1)
(2.2.1)
e®@ar— A(Q)(e) ® a.

Fix (o € P! and assume for simplicity and without loss of generality that (; = 0, hence I, = 17.
We identify the map
HO(Cv NC’/Z(_l)) ® (07 1) — HO<C7 NC/Z(_l)) ® (_17 O)
(2.2.2)
e® (0,1) » e®(—1,0)
with the complex structure I>. Now, since we have fixed d = 1, the divisor C¢, = C'NZ¢, consists
of only one point and projects via p to the point (o, 70) € C' = p(C). Setting 79 = o + iyo, the
map
A(Go): H(C, Noyz(~1)) = HY(C, Noyy(—1)) (2.23)

is given by A(¢p) = no1l and from this we construct a map

A(Go): HY(C, Ngyz(=1)) ® (0,1) = HY(C, Noyz(—1)) @ (-1,0)

(2.2.4)
e® (0,1) = (xo +iyo)e ® (—1,0)

which corresponds to applying (xo -+ iyo)l2. Therefore, comparing with Remark [1.33] we see that

A(C) defines a degree 1 I-hypercomplex structure on TEM = HY(C, N¢ 1z(=1)).
Keeping dim¢ Z = 3, consider now the case of a generic d > 1. We recall from that
for every fixed ¢y € P the isomorphism H"(C, N¢/z(—1)) = HO(C§07NC/Z(—1)|C<O) holds.
If we assume for simplicity that the divisor C¢, consists of all distinct points, then we write

p(Cq) = {(Co,mi)},i=1,....d and get
d

H°(C¢,, Noyz(—1)le,) = @D HO (o mi), Noyz(—1)). (2.2.5)

i=1

Let 7; be the projection to the i-th summand in (2.2.3). Then A((p) is given as

d
A(Co)(s) = me(s), (2.2.6)
i1

for every s € H(C, Ngyz(—1)) = H%(Cy,, Ncyz(=1)|c,,)- As before, assume without loss of
generality that (o = 0, i.e. the corresponding complex structure be I, = I; and identify the map
H®(C,Ngyz(-1)) © (0,1) = H(C, Neyz(~1)) @ (-1,0)

(2.2.7)
e®(0,1) = e® (—1,0)
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with the complex structure 5. Then the map

A(Go): H(C, Ngyz(-1)) @ (0,1) = H(C, Neyz(-1)) ® (~1,0)

(2.2.8)
e® (0,1) — A({p)e ® (—1,0)
is described as
d
v melg(v), v E TEM (2.2.9)
i=1
after the identification
TEM =2 T3 M = H(C, Noyz(—1)) ® (0,1). (2.2.10)

In other words, starting from A(¢) we can construct A(¢) as A(C)®jy, where jy is the standard
quaternionic structure of H = H°(O(1)) given by (a + b() — —b+ a¢. This map A(()
clearly descends to TRM = (E ® H)° (cfr. Remark) and defines, for every ¢ € P!, an
endomorphism of T® M that anticommutes with the complex structure I, i.e. al-hypercomplex
structure of degree d. We remark here that another map can be obtained from A((), simply
by taking the tensor product A(¢) ® 1 with the identity of H. In this case what we get is an
endomorphism of F® H that descends to (F'® H)? and commutes with every complex structure.
This is the object we are going to focus on in the following sections, as it plays a central role in

the geometric construction we are about to explain.

2.3 The Reality Condition

Throughout this section we shall assume again dimc Z = 3 and consider the reality condition
for the endomorphism A(¢). From (22:3) we clearly have H°(C, Ng/7(—1)) = C?? and we
can identify the quaternionic structure jr defined in Remark with the natural quaternionic
structure

(CQd N (C2d
(2.3.1)

(z,w) — (—w,2z).

The quaternionic structure jx induces in turn a real structure o on End(H%(C, N¢yz(—1))),
which is defined by

op(A) = —jgoAocjp, AcEnd(H(C,Ng/z(—1))). (2.3.2)
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Therefore op represents a “conjugation” on End(H°(C, Ng/z(—1))) and the following reality

condition for the family of endomorphisms A(({) naturally arises from the twistor construction

proposed in (2.1.1))

__op(AQ) __—jseAQejr

¢ ¢?

We know that A(() is given as a section of End H°(C, N¢,z(—1)) ® O(2), hence it can be
represented by a 2d-dimensional square matrix whose entries are holomorphic sections of O(2).

A(=1/¢) (2.3.3)

In other words, A(¢) can be written in the form
A(Q) = (2.3.4)

where a(¢) = ag + a1¢ + a2¢?, a; € Mat(C,d x d) and analogously for b(¢),c(¢) and d().
The reality condition then translates into the equation

1 [—d) &) B CL(__(l) b(Cl% (2.3.5)

e\wo -a0) c(—_1> d(—_l

from which we deduce that

do = —az co = by
dy =ag 1= —b (2.3.6)
do = —ag co =boy

Therefore A(¢) = Ag+ A1(+ A2¢? where the A;’s are 2d-dimensional complex square matrices
defined by

ap  bo ap by az  bo
Ao=| _ , A= ~ , A= 2.3.7)
by —ao b1 @ bo —ago
and satisfy
O'E(A()) = —A2

(2.3.8)
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Taking

1
Ll — §A1
1
Ly = 5(Ap — Ao) (2.3.9)

7
Ly = §(Ao + As)

we get a triple of endomorphisms of H°(C, N¢/7(—1)) that are invariant under o, i.e. commute
with the quaternionic structure jg .

At this point we recall from (T-4.3) and Remark [1.19|that T°M = E ® H and, from (T.4.6), that
we have defined the three complex structures I1, I3, I3 simply by acting only on the trivial C?
part of the tensor product. Observe now that

EndE®H=(E®QH)*®(EQH)~E*® E® H* © H~End(E) ® End(H). (2.3.10)

Therefore, when we let C' vary in M, we get endomorphisms L;,¢ = 1,2,3 of E which yield
endomorphisms L; ® 1 of the space E ® H = TCM which, of course, commute with our triple
of complex structure. It is straightforward to notice that every endomorphism of £ @ H that
commutes with all of Iy, I5, I arises as a tensor product Ap ® 1 of an endomorphism of £ with
the identity of H. Again from Remark [[.19|recall that the real tangent bundle to M is described
as TRM = (E ® H)?, that is as the space of elements of £ ® H that are invariant under the real

structure o = jp ® j. We now have the following easy lemma.

Lemma 2.6. The bundle of real endomorphisms of (E @ H)? is
End ((F® H)?) =2 End(FE)°? ® End H°H, (2.3.11)

where End(E)°F is the bundle of all endomorphisms of E that are invariant under the real

structure o and analogously End(H)?H, oy being the real structure induced by jp.
Proof. We start by observing that

dim (End(E)7F) = % dimg (End(E)) = (dime E)? = 4d2
(2.3.12)
dim (End(H)°#) = % dimg (End(H)) = (dimc H)* = 4

therefore End(F)’? ® End H°H has real dimension equal to 16d>. Since the dimension of

End ((E ® H)?) is also equal to 16d?, it will be sufficient to set up an injective map

End(F)?? ® End H°" — End(FE)°? ® End HH.
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We achieve this simply by viewing a tensor product Ap ® Ay € End(E)?F ® End H?H as an
endomorphism of £ ® H. As Ag (respectively Ajy) is invariant with respect to o (respectively
om), then Ap ® Ap preserves the o-invariant subspace of £ ®@ H and descends to an endomor-

phism of (E ® H)?. The injectivity is then obvious, hence we have the claimed result. |

As a consequence of Lemma [2.6] we get that the previously defined endomorphisms L; ® 1
of £ ® H descend to endomorphisms of T®M = (E® H)? that commute with all three
complex structures. Such endomorphisms can be combined to build what is known in litera-
ture as an aquaternionic map. We briefly recall this notion, following [20]]. Consider the space
End ((F ® H)?) and the map

C: End (E® H)?) — End (E @ H)?)
(2.3.13)
X—LXLH+ LX)+ I3X]1;5.

Such a map C is proven to satisfy the equation C? + 2C — 3 = 0, hence has eigenvalues +1
and —3. We can therefore decompose End ((E ® H)?) into B + @B_ where B+ and B_
denote respectively the +1 and —3-eigenspaces. If we denote by Endy ((E ® H)?) the space
of all quaternion-linear endomorphisms of ((£ ® H)?), that is all those that commute with all
three complex structures Iy, I, I3, it is possible to check by direct computation that the following

inclusions hold true

Endy (E® H)?) C B_

(2.3.14)
Endy (E® H)°)® R® C By,
where the second one is realized via the map
X1®e1+Xo®e+ Xg®ez — 1 Xy + L Xo + [3X5. (2.3.15)

By a quick dimension counting we see that the above inclusions are actually isomorphisms. As in

[20], we can now give the definition of aquaternionic endomorphism.

Definition 2.7. Let X be an element of End ((E ® H)?). We say that X is aquaternionic if it
satisfies the condition

LhXH+DLXIh+I3XI3=X, (2.3.16)

that is X has no quaternion-linear part.
Since the maps L; ® 1 belong to Endy ((E ® H)?), we can construct the map

X=hLo(Li®1l)+lho(Le®1)+I30(L3®1)=L1 @11+ La®Is+ L3 ® I3, (2.3.17)
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which, by the above arguments, is an aquaternionic endomorphism of ((E ® H)?). The converse
construction is also possible: if we start we an aquaternionic endomorphism X of ((E ® H)?)
and use the isomorphisms (2.3.14) we obtain a triple of quaternion linear endomorphisms of
(FE® H)?),ie. L;®1 for L; € End(E)°®,1 = 1,2, 3. From these, setting

Ay= Lo+ 1ilLg, Ay =Ly, Ay = —(L2 — ZL3) (2.3.18)

we construct the section A(¢) = Ag + A1¢ + A2¢? of End(E) ® O(2) and observe that it is real
for the natural real structure of O(2).

Example 2.2. Let Z be the hyperkihler twistor space of C2. We recall from Examplethat we
have a projection

7 — TP
(2.3.19)

(Ca 21, 22) = _ZM(C)a

where (1(¢) = i(z1 + (Z2)(22 — (Z1) is the O(2)-twisted moment map provided by the twistor
construction exposed in Section By Theorem we can recover C? as the manifold of real
(i.e. o-invariant) degree-one curves that satisfy our cohomological stability conditions. Therefore,
following the construction we have exposed so far, we can represent our bundle endomorphism
A(C): E — FE by the diagonal matrix

. 2122+C(‘22|2 — |Zl|2) —C22122 0
A(Q) = (O = o
0 z1z9 + ((|22]* — |z1]%) — (*Z122
(2.3.20)
which of course yields
2129 0 (’22|2 — |2’1‘2) 0 2122 0
Ap = , A= , A=
0 2122 0 (’22|2 — |21’2> 0 2122
(2.3.21)
Therefore we define L1, Ly, L3 to be
1 pr 0 1 pus 0
Ly = 5/11 , L= 5(140 —As) =
0 m 0 ps
(2.3.22)

i —p2 0O
L3 = 5(140 + Ag) =
0 —H2
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The quaternionic endomorphism X is hence represented by

i p3 — ip2
X = ® 1. (2.3.23)

—p3 t+ipe  —ipy

2.4 Holomorphicity of A((y) on M

In this section we fix a point (y in P* and show that the endomorphism A(p) of the bundle F is
holomorphic with respect to the complex structure I¢,. We then translate such a holomorphicity
condition into an equivalent Cauchy-Riemann-type equation for the associated aquaternionic en-
domorphism X of TRM .

Once more, we recall from [27] that
To(M®) = HY(C, Ngyz) = H(C, Noyz(—1)) ® H(P',O0(1)). (24.1)
Moreover we remember the identifications
TEM = (T¢'M) = HO(C, Neyz(=1)) © (C = Go) = H(C, Noyz[=Cq) - 242)
o
Fix now a point in M and denote by C' the corresponding curve inside Z. As usual let p be the
projection Z — TP!. Let us focus our attention to the divisor C¢, = C' N Z¢, which we assume,
for simplicity, consisting of d different points, i.e. C¢, = {(¢o,7:),7=1,...,d}. If we write,
as in Remark P(¢,n) for the polynomial that defines the curve C' = p(C) C TP, then the

divisor C¢, is simply the zero locus of the polynomial

d

110 =m) = P(Co,m)- (2.4.3)
i=1
Consider now a tangent vector x € T, g M = H°(C, N¢ /z)- Our aim is to identify the deformation
induced by x on the divisor C¢, witha d-tuple (71, ..., 7/) so that such deformation of the divisor
C¢, be described by the equation

d

I -n(z) =0, (2.4.4)

i=1
where 7;(2) = 1; + 0}z + O(2?). We achieve such description by considering the short exact

sequence

0,1 0,1
0— (1% M) P TEM —=TEM/ (T M) L0 (2.4.5)
0 0
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that gives

0 — H%(C,N[-C¢,]) —= H°(C,N¢z) — H°(C,N¢,z)/H(C, N[-C¢,]) — 0.
(2.4.6)

To each p € H°(C,N¢;z)/H®(C, N[—Cy,]) we can therefore define the corresponding tuple

/

n = (né(p)) = (p(¢o,mj)). We observe that, as we should expect, the d-tuple associated to
a tangent vector to M/ at C' of type (0, 1) for the complex structure I is the O tuple, as such
deformation do fix the whole divisor C¢,. Moreover, since we have assumed H'(C, N¢ /z) to
vanish, there is no obstruction to deformations which means that, for |z| small enough, we have a
family of curves C®) with C(®) = ' such that the divisor C’é(’j) is described by (2.4.3). At this
point recalling the definition of A(¢) at C', we can analogously define A((y) at C'*) as given
by multiplication by 7(z) and denote it by A(()(z). It is then natural to define the derivative
A'(¢o)(0) at C = C©) as

A(G)(0) = lim T _ (). (2.4.7)

This means that, once we pick a local frame (s;) of the bundle £ such that the evaluation iso-

morphism ([.4.8)) at ( = (p is represented by a diagonal matrix (i.e. s;(o,7;) = 01if i # j), we

have
A(Co) (5i(2)) = ni(2)si(2)- (2.4.8)
If V is a connection on the vector bundle F, then applying Vy to both sides of (2.4.8)) we obtain
d
(VxA(C)) si(2) + A(Co) (Vxsi(2)) = <dz771(2)> si(2) + ni(2)Vxsi(2). (2.4.9)

If in addition we assume V to be compatible with the complex structure I, that is Vgél = 540,

and take the frame s;(z) to be holomorphic for I, we obtain
d
(VxA()) si(z) = %m(z) si(2) (2.4.10)
which at z = 0, i.e. on C = C0 yields

(VxA(o)) 5i(0) = n;s:(0). (2.4.11)

So, if the vector x was chosen of type (0,1) for I, then n} = 0 for all ¢ = 1,...,d hence at
C € M we get (VxA((p)) si(0) = 0 for all 7. Since this is a punctual condition, we deduce that
VxA({p) = 0 for every vector x of type (0,1) for I, on the subset of M consisting of all curves

C whose divisor C¢, has d distinct points, which is dense in M .
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Remark 2.8. We can always find a connection V on E that satisfies the above requirement: in
fact, since F is the bundle induced on M by the vector bundle 7r(—1) over the hyperkéhler
twistor space ZX of M, by [6][Proposition 6.1] we are granted the existence of a connection V
on E such that for every ¢ € P!, Vg’l = 0.

We have therefore proven the following statement.

Proposition 2.9. Fix ¢ € P' and consider the manifold M endowed with the complex structure
I¢. Let E be the vector bundle on M induced by Tr(—1) on ZHEK  with the holomorphic
structure 54 corresponding to 1¢. Then A(C) is a section of End(E) holomorphic with respect
to 5@

Recalling from (2.3.18)) that
A(C) = (Lo +1iL3) + 2¢Ly — (*(La — iL3) (2.4.12)
and that the L;’s yield the aquaternionic endomorphisms
3
X=) Lol (2.4.13)
i=1
of the real tangent bundle to M, we translate the holomorphicity of A(¢) with respect to I into a
condition on the L;’s.

Proposition 2.10. The og-invariant endomorphisms L; obey the equations

Velo = VyeLs
2.4.14)
2Vl = VeLy — VLo,

for every real tangent vector field &.

Proof. Recall that a vector field of type (0,1) for I is given by X — i(I3(X) for X of type
(0,1) for I;. Therefore we write the holomorphicity condition for A(() as

0= Vx_icrx) (L2 +iLs) +2(L1 — (*(Ly —iL3))
=Vx (Ly +iL3) +2(Vx L, — (*Vx (Ly — iL3)
— iV 1y(x) (L2 + iL3) — 2i¢*V 1, (x)L1 +i¢*V 1, z) (L2 — iL3) (2.4.15)
= Vx (Lo +iL3) + ¢ (2Vx L1 — iV, (x) (L2 +iL3))

— (* (Vx (Lg — iLg) + 2iV 1,(x) L1) +i¢*V p,(x) (L2 — iLs) .
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We obtain the following system of equations

Vx (Ly +iLs) =0 (2.4.16)

Vi) (L2 —iLs) =0 (2.4.17)

2V x Ly + Vi x) (L3 —iLs) =0 (2.4.18)
2iV 1, x) L1 + Vi (Ls —iL3) =0, (2.4.19)

which is redundant since (2.4.16) and are equivalent as well as (2.4.18) and (2.4.19).
Consider now (2.4.16). As X is of type (0,1) for I, there exists a real vector field £ such that

X = £ +il1(€). With this substitution the equation becomes
VeLly+ iV Lo = —i (VeLs — iV, La) (2.4.20)
from which we get
VeLa = Vi, (o) Ls. (2.4.21)
Finally, the same observation applied to (2.4.18)) yields
2V 1o L1 = Vi) Lz — Vi Ls- (2.4.22)

Remark 2.11. The properties of A(() that we have exposed so far show the same phenomena
that we observe for the twisted symplectic form on the ordinary hyperkéhler twistor space. Both
—iw(¢) and A(C), in fact, define O(2) twisted objects that are real for the natural real structure
of O(2) and for fixed ¢ they define holomorphic objects on (M, I¢).

Our next goal is to understand how the geometry of M is characterized by A(¢). We will show
in the following chapters that knowing M and A(() will be sufficient to recover the fibration
Z — TP! and M as manifold of curves in Z of degree d.



34

2. A Matrix Polynomial




Chapter 3

Transverse Hilbert Schemes
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The present chapter is devoted to the study of the geometry related to the endomorphism A(()
for a fixed complex structure I¢, ¢ € P!, assuming as usual dimc Z = 3. Since it is defined
by multiplication by the tautological section 1 of Opp1(2) we see that, once we fix {; € P!,
A(Co) only depends on the projection p: Z; — TCOJP’I. Moreover we know from Proposition
that the manifold (M, I¢,) is locally diffeomorphic to the smooth locus of the transverse
Hilbert scheme (Z,) 4 the latter being the whole transverse Hilbert scheme when, as in the case
we consider, the fibre Z;, is complex two-dimensional. We are therefore invited to perform our
study in the general frame of a complex surface S equipped with a holomorphic map p: S — C
which is a surjective submersion outside of a discrete subset B C S. We construct an endomor-
phism A, analogous to A((p), of the tangent space to the transverse Hilbert scheme Sl[,d] with
two-dimensional eigenspaces and such that its characteristic polynomial is the square of its mini-
mal polynomial and provide the inverse construction that is, starting with a complex manifold W
of complex dimension 2d with a tangent endomorphism A: TW — T'W with the above proper-
ties, we recover the initial surface S with W = Si[,d] .

It is noteworthy that the results of this chapter have an interpretation in terms of holomorphic com-
pletely integrable systems. As it is well known (see, for example, [[12]]), a Hamiltonian system is
called completely integrable if and only if it possesses the maximal number of Poisson-commuting
Hamiltonian functions. Here we work in the holomorphic category and associate to a complex sur-

face endowed with a holomorphic symplectic form a holomorphic completely integrable system

35
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of complex dimension 2d that arises as its Hilbert scheme of d points transverse to p. Moreover,
the inverse construction provides a full characterization of the holomorphic completely integrable
systems that arise as transverse Hilbert schemes of points of a surface with the aforementioned

properties.

3.1 An Endomorphism of the Tangent Space

Let S be a complex surface with a holomorphic projection p: S — C which is a surjective
submersion outside a discrete subset B C . Recalling the definition [T.2T] of transverse Hilbert
scheme of d points with respect to p, we can define a natural endomorphism of the tangent space
to S;,[,d] as follows. Let ¢(z) be the monic polynomial of degree d defining the image p(Z) of
Z e Sz[yd] via p and observe that H°(Z,C) = C[z]/(q(z)), where the generator z stands as a
4 one has Tz S\ = HO(Z,TS|z) due to
the well-known theorem of Kodaira ([27]). Then we set Az to be the map

preferred element. Recall now that, for every Z € S

HY(Z,TS|z) — H*(Z,TS5|z)
(3.1.1)
o(z) = f(2)a(2),
where we take f: Z — C to be the function z € H’(Z,C).

Remark 3.1. If 0 € HY(Z,TS|z) and p € S is a point of Z with multiplicity one then
(Ao)(p) = z(p)o(p). If, instead, p has multiplicity k£ > 1, the section o is given as a power
series in (z — z(p)) truncated at order k, that is

o(z) = o(z2(p)) + o' (2(p))(z — 2(p)) + - - - + ——L2(2 — 2(p))*. (3.1.2)

Then Ao will be give the truncated power series of zo(z), that is

(2-0)(2) = 2(p)a(2(p)) + (0 (2(p)) + 2(p)0" (2(p))) (2 — 2(p)) + ... (3.1.3)
+ kD () _,:!Z(p)a(k)(z(p)) (z — 2(p))~. (3.1.4)

Comparing (3.1.3)) and (3.1.2) we deduce that the eigenspaces of A are of dimension 2. Also, the

eigenvalues have even multiplicity each one equal to the dimension of the relative power expansion

space. These two observations altogether yield, at each point of Sl[,d], the Jordan canonical form
of A and we deduce that the minimal polynomial of A is ¢(z) and the characteristic polynomial

is the square of ¢(z).



3.1 An Endomorphism of the Tangent Space 37

Example 3.1 (The space of rational maps). The machinery we have introduced so far allows us to
build such an endomorphism A on the tangent space to the space of based rational maps of degree
d. As an example we compute it for d = 2.

Let us define the complex surface S = C x C* projecting onto C via p which we interpret as
the moduli space of charge 1 monopoles and let SE] be its Hilbert scheme of points of length 2
transverse to p. We identify (see [3]]) SE] with the space of all based rational maps of degree 2,
defined by

Ry = {p(z) = 2alz +ao | p(z) and ¢(z) have no common roots } : (3.1.5)
a(z)  2* =@z —q

Observe that a tangent vector to Ry at a point (p(z),¢g(z)) is given as a couple of degree 1
polynomials (¢'(z),p'(z)) where we write ¢'(z) = ¢}z + ¢ and p'(2) = plz + p,. Applying
the previous construction we get an endomorphism A of the tangent bundle to Ro which on the
tangent space to Ra at each point (p(z), ¢(z)) operates as multiplication by z modulo ¢(z). This

means that

Alg2)p(=) * Tlat2)p(z) B2 — Tig(z)p(2)) 12 (3.1.6)
(q17 + qo, P12 + o) = ((1dy + 46)z + qoqt, (1P} + po)z + qop’) (3.1.7)

is represented at (p(z), ¢(z)) by the block-diagonal matrix

g1 1 0 O
w 0 0 0
Alg(2)p() = (3.1.8)
0 0 q1 1
0 0 g 0

where each block is the so-called companion matrix of the polynomial ¢(z).

Let us now focus on the open dense subset of Ro consisting of all based degree 2 rational maps
with simple poles. If a map p(z)/q(z) has distinct poles, i.e. the roots of ¢ are distinct, then it can
be identified with the point X = ((81,p(51), (B2, p(B2))) € sl , where the (3;s are the roots of ¢
and p(z) is recovered by Lagrange interpolation as the unique linear polynomial taking the values
p(Bi) at B;. The projection p: S — C induces on every X € SE] a function f: X — C
taking (B;,p(B;)) into B; € C. Using the fact that TXSI[,Q] ~ HO(X,TS|x), the function f
induces an endomorphism H%(X,TS|x) — H°(X,TS|x) given by o(x) — f(z)o(x) for
x € X. In the tangent frame provided by these coordinates, A at (5;,p(3;)) is represented by
the diagonal matrix diag(51, 81, B2, B2). Since on this open subset g9 = —f102,q1 = S1 + 52, a
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computation shows that this diagonal matrix actually is the Jordan canonical form of (3.1.8).
We observe also that, when ¢; = 23 and ¢y = —/32 i.e. the rational map has a double pole at
z = [3, then the Jordan form of A is

B 1 0 0
08 0 0
(3.1.9)
008 1
000 B

Example 3.2. Let us consider the double cover of the Atiyah-Hitchin manifold. As described in
[3]] this is a surface S C C? defined by S = {(z,z,y)| 2* — zy* = 1} . We can therefore consider
the Hilbert scheme of d points of S transverse to the projection p onto the first coordinate. We
recall from [8] that it can be described as the set of triple of polynomials z(z), y(z), ¢(z) such that
x(z) and y(z) have degree d — 1, ¢(z) is monic of degree d and the equation 22(z) — zy?(z) = 1
modulo ¢(z) is verified.

An alternative description (also explained in [8]]), which we will use here, is obtained by consid-

2 2 — zy? = 1 is rewritten as

ering the quadratic extension z = u“. In this case the equation z
(z + uy)(z — uy) = 1 and we observe that p(u) = x(u?) + uy(u?) is a polynomial of degree
2d — 1 in u while ¢(u?) is a monic polynomial of degree 2d in u which has no odd terms. The
Hilbert scheme Sg[jd} is then described as the set of all couples of polynomials (p(u), q(u?)) such
that p(u)p(—u) = 1 modulo g(u?). Similarly to the previous example, a tangent element in

(uz))S;,[,d] is given by a couple of polynomials of the form

Tip(w.a
p'(u) = py+ plu+ -+ phy_yu* (3.1.10)
q(W?) =g+ dyu? + -+ ¢y qud? G.1.11)
such that
P (w)p(—u) + p(u)p’ (—u) = 0 modulo g(u?). (3.1.12)

We finally produce the endomorphism A: 7| (p(u)’q(uz))SI[,d] — T (p(u)yq(uz))Sj[Dd] at every point
U u?)) € S L] as multiplication by »2 modulo ¢(u?), after observing that it preserves

(p(w), q(u?)) b p y q g p

the space of solutions to (3.1.12).

Remark 3.2. Consider the projection : SI[;d} — Cl defined by sending Z € S,[gd] to the minimal
polynomial gz(z) of A at Z. Whenever p: S — C is a submersion, we can choose the standard
coordinate z of C as first coordinate on S and use the coefficients of ¢(z) as first d coordinates on

S}[,d} . Thereforeon N = (S\ B )]E,Q] the map p is just the projection onto the first d coordinates and
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is therefore a submersion. We remark that, since B is discrete in .S, then Sz[yd} \ NV has codimension
at least two.

We now define the manifold S’I[fl] as the set of all (z,7) € C x Sl[,d] such that z is eigenvalue
of Az and observe that it comes with a double projection

Sl (3.1.13)
pl \
C S

[d]

where 7 is a branched d : 1 covering of S,[)d]. Also, for every X € S, one can lift Az to an

endomorphism 7*7T, Sl[,d] — 7Ty Sl[,d]. Hence we draw the following diagram

0

TIYS|Z

* [d]Z_AZ * [d]
0 —— 7138y —— 7n'TzSy —— TS|z —— 0

(3.1.14)

Let /3 be the function defined by the dotted arrow. We see that I (z — Az) lies in the kernel of 3.
Also, one has that elements of 771’7 Sz[,d] correspond to deformations of Sl[,d] at Z and elements in

T [Y S}[)d} correspond to deformations fixing the eigenvalue. From this we get that ker 8 =T [Y S}[)d}
and Im(z — A) C TPVSI[)d].

Remark 3.3. For every z € C the holomorphic distribution /m(z — A) defined on S},d] is clearly

involutive on the dense subset of all length d 0-dimensional subschemes of S consisting of d
points that are all distinct and such that none of them lies in B C S. Since this set in dense in

(S\ B) I[)d} and the latter has codimension at least two in Sj[od], the integrability holds on all Sj[gd].

Therefore the distribution D := Im(z — A) defined on S][)d} is involutive outside the nowhere

dense branch locus of 7, hence on all SJ[Dd] .
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Construct now the double fibration

(3.1.15)

I\

s s
the manifold Y being defined as Y = {(s, Z) e S x Sz[,d” se”z } So far we notice that
1@ = {(z, Z)eCx S}[,d]] z is eigenvalue of AZ}
= {(Z,Z) e Cx Sz[,d” z = p(x) for some = € Z}
~ {(:p,Z) €5 x S|z e Z}.

Hence we recover our initial surface as the space of leaves S = Y/D = S’Il[)d] /D.

This suggests us the following inverse construction.

3.2 The Inverse Construction

Let us start with a complex manifold W of complex dimension 2d endowed with an endo-
morphism A : TW — TW of its holomorphic tangent bundle T'W with two-dimensional
eigenspaces and such that its characteristic polynomial is the square of its minimal polynomial.
Setnow X := Cl Hilbert scheme of d points of C and define amap : W — X which assigns
to each point w € W the minimal polynomial of A at w which we denote ¢, (\). Assume now
1 to be a surjective submersion on a (open) subset N such that (W \ N) has codimension at least
two and define a vector field V' € X(WW) to be projectable for  if, for every z € X, dp,, (Vi)
does not depend of the choice of w in p~*(z). If we suppose that A preserves the vertical vectors
and the projectable vector fields for the projection s, then it descends to amap A: TX — TX
which makes the following diagram commute

TW — A~ W (3.2.1)

o

TX —TX.
A

Definition 3.4. If an endomorphism A that satisfies the above conditions is such that at every
point of N none of its generalized eigenspaces is fully contained in ker(dpu), then we will call it

compatible with the projection  defined by its minimal polynomial.
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For q(A) € X let us identify T, X = C[)A]/(¢())) and assume that A is compatible
with p. Then A is naturally given by multiplication by A modulo g(\). Set also W, =
{weW|z¢eSpecAy,},ie. W = p~1(X.) where X, is the set of all monic polynomials
of degree d for which z is a root. With these definitions we see for a tangent vector V' that
V eTW, < du(V) € TX,, where the tangent space to X, at g(\) can be described as

T,X. = {p(\)| degp(A) =d—1and p(z) = 0}. (3.2.2)

Take now a polynomial ¢'(\) € T,(,)X and z € C: the definition of A implies that (21 —
A)(¢'(\)) is a polynomial of T}y X that vanishes at z that is, by the commutativity of the dia-
gram, Im(z1 — A) C TW,.

Define now W = {(z,w) € C x W] z is an eigenvalue of A}, whichis a d: 1 covering of W,

W

(I

C W.
Then A can be lifted to an endomorphism of 7'(C x W), which we will still denote by A,

preserving the vertical subbundles of p and 7. The previous observations imply that, at every

with two projections
(3.2.3)

point (z,w), A acts on the vertical subbundle of 7 as multiplication by z and that it descends
to TW. Assuming now that the distribution I'm (21 — A) is integrable, we see that it defines a
subdistribution of the integral distribution ker dp. We can therefore recover our initial surface S

as the leaf space

w

S=——-— 324
Im(z1 — A) ( )
The surface S comes with a natural projection p: S — C defined as p([(z,w)]) = z, which

makes the following diagram commute

proj

S<—~W (3.2.5)
pi /
p
C
It is now sufficient to define & C SI4 as U = {proj(r=~!(w))| w € W} and Z as the element
Z(w) = proj(r~'(w)) € U in order to apply the previously exposed construction for getting
Ax: TxU — TxU i.e. once more our endomorphism A, : T, W — T,,W for every point w

of W.

Hence, keeping the conventions that we have introduced so far, we have proven the following.
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Proposition 3.5. Let W2< be a complex manifold of complex dimension 2d with the following

properties.

(i) W comes with an endomorphism A: TW — TW such that at every point the eigenspaces
have complex dimension 2 and the characteristic polynomial is the square of the minimal

polynomial

(ii) Assume that the induced projection p: W — X = Ccll s a surjective submersion on a
subset N C W such that W \ N has codimension at least 2 and that A is compatible with
w in the sense of Definition[3.4} so that Diagram (3.2.1)) is defined

(iii) The distribution D = I'm(z — A) is integrable on the incidence manifold

W = {(z,w) € C x W| z is an eigenvalue of Ay} .

Then p: S = W/D — C is a surface projecting on C for which W is the length d Hilbert

scheme of points transverse to the projection.

3.3 A Symplectic Form

In this section we shall assume the surface S to carry a symplectic form w on its tangent bundle
and revise the previously exposed construction. From now on we will often use the assumption

that p: S — C is a submersion outside a discrete subset B C S.

Remark 3.6. As anticipated in the introduction to the chapter, the results of Sections [3.2]and [3.3]
show that the transverse Hilbert scheme S,[)d} has the structure of a holomorphic integrable system.
The importance of A in distinguishing whether a given holomorphic integrable system arises a
transverse Hilbert scheme of points of a holomorphic symplectic surface is well motivated by the

following example.

Example 3.3 (Motivational Example). Let us consider the complex 2d-dimensional manifold
C?4, with coordinates (zi,ti),i = 1,...,d and endowed with the standard symplectic form
Qo = ) ,dz A dt;, endowed with he projection py: C?® — C? given by po(zi,t;) = (2).
Observe that the coordinates z; are d commuting Hamiltonian functions. Now, the projection
po induces an endomorphism A: TC?¢ — TC?? given, at every point of C??, by the diag-
onal matrix diag(z1,21,...,24,24). The eigenspaces of this endomorphism, however, show a
jump in dimension whenever two eigenvalues happen to coincide. As a result of this, although
(C%? Qg 21, ...,2q) is a holomorphic completely integrable system, it does not arise via a trans-

verse Hilbert scheme construction as A does not meet the necessary requirements.
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We now consider a different C?¢ from the one above, with a different projection. Namely we take
the space X of all couples of polynomials (Q(X), P(A)) such that @) is monic of degree d and T’
has degree d — 1. If we write @ = A% — > QM and t = 3" T;\? then (Q;, T;) are global coor-
dinates and X =2 C??. Now, on the open dense subset V of X consisting of couples (Q(A), T'())
such that @ has all distinct roots, we also have coordinates (3;,T(3;)) where [3; are the roots of
@ and T'(53;) the values of T" on those roots. In these latter coordinates the form ) dg3; A T'(5;)
is defined and it can uniquely extended to a holomorphic symplectic 2-form €2 on the whole of
X 4. One obsevese in fact that the form Q1d71 A dQq + dT11 N dQo + dTp N dQ1 is globally
defined on X and coincide with Y dS; A dT(B;) on V, therefore representing the unique exten-
sion of the latter to all X;. The functions Qo, . .., Qq—1 Will then be d commuting Hamiltonians
with respect to €2: in fact, on the open dense subset V' they are just the elementary symmetric
polynomials in the roots [3;, hence they commute with each other on V), so on all X;. We set
then the projection p: X; — C?, p(Q;, T;) = (Q;) and observe that (X4, Q, Qo,...,Qq4_1) isa
holomorphic completely integrable system. The projection p defines here an endomorphism A of
T X4 which is represented by

“ 0 , (3.3.1)

0 Cg

where Cy is the so-called companion matrix of the polynomial ()(\) and meets our requirements.
Therefore, thanks to our results of sections 3 and 4, we can recover the holomorphic completely
integrable system (Xg,Q, Qo,...,Qq—1) as the Hilbert scheme of d points of the surface C x C

transverse to the projection onto the first coordinate.

In [4] Proposition 5] Beauville proves that the full Hilbert scheme .S [ of a complex symplectic
surface (S,w) has a symplectic form induced by w. In the following Lemma we will explicitly
recover his result on the transverse Hilbert scheme of d points S][,d], which we know to be an
open subset of the full Hilbert scheme. We remark that the existence of a symplectic form on the
Hilbert scheme of d points in C x C* transverse for the projection p: C x C* — C onto the first
coordinate was pointed out by Atiyah-Hitchin in [3, Chapter 2], where an explicit formula is only

given on the subset V C (C x (C*)Ld] of d-tuples consisting of all distinct points.

Lemma 3.7. Let p: S — C be a complex surface projecting onto C and assume that p is a
submersion outside a discrete set B C S. Assume also that S possesses a holomorphic sym-
plectic form w Then w induces a symplectic form ) on the Hilbert scheme Sj[od] of d points in S

transverse to p.

Proof. We start by proving the Lemma in the case d = 2.
Fix d = 2 and define N = (S5'\ B)][?}. Let V C 51[72} be the set of all 0-dimensional subschemes
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of S consisting of two distinct points. For every Z € N NV, i.e. consisting of two different
points pi,ps of S, the isomorphism Tz N = H°(Z,TS|z) easily yields the symplectic form
on N N V:ithe map ¢: S x § — SI[JZ] has no ramification on V hence is a 2 to 1 covering. By
breaking the G5 -symmetry and choosing a sheet of ), that is ordering the couple p;, p2, one splits
HY(Z,TS|z) 2 T, S ®Tp,S and defines Qz = wy, ® wy, . Since the local coordinates (z,t) on
S\ B induce local coordinates (z1,t1, z2,t2) around each Z in N NV simply by evaluating on
the points p; and py of Z € N NV, we can locally write 2 = dzy Adt; +dzo Adts on NNV,
We now have to extend the form (2 to those elements W € N which consist of one point s € S\ B
taken with double multiplicity. In order to do so we adapt a construction by Bielawski, [8]], in the
following way.

Let W € N be as above and observe that since p is a submersion on N, we can choose local
coordinates (z,¢) on a neighbourhood U around s such that the first one is the base coordinate
of C. Moreover, we can choose them in such a way that w = dz A dt: if this was not the
case, i.e. w = w(z,t)dz A dt, we could define a Darboux coordinate chart (z,u) around s
simply by choosing a new holomorphic fibre coordinate w such that du/dt = w(z,t). Of course
such a u can always be found as it amounts to finding a primitive of a holomorphic function on
a simply connected domain. We then describe the open set (U )1[92] C N as the set of couples
of polynomials (g(z),t(z)) such that ¢ is monic of degree 2 and ¢ is linear, that is ¢(z) =
22 — Q12 — Qq, t(z) = To + Tyz. On (Z/{)E] NV, i.e. where ¢(z) has distinct roots z; and
zo the polynomial ¢(z) can be recovered by Lagrange interpolation from the values ¢; = ¢(z1)
and to = t(29): this gives an equivalence between the two sets of coordinates (z1,t1, 22, t2) and
(Qo, @1, Ty, T1). At this point we observe that the form 2 can be rewritten in the coordinates
(Qi,T;) as Q = Q1dTh N dQq + dT1 A dQo + dTy A dQ1, which is well defined, closed and
non degenerate on the whole Z/II?}. Since, as we will prove in the next Lemma, this construction
is independent of the choice of local coordinates w induces a holomorphic symplectic form €2 on
N. As B is discrete in S then 51[72] \ IV has codimension at least 2 in SE] therefore {2 extends to
the whole S,[DQ] by Hartog’s Theorem.

In the d > 2 case one proceeds exactly as above to get a form €2 defined on the set of all Z € S,[)d]
consisting either of d distinct points or of (d — 2) distinct points and one point which is taken with

]

double multiplicity. Since the remaining subset has codimension greater than 2 in SI[,d again the

form 2 extends to the whole Sl[yd] by Hartog’s Theorem. |

We now show that this construction does not depend of the choice of coordinates.

Lemma 3.8. The construction of Lemma[3.7)is independent of the choice of coordinates.

Proof. Again we start from the d = 2 case, keeping the notation of the previous lemma. Let (z,t)
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and (z,w) be two sets of Darboux coordinates adapted to the projection p on (S, w). Denote by ¢
the change of coordinates between (z,t) and (2, w), so that w’ = (o~ 1)*w is defined. The same
observation as in Lemma yields a symplectic form €' on N NV and a change of coordinates
® such that ' = &*Q).

Let now E € N be an element of Sz[,z} consisting of a point s € S taken with double multiplicity
and let U’ be a coordinate neighbourhood of s for the coordinates (z,w). The description of

nk2l -
(U")p" is then

(ul);[f] ={(q(2),w(2))| degq(z) = 2,degw(z) = 1, ¢ monic }

where

q(z) = 22 — Q12 — Qo

w(z) = Wiz + W.

Observe that (Q;, W;) are local coordinates on (U’ )E]. By abuse of notation, we keep denoting
by @ the change of coordinates between (Q;,7;) of Lemmal[3.7]and (Q;, W;) on the intersection
u ),[,2] nw’ )1[92]. Then (®~1)*(Q2 is defined on all (U ),[32} N’ ),[32] and coincides with " on (U’ ),[32] N
U )1[02] NV, therefore being its unique holomorphic extension. We conclude by extending €' =
(®~1)*Q to the whole S][DQ] via Hartog’s Theorem.

The generalization to greater d is again achieved by applying the d = 2 construction to the subset
of all elements in SZ[)d} consisting of d distinct points or (d — 2) distinct points and one double

point and then by extension via Hartog’s Theorem. |

Corollary 3.9. The endomorphism A and the symplectic form ) satisfy the condition Q(A-,-) =
Q- A).

Proof. 1t suffices to show the claim on the open dense subset V C Sz[,d] of elements consisting of
all distinct points. But there we can use coordinates that are both Darboux for {2 and diagonalizing

A, so the assertion is trivially verified. |

Corollary 3.10. The transverse Hilbert scheme of points Sj[od] is a holomorphic completely inte-

grable system

Proof. This is an immediate consequence of Corollary [3.9} the coefficients (); of the minimal
polynomial of A are d Poisson-commuting functions for the Poisson structure associated to {2 on

the dense subset )V, hence on all S,[)d} . I
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Example 3.4. A basic example summarizing what we have done is given by taking S = C x C,
p: Cx C — C defined by (x,y) — z = xy and w = dx A dy. Of course p is a submersion away
from the origin and {(0,0)} is a codimension 2 subset of S. Hence on (C x C)\ (9,0} = {7 #
0} U{y # 0} = Uy UlUs we proceed exactly as in Example [3.1|and apply our construction taking
coordinate (z,x1) on U and (z,x2) on Us where x1 = —log(z) and y2 = log(y). Observe
that on Uy we write w = dz A dx1 and w = dz A dx2 on Us and that they agree on the overlap
U1 NUs. Each patch can be described as the set

{(q(2),p(2))| q is monic of degd, p is of degree d — 1 and p(0) # 0if ¢(0) = 0}.  (3.3.2)
The construction now yields the symplectic form €2 on the subset
(CxO)\ B ={E e (Cx0)(0,0) ¢ E}. (3.3.3)

Since the complementary set to ((C x C) \B)E] has codimension 2, we get {2 on the whole

(C x C)E] applying Hartog’s Theorem.

In the following proposition we work out the inverse construction in order to recover the holo-
morphic 2-form initially given on the surface .S starting from the induced completely integrable

system.

Proposition 3.11. Let W be a complex manifold of complex dimension 2d endowed with an
holomorphic endomorphism of the tangent space TW as in Proposition[3.5and let N C W be

[d]

the subset where the induced projection : W — C is a surjective submersion. Assume also

that W possesses a symplectic form € such that at every point of N
e Q(A,)=9Q(,A)
e the vertical subbundle ker(dp) is maximal Q)-isotropic.

Then S = W/ D has a symplectic form induced by w

Proof. Our aim is to define a symplectic form 7 on W such that 7(X,Y) =0 forevery X € W
and Y € D, thus getting an induced form 7 on S = W/ D. Consider the set N C W on which
1 1s a surjective submersion: since W C N has codimension at least two, the same also holds
for its d: 1 covering N C W. Therefore it will suffice to define 7 just on N. We will achieve
this by setting 7 = p*dz A a, (in the notation of Diagram on N, where o is a 1-form
on N, =p~l(z)NN = {(z, w) € W| z is eigenvalue of A,,, w € N}. By the commutativity
of Diagram and the surjectivity of dpu, at every point of N ker(z1 — A) maps surjectively

onto ker(z1 — A). At this point we define N, = m(IN,) and we observe that the restriction
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| N, N, — N, is obviously a diffeomorphism for every z € C therefore IV, comes comes with
a manifold structure. Using the surjectivity of dy on N we can then choose a vector field v, on
X, = p(N,) such that v, € ker(z1 — A) at every point of X, and lift it to a vector V, tangent
to N, with V, € ker(z1 — A). This lift is not uniquely determined: if V/, € ker(z1 — A) is a
second such lift, then V, — V/, € ker(z1 — A) Nker du.

Define now the 1-form o, = tv, {2 on T'W,. This definition does not depend of the choice of

V.. In fact, at every w € N, one can split the tangent space to N, as
TwN. = Im(z1 — A) @ (L) (3.34)

where L € ker(z1 — A) Nker(du). Now, since Q(A-,-) = Q(-, A-) we have that ker(z1 — A)
and Im(z1 — A) are Q-orthogonal. This implies tv, v, Q(X) = 0 forevery X € Im(z1 — A.
Also, since ker(dy) is Lagrangian by assumption, we have v, v+ (L) = 0. Hence v, _v.§) =
a, —a’, = 0 onall N,, meaning o, is well defined on N,,.

Since 7| . is adiffeomorphism for every z € C , dr is an isomorphism and we can therefore pull
., back to N, via 7 and define 7 = p*dz A m*a, on N, hence onall W. As D = Im(z1 - A)
satisfies 7(-, D) = 0, the form 7 descends to a form 7 on S = W/D. We now prove that 7 is
symplectic. First of all, d7 = 0 as 7T is a 2-form on a 2-dimensional space. In order to prove its

non-degeneracy we proceed as follows. First we observe that at every point [(z,w)] € S we have
TiznS = (Y) & TuW2 /D2 ) (3.3.5)

where Y is a vector in T}, such that dp(Y) = 9/8z. Consider now (z,w) € N, take W €
T,,W. such that [W] # 0 in T W, /D and compute

(p"dz A T (2o (Vs W) = T (W) = Q((V.2) 1, dr (W) # 0 (3.3.6)

otherwise we would have (V),, € (T;,W,)*?, where we denote with the superscript 2 the sym-
plectic orthogonal complement. Now one observes that because both Im(z1 — A) and ker(du)
are contained in T, W, then (T,,1,)® C ker(z1 — A) N ker(du)® = ker(z1 — A) N ker(du)
as ker(du) is Lagrangian. By counting dimensions we actually have (T,,W,) = ker(z1 — A) N
ker(dp). But this would imply V, € ker(du) at w, which is in contrast with the fact that V,
was constructed as a lift of a vector field v, . Therefore on N the form 72 gives an isomorphism
N\*(TW/D) =2 N*(TW/D)* which then extends to all W. Hence 7 is non degenerate on .
As alast step we prove that when (W, Q) is constructed as the transverse Hilbert scheme of a sym-
plectic surface (S,w) projecting onto C via p with the symplectic form €2 induced by w then,
once we recover S as W/ D we also get back the original symplectic form w.

On S\ B let us write w = dz A ., where ¢, is a 1-form defined on the fibre p~1(2).
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Then on the usual open dense subset )V C N of all d-tuples of distinct points in N we have
Q= dz A ... Let V = {(z,w) € N|z has multiplicity exactly 2} and note that V is open
and dense in N. Call 7: W — S the canonical projection onto the space of leaves: we have
c(r(V)) = c(r(cl(V)) = S, where ¢l stands for the topological closure. Hence (V) is dense
in S. Moreover, as the canonical projection onto the space of leaves of a foliation is always an
open map [T} pag.47, Theorem 1], (V) is openin S\ B. Since on V we have V., = §/z; for

i=1,...,d, then 1y, = ¢, for every z and it is clear that 7 agrees with w on r()), hence w
and 7 coincide on S\ B, i.e. as claimed on the whole S. I
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In this chapter we study how the fibration p: Z — TP! can by recovered once we are
given (M, A(C)) as long as A(() satisfies some appropriate integrability assumption. The re-
sulting construction, inverse to what we have exposed in Section and Chapter 3, yields then
a characterization of all hypercomplex manifold M equipped with a real endomorphism A(¢) €
H°(End(E) ® O(2)), where E is defined as in[1.5] that arise as manifold of curve.

4.1 Geometric Considerations on A(()

Once more we consider the holomorphic fibration p: Z — TP!, the manifold M of o -invariant
curves of degree d defined in Chapter 2 and denote by Z” X the hyperkihler twistor space of M,
equipped with its natural projection ¢: ZH#X — P Since also Z fibres on P! via the map p
defined by composition of p and the base map of TP!, we can construct the incidence manifold
Y C ZXp ZHK defined as

YV = {(u,2) € Z x Z"5| p(u) = p(2), u € C.}, (4.1.1)

49
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where C, is the curve in Z the corresponds to the point in M given by z € ZX  Such incidence

manifold Y comes naturally with a double fibration

Y (4.1.2)
pJ{ \
A ZHK
for which we have
p~ (uo) = {(uo, 2)| ¢(2) = p(uo), uo € C-} (4.1.3)

and, of course, T(u7z)p*1 (u) = ker dp(u,z)- Moreover we can set up the sequence

0 T,C Ty —= T (¢71(¢)) —=0, (4.1.4)

where we have set ¢ = f(u) and z is the point corresponding to C' in the fibre ¢~ 1(¢) ¢ Z17K.
We can fit the above sequence into the following picture

0

(4.1.5)

From the construction of the twistor space of a hyperkédhler manifold exposed in Section 1.2 we
immediately deduce that 7, (cp_l(C )) = (TcliOM )I where C' is again the point of M corre-
¢

sponding to z € ¢~ 1(¢). Moreover, since (Té’OM )I = (Tg’lM )I and, as explained in
¢ -1/

Section <T8’1M> , = H°(C,N¢z [—C_, /¢]) we have the identification
-1/¢

T. (¢7'(¢)) = H*(C, Noyz[-C_1/¢)- (4.1.6)
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We also observe that
(dr o) (kerdp) ., C H° (C, Neyzl-C_yje - u]) 4.1.7)

as the deformations that belong to ker dp at (u, z) fix the point u € C' by definition. Actually we

can improve the observation by proving the following.

Lemma 4.1. The inclusion in Equation (4.1.77) is in fact an equality.

Proof. First we note that the two vector space have the same dimension, hence it is enough to
prove the injectivity of the map dm o4 on ker dp at the point (u, z). Assume then by contradiction
that there exists a non zero element v € ker dp at (u, z) such that dmw o i(v) = 0 as a deformation
in H° (C’, Neyz[=C_yj¢ — u]) . Then, reading the vertical line of (4.1.5) we have that v € T,,C,
that means v € T,,C N ker dp, which cannot be when v # 0. Therefore (dm o i)(ker dp),, .y =
H° (C, Neyz[=C_q/¢ — u]) , forevery (u,z) €Y. I

Remark 4.2. Define D, ) = HO (C’, NC/Z[—CLI/C- — u}) where, as usual, C € M corre-
sponds to z € ¢ 1(¢) and ¢ = p(u). Let (¢,n) = p(u). With the identifications

T H(Q) = (TEM)1, = H (€, Neys[-C_yyd) = HO(C Ngyz(-1) (418)

and, since A(() can now be lifted to each fibre of Y, it is then immediate to verify that ker(dp)(y,)
coincides with the distribution Im(n — Ac(¢)). Therefore, having identified Im(n — Ac(C))
with the set of all holomorphic deformations that fix the point v € C' C Z, the same proof of
[6[Proposition 3.4] yields the integrability of the distribution.

The following observation will be of particular interest in the next section.

Remark 4.3. For every ¢ € P! we can consider the projection pe: M — Cl that sends each
C € M to the minimal polynomial min 4., )(A) of A(C) at the point C'. Applying Proposition
and Remark for every ¢ € P!, we have that fi¢ is a surjective submersion on a subset
N¢ C M such that M \ N¢ is of codimension at least two. Moreover, a vector X € (ker du¢)c C
(TcliOM ) 1. corresponds to a holomorphic deformation of the curve C' that fixes the eigenvalues
of A(¢) at C. In other words it is an element X in Q_; ¢ for which dx A(¢) = 0 at C'. Let
now V' be the connection on End(E) = E* @ E obtained by the connection V'F given in
Then V' (A(¢)) = 0 for every X corresponding to a vector in ker dy¢. In turn, this means
Vx (A(¢) ® 1) = 0 for every X € kerdp, for the Obata connection of M.
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4.2 Reconstructing 7

In this section we perform the inverse construction, in order to recover the manifold Z and the
fibration p: Z — TP! starting from the data on the hypercomplex manifold M .

Let us then start with a hypercomplex manifold of complex dimension 2d equipped with a aquater-
nionic endomorphism X of its real tangent space T® M . Recalling that on a hypercomplex mani-
fold T°M = E ® H, we run the construction exposed in Section 2.3 backwards and get a matrix
polynomial A(¢) = Ag+ A1 + Aa¢?, real for the natural real structure of O(2), which for every
¢ € P! yields and endomorphism of Tp~1(¢) = (T+OM) 1. on the fibres of the twistor space
@: ZHK 5 P, Let us assume that for every ¢ € P! the eigenvalues of A(¢) have eigenspaces
of dimension two and that the characteristic polynomial of A(() is the square of the minimal
polynomial. If we also make the hypothesis that A(() is holomorphic with respect to the complex
structure [¢,we can consider for every ¢ € P! the projection to the Hilbert scheme C% of d
points of C:

pe: M — cld

4.2.1)
cCeMw— minAc(C)(/\),

which is then holomorphic for the complex structure /¢, i.e. we have a holomorphic projection on
every fibre of () € Z"K to Cll. For every ¢ we assume that ft¢ be a submersion on a subset
N¢ such that M \ N has codimension at least two and A(() be compatible with i in the sense
of Definition Finally we assume that, for every vector X € kerduc, VxA(¢) = 0 for the

Obata connection of M . With this corpus of hypotheses we can state the following proposition.

Proposition 4.4. The Nijenhuis tensor of the restriction A(C)|ker . of A(C) to ker dy¢ vanishes.

Proof. Since the Obata connection is torsion-free, for any couple of vectors X,Y € ker dyus we

have

NEOX,Y) = [AOX, AQY] — AQIAOX, Y] - AQ[X, A(Q)Y] + A2(¢)[X, Y]
= V40xAQY = VayA(QX — A(OVa)xY + A(QVYA(OX

—A(QVXAQY + AV X + A*(()VxY — A*((Vy X,
4.2.2)

which vanishes since Vx(A(¢)(Y)) = A(Q)(VxY) for X,Y as above. I

Let now U, be the open dense subset of N where A(() has all distinct eigenvalues 7, ..., 7q
(and is, therefore, diagonalisable). Then on U the nilpotent part of A(() is trivial and its kernel is



4.2 Reconstructing Z 53

the full vertical tangent space ker dy. Therefore we can apply [38][Theorem1] and immediately

get the following result.

Proposition 4.5. For every ( € P! on every leaf of pi¢lu, there exists coordinates (&1, ..., &4)
such that A(() is represented by the diagonal matrix diag(n1, . ..,nq) with respect to the frame
(0/0&1,...,0/0&).

This means, in turn, that for every ¢ € P! there exist local coordinates (11, .. .,74, &1, - - -, &q)

on U, that are holomorphic for /- and such that A(() is represented by the matrix

mls
4.2.3)

nala

Therefore on U¢ we have that Im(n; — A(C)) = Span {0/0n;, 0/0¢;} ;. ,;, which is of course an
involutive, hence integrable, distribution. Since U is dense in N¢ and M \ N, has codimension
at least two, the distribution is integrable on all M .

Define now the incidence manifold Y ¢ TP! X ZHE a5

Y = {(¢,n, 2)|n is an eigenvalue of Ax(()} (4.2.4)

where, as usual, C' is the curve on M corresponding to z € Z"5 . We have therefore the follow-
ing diagram

Y DY,

/ \
P! 29K 5 1)

/
Pl

where we have denoted by Y. the set {((,7, z)|n is eigenvalue of Ac(()}), which is of course

(4.2.5)

the d: 1 (branched) covering of ¢~ '(¢). At this point, since for every 7 in the spectrum of
A(() the distribution I'm(n — A(()) is integrable on (M, I¢) = ¢~ 1(¢) we have that D¢, .) =
Im(n— Ac(()) defines a distribution on Y which is contained in ker dp and is involutive outside
the branch locus of 7. Since the branch locus is nowhere dense, the integrability holds on all Y.

We can therefore define Z as the leaf space

Z:=Y/D (4.2.6)
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and observe that it comes with a natural projection

p: Z — TP

(4.2.7)
[(Cm,2)] = (¢5m)
that makes the following diagram commute.

7y (4.2.8)

pl /

P
TP!

Finally, Z comes with a real structure covering the antipodal map of P! naturally induced by the
real structures of TP! and Z#X . We can summon the result we have proven up in the following

proposition.

Proposition 4.6. Let M be a hypercomplex manifold of complex dimension 2d with the following

properties.

1. M is equipped with an aquaternionic endomorphisms of its real tangent bundle such that
the associated real section A(C) of (9(2)@4‘12 yields, for every ¢ € P', a holomorphic en-
domorphism of (T*°OM) 1. with 2-dimensional eigenspaces and such that its characteristic

polynomial is the square of the minimal polynomial

2. Forevery ( there exists a subset N C M such that (M \ N¢) has codimension at least two,
the projection pc: W — Cl is a surjective submersion on N¢ and A(() is compatible

with ji¢ in the sense of Definition[3.4]

3. Forevery ¢ and every X € ker dy the condition V x A(¢) = 0 holds on N¢, being V the
Obata connection of W.

Then p: Z = Y/D — TP! is a complex 3-dimensional manifold projecting on TP, endowed
with a real structure o covering the antipodal map, for which M is the manifold of o-invariant

cohomologically stable degree d curves.

This can be further improved when we assume M to be not just hypercomplex but hyperkéhler.

Proposition 4.7. If M is taken to be hyperkihler then, on each fibre p~1(¢) of its twistor space
ZHK 3 holomorphic symplectic 2-form w(¢) is defined and, letting T stand for the tangent to
the fibre of : ZHX — P!, the resulting section in HY (/\2 Thr ® (’)(2)), is real for the real
structure of O(2). If we assume that for every ¢ € P! the differential form w(¢) and the map
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e meet the requirements of Proposition [3.11} then on every fibre of the projection p: Z — P!
we get a symplectic structure and such structures altogether describe a symplectic form on ker dp

with values in O(2) which is compatible with the real structure o .
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Chapter 5

Rank 2 7-bundles, monopoles and
matrix polynomials
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An interesting example of manifolds of curves that can be described as in Chapters 1 to 4 is
provided by the moduli space of magnetic monopoles of charge k. In this chapter we give a very
short review of the basic facts about such moduli spaces, then we focus on the case £ = 2 and

investigate some relation between matrix polynomials and rank 2 bundles on spectral curves in

[0(2)].

5.1 Magnetic Monopoles in R?: the Basics

As a guideline for this section about the most important properties of magnetic monopoles we shall
follow the classical article [21] by Hitchin and a more recent review [28]] by Murray. We consider
the Euclidean space R? and denote by A a one-form with values in the Lie algebra su(2), that is
A=2  Adr’ where A;: R® — su(2) for every i. We interpret such matrix A as the matrix
of one-forms of the connection V = d + A on a trivial SU(2) bundle E over R3. Consider
moreover an additional function ®: R® — su(2), which takes the name of Higgs field. We are

ready to define a SU(2) magnetic monopole on R? as follows.

Definition 5.1. A magnetic monopole is a couple (V,®) as above that satisfies the so-called

57
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Bogomolny equation
Fy =+Vo (5.1.1)
together with the appropriate boundary conditions.

Remark 5.2. The Bogomolny equation is gauge-invariant, therefore a monopole really defines an
equivalence class of couples (A, ®) under gauge transformations. Moreover, from the boundary

conditions one can define a limiting value for ®°° for the Higgs field by setting
ol N 1
O (u) = tlgélo D (tu). (5.1.2)

It can also be shown that the norm |®(u)| must be constant for all u € 52, hence one can normalise
the Higgs field so that |®(u)| = 1 for all directions w. Since su(2) is three-dimensional, the Higgs
field at infinity is then a map ®>°: S2 — S and each such map belongs to a connected component
of the space of all continuous maps S? — S? and is labelled by a winding number k that we call

the charge of the monopole.

As in [21]], we view the tangent space TP' to the Riemann sphere P! as the space of oriented
geodesics (i.e. straight lines) in R®. We define a vector bundle E on TP! by

E, = {s € T(7, E)| (Vu —i®)s = 0}, (5.1.3)

where U is the unit tangent vector along the oriented geodesic 7. corresponding to z € TP,
With this notation we recall Hitchin’s result [21]][Theorem 4.2].

Theorem 5.3. If (V, ) is a solution of the Bogomolny equation Fy = xV®, then the vector

bundle E is in a natural way a holomorphic bundle on TP with the following properties

1. E is trivial on every real section of TP!
2. E hasa symplectic structure

3. E hasa quaternionic structure
E. = E. (), (5.1.4)
where T denotes here the natural real structure of TP".
On the converse, every such bundle on TP defines a solution to the Bogomolny equation.

Further detail about the nature of E are provided by the following theorem [21]][Theorem 6.3].
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Theorem 5.4. Let (V, ®) be a solution of the Bogomolny equation with the appropriate (see [21)])
boundary conditions. Let L be the line bundle on TP with transition function e~"< and let L
(respectively L™ ) denote the subbundle of E consisting of all the solutions to (Vy — i®)s = 0
decaying when t — +oo. Then L™ is a holomorphic subbundle isomorphic to L(—k) and E is

given as the extension

0 Lt E (L+)* ——0. (5.1.5)

One can also prove

0 L~ E (L™)* ——=0. (5.1.6)

and, by projecting L~ onto (L*)* inside E and using the fact that LT and L~ are holomorphi-
cally equivalent respectively to L(—k) and L*(—k) one obtains a section of H°(TP!, O(2k)) the
zero set of which describes the locus C' of all z € TP where L = L}. Such locus C' takes the

name of spectral curve of the monopole and shows the following properties [21]][Proposition 7.3].

Proposition 5.5. Let C be the spectral curve of a SU(2) monopole of charge k. Then the follow-
ing hold true.

1. C is compact

2. C is defined by an equation

PCn) =n"+a(On "+ +an(¢) =0, (5.1.7)

where dega; = 21
3. L? is holomorphically trivial on C, i.e. L?|c = O¢
4. Cisreal for 7, ie 7(C)=C.

We observe that a trivialization f((,n) of L?|c embeds C as a curve f(C) inside the three
dimensional total space of L?. Such curve is real for the real structure of |L?| and, by a result of
Nash [29] satisfies our cohomological stability conditions on the normal bundle. In [21][Theorem
7.6] Hitchin finally proves that the spectral curve C' fully determines the bundle E, therefore the
two data are equivalent and a monopole is completely determined once we know its spectral curve.
Finally, we recall the following fact due to Donaldson [13]. Let M}, be the moduli space of SU(2)
monopoles of charge k and fix a point (; € P! and consider the map into the space Rat;, of based
rational maps given by

7,/}(0 : Mk — Ratk

(5.1.8)

f(Co,m)
EI = Beom
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Such map )¢, is a then a diffeomorphism. This is of course a particular version of Proposition
[1.23]In fact, the zero set ((Co,71), - - -, (Co,m;)) of P(Co,n) together with the power expansions
of f(Co,n) around each point ((p,n;) describe exactly the divisor C¢, = C' N (L%\g), of the
spectral curve C over the point (y € P!. After this short introduction, we now consider the moduli

space My of charge 2 monopoles.

5.2 Monopoles of Charge 2

From the theory exposed in [3] we know that for every k the moduli space M of charge k
monopoles is a hyperkéhler manifold endowed with an action of S' x R3 such that My = M} x
St x R3, where M, 18 stand for the space of centred monopoles of charge k. By choosing an
identification of S! x R3 with C x C*, that is fixing an element (y € P!, we can describe such

an action in term of rational maps as the map

((C X C*) X Ratk — Ratk

(i)~ (55

Let us fix now k£ = 2 and define S = C x C* with p: § — C the projection onto the first factor.

As before, let My = SZ[,Q] stand for the space of charge 2 monopoles, which we identify with the
space of based rational maps of degree 2 and let X be the double covering of the Atiyah-Hitchin
manifold Mg , which sits in M5 as

X = {(18’ q1 =0, p(z)p(~2) = 1 mod q(Z)} ; (522)

where we write

p(z) =po+ P12
(5.2.3)

q(2) =2 —q1z — qo

At every point (p(z),q(z)) of X the action (3.2.1) yields TMs|x = TX @ V where V is
generated by the action. Explicitly we have

TX = {(t'(2).d(2)) ¢, = 0, p'(2)p(—2) +p'(=2)p(z) = 0 mod q(2) } 524

and

V ={((2),d(2)P(2) =tp(2), ¢(2) = uz, t,u e C}. (5.2.5)
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. Using, as in Chapter 3, the coefficients (¢1, o, p1,p0) of p(z) and ¢(z) as global coordinates on
M5 and the induced frame of 7'M we have at every point of X the following description

TX = Span{d/dqo, pod/dp1 + qop10/dpo}

V' = Span{d/0q1, p10/9p1 + po0/Opo}.

(5.2.6)

With respect to this generators, then the endomorphism A((y) is represented at every point of X
by the matrix

0 0 g O
00 0 1

A= . (5.2.7)
1 0 00
0 g 0 0

The decomposition T'Ms|x = TX @ V is actually a decomposition of real tangent spaces (see
[3]), meaning that the vector space £ = H°(C, N(—1)) = TEMQ splits into £ @ E5 where,
say, F/; corresponds to TX and E» corresponds to the space generated by the S' x R? actions.
Therefore we have that for every ¢ € P! the matrix polynomial A (¢) has a block anti-diagonal

form

A= . (5.2.8)

and the spectral curve C' cut out by its minimal polynomial has equation 7% — az(¢) = 0, where
a(¢) is a polynomial of degree 4. With this information we observe that if (u,v) € C* is an
eigenvector of Ac(¢) with eigenvalue A\ then P(¢{)v = Au and Q(¢)u = Av. Applying again
A(¢) to the vector (Au, Av) we deduce that P(¢)Q(¢) = Q(¢)P(¢) = M1y = az(¢)12. Now,
this particular block anti-diagonal form of A¢((), together with the results of [7], suggests that
we consider in general the case of degree 2 matricial polynomials with block-anti-diagonal form
as in (5.2.8)), that have a spectral curve with equation A? — a(¢) = 0 in |O(2)| with coordinates

(€. A).
5.3 Some partial results on rank 2 7-bundles

The aim of this section is to provide a deeper understanding of those rank 2 vector bundles on

elliptic curves that are induced by matricial polynomials of the form (5.2.8). A useful guideline
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to be followed is Bielawski’s article [7]. We start by setting some notation and recalling the so-
called Beauville isomorphism. We then focus on the so called 7-bundles of rank two on elliptic
curves and explain their relation with the spectral curves of magnetic monopoles of charge 2.
We conclude the section by approaching, with some partial result, the issue whether such rank-2
bundles be or not decomposable as, in view of the famous Atiyah classification of bundles of rank
2 on elliptic curves (see [2l]), this would be a crucial information.

Consider now a quadratic polynomial X (¢) = Xo + X1¢ + X2¢? with X; € gl,(C). Each such
polynomial gives rise to a 1-dimensional acyclic sheaf on T = |O(2)| by means of the short exact

sequence

A=X(¢)

0 OT(_3)@(k) OT(_l)@(k) F 0. (5.3.1)

When X (¢) has two-dimensional eigenspaces and its characteristic polynomial is the square of its
minimal polynomial then the sheaf F is the sheaf of sections of a rank 2 vector bundle supported
on the curve in T' cut out by the minimal polynomial P(¢,\) of X (¢). Taking into account the
action of conjugation by elements of G L (C) we have the following proposition, reproducing the

well known result of [5]].

Proposition 5.6. Let d be a positive integer and P(C,\) = N + ay (ON~1 4+ -+ + ap () be a
polynomial with deg a; = di. Let Mp be the variety defined by

Mp ={X(¢) € gl(C)| deg X(¢) = d, min(X(()) = P((,A)} (5.32)

and denote by M}, the submanifold of Mp consisting of all X (¢) having eigenspaces of dimen-
sion two and whose characteristic polynomial is the square of the minimal polynomial. Then the

exact sequence

0 A=X(C)

Op(—d —1)2®) Op(—1)2*) F 0 (5.3.3)

induces a one-to-one correspondence between M},/GLy(C) and the isomorphism classes of

acyclic vector bundles of rank 2 defined on the curve C' C |O(d)| cut out by the polynomial
P(¢,A).

We shall refer to the above correspondence as to the Beauville isomorphism.

We now recall the description of a particular case of the Beauville isomorphism and describe the
construction of the so-called 7-sheaves using matrix polynomials of degree 2. To this purpose, let
Rinn C gl (C) ® C3 be the subset of triples of matrices of the form

0 B
cz:( ),i:QLZ (5.3.4)
Q; 0
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For any such triple (Cy, Cq,C2) of square (m + n) x (m + n) matrices we can define a 1-

dimensional sheaf on the space T = |(O(2)| via the sequence

0 A=C(9)

Oz (—3)®(mtn) Og(—1)®(mtn) F 0, (5.3.5)

where we have set C(¢) = Cy + C1¢ + C2¢2. At this point we observe that the involution
7: |02)] — |0(2)] (5.3.6)

can be defined on the total space of O(2), and that the quotient |O(2)|/7 is exactly |O(4)|. For
an element (Cp, C1,C2) € Ry, p, the polynomial det(A — C(¢)) is 7-invariant and has the form

det(A — C(()) = A" (A + a (ON2 + -+ + am—1(ON + am(()) , (5.3.8)

where deg(a;) = 2i. Applying the Beauville isomorphism we have that GL,,(C) x GL,(C)-
orbits of elements in R,, , correspond to acyclic 7-invariant sheaves supported on the spectral
curve of C({). By 7-invariance we mean equivariance with respect to the action of 7, i.e. in
the case when F is the sheaf of sections of a vector bundle we have a bundle involution 7 on the
total space of F lifting 7. If we restrict to the subset of matrices C'(¢) in Ry, having minimal
polynomial P((, \) and satisfying our regularity conditions on eigenspaces and characteristic and
minimal polynomial we get, as before, a one-to-one correspondence between G L,,,(C) xGL,,(C)-
orbits of regular elements and acyclic 7-vector bundles of rank two on the curve in |O(2)| cut out
by P((, ).

Our endomorphism A(() clearly falls in the above description with m = n = 2 therefore, as

anticipated, we will consider in general those matrix polynomials of the form
C(¢) = , (5.3.9)

which satisfy our regularity assumptions and whose spectral curve is given as the zero locus of
a polynomial of the form A2 — ay(¢), where ax(() is a polynomial in ¢ of degree 4. Now, as
explained in [7]], we note that the quotient of the spectral curve C' C T = |O(2)| of C(() by the
involution 7 is a curve C' inside 7' = |O(4)| and there is a correspondence between acyclic 7-
invariant vector bundles of rank 2 on C' and acyclic vector bundles of rank 2 on C. With respect
to (3:3.9), we write P(¢) = Py + Pi{ + P2¢? and Q(¢) = Qo + Q1¢ + Q2¢>. Let P((,\)
denote the minimal polynomial of C'(¢) and P(¢,7) be the minimal polynomial of P(¢)Q(C).
Since from C2(¢) = a2(¢)14 we deduce that P(¢)Q(C) = Q(¢)P(¢) = az(¢)1a, it is then clear
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that P(C,1) = (n — az(¢)) and that P(¢, A) = P(¢, A2) holds true. We denote by F the rank 2,
T-invariant, 1-dimensional acyclic sheaf defined by C(() on the curve C. and by G the rank 2
acyclic sheaf defined on the curve C' by P(¢)Q(C).

Remark 5.7. When the curve C' and the matrix polynomial C'(¢) are constructed as in the pre-
vious chapters, we observe that, by construction, F is the sheaf of sections of the vector bundle
N¢y7(—2). In the case of spectral curves of monopoles we have by the results of Nash [29] that
Ngyz(-2) = EL(k — 2)|c, where (after identifying C' and C' as in Nash) F is the monopole
bundle provided by Hitchin’s construction, L is the line bundle on TP! with transition function
exp(A/C) and k is the charge of the monopole. In this spirit, the next discussion gives us some

new hint concerning the decomposability of the monopole bundle E.

In the most desirable case, the zeros of det(P(()) are distinct from those of det(Q(()), i.e.
the divisors defined by det(P(¢)) and det(Q(¢)) are disjoint. Denoting by Ap (respectively
Ag) the divisor of zeros of det(P(¢)) (respectively det(Q(¢)) = 0) on C taken with single

multiplicity, we can prove the following statement.

Proposition 5.8. With the above assumptions, we have F = 7*O(—1)%2®[Ag] 2 7*O(-1)*2®
[Ap], where T is the projection C — C.

Proof. Again following [7] we start by considering the sheaves F (1) and G(1) respectively given
as co-kernels of the maps

A—C(0): O(—2)% - 0%
(5.3.10)
1= P)Q(): O(=4)%2 = 0%,

It is immediate to observe that 7 — P({)Q(() actually is the zero map, therefore we have G(1) =
O & O. Now, looking at the sequence

O (—4)2 1—P(O)Q(C)
T

—4)

(’);92 G(1) 0 (5.3.11)

we see that, since H?(O%2) = C2? and G(1) = O%2, every vector u € C? trivially defines a
section s,, of G(1). Consider the sections s; and sg corresponding to the vectors u; = (1,0) and
ug = (0,1) in C2. In general, by means of tensored by O(1), every vector in C* defines,
by the projection to the quotient, a global section of F(1). Therefore for a fixed vector u € C2,
the vector (u,0) € C* defines a global section 5, of F(1). Assuming u # 0, one can easily
check that (u,0) € Im(\ — C(()) if and only if either A # 0 and v € Im(\? — P(¢)Q(C)), i.e.
u=0,or A =0, det Q(¢) = 0 and u € Im(P(()), where the last condition actually follows
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from A = 0, det Q(¢) = 0 since Ap N Ag = ().Therefore the divisor of a section 5, is given
as (5,) = Ag when u # 0. Using the isomorphism H°(C, F(1)) & HY(C¢, F(1)) we see
that the sections 5; and 52 given by (u1,0) and (ug,0) are linearly independent in H(F(1))
and span a two-dimensional subset consisting of sections which vanish on Ag. In other words,
they yield two global sections 1, % of F(1) ® [~Ag], that is h°(C, F(1) ® [-Ag]) > 2. At
this point we observe that the genus of C is go = 1, that is C is an elliptic curve, and that
F(1) ® [-Ag] is a rank 2 vector bundle of degree zero on C'. Since its space of sections is
two-dimensional, 7 (1) ® [-Ag] cannot be indecomposable, as the only indecomposable bundle
of rank 2 and degree 0 with sections is the so-called Atiyah bundle and its space of sections is
1-dimensional [37][Proposition 4.6]. Therefore, since F(1) must decompose into the sum of two
line bundles, we know from the above observations that it must be F(1) = 7*O%? @ [A()], hence
F=710(-1)%2 2 [Ag]. |

Unfortunately, we observe in the following remark that in the case of spectral curves of mag-
netic monopoles the determinants of P(¢) and Q(¢) have exactly the same zeros.

Remark 5.9. We know from Section two that (5.2.8) is conjugated to by an element of
GLy(C) x GL2(C). Now, if there were a point ( such that det(Q(¢p)) = 0 whilst det(P({y)) #
0, then the regularity assumptions on A would force Q((p) to actually be the zero matrix. In this
case the matrix A((p) would not be GL2(C) x GL2(C)-conjugated to

0 0 g O
00 0 1
1 0 0 0
0 g 0 O

and this would be a contradiction.

Therefore we investigate now the case when det(P(¢)) and det(Q(() vanish at the same four
points, which turns out to be more complicated than the previous one. Now, keeping in mind that
the spectral curve C is an elliptic curve our goal, for the moment only partially fulfilled, is to try
and understand whether and when the vector bundle defined by the matrix polynomial C'(¢{) of
is decomposable or not. As in the previous proposition, let us consider the vector bundles

associated to the sheaves F(1) and G(1), given as the co-kernels of the maps

A—C(0): O(—2)% - 0%
(5.3.12)
n—P)Q): O(=4)%? — 0%,
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Again G(1) = O @O and any vector u € C2 trivially defines a section s, € H(C,G(1)) and we
can consider the section 5, € H°(C, F(1)) defined by the vector (u,0) € C* exactly as before.
Again, at a point (¢,\) € C with X\ # 0, we have that (u,0) belongs to Im(\ — C(()) if and
only if u = 0. At a point of (¢,0) of C' we have that (u,0) belongs to Im(A — C(¢)) if and
only if u € Im(P(()), but this last condition is not any more automatically satisfied. Let us now
assume that the bundle F (1) be decomposable and, in analogy to the case of monopole spectral
curves, that h'(F (1)) = 0. Then F(1) can only split

e as a sum of degree 0 and a degree 4 line bundle Lo @® Ly4. Since we know that h?(F(1) =
4), both bundles must have sections, hence Ly = Og. This bundle has, anyway, a non-
vanishing h! therefore this splitting cannot be realized

e as a sum of a degree 1 and a degree 3 line bundle L; & L3

e as a sum of two degree 2 lined bundles L & L.
Let now (i, ..., (4 be the zeros of det(P(¢)) (and of det(Q(¢)) and let us proceed case by case.

1. The first possibility is that Im(P(¢;)) € C? all coincide for i = 1,...,4. In this case, if
we choose u € Im(P((;)), the section corresponding to the vector (u,0) € C* will vanish
at all four points (y, ..., (4. Now, if the splitting L.; ¢ L3 was realized, we would have, due
to h'(F(1)) = 0 that h'(L1) = 0 = h'(L3) and, in particular that h°(L1) = 1. Therefore
all sections of L; with a zero would actually vanish at the same point. Therefore, since a
section of L1 @ L is given as a couple (s1, s3) of sections s; € H°(L;), it would be impos-
sible to construct a section with 4 distinct zeros. Similarly, if (1) = L @ L', the section
corresponding to the above choice of (u,0) would be given as a couple of sections (s, s’),
where s € H(L) and s’ € HY(L'), with four common zeros. Since s, s" are sections of
line bundles of degree 2 they can only have two zeros, therefore also this decomposition
cannot be realized. Hence we can conclude that when the subspaces Im(P((;)) C C? all

coincide for i = 1,...,4 the bundle (1) is indecomposable.

2. Assume now that I'm(P(¢1)) = Im(P((2)) = Im(P({3)) # Im(P((s)). The choice of
a vector u € Im(P((;)),7 = 1,2,3 yields a global section of F(1) vanishing at (;, ¢ =
1,2, 3. As before, this excludes both the L ¢ L3 and L& L’ possibilities, hence the bundle
F (1) must be indecomposable also in this case.

3. As a third possibility, we focus on the situation when Im(P((1)) = Im(P(¢2)) and
Im(P((2)) # Im(P((3)) # Im(P({4)). Arguing as in the previous cases, we are here

able to construct a section with zeros at ((;,0) and ({2,0), hence we can exclude the
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Ly @ L3 case. If we assume then that F(1) decomposes as L & L', we have that such
a section is given as (s, s'), with s € H°(L) and s’ € H°(L') sharing the same two zeros
(¢1,0) and ({2, 0). Therefore we would have that L = L’ = [((1,0), ({2, 0)]. At this point,
taking a vector v € I'm(P({3)) we could construct a section only vanishing at ((3,0). Let
this section be described as (¢,t'), where ¢,/ € H(L). Then t and ' share ((3,0) as the
only common zero and ¢/t would be a function on C' with exactly one zero and one pole. It
is anyway known that no such function exists on an elliptic curve. This contradiction yields

the indecomposability of the bundle F(1) also in this situation.

4. The fourth possibility is when Im(P((1)) = Im(P((2)) # Im(P(¢3)) = Im(P(C4)).
The decomposition of type L1 L3 is clearly immediately excluded as, also in this situation,
we can construct sections that vanish at more than one point. If we assume F (1) = L& L/,
we can argue as before an conclude that L = L' = [((1,0), (¢2,0)] = [(¢3,0), ((4,0)].
From section s = (s1,s2) of L @ L vanishing at ({1,0) and ((2,0) we can clearly con-
struct two sections (s1,0) and (0, s2) with the same zeros, which are linearly independent in
HO(L@L). This means that we can construct two sections ¢; and ¢ that correspond to vec-
tors (u1,0) and (0, v2) and both vanish exactly at ((1,0) and (¢2,0). From this we deduce

that also for Q(C) we have Im(Q(G1)) = Im(Q(G2)) # Im(Q(Ca)) = Im(Q(Ca)). On the
other hand, it is immediate to show that when Im(P((1)) = Im(P((2)) # Im(P((3)) =

Im(P(¢a)) and Im(Q(C1)) = Tm(Q(&2)) # Im(Q(G)) = Im(Q(C) the bundle
decomposes as L & L. From this equivalence we also conclude that if Im(P((1)) =
Im(P(¢2)) # Im(P(¢3)) = Im(P({4)) holds true but the condition Im(Q(¢1)) =
Im(Q(¢(2)) # Im(Q(¢3)) = Im(Q({y)) is not satisfied, then F(1) cannot be decom-
posable.

5. The last case is when Im(P((;)) are four distinct subspaces of C2?. Looking at the sub-
spaces Im(Q(¢;)),i = 1,...,4 at applying the above consideration, we immediately get
the indecomposability of F(1) in all sub-cases, except for the one when I'm(Q((;)) are
also all distinct. In this last situation we can exclude both a decomposition of type L & L3,
due to the fact that we can construct four sections with each with a different single zero, as
well as one of type L ¢ L, again due to the possibility of constructing sections with single
zeros. The question whether a decomposition of type L & L’ be admissible instead of the
indecomposability being the only option for this situation is at the moment still an open one.
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