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ABSTRACT: 

 

In this paper we present a novel approach for image orientation by combining relative rotations and tie points. First, we choose an 

initial image pair with enough correspondences and large triangulation angle, and we then iteratively add clusters of new images. The 

rotation of these newly added images is estimated from relative rotations by single rotation averaging. In the next step, a linear equation 

system is set up for each new image to solve the translation parameters with triangulated tie points which can be viewed in that new 

image, followed by a resection for refinement. Finally, we optimize the cluster of reconstructed images by local bundle adjustment. 

We show results of our approach on different benchmark datasets. Furthermore, we orient several larger datasets incl. unordered image 

datasets to demonstrate the robustness and performance of our approach. 
 

 

1. INTRODUCTION 

In recent years, surveying and mapping showed a lot of interest 

in automatic 3D modelling of architectural and urban areas from 

images. The determination of image orientation (also called 

structure-from-motion, SfM) is a prerequisite to realize this task. 

Several researchers (Snavely, et al.,2006; Agarwal et al., 2009; 

Wu, 2013) have suggested various methods to solve this problem. 

Nowadays, SfM can be divided into three categories: incremental 

SfM, hierarchical SfM and global SfM. Incremental SfM 

(Snavely, et al., 2006; Wu, 2013; Schönberger & Frahm, 2016) 

is the earliest idea. Two images or triplets are initially chosen 

according to some specific requirements; their relative 

orientation parameters are computed, new images are iteratively 

added by space resection (also called PnP or perspective-n-point 

problem) and triangulation; a robust bundle adjustment is 

typically adopted to obtain reliable results. The above procedure 

is repeated until no more images can be added. The concept of 

incremental SfM is rather straight-forward. Incremental SfM is 

relatively robust against outliers, because these can be detected 

and removed incrementally when adding new images. However, 

due to the repeated use of bundle adjustment it is rather slow. To 

overcome this problem, Hierarchical SfM (Farenzena, et al., 

2009; Havelena et al., 2009; Mayer, 2014; Toldo, et al., 2015) 

was proposed. The basic idea is to divided the whole dataset into 

several overlapping subsets that are reconstructed independently 

using incremental methods. Finally, all reconstructions are 

merged and optimized by bundle adjustment. Global SfM 

(Govindu, 2001; Martinec & Pajdla, 2007; Jiang et al., 2013; 

Moulon et al., 2013; Ozyesil & Singer, 2015; Arrigoni et al., 

2016; Reich & Heipke 2016; Goldstein et al., 2016) consider this 

problem from a different perspective. Global SfM draws on the 

well-known idea that rotation and translation estimation can be 

separated. Accordingly, these methods consist of two main steps: 

global rotation averaging and global translation estimation. 

Global rotation averaging simultaneously estimates the rotation 

matrices of all images in a consistent (global) coordinate system 

(Hartley et al., 2013). Given global rotations, global translation 

estimation aims at simultaneously solving the translation 

parameters of all images. The advantage of global SfM is that it 
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can solve both rotations and translations without using 

intermediate bundle adjustment, only a final one is necessary. 

However, it is more sensitive to outliers than the other methods. 

 

We are most interested in robust solutions and thus present a 

novel incremental SfM approach in this paper. Fig. 1 shows the 

workflow of our new method. We extract features from all 

images and perform relative orientation of all image pairs; for 

unordered sets we first determine image similarity using the 

method described in (Wang et al., 2017). Then an initial image 

pair is chosen, and clusters of new images are iteratively added 

and oriented by single rotation averaging and linear translation 

estimation. Subsequently, new scene points are triangulated, and 

a local bundle adjustment is used to refine the results. In this 

paper we primarily focus on the robust computation of the 

exterior orientation parameters of the newly added images (see 

green dashed box in Fig. 1). The main contribution is twofold:  

First, we adopt single rotation averaging to estimate the new 

image rotation matrix. Second, we set up a linear equation system 

with only two tie points that can be seen on the new images to 

calculate the translation parameters. The L1 norm (minimisation 

of the sum of the absolute values of the residuals) is chosen to 

solve optimisation, as it is more robust then the L2 
 

Figure 1. Workflow of our image orientation approach. 
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norm (least squares). We evaluate robustness and performance of 

our approach w.r.t. accuracy using various benchmark datasets. 

Additional experiments on large datasets incl. unordered images 

demonstrate further capabilities of our approach. 

 

The remainder of this paper is structured as follows: Section 2 

discusses related work.  In Section 3 we introduce our method for 

estimating rotation matrices and translation parameters by single 

rotation averaging and solving a linear equation system, 

respectively. In Section 4, we report the results of experiments on 

a number of datasets to evaluate our method. Finally, Section 5 

concludes our work. 

 

 

2. RELATED WORK  

In this section we review related work on incremental structure-

from-motion. We discuss the classical PnP (perspective-n-point) 

problem, rotation averaging and translation estimation.   

 

PnP: Space resection or PnP (Hartley & Zisserman, 2003; Zheng 

et al., 2013) aims at determining the rotation and translation for 

one calibrated perspective image from n ≥ 3 points, given their 

3D coordinates in object space and their corresponding 2D image 

coordinates. The direct linear transformation (DLT) is a well-

known solution for PnP (Abdel-Aziz & Karara, 1971). Using 

projective geometry, Hartley and Zisserman (2003) suggested a 

two-stage procedure for calibrated cameras: they first applied the 

calibration matrix to the image coordinates, which turns the 

projection matrix into an image pose matrix. The rotation matrix 

and translation parameters are then calculated from the pose 

matrix. Zheng et al. (2013) revisited the problem by applying 

Gröbner bases. Both of these methods were demonstrated to be 

able to give accurate results, provided that at least three 3D points 

are available, which are not collinear.  

 

Rotation averaging:   Rotation averaging attracted the attention 

of vision researchers since the work of Govindu (2001). There 

are two basic approaches: single rotation averaging and multiple 

rotation averaging (Hartley et al., 2011).  Single rotation avera-

ging computes the mean rotation of a set of rotations. Multiple 

rotation averaging is very close to global rotation averaging 

(Govindu, 2001; Chatterjee & Govindu, 2013; Reich et al., 2015, 

2017): for a set of images, relative rotations Rij are given, and for 

each image the global rotation is computed simultaneously, 

satisfying all constraints RijRi = Rj. Govindu (2001) used 

quaternions to average the global rotations by constrained least 

squares optimization. Martinec and Pajdla, (2007), Arie-

Nachimson et al. (2012) and Moulon et al. (2013) studied this 

problem by considering the properties of rotation matrices; SVD 

(singular value decomposition) was used to solve the correspon-

ding linear equation system. Hartley et al. (2011) compared L1 

and L2 averaging and demonstrated that the L1 norm performed 

better than the L2 norm by using the Weiszfeld algorithm 

(Hartley et al., 2011). Chatterjee and Govindu (2013) started by 

propagating an initial rotation value using a minimum spanning 

tree. Later, the initial results were optimized using the Lie 

algebra, taking advantage of the fact that rotation matrices make 

up the special orthogonal group SO(3) (Hartley et al., 2013). This 

method was demonstrated to be robust with respect to outliers of 

relative rotations. Reich et al. (2015, 2016, 2017) solved the 

problem based on a convex relaxed semidefinite program, which 

yields a more robust result. However, due to a breadth-first search 

the method is rather computationally intensive. 

 

Translation estimation: A number of approaches have recently 

been proposed for this problem. They can be divided into two 

categories: (a) the combined use of tie points and relative 

translation information, and (b) the exclusive use of 3D 

coordinates of tie points only. In the first group, Jiang et al. 

(2013) proposed a linear global approach using tie points of triple 

images to unify the scale factors, and then propagated these scale 

factors to the connected triplets. Given the relative translations, 

they set up and solved a global linear homogeneous equation 

system. They normally recover fewer images than other methods 

(Moulon et al., 2013; Wilson & Snavely, 2014), because the 

triplets are required to be well connected. Wilson and Snavely 

(2014) presented a method called 1DSfM. They provided a smart 

outlier filter by projecting 3D information into different 1D 

spaces, the inliers of relative translations are then considered to 

constrain the translation parameters. Cui et al. (2015) used the 

constraint that tie points which can be viewed in different images 

should have identical 3D coordinates to compute the translations 

in a unified coordinate system. Relative translations between 

image pairs were also added in their algorithm. The second 

group, in which only the 3D coordinates of the tie points are used, 

is not as well studied. The reason is that detecting outliers from 

abundant tie points is normally more difficult than detecting 

outliers of relative orientations. Cui et al (2017) presented a 

HSfM (Hybrid Structure-from-Motion) method; they estimated 

the rotation matrix by global rotation averaging. After that, an 

incremental translation estimation method was employed in 

which the rotation matrices remain constant. 

 

The above-mentioned works determine the exterior orientation 

parameters of images without initial values. Some restrictions 

apply, however: For PnP, at least three non-collinear 3D points 

are needed, which may not always be available. Rotation 

averaging is relatively sensitive to outliers of relative rotations 

and the same is true for the first category of translation estimation 

methods with respect to outliers in relative translation. Moreover, 

both translation estimation methods can be negatively influenced 

by errors in the tie points. 

 

Our method for adding images only needs two 3D points. To 

reduce the impact of outliers during rotation determination, we 

present an iterative method to detect and eliminate them in our 

single rotation averaging scheme. Finally, we refine our rotation 

matrices by iteratively using space resection and local bundle 

adjustment, and we also use a RANSAC technique to make the 

choice of tie points as robust as possible. In this way we argue 

that our results are as accurate as and more robust than those of 

comparable methods. 

 

 

3. INCREMENTAL ROTATION AND TRANSLATION 

ESTIMATION  

In this section we present the strategy of choosing a good initial 

image pair, explain our procedure for calculating the rotation 

matrices of newly added images, and show how we compute the 

translation parameters via a linear equation system by 

minimizing the L1 norm. 

 

3.1 Overview of the developed procedure  

As is well known, the selection of the initial pair can have a 

significant influence on the subsequent reconstruction. To obtain 

a good initial pair, we introduce two indicators: the number of 

matched features, which should be large, and the intersection 

angle, which should be close to 90 degrees.  
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Given the individual images we first derive SIFT features (Lowe, 

2004).  Then, for each image pair (i, j) we compute the relative 

orientation parameters based on the 5-point algorithm of Nistér 

(2004) with RANSAC, record all inliers and compute the 

intersection angle for each matched feature pair (𝒑𝒊 , 𝒑𝒋). We 

choose the median of these angles as the intersection angle for 

the considered image pair. We keep all image pairs that fulfil two 

conditions: (a) they need to have more matches than a threshold 

(we use 50 in our work), and (b) at least a certain amount of the 

matches must be inliers (we use 80%). Among the remaining 

pairs, the one with an intersection angle closest to 90 degrees is 

the final choice for the initial image pair. 

 

The most obvious way to select the image to be added to the block 

next is to find the candidate which shares the most corres-

pondences with the images employed so far. As it is not very 

efficient if only one image is added each time, we simultaneously 

add all images which fulfil two conditions (a) a certain 

percentage (we use 60%) of the features extracted from the image 

have matches to already computed 3D points, (b) the number of 

these features is above a threshold (we use 30 here). All images 

fulfilling these two conditions together with the images processed 

already are called a cluster. Then, rotation averaging (section 

3.2), translation estimation (section 3.3) and resection refinement 

(Section 3.4) are performed independently for each new image of 

the cluster, followed by a local bundle adjustment (section 3.5) 

using the whole cluster. In the next step, from the remaining 

images a new cluster is formed and the procedure starts again. 

The procedure is visualised in Fig. 2. 

Figure 2. Flowchart of our incremental image orientation method 

(for the explanation of “Ours” and “Ours_RF” see section 4.1). 

 

3.2 Rotation estimation by single rotation averaging 

Given the rotation matrices of images, which have already been 

added to the block, and the relative rotations between those 

images and a newly added image, we can calculate several rota-

tion matrices for the new image. With reference to Fig. 3 let 𝑹𝒂 

be the rotation matrix of the new image that we want to estimate, 

𝑹𝒊 , 𝑹𝒋 , 𝑹𝒌 , 𝑹𝒎 ,  𝑹𝒏  are the rotation matrices previously 

estimated by iterative SfM for images i, j, k, m, and n, 𝑹𝒊𝒂, 𝑹𝒋𝒂, 

𝑹𝒌𝒂, 𝑹𝒎𝒂, 𝑹𝒏𝒂 are the relative rotations with respect to image a 

calculated by the 5-point algorithm. We propagate the given 

rotations along these relative rotations to obtain different solu-

tions for 𝑹𝒂, namely, 𝑹𝒂
𝒊 , 𝑹𝒂

𝒋
, 𝑹𝒂

𝒌, 𝑹𝒂
𝒎, 𝑹𝒂

𝒏. We want to average 

these rotation matrices and obtain a robust result.  
 

Note that every rotation in SO(3) can be represented as a rotation 

by an angle α around an axis represented by unit 3-vector 𝐯̃ , v = 

α𝐯̃ subject to ‖𝐯̃ ‖2=1; I is the identity matrix (see Hartley et al., 

2013 for more details). Also, rotation matrices form a 

differentiable manifold which is inherent in every Lie group. 

According to Hartley et al. (2013), we project the rotation 

matrices to their Euclidean tangent space (the Lie algebra so(3)) 

using the logarithm log(·): SO(3)→ so(3): 
 

       log(R) = [v]×, v = arcsin(‖𝐰‖2) 
𝐰

‖𝐰‖2
, w = 

𝐑−𝐑𝐓

𝟐
                      (1) 

 

and  
 

      [v]× = (
0 −𝑣3 𝑣2

𝑣3 0 −𝑣1
−𝑣2 𝑣1 0

)                                                     (2) 

 

The inverse transformation projects so(3) back into SO(3) using 

the exponential map: 
 

      R = exp([𝐯̃]×) = I +sin(α) [𝐯̃]×+(1-cos(α)) [𝐯̃]×
2                         (3) 

 

We now want to estimate our rotation matrix R (matrix 𝑹𝒂 with 

reference to Fig. 3) from the different observations Ri (matrices 

𝑹𝒂
𝒊 , 𝑹𝒂

𝒋
, 𝑹𝒂

𝒌, 𝑹𝒂
𝒎, 𝑹𝒂

𝒏 with reference to Fig. 3 ) by averaging the 

observations in tangent space: 
 

        ∑
1

n

i

i
R

)R,R(dminargR
=

=                                                  (4) 

 

where d(R, 𝑹𝒊) = d(R, 𝑹𝒊)geod = ||log(R𝑹𝒊
𝑻)||1 (geodesic distance).  

Figure 3. Single rotation averaging (see text for more 

information). 

 

We use the L1 norm as it is more robust than the L2 norm, and 

apply the Weiszfeld algorithm to obtain the solution of (4). The 

pseudocode for single rotation averaging is presented in 

Algorithm 1, where 1/∑ (1 ∕ ‖xi‖)n
i=1  determines the speed of 

convergence. 
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Algorithm 1 Single rotation averaging  

Input a number of observations 𝑹𝒂
𝒊 , i=1,2,3…n. 

Output mean rotation 𝑹̅ 

1. Initialize a rotation matrix 𝑹𝒂
𝟎 by randomly 

choosing a rotation from all observations, 𝑹𝒕
𝟎 =

 𝑹𝒂
𝟎. Iteration number t  = 0. 

2. Do 

{ 

  For i =(1,2,3,…n) 

  { 

    xi = log(𝑹𝒂
𝒊

 ·𝑹𝒕
𝟎

 

𝑻
);  

  } 

  δ = ∑ (xi ∕ ‖xi‖)n
i=1 /∑ (1 ∕ ‖xi‖)n

i=1 ; 

   𝑹𝒕+𝟏
𝟎  = exp(δ) ·𝑹𝒕

𝟎;  

   t = t+1; 

} while (d( 𝑹𝒕+𝟏
𝟎  , 𝑹𝒕

𝟎) ≥0.0001or t <50) 

3. The observations may not be accurate, if the 

relative rotations are not accurate. To obtain a 

more robust result, we calculate the geodesic 

distances between the observations and the 

rotation estimated in step 2. If d(𝑹𝒕+𝟏
𝟎 , 𝑹𝒂

𝒊 ) >0.001, 

the observation of 𝑹𝒂
𝒊  is discarded, such as the 

dotted line between 𝑹𝒂 and 𝑹𝒂
𝒏  in Fig. 3. 

4. Steps 2 and 3 are repeated until no observation can 

be discarded and step 2 converges, 𝑹̅ = 𝑹𝒕+𝟏
𝟎 . 

 

3.3 Linear translation estimation for each new image 

Based on the rotation now known, image translation parameters 

can be estimated for the new image with only two 3D points: 

Using the collinearity equations, each 3D point yields two 

equations (5) and each image has three translation parameters 

( X0, Y0, Z0). Thus, two 3D points with given image coordinates 

give four equations, which is enough to determine the three 

unknowns.  
 

0

033023013

032022012

0

033023013

031021011

y
)Z-Z(r)Y-Y(r)X-X(r

)Z-Z(r)Y-Y(r)X-X(r
f-y

x
)Z-Z(r)Y-Y(r)X-X(r

)Z-Z(r)Y-Y(r)X-X(r
f-x

+
++

++
=

+
++

++
=

                (5) 

 

with  𝑹𝒊= (

r11 r21 r31

r12 r22 r32

r13 r23 r33

)  

  

where (X, Y, Z) are the 3D coordinates of the jth object point 𝑿𝒋 

which is assumed to be viewed by ith image, and (x, y) are the 

corresponding 2D image coordinates 𝒙𝒊𝒋 . (  x0 ,  y0 ) are the 

principal point coordinates of ith image, f is the focal length,. 

( X0, Y0, Z0) are the coordinates of the unknown projection centre 

𝑻𝒊 (equivalent to the image translation vector), and 𝑟𝑚𝑛 (m =1, 2, 

3; n =1, 2, 3) are the entries of the rotation matrix 𝑹𝒊. Note that 

for the simplicity, we omit the indices i and j in equation (5). 

 

To obtain a form which is linear in ( X0, Y0, Z0), we multiply 

equation (5) by  the denominator: 

 

Z]fr+r)y-y[(+Y]fr+r)y-y[(+X]fr+r)y-y[(

=Z]fr+r)y-y[(+Y]fr+r)y-y[(+X]fr+r)y-y[(

Z]fr+r)x-x[(+Y]fr+r)x-x[(+X]fr+r)x-x[(

=Z]fr+r)x-x[(+Y]fr+r)x-x[(+X]fr+r)x-x[(

323302223012130

032330022230012130

313302123011130

031330021230011130

                                                                                                                      

(6) 

Finally, we obtain the linear equation system (7) and the 

optimisation problem (8):  

 ν=Ax - b                                                                                         (7) 

 

1
- bAxargmin

x

                                                                 (8) 

 

Here, x and b are vectors constructed by concatenating the 

unknown translation parameters and the right part of equation (6), 

respectively; A is the coefficient matrix and ν is the vector of 

residuals. Equation (8) is based on the L1 norm. Normally, there 

are abundant 3D points that can be chosen to solve (6). We use 

RANSAC to find the best image translation. 

 

3.4 Refinement of rotation and translation by space resection 

For each new image, the rotation estimated by Section 3.2 and 

translation estimated by Section 3.3 are regarded as an initial 

input for a space resection refinement to compute a more accurate 

result: 

∑ -

M

j

jiiiij
T,R

)X,T,R,K(xminimize
ii 1

2
φ

=

                        (9) 

where i is the ID of the new image, M is the number of 

reconstructed scene points which can be viewed in the ith image, 

𝑿𝒋  denotes its 3D point coordinates. 𝑹𝒊 , 𝑻𝒊  are the parameters 

that we aim to optimize. 𝑲𝒊  contains the intrinsic parameters 

(focal length and principal point), 𝝋 represents the collinearity 

equations (5), 𝒙𝒊𝒋 are the 2D image coordinates extracted from 

the ith image. These 2D and 3D points are assumed to be inliers 

as determined by sections 3.2 and 3.3. 

 

3.5 Local bundle adjustment 

After having added all images selected according to section 3.1, 

and before adding a new cluster, we perform a bundle adjustment 

to reduce block deformation:  

∑∑ -

N

i

M

j

jiiiijij
X,T,R

)X,T,R,K(xaminimize
jii 1 1

2
φ

= =

         (10) 

 

where N is the number of images and M is the number of scene 

points, 𝒂𝒊𝒋  = 1 if object point j can be viewed by image i, 

otherwise, 𝒂𝒊𝒋 = 0. 𝑹𝒊, 𝑻𝒊 and 𝑿𝒋 are the items that we want to 

refine. 𝑲𝒊  again contains the intrinsic parameters. 𝝋 represents 

the collinearity equations (5), 𝒙𝒊𝒋 are the 2D image coordinates. 

 

 

4. EXPERIMENTS 

In this section we present a detailed evaluation of our approach. 

We conduct experiment on three benchmark datasets (Strecha et 

al., 2008) consisting of 11 to 30 images and two datasets which 

have 128 ordered and 553 unordered images, respectively. 

Results of single rotation averaging are analysed by comparison 

with other methods (Section 4.1). We evaluate our translation 

estimation approach based on the ground truth of the three 

benchmark datasets (Section 4.2). To further demonstrate the 

potential of our approach, we orient the images of two larger 

datasets (Section 4.3). We use the open source Ceres-solver 

(Agawal et al., 2017) for bundle adjustment. 

 

4.1 Evaluation of rotation results 

For the investigation of rotation accuracy, the three benchmark 

datasets fountain-P11, Herz-Jesu-P25 and castle-P30, which 

have known ground truth exterior orientation, are investigated. 

The interior orientation parameters are taken from the EXIF 
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information provided with the data. Fig. 4 shows results for 

different methods, the abscissa denotes the image ID, the ordinate 

is the angle error (in degrees), i.e. the difference between the 

computed value and ground truth (see appendix for computation). 

“Ours” is the result by just using the single rotation averaging 

(section 3.2). Applying resection refinement (see section 3.4) 

yields the results of “Ours_RF”. Note that while for all clusters 

but the last one, bundle adjustment has also been run as part of 

the procedure (see Fig. 2), the results used for “Ours” are those 

obtained directly after rotation averaging for all images. The 

same holds for the other experiments accordingly. “Res_RF” 

uses the DLT (Hartley & Zisserman, 2003) and is refined by 

resection refinement (see again section 3.4). “BA” denotes the 

results after final bundle adjustment. The initial image pairs of 

these datasets are (4,9), (4,9) and (4, 12), determined by the 

method described in Section 3.1, so the rotation of the fourth 

image is selected as the original one. The relative rotation 

between the fourth image and the corresponding ground truth is 

used to project all remaining rotation matrices into the coordinate 

system of the reference. We calculate the error  by comparing 

the ground truth rotations to the computed ones (see appendix for 

details). In this way, the error of the fourth image is always zero.  

 

Comparing the angle errors of the different methods shown in 

Fig. 4, “Ours” provided by our single rotation averaging performs 

worst, probably due to remaining errors and outliers in the 

relative rotations. It can also be seen that the angle error of some 

images (for example image 10 in Fig.4(a) and images 10-13 and 

20-25 in Fig.4(b)) are much larger than others. This is probably 

due to error accumulation. Errors propagate and accumulate 

when adding images of the new cluster sequentially into a refined 

block, and we found that the images which were added last have 

the largest angle errors. However, if we turn on the resection 

refinement, these results are significantly improved. 

Furthermore, by applying resection refinement, both “Ours_RF” 

and “Res_RF” achieve almost the same accuracy. As is expected, 

the angle errors after final bundle adjustment are the smallest 

ones: the errors for fountain-P11 and caslte-P30 are smaller than 

0.4°, for Herz-Jesu-P25 smaller than 0.2°.  

 

In Tab. 1 we list the mean angle error of the mentioned methods 

along with the results of the baseline methods of Chatterjee and 

Govindu (2013) (“Global”), Jiang et al. (2015) and Reich and 

Heipke (2016). One can see that resection refinement has a strong 

effect on the accuracy of estimating rotations. Iit makes 

“Ours_RF” obtain the best results on fountain-P11 and caslte-

P30 (except for final bundle adjustment), while it also gives a 

similar accuracy as Reich and Heipke (2016) on Herz-Jesu-P25. 

Nevertheless, after final bundle adjustment, the results are 

significantly better. When comparing the different error norms, 

“Ours” (L1 norm) performs almost the same as “Ours_L2” (L2 

norm, computed for comparison) on fountain-P11, but, on the 

other two datasets the L1 norm is much better; similar effects can 

be seen for “Global” and “G_L2”. 

 

  
(a) fountain-P11 

 
(b) Herz-Jesu-P25 

 
(c) Castle-P30 

Figure 4. Angle errors of three benchmark datasets.  

 

4.2 Evaluation of translation result 

For the three benchmark datasets, a comparison of the translation 

accuracy is given in Fig. 5. Again, the abscissa denotes the image 

ID, the ordinate is the translation error (in decimetres). “Ours” 

means the method of our incremental linear translation estimation 

described in Section 3.3 based on rotations computed according 

to section 3.2, “Ours_RF” utilizes the resection refinement, 

“Res_RF” and “BA” denote as the same method as in Fig. 4. The 

translation error of castle-P30 and Herz-Jesu-P25 is two orders 

of magnitude larger than that of fountain-P11 (see ordinate in 

Fig. 5). Inspecting the results in more detail, we found that castle-

P30 and Herz-Jesu-P25 have lots of repetitive structures  

 

Table 1. Mean angle error in degree [ ͦ ] for different methods. We compared our results with Chatterjee and Govindu (2013) (Global), 

Reich and Heipke (2016) (1) and Jiang et al. (2015) (2). Res_RF denotes the “Res_RF” in Fig. 4. Ours_L2 uses the L2 norm 

to solve equation (4), G_L2 adopts the “Global” method with L2 norm. Note that we cite the results of (1) and (2) from the 

corresponding papers, and we reprogrammed the idea of Chatterjee and Govindu (2013) using the L1 and L2 norms.

 before bundle adjustment after bundle adjustment 

Ours Ours_L2 Ours_RF Res_RF Global G_L2 (1) (2) Ours_RF 

fountain-P11 0.316 0.332 0.152 0.18 0.251 0.261 0.249 0.45 0.147 

Herz-Jesu-P25 0.785 0.928 0.27 0.231 0.238 0.365 0.206 0.39 0.049 

castle-P30 1.236 1.574 0.338 0.443 0.745 0.954 0.583 0.96 0.119 
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and a significant number of image pairs with small intersection 

angles. Moreover, some images of castle-P30 are weakly 

connected; the block geometry of castle-P30 is not as dense as 

that of fountain-P11, which explains the findings. Similar to the 

angle error shown in Fig. 4, “Ours” always provides the worst 

results. This is probably a consequence of the results of rotation 

averaging (see section 4.1). Comparing Fig. 4 and Fig. 5, the 

images with large angle errors are normally solved with large 

translation errors, because these errors result in an inaccurate 

coefficient matrix A. “Ours_RF” and “Res_RF” give very similar 

results, which are much better than “Ours”. The performance 

after the final bundle adjustment is always the best; the 

translation errors of fountain-P11 are lower than 0.4 decimetres, 

both Herz-Jesu-P25 and castle-P30 have translation errors which 

are smaller than 2 decimetres. 

 

  
(a) fountain-P11 

 
(b)Herz-Jesu-P25 

  

(c) castle-P30 

Figure 5. Translation errors of three benchmark datasets 

 

Tab. 2 presents numerical results for the mean translation errors 

of different methods. Before final bundle adjustment, “Ours_RF” 

outperforms all other methods listed in Tab. 2. This means that 

optimization by resection refinement can improve the accuracy 

of translation and is a very important step in our pipeline. “Ours” 

detects and eliminates outliers of tie points iteratively, especially 

for those outliers from repetitive structures which pass the 

epipolar geometry verification. “Ours” is much better than the 

methods of Reich and Heipke (2016) and Jiang et al. (2015) on 

castle-P30. When comparing the error norms again, “Ours” (L1 

norm) performs almost the same as “Ours_L2” on fountain-P11, 

but on the other two datasets the L1 norm works better. This is 

because Herz-Jesu-P25 and castle-P30 have more repetitive 

structures, so that some incorrect correspondences from these 

repetitive structures can survive epipolar geometry verification; 

wrong tie points corresponding to these correspondences will 

generate large residuals in equation (7). After final bundle 

adjustment, the results of “Ours_RF” are improved by one order 

of magnitude. Visualizations of image orientation results can be 

seen in Fig. 6. 

         
(a) fountain-P11                   (b) Herz-Jesu-P25 

 

(c) castle-P30 

Figure 6. Visualization of the orientation results on benchmark 

datasets after final bundle adjustment. 

 

4.3 Experiment on other datasets 

To further demonstrate the performance of our approach, we used 

two additional datasets. Building from Zach et al. (2010) has 128 

ordered images. Notre Dame provided by Wilson and Snavely 

(2014) has 553 unordered images. To detect mutual overlap these 

unordered images for efficient image matching, Zhan et al. (2015, 

2018) propose two methods based on visual vocabulary trees and 

random k-d trees respectively. However, these two methods were 

only proven to be work well on a small set of images. The 

approach of Wang et al. (2017) is applied in this paper. The 

ground truth of building is not available. We used the incremental 

system contained in the OpenMVG library (Moulon et al., 2016) 

to do orientation, and the result is regarded as ground truth. The 

translation error of building has [pixels] as units.  

 

 before bundle adjustment after bundle adjustment 

Ours Ours_L2 Ours_RF Res_RF (1) (2) Ours_RF 

fountain-P11 0.387 0.362 0.23 0.271 0.35 0.72 0.08 

Herz-Jesu-P25 1.66 1.83 0.81 1.224 0.83 0.61 0.16 

castle-P30 2.87 2.96 1.27 1.37 13.12 16.20 0.16 

Table 2.  Mean translation error in decimetre for different methods. Ours_L2 uses L2 norm to solve equation (7).
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Wilson and Snavely (2014) provided the ground truth for Notre 

Dame. In Tab. 3 we present a comparison of the “Ours_RF” 

results with the ground truth. For the rotations the results are in 

the same range as those of the benchmark datasets; the translation 

results seem to be reasonable, too. After final bundle adjustment 

(BA), rotations and translations are again improved. 

Visualizations of the image blocks after BA are shown in Fig. 7. 

 

Ours_RF Before BA After BA 

building 
R [ ]ͦ 0.49 0.18 

T [pixel] 1.86 0.94 

Notre Dame R [ ]ͦ 0.52 0.26 

T [m] 2.06 1.66 

Table. 3 Mean rotation error and translation error of building 

and Notre Dame by Ours_RF. 

 

. 

(a) building 

 
(b) Notre Dame 

Figure 7. Visualization of orientation results on the building and 

Notre Dame datasets after final bundle adjustment.  

 

 

5. CONCLUSIONS 

In this paper, we present a new robust incremental image 

orientation method by combining the information of relative 

rotations and tie points. First, rotations of newly added images 

are determined by single rotation averaging. Then, a linear 

translation estimation method is proposed to determine the 

translation parameters of these newly added images. The 

evaluation using three benchmark datasets demonstrates that our 

approach performs well. Moreover, experiments on the 

challenging building and Notre Dame datasets demonstrate that 

it is also possible to orient larger sets of both ordered and 

unordered images. Inspired by the incremental method, we next 

plan to build a large linear equation system to determine all 

translation parameters simultaneously. This makes sense if 

rotations are available from a global rotation averaging scheme.  

 

 

APPENDIX: ROTATION ERRORS 

Given two similar rotations 𝑹𝒊 and 𝑹𝒋, 𝜃 is the angle difference 

we want to compute. We start by computing a value 𝛼: 

 

        𝛼 = trace(𝑹𝒊𝑹𝒋
−𝟏) /3                                          (11) 

 

Where 𝑹𝒊𝑹𝒋
−𝟏 is the difference matrix between 𝑹𝒊 and  𝑹𝒋

  and 𝛼 

is the average value of the main diagonal elements of 𝑹𝒊𝑹𝒋
−𝟏. We 

can compute the angular error 𝜃 by  

 

                       𝜃 = arccos(𝛼) ∙ 180/ 𝝅                                                  (12) 
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