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I

Abstract

We consider Fourier integral operators on non-compact manifolds and their applications, in
particular in spectral theory. Fourier integral operators appear naturally as the solution operators
of certain pseudodifferential evolution equations, such as the Schrodinger equation or the wave
equation.

For Euclidean space there are two important global pseudodifferential calculi: First there is
the isotropic calculus, which contains the quantum harmonic oscillator, its inverse, and similar
operators. We consider the solution operator to the dynamical Schrodinger equation with
an isotropic pseudodifferential operator of order two and show how singularities and growth
evolve with time. Moreover we show that for generic lower order perturbations of the harmonic
oscillator the eigenvalues are more equally distributed then in the case of the unperturbed
operator.

The second important calculus, the scattering calculus, contains the Laplacian plus a bounded
potential on asymptotically Euclidean manifolds. We define a class of geometric distributions
that are related to the solution operators of the Klein-Gordon equation of quantum field theory
and contain certain distributions that are appear in the scattering theory of the Laplacian. We
show that these distributions have a symbol structure that admits an invariantly defined order
and the existence of a principal symbol.

Zusammenfassung

Wir betrachten Fourier-Integraloperatoren auf nicht-kompakten Mannigfaltigkeiten und deren
Anwendungen, insbesondere in der Spektraltheorie. Fourier-Integraloperator treten natiirlicher-
weise als Losungsoperatoren von bestimmten pseudodifferenziellen Entwicklungsgleichungen
auf, wie der Schrodingergleichung oder der Wellengleichung.

Fiir den euklidischen Raum gibt es zwei wichtige globale Pseudodifferentialkalkiile: Zunéchst
gibt es den isotropen Kalkiil, der den quantenharmonischen Oszillator, dessen Inverses und ver-
wandte Operatoren enthalt. Wir betrachten den Losungsoperator der dynamischen Schrédinger-
gleichung mit einem isotropen Pseudodifferentialoperator zweiter Ordnung und zeigen, wie
sich Singularitaten und Wachstumsverhalten mit der Zeit entwickeln. Weiterhin zeigen wir,
dass fiir generische Stérungen niedriger Ordnung des harmonischen Oszillators die Eigenwerte
asymptotisch sehr viel gleichméafiger verteilt sind als fiir den ungestdrten Operator.

Der zweite wichtige Kalkil, der Streukalkiil, enthalt den Laplace-Operator plus ein beschrank-
tes Potential auf asymptotisch euklidischen Mannigfaltigkeiten. Wir definieren eine Klasse
an geometrischen Distributionen, die verwandt sind zu Losungsoperatoren der Klein-Gordon-
Gleichung aus der Quantenfeldtheorie und gewisse Distributionen enthalten, die in der Streuthe-
orie des Laplace-Operators auftaucht. Wir zeigen, dass diese Distributionen eine Symbolstruktur
besitzen, die eine invariant definierte Ordnung implizieren, und dass ein Hauptsymbol existiert.

Keywords. Fourier integral operators, harmonic oscillator, Weyl asymptotics, propagation of singularities.
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CHAPTER 1

Introduction

In this thesis, we consider pseudodifferential operators and Fourier integral operators on
non-compact manifolds and associated problems in spectral theory and microlocal analysis.
In particular, we prove an improved remainder estimate for the Weyl law for the perturbed
harmonic oscillator and define Lagrangian distributions on asymptotically Euclidean manifolds.

First, we will review the spectral theory of the Laplacian A, on a compact, connected, and
oriented Riemannian manifold (M, g); if M has a boundary dM (which is assumed to be
smooth), we impose Dirichlet boundary conditions, u|sy; = 0. We use the definition

Agu=—Ig|7* 3 0; (lg'* 01 ) u,
7,k

where |g| is the determinant and g’* is the inverse of the metric tensor.

It is well-known that the Laplacian is a self-adjoint operator and has discrete spectrum
consisting of eigenvalues of finite multiplicity which accumulates at infinity. The Laplacian is
positive on L2(M), therefore the spectrum is contained in the positive reals and we may write
the eigenvalues (counted with multiplicity) as

0§)\1§)\2§/\3§...—>OO.

Itis rarely possible to calculate the eigenvalues explicitly. Therefore, we would like to understand
the asymptotic behavior of the eigenvalues Ay as k tends to infinity. Define N (\) to be the
number of eigenvalues that are smaller than A.

Asymptotics for N (\) are interesting for several different reasons. The eigenvalues of the
Laplacian with Dirichlet boundary conditions can be thought of as the overtones (harmonics)
of an idealized drum with shape 2 C R? a bounded domain with regular boundary. The
eigenfunction uy of the eigenvalue Ay represents the displacement of the membrane of the
drum and a solution of the wave-equation is given by u(t, z) = cos(t\/Ax) ug(x). In the three-
dimensional case, one may think of the air vibrating in a wind instrument, such as a clarinet or
a flute. If M is a three-dimensional rectangular cuboid, then Lord Rayleigh in “The Theory of
Sound” (1877) showed that N () is asymptotic to vol(M)A3 as A — oo, where vol(M) denotes
the volume of the cuboid.

A completely different physical problem leads to the same mathematical concepts. Namely,
in thermodynamics the amount of energy emitted by a body is determined by the high-energy



spectrum of the electromagnetical waves. The electromagnetical waves correspond to the
soundwaves and the high-energy spectrum is the equivalent to the high overtones of a musical
instrument. From physical intuition and experiments of black-body radiation it is clear that
the asymptotic N ()\) ~ VA3 should be independent of the precise shape of the body. In 1911,
Hermann Weyl proved that this conjecture is true just one year after it was posed by Hendrik
Lorentz and it is now known as Weyl’s law.

There was significant effort to extend this result to a very general setting, in particular to
compact manifolds with boundary of arbitrary dimension. Stated slightly different, it was shown
that

N(A) = vol(M)AY2 4 0(A¥2)| 1 as A — . (1.1)

It is now natural to ask what the sharpest possible error estimate in (1.1) is. In the case M is a
closed manifold, meaning that M = (), Hsrmander [26] used the theory of microlocal analysis
and in particular Fourier integral operators to show that the error estimate is

N(X) = vol(M)AY2 + O(\[4=1)/2)

and this result is sharp by considering the (explicit) eigenvalues on the sphere (see also Levitan
[36]). Assuming that the set of periodic geodesics has measure zero, Duistermaat and Guillemin
[13] even improved this further to o(A(¢=1)/2),

The basic idea of microlocal analysis is to relate properties of differential operators to prop-
erties of a classical mechanical system. In the case of the Laplacian A, one is for instance
interested in the spectrum, regularity of the associated wave equation or asymptotics of the
heat equation. The classical system is defined by the principal symbol p(z, &) = |€ |3(x) of the
Laplacian and one can analyze for instance the set of periodic orbits of the Hamiltonian flow
associated to p. In the case of the Weyl asymptotic sketched above, Duistermaat—Guillemin
used that the Hamiltonian flow of the principal symbol p of the Laplacian A, is nothing but the
geodesic flow on T M.

One of the main ingredients to such results is the definition of a suitable calculus of pseudod-
ifferential operators. These are naively defined by taking a “good” function a € C*°(7T* M) and
replacing £ by —i0,. Of course this cannot work in general, since multiplication is commutative,
whereas differentiation and multiplication do not commute. The Fourier transform F turns
differentiation into multiplication and therefore, we may define

a(z, D)u(z) = ]:jxa(:):, &) Fy—eu(y).

It turns out that there are better ways to quantize symbols. Now, we want to discuss, what
we mean by a “good” symbol. Differential operators (with smooth coefficients) correspond to
symbols of the form

a(z,6) = Y aa(x)E?,

la<m

IFor the notation used, see Index of Notation.



where a,, are smooth functions. The natural generalization is to allow functions that have an
asymptotic expansion in homogeneous terms in &. If we define such a calculus of pseudodif-
ferential operators, the inverses of certain differential operators such as the Laplacian are also
in this calculus and properties of the inverses can be deduced from constructing approximate
inverses (parametrices).

The Schwartz kernel of such a pseudodifferential operator is of the form

(2m)~ /R €8, €) de

and it can be shown that these operators do not increase the singular support (the set of points,
where a function is not smooth). If we want to consider evolution equations such as the wave
equation it is clear that these operators do not suffice. Already the solution operator to the
transport equation (9; — 0, )u(t, ) = 0 with initial data u(0, z) = up(x) is given by

u(t,x) = ug(x + t).

Written as an integral operator, the solution operator is given by

ult, ) = /R Iy ) dy e

We see that we have to allow more general phase functions ¢ than just (z — y)¢ to describe
the solution operators to evolution equations. These considerations led to the development
of Fourier integral operators (cf. [14, 27]), which are more involved to define because the
phase functions are not canonical and one has to identify the correct underlying geometric
objects. Roughly speaking, Fourier integral operators are operators defined by integral kernels
such that the wavefront set” is contained in a Lagrangian submanifold on 7* M. The theory of
pseudodifferential operators and Fourier integral operators is well-known for compact manifolds
M. On non-compact manifolds various problems arise.

On R?, the Laplacian does not have discrete spectrum because the embedding of Sobolev
spaces H%(R?) — L?(R?) is not compact anymore. There are two ways to deal with this fact:
First, we may instead consider differential operators with certain growth at infinity, with the
prototypical example being the harmonic oscillator

1
HO = §(A + ’x‘Q)u

which models a quantum particle, such as an electron, confined in a potential V' (x) = |z|2. In
this case the eigenvalues can be explicitly calculated and they are given by sums of integers,

d
Ao = aj+df2,
7j=1

*This is a refinement of the singular support also measuring the directions in which functions are not smooth.



where o € N is a multiindex. The high multiplicities of the eigenvalues correspond to the
symmetry of the underlying Hamiltonian system with Hamilton function

pa(a,€) = (€ + laP?).

The classical calculus of pseudodifferential operators is not suited for studying problems on
R? and we have to use a different calculus. For problems related to the harmonic oscillator
we use symbols that admit an asymptotic expansion not in &, but jointly in (x, ). This can
be viewed as radially compactifying 7*R? in all variables. This idea leads to the isotropic or
Shubin calculus of pseudodifferential operators. The corresponding class of Fourier integral
operators was defined by Helffer-Robert [22-24].

It is also possible to analyze the continuous spectrum of the operator A on a non-compact
manifold (M, g). The first challenge is to identify a suitable class of non-compact manifolds.
This is usually done by compactifying the manifold and assuming that the Riemannian metric
is degenerate in a very specific way at the boundary. The manifolds we will be interested in are
asymptotically Euclidean (or scattering manifolds) in this sense, meaning that near the boundary
the metric is given by

2
g = d% n h(p;w)
P P

where h is symmetric and restricts to a Riemannian metric on the boundary OM = {p = 0} and
p > 0is aboundary defining function. The notion of scattering manifolds and the corresponding
calculus of pseudodifferential operator on scattering manifolds was introduced by Melrose [42]
and used to prove meromorphic continuation of the resolvent of the Laplacian. Melrose and
Zworski [45] defined a class of distributions, which encode lack of decay near spatial infinity.
They used these Legendrian distributions to prove that the scattering matrix is a Fourier integral
operator on the boundary.

The case of the harmonic oscillator and related operators is discussed in the Chapters 2-4.
In Chapter 2 we give an introduction to the calculus of isotropic pseudodifferential operators
and the spectral theory of perturbations of the harmonic oscillator. In Chapter 3 we prove
a refined remainder estimate for perturbations of the isotropic harmonic oscillator, meaning
that all frequencies are the same and finally in Chapter 4 we discuss the propagation or rather
recurrence of classical singularities for second order isotropic pseudodifferential operators.

The scattering calculus and the natural class of Lagrangian distributions are discussed in
the Chapters 5-6. In Chapter 5 we define the class of asymptotically Euclidean manifolds and
the calculus of scattering pseudodifferential operators. In Section 5.4 we illustrate with two
examples possible applications of an Fourier integral operator calculus based on Lagrangian
distributions in the setting of scattering manifolds. We develop the theory of Lagrangian
distributions on asymptotically Euclidean manifolds in Chapter 6.

We present results that have been published in [4, 10, 11].



Acknowledgements

First of all, I thank my supervisor, Elmar Schrohe. He provided me with lots of good advice both
mathematical and professional, inspiration, and encouragement.

Secondly, I am very grateful to Jared Wunsch, who hosted me at Northwestern University. It
is a great pleasure working together and his enthusiasm is infectious.

Furthermore, I would like to thank my other coauthors, guests, and hosts, René Schulz, Sandro
Coriasco, Oran Gannot, Tobias Weich, and Daniel Grieser. The mathematics department in
Hanover has been a very inspiring environment, and I would like to thank all the people I
have met there, in particular André Froehly, Robert Fulsche, Thorben Krietenstein, Karsten
Fritzsch, Simon Brandhorst, Ann-Katrin Stegmann, Firuza Mamedova, Oliver Sonderegger,
Markus Roser, and Benjamin Wieneck. Special thanks are due to Ann-Katrin, Robert, and
Karsten for proof-reading.

I would like to thank various other mathematicians I have met, in particular Nicolas Burq,
Colin Guillarmou, Peter Hintz, Alexander Strohmaier, Andras Vasy, and Steve Zelditch for
enlightening discussions and suggestions of interesting problems.

The work was supported by the German Research Foundation (DFG) through the research
training group GRK 1463 and I thankfully acknowledge the financial support.



CHAPTER 2

Spectral Theory and
Pseudodifferential Operators

2.1. Method of Stationary Phase

We will recall the method of stationary phase, which is used in various places. Sometimes the
stationary phase theorem is used directly, and sometimes it is more a guiding principle. We
follow roughly the presentation of Hérmander [30, Section 7.7].

The goal is to estimate integrals of the form

I(\) = /ei)‘d)(m)a(x)dw, (2.1)
where a € C°(R%) and ¢ € C>°(RY) real-valued. Denote by K the support of a.

2.1.1. Non-Stationary Phase

The trivial estimate is |I()\)| < |K|sup |a(z)|. For large X the term ¢ oscillates rapidly, so
we expect to obtain better bounds in the limit A — oc. First, we observe that if d¢ # 0 on K,
then we have arbitrary decay in A:

Theorem 2.1.1 (Theorem 7.7.1 in Hérmander [30]). Let K C RY be compact, a € C°(K), and
¢ € C°(R?) real-valued. For every k € N,

NI S Y sup [0%a(x)|[dg(@)[72F, x> 0.

la|<k reK

Therefore, using a partition of unity and a suitable choice of coordinates, we may assume that
there is an isolated stationary point, that is 0 € K and d¢ = 0 if and only if z = 0. A stationary
point of ¢ is called non-degenerate if 9>¢(0) has rank d.

The easiest example of such a phase function is a non-degenerate quadratic form ¢(x) =
(Ax, z), for a non-degenerate symmetric matrix A.
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2.1.2. Quadratic Phase Functions

If A is a non-degenerate d x d matrix, we can define the operator

P — ¢i{AD,D)

as a Fourier multiplier. We will calculate an asymptotic expansion of P.

Proposition 2.1.2 (Theorem 7.6.2 in Hérmander [30]). Assume thatu € S(R?) and s > d/2.
For all k € N, we have the estimate

k—1
1
(A
e 4P Phufa) =3~ S GAD, DY u(@)]f~ S =S 1AD, D) D ul
7= B e
The idea of the proof is to use the Taylor expansion ¢* = {CV 0 k' " + Ry41(z) and

estimate the remainder in integral form using a Sobolev inequality to obtain L°°-bounds. This
Proposition can now be used to calculate an asymptotic expansion for oscillatory integrals with
quadratic phase function ¢(z) = (Qz, x) /2.

Theorem 2.1.3. Let Q be a real non-degenerate symmetric matrix. For all positive integers k,

A )\Q -1/2
/ez)\<Q$,z)/2a(x)d$ 67 sgn Q (d t> Tk()\)a(O)

—d/2—k el
= A S ol

|| <2k+-d+-1

where the differential operators T}, are given by

k— 11'( 1D D>> o(z).

:oJ

<.

Proof. The Fourier transform of f(x) = e/M@%2)/2 is given by

-1/2
f(&) = e (det AQ) e—INQTIES)/2.
2w

Therefore,

‘ )\Q —-1/2 »
/ M@ 201 1 — ¢ F 5 Q ( g ) QDD 2y )
i

and the claim follows from Proposition 2.1.2. g
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2.1.3. Stationary Phase for General Phase Functions

This theorem can be used to prove the general case using Morse lemma, which states that
one can always choose coordinates such that, at the stationary point, the phase function is a
quadratic form (cf. Grigis—Sjostrand [17] and Zworski [69]).

Theorem 2.1.4 (Theorem 7.7.5 in Héormander [30]). Let ¢ € C* real-valued with non-degenerate
stationary point x = x¢ and d¢ # 0 on K \ {xo}. There are differential operators As; of order
< 27 such that for every k € N,

k—1
I(\) — 9@ N " A=4270 4p (Dy)a(zo)| S ATYER DT 0% L.
§=0 || <2k-+d+1

The zeroth order differential operator is the multiplication operator
(Agu) (o) = (2m)Y/2e? 5 58n%00) | det 92¢(wo)| ™ u(o).

If the second derivatives of the phase vanish, we may still calculate the order of decay, but it
becomes difficult to calculate the leading order constant (cf. Stein [60, Proposition 5, p. 342]):

Theorem 2.1.5. If there is a multiindex o € N with |a| > 0 such that the phase ¢ satisfies
|0z ¢(x)] > 1
on K, then

I < C@A M lallze + [ Val ).

2.2. Harmonic Oscillator

The basic idea of quantum mechanics is to take a classical energy (Hamiltonian function) and
associate to it a self-adjoint operator on a Hilbert space. The classical energy of a one-particle
system is given by E/' = Eii, + Epot the sum of the kinetic and potential energy. In classical
Hamiltonian mechanics the kinetic energy is assumed to be Fy;, = %\f 2 where we assume
the mass of the particle to be normalized to m = 1. The potential energy comes from the
physical configuration and only depends on the position: Ep,ot (2, &) = V (x). Thus, we are led
to consider Hamiltonian functions of the form

p(,€) = Gl + V().

The easiest case of a potential is the harmonic oscillator V (z) = |x|?/2.
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In this case the quantization just replaces covariables &; by partial derivatives —i0, ;. There-
fore, we want to consider the quantum harmonic oscillator on R%:

1
Ho = (A +[zf?).

The eigenvalues of the operator Hy, viewed as a unbounded linear operator on the Hilbert
space L?(R?)," correspond to the quantized energy levels of the particle and the eigenfunctions
to the wavefunction.

2.2.1. Eigenvalues and Eigenfunctions

The eigenvalues of the quantum harmonic oscillator can be explicitly calculated. First, assume
that d = 1. We define the creation and annihilation operators

A+ = Dm +ZI’,
A_ =D, —ix.

We calculate that

A+A7 == 2H0 - ].,
A,A+ - 2H0 + 1.
—x2/2

One notices that vg = e is an eigenfunction of H( with eigenvalue 1/2, because A_vg = 0.

We set
vy = Altvg

and we show by induction that Hyv,, = (n+ 1/2)v,,. The functions v,, are orthogonal and thus
Up = Up/||Vn|| 12 is orthonormal system. It remains to show that the set of eigenfunctions {u,, }
is complete (cf. Zworski [69, Theorem 6.2] for details). The functions wu,,(z) can be written as
Up = e %/ 2H,,(x), where H, is a polynomial of degree n. The polynomials H,, are called the
Hermite polynomials.

For arbitrary d, we note that the eigenvalues are given by

Ao = |a| +d/2.

with eigenfunctions

d
() = e lzl/2 H Ho,(z5).
j=1

'The domain of Hy is the Sobolev space Hst(Rd), defined in Section 2.4.5.
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Figure 2.1.: Plot of the rescaled error term O(A4~!) of the harmonic oscillator in d = 3.

2.2.2. Asymptotic Formula for the Eigenvalues
Using the explicit formula for the eigenvalues, we see that the counting function N (), which

is defined by N () = #{j: A\; < A}, is given by
d
N =#{aeN": Y a; <A —d/2}.

j=1

This means that N (\) counts the number of lattice points in the d-simplex with sides A — d/2.

We obtain the asymptotic formula
A4
N = 2+ O,

as A — 00. As it is suggested by Figure 2.1 the error estimate is sharp. In fact, the multiplicity

of the eigenspace for A = k + d/2 is given by
d+k—1
p(k,d):#{aeNd:Zaj:k}:< L >
J

Writing
1
|(k+d—1)(k+d—2)---(k:—|—1)

d+k—1)!
S (d-1)

Ptk d) = = 4y
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we see that p(k,d) ~ %, so the jumps are of order k%! and therefore the asymptotics

cannot be further improved.
We can obtain this result without calculating the eigenvalues, by using similar arguments as
in Chapter 3, which does not involve any pseudodifferential operators in this case.

2.3. Tauberian Theorems

Since it is rarely possible to explicitly construct a solution to the Schrédinger equation and
calculate the inverse Fourier transform of its trace, we have to deal with approximations of
the solution operator in a suitable sense and compare this approximated operator to the exact
solution operator. This comparision yields an estimate of the counting function via a Tauberian
theorem.

We consider some essentially self-adjoint operator H on L?(R?) with domain C2°(R?). The
self-adjoint extension is also denoted by H. We assume that it has discrete positive spectrum

D<A < < - =00

Let £ denote the spectral projector of H onto (—oo, A]. The counting function is given by
Tr E. There are several different approaches to obtain Weyl-type asymptotics (cf. Hormander

[26]):

1. The Laplace transform
et = / eTNE,, t>0.

This transform yields the heat kernel and the corresponding Tauberian argument is due
to Karamata. This method was used by Minakshisundaram—-Pleijel [47].

2. The Mellin transform
CH(S) :/)\_SdEA,

which yields the Zeta-function. Here, the Tauberian theorem of Ikehara is used (cf.
Shubin [59]). This and the method above are robust and give information on the leading
asymptotics in various settings, but the error term is not optimal.

3. The Fourier transform
e—itH — /e_itAdE)\.

This transform gives the best results, but the construction of a parametrix is much harder
and requires a thorough analysis of the microlocal structure. The Tauberian theorem is
much simpler than in the above cases.

Since we are interested in the precise error estimate, we will only consider the last transform.
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2.3.1. Hormander’s Tauberian Theorem

Now, we will state the Tauberian theorem and sketch its proof, for details we refer to the second
appendix of [56], see also Safarov [55]. The basic idea is to use the Fourier transform and
a compactly supported function p to cut out the high frequencies of a non-smooth function
to obtain a smooth function with the same asymptotic behavior, N(\) ~ F~1(5N)(\) in a
suitable sense.

We fix a real-valued function p € S(R) with the following properties

« p(A) >0forall A € R,
« p(0) =1,
« supp p is compact, and
« piseven.

It is proved in [31, Section 17.5] that such a function exists.

We denote by F; the set of all real-valued monotone nondecreasing functions NV on R such
that N = 0 on (—00,0) and N is polynomially bounded. These functions are the natural
extension of counting functions. Note that we have no restrictions on the regularity of N.

Theorem 2.3.1 (Hormander [26]). Letn € Ry. If N € F and
(dN x p)(A) = O(A"),
then
IN(A) = (N # p)(A)] = OA").
The usual usage of this theorem is to write
NQ) = FHpN)() + 00",

where dN is nothing but the trace of the Schrodinger propagator e~ . Choosing the support of
p small enough shows that the main contribution of the asymptotic comes from the singularity
att = 0.

For a complete proof, we refer to [56].

Sketch of Proof. The main step in the proof is to estimate | N (A+s) — N(\)| < (1 +|s|) H7I\"
uniformly for all s € R. This is further reduced to the estimates

N(A+s)— N(\) < stHrlye,
N(A) = N\ —s) < stFlnlym
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for natural numbers J, s. By the assumption, we have for some C' > 0,
A+1
N(/\+1)—N()\—1):/ dN ()
A—1
< C/p(A — p)dN (1)
= C(dN * p)(\) = O(\").

The claim of Theorem 2.3.1 follows from
(V5 ) = VO = | [ (VO = ) = N )

< [INO= ) = N ol
< C\".
O

The extension due to Duistermaat—Guillemin is that under an additional assumption on the
singularities at ¢ # 0, the result can be improved slightly:

Theorem 2.3.2 (Duistermaat—Guillemin [13] and Safarov [54]). If N satisfies the assumption of
Theorem 2.3.1 and if for all x € S(R) with x € C3°(R) and 0 ¢ supp X it holds that

(AN * x)(A) = o(X"),
then the error is given by
N = (N % p)(N)] = o(A").

If the singularities at ¢ # 0 are of the same strength as the one at t = 0, we can still give
an improved remainder estimate, but this becomes more complicated since both vertical and
horizontal directions have to be compared:

Theorem 2.3.3 (Safarov [54]). Let N; € F'y with (dN; x p)(A) = O(A\") forj = 1,2. Assume
that

(N2 % p)(A) = (N1 p)(A) + o(A")
and
(dN2 x x)(A) = (dN1 * x)(A) + o(A™)

forall x € S such that x € C2°(R) and supp x C (0, 00). Then, there exists a positive function f
such that f € o(1) and

Ni(A = f(A) = A"f(A) < No(A) < Ni(A+ F(A) + A" F(A).
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2.3.2. Mehler’s Formula

We want to use Hormander’s Tauberian theorem, Theorem 2.3.1, and thus we are led to consider
the solution operator (propagator) of the time-dependent Schrédinger equation:

{ (0 — Ho)u(t) = 0

2.2
u(0) (2.2)

0-

The solution operator of the Schrodinger equation is denoted by Up(t) = e~#Ho, that is
u(t) = e~ "Hoyq solves (2.2).

The propagator of the quantum harmonic oscillator Hy can be computed explicitly (cf. Grigis—
Sjostrand [17]).

Proposition 2.3.4. In the case d = 1, the propagator of the quantum harmonic oscillator is given
by the kernel

Uo(t,z,y) = (2m) ' cos(t) /2 / e/ P2 bmm =y gy, (2.3)

fort € (—m/2,m/2), where ¢2(t,x,n) = ﬁ(t) (zn — 3sin(t)(2? + n?)) .
Furthermore, the propagator satisfies

e—dﬂ/4
Uo(m/2) = Wf

and therefore, by Fourier inversion formula, we obtain that
Uo(2m) = —Up(0),

which in turn implies by the group property that Uy (t + 27) = —Uy(t) for all ¢ € R.
For higher dimensions d > 1, the propagator is given by

Uo(t, @, y) = (2m)~*(=1)" cos(t) /2 / ¢! @2 e =) dy, (2.4)

with ¢o(t, z,n) = cosl(t) ((z,n) — 2 sin(®)(|z> + [n|*)) for t € 27k — 7 /2, 27k + 7/2).

2.3.3. Alternative Proof of the Weyl Asymptotics

Theorem 2.3.5. The counting function of the eigenvalues of the quantum harmonic oscillator
satisfies

Ad Ad—l
=@ A

where f denotes a shifted sawtooth function, f(\) = [N+ d/2] — X — (d —1)/2.

N(A) FO) + o071,
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Proof. First, we calculate the inverse Fourier transform of the Schrédinger trace near ¢ = 0. Let
p € S(R) such that p € C2° and supp p C (—7/2,7/2). The kernel of p(t) - Up(t) is given by

(2m)~¢ / e (@22 =ym) cog(£) =42 j(t) dn.
We have to calculate the inverse Fourier transform of the trace:
(AN * p)(\) = (2m) =% / 22 m=entt) ¢og(£) =42 5(t) dn dx dt,

= (277)Qd)\d/eM(@(t’x’")mH) cos(t)~¥2p(t) dn da dt,

where we have used a rescaling (z,7) — (A/22, \1/21). The phase is stationary at the points
where

at¢2(t733777) =-1
az¢2(t737777> =T
877¢2(t733777) =1

That is t = 0 and pa(x,n) = 1 for pa(z,n) = (1/2)(|z]> + [n|?).
Changing from (z, £) to polar coordinates (7, §) and applying the Lemma of stationary phase
(cf. [11, Proposition 6.1]), we conclude that the leading asymptotic is*

(dN * p)(\) = (2m)~4dA41 / dz dn + oA 1).
{p2<1}

The ball of radius v/2 in dimension 2d has volume

d
/ dz dé = (27:) :
{lzl>+lg[<2} d!

Using the basic Tauberian theorem (Theorem 2.3.1) this already proves that N()\) = A%/d! +
O\,

For the refined asymptotics, we note that Uy(t) is periodic with period 27 (modulo a sign)
and therefore the singularities at ¢ = 27 are exactly the same as for ¢ = 0. We define the
function Ny by

A \d-1 (— 1)k 2rikA
M) =5+ d—1)! 2 omik @5)
keZ\O

?Note that there is no contribution of order A~! because the symbol is homogeneous of degree two.
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and note that
A1 dk 2mikA d—1
kEZ
Using that sin(z) = (¢ — =) /2i, we obtain
Z kA i sin(27k\)
kEZ\0 2mik o Tk (2.6)
=|A] = A+1/2.

We note that (—1)% 27k — ¢27ik(A+d/2) ‘inserting this into (2.6) yields that the series in (2.5)
is f(A) =|A+d/2] — X\ — (d—1)/2. Thus,

b

N — d
1(A) = 70 +d-d!

ATLE(O) + o(X07h).
By the general refined Tauberian theorem 2.3.3 the assertion follows. d

Remark 2.3.6. For d = 1 this gives a complete description of the spectrum: N(\) = |\ 4 1/2]
for A > 0.

Remark 2.3.7. The fact that Uy(27) = —Up(0) for odd dimensions caused that there is a shift of
1/2 for the eigenvalue clusters.

2.4. Isotropic Calculus

Before we turn to the isotropic calculus, we consider the underlying dynamical system of the
harmonic oscillator. This shows that the isotropic calculus is the natural calculus associated to
the harmonic oscillator.

2.4.1. Hamiltonian Vector Fields

Let p € C*°(R??), we define H,, := 9¢p(z,£)0; — Oup(z,€)0; the Hamiltonian vector field
associated to p. The Hamiltonian vector field is related to the Poisson bracket, by

pr = {p7 f}

We denote the flow of Hy by exp(tH,,). One of the most important properties of the Hamiltonian
flow is that it preserves the function p:

p(exp(tHp)(z,§)) = p(x,¢)

forallt € R.
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Figure 2.2.: The Hamiltonian vector field Hy on {z% + ¢2 = 1}.

For py = (1/2)(|z|? + |£|?) the Hamiltonian vector field is Hy = £0,, — 0. Its flow is given
by ((t), (1)) = exp(tHo) (2o, &) with

xz(t)\ [ cos(t) sin(t)\ (zo
§(t))  \—sin(t) cos(t)) \& /"
Since the flow is homogeneous of degree 1 jointly in (x,¢), we want to define a calculus of

pseudodifferential operators with the property that the asymptotic expansion is jointly in (z, £).
A symbol a composed with the Hamiltonian flow exp(tHy), aoexp(tHp), is again in the calculus.

2.4.2. Isotropic Symbol Estimates

The symbol estimates are due to Shubin [59] (cf. also Helffer [22] and Hérmander [28]).

Definition 2.4.1. A function a € C>®(R??) is an isotropic symbol of order m € R if for all
a, B e N,

10907 a(x, )| Sa,p ((z, €)™ 117,

We denote the set of all isotropic symbols of order m by I'".

For v € N??, we define the corresponding seminorms

lallyrm i= sup [0Za(z)|(z)""*1.
z€R2d
These define a Fréchet topology on I'"™.

As in the case of the Kohn-Nirenberg symbols, we will be mainly interested in the subclass
of classical isotropic symbols. Choose a function y € C2°(R??) such that x = 1 in the ball of
radius 1/4 centered at the origin and x = 0 outside of the ball of radius 1/2 centered at the
origin. A symbol a € I'"" is called classical, a € T}

1, if there exist homogeneous functions a,—;
in (x, &) of order m — j such that

a ~ E Am—j,
J
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meaning that for all NV € N,

N—

a—(l—X)Zam,jGI’N.

[y

<

The space of all symbols will be denoted by I' = |J,,,cg I"™ and the classical symbols are
Lo = UmER Fgf
To each symbol a € I" we can associate a bounded linear operator

Op¥(a) = a*(z, D) : S(RY) — S'(RY),

the Weyl-quantization:
(@ (e, Do) = [ (a4 y)/2, uly)o(e) dady de.

The symmetry in z, y implies that the L2-adjoint is formally (a*(x, D))* = a*(x, D). Thus, if
a has real-valued symbol, its Weyl-quantized operator is formally self-adjoint. We set

G" ={a"(z,D): a € I}

and
H={a"(x,D): a €T}
It is clear that G = | J,,, G™ is a filtered *-algebra and G = |J,,, G¥ is a sub-algebra.
More generally, we can a define the ¢-quantized operator for ¢ € [0, 1] by

a;(z, D) = Op,(a) = / VR (tr + (1 — )y, &) dE.

If t = 1/2, we obtain the Weyl-quantization. The case ¢t = 0 is called the left-quantization
ar(x,D) and t = 1 is the right-quantization ar(x, D).

The advantage of the Weyl quantization is that it is metaplectically covariant (cf. Hormander
[31, Theorem 18.5.9]), meaning that for any linear symplectic map

k: T*RY — T*R?,

there exists a unique (up to a constant of modulus 1) unitary transformation U : L?(R%) —

L?(R%) such that
U~ ta"(z,D)U = (a0 k)“(x, D).
Furthermore, we have for the harmonic oscillator propagator Uy(t) that

Uo(t)~"a"(z, D)Us(t) = (a o exp(tHo))" (z, D).
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There is a principal symbol map
o™ G™ T/t
such that the following short sequence is exact:
0—G™ 1 = GmZ /It 0.
If the operator A = a™(x, D) is classical with asymptotic expansion a ~ » ; @m—j, then the

principal symbol 6" (A) is the homogeneous function of highest order: " (A) = ayy,.

Example 2.4.2. The most important example of an isotropic pseudodifferential operator is the
harmonic oscillator Hy. Its symbol is given by po = 1/2(|z|? + |£|?). Complex powers of H
(cf. Shubin [59]) and harmonic oscillators with different frequencies are also contained in the
calculus. As mentioned above, if a € I'™, then a o exp(tHg) € I'" for all t € R.

The potentials V() € S}’ are generally not in I'’}} since differentiation in z does not lead to
decay in €.

Example 2.4.3. More generally, differential operators of the form

Z aaﬁleﬁ

laf+|B|<m

are in G™.

A similar calculus was defined by Wunsch [65, 66] to deal with potential and metric pertur-
bations. It was used to study propagation of singularities for the harmonic oscillator and the
Schrodinger equation.

2.4.3. Composition

Before we calculate the composition of two pseudodifferential operators, we consider changing
the quantization. Let ¢, s € [0,1] and a € S(R??) and set A = a;(x, D). We want to write
A = bg(z, D) for some b € S(R??).

Proposition 2.4.4 (cf. Theorem 4.13 in Zworski [69]). The symbol b is given by
bl €) = el D)a(z,€).

Using that S(R??) is dense in C>°(R??) we may extend this to general symbols. In particular,
this show that if a € I'™, then for any ¢ € [0, 1], a;(x, D) € G™ and the principal symbol
o™ (a"(x, D)) is independent of the quantization,

0™ 0 Op, :as [a] € T™ /T
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In order to compose two pseudodifferential operators a* (x, D) and b* (x, D), we change the
quantization of a"(x, D) to the left-quantization and of " (z, D) to the right quantization. We
may use that

ar(x, D)bp(x, D) = / Vo, )b(y, €) dE

and change this back to right quantization.
Let a € I and b € I'"2. Define the Moyal product # by

(a#tb)(w,€) = 7P PeLePI (a (2, by, m) |, e

where the operator ¢/7(P=D¢:Dy:Dn)/2 is defined as a Fourier multiplier and o (z, £, y,n) =

(&,y) — (x,n) is the symplectic 2-form.
Proposition 2.4.5. Leta € I'™ b € I'™2. The product satisfies
a#tb € Tmtm2

and there is an asymptotic expansion

-k
1

= 3" LDy, e Dy Dyl e
-

In particular, we have that
. a#b = ab+ 5{a,b} + Tm1tm2—4,
. [a¥(z,D),b%(z, D)] = —i{a, b} (z, D) + Gm1tm276,
« If suppa Nsuppb = 0, then a#b € I'™°.

The crucial property of the isotropic calculus is that the commutator is two orders lower, because
the Poisson bracket satisfies

{a,b} € TMtm2=2, (2.7)
Remark 2.4.6. For the left quantization, we have the product

(a#Lb)(z,€) = €' PeDv) (a2, €)b(y,n)) |

y=z,n=¢

and for the right quantization

(a# D) (x,€) = e " P=Pn) (a(z,£)b(y,n)) |

y=z,n=¢"

Furthermore there are similar expansions as in Proposition 2.4.5.
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2.4.4. Ellipticity and Essential Support

We call a symbol a € T'™ elliptic at (g, &) € R??\ {0} if there is an open conic neighborhood
Iy of (x0,&p) and a constant C' > 0 such that for all (x, &) € I'o,
a(z,§) = C((z,))™

If a is classical the condition is that a,,(xo, £p) # 0. The set of all elliptic points is denoted by
ell(a) and its complement is the characteristic set X:(a). Since the principal symbol is invariantly
defined, it makes sense to call an operator elliptic at a point (zg, &o).

A point zy = (z0,&) € R??\ {0} is not in the essential support of a, zy ¢ ess-supp(a),
if there exists a symbol b € ', elliptic at zy such that a - b € S(R??). While this condition
depends on the full symbol a it is invariant under changing the quantization and therefore we
also define the essential support of A € G" as the the essential support of the symbol for any
quantization.

We will denote the essential support of A by WF'(A), also called the operator wavefront set.
Using the conic structure of phase-space, we may view WEF’(A) as a subset of S?¢~!. It has the
following properties:

1. WF/(4%) = WF/(A),
2. WF'(AB) C WF/(A) N WF'(B),
3. WF/(A + B) C WF'(4) UWF'(B),

4. for any K C S?*~! closed and U C S?¢~! open with K C U, there exists A € G such
that WF'(A) C U and 0p(A) =1 on K.

5. For each A € G* the following are equivalent:
- WF'(A) =10,
« AcGT™,
cA:S =S
Elliptic pseudodifferential operators are always invertible up to a regularizing error.

Proposition 2.4.7. Let A € G™ be elliptic. There exists a pseudodifferential operator B € G~
such that

AB—-1e€ G, BA-1eG™*™.
Such a B is called a parametrix of A.
This property can also be microlocalized:

Proposition 2.4.8. Let A € G™ be elliptic at = € S**~1. There exists a microlocal parametrix
B € G™™ meaning that

2 ¢ WF'(AB — 1) UWF/(BA —1).
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2.4.5. Sobolev Spaces

First, it follows from the Schur test and Hérmander’s square-root trick that the isotropic
operators of order zero are bounded in L? (cf. Nicola-Rodino [49] for a proof in a more general
setting).

Proposition 2.4.9. Let a € T'°. The operator A = a™(x, D) satisfies

1Al 222 < llallkro,
for some k € N.

It also holds that for a € '€ the operator a”(z, D) : L? — L? is compact. Now we are able
to define a scale of Sobolev spaces adapted to the isotropic calculus.

Definition 2.4.10. Let u € S'(R%) and s € R. We say that u € HZ_ if

180

|Aul|z2 < o0

forall A € G°.

In particular, it follows from Proposition 2.4.9 that HY
spaces is globally regularizing, that is

() Hio=S®RY, | JHi, = S'RY.

seR seR

= L2. Further, the scale of Sobolev

There are several equivalent norms on [}  that turn it into a Hilbert space. Let s € R be
arbitrary. We define the s/2-th power of the quantum harmonic oscillator Hy, A; = Hg/ 2 by

the spectral theorem. It can be shown that A € G%(R?) (cf. Nicola-Rodino [49]). The principal

symbol of Ay is
1 ) ) s/2
SUEP + 1))

Since A is invertible,

lullag, = [1Asull L2

1S0

isanormon H? .If A € G* is elliptic and s > 0, then an equivalent norm is given by

1s0°
[Aul 2 + [[ull 2.

This is not an equivalent norm if s < 0.
By the construction it follows that for all s, m € R and all pseudodifferential operators

AeGm,
A:Hi, — H ™

180 iso

is continuous and the operator norm is controlled by a seminorm of the total symbol (in any
quantization).
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2.4.6. Isotropic Wavefront Sets

Roughly speaking, wavefront sets measure how much a distribution fails to be “regular” in
some sense. The classical wavefront set introduced in Section A.4 measures how a distribution
fails to be smooth. The isotropic wavefront set detects whether a tempered distribution is not
a Schwartz function, so it sees both non-smoothness and non-decay. It was introduced by
Ho6rmander [28].

Definition 2.4.11. Let u € S'(R%) be a tempered distribution. The isotropic wavefront set
WFiso(u) C R24\ {0} is defined as

WFiso(u) := ﬂ X(A).

AeGO
AueS

We also define the isotropic wavefront set of order s € R by

WFE(u) == (] Z(4).
AeG®
AueL?

They have the following properties:
« A tempered distribution u is a Schwartz function u € S if and only if WFjg, (u) = 0.

« The distribution u is in the isotropic Sobolev space u € H  if and only if WF}, (u) = 0.

180

If f €S, then WFiso(fu) C WFigo(u).

« If A € G™ forany m € R, then WFg,(Au) C WFigo(u)Ness-supp(A) and WFig, (u) C
WFigo (Au) U 3(A).
e WFieo(tt) = Upen WFL (u).

180

Now we will investigate the relationship between smoothness and the isotropic wavefront
set. The directions {0} x R? measure lack of smoothness. This is illustrated in Figure 2.3. The
following Lemma is a special case of Proposition 2.6 by Hérmander [28].

Lemma 2.4.12. Letu € &'. The isotropic wavefront set of u is contained in the vertical space,
WFiso(u) € {0} x RY.

It is well-known that WFjg, (u) N {0} x RY = () implies that u € C™ (cf. [11, 28]). We refine
this result slightly:’

3This result was stated by Nakamura [48] for the homogeneous wavefront set.
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Figure 2.3.: Comparision of the classical and the isotropic wavefront set. The blue area denotes
the elliptic set of @ and the green area is the support of b. (cf. Schulz [58]).

Lemma 2.4.13 (cf. Doll [10]). Letu € S'(RY) andT' € R4\ {0} be an open cone. If WFig, () N
{0} x ' = (), then WFq(u) NRY x T = 0.

Proof. Let a € T be such that a = 1 in a conic (in (z,)) neighborhood of {0} x I' and
supp a N WFigo(u) = (). By the properties of the isotropic wavefront set, we obtain

u=a(x,D)u+ (1 —a(x,D))u
= (1 —a(z, D))u + S(RY)
— (2 [ €1 ala, €))ile)ds + SRY.
Choose b € Sgl with suppb C K x T for some compact set K C R? There is an R > 0

such that {(z,£) € suppb: |£] > R} C suppa. Therefore, the symbol of the composition
b(xz, D)(1 — a(z, D)) is compactly supported in (x, ). This implies that

b(z,D)(1 —a(x,D)): S8 =8

and thus
b(z, D)u = b(z, D)(1 — a(z, D))u + b(z, D)a(z, D)u € S(RY).
O

Note that u € C° does not imply that WFig, (1) N {0} x R = ). The function u : & — ¢'*°/3
is smooth, but not rapidly decaying and one can show, using the semiclassical description of
isotropic wavefront set, that WF(u) C {0} x R<,

2.5. Propagation of Singularities

The natural operators in G are of order 2 and, since the commutator of two isotropic operators
is two orders lower than the sum, we can use a commutator argument similar to the proof of
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Lemma 3.2.1 to show that the isotropic wavefront set is rotated according to the Hamiltonian
flow of the principal symbol.

Let P = p¥(z, D) € G(R?) a self-adjoint elliptic operator and assume that the symbol p
admits an asymptotic expansion

o0
b~ ZPQ—]%
j=0

Recall that H,, is the Hamiltonian vector field of ps satisfying H,, f = {p2, f} for all f €
Coo(RZd)_

Proposition 2.5.1. Lets € R andu € C([0,T], HZ,) N C*([0, T, H: ') be the solution of the
equation

{ (i0y — P)u(t,x) = 0

U(O, x) = Ug

forug € HE . The wavefront set of u(t) is given by

WFiso(u(t)) = exp(tHp, ) WFigo(uo).

Proof. We will use a variant of the method of positive commutators.*
Using the substitution

ur A_gu, Pr— A_ PAg

we may assume that u € C([0, 7], HL ) N C*([0,T], L?(R%)) and ug € L%(R?). We will show
by induction that

WEF,(u(t)) = exp(tHy,) WFE, (uo). (2.8)

For k = 0 this is clear by the assumption that the equation is well-posed in L.
We now assume that (2.8) is true for k — 1. Let (0, &) & WFX_(ug). In particular, (z, &) &
WF¥~1(u0) and by the inductive hypothesis

180

exp(tHy, ) (x0, &) & WEiL, H(u(t), ¢ € [0,T].

1S0

Hence, there exists a B € C>([0, 7], G*~!) such that exp(tH,,)(z0,&) € ell(B(t)) and
B(t)u(t) € L? forall t € [0, T].
Let ag € T'¥ such that ay is elliptic at (9, &) and a(t) = ag o exp(tH,,) has essential support

ess-supp a(t) C ell(B(t)), te€[0,T].

“In our case the commutator is actually zero.
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We set ac = ag - (1 + e(|z|? + [£]2))~"/2 and define a.(t) = a. o exp(tH,,).

Define the operators A(t) = a“(t,z, D) and A.(t) = a¥(t,z,D) € G*¥ ! fore > 0
small. The operator A(t) converges to A(t) in the topology of G**1. By Property 2 of the
operator wavefront set, WF'(A.(t)) C ell(B(t)) and hence, by microlocal elliptic regularity,
Ac(t)u(t) € L2 Since P is self-adjoint Re (iPAc(t)u(t), Ac(t)u(t)) > = 0 and we obtain

2)| Ac()u(t) Ol Ac(t)u(t) || = Ol Ac(t)u(t) ||
= 2Re (i Ac(t))u(t) + Ac()Bu(t), Ac()u(t))

— 9Re ([0} + iP, Ac()]u(t), Ac(t)u(t)) 2 )
< 2|0 +iP, Ac(®)]u(t)]| - [[Ac)u(®)].-
Note that [0}, Ac(t)]u(t) = (0rAc(t))u(t). Integrating inequality (2.9) yields
[Ac(®)u()]] < [[Ae(0)uoll +/0 1105 +iP; Ac(s)]u(s)]| ds. (2.10)

Now, the k — 2-principal symbol of the commutator is (05 +H,, )ac(s) = 0. Thus, the right-hand
side of (2.10) is uniformly bounded as ¢ — 0. We conclude that A(t)u(t) € L? and therefore,

exp(tHyp,) (20, &) & WEL, (u(t)).
The other inclusion follow from reversing the time ¢ — —t. O

Remark 2.5.2. The positive commutator argument can be extended to more complicated situa-
tions, for instance for non-smooth pseudodifferential calculi [29] or in the presence of radial
points [42].

In Chapter 4, we calculate the classical wavefront set. From Lemma 2.4.13 and Proposition 2.5.1
it is clear that the singularities reappear only at certain times.

Let exp(tH,,)(y,n) = (z(t,y,n),&(t, y,n)) the Hamiltonian flow of the vector field H,,,

Lo = {n € R\ {0}: exp(tH,)(0,n) € {0} x R},

and define the function Z; : I'; — R%, which is given by Z;(n) = £(t,0, 7). It satisfies
exp(tHp, )(0,1) = (0,Z:(n)).
Note that =; is homogeneous of degree one. Set G; = supp Up(t)u x =Z¢(I't) and
t
Xef = / f oexp(sHy,)ds.
0

The main theorem of Chapter 4 is the following,.

Theorem 2.5.3. Letu € &' + S andt € R. The classical wavefront set of U (t)u satisfies

WEU (t)u) C {(2,Z:(n)) € Gi: 9y, Ee(n)) — 9, Xipr(0,m) — y LT, (y, 1) € WF(u)} .
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2.6. Parametrices for Longer Times

For the propagation of the isotropic singularities, we did not have to construct a parametrix of
the time-dependent Schrodinger equation

Here, as before H € G2 (R?) is a self-adjoint elliptic operator and ug € S'(R?).

It was shown by Helffer-Robert [24] that there is always a short-time parametrix U (t)
for U(t) = e "H as an oscillatory integral. For the refined Weyl asymptotics one needs
parametrices for arbitrary times.

2.6.1. Helffer-Robert Parametrix

The idea of Helffer-Robert is to construct a parametrix for the operator e ~*! as an oscillatory

integral of the form

Ut x,y) = / 2 bemrorlbem=viq(t, 2, n)dn,

where ¢; is homogeneous of degree j and a is an amplitude outside a compact set.
The eikonal equation for ¢ = ¢2(t, x,n) is

0 O0r¢2) =0
ip2 + p2(z, 0292) (2.11)
¢2(0,z,m) = zn.
The eikonal equation for ¢1 = ¢1 (¢, x,7n) is more complicated:
8t¢1 +p1 (.’13, 8x¢2) + <a§p2(x, 81‘¢2)7 8x¢1> =0 (2 12)
$1(0,2,m) = 0. '

This type of parametrix is used in Section 3.5 to calculate the contribution to the Schrodinger
trace near ¢ = 0. For the singularities at times ¢ = 27k this approach is not suited since the
eikonal equation degenerates at t = /2.

2.6.2. Reduced Parametrix

In Chapter 3 we will construct a parametrix which is better suited if one wants to keep track of
the secondary phase function ¢1, but at the cost of losing information about the amplitude. Set
Hy = Op*“(p), where € I'2 and jp = 0>(H) outside a compact set in R*?.

The main idea is to split the propagator into two parts:

e*itH — e*itHOF(t)'



28 Chapter 2. Spectral Theory and Pseudodifferential Operators

The operator Uy (t) = e~#Ho is called the “free” propagator and F'(¢) the reduced propagator.
Set P(t) = Up(—t)(H — Ho)Uy(t). It is straightforward to verify that

{ (i0 — P(t))F(t) =0

F0)=T. (2.13)

By Helffer-Robert’s Egorov theorem [22], P(t) € G'. This means that we have lowered the
order, but the operator is now time-dependent.
If H=p"(z,D) with p ~ ps + p1 + ..., then by Egorov’s theorem [22] we obtain that

o (P(t)) = p1 o exp(tHp,), (2.14)

In the special case that ps is a polynomial, we can apply the exact Egorov theorem (cf. Hérmander
[31]) to obtain that

P(t) = ((p — p2) 0 exp(tHy,))" (z, D),
where py = 0?(H). .
We write P(t) = Opp(pr(t)) for some pp € C*°(R,T(R?)). Using the ansatz F(t) =
Oppg(e'®1a) to solve (2.13), we arrive at the equation
—0i1 (t)e i1 (t) alt) + iei¢1(t)8ta(t) = pr(t) #r ei‘bl(t)a(t).

If we set ¢; € C°(R x R2? R) such that ¢1 is given outside a compact set ' C R?¢ by

t
r(t.n) = = [ pa(explsty) (o n))ds.
then ¢;(t) solves the eikonal equation
Orp1(t,x,m) + (p1 o exp(tHp,))(z,n) =0
®1 (07 €Ly 77) =0

outside of R x K. The system of transport equations can be solved for all ¢ to arbitrary order
(cf. Proposition 2.1.2 and Lemma 3.3.1. Repeating the arguments as in the proof of Lemma 3.3.1
we obtain a parametrix of F'(t) for arbitrary times ¢.

Lemma 2.6.1. There is an operator
F(t) = Opp(e™Wa(t))
where ¢1 as above and a € C*®(Ry,T'%), such that
{ (i0 — P(t))F(t) € C*(R", L(S', S))
F(0)-T1€eL(S,S).
Now, we compose this parametrix with a parametrix for the “free” propagator e "0, which

is constructed as in Helffer-Robert. In the case of the quantum harmonic oscillator, we can use
the Mehler formula. The composition theorem is proved in Section 3.3.
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2.7. Spectral Theory of the Perturbed Harmonic Oscillator

In this section, we want to complement the result of Chapter 3 by the observation that for the
quantum harmonic oscillator with at least two rationally related frequencies, we always obtain
the improved remainder estimate in the Weyl law.

2.7.1. Second Order Operators

Let H € Gzl(Rd) be an elliptic self-adjoint operator. We show that H has discrete spectrum
and the Schrodinger trace is well-defined as a distribution. Without loss of generality we may
assume that H is bounded from below. Thus, the resolvent (H — p)~! defined for ;1 >> 0 and

since H : HiQSO — L2, we have

(H—p)':L0? - 0

1S0°

The embedding H2, — L? is compact, therefore (H — x)~! is a compact self-adjoint operator
on L? and has discrete spectrum accumulating at 0. Thus, H has discrete spectrum

)\1§)\2§”~—>OO.

To define the trace of e~ we first note that we may assume that H is positive. The operator
H~V is trace-class for N > 0. Let ¢ € S(R) be a test function. We formally calculate

(¢, Tre™™) = (¢, e H-NHNe )
= iV (¢, Tr H- NN e itH)
= ((—i0)N g, Tr HNe~itH),
Now, H Ne i ig trace-class since e
We define Tr e~ by this expression.

is unitary and therefore the last line is well-defined.

2.7.2. Improved Remainder Estimates

Let (M, g) be a compact, connected, and oriented Riemannian manifold and denote by A, the
Laplacian and p(z,§) = g;(2)€'¢’ its principal symbol. The operator /A, is a first order
pseudodifferential operator with principal symbol ,/p.

Hormander [26] proved that the counting function N () of the eigenvalues of \/Xg satisfy

N\ = (27r)_d)\d/{ . dx dé + O\,
p=

This estimate is sharp. For instance if M = S?, we can explicitly calculate the eigenvalues
and the high multiplicities of the eigenvalues prohibit an improved remainder estimate. The
famous Theorem by Duistermaat—Guillemin [13] states that the estimate can be improved if the
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co-geodesic flow 7y, which is the Hamiltonian flow for the principal symbol, is not periodic.
More precisely, if the set {(x,&) € S*M: 3t > 0,%(x,&) = (z,€)} has measure zero as a
subset of S*M, then one obtains the estimate

N = (2m) 9\ /{ - dzdé + o(A4Y).
p=

Note that for arbitrary first order pseudodifferential operators, there is an additional term
homogeneous of degree d — 1.

It was shown by Helffer-Robert, that the general sharp remainder estimate is O(A?~1). More
precisely they showed:

Theorem 2.7.1 (Helffer-Robert [23]). Let H € G" (R2%) be an elliptic isotropic pseudodifferen-
tial operator with real-valued Weyl-quantized symbolp ~ pay, +pam—1-+- .., and pom(z,£) > 0
for (z,&) # 0. The counting function N () of the eigenvalues of H satisfies

N(\) = 70)\d/m + 71)\(d—1/2)/m + O()\(d—l)/m)’

where
S I I .
{pam<1} { |V paml|

p2m:1}

The goal of Chapter 3 is to show that in the isotropic calculus, even if the Hamiltonian flow
of the principal symbol is periodic, under a suitable assumption on the subprincipal symbol, we
obtain a similar improvement. In order to see this, set

2w
Xf = /0 f oexp(tHp)dt.

This is the average over the flow of the classical harmonic oscillator.

Theorem 2.7.2 (Doll-Gannot—Wunsch [11]). Let p € Fgl(RQd) be real-valued with ps =
(1/2)(|z|? + [£]?) and set H = p®(x, D). Assume that, when restricted to S**~1, the set where
V Xp1 vanishes to infinite order has measure zero. We have the improved Weyl asymptotics

+oMY).  (2.15)

dxdn — (27r)d/ po(z,n) d5

— T —d
N(X) = (2) / (pr=r} V2|

{p2+p1<A}
If we consider the harmonic oscillator with arbitrary frequencies,
Hy=1/2(A+ ) wia}),

J

for w; € (0, 00), then we expect that in the generic case we should obtain a similar improvement.
More generally, consider an isotropic symbol p € I’gl (R) with the following properties:
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e pr Z;-)io p2—j,
- o*(p) = p2 = 1/2(|¢]* + 32 wia3), and
« pis real-valued.

As usual set H = p*(x, D) and H,, is the Hamiltonian vector field of p.
We can use the propagation of isotropic singularities theorem to prove a result on the singular

support of the trace of e~/

Proposition 2.7.3. The singularities of the Schrodinger trace satisfy
sing-supp e " C {t € R: 3z € R?*?\ {0} such that exp(tH,,)z = z}.

Remark 2.7.4. Note that this result holds for any elliptic self-adjoint pseudodifferential operator
H € G*(R*!) with positive principal symbol. The proof is almost identical to the proof of
Proposition 3.1.1.

The Duistermaat—Guillemin theorem for isotropic pseudodifferential operators was proved
by Petkov-Robert [51] in the semiclassical setting. A proof in the non-semiclassical setting
follows from similar arguments as in the Chapters 3 and 4. For simplicity, we will assume that
the principal symbol comes from an an harmonic oscillator with irrationally related frequencies.

Theorem 2.7.5. Let p be as above and assume that there are jo,j1 € {1,...,d} such that
wj,/wj, € R\ Q. Then,

+o(A71,

dxd€ — (27r)_d/ po(x,n) d5

_ 7T_d
N = (2m) / . o

{p2tp1<A}
where dS' is the surface-measure on {ps = \}.

Proof. To calculate the contribution of the trace at t = 0, we use the same argument as in the
proof of Proposition 3.5.1. Therefore, it only remains to show that for any xy € S(R) with
X € C((0, 00)) the trace fulfills

(dN = x)(A) = o(A4"1).

By Proposition 2.7.3 it suffices to consider the case that supp Y is close to w;olﬂ'k: for some fixed
jo and some k € Z. By assumption there are two irrationally related frequencies, so there is at
least one wj, such that supp x N wj—lle = () Without loss of generality we may thus assume
that there isa 1 < k < d such that

supp X N —(1/2+2) =0, forallj <k,
Wy

supp ¥ N —Z =0, forallj> k.
Wi
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As the first step, we construct a parametrix of the operator e ~*H0 for arbitrary times ¢ > 0.
Since the propagator is just the product of the 1-dimensional propagators in each variable, we
have to only consider the cases j < k and j > k and the full propagator is given by the product

d
eiltHO (x7 y) — H Uo(wjt7 xj? y])
7=1

Case 1: j < k. By Proposition 2.3.4 and the discussion thereafter, it is clear that
X(OUo(wjt, 7, y5) = X(t)a; (t) / ¢! 2(stsag i) =y3ms) .

where a;(t) = i (2m)~'/2 cos(w;t)"/? and v € {0, 1,2, 3} is a Maslov factor.
Case 2: j > k. By [17, Exercise 11.1]

X(t) UO (th, Zj, yj) = X(t)a] (t)eng (th’xﬁyj)a

where a;(t) = i¥(2m)"/?sin(w;t)"/? and v € {0,1,2,3} is a Maslov factor. The phase
function is given by

~ 1 1
Pa(t, zj,y5) = m(—%‘yj Ty 005(75)(%2‘ + 3412‘))~
Combining this yields
e (yy) = [ eHeaat) o,
Rk

with a(t) = []%_, a;(t) and

k d
¢(ta$ay,77) = Z(@(%tv%,%) - ?/ﬂ?]) + Z ¢2(th, l‘],y])
=1 j=kt1

We want to construct a parametrix for U(t) = Uy(t)F(t), where the reduced propagator
F(t) solves (2.13) with P(t) = "o (H — Hy)e "M,
By Lemma 2.6.1 there is a parametrix F'(t) of F'(t), given by

Bt = [ elemeriontn9py, ) de.

where ¢1(t,y,£) = — fgpl o exp(tH,,)dt and b € C°°(R,T'Y%). The composition is almost
trivial, because F'(t) is right-quantized and the composition is reduced to the identity

Sz —y) = /ei(gcy)g dg.
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Summing up, we obtain that a parametrix for U(¢) is given by

U(ta z, y) = / ei(¢(t7x7y7n)+¢1 (t’ym’O))a(t)b(ta Y, 1, 0) d77
Rk

Here (1,0) € RF x Rk, ]
Now, calculating the inverse Fourier transform of Tr U (¢)x(¢) in ¢ and changing coordinates
(z,y,m) = AV2(2,y,7) yields

FL AR TeU(t z,2) )

_ )\(d+k)/2/ ei,\(¢(t,x,az,n)+,\*1/2¢>1(t,x,n,o)ﬂ))%(t)a(t)b(t’ A2 AV2p, 0) dn dz.
Rd+k

This oscillatory integral satisfies the assumptions 1.-4. from Proposition 3.4.1 and thus, we use
the same argument as in the first step of the proof of Proposition 3.4.1 to conclude that

(dN *x)(\) = F L {x() Tr U (t, 2, 2) }(A) + O(A~F) = O(A4HR/2)
and since k < d we have shown that

(dN % x)(A) = o(X?71).



CHAPTER 3

Improved Remainder Estimates
for the Weyl Asymptotic

3.1. Introduction

This chapter is taken from the article [11]. The section about the isotropic calculus has been
deleted. The results which are needed can be found in Section 2.4.

3.1.1. Main Results

Let Hy = $(A + |2|?) denote the isotropic harmonic oscillator on R%, where A is the non-
negative Laplacian. Thus Hy is the Weyl quantization Hy = Op"“(p2), where ps = (1/2)(|z|? +
|€|%). Consider a perturbation

H = Op"(p),

where p differs from py by a classical isotropic 1-symbol. In other words, p admits an asymptotic
expansion
p~p2+pi+pot+..., (3.1)

where each p; is homogeneous of degree j jointly in (z, ). Furthermore, assume that p is real
valued, hence H* = H by properties of the Weyl calculus.
Since pa(x, &) > 0 for (x, &) # 0, the resolvent of H is compact and H has discrete spectrum

A< A <s = Hoo,

where each eigenvalue is listed with multiplicity. Let E\ denote the corresponding spectral
projector onto (—oo, A], so if N(\) = Z)\j < 1 is the counting function, then N(A) = Tr E).
Moreover, the Fourier transform of the spectral measure satisfies U (t) = F)_,;dFE), where U (t)
is the propagator for the time-dependent Schrédinger equation

(i — HYU(t) = 0
U©) =1.

This implies that
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where the trace of U(t) is defined as a tempered distribution (cf. [13] and Section 3.3.6). It is
clear from (3.2) that there is a relationship between the singularities of Tr U (¢) and the growth
of N()\) as A — oo. A proof of the following Poisson relation can be found in [24], but we will
give a short and simple proof in the special case of interest here:

Proposition 3.1.1. Singularities of the Schrodinger trace Tr U (t) satisfy
sing-supp Tr U (t) C 27 Z.

Let Hy denote the Hamilton vector field of po = (1/2)(|z|? +|£]?), whose flow (z(t), £(t)) =
exp(tHo)(xo, &) satisfies

x(t) = cos(t)xy + sin(t)&o,
&(t) = cos(t)&y — sin(t)xo.

Given a function f € C>®(R??71), let Xf denote’ the average of f over one period of the flow,

2

Xf(l", 6) = 0 f(exp(tHO)(a:, f)) dt. (33)

When restricted to the sphere, X can also be viewed as the average of f over the fibers of the
complex Hopf fibration S?*~1 — CP9~!. Indeed, consider the map

(,€) — x + &,

which identifies R?? with C¢. This map intertwines the action of exp(tHg) with complex
rotations z — ez, and by restriction to S?*~! the latter action induces the complex Hopf
fibration S?¢~1 — CP“~! with fiber S'.

The following theorem, which constitutes the main result of this chapter, shows that the
singularities of Tr U (¢) at nonzero times, and hence also the remainder term in the Weyl law,
depend on properties of Xp; (recall from (3.1) that p; is the subprincipal symbol of H).

Theorem 3.1.2. Assume that when restricted to S2¢~ 1, the set where VXp1 vanishes to infinite
order has measure zero. If x € C°((—2m,2m)), then for alln € Z\{0},

Fhx(t—2mn) TrU(t) = o(A4 ). (3.4)
IfXpy is Morse-Bott on S~ with k > 0 nondegenerate directions, then
Fhx(t —2mn) TrU(t) = O(AI~17R/4), (3.5)

In either of the cases considered above, there holds the Weyl formula

N\ = (277)_d/

{p2+p1<A}

dxdn — (277)_d/{ N po(z,n) 45 + O(Ad_l). (3.6)
p2=

|Vpa|

!This is a kind of X-ray transform, hence the notation.
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Observe that Xp; is never Morse since it is constant along the integral curves of Hg. On the
other hand, the pullback of a Morse function on CP?~! by the complex Hopf fibration yields
a function p; on S?4~! such that Xp; admits 2d — 2 nondegenerate directions. Thus in any
dimension d > 2 there are always examples of p; satisfying the Morse-Bott hypothesis of
Theorem 3.1.2.

The two-term Weyl asymptotic (3.6) in Theorem 3.1.2 should be viewed as a refinement of
the more general asymptotic formula

d:):dn—(27r)_d)\d_1/2/ P ds + 0\ (3.7)
{p2=1} A%21

N(\) = (2r) 9\ /
{p2<1}
established earlier by Helffer—Robert [23] for arbitrary 1-symbol perturbations. Indeed, (3.7) is
recovered from the leading order term in (3.6) by writing the volume of {ps + p; < A} as \?
times the volume of {py + A1/2p < 1} and expanding the latter volume in powers of A2,
The necessity of a nondegeneracy hypothesis on p; in Theorem 3.1.2 is apparent already from
the unperturbed harmonic oscillator Hy. Its eigenfunctions are given by products of Hermite
functions, defined for a multiindex o = (a1, . .., ag) by

wa(l‘) _ 7T_d/4(2|a‘04!)_1/2Ha(x)e_‘x‘2/2,

with H; the j°th Hermite polynomial and H, = H?:1 H,,;(x;); the corresponding eigenvalues
are

ol + 5

al+ 5.

Thus the eigenvalues are A = j + d/2 for j € N, arising with multiplicity
p()‘ - d/27 d)a

where p(j, d) denotes the the number of ways of writing j as a sum of d nonnegative integers.

Since in fact
) d+7j—1
p(j,d) = ( j > ;

and this quantity is bounded below for j € N by a multiple of j%~!, the remainder term in the
Weyl law for Hy certainly cannot be o(A?~1).

The improvement in the Weyl law is not directly related to the propagation of singularities:
If u € S, we show that

WFa(U(27k)u) = {(z + k0:(Xp1)(0,£),€) : (2,8) € WFa(u)}.

If we consider the operator H = Hy + /Hy, for which the symbol of the perturbation is
p1(z, &) = \/p2(x, &), we see that singularities at time ¢t = 27k are shifted by 27k0¢|¢|. On
the other hand there is no improvement in the Weyl law, because the eigenvalues of H are

Jj+d/2+ \/j + d/2 and the multiplicity remains p(j, d).
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3.1.2. Strategy of Proof

As in §3.1.1, denote the free Hamiltonian (namely the exact harmonic oscillator) by Hy =
Op"(p2) and the perturbed one by H = Op™(p). Further, let

Ut) =e M Uy(t) = e Mo F(t) = Ug(—t)U(2)

be the perturbed, free, and “reduced” propagator, respectively. Then, F'(t) satisfies the evolution
equation

! 3.8
L (8)

(10, — P(1))F(t)
F(0) =

where P(t) = Uy(—t)(H — Hp)Up(t). The main strategy is to show, following the methods of
Helffer-Robert in [23], that F'(¢) has an oscillatory integral parametrix with an explicit phase
function. It is then possible to construct a parametrix for U(t) by composing the parametrix
for F'(t) with the free propagator Uy(t), whose Schwartz kernel is given explicitly by Mehler’s
formula. Finally, via another more delicate stationary phase computation, we arrive at estimates
on the singularities of Tr U(¢). The results on spectral asymptotics then follow via a known
Tauberian theorem (see Lemma 3.5.2).

3.1.3. Prior Results

It has been known since the work of Zelditch [68] (see also [64]) that singularities of the
propagator for perturbations of the harmonic oscillator by a symbolic potential V' (x) € S°(R%)
reconstruct at times ¢ € wZ. Moreover, if the potential is merely bounded with all its derivatives,
Zelditch showed that sing-supp Tr U (t) C 27Z. It was later shown by Kapitanski-Rodnianski-
Yajima [34] that the singular support of Tr U (t) is contained in 277 supposing only that the
perturbation is subquadratic.

More general propagation of singularities for geometric generalizations of the harmonic
oscillator to manifolds with large conic ends (“scattering manifolds”) was also studied by the
Wunsch in [65] and refined by Mao—Nakamura [38], which allows for perturbations in the
symbol class S'~¢(R?) for any € > 0.

That something dramatic happens for potential perturbations in S*(R?), by contrast, is clear
from the results of Doi [9], where the author shows that the location in space of the singularities
of the Schrodinger propagator at times ¢ € 7Z is indeed subject to an interesting geometric
shift from this type of perturbation.

Helffer—-Robert [23] studied the singularity at ¢ = 0 of the Schrédinger trace (and, conse-
quently, the Weyl law) for the class of perturbations under consideration here, viz., those that
are isotropic operators of order 1. While this class does not include potential perturbations of
order 1, hence is perhaps less natural on physical grounds, it is more natural from the point
of view of symplectic geometry. The analysis in [23] was limited to the study of the main
singularity at ¢ = 0, hence did not include the considerations of the global flow studied here.
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The parametrix construction of [23] is essential in our work, however, as we extend (a version
of) it to long times via composition with the free propagator.

The novelty of our result lies in the delicate perturbation resulting from a one-symbol. This is
unlike the case famously considered by Duistermaat-Guillemin in [13] under which a genericity
hypothesis on the geodesic flow yields an improvement to the Weyl law remainder for the Lapla-
cian on a compact manifold. For isotropic pseudodifferential operators the analoguous version
of the theorem by Duistermaat—Guillemin is also true (see for instance Petkov—Robert [51] in
the semiclassical setting). In our case, the most naive version of propagation of singularities,
as described by isotropic wavefront set, is unaffected by the perturbation. The perturbative
effect can be seen heuristically as a higher-order correction to the motion of Lagrangian sub-
spaces of T*R™: at times ¢ € 277, the Lagrangian N*{0}, for instance, has evolved under the
bicharacteristic flow to another Lagrangian that is asymptotic to N*{0} as |{| — oo, but it is
the next-order term in the asymptotics of this Lagrangian that governs the contribution to the
Schrédinger trace, and hence to the Weyl law remainder term.

3.2. Singularities of the Trace

3.2.1. Propagation of Isotropic Wavefront Set

Since P(t) = Uy(—t)(H — Ho)Uy(t) and H — Hy € G, it follows from the exact Egorov
theorem that
P(t) € G, P(t)* = P(t), (3.9)

and P(t) is in fact a smooth family of such operators. Somewhat surprisingly, the evolution
generated by P(t) does not move around isotropic wavefront set; this uses essentially the
property of the isotropic calculus that errors are two orders lower. The analogous result of
course fails for usual wavefront set if P(t) is replaced with an ordinary first order, self-adjoint
pseudodifferential operator such as v/A.

Lemma 3.2.1. Let P(t) € G' be a smooth family of self-adjoint operators, and assume there is a
solution F'(t) of the equation

F(0)=1
such that F € CO(Ry; L(HZ,, HE ) NC (Ry; L(HE,, HE-1)) foreach s € R. Then, the isotropic

iso’ iso? ~~iso

wavefront set satisfies WFig, F'(t)u = WFig, u for eachu € S" andt € R.

{ (i0, — P(t))F(t) = 0

Proof. Suppose that u € &', hence there exists so such that u € H;?, and by hypothesis

F(t)u € H;? for all t € R. The goal is to show by induction that for every k, the set
VVF{“SO F(t)u is invariant; this is trivially true for k = s¢, as the wavefront set remains empty.
Suppose that U C S??~! is open, and WF{“SO uN U = (). The inductive step is completed by
showing that
WEEL Py unU = 0 = WFE F(tyunU = 0.

1S0 1SO0
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Let A € G* be fixed independently of ¢ such that WF’ A C U. Choose a bounded family
{Ac:ec[0,1)} c G*

such that Ag = Aand A, € G*~! foreach e € (0, 1). Furthermore, assume that WF’ A, C U
fore € [0, 1). For instance, let A, = S. A, where

Se = Op”((1+&(|z* + |€[*)7"/?).
Observe in this case that A. — A in the topology of G**!. Using (3.8), compute

S AP(t) = ~iP()(AF(D) ~ i[Ae, PO]F (1)

Since P(t) is self-adjoint and A F(t)u € L?(R?) by the inductive hypothesis,

%HASF(t)uH2 =2Re((d/dt)A.F(t)u, AcF(t)u) ;2

= —2Re (i[Ac, P(t)|F(t)u, A F(t)u) (3.10)
< 2[AF()ul [Ae, P@)IF(t)u]-

On the other hand, since A is bounded in G*, it (crucially) follows that [A., P(t)] is bounded
in G*~1 for £ € [0, 1). Furthermore, the operator wavefront set of [A., P(t)] is contained in U.
Now integrate to find that

t
AP OulP < Al +¢ [ |Ae PP ()l ds
0

for each fixed t, where the right hand side is uniformly bounded as ¢ — 0. From the weak
compactness of the unit ball in L?(R?), conclude that A., F'(t)u has a weak limit in L?(R9)
along a sequence of €, — 0, hence in §’(R?) as well. On the other hand, A, F(t)u — AF(t)u
in S'(R%), since A, — A in GF+1 It follows that AF(t)u € L?>(R?), and we have shown that
fort > 0,

WFiso F(t)u C WFigo u.

To obtain the reverse inclusion, we repeat the argument above, integrating a time-reversed
version of (3.10) from ¢ to 0 instead of 0 to ¢. O

Lemma 3.2.1 can be applied to the evolution equation (3.8): in that case F'(t) = Uy(—t)U (t)
and both operators in this composition preserve H}  for each s; thus F'(¢) has the requisite
mapping properties. The invariance of isotropic wavefront set under U (¢) follows directly from

Lemma 3.2.1:

Proposition 3.2.2. Forallu € §' andt € R,

WFiSO U(t)u = WFiSO Uo (t)u = eXp(tHo) WFiSO u.
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Proof. Since Uy(t)u = F(—t)U(t)u, the first equality follows from Lemma 3.2.1, while the
second follows from the exact Egorov theorem for Uy (t). Ul

Equipped with Proposition 3.2.2, there is a simple proof of Proposition 3.1.1 following the
strategy of [65].

Proof of Proposition 3.1.1. Pick any small interval I not containing a multiple of 27. By com-
pactness of the sphere, there exists a partition of unity {ajz-: j € J} of S**=! such that
aj - (aj o exp(tHp)) = O forall j € J and ¢t € I. Using an iterative construction in the
calculus, it is possible to find A; € GV satisfying 00(A;) = a; and WF’'(A) C supp a;, such

that
> AZ=1+R,

where R € G~°° (cf. [65, Corollary 4.7]). Then, computing in the sense of tempered distributions,

TrU(t) =Tr Y AZU(t) — RU(t)

(3.11)
=TrY A;U(t)A; — RU(1).

The term A;U(t)A; maps S’ — S by propagation of singularities (Proposition 3.2.2), as do
all its derivatives, and RU (t) also has this property. Hence the right hand side of (3.11) and
all its derivatives are bounded for t € I, so TrU(t) € C*°(I). This completes the proof of
Proposition 3.1.1. U

3.3. Parametrix

3.3.1. Oscillatory Integrals

Throughout the rest of the chapter it will be important to consider oscillatory integrals of the
form

I(a,4)(2) = / MM a(zm)dn,  (2m) € R x R™, (3.12)

where v is a real-valued quadratic form in (z, ). References for this material are [22, Chapter
IIT] and [1]. If %) satisfies the nondegeneracy hypothesis

rank (82,9 92,4) =k +m, (3.13)

then (3.12) defines a distribution I (a,¢)) € S’(R¥) provided the amplitude a(z, ) € C*°(RF*™)
satisfies
102 a(z,m)| < Ca ()™M ()™ (3.14)

for some fixed M € R and every a. This also means it is possible to consider phases of the form

) =y + Yy,



3.3. Parametrix 41

where 1) is a quadratic form satisfying (3.13), and v; is real-valued satisfying the bounds
0Z1(2,m)| < Ca

for each |a| > 1. Indeed, for the purposes of regularization, it suffices to absorb e’¥! into the
amplitude, since ¢V q satisfies (3.14).
Now suppose that ¢ is a real-valued quadratic form in (x, 3y, ) € R? x R? x R™. If 1) satisfies

Onyt Oyt
det <8§3¢ 33:1#) £ 0 (3.15)

and a(z,y,n) satisfies (3.14) with z = (x,y), then I(a,)(z,y) is the Schwartz kernel of
an operator mapping S(R?) — S(R?) and &'(R%) — S'(R9). Furthermore, if a(x,y,n) €
S(R?? x R™), then the corresponding operator is residual, namely it maps S’(R%) — S(R%).

3.3.2. Mehler’s Formula

As discussed in Section 3.1.2, the goal is to approximate U (¢) by first approximating F'(¢) by an
operator with oscillatory integral kernel of the form

F(O),y) = [ e e ate o)

where F'(t) — F(t) is regularizing in suitable sense, and ¢; is an explicit phase function which
is homogeneous of degree 1 in (z, 7). This is useful since U(t) = Uy(t) F'(t), and the Schwartz
kernel of Uy(t) is explicitly given by Mehler’s formula, which is now recalled.

Begin by defining the phase function

¢a(t, x,m) = sec(t)((w, ) — sin(t)(|z* + [n]*)/2), (3.16)

where (z,7) € R?? This is well defined for any ¢ ¢ 277 + 7/2, and for any such ¢ the
quadratic form ¢9(t, z,n) — (y,n) satisfies (3.15). It is well known that the Schwartz kernel of
Up(t) satisfies

B 1 dn ; »
Uo(t)(z,) = (27) dcf)s(t))dﬁ / italtan)—ity) gy

where n is such that t — 27n € (—7/2,7/2). Thus Uy(t)(z, y) is of the form (3.12), where for
each fixed ¢ the amplitude is constant.

3.3.3. Parametrix for the Reduced Propagator

Recall that the reduced propagator F'(t) = Uy(—t)U(t) solves the evolution equation

{ (i — P(t))F(t) =0
I.

F(0) (3.17)
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Here P(t) € Gil is a smooth family of classical isotropic operators, and in the notation of (3.1)
its total Weyl symbol p(t) satisfies

p(t) = (p — p2) o exp(tHo)

by the exact Egorov theorem. In particular, its homogeneous of degree 1 principal symbol
p1(t) = o1(p(t)) is simply p1(¢) = p1 o exp(tHo). Define

t

o1(t,x, &) = —/0 p1 o exp(sHo)(z, &) ds, (3.18)

noting for future reference that ¢, (27n,e) = —X"p; = —nXp; for each n € Z, where Xp; is
given by (3.3).
In the following lemma we construct an oscillatory integral parametrix for F'(¢).

Lemma 3.3.1. There exists a € C*(Ry; T%) and an operator F(t) with Schwartz kernel

F(t)(x,y) = / e bm (1, 1, €) dé (3.19)

approximately solving (3.17) in the sense that

(i, — P())F(t) € C*(R;; £(S',S)), F(0) = 14K,
where K : 8’ — S. Here, the function ¢ is given by (3.18).

Note that unlike the construction of [23] (which we are adapting to our purposes), this holds
for arbitrarily long time.

Proof. We seek an approximate solution to (3.17) of the form (3.19). The starting point is the
action of an isotropic pseudodifferential operator on oscillatory integral of the form (3.19), as in
[23, Section IIT] or [22, Theorem 2.5.1]. In order to apply these results directly, first write P(t)
as a left quantization,

P(t) = Opy(p(1)),

where the homogeneous degree 1 part of p(¢) is still py (¢).
Suppose that a € C®(R;TY) and ¢ € C(Ry x R2). Let b(t, z, &) = e1@8)q(t, 2, €),
and then define
c(t,z,€) = e O P(t)("*Lb(t, 0, 8)).

Referring to [23, Section IIT], it follows that ¢ has an asymptotic expansion

c(t,z,8) =Y calt,z,y,&) +cM(t,2,y,8),

lo| <N
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where ¢, is given by the formula

ca(t,z, &) = (a!)_lag‘ﬁ(t, x,§)Dob(t, 2, §).

(N)

Furthermore, given 7' > 0 and ¢ € [T, T, the remainder ¢\""/ satisfies the uniform bound

0F0807 M (t, 2, )| < Crpy (2, €))7 (3.20)
Disregarding smoothness at (z,{) = 0 at first, formally apply this result with a symbol having

an asymptotic expansion
o0
Z a(k) (t7 x? 5)7
k=0

where each a(¥) (¢, ®) is homogeneous of degree —k outside a compact set, and ¢(t, ®) which is
homogeneous of degree 1. Recalling that b = ¢'*1a and separating terms by homogeneity, first
obtain from (3.17) the eikonal equation

A1+ pi(t,z,§) =0
(Z)l(ovxag) =0.

This equation is solved by (3.18), recalling that p;(¢) = p1 o exp(tHp). Next, obtain a sequence
of transport equations, the first of which has the form

ata(o) = f(ta fUaé)a(O)
a(0,z,7m) =1,

where f(t,z,&) is homogeneous of degree 0. Observe that this equation can be solved for all
time since the characteristics are straight lines. There are similar expressions for a(*) (with
inhomogeneous term depending on a(?), ..., a*~1) and with vanishing initial value). Let
@ € C*®(Ry; R??\ {0}) be such that

a(t,z, &) ~ > aWi(t,z,¢), (3.21)
k=0

and then set a(t,z,&) = ((z,&)a(t,x, &), where ¢ € C*(R??) is such that ((x,&) = 0 for
[(z,€)] < 1and ((x,&) = 1for |(x,£)| > 2. Thus a is everywhere smooth, and ¢; is also
smooth on the support of a.

Let F'(t) be given by (3.19), and Fy(t) be the corresponding integral when (3.21) is summed
from 0 to N. There are two errors when applying (i0; — H) to F(t): the first arises since the
eikonal and transport equations are only satisfied outside a compact set, hence the corresponding
error is residual. The second error arises since the corresponding amplitude ay is only a
finite sum of terms. For this we simply cite [23, Lemma III.6] for mapping properties of the
corresponding oscillatory integral with amplitude ¢(N*+1 (¢, 2, £). Since N is arbitrary, the proof
is complete. O
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Observe that F(t) (x,y) is indeed the distributional kernel of an operator S’ — S’ as described
in Section 3.3.1: clearly the quadratic form (z — y, &) satisfies the hypotheses (3.13), and as in
the proof of Lemma 3.3.1 is may be assumed that ¢; is smooth on the support of a.

3.3.4. Composition

In this section we analyze the composition U(t) = Uy(t)F(t), which will give a parametrix
for U(t). Observe that U (t) is well defined as an operator between tempered distributions, for
example.

Although some information about the composition can be gleaned from the general theory
in [22, Chapter 2], a more precise description of the resulting phase is needed here; for this
reason the calculations that follow will be explicit. Write

F(t) = /ei<:vym>+i¢>1(t,m)b1(t7mm) dn,

for appropriate amplitudes b; € C*°(Ry; I'%), where ¢ is given by (3.16), and ¢ is given by
(3.18). Of course the formula for Uy () only makes sense if ¢ — 27n € (—7/2,7/2) for some
n € Z. As remarked at the end of the previous section, it may be assumed that ¢; is smooth on
the support of b;.

Formally then, the composition has Schwartz kernel

U(t)(z,y) = /ei¢2(t,w,n)—i<y,n)+i¢1(t7y,n)b(t’ z,y,n)dn,
where the amplitude b = b(¢, z,y,n) is given by
b(t,x,y,n) = /€i<z—y7§—n)+i(¢1(tvzé)—¢1(t,ym))b2(t’x’n)bl(t,275) dzd¢
— / 28 it btz )= by, (¢ by (t,y + 2,1 + €) dzdE.  (3.22)

In analyzing the latter integral, there is no difficulty in supposing more generally that b; ¢
C*°(R¢; I'"™7) for some m; € R. Since all the dependence on ¢ henceforth will be smooth and
parametric, for notational simplicity the dependence on ¢ will be suppressed. Define

ao (ZL’, Yy, z,1m, 5) = ei(bl (y+zn+€)—igr(y.m) b2 (.fL', 77)51 (y + z, n + 5)

While b; have improved decay under differentiation for j = 1, 2, this is not the case for ag due
to the homogeneous of degree 1 phase factor. Thus

0%ao| < Ca ((z,m)™ ((y + 2, + )™
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for each a.. Now integrate by parts using the operator L = (1 + |z|2 + [£]*) 71 (1 4+ A, + A¢)
to see that

(L) 08y qt0] < Ca ()™ ()™ {(2,€))"™ 7. (3.23)
Choosing k > d + |m1]|/2 shows that b given by (3.22) is smooth and satisfies

|0°b] < Co (2, )™ ((y,m))™

for each a.
This result must be improved to include symbol bounds when = = y; this is important when
taking the distributional trace of U (t).

Lemma 3.3.2. The pullback of the amplitude b by the map (t,z,n) — (t,z,x,n) lies in
C®(Ry; Imrtm2),

Proof. As in the previous paragraph the smooth dependence on ¢t will follow immediately by
differentiating under the integral sign, and so to simplify notation the dependence on ¢ will be
again be dropped.

First, observe that it suffices to consider the integral (3.22) over (2, )| < (1/2)|(z,n)|, since
on the complement b(x, z,n) is rapidly decaying in (x, n) by (3.23). So now define

ba(z,n) = bAY 2z, N2z, XM/ 2p),
where 1 < |(z,n)| < 2. In order to prove the lemma it suffices to show the uniform bounds
|02, ba(z,m)| < CaAlmiTm2)/2 (3.24)
as A — oo. For this, define
aa(z, & z,n) = a(WY 2z, N2 oAV 2 (@ 4 2), A2 (n + €)),

noting that
10%gx(2, &, 2,1m)] < CoAm1Hm2)/2 (3.25)

uniformly in 1 < |(z,7)| < 2 and |(z,£)| < 1/2. A Taylor expansion of ¢1(z + z,£ + 1) at
(z,n) yields

o1z + 2,6+ 1) = ¢1(x, n) (2, 0z01(z,m)) + (&, Oyor(z,n))
+ ) (2, falz,2,n,8)

|af=2

for some smooth functions f,, so if we define

Dy, 2,n,8) = 2§ + pdr(z + 2, £ +n) — por(z,n)
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for a parameter i1 € R, then

®, = &+ p(20y01(y.n) + E0nd1(y.m) + > (2,€) falz: & 2,m)).

=2

Using homogeneity of the phase, the rescaled amplitude by (x,n) can be written via a change of
variables as

mmm:v/é&m@@mmM& (3.26)

by setting ;1 = A\~'/2. Let C, = {d.¢®, = 0} denote the set of stationary points; thus
(2,€) € Oy if and only if

€+ pden(z + 2,6 +17) =0,
2+ pdedr (= + 2, € +1) = 0.

By the implicit function theorem, we can parametrize (z, &) by (i, z, n) near any fixed (xq, 7o)
for |p| sufficiently small, and obtain

|2 (s, @) + 1€ (s 2, m)| < Clpl.

In particular these points satisfy |(z,£)| < 1/2 for |u| sufficiently small and 1 < |(z,7)| < 2,
hence the derivative bounds (3.25) for g, will apply.

We can now estimate the integral (3.26) and its derivatives, initially treating y as a parameter;
assume without loss that gy (z, £, x,n) vanishes for |(z,£)| > 1/3. Consider a typical derivative
92 ngx. This is a sum of terms, where those with ¢ < || derivatives landing on the exponential
factor can be written as

v@m{/amu@%w)Ej@@W%dws (3.27)
|Bl=¢

for some smooth functions hg = hg(z,§,y,n, 1) and |[v'| < |v/.

Now apply the method of stationary phase, recalling the bounds (3.25). At the critical set
O, each term (2, €)Phs(2, &, y,m) in (3.27) gives an additional factor of order O(||*/?), since
both critical points z (s, y, 1), £(u, y,n) are of order O(|p|). When p = A~/ this cancels with
the factor of A*/? in front of the integral in (3.27). The stationary phase formula eliminates the
prefactor of 2\ showing that

0%y (,m)| = O(AmFm2)/2)

near (g, 7). Since the set where 1 < |(z,7)| < 2 is compact, this implies the symbol estimates
(3.24) everywhere on the latter set. O

More generally, Lemma 3.3.2 is true whenever ¢ is a quadratic form satisfying (3.13) and ¢,
is homogeneous of degree 1.
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Corollary 3.3.3. Ift — 27n € (—w/2,7/2) for somen € Z, then the Schwartz kernel of U (t) is
given by an oscillatory integral

Ult,z,y) = / g2 e e HO LD (1, 2y, ) diy,

where ¢y is given by (3.16), and ¢y is given by (3.18). The pullback of b € C*°(R; x R34) by the
map (t,z,n) — (t,x,2,n) lies in C°(Ry; 7).

Proof. This follows directly from Lemma 3.3.2. O

Let R(t) = (i, — P(t))F(t). A brief calculation shows that U (t) satisfies the equation

{ (0 — H)U(t) = To(OR() 5.28)
U(0) =1+K
It follows by Duhamel’s principle that
Ut)—U@t)=U@bK —i t U(t — s)Up(t)R(t) ds. (3.29)

0

Recall that Uy(t) and U (t) both preserve the scale of isotropic Sobolev spaces. Since R(t) is a
smooth family of residual operators and K is residual, it follows immediately from (3.29) that

R(t) = U(t) = U(t) € C*(Ry; L(H, Hiy,)) (330)

for each V.

As in Lemma 3.3.1, there is no loss in assuming that the amplitude b(¢, z, y, ) in U(t) is
supported away from (x,y,n) = 0: inserting a cutoff modifies U (t) by a residual operator
which does not affect the error analysis above. In particular, it may be assumed that ¢; is
smooth on the support of b.

3.3.5. Propagation of Classical Singularities

Letu € £'+8, so in particular WFiso(u) C {(0,€) : € € R?}. We want to calculate the classical
wavefront set WF (U (t)u) of u. By Lemma 2.4.13, if {(0,&) : £ € R} N WFjs(v) = () then
v € C*°. Applying this to v = U (), it follows by Proposition 3.2.2 that U (¢)u € C* except at
times t € mZ, and at those times, it follows by Mehler’s formula that

WFa(Up(km)u) = {(=1)F(x, ) : (x,€) € WFq(u)}.

It remains to calculate how singularities are moved by the reduced propagator F(t).
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We now assume more generally that v € S’. Equation (3.30) (and preceding discussion)
implies that the parametrix constructed in Lemma 3.3.1 satisfies F' — F € C®(Ry, L(S',S)).
The classical wavefront set is thus completely determined by the parametrix:

WF(F(t)u) = WFEa(F(t)u + (F(t) = F(t))u) = WFa(F(t)u),

because (F(t) — F(t))u € S C C*.
Recall that

Plt) = / (v +61 020 (1 1 €)de

= /€i¢(t,$,y7§)&(t7x7§)d§’

with ¢ = (z — y,&) + ¢1(¢,0,) and
a(t @, €) = e =00 (¢, 2, ¢).

Note that ¢ is homogeneous of degree one in ¢ and since, locally, ¢1 (¢, z, &) — ¢1(t,0, &) € S°
we see that the amplitude is (locally) a Kohn-Nirenberg 0-symbol, a € SY. Thus, the oscillatory
integral F'(t) satisfies the assumptions of Theorem 8.1.9 from [30], and we obtain the following:

Proposition 3.3.4. The wavefront set of the integral kernel of F'(t) is given by

WF(F(1)) C {(ac,x + 9c1(£,0,6),6,—€) :x e R € e RT\ {0}} .

If we want to calculate the wavefront set of F'(t)u for u € S’ we have to show that there are
no contributions to wavefront set coming from infinity. Fix ¢y € R and let X C R¢ compact
with x1 € C°(K); set

r= max |z + 0¢pi(to, x, )|
(z,£)eK xR?
Note that J¢ ¢ is homogeneous of degree zero in (x, £) and therefore r < co. Let xo € C>°(R?)
with supp x2 U B,41(0) = 0 and homogeneous of degree zero outside of B,2(0).
It suffices to show that x1(z)x2(y)F (to, z,y) € S(R?*?). Set ® = (x — y,&) + ¢1(to, , )

and define the operator L by
(9¢®, Deu)
O ?

L is well-defined on supp x1(z)x2(y) and satisfies Le’® = €!® and foralla € T™ and N € N,

(LY Na(,€)] < Clo =y + 0 (o)™ (2, )™
< Ofy)Mem .

Integration by parts with this operator shows that x1(x)x2(y)F (to, x,y) and all its derivatives
are rapidly decaying, hence for any u € &', we know that WF F'(t)u N 71 K is determined
by the restriction of u to B,41(0), and is as follows:
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Proposition 3.3.5. Foru € &',
WFEa(F(t)u) = {(z = 0:41(t,0,€),8): (2,8) € WFa(u)}-

Proof. The usual calculus of wavefront sets, together with Proposition 3.3.4, shows that
WFa(F(t)u) C {(z = 9:41(t,0,£),8): (2,8) € WFa(u)}. (3.31)

It remains to upgrade this containment of sets to equality. To do this, we simply observe that by
the calculus of wavefront sets and a second use of Proposition 3.3.4,

WFCIF*(t)u C {(CC, E) : (‘T - af¢1(tv 07 5)7 5) € WFCI(U)} .
On the other hand F'(¢)* F'(t) = I, hence the containment in (3.31) must have been equality. [J

Corollary 3.3.6. Letu € S" and k € Z. The wavefront set of the full propagator is given by

WE (U (nk)u) {(—1)k <x+ /0 " ag(pl(t,(),g))dt,g)  (@,8) € WFCl(u)} |

Ift ¢ nZ andu € &' + S then WF (U (t)u) = 0.

For t = 27k this becomes

WEFa(U(2rk)u) = {(z + k0:(Xp1)(0,£),€): (2,¢) € WFa(u)}.

3.3.6. Traces

Recall that Tr U (¢) is well defined as a tempered distribution. More precisely, if y € S(R), then
the Schwartz kernel of

/ DU ) dt (3.32)

lies in S(R?), hence the operator is of trace-class. Indeed, if {e;} is an orthonormal basis for
L%(RY) consisting of eigenvectors of H with corresponding eigenvalues ), then (3.32) has
Schwartz kernel
[e.9]
D R)ei()e;(v),
§=0
which converges in S(R??) since X is rapidly decreasing. In order to obtain results on singulari-
ties of Tr U (t), it suffices to study the trace of U (¢) and its Fourier transform (cf. Lemme (IV.1)
of [23]):

Lemma 3.3.7. Ifx € C>°(R), then R(t) = U(t) — U(t) is of trace class, and
| Tr / MR dt| < Cp ()Y

foreach A € R and N > 0.
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Proof. For N > 0 operators in L(H_, HY ) are of trace-class (see [31, Lemma 19.3.2]). Using

iso ?""iso

repeated integration by parts, the claim follows from (3.30). O

On the other hand, if x € C2°((—n/2,7/2)), then the operator

/ (b — 2mn) T (1) dt

also has its Schwartz kernel in S(R??). Replacing x with e}, it follows that the trace of

Fhx(t—2m)U (1) is

(271')_1 /eit’\+i¢2(t’x’”)_i<m’”>+i¢l(t’m’”)x(t —2mn)b(t, x,z,n) dtdzdn.

In the next section we will evaluate this integral as A\ — oo.

3.4. Stationary Phase

In this section we apply the method of stationary phase to evaluate an integral of the form
I(\) = / elAtvatem+intam)y (pya(t, z,n) dtdedn (3.33)

as A\ — oo, where Y € C°(R). Letting (r,#) denote polar coordinates on R??, we will also
express various functions of (z,7) in terms of (r, #). The assumptions are as follows:

—_

. 1;(t, ®) is homogeneous of degree j,

2. a € C®(Ry; TO(RY)), and v are smooth on the support of a,

3. there exists a unique o € supp x such that 15 (o, e) = 0,

4. there exists a unique 79 > 0 such that 9y (tg, 70, 0) = —1 for all € S?4—1,
Define the set where the restriction of V1 (¢, ®) to S?*~! vanishes to infinite order,
I, = {9 € S2=1 . 98 (41 (to, 1,0)) = 0 for all & € N%1 \0} .

We can now state our main result on the asymptotics of I(\):
Proposition 3.4.1. IfIl;, has measure zero, then the integral (3.33) satisfies
I(A\) = oM7Y,

If, instead, the restriction of 11 (to, ®) to S>**~1 is Morse-Bott with k > 0 non-degenerate directions,
then

I(\) = O(\T~1=k/4),
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Proof. To begin, rewrite the integral (3.33) in polar coordinates, and then make the change of
variables r — \/2r. By homogeneity of the phases,

I = A / eAW2(trO) AT 201 (Lr Oy (1) g (¢, AV 27, ) dt r24 L drdo. (3.34)

Observe that the exponential term in this integral can be written as exp(iAV,,), where
\I’M(t’ T, 9) = ¢2 (t’ T, 9) + N¢1 (tv T, 0) +1

and 1 = A~/2. The proof proceeds in two steps.
Step 1: Stationary phase in (¢,7): First we apply the method of stationary phase to the
variables (r,t) for || small, treating p and 6 as parameters. Let

C,=A{(t,r): d1¥,(t,r 6) =0}

denote the corresponding stationary set. Now (70,)1; = ji; by homogeneity of the phases, so
the stationary points are where

{ 292+ 1 =0 (3:35)

02 + pohy +1 = 0.

By hypothesis, if 6y € S??~! is fixed and ;= 0, then these equations are satisfied on the
support of the function (¢, 7) — x(t)a(t, \}/?r,6y) precisely when t = to, r = rq.

Using the implicit function theorem, parametrize C,, N supp(x - a) near 0y for small |1|.
Indeed, differentiating the equations (3.35) in (¢, ) at u = 0, r = rg, t = t( yields the invertible

Hessian matrix
0 -2
2 Ofhe)

Denote by t = t(u,0) and r = r(u, 0) the corresponding critical points. Furthermore, by the
implicit function theorem

Oury _ 1 V10219 + 20411
out) 4 211

at u =0, r =g, t = to. Now Taylor expand W, (t(,0),7(x,0),0) at o = 0 to find that
W, (t(p, 0), (1, 0),0) = to + pbr (to, ro, 0) + p*y(p, 0)

near ;1 = 0, 6 = 6, where v = ~y(u, 0) is a smooth function of x and 6.
Next, apply the method of stationary phase to the integral

TOup.0) = X [ N (e)ale, A2, 0) de L,
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treating § € S~ ! and . as parameters. In fact, it may be assumed a(t, \'/?r, 6) has support on

{r < 3r¢}. Indeed, consider the following operator, which is well defined on {r > 2r¢}Nsupp x:
L= A" (062 +1)* +46) " (602 + 1)0; + 2620)) .
Due to the symbol bounds on a,
|(Lt)k<ei)\1/2wlx(t)a(t, )\1/27,,9)7”2&1)’ < C}g)\fk/2r2d7172k'

Inserting a cutoff to {r > 2r(} in the integrand of (3.34) and integrating by parts using L gives
a contribution of order O(A™°). By stationary phase, for any M > 1,

J(}\, I 0) — )\d—leiA(tO‘Hlﬂ/ﬂ(t077’079))aM()\1/2’ 1, 9) + O(Ad_l_M)

uniformly in 6 for |u| sufficiently small; here, ajs is a function depending smoothly on
()\1/ 2 1, 0). Note that while successive terms in the stationary phase expansion involve differ-
entiation of a(t, \1/?r, #) with respect to r, the symbol estimates on a ensure uniform bounds
on each ay; as A — oo.

Step 2: Stationary phase in 6: Recall that I()) is the integral of .J(\, A\=1/2, §) over S2¢~1
with respect to 6. In other words, for each M,

I()\) — )\d*lei)\to /ei,\l/le(15077“0,9)6”\4()\1/27 A71/2’0) do + O()\d*l*M)' (336)

We now complete the proof of Proposition 3.4.1. If (x,71) € S??~1 \ TI,,, then there exists an
a € N24=1 guch that

Og1 # 0,

in a neighborhood of (x, 1) within S?*~1. By the weak stationary phase lemma for degenerate
stationary points [60, p. 342, Proposition 5] and a covering argument, the contribution of the
integral over S241\ TI;, is o(A?~1) (cf. [19]). Therefore,

I()\) — )\d—lei)\to/ eiAl/qul(tO’To’e)b()\l/Q’ )\—1/279) do + O(Ad_l).

1Ty,

This implies that if IT; is of measure zero then
() = o),

which proves the first part of Proposition 3.4.1. For the second part, the condition that
1 (to, 70, ®) is Morse-Bott with k nondegenerate directions implies that I(\) = O(X?~1=+/4)
by [30, Theorem 7.7.6], so taking M > k /4 finishes the proof. O
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3.5. Spectral Asymptotics

3.5.1. Singularity att =0

In this section we calculate the leading order asymptotics of the singularity of Tr U (¢) at
t = 0. More precisely, we obtain the A — oo behavior of its inverse Fourier transform, after
a suitable mollification. For this we use a short-time parametrix for U(t) constructed in [23].
This construction actually applies to any self-adjoint classical elliptic isotropic operator of order
2, and for this reason we state Proposition 3.5.1 below quite generally.
Let p € '} (R?) be real-valued and elliptic, and then set P = Op*(p). Denote by N()\) =
> A<al the counting function for the eigenvalues of P.

Proposition 3.5.1. Let p € S(R) be such that p has compact support in (—€, €). If e > 0 is
sufficiently small, then

_ _ ds
(N % p)(A) = (2m) / ddn — (2m)~ / polz,m)
{p2+p1 <A} {p2=2} ’vP2’

+0O(\73/2),

Proof. Let U(t) denote the Schrédinger propagator for P. As remarked above, we will use a
parametrix Uy (t) for U(t) taken from [23], which exists on some time interval (—e¢, €) (note
that Uy (t) differs from the long time parametrix constructed in Corollary 3.3.3). In the notation
of [23],

Un(t,z,y) = (2m) / e/ S2bem =St ay (¢, m) di.

Here S92, S} are appropriate phase functions, and the symbol a is a finite sum

N(t,z,n) = Za (t,z,m),

where each a(¥)(t, 8) is homogeneous of degree —k outside a compact set and vanishes near
(z,m) = 0. Note, however, that in [23] the operator P is the left quantization of p rather than its
Weyl quantization. In order to extract the leading order behavior of these quantities, first write

Op“(p) = OpL(p)
with p € T'% and p; = p; for j = 1,2, but
Po = po — (i/2) (Or, O¢) p2- (3.37)

Referring to [23, Equations 37-38] for the transport equations satisfied by a(*) and using (3.37),
we find that

N(Oa%ﬁ) = 17 81&(1(0)(0733777) = —ZPO - (1/2) <8:E78§> p2
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Recalling that F)_,;N'(\) = Tr U(t), we have F\_{N' * p} = p(t) Tr U(t). Motivated by
this, define the distribution K (t) = p(t) Tr Un (), so that

K(t)= (QW)dﬁ(t)/ei(SQ(t’x’”)<m’”>+sl(t’x’”))a]v(t,x, n) dzdn.

This makes sense so long as j(t) has support on the interval where Uy (¢) is well defined.
By [23, Equations 35-36], S2(0,z,n) = (x,n) and S1(0, x,n) = 0, so by Taylor’s theorem

S2(tax777) - <£L',77> + Sl(tvxan) = W(ﬂl’ﬂ?)

with v a smooth function. More precisely, 1 is given to leading order in ¢ by

Y(t, ) = —(p2 + p1) + (t/2)((Dep2, Oup2) + (Tep1, Oup2) + (Oep2, Dupr)) + 7 (t, ®).
We now follow the argument of [32, Lemma 29.1.3]. First, define
At N = 20 [ an (b, m)p(t) dady.
{=¥(t)<A}

t|, the function —1)(¢, @) is elliptic in I‘gl, and as in the aforementioned

Now for sufficiently small
lemma

A(t, ) € SY(Ri; Ry)

is a Kohn-Nirenberg symbol for |¢| sufficiently small (see (A.1)). Furthermore, it is an exercise
in distribution theory to see that

K(t) = / e OV A(L, N) d.
R

Thus K (t) is a conormal distribution, which can be written as the Fourier transform of a symbol
by applying [31, Lemma 18.2.1]. If we let B()\) = e'P*Px A(t, \)|;—o and recall the definition of
K(t), then

Fon o) TrUn (6)}(A) = Or1B().
Expand B(\) = A(0, \) — i9;0yA(0, \) + R()), where R € S?"2(R). Also let dS denote the

induced surface measure on {py = A}. First,

A(0,)) = (2m) 7@ / dxdn.
{p2t+p1<A}
For the next term in the expansion, recall that ay (0, z,7) = 1 and compute
—i0,A(0,\) = (2m) "N —idha, H(yp + N))|,_, — i(2m) N a0, 6 (¥ + N))],_,
= —(2m) " po, H(A = p2)) — (i/2)(2m) " ((0zp2, Oep2) , 6(A = p2)) + e(N)
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for some e(\) € S4-1/2 (R). Here H denotes the Heaviside function, and the pairings are in
the sense of distributions. Integration by parts furthermore yields

{(Oup2, Oep2) , 6(X — p2)) = (O, O¢) p2, H(A — p2)).
Since the pullback of ¢ is given by (A — p2) = |Vp2\_1d5, compute from (3.37) that
—i0AA(0,X) = —(2m) (B0 + (1/2) (02, D) p2. 6(A = p2)) + O(XT3/2)

~ _(27) /{ | polVpa|1dS + O(A4-5/2).
p2=

Finally, for any k,

(N5 p)(A) = Fo\{pTr U (N
= FnpTrUN}N) + O 7F)
= O\B(\) +O(\7h).

provided N = N (k) is sufficiently large (cf. Lemma IV.1 in [23]). Integrating this equation gives
the desired result. d

3.5.2. Proof of Theorem 3.1.2

We now return to the setting of Theorem 3.1.2, so that in Proposition 3.5.1 we take the operator
P = H. Begin by fixing an appropriate cutoff function in the time domain. Choose a real valued
function p € S(R) with the following properties:

1. p(A) > 0forall A € R,
2. p(t) = 1 on (—¢,¢) for some € € (0,7/2),

3. suppp C (—7/2,7/2),
4. piseven.

In order to compare N(\) with (N x p)(\), we will need the following Fourier Tauberian
theorem, from the appendix of [56]. This result is implicit in [13], and has its roots in [26, 36].

Lemma 3.5.2 (Theorem B.5.1 in [56]). Let p be as above, and v € R. If (N'  p)(\) = O(\")
and

(N"%x)(A) = o(A")
for each function x satisfying x € C2°(R), supp x C (0, 4+00), then

N(A) = (N *p)(A) + o(\Y).
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In order to prove Theorem 3.1.2 it suffices to establish (3.4) and (3.5), since then the Weyl law
(3.6) is an immediate corollary of Lemma 3.5.2. Indeed, using Proposition 3.1.1 and a suitable
partition of unity, either of the conclusions (3.4) or (3.5) implies that

Foax@) TeU@)}A) = o(A).

for any function x € C°(R) with supp x C (0, co) (here x is playing the role of x in Lemma
3.5.2). Now Proposition 3.5.1 in particular shows that

(N xp)(N) = O(\9),

which together verify the hypotheses of Lemma 3.5.2. This establishes the two term asymptotics
(3.6) for N()\).

Thus, we aim to show
Fux@ TrUu)}A) = oA

whenever supp x C (27n — €,2mn + €), wheren € N\ 0 and € € (0,7/2). By Lemma 3.3.7,
forany N > 0

Foatx U} = F O Tr U0} () + 0.

Now use Corollary 3.3.3 to see that
Fonx® T U@} = / el @ tem =t orbem)y (ta(t, @, ) didzdn.

Apply Proposition 3.4.1 with

¢2(t7xvn) = ¢2(75»93>7]) - <$777>’ @01(15,53777) = ¢1(t733,77)'

Since ¢o(t, z,n) = sec(t)(zn — sin(t)(|z|* + |n|?)/2) and y is supported close to 27n, the
hypotheses of Proposition 3.4.1 for the phases 12, 11 and symbol a are satisfied. Indeed, in the
notation of the latter proposition, we take

to = 27Tn, ro = \/§

Now suppose that the restriction of VXp; to S?*~! vanishes to infinite order only on a set of
measure zero. Then Vo (2mn, o) = —VX"p; = —nVXp1, so V1 (27n, @) vanishes to infinite
order only on a set of measure zero in S?*~! as soon as n # 0. In that case Proposition 3.4.1
shows that
-1 77 d—1
Foax@ TrU#)}A) = o(A7).

Similarly, if the restriction of Xp; to S?*¢~! is Morse-Bott with k& > 0 nondegenerate directions,

then ¢1(27n, e) has the same property for n # 0. This completes the proof of Theorem
3.1.2. O



CHAPTER 4

Recurrence of Singularities

4.1. Introduction

This chapter is taken from the article [10]. The section about the global pseudodifferential
calculi has been shortened, since the isotropic calculus was introduced in Section 2.4.

It is well-known that the harmonic oscillator Hy = 1/2(A +|z|?) on RY has the property that
for compactly supported initial data ug € £'(R?), the solution u(t) = e~*Hoy to the dynamical
Schrédinger equation is smooth for ¢ 77 and u(rk) = (—iR)*u, where Ru(z) = u(—z) is
the reflection operator. In particular, we can calculate the wavefront set of u(t):

(—1)*WFy(uo) t =7k, k€ Z,

0 t & . (1)

WF(u(t)) = {

Letp € I’gl be a real-valued classical elliptic isotropic symbol of order 2 and set
H =p"(z,D) and Hy = p¥(x,D),!

the pseudodifferential operator and the “free” operator,” respectively. We consider the dynamical
Schrédinger equation:

(4.2)

(10, — H)u(t) =0
u(0) = up.
We seek to describe the wavefront set of u(t) in terms of the singularities of uy.

We denote the propagator of the equation by U(t) = e~#H  similarly Uy(t) = e~"Ho for
the free equation. We proceed in two steps: First, we calculate the wavefront set for the free
propagator and then for the reduced propagator F'(t) = Up(—t)U (t).

As usual denote by Hy(z,§) = 0gp20; — 0,p20¢ the Hamiltonian vector field associated to

the Hamiltonian function po and t — exp(tHy) its flow. Let ¢ > 0 be arbitrary. We write

eXp(tHO)(yv 77) = (.fC(t, Y, 77)7 f(t, Y, 77))

"To be precise, we set Hy = $* (-, D), where p = ps outside a compact set in R,
*The notion “free” is borrowed from scattering theory.
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Let I, = {n € R\ 0: exp(tHo)(0,7) € 0 x R’} and define the function Z; : Iy — R,
which is given by Z¢(n) = £(¢,0, n). It satisfies

exp(tHo)(0,m) = (0,Z¢(n)).

Note that Z; is homogeneous of degree one. Set G; = supp Up(t)u x Z¢(T4).
In the following we assume that the manifolds A; = {(x,y,&,n): exp(tHo)(y,n) = (z,€)}
and 0 x R??\ {0} intersect cleanly for all ¢ € R.

Proposition 4.1.1. Assume thatu € S’ is a tempered distribution. The wavefront set of Uy (t)u
satisfies

WFa(Uo(t)u) NGy C {(z,Z¢(n)) € Gy y — Op(x, Z¢(n)) LT, (y,n) € WFq(u)} .
Ifu € &', there cannot appear any other singularities:
WFa(Uo(t)u) C {(z,Eu(n)) € Gi:y — Iy, Ee(n)) LT, (y,n) € WFa(u)}.

Remark 4.1.2. If po(z, &) = 1/2(J€]? + > wj:ci) then this proposition follows from Mehler’s
formula (see Section 4.6).

We follow the notation of [11] and denote the integral over the flow of Hyg by X; for any
teR:

t
Xef :/0 foexp(sHp)ds.

The wavefront set of the reduced propagator can be completely determined:
Proposition 4.1.3. Letu € S’ andt € R. Then
WFa(F(t)u) = {(z + 0eXep1(0,€),€): (2,€) € WFa(u)} .
Combining Proposition 4.1.1 and Proposition 4.1.3 yields

Theorem 4.1.4. Letu € &' + S andt € R. The classical wavefront set of U (t)u is a subset of
{(x,2¢(n)) € Gy Op(x,Z¢(n)) — OpXep1(0,m) —yL Ty, (y,m) € WFa(u)} .
History
The usual setting is the Laplacian on R? plus a potential perturbations, that is
H = Hy+V,

with H the harmonic oscillator and V' = V() a potential perturbation. Zelditch [68] proved
that for V € Sgl that the singular support of e~y is equal to the singular support of
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e~Hoy, by calculating the Schwartz-kernel. This was improved by Weinstein [64] to show
that the wavefront sets are equal. Further results for zeroth order perturbations were obtained
by Kapitanski-Rodnianski-Yajima [34], Mao—Nakamura [38], and Wunsch [65]. In the case
VesS cll’ Doi [9] and Mao [37] showed for the harmonic oscillator that singularities are shifted.
For the anharmonic oscillator there appear weaker singularities even for potentials V' € C2° (cf.
Doi [9]).

Recurrence of singularities for the harmonic oscillator with perturbation by a pseudodifferen-
tial operator in the isotropic calculus was proved in [11].

Outline

The rest of this chapter is structed as follows: In Section 4.2 we recall basic properties about
the the SG-calculus. The main part of the chapter is Section 4.3. We construct a parametrix
as an oscillatory integral for the free propagator for arbitrary large times ¢ and determine the
wavefront set after reducing the oscillatory integral such that the phase is homogeneous of
degree one in the fiber-variables. Section 4.4 treats the reduced propagator. There, we use a
commutator argument in the SG-calculus to determine the classical wavefront set. Section 4.5
is a refined version of the stationary phase lemma, where the phase is not linear in the large
parameter A\. We conclude with two examples, where the leading term is a quadratic form, to
illustrate the results.

4.2. SG-Calculus

The SG-calculus is due to Cordes [3], the corresponding wavefront sets at infinity can be found
in Coriasco—Maniccia [5]. A self-contained introduction to global pseudodifferential calculi can
be found in [49].

The SG-calculus (also called scattering calculus for asymptotically Euclidean manifolds) differs
from the isotropic calculus by the fact that taking derivatives in x does not affect the decay in £
and vice versa. The SG-calculus is in a way the more natural way of defining pseudodifferential
operators on R?, but it is not suited for second order differential operators such as the harmonic
oscillator.

Definition 4.2.1. Let my,, m. be real numbers. The class SG™v>"™e (R%) consists of functions
a € C*®(R?%) such that for all multiindices a, 3 € N¢ the is an estimate

1050, a(, €)] Sap (€)™ (@ymemlol,
We define the corresponding class of SG-pseudodifferential operators:
OpSG™¥™e = {a"(z,D): a € SG™¥ ™} .

The SG-calculus enjoys the following properities:
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(i) OpSG = Umw m. OPSG™¥"™< is a x-algebra.

(if) Differential operators of the form

Z aa“gacaDB

|a|<me, | B|<my,
lie in Op SG™¥™e
(iii) There are two principal symbol maps 0¥, o,

O-w : Op SGmd),me — SGm¢,me /SGmﬂ)*Lme?
0¢: Op SGMvMe —y SGMwime [ GMu M1

such that the following principal symbol sequences are exact:
0 — Op SG™Mw—Lme _y Op SGMw:Me 7Y gmume /8Gmy—lme,
0 — Op SG™¥™Me~1 5 Op SGMw-me 7L QG me / g@mwme—1
We note that for ellipticity one needs a third principal symbol, a¥e.
(iv) If A € OpSG™™ B € Op SG™+™, then
[4, B] € Op SG™Mv My~ lmetme—1

and satisfies 1

O ety —1([4, B]) = g{gfn. (A), 00, (B)},

for e € 1), e and with the Poisson bracket indicating the (well-defined) equivalence class
of the Poisson bracket of representatives of the equivalence classes of each of the principal
symbols.

(v) Every A € OpSG®? defines a continuous linear map on L?(R%).

(vi) The SG-Sobolev spaces, Hssgse are defined for sy, s. € R by
f € H™ <= ()°(D)* f € L*(RY).
For all myy, me, sy, s € Rand all A € Op SG™v>"™,
A G o B

is continuous.
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(vii) The scale of SG-Sobolev spaces satisfies

N Hg™ =s®). | Hgg™ =s'®).

mw,me My, Me
(viii) The classical wavefront set of u € S’ is given by

WFqu= (]  Zg(4),

A€Op SGO—o°
AueS

where ¥, is set of points (7, £) € R x R?\ {0} such that 0¥ (a)(z, &) = 0.

4.3. The Free Propagator

We start with reviewing the construction of a parametrix for the free propagator Uy (t) = e~ %o
in the FIO calculus of Helffer—Robert (cf. [22, Chapter 3]). Let 7' > 0 such that there exists a
short-time parametrix Uy of Uy until time 7" and Uy has the form

Up(t) = /ei(¢2(t,$»£)y£)a(,§’$7§) de,

where a € C([0,7],T'%) and ¢ € C([0, T],C>°(R??)), with the following properties for ¢ €
[0,7] and |(z,§)] > 1:

+ ¢9 is homogeneous of degree 2 in (x, ),

+ @2 solves the eikonal equation

Orp2(t) + pa(x, Oxp2) = 0
$2(0) = z¢,

o det 0,0:¢2(t) # 0 for t € [0,T7,
« exp(—tHo)(z, 0z92) = (g2, §).

The short-time parametrix is constructed by solving the eikonal equation and transport equations
for the homogeneous terms of the amplitude a;. The time T > 0 depends on the eikonal equation

and the transport equation for ag. Using Borel summation and Duhamel’s formula (cf. [22,
Proposition 3.1.1]), we obtain that

Un(t) = U(t) € C([0, T], £(S'(R?), S(RY))).
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Let tg > 0 and write ty = Z;VZI tj such that t; € (0,T). Using the group property of Uy, we
obtain for u € &',

Uo(to) = Uo(t1) - - - Uo(tw)
€ Up(tr) -+ Upltn) + L(S'(RY), S(RY)).

The parametrix Up(t ;) has kernel
Uo(ty, 2j-1,2) = /ei(d)z(m“’gj)zjg)a(t, zj-1,&5) d&;.
We write x = 2p and y = zy, then a parametrix for ¢ = ¢ is given by

Do(to) = / ¢9w0) 4. 0)do),
where
0= (Zlu“ . 7ZN717§17"‘75N)7

N
$(z0, 2v,0) = > d2(tj, 2-1, &) — 25,
7=1
N-

a(s, zo, 0 H altj, zj-1,&5) - altn, z2v-1,0).

One advantage of the isotropic calculus is that the new phase function ¢ = ¢(z,y,0) is
homogeneous of degree 2 in all variables for |(x, y, #)| large enough.

4.3.1. Classical Flow and Lagrangian Submanifolds

Given an Hamiltonian function py we associate the flow ¢ — exp(tHp) and define the set
A= {(ZE, Y, 57 _T/) exp(tOHO)(ya 77) = (ZC? 5)} :

We note that A is a Lagrangian submanifold of R%¢,
In this section, we always assume that ¢ = ¢y and omit ¢ from the notation, for instance we

write eXp(_tOHO)(x7 g) = (y(z, 5)7 77('1"’ g))

As mentioned in the introduction, we work under the assumption that A and 0 x R?¢\ {0}
intersect cleanly, that means that Ag = A N0 x R??\ {0} is a smooth manifold and

Twho = TwANTy(0 x R?), w € Ag.
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At a point wy = (0,0, o, m0) € Ag the tangent space is given by

Tuyho = {(0,0,6,m) € R™: 9gy(0,€0)€ = 0,96n(0, &0)¢ =}

The dimension of A is given by a function (z, §) — e(&, n), which is a locally constant integer
with e < d. Further,

6(60, 770) = dlm TwoAU
=d—r1k 86:'/(07 50)

— 1k 9en(0, €o).
The critical set of ¢(x,y, 0) is defined by
Cy = {(z,y,0): Op¢(x,y,0) = 0},
with

([ 0:02(t;, 25, 41) — 5]’)
%9 = <3§¢2(tjvzjla£j) —z)

The phase function is non-degenerate and (cf. [12]) as a direct consequence of the regular value
theorem, we see that

Lemma 4.3.1. The set C is a manifold of dimension 2d.

We have a diffeomorphism

)\¢ : C¢ — A,
(7,y,0) = (2,9, 0:90(x,y,0),0,0(x,y,0)).

Since cleanness is preserved under diffeomorphisms the manifolds Cyy and 0 x RY intersect
cleanly. We denote the intersection by Uy o. The manifold Cy o and its tangential bundle are
given by

Cy0 =1{(0,0,0): 05¢(0,0,0) =0},
T(0,0,60)Cp0 = 1(0,0,00): 9999(0,0,60)560 = 0},

so we conclude that for (0,0, 60y) € Cy o and (0,0, &y, 7m0) = A(0,0,6p),
N — 1k 0p,99(0,0,60) = rk 9en(0, &) = e(€o,m0)-

The next proposition is implicit in the work of Helffer—Robert:
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Proposition 4.3.2. Leta € I andt € R arbitrary. Then
B = eitOHOa(x, D)(f”oH0
is an isotropic pseudodifferential operator, B € G™ and its principal symbol is given by
o™ (B)(y,n) = o™ (a)(exp(toHo) (¥, n))-

Proof. By Corollary 2.10.7 from [22] and the parametrix construction, the operator B is an
isotropic pseudodifferential operator with principal symbol

Um(B)(y7 _ay¢(357 Y, 0)) = Um(A) (l’, ax¢(x7 Y, 6))7

for (z,y,0) € Cy. Using the diffeomorphism Ay and the definition of A, we see that this is
nothing but

o™ (B)(y,n) = ™ (A)(exp(toHo)(y, 7))
as claimed. O
Proposition 4.3.3. Letu € S'(RY). One has

WFiso (U (to)u) = exp(toHo) WFiso (u).

Proof. It suffices to prove that WFis, (Up(to)u) D exp(toHo) WFiso (1), equality follows from
time-reversal.

Let (20,&) & WFiso(Uo(to)u). Then there is a Q € GY such that 0°(Q)(z0,&) = 1 and
QUy(to)u € S. This implies by Proposition 4.3.2

Pu = Uy(—to)QUp(to)u € S,
and o°(P)(y,n) = ¢°(Q)(exp(toHo)(y,n)). Set (yo,70) = exp(—toHo)(wo,&). Then the
principal symbol at (yo,0) is ¢ (P)(yo,7m0) = 1 and therefore (yo,10) & WFiso(u). O
4.3.2. Recurrence of Singularities

Now, we investigate the recurrence of classical singularities, which is more delicate. We define
the reduced phase function ¢,.q by

gbred (th x,y, 77) = xEto (77) —yn.
Proposition 4.3.4. The propagator at time t = t is locally given by
UO(tO’ x, y) — / ei¢rcd(t01$7yan)&(t0, z,, n)dn
r

modulo a smoothing operator. Here, @ € S° is a local Kohn-Nirenberg symbol and T' = {n €
R4\ {0}: (0,0,&, —n) € Ag for some & € R},
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To prove this proposition, we first split the parametrix of Uy(¢¢) into a sum of oscillatory
integrals supported near connected components of the critical set Cs g. Then, we reduce the
number of fiber-variables similarly as in the case of Fourier integral operators on compact
manifolds (cf. Hormander [32]). In the last step, we show that the resulting amplitude satisfies
the Kohn-Nirenberg estimates.

Proof. We write

¢(x,y,0) = 6(0,0,0) + 20,6(0,0,0) + y9,$(0,0,0) + > _ (z,9)* ful,y,0)

=2

for some smooth functions fo and set f(z,y,0) = >, —2(z,y)" fa(z,y,0). Also, we set

¢($7 Y, 0) = $am¢(07 Oa 9) + yaygb(oa 07 9) and ¢0(0) = d)(ov Oa ‘9)
By choosing a function y € C2°([0, 00)) such that x(r) = 1 for r < R for some R > 0, we
may assume that the phase ¢(0, 0, ) is homogeneous on R¥. In fact, the operator with kernel

[ e ol)atz, )9
]RN

is regularizing, so may replace in the following a(zx, #) by (1 — x(|]))a(x,8). The set Cy ¢ is
conic and we can choose a conic partition of unity {x;} such that Cy o Nsupp x; is a connected
manifold of dimension /N — e;. From now on we restrict our considerations to one ;.

After a linear transformation, we may assume (¢’,6”) € R% x RV ~¢ on supp X; such that

rk 89//9//¢0(0) =N — €j.

Homogeneity of ¢ (¢) implies that ¢o(6) = 0 on Cy o. Using the implicit function theorem to
the equation dp»po(6) = 0, we obtain a smooth map g : R% — RN~¢ that is homogeneous of
degree 1 outside a compact set such that

(0',0") € Cy if and only if 6" = g(6").
We introduce new coordinates
(19/7 19//) = (0/7 9// - 9(9/))
and the phase function
©o(F) = ¢o(0).
Then (0',9") € Cy if and only if ¥ = 0. So, we have that



66 Chapter 4. Recurrence of Singularities

There exists a quadratic form @ = Q(¥") with the same signature as 9y g o such that () and
(o are equivalent in the sense of [22, Definition 2.10.13] by Proposition 2.10.14 in [22]. Since all
coordinate transformations are homogeneous of degree 1, the amplitude and the functions
and f are of the same form as before.

So, we may assume that ¢(0, 0, ) depends only on #” and Cyy o = R% x 0. The propagator
at time t = ¢g becomes

Uo(to) =/ / @I g (g ") dY dB”
s JRNTC
:/ eV @u0 0G (2, y, 0')do’,
R
with

CNL(IL‘, v, 9/) _ /N ei(i)()(9")+i(7,/)(x,y,9’,0")—¢(x,y,0',0))+if(:v,y,6)a(x, 9/’ 9”)d0”,
RY "%

We now show that ¥ (z, y, 6’, 0) is nothing but ¢eq in local coordinates. Since in our adapted
coordinates C'y o = R% x 0, we see that

U(x,y,0',0) = ¥(@,y,0)|c, ,-
Using the diffeomorphism Ay : Cy — A, we see that
exp(toHo)(0, 0:4(0,0,6',0)) = (0, -9,¢(0,0,0)).
By the inverse function theorem, there exists a map 7 — €’ such that
—0y$(0,0,6'(n),0) = n.

Thus, 7/)('737 Y, 9/(7])7 O) = gbred(tOv Ty, 77)
The map 7 — 6’ is homogeneous of degree 1. Therefore, it only remains to show that @ is a
Kohn-Nirenberg symbol. We define the amplitude

c(z,y,0) = eT@¥qa(z,y, 0)
and we write the 1)-phase as
U(@,y,0',0") = p(x,y,0',0) = (0", g(x,y,0',0")),
with g(x,y,0,0") = fol Oprb(x,y, 0, t0")dt. Note that the functions ¢ and g satisfy

|890;858gc(x7y70)| fga,ﬁ,y <9>7|7|<($’y)>|0‘|+‘m+2|'y|7
|3?358g9(x, Y, (9)| <oc,ﬁ,'y <9>*|’Y|<x>1f\a|<y>1,|m.

~
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We have to show that @ € SY on compact sets, in fact we will show that the following
estimate holds:

050,05, . 0)] Sy (07 ()N

A typical term is of the form

k
I(z,y,0) = /IR RO T, 0, o g)elw, y, 0)d0". (43)

j=1
We use the standard Paley-Littlewood decomposition: Choose a ¥ € C° (R ~¢) such that ¥ > 0
everywhere, Y(z) = 1 for |z| < 1,and Y(z) = 0 for x > 2. Set x;(z) = x(z/27) — x(z/2771).
Then

oo
x(x) + ij(a:) for all z € RV,

For A\ = 27, we have

flfy, ZANe/

/
RN—e ’ J:y@

k
ei)\2¢0(9") i gO” 9// H \O". O K ((IZ, y70/, )\H”)dﬁ”
J=1

k
_|_/RN €i¢0(0") i(g,0") < 0// H 0/1’ ;]y o0 l’ y,9, (9”)d9”

In order to estimate the sum, we observe that 8”-derivatives of the function
eiA(g,9//>X1(9//) 1‘[0\9//7 ag,jg>c(x, v, 9/’ /\9//)
J
can be estimated by
Paail <9/>—|7\ <x>1—|a\ <y>1—\ﬁ|7
where k = (a, 3,7) € N& x Ng x Ng, for the multiindex x = Zle k. Using Theorem 7.7.1
from [30], we obtain that for all M > 0, each summand can be estimated by
AN —e=M yk+]] <9/>—|v| <$>1—\Oé| <y>1—lﬁ\.
Choosing M > N — e+ k + |y| + 1, we can sum the geometric series, which yields the desired
bound.

For the last term, we have to use the method of stationary phase. We note that it suffices to
show that

1020 0w, y, A0")| < Ca gy

as A — oo for C, g 4 independent of \. We check that ¢(z,y, A@) and all of its derivatives are
bounded by some constant independent of A. Therefore, Proposition 4.5.1 proves the claim. []
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Proof of Proposition 4.1.1. We have constructed a suitable parametrix in Proposition 4.3.4. By
Theorem 8.1.9. in [30] the wavefront set of the distribution Upy(t) is given by

WFEa(Uo(t)) € {(z,y,Ze(n), —n): 1 € T,y — 9y, Ze(n)) LT} -

By the calculus of wavefront sets, we obtain that for any (x,7) € R?? such that € T'; and
(2, Z(1)) € WFa(Up(t)u) then (3, (, (n)), 1) € WFa (u).

Now, let u € £'. Assume that there is a (29, &y) € WFq(Up(t)u) such that &y & Z(T),
that is there exists (yo,70) € R??\ {0} such that exp(tHo)(0, &) = (y0,70) and yo # O.
By Lemma 2.4.13, (0, &) € WFis(Up(t)u). We have seen that the isotropic wavefront set is
shifted by the Hamiltonian flow (Proposition 4.3.3) and therefore (yo, 70) = exp(—tHo)(0, &) €
WFiso(1). By definition of the set I'y, yo # 0, but this contradicts the assumption that u was
compactly supported using Lemma 2.4.12. O

4.4. The Reduced Equation

The reduced propagator F'(t) = Uy(—t)U(t) satisfies

(4.4)

(0r — Uo(—t)(H — Ho)Up(t)) F'(t) =0
F(0)=1.

We define the operator P(t) = Uy(—t)(H — Hy)Uy(t). By Proposition 4.3.2, P(t) € G, and
the principal symbol is given by

o' (P(t)) = p1 o exp(tHo).
Proposition 4.4.1. Forallu € §' andt € R,
WFiso(F(t)u) = WFigo(u).
Proof. This follows from Lemma 3.1 in [11]. 0

Proposition 4.4.2. Leta € C([0,T], SGil’l) be real-valued and assume that there is a bounded
set K C SGY! such that for all |t| < T, a(t) € K Consider forug € S' the equation

{ (i0; — a(t,z, D))u(t) =0

u(0) = wp. (45)

Letu € C(R,S’) be a solution of (4.5). The wavefront set of u(t) is given by
WFq(u(t)) = ¥, WF 1 (up),

where U, is the Hamiltonian flow associated to the function o¥ (a(t,x, D)).
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Remark 4.4.3. If we exchange the role x and &, we can prove that WF, evolves according to the
Hamiltonian flow U of the symbol 0¢(a(t, z, D)),

WFe(u(t)) = Wy WFe(uo),

under the assumption that @ admits an asymptotic expansion into terms homogeneous in z.

Using the fact that the SG-estimates are weaker then the isotropic estimates (cf. [49, Section
3.1]) we obtain the propagation of singularities result for F'(¢):

Proof of Proposition 4.1.3. The symbol p(t) € T}, SGU! has principal -symbol given by
(p1 o exp(tHp))(0, &) and Proposition 4.4.2 implies that the wavefront set is

WFCI(F(t)u) = {(x + 8£ti1(075)7£): (CE,f) € WFCI(U)} .
0

Proposition 4.4.2 also follows from [5]. We give a self-contained proof using a commutator
argument (cf. Hormander [31, Theorem 23.1.4]).

Proof. Let (x9,&) & WF1(ug) then there is a symbol b € SGS{_OO such that b(zg, &) = 1 and
b(x,D)ug € S.
We construct a symbol g € C*°([0, 7], SG(C)I’_OO) with the following properties

* [lat - (Z(t, z, D)7 Q(tv x, D)] € C([07 T], Op SGioo’ioo),
* Q(O,IL‘,£) = b(l‘,g),
. o¥q(t) = Wo¥b.

If we write q(t, 2,§) ~ >, ¢—;(t, 2, &) where q_;(t) € S(};j’_C>Q is homogeneous of degree
—j in &, we can see that the 1-principal symbol of the commutator is given by

Uw([iat - a(t>$7 D)> Q(taxv D)]) = i{T + ao(t,l’,ﬁ),q()(t,l‘,f)} = Z(at + Hao)Q0>

where H,, = 0¢ag0; — 0,a00; is the Hamiltonian vector field of ag. The term of order —j is
given by

(0 + Hap)q—j + R;

with R; depending on qo, ...,q—j+1. By the assumption that a(t) is contained in a fixed
bounded set for all |¢| < T, the equations

{ (&Eyv 81577) = (8&&0 (t7 Y, 77)7 _axa()(ta Y, 77))
(y(0),n(0)) = (2,¢)
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have a unique solution for time |¢| < 7T'. The map Vy(z, ) = (y(t, z, &), n(t, x,§)) is the Hamil-
tonian flow of the principal symbol o¥ (a(t, z, D)) and defines a symplectomorphism, which is
homogeneous in the second component, (y(t, z, AS), n(t, z, X)) = (y(t, z,£), \n(t, z,§)). If
we set go = bo(¥; ! (z,£)) then g solves

0
bo.

(at + Hao )QO(t)
q0(0)

Similarly, we solve the inhomogeneous equations for g_;, j > 0 by

0 (3 €) = by (U (2, ) + /0 Ry(UL (2, €))ds.

If we set q(t, 2, &) ~ 3272 q—;(t, x,£) we obtain a symbol with the desired properties. This
implies that if u(t) is a solution to (4.5) with initial data u then

(i0; — a(t, z, D))q(t, z, D)u(t) € C([0,T], S(RY))
q(0,z, D)u(0) € S(RY).

Using an energy estimate (cf. Hormander [31, Theorem 23.1.2]) we conclude that ¢ (¢, x, D)u(t) €
H?#v>% for every sy, s € R and thus ¢(t, z, D)u(t) € S. This implies by the construction that

We(wo, &) & WFa(u(t)).
The whole argument can be carried out if we replace ¢ by —¢ and therefore we obtain equality
of the wavefront sets. O

4.5. Stationary Phase with Inhomogeneous Phase Function

We will derive a formula for calculating stationary phase integrals

IO y) = M / VB D@D VON g(\ 2. y)da.
Rd

The function a is smooth and satisfies an estimate |8§85 a(X, z,y)| < Cy gA™ and we assume
that there is a compact set K C R? x R™ such that for every A € R, supp a()\) C K. The phase
functions ¢ € C*(RY) and 1) € C*(R? x R") satisfy

« ¢ and 1) are real-valued,
- ¢(0) = 0,¢(0) =0,

+ 032¢(0) is non-singular.
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Proposition 4.5.1. For every o € N",
0y TN )| Sa A™
Proof. Define the phase function
for ;1 > 0 small enough the matrix J,,®,, is invertible and therefore we may apply the regular
value theorem to obtain a map (u,y) — x(u,y) parametrizing Cp, = {9,®,, = 0}. Expanding
x(p, y) into powers of y yields
2(uy) = pi(pn,y), & €C®Ry xR",RY).

The assumptions on ¢ imply that

Dulcs, = o(px(p,y)) + p(ui(n, y),y) —¥(0,y))

= $(0) + p0,(0) + O(u?)
= 0(p?).

Now, we can estimate /(\,y) and its derivatives. The only case where derivatives could
cause problems is when they fall on the exponential, in which case one has terms of the form

l
)\d-s-l/ iIN (@) HA(W (2,y) —1(0,y)) dz.
K I (o (9, () = 0(0.))) ale,y)de

We apply the method of stationary phase and see that each term 9, (¢)(z,y) — 1(0,y)) is of
order O(A™1) since

By (¥(,y) = (0,9))|ca, = 12yt (0,y) + O(1?)
and in our case ;1 = A\~!, further the stationary phase eliminates the prefactor of A% and obtain
0y T(A y)| S A™

as claimed. O

4.6. Examples

We will consider specific cases of p € le to illustrate the results.
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4.6.1. Isotropic Harmonic Oscillator
We consider the free Hamiltonian

H() = (A + ’[13‘2) y

N

with principal symbol py = 1/2(|z|? + |£|?). It is well-known (cf. Grigis-Sjostrand [17, Chapter
11]) that the propagator is smoothing for ¢t ¢ 7Z and compactly supported initial data. For
t € w7, we have

e—ik‘ﬂHo — (—ZR)k,

where Rf(z) = f(—=x) is the reflection operator. This implies that for u € S’ such that
WFiso(u) C 0 x RY, the wavefront set of e =0 is given by

(~)*WFq(u) t=r7kk€Z,

T —itHy _
W cl(e u) {@ ¢ ¢7TZ

Proposition 4.1.3 then implies

Corollary 4.6.1. Letu € S’ such that WFiso(u) C 0 x R? then
WFa(e ™ u) = {(<1)" (2 + 0 Xutp1)(0,€), ) : (2,€) € WFa(u) |
and WF (e~ ) = () ift & 7.

This was already proved in [11] using an explicit parametrix of the reduced propagator.

4.6.2. Anisotropic Harmonic Oscillator

Now we take the principal symbol ps € I'}(R?) with

d

1

pr=g | €7+ D wia]
j=1

The Hamiltonian flow of p; is given by

l’j(t) = COS(th)xj(O) + Sin(th)

wj gj (0)7
&;(t) = cos(w;t)&;(0) + wj sin(w;t)z;(0).

Again by Mehler’s formula, we have an explicit solution operator:
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with

1 . 2 —-1,2
o(t,x,m) = 2 W (%‘773‘ — 1/2sin(w;t)(w;zj + w; nj))

and a(t) = H?:1 | cos(w;t)[V/2.
For simplicity, assume that d = 2 and w; = j. Then the flow is periodic with minimal period
27 and the propagator is given at the recurrence points by

emmst — (iR @ (iTV2F)E, kel

That means that e‘”gHou(aj, y) = ™4 (F,)Fu((—1)Fz, y). Note that we take the unitary
Fourier transform

Fu(§) = (277)_d/2/e_m5u(x) dzx.

From this, we identify the wavefront set of e ~**H04; for compactly supported initial data u € &’
as follows:

{— (#,9,£0): (z,2,£0) € WF(u) for some z € R,

W (e~itHoy) — (w,y) € suppe™ou}, ten/2+ 7L,

ale u) =

1 {(z, (=1)ky, &, (=1)*n): (z,y,6,m) € WFq(u)}, t =k k€ Z,
0, t¢ 2z

Let p € I'}; with principal symbol p; as above and set H = p*(z, D). Using Proposition 4.1.3
we can calculate the wavefront set of e~*# 4 in terms of the wavefront set of w. This contrasts
the case of potential perturbations, where even smooth compactly supported potential can give
rise to new singularities (cf. Doi [9] and Zelditch [68]) and we can determine the singularities at

time ¢t = 7/2, which was not possible in [9].



CHAPTER 5

Asymptotically Euclidean Manifolds

5.1. Scattering Manifolds

As mentioned in Example 2.4.2, the isotropic calculus is not suited for potential perturbations
of the Laplacian. If we change the defining symbol estimates to the one we used in Chapter 4,
we can circumvent of this problem:

Definition 5.1.1. Let my, m. € R. A function a € C*°(R?9) is in the symbol class SG™¥"™< if
for all o, B € N¢, the estimate

020 a(a, )] S (ay™e 1 gyme el

holds.

As in the case of the isotropic symbols, these spaces become Fréchet spaces with the obvious
seminorms.

In Chapter 4, we introduced the calculus of SG pseudodifferential operators on R%. For
non-compact manifolds, it is also possible to define the SG calculus, but we have to keep track
of the admissible coordinate changes “near infinity” (cf. Schrohe [57]). It is more convenient to
radially compactify R? and define all objects on the compactified space with boundary. The
theory will extend to manifolds that asymptotically look like Euclidean space.

Many different applications of the scattering pseudodifferential calculus (or more generally
pseudodifferential calculi on non-compact manifolds) have been found in recent years: In
general relativity it was shown by Hintz—Vasy [25] that the Kerr—de Sitter solution is nonlinearly
stable and Vasy [62] proved meromorphic continuation of the resolvent of the Laplacian for
asymptotically hyperbolic manifolds, and there has been a high interest in Hadamard states
in quantum field theory (cf. Radzikowski [52] and Vasy—Wrochna [63], and see the examples
below).

5.1.1. Manifolds with Corners

Manifolds with corners appear naturally when considering the kernels of operators on manifolds
with boundary: The product of two manifolds with boundary is a manifold with corners.
Therefore, many questions concerning manifolds with corners already arose for boundary value
problems (cf. Grieser [16] and Melrose [40, 41]).
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Two global bdfs No global bdf

Figure 5.1.: An example and a counterexample of a mwec (cf. Grieser [16]).

There are various definitions of manifolds with corners. Fortunately, we only need products
of (two) manifolds with boundaries. The definition of a manifold with boundary causes no
difficulties: They are paracompact HausdorfF spaces that are locally homeomorphic to R x R4~!
and the transition maps between local charts are smooth functions. If we now naively model
d-dimensional manifolds with corners X on (R, )* x R%*, we include manifolds, such as the
raindrop, that do not have global boundary defining functions (bdf), see Figure 5.1. To avoid
this, we will use a definition that asserts that all boundary hypersurfaces are embedded.

Definition 5.1.2 (Joyce [33]). Let X be a paracompact Hausdorff space and d > 1.

« A d-dimensional chart on X with boundary is a pair (U, ¢) such that U C Ry x R% 1 is
openand ¢ : U — ¢(U) C X is a homeomorphism.

+ A d-dimensional chart on X with corners is a pair (U, ¢) such that for some 0 < k < d
and U C R% x R?* isopenand ¢ : U — ¢(U) C X is a homeomorphism.

As usual two charts (U, ¢), (V, 1) are compatible if either UNV = Qor U NV # () and
¢! 0 is a diffeomorphism.' Furthermore, we define a d-dimensional atlas (with boundary
or with corners) to be a family of charts {(Uj, ¢;)} that are pairwise compatible and satisfy
X =U;6;(U;).

Definition 5.1.3. A manifold with boundary X is a paracompact Hausdorff space together with
a maximal atlas of d-dimensional charts with boundary.

To define the boundary hypersurfaces, we first define the depth of a point p € X. For
this let X be a topological space and (U, ¢) a d-dimensional chart with corners such that
¢(p) =0 € R% x R?¥*. We define the depth as the number k, depth(p) = k and the depth k
stratum

kX = {p € X |depth(p) = k}.

Note that this definition of the depth is independent of the choice of chart. A boundary
hypersurface (bhs) is the closure of a connected component of 0; X.

!For the half-space (and octants) functions are said to be smooth if they are restrictions of smooth functions.
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Definition 5.1.4. Let X be a paracompact Hausdorff space together with a maximal atlas of
d-dimensional charts with corners. We say that X is a manifold with corners (mwc) if all
boundary hypersurfaces are embedded.

Remark 5.1.5. Joyce calls this notion a (compact) manifold with embedded corners (cf. Remark
2.11 in [33]). Melrose [42, 43] calls them just manifold with corners.

Some elementary properties of the depth strata are as follows:
Proposition 5.1.6 (Joyce [33]). Let X be a manifold with corners. It holds that
e X =4, X.
e Oy X is a manifold without boundary.
e X is a manifold without boundary if 0y X = () for all k > 0.
X is a manifold with boundary if O, X = 0 forall k > 1.

We call 0.X = [_]i:1 O, X the boundary of X. It is the topological boundary if X is embedded
into a manifold without boundary X of the same dimension d. Given a relatively open subset
U of a manifold with corner X, we say that U is interior if U NOX = (. If, on the other hand,
U contains all interior points of the boundary U N 8X, we call U a boundary neighborhood.

In the following, we will always assume that X is compact.

5.1.2. Boundary Defining Functions

As in the case of manifolds without boundary, functions are called smooth if they are smooth in
local charts. Let X be a manifold with corners and X' C X a boundary hypersurface. A smooth
function p : X — R is called a boundary defining function (bdf) for K if

e px) >0ifzr e X
« p(r) =0ifand only ifz € K,
« dp(zr) #0on K.

The assumption that all bhs are embedded implies that there exists a bdf for every bhs. If the
boundary hypersurfaces are not embedded, bdfs only exist locally. Thus, we can always assume
that there is a finite collection of bdfs {p;} such that their differentials are linearly independent
and for every bhs there exists exactly one corresponding bdf p;.

For any point p € X the depth depth(p) is nothing but the number of independent boundary
defining functions vanishing at p.

Let X be a manifold with boundary. By the collar neighborhood theorem (cf. Milnor [46,
Corollary 3.5]), there exists a neighborhood U of the boundary 0.X such that U is diffeomorphic
to [0,1) x 0X. Thus, we can choose coordinates (px,x) such that px is the bdf and z are
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coordinates on the boundary 0X. Of course we can localize this construction to a small
part of the boundary. On manifolds with corners, we may take a small neighborhood U
near the boundary such that U is a product of manifolds with boundary. We can apply the
theorem for every manifold with boundary and obtain local coordinates (p1, . .., pk, ), where
k = max,cp depth(zx).

5.1.3. Compactification

We will now show how to compactify R? to the upper hemisphere Sﬁlr. In Chapter 6 there will
be a different compactification and it will be shown that they are equivalent.
Consider the stereographical projection

. d d
SP: R — §%,

()

We see that p is a boundary defining function on S‘j_ and we have the property that p -z =y
and we can always choose d — 1 of these functions y' such that (p, 3/’) are coordinates on Si,
but mostly we do not need to choose coordinates.

Let gga = dx? be the standard metric on R?. In polar coordinates we have that

gra = dr® + rdwsa,

where wga—1 is the induced metric on the sphere S~1. Setting p = 1/r yields the metric

L/P de— 1
p* p*

This is the motivating example of scattering metrics.

5.1.4. Asymptotically Euclidean Manifolds

Now, we want to discuss the geometric structure near the boundary. Let X be a manifold with

boundary with fixed bdf px. Inspired by the example of the compactification of R? we call a

Riemannian metric gx on the interior a scattering metric if in a neighborhood of the boundary,

the metric takes the form

dp> h , T
Px + (px, )

gx (an IL‘) =
P Pk

)

where h is a smooth symmetric 2-tensor that is positive-definite if restricted to the boundary
0X. Locally near the boundary, we may write h(px,x) = Z‘j weo Nij(px, x)dz; ® da; with
the convention that zo = px, z = (21, ..., %4q).
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The triple (X, px, gx) is called a scattering manifold or an asymptotically Euclidean manifold.
We will also write (X, gx ), where the choice of bdf px is implicit. Note that the class of scattering
metrics depends on the choice of boundary defining function px, since a change px — cpx
adds a factor ¢ =2 in the first summand.

5.2. Scattering Calculus

Now we will introduce the calculus of scattering pseudodifferential operators. We will mainly
follow [42, 43]. Schrohe [57] defined the calculus directly on non-compact manifolds, without
using the compactification. A semiclassical version is due to Wunsch-Zworski [67].

5.2.1. Differential Operators

Before defining the algebra of pseudodifferential operators, we define the natural differential
operators in a geometric way.

Let V},(X) be the set of vector fields that are tangent to the boundary. The scattering vector
fields are defined by Vi (X)) = pxVp(X). There is a natural vector bundle over X, the scattering
tangent bundle *°T' X, such that the scattering vector fields are the sections of this bundle,
Vse(X) = C®(X,*°TX), given by 5T, X = V(X)) /Ip(X) - Vse(X), where I,(X) is the set
of vector fields fV, such that f € C®(X), f(p) = 0and V' € Vi (X). In local coordinates
(px, ) near the boundary, this vector bundle is spanned by {p% 0y, px 01, px Oy, }-
The dual bundle to the scattering tangent bundle is denoted by *°7™ X and is called the scattering
cotangent bundle. Locally, a covector v € 1™ X is given by

v—a—dpx Zb dx]

where a,b; € R. Here, we view Cifx

and dx” as the dual covectors to p3,0,, and p x 0Oy, Hence,
they are well-defined up to the boundary p x = 0.

As in the case of usual differential operators, we can define the scattering differential operators
Diffs.(X) as the smallest algebra generated by Vi.(X) and by multiplication with smooth

functions f € C*°(X). Thus, we have locally

A € Diffs(X) ifandonlyif A= Z ok (px, %) (P Dpy ) ¥ (px )%,
a,k

where the sum is locally finite.
Let P™(5“T™* X ) the set of smooth functions on “7™ X that are polynominals of degree m in
the fiber and P (5°T* X) the subset of homogeneous polynominal is the fiber.
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The set of scattering differential operators is a subset of the differential operators on X and
therefore for every m € N the symbol map o restricts to a map

o¥: Diff"(X) — plml (‘T X),
(A= D aarlpx,x)(i&)* (i),

ktlal=m
where Diffy = Diff. N Diff™.
There is also another symbol, measuring the decay at infinity:
o¢: Diff & (X) = P"(*Thx X),
o(A) = D aax(0,2)(ig)" (i)™

k+|a|<m

This definition is independent of the specific quantization, because the commutator of p%-9,,
and px 0, is px (px0,) and therefore commutators vanish as operators ap§(8p « +bpx 0, at
px = 0.

The joint symbol 0 = (6%, 0¢) induces an exact sequence

g

0 — px Differ " (X) — Diffl® (X) % Pi(X) — 0,
where

P (X) = {(f1, f2) € PI™ICT*X) x P™ (¥T5 X): fo = filox € P™ 7' (“T5x X))}

We define the full class of scattering differential operators Diffge”"""* = Py Diff¢e” and
similarly Pio*"™ and obtain the exact sequence
0 — Diffe? ™™ (X) — DIt ™ (X) 5 P (X) — 0. (5.1)

The natural space to consider symbols of differential operators is the cotangential bundle. In
our case this is a non-compact manifold with boundary, 7" X . Since we do not want to treat non-
compactness and boundaries (we introduced the boundary to get rid of the non-compactness in
the first place), we will also apply the compactification SP to the fibres of 7% X. This yields the
manifold with corners T X with boundary defining functions px and p=.

The Laplace-Beltrami operator can be defined in the interior of X and extends to a differential
operator on C°(X ). In fact the Laplacian is the natural example of a scattering differential
operator.

For simplicity, we assume that the metric h(px, x) is of the form

d
hipx,x) = Z hij(px,x)dz; ® dx;j.

,5=1
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If we set ng = C?TX and n = ;iTy, then the metric g is given by
X X

d

g(pxsz,mo,m) =5+ D hij(px, @)nim;
ij=1

and the fiberwise compactification in n = (19, 1), SP : n — (p=,n - p=) yields

d
i,j=1

[?]:’w‘ =

Proposition 5.2.1 (Melrose [40] and Melrose-Zworski [45]). The Laplacian A on a scattering
manifold (X, g) is a scattering differential operator of order 2,0 with principal symbol

g€ ngCOO(SCT*X)

modulo lower order terms pglC"o and pxC.

5.2.2. Pseudodifferential Operators

The space of amplitudes Si.*"" is given by functions
a € py™ps CO(TX).

More generally, we can define amplitudes on any manifold with corners. This definition does
not depend on the choice of boundary defining functions and can be localized in the obvious
way.

We will only define scattering pseudodifferential operators on R? and use coordinate in-
variance to define them on arbitrary manifolds. Alternatively, one could define the operators
directly by their kernels on X x X.

We denote by

SPy : RY x R? — % x §¢ (5.2)

the radial compactification in both components, which is given by (z,§) — (SP(z), SP(£)).
The boundary defining function p for Sjl_ can be chosen to be given by SP* p = <x>_1. Let px
such a boundary defining function for the first factor in (5.2) and p= for the second factor.

The classical pseudodifferential operators are defined as follows: The class Wg.*"" (Sff_) is
given by those operators A : C2°(S?) — C>(S%) such that if A’ is defined by

SP*(46) = A'(SP* 9)
for all ¢ € C2°(S%), then the kernel of A’ is given by

Aly) = / ¢V (SPS ) (x, €)d,
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scQ*x X SCS;’;XX
X©
OX [T
sc* X SCT(;‘XX

Figure 5.2.: The space ST X

where a € p" p;mwcoo(gi X S‘i) is an amplitude. Using coordinate-invariance (cf. [42]) we
can define Wg.""""*(X) for an arbitrary compact manifold with boundary X.
This gives a calculus of pseudodifferential operators with the following properties (cf. [42]):

« It is a bi-filtered algebra:

‘Ij'ggw,lame,l (X) ° \I,g’gw,%mep (X) C \I,géw,ﬁmwz,me,ﬁme,z (X)

« It is a superset of the scattering differential operators:

Diffee?"™(X) € Wee”™ (X).

Remark 5.2.2. We note that the m, order has a different sign-convention than in [42]. With our
convention, the class of residual operators is \I/S_COO’_OO(Si).

5.2.3. Principal Symbol and Wavefront Sets

Set W = 9*°T" X .? This is a topological manifold, but there is no natural smooth structure.
It is the union of two manifolds with boundary W = WY U We, where WY = 5¢S§* X and
WE = 5T X. We define the smooth functions on W as follows:

COW) = {(tte, up) € CPOWVE) x CP(WY): tielpyie = sl ypine }-

Proposition 5.2.3 (Melrose [42]). There exists a principal symbol map o = (o¥, 0¢) such that
the following sequence is exact:

My —1,me—1

0— Ui (X) = U™ (X) S (W) — 0.

*Melrose [42] calls this space Csc X .
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Consider a scattering pseudodifferential operator A with symbol a € p"*p= "% Write
a=py"e pgm”’f. Near a point z € VW, we define the symbols

o“(a)(px, ,p=,€) = px"p=" * f(0,, p2,€), 2 € Ty X,
o (a)(px, . pz,€) = px"p= ¥ flpx,3,0,8), z€*S*X,
0" (a)(px, z, pz,€) = px " p= £(0,2,0,6), 2 €Sy X.
The tuple o(a) = (0¢(a), % (a)) can be viewed as a function o(a) € C®(W) and o¥¢(a) is
the restriction to the corner.
The symbol a is called elliptic at z € W if o(a)(2) # 0 and it is called characteristic at z if
o(a)(z) = 0. The set of all characteristic points of a scattering pseudodifferential operator is

denoted by Xy, m, (A).

The scattering wavefront set is defined for an arbitrary u € C~*°(X) as

WFee(u)= ) Zoo(4) CW.

AcwQ’(X)
AuelC>=(X)

We may split the wavefront set into three components WF.(u) = WFY (1) U WFS, (u) U
WEY(u), where WF?_ (1) = WFg(u) N W*.

+ The usual wavefront set is contained in the scattering wavefront set:
(2,§) € WFa(u) ifandonlyif (z,(0,£/(¢))) € WF (u),

for any x € X°. Note that here we use the compactification to describe the point “at
infinity” in the direction of £ # 0.

« If X = Si, then the Fourier transform on R? can be lifted to the compactification X (cf.
Melrose [42]) and changes the variables in the wavefront set:

(2,€) € WFy(u) & (&, —x) € WFg(Fu)

« Scattering pseudodifferential operators are microlocal (cf. Melrose [42]):

WFy(Au) C WFyo(u).

5.3. Lagrangian Distributions

In Chapter 6 we introduce a class of geometric distributions which are natural in the setting
of scattering geometry. There are two main ingredients to Lagrangian distributions: First, we
have a definition of amplitudes, which generalize the symbol of a pseudodifferential operator.
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Secondly, the underlying symplectic geometry, which describes the structure of the singularities.
As in the case of scattering pseudodifferential operators, the relevant manifold is WW. Therefore,
we define scattering Lagrangian submanifolds as subsets of WW: The manifolds YW¥ and W are
contact manifolds with contact forms o and o induced by the symplectic form w on seT™ X

Definition 5.3.1 (Definition 2.16 in [4]). A closed subset A C W is called a sc-Lagrangian if

« A¥ = AN WY is a smooth Legendrian submanifold with respect to the contact form a¥
on WY,

« A° = AN WF¥ is a smooth Legendrian submanifold with respect to the contact form «®
on W¢.

. AV hasa boundary if and only if A€ has a boundary and in that case the intersection is
clean.

Without assuming Legendrian properties, this gives a natural definition of smooth submani-
folds on W. Such submanifolds are given by the restriction of a submanifold L C 5°T'X to W.
Smooth functions on L are restrictions of smooth functions on W.

We define clean phase functions associated to such Lagrangian submanifold (cf. Definition
2.5 and Definition 2.18). It was shown already by Coriasco-Schulz [7] that there always exists
a phase function ¢ locally parametrizing the Lagrangian submanifold. Locally, Lagrangian
distributions are given by an oscillatory integral of the form

Iy(z) = /Y ¢V (2, y)

where Y is a manifold with boundary and a € p™p,""YC®(X x Y,*QY2(X) x QY (Y))
is an amplitude and °°€)* is a suitably rescaled density bundle €2® (cf. Melrose [42]).

The class of Lagrangian distribution I« (X, A) is now defined as a locally finite sum of
such oscillatory integrals with an invariantly defined order, which coincides with the definition
of Hérmander [27] for m,, and Melrose-Zworski [45] for m..

Theorem 5.3.2. Let A C VW be a sc-Lagrangian submanifold. There exists a surjective principal
symbol map

GA o Imeme (X, A) — C°(A, My),

Me, My

where M)y is the Maslov bundle. Its kernel is I™<~1™v~=1(X A) and therefore we have the
identification

ey (X, A)/Imefl,mwfl(X’ A) ~ COO(A,MA)‘
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5.4. Examples

We will now present two examples of distributions that are contained in our class of Lagrangian
distributions. It is obvious by choosing the base manifold X to be compact without boundary that
the classical Fourier integral operators defined by Hérmander [27] (cf. Duistermaat-Hoérmander
[14]) are contained in the class defined in Chapter 6 by choosing the base manifold X to be
compact without boundary.

The first example sketches how distributions appear that have wavefront set only in the
e-component, which is in a sense dual to the case of Hormander. The second example illustrates
where the classical theory of Duistermaat-Hormander does not give the best results and one
has to take the non-compactness into account.

5.4.1. The Scattering Matrix

Let (X, p, g) be a scattering manifold and denote by A the Laplace-Beltrami operator on X.
Choose an arbitrary smooth function f € C*°(9X). It was shown by Melrose [42] that there is
a unique function u € C*°(X) for every A # 0 such that

(A= X)u=0

and u has an asymptotic expansion u = ei)‘pflp(d_l)mfl + e_i’\pflp(d_l)/zfz, where f1, fs €
C>*(X) and f1]gx = f. One may define the scattering matrix’

S(V) : C®(0X) = C®(IX),
= falox.

In [45] it was proved that the scattering matrix S()) is a Fourier integral operator on the
boundary 0X. The underlying canonical transformation is given by the symplectomorphism

exp(mH ;) : T70X \ 0 — T"0X \ 0,

where H /; is the Hamiltonian vector field associated to the square root of the metric / on the
boundary 0.X.

For the proof the authors introduce a class of geometric distributions on X, which are smooth
in the interior of X and oscillatory near the boundary, hence not regular in the sense of Schwartz
functions:

The symplectic structure of 7™ X induces a natural contact structure on *7T7 X, where
the contact form "°« is given in canonical coordinates (p, z, 7, §) by

“ao=dr+¢&-dx.

3The scattering matrix is usually not a matrix. If X = R or in the case of hyperbolic manifolds with all ends being
cusps it is a matrix.
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A submanifold G of *“T’j y X is called sc-Legendrian if *°c: vanishes on G and dim G = dim X —1.
As in the case of Lagrangian submanifolds, a non-degenerate phase function ¢ € C*>°(0X x R")
parametrizes G if

(@,0) = (z,=d(,0), dep(x,0)) = (x,7,§)
is a local diffeomorphism from {dp¢ = 0} to G.

The class of Legendrian distribution is defined as sums of oscillatory integrals of the form
u(p,z) = /eipld’(x’g)a(p, x,0) do,

where a € pm—s/2+d/ 4C%°(X x U) is supported in a small neighborhood of the boundary and
U is an open subset of R®.

The convention for the order m, in Section 6.5 is defined such that it coincides with the order
of Legendrian distributions.

5.4.2. Quantum Field Theory

Let (M, g) be an orientable complete d + 1-dimensional pseudo-Riemannian manifold with
signature (—,+,...,+). We then call (M, g) a space-time. As in the case of Riemannian
manifolds, we can define a geometric second order differential operator by

Cu = —|g| /20, (I91"/29""0, ) u.

which is not elliptic, but hyperbolic and it is the natural generalization of the wave operator
— Dy + A on Riemannian manifolds.

At each point x € M, we can define time-like, space-like and null tangent vectors v € T, M,
by gz(v,v) <0, gz(v,v) > 0, and g,(v,v) = 0, respectively. A curve is called causal, if every
tangent vector is either time-like or null.

Let S be a smooth space-like hypersurface meaning that all tangent vectors are space-like.
It is called a Cauchy hypersurface if every inextendible causal curve intersects S exactly once.
The manifold (M, g) is called globally hyperbolic if it admits a Cauchy hypersurface S. If this is
the case, M is diffeomorphic to R x S (cf. Hawking—-Ellis [21] for an overview of the causal
structure) and the initial value problem for the wave equation

Uu=0
uls = u(x)
dyuls = v(x)

is well-posed for any Cauchy-hypersurface S. Here, 0, denotes the normal derivative with
respect to S.
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From now on assume that (M, g) is a d + 1-dimensional globally hyperbolic space-time.
Denote by L* M the co-light cone

L*M = {(p,{) e T*M \ 0: g, (¢, ¢) = 0},

where g7 is the dual metric to g on 7" M. We want to consider the inhomogeneous Klein-
Gordon equation:

1

(O +mu=f,

for fixed m > 0. The characteristic set of [J + m is the co-light cone ¥(00) = L*M. It is clear
that this equation has many different solutions, because we have not specified any initial data.
Therefore, there are many different fundamental bi-solutions Gxg € D'(M x M) satisfying

(0p +m*)Gka(p, q) = d(p — q),
(0y +m*)Gre(p,q) = 0(p — q)-
By Proposition A.4.3, every such fundamental solution has restricted wavefront set
WFu(Gxa) € N*Aprear UL*M x L*M,

where Ay s is the diagonal. If d > 2, then L* M has two connected components, the forward
and the backward light cone. It was shown by Duistermaat-Hoérmander [14] that there are
four different distinguished fundamental solutions to the Klein-Gordon equation, characterized
by its wavefront set, and they constructed parametrices modulo C*°. Intuitively speaking, we
can choose for every connected component, whether singularities are propagated forward or
backward in time (cf. Figure 5.3).

The downside of the distinguished parametrices of Duistermaat-Hoérmander is that they
differ from the real fundamental solution by a smooth function and that error is in general not
compact.

For a quantum field model, we consider a distribution we € D'(M) @ D'(M). We assume
that wy has the following properties (cf. [52]):

Positive type If f € C2°(M), then
wa(f @ f) > 0.
Klein-Gordon equation Forall f,g € C>°(M),
wa((O0+m?)f ® g) = wa(f @ (O +m?)g) = 0.
Commutator For any f,g € C°(M)

wa(f @ g) —walg ® f) = iA(f ®9),

where A = G4 — Gg and G4, GR are the advanced and retarded fundamental solutions
of the Klein-Gordon equation.
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5

Fa(Gr) Fa(Gar) Fa(Ga) WF(GR)

Figure 5.3.: Wave fronts of the distinguished fundamental solutions. From left to right: The
Feynman propagator, the anti-Feynman propagator, the advanced fundamental
solution, and the retarded fundamental solution.

On Minkowski space R1+d with metric gy = —dt? + da?, the two-point function is defined
by

walf ©.9) = (At — 5,2~ ), f(1,2)9(s.9)

and A is given by the oscillatory integral
U it (2 o e2)-1/2
Ay(t,r) = e (m” +[€]%)~7 dg,
2 R4

where the phase function is ¥ (¢, x, &) = —t\/m? + [£|? + (x, £) (cf. Reed-Simon [53, Theorem
IX.34] and Dang [8]). The phase function 1 is a symbol in SG11(R4*! x R?) and therefore the
oscillatory integral can be interpreted as an oscillatory integral in the scattering calculus (cf.

(6]



CHAPTER 6

Lagrangian Distributions on
Asymptotically Euclidean Manifolds

6.1. Introduction

This chapter is taken from [4], where the section about manifolds with corners has been removed
and a more general discussion can be found in Section 5.1.1.

Lagrangian distributions were defined by Hérmander [27] as a tool to obtain a global calculus
of Fourier integral operators. The latter are widely applied, e.g. in the study of partial differential
equations [14], spectral theory [13], index theory [2] and mathematical physics [18]. Motivating
examples for the necessity of studying Lagrangian distributions on asymptotically Euclidean
spaces include fundamental solutions to the Klein-Gordon equation, which exhibit Lagrangian
behavior “at infinity”, see [7], as well as simple or multi-layers which arise when solving partial
differential equations along infinite boundaries or Cauchy hypersurfaces, see [3].

In local coordinates, a classical Lagrangian distribution v on a manifold X is given by an
oscillatory integral of the form

I,(a) = / S e%a(z,0)db, (6.1)

for some symbol a € S™(R? x R?) and a phase function ¢ on a subset of R? x R* bounded
in x. A class of oscillatory integrals on Euclidean spaces, the local model for our theory, was
studied in [6].

The key feature of the theory of Lagrangian distributions is that each such distribution is
globally associated to a Lagrangian submanifold A C 7™ X and that its leading order behavior
can be invariantly described by its principal symbol which is a section in a line bundle on A.

In this chapter, we prove that the situation on asymptotically Euclidean manifolds is similar,
but with a more delicate structure “at infinity”. To make this precise, we work within the
framework of scattering geometry, developed in [42, 45], see also [20, 67]. In the chapter, we
continue the introduction of Chapter 5 to scattering manifolds and add to it a class of naturally
arising morphisms, the scattering maps. We note that the scattering manifolds may also be seen
as Lie manifolds, and in this way our theory complements recent advances in the theory of
Lagrangian distributions and Fourier integral operators on such singular spaces (via groupoid
techniques), see [35].
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The prototype of a scattering geometry is the Euclidean space R?, identified with a ball
under radial compactification. For this setting, a fitting theory of Lagrangian submanifolds on
R? was developed in [7]. As a first step, we adapt this to general scattering manifolds with
boundary X = X° U 0X, the boundary being viewed as infinity. On such manifolds, the
environment for microlocalization is then the compactified scattering cotangent bundle T X,
a manifold with corners of codimension 2 and its boundary W = &*T" X. This boundary
may be seen as a stratified space, and the two boundary faces of T X, which intersect in the
corner, inherit a type of contact structure. The geometric objects of study in our theory are then
Legendrian submanifolds of the faces VV which intersect in the corner and are the boundary of
some Lagrangian submanifold in the interior and smooth (distribution) densities thereon.

The link with Lagrangian distributions is now as follows. We prove that, despite the singular
geometry, any Lagrangian submanifold A C W locally admits a parametrization through some
phase function ¢, via a generalization of the map

Ao 1Cp = Ny (2,0) = (z,dpp(z,0)),

where C, = (dg) '{0}. For each such a phase function, a Lagrangian distribution can be
expressed locally as an oscillatory integral as in (6.1). Up to Maslov factors and some density
identifications, the restriction of a(x,6) to C,, yields the (principal) symbol o(u) of u and is
interpreted as a (density valued) function on A by identification via .

Indeed, the main theorem characterizing the principal symbol will be:

Theorem. Let A be a sc-Lagrangian on X. Then there exists a surjective principal symbol map

eyt 7™ (X, A) = C(A, My @ Q1/2),
where My is the Maslov bundle and '/ denotes the half-density bundle over A. Moreover, its
null space is I™e =1 =1( X A) and we have the short exact sequence

Ime,m

0 — e b=l A) — I™eme (X, A) ——5 C(A, My ® Q%) — 0.

Equivalently,
I (X, A) /T e =X A) ~ C°(A, My ® QY2).

Summarizing, our results show that the theory of Lagrangian distributions, classically studied
either locally or on compact manifolds, may be generalized to a theory of Lagrangian distribu-
tions on Euclidean spaces or manifolds with boundaries, hence a much wider class of geometries.
It is formulated in a way that makes it easily transferable to other singular geometries as well
as manifolds with corners, see [44].

This chapter is organized as follows. In Section 6.2 we give an introduction to scattering
geometry. In particular, we discuss the natural class of maps between scattering manifolds,
compactification and scattering amplitudes. In Section 6.3 we define the Lagrangian submani-
folds and phase functions that arise in our theory. In Section 6.4 we discuss the techniques of
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classifying phase functions which parametrize the same Lagrangian submanifold. In Section 6.5
we define the Lagrangian distributions in this setting, starting from oscillatory integrals, and
study their transformation properties. Finally, in Section 6.6, we define the principal symbol of
Lagrangian distributions and prove its invariance.

6.2. Preliminary Definitions

In the following, we will recall some elements of the geometric theory known as “scattering
geometry”, cf. [42, 43, 45, 67]. To start with, we need to recall some groundwork on the analysis
on manifolds with corners, for which we adopt the definition of [41, 44], cf. also [39] and [33]
for a discussion on the different notions of manifolds with corners in the literature.

6.2.1. Further Elements of Scattering Geometry

The class of mwec that interest us is that of (products of) fiber bundles where both the base as
well as the fiber are allowed to be a compact manifold with boundary (abbreviated “mwb”). The
archetype of such a mwec is the product of two mwbs. Indeed, if X and Y are mwbs, B = X XY
is a mwc. We write B = 0B and we have (adopting the notation of [7, 15])

B=(8X xY°)U(X°xdY)U(dX x dY) =: B°U BY U BY*.

=B =03 B

We present another compactification of R%, which has the advantage that its image is a subset
of R? in a natural way.

Definition 6.2.1 (Radial compactification of RY). Pick any diffeomorphism ¢ : R? — (B%)° that,

for |z| > 3, is given by
A ()
tix— —|1——].
|| ]

Then its inverse is given, for |y| > 2, by
-1 Y -1
iy (= y) T
[y

The map ¢ is called the radial compactification map. We may hence view R¢ as the interior of
the mwb B¢ and call 9B? “infinity”.

Denote by [z] a smooth function R? — (0, 00) that, for |z| > 3, is given by = > |z|. Then
(:"1)*[z] " is a boundary defining function on B (and we view [z] " as a boundary defining
function on R?). Indeed, for |y| > 2/3 it is given by y > 1 — |y| = py.

Remark 6.2.2. The compactification ¢ and SP are equivalent, meaning they yield diffeomorphic
manifolds. In fact, for |x| > 3, we may write

-1 _ T -1 1
<5L'> - [ ] 1+ [.I']_Q’ 71 — <x>_2.
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Hence, () ! and [2] " yield equivalent boundary defining functions on R%.

6.2.2. Exterior Derivative

The exterior derivative d lifts to a well-defined scattering differential @ on the scattering
geometric structure. In coordinates, with p a local boundary defining function, we write

SC 2 dp — d‘Tj
df = p“Opf —< + E PO, | —=. (6.2)
P p

Note that for f € C°°(X), this means that as a section of **T* X, *df necessarily vanishes on
the boundary. In fact, we may extend % to the space p~1C°°(X) and obtain a map

S pLCP(X) — CO(X) = T(*°T*X).

That is, in local coordinates near the boundary,

dp dp 2 da;
scd(p—lf) — p—l stf — f? = (—f + papf) ﬁ + Zax]f 7]
j=1

Remark 6.2.3. We note that p~!C>°(X) and similarly defined spaces are independent of the
actual choice of boundary defining function p (cf. Remark 5.1.5).

Definition 6.2.4 (Scattering vector fields on product type manifolds). For a product B = X x Y,
with (X, px) and (Y, py') mwbs, we may introduce **V(B) as px py (°V(B)). Near a corner
point the resulting bundle 7™ B is hence generated, if x = (px,x) and y = (py, y) are local
coordinates on X and Y respectively, by

PXPYOpx PXPYOu;r PXPYOpy s PXPY Dy

The space °V(B) splits into horizontal and vertical vector fields,' VX (B) and VY (B),
respectively, and we define S°©% (B) as the set of (scattering) 1-forms w € °©'(B) such that
w(v) = 0 for allv € VY (B).

Given complete set of coordinates x = (px, ),y = (py,y) on X and Y, respectively, we
see that °©X (B) is the set of sections generated by

de d{L‘j
pkpy’ pxpy’

!Consider the projection pry : B — X. Then v € *V(B) satisfies v € “V*(B) if v(pri f) = 0 for all
f € C°°(X). The set *°V¥ (B) is defined in analogy.
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The underlying vector bundle will be denoted by °HX B. Similarly, we define 6" (B) and
SCHY B. Tt is important to note that we have the following “rescaling identifications”:

dpx _1dpx

“0X(B) 5 5 oy PX € e (v, <0(X),

du, du; '
*0X(B) 3 9 pt T € g lCo(Y,*O(X)).

PXPY PX

Again, we may define the scattering exterior differential *d, induced by the usual exterior
differential d, and extend it to a map

A : pytpyC(B) — *O(B).

In terms of the scattering differentials on X and Y we may decompose 34 as °d = dx + 54y,
where

sch . p}lp}—/lcoo<B) N SC@X(B)7
“dy : px py CP(B) = *6Y(B).

6.2.3. Amplitudes

Definition 6.2.5 (Amplitudes of product-type). Let B be a mwec, {p;};—1..1 a complete set of
bdfs. Then a is called an amplitude of order m € R* if

aep ™, HC(B).

For an open subset U of X, a locally defined amplitude of product type is an element of

pr" e EC®(U). For p € 0X we call a elliptic at p if pi™* - - - p"*a(p) # 0. We write
C5e(X) = () M peC(B)
meRF

for the smooth functions vanishing at the boundary of infinite order.
For p € OB we call a rapidly decaying at p if there exists a neighbourhood U of p such that a
vanishes of infinite order on U N 0B, that is a € €5°(U).

We now study the leading boundary behavior of these amplitudes. For simplicity, we only
consider B = X X Y for mwbs X and Y.

Definition 6.2.6. Let a € p}mep;m’”coo(B) and write a = p;(mep;m¢f for some f € C*°(B).
Given a coordinate neighbourhood U of a point p € B®, we define symbols 0®(a) of a on U by
o(a)(x,y) = px"py Cf(0,2y),  pEBUBY
a¥(a)(x,y) = px" oy f(x,0,y),  peBYUBY

a¥*(a)(x,y) = px"py " f(0,2,0,y) p € B

The tuple (6% (a), 0¢(a),0¥¢(a)) is denoted by o'(a) and called the principal symbol.
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Fix € > 0 so small that px and py can be chosen as coordinates on B respectively whenever
px < eand py < e. We choose a cut-off function x € C*°(R) such that x(¢) = 0 fort > ¢/2
and x(t) = 1 fort < /4.

Definition 6.2.7. For any a € py"*py ¥ C>(B) the amplitude

ap(x,y) = x(px)o%(a)(x,y) + x(py)o¥ (a)(x,y) — x(px)x(py)o¥(a)(x,y)

is called the principal part of a.

While a,, does depend on the choice of , its leading boundary asymptotic do not. By Taylor
expansion of f, we obtain:

Lemma 6.2.8. The principal part a,, of a satisfiesa — a, € p)_(meﬂp;mwﬂcoo (B).

Example 6.2.9 (Classical SG-symbols). Let B = B¢ x B®, where B? and B* are the radial
compactifications of R? and R®. The space of so-called classical SG-symbols, SGZLQ’mw (RYxR?),
is that of @ € C*°(R? x R?) such that (¢ 7! x t71)*a € p™py “C>(B). These symbols are

then precisely those that satisfy the estimates

0205 alx,0)| S () lol(gyme I (64)

and admit a polyhomogeneous expansion, see [15, 42, 67] and the principal symbol of a corre-
sponds to its homogeneous coefficients, see [15, Chap. 8.2].

We will need to consider density-valued amplitudes and integrate amplitudes on mwbs.
For this, we introduce the space of scattering o-density bundles, cf. [42], where °Q° (X) =
p~ 7D Q7 (X)) in terms of the usual o-density bundle. Note that °Q7 does not depend on the
choice of boundary defining function.

Example 6.2.10. Under the radial compactification, the canonical Lebesgue integration den-
sity on R?, dz € QY(R?), is mapped to t,dz € °Q'(B?). In particular, we obtain t,dz =
p~ @D dp dS?. More generally, if (X, g) is a scattering manifold, then the metric induces a
canonical volume scattering 1-density .

Since the density bundle is a line bundle, any choice of scattering density provides a section
of it and allows for an identification of scattering densities on X and C*°-functions.

We denote the set of all smooth sections of the bundle *°Q2? (X)) by C*(X,%Q7 (X)), and

the tempered distribution densities (€5°)(X,%°Q7 (X)) are the continuous linear functionals
on 6§°(X, %07 (X)).

Lemma 6.2.11. Let X be a mwb andY a manifold without boundary. Then, integration over Y
induces a map

/ (C(X X Y, *QNX x Y)) — px8mY (X, 0N (X)).
Y
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Remark 6.2.12. More generally, let X, Y be mwbs and Z a manifold without boundary. Consider
a differentiable fibration f : X — Y with typical fiber Z. For every scattering density
p € C®(X,°Q (X)) the pushforward

Fep € py TMECE (Y, QH(Y))

is defined locally by integration along the fiber.
Let (U, ) be a trivializing neighborhood of the fiber bundle, that is U C Y open, ¢ : X —
U x Z smooth and f|-1(yy = pryy o 1. Assume without loss of generality that / is supported

on f~Y(U). Then set
f*M:/ZMOT/’j-

6.2.4. Scattering Maps

We now introduce and characterize the class of maps whose pull-backs preserve amplitudes
of product type. They are a special case of interior b-maps in the sense of [41], and humbly
mimicking Melrose’s naming conventions we call them sc-maps. We first introduce them on
manifolds with boundary and then generalize to manifolds with higher corner degeneracy, such
as products of mwecs.

Definition 6.2.13 (sc-maps on mwb). Let Y and Z be mwbs. Suppose ¥ : Y — Z. Then VU is
called an sc-map if for any m € R and a € p,"'C*°(Z) it holds that:

1. U*a € p,""C>®(Y);

2. ifp € (YY) withp = ¥(q¢) and (p%a)(p) > 0, then (py*¥*a)(q) > 0.

Remark 6.2.14. In particular, ¥ maps the boundary of Y into that of Z. It also follows that
TV maps inward pointing vectors at the boundary (meaning vectors with strictly positive
0,-component) to inward pointing vectors at the corresponding points. Indeed, we see that, at
the boundary, ¥,.0,, = hilapy.

Remark 6.2.15. It is obvious that the composition of two sc-maps is again a sc-map.

It is straightforward to adapt this definition to that of a local sc-map by replacing ¥ and Z
with open subsets.

Lemma 6.2.16 (sc-maps in coordinates). Let Y and Z be mwbs, U C Y and V' C Z open
subsets. A smooth map ¥ : U — V is a local sc-map if and only if for the boundary defining
functionson'Y and Z, py and pyz, respectively, we have

U*pz = pyh for some h € C*(Y') with h > 0. (6.5)

Hence, any local diffeomorphism of mwbs is a local scattering map. Moreover:
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Lemma 6.2.17. Let X, Z be mwbs. Given any open, bounded set U C RY, define the projection
pry: Z xU — Z,(z,y) — z. Thenlx xpry, is a sc-map.

We now investigate the action of pull-backs by sc-maps on the objects introduced above. The
following assertions can be verified in local coordinates.

Lemma 6.2.18. LetY and Z be mwbs, U C Y andV C Z open subsets. Let WV : U — V bea
local sc-map. Then, the following properties hold true.

« U* yields a map plj SOF (V) — piscOk(U) for anym € R and k € N. Moreover, for
0 € pFOF(V), we have Sd(V*0) = ¥*(5d0).

e U* yields a map >°Q° (V') — 5°Q°(U) forany o € [0,1].

e The mapT*V : T*V — T*U lifts to a map ST« STV — ST U In local coordinates,
away from fiber-infinity, T W is given by

(T(),¢) = (v, (((JO)(HC))),

wherein JV is the Jacobian of ¥ aty. The extension to fiber-infinity is obtained by taking
interior limits |(|~1 — 0.

We observe that sc-maps provide a natural class of maps between scattering manifolds.

Corollary 6.2.19. Suppose Y is a mwb, (Z, pz,g) a scattering manifold, ¥ a sc-mapY — Z
which is an immersion. Then (Y, ¥*pz, W*g) is a scattering manifold.

Proof. We first observe that U*py is a boundary defining function on Y. Indeed,
d\I’*pZ = hdpy + pydh. (6.6)
This implies, at the boundary, h dpy # 0. The scattering metric on Z pulls back to

)€? 9o (d‘I’*Pz)®2+ T*gs

(dPZ

Pz py  (Tpz)t  (Upz)?
which is again a scattering metric. d

Corollary 6.2.20. Any scattering manifold Y of dimension s is locally isometric to B® with some
scattering metric. Moreover, any scattering density on Y can locally be written as the pull-back by
one on B°.

We now extend the notion of sc-map to manifolds with corners.

Definition 6.2.21 (sc-maps on mwc). Let Y and Z be mwecs. Then, a smoothmap ¥ : Y — Z is
a local sc-map for some complete sets of local bdfs {py; }icr and {pz, }ier ift

For all ¢ € I we have U*p, = py;h; for some h; € C*°(Y') with h; > 0.
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Remark 6.2.22. In particular, ¥ maps the boundary of Y into that of Z.

As mentioned before, sc-maps are special cases of b-maps. In fact, they are those interior
b-maps that are smooth maps in the sense of [33]. The only difference with the smooth maps in
[33] is that, therein, U*pz. = 0 is allowed.

Example 6.2.23. In particular, if U1 : Y7 — Z7 and U9 : Y5 — Z5 are sc-maps on mwb, then
Uy x WUy : Y] x Yo — Z) X Zy is a sc-map on the resulting product mwe.

Remark 6.2.24. Note that we fix the ordering of the boundary defining functions. This is
important, in particular, when considering sc-maps between products X x Y — X X Z or of
the form X x Y — ST X . Most of the times, the choice of bdfs will be clear from the context.

Note that, on a mwhb, it is possible to extend any map 0X +— 90X with x — 2/ to a scattering
map, by setting (px, z) — (px, ') in a collar neighbourhood of 90X given by X = [0,¢) x 0.X.
The following proposition grants us the ability to continue scattering maps from a corner into
the interior.

Proposition 6.2.25. Let By = X1 X Y] and By = X2 X Y3 be products of mwbs. Let ¥°, T be
two (local) scattering maps near a point p € que,

e B — BS and WY :BY — BY

such that U = WY when restricted to B%e. Then there exists a (local) scattering map ¥ on a
neighbourhood U C B of p with W*® = V|ge such that

8PX1 U py, = 8pY1 U*px, =0 onbB;. (6.7)

If ¢ and OV are local diffeomorphisms near p (in their respective boundary faces), then WU is a
local diffeomorphism near p.

Proof. This is Whitney’s extension theorem for smooth functions, applied to the system of
functions (and their derivatives)

(Te)*z, (T€)*y, (V) py on BY,
(T¥)*px, (B¥)*z, (¥¥)'y  onBY,
together with the conditions (6.7) and

DyyV*py, =0 on BY,
D, V*px, =0 onBy.

Note that, if ¢ and U¥ are local diffeomorphisms at p, the differential of ¥ is an invertible
block matrix, and hence U is a local diffeomorphism. g
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Lemma 6.2.26. Consider asc-map ¥ : X xY — X XY of product form ¥ = Ux x Uy,
with sc-maps on X, Y, Ux and Wy, respectively. Assume a € p;mw px cC®(X xY). With the
notation of Definition 6.2.6 and 6.2.7, we have:

o’ (W*a) — U (0¥a) € py ™ pxmeC,
o“(Wa) — U*(0%a) € py " pmeIC,
m 1 Me 0
(T*a), — W (ap) € py """ pxm T C,

Proof. We will only prove the first identity, the others follows by similar arguments. Write
(*px) (%) = pxhx (x) and (¥*py)(y) = pyhy (y). I a = p3™py,"" f then

(T*a)(x,y) = px"py “hY™ (X)hy " (y) (T f)(x,y).

This implies

o’ (U a)(x,y) = px" oy hx™ (¥)hy " (0,5)(¥* £)(x,0,y),
VH(o¥a)(x,y) = px"py X" (0)hy " (y) (B f) (x, 0, ).

Using Taylor’s theorem, we obtain that by ¥ (y) —hy ¥ (0,y) € pyC®(X xY), and therefore
o¥(¥*a) — U*(o%a) € p;mwﬂp}meC“(X x YY), as claimed. O

Corollary 6.2.27. The principal part ofa € py, ¥ py"*C>®(X x Y') is well-defined as an element
of
Py (X X V) [p oy TR (X < Y),

and does not depend on the choice of boundary-defining functions px, py on X, Y.

Remark 6.2.28. Note that the space
PRy CR (X X Y) [pxe oM e (X x Y)

can be identified with C*°(9(X x Y)), which identifies our notion of principal symbol with
that of [43, Section 6.4].

The following lemma is one of the main technical tools in this chapter. We have already
observed that the local model of a scattering manifold near the boundary is the radial com-
pactification of R?. We now show that scattering maps arise naturally as the composition of
vector-valued amplitudes and radial compactification. Furthermore, we clarify the relation
between total derivative and the scattering differential under compactification.
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Lemma 6.2.29. LetY beamwb. Let f € py,"C>(Y,R?) with py | f| # 00ndY.? Then, ¥ = 1o f
extends to a local sc-map Y — Be. Moreover, the matrix of coefficients of

SCdf 1
SCdf — :
o

has the same rank as the differential T'U of U.

Proof. Since ¢ is a diffeomorphism, ¢ o f is a smooth map while py > € and we may thus restrict
our attention to a neighbourhood of Y where py | f| is everywhere non-vanishing. As usual,
we pick a suitable collar neighbourhood of product type such that locally Y = [0,¢) x 9Y, and
we write dim(Y) = sand y = (py, y) for the coordinates. There we need to compute ¥*p.
Write f(py,y) = py h(py,y) for b € C®(Y,RY) with h(0,y) # 0 for all (0,y) € JY. Since
i f(¥)| = py'|h(y)| may be assumed sufficiently large and

B(y) = (co f)ly) = fy) (1_ 1 ): hy) (1_ py >

hence

1f(y)] If(y)l |h(y)l |h(y)|

In this form, ¥ clearly extends up to the boundary. The boundary defining function on B¢ is, in
this coordinate patch, pz = 1 — |z|. Thus,

I 1
- o lFo)l

By assumption, py |f(y)| = |h(y)| is smooth and non-vanishing, which proves that ¥ is an
sc-map.

For the second half of the statement we first observe that, since ¢ is a diffeomorphism
RY — (B?)° and 4 coincides, up to a rescaling by a non-vanishing factor, with the usual
differential in the interior, we may restrict our attention to the boundary 0Y. Then we compute

Upz =

d
“Uf(y) = P Opy () L +Z Py 0y, f(y) yﬂ
PY =
s—1
d d
= (=h(y) + pyOp, h(y pY Z y].
7j=1

We identify *df with its coeflicients (s x d)-dimensional block matrix

(=n(y) + pyOpy h(y) (O, h(y))j=1,..5-1) -

2This means py f is the restriction to Y of an element of g € C*° (Y, R%) with g # 0 on Y.
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At the boundary py = 0 we obtain

(_h (ayj h)jZl,...,s—l)(an)' (6.8)

We want to compare the rank of (6.8) with that of the differential of ¥ at the point (0,y) € JY.
As shown above, the function U is given, at an arbitrary point y = (py, y) close enough to 9Y’,

by
hy) (,_ ey
()] (1 |h<y>|> ’

whose differential at (0, y) is the block matrix

T00,9) = (< + oty (Outhy) )00 (69)

Now observe that, since they are derivatives of unit vectors, 8yj I—ZI and 0,,, % are orthogonal
to h, which is itself non-zero.” Therefore, the rank of T'W(0, y) equals that of the block matrix

R

(_h (8‘”7 W>j:1,...,s—1) (0.4)- (6.10)

Finally, we have that
h h (h-0y,h)
h=0, ||hl— )= — — h.
aun=a, (1) = W+~
collinear to 8yj ﬁ collinear to h

This means that the null space (and hence the ranks) of (6.8) and (6.10) coincide. O

Example 6.2.30. The simplest example for a map where Lemma 6.2.29 applies is given by the
map f ="' : B —» R%
Remark 6.2.31. Recall (cf. [31, App. C.3]) that the intersection of two C°°-submanifolds Y and
Z of a C*°-manifold X is clean with excess e € Nif Y N Z is a C°>°-submanifold of X satisfying
T.YNZ)=T,YNT,Z, VeeYNnZ,
codim(Y') + codim(Z) = codim(Y N Z) + e.

Example 6.2.32. Let X be amwb and a € p"* pg. *C®(X x B?). In this example, we extend
a to a local symbol on a suitable subset of X x B*T!,
We view B*t! as embedded in R**! with coordinates (y1, .. ., ys, 7). Define

7: B 5 B x (—1,1), (y,9) — <

Y -
M)y> Y

*Recall that, in fact, [v(t)| = 1 < v(t) - v(t) = 1 = 2v(t) - v'(t) = 0 & v(t) L v'(t).
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where y = (y1,...,ys). For every ¢ € (0,1), we obtain coordinates on
U=y"{B x (~e,e)} =B n{lg <e},

cf. Figure 6.1. We note that U is a fibration of base B* and fiber (—¢, ¢).

B® B*

Bstl B* x (—¢,¢)

Figure 6.1.: The action of j visualized

We verify that 7 is a sc-map. For this we now view B® x (—¢, €) as a (non-compact) manifold
with boundary* with boundary defining function pz = 1 — [y]. Observe that near the boundary
we have

-7
o S L V15— [y
DR e A Ve T

= sz+l h

Since |§| < €, h is positive and in C*°(U). Hence 7 is an sc-map.

As usual, we may perform the same construction fiber-wise on a fiber bundle by considering
local product decompositions to obtain a local sc-map. Namely, let X be an arbitrary mwb.
Then ¥ = Ly x is again a sc-map on the product X x (B* x (—¢,¢)). Using Lemma 6.2.17
and Remark 6.2.15, wee see that U=Uo (Ix xprgs) : X x U — X x B? is a sc-map. Hence,
U*a € p}mepﬁﬂfCoo(X x U).

“This means we view B® x (—¢, ) as embedded in the manifold with boundary B* x S', which can be embedded
in S* x S*. For higher dimension, we embed (—¢,¢)” < T".
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6.3. Phase Functions and Lagrangian Submanifolds

6.3.1. Clean Phase Functions

Definition 6.3.1 (Phase functions). Let X and Y be mwbs, B = X X Y. Let U be an open subset
in B. Then, a real valued ¢ € p)_(1 p{,lCOO (U) is a local (sc-)phase function if it is the restriction
of some @ € py' py,'C>(B) to U such that *d@(p) # 0 for all p € BYNaU.

If U = B, thatis ¢ € py' py C®(B) with Sdp(p)|z5 # 0, we call ¢ a global sc-phase
function.

v

Remark 6.3.2. Phrased differently, if U is an interior open set, ¢ is just a smooth function. In
the non-trivial case of U being a boundary neighbourhood, the above definition means that,
for every p € OB in the - or 1ye-component of the boundary of U, there exists an element
¢ € 5°V(B) such that {(¢) is elliptic at p, meaning {(¢) € C>(X x Y) satisfies (Cp)(p) # 0. It
is, by compactness, bounded away from zero at the possible limit points in OU. In the following,
we usually do not write ¢ but simply identify ¢ and ¢ at these limit points.

Example 6.3.3 (SG-phase functions). If B = B? x B*, such ¢ correspond to so-called (classical)
SG-phase functions on R? x R, cf. [6, 7], but with a relaxed condition as ||z|| — occ. Indeed,
in light of the SG-estimates (6.4), the previous definition translates to

(z) " Vo) + () ' Vap|* > C for |0] > 0. (6.11)

The relationship between these and “standard” phase functions which are homogeneous in ¢
is discussed in [7]. Examples of SG-phase functions are the standard Fourier phase = - 6 on
R? x R¢ and (0) — z - 6 on jo’i x RY.

Definition 6.3.4 (The set of critical points). Let B = X x Y, ¢ € py'py C>®(B) a (local) phase
function. A point p € B (in the domain of () is called a critical point of ¢ if *dy p(p) = 0, that
is, if () (p) = 0 for every ¢ € VY (B). We define

Cy, ={p € B|*dyp(p) = 0}. (6.12)
We set C, = C, N B and specify
Cy,=C,NB* for ec{eP,e}.

We now adapt the usual definition of a clean phase function from the classical setting to the
case with boundary.

Definition 6.3.5 (Clean phase functions). A phase function ¢ is called clean if the following
conditions hold:

1.) there exists a neighbourhood U C B of 9B such that C,, N U is a manifold with corners
with 0C, C 0B;
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2.) the tangent space of T,,C, is at every point p given by those vectors in v € T),B such
that v({(p)) = 0 for all ¢ € VY| that is, T'(*dy p)v = 0;

3.) the intersections C3 = C, N B* are clean.
The last condition is equivalent to the existence of w € T¢s C3 such that

(T*dy ¢)(w + 0,,) = 0. (6.13)

This means that, for some w tangent to B°, we have w + 0,, € Tc:a C,. Here, p, is a bdf of B°.
We now discuss the implications of these conditions.

Lemma 6.3.6. Let ¢ be a clean phase function. Then either we are in the “non-corner crossing
case” 1a.) or in the “corner crossing case” 1b.), namely,

1. both C¢, and Cfﬁ are closed manifolds (without boundary) and Cfﬁe = 0;

2. Cy, consists of two components, @ and @, which are both submanifolds (with boundary),
of the same dimension dim(C,,) — 1, with joint boundary Cffe = 8@ = 8&% of B. The

intersection of@ and Cfﬁ in Cfﬁe is again clean.

In both cases, the differential of *dy¢ : B — *“I™ B, viewed as a map T'(*dy¢) : TB —

T (5°T*B), characterizes T'C3: The tangent space of@ and Cg at each point p is given by those
vectors v € TB® such that v(¢(p)) = 0 for all ¢ € VY, that is T (*dy p)v = 0.

By condition 3.) of Definition 6.3.5, we have dim(ker(7'(*dy))) = dim C,,. Hence, the
restrictions of T'(*dy ¢) to the individual boundary components of B on C, are of constant
rank. Namely,

s—e on CZ,
tk(T(*dyy)) =¢s—e—1 on C$ and C¢,
s—e—2 on Cge,

for some fixed number e, called the excess of ¢, which is given by
e =dimC, —d.

Remark 6.3.7. Conversely, if the rank of T'(*dy ) is constant in a neighborhood of each critical
point of *dy p, then ¢ is clean by the constant rank theorem. In case e = 0, ¢ is called
non-degenerate, and the two characterizations coincide. The corresponding case of SG-phase
functions (on R?) was studied in [7].
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6.3.2. The Associated Lagrangian

In the classical local theory without boundary on subsets of R? x (R* \ {0}), see [31, Chapter
XXI.2], the set of critical points C,, is realized as an immersed Lagrangian in T*R? by the map
(x,0) — (x,¢l(z,0)). In the present setting, the situation is more complicated. Following [7],
we define an analogous map A, on the mwc B = X x Y into ST X,

For that, we consider the following sequence of maps: Using the “rescaling identifications”
(6.3), we may view (x,y) — dx¢(x,y) as a map in py, C®(Y,*6(X)). Since *°O(X) are
the sections of 7" X, composing with the radial compactification yields, in view of Lemma
6.2.29, a map into the compactified fibers of ST X

Definition 6.3.8. The map A\, : B — SCT" X is defined by
(x,3) = (x,0(Mdxo(x,¥))).

Lemma 6.3.9. There is a neighbourhood U C B of C, such that \, : U — ST X is a local
sc-map.

Proof. We write, x = (px,z), y = (py,y) for coordinates in B, x and £& = (p=,&) for
coordinates in T X. Since A is the identity in the first set of variables, we have )\:;X =x.In
the second set of variables, \,, acts as ¢ o Sdx ¢, with *dxp € py' C®(Y,*O(X)). Notice that
on Cg UC}ﬁe, we have *dx p(x,y) # 0, since *dy # 0 on BY UBY® and *dy ¢ = 0 on C,. Hence,
due to compactness, we may find a neighbourhood of Cfﬁ U CZﬁe on which dx¢(x,y) # 0.
Writing ¢ = p;(lp;,lf for f € C*(X xY), this means

d—
(- f+px<9pr Z i
=1

Rescaling and viewing dx ¢ as a map in py,'C>® (Y, °6(X)), we express “dy ¢ as

“Axe=py | (- f+pxc9pr +Zax]f . (6.14)

Composing with ¢, we are therefore in the situation of Lemma 6.2.29, up to additional smooth
dependence on the X -variables, and conclude that A, is a local sc-map.

On Cg, away from CY¢, we have that py # 0 and correspondingly *d x ¢(x,y) stays bounded.
Since ¢+ maps bounded arguments into the interior, we find A, p= # 0. Since A, is smooth, A,
is an sc-map. 0

In particular, ¢ (*dx ¢ (x,y)) maps boundary points with py = 0 to boundary points of the
fiber, that is to WY U WYe,
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Definition 6.3.10. We define L, = A,(Cy) and Ay, 1= Ay(Cp). We further write AY, for
Ap(C3) C W* for e € {e, 1), e} We say that o parametrizes L, and A,

Theorem 6.3.11. The map A\, : C, — ST X is of constant rank d. Its image L, as well as
the boundary and corner faces A3, = A\, (C3,) are immersed manifolds of dimension dim A$, =
dim C;, — e. Furthermore, A, : C, — A<p is a submersion.

The proof is inspired by that of Lemma 2.3.2 in [12] (adapted to clean phase functions), but
much more involved, due to the presence of the compactification. We treat this new phenomenon
by carefully applying Lemma 6.2.29.

Proof. We obtain the rank of T'\, for A\, : C, — S°T" X by computing the dimension of
its null space. Let v = 0px - 0y + 0x - Op + dpy - O,y + Oy - Oy be a vector at a point
p = (px,x,py,y) € C,. For the moment, we assume py > 0. We write A\, = (I x¢) o £, with

lo: X XY 5 5T*X  (2,y) = (x,%dxo(z,y)).

Assume that T, (p)v = 0 and v € T,,C,. The condition 7, (p)v = 0 implies that dpx = 0
and dx = 0. Let ¥ = dpy - O,y + 0y - 0. Hence the assumptions are reduced to

*dxp(p)

#*dy(p) (619)

0,
0,

where v is interpreted as acting on the coefficient functions of the differentials.
In coordinates, these coefficient functions are given by

“dxp(p) = py (=f + px0px [, 0:f) (D), Sdyp(p) = (—f + py Doy [, 9y f) (p).

On C,, where —f + py0,, f = 0 and 9, f = 0 hold true, it is easily seen that (6.15) is
equivalent to

pox_/Q(pYapy - 1)8pr PXPy_/lapxayf

Py (py Oy —1)0:f Py 0x0y f (5PY> —0. (6.16)
Py Opy Opy | Py Opy Oy f oy
Opy Oy f 0y 0y f

The cleanness condition translates to the dimension of the nullspace of 7 x ¢ being con-
stantly e. We identify T°dy © with the matrix

(pYaPY - 1>aﬁxf 8y8pr

J = (pYapY - 1)axf ayaacf
Py Opy Opy f OyOpy |

Py Opy Oy f OyOy f

(6.17)
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The matrices appearing in (6.16) and (6.17) are related by

pypx' 0 0 0 po;;(PYapy —1)0px f pxpglapx oy f
J = 0 Y 91 0 p)_/ (PYapy - 1)8a:f p; 8m8yf <pY 0> )
0 0 py O Py Opy Opy f Py Opy Oy f 0 1
0 0 0 1 Oy, 0y f 0,0, f

This proves that (6.15) is equivalent to v € ker T5dy ¢ under our assumptions py > 0 and
px > 0, and the rank of £, is given by

tkl, = dimT),C, — dimker T°dy ¢ = (d +¢e) — e = d.

Now assume that px = 0. We see that the first row of (6.16) vanishes identically, but we have
the additional condition (6.13), implying that, at px = 0, the first row of (6.17) depends linearly
on the other rows. Therefore, the rank of /, is still d at points with px = 0. The composition
with I x¢ changes nothing for py > 0, since ¢ is a diffeomorphism there.

To perform the limit py — 0, we have to examine carefully the effect of the presence of
the compactification ¢, in the spirit of the proof of Lemma 6.2.29. For v € T,C, such that
TAy(p)v = 0, that is, as above, of the form

v = 0py - Opy + 0y - Oy,

we now obtain the set of equations
(6.18)

which are equivalent to the set of equations

Opy > dxp GyLSCngD> <5py>
= 0. 6.19
( Dpy Oy f 9y0y f oy (6.19)

We need to compare the rank of the coefficient matrix in (6.19) with that of 7%y  at points of
the form (px, x, 0, y). For this purpose, we go through a series of “reductions”, along the lines
of the proof of Lemma 6.2.29, to simplify the comparison. First, we can identify *d x ¢ with

1 (—f+px0 -
pyl< f az)} pr) —. pylh'

Note that A # 0 near CY, since @ is a phase function. As in the proof of Lemma 6.2.29, the
evaluation at (px, x,0,y) then gives

Opy Oyf 040y f OpyOyf  OyOyf
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Since all derivatives of I—Zl are orthogonal to |i and h # 0, the rank of the matrix (6.20) equals

h|
the one of

—mE O

h ) 6.21
0 0y0y f (6.21)
In fact, in (6.20), as well as in (6.21), the first column is linearly independent of the others. Now
we write

hoo1 (h-8,.h)
By By, h — W

=— h
“|hl - [R] ’
collinear to h

and remove the collinear summands, which again does not change the rank of the matrix (6.21).
Therefore, the rank of (6.20) is the same as the one of

_h 1 h
[ A I 6.22
( 0 6y8yf> o2

Multiplying the first d rows and the first column of (6.22) by the non-vanishing factor ||, again
the rank does not change, and we can look at
—h 8 h f_anpr _ayf+anyapr
< 0 8 % f> = -0 f 0yOs f . (6.23)
vry 0 0yOy f
On C, at py = 0 this equals
_anpX f anyapx f
-0 f O0yOr f . (6.24)

0 0,0, f

Finally, we observe that the dimension of the null space of (6.24) is, by cleanness of ¢ (in
particular by (6.13) applied to Cfﬁ or Cg “), the same as the one of

_apx f ayaﬂx f

_8acf ayaxf o SC
0 9,0,f

namely e. Therefore, the rank of A\, equals d = (d + e) — e near C,, which concludes the
proof. O

Lemma 6.3.12. The map A\, : C, — L, is a local fibration and the fiber is everywhere a smooth
manifold without boundary.
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Proof. Since A, is locally an sc-map, 7'\, maps the set of vectors at the boundary that are
inwards pointing into itself, see Remark 6.2.14. Therefore \,, is a so-called “tame” submersion in
the sense of [50, Lemma 1.3]. As such, it is a local fibration and the fiber is a manifold without
boundary. O

6.3.3. Symplectic Properties of the Associated Lagrangian

As in the classical theory, L, is an immersed Lagrangian submanifold, and its boundary faces
A® are immersed Legendrian submanifolds. Let us briefly recall these concepts. For more
information, the reader is referred to [7, 20, 45].

As a cotangent space, 1" X carries a natural symplectic 2-form w induced by the canonical

1-form v € C®°(T*X°, T*(T*X°)) as w = dcv. This 1-form can be recovered from w by setting
a = ¥ w for the radial vector field ¥ on C*°(T*X°), which is given by ¥ = ¢ - O¢ in
canonical coordinates.
We now write (x, &) = (px, z, p=, &) for the coordinates in the mwc 57T X which are obtained
from the rescaled canonical coordinates under radial compactification in the fiber, cf. [45]. Then
oY corresponds to p=0,s on C> (T*X ©). For the purpose of scattering geometry, it is natural
to rescale further and define, on T*(*T " X)°,

¥ = pEo, sw.

There exists another form of interest, namely

af i= px Oy aw.

We now extend these forms to 7* (T X)) and define the boundary restrictions of a®. Observe
that, while their explicit form depends on the choice of bdfs, the induced contact structure at
the boundary does not, see next Lemma 6.3.13

Lemma 6.3.13. The forms ® extend to 1-forms on VW, denoted by the same letter. The induced
contact structures do not depend on the choice of bdfs.

Example 6.3.14. On T*R? = R? x R?, with canonical coordinates (z, £), the vector fields o¥
and ¢ correspond to o¥ = ¢ - O¢ and ¢° = x - 0,. The symplectic 2-form is ) ;A& A dx; and
hence

ow=¢-de and ouw = —x - dE.

Obviously, the coefficients of these forms diverge as [¢] — oo and [z] — oco. The rescaled forms
“at the boundary at infinity” then correspond to

v _ & e__"
« G dr and af = ] dg.

After a choice of coordinates near the respective boundaries, this is the general local geometric
situation.
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We are now in the position to formulate the symplectic properties of A, cf. [6]. Recall that a
submanifold N of a symplectic manifold (M, w) is Lagrangian if w|ry = 0 and a submanifold
N of a contact manifold (M, «) is Legendrian if a7y = 0.

Proposition 6.3.15. The immersed manifolds defined in Theorem 6.3.11 satisfy:
1.) Lg is an immersed Lagrangian submanifold with respect to the 2-form w on (SCT*X)" =
T X;
2.) Afﬁ is Legendrian with respect to the canonical 1-form o on WY = S*(X°);
3.) A, is Legendrian with respect to the 1-form o on W¢ = T X.

We take this as the definition of an sc-Lagrangian, cf. [7].
Definition 6.3.16 (sc-Lagrangians). Let A := A¥ UA® C W. A is called an sc-Lagrangian if:

1) AY = ANWY is Legendrian with respect to the canonical 1-form a¥ on W¥ = %S%., X

2.) A® = AN WV® is Legendrian with respect to the 1-form a® on W*¢ = T3 X;

3) A¥ hasa boundary if and only if A€ has a boundary, and, in this case,
AV = AY = A¢ = AY N A,
with clean intersection.

Figure 6.2, which is taken from [7], summarizes, schematically, the relative positions of Afo

and A:ﬁ near the corner in W. We may take the analysis one step further in order to stress the

Wy

N

W€
Figure 6.2.: Intersection of A¥ C WY and A® C W¢ at the corner W¥*

Legendrian character of the boundary components near the corner and to reveal the symplectic
properties of A¥¢ by blow-up. For the sake of brevity here, we move this analysis to the appendix,

Section 6.7.
We may sum up our previous analysis by stating the next Theorem 6.3.17.
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Theorem 6.3.17. For a clean phase function o, the image A, under \, of C, is an immersed
sc-Lagrangian.

Definition 6.3.18. We say that an sc-Lagrangian A is locally parametrized by a phase function ¢
if, over the domain of definition of ¢, we have A = A,,.

In particular, if A is locally parametrized by a phase function, then it is admissible. Conversely,
we have the following result, cf. [7].

Proposition 6.3.19. If A is an sc-Lagrangian, then it is locally parametrizable by a clean phase
function ¢, that is A* N U® = A%, N U® for some open U C W?*. In particular, A arises as the

boundary of some Lagrangian submanifold L, ofSCT*X.

Remark 6.3.20. The proof of Proposition 6.3.19 in [7] is based on concrete parametrizations
in R? x RY. It applies here nonetheless, since any d-dimensional manifold with boundary X
can be locally modelled by B?. Hence, ST X can be locally modelled by B¢ x B? and thus,
under inverse radial compactification (applied to both factors), by R? x R¢. Note that in [7] we
imposed additional conditions, namely

AN (0X x ({0})) =0, (6.26)

and that = - ¢ = 0 in local canonical coordinates on A¥¢, since this is always true for a
parametrized Lagrangian (see (6.27) below). However, condition (6.26) is equivalent to the
stronger assumption that *dy # 0 also on B®, which we do not impose here. The assumption
x - & = 0, in turn, is superfluous, since it already follows from the symplectic assumptions on
A¥¢, as we now show.

Assume that both ¢ - dz = 0 and —z - d¢ = 0 on a bi-conic submanifold L of R¢ x R?. Then
we must have d(z - §) = 0. However, when |z| and || tend to oo, this blows up unless x - £ = 0.
This shows that = - £ = 0 is indeed automatically fulfilled.

This corresponds to the fact that, for the bi-homogenous principal symbol of a phase function
©%¢, we have, when Vgip(z, 0) = 0, that (cf. [7])

<(L‘, Vr@(xﬂg» = (P(xv 9) = <07 ve(p(xv 0)> =0, (6.27)

where we have used Euler’s identity for homogeneous functions twice.

6.3.4. Scattering Conormal Bundles

In this section, we consider the simple example of a scattering conormal bundle. Consider a
k-dimensional submanifold X’ C X which intersects the boundary of X cleanly or not at all
(called p-submanifold in [44]). In the following, we assume an intersection with the boundary.
Then there exist local coordinates (px, ', 2”) such that X’ is locally given by

X' ={(px,2',2") | px > 0,2/ =0 € R o ¢ RF11
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We can now consider the compactified scattering conormal ST X' SCT}/X . The boundary
faces of T X’ constitute a Lagrangian.
In fact, write X = ¢(R?), so that X’ corresponds to a subspace of R? of the form

X' ={(@,2") |2 =0¢ RIF 2 e Rk}.

We can then introduce Y = +(R%%) and ¢(z,y) = 2’ - y on R? x R4~*, which is an SG-phase

function, taking into account (6.11). The true phase function on X x Y is then (:=! x ¢ =1)*¢.

We can then compute C, = X' x Y and A, = seT X
Indeed, in the Euclidean setting, A, corresponds to the the three conic manifolds

AG = {(0,2",€,0)} C (R\ {0}7) x R

A%e = {(0,2",€,0)} € (R\ {0}%) x (R\ {0}%)
AL ={(0,2",€,0)} C R x (R\ {0}%)

which have the claimed symplectic properties. Compactification of the R%-components and
projection of the conic (R \ {0}%)-component to the corresponding sphere then yields the
compactified notions in T X

6.4. Phase Functions which Parametrize the Same Lagrangian

In this section, we adapt the classical techniques for exchanging the phase function locally
parametrizing a given Lagrangian, see [61, Chapter 8.1], to the setting with boundary. Since
Ay, not L, is our true object of interest, we say that two phase functions ¢;, i = 1,2, lo-
cally parametrize the same Lagrangian at pg € W if A,, = A, in a small (relatively) open
neighbourhood of py in the respective boundary faces.

Our first observation is the following:

Lemma 6.4.1. Ifp € py' ppi C(X x B*) is a local phase function and r € C>°(X x B®), then
@ + r is still a local phase function and it parametrizes the same Lagrangian as .

Proof. Since r € C*(X x B?), *dr = 0 when restricted to the boundary. Therefore, ¢ + r is
still a local phase function. By the same reason, C, = C,,. Finally, we have

Aptr(%,by) = (%, (M dx (@ +1))).
Computing *dx (p 4 r) in coordinates, see (6.14),

d—1

— dx;
(aafjf +prXaIJT)p7); )

_ dpx
Sy = py' | (=f + pxOpy f + py/)?(@pxr)pT +
X =1

<

we observe that at px = 0, the contribution from r vanishes. The same is true in the limit of
py — 0 under application of ¢, see also Lemma 6.2.29. g
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6.4.1. Increasing Fiber Variables

Given a clean phase function ¢ € P)_(l Pﬁsl C°(X x B*®) with excess ¢, define the phase function
b € pylpalC=(X x B® x (—¢,¢)) as follows:
o

~ _ ]
Y(x,y,7) = p(x,y) + :
PX PBs

We see that Sdi) # 0 when %dyp # 0 and SCstX(,E,E)zﬁ = (0 if and only if § = 0 and *dpsp = 0.
Thus,

Cp = {(x,y,0) | (x,¥) € Cp},

which implies that the excess is not changed, and A 7= A,. Summing up, 9 is a local clean
phase function in s + 1 fiber variables with the same excess e as ¢ and (locally) parametrizing
the same Lagrangian as ¢.

This construction may once again be moved to balls, by using Example 6.2.32 and setting
Y= \Il*{bv Then ¢ € p}lpﬁsﬂlCO"(X x U). Using the fact that diy) = \I'*{/JV, we see that v is
a clean phase function parametrizing A, with excess e. Again, X x B® can be exchanged by
any relatively open subset, hence starting with local phase functions.

6.4.2. Reduction of the Fiber Variables

Starting again from a clean phase function ¢ € p)_(1 p]gsl C>*(X x B*) with excess e, we now
construct a (local) phase function v in the smallest possible number of phase variables (without
changing the excess) which (locally) parametrizes the same Lagrangian. The argument is similar
to the classical one, but extra attention needs to be paid at to what happens near points with
py = 0, namely, we never seek to get rid of py as a parameter.

Remark 6.4.2. In the classical theory, meaning for homogeneous phase functions, it is possible to
reduce the number of fiber variables under the assumption that the matrix 9z, (, 6) has rank
r > 0 on C,. However, since a classical phase function ¢ is homogeneous in 0, it holds that
6 - Vo = ¢ and hence the second radial derivative is automatically zero on C,. Furthermore,
the radial variable can always be chosen to parametrize A,.

We proceed as in the proof of Theorem 6.3.11. We first recall that, for py € C,, writing
= p{,lp;{lf with f € C*°(X x B®), we have there

0= SCdYQD = (_f + pYapyf7 aykf) . (6.28)

We then identify Ty *dy o in coordinates with the matrix

py @2 f =0y f + pydy.0, f>
Ty = Py i 5O ] (6.29)
i <8PY 8yk f 8?!]’ 8yk f
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We see, using (6.28), that on Cff C {py = 0} this becomes

0 0
J = . 6.30
Y(’O‘Cfg <8PY 8ykf 8@/]' ayk f) ( )

Therefore, the rank of this matrix is at most s — 1. Indeed, we observe that, by (6.13), at py = 0
we have dpy # 0 on TC:f and hence we can always choose py as a parameter to locally
describe CZ’ﬁ .

Remark 6.4.3. By the same argument, px can be chosen as a parameter close to B¢, while, close
to B¥¢, both px and py can be chosen as parameters to represent Cop.

We now seek to reduce the remaining set of variables under the assumption that
The matrix (8yj6yk,oxpy<p)jk has rank r > 0 at py € C$ U Cfﬁe. (6.31)

Since at points where py # 0 the variable py behaves like all other variables, the same restriction
does not hold near a point p € C¢,. Here, we simply assume that

The matrix Ty*dy ¢ has rank r > 0 at py € Cg. (6.32)

Since up to multiplication by py > 0 in one row, (6.29) is the Hessian of h (with respect to
y), this is equivalent to rk(Hy f) = r > 0. The two conditions may be summarized into one.
Namely, consider the scattering Hessian (with respect to the y-variables) of ¢

SCHygp = <p§/anpr§/anpY90 PYPXayjpgfpxﬁpycp)

PYPxOpy Py PX Dy p Py pxy; py Px Dy p (633

= pypx ( p%/8§yf _ayjf + PYayjapyf) )
IOYaPY 8yk f ayj ayk f

Then p;lp;{l *“Hy ¢ becomes, at a point in C,:

0 0
—1 —1sc — : P Ye.
Py Px HYQD <0 ayjaykf> ) lpr € Cgp Uc(p )

P%/ 3,3Y f pYayj aﬂy f
Py Opy Oy, [ Oy, 0y, f

Notice that we can factorize these matrices as

(0 ) (B, i) (7 ) oo
0 1 Opy Oy [ Oy, 0y, f 0 1)’

the rank of which therefore is, for py # 0, that of the standard Hessian of f, Hy f. Therefore,
our assumption may be expressed as:

Py oy “Hyp = ( ) . ifpo €CE.

The matrix p;/lp;(1 *Hy ¢ has rank r > 0 at pg € Cy,. (6.35)
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We may now proceed as in the standard theory and introduce a splitting of variablesy = (y’, y”)
such that (9y Oy~ f) ;i is an invertible r x r matrix. We can then apply the implicit function
theorem to

0= Scdygﬁ = (—f + PYapyf’ 8ykf)

at pp. We obtain a map from an open neighbourhood of py,
k:(xy) e~ (xy,y'(xY)),

such that C, and the range of k locally coincide. Note that % is a scattering map, since py is
always one of the y’ near the 1)-face.

Then p,eq = @ 0 k is a clean local phase function in d X (s — r) variables with excess e, and
k provides a local isomorphism Cy, , — C,. Furthermore, at stationary points py and & (po),
we have that ((*dx preq) = t(3dxp), since *dy ¢ = 0 there. Hence, ,¢q locally parametrizes
the same Lagrangian as ¢.

Remark 6.4.4. Note that, after applying a change of coordinates in the y variables, ¢..q may be
assumed to be defined on B? x B, see also Lemma 6.4.7 below.

Summing up, we can formulate the next Proposition 6.4.5.

Proposition 6.4.5. Let ¢ € p}_/lp)_(lcoo(X x B*) be a local clean phase function of excess e.
Assume

p;/l,o)_(1 *Hy ¢ has rank v > 0 at a stationary boundary point py € C,.

We may then define a local phase function ¢ € p;lp;(lCOO(X x B*~") of excess e parametrizing
the same Lagrangian.

We mention that, locally, the minimal number of fiber variables y that a clean phase function
of excess e locally parametrizing L, has to possess is

Smin =d +e—mn,

where n is the (local) number of independent x variables on L. This follows from a simple
dimension argument: the dimension of L, is d, that of C,, is d + e, and the one of the projection
to = of U, coincides with that of L. Note that, by cleanness of the intersection C, N BY, near
AY we have sy, > 0.

6.4.3. Increasing the Excess

Given a (local) clean phase function ¢ € p}l plgslcoo (X x B*) with excess e, define ¢ :=
pri . ps on X x (B® x (—¢,¢)), viewing B® x (—¢, €) as an open subset of B x S!, which is
a manifold with boundary whose boundary defining function may be chosen as prg. pps. In
particular we have, with the obvious identifications,

SCdIBSX(*E,E)w = pr;(xIB%S (*dps¢) -
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Then Cy = Cy x (—¢,¢) and hence dim(Cy) = dim(C) + 1. Furthermore, Ay, = pri, s Ay
and A, = Ay. Summing up, v is a local clean phase function in s + 1 fiber variables with
excess e + 1, defined and (locally) parametrizing the same Lagrangian as .

As before, we may choose to keep working on balls by invoking the construction from
Example 6.2.32 and replacing 1) with

U = T p € pylppii C°(X x ).

In this way, since V¥ is a diffeomorphism, ) becomes a clean phase function with excess e + 1
defined on a relatively open subset of X x B**! and similarly we may raise the excess by any
natural number.

Example 6.4.6. The standard Fourier phase on R x R, p(x,§) = z - £, cannot be seen as an
SG-phase on all of R x R? by setting ¥(,&,1) = z - €. Indeed,

(@)% Vaip(@)]? + (&) Venel? = (1+22)E + (1 + & +n°)a” (6.36)
= (z)(€) +a™n® — 1

For ¢ = 0and x = 0 and 7 — oo, this vanishes but should be bounded from below by ¢(1+|n|)?
if 1) were an SG-phase function, given (6.11).

Reviewing Example 6.2.32, the ray & = 0, x = 0 and 7 # 0 corresponds precisely to the poles
in Figure 6.1 which were cut off. Indeed, (6.36) is bounded from below by (x)2((£,7))? in any

neighbourhood where 1> ¢ and hence a local phase function in such sets.

In]

6.4.4. Elimination of Excess

Assume now that ¢ is a phase function on X x B® with excess e and that at some point
Po = (px,0, %0, Py,0,Y0) € C, we have Ay, (po) = (px.0, %0, P=,0,&0)- Then, by Lemma 6.3.12,
the preimage of (px,0, %0, p=,0,&0) under \,, meaning the fiber in C, through po, is an e-
dimensional smooth submanifold. Locally, since A, is a submersion we may, by [33, Prop. 5.1],
reduce to the case of a projection, that is, we may find a splitting y = (¢/, y”) near pg such that
A, does not depend on 3. Then,

@(an Z, py, y/) = @(an Z, py, y/7 y[/)/)

defines a phase function without excess (i.e., a non-degenerate phase function) that parametrizes
the same Lagrangian as . As usual, we may again reduce to the case of a ball and hence replace
by a phase function on an open subset of X x B*~¢.

6.4.5. Equivalence of Phase Functions

We will now discuss the changes of phase function under a change of coordinates and which
phase functions can be considered equivalent. We first check how the stationary points of a
phase function transform under changes by local diffeomorphisms.
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Lemma 6.4.7. Let X1, Y1, Xo, Yo be mwbs, set B; = X; x Y;, i1 € {1,2}, and let ¢ €
p}ip{,glCoo(BQ) be a (local) phase function. Assume g : X1 — Xo, h : Y1 — Y3 to be dif-
feomorphisms, and set F' = g x h. Then, F*p € p)_(ip;llCoo(Bl) is a (local) phase function with
the same excess of p, and we have

Crep = {(x1,y1) € B1| F(x1,y1) € Cp}, Lp+y = (T g)(Ly).

Remark 6.4.8. This means that, while the boundary defining function p=, of S°T" X does not
vanish, L+, can then be computed as

Lpey = {(x1, 1('(Jg)e (&) € *T X1 | (9(x1),&,) € Ly}
As p= — 0, Afﬂ*w is obtained by taking interior limits, see also Lemma 6.2.29.

Proof of Lemma 6.4.7. The result for C, follows immediately from the first assertion in Lemma
6.2.18. The statement for L, then follows by writing

Arep(x1,y1) = (T g)(Ap(x2,¥2)) (6.37)

near a point (x1,y1) € (Cp+,)° such that (x2,y2) = (9(x1), h(x1,y1)). Indeed, at these
stationary points, *dx F*¢ = F*(*dx ), since there dy ¢ = 0. Since equality (6.37) holds in
the interior, the result at the boundary faces can be obtained as interior limits (see also Lemma
6.3.9). O

Remark 6.4.9. The diffeomorphism g x h may be replaced by a single diffeomorphism F :
X1 x Y] = Xo x Yj locally of product type near the boundary faces of X5 x Y, i.e., a (local)
diffeomorphism that is a fibered-map at the boundary.

We now define in which sense two phase functions may be considered equivalent.

Definition 6.4.10. Let X, Y1, Y2 be mwbs, B; = X x Y;. Let ; € p)_(lp;ilCoo(Bi). We say
that ¢y and 5 are equivalent at a pair of boundary points (x°,y{) € By and (x°,y9) € By
if there exists a local diffeomorphism F' : X x Y5 — X x Y] of the form F' = id x g with
g(x%,y9) = y¥ such that the following two conditions are met:

F*p1 — g is smooth in a neighbourhood U of (x°, y9), (6.38)

px Py, (F*p1 — 2) restricted to C,, N OU vanishes to second order. (6.39)

Lemma 6.4.11. Equivalent phase functions parametrize the same Lagrangian, meaning Ap«, =
A, and we have Cp+y, = Cy,.

Proof. This follows from Lemmas 6.4.1 and 6.4.7. O
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We now associate to any local phase function its principal phase part, which corresponds in
the SG-case to the leading homogeneous components of ¢. From the fact that the principal part
of Definition 6.2.7 is obtained from the boundary restrictions of , we observe, using F' =1 x 1
and Lemma 6.2.8:

Lemma 6.4.12. A local phase function o and its principal part p, are equivalent.

Remark 6.4.13. In particular, each phase function is locally equivalent at the e- and 1-face,
respectively, to a homogeneous (w.r.t. px or py) phase function, after a choice of collar
decomposition. In general, this is not true near the corner B¥¢.

Since the difference in condition (6.39) is restricted to the boundary, it does not restrict the
behavior of F*¢1 — ¢ into the direction transversal to the boundary, e.g. 0, px py, (F* @1 —p2)
at C¢,. The following lemma states the transformation behavior of this directional derivative.

Lemma 6.4.14. Let X,Y7,Ys be mwbs and let F' : X x Yo — X X Y] be a sc-map of the form
F=1xWV. Seth = p{,;F*pyl. Consider a clean phase function ¢ on X x Y1. Write f = px py,¢.
Then we have the following transformation laws:

hF*8p, px'f = 0py, F*px'f,  on F*CY,

F*p3 0oy [ = 0px F*pyl f, on F*CS.
Proof. On F *C¥, we have that

8,0}/ F*f h’F*apY f + F*(aznf) PYy yl hF 8pylf7

where we have used 9, f = 0 on F' *C:f . This proves the first equality.
On F*Cg, we compute

8pXF*l0}_/11f1 = F*pi_/laﬂxfl + F*(apylpl_/llfl) ox Fpy: + F*(p;llﬁylfl) ox F 1
= py, h T F 9 fi.
Therein, we used 9y, f1 = 0 and dy; p;ll fi=0onC,,. O

Remark 6.4.15. The previous lemma, combined with Lemma 6.4.12, will imply that, away from
the corner, any phase function can be replaced by an equivalent phase function without radial
derivative (at C,) and the vanishing of this derivative at C,, is preserved under application of
scattering maps.

This corresponds to the fact that, in the classical theory, one can always choose a homogeneous
phase function. The (non-homogeneous) terms of lower order which arise in transformations
can be absorbed into the amplitude.

The rest of this section will be dedicated to establishing a necessary and sufficient criterion
for the local equivalence of phase functions.
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Lemma 6.4.16. Let X, Y1, Yo be mwbs such that dim(Y1) = dim(Y3), and set B; = X x Y},
i€ {1,2}. Let p; € p;(lp;,ilCoo (B;) be phase functions which have the same excess, and assume
that there exist p) = (x°,y?) € Cy,, i € {1,2}, such that

>‘§01 (XO> y(l)) = )\902 (X07 y(Q))v

and, close to (x°,y?), i € {1,2}, both phases parametrize the same Lagrangian A, i.e., locally
A=Ay, i € {1,2}. Then, there exists a local diffeomorphism F': By — By of the form F' =1 xg
with F(x°,y9) = (x°,¥)), such that F*p; = px Py, f1 with Cp+yp, = Cypy, locally. Moreover,
locally near (x°,y9),

(f2 — f1)|B, vanishes of second order at any point of Cy,- (6.40)

Remark 6.4.17. Notice that (6.40) means that the principal part of F*1 and @2 in Lemma 6.4.16
coincide on Cy,.

Proof of Lemma 6.4.16. Since \,, are local fibrations from Cy, to A, i € {1,2}, and A, =
Ay, = A, there is a local fibered diffeomorphism F': By — By of the form F' = I x g, locally
locally near (x°,y?) = F(x°,y9), such that the following diagram is commutative.

A

Yo/ N

JF

Cos Cor
Note that F' is not uniquely determined, not even on C,, when the phases are merely clean and
not non-degenerate.

After application of F, we may assume that Y7 = Y2 =: Y, y) = y9 =: y° and, locally,
Cp, = Cyp, =: Cp. We now show that the restriction of f; and f to a relative neighbourhood

of (XO, yo) in C, vanishes of second order. Recall that, since *dy 1 = *dy 2 = 0, for any
p = (x,y) € C, we have

(pyOpy fr— f1 Oy f1) = (pyOpy fo — f2 By, fo) =0 (6.41)

Furthermore, since ¢ and o parametrize the same Lagrangian, we also have A\, (p) = A, (p),
that is, 1 (*dx p1(p)) = t(*dxp2(p)). We treat separately the cases p € C; and p € Cfﬁ U Cge.
If p € C¢, we then find

U(py' pxpy F1(D) = F1(D), Py 0 [1(D))) = (P px Dy (D) — f2(p), pylaxkfz(p()))- |
6.42

Since py # 0 on C¢, and ¢ is a diffeomorphism on the interior, this implies

fi(p) = fa(p), 0w fr(p) = Ou fo(p), k=1,...,d— 1.
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Combining this with (6.41), this further implies

apyfl(p) = 8PYf2(p)? aykfl(p> = 6ykf2<p)7 k=1,...,s—1.

Since (z,y) are a complete set of variables on B¢, we can indeed conclude that f; — f3 vanishes
of second order along C¢,.

Ifp e Cfﬁ orp € cye, (6.41) implies that

filp) = fap) = 0, 9y 1r(p) = Oy, fo(p), k=1,...,s = L.

We have to evaluate (6.42) as a limit py — 0T, using, as in Lemma 6.2.29, ¢(2) = ﬁ(l - ﬁ)
We obtain that, with

Ul == (anprlaaa}kfl)a UQ == (anpr27a;Ekf2)7

H%H = HZ%H but not necessarily v; = vg, in which case the proof would be complete. We now
modify F in order to achieve v; = wvy. Notice that, since 1 and @2 are phase functions, we

have v # 0 at C,. We can therefore scale ¢ by means of the local diffeomorphism (near C,)

F: (pY7y) — (pYT(pXuxapY7y)7y)v

where r(va €, py, y) = H

is the identity for py = 0. Therefore, by Lemma 6.4.7,

Notice that, by our previous computations, 7|, .ve = 1, and F
Pl

C =Cy,, and Az A

ﬁ*WI Fxop, = g
By definition, for F *¢1 we have

ra % v *

f1:=pxpyF o1 = M(F fi)-

o1
Therefore,
oo 7y v . ein T _
(anprlpaxkfl) - ||01H . (pXF (aprl)7F (a:ckfl)) =1,

since the derivatives acting on r produce a py factor, and then vanish along Cfﬁ . Hence, v1 = v,
which completes the proof. d

Remark 6.4.18. The additional computations in the proof of the previous lemma near the face
CZf correspond to the fact that, classically, x - § and x - (26) both parametrize

A={(0,9) ¢RI\ {0}].

In fact, we observe from the same proof that we may choose the norm of (px 0, fi, 0z, f1) at

any point of Ag without changing A,.
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Theorem 6.4.19 (Equivalence of phase functions). Let X, Y1, Yo be mwbs such that dim(Y;) =
dim(Y3), and set B; = X x Y;, 1 € {1,2}. Let p; € p;(lp{/ilCoo(Bi),i € {1,2}, be phase
functions which have the same excess, assume that there exist (XO, y?) €Cyp;s1 € {1,2}, such that

Aor (X%, 31) = A (x",¥5),

and, close to (x°, y?), i € {1,2}, both phase functions parametrize the same Lagrangian A, i.e.,
locally A = Ay, i € {1,2}. Then, it is necessary and sufficient for ¢1 and @9 to be equivalent at
(x°,¥0) and (x°,y9) that there it holds that

sgn (pﬁlp;} SCHylsol) = sgn (pglp}l “Hy, sog) : (6.43)

Remark 6.4.20. Before we go into the details of the proof, we recall the expression for the
differential in condition (6.43) in coordinates. By (6.34) we have, writing ¢ = p}l p;l f,

—1 _—1sc py 0O o) f 8y'8p f py O
e (5 D5, DG )

Py Px EYP =00 1) \0, 0y f 8,0, f) \ 0 1
Hence, for py # 0, the signature of this matrix is that of Hy f, whereas for py = 0 it is that
of the Hessian of f restricted to py = 0, that is, only with respect to the boundary variables,

(ayj Dy, f(0, y))jk

Proof of Theorem 6.4.19. We first prove that condition (6.43) is necessary. In view of Lemma
6.4.11, we only need to compare *Hy, ¢1 and **Hy, @2 by writing

*“Hy, s = *Hy, F* o1 + *Hy, (p2 — F*p1). (6.44)

We write r = (w2 — F*p1), which, by assumption, satisfies r € C>°(X x Y3). Therefore,
p;; ,0)_(1 *Hy,r vanishes at the boundary. Indeed, in local coordinates we have

—1 —lscpy _ prXaprg/apyr pQprayjapYr
Py Px Yo' = bl B o.,.0 ’
PY PX Opy PY Oy, T PY PX Oy; Oy, T

Thus, we have, at the boundary,

sgn (pglp;}l “Hy,F *sol) = sgn (ﬂ?jp}l SCHYQ@Q) : (6.45)

By computing these differentials in coordinates at corresponding stationary points, using (6.34),
this implies (6.43).

For the sufficiency of (6.43), we assume familiarity of the reader with the equivalence of
phase function theorem in the usual homogeneous setting, see [61, Prop. 4.1.3], [61, Prop. 4.1.3]
and sketch briefly that the argument goes through with little modification.

By Lemma 6.4.16 we may assume Y, = Y5. Note that equivalence is achieved for ¢; = pxpy fi
if the f; agree on the boundary. The condition on **Hy (; means precisely that the signatures of
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the Hessians of the f; in the tangential derivatives agree in the interior and the signatures of the
Hessians of the restriction of the f; to py = 0 as well, see Remark 6.4.20. As such, we may use
the same techniques as in the classical situation to construct a diffeomorphism on the boundary
which transforms the restriction of f; into that of fs, cf. also [7]. This diffeomorphism is then
extended by means of Proposition 6.2.25 into the interior. For sake of brevity, we omit the details
here.

O]

Remark 6.4.21. Note that near (x°,y") € CY, we can also invoke the classical equivalence
theorem directly. We need to find a transformation

F:(x,0,y) = (x,0,9(x,y))

such that F*p1 = 9. For A > 0 we set ¢;(x,\,y) = Afj(x,0,y), j € {1,2}. Then ¢;
are equivalent phase functions in the usual homogeneous sense on X x (Ry x Y'). Indeed,
evaluating d¢; and *dp; in coordinates, we see that d¢; # 0 and ¢; is manifestly homogeneous.
Furthermore, the signatures of Hy ¢; are the same as those of *Hy ;. Since the f; are equal
up to second order, the ¢; are equivalent in the usual sense and there exists a A-homogeneous
G : (x,\y) = (x,\,9(\, x,y)) which is homogeneous such that G*¢; = ¢. Setting
F = G|)=1 and possibly applying a scaling, as in the proof of Lemma 6.4.16, concludes the
proof for (x°,y°) € Cfﬁ.

6.5. Lagrangian Distributions

In this section, we will address the class of Lagrangian distributions on scattering manifolds.
First, we introduce oscillatory integrals associated with a phase function and show that they are
well-defined in the usual sense. Then, we define Lagrangian distributions as a locally finite sum
of oscillatory integrals, where the phase function parametrizes a Lagrangian submanifold. Using
the results from the previous section, we are able to reduce the number of fiber-variables to a
minimum and see that the order of the Lagrangian distribution is well-defined independently of
the dimension of the fiber.

6.5.1. Oscillatory Integrals Associated with a Phase Function

Definition 6.5.1. Let Y be a mwb. For the remainder of this section, m. with € € (0, 1], denotes
a family of functions m. € €5°(Y) such that forall k € N, o € N~ ! and ¢ > 0,

(6%-8py ) (py D) “me(y)| < Cho P57, (6.46)

such that, for ally € Y°, we have m.(y) — lase — 0.
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Remark 6.5.2. We make the observation that (6.46) does not depend on the choice of bdf and is
preserved under pullbacks by sc-maps. It is possible to find such a family on any manifold with
boundary. In fact, any choice of tubular neighbourhood U of 9Y such that U 2 [0, 0) x Y with
coordinates (py, y) introduces a dilation in the first variable. Take a function x € C2°[0, 00)
such that x(z) = 1 on [0, d]. Thensetm. =1onY \ U and

1 . -1
x(epy') ifepy >4/2,
m YY) =
(pv.y) {1 otherwise.

Definition 6.5.3. Consider X, Y mwbs, U C X x Y an open subset, ¢ € py'py C®(U) a
phase function and a € p"*py, YC®(X x V,*QY2(X) x *Q!(Y')) an amplitude supported
inU. Then I (a) € (€5°) (X, %0/2(X)) is defined as the distributional 1/2-density acting
on f € €°(X,*QY?(X)) by

(Iy(a), f) ::?\r«%//)(xy (e%a- (f @m.)). (6.47)

Remark 6.5.4. If X and Y are equipped with a scattering metric, we have a canonical identifica-
tion of functions and 1-densities provided by the volume form. Therefore, we can freely choose
whether to view functions and distributions as matching (distributional) 1-, 0- or %—densities.

Remark 6.5.5. When X = B? and Y = B°®, these oscillatory integrals correspond, under
(inverse) radial compactification, to the tempered oscillatory integrals analyzed in [7, 58].

Lemma 6.5.6. The expression (6.47) yields a well-defined tempered distribution (density) on X.
In particular, it is independent of the choice of m..

Proof. Assume, without loss of generality, that we have a fixed scattering metric and we can
identify scattering densities and functions. Let U C X X Y =: B be an open neighborhood of
the boundary BY such that *dy # 0 on U.

On X x Y \ U, the dominated convergence theorem implies that (6.47) is well-defined. The
integrand u. = e*¥a(f ®m.) converges pointwise and is dominated by |a - f|, which is bounded
for py > c.

On U, as in the classical theory, we can define a first order scattering differential L € Diff. (/)
which has the property that Le’? = €'¥. By Proposition 1 from [42], we see that L € Diff (U).
Using repeated integration by parts and (6.46), we are able to increase the order in px and py
to arbitrary powers, and an application of the dominated convergence theorem then finishes

the proof. O

After an arbitrary choice of scattering metrics, we may locally identify (X, gx) and (Y, gv)
with subsets of B? and B*, respectively. Then, using some explicit local isomorphism ¥ =
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U x x Wy, we can identify densities with functions using the induced measures px and py .
After use of a partition of unity, we may locally express (6.47) as

ota) ) =t [[ W (00 m Dl o py gy o) flox,a)) (649
e\0 BexBS

= il{% //IBd . e ey N (py y)apx, @, py, y) f(px, ) dpigadpss  (6.49)
X S

where f = U* f|duga|">/? and a € pﬁ?"‘plgjwcoo(lﬁ%d x B*) satisfies afdpgaduss = af.
Summing up, we may always transform to locally work on B? x B and in local coordinates we
work with usual oscillatory integrals.

Since (6.47) does not depend on the choice of mc, as it is usual we drop it from the notation
and write, in the sense of oscillatory integrals,

I(a) ::/Yewa. (6.50)

Singularities of Oscillatory Integrals

Recall that there is a notion of wavefront-set adapted to the pseudo-differential scattering
calculus, called the scattering wavefront-set, cf. [3, 5, 42].

Definition 6.5.7. Let u € (65°)'(X,%QY?). A point zp € W = 8(SCT*X) is not in the
scattering wavefront-set, and we write zg ¢ WFs(u), if there exists a scattering pseudo-
differential operator A whose symbol is elliptic at zy such that Au € €5°(X, se1/2),

Proposition 6.5.8. For the oscillatory integral in (6.47), we have
WFsc(Ip(a)) C Ay
Furthermore, if z € A, and a is rapidly decaying near )\;1(2), then z ¢ WFg.(I,(a)).

Remark 6.5.9. The (sc-)singular support of v is defined as follows: a point py € X is contained
in singsupp(u) if and only if for every f € C*®(X) with f(py) = 1 we have fu ¢ 65°(X).
Similar to the classical wavefront-set and singular support, we have that pr;(WFg.(u)) =
singsupps(u). Thus, in particular, if a is rapidly decaying near C,, then I,(a) € €5°(X).

We refer the reader to [6, 58] for the details of this analysis of the wavefront-sets. The proof
is carried out as in the classical setting: first, a characterization of WF. in terms of cut-offs
and the Fourier transform is achieved, and then one estimates F 1, @(a) in coordinates.

Proposition 6.5.8 gives another insight why we consider A, as the true object of interest
associated with a phase function, not L. In fact, considering (6.47) once more, we see that
we may modify phase function and amplitude in the integral by any real valued function
P € C®(X xY), writing
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¢ — i) (e—wa) .

Then e ¥a € py™ p;mwcoo (X xY), and hence it is still an amplitude, and ¢ + 1 is a new
local phase function. Now, while in general L, # L., we have A, = Ay, by Lemma
6.4.1. This underlines that only A, and not L, can be associated with I,,(a) in an intrinsic way.
Nevertheless, it is often convenient to have L available during the proofs.

6.5.2. Definition of Lagrangian Distributions

The class of oscillatory integrals associated with a Lagrangian is — as in the classical theory -
not a good distribution space, since in general it is not possible to find a single global phase
function to parametrize A. Instead, we introduce the following class of Lagrangian distributions.
Note that, by our previous findings, we may always reduce an oscillatory integral on X x Y
into a finite sum of oscillatory integrals over X x B® for s = dim(Y").

Definition 6.5.10 (sc-Lagrangian distributions). Let X be amwb, A C T X a sc-Lagrangian.
Then, ™™ (X, A), (me, my) € R?, denotes the space of distributions that can be written as a
finite sum of (local) oscillatory integrals as in (6.50), whose phase functions are clean and locally
parametrize A, plus an element of €°(X). More precisely, u € ™™™ (X, A) if, modulo a
remainder in €5°(X),

N
u = Z/ ei‘pjaj, (6.51)
j=1"Y

where for j =1,..., N:
1.) Yj is a mwb of dimension s;;

2.) @j € p;jlp;(lcoo (X xYj) is alocal clean phase function with excess ¢e;, defined on an
open neighbourhood of the support of a;, which locally parametrizes A;

3) aj € py, " py"ICP (X X V;, QYA (X) x Q1 (Y)) with

d s; e d s; e
(Mg, e ) = (mw I 5] - gjame a7 gj - 2]) :
We also set
77X A) = (] I™Te(X,A),
(mw,me)GRQ
I(X,A) =TT (X, A)= (] I™™(X,A).

(Mg ,me) ER2
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Remark 6.5.11. The reason for the choice of the a; in the scattering amplitude densities spaces
of order (me,;, My ;) will be explained in Section 6.5.5.

The next result follows from Proposition 6.5.8.

Proposition 6.5.12. Let A C 05T X bea sc-Lagrangian, and u € 1(X, A). Then WFg.(u) C
A.

As in the classical case, the class of Lagrangian distributions contains the globally regular
functions (cf. Treves [61, Chapter VIIL.3.2]):

Lemma 6.5.13. Let A C 9°T X be a sc-Lagrangian. Then
G5°(X,QY2(X)) = I7%7(X, A). (6.52)

Proof. We first prove the inclusion “2”. Choose a finite covering of ST X with open sets
{X; }jvzl such that there exists a clean phase function ¢; on each X; parametrizing AN ST X,

j=1,...,N. Let {g; }j\[: 1 be a smooth partition of unity subordinate to such covering. We

VieWXjasgsubsetofXxIB%d,j:L...,N. ‘
Let x € 65°(B4, Q! (BY)) such that [ x = 1. For any f € 6§°(X,*QY2(X)) we set

aj=e g (f®X), fj:/Bdewjaja J=1...,N.

We see that
a; € 65°(X x BY, QY2 (X) x QY (BY), j=1,...,N,

and, summing up,

N N
S = [ Satn |- @exw) - fa),

The inclusion “C” is achieved by differentiation under the integral sign. d

6.5.3. Examples

We have the following examples of (scattering) Lagrangian distributions.

1. Standard Lagrangian distributions of compact support, [27, 32], in particular Lagrangian
distributions on compact manifolds X without boundary, are scattering Lagrangian
distributions, using the identification

escali
Fiber-conic sets in 7% X \ {0} <—> Sets in $*X "¢ Sets in WY.
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2. Legendrian distributions of [45]. Here, the distributions are smooth functions whose
singularities at the boundary are of Legendrian type, meaning in W°¢.

3. Conormal distributions, meaning the distributions where the Lagrangian, see Section
6.3.4, is G(SCT*X ') for a (k-dimensional) p-submanifold X’ C Y. These distributions
correspond, under compactification of base and fiber, to the oscillatory integrals given in
local (pre-compactified) Euclidean coordinates by

u(x’,2") = /eixlga(m,é) dg, a(z,€) € SGI~™ (R? x RYF),
A prototypical example is given by (derivatives of) dg(z’) ® 1. These arise as (simple or
multiple) layers when solving partial differential equations along infinite boundaries or
Cauchy surfaces.

4. Examples of scattering Lagrangian distributions which are of none of the previous types
arise in the parametrix construction to hyperbolic equations on unbounded spaces, for
example the two-point function for the Klein-Gordon equation. For a discussion of this
example consider [7].

Remark 6.5.14. Note that, at this stage, the kernels of pseudo-differential operators on X x X
are not scattering conormal distributions associated with the diagonal A C X x X when X is
a manifold with boundary. In fact, in this case X x X is a manifold with corners. Furthermore
A C X x X does not hit the corner X x 0X in a clean way, that is, A C X x X is
not a p-submanifold. Similarly, the phase function associated to the SG-phase (z — y)¢ €
SGi{l(de x R?) is not clean.

However, the formulation of the theory developed in this chapter admits a natural extension
to manifolds with corners. The geometric obstruction of A C X x X - or more generally the
graphs of (scattering) canonical transformations — not being a p-submanifold can be overcome
by lifting the analysis to a blow-up space, see [40, 45]. We postpone this theory of compositions
of canonical relations and calculus of scattering Fourier integral operators to a subsequent

paper.

6.5.4. Transformations of Oscillatory Integrals

In Section 6.4 we have seen several procedures that allow to switch from one phase function to
others that parametrize the same Lagrangian. We will now exploit these to transform oscillatory
integrals into “standard form”. In the sequel, we will always assume, by a partition of unity,
that the support of the amplitude is suitably small.

Transformation Behavior and Equivalent Phase Functions

Now we reconsider (6.48), to express the transformation behavior of the oscillatory integrals
under fiber-preserving diffeomorphisms. With the chosen notation and a local phase function
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1, we have
I, (a) = / ePlq = / AL = Tpey, (F*a) (6.53)
vi Ya

for any diffeomorphism F' : X x Yo — X x Y] of the form F' = id X g. Assume that p3 is
equivalent to 1 by F|, see Definition 6.4.10. After the transformation, we rewrite (6.53) as

/ eiP2 I P1=02) . (6.54)
Ys

Now, since F*@1 — (5 is smooth up to the boundary, the same holds for e?(!"?1=%2) and this
factor can be seen as part of the amplitude. Therefore, we may write

I, (a) = I, ((F*a) exp(i(F* o1 — ¢2))). (6.55)

In particular, we can express I,,(a), near any boundary point of the domain of definition, using
the principal part of ¢ introduced in Definition 6.2.7, namely

I, (@), witha = a exp (i(¢ — ¢p)). (6.56)

By Lemma 6.4.12, o — ¢, € C® and thus @ € p™*p,, ¥ C>(B). In the following constructions,
we always assume that ¢ is replaced by its principal part, cf. Remark 6.4.15.

Reduction of the Fiber

We will now analyze the change of boundary behavior under a reduction of fiber variables near
po € supp(a) N C,. Hence, we assume that

p{/lp)_(1 *Hy ¢ has rank r > 0 at pg € C,,.

We assume, as explained above, that the oscillatory integral is in the form (6.56), namely, ¢ is
replaced by its principal phase part. We observe that, at the boundary point po,

rk(p{,lp;(l “Hy ) = rk(P;lpg_(l *“Hyo(pp))-

By Proposition 6.4.5, we can define a local phase function ¢,.q parametrizing the same La-
grangian as . In particular, after a change of coordinates by a scattering map, we can assume
(x,y) € X x B*" x (—¢,¢)", and ¢yeq is given by

gpred(xa PY y/) = @(Xv PY, ylv 0)7

where py = pps—» is the boundary defining function on B*~" and on B*~" x (—&,¢)". We
introduce .

2(%,¥) = ¢red(X, py, YY) 50}1/);1@(1/”), (6.57)
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where () is a non-degenerate quadratic form with the same signature as 9,9, f at pg. Then,
by Theorem 6.4.19, ¢ is equivalent to ¢ by a local diffeomorphism F' = id x g. Note that ¢;eq
is equal to its principal part, because we assumed that ¢ is replaced by ¢,,.

We may assume that a is supported in an arbitrarily small neighbourhood of the stationary
points of ¢. Indeed, we may achieve this for a general amplitude a by applying a cut-off in y”
and writing @ = ¢a + (1 — ¢)a. The oscillatory integral with amplitude (1 — ¢)a produces a
term in 65° (X, QY/2(X)), by Remark 6.5.9.

Therefore, choosing the support of a small enough, we may perform the change of variables
by the local diffeomorphism F' as in (6.55). We write, motivated by Lemma 6.2.11 and Example

6.2.32,
(%) |dy"|
Ared\XY) 77 =i
b P;; ’ [h‘<XJy)]T
which is assumed supported in some compact subset of (—¢, €)". Then I,(a) is transformed
into I, (b) where

= (F*a) (X7 ?),

b(x, py,y') = py" /

(7575)1”

e3Px Py Q") (euF*w(x,y)f@E(x,y)) red (X, y)> dy'. (6.58)

We claim that b(x, py, ') is again a (density valued) amplitude. First, it is clear that b decays
rapidly at (x, py,y') if a decays rapidly at (x, py, ¥/, 0). In particular, b is smooth away from B.

We now we apply the stationary phase lemma [30, Lem. 7.7.3] to (6.58), which yields the
asymptotic equivalence, as py px — 0,

b(x’ py’ y/) — prx/zp;r/2’ det Q’il/Qe%ﬂsgn(Q) ei(F*So(xsz7yl70)76(x7PY7yl70))ared(x7 py’ y/’ 0)
—my—5+1 —met+i+1
+O0(py T o 2T (6.59)
Similar asymptotics hold for all derivatives of b. We may hence view b as a (density valued)
amplitude of the order

- +T) (6.60)
—.m — . .
2T g

By Remark 6.4.15 we see that, away from the corner, "¢ — ¢ vanishes at C,. Therefore, the

principal part of b does not depend on ¢. Hence, by comparision of principal parts, cf. Lemma
6.2.8, (6.59) reduces to

(mymly) = (me -

b(x, py,y) ~ Py Pl det Q7 /2ei™ 5 @, (x, py ¢/, 0) (6.61)

modulo terms of lower order.

Elimination of Excess

Assume now that ¢ is a clean phase function of excess ¢ > 0. Near some point in C, as described
in Section 6.4.4, we may make the following geometric assumptions after application of some
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diffeomorphism F': We assume that Y = B*~¢ x (—¢, €)¢ and that the fibers of C,, — A, are
given by constant (x, py,y’) and arbitrary y”. We proceed as in [61] and define

QZ(anxva7y,) = @(PX>$aPYay/>O)- (6'62)

We observe that for any fixed y” the phase function ¢(y"), defined as

[y (x, py,¥') = (x, pv, ¥, y"), (6.63)

is equivalent to ¢. Indeed, since 0,»*dy ¢ = 0, the differential **Hy ¢(y") has the same signature
as *°Hps—e @ and both parametrize the same Lagrangian with the same number of phase variables
(s — e). Therefore, Theorem 6.4.19 guarantees the existence of a family of diffeomorphisms
G(y") : (x,pv,y) = (x,9(x, py,y/,y")) such that, defining G: (x,y) = (x, py,¥/,y") =
(Xu g(X, PY ylv yﬂ)v y//),

G'o—¢ (6.64)
is smooth everywhere, and vanishes on Cz away from the corner by Remark 6.4.15. Then we
may express I,(a) as I5(b), where

b(x, py,y') = py* / G o=@y ' ") (G ) ea (%, py, oy dy” (6.65)

(_575)6

and

(@ Qe y) —Y | _ (@ ayx.y).

o (X, Y
Since é*go —  is smooth, b is again an amplitude of order
(Me, My) = (Me, My +€). (6.66)

Notice that at points in C, away from the corner, é*gp — ¢ vanishes and hence (6.65) reduces to

b(x, py,y') = py° / (G*a)rea(x, py, ¥, y") dy”. (6.67)

(_678)6

6.5.5. The Order of a Lagrangian Distribution

We will now obtain the definition of the order of I,,(a) which is invariant with respect to all
the three steps described above.

Lemma 6.5.15. The numbers ji, = my,+5/2+€/2 and jic = me — s/2+ e/2 remain constant
under reduction of fiber-variables and elimination of excess.
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Proof. Consider a Lagrangian distribution A = I,,(a) where a has order m,,, m, anddimY = s
with excess e and r reduceable fiber variables. After the reduction of fiber, we obtain an amplitude
a’ with order m, = m, — /2, miﬁ = my + 17/2 (cf. (6.60)), with excess ¢/ = e and number
of fiber variables s’ = s — 7. The elimination of excess yields an amplitude a? with order
mi = Me, mZZE = my, + e (cf. (6.66)), excess e = 0and s = s — e. It is now straightforward

to check that

my +s/2+e/2=my, +5'/2+ /2 = mZZE + 57 /24 e /2,
me —8/24+¢/2=ml — 5 /2 +e/2 =ml —s7/2 4 7 /2.

d

This shows that the tuple (/i jte) can be used to define the order of a Lagrangian distribution.

We still have the freedom to add arbitrary constants to both orders. In order to choose these
constants, we compare our class of Lagrangian distributions with Hérmander’s Lagrangian
distributions and the Legendrian distributions of Melrose-Zworski [45]. First, consider the
Delta-distribution g, which is in the Hormander class /4 and My = d/2. Therefore, we
choose my, = 1, — d/4 to obtain the same t/-order for ¢y. Similarly, the constant function is a
Legendrian distribution of order —d/4 and p. = 0, and therefore we choose m, = . + d/4.
Note that we use the opposite sign convention for the m,-order then in [45].

6.6. The Principal Symbol of a Lagrangian Distribution

We will now define the principal symbol map j,/,\%m ,on I'™e™u (X A). Similarly to the classical
theory, it takes values in a suitable (density) bundle on A. This is coherent with the notion
of principal symbol map j, m,, for scattering operators, see [42, 43], as well as of principal
part for classical SG symbols, see [15, 58], which both provide smooth objects defined on
W =8T X > A We adapt the construction in [61] (see also [27, 32]), starting from the
simplest case of local non-degenerate phase functions parametrizing A, up to the general case
of local clean functions.

Let A C W be an sc-Lagrangian, which on B = X X Y is locally parametrized by a local
non-degenerate phase function ¢ € p;/lp)_(lcoo(U), U C B. Leta € py ' py"C® (X x
Y,5Q1/2(X) x *Q1(Y)) be supported in U, and let I,,(a) be a (micro-)local representation of
u € I (X, A) as a single oscillatory integral.

We now fix a 1-density ux on X. Any choice of 1 density py on Y then trivializes the
one-dimensional bundle C®(X x Y,*QY%(X) ® °Q'(Y)), and any element is given by a

multiple of p)_((dH) /2 p;s_l, /lix ® py . Any choice of coordinates (py, y) in Y allows for us to

express py locally as oy dpy dy, meaning as having a smooth density factor with respect

(py,y)
to the (local) Lebesgue measure. As such, we rewrite the amplitude a € p;mw pxeCP(X x
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Y, *QY2(X) @ 5°Q1(Y)) in any choice of local coordinates as

My Mme

Py pRea(x,y) = a(x,y) px T2y ik dpy dy. (6.68)

fora e C*(X xY).

6.6.1. Non-Degenerate Equivalent Phase Functions

As above (cf. (6.14)), when U is a neighbourhood of a point close to the boundary B, we can
there identify *dy ¢ with the map,

(x,y) = ®(x,y) = (= F(x,¥) + pyOp f(x.y) 9yf(x,y)) € R?,

locally well-defined on a neighbourhood of C, within U.

In view of the non-degeneracy of ¢, ® has a surjective differential, so that we can consider the
pullback of distributions d, = ®*¢, with § = dp € D’(IR®) the Dirac distribution, concentrated
at the origin, on R?® (cf. [30, Ch. VI]). More explicitly, choosing functions (t1,...,tq) =: t,
which restrict to a local coordinate system (up to the boundary) on C, the pull-back d, can be
expressed locally as the density

-1

OL®) | 4y — A1) dt.

I(x,y)

Consider another local non-degenerate phase function ¢ parametrizing A, defined on an open
subset U C X x Y, such that & @ = F*p, with a (local, fibered) diffeomorphism F' = id X
g: X X Y — X x Y. Since F is a sc- map, there exists a function h € C*°(X x Y') such that
(F*py)(%,¥) = py - h(%,¥).

As above, we identify *dy ¢ with the map ® and define dgand Ag(t t) in terms of the functions

dy = ’det

t; = F*t;, which are local coordinates on C’;,g, provided U is small enough.

In the sequel, we show how objects defined in these two choices (¢, ¢) and (¢, 3) are related.
For that, we implicitly assume all objects evaluated at corresponding points (x,y) € C,
(parametrized by t) and (x,y) = F(x,y) € Cj (parametrized by 1).

Lemma 6.6.1. The functions A@(%V) and A, (t) are related by

As(t) = h(x,y)** |det W‘_Q Ay (t(1)).

dy

Proof of Lemma 6.6.1. By direct computation, ® and ® are related by a matrix Mgz via

(D(Xa y) = (I)(F(X7 y)) ’ M@Ef)(x7 §)7 (6.69)
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where

M@%(Xay) = P P
[warv@&i@&> [Mx%ﬁ%%&&)

and

| det Myg(x,¥3)| = h(x,5) 77"

Differentiating (6.69), we obtain, using that ®(x,y) = ®(F(x,y)) = 0 on Cs,

0 A@(F(x.F)
) 0oV = Maale¥) TR 5

o(x,y
— M09 | s (P3| 5

Furthermore, we have

9(x,y)

Summing up, we find
o(t, @)
9(x,y)

which in turn implies, using F' =1 xg,

(X¢ y) = diag(]lda th:@ (X> y)) ’

Aa5:|m“@%x§>

9(x,y)

as claimed.

We define
—me —My—(s+1)/2
wy = (px Py v let1)/ a)‘Cw Y, |dy|,

with a given in (6.68), which is a half-density on (the interior of) C,,.

To define wg accordingly, we check that I,,(a) transforms under the action of F" as

/ g = /~ L) (%.y) e p;{mep;mmap;((d+1)/2p}—/s—l X ® dpydy} (x,3)
Y

Y

1p(x,y) —me ~ My~ ~ —(d+1)/2 —s—
=/?€“°( o3 p A%, 3) (0x TP p Tt iix @ dpgdp),

(6.70)

(6.71)

(6.72)
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where

det ——=—=

a(x,y) = a(F(x,y)h(x,y) ™! o5 (6.73)

99(x,y) ’ .

We define, coherently with (6.72), wg = p;(mep;mw_(sﬂ)/za‘ /dz|.

Lemma 6.6.2. The half-densities wz and w,, are related by
wg = F*w,
in (the interior of) Cs.

Proof. We obtain from (6.73) and Lemma 6.6.1 that

1/2

A%, 3) |25 @] = a(F(x, 3))h(x, 7)™ 602 | A (@)

Then, using the local coordinates ¢ and t = F*t introduced above, on C@ we find

ws = F*(p;{mep;mw—(s+1)/2a) ‘Agp(t(;))‘l/Q |dﬂ
= 7oy, ™ T al A, ()2 VdH]) = Fru,.
O

As a half-density valued amplitude, w,, is of order (m.,m, — (s + 1)/2), as shown by the
computations above. In accordance with the definition of the principal part (cf. Definition 6.2.7),

we set
Wy = <a~ \/ ’dwo

As seen above, v, transforms to toz under the pull-back via F. Since ), is a local diffeomor-
phism C, — L, we can also consider

Co

oy = (Ap)«(10y),

which yields a local half-density on A,,. The fact that, for the two equivalent phase functions ¢
and ¢, we have A5 = A, o I, together with the transformation properties of tv,,, shows that

az = a, = a,

that is, oz and o, are equivalent local representations of a half-density o defined on A, in the
local parametrizations Az and A, respectively.

We now prove that the same holds true if ¢ is merely a non-degenerate phase function
equivalent to ¢ in the sense of Definition 6.4.10. First, if we repeat the construction of |/|d|
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described above, all the computations remain valid modulo terms, generated by ®, which contain
an extra factor px py. This is due to

F*p—peC™({)
& px' g F(6,3) = px o h(x, 3) T ET (%, F) + 9(x,¥), g € CX(U)
& f(x,5) = h(x,5) {(F* )xY) + pxppg(x,¥), 9 € ().

Then, by rescaling wg through multiplication by p'y* p?’ﬁ(sﬂ)/ ? and then restricting to,, on

Cs
P>
More0ver, by Lemma 6.4.12 and Remark 6.4.15, we know that, ina neighbourhood U of

any point in the interior of Cg or Cg, which does not intersect Cge, it can be assumed, after

such additional terms identically vanish.

passage to the principal parts, that ¢ = F*y on Cz N AU, see Section 6.5.4. It follows that the
factor exp(i(F*p — @)), appearing in a (cf. (6.55)) also disappears, away from the corner, when
restricting to the faces C% or C:é.

Finally, we observe that to,, and to are obtained as restrictions of smooth objects on X X Y

and X x Y to their respective boundaries. As such, their transformation behavior extends, by
continuity, to the corner as well, producing smooth objects on C, and C3. By push-forward
through Az and A, we find again that az = a, = alocally on Az = A, = A.

6.6.2. Non-Degenerate Phase Functions, Reduction of the Fiber

We now consider a ¢ such that reduction of fiber variables, see Section 6.4.2, is possible. By
the argument in Section 6.6.1, we may then write /,(a) = I, (b) with b from (6.58). We now
compare «, to the analogously defined half-density 3, . We can replace the phase function ¢
by the equivalent phase function given in (6.57), and this does not affect c,. Hence we may
assume that ¢ is of the form ¢(x,y) = Yrea(X,y’) + %p}lp;/l(@y”, y").

As such, we assume, in this splitting of coordinates, C, C {(x,y’,0)}. We find:

Lemma 6.6.3. Under the identification Cy, , x {0} = Cy,, we have

/ _1
‘d<p| = |detQ| 2 |d90red"

Proof. We compute

(I)(X, Y) = ( - fred(x> yl) + pYapy fred(xa y/) 8y’fred(xa y/) 0)
+ ( _ %<Qy//’y//> 0 8y”Q<y”))
= (Brea(x,y) 0)+ (V) Qy) €R*T xR,
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Therefore,
ot ot ot
™Y gy FEEY)
a(t, D)
(X7 Y) = aq)l“ed / 8¢red ’ _1 (9\1/ ”
I(x,y) o (x,¥") 3y (x,y") 282//(3/)
0 0 Q
Consequently,
at, @) |2
d,| = |det dt
it = oot 5, v
1
a(taq)red) 2 _1
= |det ——+% - | det 24/ |dt
o O Qv

_1
= [ det Q72 /|dy,cql-

O
Notice that’ a = a,cq. We compute, by (6.59), modulo amplitudes of lower order,
bx,y) = px" Py T det QT 2 T a(x, v, 0)iix (py T ).
(6.74)

We observe that b is an amplitude of order (m, — r/2,my + r/2) and find
b(x,y’) = |det Q|71/26igsg“(Q)a(x,y’,0) + (’)(poy),

which implies, using Lemma 6.6.3,

m‘pred = (b(x7 y/) ’dSDred ‘)
Pred

=@ (axy)y /i)

— eigSgn(Q)m@_

@

This, in turn, finally gives

B‘Pred = (AWred)*(m‘Pred) = ei%Sgn(Q) : (Av)*(m@) = ei§SgH(Q) ’ a@'

3Observe that ;.4 is obtained by splitting of the density and weight factors in two steps.
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6.6.3. Clean Phase Functions, Elimination of the Excess

We now proceed with the last reduction step, namely, we consider a clean phase function and
eliminate its excess. As in Section 6.5.4, we assume Y = B*7¢ x (—¢, €)¢ with the fibers of
C, — A, given by constant (x, py,y’) and arbitrary 3" € (—¢, €)°.

Switching to the phase function ¢ in (6.62), we may write I,(a) = I5(b) with b defined
in (6.65). We apply the construction of the previous section, and obtain the density 8z =
(Az)« (b~ \/]dg\)% from the data (@, b).

Alternatively, we may study the family of oscillatory integrals I, (a(y")) with phase
functions ¢(y") defined in (6.63) and amplitudes

a(y”) : (X7 PY y/) = p}_/e (I(X, PY ylv y//) = p;/e Cl(X, Y)7

with corresponding principal parts a(y”). Since ¢(y”) is non-degenerate, we can define the
parameter dependent family of half-densities on A

as(y") = (o) (a0") - y/ |d¢<y”>‘)c¢< n’
Yy

and finally set
Ve = / oz(z,(y”) dy” . (6.75)
(_8’6)5

Proposition 6.6.4. The half-densities on Az = A, = A given by vz and 35 coincide.

Proof. We consider the smooth family of diffeomorphisms G(y") = id x g(y”), depending on
the parameter y”, involved in G from (6.64). Assuming the amplitudes a(y") supported away
from the corner points, we can suppose, as above, G(y")*¢(y") — ¢ = 0. We now compute,
using Lemma 6.4.7 and the expression (6.65), together with the transformation properties of o,

1
o@d) [ =
(0 y/ldal) (e = st e fdet |
) C'@
89 —my—s—1
((673) :>) = O(G(X, y))|C@ det ?(Xv Y) [h(X, y)]QE X
(—eE)e y Cs
_ -1
a(/t: q)) ’ nl /"
x |det dt|d
oy, VI
@
! -1
(Lemma 6.6.1 =) :/ G laxy)le, ., detM 2\/]dt\ dy"
(—ee)e oW a(X,y/) C¢(y")

(Def. of dgyy =) = /( G:(y")*[(a(y”)-\/ldqs(y")l) (X,py,y’)} .y

d(y'")
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Applying (Az)« to the left-hand side, we obtain 3. To apply (Az)« to the right-hand side, we
first recall that ¢ and ¢(y"”) are equivalent by G(y"). Using again Lemma 6.4.7 (see also Lemma
6.4.16), this implies

Az = Ay 0 GY") = (Ag)s = Mgy 0 Gy (6.76)

Since A does not depend on 3/, we can take it inside the integral and use (6.76), finally obtaining

Bz = (M) [ /( . G(y")*[(a(y") : Mﬂ%( ”)dy”]
[ a6l o GO (s,

o(y'")
- / o) (a") - y/ldon] )], o/’ = / ag(y") dy" = 7.
(—ee)e Coy (—ee)e
Extension to the corner points as in the previous subsections proves the claim. O

We already showed that the half-density o associated with I, (a) is invariant under a change
of equivalent non-degenerate phase functions. Together with the argument above, this also
shows that the half-density v associated with I, (a) remains the same under the change of
equivalent phase functions which are clean with the same excess.

6.6.4. Principal Symbol and Principal Symbol Map

Let u € ™™ (X, A). Consider any local representation of u, as introduced in Definition
6.5.10, with clean phase function ¢ with excess e associated with A and a some local symbol
density. The arguments in the previous subsections show how to associate with these data a
half-density v, defined on A. We also showed that switching to an equivalent phase function,
as well as the elimination of the excess, do not change . The reduction of the fiber variables

replaces vy with 4’ such that
,Y/ _ ei%sgn(Q) v,

with @ from (6.57). Let 7y be the half-density defined by an integral representation I5(a), with
another phase function ¢ associated with A. Then, similarly to [61], in general we have

¥ =€y, (6.77)

where o = sgn (,0;/1p)_(1 “Hy ), and & = sgn (p)iflp;{l SCH?cﬁ). Denote by 7 the number of

fiber variable for ¢, s the dimension of Y and € the excess of ¢, and define the integer number

1 ~ ~
m:§(a—a—s+s+e—€).
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Then, (6.77) is equivalent to N
7t § = 5T 5, (6.78)
We are then led to the following definition of principal symbol map.

Definition 6.6.5. Let u € ™™ (X, A). We define .#(u) = {(Yj,;)} as the collection of
manifolds and associated clean phase functions (Y}, ;) locally parametrizing A, giving rise to
local representations of v in the form I, (a;). With each pair (Y, ¢) € #(u) we associate the
half-density 7, as described in Subsection 6.6.3, in such a manner that, for any other element
(Y, @) € #(u), we have the coherence relation (6.78) in Ao(Y)N )‘cﬁ(?)- We call the collection
of half-densities {~y; }, each one associated with (Y}, ¢;) € & (u), the principal symbol of u, and
write j3_,.. (u) = {3}
By an argument completely similar to the one in [61], we can prove the following result.

Theorem 6.6.6. Let A be a sc-Lagrangian on X. Then, the map
A oyt T (X A) 3w {75} (6.79)

]me,m¢ :

given in Definition 6.6.5 is surjective. Moreover, the null space of the map (6.79) is given by
Ime=bmy=1(X A), and thus (6.79) defines a bijection

classes in I (X A)/Ime*l’m“’fl(X, A) = {v;}.

The image space ofj,’}%mw can be seen as C°(A, My @ Q'/2), where M}, is the Maslov bundle
over A.

6.7. Resolution of Lagrangian Singularities near the Corner

In this appendix, we show that A¥® may be viewed as a Legendre manifold with respect to a
(degenerate) contact form, well defined on the blow-up of the corner component W¥¢ of ST X
We have already stated that the forms

a¥ = pQEapE_lw and af := P%(aprw'

are well-defined in the interior near the respective boundary face W¢ or WY and extend to it.
The freedom in choosing the boundary defining function has as a consequence that these forms
are merely well-defined up to a multiple by a positive function, however their contact structure
at the boundary (which is all we need to characterize A* as Legendrian) is independent of the
choice of bdfs. Neither form extends to the corner component W¥¢. Instead of the rescaled
1-forms, we now consider the non-rescaled forms

a¥ 1= pzdpsaw

af 1= px 0y sw

as sections of S°T™*(T* X©). Then, these extend as scattering one forms on T X, cf. [45,
(2.11)].
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Lemma 6.7.1. The forms *°a¥ and*°a® extend from S°T* X° to scattering one-forms on ST X,
In a particular choice of coordinates (see [45] and Remark 6.2.2) they are given by

SC e — dn _ mdps + 77// dx
pxpE pxpE px Pz’
d dz
sco¥ — m PX +

P=PX PxP=
Here, 1 = (n1,n"") are smooth functions of (p=,£), d — 1 of which may be chosen as coordinates.
Again, the (scattering) contact structures of these forms, when restricted to the respective

boundary faces, do not depend on the choice of bdf, since two choices of bdf only differ by

positive factors. These forms *°a® will then vanish on A®, e € {e, 1}, since one can identify

the kernels of *°a® with that of o® by rescaling there. Furthermore, both *¢a¥ as well as °a®

vanish when restricted to A¥¢.

Example 6.7.2. On T*R? with canonical coordinates (z, £), this corresponds to both the forms
E-dr and —x-dE

vanishing on the bi-conic (in z and ¢) manifold with base A€, cf. [7].

Hence, AY¢ is, in some sense, (scattering) isotropic.® We note, however, that the AY¢ is not
Lagrangian with respect to any symplectic form on WY¢, since

dim(We)

dim(AY*) =d—2+#d—1= .

However, we may now blow-up the corner W¥¢ in *°T (X ) and consider the front face 571 (W¥¢)
in [*°T(X); WY€), which is a 2d — 1 dimensional manifold, see Figure 6.3. Here,

B [FT(X); WP = *T(X),
is the blow-down map.
Proposition 6.7.3. The lift of the form

ate — PX2PE (scaw + scae)
to the blowup space
FT X Wb s T x

restricts to a contact 1-form on the front face 3~ WY¥¢. Moreover, 3~1(AY®) is Legendrian with
respect to e,

Not with respect to the standard symplectic form, since it does not extend to the boundary, but to a rescaling of it.
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We

Figure 6.3.: Resolution of A{, near the corner

Proof. We note that
1
a'® = PXP=q (Px0py + p=0pz)aw.

In the special choice of coordinates of Lemma 6.7.1, we compute

1 (d dp=\ 1
¥t = <pX - p“) + ~dm +1n"dx
D' PE 2

oM
= {px = p= = 0} are given by

Now, smooth coordinates on the blow up of ST X along WY*

= T=£2 (z, >
p=px o (z,8) px > px (6.50)
p=pz T=EL (2,§) p=>px

In any case, 3*a?* is of the form
1 d 1
a¥e = £om 4 Zdny +1dx
277 2

Since 7 = 0 marks the boundary of the front face 371 W¥€, a¥¢ is a 1-form on the interior of
B~IWYe, Finally, a¥€ vanishes on S~ A%¢ since ¥ and °a® vanish on A¥¢. O
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A.1. Conventions
We use the following conventions.

« We use the usual notation for the natural numbers N, including 0, the integers Z, the
rational numbers Q, and the real numbers R. We will write R for the interval [0, c0).

+ Denote the set of smooth functions by C*, the smooth functions with compact support
by CZ°.

» We will use the multiindex notations z% = [], x]% 07 =11, 9, al =11 ;! and

la| =3, ajforz € R? and o« € N%. Thus, we can write the k-th derivative as

k!
fOwsy, oy = D ST f(a)y™

|a|=k

« The L?-bilinear product will be denoted by

(U, 0) 2 = / w(z)v(z)dz.

The sesquilinear product and the norm a denoted by

(u7 U)LQ = <u7 1_)>L27

_\1/2
lull > = (u, @) 15

We will drop the L2-subscript if it is causes no confusion.

« Estimates are often written as f < g. This means
f(z) < g(x) ifand only if f(z) < Cg(z),

for some C' > 0. The constant C' might depend on additional parameters.
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» We write n > k to indicate that n is significant larger than k.

+ The big-O and small-O are defined as

f(A) =0(g(N) ifandonlyif |f(N)] < |g(A)| for A >0,
f(A) =o(g(N)) ifandonlyif |[f(N)|/|g(A)] — 0as X — oco.

« The japanese bracket is defined by
(&) = (1+ |2,
for 2 € RY, and it satisfies for any k € R the Peetre inequality

(@ +y)* < @),

« The measure dz = (27)~% dz turns the Fourier transform
Fu(§) = / e~y (z)dx

into a unitary operator F : L?(R%, dx) — L?(R%, d¥).
« We set D, = —i0;; or more generally, D* = i—ledge,

» The Laplacian A = — 3, 8%, is non-negative.

A.2. Distributions

Let X be an open subset of R%. A distribution v € D’(X) is a linear form on C3°(X) such that
for all compact sets K C X, there exists a k € N such that

(@) S Y sup 0%6(x)], ¢ € CX(K).

lal<k reK
If f € L] _ then we can define a distribution u by
u(@) = [ fao(a)da,

and we will identify vy and f. Therefore, we will also write
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We can define multiplication by smooth function and differentiation as follows: For any
smooth function f € C*°(X) and distribution u € D’'(X) the distribution f - u is given by

(fu,0) = (u, f - ¢)
and Oz u is defined by
(Opu, §) = —(u, 029)

for all ¢ € C2°(X). We say that = € supp u if there exists no neighborhood of x such that the
restriction of u to U is zero. The set of compactly supported distributions is denoted by

E'(X):={u € D': suppu is compact }.

It is not possible to define the Fourier transform for general distributions. Thus, we consider
the set of Schwartz functions on R%. A function f € C>®(R?) is in S(RY) if for all o, 8 € N¢,

|(2)7 05 f(2)] < oo.

These semi-norms turn S(R?) into a Fréchet space. The topological dual space is denoted by
S’'(R?) and called the set of tempered distributions. We have the following inclusions:

C(RY) ¢ S(RY ¢ S'(RY) ¢ D'(RY).

Example A.2.1. The most important distribution that does not come from a function is the
Delta-distribution 6,, € S'(R%) given by

Oz (f) = f(0),

for zp € R4

Sometimes we will write for a distributions u, v that u(z) = v(z) this has to be intepreted as
(u, f) = (v, f) for all f € C>(R?) or equivalently u = v.
A.3. Fourier Transform

Let u € S(RY) then we define the Fourier transform of u by

Fu(€) =u(&) = / e~y (x) d.

Rd

The Fourier transform is an isomorphism S(R?) — S(RY) with inverse

Flu(z) = /]Rd e Tey(€) dE.
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Furthermore, the Fourier transform satisfies the Plancharel identity:
(Fu,v) 2 = (u, Fv) 2,
and therefore
1Fullz2 = 2m)ull .

Thus, we may extend the definition of the Fourier transform to L?-functions and tempered
distributions by duality.
In particular, if dy is a measure the Fourier transform is given by

Fau¢) = [ (o).
« Derivatives:
FO2u}(©) = (1) a(6).
« Convolution:
Flusv}(€) = a(€)o(¢).
« The delta distribution:
F{020}(&) = €0,

A.4. Wavefront Sets

Let u € D'(R?) be a distribution. We want to investigate in which sense u fails to be a smooth
function.

Let 2o € R%. We say that x is not in the singular support of u, 2o ¢ sing-supp u if there
exists xz, € C°(R?) a cut-off function supported near zg such that

Xaot € C°(RY)
in the sense that there exists a function f € C2°(R?) such that for all ¢ € C°(R?),

U(X$o¢) = <f7 Xwo¢>-

A more refined definition is the wavefront set.

Definition A.4.1. Let (z9,&) € T*RY\ 0. We say that (z9,&) & WFq(u) if there exists a
smooth cut-off function ., € C3°(R?) supported near zg such that

F{Xapu}(€) S (&~

for any N > 0 in a small conic neighborhood of &.
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If 11 denotes the canonical projection 7*R? — R? then the singular support is given by
sing-supp u = 1 WF¢(u).

This means that the singular support measures, where the distribution is not smooth and the
wavefront set measures also in which direction.

Proposition A.4.2. Let P a differential operator with smooth coefficients and u € S'(R?) then
WF . (Pu) C WF(u)

Proof. This follows from the fact that for smooth functions a € C*°, WFj(au) C WF¢(u) and
WFd(&Eu) C WFd(u). ]

Conversely we can characterize the wavefront set of u in terms of the wavefront set of Pu
and the set, where P fails to be elliptic: Let P = Z| al<m aq(x)D® a differential operator with
smooth coefficients and

o (P)= 3 aa(2)e”

laj=m
its principal symbol. Let ¥(P) = {(z,&) € T*R4\ 0: 0™ (P)(x, &) = 0}.
Proposition A.4.3. Ifu € D'(R?) then
WF(u) € WFEq(Pu) UX(P).
The proof uses a construction of a pseudodifferential parametrix of P away from the charac-

teristic set X(P) and can be found in [31]. Of course the assumptions on P can be relaxed to P
being a pseudodifferential operator of order m.

Example A.4.4. The wavefront set of d,, is given by
WF(0z) = {zo} x RY\ {0}.
The wavefront set of the characteristic function Y of a smooth domain  C R? is given by
WFa(xa) = N*Q,

where N*Q) is the conormal bundle of 2.
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A.4.1. Kohn-Nirenberg Symbols

The usual Kohn-Nirenberg symbol class is given by
S™(RER") = {a(y, 1) € C(R? x R"): |0507a] < Cap(n)™ '}, (A1)

A symbol a € S™ is elliptic at (yo, n0) € R? x R™\ {0} if in a neighborhood of 7 and in conic
neighborhood of 79 the following estimate holds:

la(y,m)| Z (m)™,

where the implied constant is independent of 7.
The usual class of pseudodifferential operators U is defined by using these symbol estimates
and then the characterization of the wavefront set is as follows (cf. [31]):

WFa(u) = () Z(4),
Acy0
AueC>®

where the characteristic set ¥(A) is defined as the complement of the elliptic set. Notice that in
this case it is conic in 7, not in (y, n).
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