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Abstract. Physics-based modeling is a powerful tool for human gait
analysis and synthesis. Unfortunately, its application suffers from high
computational cost regarding the solution of optimization problems and
uncertainty in the choice of a suitable objective energy function and
model parametrization. Our approach circumvents these problems by
learning model parameters based on a training set of walking sequences.
We propose a combined representation of motion parameters and phys-
ical parameters to infer missing data without the need for tedious opti-
mization. Both a k-nearest-neighbour approach and asymmetrical prin-
cipal component analysis are used to deduce ground reaction forces and
joint torques directly from an input motion. We evaluate our methods by
comparing with an iterative optimization-based method and demonstrate
the robustness of our algorithm by reducing the input joint information.
With decreasing input information the combined statistical model regres-
sion increasingly outperforms the iterative optimization-based method.

1 Introduction

The central endeavour in many biomechanical studies is to determine joint
forces and torques, which act at and across a joint, respectively [6,9,11]. These
forces summarize all active forces effecting a joint, e.g., exerted by tendons, lig-
aments and neighboring bone segments. The clinical standard to calculate joint
torques is through inverse dynamics, based on the measurement of ground reac-
tion forces (GRF) and joint positions by means of force plates and a motion
capture (MoCap) system [18]. Despite being frequently used, the results of this
approach have to be treated carefully, because various error sources exist which
sometimes have non-negligable effects. Especially the length of estimated lever
arms is highly sensitive to marker placement uncertainties and the chosen model
for body segment parameters [10,16].

An alternative method for torque estimation is physical modeling of the
human body and simulation of dynamical development via forward dynamics.
There already exists a variety of physics-based models for human gait with differ-
ing complexity. A relatively simple approach is to model body parts by rigid seg-
ments that are linked by joints associated with spring torques. These mass-spring
models qualify to describe the human walk adequately without the drawback of a
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high dimensional parameter space. The simulation of movement can be achieved
via forward dynamics, i.e. by integrating the equations of motion (EOM) and
simultaneously optimizing model parameters to extremize an objective function
(often defined as some form of energetic effort). This method has the advantage
of directly accessible joint torques, implemented in the EOM, but provokes high
computational cost due to the integration. The closer the model gets to reality,
i.e. the higher the degree of freedom (DOF) becomes, the larger the computa-
tional cost. The iterative minimization of an objective function without prior
knowledge of model parameters is referred to as optimization-based method in
the following.

Our approach aims to adopt the benefits of physics-based motion analy-
sis while simultaneously avoiding high computational cost by means of machine
learning techniques. Methods like principal component analysis for pattern recog-
nition have already been used to analyse and snythesize human motion by Troje
et al. in 2002 [14]. We propose a statistical model that combines the physical
parameters of a two dimensional mass-spring model based on [3] with corre-
sponding gait characteristics following this approach.

The data driven learning of physical parameters allows us to include style
dependent properties of walking into our framework. These properties comprise
subject specific preferences to burden some joints more than others, which is an
information usually lost when minimizing a general energy function. Simulations
were executed on a training set of MoCap data from Troje et al. [14] to estimate
a subspace from the physical and motion parameters. This combined represen-
tation, termed combined statistical model (CSM) in the following, enables us
to directly infer force patterns from motion data without further optimization.
Consequently, we achieve a massive reduction of computation time of force and
torque estimation compared to optimization-based methods. The computation
time of the regression with our CSM lies in the order of seconds. In contrast to
that, the optimization-based method we applied for comparison requires com-
putation times of up to several hours. Within the scope of our CSM we propose
two different direct regression methods, namely a k-nearest-neighbours (k-NN)
approach and asymmetrical principal component analysis (aPCA) [1]. We eval-
uate our methods by comparing GRFs and joint positions to ground truth data
and knee torques to calculations via inverse dynamics.

To summarize, our contributions are as follows:

– We introduce a combined statistical model for human motion and correspond-
ing physical parameters.

– The model allows us to estimate missing data in real-time.
– Finally, we analyze different regression methods for force and torque estima-

tion.

2 Related Work

The incorporation of physics-based models into the analysis and synthesis of
movement offers the benefit of physical validity. Typical errors like the sliding of
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feet on the ground or the simulation of unstable motions can be avoided. Tech-
niques for motion generation and analysis divide into controller-based methods
[13,15,21] and optimization-based methods [4,5,8,20].

In 1971 Chow and Jacobson introduced an optimization-based approach to
simulate human gait [5]. Since then, optimization techniques have been widely
used by researchers on the basis of increasingly complex skeletal and muscoskele-
tal models. Fleet et al. [4] used a 12-segment articulated body model to estimate
joint torques and contact dynamics. Their results show consistently estimated
torques for walking and running over a wide spread of subjects. The estimated
ground reaction forces (GRF) are a good approximation of the ground truth
data concerning the mean value, but differ regarding temporal development.

Xiang et al. [20] used a large-scale physical model in order to predict gait
patterns. They applied a predictive dynamics approach to approximate joint
angles and torques, minimizing the dynamic effort (sum of integrated squared
joint torques). Furthermore, GRFs were calculated inversely. The predicted val-
ues are in overall similar to experimental data, though calculated GRFs display
noticeable difference concerning shape from data available in the literature.

General issues of optimization-based generation of motion with a large degree
of freedom (DOF) model are high computational cost and the need for numer-
ous constraints on the model parameter space. Moreover, the minimization of
an energy function to optimize walking parameters is a convenient tool for the
synthesis of natural looking gaits in general, but often fails to predict subject spe-
cific walking styles. Liu et al. [8] adressed this problem by introducing Nonlinear
Inverse Optimization to estimate physics-based style parameters from motion
capture (MoCap) data. They used learned parameters for the synthesis of new
motion in the respective style. Wei et al. [17] combined statistical motion priors
with physical constraints in order to generate physically-valid human motion.
These last two approaches aim at the generation of physically realistic motion
but do not analyze the consistency of simulated force patterns with ground truth
data.

In contrast to the existing works, we propose a framework, that encompasses
geometrical properties, motion information and physical parameters in a com-
bined statistical model. Relevant advantages of our method towards state-of-the-
art methods are robustness in the case of incomplete input information and low
computational cost. The combined parametrization enables us to deduce missing
data, such as forces or joint trajectories, in real-time.

3 The Physics-Based Statistical Model

The generation of a statistical model that combines motion characteristics with
a physical representation requires parameter learning on a training set S. For
this purpose, MoCap data from Troje et al. [14] was used. The dataset contains
walking sequences of 115 male and female subjects with varying weight (from
44.4 kg to 110 kg), height (from 1.52 m to 1.96 m) and age (from 13 years to
59 years).



172 P. Zell and B. Rosenhahn

3.1 Motion Model

Walking can be considered as a time series of postures p and is represented
similiarly to [14] as a linear combination of principal component postures with
sinusoidal variation of coefficients,

p(t) = p0+p1 sin(ωt)+p2 sin(ωt+Φ2)+p3 sin(2ωt+Φ3)+p4 sin(2ωt+Φ4) . (1)

p0 is the mean posture and (p1,p2,p3,p4) are principal components, called
eigenpostures in the following. ω is the fundamental frequency describing the
gait and (Φ2, Φ3, Φ4) are phase delays. In this framework, a posture consists of
15 three-dimensional joint positions, resulting in a 45-dimensional vector p. The
complete motion parametrization is represented by

u = [p0, p1, p2, p3, p4, ω, Φ2, Φ3, Φ4]T . (2)

3.2 Physical Model

Our physical gait model is an extension of a two dimensional mass-spring-model
of the lower extremeties and the torso by Brubaker et al. [3]. Our modifications
are additional body segments (head and arms) with appropriate springs, a toe-
off force, and nonlinear force characteristics for a spring that acts on the stance
shank. The linear toe-off force FTO is active during a finite timespan ΔtTO at
the beginning of a gait step (half of a gait cycle) and accelerates the center of
mass (COM) of the rear shank. The force is set to

FTO = ι(1 − t

ΔtTO
)[− sin(φS2 + α), cos(φS2 + α)]T , (3)

where ι indicates the initial magnitude and α defines the deviation of the force
direction from the orientation of the rear shank segment, given by φS2.

Motivated by research on nonlinear spring design [12], we use a nonlinear
spring torque that acts on the stance shank to improve the simulation of natural
knee flexion and to cover a greater variety of gait patterns. More precisely we set
the spring’s resting angle φ(0) to a fourth order polynomial over the x-position
of the whole body’s COM xCoM resulting in the torque

τ = −κ
(
φS1 − φ(0)(q,σ)

)
− dφ̇S1, (4)

φ(0)(q,σ) = φ(0) +
4∑

k=1

ckxk
CoM (q,σ) . (5)

The parameters κ and d are spring stiffness and attenuation constant, respec-
tively and the angle φS1 describes the orientation of the stance shank. The vector
q defines the configuration of the model in the form of segment angles and σ
describes the subject-dependent geometry, i.e. segment lengths. The temporal
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state of the physical model is given by the pair (q(t), q̇(t)) and can be deter-
mined by integrating a set of equations of motion, resulting in the dynamic state
function

(q(t), q̇(t)) = D(t, q0, q̇0,θ,σ) , (6)
where (q0, q̇0) indicates the initial state and θ includes all modeled force para-
meters, i.e. spring and toe-off force parameters.

A detailed analysis of the effects, that these enhancements have on the simu-
lated gait patterns exceeds the scope of this paper and remains for future work.
The focus of this publication lies on the inclusion of statistic knowledge to esti-
mate forces and joint torques.

3.3 Combined Representation

To combine the physical properties with the information about a subject’s
motion, single gait steps taken from the MoCap walking sequences are approx-
imated using the physical model. The approximation process can be divided
into two parts: First, subject-specific body parameters and angular dynamics
are estimated from MoCap data. Afterwards, effective torques and forces are
approximated via model simulation.

In the first step, the distance between two dimensional cartesian model and
MoCap joint coordinates rmodel and rMoCap, respectively, is minimized by opti-
mizing body segment lengths and angles over a timespan of several steps,

(q(t),σ) = arg min
q,σ

{ ∑
j

∣∣∣rMoCap,j(t) − rmodel,j(q(t),σ)
∣∣∣2

}
. (7)

We calculate angular velocities and accelerations by means of finite differences
and define the consequent states (q(t), q̇(t))targ as target for the following model
simulation. These target states need to be temporally aligned. For this purpose,
heel strike times have to be known and are assumed to take place at time points
which exhibit a local maximum in step length.

In the second step of the approximation process we search for physical model
parameters, that create a motion which has minimal distance to the target
motion. In other words, we simulate a step of the model by evaluating func-
tion D from Eq. (6) for a set of key times {tk}k and minimize the sum of
squared approximation errors. The times tk lie within the estimated timespan
Ts for single support of the gait step because our physical model does not include
a double support phase.

Since our main interest lies in generating realistic force patterns, we also
constrain the model simulation to yield GRF values Fsim within the vicinity of
ground truth data Ftrue. The values are normalized, i.e. divided by the total
body mass M , for comparability. The optimization problem is formulated as
follows,

(q0, q̇0,θ) = arg min
q0,q̇0,θ

{ ∑
k

∣∣∣D(tk, q0, q̇0,θ,σ) − (q(tk), q̇(tk))targ
∣∣∣2

}
,

s.t. |Fsim(q(tk), q̇(tk), q̈(tk),σ) − F̄true(tk)| ≤ ηk , (8)
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with thresholds ηk. We calculate the effective normalized GRF via

Fsim(q, q̇, q̈,σ) =
∑

i

mi

M
(ai(q, q̇, q̈,σ) − g) , (9)

where ai is the linear acceleration of segment i and g is the gravitational accel-
eration vector with magnitude g = 9.81m/s2.

The optimization problems in Eqs. (7) and (8) are solved by the interior-point
algorithm. The resulting physics-based model parameters are

v = [q0, q̇0, θ,M ]T , (10)

with appended total body mass M which is known from the training set.
Based on the combined parametrization of u and v, it is possible to infer joint

torques from joint trajectories and vice versa. We do not perform the reverse
regression, since joint torques are typically not available as ground truth data,
but instead infer joint trajectories from the GRF. For this objective, we define a
set of GRF features f . The behaviour of Fx(t) is approximately linear. Therefore,
we use the slope of Fx(t) as a feature. For Fy(t) we choose the magnitudes at the
two maximum points and the minimum point. This results in a four-dimensional
feature vector. In the training set, no ground truth data on GRF vectors exists,
which is why we learn the GRF parameters f by the use of our simulated values
Fsim.

Along with the motion representation from Eq. (2) and the physical para-
meters from Eq. (10) this yields a combined description of walking in form of a
285-dimensional subject specific vector ws = [uT

s ,vT
s ,fT

s ]T . We obtain a para-
metrization for the whole training set by writing the vectors ws into the columns
of a matrix W :

W =

⎡
⎣u1 ... u115

v1 ... v115

f1 ... f115

⎤
⎦

︸ ︷︷ ︸
115 subjects

∈ R
229 (motion Eq. (2))

∈ R
52 (physical model Eq. (10))

∈ R
4 (GRF features)

(11)

4 Missing Data Estimation

4.1 Direct Regression

The combined statistical model encompasses geometrical properties, dynamical
behaviour and the physical basis of a walking subject. All of these features con-
tribute to the characteristics of a gait pattern and their mutual dependency
can be used to infer missing data from an incomplete parameter set. We apply
two different regression methods: k-nearest-neighbour (k-NN) regression and an
asymmetrical projection into the principal component space (aPCA), as intro-
duced by [1] for the reconstruction of occluded facial images. Motivated by sparse
representation methods [7,19], our algorithm first performs a classification of the
input data concerning predefined motion features, which divide the training set
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into five pairs of disjoint subclasses. The focus lies on lower body dynamic, e.g.
the knee-flexion at different points of the gait cycle. We classify regarding object
to class distances of the known part of the parameter set, as suggested by [2].
The intersection of the best matching classes is defined as sample space for the
following regression. For the k-NN regression, we set k equal to the number of
vectors w covered by this reduced subject set and iteratively reduce k, if the
infered joint torque magnitudes surpass a fixed threshold.

4.2 Iterative Optimization

In order to emphasize the advantage of a combined statistical model, we com-
pare the performance of our regression methods to an alternative iterative
optimization-based approach, in which we optimize Eqs. (7) and (8) to approxi-
mate the motion and calculate suitable forces. In the case of incomplete motion
input, i.e. incomplete joint trajectories, we augment Eq. (8) to include a penalty
function E(q, q̇,θ) in order to account for the missing joint position information.
The energy function is based on dynamic effort,

E(q, q̇,θ) =
1
T

∫ T

0

(
αF 2

TO +
∑

j

βjτ
2
j

)
dt . (12)

We empirically set the weights to α = 0.1, βj = 0.001 for stance leg, spine
and neck joints and βj = 0.0001 for swing leg and arm joints. This way, a high
penalty is placed on the toe-off force and on the stiff joint torques. We refer to
this optimization-based method as OPT.

5 Experiments

We compare the performance of the methods for missing data estimation regard-
ing the deviation of estimates from ground truth data. For this purpose, we
measured joint trajectories and GRF vectors of three different test subjects.
Recording motion and force data was synchronized and done by a Vicon
T-series MoCap system and AMTI force plates, respectively. The laboratory
setup is depicted in Fig. 2. The force plate system measures magnitude and
direction of GRF vectors, which we compare to estimated two dimensional val-
ues, resulting from Eq. (9). Furthermore we determine knee extensor and flexor
torques of the stance leg via inverse dynamics. The results are compared to sim-
ulated model torques τK1. We use symmetric mean absolute percentage error
(SMAPE) as measure for the deviation of estimated magnitudes and first deriv-
atives from ground truth values. The sum of the resulting SMAPE values is
used as error measure ε. We include first derivatives in this measure in order to
increase the weight of shape discrepancies.

5.1 GRF and Knee Torque Estimation

In the first part of the evaluation process our aim is to find the best approxima-
tion of the GRF and the stance knee torque given the full motion parametrization
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u and with an incomplete set of motion parameters, respectively. Starting with
missing left hand trajectory, we successively remove the trajectories of the left
elbow, ankle and knee, so that at the final stage the entire motion information
of limbs on the left-hand side is unknown. The number of missing input joint
trajectories is denoted by N . The results for one example subject can be seen
in Fig. 1. The depicted estimates are based on complete input information in
(a) and missing joint information on the full left-hand side in (b). Associated
SMAPE values εF and ετ of GRF and knee torque estimates, as well as compu-
tation times tc, are listed in Table 1.

As expected the best approximation of ground truth data is achieved by the
optimization-based method OPT with zero missing input trajectories. In this
case the full joint information is used and no additional energy minimization
affects the result. As the input information is reduced the CSM methods increas-
ingly outperform OPT. Especially the k-NN approach shows consistently low
SMAPE values. The error measure for the estimated knee torque even decreases
with increasing N . Which can be explained by the low number of test sub-
jects combined with the inaccuracy of the inverse dynamics calculation of joint
torques, meaning that the corresponding errors coincidentally compensate the
errors resulting from missing joint information. Consequently the comparison of
GRFs has a higher value and should be the decisive measure for the evaluation
of a method.

The computation times of the CSM methods are in the order of seconds for
k-NN and deci-seconds for aPCA, respectively. In contrast to that, OPT requires
computation times of several hours, highly depending on the initialization of the
optimization parameters.

5.2 Joint Trajectory Estimation

We consider the reverse inference process in a second experiment. Now we want
to estimate joint trajectories based on input GRF data. For this experiment
we only apply our k-NN algorithm, since it outperformed the other methods
in the previous experiment. Furthermore the optimization of joint positions to

Table 1. SMAPE values εF and ετ for GRF and knee torque estimates based on the
regression methods described in Sect. 4 with related computation times tc. N indicates
the number of missing input joint trajectories.

k-NN aPCA OPT

N εF ετ tc [s] εF ετ tc [s] εF ετ tc [s]

0 1.504 1.624 2.994 1.726 2.019 0.881 1.483 1.420 8103

1 1.504 1.586 2.117 1.780 2.052 0.934 1.811 1.851 4358

2 1.496 1.582 2.112 2.005 2.083 0.913 1.890 1.793 3096

3 1.524 1.562 2.583 1.606 2.169 0.619 1.843 2.069 3229

4 1.528 1.565 2.538 1.594 2.072 0.669 1.911 2.188 2092
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Fig. 1. Comparison between different regression and optimization methods concerning
estimated GRF components Fy, Fx and knee torques τK1. Positive values correspond to
flexor torques. The results are based on full joint trajectory information (in a)) and on
partial information with N = 4 (in b)), respectively. In the case of GRF components,
the black line illustrates ground truth data and in the case of joint torques, it represents
torques calculated via inverse dynamics. The corresponding evaluation can be found
in Table 1.

approximate a target GRF is a highly under-determined problem. Hence, app-
roach OPT would need to be enhanced with multiple constraints on the motion
and comparability could not be guaranteed. In addition to the motion feature
classification, we reduce the subspace to walkers of matching height to ensure
compliant y-positions of the estimated joints.

We deduce the motion vector u from GRF features f and the subjects mass
M and height H via k-NN regression of the input vector [M,H,f ]T . The results
for one example subject are shown in Fig. 3 in form of two-dimensional joint
trajectories of the head, the hip, the left knee and the left ankle. Black lines rep-
resent ground truth positions and colored lines the estimated values. The mean
joint position discrepancy over the time equals 5.6 cm. It is worth mentioning,
that the mean position error of the arm joints is 36 % higher than that of the
remaining joints. By implication, we can assume that the arm movement has
only a minor influence on the GRF. Figure 4 illustrates the estimated posture of
the subject at several time points. Animations of the corresponding motion and
the ground truth movement are provided as supplementary material.

6 Discussion

The experimental results demonstrate the benefit of a combined statistical repre-
sentation. The method is robust to missing input information and the estimated
results approximate the ground truth data as well as our extended physical
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Fig. 2. A subject walking
across the force plates in
our laboratory setup
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Fig. 3. Two-dimensional joint trajectories. Black
lines illustrate ground truth positions and dotted
colored lines the corresponding estimates via CSM
(Color figure online).

Fig. 4. Frames of the estimated motion based on GRF features f . The blue arrow
represents the GRF vector and the red discs represent knee joint torques (Color figure
online).

model allows. The best results for the case of complete input joint information
are achieved by means of the iterative optimization-based method OPT, but as
soon as we reduce the available information, our k-NN approach outperforms
the other methods. Considering the computational effort of the evaluated meth-
ods, the CSM causes a significant reduction of computation time from hours
to the order of seconds, compared to the iterative optimization-based method.
The fact that gradient-descent algorithms generally require a good initial guess
of the parameters is not taken into consideration, since we provide our learned
parameter space as a set of initial points for the optimization in OPT.

In addition to force estimation, the CSM also enables us to infer a motion
from ground reaction force data and subject parameters based on a small set of
four features.
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