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Abstract
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Photoelectron momentum distributions from strong-field ionization are calculated by numerical
solution of the one-electron time-dependent Schrédinger equation for a model atom including
effects beyond the electric dipole approximation. We focus on the high-energy electrons from
rescattering and analyze their momentum component along the field propagation direction. We
show that the boundary of the calculated momentum distribution is deformed in accordance with the
classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum
distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/
backward directions. Taken together, the two non-dipole effects give rise to a considerable average
forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

Keywords: time-dependent Schrodinger equation, strong-field ionization, non-dipole effects,

rescattering
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1. Introduction

The interaction of strong laser pulses with atoms is a rich
research area with a wide range of phenomena that involve large
numbers of absorbed photons. Above-threshold ionization (ATT)
is one of the early manifestations of multiphoton physics [1].
The name ATI indicates that in this process more photons than
necessary to overcome the ionization threshold are absorbed.
This explains the typical appearance of strong-field photoelec-
tron energy spectra consisting of peaks separated by the photon
energy of the ionizing laser beam. Over the years it was estab-
lished that lowest-order perturbation theory in the light—matter
interaction is usually not adequate to describe ATI correctly. For
example, the ATI peaks at low electron energy are often not the
most probable ones [2, 3] and the peak positions can be shifted
away [4] from the energy values expected on the basis of the
simple energy-conservation rule involving the ionization
potential of the atom and the number of absorbed photons, i.e.
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the multiphoton generalization of Einstein’s photoeffect law.
Important non-perturbative treatments of strong-field ionization
are the strong-field approximation [5—7] and the numerical
solution of the time-dependent Schrddinger equation (TDSE).
The simplest possible non-perturbative approach, however, is
the two-step model, where laser-induced electron emission is a
sequence of (i) ionization and (ii) acceleration of the electron as
a classical particle in the laser field [8, 9]. In step (ii), the atomic
potential is usually neglected.

One may say that the most striking non-perturbative
aspect of ATI emerged with the discovery of high-order
above-threshold ionization (HATTI), namely the presence of a
plateau in the energy spectrum at high photoelectron energies
[10, 11]. Photoelectrons with much higher energies than
expected for ‘direct electrons’ described by the two-step
model were measured and explained in terms of rescattering:
electrons that are driven back to the parent ion may scatter
elastically and subsequently undergo a second stage of
acceleration in the laser field. The return of the electron to the
parent ion is known as the recollision step. This adds a third
step which is the reason that we may speak of the three-step
model of HATI. It is important to note that the acceleration
after recollision is the reason for the increased electron

© 2018 IOP Publishing Ltd  Printed in the UK
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energies observed in HATI, so it could be more appropriate to
speak about a four-step model, which, however, would not be
consistent with the commonly used terminology. Analyzing
the classical trajectories and neglecting the Coulomb force
predicts the cut-off ~10 U, for the electron energy, where
U, = E} / (4w?) is known as the ponderomotive potential for
a linearly polarized laser field with amplitude E; and fre-
quency w. (Here and in what follows, we use atomic units
unless otherwise stated.) This classical model is analogous to
the three-step model of high-order harmonic generation,
which had already been proposed earlier [12, 13]. In high-
order harmonic generation, the electron recombines with the
parent ion at the time of recollision resulting in emission of a
single photon. In that context, the three-step model predicts
the famous photon-energy cut-off at 3.17 U, + I, with the
ionization potential /,,.

Strong-field ionization is usually discussed in the electric
dipole approximation, where it is assumed that the incident
electric field is spatially homogeneous over the field-atom
interaction region and furthermore the magnetic field in the
laser pulse is neglected. Mathematically, the electric dipole
approximation means that the exact vector potential A (r, ¢) of
the incident pulse is replaced by a purely time-dependent
function A(¢) (assuming that we work in the Coulomb gauge
and set the scalar potential to zero). In this approximation, the
laser field cannot transfer any momentum to the center of
mass of the atomic system. In other words, there is no
radiation pressure in the electric dipole approximation. This
implies that in the case of single ionization of an atom that
was initially at rest, the photoelectron momentum and the
momentum of the residual ion must add up to zero. Beyond
the dipole approximation, the momentum of the absorbed
photons is transferred to the particles and therefore in laser-
induced ionization, an effect on the momentum distributions
of electron and ion is expected. From a fundamental point of
view, the theoretical treatment is complicated because the
dynamics of the electron-ion two-particle system does not
decouple into center-of-mass and relative motion in the non-
dipole regime. Since, however, the mass of the ion is much
larger than that of the electron, it is a good approximation to
assume that the center of mass is at rest and coincides with the
ion position and to use the electron-ion relative coordinates as
laboratory-frame coordinates. In this case, the photoelectron
momentum distribution is the same as the momentum dis-
tribution calculated for the relative motion. In the electric
dipole approximation, when a spherically symmetric system
such as an atom is considered, the Hamiltonian describing the
quantum mechanical dynamics of the electron coordinate is
symmetric under interchange of the forward and backward
direction, where ‘forward’ denotes the laser propagation
direction. Thus, for ionization out of a spherically symmetric
initial state, the average momentum of the photoelectrons will
have a zero component along the laser propagation axis.
While this conclusion holds in very good approximation for
the laser parameters used in practical table-top experiments,
the transfer of photon momentum to the photoelectrons has
been observed in two recent experiments. Smeenk et al have
used circularly polarized fields and have measured a small

positive average momentum component in forward direction
[14]. The positive shift is reproduced by a non-dipole version
of the strong-field approximation [15-17]. A detailed analysis
[18-20] shows that tunneling ionization contributes a forward
momentum I,/(3c) to the photoelectron momentum with ¢
being the speed of light, which explains the findings in [17].
The major part of the forward shift in circularly polarized
light, however, is directly proportional to the kinetic energy E,
gained due to the acceleration in the laser field and can be
written as E,/c. Ludwig et al [21] and Maurer et al [22], on the
other hand, have shown that a negative shift, i.e. pointing
against the propagation direction of the light, is found for the
low-energy electrons from ionization in a linearly polarized
field. As an explanation, the momentum change during rescat-
tering in the Coulomb field of the parent ion has been given.
The backward shift is reproduced also by numerical solution of
the TDSE beyond the dipole approximation [23, 24] and by the
non-dipole formulation of the quantum trajectory-based Cou-
lomb-corrected strong-field approximation [25].

In principle, the theory of strong-field dynamics includ-
ing phenomena beyond the electric dipole approximation has
already a considerable history [26-36]. However, it seems
that most of the earlier work focused on high-order harmonic
generation or considered quite high laser intensities in order
to reveal relativistic effects. The non-dipole effects for direct
(non-rescattered) electrons as well as the low-energy rescat-
tered electrons have been analyzed by a number of groups in
the last few years, as explained above. The high-energy
rescattering plateau in photoelectron distributions has been
investigated in [31, 32] for high intensities beyond those used
in typical table-top experiments.

The purpose of our contribution is the analysis of HATI in
the regime of moderate laser intensities, restricting ourselves to
terms of the order 1/c¢ in the Hamiltonian. We present results
from the numerical solution of the non-dipole TDSE and
interpret them with the help of the non-dipole three-step model.
Our central findings will be a deformation of the momentum
distribution shape, which follows from classical trajectories,
and an additional forward /backward asymmetry which cannot
be explained without a more detailed modeling of the scatter-
ing step in the three-step model.

We restrict ourselves to a two-dimensional quantum
mechanical simulation in the plane spanned by the electric
field and the light propagation direction, because we expect
only negligible non-dipole effects on the momentum dis-
tribution in the third direction.

2. TDSE with leading-order non-dipole corrections

We consider the ionization process of a single-active-electron
atomic model in two dimensions under the influence of a
linearly polarized plane-wave laser pulse of three cycle
duration, fully represented by the electric field

E(r,t) = E(n) = —Egsin® (wn/6) cos(wn)e, (1)

with n = t — z/c and frequency w. The incident pulse travels
in z-direction with the speed of light ¢ = 1/« ~ 137. The
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electric field E points along the x-axis of the coordinate
system and the corresponding magnetic field B = e, x E/c
points along the y-axis. Using the Coulomb gauge, we can set
the scalar electromagnetic potential to zero and define a vector
potential A(r, t) = A(n) that is related to the physical fields
by B=V x A and E = —0,A. In practice, we obtain the
vector potential by numerical integration of the given electric
field as A(n) = — f noo E(n")dn’. We use the soft-core

potential

0.85¢e 0167 41
which has a Coulombic —1/r behavior at large r and repro-
duces the ionization potential /, ~ 0.9 a.u. of helium. The
ground state of this potential serves as initial state of
the quantum mechanical propagation. Here, we assume that
the ion mass is much larger than the electron mass and hence,
the position and momentum of the electron can be approxi-
mated by the relative electron-ion coordinate r and the rela-
tive electron-ion momentum p because the center of mass
almost coincides with the ion position [17]. For the same
reason, the reduced mass is set equal to the electron mass,
m = 1. In principle, the dynamics of the system is determined
by the non-relativistic Hamiltonian

V)= - @)

H= %(,, LA + V() 3)

including the atom-field interaction with full spatial depend-
ence of the electromagnetic field. However, for the laser
parameters under consideration here, an expansion of the
vector potential in 1/c can be applied and only leading-order
corrections in 1/c¢ are considered [24]. Inserting this expan-
sion into equation (3) and neglecting terms proportional to
1/c? results in the Hamiltonian

H— %(p FAD)? + %(p +AD)-E@) + V@), (&)

This form of the Hamiltonian has a disadvantage: the non-
dipole term contains a direct coupling between the z-comp-
onent of the position operator r and the momentum operator
p. Hence, even in the case of a vanishing potential the
momentum p is not a conserved quantity. To overcome this
drawback, we apply a unitary transformation U = exp(—ix)
leading to the transformed wave function i) = Ur) with a
hermitian operator [37]

X = E(p AM + e (r)). )
c 2

Inserting this transformation into the TDSE i0,%(r, t) =
Hiy(r, t) and using its form invariance, we can read off the
transformed Hamiltonian H s

7 - v+ 2y ©)
ot

appearing in the transformed TDSE 0,0, 1) = H o, 1).
Without the first term (p - A) in equation (5), the transfor-
mation would be a simple gauge transformation, which is, in
the limit 1 /¢ — 0, reminiscent of the transformation used in

[38] to remove terms that do not explicitly contain the
momentum operator. In our case, since position and
momentum operators do not commute, the transformation
results in a modification of the potential term in addition to
the changes in the kinetic and interaction term. Using Hada-
mard’s lemma leads to the following expression for the
transformed Hamiltonian:

2
H= l(p +A®) + ﬁ(p CA®) + lAz(t)))
2 c 2
+ V(r - £A(t)). )
C

The first term is familiar from the generalized Volkov states
including leading-order non-dipole corrections derived in
[20, 27, 29]. In the second term, the potential exhibits a
position- and time-dependent shift s(¢) = zA (¢) /¢, which can
be understood as a time-dependent shear of the potential.

The TDSE with the Hamiltonian H is solved numerically
using the standard Fourier split-operator method [39] with a
time step of Ar = 0.005a.u. The numerical grid size is
209 a.u. in x- and 819 a.u. in z-direction with spacings of
Ax =0.1au. and Az = 0.2a.u. The special form of the
transformed Hamiltonian suggests a division of space into an
inner interaction region and an outer asymptotic region so that
the two regions are represented on two separate grids. In the
inner part the complete Hamiltonian H is implemented. In
contrast, in the outer part the asymptotic tail of the potential is
neglected and the electron is treated as a free particle inter-
acting with the external electromagnetic field [40]. As the first
term of the Hamiltonian is diagonal in momentum space, the
time propagation in the outer region becomes trivial. The
decomposition of the wave function into an inner and outer
part is done by applying a mask function of 50 a.u. width on
each side of the inner grid, optimized for electrons around
|[p| = 2.5 a.u., in every time step. What is absorbed from the
inner region is transformed to momentum space and added to
the wave function in the outer region. To speed up the time
propagation and avoid the repeated computation of expo-
nentials of the potential, we expand the shifted potential to
first order in 1/c, i.e.,

V(r - EA(r)) ~ V() — 2A@) - VV (). (8)
C C

The time-independent part of equation (8) is fully incorpo-
rated via exponential short-time propagators, while the
small correction due to the second term is implemented as a
Crank—Nicolson propagator. Taking into account higher-order
terms of this expansion does not change the results presented
below. After the end of the pulse the simulation is run for
seven additional cycles to collect slow photoelectrons. The
photoelectron momentum distribution w(p) is obtained at the
final time from the asymptotic grid with a resolution of
Ap, = 0.015a.u. and Ap, = 0.004 a.u.
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Figure 1. (a) Photoelectron momentum distribution w(p) for
ionization by a three-cycle pulse with 814 nm wavelength and peak
intensity of 8 X 10" Wem ™2 (logarithmic color scale). (b) Partial
average (p.), (blue solid line) and heuristic estimation pXZ / (2¢)
(red dashed line).

3. Results and discussion

Figure 1 shows the photoelectron momentum distribution for
a pulse with 814 nm central wavelength corresponding to
w=0.056au. and an intensity of /=8 x 10" Wcm ™2
The momentum distribution has a typical shape consisting of
a strong contribution of low-energy electrons concentrated
along the p,-axis and a weaker contribution of high-energy
electrons, which extend over a large range of momenta p,. In
the energy region below the classical 2U,, cut-off for non-
scattered electrons (here at |p,| ~ 2.6 a.u.) holographic inter-
ference stripes [41—43] overlaid with intracycle interferences
are visible. The asymmetry between positive and negative p,
is a familiar feature for very short few-cycle pulses [44]. Due
to the shortness of the pulse only one dominating period of
ionization times is selected and ATI peaks (i.e. peaks sepa-
rated by the photon energy) are mostly avoided. The carrier-
envelope phase of the pulse in equation (1) is such that the
rescattering electrons with the highest energy are emitted with
positive momenta p, and that their cut-off energy is close to
that of a cw field. In the region of high-energy rescattered
electrons, we clearly observe interference rings which arise
from the superposition of signals from short and long
rescattering trajectories [45, 46]. The symmetry breaking in
propagation direction (z-direction) is a non-dipole effect. It is
too small to be directly visible in the full 2D spectrum.
Therefore we show in figure 2 1D slices trough the

distribution at different momenta p,. For the slices at p, = 1,
2 and 3au., we have averaged over an interval of
Ap, =0.1au. to suppress the strong oscillations from
intracycle interference. In all energy regions we observe the
following two major deviations from the dipole approx-
imation: (i) the minima and maxima resulting from inter-
ferences are shifted in z-direction, i.e. their positions are no
longer symmetric about the polarization axis; (ii) also the
strengths of the peaks are different in forward and backward
directions. In the following we refer to the second effect as
asymmetry.

For small momenta (see figure 2(a)) the counter-intuitive
shift of the central peak against the propagation direction
discussed in [21, 22, 47] is found, in agreement with [23] and
also the peak heights for emission in forward and backward
directions are different [23]. Going to the higher momentum
P = 2 a.u., this asymmetry becomes smaller and the shift of
the center fringe becomes positive, in agreement with the
simple classical estimation p?/(2¢) [14, 23]. In the inter-
mediate energy region above the classical limit, but below the
region of HATI, the maxima of the distribution are shifted in
forward direction, but the asymmetry is inverted: in the slice
at p, = 3 a.u., the maximal signal in backward direction is
higher than in forward direction, see figure 2(c).

We define a partial average that quantifies the momentum
shift in propagation direction at fixed p, as

~ Jdp. pw)

_ , 9
[dp, w(p) )

<pz >Px

This observable nearly follows the classical prediction
px2 / (2¢) in the low and intermediate energy region, see
figure 1(b). The oscillations below the classical 2U,, cut-off
are caused by the intra- and intercycle interferences. Devia-
tions from the classical estimation can partially be attributed
to the neglected tunneling process [18, 19] and to the influ-
ence of the long-range coulomb potential [21, 22].

In the high-energy region the 8-like structure with a cut-
off close to the classical value of E =~ 10U, for positive
momenta is clearly present in the momentum distribution of
figure 1(a) [10, 11]. The nearly circular ring structure is
caused by interference between short and long rescattering
trajectories [45, 46]. In contrast to lower energies, a plateau-
like structure appears in the partial average (p.),, see the
range between p, = 4a.u. and p, = 6a.u. in figure 1(b). It
differs strongly from the estimate px2 / (2c¢). Figure 2(d) shows
that in this region the HATI signal exhibits a shift as well as
an asymmetry with larger peak height in forward direction.

For a quantitative interpretation of the shifts in HATI, we
extend the three-step model [11, 13] beyond the dipole
approximation. The three-step model consists of (i) laser-
induced ionization, (ii) acceleration of the electron away and
back to the parent ion and (iii) scattering from the parent ion
with subsequent further acceleration in the laser field. The
ionization step launches an electron with a velocity close to
zero [19, 31, 32]. After the ionization takes place at time #;,
the potential-free acceleration in the continuum can be
described by Newton’s equation, which gives rise to an electron
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Figure 2. 1D slices through the 2D momentum distribution of figure 1(a) at fixed p,: (a) p, = 1.0 a.u., (b) p, = 2.0 a.u., (¢) p, = 3.0 a.u. and
(d) p, = 4.0 a.u. (blue solid lines). In addition the mirror images, i.e. 1D slices through w(p,, —p.), are shown (red dashed lines) to expose the

non-dipole shift and asymmetry.

trajectory starting at time #; and at r = 0. For v/c < 1 the
equations can be solved perturbatively. If the initial velocity v,
is chosen zero (which is the usual choice in the three-step model
in the dipole approximation), we find that in leading order of
1/c only the motion in light propagation direction is modified
by the non-dipole part of the Lorentz force. This drift motion
causes the electron to miss the core and thus suppresses
rescattering. For an efficient recollision process the electron has
to start with an additional initial velocity vy = —|vgle, against
the propagation direction of the light [27]. One finds that the
required initial velocity is, in leading order, proportional to 1/c.
For the resulting trajectory, one finds that the motion along the
electric field axis is still not modified in order 1/c; only the
motion along the light propagation is changed by terms of order
1/c. The associated ionization probability is slightly reduced
compared to the dipole limit [27] due to to the non-zero initial
velocity. But in contrast to [31, 32], under the moderate laser
parameters used throughout our work, the effect is only hardly
seen. As we can always tune the initial velocity in propagation
direction in a way that the electron returns to z = 0, we only
have to take the condition for exact return in polarization

direction, x(f;) = x(t,), into account to obtain the mapping
between the ionization time #; and return time 7, as in the dipole
limit.

Using a classical Hamiltonian given by the expression as
in equation (7), but without the potential term, we find that the
potential-free trajectory starting from the position of the atom
with initial velocity vy = —[vyle; corresponds in leading
order of 1/c to a conserved canonical momentum of k =
—A(t)) + A%(t;)/(2c)e, + vy. During rescattering, the elec-
tron feels the presence of the potential so that the dynamics is
governed by the full Hamiltonian of equation (7) and the
canonical momentum is changed from k to p. The latter is the
final measurable momentum once we assume that no further
interaction with the potential occurs. Under the assumption
that the duration of the scattering process is short compared to
period of the laser field, we can consider A(¢) as constant
during rescattering. Furthermore, since the rescattering takes
place at z = 0, the potential term V(r — fA(t)) can be con-
sidered temporally constant. Therefore, the Hamiltonian is
conserved during rescattering so that the momentum-depen-
dent part before and after rescattering has the same value. For
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Figure 3. Schematic sketch of the momenta resulting from the
classical model with exaggerated value of 1/c. The black solid line
represents the ellipse leading to maximal energy. Its center is located
at ép, = —A(1,) and 6p, = A%(t,) /(2c). The main axes are aligned at
45° relative to the x- and z-axes and have lengths K, and K,
respectively. The red dashed line shows the classical boundary,
which is the envelope of all possible ellipses and is not symmetric
with respect to the polarization axis.

rescattering at time ¢,, we thus have

&

P 2, . Le )
> + (1 + - )(p A(t) + 2A ()

— 24 - 4w + 0o %) (10)
2 c?
In leading order in 1/c, the recollision energy on the right-
hand side of equation (10) is the same as in the dipole
limit, depending only on the ionization and recollision time.
We define the magnitude of the corresponding velocity as
K., t;) =|A(t,) — A(t;)|. For fixed times, equation (10)
selects a one-dimensional submanifold of momenta out of the
complete two-dimensional space of possible momenta p.
From a physical point of view, immediately after scattering
the velocity of the electron lies on a circle of radius K(¢,, ;).
Subsequently the electron is accelerated in the field for a
second time and mapped to the final momenta. This accel-
eration process deforms the circle into an ellipse and, in
leading order of 1/c, shifts its center by &p = —A(r,) +
A%(t.)/(2c)e,. The principal axes are rotated by 45° relative
to the xz-frame defined by the light polarization and propa-
gation. If rescattering takes place at a time ¢, with A, (¢,) < 0,
the center of the ellipse will be located in the region of
positive p,; in this case the semi-minor and semi-major axes
are K,=K/\J1 —A(t,)/c and K, =K/l + A1) /c,
respectively. By calculating all possible times and ellipses, we
can determine the classical boundary of the momentum dis-
tribution. A schematic illustration of the resulting shape of the
momentum distribution is given in figure 3. The deviation of
the rescattering ellipse from a circle is quantified by the

numerical eccentricity

e=\1—-K/K; =~ 2IAt)|/c o< JEo/(we)  (11)

for an electric field with amplitude E, and frequency w.
Hence, the deformation of the momentum distribution shape
due to non-dipole effects is predicted to increase with laser
intensity and wavelength.

In order to compare the TDSE results and the classical
model, we regard the positions of the outermost interference
maxima as the boundary of the TDSE momentum distribu-
tion. A numerically reliable value that quantifies the shifts of
the TDSE interference peaks in the light propagation direction
is given by

+ —
p +p
Ap (p) = ——— 2 =

where p; and p_ are the average values of p, calculated over
one peak in the forward direction and one peak in the back-
ward direction, respectively. In the classical model we esti-
mate this quantity by using the two opposite points with same
Py on a given ellipse to get expressions for p; and p; . This
leads to

12)

AW b A + A1)
c 2¢

NL(P_Z ~ M)

el 2

Ap.(p,) = —
(13)

where in the last step we use equation (10) and neglect terms
of the order 1/ ¢?. To evaluate the last expression, values from
the dipole limit can be used: first the classical boundary is
calculated and afterwards the corresponding momenta and
times are inserted into the formula. We note that for fixed p,
two opposite points on the true classical boundary do not
belong to the exact same ellipse. For this reason, at small p,
the obtained estimate differs very slightly from the one cal-
culated by simply taking the upper and lower part of the
boundary calculated with included non-dipole corrections.
However, the simple formula of equation (13) has the
advantage that one can read off the required input from a
TDSE momentum distribution (or possibly experimental
momentum distribution) at that momentum p, where the
distribution has the largest extent in p, direction since at this
p. the boundary in dipole approximation is at p, ~ +K.
Interestingly, inserting a final momentum p, =0 into
equation (13) always gives a negative value —A(t,)*>/(2c), no
matter whether we consider the boundary of the momentum
distribution (highest possible absolute values of p,) or we
consider ellipses contributing to the interior of the momentum
distribution. A similar result has been derived for the back-
ward shift of the low-energy electrons in [22].

In figure 4(a) the momentum shifts Ap, extracted from
the TDSE are compared to the boundary shift from the non-
dipole three-step model. In the case of the TDSE results, the
shift is calculated not only for the outermost interference
maxima, but also for several inner interference rings that are
visible in figure 1. For example, the label ‘5’ in figure 4
denotes the fifth interference ring when counting inwards.
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Figure 4. (a) Shift of the interference maxima extracted from the
TDSE results of figure 1 (colored lines). This panel shows results for
the interference rings 1, 10, 19 (from the top solid curve to the
bottom solid curve) where the label ‘1’ denotes the outermost ring.
The TDSE results are compared to the classical estimation given by
equation (13) (dashed line). (b) Forward/backward asymmetry
quantified as the ratio of the interference pattern signal strengths.
This panel shows results for the interference rings 1, 5, 10, 15, 19
(from top to bottom).

The shift of the outermost ring is in perfect agreement
with the classical prediction. Hence, the effect can be com-
pletely attributed to the acceleration of the electron in the
electromagnetic field after rescattering. The gained additional
forward momentum is equal to the energy gain after rescat-
tering divided by the speed of light, which is evident from the
last expression in equation (13) where p?/2 is the final
energy and K* /2 is the energy immediately after rescattering.
This conclusion is plausible since both for classical light
fields as well as photons, it is well known that every portion
of light energy E traveling at light speed is accompanied by a
momentum E/c. However, it is important to note that light
energy absorbed before the rescattering event has no impact
on the non-dipole shift of the boundary of the photoelectron
distribution according to the three-step model.

Within each interference stripe, we find that the shift is a
monotonic function of p, in the range p, > 0. For small
momenta p, we observe negative shifts that are bounded by
—A%(t,)/(2c) at p, = 0. In contrast to the outer ring, the
classical model does not offer a simple procedure to interpret
the inner rings, as for a given final momentum p long and
short trajectories correspond to different rescattering velo-
cities and therefore show different shifts. These trajectory-
dependent shifts are not directly visible in the distribution.
Instead, the inner rings are caused by interference and
strongly depend on the phase difference between the trajec-
tories. Hence, to investigate these slightly smaller shifts, more

<p,>p, [10 2a.u]

- /
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Figure 5. Results of TDSE calculations for the partial average (p, ),

at various laser parameters. (a) Scaling of the intensity, given in the
legend in units of 10" W cm™, at a constant wavelength of 814 nm.
The intensity increases from the bottom curve to the top curve. (b)
Scaling of the wavelength, given in the legend in units of nm, at a
constant intensity of 8 x 10'* W cm™2. The wavelength increases
from the bottom curve to the top curve.

advanced models such as the strong-field approximation in
first Born-approximation have to be used [20, 31, 32].

As pointed out above, the photoelectron distribution
exhibits not only a shifted and deformed shape, but also a
forward /backward asymmetry in the peak heights. We
quantify the asymmetry at each p, by taking the ratio of the
signals of one interference maximum in forward direction and
one interference maximum in backward direction, where each
signal is obtained by integrating over one peak in p,-direction.
The result is shown in figure 4(b). The asymmetry ratio is
larger than one for the outer rings. It decreases while going to
the inner rings and can reach values smaller than unity close
to the center of the distribution. The ratio of the outer ring has
a maximum of ~1.158 located at p, ~ 1.13 a.u. The com-
bined effect of the shift and the asymmetry explains the
plateau-like behavior in the partial average (p,), depicted in
figure 1(b). Considering only the shift without asymmetry
would yield a smaller partial average that matches with the
full calculation only near the cut-off region, where the
asymmetry has to vanish. Moving from the cut-off to smaller
momenta p,, the decreasing shift is nearly compensated by the
increasing asymmetry.

The shape of the plateau depends on the laser parameters as
well as the atomic target. The first dependence is investigated in
figure 5, where in panel (a) the intensity is scaled for a fixed
wavelength of 814 nm and in panel (b) the wavelength is scaled
for a fixed intensity of 8 x 10'* W cm ™2 In all calculations we
find the plateau-like structure. The height of the plateau increases
with increasing intensity and wavelength. Additionally, the slope
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over the plateau changes from negative values at small inten-
sities or wavelengths to positive values at high intensities and
wavelengths. We also find that the shifts extracted from TDSE
are in perfect agreement with the classical model over the whole
parameter range and that the dependence on the ring number is
only weak as in the example depicted in figure 4(a). In contrast,
the asymmetry drops faster from the boundary of the distribution
towards small |p,|. Hence, for distributions that are wide in
p.~direction as in the case of high wavelength and intensity, the
influence of the shift dominates over that of the asymmetry,
resulting in a positive slope over the plateau.

4. Conclusion

We have presented a numerical quantum mechanical invest-
igation of HATI beyond the electric dipole approximation and
an analytical analysis derived from the three-step model. To
obtain photoelectron momentum distributions from the TDSE
in a numerically convenient manner, we have used a unitary
transformation that casts the Hamiltonian into a sum of purely
momentum-dependent terms and purely position-dependent
terms To our knowledge, such a form of the non-dipole
Hamiltonian has not been used in any previous simulation.
Our central result is the p,-dependent average momentum
component in light propagation direction. In agreement with
earlier studies, we find backward shifts at small energy and
forward shifts at high energy. Additionally, we find that the p,
dependence of the forward momentum in the high-energy
rescattering regime exhibits a plateau-like structure at a con-
siderable momentum of the order of 0.1 a.u. for the realistic
laser parameters that we have chosen in the calculations.
While the shift of the boundary of the momentum distribution
can be explained by classical trajectories, there is an addi-
tional asymmetry in the forward /backward signal strengths. It
appears that the explanation of this asymmetry must be sought
in a non-isotropic rescattering event, which we plan to model
by using appropriate elastic scattering cross sections in future
work. Although all results shown in this paper have been
calculated for short pulses, we have confirmed that the tra-
jectory-based model yields very similar results for a cw
monochromatic field. The non-dipole deformation of the
momentum distribution shape becomes more pronounced
with increasing laser intensity or wavelength. This has a clear
interpretation in the classical model, which predicts that the
rescattering region of the two-dimensional momentum dis-
tribution is composed of ellipses with eccentricity propor-

tional to \/Eqy/(wc).
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