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Abstract

We present a generalization of the complete intersection in products of projective space (CICY) construc-
tion of Calabi–Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics 
literature. Their utility stems from the fact that they can be simply described in terms of a ‘configuration 
matrix’, a matrix of integers from which many of the details of the geometries can be easily extracted. The 
generalization we present is to allow negative integers in the configuration matrices which were previously 
taken to have positive semi-definite entries. This broadening of the complete intersection construction leads 
to a larger class of Calabi–Yau manifolds than that considered in previous work, which nevertheless enjoys 
much of the same degree of calculational control. These new Calabi–Yau manifolds are complete intersec-
tions in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with 
topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have 
many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and 
lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities.
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1. Introduction

Calabi–Yau manifolds constructed as complete intersections of polynomial hypersurfaces in 
products of projective spaces, abbreviated here as ‘CICY’s, have proven to be a very useful class 
of compactification manifolds for string theory. The CICY three-folds were first discussed and 
classified in a series of articles in the 1980s [1–4]. Since that time, these manifolds have been used 
in a wide variety of different studies, including recent work on moduli stabilization and model 
building in string phenomenology (see [5–11] for some recent examples). Recently the CICY 
four-folds have been classified and studied [12–15] and work is underway to use this dataset in 
the context of F-theory compactifications to 4-dimensions. One of the reasons why this method 
of constructing Calabi–Yau manifolds has proven to be so useful is that it is exceptionally sim-
ple to study and work with. This simplicity stems from the fact that the complicated Calabi–Yau 
geometry is embedded within an extremely simple ambient space. Many of the geometric quanti-
ties of interest on the Calabi–Yau manifold can be worked out via relations to associated ambient 
space quantities – leading to an exceptional degree of computational control. In this paper, we 
will generalize the CICY construction in a manner which is applicable to any dimensionality of 
Calabi–Yau manifold.

A CICY can be described by a configuration matrix which encodes the data essential to the 
definition of the manifold. An example is as follows,1

X1 =
[
P

2 1 1 1
P

4 3 1 1

]
, (1.1)

where this describes a manifold, X1, that is embedded in an ambient space P2 × P
4 as the com-

plete intersection of the solution of three polynomial equations, one for each column of integers 
in (1.1). The integers themselves denote the degree of the defining polynomials in the homo-
geneous coordinates of the ambient projective factors (here one multi-degree (1, 3) and two 
multi-degree (1, 1) defining relations). Note that, in this example, X1 is of complex dimension 
3 since the ambient space is of dimension 6 and there are 3 polynomials that define this com-
plete intersection. Equivalently, X1 is defined as a complete intersection of global sections of 
three line bundles. That is, the common solutions of one element2 of H 0(P2 × P

4, O(1, 3)) and 
two elements of H 0(P2 × P

4, O(1, 1)). Due to their interpretation as the degrees of polynomial 
equations, the integer entries in a CICY configuration matrix such as (1.1) are taken to be pos-
itive semi-definite. In the case of generalized CICYs, we will drop this requirement, in general 
allowing for negative degrees in the defining relations in the ambient space. In order to explain 
better the correspondence between the actual variety and the configuration matrix, we illustrate 
now an example of a generalized CICY.

1.1. A simple example

A generalized CICY, or “gCICY”, will be described by a configuration matrix, similar to (1.1), 
but in which negative integers are now permitted to be used. For example,

1 Strictly speaking, configuration matrices describe an entire family of varieties and a variety is only determined once 
a choice has been made of its complex structure within the family. In this sense, it can be misleading to use the equality 
symbol in characterizing a specific variety by its configuration matrix. When no confusions arise, however, we will 
employ such a conventional abuse of notation.

2 See Appendix A for a review of notation and tools to compute line bundle cohomology.
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X2 =
⎡
⎣ P1 1 1 −1 1
P

1 1 1 1 −1
P

5 3 1 1 1

⎤
⎦ . (1.2)

In this example one cannot define X2 as a simple complete intersection of sections of line bun-
dles on the ambient space A ∼= P

1 × P
1 × P

5. This is due to the simple fact that h0(P1 × P
1 ×

P
5, O(1, −1, 1)) = 0, for example. To state the problem in another way, one cannot have a poly-

nomial in ambient space coordinates with negative degree! However if we apply the polynomial 
conditions sequentially from left to right there is no such problem. Define a manifold, M, to be 
the complete intersection of the first two polynomials (columns) in the ambient space. Then the 
remaining two line bundles do have sections on M and as such a manifold can be defined asso-
ciated to the full configuration matrix in (1.2). Note that the sections of the last two line bundles 
should correspond to polynomials in appropriately chosen coordinates for M although they are 
not polynomial in the homogeneous coordinates of the ambient space A.

Let us look at what the defining equations of X2 are explicitly in terms of the homogeneous
coordinates of A. The first two columns correspond to the vanishing of polynomial equations, 
p1 = 0 and p2 = 0 (which we can take to be generic polynomials of appropriate degrees in 
the homogeneous coordinates). The remaining two defining relations, q1 = 0 and q2 = 0, will 
each describe the vanishing of a specific rational function. Since we know that these rational 
functions should correspond to some polynomial defining relations in the coordinates of M, 
they should not have poles on that surface (as described by p1 = p2 = 0). We therefore require 
that the poles in these rational functions do not lie on the solution set of the first two defining 
relations. Denoting the ambient homogeneous coordinates in P1 × P

1 × P
5 as x1 = (x0

1 : x1
1), 

x2 = (x0
2 : x1

2), and x3 = (x0
3 : x1

3 : x2
3 : x3

3 : x4
3 : x5

3), respectively, one simple way to ensure this is 
the following. We write

p2 = c0(x1,x3) x0
2 + c1(x1,x3)x

1
2 = d0(x2,x3)x

0
1 + d1(x2,x3)x

1
1 . (1.3)

In this expression, c0 and c1 are generic polynomials of degree (1, 0, 1) in the homogeneous 
coordinates (x1, x2, x3) of the three ambient space factors. Likewise, d0 and d1 are generic degree 
(0, 1, 1) polynomials in the same variables. Then the following rational expressions for q1 and q2,

q1 = d1

x0
1

= − d0

x1
1

,

q2 = c1

x0
2

= − c0

x1
2

, (1.4)

which are of the right multi-degree, can be used to algebraically embed X2 in M. The poles of 
these expressions miss the locus p2 = 0, in the sense that, when the denominator vanishes, the 
numerator has to vanish to the same order. For example, if x0

1 = 0 in (1.4), then p2 = 0, as in 
(1.3), implies that d1 = 0 as well (the two x1 homogeneous coordinates cannot simultaneously 
vanish). The fact that we can write two equivalent expressions for each of q1 and q2 is a direct 
consequence of (1.3), which implies the second equalities in each line of (1.4) if p2 = 0.

The expressions (1.4) allow us to gain a very concrete picture of the manifold X2 described 
by (1.2). On an open patch of the ambient space where x0

1 �= 0 and x0
2 �= 0 we observe that 

the manifold is defined by the solutions to the equations p1 = p2 = d1 = c1 = 0. Thus on such 
a coordinate patch the manifold is simply the common solution locus of a set of polynomial 
equations. Such a description does not hold globally, however. If we look instead at the patch 
where x1

1 �= 0 and x0
2 �= 0, the expression d1

0 for the q1 equation in (1.4) is not the most useful 

x1
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one since there is a locus in this patch where the denominator x0
1 vanishes. Using the second 

expression, − d0
x1

1
, however, leads again to a polynomial description of our manifold by p1 = p2 =

d0 = c1 = 0. Such a trick works for any given patch and we thus learn that the manifold is defined 
locally by polynomial equations, although the exact polynomials involved vary as one changes 
the coordinate chart one is considering. Note in particular that, since no single polynomial d can 
globally replace q1 for instance, this manifold is not equivalent to a manifold of the form⎡
⎣ P1 1 1 1 0
P

1 1 1 0 1
P

5 3 1 1 1

⎤
⎦ , (1.5)

which one would naively obtain simply by setting a numerator of each rational defining rela-
tion to zero globally. This is just as well, as the configuration matrix (1.5) does not describe a 
Calabi–Yau manifold.

Constructions of the form we are discussing may seem a little strange at first to the reader 
who is used to dealing with ordinary CICYs. However it is simply an extreme example of a 
very well studied phenomenon. Many CICYs have so-called “non-polynomial” deformations 
[16–21]. That is, they have complex structure deformations which are not visible as changes to 
the polynomial defining relations in the ambient space coordinates. In the case of generalized 
CICYs we have taken a logical limit of this situation in which all of the complex structure 
associated to certain defining relations are non-polynomial. These new manifolds are also very 
similar to previous constructions in that they are defined simply as algebraic hypersurfaces (or 
complete intersections) in simple ambient spaces. However, unlike in previous constructions, 
here the ambient spaces themselves are not necessarily toric nor Fano. Instead, these ambient 
spaces themselves are defined as complete intersections in products of projective spaces and are 
characterized by the fact that their anticanonical divisor is effective but not, in general, ample (as 
in the Fano case). We refer the readers to Refs. [22–24] for a discussion of the importance of 
the form of the anticanonical divisor in recent mathematical classifications in the context of the 
Minimal Model program [25].

This class of Calabi–Yau manifolds shares many of the advantages of the ordinary CICYs, 
including much of the same ease in computation, a preponderance of elliptically fibered exam-
ples and so forth. It is, however, clearly a more general class of manifolds. In addition gCICYs 
have many interesting features; for example a tendency to lead to Calabi–Yau manifolds with 
smaller Hodge numbers than the former construction. Finally, the fact that, unlike the ordinary 
CICYs, not every gCICY is smooth, leads to the possibility of the dataset giving rise to simple, 
computable examples with, in the language of the F-theory literature, manifest non-Higgsable 
clusters [26–28]. Such global constructions of this phenomenon could greatly aid current ex-
plorations of the F-theory landscape of vacua. We hope to obtain a complete classification of 
the gCICY three- and four-folds in future work [29]. In the present work we generate an ini-
tial dataset of 2,761 three-fold geometries many of which are manifestly new CY manifolds 
with distinct topology not appearing before in existing datasets of Calabi–Yau three-folds. For 
comparison, we refer the reader to [2,30–45] for other classes of constructions of CY mani-
folds.

The rest of this paper is structured as follows. In Section 2 we describe the construction of 
gCICYs in detail. We begin with our conventions for defining a gCICY configuration matrix 
in Subsection 2.1. In Subsection 2.2 we describe how to compute the topology associated to 
such a gCICY configuration matrix, assuming that the variety itself is smooth. In Section 3 we 
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describe how to construct the gCICY geometry explicitly via its defining relations, and in the 
process detail how a smoothness check can be performed on the variety. In Section 4 we detail 
some of the redundancies that can occur relating different configuration matrices to the same 
Calabi–Yau manifold. Some of these redundancies mirror the standard CICY case and some 
do not. While all the techniques described in Sections 2–4 apply to gCICYs of an arbitrary 
dimension, in Section 5 we focus on Calabi–Yau three-folds and take the first steps towards a 
classification of gCICYs, by studying and classifying certain low co-dimensional sub-classes 
and detail their geometry. Finally in Section 6 we summarize the physics applications of this 
new dataset, including obvious elliptic fibration structures [15] of gCICYs, as well as fibration 
structures involving K3 and higher-dimensional Calabi–Yau varieties and provide an outlook of 
interesting future directions of investigation.

2. The construction and topology

2.1. The construction

Our construction of gCICYs is based on a multi-step process. We first impose all of the semi-
positive defining relations to obtain an ordinary complete intersection, M, of a set of polynomial 
relations in the ambient product of projective spaces, while the rest of the defining relations 
(including negative entries) are to be sequentially imposed on M.

Let us be more specific and begin by constructing M as the complete intersection of K poly-
nomials, pα where α = 1, · · · , K , in a product of projective spaces, A = P

n1 × · · · × P
nm . We 

choose the dimension of M,

dimC M =
m∑

r=1

nr − K , (2.1)

such that it is strictly greater than the desired dimension, N , of the Calabi–Yau manifold to be 
constructed. Note that, as in a standard CICY, the polynomials pα are sections of an appropriate 
line bundle OA(a1

α, · · · , am
α ), with ar

α ≥ 0 specifying the non-negative homogeneous degree of 
pα in the r-th projective piece. Here the indices r, s, · · · = 1, · · · , m are used to label the projec-
tive ambient space factors Pnr , and the indices α, β, · · · = 1, · · · , K , to label the polynomials, pα . 
A family of such geometries can be characterized by a configuration matrix of the form,

[ n‖ {aα} ] =

⎡
⎢⎢⎢⎢⎣

P
n1 a1

1 · · · a1
K

P
n2 a2

1 · · · a2
K

...
...

. . .
...

P
nm ar

1 · · · ar
K

⎤
⎥⎥⎥⎥⎦ , (2.2)

with non-negative integer entries ar
α .

Inside M we define the generalized CICY, X, in terms of an ordered list of line bundles 
Lμ where μ = 1, . . . , L. These are used to iteratively describe hypersurfaces inside a nested 
sequence of spaces as follows. First, we demand that h0(M, L1) �= 0 and define a hypersurface 
M1 inside M as the vanishing locus of a global section in H 0(M, L1). Second, we demand that 
h0(M1, L2) �= 0 and define a hypersurface M2 inside M1 as the vanishing locus of a global 
section in H 0(M1, L2). We sequentially repeat this procedure for all the line bundles Lμ until 
the gCICY is obtained as X = ML. Note that, in general, one needs not have a section of Lμ
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on the ambient space A, or even on M for μ ≥ 2. We need only have sections of Lμ on Mμ−1, 
i.e. we simply require that h0(Mμ−1, Lμ) �= 0. As such, as we have already discussed, gCICYs 
are not described by the solution set of a system of simple polynomial equations in the ambient 
space A.

By writing Lμ = OMμ−1(b
1
μ, · · · , bm

μ ), μ = 1, . . .L, with M0 = M, we present the defining 
data of a gCICY by the following matrix,

[
n‖ {aα} | {bμ} ]=

⎡
⎢⎢⎢⎢⎣

P
n1 a1

1 · · · a1
K b1

1 · · · b1
L

P
n2 a2

1 · · · a2
K b2

1 · · · b2
L

...
...

. . .
...

...
. . .

...

P
nm am

1 · · · am
K bm

1 · · · bm
L

⎤
⎥⎥⎥⎥⎦ . (2.3)

This looks very much like an ordinary CICY configuration matrix with just two important dif-
ferences. Firstly, the entries br

μ can be negative, although the ar
α are still positive semi-definite. 

Secondly, the order of the columns involving b’s is important and we establish the convention 
that one restricts to sections of the line bundles in an order taken from left to right in construct-
ing the Calabi–Yau N -fold. Clearly, not every such matrix describes a gCICY, as the Lμ must 
be chosen so as to have global sections over Mμ−1. However, by definition, every gCICY can 
be described by such a configuration matrix and we will see that much of the familiar utility of 
describing manifolds with such objects is preserved in this case.

Clearly, the number, L, of the line bundles on M has to be,

L = dimC M− N =
m∑

r=1

nr − K − N , (2.4)

if we want the resulting subvariety, X ⊂ M, to be an N -fold. The N -dimensional variety X
has codimension K + L in A. However, since the K sections pα and the L sections qμ are of 
a different type, we say that X is of codimension (K, L) in this case. The condition that the 
resulting variety is Calabi–Yau remains unaltered: namely that the sum of the degrees of the 
entries in each row must equal nr + 1 for its respective Pnr factor. This will be discussed in 
detail in the next subsection. In the case of a single hypersurface with L = 1, this is the familiar 
condition that X must be the anticanonical hypersurface of M.

It should be noted that there is a sub-type of gCICYs which are particularly easy to describe 
and which display many of the interesting properties of the dataset. These are the cases where 
h0(M, Lμ) �= 0 for all the μ’s. In this case it frequently does not matter in which order one 
restricts to sections of the Lμ as they all have global sections already on M.3 We refer to such 
a generalized CICY as a minimally generalized CICY or an “mgCICY.” Many of the concrete 
examples that we discuss in what follows will be of this type.

2.2. Determining the topology of generalized CICY manifolds

In this subsection tools are provided to compute topological properties of a gCICY from its 
configuration matrix. For the moment, we will make the assumption that the associated variety 

3 Because the number of sections of a given line bundle may vary on the different Mμ , it should be noted that the 
order in which the line bundles are placed may still be important in questions such as deciding smoothness of the resulting 
variety.
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is smooth.4 Unlike in the CICY case, gCICYs are not always generically smooth and this prop-
erty must be explicitly tested as will be explored in Section 3. Nevertheless we find it useful to 
describe the computation of topological properties of the dataset first and then proceed on to ver-
ifying smoothness in a second step. This allows us to preserve the separation between topology, 
as derived by integer manipulation of the configuration matrix, and geometry, as determined by 
the detail of the defining relations, that is seen in the discussion of standard CICYs. In any case, 
it is useful to determine which configuration matrices could have interesting topology, such as 
vanishing first Chern class, before proceeding on to the more detailed question of whether or not 
they are smooth.

For the rest of this section, we explore such defining topological quantities as the Hodge num-
bers, Chern classes, and triple intersection numbers of our new class of Calabi–Yau manifolds. 
We will also discuss the computation of other geometrical data such as the Kähler and Mori 
cones and line bundle cohomology which is crucial in order to extract the effective physics in a 
string compactification. One important omission that we do not consider here is a study of the 
first fundamental group, π1(X), of these geometries. Unlike in the case of ordinary CICY man-
ifolds, it is not guaranteed that the gCICY manifolds are simply connected. Due to the absence 
of such useful tools as the Lefschetz Hyperplane theorem (employed in the case of CICYs [46]) 
we leave a complete study of this to a future classification.

Much of the formalism that we describe below applies to any Calabi–Yau three-fold described 
as an algebraic hypersurface inside some Kähler ambient space and is not unique to the construc-
tion at hand. For a more complete overview of these tools, we refer the reader to such useful 
references as [46,47]. Below we will review some of these general results and focus on how they 
can be implemented for generalized complete intersection manifolds.

2.2.1. The Koszul complex
To begin, consider a generalized complete intersection manifold, X, defined as a single hy-

persurface in the compact, Kähler ambient space M. This construction will be iterated below 
to describe more general complete intersection manifolds. As described previously, these am-
bient spaces themselves are each constructed as complete intersection manifolds in products of 
projective spaces [1–4]. By Bertini’s theorem (see [48,49]), M constructed in this way are gener-
ically smooth Kähler manifolds. As in many other constructions of CY manifolds, we begin by 
constructing X as an anticanonical hypersurface in M, and thus we will demand that K∨

M has 
global sections (h0(M, K∨M) > 0). However, unlike in many constructions of CY manifolds, 
M will is not required to be Fano (that is, K∨

M is not necessarily ample).
To construct the hypersurface, X, we will impose on the coordinates of M, collectively de-

noted by x, the algebraic equation p(x) = 0 in the class D (i.e. p is a global, holomorphic section 
of the line bundle OM(D) and D = [p(x) = 0]). Then we have the familiar Adjunction Formula 
[48,49]:

0 → T X → TM|X →OM(D)|X → 0 . (2.5)

As will be argued below, X will satisfy c1(X) = 0 and thus, is a CY manifold when O(D) =
K∨M [50,51]. Using (2.5), the tangent bundle valued cohomology, H ∗(X, T X), can be com-

4 In fact we can somewhat relax this assumption, as we will describe in later sections.
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puted by restriction from M. The most useful tool to this end is the familiar Koszul short exact 
sequence [48,49]:

0 → IX|M → OM → OM|X → 0 , (2.6)

where IX|M is the ideal sheaf of X ⊂ M. In the case the divisor D is reduced and irreducible,5

the ideal sheaf is invertible and a line bundle, leading to

0 →OM(−D) → OM →OM|X → 0 . (2.7)

Moreover, for any vector bundle, π : V → M, we can take the tensor product with the above 
exact sequence to produce another short exact sequence (i.e. the above sequence of sheaves/mod-
ules is flat [48]):

0 →OM(−D) ⊗ V → V → V|X → 0 . (2.8)

From this sequence we can use the cohomology of any bundle V on M to determine the cohomol-
ogy of the restricted bundle V|X . It should be noted that in most known algebraic constructions of 
CY manifolds [1–4], this sequence is defined for ample divisors D. Such a choice guarantees that 
the variety X swept out by the condition p(x) = 0 is generically a smooth, irreducible variety. 
For the case at hand, however, we will simply require that D is effective (and frequently nef) and 
that the line bundle OM(D) has global sections. In general the variety X defined by the global 
sections of a non-Ample line bundle may be singular, reducible, or non-reduced. To proceed, we 
must first consider the global sections of OM(D) and whether or not they can be used to define 
smooth manifolds. The details of this analysis will be described in Section 3. For now, we will 
simply assume that such good sections exist and that X is smooth, but it is important to note that 
the following analysis is only valid for smooth X.

To determine the topology of X then, consider the long exact sequence in cohomology asso-
ciated to (2.5):

0 → H 0(X,T X) → H 0(X,TM|X) → H 0(X,O(D)|X) → H 1(X,T X) → ·· · (2.9)

where the cohomology of bundles restricted to X can be computed using (2.8) and standard 
techniques (see Appendix A).

At this point, determining the tangent bundle valued cohomology h∗(X, T X) is as straight-
forward as any other construction of a Calabi–Yau manifold as a complete intersection manifold 
and the techniques employed are entirely analogous. This can be concisely summarized by the 
two-step procedure:

1) Compute bundle-valued cohomology on the smooth Kähler manifold M.
2) Use the Koszul (2.7) and Adjunction (2.5) sequences as well as the long exact sequence (2.9)

to determine bundle valued cohomology on X.

The first of these steps is now well-understood in the physics literature and the reader is referred 
to [46] for a review. The way that these standard results can be implemented for gCICYs in 
step 2) is most simply understood in the context of an example.

5 More specifically, I is invertible if and only if D is cut out by a single equation, not vanishing at any associated point 
of M. In this case, D is called an effective Cartier divisor [48,49].
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2.2.2. An illustration of the determination of Hodge numbers
The calculation of Hodge numbers is best understood by illustration and we consider a simple 

example here. Let M=
[

P1 3
P

4 2

]
and X be defined by a generic global section of the line bun-

dle OM(−1, 3) (where OM(a, b) denotes the line bundle associated to the divisor aH1 + bH2
where Hr are the ambient hyperplanes restricted to M). Note that on the ambient product of pro-
jective spaces A = P

1 × P
4 the line bundle OA(−1, 3) is not ample and has no global sections. 

However, on the hypersurface M, h0(M, OM(−1, 3)) = 15 and it is possible to consider an 
algebraic variety swept out by one such general global holomorphic section. As described above, 
in analogy to the configuration matrices used to describe ordinary CICY manifolds [1–4], we 
will schematically denote the final CY manifold X here by the following configuration matrix

X =
[
P

1 3 −1
P

4 2 3

]
. (2.10)

Using the techniques described in [46,48,49] and the Euler sequence for the tangent bundle to 
projective space,

0 →O⊕2
A → OA(1,0)⊕2 ⊕OA(0,1)⊕5 → TA→ 0 , (2.11)

and the key sequences (2.7) and (2.5):

0 →OA(−3,−2) →OA → OA|M → 0 , (2.12)

0 → TM → TA|M →OA(3,2)|M → 0 . (2.13)

It is straightforward to determine the tangent bundle valued cohomology on M to be

h∗(M, TM) = (0,32,0,0,0) . (2.14)

To move on to the second step described in the previous Subsection, consider next the adjunction 
formula (2.5) for the CY manifold itself:

0 → T X → TM|X →OM(−1,3)|X → 0 . (2.15)

If the cohomologies, h∗(X, TM|X) and h∗(X, OM(−1, 3)|X) are each determined, then 
(2.9) can be used to find the Hodge numbers of X. First, to determine the cohomology of 
OM(−1, 3)|X the Koszul sequence yields

0 →OM →OM(−1,3) →OM(−1,3)|X → 0 . (2.16)

From the long exact sequence in cohomology associated to this we have

h∗(X,O(−1,3)|X) = (14,0,0,0) . (2.17)

Likewise, for TM:

0 → TM⊗OM(1,−3) → TM → TM|X → 0 . (2.18)

The cohomology of the twisted bundle TM ⊗OM(1, −3) can be computed in the same manner 
as that of TM described above. Using

0 →OA(1,−3)⊕2 →OA(2,−3)⊕2 ⊕OA(1,−2)⊕5 → TA⊗OA(1,−3) → 0 , (2.19)

0 →OA(−3,−2) →OA → OA|M → 0 , (2.20)

0 → TM⊗OM(1,−3) → (TA⊗OA(1,−3))|M →OM(4,−1) → 0 . (2.21)
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It can be verified that

h∗(M,OM(4,−1)) = (0,0,0,0,0) , (2.22)

h∗(M, (TA⊗OA(1,−3))|M) = (0,0,0,2,0) , (2.23)

which can now be combined in the long exact sequence in cohomology associated to (2.18):

h∗(X,TM|X) = (0,32,2,0) . (2.24)

At last then, the pieces can be put together. The long exact sequence in cohomology associated 
to (2.15)

0 → H 0(X,T X) → H 0(X,TM|X) → H 0(X,OM(−1,3)|X) → H 1(X,T X) → ·· ·
(2.25)

simplifies to

0 → H 0(X,OM(−1,3)|X) → H 1(X,T X) → H 1(X,TM|X) → 0

→ H 2(X,T X) → H 2(X,TM|X) → 0 . (2.26)

Thus, the Hodge numbers of the CY are

h2,1(X) = h1(T X) = 46 , (2.27)

h1,1(X) = h1(T X∨) = h2(T X) = 2 . (2.28)

An interesting observation at this stage is that once again, h1(T X) > h0(M, OM(−1, 3)). That 
is, this generalized complete intersection manifold is “non-polynomial” twice over! Not only can 
it not be realized as a complete intersection hypersurface in P1×P

4 alone, but moreover, there are 
more complex structure moduli than are realized as coefficients of the defining relation p(x) = 0
on M. This example illustrates how much general structure can potentially be overlooked by 
considering standard CICY manifolds.

Having obtained a gCICY manifold with χ = −88 we are led now to consider the remaining 
topology of X. In the next section we will consider the Chern classes and triple intersection 
numbers of X and perform an independent check of the Euler number given above.

2.2.3. Chern classes and triple intersection numbers
Once again we begin by considering the co-dimension 1 case, in which X is defined as a 

single hypersurface in M. Since X ⊂ M is a Kähler submanifold of a Kähler space M, it is 
easiest to discuss the Chern classes of X via pullback. Let i : X ↪→ M denote the embedding of 
X in M. In this notation, the Adjunction formula (2.5) takes the form

0 → T X → i∗(TM) → i∗(K∨
M) → 0 . (2.29)

By the commutivity of pullback maps and Chern classes, for any bundle π : V → M, we have 
c(i∗V) = i∗(c(V)). Thus, by the short exactness of (2.29),

i∗(c(TM)) = c(T X) ∧ i∗(c((K∨
M)) . (2.30)

For each of the Chern classes then, we have that

c1(T X) = i∗(c1(TM) − c1(K∨
M)) = 0 , (2.31)

c2(T X) = i∗(c2(TM)) , (2.32)

c3(T X) = i∗(c3(M) − c2(TM) ∧ c1(K∨
M)) . (2.33)
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The Chern classes on M are given as simple functions of the entries in the configuration 
matrix [46]. For the total Chern class

c(M) = cr
1Jr + crs

2 JrJs + crst
3 JrJsJt + . . . , (2.34)

where Jr is a basis the Kähler (i.e. (1, 1)) forms in Pnr , the configuration matrix (2.2) implies 
that

cr
1 = (nr + 1) −

K∑
j=1

ar
j ,

crs
2 = 1

2

⎡
⎣−δrs(nr + 1) +

K∑
j=1

ar
j a

s
j + cr

1c
s
1

⎤
⎦ ,

crst
3 = 1

6

⎡
⎣δrst (nr + 1) −

K∑
j=1

ar
j a

s
j a

t
j − c

(rs
2 c

t)
1 + cr

1c
s
1c

t
1

⎤
⎦ . (2.35)

Using the formulas above and the pullback of the Kähler form, these formulas allow us to effi-
ciently calculate the total Chern class of the Calabi–Yau three-fold, X. From (2.31) we see that 
the Calabi–Yau condition remains unchanged from the case of ordinary CICYs. In order to de-
fine a CY manifold, the hypersurface defining the CY must be in the class of the anticanonical 
divisor of preceding rows of the configuration matrix. As mentioned above, this amounts to the 
familiar condition that the sum of the entries of each row of (2.3) must add up to its respective 
P

nr dimension plus one.
The third and top Chern class determines the Euler number of the three-fold. This last quantity 

can be found with a notion of integration over X. As described in [46] (see Thm. 1.3), since X is 
a complex submanifold of M (which is in turn a submanifold of a product of projective spaces), 
there is a closed (1, 1) form, μ, whose restriction to X represents the top Chern class of the 
normal bundle, c1(N ). Then if ω is any closed (3, 3)-form on X, then

∫
X

ω =
∫
M

μX ∧ ω . (2.36)

Likewise, viewing M as a complex subspace of the ambient multi-projective space, integration 
over M can be defined with respect to a measure μM and pulled back to a simpler integration 
over the ambient space A = P

n1 × P
n2 . . .:

∫
M

· =
∫
A

μM ∧ · , μM := ∧K
j=1

(
m∑

r=1

a
j
r Jr

)
. (2.37)

Putting these pieces together then, we see that we can define integration over X via integration 
on the simple ambient space A with a suitable choice of normal form:

∫
· =
∫

μX ∧ μM ∧ · . (2.38)
X A
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We will explore the exact form of μX in more detail in Section 3. As an application of the above 
formula, the triple intersection numbers can be computed as

drst =
∫
X

Jr ∧ Js ∧ Jt =
∫
A

Jr ∧ Js ∧ Jt ∧ μX ∧ μM . (2.39)

An example As an example of the utility of these techniques, we can once again consider the 
example manifold given in Section 2.2.2. As observed in (2.27), the Hodge numbers of this 
manifold are (h11, h21) = (2, 46). It is natural to ask, from this topology alone can we conclude 
whether or not (2.10) defines a previously unknown CY three-fold? A comparison with the lit-
erature shows that this Hodge number pair appears twice6 in the original CICY list [2] and not 
at all in the Kreuzer–Skarke list [30]. From the Hodge data alone then, we cannot decide if this 
is a new manifold. However, the further topology described above in this case can help us to 
distinguish this geometry. Using (2.32), the second Chern class can be written as

c2(T X)rsdrst = (24,46) , (2.40)

and from (2.39) the only non-vanishing intersection numbers are

d122 = 6, d222 = 7 . (2.41)

With this in hand it is easy compare this second Chern class and triple intersection numbers to the 
two manifolds in the CICY list with the same Hodge numbers. We can ask whether there exists 
any basis change for which they can be made equivalent? A straightforward calculation verifies 
that no such basis change exists and in fact, this manifold is inequivalent to the other known CYs 
with this Hodge data. It consists of a previously unknown Calabi–Yau three-fold.

2.2.4. The Kähler and Mori cones
A key component of the CY geometry that is crucial to understand is the structure of the 

Kähler and Mori cones (i.e. the cone of ample divisors and that of effective curves). Practically, 
we define the Kähler cone of a Calabi–Yau three-fold to be defined by the requirements∫

X

J ∧ J ∧ J > 0 ,

∫
S

J ∧ J > 0 ,

∫
C

J > 0 , (2.42)

for all S, C ⊂ X homologically non-trivial, irreducible, reduced proper surfaces and curves in X, 
respectively. The Kähler cone is associated to ample divisors on X (and the interior of the nef 
cone [49]). If the Kähler forms are well understood they can be used to define the Mori cone (or 
cone of effective curves) as the cone of curves intersecting positively with the divisors dual to 
(1, 1)-forms in the Kähler cone.

An important case distinction must be made between those forms/divisors which descend 
from the ambient space – referred to as “favorable” in the context of [5,7,9,52,53] – and those 
that only exist on X. In general, for any construction of CY manifolds and X ⊂ A, when 
h1,1(X) > h1,1(A) very few general tools exist for explicitly determining the Kähler and Mori 
cone and each example must be handled on a case-by-case basis. Even in the case when X itself is 
fully favorable and h1,1(X) = h1,1(A), there remain important questions that must be addressed 

6 Note that this Hodge number pair also appears in [33] but the remaining topology (i.e. Chern classes and triple 
intersection numbers) has not been calculated for that construction of manifolds.
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in determining the effective and ample cones. We restrict ourselves to the case of favorable man-
ifolds in the following discussion.

In the case of ordinary CICYs, a key tool in determining the Kähler and Mori cones is the 
Lefschetz Hyperplane Theorem (see the statement given in [54]) which guarantees that given an 
ample divisor D ⊂ A it is possible to construct an isomorphism between the spaces of Kähler 
forms, H 1,1(D) to H 1,1(A). In the case at hand, gCICYs are defined via effective but not ample 
divisors in the ambient spaces M and thus, we cannot always apply this standard theorem. To 
make progress then, we must directly explore the conditions in (2.42) directly.

To determine the Kähler and Mori cones of X, a necessary first step is the determination 
of these cones on the ambient space M. To begin, it must be noted that in general, the cone 
of effective divisors of M is larger than that of the ambient product of projective spaces. It is 
precisely this enhancement that provides the necessary freedom to build gCICYs. As an example, 
consider again the manifold given in (2.10) in Section 2.2.2:

X =
[
P

1 3 −1
P

4 2 3

]
; (2.43)

On the ambient space A = P
1 ×P

4 all effective divisors are in the class aH1 +bH2 with a, b ≥ 0
where Hi , i = 1, 2 are the hyperplanes of the ambient projective space factors. Since the defining 
equation of M ⊂ A is associated to the ample line bundle OA(3, 2), the Lefschetz hyperplane 
theorem [46] can be applied and h1,1(M) = h1,1(A) = 2. However, it is straightforward to verify 
that although the dimension of the effective cone stays the same in going from A to M, the 
mapping between these spaces increases the “width” of the effective cone.

An analysis of the line bundle cohomology on M using the techniques described in Ap-
pendix A reveals that h0(M, OM(aH1 + bH2)) > 0 for

{a, b ≥ 0} | | {a = −1, b ≥ 2} | |
{a ≤ −2, b ≥ 1

6
(−5 + 8|a|) + 1

6

√
−119 + 64|a| + 64a2} . (2.44)

Thus, the effective cone has enhanced to include divisors with a < 0. Each of these may be 
used to define 3 (complex) dimensional subvarieties of M. Those subvarieties of M that satisfy 
c1(X) = 0 and give rise to smooth Calabi–Yau three-folds are listed in Section 5. If the effective 
cone can change, it is natural to ask next, what about the ample cone?

Before testing (2.42) directly, it should be recalled that there is a useful standard cohomolog-
ical criteria for ampleness of a divisor D ⊂M [48]:

D is ample if and only if, for each coherent sheaf F on M, there is an integer, n0, depending 
on F , such that, for each i > 0 and each n ≥ n0, Hi(M, F ⊗OM(nD)) = 0.

While this is not of practical use to determine the ample cone (since we do not a priori know 
the full set of coherent sheaves on M), it can be used to rapidly constrain the ample cone. For 
example, it clearly follows from this result that if D is ample, it must be the case that

hi(M,OM(nD)) = 0 for i > 0 , (2.45)

for some n > n0 (taking F = OM). It is easy to check that for the example given above, all 
the divisors determined by the conditions (2.44) also satisfy this necessary (but not sufficient) 
condition for ampleness.
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To proceed further then, we must use our understanding of the effective cone to produce 
a basis of subvarieties of M to test the equivalent of (2.42) directly. For M a fourfold these 
conditions take the form∫

M

J ∧ J ∧ J ∧ J > 0 ,

∫
D

J ∧ J ∧ J > 0 ,

∫
S

J ∧ J > 0 ,

∫
C

J > 0 . (2.46)

For the example above, we will see that in fact, the ample cone of M is identical to that of A. 
Each divisor satisfying (2.44) can be tested directly. As a first step, we can consider a putative J
associated to a line bundle in (2.44) and compare it to the subvarieties obtained by intersecting 
strictly positive divisors (i.e. aH1 + bH2 with a, b > 0, those descending from ample divisors 
on A). In each case, we find that all of the divisors in (2.44) satisfy the positivity conditions of the 
ample cone. However, since the effective cone has enlarged there are more algebraic sub-varieties 
to be considered and hence in this example, we find that the Kähler cone can restrict back to the 
strictly positive range for a, b.

To illustrate this, the anticanonical class of M itself, K−1
M = O(−1, 3), is a useful example. 

D = −H1 + 3H2 is an effective divisor and satisfies the conditions in (2.46) when compared to 
sub-varieties obtained via restriction from A. However, there exist subvarieties of M which do 
not descend from A, over which the volume can fail to be positive. For example, −H1 + 2H2 is 
an effective divisor on M (with h0(M, O(D) = 3). Consider the smooth surface defined by the 
intersection of two divisors in this class

S = {p1 = 0} ∩ {p2 = 0} , (2.47)

where [pi = 0] ∈ [−H1 +2H2]. Then denoting JK−1 to be the form dual to K−1
M it can be verified 

that ∫
S

JK−1 ∧ JK−1 =
∫
A

JK−1 ∧ JK−1 ∧ μS ∧ μM < 0 , (2.48)

with μS = (−J1 + 2J2) ∧ (−J1 + 2J2). Thus, in this case the anticanonical class of M itself is 
effective but not ample.

Finally, to compute the Kähler and Mori cones of the Calabi–Yau three-fold itself, we proceed 
in a step-wise manner. Using the tools described above we first understand the change in the 
effective and ample cones in moving from A to M before finally exploring the same conditions 
on X ⊂M itself. In each step, the restriction of Kähler forms are Kähler, but linear independence 
must be verified7 and the constraints on coefficients generically change as illustrated above.

3. Construction of sections and smoothness

In this section we return to the question of smoothness of gCICYs. As a precursor to dis-
cussing such issues, we must describe the defining relations of these manifolds in more detail 
than was required for the investigation of topology in the preceding section.

Given a configuration matrix of the form (2.3), one can construct the gCICY, X, in the manner 
described in Section 2.1. For this section we will, for simplicity, restrict ourselves to the case of 

7 And indeed, in many cases independent Kähler forms on the ambient space can become dependent upon restriction 
to the hypersurface.
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mgCICYs which can be constructed in two steps,

X ↪→M ↪→A , (3.1)

where each of the two embeddings is a complete intersection. Much of what we will describe in 
this section generalizes to more complicated examples, however.

The embedding, M ↪→ A, is manifestly algebraic in the coordinates of A in that all the 
sections over A involved in forming the complete intersection are a polynomial of the ambi-
ent homogeneous coordinates, xr = (x0

r : x1
r : · · · : x

nr
r ), r = 1, · · · , m. The other embedding, 

X ↪→M, is also an algebraic complete intersection and as such must have a polynomial descrip-
tion when an appropriate coordinate system is used for M. However, much of the computational 
power comes from relating various quantities to the simple ambient space geometry for A. In 
this paper, therefore, the homogeneous coordinates, xr , r = 1, · · · , m, will be employed when-
ever possible, and all the global sections for this latter (gCICY) embedding, X ↪→ M, will be 
constructed in terms of them, using the idea of “tuning” in the following sense.

Let us start with a general set up and consider a section q ∈ 	(M, OM(b)), with b =
(b1, · · · , bm). In view of its zero and pole structure, q may take the rational form,8

q = N(x1, · · · ,xm)

D(x1, · · · ,xm)
, (3.2)

where N and D are a polynomial in x1, · · · , xm, of multi-degree [b]+ and [b]−, respectively. 
Here, [b]+ is a vector of length m, extracting only the positive entries from b. Similarly, [b]−
only extracts the negative entries from b, but with the signs inverted so that b = [b]+ − [b]− (e.g., 
for b = (1, 2, 0, −3) of length m = 4, we have [b]+ = (1, 2, 0, 0) and [b]− = (0, 0, 0, 3)). Note 
that the expression, (3.2), for a general numerator N of the right multi-degree, is not regular 
on the divisor D = 0 of the manifold M. However, q can remain regular on this divisor if N
takes a specific form such that it also vanishes there. Thus, the key idea in making the rational 
expression a holomorphic object is to “tune” the coefficients of the numerator polynomial, N , 
so that vanishing of the denominator, D, is completely canceled by that of N . To be precise, we 
demand that

N ∈ 〈D〉 ∩C [x1, · · · ,xm] , (3.3)

should hold, where 〈D〉 is the ideal generated by D in the homogeneous coordinate ring of M,

R(M) := C [x1, · · · ,xm]/ 〈p1, · · · ,pK〉 . (3.4)

The regularity condition, (3.3), says that q = N/D is in fact a polynomial section over M.
Once we have all the sections, qμ ∈ 	(M, OM(bμ)) written down for μ = 1, · · · , L, the 

gCICY, X, is then constructed as the common vanishing locus,

X = {x ∈ M | q1(x) = · · · = qL(x) = 0} . (3.5)

8 To be precise, the line bundle degree rules the behavior of the entire object q and therefore, N and D may have a 
common degree shift. Thus, we are not guaranteed to find all the sections by demanding the rational form as in eq. (3.2). 
To make sure all the sections have been constructed, one should compare the number of linearly independent q’s and the 
dimension of the section space, H 0(M, O(b)).



456 L.B. Anderson et al. / Nuclear Physics B 906 (2016) 441–496
To be more explicit, let us illustrate the numerator tuning with the two earlier examples. For the 
first gCICY, (1.2), the configuration matrices for X and M are, respectively,

X =
⎡
⎣ P1 1 1 1 −1
P

1 1 1 −1 1
P

5 3 1 1 1

⎤
⎦ ; M =

⎡
⎣ P1 1 1
P

1 1 1
P

5 3 1

⎤
⎦ . (3.6)

Using the methods described in Section 2.2.1, we can determine the Hodge number of this mani-
fold to be h1,1(X2) = 3, h1,2(X2) = 81. The rational expressions for q1 ∈ H 0(M, OM(1, −1, 1))

and q2 ∈ H 0(M, OM(−1, 1, 1)) have already been written in eq. (1.4), where they have their 
numerators completely fixed by one of the defining equations, p2 ∈ H 0(A, OA(1, 1, 1)), for the 
embedding M ↪→A. Note that for the right multi-degree of the numerator polynomial of q1, for 
instance, 12 independent monomials that are bi-linear in x1 = (x0

1 : x1
1) and x3 = (x0

3 : · · · : x5
3)

can be used. It is the holomorphicity of q1 in M that rules out all but one particular linear combi-
nation of them (up to scaling). Such a restriction of the numerator polynomial is the result of the 
aforementioned tuning. Indeed, one can compute the dimension of the line bundle cohomology:

h0(M,OM(1,−1,1)) = 1 ; h0(M,OM(−1,1,1)) = 1 , (3.7)

which shows that eq. (1.4) is the complete answer.
For the second gCICY, (3.2), whose topological properties have been computed in Section 2, 

the configuration matrices for X and M are, respectively,

X =
[
P

1 3 −1
P

4 2 3

]
; M =

[
P

1 3
P

4 2

]
. (3.8)

Again, the two sections, p1 ∈ H 0(A, OA(3, 2)) and q1 ∈ H 0(M, OM(−1, 3)) can be sequen-
tially constructed so that the rational expression for q1 is determined by the choice of p1. For 
concreteness, let us write p1 as,

p1(x1,x2) = (x0
1)3 P11(x2) + (x0

1)2x1
1 P12(x2) + x0

1(x1
1)2 P13(x2) + (x1

1)3 P14(x2) , (3.9)

where P1a , for a = 1, 2, 3, 4, are a quadric in x2. According to the degree-splitting rule, (3.2), q1
may have the rational form,

N(x1,x2)

D(x1,x2)
.

We can generate a basis of the space of holomorphic sections describing q1 by choosing the 
polynomials N and D of multi-degree (0, 3) and (1, 0), respectively. For the numerator tuning, 
we first need to choose a denominator. With the choice, D(x1, x2) = x0

1 , for instance, the corre-
sponding numerator polynomial should vanish when x0

1 = 0 in M. On the other hand, since p1

vanishes on M, so it does on the divisor x0
1 = 0 of M. Therefore, substituting x0

1 = 0 in eq. (3.9), 
we obtain an identically-vanishing section P14(x2) ≡ 0 over that divisor. Now, P14 is a quadric 
in x2 while we need a cubic expression for the numerator, N . Filling in the missing degree with 
a linear polynomial in x2, we obtain the following 5 global sections

si := P14(x2) xi
2

x0
1

, i = 0, · · · ,4 , (3.10)

of the line bundle OM(−1, 3). On the other hand, by computing the dimension of the section 
space one sees that h0(M, OM(−1, 3)) = 15, which shows that for a complete basis one needs 
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to obtain 10 more independent sections. This can be achieved by starting with different choices 
for the denominator polynomial. For instance, following the same procedure with D(x1, x2) =
x0 − x1, one obtains 5 more sections

ti :=

4∑
a=1

P1a(x2) xi
2

x0
1 − x1

1

, i = 0, · · · ,4 , (3.11)

and similarly, with D(x1, x2) = x0 + x1, one obtains

ui :=

4∑
a=1

(−1)aP1a(x2) xi
2

x0
1 + x1

1

, i = 0, · · · ,4 , (3.12)

as additional 5 global sections. A total of 15 sections have thus been obtained, as in 
eqs. (3.10), (3.11), and (3.12), each of which lies in the 15-dimensional section space of 
OM(−1, 3). Interestingly, given that p1 is a generic polynomial, one can show that these 15
sections are linearly independent. Furthermore, any other rational expression for q1, obtained by 
starting with yet another choice of D, turns out to be expressible as their linear combination. 
Therefore, we come to the conclusion that these 15 sections do form a complete basis.

For certain gCICY configuration matrices, especially for those involving entries strictly 
smaller than −1, the analytic construction of sections may become trickier than for the two 
example cases above. We have thus developed a method to obtain the sections numerically in 
Mathematica, details of which can be found in Appendix C.

3.1. Smoothness

With such an explicit description for the defining relations of a gCICY we can now return to 
the question of its smoothness. Let us recall that for an ordinary CICY with br

μ non-negative, 
X is embedded in A as a smooth complete intersection if the (K + L)-form,


X/A = dp1 ∧ · · · ∧ dpK ∧ dq1 ∧ · · · ∧ dqL , (3.13)

is nowhere vanishing on X. Let us first illustrate how vanishing of this (K + L)-form, 
X/A, 
remains the correct singularity criterion for a gCICY case, even when there is no algebraic em-
bedding of X in A and 
X/A cannot be thought of as a normal form any longer.

The starting point is that the manifold M, with its generic complex structure, is a smooth 
complete intersection of K polynomials in A. In particular, this requires that the corresponding 
normal form,


M/A = dp1 ∧ · · · ∧ dpK , (3.14)

is nowhere vanishing on M. The smoothness criterion for X then follows in terms of its own 
normal form,


X/M = dq1 ∧ · · · ∧ dqL . (3.15)

Now, the claim we need to establish is that vanishing of 
X/M at a point in X is equivalent to 
that of 
X/A. Note that at a practical level, we write these expressions in the coordinates xr , and 
in taking exterior derivatives of qμ, some misleading components in dqμ that do not lie in T ∗

x M
can appear. However, when we eventually form the (K + L)-form 
X/A, all these components 
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normal to T ∗
x M disappear due to the presence of the prefactor, 
M/A. Furthermore, because 

that prefactor is nowhere vanishing on M and in particular on X, we are led to the desired 
conclusion that at each point in X vanishing of 
X/M implies that of 
X/A, and vice versa.

Let us illustrate this smoothness check based on the (K + L)-form, 
X/A, with the two 
gCICYs, (3.6) and (3.8), for which the relevant global sections have already been constructed. 
For the former gCICY, (3.6), p1 and p2 are each a generic homogeneous polynomial of the right 
multi-degree and with respect to that choice, q1 and q2 are given as eq. (1.4). Given these 4 
sections, p1, p2, q1 and q2, one can form the system of equations,

p1 = 0 = p2 = q1 = q2 ; dp1 ∧ dp2 ∧ dq1 ∧ dq2 = 0 , (3.16)

whose solutions are to be found for the homogeneous coordinates,

x1 = (x0
1 : x1

1), x2 = (x0
2 : x1

2), x3 = (x0
3 : · · · : x5

3) . (3.17)

Similarly, for the latter gCICY, (3.8), p1 is a generic homogeneous polynomial of the bi-degree 
(3, 2) and a generic q1 can be obtained by linearly combining the 15 independent sections, si , ti
and ui , for i = 0, · · · , 4, explicitly given in eqs. (3.10), (3.11) and (3.12), respectively. In other 
words, we take

q1 =
4∑

i=0

αi si +
4∑

i=0

βi ti +
4∑

i=0

γi ui , (3.18)

for a generic choice of the 15 coefficients, αi , βi and γi , i = 0, · · · , 4. Given these 2 sections, p1
and q1, one can form the system of equations,

p1 = 0 = q1 ; dp1 ∧ dq1 = 0 , (3.19)

which have to be solved for the homogeneous coordinates,

x1 = (x0
1 : x1

1), x2 = (x0
2 : · · · : x4

2) . (3.20)

Given the system of constraints for a singularity, such as eqs. (3.16) and (3.19), one needs to 
test whether the system admits a solution or not. However, it can be extremely time-consuming 
on a computer if tackled in a brute-force manner. For the case of an ordinary CICY, this can be 
efficiently achieved by the Gröbner basis method, as implemented in the Mathematica package 
“Stringvacua” [55], for instance. For the case of a gCICY, however, due to the presence of nega-
tive entries in the configuration matrix, not every constraining equation is algebraic when written 
in terms of the xr and the Gröbner basis method does not apply as straight-forwardly. One way 
to avoid this obstacle is to separately analyze different regions of M, by rewriting the system of 
constraints as an equivalent polynomial system in each region. More specifically, we subdivide 
M into various regions according to which denominators that appear in the constraining equa-
tions vanish. For instance, the first region to consider is the one where none of the denominators 
vanish; in this region, we may clear the denominators to obtain an equivalent algebraic system of 
constraints. The next simplest regions are those where only a single denominator vanishes; any 
rational expressions involving this vanishing denominator can then be rewritten, in the coordinate 
ring of M, as an alternative algebraic expression. One thereby obtains an equivalent algebraic 
system also in these regions, upon clearing the remaining denominators. Such a strategy works 
for the common zero loci of an arbitrary collection of denominator expressions, and that is how 
we subdivide M into various regions, in each of which the usual Gröbner basis method may 
apply to efficiently test the existence of a singular point.



L.B. Anderson et al. / Nuclear Physics B 906 (2016) 441–496 459
Again, let us illustrate this with our two examples. For the first gCICY example, (3.6), the 
system in question, (3.16), has rational expressions originating from q1 = d1/x

0
1 and q2 = c1/x

0
2 , 

as in eq. (1.4). This case is particularly simple that one does not even have to clear denominators. 
However, the subdivision idea is still useful so let us proceed. We consider the subdivision of M
into the following four regions,

R1 : x0
1 �= 0, x0

2 �= 0 ,

R2 : x0
1 = 0, x0

2 �= 0 ,

R3 : x0
1 �= 0, x0

2 = 0 ,

R4 : x0
1 = 0, x0

2 = 0 , (3.21)

depending on which of the two denominators, x0
1 and x0

2 , vanish. Firstly, in the region R1, both 
x0

1 and x0
2 can be set to 1 using the scaling of the two P1 coordinates. Therefore, q1 and q2 both 

reduces to a polynomial, d1 and c1, respectively, and the system becomes completely algebraic. 
In R2, one may still set x0

2 to 1 so that q2 = c1 is a polynomial but q1 involves a non-trivial 
denominator. However, as shown in eq. (1.4), q1 = d1/x

0
1 can also be written as −d0/x

1
1 and x1

1
can be set to 1 since x0

1 and x1
1 can not vanish simultaneously. Therefore, in this region, q1 also 

reduces to the polynomial −d0 and the system becomes algebraic again. Similarly, one can use 
q1 = d1, q2 = −c0 in the region R3, and q1 = −d0, q2 = −c0 in the region R4.

Now, for the second gCICY example, (3.8), let us first recall that the generic section q1 in 
eq. (3.18) had 3 denominator expressions, x0, x0 − x1 and x0 + x1. Thus, we consider the subdi-
vision of M into the following 4 regions,

R1 : x0
1 �= 0, x0

1 − x1
1 �= 0, x0

1 + x1
1 �= 0 ,

R2 : x0
1 = 0, x0

1 − x1
1 �= 0, x0

1 + x1
1 �= 0 ,

R3 : x0
1 �= 0, x0

1 − x1
1 = 0, x0

1 + x1
1 �= 0 ,

R4 : x0
1 �= 0, x0

1 − x1
1 �= 0, x0

1 + x1
1 = 0 , (3.22)

depending again on which denominators vanish. Note that at most one denominator can be set to 
zero at a time on P1

x1
. In region R1, none of the denominators vanish and hence, one can clear all 

the denominators from the system (3.19) and test if it admits a solution. With the denominators 
cleared, however, naively testing the existence of a solution might lead to a point outside of 
R1 and the test result would become ambiguous. To avoid such an ambiguity, we add to the 
system (3.19) three auxiliary variables, let us call them y1, y2 and y3, together with the three 
constraints,

y1x
0
1 − 1 = 0; y2(x

0
1 − x1

1) − 1 = 0; y3(x
0
1 + x1

1) − 1 = 0 , (3.23)

so that none of the denominators can vanish subject to the new system of algebraic equations. 
In region R2, on the other hand, si in eq. (3.10) have their denominator vanishing in that region, 
and therefore the part in q1 that involves si need to be carefully taken care of. A proper way to 
deal with this is to rewrite them as,

si = P14(x2) xi
2

x0
1

= − (x0
1)2 P11(x2) + x0

1x1
1 P12(x2) + (x1

1)2 P13(x2)

(x1)3
xi

2 , (3.24)

1
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where we have made use of p1 = 0, (3.9). Since x0
1 = 0 in this region, the new denominator 

x1
1 cannot vanish and hence, we may set x1

1 = 1 using the scaling. Then the expressions for si
become a polynomial and if we use them in eq. (3.18), the denominator clearing does not lead to 
any ambiguity once we consider two auxiliary variables y1, y2, together with the two constraints,

y1(x
0
1 − x1

1) − 1 = 0; y2(x
0
1 + x1

1) − 1 = 0 . (3.25)

To complete the story, let us also work out the details for regions R3 and R4. In region R3, we 
rewrite ti in eq. (3.11) as

ti =

4∑
a=1

P1a(x2) xi
2

x0
1 − x1

1

= −P11(x2)((x
0
1)2 + x0

1x1
1 + (x1

1)2) + P12(x2)(x
0
1 + x1

1)x1
1 + P13(x2)(x

1
1)2

(x1
1)3

xi
2 , (3.26)

where vanishing of p1 has been used. Since x1
1 �= 0 in this region, we may set x1

1 = 1 by scaling 
and use the resulting polynomial expressions for ti to rewrite q1 in eq. (3.18). Again, we clear all 
the denominators and, to make sure only the points in region R3 are analyzed, add two auxiliary 
variables y1 and y2, together with the constraints,

y1x
0
1 − 1 = 0; y2(x

0
1 + x1

1) − 1 = 0 . (3.27)

Finally in region R4, we rewrite ui in eq. (3.12) as

ui =

4∑
a=1

(−1)aP1a(x2) xi
2

x0
1 + x1

1

= −P11(x2)((x
0
1 )2 − x0

1x1
1 + (x1

1)2) + P12(x2)(x
0
1 − x1

1)x1
1 + P13(x2)(x

1
1)2

(x1
1)3

xi
2 , (3.28)

where vanishing of p1 has been used. Since x1
1 �= 0 in this region, we may set x1

1 = 1 by scaling 
and use the resulting polynomial expressions for ui to rewrite q1 in eq. (3.18). Again, we clear all 
the denominators and, to make sure only the points in region R4 are analyzed, add two auxiliary 
variables y1 and y2, together with the constraints,

y1x
0
1 − 1 = 0; y2(x

0
1 − x1

1) − 1 = 0 . (3.29)

Therefore, the singularity criteria, in each of the subdivided regions of M, have become a 
purely algebraic system and the techniques from numerical algebraic geometry applies straight-
forwardly to test the existence of a singular point in each region. This way, it has been shown 
that both of the above gCICY examples, (3.6) and (3.8), lead to a smooth Calabi–Yau three-fold.

For gCICY cases, it is by now clear that when constructing the sections for the line bundles 
involving a negative degree, one needs to go through the “tuning” process based on (3.3) and as 
a result, not every candidate expression satisfying the degree constraint can be a global holomor-
phic section. It is such a tuning that leads to distinctive features of gCICYs not observed for the 
ordinary CICY cases.

One interesting feature is that there may arise singular gCICYs even for a generic complex 
structure while the ordinary CICYs are all smooth [3,46]. Note that factorization of a defining 
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equation is a potential source for singularities. For CICY cases, a generic defining equation with 
a given multi-degree does not factorize. However, for gCICYs, even a generic defining equation 
may factorize (i.e. the associate divisor may not be base point free). Let us illustrate such a 
section-space factorization with the following example,

X =

⎡
⎢⎢⎣
P

3 2 0 2
P

1 0 1 1
P

1 0 2 0
P

1 1 2 −1

⎤
⎥⎥⎦ ; M =

⎡
⎢⎢⎣
P

3 2 0
P

1 0 1
P

1 0 2
P

1 1 2

⎤
⎥⎥⎦ , (3.30)

for which we may write

p1(x1,x2,x3,x4) = x0
4 P11(x1) + x1

4 P12(x1) , (3.31)

where P11 and P12 are a generic quadric in x1 = (x0
1 : · · · : x3

1). Thus, the numerator tuning due 
to eq. (3.3) leads to the following holomorphic sections,

si = P12(x1) xi
2

x0
4

, i = 0,1 , (3.32)

of the line bundle OM(2, 1, 0, −1) over M. Furthermore, the computation of line bundle co-
homology results in h0(M, OM(2, 1, 0, −1)) = 2, which means that the two sections s1 and s2
should form a complete basis for the section space. Therefore, a generic section q1 should have 
the following form,

q1 = α0 s0 + α1 s1 = P12(x1)

x0
4

· (α0 x0
2 + α1 x1

2) , (3.33)

where α0 and α1 are complex constants. Because both factors, P12/x
0
4 and α0x

0
2 + α1x

1
2 , are 

an algebraic section, this corresponds to the defining section q1 being legitimately factorized. 
Furthermore, one can see that there indeed exists a point in X where both factors vanish simul-
taneously, thereby leading to a singularity.

3.2. Reducedness

Another consequence of the numerator tuning is that the coordinate ring does not have to be 
reduced. Again, let us illustrate this with a simple example how a non-reduced coordinate ring 
may arise. We consider,

X =
⎡
⎣ P1 0 2 0
P

4 1 1 3
P

1 1 4 −3

⎤
⎦ ; M =

⎡
⎣ P1 0 2
P

4 1 1
P

1 1 4

⎤
⎦ , (3.34)

for which the first defining polynomial can be written as

p1(x1,x2,x3) = x0
3 P11(x2) + x1

3 P12(x2) , (3.35)

where P11 and P12 are a generic linear polynomial in x2 = (x0
2 : · · · : x4

2). The numerator tuning 
for the section of the line bundle OM(0, 3, −3) over M results in the following expression,(

P12(x2)

x0

)3

. (3.36)

3
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Furthermore, computation of the dimension of the associated line bundle cohomology results in 
h0(M, OM(0, 3, −3)) = 1 and thus, the most general section takes the form,

q1 = α

(
P12(x2)

x0
3

)3

, (3.37)

for a complex constant α. Note that this can be though of as the cube of another holomorphic 
section,

s = P12(x2)

x0
3

, (3.38)

of the line bundle OM(0, 1, −1). Now, the coordinate ring of X defined naively as

R(X) = R(M)/
〈
s3
〉

, (3.39)

is not reduced. However, since the tools developed in Subsection 2.2 for working out the topo-
logical properties assume that the coordinate ring is reduced, it is better to consider

R(Xred) = R(M)/ 〈s〉 , (3.40)

which describes Xred defined as the hypersurface s = 0 in M. Set-theoretically, the gCICY 
configuration, (3.34), for X can be equivalently thought of as

Xred =
⎡
⎣ P1 0 2 0
P

4 1 1 1
P

1 1 4 −1

⎤
⎦ ; M =

⎡
⎣ P1 0 2
P

4 1 1
P

1 1 4

⎤
⎦ , (3.41)

and only with this reduced configuration can we directly apply the tools in Subsection 2.2 to 
compute the topological quantities of the resulting classical variety. One immediate observation 
from this reduction is that the gCICY, X ∼ Xred, is not a Calabi–Yau manifold. For ordinary 
CICY cases, the Calabi–Yau criterion was that each row in the configuration matrix should have 
its entries sum up to match the degree of the anticanonical bundle of the corresponding ambient 
projective space. However, from the illustration above, we learn that this could be a misleading 
criterion for gCICYs when the configuration leads to a non-reduced coordinate ring.

Furthermore, in such a non-reduced case, the smoothness check has to be carefully performed, 
too. In the example, (3.34), if we naively form the system of singularity constraints,

p1 = 0 = p2 = q1 ; dp1 ∧ dp2 ∧ dq1 = 0 , (3.42)

with q1 = α s3, then we come to the incorrect conclusion that X is singular everywhere as s = 0
in M is already sufficient to satisfy eq. (3.42).

4. Redundancies

Just as in the case of ordinary CICYs, configuration matrices of gCICYs also exhibit redun-
dancies. A redundancy is simply a situation where two different configuration matrices describe 
the same manifold. In fact, the structure of known redundancies is even richer in the gCICY case 
than in that of the CICYs. Many of the same relations between configuration matrices seen in the 
simpler case still hold. In addition, new redundancies do arise, such as those relating seemingly 
good configuration matrices to a description of the empty set. In this section, we present possible 
sources of such redundancies, one in each subsection, emphasizing some distinctive features that 
are only seen for gCICYs.
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4.1. Splitting transitions

Between ordinary CICY manifolds, there is an important process known as a splitting transi-
tion [2], which can essentially be thought of as a combination of deformation and blowup. The 
splitting, in its most general version, relates two configuration matrices of the following form,[

P
n 1 · · · 1 0

A u1 · · · un+1 C

]
←→

[
A

n+1∑
i

ui C

]
, (4.1)

where A is a product of projective spaces, ui ’s are a column vector of degree entries each, C, 
a submatrix of an appropriate size, and 0, a row of zeros. A simple example, as studied in Ref. [2], 
is the following pair of CICY three-folds,⎡
⎣ P1 1 1
P

2 3 0
P

2 0 3

⎤
⎦ ←→

[
P

2 3
P

2 3

]
, (4.2)

where the bi-cubic column of the right hand side is splitted via a P1 row of the left hand side. We 
may write the two defining equations for the splitted configuration as,

p1(x1,x2,x3) = x0
1 P11(x2) + x1

1 P12(x2) ,

p2(x1,x2,x3) = x0
1 P21(x3) + x1

1 P22(x3) , (4.3)

where P11 and P12 are a cubic polynomial in x2, and P21 and P22 are a cubic in x3. In order for 
the system (4.3) to have a non-trivial solution in x1, the determinantal expression,

� = P11(x2)P22(x3) − P12(x2)P21(x3) , (4.4)

should vanish, leading to a bi-cubic relation in x2 and x3, as indicated by the RHS of eq. (4.2). In 
general, however, there exist point-like singularities in the vanishing locus of � and one arrives, 
via a deformation, at a smooth bi-cubic three-fold.

In Ref. [2], splitting was called effective if the Euler numbers of the two manifolds differ and 
ineffective if they are the same. It was also argued there that one should consider two CICY 
three-fold configurations equivalent if they are related by an ineffective splitting because that 
guarantees the process is completely free of singularities. In the example (4.2), the Euler numbers 
of the LHS and the RHS are 0 and −162, respectively, and thus the splitting is effective.

The idea of splitting and the consequence of its effectiveness straight-forwardly generalizes 
to gCICY manifolds. The rule for relating two gCICY configuration matrices remains the same 
as eq. (4.1), except that now the 1’s of the Pn row can either be in the non-negative sector 
or in the sector where negative entries are allowed. However, one needs to be careful about 
certain new aspects of the gCICY construction. Firstly, although the splitting process is most 
clear in terms of the configuration matrices, what we have in mind is how the corresponding 
gCICY geometries are related and it does not make sense, for the purpose of this paper, to naively 
relate two configuration matrices by the splitting of the form, eq. (4.1), when one or both of 
them lead to an empty set due, for instance, to absence of sections. Secondly, the Euler-number 
comparison only makes sense if both configurations correspond to a smooth gCICY three-fold 
and if we were to make use of the topology tools of Section 2 in computing the Euler number, 
both configuration matrices would have to result in a reduced geometry. Therefore, to be able to 
say that two gCICY configurations related by an ineffective splitting lead to the same manifold, 
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one first needs to verify that both are a nice configuration matrix, in that the corresponding 
geometry is a non-empty smooth three-fold with a reduced coordinate ring.9

4.2. Identities and reduction rules

In addition to the ineffective splitting, there are many other sources of redundancies. Most 
notably, as already described in Ref. [2], one can make use of the identities between various 
manifolds for part of the full configuration matrices; there, an exhaustive list is given of identities 
between one-folds and between two-folds, and also a partial list of those between three-folds 
and between manifolds of a higher dimension. For instance, the second identity in the list for 
one-folds [2] is[

P
1 1

P
1 1

]
= P

1 , (4.5)

which can be applied to show that⎡
⎣ P1 1 a

P
1 1 b

A 0 C

⎤
⎦=
[
P

1 a + b

A C

]
, (4.6)

where a and b are a row vector of degree entries, A is a product of projective spaces, 0, a column 
of zeros, and C, a submatrix of an appropriate size.

All such reduction rules are based on the identities between part of the two configuration 
matrices as well as the resulting relationship between the holomorphic line bundles on the two 
sides. Therefore, they straight-forwardly generalize to the gCICY cases and we may retrieve all 
the rules from Section 4 and Appendix of Ref. [2].

4.3. Trivial line bundles

The trivial line bundle over a connected base manifold has a unique global section, the con-
stant function. For the ordinary CICY case, even when the configuration matrix is viewed as 
that of a gCICY, the line bundle corresponding to each column of the configuration is non-trivial 
on the sequentially constructed ambient space over which the sections are constructed. For the 
gCICY case, however, due to the presence of negative entries, one might end up describing a triv-
ial line bundle by a non-trivial column. Let us begin with an illustrative toy example for which 
this happens:

X =
[
P

1 1 −1
P

1 1 1

]
; M =

[
P

1 1
P

1 1

]
. (4.7)

9 To be precise, there is another subtlety one needs to be careful about. As it is clear from the example, (4.3), the 
derivation of splitting relies on the fact that each of the sections from the n columns involved in the process has a linear 
dependence in the coordinates of the splitted Pn . For ordinary CICYs, this is surely the case and even for gCICYs, any 
sections constructed as a rational form, eq. (3.2), will meet this property. However, because our gCICY construction bases 
on a sequential section construction, eq. (3.2) might not give rise to a most general section and sometimes one might need 
to investigate a common degree shift in the numerator and the denominator, in which case the derivation of splitting might 
not work. Although this does not seem to happen due to the controlled cohomology structure corresponding to the splitted 
columns of the configuration matrix, we do not have a complete proof of that and instead, for given configurations we 
explicitly ensure the linearity of sections.
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The ambient space M, where the line bundle L = OM(−1, 1) is defined, is a P1, which has a 
rank-one Picard lattice. Therefore, its configuration matrix in eq. (4.7) is non-favorable since the 
Picard lattice of its ambient space, P1 × P

1, is of rank two. There are several ways to see that 
L is a trivial line-bundle over M = P1; one can directly compute its cohomology dimensions, 
resulting in

h0(M,L) = 1 ; h1(M,L) = 0 , (4.8)

which implies that L =OM, or alternatively, by constructing the unique holomorphic section of 
L over M in its ration form, eq. (3.2), one can also see that the vanishing locus is empty. An 
immediate consequence of this is that any gCICY configuration matrices with the two-by-two 

sub-block for X =
[

P
1 1 −1

P1 1 1

]
appearing as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
. . . 0

. . .
. . . 0

. . .

P
1 · · · 1 · · · · · · −1 · · ·
...

. . . 0
. . .

. . . 0
. . .

P
1 · · · 1 · · · · · · 1 · · ·
...

. . . 0
. . .

. . . 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.9)

corresponds to an empty set, given that only a single section (up to scaling) arises from the 
mixed-sign column with −1 and 1 along the two P1 directions. Note that such reductions to an 
empty set can only happen for a non-favorable situation and hence, the minimal number of rows 
involved is 2. One can then see that the most general way in which an empty set arises via a 
two-by-two description of OP1 , as in eq. (4.9), is either of the following two types,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
. . . 0

. . .
. . . 0

. . .

P
1 · · · 1 · · · · · · ±1 · · ·
...

. . . 0
. . .

. . . 0
. . .

P
1 · · · n · · · · · · ∓n · · ·
...

. . . 0
. . .

. . . 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.10)

There are various other ways that lead to an empty-set configuration via the appearance of OP1

involving a bigger sub-block and even via that of OM for a more general base M. Although 
classification of all such possibilities can be an interesting direction to pursue further, the idea 
should already be clear from these toy instances, (4.9) and (4.10), and we do not attempt in this 
paper to complete the job.

4.4. Multiple components

Configuration matrices of a gCICY may describe multiple Calabi–Yau components and, in 
particular, multiple copies of a Calabi–Yau manifold. One way this can occur is through the 
gCICY configuration matrix of the following form,
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⎡
⎢⎢⎢⎣

...
. . . 0

. . .
. . .

P
1 · · · n · · · · · ·
...

. . . 0
. . .

. . .

⎤
⎥⎥⎥⎦ , (4.11)

where the column involving n gives rise to n points in the P1 and the rest of the configuration 
matrix, obtained by deleting that column as well as the P1 row, leads to a gCICY three-fold, for 
each of these n points on the P1. An example can be found in the third entry in Table 1, which 
describes copies of a quintic three-fold.

Note that such a multiple-copy structure via configurations of the form, (4.11), could also 
have arisen for ordinary CICYs. Since negative entries are not allowed for them, however, the 
entry, n, in eq. (4.11) is either 0, 1, or 2, all of which can then be neglected for the following 
reason. The column involving n is redundant for n = 0 and n = 1 cases, as the former gives no 
defining relation at all and the latter only fixes a point in the P1, which should then be substituted 
to the defining relation dependent on this P1 direction, resulting in the CICY three-fold whose 
configuration matrix is a reduced one from eq. (4.11) by deleting the column involving the n = 1
and the P1 row. Similarly, n = 2 case will lead to two copies of a Calabi–Yau three-fold, as the 
column involving the n = 2 gives a quadratic equation in the P1 coordinates, leading to two zero 
points. However, such case was neglected in Ref. [2] (see eq. (1.40) there) as it corresponds to a 
product manifold.

For a similar reason, gCICY configuration matrices of the form, (4.11), give n copies of a 
Calabi–Yau topology, each of which has a different shape in general. Nevertheless, if we only 
search for a connected geometry, such a multiple-copy case, or a multiple-component case in 
general, is another source of redundancy and can thus be excluded.

5. Beginning a classification of generalized CICYs

Although a full classification of gCICY manifolds is beyond the scope of the current work, 
in this section we take the first steps towards such a categorization and build an initial dataset of 
2,761 configuration matrices. We proceed to systematically classify and/or scan several classes 
of low co-dimension gCICY three-folds.

5.1. Codimension (1, 1) generalized CICYs

The simplest type of generalized CICYs is a class given by the configuration matrix:

X(1,1) =

⎡
⎢⎢⎢⎣

P
n1 a1 b1

P
n2 a2 b2

...
...

...

P
nm am bm

⎤
⎥⎥⎥⎦ , (5.1)

where we recall that the ai’s are all semi-positive, whereas some of the bi’s can take negative 
values. We call this class codimension (1, 1) gCICYs. To begin, it must be understood first what 
kind of new gCICY configuration matrices of this type are well-defined varieties – that is, under 
what conditions the second column of the configuration matrix defines a line bundle with global 
sections on a manifold defined by the first positive column in (5.1). We will impose the CY 
condition on the first Chern class in a second step. More concretely, we will study how many 
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negative entries we have in the second column, bi’s, and how much negative they can go, by 
requiring the existence of a global section of the line bundle

LM ≡OM(b1, . . . , bm) , (5.2)

where LM defines a hypersurface in a new ambient manifold, given by the complete intersection 
manifold M,

M =

⎡
⎢⎢⎢⎣
P

n1 a1

P
n2 a1

...
...

nm am

⎤
⎥⎥⎥⎦ . (5.3)

We will reduce the problem from M to the original ambient space by using the twisted Koszul 
short-exact sequence

0 −→ N∨ ⊗L −→ L −→L|M −→ 0 , (5.4)

where the normal bundle of M is the line bundle N∨ = O(−a1, . . . , −am) in the original am-
bient space. The values of bi ’s will be practically all constrained by the cohomology of LM, 
which we evaluate using the long-exact sequence in cohomology associated to (5.4). In fact, all 
we need to do now is to check when the condition h0(M, L) �= 0 is satisfied.

5.1.1. A negative bound
The number of global sections, h0(M, L), depends on the ambient space cohomology groups 

of N∨ ⊗L = O(−a1 + b1, . . . , −am + bm) and L = O(b1, . . . , bm). The dimensions h∗(A, L)

and h∗(A, N∨ ⊗ L) can be evaluated with the Bott–Borel–Weyl formula for line bundle co-
homology for products of projective spaces (see Appendix A and [46,56] for reviews) and by 
looking then at the long exact sequence in cohomology associated to (5.4). We will begin our 
analysis at this last sequence. Using the results of Appendix A it can be verified that non-ample 
line bundles on this class of M will arise only from negative entries in P1 directions and as 
result, the only non-vanishing cohomology groups associated to the first two terms in (5.4) are 
H 1(A, ·). The map between them is given by the defining relation of M:

q : h1(A,N∨ ⊗L) → h1(A,L) . (5.5)

In the long exact sequence associated to (5.4) this map is generically injective when h1(A, N∨ ⊗
L) < h1(A, L), and hence we can generically10 exclude this possibility since we demand that 
h0(M, L) �= 0. For this reason and for the fact that there is only one non-vanishing line bun-
dle cohomology in an ambient space, which is a product of projective space, we have just two 
different possibilities for h0(M, L) �= 0,

1. h1(A, N∨ ⊗ L) = 0 ⇒ h0(A, L) > h0(A, N∨ ⊗ L), with h0(A, L) �= 0, however, if the 
zero-cohomology of L is non-vanishing in the ambient space, it reduces to the case where 
all the integer entries of L are positive: bi ≥ 0, ∀i = 1, . . . , m.

10 We have strong evidences that the map is injective when the defining relation of M are general enough. We gain 
these evidences by computing explicitly the line bundle cohomologies and by analyzing their behaviors when the entries 
of L and N∨ ⊗L change.
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2. h0(A, L) = 0 and h1(A, N∨ ⊗ L) �= 0, this last condition, together with the Bott–Borel–
Weyl formula in (A.1) and (A.2) [46,56] yields the following sufficient11 (and generically 
necessary) conditions for h0(M, L) > 0:

∃! i = 1 | n1 = 1, (b1 − a1) ≤ −2, ∀i �= 1 bi > 0, (bi − ai) ≥ 0 , (5.6)

where we have set the first n1 = 1 for convenience, and, moreover,

h1(A,N∨ ⊗L) > h1(A,L) . (5.7)

We are of course interested in extensions of the standard class of CICYs, hence we will study 
further only the second case. Equation (5.6) tells us that in codimension (1, 1) only a negative 
entry, b1, in a P1 factor is possible. Finally, we expect that (5.7) gives a bound on the negative 
value for b1. We then apply the Bott–Borel–Weyl theorem [46,56], together with all the condi-
tions in (5.6), and we obtain the following expressions for the line bundle first-cohomologies, h1, 
in the ambient space,

h1(A,L) = (−b1 − 1)

m∏
i=2

(
bi + ni

ni

)
, (5.8)

h1(A,N∨ ⊗L) = (a1 − b1 − 1)

m∏
i=2

(
bi − ai + ni

ni

)
. (5.9)

Plugging in (5.8)–(5.9) into (5.7), we get the following bounding inequality:

(a1 − b1 − 1)

(−b1 − 1)
> R , (5.10)

where we rearranged the expression and R is a ratio that depends on the line bundle cohomologies 
in Pni , with i > 1,

R ≡
∏m

i=2

(
bi+ni

ni

)
∏m

i=2

(
bi−ai+ni

ni

) . (5.11)

Reducing (5.10) in terms of b1, we get

1 < R < 1 + a1 & − a1

R − 1
− 1 < b1 < −2 (5.12)

R = 1 & b1 < −2 . (5.13)

In the second case (5.13), we do not have any negative bound, however this apparently infinite 
class is actually finite. As will be shown in Section 5.1.3 these are just copies of a known CICY, 

11 These conditions are always sufficient and generically necessary for the existence of non-trivial global sections of a 
line bundle on M for suitably “generic” defining relations in (5.3). However, for all configuration matrices (including 
ordinary CICYs) these conditions can be weakened and line bundle cohomology can “jump” [57–62] when special 
defining polynomials are chosen for M. In these special cases new effective divisors exist. We will not consider such 
cases in the following discussion.
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when we impose the right condition on the Chern-classes of the manifold X(1,1). From (5.12), 
we get an expression for the negative bound of b1 in terms of R and a1.

b1 = −[1 + a1

R − 1
] . (5.14)

Finally we want to impose the Calabi–Yau condition on the first Chern class c1(T X) = 0, 
which restricts b1 = 2 −a1, and bi +ai = ni + 1 with i = 2 . . .m. In this way the bound depends 
only on R. We can summarize all the possible cases in the following four cases:

• R = 4, the bound is b1 ≥ −2.
• R > 4, the bound is b1 = −1.
• R = 2, there is no bound, and bi ≤ −1. Apparently this is another infinite class, we will 

show in Section 5.1.3 it is actually finite.
• R = 1, for this case as well, we have no bound, and the subclass appears infinite. However it 

turns out that the Euler characteristic is a multiple of a Euler characteristic of a known CY, 
X̃, as well as all the topological data. Moreover, looking in detail at this case, we can see that 
for R = 1 the configuration matrix takes the form

X(1,1) =

⎡
⎢⎢⎢⎣

P1 2 + i i

P
n2 0 b2

...
...

...

Pnm 0 bm

⎤
⎥⎥⎥⎦ , i ∈ Z>0 . (5.15)

We will show in section 5.1.3 that X(1,1) corresponds to (2 + i) copies of the known Calabi–
Yau

X̃ =
⎡
⎢⎣

Pn2 b2

...
...

P
nm bm

⎤
⎥⎦ , (5.16)

with all positive entries for definition. These infinite manifolds are all non-strictly Calabi–
Yau, more specifically each of these is a manifold formed by multiple copies of an already 
known CICY.

5.1.2. The classification result
CICYs with codimension (1, 1) are determined by two equations in a product of projective 

space, hence, we can encounter only 5 ambient space which are possible for this class of CICY 
three-folds. The complete list of generalized codimension (1, 1) CICY is given according to the 
classification in 5.1.1. The Euler characteristic together with the Hodge numbers (h(1,1), h(2,1))

are summarized in Tables 1–5. In the last column, we present the results of a smoothness check 
of the manifolds. In the tables below, we will use the symbol � to denote a smooth manifold, � a 
singular manifold and �� will indicate a manifold for which smoothness is not yet determined. We 
remark that the last infinite class of every table cannot be strictly considered as CY manifolds:

• For each i in the last subclass of manifolds of Table 1, we have a manifold formed by (2 + i)

copies of [ P4 ‖ 5 ].
• For each i in the last subclass of manifolds of Table 2, we have a manifold formed by (2 + i)

copies of 
[
P

3 4
P

1 2

]
.
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Table 1
3 cases in P4 × P1. � indicates they are smooth.

X R i χ (h1,1(X),h1,2(X)) Infinite class Smoothness[
P

4 2 3
P

1 3 −1

]
7 N/A −88 (2,46) N/A �

[
P

4 1 4
P

1 2 + i −i

]
2 i ∈ Z>0 −168 (2,86) Type III �

[
P

4 0 5
P

1 2 + i −i

]
1 i ∈ Z>0 −200(i + 2) (i + 2,101(i + 2)) Type I �

Table 2
6 cases in P3 × P

1 × P
1. � and �� indicate smooth and undetermined manifolds, respectively.

X R i χ (h1,1(X),h1,2(X)) Infinite class Smoothness⎡
⎣ P3 2 2
P

1 0 2
P

1 3 −1

⎤
⎦ 10 N/A −56 (3,31) N/A �

⎡
⎣ P3 2 2
P

1 1 1
P

1 3 −1

⎤
⎦ 20 N/A −104 (3,55) N/A �

⎡
⎣ P3 1 3
P

1 1 1
P

1 2 + i −i

⎤
⎦ 4 i = 1,2 −72, −48 (3,39), (3,27) N/A � , ��

⎡
⎣ P3 1 3
P

1 0 2
P

1 2 + i −i

⎤
⎦ 2 i ∈ Z>0 −144 (3,75) Type III �

⎡
⎣ P3 0 4
P

1 1 1
P

1 2 + i −i

⎤
⎦ 2 i ∈ Z>0 −168 (2,86) Type II �

⎡
⎣ P3 0 4
P1 0 2
P1 2 + i −i

⎤
⎦ 1 i ∈ Z>0 −168(i + 2) (i + 2,86(i + 2)) Type I �

• For each i in the last subclass of manifolds of Table 3, we have a manifold formed by (2 + i)

copies of 
[
P

2 3
P

2 3

]
.

• For each i in the last subclass of manifolds of Table 4, we have a manifold formed by (2 + i)

copies of 

⎡
⎣ P2 3
P

1 2
P

1 2

⎤
⎦.

• For each i in the last subclass of manifolds of Table 5, we have a formed by (2 + i) copies 

of 

⎡
⎢⎢⎣
P

1 2
P

1 2
P

1 2
P

1 2

⎤
⎥⎥⎦.

The list of (1, 1) manifolds is presented in Tables 1–5 given below.
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Table 3
3 cases in P2 × P2 × P1. � and �� indicate smooth and undetermined manifolds, respectively.

X R i χ (h1,1(X),h1,2(X)) Infinite class Smoothness⎡
⎢⎣ P

2 1 2
P

2 1 2
P1 2 + i −i

⎤
⎥⎦ 4 i = 1,2 −78, −60 (3,42), (3,33) N/A � , ��

⎡
⎢⎣ P

2 0 3
P

2 1 2
P

1 2 + i −i

⎤
⎥⎦ 2 i ∈ Z>0 −144 (3,75) Type III �

⎡
⎢⎣ P

2 0 3
P2 0 3
P

1 2 + i −i

⎤
⎥⎦ 1 i ∈ Z>0 −162(i + 2) (2(i + 2),83(i + 2)) Type I �

Table 4
6 cases in P2 × P1 × P1 × P1. �, �� and � indicate smooth, undetermined and singular manifolds, respectively.

X R i χ (h1,1(X),h1,2(X)) Infinite class Smoothness⎡
⎢⎢⎢⎣
P

2 1 2
P

1 1 1
P

1 1 1
P

1 3 −1

⎤
⎥⎥⎥⎦ 8 N/A −68 (4,38) N/A �

⎡
⎢⎢⎢⎣
P

2 1 2
P

1 0 2
P

1 1 1
P

1 2 + i −i

⎤
⎥⎥⎥⎦ 4 i = 1,2 −56, −32 (4,32), (4,20) N/A � , ��

⎡
⎢⎢⎢⎣
P

2 0 3
P

1 1 1
P

1 1 1
P1 2 + i −i

⎤
⎥⎥⎥⎦ 4 i = 1,2 −36, 0 (9,27), (11,11) N/A � , �

⎡
⎢⎢⎢⎣
P

2 0 3
P

1 0 2
P

1 1 1
P1 2 + i −i

⎤
⎥⎥⎥⎦ 2 i ∈ Z>0 −144 (3,75) Type II �

⎡
⎢⎢⎢⎣
P

2 1 2
P

1 0 2
P

1 0 2
P1 2 + i −i

⎤
⎥⎥⎥⎦ 2 i ∈ Z>0 −128 (4,68) Type III �

⎡
⎢⎢⎢⎣
P

2 0 3
P

1 0 2
P

1 0 2
P1 2 + i −i

⎤
⎥⎥⎥⎦ 1 i ∈ Z>0 −144(i + 2) (3(i + 2),75(i + 2)) Type I �

5.1.3. Apparently infinite classes
There are twelve apparently infinite families of Calabi–Yau manifolds in the list given in the 

previous section. Here we will analyze these cases further and demonstrate that these are, in 
each case, a set of redundant descriptions of the same, standard CICY. These infinite classes 
of configurations matrices can be grouped in to three distinct types which is illustrated in Ta-
bles 1–5.
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Table 5
5 cases in P1 × P1 × P1 × P1 × P1. � and � indicate smooth and singular manifolds, respectively.

X R i χ (h1,1(X),h1,2(X)) Infinite class Smoothness⎡
⎢⎢⎢⎢⎣
P

1 1 1
P

1 1 1
P

1 1 1
P

1 1 1
P

1 3 −1

⎤
⎥⎥⎥⎥⎦ 16 N/A −80 (5,45) N/A �

⎡
⎢⎢⎢⎢⎣
P

1 1 1
P

1 1 1
P

1 1 1
P

1 0 2
P

1 3 −1

⎤
⎥⎥⎥⎥⎦ 8 N/A −48 (5,29) N/A �

⎡
⎢⎢⎢⎢⎣
P

1 1 1
P1 1 1
P1 0 2
P1 0 2
P1 2 + i −i

⎤
⎥⎥⎥⎥⎦ 4 i = 1,2 −32, 0 (10,26), (12,12) N/A � , �

⎡
⎢⎢⎢⎢⎣
P

1 1 1
P1 0 2
P

1 0 2
P

1 0 2
P

1 2 + i −i

⎤
⎥⎥⎥⎥⎦ 2 i ∈ Z>0 −128 (4,68) Type II �

⎡
⎢⎢⎢⎢⎣
P

1 0 2
P

1 0 2
P

1 0 2
P

1 0 2
P

1 2 + i −i

⎤
⎥⎥⎥⎥⎦ 1 i ∈ Z>0 −128(i + 2) (4(i + 2),68(i + 2)) Type I �

Type I The configurations matrices of Type I all describe multiple, disconnected, copies of a 
regular CICY. Let us exemplify the structure with the third example in Table 1,[

P
1 2 + i −i

P
4 0 5

]
, i ∈ Z>0 . (5.17)

We can solve the first equation, a degree 2 + i polynomial in P1 to find 2 + i points in that 
first ambient space projective factor. Substituting these into the rational functions described by 
the second column of the configuration matrix, we obtain 2 + i quintic polynomials in P4. At a 
generic locus in complex structure modulus space, therefore, this configuration describes 2 + i

disconnected quintics in P4 separated from one another by their location in P1.
As a confirmation of this analysis, we find that h0(O) = 2 + i in these cases and that the Euler

number is −(2 + i)(200), i.e. (2 + i) times that of the quintic.

Type II The configuration matrices of Type II also all describe regular CICYs. We again exem-
plify the structure with a single case, in this instance the fifth example in Table 2,⎡
⎣ P1 2 + i −i

P
1 1 1

P
3 0 4

⎤
⎦ , i ∈ Z>0 . (5.18)

These configuration matrices all describe the same manifold as the regular CICY,
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[
P

1 2
P

3 4

]
, (5.19)

via a relation analogous to what is called “ineffective splitting” in the CICY literature.
Let us write the two equations described by the configuration matrices (5.18) as follows

p1 = P10y
0 + P11y

1 = 0 , (5.20)

p2 = P20

D20
y0 + P21

D21
y1 = 0 . (5.21)

It is important for us to describe exactly what is meant by the various P polynomials which 
appear in these expressions. P10 and P11 are general degree 2 + i polynomials. The polynomials 
P20, P21, D20 and D21 are not generic examples of their degree, however. P20 and P21 are degree 
{0,0,4} while D20 and D21 are degree {i,0,0}. However, the choice of the denominator and 
numerator polynomials are correlated (and also correlated with P10 and P11) such that the poles 
in the associated rational functions miss the hypersurface p1. As described earlier, this structure 
is associated to the fact that the line bundle O(−i, 1, 4) only has global sections when taken to 
be a line bundle on the hypersurface defined by p1 and not when interpreted as a line bundle on 
the ambient projective product. Nevertheless, the final Calabi–Yau three-fold can be described 
in terms of the intersection of a rational function and a polynomial on the ambient space, once a 
tuning of the freedom in the P ’s and D’s of this form has been performed.

We may rewrite the ambient space equations (5.20) and (5.21) in a matrix form as follows

(
P10 P11
P20
D20

P21
D21

)(
y0

y1

)
= 0 . (5.22)

These equations have a solution, remembering that the yi are homogeneous coordinates on P1, 
if and only if the determinant of the matrix vanishes,

P10P21

D21
− P11P20

D20
= 0 . (5.23)

These equations have “net degree” {2,4} in P1 × P
3. However, naively, (5.23) seems to be still 

a rational defining relation. In fact, due to the manner in which the singularities in p2 miss the 
zero locus of p1, the numerators in the two terms of (5.23) contain factors of D20 and D21

respectively, leading to a polynomial, {2,4} defining relation in P1 × P
3.

To demonstrate this let us derive (5.23) in a slightly different manner (we performed the anal-
ysis above to emphasize the similarity with ineffective splits in the case of an ordinary CICY). 
First, we solve (5.20) for either y0 or y1,

y0 = −P11

P10
y1 , (5.24)

y1 = −P10

P11
y0 . (5.25)

For a generic choice of complex structure, P11 and P10 are two uncorrelated degree 2 + i poly-
nomials in P1. They can thus not both be vanishing simultaneously and thus at least one of the 
above solutions is always perfectly well defined.
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Substituting these results into (5.21) we obtain the following two expressions(
− P20

D20

P11

P10
+ P21

D21

)
y1 = 0 , (5.26)

(
P20

D20
− P21

D21

P10

P11

)
y0 = 0 . (5.27)

If P10 �= 0 then from (5.25) y1 �= 0 (as not both homogeneous coordinates can vanish simul-
taneously). We can divide (5.26) by y1 and multiply up by P10. We then obtain (5.23) once 
more (a similar argument can be made in the case where P11 �= 0). However, by the definition 
of our procedure for forming the section of the second normal bundle factor, that is the rational 
function p2, we know that it can have no poles when p1 = 0. We have just demonstrated that 
(5.23) is p2 evaluated on the solution to p1 and thus it can have no poles. The only way in which 
this can happen is if the numerators and denominators of the full expression have canceling fac-
tors leaving a simply polynomial expression. This can easily be verified explicitly in any given 
example.

Thus (5.18) describes the same manifold as (5.19) for any value of i and the infinite class can 
be viewed as generalized ineffective splittings of this standard CICY.

Type III The configuration matrices of Type III also all describe regular CICYs. As before, we 
exemplify the structure with a single case, in this instance the second example in Table 1,[

P1 2 + i −i

P
4 1 4

]
, i ∈ Z>0 . (5.28)

A series of operations on this infinite class of configuration matrices can demonstrate that 
(5.28) describes the same manifold for all i. We begin by performing an ineffective split as 
follows

[
P

1 2 + i −i

P
4 1 4

]
→
⎡
⎣ P1 0 2 + i −i

P
1 1 1 0

P
4 1 0 4

⎤
⎦ . (5.29)

In performing such a split in the gCICY case, all of the subtleties mentioned in Section 4 must be 
considered. Once we have the configuration matrix in the form (5.29) we can use the following 
postulated identity [2]⎡
⎣ P1 1 a

P
n 1 nb

Y 0 M

⎤
⎦→
⎡
⎣ P

1 a + b

P
n−1 nb

Y M

⎤
⎦ . (5.30)

This identity was used in the original investigations of CICY three-folds [2], although it has 
never, to our knowledge, been proven. Here we follow those authors in making use of the identity, 
leaving a rigorous proof of its validity to future work. Applying (5.30) in this case we find the 
following

[
P

1 2 + i −i

P
4 1 4

]
→
⎡
⎣ P1 0 2 + i −i

P
1 1 1 0

P
4 1 0 4

⎤
⎦→
⎡
⎣ P1 1 1
P

3 0 4
P

1 2 + i −i

⎤
⎦ . (5.31)
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Finally, we may apply an ineffective contraction in the first P1 direction of (5.31) to arrive at 
the following chain

[
P

1 2 + i −i

P
4 1 4

]
→
⎡
⎣ P1 0 2 + i −i

P
1 1 1 0

P
4 1 0 4

⎤
⎦→
⎡
⎣ P1 1 1
P

3 0 4
P

1 2 + i −i

⎤
⎦→
[
P

3 4
P

1 2

]
. (5.32)

Thus, we finally see that the entire infinite class of configuration matrices (5.28) all simply de-
scribe a single ordinary CICY.

A very similar analysis applies to the other cases of Type III. The fourth example in Table 2
and second example in Table 3 turn out to be equivalent to the configuration matrix,

⎡
⎣ P1 2
P

1 2
P

2 3

⎤
⎦ . (5.33)

The fifth example in Table 4 turns out to be equivalent to the tetraquadric:

⎡
⎢⎢⎣
P

1 2
P

1 2
P

1 2
P

1 2

⎤
⎥⎥⎦ . (5.34)

With the demonstration that this last type of infinite set of configuration matrices actually 
corresponds to a finite number of Calabi–Yau three-folds we have proven that the gCICYs of 
codimension (1, 1) constitute a finite dataset of manifolds.

5.1.4. New Calabi–Yau three-folds
It is interesting to determine which of the manifolds in Tables 1–5 are genuinely new Calabi–

Yau three-folds, never before seen in other datasets. Steps can be taken in towards this goal by 
computing topological invariants. We have studied the Hodge data and basis independent quan-
tities computed from the Chern classes and intersection numbers (see Ref. [15] for an analogue 
of this for the four-fold cases). We find that eight of the codimension (1, 1) gCICYs have never 
appeared before, at least as far as our search of the literature could determine. They are certainly 
of a different topological type to anything seen in the CICY or the Kreuzer–Skarke datasets. The 
eight new manifolds are those with

(h1,1, h2,1) = (2,46), (3,31), (3,39), (3,27), (3,42), (3,33), (4,20), (5,29) (5.35)

from Tables 1–5. Note that many of these Hodge pairs have certainly appeared in the literature 
before. The manifolds are distinguished by the more subtle topological properties mentioned 
above and illustrated in Subsection 2.2.3.

5.2. Codimension (2, 1) generalized CICYs

The codimension two examples in Section 5.1 can be straightforwardly generalized to codi-
mension three. We once again focus on negative codimension one cases, i.e., codimension (2, 1)

examples with the following configuration matrix:
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X(2,1) =

⎡
⎢⎢⎢⎣

P
n1 a1

1 a1
2 b1

P
n2 a2

1 a2
2 b2

...
...

...
...

PnN am
1 am

2 bm

⎤
⎥⎥⎥⎦ , (5.36)

where the first column ai
1, a

i
2 ≥ 0, but bi are allowed to assume negative integer values. As 

described previously, we require the third column to define an anticanonical hypersurface in M. 
That is, L ≡OM(b1

3, . . . , b
m
3 ) = KM−1 with

M =

⎡
⎢⎢⎢⎣

P
n1 a1

1 a1
2

P
n2 a2

2 a2
2

...
...

...

P
nN am

1 am
2

⎤
⎥⎥⎥⎦ . (5.37)

In defining these CY 3-folds there are 10 possible ambient spaces for this class of generalized 
CICY three-folds:

P
5 × P

1, P
4 × P

2, P
3 × P

3, P
4 × P

1 × P
1 ,

P
3 × P

2 × P
1, P

2 × P
2 × P

2, P
3 × P

1 × P
1 × P

1 ,

P
2 × P

2 × P
1 × P

1, P
2 × P

1 × P
1 × P

1 × P
1, P

1 × P
1 × P

1 × P
1 × P

1 × P
1 . (5.38)

In each of these embedding products of projective spaces, there are many more classes of gener-
alized configuration matrices than in codimension (1, 1) case.

Beginning with these ambient spaces, we construct the generalized CICYs in several steps:

• To ensure global sections on M, the negative number bi can only appear in two P1 factors or 
one P2 (see Appendix A for an analysis of the Koszul sequences and the Bott Theorem (A.1)
leading to this requirement). Moreover, since the last column corresponds to an algebraic 
constraint arising from the vanishing of a global section of a line bundle on M, we explicitly 
check in each case that h0(M, OM(bi)) > 0.

• We choose bi < 0 consistent with vanishing first Chern class for the gCICY. For example, 
in a configuration matrix, if one of the rows corresponds to an ambient P2 factor (for exam-
ple 
[
P

2 0 3 0
]
) we will construct a configuration to be 

[
P

2 0 3 + n −n
]
. For the 

present, preliminary scan we will restrict the integer range of n, allowing it to vary from 1 to 
4, i.e. (5.39),

X(2,1) =

⎡
⎢⎢⎣

...
...

...
...

P
2 0 3 0
...

...
...

...

⎤
⎥⎥⎦ ⇒ X′

(2,1) =

⎡
⎢⎢⎣

...
...

...
...

P
2 0 3 + n −n
...

...
...

...

⎤
⎥⎥⎦ , (5.39)

the negative entries appearing in the generalized configuration is greater or equal to −4. In 
this scan, since the negative entries appearing in the generalized configuration are greater or 
equal to −4, for each n we generate 4 new generalized CICYs in one class of the general-
ized configuration matrices listed in Tables 7–12. In this way, 34,192 classes of generalized 
configuration matrices were generated for the initial codimension (2, 1) scan.

• To remove some singular/non-reduced, non-CY geometries, we also verify explicitly that the 
trivial line bundle cohomology on X is h∗(X, O) = {1, 0, 0, 1}. So in this scanning, we have 
already ruled out the Type I infinite class discussed in Section 5.1.3 from the starting point.
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Table 6
The distribution of codimension (2, 1) spaces embedded in products of projective spaces.

Embedding 
projective spaces

# of classes of generalized 
configuration matrices

# of spaces 
with positive χ

# of spaces with 
non-positive χ

P
5 × P

1 168 0 28
P

4 × P
2 210 0 6

P
4 × P

1 × P
1 1,197 3 226

P
3 × P

2 × P
1 1,800 2 261

P
2 × P

2 × P
2 550 0 12

P
3 × P

1 × P
1 × P

1 4,410 17 528
P

2 × P
2 × P

1 × P
1 5,235 9 511

P
2 × P

1 × P
1 × P

1 × P
1 12,180 16 754

P
1 × P

1 × P
1 × P

1 × P
1 × P

1 8,442 10 350

Total 34,192 57 2,676

Besides the above requirements, there is another constraint that arises from the Koszul se-
quence, (B.3). This provides certain bounds on the magnitude of non-zero entries in the rows of 
M and can be used to rule out certain non-CY configuration matrices. This additional constraint 
is described in Appendix B. Under all these constraints, we constructed all the classes of gener-
alized configuration matrices of this type, which could be analyzed in a reasonable computing 
time.12

Unlike in the codimension (1, 1) case and the ordinary CICY dataset, in the case of codi-
mension (2, 1) configuration matrices we find many manifolds with positive Euler number 
χ > 0. This preliminary scan yielded 57 spaces with χ > 0 and 2,676 spaces with χ ≤ 0 out 
of 34,192 classes of generalized configuration matrices (5.36), which satisfied all the require-
ments discussed above. The distribution of these spaces in terms of embedding projective spaces 
is classified in Table 6.13 Due to the rapidly increasing number of spaces in this class of config-
uration matrices, we leave a full classification of such geometries to future work.

Codimension (2, 1) spaces with positive Euler number From Table 6 we see that there is no 
single example with positive Euler number in P5 × P

1, P4 × P
2 and P2 × P

2 × P
2 which passes 

all the criteria (out of 168, 210 and 550 classes of generalized configuration matrices scanned 
respectively). The distribution of the 57 spaces is explicitly shown in Tables 7–12. Once again in 
these tables, � indicates a smooth manifold, � a singular manifold and finally, �� indicates that 
the smoothness check has timed out in the current run. For all the generically singular geometries 
we found, the singularities are not of a minimal order in that the “normal form”, eq. (3.13), and 
its exterior derivative both vanish.

In terms of topological data, none of the positive Euler number examples appears in the reg-
ular CICY list [2], though many of the Hodge number pairs appear in the Kreuzer–Skarke list 
[30] (however, as seen already in co-dimension (1, 1) case, two spaces with the same Hodge 
number does not guarantee they have the same Chern classes or triple intersection numbers). In 

12 The primary time constraints arises from the calculation of line bundle cohomology. To complete the initial scan in 
finite time, we leave for future scans any line bundle cohomology whose calculation time was greater than five minutes.
13 There may still exist some redundancies in counting of these spaces like ineffective splits, some identity and reduced-
ness, generally described in sections 4 and 5. Although some of these geometries are singular, we assume the method 
in determining the topological quantity described in section 2.2 still applied, and we assume all of them are Calabi–Yau 
when calculating Hodge number.
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Table 7
3 results out of 1,197 classes of generalized configuration matrices scanned in P4 ×P1 ×P1. �, �� indicate singular and 
undetermined manifolds respectively. In the Hodge numbers, x denotes an undetermined non-negative integer.

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎣ P4 1 1 3
P1 0 2 0
P1 1 3 −2

⎤
⎦ 12 (6 + x, x) �

⎡
⎣ P4 1 1 3
P1 0 2 0
P

1 1 4 −3

⎤
⎦ 60 (30 + x, x) �

⎡
⎣ P4 1 1 3
P

1 0 2 0
P

1 2 3 −3

⎤
⎦ 24 (12 + x, x) ��

Table 8
2 results out of 1,800 classes of generalized configuration matrices scanned in P3 ×P

2 ×P
1. �, �� indicate singular and 

undetermined manifolds respectively. In the Hodge numbers, x denotes an undetermined non-negative integer.

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎣ P3 1 0 3
P

2 1 3 −1
P

1 0 1 1

⎤
⎦ 12 (6 + x, x) �

⎡
⎣ P3 1 0 3
P

2 0 2 1
P

1 2 3 −3

⎤
⎦ 18 (9 + x, x) ��

some cases, we are not yet able to determine the Hodge pairs (again due to the slow computa-
tion of line bundle cohomology. The integer uncertainty in these Hodge pairs is denoted “x” in
Tables 7–12).

Codimension (2, 1) spaces with non-positive Euler number The initial scan produced 2,676 
co-dimension (2, 1) examples with non-positive Euler number out of the 34,192 classes of gen-
eralized configuration matrices considered. Of these, the exact Hodge number pairs could be 
determined for 2,469. For these geometries then, we can compare the Hodge number pairs with 
those found in the literature to date: we find 319 pairs with 162 different Euler number which are 
not in the regular CICY list [2] and among them, 129 pairs with 24 different Euler number not 
present in the Kreuzer–Skarke list [30]. Further more, there are 16 geometries with new Hodge 
numbers not appearing elsewhere in the literature [63]. These 16 Hodge pairs are distributed in 
8 different Euler numbers. These examples with new Hodge number are listed in Table 13.

6. Physics applications and outlook

In this work we have introduced a new construction of Calabi–Yau spaces that has the poten-
tial to yield very large datasets of manifolds of a variety of different dimensions. We have seen 
already that this construction has yielded new manifolds as well as previously unknown Hodge 
number pairs. If we take one for each infinite family in the codimension (1, 1) dataset, we con-
structed 28 spaces. For codimension (2, 1) case, there are 57 spaces with positive Euler number 
and 2,676 with non-positive Euler number. In total we constructed 2,761 spaces.
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Table 9
17 results out of 4,410 classes of generalized configuration matrices scanned in P3 ×P

1 ×P
1 ×P

1. �, �� indicate singular 
and undetermined manifolds respectively. In the Hodge numbers, x denotes an undetermined non-negative integer.

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎣
P

3 2 0 2
P

1 0 1 1
P

1 0 2 0
P

1 1 2 −1

⎤
⎥⎥⎦ 24 (12 + x, x) �

⎡
⎢⎢⎣
P

3 1 1 2
P

1 0 0 2
P

1 0 2 0
P

1 1 3 −2

⎤
⎥⎥⎦ 32 (16 + x, x) �

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P

1 0 2 0
P

1 1 3 −2

⎤
⎥⎥⎦ 72 (36 + x, x) �

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P1 0 2 0
P1 1 4 −3

⎤
⎥⎥⎦ 144 (72 + x, x) �

⎡
⎢⎢⎣
P3 2 0 2
P1 0 1 1
P1 0 4 −2
P1 1 1 0

⎤
⎥⎥⎦ 24 (27,15) ��

⎡
⎢⎢⎣
P

3 2 0 2
P

1 0 0 2
P

1 1 1 0
P

1 1 5 −4

⎤
⎥⎥⎦ 16 (69,61) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P

1 1 2 −1
P

1 0 3 −1

⎤
⎥⎥⎦ 72 (36 + x, x) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P

1 0 5 −3
P

1 1 1 0

⎤
⎥⎥⎦ 36 (32,14) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P

1 0 1 1
P

1 1 5 −4

⎤
⎥⎥⎦ 36 (32,14) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P1 0 2 0
P1 2 3 −3

⎤
⎥⎥⎦ 72 (36 + x, x) ��

⎡
⎢⎢⎣
P3 2 0 2
P1 0 0 2
P1 0 6 −4
P1 1 1 0

⎤
⎥⎥⎦ 16 (75,67) ��

(continued on next page)
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Table 9 (continued)

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎣
P3 1 1 2
P1 0 0 2
P1 2 0 0
P1 2 4 −4

⎤
⎥⎥⎦ 32 (16 + x, x) ��

⎡
⎢⎢⎣
P

3 1 0 3
P1 0 1 1
P

1 0 5 −3
P

1 2 1 −1

⎤
⎥⎥⎦ 36 (31,13) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 1 1
P

1 0 6 −4
P

1 1 1 0

⎤
⎥⎥⎦ 72 (48,12) ��

⎡
⎢⎢⎣
P

3 2 0 2
P

1 0 1 1
P

1 0 1 1
P

1 1 4 −3

⎤
⎥⎥⎦ 24 (27,15) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 4 −2
P

1 1 0 1
P

1 2 1 −1

⎤
⎥⎥⎦ 48 (76,52) ��

⎡
⎢⎢⎣
P

3 1 0 3
P

1 0 5 −3
P

1 1 0 1
P

1 2 1 −1

⎤
⎥⎥⎦ 96 (116,68) ��

In the discussion below we turn briefly to some of the physics applications of this new dataset 
of manifolds. Many of the topics here deserve to be the subject of future work and we highlight 
the ways that this dataset will be particularly applicable to many physical problems, as well as 
areas where interesting open questions remain.

6.1. Fibration structure

The obvious fibration structures exhibited by generalized CICYs follow a very similar form 
to those seen in standard semi-positive configuration matrices. Consider a configuration matrix 
which can be put in the following form by row and column permutations:

X =
[
A1 0 F
A2 B T

]
, (6.1)

where A1 and A2 are two products of projective spaces, while F, B and T are block sub-
matrices. Such a configuration matrix, in the case of semi-positive configuration matrices, de-
scribes a fibration of the manifold given by F = [A1‖F] over the base B = [A2‖B], where the 
variation of the fiber over the base is determined by the matrix T . It has been observed, for ex-
ample, that almost all known CICY three- and four-folds are fibered with Calabi–Yau manifolds 
of every lower dimension multiple times [64].

As we have mentioned, a similar structure is exhibited by generalized CICYs. Consider, for 
example, the configuration (1.2) for a gCICY three-fold discussed in the introduction. In this 
example, we can rearrange the matrix and make the division as follows,
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Table 10
9 results out of 5,235 classes of generalized configuration matrices scanned in P2 ×P2 ×P1 ×P1. �, �� indicate singular 
and undetermined manifolds respectively. In the Hodge numbers, x denotes an undetermined non-negative integer.

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎣
P2 0 0 3
P2 1 1 1
P1 2 0 0
P1 2 1 −1

⎤
⎥⎥⎦ 36 (18 + x, x) �

⎡
⎢⎢⎣
P2 0 2 1
P

2 1 0 2
P

1 0 0 2
P

1 1 3 −2

⎤
⎥⎥⎦ 16 (8 + x, x) �

⎡
⎢⎢⎣
P

2 0 1 2
P

2 1 0 2
P

1 0 2 0
P

1 1 3 −2

⎤
⎥⎥⎦ 16 (8 + x, x) �

⎡
⎢⎢⎣
P

2 3 1 −1
P

2 0 0 3
P

1 1 0 1
P

1 0 1 1

⎤
⎥⎥⎦ 18 (9 + x, x) ��

⎡
⎢⎢⎣
P

2 0 1 2
P

2 1 0 2
P

1 0 6 −4
P

1 1 1 0

⎤
⎥⎥⎦ 16 (32,24) ��

⎡
⎢⎢⎣
P

2 0 0 3
P

2 1 1 1
P

1 1 3 −2
P1 2 0 0

⎤
⎥⎥⎦ 36 (18 + x, x) ��

⎡
⎢⎢⎣
P2 0 0 3
P2 1 1 1
P1 0 5 −3
P1 2 0 0

⎤
⎥⎥⎦ 36 (18 + x, x) ��

⎡
⎢⎢⎣
P2 1 0 2
P2 1 0 2
P

1 2 1 −1
P

1 0 4 −2

⎤
⎥⎥⎦ 12 (75,69) ��

⎡
⎢⎢⎣
P

2 1 0 2
P

2 1 0 2
P

1 2 1 −1
P

1 0 5 −3

⎤
⎥⎥⎦ 48 (111,87) ��

X =
⎡
⎣ P5 3 1 1 1
P

1 1 1 1 −1
P

1 1 1 −1 1

⎤
⎦ . (6.2)

Here the base is B = P
1 and the fiber, F , is given as

F =
[
P

5 3 1 1 1
P

1 1 1 1 −1

]
, (6.3)
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Table 11
16 results out of 12,180 classes of generalized configuration matrices scanned in P2 ×P1 ×P1 ×P1 ×P1. �, �� indicate 
singular and undetermined manifolds respectively. In the Hodge numbers, x denotes an undetermined non-negative 
integer.

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎢⎢⎣
P

2 1 0 2
P

1 1 0 1
P

1 0 1 1
P

1 0 2 0
P

1 1 2 −1

⎤
⎥⎥⎥⎥⎦ 24 (12 + x, x) �

⎡
⎢⎢⎢⎢⎣
P

2 1 1 1
P

1 2 1 −1
P

1 2 0 0
P

1 0 0 2
P1 0 0 2

⎤
⎥⎥⎥⎥⎦ 32 (16 + x, x) �

⎡
⎢⎢⎢⎢⎣
P2 1 0 2
P1 0 0 2
P1 0 1 1
P1 0 2 0
P1 1 3 −2

⎤
⎥⎥⎥⎥⎦ 64 (32 + x, x) �

⎡
⎢⎢⎢⎢⎣
P

2 1 0 2
P

1 0 0 2
P

1 0 1 1
P

1 0 5 −3
P

1 1 1 0

⎤
⎥⎥⎥⎥⎦ 32 (29,13) ��

⎡
⎢⎢⎢⎢⎣
P

2 1 1 1
P

1 0 0 2
P

1 0 0 2
P

1 0 5 −3
P

1 2 0 0

⎤
⎥⎥⎥⎥⎦ 32 (16 + x, x) ��

⎡
⎢⎢⎢⎢⎣
P

2 1 1 1
P

1 0 0 2
P

1 0 0 2
P

1 1 3 −2
P

1 2 0 0

⎤
⎥⎥⎥⎥⎦ 32 (16 + x, x) ��

⎡
⎢⎢⎢⎢⎣
P

2 1 0 2
P

1 0 1 1
P1 0 4 −2
P1 1 0 1
P1 1 1 0

⎤
⎥⎥⎥⎥⎦ 24 (24,12) ��

⎡
⎢⎢⎢⎢⎣
P2 1 0 2
P1 0 0 2
P1 1 0 1
P

1 1 1 0
P

1 1 5 −4

⎤
⎥⎥⎥⎥⎦ 16 (40,32) ��

⎡
⎢⎢⎢⎢⎣
P

2 0 0 3
P

1 1 0 1
P

1 1 0 1
P

1 1 1 0
P

1 1 4 −3

⎤
⎥⎥⎥⎥⎦ 36 (33,15) ��
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Table 11 (continued)

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎢⎢⎣
P2 0 0 3
P1 1 0 1
P1 1 0 1
P1 1 1 0
P1 1 5 −4

⎤
⎥⎥⎥⎥⎦ 72 (55,19) ��

⎡
⎢⎢⎢⎢⎣
P2 3 1 −1
P

1 1 0 1
P

1 0 1 1
P

1 0 0 2
P

1 0 0 2

⎤
⎥⎥⎥⎥⎦ 16 (8 + x, x) ��

⎡
⎢⎢⎢⎢⎣
P

2 1 0 2
P

1 0 0 2
P

1 0 1 1
P

1 0 1 1
P

1 1 5 −4

⎤
⎥⎥⎥⎥⎦ 32 (29,13) ��

⎡
⎢⎢⎢⎢⎣
P

2 1 0 2
P

1 0 0 2
P

1 0 6 −4
P

1 1 0 1
P

1 1 1 0

⎤
⎥⎥⎥⎥⎦ 16 (58,50) ��

⎡
⎢⎢⎢⎢⎣
P

2 0 0 3
P

1 0 5 −3
P

1 1 0 1
P1 1 0 1
P1 1 1 0

⎤
⎥⎥⎥⎥⎦ 36 (53,35) ��

⎡
⎢⎢⎢⎢⎣
P2 0 0 3
P1 0 6 −4
P1 1 0 1
P1 1 0 1
P

1 1 1 0

⎤
⎥⎥⎥⎥⎦ 72 (75,39) ��

⎡
⎢⎢⎢⎢⎣
P

2 1 0 2
P

1 0 1 1
P

1 0 1 1
P

1 1 0 1
P

1 1 4 −3

⎤
⎥⎥⎥⎥⎦ 24 (24,12) ��

which is a K3 surface. A difference with the normal CICY situation is that we must check that any 
mixed-sign line bundles involved in defining the fiber and the base, OM′(1, −1) in this case, with 

M′ =
[
P5 3 1 1
P

1 1 1 1

]
, have global sections such that the associated manifolds do indeed exist. 

Computation of the line bundle cohomology indeed leads to h0(M′, OM′(1, −1)) = 2 > 0. As a 
further check, the Hodge number computation reveals that h0,0(F ) = 1 and h1,1(F ) = 20 as they 
should. The gCICY three-fold at hand is also elliptically fibered, which can similarly be seen 
from the division,

X =
⎡
⎣ P5 3 1 1 1
P1 1 1 1 −1
P

1 1 1 −1 1

⎤
⎦ , (6.4)
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Table 12
10 results out of 8,441 classes of generalized configuration matrices scanned in P1 ×P1 ×P1 ×P1 ×P1 ×P1. �, �� indi-
cate singular and undetermined manifolds respectively. In the Hodge numbers, x denotes an undetermined non-negative 
integer.

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 2 1 −1

P
1 2 0 0

P
1 1 0 1

P
1 0 1 1

P1 0 1 1
P

1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

16 (8 + x, x) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 2 1 −1

P
1 2 0 0

P
1 1 0 1

P
1 0 1 1

P1 0 1 1
P1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

32 (16 + x, x) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 0 2

P
1 0 0 2

P
1 0 5 −3

P
1 1 0 1

P1 1 0 1
P1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

32 (50,34) ��

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 1 1

P
1 0 1 1

P
1 1 0 1

P
1 1 0 1

P1 1 0 1
P

1 1 4 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

16 (25,17) ��

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 0 2

P
1 0 1 1

P
1 0 1 1

P
1 1 0 1

P1 1 0 1
P1 1 4 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

32 (26,10) ��

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 1 1

P
1 0 4 −2

P
1 1 0 1

P
1 1 0 1

P1 1 0 1
P1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

16 (25,17) ��

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 0 2

P
1 0 1 1

P
1 0 4 −2

P
1 1 0 1

P1 1 0 1
P1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

32 (26,10) ��
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Table 12 (continued)

X χ (h1,1(X),h1,2(X)) Smoothness⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 0 2

P1 0 0 2
P1 1 0 1
P1 1 0 1
P1 1 1 0
P

1 1 4 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

32 (32,16) ��

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 0 2

P
1 0 0 2

P
1 1 0 1

P
1 1 0 1

P
1 1 1 0

P
1 1 5 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

64 (52,20) ��

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
1 0 0 2

P
1 0 0 2

P
1 0 6 −4

P
1 1 0 1

P
1 1 0 1

P
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

64 (70,38) ��

that makes manifest the fibration of the elliptic curve,

F = [ P5 3 1 1 1
]

, (6.5)

over the base B = P
1 × P

1. Note that the elliptic and K3 fibration structures here are nested.
As another example, the following gCICY four-fold,

X =

⎡
⎢⎢⎣
P

3 2 2
P

1 0 2
P

1 0 2
P

1 3 −1

⎤
⎥⎥⎦ , (6.6)

similarly has a nested fibration structure of elliptic, K3, and Calabi–Yau three-fold fibers, over 
the bases P1 ×P

1 ×P
1, P1 ×P

1, and P1, respectively. The following divisions of the configura-
tion (6.6) in turn make such fibrations manifest:⎡
⎢⎢⎣
P3 2 2
P

1 0 2
P

1 0 2
P

1 3 −1

⎤
⎥⎥⎦ ;

⎡
⎢⎢⎣
P3 2 2
P

1 0 2
P

1 0 2
P

1 3 −1

⎤
⎥⎥⎦ ;

⎡
⎢⎢⎣
P3 2 2
P

1 0 2
P

1 0 2
P

1 3 −1

⎤
⎥⎥⎦ . (6.7)

It seems likely that the generalized CICYs exhibit the same rich fibration structure that has 
recently been investigated in other constructions [13–15,26,65–69]. Naturally, a rigorous confir-
mation of such a claim must await a full classification of the dataset.

6.2. Discrete symmetries, torsion and Wilson lines

One application of this simple, algebraic set of manifolds lies in the ease with which its dis-
crete automorphisms can be classified. Discrete symmetries of CY manifolds have a wide number 
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Table 13
The Hodge pairs and configuration matrices of novel codimension (2, 1) examples. These new Hodge pairs do not appear 
in the regular CICY list [2], Kreuzer–Skarke list [30] or elsewhere in the known literature [63].

(h1,1(X),h1,2(X)) X

(1,91)

⎡
⎢⎢⎢⎣
P

2 1 1 1

P
2 0 3 0

P
1 0 0 2

P
1 1 2 −1

⎤
⎥⎥⎥⎦

(1,109)

⎡
⎢⎢⎢⎣
P

2 1 0 2

P
2 0 3 0

P
1 0 1 1

P
1 1 3 −2

⎤
⎥⎥⎥⎦

(2,98)

⎡
⎢⎢⎢⎢⎢⎣

P
2 1 0 2

P
1 0 2 0

P
1 0 1 1

P
1 0 2 0

P
1 1 3 −2

⎤
⎥⎥⎥⎥⎥⎦

(6,18)

⎡
⎢⎢⎢⎢⎢⎣

P
2 0 1 2

P
1 0 1 1

P
1 1 0 1

P
1 1 0 1

P
1 1 3 −2

⎤
⎥⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎣

P
2 0 1 2

P
1 0 3 −1

P
1 1 1 0

P
1 1 0 1

P
1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎣

P
2 0 1 2

P
1 0 0 2

P
1 1 1 0

P
1 1 3 −2

P
1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

(10,19)

⎡
⎢⎢⎢⎣
P

2 0 0 3

P2 1 1 1

P
1 0 1 1

P1 1 3 −2

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣
P

2 0 0 3

P2 1 1 1

P
1 1 0 1

P1 1 5 −4

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣
P

2 0 0 3

P2 1 1 1

P
1 1 0 1

P1 2 3 −3

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣
P

2 0 0 3

P2 2 2 −1

P
1 0 1 1

P1 1 0 1

⎤
⎥⎥⎥⎦

(9,13)

⎡
⎢⎢⎢⎣
P

3 2 0 2

P1 0 1 1

P
1 0 1 1

P1 1 3 −2

⎤
⎥⎥⎥⎦,

⎡
⎢⎢⎢⎣
P

3 2 0 2

P1 0 3 −1

P
1 0 1 1

P1 1 1 0

⎤
⎥⎥⎥⎦

(9,15)

⎡
⎢⎢⎢⎣
P

3 1 0 3

P1 0 1 1

P
1 1 1 0

P1 1 3 −2

⎤
⎥⎥⎥⎦

(10,14)

⎡
⎢⎢⎢⎢⎢⎣

P
2 1 0 2

P1 0 1 1

P
1 0 1 1

P1 1 3 −2

P
1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎣

P
2 1 0 2

P1 0 3 −1

P
1 0 1 1

P1 1 1 0

P
1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎣

P
2 1 0 2

P1 0 0 2

P
1 0 1 1

P1 1 1 0

P
1 1 3 −2

⎤
⎥⎥⎥⎥⎥⎦

of applications in string compactifications ranging from Type II orientifold actions [70] to het-
erotic Wilson lines [62,71–73] to discrete symmetries in F-theory (see for example [74–81] for 
recent work). The role of cohomological torsion in Mirror symmetry [82–84] is also an ongoing 
subject of investigation.

For the ordinary CICYs, the set of freely acting discrete symmetries was recently classified in 
[85]. The structure of this classification took a two step approach:
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1. Classify discrete symmetries descending from the ambient projective space factors (i.e. 
whose action was manifest on the homogeneous coordinates of a product of projective 
spaces).

2. Consider CICYs that are invariant under those actions (i.e. equivariant normal bundles) and 
for which the induced symmetry action is fixed point free.

For the manifolds presented here, the same procedure directly applies. Once again, the am-
bient space symmetry actions are known and their action on the defining relations – even the 
“rational” sections described here – can be readily studied. Since the dataset includes many man-
ifolds with small Hodge numbers already, it is intriguing future area of study to consider the 
quotient manifolds X/	 under the already classified finite discrete groups 	.

6.3. Computability and simple algebraic construction

The two most commonly used datasets of CY manifolds – the CICY list [2] and the Kreuzer–
Skarke list [30] – have played an important role in the development of string theory largely due 
to the simple algebraic nature of the constructions. The arenas of ordinary projective or toric 
geometry provide a rich toolkit which can be used to calculate the necessary topological and 
cohomological structure of string backgrounds (i.e. bundle valued cohomology, Chern classes, 
intersection numbers, etc.) [86–92].

For illustration, one such recent application in heterotic string theory includes systematic, al-
gorithmic searches for heterotic Standard Model vacua on smooth CY 3-folds [5,7,9,10,52,53,
93–96]. These scans over literally hundreds of billions of heterotic vacua have only been possible 
due to the simple description of the CICY geometry and vector bundles over it and the suitability 
of these algebraic constructions for analysis using computational algebraic geometry. We em-
phasize here that this dataset is on an equal footing in terms of computational ease. Indeed, one 
could also follow a similar program of Calabi–Yau manifold construction to the one discussed 
here for the case of general Toric ambient spaces.

6.4. M-theory on CY 4-folds and instantons

The simple nature of ordinary CICYs in products of projective spaces have also allowed for 
the easy extraction of certain general properties of instanton physics in heterotic string theory, 
M-theory and F-theory (see for example [97,98]). We explore one aspect of this here involving 
the physics of instantons in 3-dimensional compactifications of M-theory.

In [99], Witten pointed out that for M-theory on a CY 4-fold there is a crucial condition that 
must be satisfied for any instanton to contribute non-trivially to the N = 1 superpotential in 
3-dimensions. In particular, it is necessary that

χ(D,OD) = 1 . (6.8)

In [99] it is argued that for ordinary CICYs in products of projective space, there are no D’s with 
the required properties and thus, the superpotential is identically zero. This argument is based on 
fact that the set of effective divisors on the CICY consist of those that descend from the ambient 
product of projective spaces. As we have demonstrated in Section 2.2.4, in the case of gCICYs the 
effective cone of X is generically much larger than that of the ambient space A = P

n1 × . . .Pnm . 
As a result, there are many more divisors available to satisfy the condition given above. A full 
exploration of such effects and the geometry of gCICY fourfolds is an exciting prospect for future 
study.
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6.5. Relationship to GLSMs?

Positive CICYs have played an important role as the vacuum solutions of Gauged Linear 
Sigma Models (GLSMs) [100]. It is an intriguing question whether or not gCICYs could also 
be realized in this way? At first pass, it seems that the answer should in fact be no, since the 
generalization under consideration is precisely the fact that these manifolds cannot be viewed as 
the complete intersection of a set of strictly polynomial equations in an ambient product of pro-
jective spaces. Phrased differently, they are not realizable as complete intersection manifolds on 
the ambient product of projective spaces. Instead they only exhibit such a structure on M (where 
all negative entry line bundles have global sections) which does not carry manifest toric/U(1)

actions on its coordinates.
Despite this obstacle however, there remain open questions. While the manifolds cannot be 

realized as a complete intersection of polynomial equations on A = P
n1 × . . .Pnm , they can 

be described by a complete intersection of (suitably non-singular) rational functions in these 
coordinates as described in detail in Section 3. The question arises then, could such a system 
of rational conditions arise from the F-terms associated to a holomorphic superpotential of a 
GLSM? If so, it would perhaps provide a novel generalization of the solutions studied to date in 
the literature. We leave this as an intriguing topic of future investigation.

Acknowledgements

The authors would like to thank A. Lukas for helpful conversations and the Universidad 
Autónoma de Madrid for hospitality during the final stage of this work. The work of LA (and XG 
in part) is supported by NSF grant PHY-1417337 and that of JG (and SJL in part) is supported 
by NSF grant PHY-1417316. The work of FA was in part supported by the German Research 
Foundation (DFG) and the RTG 1463 “Analysis, Geometry and String Theory”. FA would like 
to thank Virginia Tech for hospitality during various stages of this work.

Appendix A. Line bundles and cohomology

An important tool in the computation of vector bundle-valued cohomology on CICYs or gCI-
CYs is the calculation of line bundle cohomology. In this section we focus on the cohomology 
of OX(D) where D is a divisor obtained by restriction from the ambient space (i.e. the divisor is 
“favorable” in the sense used in [5,7,9,52,53]).

The Bott–Borel–Weil Theorem (see [101] for the form used here) is a powerful tool that can 
be used to calculate the cohomology of V , a holomorphic homogeneous vector bundle over some 
Flag manifold, M . Here we will apply this technology in the simple case of projective space to 
obtain the so-called Bott-formula [48] for cohomology of line bundles on a single projective 
space:

hq(Pn,OPn(k)) =

⎧⎪⎪⎨
⎪⎪⎩

(
k+n
n

)
q = 0 k > −1

1 q = n k = −n − 1( −k−1
−k−n−1

)
q = n k < −n − 1

0 otherwise

. (A.1)

The computation of line bundle cohomology described by the Bott–Borel–Weil theorem is easily 
generalized to products of projective space using the Künneth formula [46] which gives the 
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cohomology of bundles over a direct product of spaces. For products of projective spaces it 
states that:

Hn(Pn1 × . . . × P
nm,O(q1, . . . , qm))

=
⊕

k1+...+km=n

Hk1(Pn1 ,O(qi)) × . . . × Hkm(Pnm,O(qm)) . (A.2)

With this in hand, we can compute the cohomology of line bundles over the ambient space.
Next, given the Koszul sequence (2.7), it is clear that the cohomology H ∗(X, L) can be de-

termined in terms of H ∗(M, L) for any line bundle L obtained by restriction from M. Here 
we review briefly the techniques for calculating line bundle cohomology on a general (non-CY) 
complete intersection manifold M of the form given in (2.3).

0 → V ⊗ ∧KN∗
X → V ⊗ ∧K−1N∗

X → . . . → V ⊗ N∗
X → V → V|X → 0 . (A.3)

We can break the sequence (A.3) into a series of short exact sequences as

0 → V ⊗ ∧KN∗
X → V ⊗ ∧K−1N∗

X → K1 → 0 ,

0 → K1 → V ⊗ ∧K−2N∗
X → K2 → 0 ,

. . .

0 →KK−1 → V → V|X → 0 , (A.4)

and each of these short exact sequences will give rise to a long exact sequence in cohomology:

0 →H 0(A,V ⊗ ∧KN∗
X) → H 0(A,V ⊗ ∧K−1N∗

X) → H 0(A,K1) ,

0 → H 0(A,K1) → H 0(A,V ⊗ ∧K−2N∗
X) → H 0(A,K2) → . . . ,

. . .

0 → H 0(A,KK−1) → H 0(A,V) → H 0(X,V|X) → . . . . (A.5)

To find H ∗(X, V|X) we must determine the various cohomologies in (A.5). It is easy to see that 
for higher co-dimensional spaces or tensor powers of bundles, this decomposition of sequences 
is a laborious process. Fortunately, the analysis of these arrays of exact sequences is dramatically 
simplified by the use of spectral sequences. Spectral sequences are completely equivalent to the 
collection of exact sequences described above, but designed for explicit cohomology computa-
tion. Since there are many good reviews of spectral sequence available in the literature [46,56,
102], we will only discuss the essential features in the following paragraphs.

To obtain the necessary cohomology of V |X from (A.3), we define a tableaux

E
j,k

1 (V ) := Hj(A,V ⊗ ∧kN∗
X), k = 0, . . . ,K; j = 0, . . . ,dim(A) =

m∑
i=1

ni , (A.6)

which forms the first term of a spectral sequence [48,49]. Here the spectral sequence of line 
bundle cohomology is a complex defined by differential maps di : E

j,k
i → E

j−i+1,k−i
i for j =

1, 2, . . . ad infinitum where di ◦ di = 0. The higher terms in the spectral sequence are defined by

E
j,k

i+1(V ) = ker(di : Ej,k
i (V ) → E

j−i+1,k−i
i (V ))

Im(d : Ej+i−1,k+i
(V ) → E

j,k
(V ))

, (A.7)

i i i
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Since the number of terms in the Koszul sequence (A.3) is finite, there exists a limit to the spectral 
sequence. That is, the sequence of tableaux converge after a finite number of steps to Ej,k∞ (V ). 
The actual cohomology of the bundle V is constructed from this limit tableaux:

hq(X,V |X) =
K∑

m=0

rankE
q+m,m∞ (V ) , (A.8)

where hq(X, V |X) = dim(Hq(X, V |X)). In practice, this sequence converges rapidly. For other 
discussions of the calculation of vector/line bundle cohomology in similar contexts, see [56,
86–88].

Appendix B. Trivial bundle cohomology and filtering out non-CY configuration matrices

As illustrated in Section 3, some configuration matrices of the form (2.3) do not give rise to 
Calabi–Yau manifolds – due to the fact that the zero-locus of the defining equations produces a 
non-reduced scheme whose classical variety14 does not satisfy the necessary CY conditions. In 
this section, we mention a simple criteria for configuration matrices that always give rise to such 
non-CY geometries. All such configuration matrices have been omitted from the scans carried 
out in this work.

A simple filter for “non-CY” configurations can be obtained by considering the cohomology 
of the trivial bundle. In the case of a CY manifold the cohomology is h(OX) = (1, 0, 0, 1). Here 
we present a class of manifolds which will generically produce a trivial bundle with different 
cohomology. Any (p, 1) configuration matrix of the form

[
n‖ {aα} | {bμ} ]=

⎡
⎢⎢⎢⎢⎣

n1 a1
1 a1

r · · · b1
1

n2 a2
1 0 · · · b2

1
...

...
. . .

...
...

. . .

nm am
1 am

r · · · bm
1

⎤
⎥⎥⎥⎥⎦ , (B.1)

which has a column containing a zero and another entry as
r in the same column satisfying

as
r ≥ nr + 1 (B.2)

for its respective ambient Pnr dimension.
To see why such configuration matrices are problematic, as in Section 2.2.1, we can consider 

the Koszul sequence:

0 → N∨
X →OM → OX → 0 , (B.3)

where the cohomology of the line bundles on M is given in terms of the ambient product of 
projective spaces via

0 → ∧KN∗
M → ∧K−1N∗

M → K1 → 0 ,

0 →K1 → ∧K−2N∗
M → K2 → 0 ,

. . .

0 →KK−2 → NM
∗ →KK−1 ,

0 →KK−1 → OA →O|M → 0 . (B.4)

14 I.e. the variety associated to the radical of the ideal [48].
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The key observation here is that if the configuration matrix of M contains a column as described 
above then generically hi(M, OM) �= 0 for some i > 0. When this result is combined with 
the long exact sequence associated to (B.3), it leads to trivial bundle cohomology on X that is 
incompatible with the CY condition.

This is most simply illustrated via an example. Consider the following configuration matrix:

X =
⎡
⎣ P4 1 0 4
P

1 1 2 −1
P

1 0 3 −1

⎤
⎦ ; (B.5)

Here the sequence (B.4) takes the form

0 →O(−1,−3,−3) →O(−1,−1,0) ⊕O(0,−2,−3) → K1 → 0 , (B.6)

0 →K1 → OA → OM → 0 . (B.7)

Unlike in the case of good configuration matrices, the line bundle O(0, −2, −3) does not have 
entirely vanishing or top cohomology. Rather, H 2(A, O(0, −2, −3)) = 2. As a result, the long 
exact sequence in cohomology associated to this sequence yields

h∗(M,OM) = (1,2,0,0,0) . (B.8)

Combining this with the Koszul sequence (B.3) for X ⊂ M

0 →O(−4,1,1) → OM →OX → 0 , (B.9)

and considering the long exact sequence in cohomology, we arrive at the final conclusion:

h∗(X,OX) = (1,2,0,3) . (B.10)

This fails to agree with the h∗(X, OX) = (1, 0, 0, 1) of a CY manifold. It is straightforward to 
verify that similar problematic cohomology will arise for h∗(X, OX) for any configuration of the 
form given in (B.1) and (B.2).

Appendix C. Numerical method for section construction

In this appendix, we discuss a numerical method to construct the global sections of a line 
bundle for defining a gCICY three-fold. For a configuration matrix, eq. (2.3), let us explain how 
the sections,

q1 ∈ H 0(M,OM(b1)) , (C.1)

can be systematically constructed on a computer. For simplicity, only the construction of q1 is 
discussed here, but the method straight-forwardly generalizes to sections coming from any other 
columns of the configuration matrix.

As described in Section 3, let us consider the rational form, (3.2),

q1 = N(x1, · · · ,xm)

D(x1, · · · ,xm)
, (C.2)

for a section q1 ∈ H 0(M, OM(b1)), where N and D are a polynomial in x1, · · · , xm, of multi-
degree [b1]+ and [b1]−, respectively. We should then require that the numerator N vanishes on 
the divisor D = 0 of M.
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At the practical level on a computer, we first choose a generic denominator polynomial D and 
write N as a linear combination,

N(x1, · · · ,xm) =
∑

deg m=[b1]+

cm · m(x1, · · · ,xm) , (C.3)

of all the monomials m of the right multi-degree, with their coefficients, cm, being a free param-
eter. We then intersect the divisor D = 0 of M, whose complex dimension is,

dimCM− 1 = L + 2 , (C.4)

with an appropriate number of generic multi-linear hypersurfaces,

hi(x1, · · · ,xm) = 0 , for i = 1, · · · ,L + 2 , (C.5)

so that the resulting solution set upon the slicing may only consist of a finite number of points,

Ih = {x ∈A | D(x) = 0 , pα(x) = 0 for 1 ≤ α ≤ K , hi(x) = 0 for 1 ≤ i ≤ L+2} , (C.6)

which can be obtained numerically on a computer. Here, the subscript h collectively denotes 
the choice of generic hypersurfaces, (C.5). Then we demand that the numerator polynomial, N , 
should vanish when evaluated at each point x = (x1, · · · , xm) ∈ Ih, thereby obtaining a system 
of linear equations on the coefficient parameters, cm. The procedure should be repeated with dif-
ferent generic slicing choices, h, and the additional constraints should augment the system until 
it becomes big enough so that yet another h choice does not give rise to any more independent 
constraints. Once the system saturates in the aforementioned sense, we end up with a subspace 
of the available linear combinations for N , each of which will lead to a globally holomorphic 
section, q1 = N/D. Note that such a linear system on cm leads to a necessary condition for q1
to be a global section over M. It is also sufficient, however, given the genericity of the slicing 
choices.

Let us illustrate our numerical method with the gCICY in eq. (3.30),

X =

⎡
⎢⎢⎣
P

3 2 0 2
P

1 0 1 1
P

1 0 2 0
P

1 1 2 −1

⎤
⎥⎥⎦ ; M =

⎡
⎢⎢⎣
P

3 2 0
P

1 0 1
P

1 0 2
P

1 1 2

⎤
⎥⎥⎦ , (C.7)

by constructing sections,

q ∈ H 0(M,OM(2,1,0,−1)) , (C.8)

for the last column of the configuration matrix. To begin with, we fix the complex structure of M
by choosing two sections, p1 and p2, as generic polynomials with the right multi-degree. Moving 
on to q for the remaining complex structure of X, let us start with the rational form, (C.2), where 
the multi-degrees of N and D are (2, 1, 0, 0) and (0, 0, 0, 1), respectively. Then we choose a 
generic denominator, say,

D = 3x0
4 − 7x1

4 , (C.9)

that is linear in x4 and write the numerator as a linear combination,

N =
20∑

cA · mA(x1,x2) , (C.10)

A=1
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of the 20 monomials mA with bi-degree (2, 1) in x1 and x2. The last choice we should make 
is L + 2 = 3 generic multi-linear polynomials, h1, h2 and h3, each of which is a generic lin-
ear combination of 32 multi-linear monomials. For each generic choice of h = (h1, h2, h3), an 
18-point set Ih is obtained numerically. Consequently, we are given the corresponding 18 linear 
constraints on the 20 coefficient parameters, cA. However, these 18 are not linearly indepen-
dent in that when the system is solved there remains 8 free parameters. Thus, we repeat the 
procedure with another generic choice of h and add the resulting 18 linear constraints to the 
constraint system. Now the system has 36 equations on 20 variables and ends up leading to a 
2-parameter family of solutions. By repeating it with yet another h choice, the system now con-
sists of 54 linear constraints. However, the solution set is not constrained any further and is still 
parametrized by the same 2 free parameters. This means that we end up with the 2-dimensional 
subspace of linear combinations for N , which in turn results in the corresponding 2-dimensional 
space of sections for q = N/D. An independent computation of line bundle cohomology leads to 
h0(M, OM(2, 1, 0, −1)) = 2, which indicates the completeness of our numerical section con-
struction method for this example.
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