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ABSTRACT. The notion of coexistence of quantum observables was introduced
to describe the possibility of measuring two or more observables together. Here we
survey the various different formalisations of this notion and their connections.
We review examples illustrating the necessary degrees of unsharpness for two

noncommuting observables to be jointly measurable (in one sense of the phrase).
We demonstrate the possibility of measuring together (in another sense of the
phrase) noncoexistent observables. This leads us to a reconsideration of the con-
nection between joint measurability and noncommutativity of observables and of
the statistical and individual aspects of quantum measurements.
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1. Introduction

The dual notions of states and observables are the basic ingredients for for-
mulating the probability structure of quantum mechanics. If H is the (com-
plex separable) Hilbert space associated with the quantum system, then the
quantum mechanical (Born) probability formula is given by the trace formula
pEρ (X) = tr

[
ρE(X)

]
; here ρ is the state of the quantum system, a positive trace

one operator acting on H , and E : X �→ E(X) is the measured observable of the
system, represented as a semispectral measure on a σ-algebra A of subsets of
a set Ω with positive, unit bounded operators E(X) acting on H as values. In
this way any observable E can be identified with the map ρ �→ pEρ , that is, with
the totality of its associated measurement outcome probability distributions.
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The question of the possibility of measuring together (or jointly) two or more
physical quantities lies at the heart of quantum mechanics. Insofar as the pur-
pose of a measurement is to determine the probabilities for the various possible
values of the measured observable, this question amounts to asking the following:

(Q) Given any two observables ρ �→ pE1
ρ and ρ �→ pE2

ρ , with the value spaces

(Ω1,A1) and (Ω2,A2), respectively, is there an observable ρ �→ pEρ , with
a value space (Ω,A ), from which E1 and E2 can be reconstructed in an
operationally feasible way?

There are three approaches which have been used extensively to analyse the
question (Q). The first one has its origin in the theory of sequential measure-
ments, the second refers directly to joint measurements, whereas the third arises
from the functional calculus of observables. Question (Q) can be rephrased
accordingly in three ways.

1) For which pairs of observables E1, E2 is the following statement true: for
any ρ, there is a probability bimeasure

A1 × A2 � (X, Y ) �→ pρ(X, Y ) ∈ [0, 1]

such that pE1
ρ and pE2

ρ are its marginal measures, in the sense that

pρ(X,Ω2) = pE1
ρ (X) and pρ(Ω1, Y ) = pE2

ρ (Y ) for any X ∈ A1, Y ∈ A2?
If this is the case, E1 and E2 are said to have a biobservable, that is,
there is a positive operator bimeasure B : A1 × A2 → L (H ) such that
E1(·) = B(·,Ω2) and E2(·) = B(Ω1, ·).

2) For which pairs of observables E1, E2 is the following statement true: for
any ρ, there is a joint probability measure1

A1 ⊗ A2 � Z �→ pρ(Z) ∈ [0, 1]

such that pE1
ρ and pE2

ρ are its marginal measures, that is, pρ(X × Ω2) =

pE1
ρ (X) and pρ(Ω1 × Y ) = pE2

ρ (Y ) for any X ∈ A1, Y ∈ A2? If this is
the case, then E1 and E2 are said to have a joint observable, that is, there
is an observable F : A1 ⊗ A2 → L (H ) such that E1(·) = F (· × Ω2) and
E2(·) = F (Ω1 × ·).

3) For which pairs of observables E1, E2 is the following statement true:
for any ρ, there is a probability measure pρ defined on a σ-algebra A
of a set Ω and measurable functions f1 : Ω → Ω1 and f2 : Ω → Ω2 such
that pρ(f

−1
1 (X)) = pE1

ρ (X) and pρ(f
−1
2 (Y )) = pE2

ρ (Y ) for any X ∈ A1,
Y ∈ A2? If this is the case, E1, E2 are said to be functions of E, in the
sense that E1 = E ◦ f−1

1 and E2 = E ◦ f−1
2 .

1A1 ⊗ A2 denotes the σ-algebra of subsets of Ω1 ×Ω2 generated by the sets X × Y , X ∈ A1,
Y ∈ A2.
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If E1 and E2 have a joint observable, then they also are functions of an observ-
able, and if they are functions of an observable, then they have a biobservable.
In general, a biobservable is not induced by a joint observable. However, if
the measurable spaces involved are sufficiently regular, then such pathologies
do not exist. Indeed, if the value spaces (Ω1,A1), (Ω2,A2), (Ω,A ) are Borel
spaces, that is, the sets are locally compact metrizable and separable topological
spaces and the σ-algebras are the Borel σ-algebras,2 then the three conditions
are equivalent [2], see also [23, 24].

Example 1.1. As a first illustration, consider any two observables
E1 : A1 → L (H ) and E2 : A2 → L (H ). If they commute with each other,
that is, E1(X)E2(Y ) = E2(Y )E1(X), for all X ∈ A1, Y ∈ A2, then the map
(X, Y ) �→ E1(X)E2(Y ) is a biobservable for E1 and E2. If the value spaces
are Borel spaces, then E1 and E2 have a joint observable F with the property
F (X × Y ) = E1(X)E2(Y ). If, in addition, one of the observables is projection
valued, then F is the unique joint observable of E1 and E2. This follows directly
from the fact that in such a case E1(X)E2(Y ) is the greatest lower bound of the
effects E1(X) and E2(Y ) ([29]), for a slightly different argument, see, e.g. [15].

Though important, the above three reformulations of question (Q) do not
exhaust its content. Below we shall describe yet another way of phrasing and
answering this question. Further, we will give examples of jointly measurable
pairs of (generally noncommuting) observables and review some necessary and
sufficient conditions for their joint measurability. This will enable us to identify
significant differences between the various notions of joint measurability consid-
ered here.

We start with a brief description of the notion of coexistence of observables,
which has been introduced as a seemingly obvious generalization of the idea of
a joint observable for a pair of observables with finitely many values, and which
encompasses the three notions of joint measurability arising from the above
formalizations of (Q).

2. Coexistence

Observables E1 : A1 → L (H ) and E2 : A2 → L (H ) are coexistent if there
is an observable E : A → L (H ) such that{

E1(X) : X ∈ A1

} ∪ {
E2(Y ) : Y ∈ A2

} ⊆ {
E(Z) : Z ∈ A

}
.

Such an observable E will be called an encompassing observable for E1 and E2.
Clearly, if E1 : A1 → L (H ) and E2 : A2 → L (H ) have a joint observable

2Then also B(Ω1)⊗ B(Ω2) = B(Ω1 × Ω2).
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or if they are functions of an observable, then E1 and E2 are also coexistent.
Moreover, if the value spaces involved are Borel spaces, then E1 and E2 are
coexistent whenever they have a biobservable. In spite of many attempts ([21,
23, 22, 13]) the question has remained open whether the notion of coexistence
is actually more general than these other three (essentially equivalent) notions
of joint measurability.

Let (Ω,A ) and (Ω1,A1) be any two measurable spaces. Then for any observ-
able E : A → L (H ) and measurable function f : Ω → Ω1, the range ran(E

f ) of
the image observable Ef : X �→ Ef (X) = E(f−1(X)) is contained in the range of
E. The main problem is in the converse implication, that is: if E1 : A1 → L (H )
is an observable with the property ran(E1) ⊆ ran(E), can one construct a func-
tion f : Ω → Ω1 such that E1 = Ef?3 The classic results of Sikorski [32] and
Varadarajan [36], see also [30] and [13], show that such a construction is possible
if the ranges are separable Boolean algebras. Example 2.2 below is an applica-
tion of this result. Yet the Boolean nature of the ranges of observables is not
necessary for their functional calculus; some physically relevant examples have
been studied in [14]. Before recalling the Boolean case we shall note another
example where the above problem is resolved, namely the case where one of the
observables is projection valued.

Example 2.1. If E1 and E2 are coexistent, and if one of them is projection
valued, then E1 and E2 commute with each other [26, Th. 1.3.1, p. 91], so that
the map (X, Y ) �→ E1(X)E2(Y ) is a biobservable of E1 and E2. If, in addition,
the value spaces are Borel spaces, then they have a joint observable F , which,
by Example 1.1 is necessarily of the product form F (X × Y ) = E1(X)E2(Y ).

Let E (H ) = {A ∈ L (H ) : O ≤ A ≤ I} be the set of effect operators.
E (H ) is equipped with the partial order ≤ (of selfadjoint operators) and the
complementation map A �→ A⊥ := I − A. For an observable E : A → E (H ),
the range ran(E) =

{
E(X) : X ∈ A

}
is not, in general, a Boolean sub-σ-alge-

bra of E (H ), that is, the map A � X �→ E(X) ∈ E (H ) is not necessarily a
σ-homomorphism, notwithstanding the fact that A is a Boolean σ-algebra (of
subsets of Ω). It is an easy exercise to check that ran(E) is a Boolean subsystem
of E (H ) if an only if E is projection valued. It may, however, happen that
E is a σ-homomorphism from A to

(
ran(E),≤,⊥)

without E being projection

valued. Indeed, for a given E the system
(
ran(E),≤,⊥)

is Boolean if and only if
E is regular ([21, 13]). We recall that E is regular if there is no nontrivial effect
operator E(X) ( �= O, I) of ran(E) which would be either below 1

2I or above 1
2I.

Example 2.2. If E1 and E2 are coexistent with an encompassing observable E
that is regular, then ran(E1) and ran(E2) are Boolean sub-σ-algebras of ran(E).

3The condition ran(E1) ⊆ ran(E) need not imply that E1 is a function of E; for an example,
see [13, Remark 1.1].
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If the value spaces involved are complete separable metric spaces with the cardi-
nality of R, then E1 and E2 are functions of E. In particular, if the value spaces
are real Borel spaces (R,B(R)), then the regularity of an encompassing observ-
able E implies the existence of a biobservable B, a joint observable F , and Borel
functions f1 and f2, such that B(X, Y ) = F (X ×Y ) = E(f−1

1 (X)∩ f−1
2 (Y )) for

all X, Y ∈ B(R), see e.g. [21, 13].

The problem with the notion of coexistence is that in itself, it does not entail
a constructive procedure for identifying an encompassing observable E for E1,
E2, nor for the embedding of the ranges of the latter into the former. If it is given
that observables E1 and E2 are coexistent with encompassing observable E, then
all that is known is that there exists, for each X ∈ A1, a set ZX ∈ A such that
E1(X) = E(ZX), and similarly for E2. On the basis of this information only,
there seems to be no way to pick out the effect operators of ran(E1) from those
of ran(E), and similarly for E2. Therefore, there seems to be no operational way
to use the statistics ρ �→ pEρ to reconstruct the statistics of E1 or E2.

By contrast, the notion of joint measurability does provide such a procedure
and is, in addition, naturally adapted to the quantum mechanical modeling of
measurement processes as we will recall next.

3. Measurement theory

According to the quantum theory of measurement, any observable (as a semi-
spectral measure) E : A → L (H ) admits a measurement dilation of the form

E(X) = V ∗
φU

∗I ⊗ P (X)UVφ, (1)

where U : H ⊗K → H ⊗K is a unitary operator modeling the measurement
coupling between the measured system (with the Hilbert space H ) and the
apparatus (or the probe system, with the Hilbert space K ), Vφ is the embedding
H → H ⊗ K , ϕ �→ ϕ ⊗ φ, with φ being the initial probe (vector) state, and
P : A → L (K ) is the probe observable (which can be taken to be a spectral
measure). We let M = (K , P, U, φ) denote the measurement realization (1) of
the observable E.

Let (Ω1,A1) be any other measurable space, and let f : Ω → Ω1 be a mea-
surable function, called a pointer function. The pointer function f and the
measurement M define another observable E1, obtained as the image of E un-
der f ,

E1(X) = E(f−1(X)), X ∈ A1. (2)

Clearly, ran(E1) ⊆ ran(E), and, although M is not an E1-measurement, the
measurement M together with the pointer function f constitutes a measurement
of E1. In particular, if any two observables E1 and E2 are functions of a third
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observable E, then any E-measurement M serves also as a measurement of both
E1 and E2.

It may occur that one can use the measurement statistics to construct the
statistics of another observable without using such a functional calculus. We
describe next such a possibility.

4. The method of moments

We now review a possibility of determining the statistics of an observable from
the statistics of another observable without the use of a functional calculus.

The method of moments refers to a case where from the moments of the
actually measured statistics one is able to infer the moments, and eventually
the whole statistics of another observable. Typically, such a situation arises
when the actually performed measurement constitutes an unsharp measurement
of another obervables.

To describe this method in more detail, let Eϕ,ψ denote the complex measure
Y �→ Eϕ,ψ(Y ) = 〈ϕ |E(Y )ψ 〉 defined by an observable E : B(R) → L(H )
and the vectors ϕ, ψ ∈ H . In particular, if ϕ ∈ H is a unit vector, then
Eϕ,ϕ = pEρ , with ρ = |ϕ 〉〈ϕ|. We recall that the kth moment operator E[k] of

E is the weakly defined operator E[k] =
∫
R

xk dE(x), with the domain D(E[k])

consisting of those vectors ψ ∈ H for which the integral
∫
x dEϕ,ψ(x) exists

for all ϕ ∈ H . In particular, if the integrals
∫
R

xk dpEρ (x) exist, they define the

moments of the measurement outcome statistics pEρ .

Let µ : B(R) → [0, 1] be a probability measure, and let µ ∗ E denote the
convolution of µ and E. It is the observable X �→ (µ ∗ E)(X) defined by
〈ϕ|(µ ∗ E)(X)ψ〉 = µ ∗ Eϕ,ψ(X), ϕ, ψ ∈ H , where µ ∗ Eϕ,ψ is the convolu-
tion of µ with the complex measure Eϕ,ψ(Y ), that is,

µ ∗ Eϕ,ψ(X) =

∫
R

µ(X − y) dEϕ,ψ(y). (3)

We note that ran(E) is contained in ran(µ ∗ E) only if µ is a point measure.
However, it may happen that one can reconstruct (the moments of) E from
(the moments of) µ ∗ E in such a way that the full statistics become uniquely
determined. Indeed, the moment operators of µ ∗E and E are related with each
other as follows ([19]).
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����� 4.1� Let E : B(R) → L(H ) be a semispectral measure, and µ : B(R) →
[0, 1] a probability measure. If µ[k] exists, then D(E[k]) ⊂ D((µ ∗ E)[k]), and

(µ ∗ E)[k] ⊃
k∑

n=0

(
k

n

)
µ[k − n]E[n]. (4)

Assume now that all the moments µ[k] of the blurring probability measure

µ are finite and in addition that ∅ �= D ⊂
∞⋂
k=0

D(E[k]). Then for any state

ρ = |ϕ 〉〈ϕ|, ϕ ∈ D,

pµ∗Eρ [k] =

k∑
n=0

(
k

n

)
µ[k − n]pEρ [n], (5)

from which a recursion formula for the moments pEρ [k] is obtained:

pEρ [k] = pµ∗Eρ [k]−
k−1∑
n=0

(
k

n

)
µ[k − n]pEρ [n]. (6)

Assume, further, that the moments pEρ [k] fulfill the operationally verifiable con-
dition

|pEρ [k]| ≤ CRkk! , k = 1, 2, . . . . (7)

This implies that
∫
ea|x| dpEρ <∞, whenever 0 < a < 1/2R (see, e.g. [33, Propo-

sition 1.5]), showing that the probability measure pEρ is exponentially bounded,

a condition which assures that the moment sequence
(
pEρ [k]

)∞
k=0

uniquely deter-

mines the probability measure pEρ , see, e.g., [3, p. 406, Theorem 30.1]. If the

set D above is a dense subspace, then the probability measures pEρ , ρ = |ϕ 〉〈ϕ|,
ϕ ∈ D, determine, by the polarization identity, the observable E. Note that if
E is a spectral measure, then there always exists such a dense subspace D so
that it only remains to check that the convolving measure µ has finite moments
and that the condition (7) is satisfied for a sufficiently large set of states ρ.

We conclude that under the operational conditions specified above one can
reconstruct the moments of pEρ and then uniquely determine the corresponding

statistics, from the actually measured distribution pµ∗Eρ using the method of
moments even though the range of E may not be contained in the range of
µ ∗ E. One may call this an indirect E-measurement.
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5. Examples:
Measuring together sharp noncommuting observables

5.1. Indirect measurement of sharp position and momentum

Let Q and P denote the spectral measures of the position and momentum
operators Q and P , acting in L2(R). The convolutions µ ∗ Q and ν ∗ P of Q
and P with probability measures µ, ν : B(R) → [0, 1] are unsharp position and
momentum observables, respectively. The standard (von Neumann) model of a
position measurement constitutes a realization of µ ∗Q where µ is an absolutely
continuous probability measure depending on the preparation of the measure-
ment probe and the coupling strength between probe and particle (for details,
see [8]).

Consider a measurement of µ ∗ Q. Assuming that all the moments of µ are
finite, for instance, in the standard model the initial probe state is a (compactly
supported) slit-state or a Gaussian state, and choosing D to be, for instance,
the linear span of the (normalized) Hermite functions, then the moments pQρ [k],
k ∈ N, can be obtained recursively by (6) from the actually measured statistics
pµ∗Qρ , ρ = |ϕ 〉〈ϕ|, ϕ ∈ D, and they fulfill the condition (7). Therefore, the

numbers pQρ [k], k ∈ N, determine the distribution pQρ . Due to the density of

D, the actual measurement ρ �→ pµ∗Qρ thus determines the whole observable

ρ �→ pQρ , that is, the (sharp) position observable Q is measured indirectly by a
measurement of an unsharp position µ∗Q, whenever all moments of the blurring
measure µ are finite.

Similarly, an unsharp momentum measurement can serve as an indirect mea-
surement of the sharp momentum.

Sharp position and momentum observables Q and P are (strongly) noncom-
mutative. Therefore, they are noncoexistent, they do not have a biobservable or
joint observable, nor are they functions of a third observable. Nevertheless they
can be measured together indirectly, that is, there are measurements M which
allow one to determine, from the actual statistics ρ �→ pEρ , both the position

statistics ρ �→ pQρ and the momentum statistics ρ �→ pPρ .

The Weyl operators representing phase space translations by a displacement

(q, p) ∈ R
2 are defined as Wqp = ei

1
2 qpe−iqP eipQ. It is well known that any

covariant phase space observable GT is generated by a positive operator T of
trace one (acting in L2(R)) such that for Z ∈ B(R2),

GT (Z) =
1

2π

∫
Z

WqpTW
∗
qp dq dp . (8)

The Cartesian marginal observables of GT are the unsharp position and momen-
tum observables µ ∗ Q and ν ∗ P, with µ and ν defined by the Fourier related
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densities f(q) =
∑
i
ti|ηi(−q)|2 and g(p) =

∑
i
ti|η̂i(−p)|2, where T =

∑
i
ti|ηi 〉〈 ηi|

is the spectral decomposition of the generating operator T . Choosing the gener-
ating operator T such that all the moments µ[k] and ν[k], k ∈ N, are finite, and
using D as given above, we conlude that the marginal measurement statistics
ρ �→ pµ∗Qρ and ρ �→ pν∗Pρ , ρ = |ϕ 〉〈ϕ|, ϕ ∈ D, collected under a single measure-

ment scheme, suffice to determine both the position statistics ρ �→ pQρ and the

momentum statistics ρ �→ pPρ .

The Arthurs-Kelly model, or a sequential standard position measurement
followed by a sharp momentum measurement, or the eight-port homodyne de-
tection scheme provide examples of measurement realizations of such a joint
determination of the position and momentum statistics. For a more detailed
discussion of these models, see, for example, [4, 31, 35, 8, 16, 10, 18].

5.2. Indirect measurement of spin-12 components

For observables with discrete or even finite sets of outcomes it becomes
particularly simple to consider the question of indirect measurements. Let
P1, P2, . . . , Pn be a complete family of mutually orthogonal projections such that∑
k

Pk = I, and let (λjk) be a stochasticm×nmatrix, that is, λjk ≥ 0,
∑
k

λk = 1.

Then the operators Ej =
∑
k

λjkPk are positive and satisfy
∑
j

Ej = I, that is,

they constitute an observable which is a smeared version of the sharp observable
defined by the Pk. If the matrix (λjk) is square and invertible, it follows that the
Pk can be expressed as linear combinations of the Ej , so that Pk =

∑
j

µkjEj . It

follows that tr
[
ρPk

]
= tr

[
ρ′Pk

]
for all k if and only if tr

[
ρEj

]
= tr

[
ρ′Ej

]
; in other

words, the observables given by {Pk : k = 1, 2, . . . , n} and {Ej : j = 1, 2, . . . , n}
are equally good at separating distinct states, they are informationally equiva-
lent.

As an example, we consider the joint determination of the statistics of non-
commuting spin components of a spin-12 system. Using the bijective correspon-

dence betweenM (C2) and C
4 mediated by the Pauli basis I, σ1, σ2, σ3, we recall

that any operator (2 × 2 matrix) can be written as A = a0I + a · σ. A state ρ
is given by ρ = 1

2 (I + r · σ), with r ∈ R
3, |r| ≤ 1. The following four-outcome

observable G is an example of a joint observable for smeared versions of the
sharp observables σ1 and σ2:

{+,−}× {+,−} � (j, k) �→ Gjk =
1
4 (I + njk · σ) , (9)
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where n+,± = (e1 ± e2)/
√
2, n−,± = (−e1 ± e2)/

√
2. The two obvious marginal

observables are given by the following pairs of effects:

E
(1)
± =G±,+ +G±,− = 1

2

(
I ±

√
2
2 σ1

)
(10)

= 1
2

(
1±

√
2
2

)
P

(1)
+ + 1

2

(
1∓

√
2
2

)
P

(1)
− ,

E
(2)
± =G+,± +G−,± = 1

2

(
I ±

√
2
2
σ2

)
(11)

= 1
2

(
1±

√
2
2

)
P

(2)
+ + 1

2

(
1∓

√
2
2

)
P

(2)
− .

Here the P
(k)
± := 1

2 (I ± σk) are the spectral projections of σk. It is obvious that

the transformations {P (k)
± } → {E(k)

± } are invertible. In fact, we have:

P
(k)
± = ±1

2

(√
2± 1

)
E

(k)
+ ∓ 1

2

(√
2∓ 1

)
E

(k)
− . (12)

Thus the statistics pσk
ρ , k = 1, 2, can be reconstructed from the statistics of E(k)

via measuring the joint observable G.

Realistic models of the measurement of a observable of the form {Gjk} were
first presented in [6]. A systematic study of the reconstruction of sharp spin-
1
2 observables from such non-ideal or approximate joint measurements can be
found in [27].

6. The method of state reconstruction

The state ρ of a quantum particle is not determined by its position and
momentum distributions pQρ and pPρ . This is a well-known but important non-
classical feature of the quantum theory, a feature called surplus information by
C. F. von Weizsäcker [37].

If an observable E is informationally complete, that is, the map ρ �→ pEρ sep-
arates states, and if one can determine an algorithm for reconstructing the state
ρ from the statistics pEρ , then one can obtain the measurement statistics of any

observable, in particular the statistics pQρ and pPρ . Feasible state reconstruction

algorithms are known for quadrature distributions,4 and simple phase space ob-
servables (see [25], and also [17]). Hence, it is clear that the question (Q) can
have a positive answer without the observables being coexistent.

The reconstruction scheme of Subsection 5.1 shows, however, that there are
single measurement schemes which allow one to reconstruct, in an operational
way, the moments of the distributions pQρ and pPρ without the need to reconstruct

first the state ρ; in fact, in the example of a phase space observable GT , it is

4Note that these can easily be bunched together to form a single informationally complete
observable.
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not necessary to require that GT is informationally complete.5 For a suitable
subclass of states, the moments contain the same information as the distribu-
tions themselves, so one may speak of a measurement. (Obviously, a serious
disadvantage of this method compared to the state reconstruction is that the
distributions cannot be algorithmically reconstructed from the moments.)

In the case of a spin-12 system, it is possible to obtain simultaneous recon-
structions of the spin component observables σn along all directions (specified
by the unit vectors n) from a single observable M as follows. Let (S2,B(S2))
denote the unit 2-sphere in R3, equipped with the standard Borel σ-algebra,
and let dΩ(n) be the uniform surface measure normalised as Ω(S2) = 4π. The
following is a normalized positive operator measure:

B(S2) � Z �→M (Z) :=
1

2π

∫
Z

1
2 (I + n · σ) dΩ(n) . (13)

It is obvious that one can define, for any direction, a 2-valued marginal observable
by choosing a partition of S2 in the form of two complementary hemispheres with
poles along the given direction. For simplicity, we consider the direction along
the z-axis of some Cartesian coordinate system, and denote the partition as Z±.
Then we obtain:

M (Z±) ≡M± = 1
2

(
I ± 1

2σ3
)
. (14)

As before, the statistics of σ3 can be reconstructed from this marginal observable.

7. Joint measurability of noncommuting observables

The examples of the preceding sections illustrate the following well-known
fundamental fact. Noncommuting sharp observables do not admit any joint
observable; but there are smeared versions of such noncommuting observables
that do possess joint observables. The natural question about the necessary
amount of unsharpness required to ensure joint measurability has not yet been
answered in full generality, but important insights have been gained in special
cases.

In the case of position and momentum it is known [38, 12] that observables
µ ∗ Q and ν ∗ P are jointly measurable if and only if the smearing measures µ,
ν have Fourier-related densities, in the sense described in Subsection 5.1. In
this case the variances of these measures, which represent measures of the in-
accuracies of the position and momentum determination, satisfy the Heisenberg

5The informational completeness of GT is known to be equivalent to the assumption that
tr
[
WqpT

] �= 0 for almost all (q, p) ∈ R2 ([1, 20]).
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uncertainty relation,

Var(µ) Var(ν) ≥ �2

4
, (15)

which thus is seen to constitute a necessary condition of joint measurability.

In the case of a spin-12 system or, more generally, a qubit represented by a 2-di-

mensional Hilbert space C
2, the question of necessary and sufficient conditions

for the coexistence (equivalently, joint measurability) of a pair of effects has
recently been completely answered ([11, 34, 39]). Effects A = a0I + a · σ and
B = b0I +b ·σ are coexistent if and only if a certain inequality holds which can
be cast in the following form [11]:

1
2 [F (2− B) + B(2− F )] + (xy − 4a · b)2 ≥ 1. (16)

Here the following abbreviations are used:

F := ϕ(A)2 + ϕ(B)2; (17)

B := β(A)2 + β(B)2; (18)

x := ϕ(A)β(A) = 2a0 − 1; (19)

y := ϕ(B)β(B) = 2b0 − 1; (20)

ϕ(A) :=
√
a20 − |a|2 +

√
(1− a0)2 − |a|2; (21)

β(A) :=
√
a20 − |a|2 −

√
(1− a0)2 − |a|2. (22)

ϕ(B) and β(A) are defined similarly. The quantity ϕ(A) is a measure of the
degree of unsharpness of the effect A, and β(A) and x are measures of the bias
of A. An effect A (and its complement A′ = I −A) is unbiased if the mid-point
of its spectrum is 1

2 . (A more detailed investigation of these properties and
measures can be found in [7].) The degree of noncommutativity is represented
by the deviation of the term |a · b| from ‖a‖ ‖b‖. This inequality represents a
rather complicated trade-off between the unsharpness, bias and noncommuta-
tivity degrees of the two effects A, B, which must hold if they are to be jointly
measurable.

In the special case of unbiased effects (a0 = b0 = 1
2 ), the above coexistence

inequality assumes the simple form

16|a× b|2 ≤ (1− 4|a|2)(1− 4|b|2) (23)

Considering that A = 1
2I+a ·σ is a projection if and only if |a| = 1

2 , we see that

1−4|a|2 is a measure of the unsharpness of A. Hence the product of the degrees
of unsharpness of A, B is bounded below by the square of the vector product of
a and b, which is proportional to the commutator of A and B.
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8. Discussion

We have reviewed three notions of joint measurability (based on biobservables,
joint observables and functional calculus, respectively), the notion of coexistence,
and a concept of indirect measurement, and the known logical relations between
these notions.

The three notions of joint measurability provide operationally feasible ways
of reconstructing the statistics of two observables E1, E2 from their joint ob-
servable. We went on to show that such operational reconstruction can even be
achieved in cases where E1, E2 are not jointly measurable. We found impor-
tant instances where from the statistics pEρ of a given observable E one may,
without the need of full state reconstruction, infer the statistics of another ob-
servable pE1

ρ even though ran(E1) is not contained in ran(E), and, a fortiori,
there is no functional connection between E1 and E. For example, the statistics
of sharp position and momentum can be recovered from the statistics of a single
phase space observable for a dense set of states. Hence, also in this case, the
question (Q) has a positive answer without the observables involved being co-
existent. “Measuring together” two observable that are not jointly measurable
thus amounts to a common indirect measurement of the two observables, typi-
cally based on a measurement of a bi- or joint observable of unsharp versions or
approximations of them.

For two observables that are coexistent or jointly measurable, there is an
event, associated with an effect E(ZX,Y ) from the joint or encompassing observ-
able E, that represents the joint occurrence of two effects E1(X) and E2(Y ).
Such joint events do not exist for non-coexistent observables. This “deficiency”
cannot be removed through a common indirect measurement. In this sense
“measuring together” two observables in an indirect measuremet is a weaker
notion than “measuring jointly”. A more quantitative description of the idea
of measuring two noncommuting sharp (hence non-coexistent) observables to-
gether “indirectly” has been obtained in investigations of recent years into a
precise notion of approximate joint measurement. The examples given above, of
joint measurements of unsharp versions of such sharp observables, can be con-
sidered as approximate joint measurements. The quality of the approximation
is quantified by measures of inaccuracy, given by the distance between each one
of the sharp observables from one of the marginals of the joint observable. Mea-
surement uncertainty relations for such approximate joint measurements have
been obtained, for example, in [38, 9, 28].

The existence of “joint events” for effects E1(X), E2(Y ) of two jointly mea-
surable observables represented by effects F (X × Y ) from a joint observable
F gives rise to an interpretation in terms of joint unsharp values that can be
prepared by a suitable choice of measurement of F . An example of a weakly
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preparing measurement operation is given by the generalised Lüders operation
associated with an effect A, defined as the map ([6])

ρ �→ A1/2ρA1/2 . (24)

We also noted that while joint measurability implies coexistence, it is not
known whether there are coexistent observables that are not jointly measurable.
Here we face the following two possibilities: It may be the case that coexistence
is no more general than (one of) the three other notions of joint measurability;
then the notion of coexistence adds no new possibilities. Alternatively, coexis-
tence may turn out to be more general logically. There would thus be pairs of
observables that are coexistent although they are not jointly measurable; but
there seems to be no operational way of obtaining the probability distributions
of the two observables in question from the encompassing observable. We con-
clude that the notion of coexistence has no added value over and above the
three other notions of joint measurability. As far as the operational possibilities
of joint measurements are concerned, one can safely use the term coexistence as
a convenient synonym for joint measurability.
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