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Abstract

Multinomial data is present when the outcome of an experiment is a discrete choice of
more than two mutually exclusive alternatives and a multinomial distribution is assumed
as the underlying distribution. Usually, a multinomial regression model is considered for
the analysis of multinomial count data. Frequently, such data exhibits overdispersion
especially if the data is acquired in clusters. The collection of data in cell cultures, litters,
members of a family or classroom will lead to observations that are more similar within
clusters than observations from different clusters. Therefore, it has to be expected that
some sources of variation may differ between clusters and overdispersion is present.

In addition, several treatments are often of interest for such data, causing a multiple
testing problem. While for normally distributed data multiple comparison procedures
proposed by Tukey and Dunnett are standard since decades, multiple treatment compa-
risons between several overdispersed multinomial samples have been rarely investigated.
The primary objective of this thesis is to develop a method to obtain multiple hypothesis
tests and simultaneous confidence intervals for the comparison of multiple polytomous
vectors that lack independence among experimental units due to a collection of data
in clusters. Building on previous work, overdispersion is considered and an asympto-
tic procedure is proposed for simultaneous inference of odds ratios between multiple
multinomial samples by including an estimated dispersion parameter. To assess vali-
dity, a simulation approach utilizing the Dirichlet-multinomial distribution is applied
to determine the simultaneous coverage probability of confidence intervals for different
magnitudes of overdispersion.

As part of this thesis, the proposed test procedure is implemented in the statistical
software environment R in a user-friendly way. The application of the novel method
and corresponding R-functions is described comprehensively on two real data sets from
toxicological research and one data set from a social study. Especially the first example
is examined in detail and an alternative approach using multiple marginal models is

presented. Possible problems are discussed and suggestions for future work are outlined.

Keywords: multinomial, polytomous, count data, overdispersion, multiple compari-

sons, simultaneous inference, multiple contrast test, simultaneous confidence intervals.



Zusammenfassung

Multinomiale Daten sind haufig Ergebnisse eines Experiments, die durch die Wahl einer
Kategorie aus einem Set von mehr als zwei sich gegenseitig ausschliefenden Kategorien
entstehen. In der Regel wird fiir die Analyse von nominalen Z&hldaten ein multinomiales
Regressionsmodell verwendet. Multinomiale Daten weisen jedoch haufig eine Uberdis-
persion auf, insbesondere wenn die Daten in Clustern beobachtet werden. Zum Beispiel
fiihrt die Erfassung von Daten in Zellkulturen, die Untersuchung mehrerer Jungtiere
eines Muttertiers oder die Befragung von Familienmitgliedern zu Beobachtungswerten,
die innerhalb ihres Clusters dhnlicher sind als Beobachtungen von verschiedenen Clus-
tern. Durch einzelne Varianzquellen, die sich zwischen den Clustern unterscheiden, liegt
als Folge dessen Uberdispersion vor.

Dartiber hinaus sind fiir solche Daten haufig mehrere Behandlungen von Interesse, die ein
multiples Testproblem verursachen. Wahrend fiir normalverteilte Daten die von Tukey
und Dunnett vorgeschlagenen Vergleichsverfahren seit Jahrzehnten geldufig sind, wur-
den multiple Vergleiche zwischen mehreren iiberdispersen multinomialen Daten selten
untersucht.

Das Hauptziel dieser Arbeit ist es, fiir den Vergleich mehrerer multinomialer iberdis-
perser Vektoren ein multiples Testverfahren und simultane Konfidenzintervalle zu kon-
struieren. Aufbauend auf einer vorhergehenden Arbeit wird die Methode um Uberdis-
persion erweitert und ein asymptotisches Verfahren zur simultanen Inferenz von Odds
Ratios zwischen multiplen multinomialen Daten unter Beriicksichtigung eines Dispersi-
onsparameters vorgeschlagen. Die Validitat der vorgeschlagenen Methode wird in einer
extensiven Simulationsstudie auf Basis von tiberdispersen multinomialen Daten aus der
multinomialen Dirichlet-Verteilung beurteilt. Dabei werden unterschiedliche Ausmafle
von Uberdispersion angenommen und der Fehler 1. Art sowie die simultane Uberdec-
kungswahrscheinlichkeit von Konfidenzintervallen untersucht.

Im Rahmen dieser Arbeit wird das entwickelte Testverfahren in der statistischen Soft-
wareumgebung R benutzerfreundlich implementiert. Die Anwendung der neuen Met-
hode und der entsprechenden R-Funktionen wird umfassend anhand von zwei realen
Datensétzen aus der toxikologischen Forschung und einer Sozialstudie beschrieben. In-
sbesondere wird das erste Beispiel im Detail untersucht und ein alternativer Ansatz unter
Nutzung multipler marginaler Modelle vorgestellt. Md&gliche Probleme und Vorschlége

fiir zukiinftige Arbeiten werden diskutiert.

Schlagworte: multinomiale, polytome, Z&hldaten, Uberdispersion, Mehrfachvergleiche,

simultane Inferenz, multiple Hypothesentests, simultane Konfidenzintervalle
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Chapter 1

Introduction

In many clinical trials, toxicology or behavioural biology, categorical data are acquired.
A categorical variable consists of a limited number of levels (categories), whereby an
observation can only take one of these levels. For example in toxicology, the survival
status of an organism can be measured as ”alive”, "malformed” and ”dead” but only
one manifestation is possible. Such variables may reflect an ordinal variable but often
there is no clear order in the categories so that a nominal classification is most suitable.
If experiments are carried out in a controlled manner, several treatments are usually
examined. In the aforementioned example of toxicology, certain dosages of a chemical
agent may be important. A comparison of two groups can be based on the ratio of two
odds of a particular event in these groups. Yet, several detailed questions arise for the
comparison of more than two groups or categories, i.e. which categories differ between
which groups. Consequently, there exists a multiple testing problem.

Given that the number of subjects is fixed by experimental design in each group, a
multinomial regression model can be considered for the analysis of such count data de-
pending on a categorical explanatory variable with regard to multiplicity. However, in
many scientific research studies, experimental units are not assigned individually to the
treatment groups. Instead, units of observation are randomized in aggregates, e.g. in
cell cultures or litters with dams passing on their genetic trait or a location comprises
several elemental units or members of a family or classroom, region or population are
allowed to interact with each other. Such data, in which individual observations are
assembled in aggregates, are called clustered. It has to be expected that first, some
sources of variation may differ between clusters and second, that observations from dif-
ferent clusters are likely to vary more than observations within the same cluster. Thus
the data exhibit a larger variability than it is generally assumed in the multinomial
model, which is described as overdispersion by McCullagh and Nelder (1989), among

others. If overdispersion is present, a dispersion factor has to be taken into account.



2 Introduction

Ignoring overdispersion and analysing data under the assumption of a multinomial dis-
tribution leads to underestimation of standard errors and inflated size of corresponding
tests. Misleading inferences and false conclusions are the consequence.

An exemplary extract of such multinomial count data exhibiting overdispersion is pro-
vided in Table 1.1 (Hothorn, 2015) and will be explained shortly in the following (see
more details in Section 2.2). Table 1.1 displays data from a study conducted by the
National Toxicology Program on the maternal toxicity after exposure of timed-pregnant
CD-1 mice to diethylene glycol dimethyl ether (DYME, in doses of 0, 62.5, 125, 250 or
500 mg/kg/day). On gestational day 17, the life status of the foetuses was classified
into three categories: alive, malformed and dead. Since some foetuses belong to the
same dam (DAM_ID) and each of the five treatment groups consists of several dams,
overdispersion may be present and can be estimated.

Table 1.1: Multinomial responses measuring life status. Raw data snippet of the life
status of the offspring of female mice.

DOSE DAM.ID alive malformed dead

0 o1 10 0 0
0 60 14 0 0
0 61 11 0 1
500 175 6 18 7
500 176 7 37 21
500 185 9 2 2

In the high-dose group, it is clearly seen that the frequencies in clusters are different.
Of course, this type of data is not restricted to the field of biological and medical
sciences. Overdispersed multinomial data may be also found in epidemiology, public
health, genetics, botany, behavioural sciences, sociology, econometrics, marketing and
other areas. To all, the important question about the data is: In which categories does
the probability increase or decrease between which groups? For instance, is there a
statistically significant difference in probabilities of an event in one of the treatments
groups compared to the control group and if so, what is the expected extent?

While for normally distributed data multiple comparison procedures proposed by Tukey
(1953) and Dunnett (1955) are well explored in the statistical field, multiple comparisons
between several multinomial samples have been rarely investigated. Goodman (1964) in-
troduced a method for constructing simultaneous confidence intervals to compare a num-
ber of odds between single multinomial samples in contingency tables. Schaarschmidt
et al. (2017) allow to observe multiple comparisons of odds ratios between multiple mul-
tinomial samples and improved his work by taking the correlation into account. Still,
overdispersion is ignored due to the assumption of a basic multinomial regression model.
Clearly, this will lead to incorrect results as in the case of Poisson or the binomial model
(Cox, 1983, McCullagh and Nelder, 1989). For multinomial data, Yee (2015) defines



a dispersion parameter in a vector generalized linear model (VGLM) by full maximum
likelihood. Conversely, this method is lacking a correction for multiple testing.

A novel approach combining multiple marginal models proposed by Pipper et al. (2012)
may be considered as an alternative method. It offers a flexible option for analysing
several separate category-specific models. As part of a univariate binomial or Poisson
model a dispersion parameter can be easily incorporated. Furthermore, the correlation
between the test statistics from multiple marginal models can be taken into consideration
for the simultaneous inference.

In this thesis, we focus on an appropriate analysis of polytomous data without category
ordering and a lack of independence among experimental units due to data collection in
clusters. We extend the work of Schaarschmidt et al. (2017) and develop a method to
obtain simultaneous confidence intervals between multinomial vectors which incorporate
overdispersion as suggested by McCullagh and Nelder (1989). Our proposed method al-
lows performing standard multiple comparisons to control and all pairwise comparisons
as well as user-defined contrasts for multiple odds ratios in analogy to Dunnett (1955),
Tukey (1953) and Bretz et al. (2001). Further, we assess the simultaneous coverage
probability of confidence intervals in a simulation study with Dirichlet-multinomial dis-
tribution. The familywise error rate is enclosed by settings of true null hypotheses.
Finally, we offer an easy and convenient implementation in R.

The outline of this thesis is organized as follows. Chapter 2 recites the toxicological
example to describe the current status of the art for analysing multinomial data in R
also explaining the reasons for overdispersion. Two more real data examples are given
to further underline the demand for an adequate method. In Chapter 3 the statistical
framework for approximate multiple comparisons of overdispersed multinomial data is
provided. We develop an asymptotic procedure for simultaneous inference of odds ratios
between multiple multinomial samples taking overdispersion into account. A simulation
study is conducted and parameter settings underlying the simulations are given. Simu-
lation results for the familywise error rate and coverage probability in a strong sense
are examined in Chapter 4. Power simulations show the probability that the proposed
test procedure will reject the null hypothesis when it is not true. Chapter 5 introduces
the newly implemented functions corresponding to this thesis in R and illustrates their
application to the introductory examples. In Chapter 6 an extension of the proposed
method to the case of heterogeneous variances in treatment groups is shown. In addition,
alternative approaches using multiple marginal models to analyse multinomial data are
presented. To conclude this thesis, Chapter 7 discusses the strengths and limitations of

the proposed method.
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Chapter 2

Multinomial Responses,
Overdispersion and Multiple
Hypothesis Testing

This chapter includes sample data sets to show typical issues and questions concer-
ning multinomial data. The specification of multinomial response data is described and
underlined by a first example. We address the topic of overdispersion in multinomial
samples and explain the need for an appropriate method to simultaneously compare
odds of certain categories between several groups. Additionally, two more examples are
presented to motivate the research. We will revisit the examples in Chapter 5 to show

the application of the novel procedure developed in this thesis.

2.1 Multinomial Response Data

In many fields of application one encounters categorical variables. Observations which
can take one manifestation out of a fixed set with three or more possible values are called
polytomous variables. Depending on whether a natural order of the variables is present
or not, these data are also referred to as ordinal or nominal, respectively. The present
work is based on nominal endpoints where the order within the response category is not
important. For instance, a toxicological study might analyse the status of an organism
after exposure to a toxic substance as “alive”, "malformed” or "dead”. A distinct
ordering of the categories is not possible here, because it is not clear whether ”dead” or
”malformed” should be rated better. On that account, a nominal classification is most
suitable. Moreover, it is not possible that two categories are present at the same time
for one observation. Each of the observational units must fit into exactly one discrete

category.



6 Multinomial Responses, Overdispersion and Multiple Hypothesis Testing

2.2 Example 1: Developmental Toxicity

The administration of a toxin during pregnancy of a mouse can influence the life status
of its offspring. In a study conducted by the National Toxicology Program (NTP) on
the maternal toxicity after exposure of timed-pregnant CD-1 mice to diethylene glycol
dimethyl ether (DYME;, in doses of 0, 62.5, 125, 250 or 500 mg/kg/day), the life status
of the offspring was classified into three categories ”alive”, ”malformed” or ”"dead” on

gestational day 17.

0 62.5 125 250 500
60
Category

£ 40 alive
>
8 malformed

20 . dead

ol I [T [T “|||"""""||II||.

ID

Figure 2.1: Bar chart of living, malformed and dead pups. Individual bars represent
siblings from the same dam. Colours determine the counts of living, malformed and dead des-
cendants in a cluster depending on treatment of the dam with a dose of DYME (0, 62.5, 125,
250 or 500 mg/kg/day).

Figure 2.1 shows a bar chart derived from the data of this study reported by Hothorn
(2015). The data itself is available in the corresponding R-package ”SiTuR” (Hothorn,
2014) and can be transformed to the format of Table 1.1 by reshaping (see Appendix
B.2.1). In Figure 2.1 each dose panel displays the outcome of a brood per dam. In this
experiment, a certain number of dams were randomized to the treatment doses: 21 mice
received dose 0, 18 mice received dose 62.5, 24 mice received dose 125, 23 mice received
dose 250 and 22 mice received a dose of 500 mg DYME /kg/day. These numbers of dams
correspond to the number of bars in the diagram. Individual bars then represent siblings
from the same dam where the height of the bars indicates the total number of siblings.
The colours illustrate the counts of dead, malformed and living offspring. Black bars
determine the observed number of dead offspring, dark grey bars determine the number
of malformed offspring, and light grey bars determine the number of offspring alive. The
clusters within each dose panel are arranged descending depending on the proportion of
dead pups.

It can be assumed as a hypothesis that the counts of dead or malformed mice increase
with higher doses and the proportion of mice alive strongly decreases in dose 500. But it
should be noted that some clusters seem to generate higher counts of dead or malformed
animals than other clusters, although they have received the same dose of DYME. Those

ups and downs display a different variation in clusters which may indicate overdispersion.
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2.3 Causes of Overdispersion

In practice, multinomial data often exhibit extra variation, which is also known as
overdispersion in the literature (Agresti, 2013, McCullagh and Nelder, 1989, Tutz, 2011).
The variation in the data is expected to be greater than the variance assumed under
multinomial sampling if the statistical model does not sufficiently describe the data. In
the example of the toxicology study above, we assumed that each young animal of a
certain dose group has the same probability of being alive. Although the mice have
been subjected to the same experimental conditions, the response probabilities differ
depending on the cluster as it can be seen in both the extract of the data in Table 1.1
and Figure 2.1. Apparently, the survival status may also depend on genetic features,
diseases or age of the dams during pregnancy. Because of missing explanatory factors,
the proportions are not the same across the clusters. In this case, an omission of relevant
explanatory components can lead to overdispersion and the data show more variation
than induced by a multinomial model.

Even if the specified model contains all the detectable informative variables and their
interactions, the underlying distribution may not be appropriate. Variables that are not
observable may be responsible for more variation. Since it is not always possible to keep
all study conditions constant, further conceivable explanations could be inhomogeneous
conditions on the one hand or on the other, that the observational units have not been
homogeneous. In both, variation between the response probabilities is the reason for
overdispersion.

In addition to unobserved or unobservable variables, a correlation between observations
may induce more variability. If the units are likely to be more similar within clusters
than between clusters, multinomial responses are correlated and the variance in the
data differs from the variance assumed under the multinomial distribution. Consider
again the toxicology study. The existence of a malformed observation may increase the
probability of further malformed observations in this cluster. Because the foetuses are
descendants of the same dam, a positive correlation may exist between them.

Often, these explanations are interchangeable and lead to the same statistical model.
It is clear that correlation between the observations causes more variation between the
responses probabilities and therefore provokes overdispersion in the data. Conversely, a
greater variation among the proportions can be explained by intercorrelation between
the multinomial responses. However, there is no need to distinguish between these

explanations for the estimation of overdispersion.



8 Multinomial Responses, Overdispersion and Multiple Hypothesis Testing

2.4 State of the art Using a Generalized Linear Model

Based on the introductory example, this section reports the current state of the art in
the analysis of multinomial data. For this purpose, a multinomial logit model which
belongs to the family of models called generalized linear model (GLM) is applied. The
background to this method is explained in more detail in Section 3.1.3. Few parameters
are anticipated now, but later clarified again.

To examine the effect of DYME on the survival status of young mice in example 2.2, we
estimate a multinomial regression model using the dose group as an explanatory variable.
As it is explained later, the multinomial logit model requires a baseline category, to which
the probability of an event is compared. We choose ”alive” as the baseline category and

form a model as follows:

Tq

log( ) = Bq0 + xTBq, q € {1 = malformed, 2 = dead}

Talive

where T = (DOSE[62.5], DOSE[125], DOSE[250], DOSE[500]) is a dummy coded vector
of group membership. That is, the vector (0,0, 0,0) induces the scalar 8,0, which indica-
tes the g-th log odds in the reference group, i.e. the log odds in group 0. 3, denotes the
difference of log odds in the g-th group to reference. Both 34 and 3, are unknown and
need to be estimated in the multinomial model. In terms of a GLM, we assume that the
random component is distributed multinomial and define a linear predictor produced by
the explanatory variable ”"DOSE”. A generalized logit is used as a link function.

In R, this can be achieved utilizing the vglm() function from the VGAM package.
The vglm() function is used to fit a vector generalized linear model (VGLM), which
offers a statistical framework for many parametric models and can also be used to fit a

generalized linear model.

> head(bivar.re)
DAM_ID DOSE alive malformed dead

1 51 0 10 0 0
8 60 0 14 0 0
9 61 0 11 0 1
15 70 0 17 0 0
16 71 0 15 0 0
23 79 0 17 0 0

> library (VGAM)
> multivgam <- vglm(cbind(alive ,malformed,dead) ~ DOSE,

family = multinomial (refLevel=1),
data = bivar.re)
> coef (multivgam)
(Intercept):1 (Intercept):2 DOSE62.5:1 DOSE62.5:2 DOSE125:1
-4.9698133 -3.5835189 -14.5687046 0.4577335 1.4361267
DOSE125:2 DOSE250:1 DOSE250:2 DOSE500:1 DOSE500:2

1.5257389 3.8473335 1.8378506 6.0338201 4.0268084




2.5 Multiple Testing Problem in Multinomial Models and the Need for an Appropriate
Method 9

In the vglm() function, the first category "alive” is set as baseline. Hence there are
two log odds, namely: log(mmaiformed/Talive) and log(mgead/Talive). For the predictor
variable, the first dose group of 0 mg DYME/kg/day is automatically taken as a re-
ference, because it was set as the first level when reading the factor variable into R.
The coef ()-function is used to extract the coefficients for the individual models. The
coefficients are given in order of ¢ within the dose levels. In particular, the estimates
of B9 and By are indicated first. Then estimates of 511 and (21 follow and so forth,
leading to ,@? = (—14.57,1.44,3.85,6.03) and B;F = (0.46, 1.53,1.84,4.03). For purposes
of illustration, the equation for the first log odds of malformed relative to alive is as

follows:

log(?rmalformed/%alive) =—4.97—14.57- DOSE[62.5] +1.44 - DOSE[125]
+ 3.85 - DOSE[250] + 6.03 - DOSE[500].

In the model, dummy coding is used to determine the influence of group membership.
If all dummy variables are equal to zero, the equation corresponds to the log odds for
dose group 0. The estimated coefficient for dose group 125, for example, is 1.44, which
gives the difference of log odds between dose 125 and dose 0. This means that animals
in dose group 125 are more likely to be malformed than alive. For a unit increase in
the predictor variable, the log odds of ”"malformed” relative to "alive” is expected to
change by its respective parameter estimate while holding all other variables in the model
constant. If a subject were treated with dose 125 instead of dose 0, the multinomial log
odds of being malformed instead of alive would be expected to increase by 1.44. Note
that this comparison is still on the log scale. The estimated odds ratio for comparing
malformed versus alive is exp(1.44) = 4.22. Given a change in dosage from 0 to 125
mg DYME /kg/day, the odds of being malformed instead of alive would be 4.22 times
or 322% more likely.

2.5 Multiple Testing Problem in Multinomial Models and
the Need for an Appropriate Method

These parameter estimates could now be tested for the null hypothesis whether a certain
regression coefficient is equal to zero within a given model. For example, it may be
interesting to see if the log odds ratio of 1.44 is found to be statistically different from
zero and thus a significant difference between dose 0 and dose 125 for malformed relative
to alive can be concluded. If all coefficients from both equations are tested with regard
to an overall hypothesis, it gives rise to a multiple test problem.

Before such hypotheses can be investigated, it is important to be aware of any overdis-

persion in the data. Under the assumption of a generalized linear model (GLM) with
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multinomial distributed errors, it is expected that the residual deviance is equal to the

residual degrees of freedom. Thus, we will have a look at our goodness-of-fit statistic:

> summary(multivgam)

Residual deviance: 410.4707 on 206 degrees of freedom

The fact that the residual deviance is much greater than the residual degrees of freedom
indicates that overdispersion of roughly 2 is present. The exact calculation of overdis-
persion and its handling is investigated in detail in Chapter 3. At the moment it is
sufficient to say that before conclusions about significances are allowed to be drawn,
overdispersion must not be ignored. So far there is the possibility to observe multiple
comparisons of odds ratios between multiple multinomial samples (Schaarschmidt et al.,
2017), but without incorporating overdispersion. Accordingly, there is a demand for an
appropriate method of analysis, which allows comparing multiple treatments for multi-
ple odds ratios while considering overdispersion in the data. To further illustrate the
various occurrences of overdispersed multinomial data and the need for such a method,

additional examples are given.

2.6 Example 2: Housing Satisfaction

In this example, a total of 35 neighbourhoods from two areas, including 17 from a rural
area and 18 from an urban area, were surveyed according to their level of satisfaction
with their homes. Five households from each neighbourhood were invited to submit a
rating of their satisfaction in one of the categories as "unsatisfied” (us), ”satisfied” (s)
or "very satisfied” (vs). In contrast to example 2.2, the categories may be considered as
ordered.

This survey is well-known under the topic of overdispersion and has previously been
analysed by several authors, including Brier (1980), Koehler and Wilson (1986), Morel
and Nagaraj (1993) and Morel and Neerchal (2012). We refer to the data as published by
Wilson (1989), of which Figure 2.2 graphically illustrates the satisfaction of individual
neighbourhoods per area. The data itself is included in the R-package " MM” separately
for the metropolitan area and the non-metropolitan area under the name ”wilson”.
Note that in this example the total number of units per neighbourhood is fixed by design
of the study. In Figure 2.2, each bar is assigned to a neighbourhood, with all bars having
a uniform height of 5 households. Since the locals within a neighbourhood are generally
in contact with each other and talk about their state of comfort, it is likely that the
opinion of households in the same neighbourhood is more similar than the impression
of another neighbourhood. Therefore, it can be assumed that overdispersion may be

present in this example. This should then be included in the statistical analysis of
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Figure 2.2: Bar chart of survey results in each neighbourhood. Each bar represents a
cluster, in this case the households of equal size of 5, which are sorted by descending proportion
of the events vs and s.
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whether the regions differ in their satisfaction. Although the comparison concerns only
two regions, it needs to be additionally adjusted for multiple comparisons, since several

categories will be compared simultaneously.

2.7 Example 3: Differential Blood Count in Rats

For the third illustration, a toxicological example of white blood cell counts is considered.
Table 2.1 shows an extract of raw count data from a toxicological study in rats (Hothorn,
2015). In this study, four treatment groups were investigated, consisting of one control
group and three groups with different toxin dosages (low, mid and high). Rats of different
gender were randomly assigned to these treatment groups. For each treatment group,
ten male and ten female rats were examined, except for only eight male animals in the
high dose group. A total of 200 leukocytes were counted per animal and classified into six
categories: Eosinophils (Eos), Basophils (Baso), Neutrophilic Bands (Stab), Segmented
Neutrophils (Seg), Monocytes (Mono) and Lymphocytes (Ly). The total number of
counts per rat is fixed by experimental design. Further, there is obviously no clear order
between the categories.

The data are presented separately according to gender and dose group in Figure 2.3

and are arranged according to the proportion of lymphocytes in descending order within

Table 2.1: Data snippet of the differential blood count in rats. Eosinophils (Eos), Bas-
ophils (Baso), Stab cells (Stab), Segmented Neutrophils (Seg), Monocytes (Mono) and Lympho-
cytes (Ly) were recorded per animal in four treatments groups.

sex animal Group Fos Baso Stab Seg Mono Ly
Males 1101  control 2 0 0 51 2 145
Males 1102  control 3 0 0 28 2 167
Males 1103 control 4 0 0 32 5 159
Females 2408 high dose 4 0 0 14 3 179

Females 2409 high dose 35 160
Females 2410  high dose 0 0 0 42 6 152

—_
[a)
[a]
e
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Figure 2.3: Bar chart of counts of the basic white blood cell types in male and female
rats. Each bar determines the count of each type of white blood cell (Eosinophils, Basophils,
Stab cells, Segmented Neutrophils, Monocytes and Lymphocytes) of a blood sample. Per animal
200 leukocytes were counted. The data are arranged in descending order of proportion of cell
types, beginning with Lymphocytes and subsequently Monocytes, Segmented Neutrophils and
Eosinophils.

the panels. The bars have a total height of 200, which corresponds to the number
of total cells counted. Since no basophils or neutrophilic bands were detected among
leukocytes, they are excluded from the graphical analysis. Although the conditions in
this experiment have been attempted to be kept constant, the individual animals show
variations in the counts of blood cell types. Because this might be an indication of
overdispersion, a scale parameter should be estimated for this example. One is then
interested in the question of whether the ratios of white blood cells change significantly

depending on the dose of the toxin within sex.



Chapter 3

Methods

This chapter presents the statistical framework for modelling multinomial responses with
overdispersion. First, principles of the multinomial distribution are revised in Section
3.1 and a general model for multinomial response variables is presented. Section 3.2
develops a method for the simultaneous analysis of overdispersed multinomial data. He-
rein, the mathematical structure of the underlying data is introduced. After defining
the parameter of interest the calculation of overdispersion is presented. Under the con-
dition that the formulated model satisfies the properties of a generalized linear model,
multiple comparisons can be made by adapting the covariance matrix for overdisper-
sion. In Section 3.3, the further course of a simulation study is outlined to validate the

performance of the proposed method. Its results will be presented in Chapter 4.

3.1 Prerequisites

3.1.1 Multinomial Distribution

The multinomial distribution is first explained in an experiment with one group. Let
m indicate the number of observational units that is examined in this group. Ad-
ditionally there are C' mutually exclusive categories, which occur with probabilities
1,...,mc € [0,1]. All observations in a group can be clearly assigned to one of these ca-
tegories depending on their outcome. Individual experiments thus each receive a vector

of the form (0,...,1,...,0) with 1 in the c-th place if the observation falls in category c.

The sum of all outcomes yields a vector y = (y1, ..., yc), which specifies the cell counts
in the categories 1,...,C. The probability mass function of the random counts Y, is
given by

m!

PritYi=uy1,...,Yoc =yo;m, ) =
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for all y. € {0,...,m}, where > y. = m, ® = (m1,...,m¢) and Y 7. = 1. The vector
is said to follow a multinomial distribution with parameters m and 7, abbreviated with
Y ~ Mult(m, ).

In the case of several groups, each random vector of a group g, which is labelled as
Y, = (Yy1,...,Y,c), follows its own multinomial distribution. Now let m, indicate the
sum of all observations in group g, i.e. Y .y = my, adopting the convention that
> mg = m. The unknown probability that a unit of group ¢ falls into the category
c is denoted by the vector wy = (mg1,7g2,...,mTgc), provided that > w4 = 1. The
distribution of Y} is then multinomial with parameters m, and .

Important properties of a multinomial distributed random vector can be derived from
the first derivatives of the moment generating function (Johnson et al., 1997). The first

and second moments are

E(Yye) = mmye (32)
Var(Yye) = mmge(l — mge) (3.3)
Cov(Yye, Yyor) = —mmgemyer (3.4)

and address the expected value of a random multinomial variable Yy, the variance and

covariance, respectively.

3.1.2 Modelling Multinomial Data

A common model to link multinomial data to an explanatory variable is the multinomial
logit model. Herein the logit function is used as a link function to calculate the odds for
a category c¢ to a reference category on the logarithmic scale, i.e. log odds also known
as logits. If the first category is specified as a reference category, each baseline logit can

be modelled assuming a linear model

Tge(@) T
=Bpo+x By, ¢c=2,....C,q=1,...,C—1. 3.5
ng(x) q q ( )
In this model, the assignment of a given observation to a group g = 1,...,G is stored

in a dummy coded vector & of dimension G’ = G — 1. That is, for g = 1 the vector x
consists of zeros only, otherwise, the vector & has the value 1 at position g — 1 if the
observation belongs to group g. For a given logit ¢, B0 and By = (Bg1, ..., Beqr) are
unknown parameters, with 3,0 denoting the g-th logit in the reference group and with
By denoting the differences of log odds in groups g = 2,...,G to B4. The log odds vary
according to the selected reference category and hence the coefficients 3,9 and 3, depend
on the chosen reference category. Typically, the first or the last category is chosen as a
baseline. However, any other category, e.g. the most common one, can be selected as

a reference to return the log odds. The log odds can be converted into each other so
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that all paired contrasts are determined. For example, for three categories and given the
first two logits with the first category serving as a reference, the logit of category 2 to
3 in group g can be obtained by log(mg2/m43) = log(mga/mg1) — log(mgs/mg1). Therefore,
given a certain choice of C' — 1 logits, the rest is redundant.

Of course, one can also directly express the probability of the responses by rewriting 3.5

to

S exp(Bg0 + =" B)
1 S exp(Buo + 27 B,)

(3.6)

for all ¢ € {2,...,C} and ¢ = ¢ — 1. The reference category is calculated by 741 =

1-— g2 — ... — TgC-

3.1.3 Multinomial Logit Model as a Generalized Linear Model

Generalized linear models (GLM) extend the class of classical linear models so that
the response variable is linearly related to the explanatory factors via a link function
(McCullagh and Nelder, 1989). In general linear models, random variables Y with
realization y are assumed to have independent and normally distributed error terms
with mean zero and constant variance. In a generalized linear model, the response is
allowed to have an error distribution that is part of the exponential family. A GLM
is characterized by three components which are the following in case of a multinomial

assumption (Fahrmeir and Tutz, 2001):

(1) a random component: the random variable Y, = (Yg1,...,Yyc) is assumed to

follow an exponential family distribution, i.e. the multinomial distribution, with
E(Yye) = mmye

and variance

Var(Yy.) = o*mmge(1 — m4)

(2) a systematic component: a linear predictor 7y, which is produced by a known

explanatory vector  and unknown parameters 340 and 3,
Tlgqg = /BqO + xIBq

(3) a link function: a generalized logit link is defined between the random and the

systematic component

nnglog@, c=2,....C,q=1,...,C—1
7Tgl
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If we assume the absence of overdispersion, 0?> = 1. If the data exhibits variability
greater than the assumed variance according to the multinomial model, a dispersion
parameter of 02 > 1 can be estimated from the data (McCullagh and Nelder, 1989).

In more general models (not considered here) & may contain additional covariates for a
given observation. Then B, would contain additional parameters modelling their effects

on the g¢-th logit.

3.2 Simultaneous Inference in a Multinomial Logit Model

with Overdispersion

By comparing multiple log odds between several treatment groups, a multiple compari-
son problem arises. Assessing statistical inference for more than one hypothesis in case
of the multinomial logit model is outlined in this section. In addition to the previous
sections, we assume that the data was recorded in clusters, such as in Table 1.1, and the
data exhibit overdispersion. Consequently, the dimension of the underlying data record
increases at the cluster level and we introduce the mathematical notation for this kind

of data structure in general first.

3.2.1 Data Structure

Consider a completely randomized design with g = 1,...,G, G > 2 treatment groups
each consisting of b, clusters, b = 1,...,b,. Each observational unit is assigned to
a group g and takes one of the mutually exclusive nominal categories ¢ = 1,...,C.
Moreover, each unit belongs to a cluster b whose observations may not be independent.
Let Yy, denote the number (count) of observations from cluster b of group g that fall
into category ¢ with observed value yg. € N. Furthermore, let m, indicate the total
number of units per group and mg, the sample size in cluster b of group g. Note that the
counts in the various clusters of one group add up to the total number of observations
in that group, i.e. Z@C Ygbe = Myg. By definition, let 74 be the probability that an
observation in treatment group ¢ falls into category ¢, which is independent of the
cluster and only depends on the group. In each group the probabilities always add up
to 1, Eg’;l mge = 1, regardless of the number of possible outcomes. We therefore assume
that each multinomial response vector of counts in category c of cluster b of group g,

Ygb = (Ygb1, Ygb2: - - - » Ygbc' ), could be distributed multinomial

(Ygb1> Ygb2s - - - » Ygbc') ~ maultinomial(mgy, (Tg1, Tg2, - - ., TgC))

but may show higher variance than expected under multinomial distribution.
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3.2.2 Parameters of Interest

For the analysis of such a data set, one might be interested in comparing the baseline
odds between groups (Agresti, 2013). On the logarithmic scale, such parameters can
be expressed as differences or linear combinations of log odds / logits, namely log odds
ratios. According to Schaarschmidt et al. (2017) all possible log odds in group g can be
estimated by

59 = A(I><C) 108"(7";) (3'7)

where A = (af,...,af)T is a I x C matrix of rowwise stacked contrast vectors and
contains all the comparisons of interest. For example, the first logit of group ¢ for the
ratio of the probability to fall in category ¢ = 2 and the probability to fall in category ¢ =
1 (first baseline logit) can be described by d41 = (—1,1,0,...,0) -log(ﬂgT) = log(mg2/mg1).
Further, these odds can be compared across groups. In the simple case that for all
odds of interest the same set of baseline ratios is of interest, the parameter vector 6 is

calculated as

log i
log )
6=(B®A) , (3.8)

log wg

where ® denotes the Kronecker product and B is another contrast matrix of dimension
J X G. In a similar way to matrix A, the matrix B defines all J comparisons between the
G groups. The column vector 8 of dimension K = I - J then consists of the parameter
values of the log odds ratios primarily ordered by the group comparisons and within
them ordered according to the definition of odds contrasts in matrix A.

The same can be achieved by stacking the column vectors d, into a single column vector

§,ie 6= (67,67,..., ég)T. Then 6 can be written as
0= (B®I) (3.9)

where I1 denotes the identity matrix of size I (Schaarschmidt et al., 2017). Asymptotic
estimates for 6, and @ may be obtained by using the empirical equivalent 7 in the
formulas above and are indicated by Sg and 5, respectively.

Note that the set of parameters grows extremely fast, which needs to be considered later
when adjusting for multiple testing. One should, therefore, be aware of the number of

parameters and select a subset conscientiously.
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3.2.3 Estimating Overdispersion

In our data structure, we have assumed that the probability 7. is the same for each
vector of observations in group g regardless of its belonging to a cluster. This is rather
unlikely since observations in one cluster may behave similarly than observations from
two different clusters of the same treatment group. Thus although the units were obser-
ved under the same conditions their response probabilities may vary between clusters. If
this deviation to each other is due to unobserved or unobservable effects between clusters,
it leads to a higher variance of y,4. than expected under the multinomial distribution.

Assuming that out of ) by, = N clusters the response probability for the gb-th observa-
tion of form ygp = (Ygb1, Ygb2, - - - » Ygbc), which depends on a set of explanatory variables
X, is a random variable it can be shown that the unconditional mean and covariance of

Y, ~ mult(mg, 74) are

E(Yg) = mgymg, (3.10)
Cov(Yy) = o?Zy (3.11)

where 7, is the probability vector of success, mgy, is the total sample size per cluster
with mg, = ZCC:1 Ygbe 02 is an unknown scale parameter, o> > 0 (McCullagh and
Nelder, 1989, p. 174) and Xy is the multinomial variance-covariance matrix Yy, =
mgp{Diag(my) — 7rg7TgT} (McCullagh and Nelder, 1989, p. 168), where Diag(m,) is a
diagonal matrix with elements of the vector 7, on the main diagonal. An approximately
unbiased estimator of o2 as an overall dispersion parameter is the value of the Pearson’s

X2 statistic divided by its degrees of freedom for the full model

52 = X?/residual d.f. (3.12)
= X?/N(C—1) - P, (3.13)

with NV as the number of clusters, C' the number of categories of the nominal response

and P the number of non-redundant parameters (McCullagh and Nelder, 1989, p. 174).

When comparing G groups and there are no further covariates in the model, P is the

number of groups multiplied by the number of categories minus 1, P = G(C — 1).
Pearson’s statistic is known as the sum of the squared Pearson residuals

G by

X2=> 2

g=10b=1

1 b=

C
> (3.14)
c=1

with Pearson residuals defined by

Ygbe — mgb%gc
Pope = S0 __90T9C (3.15)
mgbﬂ'gc
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where mg 7y are the estimated expected counts according to the fitted model (Agresti,
2013, p. 18).

In summary, to account for overdispersion the variance-covariance matrix of the para-
meter estimates is inflated by dispersion factor 02 (McCullagh and Nelder, 1989). This
leads to maximum-likelihood estimates, which are still consistent but standard errors
are multiplied by Vo2 = o (Agresti, 2013, p. 149).

3.2.4 Multiple Comparison Adjustment

Based on the parameter vector 6, simultaneous comparisons can now be formulated bet-
ween the g independent treatment groups using the log odds ratios for C' > 2 categories.
One may wish to test for the alternative that at least one element of @ differs from
null or any other pre-specified value. Then p-values and confidence intervals must be
adjusted for multiple testing.

Suppose, that we want to test the intersection of the k null hypotheses 6, = 0 against

the union of k alternative hypotheses 0y # 0, that is,

K K
Ho: () 6k=0 vs. Hy:|]J6x#0. (3.16)
k=1 k=1

Considering that our postulated multinomial logit model is a subform of a multivariate
generalized linear model (McCullagh and Nelder, 1989) which is a special case of general
parametric models (Hothorn et al., 2008), the linear function 0 = (B I 1)(/5\ asympto-
tically follows a multivariate normal distribution with mean 6 and variance-covariance
matrix V' (Agresti, 2013). The variance-covariance matrix V' of the differences of the

log odds is obtained via
V=BI)X(BxI;)T (3.17)

where X is the corresponding variance-covariance matrix of the parameter vector 8. This

matrix 3 consists of the individual covariance matrices of the §, and is given by

023 .. 0
s—| 0" % | 5 (3.18)
0 . 0229
which is the joint covariance matrix of d1,ds,...,0c with zero matrices in the off-

diagonal blocks due to the fact that the groups ¢ = 1,...,G are assumed to be inde-

pendent and hence cov(d;,d;) = 0,7 # . Each vector d, has the asymptotic covariance
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matrix
X, = mg_l(ADiag(ﬂ'g)_lAT — A117AT) (3.19)

where Diag(m,)~! is the inverse of the diagonal matrix with elements of 7 (Agresti,

2013, p. 591). Estimators for V', 3 and X, which are respectively indicated by ‘7, >

and f]g, can be approximated by using 7, as a point estimator for 7, and &2 as a point

estimator for o2.

The initial null hypotheses can be tested using the test statistics
2

=

Uk

ty, = (3.20)
where ¥y is the variance of the k-th log odds ratio, i.e. the k-th diagonal element of
the variance-covariance matrix V. Since the true covariance matrix is unknown and its
estimate V depends on both 6 and o2, we thus work with a multivariate ¢-distribution
rather than a multivariate normal distribution for the distribution of the test statistics
under the null hypothesis. p-values can then be calculated from this multivariate ¢-
distribution (Genz and Bretz, 2009). Alternatively, two-sided simultaneous confidence

intervals based on ¢ integrals can be constructed by

eXp[ek:l:tl—a,df:N(C—l)—P,ﬁV@\k]’ k= 1,...,K (3.21)

a,df=N(C—1)—P,R (two-sided)

can be obtained from the K-variate ¢ distribution with correlation matrix R, which is

with k parameters of interest in 6. The critical value b

the standardised variance-covariance matrix V (Genz and Bretz, 2009, Hothorn et al.,
2008).

Hence, we extended the multiple comparison procedure of Schaarschmidt et al. (2017)
by taking overdispersion into account. Adjusted p-values and simultaneous confidence
intervals can be calculated for standard multiple comparisons such as multiple compa-
risons to control (Dunnett, 1955) and all pairwise comparisons (Tukey, 1953) but also

user-defined contrasts for multiple odds ratios in analogy to Bretz et al. (2001).

3.2.5 Multiple Contrast Test for Categories and Groups

Matrices A and B define the comparisons of interest between the categories and between
the groups, respectively. In a multinomial logit model, baseline logits in A are often
of interest. Depending on the importance of the different categories, each level can
be selected as a reference category. Furthermore, other contrasts than comparisons to

baseline may be important. All pairwise logits that are possible can be written as



3.2 Simultaneous Inference in a Multinomial Logit Model with Overdispersion 21

-1 1 0

-1 0 1 0
A=1-1 0 0 1

0 -1 1 0

o o o0 - —-11

IxC

from which any line can be deleted depending on the comparisons of interests. Note
that A is a matrix of dimension I x C, where the number of columns corresponds to the
number of categories. The number of rows is set according to scientific interest.

Likewise, different comparisons may be of interest within groups. Widely used contrast
matrices are the contrasts of Dunnett (1955) and Tukey (1953). Multiple comparisons

to a control group (”Dunnett-type”), e.g. the first treatment group, can be defined as

-110 - 00
B:
-100 --- 01

(G-1)xG

The number of columns is equal to the number of groups. Since each group is compared
to a control group, the number of rows is equal to G — 1. All pairwise comparisons

between groups (" Tukey-type”) are determined via

-1 0
-1 0

B=|-1 0 0 0 1
0 -1 1 0
o o o0 -~ =11

JxXG

The number of rows expands to the total number of group comparisons of immediate
interest. Depending on the experimental question, the contrasts in B can also be spe-
cified as requested. A variety of contrasts have been investigated (Bretz et al., 2010).

Thus, a contrast matrix can also be set up for comparisons to the grand mean, which is
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the mean of all means. For a balanced setup that is

Gfl/G l/G 1/G’
B_ l/G G—I/G I/G
Yo o Yo o Yol

A trend test suggested by Williams (1971) can also be carried out. The contrast coeffi-

cients for a balanced design are given by

-1 0 0 0 1

-1 0 0 s Y,
B=|-1 0 - Y s s

-1 Y1 - Yo Yo Yoo

(G-1)xG

where each individual contrast test consists of comparisons of the weighted average of
the last groups to control. In case of unequal sample sizes, contrast coefficients can
be defined according to Bretz (2006), who describes an extension of Williams’ test to
general unbalanced linear models.

As mentioned earlier, the choice of contrast should be well considered. The more hypot-
heses are simultaneously defined in a contrast matrix, the more adjustment is needed to

control the type-I-error rate.

3.3 Simulation Study

3.3.1 Dirichlet-Multinomial Distribution and Overdispersion

Overdispersed multinomial data can be simulated by a Dirichlet mixture of multinomi-
als. To generate multinomially distributed random counts, non-negative vectors m,. are

drawn from a Dirichlet distribution, such that

(Ygb1, Ygb2, - - - » Ygber) ~ multinomial (mgp, (Tgp1, Tgb2, - - -, Tgbc))
(Tgb1, Tgb2, - - - s Tgpc) ~ Dirichlet(og)
specifying the probability for C' classes and where oy = (ag1, g2, ..., yc) is the Diri-

chlet parameter vector for the g-th treatment group. Let oy = >, e, meaning that

oy, is the sum of the parameter vector across categories ¢ = 1,...,C in group g. In the
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Dirichlet-multinomial distribution the variance of Yy, is given by

. Mgp + Q.
var(¥y) = g {Ding(m,) — w0 ) (322
Oég_

(Johnson et al., 1997, p. 81), whereas the corresponding moment of the multinomial

distribution (Johnson et al., 1997, p. 34) is defined by
var(Yy,) = mgp{Diag(my) — ﬂ'gﬂ'g}. (3.23)

Thus a common overdispersion factor o2, given equal sizes in the clusters, can be mo-

delled by

2 _ Mgp + Qg

=—= 3.24
7 1+ ay. ( )
leading to
of — mgp
= 3.25
Q. 1 — g2 ( )

for each multinomial vector.

Accordingly multinomial data with overdispersion can be generated by converting a gi-
ven overdispersion parameter o2 and cluster size mgy to a scaling parameter o, and first
generating a random vector of probabilities 7, for each cluster b in group g from the
Dirichlet distribution with parameters ay = oy 7. Subsequently each vector of proba-
bilities is used to draw a vector of observations y,, from the multinomial distribution

with probability 7, and equal number of trials m,g.

3.3.2 Simulation Settings

In a simulation study, the performance of the method proposed was investigated for a
variety of characteristics. For this purpose, simulations of the type-I-error were per-
formed and the coverage probability of simultaneous confidence intervals was studied.
Furthermore, the power for selected parameters was examined.

The simulation basis for both the type-I-error and coverage probability are certain sets
of probability vectors, which can be found in the Appendix A.2. Depending on whether
the true proportions of the categories were constant or varied over treatment groups,
the sets can be divided into scenarios under the null hypothesis and scenarios under
the alternative hypothesis. In the constant case (settings under Hy), 21 scenarios were
considered, for which the categories had the same probability across groups. The first
scenario additionally covers the case that all categories had the same probability (741 =

1/3,mg2 = 1/3,mg3 = 1/3). The next scenarios varied from high probabilities in the first
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category and low probabilities in the last, e.g. (741 = 0.90, 742 = 0.09, 743 = 0.01) to low
probabilities in the first category and high probability in the last category, e.g. (mg1 =
0.01, 752 = 0.09, 753 = 0.90). In the non-constant case, 38 scenarios were arranged,
in which the probabilities for the categories in the first group were similar to those of
the constant case. However, some log odds showed differences between some treatment

groups leading to settings under the alternative.

Type-I-Error («)

In order to assess the impact of different sampling schemes on the familywise error rate
(FWER), a simulation with a reasonable selection of parameter settings was conducted
for the 21 scenarios where all parameters were under the true null hypothesis. In these,
only Dunnett-type many-to-one contrasts on the basis of G = 4 treatment groups were
considered for the comparison of baseline log odds. If one of the comparisons within a
scenario became statistically significant at the 5% level, a type-I-error was committed.
The sample size in clusters mg, was set to mg, = {10,20,50}, with b, = {5, 10,20}
clusters per treatment group. Both mg, and b, were assumed to be equal among the
groups. For each setting, 10,000 random samples of multinomial count data with C' = 3
unordered categories were drawn from a Dirichlet-multinomial distribution with different
degrees of overdispersion (see 3.3.1). The degree of overdispersion was chosen with
02 = {1.01,1.5,2,5}, in the interest of a broad range from no overdispersion to strong
overdispersion. To illustrate the effect of ignoring present overdispersion, the proposed
procedure as described in this Chapter 3 was simulated along with a procedure that
ignores overdispersion. That is, on the one hand, overdispersion was estimated and
included in the analysis using the enhanced covariance-matrix 525 whereas on the other

2

hand, despite the fact that the data may exhibit overdispersion, o° was set to 1.

Simultaneous Confidence Intervals

Again the test setup assumed C' = 3 outcome categories and G = 4 treatment groups
but equally acquired b, = {5, 10, 15, 20, 50, 100, 500, 1000} clusters per treatment group,
resulting in N = {20,...,4000} clusters in total. The sample size in clusters mg, was
assumed to be equal among clusters and among groups with a total number of subjects
of mg, = {10, 50,100,500, 1000} per cluster. A dispersion factor was chosen in a way as
to yield an overdispersion of o2 = {1.01,2,5,8} in the data.

Baseline log odds with the first category selected as a reference were compared between
groups initially with the first group set as a control group (Dunnett within categories and
treatment groups). Additionally, all pairwise comparisons between treatment groups for
baseline logits were studied in a second simulation (Dunnett within categories and Tukey
within groups).

Separately for each of the 160 parameter combinations for the two types of multiple
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comparisons, a number of 10,000 datasets were generated from a Dirichlet-multinomial
model and simultaneous 95%-confidence intervals were examined whether they all con-
tain the corresponding true odds ratios. As soon as one of the intervals from a confidence
set did not contain the corresponding true value, the complete confidence set was recor-
ded as "not covering the true parameter vector”. The entire proportion of confidence sets
covering the true parameter vector was calculated, which we will refer to as simultaneous

coverage probability.

Power

A simulation study investigating the power was conducted on a selection of three pro-
bability vectors, which specifically cover the cases of low probability for one of the
C = 3 categories. Namely these vectors are (my1 = 0.95, 7150 = 0.04, 753 = 0.01),
(mg1 = 0.90, 742 = 0.05, 743 = 0.05) and (741 = 0.80,mg2 = 0.10,7y3 = 0.10). The same
proportions were assumed for the first three treatment groups. Power was simulated for
an increase A in the second baseline odds, Z—i?, in the fourth group only. The effect A
was chosen as the factor by which the second baseline odds in the fourth group incre-
ases compared to the first group, i.e. ’;—ﬁ’ A= %i’ Therefore, a Delta of 1 does not
alter the probabilities and random samples are drawn under the assumption of a true
null hypothesis. Overall, an effect of A = {1,...,10} increasing in constants of 0.5 was
realized. By increasing the effect A, the percent of datasets wherein at least one null
hypothesis is rejected determines the global power for that specific setting. The number
of clusters per treatment group was reduced to by = {5, 10,20} and the size of a cluster
was set to mg, = {10, 20,50}, again both considered equally in all groups. Further, only
Dunnett-type many-to-one comparisons were studied and the degree of overdispersion
was set at 02 = {1.01,1.5,2,5}. A number of 5,000 simulation runs were obtained.
Note, that A is defined on the scale of the odds but not on the logarithmic scale. An
increase of A = 1.5 for the first vector, for example, leads to an expression of (w4 =
0.9453, m42 = 0.0398,m43 = 0.0149) in the categories of the fourth group. Although
the odds ratio between the second category and the first category remains the same at
041 = log(0.0421), the ratio of the third category to the first category is increased by
formerly d12 = 1log(0.0105) in the first group to d42 = log(0.0158) in the last group, i.e.

by log(1.5) = 0.4054.

All simulations were performed in R, version 3.3.3 (R Core Team, 2015), using package
MCMCpack for Dirichlet random numbers (Martin et al., 2011). The proposed method
of this Chapter 3 was implemented in R and used for evaluation of all simulated data.
For more details on the implementation and use of multcomp, mvtnorm and VGAM, see
Chapter 5.
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3.3.3 Sampling Zeros

Difficulties in calculating the FWER, the simultaneous coverage probability and the
power exist in the observation of zero event counts. Datasets with groups containing
only zeros in a category were allowed unless all groups were affected. Then this dataset
was discarded and redrawn. Nevertheless note that there are settings where data records
are sparse for individual categories. This occurs when the probability for a category my.
is very small and there are only a few observations mg, in a few clusters b. In such cases,
the confidence limits of parameters become very large and approach infinity within
limits. A type-I-error can then no longer occur under the null hypothesis. The same

applies to the power under the alternative.



Chapter 4

Results

A simulation study was performed to investigate the characteristics of the proposed si-
multaneous test procedure under relevant conditions. First, the familywise error rate
(FWER) is assessed for scenarios under the null hypothesis. The selected scenarios cover
a small sample size in total as well as small sample sizes per cluster. Thereafter, simulta-
neous confidence intervals (sCI) of the linear contrasts analogous to Tukey and Dunnett
are examined. In order to evaluate the intervals, the associated coverage probabilities
(CP) for different settings under the null and alternative hypothesis are used as criteria.
Finally, the power is considered for certain vectors of probability to further characterize

the performance of the test procedure.

4.1 Violation of the Type-I-error when Ignoring Overdis-

persion

For illustration purposes, Figure 4.1 shows the serious inflation of the FWER in case of a
two-sided Dunnett contrast for four groups compared to control, if overdispersion in the
data is ignored. On assumption of o2 = 1.01, which describes nearly no overdispersion in
the data, the estimated type I error remains below the chosen alpha level of 0.05 for all
combinations of by number of clusters and mg, units per cluster. As the minimal expected
event count in clusters increases the estimated type-I-error levels off at « = 0.05. If
overdispersion comes into play, the FWER increases rapidly and exceeds the nominal
alpha level. In the case of slight overdispersion of o2 = 1.5, the Dunnett test procedure
leads to type-I-errors that are nearly two times higher than o = 0.05 for an expected
number of events per cluster starting from 20. For 0? = 2 the FWER further increases
and reaches values up to a maximum of o = 0.74 at o2 = 5.

In comparison, Figure 4.2 shows the simulated FWER additionally for the same set of
scenarios but taking overdispersion into account. As expected, the mean FWER remains

below the predetermined level of 0.05 in all cases of overdispersion. The sample size in
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Figure 4.1: Simulated familywise error rate for multiple comparisons to a cont-
rol without incorporating overdispersion. Estimated familywise error rate for a multiple
Dunnett-type contrast test with different underlying levels of overdispersion but no incorporation
of overdipersion. The rates are calculated on different numbers of clusters and different numbers
of units per cluster. In addition, different proportions were simulated in the categories. The a
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total or the sample size per cluster does not affect the FWER, as long as overdispersion
is estimated and incorporated in the analysis.

A more detailed analysis will be given in the next subsection. The assessment of the
coverage probability of sCI includes the FWER in a strong sense. In addition, Tukey-

type contrasts are considered next to Dunnett-type comparisons.

4.2 Simultaneous Coverage Probability when Accounting

for Overdispersion

The simultaneous coverage probability is examined for all scenarios of the null and
alternative hypotheses. The points in Figure 4.3 show the probability that the 95% sCI
contains the true value for four groups compared to control and all pairwise comparisons,
depending on the minimal expected event count (min{mgym,.}). That is the minimum of
the expected counts per category of all clusters among groups. The cases considered had
minimum expected event counts ranging from 0.5 to nearly 200,000 with the smallest
sample size per cluster at mg, = 10 and b; = 5 clusters at least. The plot is divided
row-wise according to settings under the global null hypothesis and settings with at
least one true alternative. The columns correspond to the preselected overdispersion
specifications. To better illustrate the behaviour of the proposed method in settings
with small sample sizes and a few clusters, Figure 4.4 shows the CP for small event
counts of 1 to 50 only. It is assumed that these are also the more relevant settings in
praxis.

According to the minimal expected event count the pattern is similar for all cases of
overdispersion in settings under the null hypothesis for comparisons with a control in
Figure 4.3 in the top two rows. The investigated method shows a conservative behaviour
for small expected counts per cluster or rare events. With increasing sample size the
CP asymptotically approaches the 95% level for all settings. In case of no overdisper-
sion described by o2 = 1.01, CP is close to 97.5% if the lowest expected event count
equals 10 and near the nominal level of 95% from 20 event counts onwards. At minor
overdispersion (o2 = 2) a minimal expected event count of at least 35 is needed to reach
the nominal level. In case of very strong overdispersion (o2 > 5), the method shows its
more conservative behaviour up to a minimum expected count of 100.

Under the alternative, a broader scattering is present for smaller event counts as over-
dispersion increases. The probability of a category containing only zeros in one group
becomes more likely as the minimum event count drops lower. Settings with sparse data
show a high coverage probability of the 95%-sCI (see Appendix A.1). For event counts
less than 5 the probability that at least one of the groups just contains zeros is more

than 20% when o? = 2 and the average CP is 97.24%. For the same range of event
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counts but an overdispersion of 02 = 8, the mean CP is 98.30%. With increasing event
counts, the method asymptotically approaches the 95% level for all settings.

A similar figure occurs for the coverage probability of two-sided sCI of all pairwise
comparisons with four groups in Figure 4.3 in the bottom two rows. The pattern of
the all-pairs comparisons is generally similar to the previous simulation of many-to-one
comparisons: If the minimum expected event count is small, the 95%-sCI cover the true
parameter too often; this applies to settings with a minimum expected event count below
15 for 02 < 2 or 100 for 02 = 8. From then on, the procedure shows a coverage close
to 95%, e.g. the average CP of all settings with 02 = 5 and minimal expected count
of 20 under the null hypothesis is 95.73% where the lowest point estimate is at 94.29%.
Under the alternative the mean CP for the nominal 95%-sCI is 95.35%; the minimum
at 94.21%.

The simultaneous coverage probability depending on the number of clusters per group,
divided according to the sample size in clusters, is shown in Figure 4.5. The figure con-
tains multiple comparisons to a control and all pairwise comparisons as well as scenarios
under the null hypothesis and scenarios under the alternative hypothesis. sCI cover the
parameters too often if the number of clusters is small and the sample size in clusters
(mgp) is small and/or overdispersion is high. If the sample size per cluster is large, e.g.
mgy = 500 or mg, = 1000, CP is equal to the nominal confidence level even for a small
number of clusters. If the sample size in clusters is moderate, e.g. mg, = 50, a CP close
to 95% is reached from b, = 50 clusters per group at an overdispersion of o2 =2. At
mgy = 50 and 02 = 5, a CP close to 95% is achieved at b, = 100.

4.3 Power-Simulations

Concerning the power, the lines in Figure 4.6 display the probability that the test pro-
cedure will reject at least one null hypothesis regardless of whether the contrast is truely
under the alternative (global power). Power curves are shown for 5, 10, and 20 clusters
in each treatment group when varying the underlying parameters. By way of example,
the simulations were carried out for three vectors with extreme expectations of proba-
bilities of individuals being in three different categories. It is expected that less extreme
proportions provide better results of power.

All over the power increases as the effect A increases, depending on the number of
clusters and their size as well as the degree of overdispersion. The results demonstrate
that if the effect is sufficiently large, a power of at least 80% can be achieved even at
substantial overdispersion of o2 = 5 for sparse categories of mge = 0.1 (third framework
of Figure 4.6). If the sample size in clusters decreases, the power eventually reaches an
acceptable value later. For a number of clusters of b, = 20 and a cluster size of mg, = 20

sufficient power is attained from a delta of A = 4.5. The power to detect an effect of
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A = 4.5 at a cluster size of mg, = 10 is 40.56%. The situation is similar for the impact
of the number of clusters. As b, decreases, the power diminishes. Thus, with a slight
overdispersion of 02 = 1.5 and a cluster size of mgp = 10, sufficient power is reached
from A = 3.5 for a number of b, = 20 clusters. For a number of b, = 10 or b, = 5
clusters, the detectable effect shifts to 5.5 or 10, respectively.

The power is low for proportions with very small proportions for individual categories,
e.g. mge = 0.01. The first framework of Figure 4.6 shows a power of less than 80% for all
settings with a low cluster size. The power can be increased by increasing the number
of clusters or the number of units per cluster. Even with b, = 20 clusters and mg, = 20

units per cluster, an adequate power is achieved at o2 = 1.5 from A = 8.
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Figure 4.6: Simulated power for multiple comparisons to a control. Estimated power
curves for a multiple Dunnett-type contrast on three vectors with sparse event probability. The
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with different underlying levels of overdispersion.
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Chapter 5

Evaluation of the Examples by
Specially Implemented Software

The availability of an adequate software for the user-friendly evaluation of multiple
multinomial test problems is essential. This chapter deals with the processing of multiple
comparisons of multinomial vectors in the statistical software environment R and the
implementation of the proposed asymptotic method. Presented functions can be applied
to models of the class "vglm”. The sample data sets from Chapter 2 are evaluated and

exemplary R code is provided.

5.1 Computational Issues and Software Implementation

In R already a variety of options for modelling multinomial data exist. For example,
the function multinom() of the nnet package (Venables and Ripley, 2002), or mlogit ()
from the mlogit package (Croissant, 2013) can be used to estimate a multinomial logit
model. However, these options do not include an estimation of a dispersion parameter
to blend into the model. By calling summary(..., dispersion = 0) of a VGAM object
a dispersion parameter is estimated which is used to adjust the underlying variance-
covariance structure of the model (Yee, 2008). Nevertheless, all functions mentioned are
missing the possibility of multiple testing.

An implementation of multiple comparisons for multinomial regression models accor-
ding to the methodology of this thesis is available by sourcing the code from the website
powered by the Institute for Biostatistics (https://www.biostat.uni-hannover.de/
fileadmin/institut/r-code/methods.R). The code accesses available functions of the
package multcomp (Hothorn et al., 2008) for multiple contrast tests in general parametric
models and extends it to handle vector generalized linear models from the VGAM package

(Yee, 2015). In addition, the mvtnorm package (Genz and Bretz (2009)) is used in the


https://www.biostat.uni-hannover.de/fileadmin/institut/r-code/methods.R
https://www.biostat.uni-hannover.de/fileadmin/institut/r-code/methods.R
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Table 5.1: Overview of additional functions. List of additionally implemented functions,
where " indicates the mandatory arguments.

function arguments description
overdispersion() model” calculates overdispersion for objects
data inheriting from class ”vglm”
strata
multin2mep() object” returns a list of parameters (coef,
dispersion”=c(”none”, veov, df)
”overall”,
"stratified”)
data
strata
mep2matrix.vglm()  model” sets up a list that includes a
linfet” specific contrast matrix K
model.frame.vglm() model” returns a data.frame with the
variables of a ”vglm”-model
modelparm.vglm()  model” enables multcomp to extract model
parameters from a ”vglm”-model
veov.disp() model” multiplies the model-veov with
linfet” an estimated dispersion parameter

background for computing multivariate normal probabilities and multivariate ¢ probabi-
lities and quantiles. An overview of additionally implemented functions is summarized
in Table 5.1.

In particular, the framework of multcomp has been extended to objects of class ”vglm” as
part of this thesis. By implementation of model.frame.vglm(), modelparm.vglm() and
mcp2matrix.vglm(), general linear hypotheses and multiple comparisons according to
Hothorn et al. (2008) are now available for vector generalized linear models from the VGAM
package. In addition, the functions overdispersion() and vcov.disp() have been
implemented. This provides the following functionality: Given an object of class ”vglm”,
overdispersion can be calculated using the function overdispersion(). In particular,
overdispersion can be estimated overall or group-specific for each individual group level.
For the former, only the model is needed to compute the dispersion parameter over
all observations. For group-specific overdispersion (see Section 6.1), the data frame
and a group variable to stratify for must also be specified. Certainly, overdispersion
can directly be incorporated in the linear comparisons of interest. Using the function
multin2mcp() on an object of class ”vglm” and a contrast matrix with the same number
of columns as numbers of parameters in the model, the function glht () of the multcomp
package can be called as usual for multiple comparisons with or without (group-specific)

overdispersion.
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Associated p-values are calculated using the summary () function of multcomp, which cal-
culates the quantiles from the multivariate ¢-distribution utilizing the mvtnorm package.
Simultaneous confidence intervals can be constructed by applying the internal confint ()

function to the glht object.

5.2 Evaluation of the Examples

5.2.1 Example 1: Developmental Toxicity

The study on the toxicity of DYME, which was introduced in Section 2.2, recorded the
survival status of pups of toxin-treated mice. Obviously, the primary endpoint measured
as "alive”, "malformed” or "dead” is nominal and can be described by a multinomial
logit model using the dose group as an explanatory variable. Already in Section 2.5

overdispersion was suspected behind the data, which we now want to estimate exactly.

> str(bivar.re)

’data.frame’: 108 obs. of 5 wvariables:
$ DAM_ID : int 51 60 61 70 71 79 80 88 95 104
$ DOSE : Factor w/ 5 levels "O","62.5","1256",..: 1111111111
$ alive : num 10 14 11 17 15 17 11 13 16 12
$ malformed: num O O 0 0 0 0 2 0 0 O
$ dead :num O 01 0 00O 1 O0OO
> multivgam <- vglm(cbind(alive ,malformed,dead) ~ DOSE,
+ family=multinomial (refLevel = "alive"),
+ data=bivar.re)
> sum(residuals (multivgam, type = "pearson")"2)

[1] 485.7833
> overdispersion(multivgam)
[1]1 2.358171

At first, the probability of observing a live, malformed or dead pup at each dose is
estimated in a vector generalized linear models (VGLM), i.e. a multinomial logit model,
with setting ”alive” as the reference category. Subsequently, the sum of Pearson residuals
of X? = 485.78 can be calculated. The number of degrees of freedom is N x (C' —1) — P,
where N is the number of clusters (equal to the number of rows) and C'is the number of
levels in the multinomial response. P = 2 -5 is the number of parameters in the model
corresponding to 2 baseline logits in each of the 5 dose groups. The ratio of the Pearson
statistic to the degrees of freedom is then 485.78/(108-(3—1)—10) = 2.358, which is much
larger than 1 and means that substantial overdispersion exists in this data. To simplify
this calculation step, a function called overdispersion() was implemented. Evidently,
standard errors of parameter estimates have to be multiplied by Vo2 =1.536.

The calculations of the logits and log odds ratio estimates are as follows: The vectors
of probabilities for each group according to the model are presented in Table 5.2, e.g.

the parameter vector of dose group 0 is %go = (711, 12, M13) = (0.9664,0.0067,0.0268).
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Table 5.2: Estimated probabilities of the developmental toxicity study. Estimated
probabilities of each life status, sample size and minimal event count per dose group.

dose | Talive Tmalformed  Tdead | My mcin{mg%gc}’
0 0.9664 0.0067 0.0268 | 298 2

62.5 | 0.9579 < 0.0001 0.0421 | 214 <1

125 0.8644 0.0252 0.1104 | 317 8

250 0.6667 0.2170 0.1164 | 318 37

500 0.1833 0.5312 0.2855 | 802 147

On the right, the number of observations in group g € {0, 62.5,125,250,500} and the
minimum expected event count is given.
Due to the main focus on baseline logits comparing the probabilities of categories "mal-

formed” and ”dead” to the first category ”alive” the contrast matrix A is set to

110
A=
(—1 0 1>

and log odds can be estimated for each treatment group, e.g. in the first dose group by

0.9664
~ -1 1 0 —4.97
dq0 = log | 0.0067 | = ,
-1 0 1 —3.58

0.0268

means of

leading separately for all dose groups to: gd(] = (:g:gg), 3}62.5 = (11391534), 361125 =
-3.53) § -1.12\ § .

(Z3:6)» 9a250 = (Z173 )+ Oaso0 = (§5:4%)-

Furthermore, multiple comparisons to control are of interest in this experiment now as

recommended in the OECD Guideline for statistical analysis of ecotoxicity data (OECD,

2014). Therefore, contrast matrix B is set up with comparisons to dose group 0,

-1 1000

-1 0 1 0 0
B =

-10 0 1 0

-1 0 0 0 1

Multiplying the Kronecker product of A and B by the vector of probabilities returns
the parameter vector 0.
T
d0

T
Ti62.5

o~

60 =(B®A)log | m] -
T

T 3250
T

T 4500

The vector 8 consists of all estimated log odds ratios, which are evaluated in Table 5.3
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Table 5.3: Comparison of adjusted and unadjusted simultaneous test results of
the developmental toxicity example with / without accounting for overdispersion.
Simultaneous test results for the K = 8 comparisons to control for baseline odds ratios malforme-
d/alive and dead/alive. The first column shows the results for comparison without adjustment
for multiplicity and without accounting for overdispersion; the second column shows results for
comparison with multiplicity adjustment including overdispersion. MCP = multiple comparison
procedure.

w/o MCP, 0% =1 MCP, ¢? = 2.358

Linear Hypotheses 05 SE(ak) p-value SE(ak) p-value
malformed/alive: 62.5 -0 -14.5687 | 740.8176  0.9843 | 1137.6246  1.0000
malformed/alive: 125 - 0 1.4361 0.7951 0.0709 1.2209 0.7343
malformed/alive: 250 - 0 3.8473 | 0.7230 0.0000 1.1102 0.0039
malformed/alive: 500 - 0 6.0338 0.7160 0.0000 1.0995 0.0000

dead/alive: 62.5 - 0 0.4577 0.4944 0.3546 0.7593 0.9821
dead/alive: 125 - 0 1.5257 0.4009 0.0001 0.6156 0.0730
dead/alive: 250 - 0 1.8379 0.4003 0.0000 0.6147 0.0176
dead/alive: 500 - O 4.0268 0.3737 0.0000 0.5738 0.0000

along with corresponding standard errors and p-values. The results are presented for
the case of neither adjustment for multiple testing nor for overdispersion and for the
case of simultaneous comparisons with adjustment for overdispersion.

Both analyses can be reproduced in R. For instance, the analysis adapting to overdis-

persion is as follows:

> mcp <- glht(model = multin2mcp(multivgam, dispersion="overall"),
+ linfct = mcp2matrix(multivgam,

+ linfct = mcp(DOSE = "Dunnett")) $K)
> summary (mcp)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

malformed/alive: 62.5 - 0 == 0 -14.5687 1137.6246 -0.013 1.00000
malformed/alive: 125 - 0 == 0 1.4361 1.2209 1.176 0.73426
malformed/alive: 250 - 0 == 0 3.8473 1.1102 3.465 0.00398 =*x
malformed/alive: 500 - 0 == 0 6.0338 1.0995 5.488 < 0.001 =**x
dead/alive: 62.5 - 0 == 0 0.4577 0.7593 0.603 0.98214
dead/alive: 125 - 0 == 0 1.5257 0.6156 2.479 0.07282 .
dead/alive: 250 - 0 == 0 1.8379 0.6147 2.990 0.01758 =«
dead/alive: 500 - 0 == 0 4.0268 0.5738 7.017 < 0.001 =*x*x
Signif. codes: O ’*%%’ 0.001 ’*xx’ 0.01 ’%’ 0.05 ’.” 0.1 ’> ’> 1
(Adjusted p values reported -- single-step method)

After fitting the multinomial logit model, two functions facilitate the multiple compari-

sons of odds ratios. The first function multin2mcp() modifies the variance-covariance
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matrix under consideration of overdispersion if desired. The choice of modification can
be set by using one of the expressions "none”, ”overall” or ”stratified” in the dispersion
argument. For a single dispersion parameter, the argument is set to ”overall” in this
case. Since the glht() function still requires a contrast matrix, the second function
helps with a little workaround. The mcp2matrix() function specifies multiple compa-
risons similar to the multcomp package but especially for VGAM objects. The contrast
matrix is extracted by accessing $K. The outcome is stored in the object mcp so that
one can continue working with it. Finally, p-values of a corresponding hypotheses test
are computed by the summary () function.

As one can see, the summary of our glht object matches the right-hand column of
Table 5.3. If the user is interested in multiple comparisons without modification of the
variance-covariance matrix, i.e. without adaptation of overdispersion, the dispersion
argument has to be set to "none”. Alternatively, an analysis with several dispersion
parameters might be considered. The bar chart in 2.1 suggests heterogeneous variances
in treatment groups and the variability seems to be much higher for the animals at
the highest dose level. As a choice of the dispersion argument, ”stratified” can be
selected to estimate separate dispersion parameters for each group. In contrast, the
analysis without consideration of the multiplicity problem and without accounting for
overdispersion (left column of Table 5.3) can be accomplished via the simple output of
summary results of the model: summary (multivgam).

Note that the first line of the output and Table 5.3 respectively highlights a result of
small event counts. Because the observations in the category ”malformed” of group
62.5 were all zero, the estimated parameters become very large. The calculation of the
estimates and standard error is based on a model in VGAM, which terminates numerically
after a certain number of iterations whereas the actual estimates approach infinity.
The p-values of the right-hand column of Table 5.3, which corresponds to the recommen-
ded evaluation of this dataset, indicate that there is a significant difference of log odds
of "malformed” relative to ”alive” between dose 250 and dose 0 and between dose 500
and the control group. Also, there is a significant difference in the log odds of ”dead”
relative to ”alive” between dose 250 and dose 0 and between dose 500 and dose 0. Thus,
the analyses only differ when comparing dose 125 to dose 0 on the basis of the log odds
of "dead” relative to "alive”.

Simultaneous confidence intervals (on the logit scale) can be calculated by using the

confint () statement on our glht object named mcp:

> confint (mcp)
Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts
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Fit: NULL

Quantile = 2.6244
95% family-wise confidence 1level

Linear Hypotheses:

Estimate lwr upr
malformed/alive: 62.5 - 0 == 0 -1.457e+01 -3.000e+03 2.971e+03
malformed/alive: 125 - 0 == 0 1.436e+00 -1.768e+00 4.640e+00
malformed/alive: 250 - 0 == 0 3.847e+00 9.337e-01 6.761e+00
malformed/alive: 500 - 0 == 0 6.034e+00 3.148e+00 8.919e+00
dead/alive: 62.5 - 0 == 4.577e-01 -1.535e+00 2.450e+00
dead/alive: 125 - 0 == 0 1.526e+00 -8.979e-02 3.141e+00
dead/alive: 250 - 0 == 0 1.838e+00 2.247e-01 3.451e+00
dead/alive: 500 - 0 == 0 4.027e+00 2.521e+00 5.533e+00

By default, 95% sCIs are reported, which can be changed by request via the level
argument, e.g. adding level=0.90 as an argument in confint() for 90% sCIs. The
sCls indicate the precision of the estimated log odds ratios and can be converted to
the original scale using the natural exponential function. The respective 95% sClIs after
back-transformation to the response scale are shown in Table 5.4. According to the
reported sCI in the second line, there is a 95% probability that the true difference of
log odds of ”"malformed” relative to ”alive” between dose 125 and dose 0 lies between
the lower confidence limit of 0.17 and the upper confidence limit of 103.43. Since the
interval crosses the null value, i.e. 1 on the original scale and 0 on the log scale, this
implies that there is no significant difference between dose 125 and dose 0. In contrast,
the estimate in line 3 is the odds of being "malformed” rather than ”alive” in dose
group 250 which is increased by factor 46.87 compared to the control group. The true
odds ratio is between 2.55 and 862.39 assuming there is no bias or confounding. This

result is statistically significant as the sCI does not overlap 1 on the original scale. In

Table 5.4: Simultaneous 95% confidence intervals including overdispersion of the
developmental toxicity example on the original scale. Simultaneous confidence intervals
for the K = 8 comparisons to control for baseline odds ratios malformed/alive and dead/alive.
Simultaneous confidence intervals are given for a significance level of o = 5%. MCP = multiple
comparison procedure.

MCP, % = 2.358
0 |  25% 97.5%
malformed/alive: 62.5 - 0 0.0000 | 0.0000 00
malformed/alive: 125 - 0 4.2044 | 0.1709  103.4325
malformed/alive: 250 - 0 46.8679 | 2.5471  862.3903
malformed/alive: 500 - 0 417.3061 | 23.3269 7465.3861

dead/alive: 62.5 - 0 1.5805 | 0.2157 11.5823
dead/alive: 125 - 0 4.5985 | 0.9148 23.1171
dead/alive: 250 - 0 6.2830 | 1.2528 31.5093

dead/alive: 500 - 0 56.0816 | 12.4468  252.6875
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fact, this is revealed in Table 5.3 too, which shows a p-value of less than 0.01 for this
comparison.
5.2.2 Example 2: Housing Satisfaction

For the second example, whose study design was explained in Section 2.6, we will have

a closer look at the data structure first.

> head (housing)
us s vs type

1 3 2 0 rural
2 3 2 0 rural
3 05 0 rural
4 3 2 0 rural
5 05 0 rural
6 41 0 rural
> str(housing)
’data.frame’: 35 obs. of 4 variables:
$ us : num 3 3 0 3 043240
$ s :num 2 2 5 2512304
$ vs :num 00 0 00 O0O0O0 11
$ type: Factor w/ 2 levels "rural","urban": 1 1 1 1 111 1 11

In the dataset, each row represents a cluster of 5 households. This is crucial for the
correct counting of N in the function overdispersion(). The belonging of a cluster
to an area is stored in the factor variable "type”. Next, a multinomial logit model with

levels of satisfaction as a response and type of area as an independent predictor is set

up.

> multivgam <- vglm(cbind(us, s, vs) ~ type,
family=multinomial (refLevel="us"
data=housing)

> sum(residuals (multivgam, type = "pearson")"2)

[1] 107.2768

> overdispersion(multivgam)

[1] 1.625406

The sum of Pearson residuals is X2 = 107.28. With N = 35 clusters, C = 3 ca-
tegories and P = 4 parameters in the model, the overdispersion is estimated to be
o2 = 107.28/(35(3 — 1) — 4) = 1.625. Therefore it is recommended to account for
overdispersion.

Beforehand, the parameters of interest are calculated. In Table 5.5 the three-dimensional
vectors of parameter estimates for the proportions 7, are presented for each group.

Table 5.5: Estimated probabilities of the housing data. Estimated probabilities of satis-
faction, sample size and minimal event count per area

g ;T\us %s %VS mg chill{mg%gc}
rural | 0.5222 0.4222 0.0556 | 90 5
urban | 0.3529 0.5059 0.1412 | 85 12
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Mo

To compute the log odds based on the satisfaction level, i.e. ”s” versus "us” and "vs”

-1 10
A=
-1 0 1

and log odds in each group are grural = (:g:%}l), gurban = (_00:.)’82). In order to compare

versus "us”, Matrix A is set to

the baseline logits for "urban” versus ”rural”, contrast matrix B is defined by B =
(=1 1). Log odds ratios 6 can be obtained by processing the vector 1og(Trural, Trural) -

or by using the stacked vector of log odds 5. The latter is calculated by means of

—0.21

~ 1 0 —2.24 0.57
0 — (—1 1)@ — .
0 1 0.36 1.32
—0.92

A complete analysis of the log odds ratios for the different levels of satisfaction conside-
ring multiple comparisons and overdispersion is provided in Table 5.6 in the last column.
In addition, the results are presented on the one hand for an analysis without adjustment
for multiple comparisons and on the other hand for an analysis without adaptation to
overdispersion and neither. In all ways of evaluation, the estimates are the same, but
standard errors have been multiplied by V&2 = 1.275 in the third and forth analysis

when overdispersion is taken into account. The variance-covariance matrix is multiplied

_ 0.104 0.055
V = 1.625 ,
0.055 0.338

by 2 in this case,

and adjusted p-values are computed from the bivariate ¢ distribution with 66 degrees of

freedom, whereby the vector of test statistics ¢ = (1.391,1.787)T is associated with the

Table 5.6: Comparison of adjusted and unadjusted simultaneous test results of the
housing example each with and without accounting for overdispersion. Simultaneous
test results for the K = 2 comparisons of "urban” vs. ”rural” for I. the log odds of s/us and
II. the log odds of vs/us. The first column shows the results for comparison without adjust-
ment for multiplicity and without accounting for overdispersion (w/o MCP, o = 1); the second
column shows results for comparison with multiplicity adjustment but without adjustment for
overdispersion (MCP, 02 = 1); the third column shows results for comparison with adjustment
for overdispersion but without accounting for multiplicity (w/o MCP, 52 = 1.625); the fourth
column shows results for comparison with multiplicity adjustment and with adjustment for over-
dispersion (MCP, 52 = 1.625). MCP = multiple comparison procedure.

w/o MCP, 0% =1 MCP, 62 =1 w/o MCP, 5% = 1.625 | MCP, 52 = 1.625
k 65 SE(ék) p-value SE(@;C) p-value SE(ék) p-value SE(@k) p-value
I 0.5726 | 0.3228 0.0761 0.3228  0.1503 | 0.4115 0.1688 0.4115  0.3001
II  1.3244 | 0.5813 0.0227 0.5813 0.0501 0.7411 0.0785 0.7411 0.1465
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~ (1.000 0.291
R= .
(0.291 1.000>

Table 5.6 clearly shows the differences in the standard error and thus in the evaluation of

correlation matrix

the underlying hypotheses. Compensating for overdispersion, the p-values have increased
and a difference of log odds of ”very satisfied” relative to ”unsatisfied” by 1.32 when
changing from rural to urban can no longer be rated as significant.

The full analysis of the example by taking overdispersion into account and adjusting for

multiple testing can be achieved in R by means of the following code, formulated in one

commando:

> summary (glht (model = multin2mcp(multivgam, dispersion="overall"),

+ linfct = mcp2matrix(model = multivgam,

+ linfct = mcp(type = "Dunnett"))$K))

Simultaneous Tests for Gemneral Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Linear Hypotheses:
Estimate Std. Error t value Pr(>|tl)

s/us: urban - rural == 0 0.5726 0.4115 1.391 0.300
vs/us: urban - rural == 1.3244 0.7411 1.787 0.146
(Adjusted p values reported -- single-step method)

Two-sided simultaneous 95% confidence intervals can, in turn, be calculated by the
confint () statement and are given on the original scale in Table 5.7. Only sCIs for
the multiplicity-adjusted analysis adapting to overdispersion are reported since these

correspond to the recommended evaluation method.

Table 5.7: Simultaneous 95% confidence intervals including overdispersion of the
housing satisfaction in two areas on the original scale. Simultaneous confidence intervals
for the K = 2 comparisons for baseline odds ratios. Simultaneous confidence intervals are given
for a significance level of o = 5%. MCP = multiple comparison procedure.

MCP, % = 1.625

0, | 25%  97.5%
s/us: urban - rural == 1.7728 | 0.6941 4.5280
vs/us: urban - rural == 0 3.7600 | 0.6946  20.3542

5.2.3 Example 3: Differential Blood Count in Rats

For the third illustration, we consider the toxicological example of white blood cells of
Section 2.7. The study question is whether gender and dose group affect the number of
white blood cells. There seems to be a downward trend in lymphocytes with increasing

dose (see Figure 2.3), but is this trend significant? The data structure is as follows:
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> head (dbb)

sex animal Group Eos Baso Stab Seg Mono Ly factorcomb
1 Males 1101 control 2 0 0 51 2 145 Males:control
2 Males 1102 control 3 0 0 28 2 167 Males:control
3 Males 1103 control 4 0 0 32 5 159 Males:control
4 Males 1104 control 3 0 0 32 6 159 Males:control
5 Males 1105 control 8 0 0 30 3 159 Males:control
6 Males 1106 control 1 0 0 52 3 144 Males:control
> str(dbb)
’data.frame’: 78 obs. of 10 variables:
$ sex : Factor w/ 2 levels "Females","Males": 2 2 2 2 2 2 2 2 2 2
$ animal : num 1101 1102 1103 1104 1105
Group : Factor w/ 4 levels "control","low dose",..: 1 1 1 1 1 1 1
111
$ Eos :num 2 3 4 38144 41
$ Baso :num O 0 0 00O OOOO
$ Stab :num 0 0 0 0 O0OO0OO0OO0OO ...
$ Seg : num 51 28 32 32 30 52 29 23 33 30
$ Mono :num 2 256 333071
$ Ly : num 145 167 159 159 159 144 164 173 156 168
$ factorcomb: Factor w/ 8 levels "Females:control",..: 55 5 5 5 5 5 5 5
5

First, we will build a vector generalized linear model for the counts of Eosinophils (Eos),
Segmented Neutrophils (Seg), Monocytes (Mono) and Lymphocytes (Ly) depending on
gender and dose group. As stated initially, Basophils (Baso) and Neutrophilic bands
(Stab) are excluded from the analysis because their counts were all zero. Since the
currently implemented software can only evaluate models with a single explanatory
variable in terms of multiple comparisons with overdispersion, we defined a combination
of gender and dose group (factorcomb), which is included in the model as a categorical

predictor variable.

> multivgam <- vglm(cbind(Eos, Seg, Mono, Ly) ~ factorcomb,
family = multinomial, data = dbb)

> sum(residuals (multivgam , type = "pearson")~2)

[1] 455.7761

> overdispersion(multivgam)

(1] 2.170362

The analysis of residuals shows that there is an overdispersion of 62 = 455.78/(78 - (4 —
1) — 24) = 2.1704. This estimate indicates that the variance is about twice what we
would expect for the multinomial model. Evidently, our analysis will be adjusted for
overdispersion later.

In this example, the comparison of some baseline logits between female and male animals
is not of interest, therefore a typical Dunnett contrast matrix contains too few compari-
sons and a Tukey contrast matrix contains too many comparisons. For the calculation of
individual log odds ratios, we want to equip matrix A with comparisons to one reference

group and matrix B should contain comparisons separated by gender. That is, within
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categories logits are compared to Lymphocytes (Ly) serving as the baseline category and
these are again compared between treatments (¢ = low, mid, high) and control group,
separately for males and females. Of course, any other category or group may be chosen

as a reference. In our case, A and B are as follows:

1100 000
1010 000

100 -1
-1 0 0 1 000

A=|0o 1 0 -1|, B=

000 —-1100

001 -1
000 1010
000 —-100 1

Thus we obtain a vector @ which is similar to the estimates of the first column in Table
5.8. Again, different standard errors and p-values are shown for the evaluation without
overdispersion and without adjustment for multiple tests as opposed to the calculation
taking overdispersion and multiple testing into account. Without adjustments, the log

odds of Segmented Neutrophils against Lymphocytes appear to be increased in males

Table 5.8: Comparison of adjusted and unadjusted simultaneous test results of
the differential blood count in rats with / without accounting for overdispersion.
Simultaneous test results for the K = 9 comparisons to control for baseline odds ratios each
in female and male. The first column shows the results for comparison without adjustment
for multiplicity and without accounting for overdispersion; the second column shows results for
comparison with multiplicity adjustment and with overdispersion.

w/o MCP, 02 =1 | MCP, 0% = 2.1704

Linear Hypotheses 6, SE(ak) p-value SE(ak) p-value
Eos/Ly: fem.:low - fem.:con -0.2152 | 0.3471  0.5353 | 0.5114 1.0000
Eos/Ly: fem.:mid - fem.:con -0.0725 | 0.3307  0.8265 0.4872 1.0000
Eos/Ly: fem.:high - fem.:con 0.1152 | 0.3185  0.7176 | 0.4693 1.0000
Seg/Ly: fem.:low - fem.:con 0.1357 | 0.0904 0.1332 | 0.1331 0.9963
Seg/Ly: fem.:mid - fem.:con -0.1270 | 0.0947  0.1796 | 0.1395 0.9990
Seg/Ly: fem.:high - fem.:con 0.1097 | 0.0907  0.2264 | 0.1336  0.9997

Mono/Ly: fem.:low - fem.:con 0.1578 | 0.2165  0.4662 | 0.3190 1.0000
Mono/Ly: fem.:mid - fem.:con  -0.0684 | 0.2263  0.7624 | 0.3334  1.0000
Mono/Ly: fem.:high - fem.:con ~ -0.0876 | 0.2294  0.7027 | 0.3380 1.0000
Eos/Ly: male:low - male:con -0.2676 | 0.2629  0.3087 | 0.3873 1.0000
Eos/Ly: male:mid - male:con -0.2533 | 0.2659  0.3407 | 0.3917 1.0000
Eos/Ly: male:high - male:con -0.2947 | 0.2890 0.3079 0.4257 1.0000
Seg/Ly: male:low - male:con 0.0466 | 0.0837  0.5776 | 0.1233 1.0000
Seg/Ly: male:mid - male:con 0.2913 | 0.0809  0.0003 | 0.1192 0.2218
Seg/Ly: male:high - male:con 0.3191 | 0.0852  0.0002 0.1255 0.1747
Mono/Ly: male:low - male:con  -0.2462 | 0.2693  0.3605 | 0.3967 1.0000
Mono/Ly: male:mid - male:con  0.1148 | 0.2489  0.6447 | 0.3667 1.0000
Mono/Ly: male:high - male:con ~ 0.3180 | 0.2510 0.2052 0.3698 0.9995
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Table 5.9: Simultaneous 95% confidence intervals including overdispersion of the
differential blood count in rats on the original scale. Simultaneous confidence intervals for
the K = 9 comparisons to control for baseline odds ratios each in female and male. Simultaneous
confidence intervals are given for a significance level of a = 5%. MCP = multiple comparison
procedure.

MCP, 02 = 2.1704

0, | 25% 97.5%
Eos/Ly: fem.:low - fem.:con 0.8064 | 0.1739 3.7391
Eos/Ly: fem.:mid - fem.:con 0.9301 | 0.2157 4.0107
Eos/Ly: fem.:high - fem.:con 1.1221 | 0.2746 4.5848
Seg/Ly: fem.:low - fem.:con 1.1454 | 0.7683 1.7076
Seg/Ly: fem.:mid - fem.:con 0.8807 | 0.5796 1.3382
Seg/Ly: fem.:high - fem.:con 1.1160 | 0.7474 1.6663
Mono/Ly: fem.:low - fem.:con 1.1709 | 0.4498 3.0482
Mono/Ly: fem.:mid - fem.:con ~ 0.9339 | 0.3435 2.5387
Mono/Ly: fem.:high - fem.:con  0.9162 | 0.3324 2.5248
Eos/Ly: male:low - male:con 0.7652 | 0.2394 2.4454
Eos/Ly: male:mid - male:con 0.7762 | 0.2397 2.5134
Eos/Ly: male:high - male:con 0.7448 | 0.2077 2.6706
Seg/Ly: male:low - male:con 1.0477 | 0.7238 1.5166
Seg/Ly: male:mid - male:con 1.3382 | 0.9358 1.9136
Seg/Ly: male:high - male:con 1.3759 | 0.9444 2.0046
Mono/Ly: male:low - male:con  0.7817 | 0.2378 2.5693
Mono/Ly: male:mid - male:con  1.1216 | 0.3734 3.3691
Mono/Ly: male:high - male:con 1.3744 | 0.4533 4.1676

receiving high or mid dose compared to males in the control group. A similar interpre-
tation is drawn when adjusting for multiplicity but not for overdispersion (not explicitly
calculated here). However, after adjusting for multiplicity and overdispersion, the null
hypothesis of equal odds ”Segmented/Lymphocytes” between males of high, mid and
control group cannot be rejected.

In Table 5.9 the respective two-sided simultaneous 95% confidence intervals on the ori-
ginal scale are given only for the analysis with multiplicity adjustment and adapting to
overdispersion. In this analysis, none of the sCls crosses the null value of 1, so that none
of the comparisons is statistically significant. This corresponds to the interpretation of
the p-values of Table 5.8.

The equivalent analysis in R is partially confusing since an individual contrast matrix
has to be defined. On the one hand, we use the multin2mcp() function to access
the estimates from the VGAM-model, so that the contrast matrix must be determined
via B ® I;. On the other hand, the order of estimates in VGAM is different from the
arrangement initially assumed for our parameter vector 6. This has not been noticed
so far since mcp2matrix() inherits this rearrangement. Now we order the estimates
manually using the order() function. Additionally, the first three columns must be

set to zero, because in the beginning the model was fitted with intercept. The entire
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calculation of this contrast matrix therefore is:

> I <- diag(3)

> library (Matrix)

> B <- matrix(c(-1,1,0,0,

+ -1,0,1,0,

+ -1,0,0,1), byrow=TRUE, nrow=3)
> B <- as.matrix(bdiag(B,B))

> K <- kronecker (B,I)

> Kstar <- K[do.call(order, as.data.frame(X)),]
> Kstar[ ,c(1:3)] <- 0

Kstar is a contrast matrix of dimension 18 x 24, which is not explicitly stated in the
output. Optionally, the contrast matrix can be provided with names for the hypotheses
as row names. In summary, the simultaneous comparison of the linear hypotheses can

be carried out as follows:

> rownames (Kstar) <- c("Eos/Ly: fem.:low - fem.:con",

+ "Eos/Ly: fem.:mid - fem.:con",

+ "Eos/Ly: fem.:high - fem.:con",
+ "Seg/Ly: fem.:low - fem.:con",

+ "Seg/Ly: fem.:mid - fem.:con",

+ "Seg/Ly: fem.:high - fem.:con",
+ "Mono/Ly: fem.:low - fem.:comn",
+ "Mono/Ly: fem.:mid - fem.:con",
+ "Mono/Ly: fem.:high - fem.:con",
+ "Eos/Ly: male:low - male:con",

+ "Eos/Ly: male:mid - male:con",

+ "Eos/Ly: male:high - male:con",
+ "Seg/Ly: male:low - male:con",

+ "Seg/Ly: male:mid - male:con",

+ "Seg/Ly: male:high - male:con",
+ "Mono/Ly: male:low - male:con",
+ "Mono/Ly: male:mid - male:con",
+ "Mono/Ly: male:high - male:con")
>

> mcp <- glht(model = multin2mcp(multivgam, dispersion="overall"),
+ linfct = Kstar)

> summary (mcp)

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

Eos/Ly: fem.:low - fem.:con == 0 0.11518 0.46926 0.245 1.000
Eos/Ly: fem.:mid - fem.:con == 0 -0.07248 0.48722 -0.149 1.000
Eos/Ly: fem.:high - fem.:con == 0 -0.21518 0.51142 -0.421 1.000
Seg/Ly: fem.:low - fem.:con == 0 0.10974 0.13364 0.821 1.000
Seg/Ly: fem.:mid - fem.:con == 0 -0.12705 0.13947 -0.911 0.999
Seg/Ly: fem.:high - fem.:con == 0 0.13572 0.13314 1.019 0.996
Mono/Ly: fem.:low - fem.:con == 0 -0.08755 0.33796 -0.259 1.000
Mono/Ly: fem.:mid - fem.:con == 0 -0.06842 0.33341 -0.205 1.000
Mono/Ly: fem.:high - fem.:con == 0 0.15778 0.31897 0.495 1.000
Eos/Ly: male:low - male:con == 0 -0.29466 0.42572 -0.692 1.000
Eos/Ly: male:mid - male:con == 0 -0.25335 0.39172 -0.647 1.000
Eos/Ly: male:high - male:con == 0 -0.26764 0.38734 -0.691 1.000
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Seg/Ly: male:low - male:con == 0 0.31910 0.12547 2.543 0.175
Seg/Ly: male:mid - male:con == 0 0.29130 0.11924 2.443 0.222
Seg/Ly: male:high - male:con == 0 0.04661 0.12330 0.378 1.000
Mono/Ly: male:low - male:con == 0 0.31804 0.36982 0.860 0.999
Mono/Ly: male:mid - male:con == 0 0.11476 0.36668 0.313 1.000
Mono/Ly: male:high - male:con == 0 -0.24623 0.39669 -0.621 1.000
(Adjusted p values reported -- single-step method)

By utilizing the confint () function, simultaneous 95% confidence intervals are obtained
on the logarithmic scale. As before, facility for converting the sCIs to the original scale
exists by de-logarithmizing the obtained confidence limits using the inverse function

exp().
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Chapter 6

Extensions and Alternative

Approaches

In this chapter, we pay attention to possible extensions of the proposed method and
examine alternative ways analysing multinomial data. The procedure developed in this
thesis can be extended to the case of heterogeneous variances in treatment groups. In
Section 6.1, it is shown how overdispersion can be estimated separately for each group
and modifications in multiple testing are addressed. As possible alternatives, Section
6.2 discusses evaluation approaches using multiple marginal models. Arguments are
based on the model structure and model assumptions as well as parameter estimates

and interpretation.

6.1 Estimating Group-Specific Overdispersion

In the previous chapters, homogeneous dispersion was assumed across groups and one
overdispersion parameter overall has been estimated. It may be desirable for various
applications to estimate heterogeneous dispersion across groups. For instance, Figure
2.1 hints at different variances in treatment groups. For that reason, an individual
dispersion parameter is suggested for each group.

A group specific estimator for overdispersion can be defined as the sum of residuals for

a group ¢ divided by the degrees of freedom from the related intercept-only model

by C by C

Z Z 7nf;bc Z Z
52 b=le=l _ __b=lc=l (6.1)
97 by (C—1)—P, (by—1)(C—1)

with by as the number of clusters belonging to that group and P, the number of non-

redundant parameters needed for the intercept-only model which equals (C' — 1).
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Suppose the parameters of interest and the set of k null hypotheses remain the same as

in 3.16. Then the underlying variance-covariance matrix can be estimated via

523 ... 0
. 723
S = 7252 (6.2)
0o .. 2%,

Simultaneous inference can be drawn according to Section 3.2.4 using a normal distri-
bution as the underlying distribution of test statistics. Since homogeneous variances are
required for using a general degree of freedom in a t¢-distribution, a joint multivariate
t-distribution is not available here. Hasler and Hothorn (2008) state that a single degree
of freedom does not maintain the type-I-error and propose the use of comparison-specific
degrees of freedom. Each test statistic is then compared with a separate quantile coming
from a k-variate t-distribution with adjusted degrees of freedom and correlation matrix
ﬁ, which is the standardised variance-covariance matrix 3.

The approach using a normal distribution as a reference distribution is realized as part of
the additionally implemented functions. The function overdispersion() has the ability
to specify a strata variable to estimate separate dispersion parameters for each strata
level. Consider the developmental toxicity example of Section 5.2.1. An evaluation with

group-specific overdispersion can be accomplished via:

> overdispersion(multivgam, strata="DOSE", data=bivar.re)
0 62.5 125 250 500 all
2.488869 1.222012 1.735192 3.112491 3.045517 2.358171
> mcpSTRAT <- glht(model = multin2mcp(multivgam, dispersion="stratified",

+ data=bivar.re, strata="DOSE"),
+ linfct = mcp2matrix(multivgam,
+ mcp (DOSE = "Dunnett"))$K)

Warning message:
In multin2mcp (multivgam, dispersion = "stratified", data = bivar.re,
results will rely on normal approximation in case of group-specific
overdispersion
> summary (mcpSTRAT)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

malformed/alive: 62.5 - 0 == 0 -14.5687 818.9344 -0.018 1.0000
malformed/alive: 125 - 0 == 0 1.4361 1.0473 1.371 0.5978
malformed/alive: 250 - 0 == 0 3.8473 1.2755 3.016 0.0166 =*
malformed/alive: 500 - 0 == 0 6.0338 1.2495 4.829 <0.001 *xx
dead/alive: 62.5 - 0 == 0 0.4577 0.5466 0.837 0.9196
dead/alive: 125 - 0 == 0 1.5257 0.5280 2.889 0.0237 =x*
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dead/alive: 250 - 0 == 0 1.8379 0.7062 2.603 0.0532
dead/alive: 500 - 0 == 0 4.0268 0.6521 6.175 <0.001 **x
Signif. codes: 0 ’*%%’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’>.” 0.1 ’ > 1

(Adjusted p values reported -- single-step method)

Again, this is an asymptotic approach and the performance for small sample sizes has
not been reviewed yet. Therefore, further simulations with the same background as in

Chapter 3 are recommended.

6.2 Alternative Approaches Using Multiple Marginal
Models

An alternative approach to simultaneously evaluate count data can be based on the for-
mulation of multiple marginal models. Of these, estimates are stacked into a joint vector
of coefficients and a variance-covariance matrix is estimated to simultaneously compare
a set of linear hypotheses. For this purpose, multivariate count data may be modelled as
univariate linear models for binomial data or Poisson-distributed data. To incorporate
overdispersion, quasi-binomial or quasi-Poisson models can be formulated. However,
this implies that the model assumptions are different than previously considered in a

multinomial model.

6.2.1 The Approach of Multiple Marginal Models

A flexible approach has been introduced by Pipper et al. (2012) for multiplicity adjus-
tment when analysing treatment effects from multiple marginal models (MMM). These
models can be evaluated simultaneously by estimating the correlation between the test
statistics using a score decomposition.

Consider L marginal models and let 8; be the vector of parameters of the [-th margi-
nal model. Each maximum likelihood estimator Bl has an asymptotic representation
based on standardized score functions for observations (van der Vaart, 1998). These
asymptotic results still hold when stacking the parameters of interest into a single vec-
tor B8 = (B1,...,08L). According to Pipper et al. (2012), the asymptotic representation
of the stacked version of parameter estimates converges in distribution to the [-variate
normality A(0,X) on behalf of the multivariate central limit theorem. A consistent
estimator of the variance-covariance matrix, f), is obtained by plugging in the para-
meter estimates from the different model fits. Hence no explicit formulation of the
variance-covariance matrix of parameter estimates is required. p-values and quantiles
for simultaneous confidence intervals will be adjusted using a reference distribution,

based on the estimated simultaneous variance-covariance matrix (Hothorn et al., 2008).
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In R the latter is implemented in the R package multcomp by means of the functions
mmm () and glht () for the calculation of the correlation matrix and simultaneous testing
of hypotheses, respectively. In the basic formulation of glht(), when no degrees of
freedom are stated, p-values and quantiles for simultaneous confidence intervals rely on
a multivariate normal distribution. Otherwise, degrees of freedom may be specified as
an additional df argument to glht() and the multivariate ¢ distribution is used for

evaluation.

6.2.2 Model Choice in Case of Multivariate Count Data

In the last chapters, we assumed that each multinomial response vector of counts of a
cluster is distributed multinomially. Multinomial data arise from counting the number of
mutually exclusive categories out of an a priori fixed number of categorical distributed
trials. Clearly, the number of 5 respondents per cluster was determined in advance
in Example 2 of Section 2.6 and the satisfaction rating is exactly one of the levels
“unsatisfied” or ”satisfied” or "very satisfied”. Example 3 of Section 2.7 lists exactly
200 cells per animal and the classification of a white blood cell is restricted to one type
of leukocytes. Thus in both experiments, two important assumptions of a multinomial
distribution hold: the total number of counts per cluster is fixed and every result of a
trial can take exactly one of the possible categories.

But in statistics also cases with count data in several categories occur where these
assumptions do not apply. Therefore, different choices of models for multivariate count
data are possible, e.g. binomial, multinomial or Poisson. Understanding the mechanism
that generated the data helps users identify a suitable model to describe the information.
The following parts deal with the two important features of the multinomial distribution
assumption, i.e. fixed cluster sizes and mutually exclusive categories. The distinction
of multinomially distributed data to Poisson distributed data are discussed as well as
the clear difference between the multinomial model and a multivariate binary/binomial

model.

Fixed Cluster Size

In case of a multinomial distribution, it is assumed that the total number of counts per
cluster has been fixed by the design of the experiment or the sampling process, e.g. in
Example 2 of Section 2.6 and Example 3 of Section 2.7. After careful consideration
of this assumption, the multinomial distribution can be sharply distinguished from the
Poisson distribution which is used for count data whose sample size in clusters is random.
The Poisson distribution applies when the number of events has been collected within
a fixed time interval. This is often accompanied by an unknown upper bound for the
maximum number of events or an upper limit that is very large and therefore assumed

as irrelevant.
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The outcome of Example 1 of Section 2.2 are counts, whose total number per cluster can
be different in each trial. The sample size in clusters is determined by the number of
foetuses one dam carries which is a random variable. Hence the counts in each category
might also be modelled as Poisson. The events of being ”alive”, ”malformed” or ”dead”
are considered to be independent of all other events. An alternative option to analyse
such multivariate Poisson data is the approach of MMM. If we assume that the number
of foetuses is fixed, the method developed in Chapter 3 can be applied to Example
1. Then the random counts no longer follow a Poisson distribution but the random
vectors in each cluster become multinomial. The counts of this vector are no longer

independent, but have to sum up to the total number per cluster. Therefore, the counts

of the categories in a cluster are always negatively correlated in a multinomial model.

Mutually Exclusive Categories

Many examples, which appear to be multinomial at first glance, are often multivariate
binary on closer inspection. Such applications measure several binary variables simulta-
neously in a sequence of a fixed number of trials. These classifications are not mutually
exclusive categories, but rather a collection of binary responses. The number of events
in each endpoint can be summarized per group and cluster. Separately, each count of a
cluster in a group follows a binomial distribution.

Consider a toxicological dose-response study on the offspring of mice after exposure to a
chemical substance to investigate its carcinogenicity. In each mouse pup, it is detected
whether mutations in the lung (EP;), liver (EP,) or spleen (FP3) have occurred. This
type of study involves the collection of several binary outcomes, whereby each response
variable can take one of just two possible values (cancer: yes/no). The data can be

recorded as shown in Table 6.1. In this table, each row corresponds to one experimental

Table 6.1: Data example of ungrouped binary responses. To give an example, imagine
that data was obtained in several clusters with different dose levels on three response variables
(EP,, EP;, EP3) and outcome was assembled with one subject per line. Each outcome is binary
coded and can take one of two values (0/1). The simultaneous occurrence of an event in two or
more response variables is possible.

DOSE DAMID EP, EP, EP;

0 11 0 1 1
0 11 1 1 0
0 11 1 0 1
0 15 0 1
0 15 1 1 1
0 15 0 1 1

62.5 52 1 0 1
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Table 6.2: Data example of grouped binary responses. This Table is generated by
summarizing the data of Table 6.1. The outcome was observed as the number of ”successes” in
a given number of trials mgy. The sample size m, corresponds to the number of subjects in each
cluster, which is considered to be equal for reasons of simplification.

DOSE DAMID my, EP, EP, EP;

0 11 ) 1 3 3
0 15 5 2 2 5
0 52 ) ) 1 1

unit with all response variables being binary coded. For instance, (1,0,0) denotes a
mutational effect in the lung, but not in the liver or spleen. However, in this example,
it is also possible to obtain vectors of the form (1,1,0) which indicate mutations in both
the lung and the liver.

Another representation may be obtained by grouping the data as shown in Table 6.2.
Each row represents the summarized outcome of my trials, i.e. how many subjects out
of my had a particular response. The latter illustration may look multinomial. Still,
more than one organ can be affected by a mutation, which means that the categories
are no longer mutually exclusive. Therefore, based on the scientific question in a study,
several binary endpoints can be combined into a multivariate binary endpoint. When
the binary outcomes are grouped, each count follows a binomial distribution with a
certain cell probability in m, trials.

The method developed in Chapter 3 is not suitable for the analysis of such data since
the assumption of mutually exclusive categories is violated. Despite that, the response
variables may be correlated which can be either positive or negative. An analysis of
multivariate-binary data with mutually exclusive categories is shown in Section 6.2.5.
Multivariate-binomial data with non-exclusive categories, i.e. multiple binary findings
as in Table 6.2, can be evaluated similarly by use of MMM as suggested by Hothorn
(2015).

6.2.3 Overdispersion in a Single Marginal Model

The approach of Pipper et al. (2012) allows to combine multiple marginal models, i.e.
for each category c or response E P, a single marginal model is fitted. Let ¢ be the index
for each outcome and later model. Similar to the assumption in multinomial data, both
binomial and Poisson data may exhibit overdispersion under certain circumstances. In
the presence of clusters, the ordinary model may not be appropriate since the variation
in the data is expected to be greater than the variance assumed under the Poisson model
or the binomial model, respectively. Instead, the variance is assumed to be inflated by an
unknown factor o2. In principle as in the case of multinomial data, to account for extra
variance in the data a dispersion component is introduced and the variance function is

extended through a dispersion parameter o2 var(-) (McCullagh and Nelder, 1989).
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A Poisson random variable is expected to have the same mean and variance, i.e. E(Yy.) =
var(Ygpe) = fighe- 1f the observed variance is larger than the assumed variance, the quasi-
poisson variance function V&I’(ngc) = o2 Hgbe can be used to allow for overdispersion. For
a binomial model with E(Yy.) = mgmge and var(Ygp.) = mgmge(l — mye), the quasi-
binomial variance function is var(Yyee) = 02mgpmge(l — mge).-

Employing the standard approach of Equation 3.12
52 = X?/residual d.f.

by use of Pearson’s statistic for the c-th model

G by
XZ=2) e (6.3)
g=1b=1
with Pearson residuals defined by
Ygbe — ,agbc (6 4)

T'gbe =
gbc =
\/ Hgbe
in the case of Poisson and

Ygbe — mgb%gc
\/mgb%gC(l — Tge)

(6.5)

Tgbc =

in the binomial case, a consistent scale parameter for each marginal model can be esti-

mated by
0. = X;/{N — P.} (6.6)

with N as the number of clusters and P. the number of non-redundant parameters
(McCullagh and Nelder, 1989) in the c-th marginal model. Equation 6.6 holds for
both the Poisson and the binomial model. Therefore, to deal with overdispersion, the
enhanced covariance matrix for 8 is estimated by means of £ = 023 and the usual

standard errors are multiplied by /02 = 0. (Agresti, 2013).

6.2.4 Evaluation of Poisson-Distributed Data Using Multiple Marginal
Models

For illustration, Example 1 of Section 2.2 is to be evaluated in R through multiple
marginal models. We now assume that the number of events in one category is the
random variable to be modelled, following a Poisson distribution. For C' categories, C'

univariate generalized linear models (GLM) are set up: one for each category. Strictly
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speaking, the individual models are of the same structure, each following a Poisson

distribution with its own dispersion parameter.

> ml <- glm(alive ~ DOSE, family=quasipoisson(), data=bivar.re)
> m2 <- glm(malformed ~ DOSE, family=quasipoisson(), data=bivar.re)
> m3 <- glm(dead ~ DOSE, family=quasipoisson(), data=bivar.re)

The three models are combined using the function mmm() of multcomp to estimate the

correlation of the parameters of interest via Pipper et al. (2012).

library (multcomp)

mcpP0I <- glht(mmm(alive = ml, malf = m2, dead = m3),
mlf (mcp (DOSE = "Dunnett")))

summary (mcpP0I)

vV + Vv Vv

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z]|)

alive: 62.5 - 0 == 0 -0.18580 0.08666 -2.144 0.2204
alive: 125 - 0 == 0 -0.18336 0.08003 -2.291 0.1588
alive: 250 - 0 == 0 -0.39735 0.08582 -4.630 <0.001 *x*x*
alive: 500 - 0 == 0 -0.71905 0.09613 -7.480 <0.001 *x*x
malf: 62.5 - 0 == 0 -14.95121 1387.31605 -0.011 1.0000
malf: 125 - 0 == 0 1.25276 1.34181 0.934 0.9567
malf: 2560 - 0 == 0 3.44999 1.21742 2.834 0.0386 =*
malf: 500 - 0 == 0 5.31477 1.20296 4.418 <0.001 *x*x*
dead: 62.5 - 0 == 0 0.27193 0.77585 0.350 1.0000
dead: 125 - 0 == 0 1.34238 0.62572 2.145 0.2195
dead: 250 - 0 == 0 1.44050 0.62256 2.314 0.1507
dead: 500 - 0 == 0 3.30776 0.57429 5.760 <0.001 *x*x*
Signif. codes: O ’**%’ 0.001 ’*xx’ 0.01 ’%’ 0.05 ’.” 0.1 ’> ’ 1
(Adjusted p values reported -- single-step method)

In mcpPOI, the expected difference in log counts is estimated on a Dunnett-type contrast
for each category. This means that the expected log count for each treatment group to
control is calculated. As it is of interest whether the increase between the treatments in
all categories is consistent, the parameters just calculated are once again put into a set of
hypotheses. Accordingly, the matrix of linear functions is defined individually. Because
these comparisons are no longer based on a model, the estimated model parameters and
the corresponding covariance matrix must be passed to glht () via the parm() function.
Note that the coefficients involved in the intermediate step of comparisons are different

from those in the multinomial model.

#dead/alive
-1, 0, 0, 0, 0, O, O, O, 1, O, O, O,

> K <- matrix(c(#malf/alive

+ -1, 0, 0, 0, 1, 0, 0, O, O, O, O, O,
+ o, -1, o0, 0, 0, 1, 0, 0, 0, O, O, O,
+ o, 60, -1, 0, 0, 0, 1, 0, 0, O, O, O,
+ o, o0, 0, -1, 0, 0, 0, &, 0, O, O, O,
+

+
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+ o, -1, 0, 0, 0, O, 0O, O, O, 1, , 0,

+ o, 0, -1, 0, 0, 0, O, O, O, O, 1, O,

+ o, 0, 0, -1, 0, 0, O, O, O, O, O, 1),

+ ncol = 12, byrow = TRUE)

> rownames (K) <- c("malf/alive: 62.5 - 0", "malf/alive: 125 - O",
+ "malf/alive: 250 - 0", "malf/alive: 500 - 0",
+ "dead/alive: 62.5 - 0", "dead/alive: 125 - 0",
+ "dead/alive: 250 - 0", "dead/alive: 500 - O")
> summary (glht (model = parm(coef (mcpP0I), vcov(mcpPOI)),

+ linfct = K))

Simultaneous Tests for Gemneral Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z])
malf/alive: 62.5 - 0 == 0 -14.7654 1387.3267 -0.011 1.00000
malf/alive: 125 - 0 == 0 1.4361 1.3601 1.06566 0.74408
malf/alive: 250 - 0 == 0 3.8473 1.2404 3.102 0.00994 xx
malf/alive: 500 - 0 == 0 6.0338 1.2212 4.941 < 0.001 **x
dead/alive: 62.5 - 0 == 0 0.4577 0.8037 0.570 0.97333
dead/alive: 125 - 0 == 0 1.5257 0.6716 2.272 0.09932 .
dead/alive: 250 - 0 == 0 1.8379 0.6590 2.789 0.02570 =*
dead/alive: 500 - 0 == 0 4.0268 0.6158 6.540 < 0.001 =x*x
Signif. codes: O ’**%’ 0.001 ’*xx’ 0.01 ’x’ 0.05 ’.” 0.1 ’> ’ 1
(Adjusted p values reported -- single-step method)

A comparison with the results from Table 5.3 shows that the final estimates are exactly
the same, except the comparison of "malf/alive: 62.5 - 0” which is due to the low
cell count in ”"malformed” of Dose 62.5. Still, the standard errors of the two analyses
slightly vary because different assumptions for the variance have been considered. The
analysis working with multiple marginal models uses separate dispersion estimates for
each model, while the analysis in Table 5.3 incorporates an overall dispersion parameter
for the whole dataset.

Figure 6.1 shows the estimated correlation matrix (ﬁ) of the coefficients of the compa-
risons to control (the latter estimates). The correlation matrix is estimated in several
steps in this type of evaluation via multiple Poisson models: First, the mmm() function
estimates an empirical variance-covariance matrix of the stacked parameters according
to Pipper et al. (2012). Next, glht() computes its variance-covariance matrix on the
linear combination according to Dunnett and the just estimated covariance matrix of
the coefficients of mmm(). Then again this covariance matrix is processed to calculate
a variance-covariance matrix on the linear combination of estimated coefficients of the
comparisons to control within a category as defined in K. Finally, the latter matrix
is standardized resulting in the correlation matrix R. This correlation matrix is used
for simultaneous inference, calculating z-statistics and associated p-values. Parameters
referring to the control group for the same log odds are positively correlated. That is
within the set of hypotheses of "malf/alive” and within ”dead/alive”, whereas "malf/a-

live” shows a higher correlation than ”dead/alive”.
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malf/alive: 62.5 -

malf/alive: 125 -

malf/alive: 250 - Correlation
N
malf/alive: 500 - 0.5
0.0
dead/alive: 62.5 -
-0.5
dead/alive: 125 - -1.0

dead/alive: 250 -

dead/alive: 500 -

0.15 0.17 0.1 0.22

malf/alive: 62.5 -0 -
malf/alive: 125 -0 -
malf/alive; 250 - 0 -
malf/alive: 500 - 0 -
dead/alive: 62.5 -0~
dead/alive: 125-0 -
dead/alive: 250 - 0 -
dead/alive: 500 - 0 -

Figure 6.1: Estimated correlation matrix (ﬁ) for the Poisson analysis. Respective
correlation matrix for the simultaneous analysis of Poisson distributed variables in the develop-
mental toxicity example. Correlations are shown, with red indicating a positive correlation and
blue negative correlation.

By way of comparison, Figure 6.2 displays the estimated correlation matrix used for the
simultaneous inference of the coefficients of the multinomial model of Table 5.3. Since the
correlation matrix is not estimated via mmm () but based directly on the model parameters
of the multinomial model, of which the category ”malformed” of group 62.5 has an

estimator with a very high standard deviation, all correlations involving comparisons
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Figure 6.2: Estimated correlation matrix (ﬁ) for analysis under multinomial as-
sumption. Respective correlation matrix for the simultaneous analysis of multinomial responses
in the developmental toxicity example. Correlations are shown, with red indicating a positive
correlation and blue negative correlation.
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to that estimate are ”0”. The correlations within ”dead/alive” are similar to those
in Figure 6.1. The off-diagonal blocks show little correlation. More conclusions on

comparing these different analysis methods are summarized in Section 6.2.6.

6.2.5 Evaluation of Multivariate-Binomial Data Using Multiple
Marginal Models

Alternative approaches to evaluate multinomial data with C' mutually exclusive catego-
ries as multivariate binomial exist in two ways. On the one hand, binary logit models
can be separately fitted for pairs of response categories using only observations from two
response categories, one of which is the baseline category (Agresti, 2003). For instance,
the baseline-category logits in case of three mutually exclusive categories can be defined
as

2 3
log—, log—.
m st

These logits can be assessed in univariate models and evaluated simultaneously by means
of MMM, so that correlation is taken into account. However, estimates from separate
logistic models containing only two categories out of C will be different to those from a
simultaneous model and also tend to have larger standard errors, although the efficiency
loss when choosing the most frequent category as a reference category is small (Agresti,
2003, p. 273).

On the other hand, separate binary logit models can be fitted with one category versus
the sum of the remaining categories, which can also be assessed simultaneously using

MMM. For example, the logits modelled in case of three categories are defined as

3

lo , lo , lo .
g7T2+7r3 g7T1+7T3 gﬂ'l—l-ﬂ'g

That means that each marginal model consists of a response variable which uses all C
response categories. This approach appears to be similar to cumulative logits, except
that one category ¢ forms one outcome and all other categories (1,...,¢—1, c+1,...,C)
form the second outcome. The first and last so defined logit is the same as in the model
for cumulative logits regardless of the sign. We will use logits as just defined and evaluate
them by using MMM in the next paragraph.

The data of Example 1 of Section 2.2 is used to demonstrate the aforementioned pro-
cedure of separate binary logit models as in the last definition. Initially, the dependent
multinomial variable is split into multiple binomial responses to get the data format as
needed. By always maintaining a reference category and combining the other categories
to one, the sample size in clusters remains the same. Thus, the probability for the re-
ference category stays the same and only the probabilities of the remaining categories

add up.
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> bivar.re$maldead <- bivar.re$malformed + bivar.re$dead
> bivar.re$alivedead <- bivar.re$alive + bivar.re$dead
> bivar.re$alivemal <- bivar.re$alive + bivar.re$malformed
> head(bivar.re)

DAM_ID DOSE alive malformed dead maldead alivedead alivemal
1 51 0 10 0 0 0 10 10
8 60 0 14 0 0 0 14 14
9 61 0 11 0 1 1 12 11
15 70 0 17 0 0 0 17 17
16 71 0 15 0 0 0 15 15
23 79 0 17 0 0 0 17 17

Now we assume that the random vectors of (alive, maldead), (malformed, alivedead)
and (dead, alivemal) arise from a binomial experiment. Accordingly, three univariate
GLM with quasi-binomial error distribution are fitted, each having its own dispersion
parameter. Afterwards, all marginal models can be assessed simultaneously by glht ()

via calling mmm ().

ml <- glm(cbind(alive, maldead) ~ DOSE,
family=quasibinomial (), data=bivar.re)

m2 <- glm(cbind(malformed, alivedead) ~ DOSE,
family=quasibinomial (), data=bivar.re)

m3 <- glm(cbind(dead, alivemal) ~ DOSE,
family=quasibinomial (), data=bivar.re)

library (multcomp)

mcp <- glht(mmm(MD.alive

mlf (mcp (DOSE

AM.dead m3) ,

ml, AD.malf
"Dunnett")))

m2,

vV + VvV + V + Vv + VvV

summary (mcp)
Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z])

MD.alive: 62.5 - 0 == 0 -0.2346 0.8338 -0.281 0.9998
MD.alive: 125 - 0 == 0 -1.5084 0.6427 -2.347 0.0960
MD.alive: 250 - 0 == 0 -2.6672 0.6104 -4.369 <0.01 %%
MD.alive: 500 - 0 == 0 -4.8546 0.59561 -8.157 <0.01 *x*xx
AD .malf: 62.5 - 0 == 0 -15.2516 1478.4375 -0.010 1.0000
AD.malf: 125 - 0 == 0 1.3433 1.1361 1.182 0.6859
AD.malf: 250 - 0 == 0 3.7139 1.0327 3.596 <0.01 *x*
AD .malf: 500 - 0 == 0 5.1221 1.0193 5.025 <0.01 *x*xx
AM.dead: 62.5 - 0 == 0 0.4647 0.7344 0.633 0.9667
AM.dead: 125 - 0 == 0 1.5039 0.59562 2.527 0.0619 .
AM.dead: 250 - 0 == 0 1.5630 0.5924 2.639 0.0462 =*
AM.dead: 500 - 0 == 0 2.6733 0.5449 4.906 <0.01 *xxx
Signif. codes: O ’**%’ 0.001 ’*xx’ 0.01 ’%’ 0.05 ’.” 0.1 ’> ’ 1
(Adjusted p values reported -- single-step method)

Certainly, this is a completely different analysis and can not be compared with the
previous evaluations. The data has been restructured and three binary logistic regression
models have been undertaken. The parameters are therefore others than before and

the interpretation varies. The output of summary(mcp) displays the coefficients and
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Figure 6.3: Estimated correlation matrix (ﬁ) for the analysis of multivariate binary
responses. Respective correlation matrix for the simultaneous analysis of binary response
variables in the developmental toxicity example. Correlations are shown, with red indicating a
positive correlation and blue negative correlation.

their standard errors of all logistic regression models together with the simultaneous
z-statistics and the associated p-values. The logistic regression coefficients give the
change in the log odds ratios of the outcome if the subject moves from the control group
to another dose group.

The underlying estimated correlation matrix (ﬁ) used for simultaneous inference is
shown in Figure 6.3. The log odds ratios of being alive versus being malformed or dead
are negatively correlated to the log odds ratios of being malformed versus being alive
or dead and to the log odds ratios of being dead versus being alive or malformed. This
is due to the fact that as the survival rate decreases, the rates of malformed and dead

increase.

6.2.6 General Considerations

In general, the model choice has to be considered in order to show differences in the
presented alternative approaches. Depending on the structure and associated assumpti-
ons, the models provide different model parameters, i.e. estimates, standard errors and
variance-covariance matrix, which are used for simultaneous inference.

In comparison, estimates are nearly the same in case of the multinomial model and the
multinomial marginal Poisson-models (MMM-Poisson). That is estimates are log odds
ratios of one category compared to baseline between groups in the multinomial case and
correspondingly ratios of expected counts compared to reference in the Poisson case. In
the evaluation of multivariate binomial data with MMM, the estimates of interest are

the differences of log odds ratios of an observational unit having a characteristic versus
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not having the characteristic, which is the union of all complementary events (e.g. log
odds ratios of being dead versus being alive or malformed).

Therefore, standard errors are estimated on different variance assumptions according to
the model theory. In the multinomial model, one variance estimation with one disper-
sion parameter takes place, whereas in the approach of MMM several univariate Poisson
models are used, all having their own category-specific dispersion parameter. The esti-
mation of the variance-covariance matrix is also different in each approach. In case that
the distribution is assumed to be multinomial, the variance-covariance matrix is deri-
ved on the basis of this assumption. In the approach of MMM, the variance-covariance
matrix is empirically estimated. Together, this results in different test statistics with
different correlations. In addition, the procedures differ in their reference distribution.
The test statistics of the multinomial model parameters are compared with quantiles
of a k-variate t-distribution. When evaluating the test statistics of MMM the reference
distribution is multivariate normal in R since no corresponding degrees of freedom were
specified. It can be expected that by specifying degrees of freedom, the approach of
MMM can be improved.

Overall, we recommend using the multinomial method, if the multinomial assumption
is ensured by the sampling process. That is that the total number of counts per cluster
has been fixed by design of the experiment, as for example in highly controlled studies.
If this number is rather a random variable, it is currently not clear which approach is
preferable: MMM-Poisson accounts for random cluster sizes, but it is obscure whether
and how this affects the precision of simultaneous confidence intervals or the type-I-error.
In general, both the multinomial method and the approach of MMM are asymptotic. In
case of small sample sizes, the former may provide more robust results. As opposed to
this MMM could lead to better results if the distributional assumption is wrong because
the variance-covariance matrix is estimated empirically. Of course, this guesswork should

be verified in detailed simulation studies.



Chapter 7

Discussion

This thesis underlines that adjusting for overdispersion and multiple comparisons is
important in statistical inference of multinomial clustered data. A novel method was
proposed to adjust either p-values or confidence intervals appropriately. For multiple
comparisons of odds ratios between multiple multinomial clustered response probabili-
ties, this method allows for overdispersion in sense that a dispersion parameter is incor-
porated in the test distribution. Corresponding R-code of the procedure is available the
Appendix B.1 and also ready for use as a source file from the website of the Institute (see
details in Chapter 5 and Appendix B.2). It enables the R-package multcomp for multiple
comparisons based on multinomial models fitted by the VGAM-package while accounting
for overdispersion.

The detailed simulations indicate that the proposed method provides control of the
familywise error rate in a strong sense. The familywise error rate is retained in case of
high event counts for various magnitudes of overdispersion, i.e. a degree of overdispersion
of 02 = 1.01 up to o = 8. Simultaneous confidence intervals were computed for multiple
comparisons to control and all pairwise comparisons and their coverage probability was
evaluated. It is shown that the coverage probability is close to the nominal level when the
minimal expected event count is at least 35 at moderate overdispersion (02 = 2). The
higher the amount of overdispersion, the more clusters and higher sample sizes in clusters
are needed to achieve a nominal coverage. If the minimum expected event count is small,
simultaneous coverage is higher than the nominal level. Power simulations demonstrate
that sufficient power is reached even in extreme expectations of probabilities. A power
of at least 80% can be achieved even at substantial overdispersion for sparse categories.
The power decreases with fewer clusters and fewer sample size in the clusters. Due to
the small sample performance, we recommend the use of this methodology in trials with
a sufficient number of observations or highly controlled biological experiments.

The simulations are restricted to settings with equal cluster sizes and equal number of

clusters. Therefore, the simulations do not cover applications in which cluster sizes and
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number of clusters can be expected to be very different like in observational studies.
Yet, this method is versatile and may be considered in many other areas not addressed
in this thesis.

All simulations, graphics and data analyses in this thesis were programmed in R (R Core
Team, 2015). The use of implemented R functions was explained using three examples
from different research areas. These functions provide simultaneous tests and confidence
intervals for standard multiple comparisons such as multiple comparisons to control and
all pairwise comparisons as well as user-defined contrasts for multiple odds ratios.

It is a limitation that our approach is based on asymptotic results. Nevertheless, it may
also be used for small event counts, if one can accept that the coverage probability will
usually be too high, but may rarely fall below the nominal level. Westfall and Wolfinger
(1997) investigate an exact method that shows a close approximation to the nominal
level for multinomial data without overdispersion. According to present knowledge no
exact method exists in case of overdispersion.

Attention should be paid to the fact that dealing with groups mainly containing zeros
need to be improved in our method. A very low probability of events in a group or
category affects model fitting (Agresti, 2013). When counts of at least one category
become zero for all clusters within one group, very extreme estimates occur and standard
errors become very large. If such events occur frequently, the actual coverage probability
is much larger than the nominal confidence level (see Figure A.1 in Appendix A.1). It
can be assumed that with more than three categories, the proportion of at least some
categories will continue to get low. Thereby, the definition of many categories also
affects the minimal expected event count, which tends to smaller values in that case.
These circumstances may lead to more rare categories and sparse data. A way of dealing
with sparse data tables could be based on approaches that have already been proposed
for two-way contingency tables. Anscombe (1956) suggests adding 0.5 or some other
certain small constant to all cells if any cell is zero. Plackett (1962), on the other
hand, recommends replacing the zero cell entries by 0.5 only for the affected contrasts.
Fienberg (1969) discusses replacement values depending on the row and column of the
cell entry. Some of these suggestions for improvement are addressed by Schaarschmidt
et al. (2017) regarding multiple comparisons of odds ratios between multiple multinomial
samples without overdispersion. In addition, they propose a MCMC technique based
on sampling from Dirichlet posterior distributions with vague Dirichlet priors as a small
sample approach. An analogue adaptation for the case with overdispersion remains to
be investigated. In summary, various possibilities of continuity correction may lead to
more adequate intervals and provide scope for further improvement.

There is little in the professional literature on accounting for overdispersion in multi-

nomial data. References such as Bilder and Loughin (2014), Agresti (2013), Crawley
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(2013), Tutz (2011) and Venables and Ripley (2002) comprehensively explain the hand-
ling of overdispersion in a binomial or Poison model. Up to now a naive approach to
the analysis of clustered multinomial data is the aggregation of clusters into a single
observational vector per group. The result is a g X ¢ contingency table which is of-
ten evaluated using Pearson’s test statistic (Agresti, 2013). This analysis tests the null
hypothesis that the probabilities of the categories are consistent across groups and no
statistically significant relationship between the categories and treatment groups exist.
For a more detailed interpretation, Schaarschmidt et al. (2017) analyse the example of
developmental toxicity in terms of group differences between odds ratios but also assume
the absence of clusters, i.e. 7> = 1. We strongly advise against collapsing over individual
clusters and thereby ignoring possibly present overdispersion. Statistical inference will
lead to erroneous decisions by underestimating the variability of the data.

The first to consider overdisersion in a multinomial model by inflation of the variance-
covariance matrix are McCullagh and Nelder (1989). Studying vector generalized linear
and additive models, Yee (2015) generalizes the estimation of a dispersion parameter by
full maximum likelihood. Nevertheless, adjustment of statistical inference for multiple
comparisons is missing. Obviously, resulting p-values and confidence intervals can be
adjusted by the Bonferroni-method. However, this is known for being conservative with
respect to familywise error rate control (Bretz et al., 2010). Less conservative methods
to adjust against committing a type-I-error like the Bonferroni-Holm-method may be
considered, but do not provide simultaneous confidence intervals with a straightforward
interpretation (Strassburger and Bretz, 2008).

The alternative approach by using multiple marginal models (MMM) as proposed by
Pipper et al. (2012) offers a flexible option for analysing several quasi-binomial or quasi-
Poisson models at once by taking their correlation into account. By modelling univariate
Poisson-models with dispersion parameter on each category, the example of developmen-
tal toxicity can be evaluated while assuming random cluster sizes. It is important to
emphasize the different assumptions of this procedure and the difference in model pa-
rameters. Thus, for the developmental toxicity example estimates are identical to the
multinomial analysis after defining an appropriate contrast matrix, but standard errors
are higher than in the multinomial model. The dispersion parameter was taken to be
2.358 in the multinomial model overall, while for the individual Poisson models it is
estimated at o7, = 0.899, 7, = 2.881 and &7,,, = 2.549. Also this approach is
asymptotic and even has an additional asymptotic element in comparison to the mul-
tinomial approach since the variance-covariance matrix is estimated on the observed
information matrix. The control of the type-I-error in case of an analysis with MMM
has not been studied separately in this thesis. As Pipper et al. (2012) admits that the
performance in case of small sample sizes may break down it should be further investi-

gated. Furthermore, a direct comparison of the two methods, i.e. our proposed method
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and MMM, might be helpful in making a recommendation on the practical application.
We have seen that the example of developmental toxicity can be analysed with both the
multinomial method and MMM. Nevertheless, no statement can be made as to which
method is more suitable. Additional simulations on the suitability of one or the other
method and their robustness when assumptions are violated are recommended.

In this thesis only multinomial responses, i.e. assuming nominal categories, were con-
sidered. The proposed method can also be applied to ordered categorical response
categories, but no benefit is taken from the additional information of order. Separate
models for ordinal scales exist and are based on cumulative response probabilities rather
than categorical probabilities. The ordered logit model only applies if the cumulative
odds ratio is constant across categories. Morel and Neerchal (2012) discuss how to test
this assumption in a multinomial model under overdispersion.

In the simulations of this thesis, we have assumed homogeneous dispersion across groups
as estimated in one overdispersion parameter overall. As noted in Chapter 6, there is
the possibility to develop group-specific overdispersion parameters and incorporate them
individually into the variance-covariance matrix. If, for instance in the example of diffe-
rential blood count in rats, the overdispersion is calculated individually for each group,
one obtains 62 = (1.36,2.52,1.99,2.92) as the vector of overdispersion parameters with
single estimators in the order of control group, low dose, mid dose and high dose. This
suggests heterogeneous variances in treatment groups, which may change statistical in-
ference. Although estimates of group-specific dispersion parameters are ready for use,
a multiple test procedure needs to be investigated. A joint multivariate ¢-distribution
as in our proposed method is not accessible in that case. One can still use the mul-
tivariate normal distribution for approximation. Otherwise specifying a multivariate
t-distribution with dispersion-specific degrees of freedom may improve the performance
(Hasler and Hothorn, 2008). It would be of interest if this approach still controls for the
type-I-error rate. One might also consider heterogeneous variances across categories in
further investigations.

The focus of this thesis was on many-to-one and all-pairwise comparisons. As indicated
in the last example, user-defined contrasts are feasible as well as other multiple contrasts,
e.g. comparisons to the grand mean. The proposed method may also be extended
to overdispersed multinomial regression models involving covariates. It is possible to
include interaction terms in the model but the definition of a suitable contrast matrix
for multiple comparisons might be very complex. Similar to the paper of Schaarschmidt

et al. (2017), this is rather a computational effort than a methodological problem.



Appendix A

A.1 Simulation Results Dependent on the Probability of

Zeros in Groups
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Figure A.1: Simultaneous coverage probability for multiple comparisons to a control
and all pairwise comparisons. Estimated coverage probability for two-sided simultaneous
confidence intervals depending on the minimum expected event count. First, for 4 groups com-
paring to control in the top two rows (many-to-one), and second, for all pairwise comparisons
with 4 groups in the bottom two rows (all-pairs). Scenarios are separated line by line according
to settings in which all logits of interest are equal in all treatments groups (H[0]) and settings
in which at least one logit is different between treatments groups (H[A]). Grayscale is used to
distinguish between the probabilities that at least one group contains only zeros, which may be
in intervals of [0, 0.001], (0.001, 0.1] or (0.1, 1]. Each point is evaluated by 10,000 simulation runs.
A nominal level of 0.95 coverage is represented by the horizontal red line.
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A.2 Parameter Settings Used for Multinomial Proportions

in Simulations

Table A.1: All parameters settings used for simulation. Parameters settings for 7. used
in simulations of C' = 3 categories and G = 4 groups.

c=1c=2c=3c=1c=2c=3c=1¢c=2c=3c=1c=2c=3c=1c=2c=3c=1c=2

c=3

g=1 033 033 033 050 030 0.20 0.50 0.40 0.10 0.50 0.45 0.05 0.46 0.45 0.08 0.80 0.10
g=2 033 033 0.33 050 0.30 0.20 0.50 0.40 0.10 0.50 0.45 0.05 0.46 0.45 0.08 0.80 0.10
g=3 033 033 033 050 030 0.20 0.50 0.40 0.10 0.50 0.45 0.05 0.46 0.45 0.08 0.80 0.10
g=4 033 033 0.33 0.50 0.30 0.20 0.50 0.40 0.10 0.50 0.45 0.05 0.46 0.45 0.08 0.80 0.10

0.10
0.10
0.10
0.10

g=1 080 0.15 0.05 0.80 0.19 0.01 0.90 0.05 0.05 0.90 0.08 0.02 0.90 0.09 0.01 0.20 0.30
g=2 080 0.15 0.05 0.80 0.19 0.01 0.90 0.05 0.05 0.90 0.08 0.02 0.90 0.09 0.01 0.20 0.30
g=3 080 0.15 0.05 0.80 0.19 0.01 0.90 0.05 0.05 0.90 0.08 0.02 0.90 0.09 0.01 0.20 0.30
g=4 080 0.15 0.05 0.80 0.19 0.01 0.90 0.05 0.05 0.90 0.08 0.02 0.90 0.09 0.01 0.20 0.30

0.50
0.50
0.50
0.50

g=1 010 0.40 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10 0.80 0.05 0.15 0.80 0.01 0.19
g=2 010 0.40 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10 0.80 0.05 0.15 0.80 0.01 0.19
g=3 010 0.40 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10 0.80 0.05 0.15 0.80 0.01 0.19
g=4 010 040 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10 0.80 0.05 0.15 0.80 0.01 0.19

0.80
0.80
0.80
0.80

g=1 005 0.05 0.90 0.02 0.08 0.90 0.01 0.09 0.90 0.33 0.33 0.33 0.50 0.30 0.20 0.50 0.40
g=2 005 0.05 0.90 0.02 0.08 0.90 0.01 0.09 0.90 0.33 0.33 0.33 0.50 0.30 0.20 0.50 0.40
g=3 005 0.05 090 0.02 0.08 0.90 0.01 0.09 0.90 0.50 0.30 0.20 0.50 0.40 0.10 0.50 0.45
g=4 005 0.05 0.90 0.02 0.08 0.90 0.01 0.09 0.90 0.50 0.30 0.20 0.50 0.40 0.10 0.50 0.45

0.10
0.10
0.05
0.05

g=1 050 045 0.05 046 045 0.08 0.80 0.10 0.10 0.80 0.15 0.05 0.80 0.19 0.01 0.90 0.05
g=2 050 045 0.05 046 045 0.08 0.80 0.10 0.10 0.80 0.15 0.05 0.80 0.19 0.01 0.90 0.05
g=3 046 045 0.08 0.80 0.10 0.10 0.80 0.15 0.05 0.80 0.19 0.01 0.80 0.15 0.05 0.90 0.08
g=4 080 0.10 0.10 0.80 0.15 0.05 0.80 0.19 0.01 0.90 0.05 0.05 0.80 0.10 0.10 0.90 0.09

0.05
0.05
0.02
0.01

g=1 090 0.08 0.02 0.20 0.30 0.50 0.10 0.40 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10
g=2 090 0.09 0.01 0.20 0.30 0.50 0.10 0.40 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10
g=3 090 0.09 0.01 033 033 033 0.20 0.30 0.50 0.10 0.40 0.50 0.05 0.45 0.50 0.05 0.45
g=4 090 0.09 0.01 0.33 0.33 0.33 0.33 0.33 0.33 0.20 0.30 0.50 0.08 0.45 0.46 0.10 0.40

0.80
0.80
0.50
0.50

g=1 005 0.15 0.80 0.01 0.19 0.80 0.05 0.05 0.90 0.02 0.08 0.90 0.33 0.33 0.33 0.50 0.30
g=2 005 0.15 0.80 0.01 0.19 0.80 0.05 0.05 0.90 0.01 0.09 090 0.33 0.33 0.33 0.50 0.30
g=3 010 0.10 0.80 0.05 0.15 0.80 0.05 0.15 0.80 0.01 0.09 0.90 0.20 0.30 0.50 0.33 0.33
g=4 008 045 0.46 0.10 0.10 0.80 0.08 0.45 0.46 0.01 0.09 0.90 0.20 0.30 0.50 0.20 0.30

0.20
0.20
0.33
0.50

g=1 050 040 0.10 0.50 0.45 0.05 0.46 0.45 0.08 0.80 0.10 0.10 0.80 0.15 0.05 0.80 0.19
g=2 050 040 0.10 0.50 0.40 0.10 0.46 0.45 0.08 0.80 0.10 0.10 0.80 0.15 0.05 0.80 0.19
g=3 050 0.30 0.20 0.50 0.45 0.05 0.50 0.45 0.05 0.46 0.45 0.08 0.80 0.10 0.10 0.46 0.45
g=4 033 033 033 020 030 0.50 0.20 0.30 0.50 0.10 0.40 0.50 0.46 0.45 0.08 0.05 0.45

0.01
0.01
0.08
0.50

g=1 090 0.05 0.05 090 0.08 0.02 0.20 0.30 0.50 0.10 0.40 0.50 0.05 0.45 0.50 0.08 0.45
g=2 090 0.05 0.05 0.90 0.05 0.05 0.20 0.30 0.50 0.10 0.40 0.50 0.05 0.45 0.50 0.08 0.45
g=3 080 0.19 0.01 080 0.19 0.01 0.10 0.40 0.50 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10
g=4 020 0.30 0.50 0.80 0.15 0.05 0.05 0.45 0.50 0.08 0.45 0.46 0.10 0.10 0.80 0.05 0.15

0.46
0.46
0.80
0.80

g=1 010 0.10 0.80 0.05 0.15 0.80 0.01 0.19 0.80 0.05 0.05 0.90 0.02 0.08 0.90
g=2 010 0.10 0.80 0.05 0.15 0.80 0.01 0.19 0.80 0.05 0.05 0.90 0.05 0.05 0.90
g=3 005 0.15 0.80 0.01 0.19 0.80 0.05 0.05 0.90 0.02 0.08 0.90 0.01 0.19 0.80
g=4 001 0.19 080 0.05 0.05 0.90 0.02 0.08 0.90 0.01 0.09 0.90 0.05 0.15 0.80
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B.1 Implementation in R

B.1.1 Updated multcomp Functions for vglm-Objects

Some parts of the R code is taken from the R package multcomp (Hothorn et al., 2008) to
customize it for the use with objects of class ”vglm” of the R package VGAM (Yee, 2015).

model .frame.vglm <- function(model){

model.frame <- model.framevlm(model)

}
modelparm.vglm <- function(model, ...){

df <- (dim(model@y) [2]-1)*model@misc$n - length(coef (model))

multcomp: : :modelparm.default (model, coef. = coef, vcov. = vcov, df = df)
}

mcp2matrix.vglm <- function(model, linfct){

fc <- multcomp:::factor_contrasts(model)

contrasts <- fc$contrasts

factors <- fc$factors

intercept <- fc$intercept

mf <- fc$mf

mm <- fc$mm

alternative <- NULL

if ('is.list(linfct) || is.null(names(linfct)))
stop(sQuote("linfct"), "is not a named list")

nhypo <- names(linfct)

checknm <- nhypo %in% rownames(factors)

if (tall(checknm))

stop("Variable(s) ", sQuote(nhypol[!checknm]), " have been specified in ",
sQuote("linfct"), " but cannot be found in ", sQuote("model"),
n ! n )

if (any(checknm)) {
checknm <- sapply(mf [nhypo[checknm]], is.factor)
if (!all(checknm))
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stop("Variable(s) ", sQuote(paste(nhypol[!checknm],

collapse = ", ")), " of class ",
sQuote (paste(sapply (mf [nhypo[!checknm]], class), collapse =", ")),
" is/are not contained as a factor in ", sQuote("model"), ".")
}
m <- c()
ctype <- c()

for (am in nhypo) {
if (is.character(linfct[[nm]])) {
Kchr <- function(kch) {

types <- eval(formals(contrMat)$type)

pn <- pmatch(kch, types)

if (lis.na(pm)) {
tmpK <- contrMat(table(mf[[nm]]), type = typesl[pm])
ctype <<- c(ctype, types[pm])

}

else {
tmp <- chrlinfct2matrix(kch, levels(mf[[nm]]))
tmpK <- tmp$K
m <<- c(m, tmp$m)
if (is.null(alternative)) {

alternative <<- tmp$alternative

X
else {
if (tmp$alternative != alternative)
stop("mix of alternatives currently not implemented")
X

}
if (is.null(rownames (tmpK)))
rownames (tmpK) <- paste(kch, 1:nrow(tmpK),
sep = "_")
if (length(nhypo) > 1)
rownames (tmpK) <- paste(unm, rownames (tmpK),
sep = ": ")
list(K = tmpK)
}
tmp <- lapply(linfct[[nm]], Kchr)
linfct[[nm]] <- do.call("rbind", lapply(tmp, function(x) x$K))

}
for (am in nhypo) {
if (is.character(contrasts[[nm]])) {

C <- do.call(contrasts[[nm]], list(n = nlevels(mf[[nm]])))
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else {
C <- contrasts[[nm]]

}

if (intercept || (!intercept &% nm != colnames(factors)[1])) {
Kstar <- linfct[[nm]] %*% C

}

else {
Kstar <- linfct[[nm]]

}

pos <- factors[nm, ] == 1

if (sum(pos) > 1)
warning("covariate interactions found -- ",
"default contrast might be inappropriate")
attr(mm,"assign") <- unlist(attr(mm,"assign"))
newlist <- attr(mm,"vassign")
flist <- newlist[grep(nm, names(newlist))]
level <- lapply(flist, function(x) attr(mm,"assign") %in% x)
hypo <- vector(mode = "list", length = length(level))
for(dp in seq_along(level)){

hypo[[dp]] <- list(K = Kstar, where = level[[dp]l])

}
Ktotal <- matrix(0, nrow = sum(sapply(hypo, function(x) nrow(x$K))),
ncol = ncol(mm))

colnames (Ktotal) <- colnames (mm)
count <- 1
for (h in hypo) {

Ktotal[count: (count + nrow(h$X) - 1), h$where] <- h$K

count <- count + nrow(h$K)
}
if (!is.matrix(Ktotal))

Ktotal <- matrix(Ktotal, nrow = 1)
nlist <- lapply(hypo, function(x) rownames(x$K))
refkatnr <- model@extra$use.reflevel
ratios <- paste(rep(dimnames(model@y) [[2]] [-refkatnr],

each=length(nlist[[1]])),
dimnames (model@y) [[2]] [refkatnr], sep="/")
rnames <- paste(ratios,
unlist(nlist), sep=": ")

rownames (Ktotal) <- rnames
if (is.null(ctype))

ctype <- "User-defined"
ctype <- paste(unique(ctype), collapse = ", ")
attr(Ktotal, "type") <- ctype



76 Appendix B

if (length(m) == 0)
m <- 0

list(K = Ktotal, m = m, alternative = alternative, type = ctype)

B.1.2 Estimating Overdispersion

Function to estimate overdispersion overall or group-specific for each individual group

level.

overdispersion <- function(model, data=NULL, strata=NULL){
if (is.null (model)){
warning("object ", sQuote(model), " not found", call. = TRUE)

osd <- sum(residuals(model, type = "pearson") 2)/(model@df.residual)

if('is.null(strata) & is.null(data)){
warning("data.frame with strata variable needed, ",
"please specify a ’data’ argument", call. = TRUE)
}
else if (!is.null(strata)) {
group.residuals <- as.data.frame(residuals(model, type = "pearson"))
group.residuals$group <- datal,stratal
rij.list <- split(group.residuals, group.residuals$group)
rij.list$all <- group.residuals
osd.strata <- sapply(rij.list, function(x) {
npar <- (ncol(x)-1)*length(levels(factor(x$group)))
x["group"] <- NULL
sum(x ~ 2) / (arow(x) * (ncol(x)) - npar)
b
return(osd.strata)
}

else return(osd)

B.1.3 Prepare Model Parameters for use in glht()

Construct a covariance matrix and extract degrees of freedom depending on the definition

in the dispersion argument to perform asymptotic multiple comparisons.

multinZmcp <- function(object, dispersion=c("none","overall","stratified"),

data=NULL, strata=NULL){
disptype <- match.arg(dispersion)
if (disptype=="stratified" && (is.null(strata) | is.null(data)))
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warning("additional arguments needed", call. = TRUE)
if (disptype=="stratified")
warning("results will rely on normal approximation in case of
group-specific overdispersion", call. = TRUE)
switch(disptype,
none = {
vcov <- vcov(object)
df = (dim(object@y) [2]-1)*object@misc$n - length(coef (object))
},
overall = {
vcov <- vcov.disp(object)
df = (dim(object@y) [2]-1)*object@misc$n - length(coef (object))
},
stratified = {
vcov <- vcov.disp(object, data, strata)

if (!isSymmetric(vcov, tol = sqrt(.Machine$double.eps)))

{

vcov <- as.matrix(forceSymmetric(vcov))
df =0

}

parm.object <- parm(coef (object), vcov = vcov, df=df)

return(parm.object)

vcov.disp <- function(model, data=NULL, strata=NULL){
xvar <- model@assign[names(model@assign) != "(Intercept)"]

nrxvar <- length(xvar)

if (nrxvar > 1){stop("no vcov computable: currently dispersion-adjustments of

vcov are implemented for one independent factor only",

call. = TRUE)}

osd <- overdispersion(model)

vcov.tilde <- osd * vcov(model)

if(!'is.null(strata) & is.null(data)){

warning("data.frame with strata column needed", call. = TRUE)
}
else if (!is.null(strata)) {

osdstrat <- overdispersion(model, data, strata)

osdstrat <- osdstrat[names(osdstrat) != "all"]

phi <- rep(osdstrat, each=ncol(model@y) - 1)

phi.tilde <- diag(sqrt(phi))
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vcov.tilde <- phi.tilde¥*%vcov(model)?*%phi.tilde
}

return(vcov.tilde)

B.2 R Code for Reproducing the Analysis of the Examples

The following code allows to reproduce the three examples from this thesis. The data
is described in Chapter 2 and evaluated in Chapters 5 and 6. Make sure you have the

relevant packages installed, i.e. VGAM, multcomp and Matrix.

B.2.1 Example 1: Developmental Toxicity Data from Hothorn (2015)

# Methods

source ("https://www.biostat.uni-hannover.de/fileadmin/institut/r-code/methods.R")

# Data

library("devtools")

install_github(repo="1lahothorn/SiTuR")

data("bivar", package="SiTuR")

levels (bivar$DEFECT_TYPE) <- c("alive","malformed","dead")
bivar$DOSE <- as.factor(bivar$DOSE)

# Reformat data

bivar$alive <- ifelse(bivar$DEFECT_TYPE == "alive", 1, 0)
bivar$malformed <- ifelse(bivar$DEFECT_TYPE == "malformed", 1, 0)
bivar$dead <- ifelse(bivar$DEFECT_TYPE == "dead", 1, 0)
library(plyr)

bivar.re <- ddply(bivar, .(DAM_ID, DOSE), summarize,
alive=sum(alive), malformed=sum(malformed), dead=sum(dead))

bivar.re <- bivar.rel[order(bivar.re$DOSE),]

# Model
multivgam <- vglm(cbind(alive,malformed,dead) ~ DOSE,
family=multinomial (refLevel=1), data=bivar.re)

overdispersion(multivgam)

# Multiple comparison procedure with overdispersion and simultaneous CIs
summary (glht (model = multin2mcp(multivgam, dispersion="overall"),

linfct = mcp2matrix(multivgam, linfct = mcp(DOSE = "Dunnett"))$K))
confint (glht (model = multin2mcp(multivgam, dispersion="overall"),

linfct = mcp2matrix(multivgam, linfct = mcp(DOSE = "Dunnett"))$K))
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# Multiple comparison procedure without overdispersion
summary (glht (model = multin2mcp(multivgam, dispersion="none"),

linfct = mcp2matrix(multivgam, linfct = mcp(DOSE = "Dunnett"))$K))

# Multiple comparison procedure with group-specific overdispersion
summary (glht (model = multin2mcp(multivgam, dispersion="stratified",
observed.data=bivar.re, strata="DOSE"),

linfct = mcp2matrix(multivgam, linfct = mcp(DOSE = "Dunnett"))$K))

B.2.2 Example 2: Housing Data from Wilson (1989)

# Methods

source ("https://www.biostat.uni-hannover.de/fileadmin/institut/r-code/methods.R")

# Data

data("wilson", package = "MM")

non_met <- as.data.frame(non_met)

met_area <- as.data.frame(met_area)

non_met$type <- "rural"

met_area$type <- "urban"

housing <- rbind(non_met, met_area)

housing$type <- factor(housing$type, levels = c("rural", "urban"))

colnames (housing) <- c("us", "s", "vs", "type")

# Model
multivgam <- vglm(cbind(us, s, vs) ~ type,
family=multinomial (refLevel=1), data=housing)

overdispersion(multivgam)

# Multiple comparison procedure with overdispersion
summary (glht (model = multin2mcp(multivgam, dispersion="overall"),

linfct = mcp2matrix(multivgam, linfct = mcp(type = "Tukey"))$K))

# Multiple comparison procedure without overdispersion
summary (glht (model = multin2mcp(multivgam, dispersion="none"),

linfct = mcp2matrix(multivgam, linfct = mcp(type = "Tukey"))$K))
B.2.3 Example 3: Differential Blood Count Data from Hothorn (2015)
# Methods

source ("https://www.biostat.uni-hannover.de/fileadmin/institut/r-code/methods.R")

# Data
library("devtools")
install_github(repo="1lahothorn/SiTuR")
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data("dif", package="SiTuR")
dbb <- cbind(dif[, c(1:3)], dif[,5:10]*2)
colnames(dbb) <- c("sex", "animal", "Group", "Eos", "Baso",
"Stab", "Seg", "Mono", "Ly")
dbb$Group <- factor(dbb$Group,
levels = c("control", "low dose", "mid dose", "high dose"))

dbb$factorcomb <- dbb$sex:dbb$Group

# Model
multivgam <- vglm(cbind(Eos, Seg, Mono, Ly) ~ factorcomb,
family = multinomial, data = dbb)

overdispersion(multivgam)

# Define contrast matrix
I <- diag(3)
library (Matrix)
B <- matrix(c(-1,1,0,0,
-1,0,1,0,
-1,0,0,1), byrow=TRUE, nrow=3)
B <- as.matrix(bdiag(B,B))
K <- kronecker(B,I)
# order K according to estimates from VGAM object
Kstar <- K[do.call(order, as.data.frame(K)),]
# set first columns to zero, because model was fitted with intercept

Kstar[ ,c(1:3)] <- 0

rownames (Kstar) <- c("Eos/Ly: fem.:low - fem.:con",
"Eos/Ly: fem.:mid - fem.:con",
"Eos/Ly: fem.:high - fem.:con",
"Seg/Ly: fem.:low - fem.:con",
"Seg/Ly: fem.:mid - fem.:con",

"Seg/Ly: fem.:high - fem.:con",
"Mono/Ly: fem.:low - fem.:con",
"Mono/Ly: fem.:mid - fem.:con",
"Mono/Ly: fem.:high - fem.:con",
"Eos/Ly: male:low - male:con",
"Eos/Ly: male:mid - male:con",
"Eos/Ly: male:high - male:con",
"Seg/Ly: male:low - male:con",
"Seg/Ly: male:mid - male:con",
"Seg/Ly: male:high - male:con",
"Mono/Ly: male:low - male:con",
"Mono/Ly: male:mid - male:con",

"Mono/Ly: male:high - male:con")
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# Multiple comparison procedure with overdispersion
summary (glht (model = multin2mcp(multivgam, dispersion="overall"),

linfct = Kstar))
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