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We propose a new N -extended supersymmetric su(n) spin-Calogero model. Employing a generalized 
Hamiltonian reduction adopted to the supersymmetric case, we explicitly construct a novel rational 
n-particle Calogero model with an arbitrary even number of supersymmetries. It features Nn2 rather 
than Nn fermionic coordinates and increasingly high fermionic powers in the supercharges and the 
Hamiltonian.
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1. Introduction

The original rational Calogero model of n interacting identical 
particles on a line [1], pertaining to the roots of A1 ⊕ An−1 and 
given by the classical Hamiltonian

H = 1

2

n∑
i=1

p2
i + 1

2

∑
i �= j

g2(
xi−x j

)2
, (1.1)

has often been the subject of “supersymmetrization”. In this en-
deavor, extended supersymmetry has turned out to be surprisingly 
rich. After the straightforward formulation of N= 2 supersymmet-
ric Calogero models by Freedman and Mende [2], a barrier was 
encountered at N = 4 [3]. An important step forward then was 
the explicit construction of the supercharges and the Hamiltonian 
for the N= 4 supersymmetric three-particle Calogero model [4,5], 
which introduced a second prepotential F besides the familiar 
prepotential U . However, it was found that quantum corrections 
modify the potential in (1.1), and that F is subject to intricate 
nonlinear differential equations, the WDVV equations, beyond the 
three-particle case. These results were then confirmed and eluci-
dated in a superspace description [6]. Finally, extending the system 
by a single harmonic degree of freedom (su(2) spin variables [7]) 
it was possible to write down a unique osp(4|2) symmetric four-
particle Calogero model [8].1 A detailed discussion concerning the 
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Models with more general interactions can be found for any number of particles.
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supersymmetrization of the Calogero models can be found in the 
review [9].

It seems that a guiding principle was missing for the construc-
tion of extended supersymmetric Calogero models. Indeed, while 
for n ≤ 3 translation and (super-)conformal symmetry almost com-
pletely defines the system, the n ≥ 4 cases admit a lot of freedom 
which cannot a priori be fixed. In the bosonic case, such a guiding 
principle exists [10]. The Calogero model as well as its different 
extensions (see, e.g. [11–13]) are closely related with matrix mod-
els and can be obtained from them by a reduction procedure (see 
[14] for first results and [15] for a review). If we want to employ 
this principle also for finding extended supersymmetric Calogero 
models, then the two main steps are

• supersymmetrization of a matrix model
• supersymmetrization of the reduction procedure or proper 

gauge fixing.

This idea is not new. It has successfully been employed in [16–19]. 
The resulting supersymmetric systems feature

• a large number of fermions – far more than the 4n fermions 
expected in an N= 4 n-particle system within the standard 
(but unsuccessful!) approach

• a rather complicated structure of the supercharges and the 
Hamiltonian, with fermionic polynomials of maximal degree

• a variety of bosonic potentials, including su(2) spin-Calogero 
interactions
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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but they do not contain a genuine N= 4 supersymmetric Calogero 
model, i.e. one with a mere pairwise inverse-square no-spin 
bosonic potential.

Here we use the same guiding principle and start with the 
bosonic su(n) spin-Calogero model in the Hamiltonian approach. 
We then provide an N -extended supersymmetrization of this sys-
tem. It is important that we do not a priori fix a realization for the 
su(n) generators. Finally we generalize the reduction procedure to 
the N -extended system and find the first N -extended supersym-
metric Calogero model, for any even number of supersymmetries.

2. N -extended supersymmetric Calogero model

2.1. Bosonic Calogero model from hermitian matrices

It is well known that the rational n-particle Calogero model [1]
can be obtained by Hamiltonian reduction from the hermitian ma-
trix model [10,14]. Adapted to our purposes, the procedure reads 
as follows. One starts from the su(n) spin generalization [12] of 
the standard Calogero model, as given by

H = 1

2

n∑
i=1

p2
i + 1

2

n∑
i �= j

�i j� ji(
xi−x j

)2
. (2.1)

The particles are described by their coordinates xi and momenta 
pi together with their internal degrees of freedom encoded in the 
angular momenta 

(
�i j

)† = � ji with 
∑

i �ii = 0. The non-vanishing 
Poisson brackets are

{
xi, p j

} = δi
j and

{
�i j, �km

} = i
(
δim�kj − δkj�im

)
. (2.2)

The Hamiltonian (2.1) follows directly from the free hermitian ma-
trix model (for details see [15]).

To get the standard Calogero Hamiltonian (1.1) from (2.1) one 
has to reduce the angular sector of the latter, in two steps. Firstly, 
one (weakly) imposes the constraints

�11 ≈ �22 ≈ . . . ≈ �nn ≈ 0 . (2.3)

They commute with the Hamiltonian (2.1) and with each other, 
hence are of first class. To resolve them one introduces auxiliary 
complex variables vi and v̄ i = (vi)

† obeying the Poisson brackets

{
vi, v̄ j

} = −i δi j (2.4)

and realizes the su(n) generators �i j as

�̂i j = −vi v̄ j + 1

n
δi j

n∑
k

vk v̄k . (2.5)

Secondly, passing to polar variables ri and φi defined as

vi = rie
iφi and v̄ i = rie

−iφi ⇒ {
ri, φ j

} = 1

2ri
δi j ,

(2.6)

the constraints (2.3) are resolved by putting

r1 ≈ r2 ≈ . . . ≈ rn . (2.7)

Plugging this solution into the Hamiltonian (2.1) one may addition-
ally fix n−1 angles φi , say

φ1 ≈ φ2 ≈ . . . ≈ φn−1 ≈ 0 . (2.8)
At this stage the 2n variables {ri, φi} are reduced to the two vari-
ables rn and φn . However, the reduced Hamiltonian does not de-
pend on φn and has the form

Hred = 1

2

n∑
i=1

p2
i + 1

2

n∑
i �= j

r4
n(

xi−x j
)2

. (2.9)

Therefore

{Hred, rn} ≈ 0 and r2
n ≈ const =: g , (2.10)

and the reduced Hamiltonian Hred coincides with the standard 
n-particle rational Calogero Hamiltonian. We note that in the 
bosonic case most reduction steps are not needed, because the 
Hamiltonian (2.1) does not depend on the angles φi at all. How-
ever, in the supersymmetric case all reduction steps will be impor-
tant.

In what follows we will construct an N -extended supersym-
metric generalization of the Hamiltonian (2.1) and perform the 
supersymmetric version of the reduction just discussed, finishing 
with an N -extended supersymmetric Calogero model, for N = 2M
and M = 1, 2, 3, . . . .

2.2. N -extended supersymmetric su(n) spin-Calogero model

On the outset we have to clarify what is the minimal number 
of fermionic variables necessary to realize an N = 2M supersym-
metric extension of the su(n) spin-Calogero model (2.1). Clearly, 
as partners to the bosonic coordinates xi one needs Nn fermions 
ψa

i and ψ̄ i a with a = 1, 2, . . . M . However, this is not enough to 
construct N supercharges Q a and Q b which must generate the 
N = 2M superalgebra

{
Q a, Q b

} = −2i δa
b H and

{
Q a, Q b} = {

Q a, Q b
} = 0 .

(2.11)

The reason is simple: to generate the potential term 
∑n

i �= j
�i j� ji(

xi−x j
)2

in the Hamiltonian, the supercharges Q a and Q b must contain the 
terms

i
n∑

i �= j

�i jρ
a
ji

xi−x j
and − i

n∑
i �= j

� jiρ̄ i j a

xi−x j
, (2.12)

respectively, where ρa
i j and ρ̄ i j a are some additional fermionic 

variables. These fermions cannot be constructed from ψa
i or ψ̄ i a . 

Hence, we are forced to introduce Nn(n−1) further independent 
fermions ρa

i j and ρ̄ i j a subject to ρa
ii = ρ̄ ii a = 0 for each value of 

the index i. In total, we thus utilize Nn2 fermions of type ψ or ρ , 
which we demand to obey the following Poisson brackets,

{
ψa

i , ψ̄ j b
} = −i δa

bδi j ,
{
ρa

i j, ρ̄km b
} = −i δa

bδimδ jk ,

with
(
ρa

i j

)† = ρ̄ ji a and ρa
ii = ρ̄ ii a = 0 . (2.13)

The next important ingredient of our construction is the com-
posite object

�i j =
M∑

a=1

[(
ψa

i −ψa
j

)
ρ̄ i j a + (

ψ̄ i a−ψ̄ j a
)
ρa

i j

+
n∑

k=1

(
ρa

ikρ̄kj a + ρ̄ ik aρ
a
kj

)] ⇒ (
�i j

)† = � ji .

(2.14)
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One may check that, with respect to the brackets (2.13), the �i j

form an su(n) algebra just like the �i j ,{
�i j,�km

} = i
(
δim�kj − δkj�im

)
, (2.15)

and they Poisson-commute with the our fermions as follows,

{
�i j,ψ

a
k

} = i
(
δik−δ jk

)
ρa

i j ,

{
�i j,ρ

a
km

} = −i δimδ jk
(
ψa

i −ψa
j

) − iδ jkρ
a
im + iδimρa

kj ,

{
�i j, ψ̄k a

} = i
(
δik−δ jk

)
ρ̄ i j a ,

{
�i j, ρ̄km a

} = −i δimδ jk
(
ψ̄ i a−ψ̄ j a

) − iδ jkρ̄ im a + iδimρ̄kj a .

(2.16)

It is a matter of straightforward calculation to check that the su-
percharges

Q a =
n∑

i=1

piψ
a
i + i

n∑
i �= j

(
�i j + �i j

)
ρa

ji

xi − x j
and

Q b =
n∑

i=1

piψ̄ i b − i
n∑

i �= j

ρ̄ i j b
(
� ji + � ji

)
xi − x j

(2.17)

obey the N= 2M superalgebra (2.11) with the Hamiltonian

H = 1

2

n∑
i=1

p2
i + 1

2

n∑
i �= j

(
�i j + �i j

) (
� ji + � ji

)
(
xi − x j

)2
, (2.18)

modulo the first-class constraints2

χi := �ii + �ii ≈ 0 ∀ i , (2.19)

with

{
Q a,χi

} ≈ {
Q a,χi

} ≈ {H,χi} ≈ {
χi,χ j

} ≈ 0 . (2.20)

Details of this computation can be found in the Appendix. The su-
percharges Q a and Q b in (2.17) and the Hamiltonian H in (2.18)
describe the N= 2M supersymmetric su(n) spin-Calogero model.

For N=4 it essentially coincides with the osp(4|2) supersym-
metric mechanics constructed in [16,17]. However, there are a few 
differences:

• The Hamiltonian (2.18) has no interaction for the center-of-
mass coordinate X = ∑

i xi . Correspondingly, the supercharges 
(2.17) do not include certain terms which appeared in [16,17].

• Working at the Hamiltonian level, we may keep the su(n)

generators �i j unspecified. Precisely this enables the minimal 
realization (2.5) with a minimal number of auxiliary vari-
ables vi, ̄vi . At the Lagrangian level this corresponds to using 
(2, 4, 2) supermultiplets for the auxiliary bosonic superfields 
instead of (4, 4, 0) superfields as in [16,17].

Now we are ready to reduce our N= 2M su(n) spin-Calogero 
model to a genuine N= 2M Calogero model.

2.3. N -extended supersymmetric (no-spin) Calogero models

As we can see from the previous subsection, the supersymmet-
ric analogs (2.19) of the purely bosonic constraints (2.3) appear 

2 The system with the Hamiltonian (2.18) and with �i j = 0 has been previously 
considered in [20].
automatically. These constraints generate n−1 local U(1) transfor-
mations3 of the variables {vi, ̄vi, ρa

i j, ρ̄ i j a}. In terms of the 2n polar 
variables ri and φi defined in (2.6), the constraints (2.19) can be 
easily resolved as

r2
k ≈ r2

n + �kk − �nn for k = 1, . . . ,n−1 . (2.21)

After fixing the residual gauge freedom as

φ1 ≈ φ2 ≈ . . . ≈ φn−1 ≈ 0 , (2.22)

we obtain the supercharges and Hamiltonian which still obey the 
N=2M superalgebra (2.11) and contain only the surviving pair 
(rn, φn) of the originally 2n “angular” variables. One may check 
that the supercharges Q a and Q b and the Hamiltonian H , with 
the generators �i j replaced by �̂i j and with the constraints (2.21)
and (2.22) taken into account, perfectly commute with r2

n − �nn . 
Thus, the final step of the reduction is to impose the constraint

r2
n − �nn ≈ const =: g (2.23)

and to fix the remaining U(1) gauge symmetry via

φn ≈ 0 . (2.24)

The previous two relations are the supersymmetric analogs of 
(2.10). We conclude that the full set of the reduction constraints 
reads

r2
i ≈ g + �ii and φi ≈ 0 for i = 1, . . . ,n . (2.25)

With these constraints taken into account, our supercharges Q a

and Q b and the Hamiltonian H acquire the form

Q̂ a =
n∑

i=1

piψ
a
i − i

n∑
i �= j

(√
g + �ii

√
g + � j j − �i j

)
ρa

ji

xi − x j
,

Q̂ b =
n∑

i=1

piψ̄ i b + i
n∑

i �= j

ρ̄ i j b
(√

g + �ii
√

g + � j j − � ji
)

xi − x j
,

Ĥ = 1

2

n∑
i=1

p2
i

+ 1

2

n∑
i �= j

(√
g + �ii

√
g + � j j − �i j

) (√
g + �ii

√
g + � j j − � ji

)
(
xi − x j

)2
.

(2.26)

It is matter of quite lengthy and tedious calculations to check that 
these supercharges and Hamiltonian form an N= 2M superalge-
bra (2.11). The strategy is given in the Appendix. The main compli-
cation arises from the expressions 

√
g + �ii present in the super-

charges and the Hamiltonian. Due to the nilpotent nature of �i j , 
the series expansion eventually terminates, but even in the two-
particle case with N= 4 supersymmetry we encounter a lengthy 
expression,

√
g + �11 = √

g
(
1 + 1

2g �11 − 1
8g2 �2

11 + 1
16g3 �3

11 − 5
128g4 �4

11

)
.

(2.27)

For n particles the series will end with a term proportional 
to (�ii)

N (n−1) . Clearly, these terms will generate higher-degree 
monomials in the fermions, both for the supercharges and for the 

3 Due to the relation ∑n
i χi = 0 we have only n−1 independent constraints.
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Hamiltonian. We can only speculate that the dread of such com-
plexities impeded an earlier discovery of genuine N= 4 Calogero 
models.

2.4. Simplest example: N=2 supersymmetric two-particle Calogero 
model

For N=2 supersymmetry one has to put M = 1 in the expres-
sions (2.26) for the supercharges and Hamiltonian. This somewhat 
reduces their complexity compared to the N= 4 case, but the real 
simplification occurs for two particles. Indeed, for n=2 we get

�22 = −�11 and �3
11 ≡ 0

⇒ √
g + �11

√
g − �11 = (

g − 1
2g �2

11

)
for g �= 0 .

(2.28)

Moreover, the term �2
11 is of the maximal possible power in the ρ

and ρ̄ fermions and, therefore, disappears from the supercharges. 
Thus, we are left with

Q̂ (2) =
2∑

i=1

piψi − i
2∑

i �= j

(
g − �i j

)
ρ ji

xi − x j
and

Q̂ (2) =
2∑

i=1

piψ̄ i + i
2∑

i �= j

ρ̄ i j
(

g − � ji
)

xi − x j
,

(2.29)

which have the standard structure – linear and cubic in the 
fermions. The Hamiltonian Ĥ(2) reduces to

Ĥ(2) = 1

2

2∑
i=1

p2
i + g2 − �2

11 − g (�12 + �21) + �12�21(
x1 − x2

)2
, (2.30)

with the explicit expressions

�11 = ρ12ρ̄21 + ρ̄12ρ21 ,

�12 = (ψ1−ψ2) ρ̄12 + (
ψ̄1−ψ̄2

)
ρ12 ,

�21 = (ψ2−ψ1) ρ̄21 + (
ψ̄2−ψ̄1

)
ρ21 .

(2.31)

This N= 2 supersymmetric two-particle Calogero model has 
been previously constructed and analyzed in [16] (for details see 
the review [9]). This demonstrates that our approach perfectly re-
produces the unique known N= 2 example.

3. Conclusion

We propose a novel N -extended supersymmetric su(n) spin-
Calogero model as a direct supersymmetrization of the bosonic 
su(n) model [12]. In the case of N= 4 supersymmetry, our model 
resembles the one constructed in [16,17]. However, there are two 
main differences:

• the center of mass is free
• the su(n) generators are not specified in a particular realiza-

tion.

Thanks to these features, we were able to generalize the reduction 
procedure to the no-spin Calogero model from N= 4 supersym-
metry to any number N= 2M of supersymmetries. This led to the 
discovery of a genuine N= 2M supersymmetric rational Calogero 
model for any number of particles.

Our models belong to same class which was proposed in 
[16,17]. Its main features are
• a huge number of fermionic coordinates, namely Nn2 in num-
ber rather than the Nn to be expected

• the supercharges and the Hamiltonian contain terms which a 
fermionic power much larger than three.

Clearly, these features merit a more careful and detailed analysis.
The following further developments come to mind:

• a superspace description of the constructed models, at least for 
N= 2 and N= 4 supersymmetry, presumably with nonlinear 
chiral supermultiplets

• an extension to the Calogero–Sutherland inverse-sine-square 
model

• an extension to the Euler–Calogero–Moser system [11] and its 
reduction to the goldfish system [13], yielding a supersymmet-
ric goldfish model upon reduction, to be compared with recent 
results from [21].
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Appendix A. Details of the calculations

We check that the N supercharges Q a and Q b in (2.17) gen-
erate the N= 2M superalgebra (2.11) with the Hamiltonian (2.18)
modulo the first-class constraints (2.19). The best way to perform 
this calculation is to introduce the composite object

Li j = �i j + �i j . (A.1)

Like �i j and �i j , their sums also form an su(n) algebra,

{
Li j, Lkm

} = i
(
δim Lkj − δkj Lim

)
, (A.2)

and they Poisson-commute with the fermions exactly as �i j

in (2.16),

{
Li j,ψ

a
k

} = i
(
δik−δ jk

)
ρa

i j ,

{
Li j,ρ

a
km

} = −i δimδ jk
(
ψa

i −ψa
j

) − iδ jkρ
a
im + iδimρa

kj ,

{
Li j, ψ̄k a

} = i
(
δik−δ jk

)
ρ̄ i j a ,

{
Li j, ρ̄km a

} = −i δimδ jk
(
ψ̄ i a−ψ̄ j a

) − iδ jkρ̄ im a + iδimρ̄kj a .

(A.3)

It should be clear now that the closing of the superalgebra (2.11)
for the supercharges

Q a =
n∑

i=1

piψ
a
i + i

n∑
i �= j

Li j ρ
a
ji

xi − x j
and

Q b =
n∑

i=1

piψ̄ i b − i
n∑

i �= j

ρ̄ i j b L ji

xi − x j

(A.4)

does not depend on the number of particles or the number of su-
persymmetries. It is based on the Poisson brackets (A.2) and (A.3)
and the basic brackets (2.2) and (2.13), i.e.
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{
xi, p j

} = δi
j and

{
ψa

i , ψ̄ j b
} = −i δa

bδi j ,{
ρa

i j, ρ̄km b

}
= −i δa

bδimδ jk .
(A.5)

The computation makes repeated use of the all-important identity

1

(xi − x j)(xi − xk)
+ 1

(x j − xi)(x j − xk)
+ 1

(xk − xi)(xk − x j)
= 0

for i �= j �= k. (A.6)

Direct calculation then yields

{
Q a, Q b} = i

∑
i �= j

ρa
i jρ

b
ji

(xi − x j)2

(
Lii − L jj

)
,

{
Q a, Q b

} = i
∑
i �= j

ρ̄ i j aρ̄ ji b

(xi − x j)2

(
Lii − L jj

)
,

{
Q a, Q b

} = −2i δa
b H + i

∑
i �= j

ρa
i jρ̄ ji b

(xi − x j)2

(
Lii − L jj

)
,

(A.7)

where

H = 1

2

n∑
i=1

p2
i + 1

2

n∑
i �= j

Li j L ji(
xi − x j

)2
. (A.8)

Clearly, imposing the constraints (2.19),

χi = �ii + �ii = Lii ≈ 0 ∀ i (no sum) , (A.9)

closes the superalgebra (A.7). Since 
∑

i Lii = 0 reduces u(n) to 
su(n), the constraints (A.9) cannot be relaxed to Lii ≈ α �= 0.

With the same strategy we can check that the supercharges 
Q̂ a and Q̂ a and the Hamiltonian Ĥ in (2.26) form the same su-
peralgebra (2.11). We do not need to go inside the objects �i j or √

g + �ii . Instead, we directly employ the Poisson brackets of the 
composites,

{
�i j,�km

} = i
(
δim�kj − δkj�im

)
,

{
�i j,

√
g + �kk

} = i

2
√

g + �kk

(
δik�kj − δkj�ik

)
,

{
Li j,ψ

a
k

} = i
(
δik−δ jk

)
ρa

i j ,{
Li j,ρ

a
km

} = −i δimδ jk
(
ψa

i −ψa
j

) − iδ jkρ
a
im + iδimρa

kj ,{
Li j, ψ̄k a

} = i
(
δik−δ jk

)
ρ̄ i j a ,{

Li j, ρ̄km a
} = −i δimδ jk

(
ψ̄ i a−ψ̄ j a

) − iδ jkρ̄ im a + iδimρ̄kj a,
{√
g + �ii,ψ

a
k

} = 0 ,

{√
g + �ii,ρ

a
km

} = − i

2
√

g + �ii

(
δikρ

a
im − δimρa

ki

)
,

{√
g + �ii, ψ̄k a

} = 0 ,

{√
g + �ii, ρ̄km a

} = − i

2
√

g + �ii

(
δikρ̄ im a − δimρ̄ i j a

)
.

(A.10)

This drastically simplifies the evaluation and, by using again (A.6), 
one may readily convince oneself that indeed

{
Q̂ a, Q̂ b

} = −2i δa
b Ĥ and

{
Q̂ a, Q̂ b} = {

Q̂ a, Q̂ b
} = 0 .

(A.11)
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