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Abstract

The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes.

In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial

glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to

photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate

aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the

mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD)

reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major

changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However,
RNAi lines showed reduced photorespiratory CO2 release and a lower CO2 compensation point. Mitochondria isolated

from RNAi lines are incapable of converting glycolate to CO2, whereas simultaneous overexpression of GlcDH and

ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice

mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in

monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally

conserved in higher plants.
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Introduction

Under moderate growth conditions, ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) fixes molecular oxygen (O2)

instead of carbon dioxide (CO2) in approximately one out

of four reactions which results in the formation of phos-

phoglycolate (Sharkey, 1988). Photorespiration is the only

plant pathway for the further conversion of this abundant

reaction product (reviewed in Peterhansel et al., 2010). After

dephosphorylation, glycolate is exported from the chloro-
plast and oxidized to glyoxylate by glycolate oxidase in the

peroxisome. O2 is the electron acceptor during this reaction

and H2O2 is formed that is detoxified by catalase. Still in the

peroxisome, glyoxylate is transaminated to glycine by

glutamate:glyoxylate aminotransferases. Glycine is trans-

ported to the mitochondrion where two molecules of glycine
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form one molecule of serine that is transported back to the

peroxisome. This reaction is catalysed by the glycine decarbo-

xylase complex. CO2 and NH3 are released during this

reaction. These losses are the major reason why photorespi-

ration is often viewed as a wasteful biochemical process

(Maurino and Peterhansel, 2010). Serine is deaminated to

hydroxypyruvate by serine:glyoxylate aminotransferase and

the amino group is used for the simultaneous amination of
glyoxylate to glycine. Hydroxypyruvate is further converted

to glycerate in the peroxisome. Glycerate is transported back

to the chloroplast and phosphorylated to phosphoglycerate

which can be integrated into the Calvin cycle. By this complex

series of reactions, up to three-quarters of the carbon in

phosphoglycolate is rescued and made available for plant

metabolism.

Leaf-type peroxisomes containing glycolate oxidase are
an invention of charophytes, multicellular green algae that

are the direct ancestors of land plants (Raven, 2000). Chloro-

phytes, the second major lineage of green algae, do not

possess such peroxisomes. Photorespiratory metabolism is

mainly confined to the mitochondrion in this clade. Never-

theless, the main reaction steps, including oxidation of glyco-

late, transamination, decarboxylation, and serine formation,

as well as recycling of phosphoglycerate, are probably iden-
tical (Stabenau and Winkler, 2005). For glycolate oxidation,

chlorophytes make use of a glycolate dehydrogenase (GlcDH)

that uses organic co-substrates instead of O2 (Paul and

Volcani, 1976). Characterization of a knock-out strain

for the gene encoding GlcDH in Chlamydomonas revealed

that photorespiration is essential for chlorophyte growth

(Nakamura et al., 2005) despite the effective carbon-

concentrating mechanism expressed by these algae (Spalding,
2008). The enzymes catalysing the further reactions of mito-

chondrial photorespiration in Chlamydomonas have not been

isolated to date.

Previous analyses suggested that the chlorophyte GlcDH

has been conserved in higher plants. A homologous enzyme

(encoded by At5g06580) is targeted to the mitochondria, can

oxidize glycolate, and uses D-lactate as an alternative sub-

strate. The latter is a common feature of GlcDH enzymes
that discriminates this enzymatic activity from glycolate

oxidases (Bari et al., 2004). Furthermore, an Arabidopsis

T-DNA insertion line that does not express GlcDH showed

reduced photorespiratory flux as estimated from gas ex-

change measurements and metabolite concentrations under

low CO2 conditions (Niessen et al., 2007). However, the mu-

tant showed no obvious phenotype under normal growth

conditions (Niessen et al., 2007). These data suggested that
the chlorophyte photorespiratory pathway including the mito-

chondrial glycolate oxidation step was conserved in Arabi-

dopsis, but that peroxisomal reactions of the major pathway

evolved in addition. This view was recently challenged by

characterization of the enzymatic properties of the recombi-

nant purified enzyme in vitro. The catalytic efficiency of the

recombinant enzyme with D-lactate as a substrate was much

higher than with glycolate, and the mutant survived growth
on high glycolate, but not D-lactate concentrations (Engqvist

et al., 2009). These data imply that the main function of

GlcDH in higher plants might be conversion of D-lactate, an

intermediate of methylglyoxal detoxification (Rasmusson

et al., 2008).

Here two mitochondrial aminotransferases from Arabidop-

sis are identified that link mitochondrial glyoxylate pro-

duction from glycolate to the formation of glycine and, thus,

to the major photorespiratory pathway. The same enzymatic

reactions can also be identified in rice mitochondria. These
results define the components of a mitochondrial glycolate

oxidation pathway in higher plants.

Materials and methods

Plant material and growth conditions

Arabidopsis thaliana wild-type plants and mutants (ecotype Col-0)
were grown under short-day conditions (8 h illumination and 16 h
darkness) in growth chambers at 22 �C with a light intensity of
100 lmol m�2 s�1. T-DNA insertion mutants were ordered from
the Nottingham Arabidopsis Stock Centre (NASC). Homozygous
mutants were identified by PCR using the primers and conditions as
suggested by NASC. For metabolite analysis, plants were grown for
5–6 weeks under standard conditions (8 h illumination and 16 h
darkness with 400 ppm CO2). Half of the plants were shifted 24 h
before harvesting to 100 ppm CO2. Oryza sativa (cultivar Guarà)
and Nicotiana tabacum (cultivar Petite Havana) were grown in a
greenhouse with supplemental illumination under semi-controlled
conditions. The daily light rhythm was 16 h light and 8 h of darkness.
In addition to sunlight, lamps ensured a minimum light intensity of
at least 250 lmol m�2 s�1.

Cloning and recombinant protein expression of ALAAT2

Alaat2 was amplified by PCR using Arabidopsis leaf cDNA as a
template and gene-specific primers (5#-GGCGATGGCCAATGCG-
GAGATTCTTGATTAACC-3# and 5#-CGGAACTCGAGGTTG-
CGGAACTCGTCCATGAA-3#). The primers contain extensions
with MscI and XhoI restriction sites. PCR fragments were cut
and ligated into the plasmid pET22b(+) (Novagen, Darmstadt,
Germany). Recombinant protein was expressed as described in Bari
et al. (2004). For bacterial lysis, the bacterial pellet was resuspended
in lysis buffer (20 mM TRIS-HCl pH 7.6, 10% glycerol, 0.1%
Triton X-100, 0.5% lysozyme, 5 mM dithiothreitol (DTT), and 13
Complete protease inhibitor (Roche, Mannheim, Germany) and
incubated for 1 h on ice. The suspension was centrifuged twice at
36 000 g for 10 min at 4 �C. The supernatant was used for the
assays.

Cloning of red fluorescent protein (RFP) constructs

Alaat1 and Alaat2 full-length sequences were amplified by
PCR using Arabidopsis leaf cDNA as a template and
gene-specific primer combinations (5#-ACATCCATGGTAT-
GCGGAGATTCGTGATTGGCCAA-3# and 5#-TGCTCC-
ATGGTGTCGCGGAACTCGTCCATGGA-3# for Alaat1, and
5#-AGCCGTCTCCCATGGTATGCGGAGATTC-3# and 5#-
TGCATGGGAGACGCTCGAGGTTGCGGAA-3# for Alaat2).
The amplified constructs were cloned into the binary plant
expression vector pTRAK, a derivative of pPAM (GenBank
accession no. AY027531), in translational fusion to a modified
dsRED protein (Jach et al., 2001).

Generation of RNAi lines

For down-regulation of Alaat1 and Alaat2 expression by RNA
interference (RNAi), stem–loop constructs containing homologous
sequences were used. The Alaat1 RNAi construct contains the
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sequence corresponding to position 1821–2020 of the full-length
cDNA. The Alaat1 and Alaat2 double RNAi construct contains the
sequence corresponding to position 1252–1451 of the full-length
Alaat1 cDNA. PCR products were cloned into pJawohl8-RNAi
vector (GenBank accession no. AF408413; kindly provided by I.E.
Somssich MPI for Plant Breeding Research, Cologne) using the
Gateway� technology (Invitrogen, Leck, The Netherlands). Result-
ing constructs were transferred into Agrobacterium tumefaciens
GV3101 and used for plant transformation. Arabidopsis thaliana
Col-0 wild-type plants were transformed using the floral dip method
(Clough and Bent, 1998). Gene expression in knock-down lines was
measured by quantitative reverse transcription-PCR (RT-PCR).

Transient overexpression in Nicotiana tabacum

Transient transformation was carried out on intact tobacco plants.
Agrobacterium tumefaciens strain GV3101 (pMP90RK, GmR KmR

RifR) was transformed with plant expression vectors containing
Alaat1 and GlcDH coding sequences. Alaat1 and GlcDH full-length
coding sequences were amplified by PCR using Arabidopsis leaf
cDNA as a template. The amplified constructs were cloned into
the binary plant expression vector pTRAK, a derivative of pPAM
(GenBank accession no. AY027531). Transformation was carried
out as described in Sparkes et al. (2006) with minor modifications.
Plants used for transformation were 6–7 weeks old and were grown
in the greenhouse. Plants were infiltrated with agrobacteria resus-
pended in infiltration medium [8.86 g l�1 MS (Murashige and
Skoog) medium, 100 g l�1 sucrose, 20 mM MES, and 0.2 mM
acetosyringone] and kept for 2 d in a phytochamber with a daily
rhythm of 16 h light and 8 h darkness.

Quantitative RT-PCR

RNA was prepared from Arabidopsis leaves following the
1-bromo-3-chlorpropane method (Chomczynski and Mackey,
1995). The integrity of the preparation was tested by gel
electrophoresis. One unit of DNase I (MBI Fermentas, St Leon-
Rot, Germany) per microgram of RNA and 13 DNase buffer
were added and the reactions were incubated for 30 min at 37 �C,
followed by a denaturation step of 15 min at 70 �C to remove
traces of contaminating DNA. Approximately 1 lg of RNA was
mixed with 50 pmol random nonamer primer, heated for 5 min to
70 �C, and cooled down on ice before adding 200 U of MMLV
reverse transcriptase (Promega, Mannheim, Germany) and 1 mM
dNTPs in reaction buffer supplied by the manufacturer. Samples
were incubated for 60 min at 37 �C and reverse transcriptase
was inactivated at 70 �C for 10 min. Quantitative RT-PCR was
performed on an ABI PRISM 7300 (Applied Biosystems,
Darmstadt, Germany) using SYBR Green fluorescence (Platinum
SYBR Green qPCR Mix (Invitrogen) for detection. Primer
combinations were 5#-GGTAACATTGTGCTCAGTGGT-
GG-3# and 5#-GGTGCAACGACCTTAATCTTCAT-3# for
Actin2, 5#-GGAGCTATGTATCTATTCCCTTGCC-3# and
5#-TTAAGAATTCGTTTGCAGTAGAAATTG-3# for Alaat1,
5#-GGAGCAATGTATCTCTTCCCGCGAA-3# and 5#-
GAAGAATTCGTTTGCAGTAGAACGCA-3# for Alaat2, 5#-
CCG TTA CCT CAG ATG CTT GAT TC-3# and 5#-CTC TGA
AGA GCT AAT TCC CAT TAT G-3# for At5g44800, 5#-GGT
TGA TGC TCA TGT TAA AGC TCT TC-3# and 5#-GCG TAA
TCA CCT GCA CGT CTA G-3# for At1g30620, 5#-CGA GCG
GAT TCG AAC TAG TTG G-3# and 5#-CTG GCC AAG TAT
ATC CGC TAC TG-3# for At1g52220, 5#-CGA ATC AAC CCT
TCT CGA GCA C-3# and 5#-CTC TTC TTT GCT GCA CTC
TCT GC-3# for At3g16170, 5#-CAT CGG ACC TGA CAC TGT
ATC-3# and 5#-CTG ACA CAT TCG CAT CTA TTG TC-3# for
At5g13420, 5�-GTT CTC GAA TAT TTG GCC GCC G-3# and 5�-
GCT TAG CTC CTC ATC GTT TCT G-3# for At5g54640, 5#-
CAG TTC TCA CAT CAA TTC AGT CTT TG-3# and 5#-CTG
AAC AAC CTT GCA GCC TCT G-3# for At5g62540, 5#-CAT
TGT GCT GAA GTT GGT TCA C-3# and 5#-CGG TCA CTC

ACA AGC TCA ATC-3# for At4g39660, 5#-GAA TGG ATA
AGT AAC ACA GTG AC-3# and 5#-CAT TTC CTA GGT GTC
CAA TTC TG-3# for At2g13360, 5#-GTG GAG CTG GTG AGT
GAT CGC-3# and 5#-TGA AGC AGA GAG GTG GTG TGA
TTC-3# for At2g38400, 5#-CAC AGA AGG TGC TAT GTA
TTC ATT C-3# and 5#-GAG ATT CCT GTG GCT TCT AAG
AG-3# for At1g70580, 5#-CTC ATG ACA GAT GGA TTC AAC
AG-3# and 5#-GGA GAG CTC CCG TTG GTA AC-3# for
At1g23310, and 5#-CAT TGG AGA CGT GAG AGG GAG-3#
and 5#-CAT TCC CAT AGA ATC CAC CTT TCC-3# for
At3g08860.

Subcellular localization

For dsRED localization and mitochondrial staining, leaves were
collected from 4-week old plants and cut into small pieces. Pro-
toplasts were isolated by incubating the leaf pieces in protoplast
isolation buffer [0.5 M sorbitol, 5 mM MES pH 5.8, 10 mM
CaCl2, 3% (v/v) Rohament CL, 2% (v/v) Rohament PL, and 0.12%
(w/v) Mazeroenzyme] at 30 �C for 2 h under illumination. The
solution was filtered through a 100 lm sieve and the flowthrough
was carefully collected. The protoplast suspension was diluted with
0.5 vol. of Linsmeier/Skoog medium (0.36% MS and 0.27 M NaCl
pH 5.8) and centrifuged for 5 min at 500 g. The protoplast pellet
was carefully resuspended in Linsmeier/Skoog medium. Part of the
protoplasts was stained with MitoTracker�GreenFM (Invitrogen)
as described by the supplier. Images were acquired with a 363 oil
immersion PLAN-APO objective. The entire sample was excited
with 488 nm and 568 nm laser light. The confocal sections were
collected using a 515–535 nm emission setting for MitoTracker�-

GreenFM, 570–610 nm emission setting for dsRED, and 660–720
nm emission setting for chlorophyll fluorescence.

Gas exchange measurements

Gas exchange measurements were performed with the LI-6400
system (Li-Cor, Lincoln, NE, USA) and parameters were calculated
using the software supplied by the manufacturer. Conditions were:
photon flux density (PFD), 1000 lmol m�2 s�1; chamber temp-
erature, 26 �C, flow rate, 100 lmol s�1, relative humidity, 60–70%.
The post-illumination CO2 burst was measured as described earlier
(Atkin et al., 1998; Niessen et al., 2007). The apparent CO2

compensation point (C) was deduced from A/ci [apparent CO2

assimilation (A)/intercellular CO2 concentration (ci)] curves by
regression analysis in the linear range of the curve.

Isolation of mitochondria

Intact mitochondria were isolated from 4 to 6-week-old Arabidopsis
plants. Approximately 5 g of leaves were ground in grinding buffer
[50 mM HEPES-KOH pH 7.5, 1 mM MgCl2, 1 mM EDTA,
1 g l�1 bovine serum albumin (BSA), 0.2 g l�1 sodium ascorbate,
0.3 M mannitol, 5 g l�1 polyvinylpyrrolidone (PVP)]. After filtra-
tion through three layers of Miracloth, the solution was centri-
fuged at 1100 g for 20 min. The supernatant was centrifuged again
at 14 000 g for 30 min. The pellets were resuspended in mannitol
wash buffer (10 mM HEPES-KOH pH 7.5, 0.3 M mannitol, and
1 g l�1 BSA). The solution was loaded on a self-forming 8 ml 45%
Percoll gradient [45% Percoll, 50% sucrose-buffer (0.3 M sucrose,
10 mM HEPES-KOH pH 7.5, and 1 g l�1 BSA)] and centrifuged
for 45 min at 40 000 g. The mitochondrial fraction was collected,
washed in mannitol wash buffer, and resuspended in 50 mM
HEPES-NaOH pH 7.5, 2 mM EDTA, 5 mM MgCl2, 0.1% Triton
X-100. Peroxisomal contamination in the preparation was deter-
mined by the catalase activity assay. The mitochondrial suspension
was adjusted to 30 mM phosphate buffer pH 7.0, 10 mM H2O2,
and the enzymatic activity was measured at 240 nm wavelength.
According to this assay, mitochondrial fractions always showed
a purity of >94%.
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CO2 release studies

[1,2-14C]Glycolate or [1-14C]glycine (Hartmann Analytics,
Braunschweig, Germany), respectively, were added to a mitochon-
drial suspension corresponding to 50 lg of mitochondrial protein
or an equivalent amount of the chloroplast/peroxisome protein
fraction. Specific radioactivities were 1850 MBq mmol�1 and final
concentrations were 0.1 mM for both substrates. Released CO2

was absorbed in 0.5 M NaOH. Samples were incubated overnight
and NaOH was constantly mixed to absorb all released CO2. For
inhibition experiments, 1 mM aminooxyacetate (AOA) or 1 mM
KCN was added to the reaction mix.

Enzymatic assays

GlcDH activity was assayed according to Lord (1972). Protein
extracts were added to 10 mM potassium phosphate (pH 8.0),
0.025 mM 2,6-dichlorophenol indophenol (DCIP), 0.1 ml of 1%
(w/v) phenozine methosulphate (PMS), and 10 mM potassium
glycolate. At fixed time points, individual assays were terminated
by the addition of 40 ll of 12 M HCl. After incubation for 10 min,
240 ll of 0.1 M phenylhydrazine was added. The mixture was
incubated at room temperature for 10 min. The extinction due to
the formation of glyoxylate phenylhydrazone was measured at
324 nm. Alanine:glyoxylate aminotransferase (AGA), alanine:-
keto-glutarate aminotransferase (AKA), glutamate:glyoxylate ami-
notransferase (GGA), and glutamate:pyruvate aminotransferase
(GPA) activities were measured as described before (Liepman and
Olsen, 2003; Miyashita et al., 2007).

Metabolite analysis

For metabolite extraction, complete shoots of plants were
harvested in reaction tubes filled with liquid nitrogen to avoid any
turnover of metabolites. A 50 mg aliquot of homogenized leaf
material was added to 1 ml of pre-chilled extraction mix (1 vol. of
H2O, 1 vol. of ChCl3, and 2.5 vols of methanol). Samples were
mixed for 5 min at 4 �C. After centrifugation (16 000 g, 4� C,
2 min), 500 ll of the supernatant were mixed with 250 ll of H2O
and again centrifuged for 2 min. A 250 ll aliquot of the top layer
(polar phase) was dried in a speed-vac concentrator. Derivatization,
addition of standards, and sample injection were performed as
described in Lisec et al. (2006). Chromatograms and mass spectra
were analysed and evaluated using TAGFINDER (Luedemann
et al., 2008) and ChromaTOF� (LECO Corporation) software. The
highest peak area in a data set was arbitrarily set to 1000 and all
other peak areas were calculated relative to this number.

Statistics

Significance was determined according to two-sided homoscedastic
t-test using Excel software (Microsoft, Munich, Germany).

Results

Glycolate to CO2 conversion was compared in isolated

Arabidopsis mitochondria in the presence and absence of the

aminotransferase inhibitor AOA in order to test whether an

aminotransferase is involved in this process. [14C]Glycolate

was added to isolated mitochondria and the released radio-

active 14CO2 was captured in NaOH solution as described

before (Niessen et al., 2007). As shown in Fig. 1, the amount

of CO2 liberated from glycolate was strongly reduced in the
presence of AOA compared with the control. The inhibition

by AOA of 14CO2 release from [14C]glycine was also tested,

because glycine decarboxylase (GDC) has been reported to

be inhibited by high AOA concentrations (Sarojini and

Oliver, 1985). Only a slight reduction in CO2 release from

glycine was observed in this assay, indicating that GDC

activity was not significantly affected by the assay conditions.

Mitochondrial extracts were next tested for aminotransfer-

ase activities using different amino donor and amino acceptor

substrates (Fig. 2). Substrates were selected based on pre-
vious experiments with photorespiratory aminotransferases

(Liepman and Olsen, 2003); however, it was not possible to

measure serine:glyoxylate aminotransferase (SGAT) activity

due to unavailability of hydroxypyruvate reductase that is

necessary for coupling of serine deamination to NADH

consumption. A fraction from a density gradient purification

containing chloroplasts and peroxisomes was used for com-

parison. As shown in Fig. 2, most tested aminotransferase
activities were almost exclusively associated with the chloro-

plast and peroxisome fraction. However, AGA activity was

evenly distributed over the tested fractions.

The Arabidopsis genome contains eight sequences for

putative alanine aminotransferases (Liepman and Olsen,

2003; see Table 1). Candidates were selected from these

sequences by analysing coding sequences. Each of the pro-

teins shows homology to one out of three unrelated alanine
aminotransferases from mammals, respectively. AGT1 has

been shown before to encode the peroxisomal SGAT

(Liepman and Olsen, 2001), whereas GGT1 and GGT2

encode peroxisomal glutamate:glyoxylate aminotransferases

(GGATs; Igarashi et al., 2003; Liepman and Olsen, 2003).

Little is known about the function of AGT2, AGT3, and

PYD4, but all these enzymes show both N-terminal target-

ing sequences for mitochondria and/or chloroplasts and in
addition C-terminal targeting sites for peroxisomes. For

Fig. 1. Inhibition of mitochondrial glycolate metabolism by amino-

oxyacetate (AOA). Isolated Arabidopsis mitochondria correspond-

ing to 50 lg of protein were incubated with [14C]glycolate or

[14C]glycine. AOA (1 mM) was added as inhibitor. 14CO2 released

was captured in NaOH and determined by scintillation counting.

Shown are the means 6SE from three independent experiments.

cpm, counts per minute; *P < 0.05.
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AGT2, dual targeting has been experimentally verified

(Carrie et al., 2009). ALAAT1 [identical to AOAT4 in

Igarashi et al. (2003) and AtAlaATc in Liepman and Olsen

(2003)] and ALAAT2 [identical to AOAT3 in Igarashi et al.

(2003) and AtAlaATm in Liepman and Olsen (2003)]

belong to the same class as GGT1 and GGT2, but form

a subclade and are most probably localized in mitochondria

based on prediction software and proteome analyses (Lee
et al., 2008). No peroxisomal targeting sequence is present

at the C-terminus of these proteins. Targeting of both

enzymes to mitochondria was verified by C-terminal fusion

to RFP. As shown in Fig. 3, the red fluorescence (Fig. 3F, I)

co-localizes with the MitoTracker stain that labels mito-

chondria in all cases (Fig. 3B, E, H), indicating that the

proteins were targeted to mitochondria in vivo. ALAAT1

and ALAAT2 share extremely high amino acid homology

(85% identity and 93% similarity). According to Genevesti-
gator (Hruz et al., 2008), both genes show little regulation

on the mRNA level with respect to developmental or en-

vironmental stimuli. The genes are significantly expressed in

all tested tissues, with the highest expression in pollen.

There is no evident co-regulation with photorespiratory

enzymes or Arabidopsis GlcDH.

Recombinant ALAAT2 was overexpressed in Escherichia

coli and aminotransferase activity was tested with different
substrates. As shown in Fig. 4, the recombinant enzyme

showed the highest AGA activity, but other tested substrate

combinations were used with similar efficiency. This is typical

for alanine aminotransferases that use multiple substrates

with similar efficiencies in in vitro assays (Liepman and

Olsen, 2003).

Using a stem–loop construct with homologous sequences,

expression of Alaat1 and Alaat2 was down-regulated in
Arabidopsis by RNAi. The two individual mRNAs as well

as a sequence region that was shared by Alaat1 and Alaat2

transcripts were targeted. The generation of efficient RNAi

lines for Alaat2 was not successful for unknown reasons.

However, Alaat1 mRNA levels were reduced to <25% of

the wild-type control in RNAi 1 plants (Fig. 5). Both Alaat1

and Alaat2 were suppressed to similar levels in the RNAi 1/

2 plants (Fig. 5). An aim was to use the available T-DNA
insertion lines (NASC codes N583084, N504925, N607662,

and N655815), but significant accumulation of Alaat mRNA

was detectable in all these lines (data not shown). As RNAi

suppression was partially lost in successive generations, T1

plants with independent transgene integration sites were

exclusively used for all experiments. Before starting physio-

logical analyses, reduction of Alaat1 and Alaat2 mRNA

levels was always tested for each individual plant. To exclude

Table 1. Putative alanine aminotransferases in the Arabidopsis genome

TAIR gene
symbol

AGI code Nearest human
homologuea

Aminotransferase
classb

Localization
(evidencec)

Source

AGT1 At2g13360 HsAGT1 (gi178273) V Peroxisomal (E) Liepman and Olsen (2001);

Reumann et al. (2009)

AGT2 At4g39660 HsAGT2 (gi54312043) III Mito./perox. (E) Carrie et al. (2009)

AGT3 At2g38400 Mito./perox./chloroplast (P) SUBA II; Heazlewood et al. (2007)

PYD4 At3g08860 Mito/perox. (P) SUBA II; Heazlewood et al. (2007)

GGT1 At1g23310 HsAlaAT1 (gi4885351) I/II Peroxisomal (E) Igarashi et al. (2003)

GGT2 At1g70580 Peroxisomal (E) Reumann et al. (2009)

ALAAT1 At1g17290 Mitochondrial (E),

cytoplasmic (E)

Lee et al. (2008); Igarashi et al.

(2003)

ALAAT2 At1g72330 Mitochondrial (P) TargetP; Emanuelsson et al. (2000)

a According to BLAST (http://blast.ncbi.nlm.nih.gov).
b According to PFAM search (http://pfam.janelia.org/).
c E, experimental; P, prediction.

Fig. 2. Measurement of endogenous aminotransferase activity

with different amino donor and acceptor substrates. Activities were

measured from isolated mitochondria in comparison with a fraction

from density gradient purification containing chloroplasts and

peroxisomes. Shown are the means 6SE from four independent

experiments. AGA, alanine:glyoxylate aminotransferase activity;

AKA, alanine:keto-glutarate aminotransferase activity; GGA, gluta-

mate:glyoxylate aminotransferase activity; GPA, glutamate:pyru-

vate aminotransferase activity.
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that additional homologous mRNAs were affected by ex-
pression of the RNAi construct, accumulation of the seven

mRNAs with highest homology to the targeted sequence

region and of all mRNAs encoding putative ALAATs was

also measured (Table 1). All control mRNAs accumulated to

similar levels in wild-type, RNAi 1, and RNAi 1/2 leaves

(Supplementary Fig. S1 available at JXB online).

To confirm down-regulation of ALAAT1 and ALAAT2

on the protein level, enzymatic activities from leaf extracts
of the different genotypes were measured (Fig. 6). All ex-

periments were performed in the presence and absence of

AOA to discriminate between aminotransferase activity and

any other enzymatic conversion. Using alanine and glyox-

ylate as substrates (Fig. 6A), a significant reduction in

activity was detectable in both RNAi lines. However, in

both single and double knock-downs, activities were still

;70% of wild-type levels. To investigate whether remaining
activity levels are due to the presence of other aminotrans-

ferases such as peroxisomal GGT1 that also shows high

activity with alanine and glyoxylate as substrates (Igarashi

et al., 2003), aminotransferase activity was additionally

measured with alanine and ketoglutarate as substrates

(Fig. 6B). In this assay, activities were reduced to <40% in

the RNA 1/2 line compared with the wild type. In the RNAi

1 line, activities were slightly less reduced, but still sig-

nificantly different from wild-type levels, indicating that

ALAAT1 activity is suppressed in RNAi lines.

Both the RNAi 1 and the RNAi 1/2 line did not show any

obvious phenotype under short-day growth conditions.

Fig. 4. Measurement of ALAAT2 aminotransferase activity with

different substrates. Recombinant ALAAT2 was overexpressed in

E. coli and activity was measured from crude extracts with different

donor and acceptor substrates. Activites measured from a strain

overexpressing an unrelated protein were substracted from those

measured from ALAAT2 overexpressors. Shown are the means

6SE from three independent experiments. AGA, alanine:glyoxylate

aminotransferase activity; AKA, alanine:ketoglutarate aminotrans-

ferase activity; GGA, glutamate:glyoxylate aminotransferase activ-

ity; GPA, glutamate:pyruvate aminotransferase activity.

Fig. 5. Down-regulation of Alaat1 and Alaat2 expression by RNAi.

Expression of Alaat1 and Alaat2 was measured in RNAi 1 and

RNAi 1/2 lines (black bars) in comparison with wild-type expres-

sion (grey bars). Wild-type expression was set to 100%. Shown

are the means 6SE from each 18 independent plants.

Fig. 3. Subcellular localization of ALAAT1 and ALAAT2. Protoplasts

were isolated from wild-type plants (A–C), plants overexpressing the

ALAAT2–RFP fusion construct (D–F), and plants overexpressing the

ALAAT1–RFP fusion construct (G–I). A, D, and G show transmitted

light pictures (TLP) of the isolated protoplasts. B, E, and H show

chlorophyll fluorescence (blue) and fluorescence of the Mito-

Tracker� (green). C, F, and I show chlorophyll fluorescence in

addition to RFP fluorescence (magenta). Images were acquired with

a 363 oil immersion PLAN-APO objective. The entire sample was

excited with 488 nm and 568 nm laser light. The confocal sections

were collected using a 515–535 nm emission setting for Mito-

Tracker�GreenFM, 570–610 nm emission setting for RFP, and

660–720 nm emission setting for chlorophyll fluorescence.
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Because it was suspected that ALAATs were involved in
photorespiration, metabolite profiles were determined from

plants grown under normal CO2 concentrations and from

plants that were shifted to 100 ppm CO2 for 24 h. Selected

results are shown in Table 2, and a complete profile with 50

identified metabolites is available in Supplementary Table S1

at JXB online. Glycine levels increased in plants shifted to

100 ppm CO2, indicating that flux through the photorespir-

atory pathway was enhanced, but no significant differences
were observed between the genotypes under these conditions.

Serine levels remained almost unchanged in wild types and

RNAi lines. Induction of photorespiration at 100 ppm CO2

strongly reduced glucose and fructose contents in leaves,

whereas sucrose levels were only slightly affected by the low

CO2 stimulus. Again, no significant differences between wild-

type plants and RNAi lines with reduced ALAAT expression

were observed. For the additionally tested metabolites

(Supplementary Table S1), no differences were observed

between the genotypes at 400 ppm CO2. Only those differ-

ences were taken into consideration where both RNAi lines

differed significantly from the wild type. At 100 ppm, only

contents of arabinose and galactinol were increased in both

RNAi lines compared with the wild type. Both substances do

not have obvious links to mitochondrial amino acid metab-
olism. Overall, metabolite profiling did not reveal an obvious

role in metabolism for ALAATs. However, the data also

indicate that basal mitochondrial functions are not perturbed

in RNAi lines.

Photosynthetic parameters of wild-type and RNAi lines

at different CO2 concentrations are shown in Table 3. Basic

gas exchange parameters, such as apparent CO2 assimilation

(A) and intercellular CO2 concentration (ci), were affected by
the low CO2 treatment, but no differences between the geno-

types were observed. The same pattern applied for photo-

chemical quenching (qP) and non-photochemcial quenching

(NPQ), as well as the actual quantum efficiency of photosys-

tem II (UPSII). The maximum quantum efficiency of PSII

(Fv/Fm) and stomatal conductance to CO2 (gs) were not

affected by either the CO2 treatment or RNAi suppression of

Alaat1 and Alaat2 expression. However, when calculating the
CO2 compensation point by linear regression of A/ci curves

at low CO2 concentrations, a significant reduction in both

RNAi lines compared with the wild type was observed. This

observation was further analysed by determining the post-

illumination CO2 burst (PIB) which is an estimate for the

amount of CO2 released from mitochondria during photo-

respiration in intact plants (Atkin et al., 1998). Both RNAi 1

and RNAi 1/2 plants showed significant reductions in PIB.
However, dark respiration rates (RD) were unaffected, sug-

gesting that differences in PIB are due to a reduction in

photorespiratory flux.

In order to evaluate further the role of Alaat1 and Alaat2

in mitochondrial metabolism, 14CO2 release from [14C]glyco-

late in mitochondria isolated from wild-type and RNAi plants

was compared (Fig. 7). Down-regulation of Alaat1 alone

resulted in a reduction of CO2 release to less than half the
wild-type levels. This value was further reduced by simulta-

neous suppression of both Alaat1 and Alaat2 expression

(Fig. 7A). In a complementary approach, ALAAT1 and/or

GlcDH were transiently overexpressed by infiltration of

Agrobacterium carrying the respective constructs into tobacco

leaves. As a control, infiltration of Agrobacterium carrying

a plasmid for overexpression of RFP was used. As shown in

Fig. 7B, overexpression of ALAAT1 or GlcDH alone resulted
in a comparable increase in CO2 release of ;65%. The simul-

taneous overexpression of both proteins caused a 2.5-fold

enhancement compared with the control.

The existence of a mitochondrial glycolate oxidation path-

way might be a peculiarity of Arabidopsis. To test whether this

pathway exists in other plants, glycolate conversion was

measured in isolated mitochondria from the monocotyledo-

neous model plant rice (O. sativa). Recent characterization of
the rice mitochondrial proteome indicated that rice mitochon-

dria contain homologues of both At5g05680 and ALAAT1

Fig. 6. Alanine aminotransferase activity in wild-type (WT), Alaat1

knock-down plants (RNAi 1), and Alaat1/Alaat2 double knock-

down plants (RNAi 1/2). (A) Alanine:glyoxylate aminotransferase

activity. (B) Alanine:ketoglutarate aminotransferase. AOA was used

as an aminotransferase inhibitor. Shown are the means 6SE from

three independent experiments. *P < 0.05; ***P < 0.005.
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from Arabidopsis (Os07g08950 and Os07g42600; Huang et al.,

2009). Figure 8A shows the formation of glyoxylate from

glycolate in isolated mitochondria from rice. The observed

activity is similar to what was described for Arabidopsis before

(Niessen et al., 2007). Glyoxylate formation could be sup-

pressed by KCN that had been shown to inhibit GlcDH

activity (Lord, 1972). However, no suppression was observed
when AOA was added to the assay as aminotransferase

activity is not required for glyoxylate formation from glycolate.

In contrast, AOA was capable of suppressing CO2 release

from glycolate in isolated rice mitochondria (Fig. 8B), in-

dicating that the further conversion of glyoxylate produced by

the GlcDH reaction includes an aminotransferase step. The

observed reduction was not due to a suppression of glycine

decarboxylation by the amounts of AOA used in this assay.
Thus, mitochondrial glycolate oxidation and transamination

described in Arabidopsis is conserved in the monocot rice.

Discussion

Here, the function of two mitochondrial ALAATs in

Arabidopsis was characterized. The enzymes were selected

based on their homology to one out of three human

ALAATs and to peroxisomal GGAT enzymes contributing

to the major photorespiratory pathway (Igarashi et al.,

2003; Liepman and Olsen, 2003). RNAi lines against Alaat1

or both Alaat1 and Alaat2 show reduced accumulation of

the respective mRNAs (Fig. 5) as well as a reduction by

up to 70% in ALAAT activity assays (Fig. 6) from leaf

extracts. This is in accordance with the previous character-

ization of an Alaat1 knock-out line that showed a similar
reduction in leaf ALAAT activity (Miyashita et al., 2007).

However, aminotransferases often show broad substrate

specificity in vitro and endogenous substrates are difficult to

determine (Mehta et al., 1993). Several lines of evidence

suggest that the two characterized enzymes use glyoxylate

and alanine as substrates in vivo: alanine enhances conver-

sion of glycolate to CO2 in isolated mitochondria (Niessen

et al., 2007) whereas the aminotransferase inhibitor AOA
inhibits this reaction (Fig. 1). Mutation of the putative

GlcDH (Niessen et al., 2007) or down-regulation of ALAATs

(Fig. 7) reduced this reaction, whereas overexpression of both

proteins enhanced CO2 release. These data indicate that

GlcDH and ALAATs are necessary and sufficient for CO2

release from labelled glycolate in isolated mitochondria. In

intact leaves, down-regulation of ALAATs reduced the PIB

(Table 3). This method is based on determining the difference
between the maximum CO2 release of a leaf when shifting the

Table 2. Relative amounts of selected metabolites at 400 ppm and 100 ppm CO2

Substance WT RNAi 1 RNAi 1/2

400 ppm 100 ppm 400 ppm 100 ppm 400 ppm 100 ppm

Glycine 383.8641.4 749.2621.1 606.5695.0 862.7646.9 453.0630.8 773.4632.6

Serine 737.7 671.8 779.6638.9 766.6 698.7 765.3632.4 748.8660.1 702.4633.7

Glucose 514.96107.3 177.3634.5 640.66117.8 241.1623.7 442.3649.7 227.5621.3

Fructose 433.46123.5 45.368.0 465.9664.6 56.567.9 410.36116.3 56.6610.2

Sucrose 923.4619.3 802.2632.4 951.1623.5 851.5612.7 921.5612.2 847.8614.1

Shown are the relative amounts of metabolites identified by GC-MS from wild-type (WT) and RNAi plants grown at 400 ppm and 100 ppm CO2

in arbitrary numbers.
Values are means 6SE of four biological replicates with a pool size of six plants per genotype and replicate.

Table 3. Gas exchange and chlorophyll fluorescence parameters of wild-type (WT) and RNAi plants

Parameter WT RNAi 1 RNAi 1/2

400 ppm 100 ppm 400 ppm 100 ppm 400 ppm 100 ppm

A (lmol m�2 s�1) 7.8960.69 1.1360.09 8.6660.46 1.1860.11 8.9260.29 1.3660.11

ci (ppm CO2) 311.9368.35 86.7261.14 315.2566.24 88.5460.6 312.5665.42 85.6961.43

gs (lmol m�2 s�1) 0.1860.01 0.1760.02 0.2060.02 0.2160.02 0.2060.02 0.1960.02

qP 0.2560.02 0.1660.01 0.2460.02 0.1560.01 0.2660.01 0.1760.01

NPQ 1.9360.09 1.9860.10 1.8460.08 1.9960.07 1.9760.05 2.0760.05

Fv/Fm 0.7960.004 0.7960.004 0.7960.003 0.7960.003 0.8060.002 0.8060.002

UPSII 49.4464.22 29.4061.95 48.7363.62 28.6062.19 53.1762.25 30.9361.70

C (ppm CO2) 63.8861.09 59.2960.90** 58.6660.84**

PIB (lmol m�2 s�1) 0.6660.05 0.4960.05* 0.4460.03***

RD (lmol m�2 s�1) 1.0360.15 1.0360.06 1.1160.03

A, apparent CO2 assimilation; ci, intercellular CO2 concentration; gs, stomatal conductance; qP, photochemical quenching; NPQ, non-
photochemical quenching; Fv/Fm, maximum quantum efficiency of photosystem II; UPSII, actual quantum efficiency of photosystem II; C,
apparent CO2 compensation point; PIB, post-illumination CO2 burst; RD, dark respiration.
Each data point represents the means 6SE of at least eight independent plants. For PIB and RD, four independent plants were measured. All
plants were 6–7 weeks old. *P < 0.05; **P < 0.01; ***P < 0.005.
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plant to darkness and the steady-state dark respiration (RD)

after the remaining photorespiratory glycine has been fully

decarboxylated (Atkin et al., 1998). As RD remained un-

changed, the most probable interpretation of the decrease in

PIB is a reduction in photorespiratory CO2 release. Sharkey

(1988) argued that these measurements do not provide an

accurate estimate of the photorespiratory flux as CO2

assimilation might also occur shortly after darkening and

respiration is variable during this time period. However,

reproducible values for maximum and steady-state CO2

release were observed under the present assay conditions.

Thus, even if PIB measurements do not provide absolute

numbers for photorespiratory flux, the relative reduction is

indicative of changes in photorespiratory CO2 release. Con-

sistent with this observation, the CO2 compensation point
(Table 3), where photosynthetic CO2 uptake matches re-

spiratory and photorespiratory CO2 release, is also reduced

in RNAi 1 and RNAi 1/2 lines.

One reasonable explanation for the observed experimen-

tal data is that some of the glyoxylate produced in the

photorespiratory pathway is not converted to glycine and

thus not decarboxylated, but accumulates. The gas chroma-

tography–tandem mass spectrometry (GC-MS) analyses
were inappropriate for the unambiguous detection of gly-

oxylate levels, but glycolate or glycine levels were not

significantly changed (Table 2; Supplementary Table S1 at

JXB online). Moreover, the RNAi lines did not show a

growth phenotype—in contrast to most mutants in enzymes

of the major photorespiratory pathway (Peterhansel et al.,

2010). These contradictory results might be explained by the

different durations of the low CO2 treatment. Plants were
shifted to low CO2 for a few minutes during gas exchange

measurements, but for 24 h for the determination of

metabolite levels. Thus, mitochondrial glycolate conversion

might play a role under rapidly changing conditions, but

not under steady-state conditions where the capacities of the

major pathway are adjusted to the amounts of phospho-

glycolate produced. Metabolic flux measurements instead

of steady-state metabolite concentrations under different

Fig. 7. Mitochondrial glycolate conversion in Arabidopsis RNAi

lines and transiently overexpressing tobacco plants. Isolated

mitochondria corresponding to 50 lg of protein were incubated

with [14C]glycolate. 14CO2 released was captured in NaOH and

determined by scintillation counting. (A) 14CO2 release in mito-

chondria from wild-type (WT), Alaat1 knock-down plants (RNAi 1),

and Alaat1/Alaat2 double knock-down plants (RNAi 1/2). (B)
14CO2 release in transiently transformed tobacco plants over-

expressing red fluorescent protein (control), AlaAT1, GlcDH, or

both AlaAT1 and GlcDH (AlaAT1+GlcDH). Shown are the means

6SE from at least three independent experiments. cpm, counts

per minute; *P < 0.05; **P < 0.01.

Fig. 8. Conservation of mitochondrial glycolate oxidation in rice.

Glyoxylate formation was measured from isolated rice mitochon-

dria. (A) GlcDH activity assay. Aminooxyacetate (AOA) or potas-

sium cyanide (KCN) were added as inhibitors. (B) 14CO2 release

from isolated mitochondria with three different 14C-labelled sub-

strates. AOA was added as an inhibitor. Values for all 14C-labelled

substrates are corrected for the specific activity of each substrate.

Shown are the means 6SE from at least three independent

experiments. cpm, counts per minute; **P < 0.01; ***P < 0.005.
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conditions might reveal further insights into the contribu-

tion of ALAATs to glycine production.

A basal CO2 release from glycolate was observed even in

plants where the mitochondrial glycolate oxidation pathway

was disrupted by down-regulation of ALAAT 1/2 (Fig. 7).

This was not due to non-enzymatic decay of the labelled

compound, because much lower levels of CO2 release were

observed in heat-inactivated extracts (data not shown). Other
enzymes might partially compensate for reduced ALAAT

abundance in RNAi lines. A mitochondrial c-aminobutyrate

(GABA) transaminase that can use glyoxylate as an amino

group acceptor has recently been described and suggested to

be involved in mitochondrial glycolate metabolism (Clark

et al., 2009). As GABA levels increase under stress, the

amino donor might be available at high concentrations under

photorespiratory conditions (Allan et al., 2009). Alterna-
tively, the remaining activity in the mutants might be caused

by contamination with peroxisomes as peroxisomal glycolate

oxidase and glyoxylate aminotransferase show much higher

activities compared with the corresponding mitochondrial

activities. However, the clear reduction in CO2 release from

glycolate in ALAAT RNAi lines (Fig. 7) indicates that these

mitochondrial proteins are responsible for the bulk glycolate

conversion in the mitochondrial preparations used here. It is
also unlikely that the observed data were caused by an

indirect effect of ALAAT 1/2 suppression on basal metabo-

lism in RNAi lines as metabolite profiles and photosynthetic

parameters were very similar for wild types and RNAi lines.

Glyoxylate produced in photorespiration is normally trans-

aminated in peroxisomes (see Introduction). One function of

ALAATs could be to convert excess glyoxylate that might

diffuse from peroxisomes to mitochondria as suggested
before for formate resulting from the decarboxylation of

glyoxylate (Wingler et al., 1999; Cousins et al., 2008).

Alternatively, a mitochondrial GlcDH might convert photo-

respiratory glycolate to glyoxylate and provide substrate for

ALAATs. This scenario is consistent with the CO2 release

assays that use glycolate as a substrate (Figs 1, 7) and pre-

vious results showing that mitochondria contain a GlcDH

that is involved in photorespiration (Niessen et al., 2007).
These data suggest that mitochondrial GlcDH and ALAATs

are conserved from chlorophytes that use homologous en-

zymes for photorespiration (Nakamura et al., 2005; Stabenau

and Winkler, 2005). However, this is in contradiction to the

very low turnover rates of the recombinant and purified

putative GlcDH with glycolate as a substrate and the growth

inhibition of knock-out lines on agar plates containing

D-lactate, but not glycolate (Engqvist et al., 2009). Similarly,
ALAAT1 has been described before to contribute to the

rapid conversion of alanine during the post-hypoxia recovery

period in roots (Miyashita et al., 2007). The nearest homo-

logue to Arabidopsis ALAAT enzymes in Medicago trunca-

tula has been shown to be induced in the embryo axis of

young seedlings under hypoxia and to catalyse alanine syn-

thesis instead of using alanine as an amino donor. However,

the same enzyme catalyses glutamate synthesis from alanine
and oxoglutarate under non-hypoxic conditions (Ricoult

et al., 2006). Thus, these enzymes might take over different

functions in different tissues or under different conditions.

Other isoforms of photorespiratory enzymes are also highly

expressed in non-photosynthetic tissues such as roots (Foyer

et al., 2009) where they probably take over functions in

pathways other than photorespiration. Thus, substrate

availability dependent on the conditions instead of enzymatic

specificity might regulate the function of photorespiratory

enzymes as suggested before for the synthesis of secondary
metabolites (Schwab, 2003) or the activities of glycosyltrans-

ferases (Bowles et al., 2006).

Mitochondrial glycolate oxidation is just one of several

alternative photorespiratory side pathways in higher plants.

Beside peroxisomal glyoxylate decarboxylation mentioned

above, there is also evidence that chloroplasts contain their

own pathway for glycolate oxidation in addition to pero-

xisomes and mitochondria (Goyal and Tolbert, 1996;
Kebeish et al., 2007). Recently, it has been described that

hydroxypyruvate can be reduced by cytoplasmic or chloro-

plastic isozymes instead of the peroxisomal enzyme (Timm

et al., 2008, 2011). All these alternative reactions might

act as overflow valves for the major pathway to avoid

accumulation of toxic intermediates. Alternatively, they can

provide plants with metabolic flexibility. A major advantage

of the mitochondrial pathway is the energy balance:
glycolate oxidation can be linked to ATP synthesis instead

of producing H2O2 in peroxisomes that has to be detoxified

(Paul and Volcani, 1976; Stabenau and Winkler, 2005). This

is probably important under low light conditions or in

shaded leaves where energy supply is limiting growth

(Gibon et al., 2009). The data obtained from rice mitochon-

dria suggest that glycolate dehydrogenase and glyoxylate

aminotransferase activity have been conserved in both the
dicot and monocot lineages (Fig. 8). Such evolutionary

conservation supports the hypothesis that these activities

provide plants with a selective advantage under natural

conditions and constitute more than a remnant from green

algae lacking leaf-type peroxisomes. Whether this selective

advantage is based on function of these enzymes in glycolate

metabolism or alternative acitvities remains to be shown.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Expression of putative RNAi targets and
putative alanine aminotransferases.

Table S1. List of metabolites identified in wild-type and

RNAi plants.
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