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Abstract. We describe the shape of the symplectic Dirac operators on Hermitian symmetric
spaces. For this, we consider these operators as families of operators that can be handled
more easily than the original ones.

1. Introduction

Symplectic spinor fields were introduced by Kostant [16] in the early 1970s. This
was done in the context of geometric quantization, where he was interested in con-
structing the so-called half-form bundle as well as the half-form pairing in order to
establish the appropriate Hilbert space. Kostants construction was quite an essential
step in geometric quantization, but afterwards no further work has been done to
seek out interior aspects of symplectic spin geometry for two decades.

In 1995, the second author introduced symplectic Dirac operators and initialized
a systematical investigation [8]. Some progress has been made in understanding
basic properties of these operators [9]. Moreover, symplectic Dirac operators have
been studied in the setting of parabolic geometries (cf. e.g. [14,17]) and received
attention in mathematical physics (cf. e.g. [20]). A systematic and thorough intro-
duction to the subject can be found in [12].

There are several topics of their own interest that are relevant to get a broader
understanding of symplectic Dirac operators. For example, a deeper knowledge of
the moduli space of symplectic structures may provide a way of analyzing how the
symplectic Dirac operators are related to the choice of the symplectic structure of
the underlying symplectic manifold. For considerations on moduli spaces of sym-
plectic structures, see [6,7,23]. Furthermore, the symplectic Dirac operators are
defined by means of a symplectic connection. It is well-known that in symplectic
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geometry there is no analog of the Levi–Civita connection. With the aim to get a
deeper insight into the structure of the space of symplectic connections, in [13] an
approach of a purely symplectic Yang-Mills theory is given.

In order to develop the symplectic Dirac operator picture, it is significant to have
more explicit examples. In the present paper, we study symplectic Dirac operators
in the case where the underlying symplectic manifold is a Hermitian symmetric
space. This gives a class of examples which were not figured out so far. In the
particular case of odd-dimensional complex projective spaces, the spectrum of an
associated second order operator has been already computed [10,24]. However, no
calculations are performed for the first order symplectic Dirac operators there. Here,
we are going to study the shape of these operators itself. Our strategy is based on
the idea of considering symplectic Dirac operators as families of operators acting
on more suitable spaces than the section space of an infinite rank vector bundle.

The paper is organized as follows: the necessary concepts of symplectic Dirac
operators in the setting of symmetric symplectic spaces are introduced in Sect. 2.
For the general situation, we refer to [12]. In Sect. 3 we describe a splitting of the
symplectic spinor bundle into subbundles of finite rank and apply the Frobenius
reciprocity to decompose the corresponding section spaces in the case of a Hermi-
tian symmetric space. Moreover, we explain how the symplectic Dirac operators
built with respect to the canonical Hermitian connection behave in relation to these
decompositions. The last section is devoted to a detailed discussion of the case
CP1.

The example of CP1 has already been considered by the second author in an
earlier paper, see [10]. But two new aspects are relevant in the present paper. First,
as already mentioned above, here the symplectic Dirac operators itself are investi-
gated, whereas [10] contains results only for the associated second order operator.
Second, the calculations are done in the unified context of Hermitian symmetric
spaces. In contrast to that, in [10] the example of CP1 is studied as a stand alone
example with specialized computations.

2. Preliminaries

Let G be a simply connected real Lie group, let H be a closed and connected
subgroup of G and set M to be the homogeneous space G/H . Let g and h denote
the Lie algebras of G and H , respectively. We suppose that there exists a subspace
m ⊂ g such that

g = h ⊕ m (2.1)

as well as

[h,m] ⊂ m and [m,m] ⊂ h.

Moreover, let ω0 be an ad(h)-invariant non-degenerate skew-symmetric bilinear
form on m. Identifying the tangent space To M to M at the point o = eH with
m, ω0 induces a G-invariant almost symplectic structure ω on M . Here and in the
sequel, e denotes the unit element of G. Since the ad(h)-invariance of ω0 is equiv-
alent to the trivial extension of ω0 to g being a Chevalley 2-cocycle, ω is closed.



Symplectic Dirac operators on Hermitian symmetric spaces 297

Thus ω is even a symplectic structure on M . In this way, we have described (M, ω)

as a simply connected symplectic symmetric space (cf. [2]).
The canonical projection π : G → M and the right action of H on G give

G the structure of an H -principal fiber bundle. Let κ : H → GL(m) be the isot-
ropy representation of the homogeneous space M , i.e. the restriction of the adjoint
representation of G to H acting on m. By assumption, κ maps into the symplectic
group Sp(m) of the symplectic vector space (m, ω0). We fix a symplectic basis
(X1, . . ., X2n) of (m, ω0), i.e. a basis of m such that

ω0(X j , Xk) = ω0(Xn+ j , Xn+k) = 0 and ω0(X j , Xn+k) = δ jk

for j, k = 1, . . ., n, and identify the symplectic frame bundle R of (M, ω) with
the Sp(m)-principal fiber bundle G ×κ Sp(m) associated to G with respect to
κ : H → Sp(m) via

[g, A] ∈ G ×κ Sp(m) �→ (dπ(dLg(AX1)), . . ., dπ(dLg(AX2n))) ∈ R.

Let Mp(m) be the connected double covering group of Sp(m) and let ρ : Mp(m) →
Sp(m) denote the covering homomorphism. If κ̃ : H → Mp(m) is a lift of κ , i.e.
a homomorphism such that ρ ◦ κ̃ = κ , then the Mp(m)-principal fiber bundle
P = G ×κ̃ Mp(m) together with the map FP : P → R defined by FP ([g, q]) =
[g, ρ(q)] is a metaplectic structure of the symplectic manifold (M, ω).

Theorem 2.1. The mapping κ̃ �→ (P, FP ) described above induces a 1:1 corre-
spondence between the lifts κ̃ of κ and the isomorphism classes of metaplectic
structures (P, FP ) of the simply connected symplectic symmetric space (M, ω).

Proof. One proceeds as in the Riemannian case (cf. [1,4,19]). ��
According to the above, we identify the tangent bundle T M of M with the vector
bundle G ×κ m associated to G with respect to κ via

[g, X ] ∈ G ×κ m �→ dπ(dLg X) ∈ T M.

The space of smooth vector fields on M , i.e. the space �(T M) of smooth sections
of T M is then the space of smooth maps ξ : G → m such that

ξ(gh) = κ
(

h−1
)

ξ(g)

for g ∈ G and h ∈ H and the symplectic structure ω is given by

ω([g, X ], [g, Y ]) = ω0(X, Y ).

Consequently, the function ω(ξ1, ξ2) ∈ C∞(M) for ξ1, ξ2 ∈ �(T M) satisfies

ω(ξ1, ξ2)(π(g)) = ω0(ξ1(g), ξ2(g)). (2.2)

Let ∇ be the G-invariant connection on M defined by

∇[g,X ]ξ = [g, dξ(dLg X)]
for [g, X ] ∈ T M and ξ ∈ �(T M). Then

(∇ξ1ξ2)(g) = dξ2(dLgξ1(g)) (2.3)

for ξ1, ξ2 ∈ �(T M) and g ∈ G.
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Proposition 2.2. The connection ∇ is symplectic, i.e. ∇ω = 0.

Proof. Let ξ, ξ1, ξ2 ∈ �(T M). By means of

ξ(u)(π(g)) = d(u ◦ π)(dLgξ(g))

for u ∈ C∞(M) and Eqs. (2.2) and (2.3), we conclude

ξ(ω(ξ1, ξ2))(π(g)) = d(ω0(ξ1, ξ2))(dLgξ(g))

= ω0(dξ1(dLgξ(g)), ξ2(g)) + ω0(ξ1(g), dξ2(dLgξ(g)))

= ω0((∇ξ ξ1)(g), ξ2(g)) + ω0(ξ1(g), (∇ξ ξ2)(g))

= ω(∇ξ ξ1, ξ2)(π(g)) + ω(ξ1,∇ξ ξ2)(π(g)).

��
Moreover, we have (cf. [15,18])

Proposition 2.3. The connection ∇ is torsion free.

Thus ∇ is a torsion-free symplectic connection on the almost symplectic mani-
fold (M, ω). By a classical result of Tondeur (cf. [21]), this also implies that (M, ω)

is symplectic. The question when ∇ is a so-called connection of Ricci type was
studied in [5]. In particular, it was shown that if (M, ω) is compact then (M, ω) is
the complex projective space CPn .

Using the fixed symplectic basis (X1, . . . , X2n) of (m, ω0), we identify Sp(m)

and its double cover Mp(m) with the symplectic group Sp(n, R) and the metaplectic
group Mp(n, R), respectively. Let m : Mp(m) → U(L2(Rn)) be the metaplectic
representation. Let κ̃ be a lift of κ and let (P, FP ) be the metaplectic structure of
(M, ω) constructed from κ̃ as described above. The symplectic spinor bundle is
then the Hilbert space bundle Q = G ×λ L2(Rn) associated to G with respect to
λ = m◦ κ̃ : H → U(L2(Rn)). Accordingly, a symplectic spinor field, i.e. a smooth
section of Q is a smooth map ϕ : G → L2(Rn) such that

ϕ(gh) = λ
(

h−1
)

ϕ(g)

for g ∈ G and h ∈ H . Since the symplectic connection ∇ on M is induced by
the G-invariant connection on the H -principal fiber bundle G that corresponds to
the decomposition (2.1), the same holds true for the spinor derivative on Q, also
denoted by ∇. Therefore,

(∇ξ ϕ)(g) = dϕ(dLgξ(g)
)

(2.4)

for ϕ ∈ �(Q) and ξ ∈ �(T M).
According to our conventions, the symplectic Clifford multiplication is the

homomorphism µ0 : m ⊗ L2(Rn) → L2(Rn) given by

µ0
(

X j ⊗ f
)
(x) = ix j f (x) and µ0

(
Xn+ j ⊗ f

) = ∂ f

∂x j
(2.5)
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for f ∈ L2(Rn), x = (x1, . . ., xn) ∈ R
n and j = 1, . . ., n, where the multiplication

by X ∈ m has to be seen as an unbounded operator on L2(Rn). As usual, we
shall write X · f for µ0(X ⊗ f ). The multiplication µ0 induces a multiplication
µ : T M ⊗ Q → Q by

µ([g, X ] ⊗ [g, f ]) = [g, X · f ].
The first symplectic Dirac operator is now defined as

D = µ ◦ (ω̄ ⊗ idQ) ◦ ∇ : �(Q) → �(Q),

where ω̄ means the isomorphism ω̄ : T ∗M → T M generated by the symplectic
structure ω on M .

Proposition 2.4. The symplectic Dirac operator D can be written as

D(ϕ) =
n∑

j=1

X j · Xn+ j (ϕ) −
n∑

j=1

Xn+ j · X j (ϕ) (2.6)

for ϕ ∈ �(Q), where X (ϕ) for X ∈ m denotes the derivative of ϕ in the direction
of the left-invariant vector field determined by X, i.e.

X (ϕ)(g) = dϕ(dLg X).

Proof. Let ξ1, . . . , ξ2n ∈ �(T M) such that ξ j (e) = X j for j = 1, . . . , 2n. By the
local expression for D (cf. [12]) and Eq. (2.4), we then have

D(ϕ)(e) =
n∑

j=1

ξ j (e) · (∇ξn+ j ϕ
)
(e) −

n∑
j=1

ξn+ j (e) · (∇ξ j ϕ
)
(e)

=
n∑

j=1

X j · dϕ(Xn+ j ) −
n∑

j=1

Xn+ j · dϕ(X j )

=
n∑

j=1

X j · Xn+ j (ϕ)(e) −
n∑

j=1

Xn+ j · X j (ϕ)(e).

Since both sides of Eq. (2.6) describe G-invariant operators, this proves the propo-
sition. ��

To construct the second Dirac operator D̃, we need an ω-compatible almost
complex structure J on M . We assume that J is G-invariant. That is, we suppose
that the endomorphism J : T M → T M is given by

J [g, X ] = [g, J0 X ]
for [g, X ] ∈ T M , where J0 is an ad(h)-invariant complex structure on the vector
space m such that

g0(X, Y ) = ω0(X, J0Y )
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for X, Y ∈ m defines an inner product g0 on m. Then

ω0(J0 X, J0Y ) = ω0(X, Y ) and g0(J0 X, J0Y ) = g0(X, Y ) (2.7)

for any X, Y ∈ m. Let g denote the G-invariant Riemannian metric on M induced
by g0. This means that

g([g, X ], [g, Y ]) = g0(X, Y ).

By Eq. (2.7),

ω(Jξ1, Jξ2) = ω(ξ1, ξ2) and g(Jξ1, Jξ2) = g(ξ1, ξ2)

for all ξ1, ξ2 ∈ �(T M). Furthermore, it follows that (M, g, J ) is a Hermitian
symmetric space and that ∇ is its Levi-Civita connection.

The second symplectic Dirac operator is defined as

D̃ = µ ◦ (ḡ ⊗ idQ) ◦ ∇ : �(Q) → �(Q),

where ḡ : T ∗M → T M is the identification by means of the Riemannian metric g
on M . Analogously to the proof of Proposition 2.4, one can show

Proposition 2.5. Suppose that the basis (X1, . . . , X2n) of m is unitary, i.e., in
addition to symplecticity, it satisfies J0 X j = Xn+ j for j = 1, . . . , n. Then the
symplectic Dirac operator D̃ takes the form

D̃(ϕ) =
2n∑
j=1

X j · X j (ϕ)

for ϕ ∈ �(Q).

3. Decompositions and invariant subspaces

First we decompose the symplectic spinor bundle Q into subbundles of finite rank.
For this, let U(m) denote the unitary group of the Hermitian vector space (m, g0, J0)

and set Û(m) = ρ−1(U(m)), which is a connected double cover of U(m). The irre-
ducible components of the restriction u : Û(m) → U(L2(Rn)) of the metaplectic
representation m to Û(m) can be described as follows. Let N0 denote the set of non-
negative integers and let hα ∈ L2(Rn) for a multi-index α = (α1, . . . , αn) ∈ N

n
0

be the Hermite function on R
n defined by

hα(x) = hα1(x1) . . . hαn (xn). (3.1)

Here, hl for l ∈ N0 are the classical Hermite functions on R, which are given by

hl(t) = et2/2 dl

dt l

(
e−t2

)
.



Symplectic Dirac operators on Hermitian symmetric spaces 301

As is well known, the Hermite functions hα form a complete orthogonal system
in L2(Rn). Furthermore, for any l ∈ N0, the span Wl of the functions hα with
α1 + · · · + αn = l is an irreducible u-invariant subspace of L2(Rn) (cf. [3]).

Since the complex structure J0 on m is assumed to be ad(h)-invariant, the homo-
morphism κ maps into U(m) and, therefore, the lift κ̃ maps into Û(m). Hence the
unitary representation λ : H → U(L2(Rn)) can be written as λ = u ◦ κ̃ . Let
ul : Û(m) → U(Wl) be the restriction of u to the subspace Wl and set λl = ul ◦ κ̃ .

The above yields

Proposition 3.1. The symplectic spinor bundle Q splits into the orthogonal sum of
the finite rank subbundles Ql = G ×λl Wl , l ∈ N0.

In the following considerations, we want to make use of the Frobenius rec-
iprocity. To be able to do this, we assume from now on that G is compact. Let
τa : G → GL(Va), a ∈ A, form a complete system of representatives of isomor-
phism classes of irreducible complex representations of G. Let ν : H → GL(W) be
a finite-dimensional representation of H and let HomH (Va,W) be the space of all
H -equivariant homomorphisms L : Va → W. We embed Va ⊗ HomH (Va,W)

into the space �(G ×ν W) of smooth sections of the associated vector bundle
G ×ν W by assigning to v ⊗ L ∈ Va ⊗ HomH (Va,W) the H -equivariant map

g ∈ G �→ L
(
τa

(
g−1

)
v
)

∈ W.

For a proof of the theorem below, we refer to [22].

Theorem 3.2. (Frobenius reciprocity) The space �(G ×ν W) decomposes into the
direct sum

∑
a∈A

Va ⊗ HomH (Va,W).

Applying Theorem 3.2 to the representation ul , we obtain a decomposition of
�(Ql) into the sum

∑
a∈A

Va ⊗ HomH (Va,Wl).

Using this and Proposition 3.1, we now want to find invariant subspaces for the sym-
plectic Dirac operators D and D̃. We start with expressing the symplectic Clifford
multiplication by means of the Hermite functions hα .

Lemma 3.3. For any α ∈ N
n
0 and j = 1, . . . , n,

X j · hα = −iα jhα−〈 j〉 − i

2
hα+〈 j〉

and

Xn+ j · hα = −α jhα−〈 j〉 + 1

2
hα+〈 j〉,

where 〈 j〉 = (δ1 j , . . . , δnj ).
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Proof. This follows from Eqs. (2.5) and (3.1) and the relations

h′
l(t) − thl(t) = hl+1(t) and h′

l(t) + thl(t) = −2lhl−1(t)

for the classical Hermite functions hl . ��
Lemma 3.4. Let L ∈ HomH (Va,Wl) and set

Da(L) = −
n∑

j=1

X j · L ◦ (τa)∗(Xn+ j ) +
n∑

j=1

Xn+ j · L ◦ (τa)∗(X j ). (3.2)

Then

Da(L) ∈ HomH (Va,Wl−1) ⊕ HomH (Va,Wl+1)

with the convention that W−1 = 0.

Proof. By Lemma 3.3,

X · Wl ⊂ Wl−1 ⊕ Wl+1

for X ∈ m. Consequently, Da(L) is a homomorphism from Va to Wl−1 ⊕ Wl+1.
It remains to show that Da(L) is H -equivariant. Let h ∈ H and X, Y ∈ m. Then

τa

(
h−1

)
◦ (τa)∗(X) ◦ τa(h) = d

dt
τa

(
h−1

)
◦ τa(exp(t X)) ◦ τa(h)

∣∣∣∣
t=0

= τa

(
exp

(
t Ad

(
h−1

)
X

))∣∣∣
t=0

= (τa)∗
(
κ

(
h−1

)
X

)
.

Hence

(τa)∗(X) ◦ τa(h) = τa(h) ◦ (τa)∗
(
κ

(
h−1

)
X

)
. (3.3)

Since the symplectic Clifford multiplication is Mp(m)-equivariant, i.e.

ρ(a)X · m(a) f = m(a)(X · f )

for a ∈ Mp(m) and f ∈ L2(Rn), we furthermore have

X · λ(h) f = λ(h)
(
κ

(
h−1

)
X · f

)
. (3.4)

Equations (3.3) and (3.4) imply

X · L ◦ (τa)∗(Y ) ◦ τa(h) = X · L ◦ τa(h) ◦ (τa)∗
(
κ

(
h−1

)
Y

)

= X · λ(h) ◦ L ◦ (τa)∗
(
κ

(
h−1

)
Y

)

= λ(h) ◦
(
κ

(
h−1

)
X · L ◦ (τa)∗

(
κ

(
h−1

)
Y

))
.

Since the definition of Da(L) does not depend on the choice of the symplectic
basis (X1, . . . , X2n) and since (κ(h)X1, . . . , κ(h)X2n) for any h ∈ H is again a
symplectic basis, this proves the lemma. ��
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For a ∈ A, set

Ua =
∞∑

l=0

HomH (Va,Wl).

By Lemma 3.4, Eq. (3.2) defines a homomorphism Da : Ua → Ua. The symplectic
Dirac operator D and the homomorphisms Da are related by

Lemma 3.5. If v ⊗ L ∈ Va ⊗ Ua, then

D(v ⊗ L) = v ⊗ Da(L).

Proof. We deduce that

X (v ⊗ L)(g) = d

dt
(v ⊗ L)(g exp(t X))

∣∣∣∣
t=0

= d

dt
L

(
τa

(
exp(−t X)g−1

)
v
)∣∣∣∣

t=0

= −L ◦ (τa)∗(X)
(
τa

(
g−1

)
v
)

for X ∈ m and g ∈ G. This together with Proposition 2.4 gives the assertion. ��
The decompositions obtained above and Lemma 3.5 allow us to consider the

symplectic Dirac operator D as a map

D :
∑
a∈A

Va ⊗ Ua →
∑
a∈A

Va ⊗ Ua.

Moreover, we have

Proposition 3.6. For any a ∈ A, the space Va ⊗ Ua is invariant under D.

Proof. This is a consequence of Lemmas 3.4 and 3.5. ��
The same can be done for the symplectic Dirac operator D̃ and the second order

operator P = i
[D̃,D]

.

Lemma 3.7. Let L ∈ HomH (Va,Wl) and set

D̃a(L) = −
2n∑
j=1

X j · L ◦ (τa)∗(X j ), (3.5)

where here the basis (X1, . . . , X2n) of m is assumed to be unitary. Then

D̃a(L) ∈ HomH (Va,Wl−1) ⊕ HomH (Va,Wl+1).

Proof. Using that κ(h) is unitary for all h ∈ H , the proof is the same as the proof
of Lemma 3.4. ��

Consequently, Eq. (3.5) gives rise to a homomorphism D̃a : Ua → Ua.
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Lemma 3.8. Let v ⊗ L ∈ Va ⊗ Ua. Then

D̃(v ⊗ L) = v ⊗ D̃a(L) and P(v ⊗ L) = v ⊗ Pa(L),

where Pa = i[D̃a,Da].

Proof. This follows from Proposition 2.5 and Lemma 3.5. ��

Proposition 3.9. The spaces Va ⊗ Ua are invariant under D̃ and P .

Proof. This is immediate from Lemmas 3.7 and 3.8 and Proposition 3.6. ��

Example 3.10. We consider the complex projective space CPn = SU(n+1)/U(n),
where the group U(n) is embedded into SU(n + 1) by means of

B ∈ U(n) �→
(

det(B)−1 0
0 B

)
∈ SU(n + 1).

Let su(n+1) and u(n) denote the Lie algebras of SU(n+1) and U(n), respectively,
and let m be the image of the homomorphism

� : z ∈ C
n �→

(
0 −z̄T

z 0

)
∈ su(n + 1).

Then m is an ad(u(n))-invariant complement of u(n) ⊂ su(n + 1) satisfying
[m,m] ⊂ u(n). We identify m with C

n via �. With this, the isotropy represen-
tation κ takes the form

κ(B) = det(B)B

for B ∈ U(n). Moreover, ω0, J0 and g0 are the standard symplectic form, complex
structure and inner product on C

n , i.e.

ω0(z, w) = Im
(

z̄Tw
)

, J0z = iz and g0(z, w) = Re
(

z̄Tw
)

for z, w ∈ C
n . There exists a lift κ̃ of κ iff n is odd and in this case it is unique

(for more details, see [24]). Since κ maps onto U(n) and since the representations
ul are irreducible and pairwise inequivalent, by Schur’s lemma, HomH (Va,Wl)

is non-trivial for only finitely many a ∈ A. Therefore, the spaces Va ⊗ Ua have
finite dimension.

In the next section, we examine the case of the complex projective line CP1 =
SU(2)/U(1) in more detail.
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4. Symplectic Dirac operators on CP 1

We set

E0 =
(

i 0

0 i

)
, E1 =

(
0 1

−1 0

)
, E2 =

(
0 i

i 0

)
.

The matrices E0, E1, E2 form a basis of the Lie algebra su(2) and satisfy

[E0, E1] = 2E2 , [E0, E2] = −2E1 , [E1, E2] = 2E0. (4.1)

Furthermore, the subalgebra u(1) ⊂ su(2) is spanned by E0 and {E1, E2} is a
symplectic basis of the complement m. Since the complex structure J0 on m is
given by J0 E1 = E2, this basis is also unitary. We set j0 = ρ−1∗ (J0) and define a
homomorphism κ̃ : U(1) → Û(m) by

κ̃∗(E0) = 2j0.

By Eq. (4.1),

κ∗(E0) =
(

0 −2
2 0

)
= 2J0.

Consequently, ρ∗ ◦ κ̃∗ = κ∗, which implies ρ ◦ κ̃ = κ . Hence κ̃ is a lift of κ .
Let Vk for k ∈ N0 be the vector space of homogeneous polynomials of

degree k in two variables z1 and z2 with complex coefficients. The polynomials
pk,0, . . . , pk,k defined by

pk, j (z1, z2) = zk− j
1 z j

2

form a basis of Vk . Let τk : SU(2) → GL(Vk) be the representation of SU(2)

induced by the canonical action of SU(2) on C
2, i.e.

(τk(g)p)(z) = p(g−1z)

for g ∈ SU(2), p ∈ Vk and z ∈ C
2. As it is well-known (cf. e.g. [25]), the repre-

sentations τk are irreducible and pairwise inequivalent and these are all irreducible
complex representations of SU(2) up to isomorphism. Moreover, one has

Lemma 4.1. For all k ∈ N0 and j = 0, . . . , k,

(τk)∗(E0)pk, j = i(2 j − k)pk, j ,

(τk)∗(E1)pk, j = ( j − k)pk, j+1 + j pk, j−1,

(τk)∗(E2)pk, j = i( j − k)pk, j+1 − i j pk, j−1.

Lemma 4.2. Let k, l ∈ N0. If (k + 1)/2 + l ∈ {0, . . . , k}, then the space
HomU(1)(Vk,Wl) is one-dimensional and generated by the linear map Lk,l :
Vk → Wl defined by

Lk,l(pk, j ) =
{

hl for j = (k + 1)/2 + l
0 else

.

In all other cases, HomU(1)(Vk,Wl) is trivial.
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Proof. Let H0 : L2(R) → L2(R) be the Hamilton operator of the one-dimensional
harmonic oscillator, i.e.

(H0 f )(x) = 1

2

(
d2 f

dx2 (x) − x2 f (x)

)
.

Then (cf. [12])

m∗(j0) = −iH0

and

H0hl = −2l + 1

2
hl .

Hence

(ul ◦ κ̃)∗(E0)hl = 2m∗(j0)hl = −2iH0hl = i(2l + 1)hl .

Applying Schur’s lemma, the assertion now follows from Lemma 4.1. ��
As shown in the previous section, the spaces Vk ⊗ Uk with

Uk =
∞∑

l=0

HomU(1)(Vk,Wl)

are invariant under the symplectic Dirac operators D and D̃.

Corollary 4.3. If k is odd, then

Uk =
(k−1)/2∑

l=0

HomU(1)(Vk,Wl)

and dim(Vk ⊗ Uk) = (k + 1)2/2. If k is even, then Uk is trivial.

Proof. This is a consequence of Lemma 4.2 and dim Vk = k + 1. ��
According to Lemmas 3.5 and 3.8, in order to calculate the symplectic Dirac

operators D and D̃ on CP1, we have to compute the linear maps Dk, D̃k : Uk → Uk

given by

Dk(L) = −E1 · L ◦ (τk)∗(E2) + E2 · L ◦ (τk)∗(E1)

and

D̃k(L) = −E1 · L ◦ (τk)∗(E1) − E2 · L ◦ (τk)∗(E2).

Thereby, we may assume that k is odd. Then the maps Lk,0, . . . , Lk,(k−1)/2 defined
in Lemma 4.2 form a basis of Uk .
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Proposition 4.4. For l = 0, . . . , (k − 1)/2,

Dk(Lk,l) = l(k + 1 − 2l)Lk,l−1 +
(

k + 1

2
+ l + 1

)
Lk,l+1

and

D̃k(Lk,l) = −il(k + 1 − 2l)Lk,l−1 + i

(
k + 1

2
+ l + 1

)
Lk,l+1.

Proof. Assume that j = (k + 1)/2 + l. Then, by Lemmas 3.3 and 4.1, we get

Dk(Lk,l)(pk, j−1) = −E1 · Lk,l((τk)∗(E2)pk, j−1)

+ E2 · Lk,l((τk)∗(E1)pk, j−1)

= −E1 · Lk,l(i( j − k − 1)pk, j − i( j − 1)pk, j−2)

+ E2 · Lk,l(( j − k − 1)pk, j + ( j − 1)pk, j−2)

= ( j − k − 1)(−iE1 · hl + E2 · hl)

= −2l( j − k − 1)hl−1

= l(k + 1 − 2l)hl−1

and

Dk(Lk,l)(pk, j+1) = −E1 · Lk,l((τk)∗(E2)pk, j+1)

+E2 · Lk,l((τk)∗(E1)pk, j+1)

= −E1 · Lk,l(i( j − k + 1)pk, j+2 − i( j + 1)pk, j )

+E2 · Lk,l(( j − k + 1)pk, j+2 + ( j + 1)pk, j )

= ( j + 1)(iE1 · hl + E2 · hl)

= ( j + 1)hl+1

=
(

k + 1

2
+ l + 1

)
hl+1.

Analogously, we see

D̃k(Lk,l)(pk, j−1) = −il(k + 1 − 2l)hl−1

and

D̃k(Lk,l)(pk, j+1) = i

(
k + 1

2
+ l + 1

)
hl+1.

This together with Lemmas 3.4 and 3.7 yields the claim. ��
We now normalize the homomorphisms Lk,0, . . . , Lk,(k−1)/2 by

L◦
k,l :=

√
((k + 1)/2 + l)! ((k − 1)/2 − l)!

2l l! Lk,l

and set

ak,l :=
√

2l

(
(k + 1)2

4
− l2

)
.

Then, a straightforward calculation gives
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Corollary 4.5. For l = 0, . . . , (k − 1)/2,

Dk(L◦
k,l) = ak,l L◦

k,l−1 + ak,l+1L◦
k,l+1

and

D̃k(L◦
k,l) = −iak,l L◦

k,l−1 + iak,l+1L◦
k,l+1.

In particular, the matrix representations of Dk and D̃k with respect to the basis
{L◦

k,0, . . . , L◦
k,(k−1)/2} are Hermitian.

We draw the following conclusions from Corollary 4.5. First, for the operators
Pk = i[D̃k,Dk], we obtain

Corollary 4.6. For l = 0, . . . , (k − 1)/2,

Pk(L◦
k,l) = 2

(
a2

k,l+1 − a2
k,l

)
L◦

k,l

=
(
(k + 1)2 − 3(2l + 1)2 − 1

)
L◦

k,l .

Corollary 4.7. (i) The operators Dk and D̃k have the same eigenvalues.
(ii) The spectrum of Dk and D̃k is symmetric, i.e. if λ is an eigenvalue, so is −λ.

(iii) The kernels of Dk and D̃k are one-dimensional, if (k +1)/2 is odd, and trivial
otherwise.

Proof. One easily verifies that the characteristic polynomials of Dk and D̃k are the
same and of the form λpk

(
λ2

)
, if (k + 1)/2 is odd, and pk

(
λ2

)
otherwise, for

some polynomial pk . Since ak,1, . . . , ak,(k−1)/2 are non-zero, the dimension of the
kernel of Dk is at most 1. Moreover, if (k + 1)/2 is even, then

det(Dk) =
(k+1)/4∏

r=1

a2
k,2r−1.

��
Corollary 4.8. The spectrum of the symplectic Dirac operators D and D̃ on CP1

is unbounded above and below.

Proof. Let Uk be endowed with the norm defined by
∥∥∥∥∥∥

(k−1)/2∑
l=0

zl L◦
k,l

∥∥∥∥∥∥

2

=
(k−1)/2∑

l=0

|zl |2

and let ‖Dk‖ be the corresponding operator norm of Dk . Since the matrix represen-
tation of Dk with respect to {L◦

k,0, . . . , L◦
k,(k−1)/2} is Hermitian and the spectrum

of Dk is symmetric, ‖Dk‖ is the absolut value of the largest and smallest eigenvalue
of Dk . Now the assertion follows from

‖Dk‖ ≥ ∥∥Dk L◦
k,0

∥∥ = ak,1 ≥ k − 1

2
.

��
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Remark 4.9. The spectrum of the second order operator P on CP1 was already
computed in [10]. For the general case, the coincidence of the spectra of D and
D̃ and their symmetry was proven in [11] (cf. also [12]) by means of a Fourier trans-
form for symplectic spinor fields. For an explicit calculation of the eigenvalues and
eigenvectors of Dk and D̃k for small k, see [19].

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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