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ABSTRACT:

In this paper we deal with the problem of measuring the similarity between training and tests datasets in the context of transfer learning
(TL) for image classification. TL tries to transfer knowledge from a source domain, where labelled training samples are abundant but
the data may follow a different distribution, to a target domain, where labelled training samples are scarce or even unavailable, assuming
that the domains are related. Thus, the requirements w.r.t. the availability of labelled training samples in the target domain are reduced.
In particular, if no labelled target data are available, it is inherently difficult to find a robust measure of relatedness between the source
and target domains. This is of crucial importance for the performance of TL, because the knowledge transfer between unrelated data
may lead to negative transfer, i.e. to a decrease of classification performance after transfer. We address the problem of measuring the
relatedness between source and target datasets and investigate three different strategies to predict and, consequently, to avoid negative
transfer in this paper. The first strategy is based on circular validation. The second strategy relies on the Maximum Mean Discrepancy
(MMD) similarity metric, whereas the third one is an extension of MMD which incorporates the knowledge about the class labels in
the source domain. Our method is evaluated using two different benchmark datasets. The experiments highlight the strengths and
weaknesses of the investigated methods. We also show that it is possible to reduce the amount of negative transfer using these strategies
for a TL method and to generate a consistent performance improvement over the whole dataset.

1. INTRODUCTION

The key point for successful classification of remote sensing im-
agery by supervised machine learning is the availability of a suf-
ficient amount of labelled training samples. The underlying as-
sumption is that the training and test data follow the same dis-
tribution. If the training samples are taken from a different im-
age than the one to be classified, this assumption may not always
hold, e.g. due to different lighting conditions or seasonal effects.
This problem can be solved by providing new training samples
from the image to be classified, but the collection of the train-
ing data is an expensive and time consuming task. An alternative
way is to utilize methods of Transfer Learning (TL) (Thrun and
Pratt, 1998; Pan and Yang, 2010). The goal of TL is to adapt the
classifier trained on samples from a source domain to a test data
set from a target domain. One common setting in TL is Domain
Adaptation (DA). DA assumes labelled data to be only available
for a source domain dataset and the source and target domains to
differ only by the marginal distributions of the features and the
posterior class distributions. At the same time the domains need
to be related to a certain degree. If the difference of the distri-
butions of the source and target datasets is too high, the results
of an adapted classifier can be degraded compared to the perfor-
mance without adaptation, i.e. the performance by just applying
the classifier trained using source domain samples to the target
domain without DA (Eaton et al., 2008). This case is referred
to as negative transfer. In this paper we address the problem of
the relatedness between source and target datasets and investigate
different concepts to predict negative transfer without requiring
any labelled data in the target domain.
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The aim of this work is to investigate and compare three differ-
ent strategies for predicting negative transfer for DA. The first
strategy is based on circular validation and was introduced to DA
based on support vector machines (SVM) in (Bruzzone and Mar-
concini, 2010). The second strategy is based on the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012), and the third
strategy is an extension of MMD by incorporation of knowledge
about the class labels in the source domain. None of the three
methods requires labelled data in the target domain. The DA
framework applied in this paper is based on our previous work
(Paul et al., 2016) and uses Logistic Regression (LR) as a base
classifier to be adapted to the target domain. We use the Vaihin-
gen and Potsdam datasets from the ISPRS 2D semantic labelling
challenge (Wegner et al., 2016) consisting of multispectral dig-
ital orthophotos (DOP) and digital surface models (DSM). Our
scientific contributions can be summarized as follows:

• We propose an extension of the MMD metric for measur-
ing the distances between two distributions so that it can in-
corporate the knowledge of class posteriors from the source
domain.

• We use the MMD, the extended MMD and the circular val-
idation strategy of Bruzzone and Marconcini (2010) to pre-
dict negative transfer in DA based on LR (Paul et al., 2016)
and compare the performance of these three methods using
publicly available benchmark data.

The remainder of this paper is organized as follows. Section 2
discusses related work about negative transfer in the framework
of transfer learning. In Section 3, we give a brief overview about
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our DA approach based on LR (Paul et al., 2016) and the strate-
gies used for predicting negative transfer. Section 4 presents our
experimental evaluation on real urban test areas. We conclude the
article with a summary and an outlook in Section 5.

2. RELATED WORK

In this section we introduce important notations and concepts and
give a short overview about the related work. Our notation fol-
lows Pan and Yang (2010). A domain D = {X , P (X)} con-
sists of a feature space X and a marginal probability distribution
P (X) with X ∈ X . In TL, we consider two domains, the source
domainDS and the target domainDT . A task for a given domain
is defined as T = {C, h(·)} consisting of a label space C and a
predictive function h(·). The predictive function can be learned
from the training data {xi, Ci}, where xi ∈ X and Ci ∈ C. In
TL we consider a source S, from which some knowledge will be
transferred to a target T by learning a predictive function hT (·)
under the constraint that either the domains or the tasks, or both,
are different but related. There are different settings of TL ac-
cording to whether labelled training data are available in the tar-
get domain or not and according to what is actually transferred.
We are interested in the DA setting, where no labelled target data
are available. Our DA method is based on instance transfer. That
is, we successively replace training data from the source domain
by data from the target domain, using semi-labels obtained from
the current state of the classifier for re-training (Paul et al., 2016).
For thorough reviews about the different settings of TL we refer
the reader to (Pan and Yang, 2010) and (Csurka, 2017).

The performance of Transfer Learning is highly depended on how
closely the source and the target domains are related to each other.
An insufficient similarity can have a negative impact on the pre-
dictive function (Rosenstein et al., 2005). The negative impact
results in a reduction in accuracy compared to not transferring
any knowledge, referred to as negative transfer. Rosenstein et
al. (2005) demonstrate that for a hierarchical Naive Bayes classi-
fier the danger of negative transfer decreases with an increasing
number of labelled target samples that are available for training.
However, it is difficult to find a true measure of relatedness be-
tween the source and target domains or to define a robust method
for predicting negative transfer if only a few or no labelled sam-
ples are available in the target domain. This could be a reason
why the area of negative transfer prediction has not been widely
researched, in particular in the context of DA, where no such data
are available.

Eaton et al. (2008) propose a transferability measure between do-
mains that is defined as the difference in performance of a clas-
sifier with and without transfer. They use LR as a base classifier,
and transfer is achieved by using the parameters of the classifier
learned using samples from domain i as a prior for learning the
classifier in domain j. Assuming multiple source domains, the
authors build a model transfer graph where each domain corre-
sponds to a node and all nodes are connected with each other;
the node weights correspond to the transferability measure. In
order to transfer knowledge from the source task to a target task,
the transfer graph is expanded to include that new task and an
optimal transfer function is learned to avoid the use of irrelevant
source tasks. The authors state that the underlying assumption of
the symmetry between two tasks do not always hold in practice.
Furthermore, the method requires labelled target data, which we
assume not to be available in our framework.

As it is difficult to measure the relatedness between any particu-
lar source and target domains, several methods propose to transfer
knowledge from multiple source domains to minimize the effects

of negative transfer from a single unrelated source domain. This
strategy increases the chance of finding at least one source that is
closely related to the target. For example, Yao and Doretto (2010)
use the boosting-based TL framework from (Dai et al., 2007) to
deal with multiple source domains. In this work, a weak classifier
is trained for each source domain and applied to a particular tar-
get domain. Finally, the algorithm selects one target-source pair
based on the lowest prediction error rate on the target domain for
the current iteration. A similar approach was proposed in (Eaton
and desJardins, 2011). The authors use a boosting technique for
instance based transfer that selectively chooses the source knowl-
edge to transfer to the target. In the boosting process, higher
weights are assigned to source tasks showing positive transfer-
ability to the target task by adjusting the weights of individual
instances within each source task. Again, the concept of trans-
ferability of (Eaton et al., 2008) is used in this context. Ge et al.
(2014) also try to consider multiple source domains. For each
cluster of features in the target domain, they determine a weight
for each source domain to modulate its impact in the transfer pro-
cess. Experiments are conducted for applications in medicine and
spam filtering. However, all methods for using multiple sources
cited so far require some amount of labelled target data.

A multi-source selection method for DA based on instance trans-
fer that does not require any labelled data in the target domain was
suggested in (Vogt et al., 2018). The authors propose a similarity
measure between the feature distributions of different domains
based on the maximum mean discrepancy (Gretton et al., 2012).
This distance is well-suited for finding source domains similar to
a target domain, but its potential for predicting cases of negative
transfer is not evaluated. Furthermore, whereas the method does
not require labelled target samples, the paradigm of source selec-
tion assumes a large database of labelled source domain data to
be available, which may be prohibitive for real applications.

Seah et al. (2013) propose a DA method called predictive distri-
bution matching (PDM) to address the problems that arise from
differences in the class posteriors (predictive distributions) of dif-
ferent domains. They propose a transferability criterion to mea-
sure the differing predictive distributions of the target domain and
the related source domains. In an iterative procedure, the algo-
rithm trains a PDM-regularized classifier that considers the trans-
ferability to exclude source samples that are irrelevant for the tar-
get domain, and then it uses this classifier to predict pseudo-labels
of target samples. Using these pseudo-labels, the transferability
criterion is re-evaluated, which leads to an updated set of irrel-
evant source samples, and the procedure is repeated until con-
vergence. In principle, no labelled target data are required. The
framework was tested for SVM and LR as base classifiers on test
data sets for text classification, but no results for image classifi-
cation are given.

Persello and Bruzzone (2016) present a kernel-based feature se-
lection method for hyperspectral data based on a measure for the
dataset shift that evaluates the invariance of features across dif-
ferent domains. The method tries to select features that are both
discriminant and invariant to the dataset shift between the source
and target domains. TL is achieved by just using the selected
features for classification. However, this approach requires some
amount of labelled data in the target domain.

Bruzzone and Marconcini (2010) applied a heuristic strategy for
predicting negative transfer in DA based on SVM that is based
on circular validation. They first apply DA from the source to
the target domain. Then, DA is applied in the reverse direction,
so that the source classifier is determined from the adapted target
classifier. The authors argue that cases of negative transfer can
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be identified by measuring the classification performance of the
resultant classifier in the source domain, where labelled data are
available. The method is shown to mitigate the effects of negative
transfer to a certain degree. In this work we investigate the cir-
cular validation strategy of Bruzzone and Marconcini (2010) and
two variants of the MMD similarity metric (Gretton et al., 2012)
for negative transfer detection (cf. Section 3).

3. METHODOLOGY

We start this section with the definition of the DA setting.
As usual in TL, we assume to have a source and a target
domain. In the source domain, we have a training dataset DSS =
{(xs, Cs)}NS

s=1 consisting ofNS samples with known feature vec-
tors xs and corresponding class labels Cs. In contrast, the target
domain dataset DST = {(xt)}NT

t=1 contains NT unlabelled sam-
ples xt. We assume that domains to differ only by the marginal
distributions of the features and the posterior class distributions,
i.e. P (XS) 6= P (XT ) and P (CS |XS) 6= P (CT |XT ). From
that point of view, DA corresponds to a problem where the source
and target domain data are different, e.g. due to different light-
ing conditions or seasonal effects. We apply the method for DA
described in (Paul et al., 2016; Vogt et al., 2018) to transfer a
classifier trained using DSS to classify the data DST . In this
context, it is our goal to compare different methods for predict-
ing and, consequently, avoiding negative transfer that might occur
due to the domains not being sufficiently similar. In Section 3.1,
we give a brief summary of the DA approach used in our experi-
ments. After that, we present three concepts for the prediction of
negative transfer: circular validation according to Bruzzone and
Marconcini (2010) (Section 3.2) and measuring the similarity of
two distributions based on the MMD (Gretton et al., 2012; Vogt
et al., 2018) (Section 3.3) and our extension of MMD that incor-
porates knowledge about the class labels in the source domain
(Section 3.4). All three strategies are designed for cases where
labelled samples are available only for source domain DS .

3.1 Domain Adaptation based on Logistic Regression

Our DA approach is based on LR. LR is a discriminative prob-
abilistic classifier that directly models the posterior probability
P (C | x) of the class labels C given the data x. In the multiclass
case we distinguish K classes, i.e. C ∈ C = {C1, . . . , CK}.
A feature transformation Φ(x) is applied to achieve non-linear
decision boundaries in the original feature space. That is, LR is
applied to a higher dimensional vector Φ(x) whose components
are functions of x. The first element of Φ(x) is a bias value as-
sumed to be equal to 1 without loss of generality. In the multiclass
case, the model of the posterior is based on the softmax function
(Bishop, 2006):

p
(
C = Ck|x

)
=

exp
(
wT

k · Φ(x)
)∑

j

exp
(
wT

j · Φ(x)
) , (1)

where wk is a vector of weight coefficients for a particular class
Ck. As these weight vectors are not independent, we set w1 = 0.
The remaining weight parameters wk for k ∈ {2 . . .K} are col-
lected in a weight vector w = (wT

2 , . . . ,wT
K)T determined using

a training dataset TD.

We start the instance based iterative DA process by using the ini-
tial training set TD

0
= DSS to train our initial classifier. In

each further iteration i of DA, a predefined number of source
samples is removed from and a number of target domain sam-
ples is included into the current training data set. Thus, in itera-
tion i, the current training data set TD

i
consists of a mixture of

N i
S remaining source samples and N i

T included target samples:

TD
i

= { {(xs, Cs)}N
i
S

s=1 ∪ {(xt, C̃t)}
Ni

T

t=1}, where C̃t denotes
the semi-labels of the target samples, which are determined auto-
matically using knn (k-nearest neighbourhood) analysis. As i is
increased, N i

S becomes smaller and N i
T increases, until finally,

only target samples with semi-labels are used for training, thus

TD
iend = {(xt, C̃t)}

N
′
T

t=1 with N
′
T ≤ NT . For more detailed

information about our DA procedure we refer the reader to our
previous work (Paul et al., 2016).

3.2 Circular Validation Strategy

The main idea of circular validation relies on the assumption that
there exists an intrinsic relationship between solutions that are
satisfactory for the two domains. If knowledge transfer performs
well, the DA algorithm is expected to be able to move from mod-
eling the source domain problem to modeling the target domain
problem and vice versa. On the other hand, if knowledge transfer
is impossible, this will be very likely to be true for transfer in both
directions, and DA will not yield acceptable results (Bruzzone
and Marconcini, 2010). Based on these considerations, Bruzzone
and Marconcini (2010) propose to apply DA first and to use the
adapted classifier to classify the data in the target domain. Af-
ter that, DA is performed again, but in the reverse direction (cf.
Figure 1). That is, the reverse DA starts by using the results
of the classification in the target domain for initial training and
then adapts the classifier to the source domain without using the
known training labels from that domain. If the source data are
classified well after the reverse DA, the distributions of source
and target domain are assumed to be related to each other suffi-
ciently well for DA.

We use the overall accuracy OADAR determined from the results
of the adapted classifier after reverse DA in the source domain as
a feature to predict cases of negative transfer. Given a threshold
τOA, the classification accuracy is considered to be acceptable if
OADAR ≥ τOA. This means that the reverse classifier moves to
the state A1 (cf. Figure 1). In contrast, if OADAR < τOA, the
solution is not acceptable and the reverse classifier corresponds
to state A4. Note that, if OADAR is used to predict negative
transfer, it is unclear whether the problem occurred in the original
or in the reverse DA process. That is, it may lead to the rejection
of cases in which DA from the source to the target was actually
successful (arrow from stateA2 toA4 in Figure 1). Bruzzone and
Marconcini (2010) claim that the proposed validation technique
is effective if starting from state A3 the system never moves back

Figure 1: Diagram of circular validation with all possible tran-
sitions (adapted from Bruzzone and Marconcini (2010)). The
transition from A3 to A1 (red arrow) is prohibited according to
Bruzzone and Marconcini (2010), thus P (A1|A3)

!
= 0.
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to state A1, i.e. P (A1|A3)
!
= 0 (red arrow in Figure 1), and

if starting from state A2 the system can return to state A1, i.e.
P (A1|A2) > 0.

3.3 Maximum Mean Discrepancy

The MMD of Gretton et al. (2012) delivers a generic measure of
similarity of the marginal distributions of the source and target
domains without applying any knowledge about class labels. It
is computed as the distance between the means of the probability
distributions in a Reproducing Hilbert Kernel Space (RKHS).

In practice, the MMD is computed empirically using finite num-
ber of data samples taken from the investigated distributions. Let
us assume X̂S to be a subset of source data samples X̂S ⊆ XS ,
X̂S = {xS,i}N̂S

i=1 and X̂T to be a subset of target data samples

X̂T ⊆ XT , X̂T = {xT,i}N̂T
i=1, where N̂S and N̂T are the num-

ber of samples in each subset. Then, for X̂S and X̂T , drawn
independently and identically fromXS andXT , respectively, the
empirical biased MMD can be computed as follows (Gretton et
al., 2012):

d2MMD(X̂S , X̂T ) =
1

N̂2
S

N̂S∑
i=1

N̂S∑
j=1

k(xS,i, xS,j)

− 2

N̂SN̂T

N̂S∑
i=1

N̂T∑
j=1

k(xS,i, xT,j) +
1

N̂2
T

N̂T∑
i=1

N̂T∑
j=1

k(xT,i, xT,j),

(2)

where k(·) is a kernel used for mapping from the original feature
space to the RKHS to enhance the accuracy of linear discrimi-
nants in this alternate feature space. In our considerations we use
the Gaussian kernel:

kRBF(xl, xr) = exp

(
−‖xl − xr‖2

2σ2

)
. (3)

The bandwidth parameter σ is determined as the average distance
of samples to their nearest neighbours in feature space.

The calculated MMD value is used as a measure for the distance
between the source and target distributions. A threshold τMMD

can be applied to this measure to predict potential cases of nega-
tive transfer.

3.4 Modified MMD

We extend the MMD distance measure, proposing a strategy to
include the knowledge about the class labels in the source do-
main to improve the discriminative power of that distance. For
that purpose, we use the probabilistic output of a classifier trained
on source domain data to change both source and target domain
distributions. In particular, we shift samples of both domains in
the feature space relative to the decision boundaries of the classi-
fier using the gradient of the probability function obtained for the
source domain:

∂p

∂x
= pk ·

(
wT

k −
∑
j

wT
j · pj

)T

· ∂Φ(x)

∂x
(4)

where pk and pj are posteriors according to Eq. (1) for classes
k and j, respectively, and k is the class of maximum probabil-
ity, i.e., the class to which a sample x belongs according to the
decision boundaries. We then calculate new values for xs and xt

according to Eq. (5).

xnew = x + x · ∂p
∂x
· λ (5)

Eq. (5) is applied to all samples independently from the domain.
Consequently, we omit the domain index, i.e. a sample x may
be from the source domain (xs) or the target domain (xt). The
parameter λ modulates the distance by which a sample is shifted,
and its sign decides whether the samples are shifted away from
(λ > 0) or closer to the decision boundary (λ < 0). Greater
absolute values of λ lead to larger shifts. Having shifted the sam-
ples from both domains according to the classifier in the source
domain, the modified MMD (MMDm) is calculated according to
Eq. (2) using the new values xnew for both domains.

The idea behind this adaptation is following: if the original distri-
butions of the data in the two domains are similar, xs and xt will
be changed in a similar way, and the computed distances will
hardly change. On the other hand, if the distributions and, thus,
the optimal decision boundaries in the two domains are very dif-
ferent, shifting target samples away from the decision boundaries
in the source domain will increase the distance. We therefore ex-
pect this strategy to amplify the distances between dissimilar dis-
tributions. Again, the value of MMDm value (MMD after modi-
fying the distributions) is used as a distance measure between the
source and target distributions, to which a threshold τMMDm can
be applied for predicting negative transfer.

4. EXPERIMENTS

The experiments are carried out to evaluate the limits and the
effectiveness of the presented strategies for negative transfer de-
tection in DA based on LR classifier. We determine the overall
accuracy OADAR in the source domain after the two (forward
and reverse) DA processes for the circular validation strategy and
the values of MMD and MMDm values for the two strategies
based on domain distances. These values are used as measures
for the relatedness of the domains; we expect that negative trans-
fer can be avoided by using the DA results in the target domain
only if the values are in an acceptable range, i.e. if OADAR is
larger than a given threshold for the circular validation strategy
(cf. Section 3.2) or if MMD or MMDm are smaller than given
thresholds in the other cases (cf. Sections 3.3 and 3.4).

4.1 Test data and experimental setup

Our experimental evaluation is based on the Vaihingen and Pots-
dam datasets from the ISPRS 2D semantic labelling challenge
(Wegner et al., 2016), consisting of multispectral DOP and DSM.
The test data show suburban scenes with a total of six object
classes, namely impervious surface, building, low vegetation, tree,
car and clutter/background. For our experiments we assume im-
pervious surface to also include car and clutter/background, and
consequently, we only consider the remaining four classes. As
the original datasets have different resolutions and different spec-
tral configurations, we resampled all images to a ground sampling
distance of 8 cm and used colour infrared (CIR) composites of all
images. Only patches for which a reference is publicly available
were used in our experiments. The properties of the datasets are
summarized in Table 1.

Dataset GSD Channels Patches F. Classes

Vaihingen 8 cm RGIR 15 5 4
Potsdam 8 cm RGBIR 23 5 4

Table 1: Dataset properties. F.: Number of features.
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All experiments are based on a pixel-wise classification. We use
the same feature space for all datasets. Under this constraint, we
select the five most discriminative features using Random Forest
based feature selection (Breiman, 2001) from a pool of spectral,
structural and texture features. We settle on the normalized differ-
ence vegetation index (NDVI), normalized digital surface model
(nDSM) and the pixelwise red, green & near infrared spectral
components.

We test all pairs of patches in each dataset, using one patch as the
source domain and the other one as the target domain. We did
not mix patches from the Vaihingen and Potsdam datasets due
to time restrictions. As the datasets were acquired at different
vegetation periods, we expect them to be too different for DA to
work, but this still needs to be verified by experiments. Whereas
reference labels are available for all patches and, thus, for both
the source and the target domains in all tests, the reference la-
bels in the target domain DT are only considered for the perfor-
mance evaluation and not for DA or the prediction of target and
source domains. For each pair of source and target domains, we
compute all distance metrics: OADAR, MMD and MMDm and
use them to predict negative transfer. To improve the robustness
of the computation of MMD and MMDm, we determined it 10
times for each pair of source and target image patch, using differ-
ent bootstrap datasets, each consisting of N̂S and N̂T randomly
chosen samples from the source and target domains respectively
with N̂S = N̂T = 10000. The values used for the prediction of
negative transfer are the averages of the 10 independent bootstrap
runs. The value of λ for shifting the samples in both domains for
computing MMDm as described in Section 3.4 is set to λ = 1.

In order to evaluate the properties of our DA method, we also gen-
erate three classification results for the target domain and com-
pare them to the reference to determine three different values for
the overall accuracy (OA). The first value, OAST, is obtained
by applying the base classifier (LR) trained on the source do-
main data directly to the target data without DA. The second one,
OATT is the OA of a classifier trained and evaluated on the target
set. We consider it to represent the optimal accuracy that can be
achieved. Finally, OADA is the OA that is achieved when apply-
ing DA from the source to the target domain using the method de-
scribed in Section 3.1. Thus, the difference ∆OADA = OADA−
OAST is the change in OA due to DA; negative transfer is char-
acterised by ∆OADA < 0. The differences ∆OAST = OATT−
OAST and ∆OADT = OATT −OADA measure the loss in OA
due to the non-availability of training data in the target domain,
if the source classifier is applied to the target domain directly
(∆OAST) or after DA (∆OADT). The measures reported in this
paper are computed on a per-pixel basis for each pair of source
and target domains independently from each other; we also com-
pute average values.

In order to evaluate the suitability of the three similarity mea-
sures M ∈ {OADAR,MMD,MMDm} for predicting negative
transfer, we start with a regression analysis to assess the degree to
which the performance of DA as measured by ∆OADT and the
measure M are correlated; we expect a measure having a higher
correlation to be a better predictor for ∆OADT and, thus, for neg-
ative transfer. After that, we test the capabilities of the metrics for
predicting negative transfer by applying thresholds to these met-
rics. After predicting the occurrence of negative transfer using
a given threshold, we compare the predictions to the reference
(given by the sign of ∆OADT). We present Receiver Operating
Characteristic (ROC) curves for all metrics, obtained by vary-
ing the corresponding thresholds. The ROC curves show the true
positive rates (TPR) of the prediction (sensitivity) as a function of
the false positive rates (FPR = 1-specificity) for various threshold

values. They help to evaluate the accuracy of the predictions of
negative transfer.

Finally, we asses the impact of the prediction of negative trans-
fer on the DA performance. Again, this is done for each metric
M ∈ {OADAR,MMD,MMDm}. The corresponding thresh-
olds τM are obtained as the optimal ones according to the ROC
curves. We do this to show the potential of that prediction under
optimal conditions (because the ROC curves are based on labels
in the target domain); the sensitivity of the results to the thresh-
old selection is part of our future work. The optimal threshold
value τM for a metric M is determined from the ROC point hav-
ing the shortest distance to the best possible case, i.e. the point
where TPR = 1 and FPR = 0. Comparing M to τM , we predict
negative transfer. If the test indicates that negative transfer is to
be expected, DA is rejected and the classifier trained using source
domain data is applied to the target domain; otherwise, our DA
method is applied to obtain and final classifier in the target do-
main. Consequently, after the comparison of the results with the
reference, we can obtain new values ∆OADA showing the im-
provement of OA due to the prediction of negative transfer. For
circular validation strategy, ∆OADA becomes

∆OADA =

{
OADA −OAST if OADAR > τOADAR

0 otherwise
, (6)

whereas for M ∈ {MMD,MMDm}. we have

∆OADA =

{
OADA −OAST if M < τM

0 otherwise
. (7)

Of course, if negative transfer is predicted, the improvement is
0. The reason for different direction of the inequality signs in
Eq. (6) and (7) is that we expect lower OADAR values indicating
the negative transfer in case of the circular validation strategy
and greater values for one of the MMD metrics indicating the
increasing dissimilarity between domains.

4.2 Evaluation

4.2.1 Domain adaptation: Figure 2 shows results of DA with-
out applying any strategy for negative transfer prediction. It shows
percentile plots of the cumulative distribution over ∆OADA for
all patches in the two datasets. We achieve positive transfer us-
ing our DA approach in 37% of all cases for Vaihingen and in
28% for Potsdam. These values are the complements to 100%
of the intersection points of the curves with the vertical axis. In
a similar way, we find that for 89% and 76% of all pairs of Vai-
hingen and Potsdam patches, respectively, the negative transfer

Figure 2: Percentile plots of the DA performance, measured by
∆OADA, for the Vaihingen and Potsdam datasets.
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(a) Circular Validation Strategy (b) MMD (c) MMDm

(d) Circular Validation Strategy (e) MMD (f) MMDm

Figure 3: Results of regression analysis for the Vaihingen dataset (a)-(c) and Potsdam the dataset (d)-(f).

(loss of classification accuracy in the target domain due to DA) is
below 5%. Average values for the loss due to the non-availability
of training data in the target domain and the impact of DA are
shown in Table 2. The average loss ∆OAST is 4.45 % for Vaihin-
gen and 6.28 % for Potsdam dataset. After DA, the average loss
(∆OADT) is slightly larger, namely 5.98 % for Vaihingen and
9.11 % for Potsdam. Consequently the average change ∆OADA

in OA due to DA is negative, namely −1.53 % and −2.83 % for
the Vaihingen and Potsdam datasets, respectively. This indicates
that on average, there is a negative transfer which, as indicated by
Figure 2, is relatively small in most cases but may become larger
than 20 % in OA. This highlights the importance of investigating
strategies for avoiding negative transfer.

Dataset ∆OAST ∆OADT ∆OADA

Vaihingen 4.5 % 6.0 % −1.5 %
Potsdam 6.3 % 9.1 % −2.8 %

Table 2: Average values of ∆OADA, ∆OAST, ∆OADT as de-
fined in Section 4.1 over the Vaihingen and Potsdam datasets.

4.2.2 Regression analysis: Here, we evaluate and compare
the performance of the OADAR, MMD and the modified MMDm

distance metrics by regression analysis. We expect a measure
having a higher correlation to be a better predictor for ∆OADA

and, thus, for negative transfer. The results for our datasets are
presented in Figure 3. Our experiments show no significant cor-
relation between the performance of DA as measured by ∆OADA

and either of the distance metrics. The highest correlation with
∆OADA is achieved using MMD and the modified MMDm, but
only with a coefficient R2 = 0.12, i.e. only 12% of the disper-
sion can be explained by the regression model. The correspond-
ing empirical correlation coefficient, which is the root of R2, is
about 35%. However, based on inclination angles of the regres-
sion lines (cf. Figure 3), the probability for positive transfer in-
creases, for larger values of OADAR and smaller values of MMD
and the modified MMDm, which is as expected. The reason for
the worse result using the circular validation strategy (R2 = 0.08

for Vaihingen and 0 for Potsdam) can be attributed to the viola-
tion of the transition assumption from the state A3 to state A1

(cf. Figure 1). Indeed, it was possible using our DA approach
move back to the state A1 even if the knowledge transfer was
unsuccessful, i.e., we observed P (A1|A3) > 0.

4.2.3 Negative transfer prediction: The ROC curves gener-
ated in the way described in Section 4.1 are shown in Figure 4.
The figure shows that the two MMD-based metrics perform sim-
ilarly, whereas the circular validation performs slightly worse in
Vaihingen and considerably worse in Potsdam. In Vaihingen, the
best results are in the order of 60% in TPR at about 45% FPR,
which shows that it is difficult to predict negative transfer for
that dataset. In Potsdam, the results are somewhat better for the
MMD-based metrics, with a sligth advantage of MMDm over
MMD. Here, the best results are in the order of 70% in TPR at
about 30% FPR.

We selected optimal thresholds for the prediction of negative trans-
fer from the ROC curves and considered that prediction in the DA
process in the way described in Section 4.1. Figure 5 shows per-
centile plots of the cumulative distribution of the effect of DA
with negative transfer prediction on the OA of the classification
(∆OADA) for the three metrics and also compares them to the
results achieved without negative transfer prediction (∆OADA).
Using negative transfer prediction, we obtain better DA results.
The percentage of cases without negative transfer (∆OADA ≥ 0)
is about 75% of all cases for Vaihingen and Potsdam dataset,
compared to 37% and 28% of the original DA results, respec-
tively (cf. Section 4.2.1). For 25% of all cases we achieve an im-
provement of ∆OADA of about 2.3% or larger in OA for Vaihin-
gen and even of about 4.0% or larger in OA for Potsdam dataset.
Table 3 presents the average values over the whole datasets along
the optimal thresholds used for the prediction of negative trans-
fer. The average values presented in Table 3 show an improve-
ment in OA of 1.4% and 2.8% for Vaihingen and Potsdam, re-
spectively, due to the prediction of negative transfer. Comparing
the three metrics, Table 3 indicates a slightly better performance
of MMDm compared to MMD and a considerably better one of
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both MMD-based methods compared to circular validation on the
Potsdam dataset. This is also confirmed by Figure 5b, showing
a relatively large percentage of cases with negative transfer for
Potsdam.

(a)

(b)

Figure 4: ROC curves for the prediction of negative transfer for
Vaihingen (a) and Potsdam (b). DAR: Circular validation.

Vaihingen

τM ∆OADA ∆OADA ∆OADA − ∆OADA

DAR 81.50 −1.5% −0.2% 1.3%
MMD 0.073 −1.5% −0.1% 1.4%
MMDm 0.070 −1.5% −0.1% 1.4%

Potsdam

τM ∆OADA ∆OADA ∆OADA − ∆OADA

DAR 78.40 −2.8% −1.2% 1.6%
MMD 0.037 −2.8% −0.1% 2.7%
MMDm 0.036 −2.8% −0.0% 2.8%

Table 3: Domain adaptation results over the Vaihingen and Pots-
dam dataset after applying threshold τM for negative transfer
prediction. ∆OADA: average loss in OA before applying the
strategy. ∆OADA: loss in OA after negative transfer prediction.
∆OADA −∆OADA: improvement in OA.

Finally, we compare the effects of negative transfer prediction
strategy on the OA after DA compared to a classifier trained on
target samples (OATT; cf. Section 4.1). We define the difference
∆OADT to the target classifier according to Eq. (8) for circular
validation and according to Eq. (9) for MMD or MMDm:

∆OADT =

{
OATT −OADA if M > τM

OATT −OAST otherwise
(8)

∆OADT =

{
OATT −OADA if M < τM

OATT −OAST otherwise
. (9)

(a)

(b)

Figure 5: Percentile plots of ∆OADA after the negative transfer
prediction using three metrics for Vaihingen (a) and Potsdam (b)
and of the results without that prediction (∆OADA).

Figure 6 shows percentile plots of the distribution of ∆OADT

for the two datasets and compares them to those of DA without
prediction of negative transfer. For 50% of all cases we achieve a
decrease of ∆OADT of about 0.6% or larger for Vaihingen and
of about 1.9% or larger in OA for Potsdam; the results, thus, are
nearer to the optimal case by that margin due to negative transfer
prediction. Again, the poorer performance of circular validation
on the Potsdam data is confirmed.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented results of different strategies for
negative transfer prediction for domain adaptation based on logis-
tic regression. We made sure that none of the strategies requires
labels in the target domain. We proposed a modified MMD met-
ric MMDm to incorporate the knowledge about the class pos-
terior given the data. Our results confirm the suitability of the
proposed extension compared to the original MMD metric and
to a metric derived from circular validation. While it possible
to reduce the amount of negative transfer and the mean loss in
∆OADA over the whole dataset applying this metrics, we did
not observe a direct relationship and thus a dependance between
one of the metrics and positive or negative transfer. The perfor-
mance of negative transfer prediction was better for MMD and
for MMDm than for circular validation, though in general it was
far from perfect. The problems of MMD and MMDm in pre-
dicting negative transfer are attributed to different posterior class
distributions of the source and target domain. The reason for the
poorer performance of circular validation compared to (Bruzzone
and Marconcini, 2010) may be related to the use of a weaker
classifier which might lead to a violation of some fundamental
assumptions of the method.
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(a)

(b)

Figure 6: Percentile plots of ∆OADT after the negative transfer
prediction using three metrics for Vaihingen (a) and Potsdam (b)
and of the results without that prediction (∆OADA) (the higher
the better).

In our future work we will evaluate the sensitivity of negative
transfer prediction to the selection of threshold and carry out ex-
periments where we mix images from different datasets, which
should further highlight the limitations of the methods. Another
step is the comparison of our approach to a cluster-based method
or to an inductive setting where a small amount of labelled data is
available. We expect this will improve the classification accuracy
and the predictive ability of negative transfer detection strategies.
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