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Abstract

We consider Fourier integral operators on non-compact manifolds and their applications, in
particular in spectral theory. Fourier integral operators appear naturally as the solution operators
of certain pseudodi�erential evolution equations, such as the Schrödinger equation or the wave
equation.

For Euclidean space there are two important global pseudodi�erential calculi: First there is
the isotropic calculus, which contains the quantum harmonic oscillator, its inverse, and similar
operators. We consider the solution operator to the dynamical Schrödinger equation with
an isotropic pseudodi�erential operator of order two and show how singularities and growth
evolve with time. Moreover we show that for generic lower order perturbations of the harmonic
oscillator the eigenvalues are more equally distributed then in the case of the unperturbed
operator.

The second important calculus, the scattering calculus, contains the Laplacian plus a bounded
potential on asymptotically Euclidean manifolds. We de�ne a class of geometric distributions
that are related to the solution operators of the Klein-Gordon equation of quantum �eld theory
and contain certain distributions that are appear in the scattering theory of the Laplacian. We
show that these distributions have a symbol structure that admits an invariantly de�ned order
and the existence of a principal symbol.

Zusammenfassung

Wir betrachten Fourier-Integraloperatoren auf nicht-kompakten Mannigfaltigkeiten und deren
Anwendungen, insbesondere in der Spektraltheorie. Fourier-Integraloperator treten natürlicher-
weise als Lösungsoperatoren von bestimmten pseudodi�erenziellen Entwicklungsgleichungen
auf, wie der Schrödingergleichung oder der Wellengleichung.

Für den euklidischen Raum gibt es zwei wichtige globale Pseudodi�erentialkalküle: Zunächst
gibt es den isotropen Kalkül, der den quantenharmonischen Oszillator, dessen Inverses und ver-
wandte Operatoren enthält. Wir betrachten den Lösungsoperator der dynamischen Schrödinger-
gleichung mit einem isotropen Pseudodi�erentialoperator zweiter Ordnung und zeigen, wie
sich Singularitäten und Wachstumsverhalten mit der Zeit entwickeln. Weiterhin zeigen wir,
dass für generische Störungen niedriger Ordnung des harmonischen Oszillators die Eigenwerte
asymptotisch sehr viel gleichmäßiger verteilt sind als für den ungestörten Operator.

Der zweite wichtige Kalkül, der Streukalkül, enthält den Laplace-Operator plus ein beschränk-
tes Potential auf asymptotisch euklidischen Mannigfaltigkeiten. Wir de�nieren eine Klasse
an geometrischen Distributionen, die verwandt sind zu Lösungsoperatoren der Klein-Gordon-
Gleichung aus der Quantenfeldtheorie und gewisse Distributionen enthalten, die in der Streuthe-
orie des Laplace-Operators auftaucht. Wir zeigen, dass diese Distributionen eine Symbolstruktur
besitzen, die eine invariant de�nierte Ordnung implizieren, und dass ein Hauptsymbol existiert.

Keywords. Fourier integral operators, harmonic oscillator, Weyl asymptotics, propagation of singularities.
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CHAPTER 1

Introduction

In this thesis, we consider pseudodi�erential operators and Fourier integral operators on
non-compact manifolds and associated problems in spectral theory and microlocal analysis.
In particular, we prove an improved remainder estimate for the Weyl law for the perturbed
harmonic oscillator and de�ne Lagrangian distributions on asymptotically Euclidean manifolds.

First, we will review the spectral theory of the Laplacian ∆g on a compact, connected, and
oriented Riemannian manifold (M, g); if M has a boundary ∂M (which is assumed to be
smooth), we impose Dirichlet boundary conditions, u|∂M = 0. We use the de�nition

∆gu = −|g|−1/2
∑
j,k

∂j

(
|g|1/2gjk∂k

)
u,

where |g| is the determinant and gjk is the inverse of the metric tensor.
It is well-known that the Laplacian is a self-adjoint operator and has discrete spectrum

consisting of eigenvalues of �nite multiplicity which accumulates at in�nity. The Laplacian is
positive on L2(M), therefore the spectrum is contained in the positive reals and we may write
the eigenvalues (counted with multiplicity) as

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . .→∞.

It is rarely possible to calculate the eigenvalues explicitly. Therefore, we would like to understand
the asymptotic behavior of the eigenvalues λk as k tends to in�nity. De�ne N(λ) to be the
number of eigenvalues that are smaller than λ.

Asymptotics for N(λ) are interesting for several di�erent reasons. The eigenvalues of the
Laplacian with Dirichlet boundary conditions can be thought of as the overtones (harmonics)
of an idealized drum with shape Ω ⊂ R2 a bounded domain with regular boundary. The
eigenfunction uk of the eigenvalue λk represents the displacement of the membrane of the
drum and a solution of the wave-equation is given by u(t, x) = cos(t

√
λk)uk(x). In the three-

dimensional case, one may think of the air vibrating in a wind instrument, such as a clarinet or
a �ute. If M is a three-dimensional rectangular cuboid, then Lord Rayleigh in “The Theory of
Sound” (1877) showed that N(λ) is asymptotic to vol(M)λ3 as λ→∞, where vol(M) denotes
the volume of the cuboid.

A completely di�erent physical problem leads to the same mathematical concepts. Namely,
in thermodynamics the amount of energy emitted by a body is determined by the high-energy
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spectrum of the electromagnetical waves. The electromagnetical waves correspond to the
soundwaves and the high-energy spectrum is the equivalent to the high overtones of a musical
instrument. From physical intuition and experiments of black-body radiation it is clear that
the asymptotic N(λ) ∼ V λ3 should be independent of the precise shape of the body. In 1911,
Hermann Weyl proved that this conjecture is true just one year after it was posed by Hendrik
Lorentz and it is now known as Weyl’s law.

There was signi�cant e�ort to extend this result to a very general setting, in particular to
compact manifolds with boundary of arbitrary dimension. Stated slightly di�erent, it was shown
that

N(λ) = vol(M)λd/2 + o(λd/2), 1 as λ→∞. (1.1)

It is now natural to ask what the sharpest possible error estimate in (1.1) is. In the case M is a
closed manifold, meaning that ∂M = ∅, Hörmander [26] used the theory of microlocal analysis
and in particular Fourier integral operators to show that the error estimate is

N(λ) = vol(M)λd/2 +O(λ(d−1)/2)

and this result is sharp by considering the (explicit) eigenvalues on the sphere (see also Levitan
[36]). Assuming that the set of periodic geodesics has measure zero, Duistermaat and Guillemin
[13] even improved this further to o(λ(d−1)/2).

The basic idea of microlocal analysis is to relate properties of di�erential operators to prop-
erties of a classical mechanical system. In the case of the Laplacian ∆g , one is for instance
interested in the spectrum, regularity of the associated wave equation or asymptotics of the
heat equation. The classical system is de�ned by the principal symbol p(x, ξ) = |ξ|2g(x) of the
Laplacian and one can analyze for instance the set of periodic orbits of the Hamiltonian �ow
associated to p. In the case of the Weyl asymptotic sketched above, Duistermaat–Guillemin
used that the Hamiltonian �ow of the principal symbol p of the Laplacian ∆g is nothing but the
geodesic �ow on T ∗M .

One of the main ingredients to such results is the de�nition of a suitable calculus of pseudod-
i�erential operators. These are naively de�ned by taking a “good” function a ∈ C∞(T ∗M) and
replacing ξ by−i∂x. Of course this cannot work in general, since multiplication is commutative,
whereas di�erentiation and multiplication do not commute. The Fourier transform F turns
di�erentiation into multiplication and therefore, we may de�ne

a(x,D)u(x) = F−1
ξ→xa(x, ξ)Fy→ξu(y).

It turns out that there are better ways to quantize symbols. Now, we want to discuss, what
we mean by a “good” symbol. Di�erential operators (with smooth coe�cients) correspond to
symbols of the form

a(x, ξ) =
∑
|α|≤m

aα(x)ξα,

1For the notation used, see Index of Notation.
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where aα are smooth functions. The natural generalization is to allow functions that have an
asymptotic expansion in homogeneous terms in ξ. If we de�ne such a calculus of pseudodif-
ferential operators, the inverses of certain di�erential operators such as the Laplacian are also
in this calculus and properties of the inverses can be deduced from constructing approximate
inverses (parametrices).

The Schwartz kernel of such a pseudodi�erential operator is of the form

(2π)−d
∫
Rd
ei(x−y)ξa(x, ξ) dξ

and it can be shown that these operators do not increase the singular support (the set of points,
where a function is not smooth). If we want to consider evolution equations such as the wave
equation it is clear that these operators do not su�ce. Already the solution operator to the
transport equation (∂t − ∂x)u(t, x) = 0 with initial data u(0, x) = u0(x) is given by

u(t, x) = u0(x+ t).

Written as an integral operator, the solution operator is given by

u(t, x) =

∫
Rd
ei(x−y+t)ξu0(y) dy dξ.

We see that we have to allow more general phase functions φ than just (x− y)ξ to describe
the solution operators to evolution equations. These considerations led to the development
of Fourier integral operators (cf. [14, 27]), which are more involved to de�ne because the
phase functions are not canonical and one has to identify the correct underlying geometric
objects. Roughly speaking, Fourier integral operators are operators de�ned by integral kernels
such that the wavefront set2 is contained in a Lagrangian submanifold on T ∗M . The theory of
pseudodi�erential operators and Fourier integral operators is well-known for compact manifolds
M . On non-compact manifolds various problems arise.

On Rd, the Laplacian does not have discrete spectrum because the embedding of Sobolev
spaces H2(Rd)→ L2(Rd) is not compact anymore. There are two ways to deal with this fact:
First, we may instead consider di�erential operators with certain growth at in�nity, with the
prototypical example being the harmonic oscillator

H0 =
1

2
(∆ + |x|2),

which models a quantum particle, such as an electron, con�ned in a potential V (x) = |x|2. In
this case the eigenvalues can be explicitly calculated and they are given by sums of integers,

λα =

d∑
j=1

αj + d/2,

2This is a re�nement of the singular support also measuring the directions in which functions are not smooth.



4

where α ∈ Nd is a multiindex. The high multiplicities of the eigenvalues correspond to the
symmetry of the underlying Hamiltonian system with Hamilton function

p2(x, ξ) =
1

2
(|ξ|2 + |x|2).

The classical calculus of pseudodi�erential operators is not suited for studying problems on
Rd and we have to use a di�erent calculus. For problems related to the harmonic oscillator
we use symbols that admit an asymptotic expansion not in ξ, but jointly in (x, ξ). This can
be viewed as radially compactifying T ∗Rd in all variables. This idea leads to the isotropic or
Shubin calculus of pseudodi�erential operators. The corresponding class of Fourier integral
operators was de�ned by Hel�er–Robert [22–24].

It is also possible to analyze the continuous spectrum of the operator ∆ on a non-compact
manifold (M, g). The �rst challenge is to identify a suitable class of non-compact manifolds.
This is usually done by compactifying the manifold and assuming that the Riemannian metric
is degenerate in a very speci�c way at the boundary. The manifolds we will be interested in are
asymptotically Euclidean (or scattering manifolds) in this sense, meaning that near the boundary
the metric is given by

gM =
dρ2

ρ4
+
h(ρ, x)

ρ2

where h is symmetric and restricts to a Riemannian metric on the boundary ∂M = {ρ = 0} and
ρ ≥ 0 is a boundary de�ning function. The notion of scattering manifolds and the corresponding
calculus of pseudodi�erential operator on scattering manifolds was introduced by Melrose [42]
and used to prove meromorphic continuation of the resolvent of the Laplacian. Melrose and
Zworski [45] de�ned a class of distributions, which encode lack of decay near spatial in�nity.
They used these Legendrian distributions to prove that the scattering matrix is a Fourier integral
operator on the boundary.

The case of the harmonic oscillator and related operators is discussed in the Chapters 2-4.
In Chapter 2 we give an introduction to the calculus of isotropic pseudodi�erential operators
and the spectral theory of perturbations of the harmonic oscillator. In Chapter 3 we prove
a re�ned remainder estimate for perturbations of the isotropic harmonic oscillator, meaning
that all frequencies are the same and �nally in Chapter 4 we discuss the propagation or rather
recurrence of classical singularities for second order isotropic pseudodi�erential operators.

The scattering calculus and the natural class of Lagrangian distributions are discussed in
the Chapters 5-6. In Chapter 5 we de�ne the class of asymptotically Euclidean manifolds and
the calculus of scattering pseudodi�erential operators. In Section 5.4 we illustrate with two
examples possible applications of an Fourier integral operator calculus based on Lagrangian
distributions in the setting of scattering manifolds. We develop the theory of Lagrangian
distributions on asymptotically Euclidean manifolds in Chapter 6.

We present results that have been published in [4, 10, 11].
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CHAPTER 2

Spectral Theory and
Pseudodi�erential Operators

2.1. Method of Stationary Phase

We will recall the method of stationary phase, which is used in various places. Sometimes the
stationary phase theorem is used directly, and sometimes it is more a guiding principle. We
follow roughly the presentation of Hörmander [30, Section 7.7].

The goal is to estimate integrals of the form

I(λ) =

∫
eiλφ(x)a(x)dx, (2.1)

where a ∈ C∞c (Rd) and φ ∈ C∞(Rd) real-valued. Denote by K the support of a.

2.1.1. Non-Stationary Phase

The trivial estimate is |I(λ)| ≤ |K| sup |a(x)|. For large λ the term eiλφ oscillates rapidly, so
we expect to obtain better bounds in the limit λ→∞. First, we observe that if dφ 6= 0 on K ,
then we have arbitrary decay in λ:

Theorem 2.1.1 (Theorem 7.7.1 in Hörmander [30]). LetK ⊂ Rd be compact, a ∈ C∞c (K), and
φ ∈ C∞(Rd) real-valued. For every k ∈ N,

λk|I(λ)| .
∑
|α|≤k

sup
x∈K
|∂αa(x)||dφ(x)||α|−2k, λ > 0.

Therefore, using a partition of unity and a suitable choice of coordinates, we may assume that
there is an isolated stationary point, that is 0 ∈ K and dφ = 0 if and only if x = 0. A stationary
point of φ is called non-degenerate if ∂2φ(0) has rank d.

The easiest example of such a phase function is a non-degenerate quadratic form φ(x) =
〈Ax, x〉, for a non-degenerate symmetric matrix A.
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2.1.2. �adratic Phase Functions

If A is a non-degenerate d× d matrix, we can de�ne the operator

P = ei〈AD,D〉

as a Fourier multiplier. We will calculate an asymptotic expansion of P .

Proposition 2.1.2 (Theorem 7.6.2 in Hörmander [30]). Assume that u ∈ S(Rd) and s > d/2.
For all k ∈ N, we have the estimate

‖ei〈AD,D〉u(x)−
k−1∑
j=0

1

j!
〈iAD,D〉ju(x)‖2L∞ .

1

k!

∑
|α|≤s

‖〈AD,D〉kDαu‖2L2 .

The idea of the proof is to use the Taylor expansion eix =
∑N

k=0
ikxk

k! + RN+1(x) and
estimate the remainder in integral form using a Sobolev inequality to obtain L∞-bounds. This
Proposition can now be used to calculate an asymptotic expansion for oscillatory integrals with
quadratic phase function φ(x) = 〈Qx, x〉/2.

Theorem 2.1.3. Let Q be a real non-degenerate symmetric matrix. For all positive integers k,∣∣∣∣∣
∫
eiλ〈Qx,x〉/2a(x)dx− e

iπ
4

sgnQ

(
det

λQ

2π

)−1/2

Tk(λ)a(0)

∣∣∣∣∣ . λ−d/2−k ∑
|α|≤2k+d+1

‖∂αa‖L∞ ,

where the di�erential operators Tk are given by

Tk(λ)a(x) =

k−1∑
j=0

1

j!

(
〈Q−1D,D〉

2iλ

)j
a(x).

Proof. The Fourier transform of f(x) = eiλ〈Qx,x〉/2 is given by

f̂(ξ) = e
iπ
4

sgnQ

(
det

λQ

2π

)−1/2

e−iλ〈Q
−1ξ,ξ〉/2.

Therefore, ∫
eiλ〈Qx,x〉/2a(x)dx = e

iπ
4

sgnQ

(
det

λQ

2π

)−1/2

e−iλ〈Q
−1D,D〉/2u(x)

and the claim follows from Proposition 2.1.2.
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2.1.3. Stationary Phase for General Phase Functions

This theorem can be used to prove the general case using Morse lemma, which states that
one can always choose coordinates such that, at the stationary point, the phase function is a
quadratic form (cf. Grigis–Sjöstrand [17] and Zworski [69]).

Theorem 2.1.4 (Theorem 7.7.5 in Hörmander [30]). Let φ ∈ C∞ real-valued with non-degenerate
stationary point x = x0 and dφ 6= 0 on K \ {x0}. There are di�erential operators A2j of order
≤ 2j such that for every k ∈ N,∣∣∣∣∣∣I(λ)− eiλφ(x0)

k−1∑
j=0

λ−d/2−jA2j(Dx)a(x0)

∣∣∣∣∣∣ . λ−d/2−k
∑

|α|≤2k+d+1

‖∂αa‖L∞ .

The zeroth order di�erential operator is the multiplication operator

(A0u)(x0) = (2π)d/2ei
π
4

sgn ∂2φ(x0)
∣∣det ∂2φ(x0)

∣∣−1/2
u(x0).

If the second derivatives of the phase vanish, we may still calculate the order of decay, but it
becomes di�cult to calculate the leading order constant (cf. Stein [60, Proposition 5, p. 342]):

Theorem 2.1.5. If there is a multiindex α ∈ Nd with |α| > 0 such that the phase φ satis�es

|∂αxφ(x)| ≥ 1

onK , then

|I(λ)| ≤ C(φ)λ−1/|α|(‖a‖L∞ + ‖∇a‖L1).

2.2. Harmonic Oscillator

The basic idea of quantum mechanics is to take a classical energy (Hamiltonian function) and
associate to it a self-adjoint operator on a Hilbert space. The classical energy of a one-particle
system is given by E = Ekin + Epot the sum of the kinetic and potential energy. In classical
Hamiltonian mechanics the kinetic energy is assumed to be Ekin = 1

2 |ξ|
2, where we assume

the mass of the particle to be normalized to m = 1. The potential energy comes from the
physical con�guration and only depends on the position: Epot(x, ξ) = V (x). Thus, we are led
to consider Hamiltonian functions of the form

p(x, ξ) =
1

2
|ξ|2 + V (x).

The easiest case of a potential is the harmonic oscillator V (x) = |x|2/2.
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In this case the quantization just replaces covariables ξj by partial derivatives −i∂xj . There-
fore, we want to consider the quantum harmonic oscillator on Rd:

H0 =
1

2
(∆ + |x|2).

The eigenvalues of the operator H0, viewed as a unbounded linear operator on the Hilbert
space L2(Rd),1 correspond to the quantized energy levels of the particle and the eigenfunctions
to the wavefunction.

2.2.1. Eigenvalues and Eigenfunctions

The eigenvalues of the quantum harmonic oscillator can be explicitly calculated. First, assume
that d = 1. We de�ne the creation and annihilation operators

A+ = Dx + ix,

A− = Dx − ix.

We calculate that

A+A− = 2H0 − 1,

A−A+ = 2H0 + 1.

One notices that v0 = e−x
2/2 is an eigenfunction ofH0 with eigenvalue 1/2, becauseA−v0 = 0.

We set

vn = An+v0

and we show by induction that H0vn = (n+ 1/2)vn. The functions vn are orthogonal and thus
un = vn/‖vn‖L2 is orthonormal system. It remains to show that the set of eigenfunctions {un}
is complete (cf. Zworski [69, Theorem 6.2] for details). The functions un(x) can be written as
un = e−x

2/2Hn(x), where Hn is a polynomial of degree n. The polynomials Hn are called the
Hermite polynomials.

For arbitrary d, we note that the eigenvalues are given by

λα = |α|+ d/2.

with eigenfunctions

uα(x) = e−|x|
2/2

d∏
j=1

Hαj (xj).

1The domain of H0 is the Sobolev space H2
iso(Rd), de�ned in Section 2.4.5.
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Figure 2.1.: Plot of the rescaled error term O(λd−1) of the harmonic oscillator in d = 3.

2.2.2. Asymptotic Formula for the Eigenvalues

Using the explicit formula for the eigenvalues, we see that the counting function N(λ), which
is de�ned by N(λ) = #{j : λj ≤ λ}, is given by

N(λ) = #{α ∈ Nd :
d∑
j=1

αj ≤ λ− d/2}.

This means that N(λ) counts the number of lattice points in the d-simplex with sides λ− d/2.
We obtain the asymptotic formula

N(λ) =
λd

d!
+O(λd−1),

as λ→∞. As it is suggested by Figure 2.1 the error estimate is sharp. In fact, the multiplicity
of the eigenspace for λ = k + d/2 is given by

p(k, d) = #{α ∈ Nd :
∑
j

αj = k} =

(
d+ k − 1

k

)
.

Writing

p(k, d) =
(d+ k − 1)!

(d− 1)!k!
=

1

(d− 1)!
(k + d− 1)(k + d− 2) · · · (k + 1)
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we see that p(k, d) ∼ kd−1

(d−1)! , so the jumps are of order kd−1 and therefore the asymptotics
cannot be further improved.

We can obtain this result without calculating the eigenvalues, by using similar arguments as
in Chapter 3, which does not involve any pseudodi�erential operators in this case.

2.3. Tauberian Theorems

Since it is rarely possible to explicitly construct a solution to the Schrödinger equation and
calculate the inverse Fourier transform of its trace, we have to deal with approximations of
the solution operator in a suitable sense and compare this approximated operator to the exact
solution operator. This comparision yields an estimate of the counting function via a Tauberian
theorem.

We consider some essentially self-adjoint operator H on L2(Rd) with domain C∞c (Rd). The
self-adjoint extension is also denoted by H . We assume that it has discrete positive spectrum

0 < λ1 ≤ λ2 ≤ · · · → ∞.

Let Eλ denote the spectral projector of H onto (−∞, λ]. The counting function is given by
TrEλ. There are several di�erent approaches to obtain Weyl-type asymptotics (cf. Hörmander
[26]):

1. The Laplace transform

e−tH =

∫
e−tλdEλ, t > 0.

This transform yields the heat kernel and the corresponding Tauberian argument is due
to Karamata. This method was used by Minakshisundaram–Pleijel [47].

2. The Mellin transform

ζH(s) =

∫
λ−sdEλ,

which yields the Zeta-function. Here, the Tauberian theorem of Ikehara is used (cf.
Shubin [59]). This and the method above are robust and give information on the leading
asymptotics in various settings, but the error term is not optimal.

3. The Fourier transform

e−itH =

∫
e−itλdEλ.

This transform gives the best results, but the construction of a parametrix is much harder
and requires a thorough analysis of the microlocal structure. The Tauberian theorem is
much simpler than in the above cases.

Since we are interested in the precise error estimate, we will only consider the last transform.
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2.3.1. Hörmander’s Tauberian Theorem

Now, we will state the Tauberian theorem and sketch its proof, for details we refer to the second
appendix of [56], see also Safarov [55]. The basic idea is to use the Fourier transform and
a compactly supported function ρ̂ to cut out the high frequencies of a non-smooth function
to obtain a smooth function with the same asymptotic behavior, N(λ) ∼ F−1(ρ̂N̂)(λ) in a
suitable sense.

We �x a real-valued function ρ ∈ S(R) with the following properties

• ρ(λ) > 0 for all λ ∈ R,

• ρ̂(0) = 1,

• supp ρ̂ is compact, and

• ρ is even.

It is proved in [31, Section 17.5] that such a function exists.
We denote by F+ the set of all real-valued monotone nondecreasing functions N on R such

that N = 0 on (−∞, 0) and N is polynomially bounded. These functions are the natural
extension of counting functions. Note that we have no restrictions on the regularity of N .

Theorem 2.3.1 (Hörmander [26]). Let n ∈ R+. If N ∈ F+ and

(dN ∗ ρ)(λ) = O(λn),

then

|N(λ)− (N ∗ ρ)(λ)| = O(λn).

The usual usage of this theorem is to write

N(λ) = F−1(ρ̂N̂)(λ) +O(λn),

where d̂N is nothing but the trace of the Schrödinger propagator e−itH . Choosing the support of
ρ̂ small enough shows that the main contribution of the asymptotic comes from the singularity
at t = 0.

For a complete proof, we refer to [56].

Sketch of Proof. The main step in the proof is to estimate |N(λ+s)−N(λ)| . (1+ |s|)1+|n|λn

uniformly for all s ∈ R. This is further reduced to the estimates

N(λ+ s)−N(λ) . s1+|n|λn,

N(λ)−N(λ− s) . s1+|n|λn
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for natural numbers λ, s. By the assumption, we have for some C > 0,

N(λ+ 1)−N(λ− 1) =

∫ λ+1

λ−1
dN(µ)

≤ C
∫
ρ(λ− µ)dN(µ)

= C(dN ∗ ρ)(λ) = O(λn).

The claim of Theorem 2.3.1 follows from

|(N ∗ ρ)(λ)−N(λ)| = |
∫

(N(λ− µ)−N(λ))ρ(µ)dµ|

≤
∫
|N(λ− µ)−N(λ)|ρ(µ)dµ

≤ Cλn.

The extension due to Duistermaat–Guillemin is that under an additional assumption on the
singularities at t 6= 0, the result can be improved slightly:

Theorem 2.3.2 (Duistermaat–Guillemin [13] and Safarov [54]). If N satis�es the assumption of
Theorem 2.3.1 and if for all χ ∈ S(R) with χ̂ ∈ C∞c (R) and 0 6∈ supp χ̂ it holds that

(dN ∗ χ)(λ) = o(λn),

then the error is given by

|N(λ)− (N ∗ ρ)(λ)| = o(λn).

If the singularities at t 6= 0 are of the same strength as the one at t = 0, we can still give
an improved remainder estimate, but this becomes more complicated since both vertical and
horizontal directions have to be compared:

Theorem 2.3.3 (Safarov [54]). Let Nj ∈ F+ with (dNj ∗ ρ)(λ) = O(λn) for j = 1, 2. Assume
that

(N2 ∗ ρ)(λ) = (N1 ∗ ρ)(λ) + o(λn)

and

(dN2 ∗ χ)(λ) = (dN1 ∗ χ)(λ) + o(λn)

for all χ ∈ S such that χ̂ ∈ C∞c (R) and supp χ̂ ⊂ (0,∞). Then, there exists a positive function f
such that f ∈ o(1) and

N1(λ− f(λ))− λnf(λ) ≤ N2(λ) ≤ N1(λ+ f(λ)) + λnf(λ).
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2.3.2. Mehler’s Formula

We want to use Hörmander’s Tauberian theorem, Theorem 2.3.1, and thus we are led to consider
the solution operator (propagator) of the time-dependent Schrödinger equation:{

(i∂t −H0)u(t) = 0

u(0) = u0.
(2.2)

The solution operator of the Schrödinger equation is denoted by U0(t) = e−itH0 , that is
u(t) = e−itH0u0 solves (2.2).

The propagator of the quantum harmonic oscillatorH0 can be computed explicitly (cf. Grigis–
Sjöstrand [17]).

Proposition 2.3.4. In the case d = 1, the propagator of the quantum harmonic oscillator is given
by the kernel

U0(t, x, y) = (2π)−1 cos(t)−1/2

∫
ei(φ2(t,x,η)−yη)dη, (2.3)

for t ∈ (−π/2, π/2), where φ2(t, x, η) = 1
cos(t)

(
xη − 1

2 sin(t)(x2 + η2)
)
.

Furthermore, the propagator satis�es

U0(π/2) =
e−iπ/4

(2π)d/2
F

and therefore, by Fourier inversion formula, we obtain that

U0(2π) = −U0(0),

which in turn implies by the group property that U0(t+ 2π) = −U0(t) for all t ∈ R.
For higher dimensions d > 1, the propagator is given by

U0(t, x, y) = (2π)−d(−1)dk cos(t)−d/2
∫
ei(φ2(t,x,η)−〈y,η〉)dη, (2.4)

with φ2(t, x, η) = 1
cos(t)

(
〈x, η〉 − 1

2 sin(t)(|x|2 + |η|2)
)

for t ∈ (2πk − π/2, 2πk + π/2).

2.3.3. Alternative Proof of the Weyl Asymptotics

Theorem 2.3.5. The counting function of the eigenvalues of the quantum harmonic oscillator
satis�es

N(λ) =
λd

d!
+

λd−1

(d− 1)!
f(λ) + o(λd−1),

where f denotes a shifted sawtooth function, f(λ) = bλ+ d/2c − λ− (d− 1)/2.
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Proof. First, we calculate the inverse Fourier transform of the Schrödinger trace near t = 0. Let
ρ ∈ S(R) such that ρ̂ ∈ C∞c and supp ρ̂ ⊂ (−π/2, π/2). The kernel of ρ̂(t) · U0(t) is given by

(2π)−d
∫
ei(φ2(t,x,η)−yη) cos(t)−d/2ρ̂(t) dη.

We have to calculate the inverse Fourier transform of the trace:

(dN ∗ ρ)(λ) = (2π)−2d

∫
ei(φ2(t,x,η)−xη+tλ) cos(t)−d/2ρ̂(t) dη dx dt,

= (2π)−2dλd
∫
eiλ(φ2(t,x,η)−xη+t) cos(t)−d/2ρ̂(t) dη dx dt,

where we have used a rescaling (x, η) 7→ (λ1/2x, λ1/2η). The phase is stationary at the points
where 

∂tφ2(t, x, η) = −1

∂xφ2(t, x, η) = x

∂ηφ2(t, x, η) = η.

That is t = 0 and p2(x, η) = 1 for p2(x, η) = (1/2)(|x|2 + |η|2).

Changing from (x, ξ) to polar coordinates (r, θ) and applying the Lemma of stationary phase
(cf. [11, Proposition 6.1]), we conclude that the leading asymptotic is2

(dN ∗ ρ)(λ) = (2π)−ddλd−1

∫
{p2≤1}

dx dη + o(λd−1).

The ball of radius
√

2 in dimension 2d has volume∫
{|x|2+|ξ|2≤2}

dx dξ =
(2π)d

d!
.

Using the basic Tauberian theorem (Theorem 2.3.1) this already proves that N(λ) = λd/d! +
O(λd−1).

For the re�ned asymptotics, we note that U0(t) is periodic with period 2π (modulo a sign)
and therefore the singularities at t = 2π are exactly the same as for t = 0. We de�ne the
function N1 by

N1(λ) =
λd

d!
+

λd−1

(d− 1)!

∑
k∈Z\0

(−1)dke2πikλ

2πik
. (2.5)

2Note that there is no contribution of order λd−1 because the symbol is homogeneous of degree two.
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and note that

dN1(λ) =
λd−1

(d− 1)!

∑
k∈Z

(−1)dke2πikλ + o(λd−1).

Using that sin(x) = (eix − e−ix)/2i, we obtain

∑
k∈Z\0

e2πikλ

2πik
=
∞∑
k=1

sin(2πkλ)

πk

= bλc − λ+ 1/2.

(2.6)

We note that (−1)dke2πikλ = e2πik(λ+d/2), inserting this into (2.6) yields that the series in (2.5)
is f(λ) = bλ+ d/2c − λ− (d− 1)/2. Thus,

N1(λ) = γ0λ
d +

1

d · d!
λd−1f(λ) + o(λd−1).

By the general re�ned Tauberian theorem 2.3.3 the assertion follows.

Remark 2.3.6. For d = 1 this gives a complete description of the spectrum: N(λ) = bλ+ 1/2c
for λ > 0.
Remark 2.3.7. The fact that U0(2π) = −U0(0) for odd dimensions caused that there is a shift of
1/2 for the eigenvalue clusters.

2.4. Isotropic Calculus

Before we turn to the isotropic calculus, we consider the underlying dynamical system of the
harmonic oscillator. This shows that the isotropic calculus is the natural calculus associated to
the harmonic oscillator.

2.4.1. Hamiltonian Vector Fields

Let p ∈ C∞(R2d), we de�ne Hp := ∂ξp(x, ξ)∂x − ∂xp(x, ξ)∂ξ the Hamiltonian vector �eld
associated to p. The Hamiltonian vector �eld is related to the Poisson bracket, by

Hpf = {p, f}.

We denote the �ow of H0 by exp(tHp). One of the most important properties of the Hamiltonian
�ow is that it preserves the function p:

p(exp(tHp)(x, ξ)) = p(x, ξ)

for all t ∈ R.
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Figure 2.2.: The Hamiltonian vector �eld H0 on {x2 + ξ2 = 1}.

For p2 = (1/2)(|x|2 + |ξ|2) the Hamiltonian vector �eld is H0 = ξ∂x − x∂ξ . Its �ow is given
by (x(t), ξ(t)) = exp(tH0)(x0, ξ0) with(

x(t)
ξ(t)

)
=

(
cos(t) sin(t)
− sin(t) cos(t)

)(
x0

ξ0

)
.

Since the �ow is homogeneous of degree 1 jointly in (x, ξ), we want to de�ne a calculus of
pseudodi�erential operators with the property that the asymptotic expansion is jointly in (x, ξ).
A symbol a composed with the Hamiltonian �ow exp(tH0), a◦exp(tH0), is again in the calculus.

2.4.2. Isotropic Symbol Estimates

The symbol estimates are due to Shubin [59] (cf. also Hel�er [22] and Hörmander [28]).
De�nition 2.4.1. A function a ∈ C∞(R2d) is an isotropic symbol of order m ∈ R if for all
α, β ∈ Nd,

|∂αx ∂
β
ξ a(x, ξ)| .α,β 〈(x, ξ)〉m−|α|−|β|.

We denote the set of all isotropic symbols of order m by Γm.
For γ ∈ N2d, we de�ne the corresponding seminorms

‖a‖γ,Γm := sup
z∈R2d

|∂γz a(z)|〈z〉−m+|γ|.

These de�ne a Fréchet topology on Γm.
As in the case of the Kohn-Nirenberg symbols, we will be mainly interested in the subclass

of classical isotropic symbols. Choose a function χ ∈ C∞c (R2d) such that χ ≡ 1 in the ball of
radius 1/4 centered at the origin and χ ≡ 0 outside of the ball of radius 1/2 centered at the
origin. A symbol a ∈ Γm is called classical, a ∈ Γmcl , if there exist homogeneous functions am−j
in (x, ξ) of order m− j such that

a ∼
∑
j

am−j ,
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meaning that for all N ∈ N,

a− (1− χ)

N−1∑
j=0

am−j ∈ ΓN .

The space of all symbols will be denoted by Γ =
⋃
m∈R Γm and the classical symbols are

Γcl =
⋃
m∈R Γmcl .

To each symbol a ∈ Γ we can associate a bounded linear operator

Opw(a) = aw(x,D) : S(Rd)→ S ′(Rd),

the Weyl-quantization:

〈aw(x,D)u, v〉 =

∫
ei(x−y)ξa((x+ y)/2, ξ)u(y)v(x) dx dy d̄ξ.

The symmetry in x, y implies that the L2-adjoint is formally (aw(x,D))∗ = āw(x,D). Thus, if
a has real-valued symbol, its Weyl-quantized operator is formally self-adjoint. We set

Gm = {aw(x,D) : a ∈ Γm}

and
Gmcl = {aw(x,D) : a ∈ Γmcl }.

It is clear that G =
⋃
mG

m is a �ltered ∗-algebra and Gcl =
⋃
mG

m
cl is a sub-algebra.

More generally, we can a de�ne the t-quantized operator for t ∈ [0, 1] by

at(x,D) = Opt(a) =

∫
ei(x−y)ξa(tx+ (1− t)y, ξ) d̄ξ.

If t = 1/2, we obtain the Weyl-quantization. The case t = 0 is called the left-quantization
aL(x,D) and t = 1 is the right-quantization aR(x,D).

The advantage of the Weyl quantization is that it is metaplectically covariant (cf. Hörmander
[31, Theorem 18.5.9]), meaning that for any linear symplectic map

κ : T ∗Rd → T ∗Rd,

there exists a unique (up to a constant of modulus 1) unitary transformation U : L2(Rd) →
L2(Rd) such that

U−1aw(x,D)U = (a ◦ κ)w(x,D).

Furthermore, we have for the harmonic oscillator propagator U0(t) that

U0(t)−1aw(x,D)U0(t) = (a ◦ exp(tH0))w(x,D).
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There is a principal symbol map

σm : Gm → Γm/Γm−1

such that the following short sequence is exact:

0→ Gm−1 → Gm
σm→ Γm/Γm−1 → 0.

If the operator A = aw(x,D) is classical with asymptotic expansion a ∼
∑

j am−j , then the
principal symbol σm(A) is the homogeneous function of highest order: σm(A) = am.
Example 2.4.2. The most important example of an isotropic pseudodi�erential operator is the
harmonic oscillator H0. Its symbol is given by p2 = 1/2(|x|2 + |ξ|2). Complex powers of H0

(cf. Shubin [59]) and harmonic oscillators with di�erent frequencies are also contained in the
calculus. As mentioned above, if a ∈ Γm, then a ◦ exp(tH0) ∈ Γm for all t ∈ R.

The potentials V (x) ∈ Smcl are generally not in Γmcl since di�erentiation in x does not lead to
decay in ξ.
Example 2.4.3. More generally, di�erential operators of the form∑

|α|+|β|≤m

aα,βx
αDβ

are in Gm.
A similar calculus was de�ned by Wunsch [65, 66] to deal with potential and metric pertur-

bations. It was used to study propagation of singularities for the harmonic oscillator and the
Schrödinger equation.

2.4.3. Composition

Before we calculate the composition of two pseudodi�erential operators, we consider changing
the quantization. Let t, s ∈ [0, 1] and a ∈ S(R2d) and set A = at(x,D). We want to write
A = bs(x,D) for some b ∈ S(R2d).

Proposition 2.4.4 (cf. Theorem 4.13 in Zworski [69]). The symbol b is given by

b(x, ξ) = ei(s−t)〈Dx,Dξ〉a(x, ξ).

Using that S(R2d) is dense in C∞(R2d) we may extend this to general symbols. In particular,
this show that if a ∈ Γm, then for any t ∈ [0, 1], at(x,D) ∈ Gm and the principal symbol
σm(aw(x,D)) is independent of the quantization,

σm ◦Op• : a 7→ [a] ∈ Γm/Γm−1.
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In order to compose two pseudodi�erential operators aw(x,D) and bw(x,D), we change the
quantization of aw(x,D) to the left-quantization and of bw(x,D) to the right quantization. We
may use that

aL(x,D)bR(x,D) =

∫
ei(x−y)ξa(x, ξ)b(y, ξ) d̄ξ

and change this back to right quantization.
Let a ∈ Γm1 and b ∈ Γm2 . De�ne the Moyal product # by

(a#b)(x, ξ) := eiσ(Dx,Dξ,Dy ,Dη)/2 (a(x, ξ)b(y, η))
∣∣
y=x,η=ξ

,

where the operator eiσ(Dx,Dξ,Dy ,Dη)/2 is de�ned as a Fourier multiplier and σ(x, ξ, y, η) =
〈ξ, y〉 − 〈x, η〉 is the symplectic 2-form.

Proposition 2.4.5. Let a ∈ Γm1 , b ∈ Γm2 . The product satis�es

a#b ∈ Γm1+m2

and there is an asymptotic expansion

a#b ∼
∑
k

ik

k!
σ(Dx, Dξ, Dy, Dη)

ka(x, ξ)b(y, η)
∣∣
y=x,η=ξ

.

In particular, we have that

• a#b = ab+ 1
2i{a, b}+ Γm1+m2−4,

• [aw(x,D), bw(x,D)] = −i{a, b}w(x,D) +Gm1+m2−6.

• If supp a ∩ supp b = ∅, then a#b ∈ Γ−∞.

The crucial property of the isotropic calculus is that the commutator is two orders lower, because
the Poisson bracket satis�es

{a, b} ∈ Γm1+m2−2. (2.7)

Remark 2.4.6. For the left quantization, we have the product

(a#Lb)(x, ξ) := ei〈Dξ,Dy〉 (a(x, ξ)b(y, η))
∣∣
y=x,η=ξ

and for the right quantization

(a#Rb)(x, ξ) := e−i〈Dx,Dη〉 (a(x, ξ)b(y, η))
∣∣
y=x,η=ξ

.

Furthermore there are similar expansions as in Proposition 2.4.5.
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2.4.4. Ellipticity and Essential Support

We call a symbol a ∈ Γm elliptic at (x0, ξ0) ∈ R2d \ {0} if there is an open conic neighborhood
Γ0 of (x0, ξ0) and a constant C > 0 such that for all (x, ξ) ∈ Γ0,

a(x, ξ) ≥ C〈(x, ξ)〉m.

If a is classical the condition is that am(x0, ξ0) 6= 0. The set of all elliptic points is denoted by
ell(a) and its complement is the characteristic set Σ(a). Since the principal symbol is invariantly
de�ned, it makes sense to call an operator elliptic at a point (x0, ξ0).

A point z0 = (x0, ξ0) ∈ R2d \ {0} is not in the essential support of a, z0 6∈ ess-supp(a),
if there exists a symbol b ∈ Γ0, elliptic at z0 such that a · b ∈ S(R2d). While this condition
depends on the full symbol a it is invariant under changing the quantization and therefore we
also de�ne the essential support of A ∈ Gm as the the essential support of the symbol for any
quantization.

We will denote the essential support of A by WF′(A), also called the operator wavefront set.
Using the conic structure of phase-space, we may view WF′(A) as a subset of S2d−1. It has the
following properties:

1. WF′(A∗) = WF′(A),

2. WF′(AB) ⊂WF′(A) ∩WF′(B),

3. WF′(A+B) ⊂WF′(A) ∪WF′(B),

4. for any K ⊂ S2d−1 closed and U ⊂ S2d−1 open with K ⊂ U , there exists A ∈ G0 such
that WF′(A) ⊂ U and σ0(A) = 1 on K.

5. For each A ∈ Gk the following are equivalent:
• WF′(A) = ∅,
• A ∈ G−∞,
• A : S ′ → S.

Elliptic pseudodi�erential operators are always invertible up to a regularizing error.
Proposition 2.4.7. Let A ∈ Gm be elliptic. There exists a pseudodi�erential operator B ∈ G−m
such that

AB − 1 ∈ G−∞, BA− 1 ∈ G−∞.

Such a B is called a parametrix of A.

This property can also be microlocalized:
Proposition 2.4.8. Let A ∈ Gm be elliptic at z ∈ S2d−1. There exists a microlocal parametrix
B ∈ G−m meaning that

z 6∈WF′(AB − I) ∪WF′(BA− I).
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2.4.5. Sobolev Spaces

First, it follows from the Schur test and Hörmander’s square-root trick that the isotropic
operators of order zero are bounded in L2 (cf. Nicola–Rodino [49] for a proof in a more general
setting).

Proposition 2.4.9. Let a ∈ Γ0. The operator A = aw(x,D) satis�es

‖A‖L2→L2 ≤ ‖a‖k,Γ0 ,

for some k ∈ N.

It also holds that for a ∈ Γ−ε the operator aw(x,D) : L2 → L2 is compact. Now we are able
to de�ne a scale of Sobolev spaces adapted to the isotropic calculus.
De�nition 2.4.10. Let u ∈ S ′(Rd) and s ∈ R. We say that u ∈ Hs

iso if

‖Au‖L2 <∞

for all A ∈ Gs.
In particular, it follows from Proposition 2.4.9 that H0

iso = L2. Further, the scale of Sobolev
spaces is globally regularizing, that is⋂

s∈R
Hs

iso = S(Rd),
⋃
s∈R

Hs
iso = S ′(Rd).

There are several equivalent norms on Hs
iso that turn it into a Hilbert space. Let s ∈ R be

arbitrary. We de�ne the s/2-th power of the quantum harmonic oscillator H0, Λs = H
s/2
0 by

the spectral theorem. It can be shown that Λs ∈ Gscl(Rd) (cf. Nicola–Rodino [49]). The principal
symbol of Λs is (

1

2
(|ξ|2 + |x|2)

)s/2
.

Since Λs is invertible,

‖u‖Hs
iso

:= ‖Λsu‖L2

is a norm on Hs
iso. If A ∈ Gs is elliptic and s ≥ 0, then an equivalent norm is given by

‖Au‖L2 + ‖u‖L2 .

This is not an equivalent norm if s < 0.
By the construction it follows that for all s,m ∈ R and all pseudodi�erential operators

A ∈ Gm,

A : Hs
iso → Hs−m

iso

is continuous and the operator norm is controlled by a seminorm of the total symbol (in any
quantization).
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2.4.6. Isotropic Wavefront Sets

Roughly speaking, wavefront sets measure how much a distribution fails to be “regular” in
some sense. The classical wavefront set introduced in Section A.4 measures how a distribution
fails to be smooth. The isotropic wavefront set detects whether a tempered distribution is not
a Schwartz function, so it sees both non-smoothness and non-decay. It was introduced by
Hörmander [28].
De�nition 2.4.11. Let u ∈ S ′(Rd) be a tempered distribution. The isotropic wavefront set
WFiso(u) ⊂ R2d \ {0} is de�ned as

WFiso(u) :=
⋂
A∈G0

Au∈S

Σ(A).

We also de�ne the isotropic wavefront set of order s ∈ R by

WFsiso(u) :=
⋂
A∈Gs
Au∈L2

Σ(A).

They have the following properties:

• A tempered distribution u is a Schwartz function u ∈ S if and only if WFiso(u) = ∅.

• The distribution u is in the isotropic Sobolev space u ∈ Hs
iso if and only if WFsiso(u) = ∅.

• If f ∈ S , then WFiso(fu) ⊂WFiso(u).

• IfA ∈ Gm for anym ∈ R, then WFiso(Au) ⊂WFiso(u)∩ess-supp(A) and WFiso(u) ⊂
WFiso(Au) ∪ Σ(A).

• WFiso(u) =
⋃
s∈R WFsiso(u).

Now we will investigate the relationship between smoothness and the isotropic wavefront
set. The directions {0} × Rd measure lack of smoothness. This is illustrated in Figure 2.3. The
following Lemma is a special case of Proposition 2.6 by Hörmander [28].

Lemma 2.4.12. Let u ∈ E ′. The isotropic wavefront set of u is contained in the vertical space,

WFiso(u) ⊂ {0} × Rd.

It is well-known that WFiso(u) ∩ {0} ×Rd = ∅ implies that u ∈ C∞ (cf. [11, 28]). We re�ne
this result slightly:3

3This result was stated by Nakamura [48] for the homogeneous wavefront set.
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x

ξ

Figure 2.3.: Comparision of the classical and the isotropic wavefront set. The blue area denotes
the elliptic set of a and the green area is the support of b. (cf. Schulz [58]).

Lemma 2.4.13 (cf. Doll [10]). Let u ∈ S ′(Rd) and Γ ⊂ Rd \{0} be an open cone. If WFiso(u)∩
{0} × Γ = ∅, then WFcl(u) ∩ Rd × Γ = ∅.

Proof. Let a ∈ Γ0
cl be such that a = 1 in a conic (in (x, ξ)) neighborhood of {0} × Γ and

supp a ∩WFiso(u) = ∅. By the properties of the isotropic wavefront set, we obtain

u = a(x,D)u+ (1− a(x,D))u

= (1− a(x,D))u+ S(Rd)

= (2π)−d
∫
eixξ(1− a(x, ξ))û(ξ)dξ + S(Rd).

Choose b ∈ S0
cl with supp b ⊂ K × Γ for some compact set K ⊂ Rd. There is an R > 0

such that {(x, ξ) ∈ supp b : |ξ| > R} ⊂ supp a. Therefore, the symbol of the composition
b(x,D)(1− a(x,D)) is compactly supported in (x, ξ). This implies that

b(x,D)(1− a(x,D)) : S ′ → S

and thus
b(x,D)u = b(x,D)(1− a(x,D))u+ b(x,D)a(x,D)u ∈ S(Rd).

Note that u ∈ C∞ does not imply that WFiso(u)∩{0}×Rd = ∅. The function u : x 7→ eix
3/3

is smooth, but not rapidly decaying and one can show, using the semiclassical description of
isotropic wavefront set, that WF(u) ⊂ {0} × Rd.

2.5. Propagation of Singularities

The natural operators in G are of order 2 and, since the commutator of two isotropic operators
is two orders lower than the sum, we can use a commutator argument similar to the proof of
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Lemma 3.2.1 to show that the isotropic wavefront set is rotated according to the Hamiltonian
�ow of the principal symbol.

Let P = pw(x,D) ∈ G2
cl(Rd) a self-adjoint elliptic operator and assume that the symbol p

admits an asymptotic expansion

p ∼
∞∑
j=0

p2−j .

Recall that Hp2 is the Hamiltonian vector �eld of p2 satisfying Hp2f = {p2, f} for all f ∈
C∞(R2d).

Proposition 2.5.1. Let s ∈ R and u ∈ C([0, T ], Hs
iso)∩C1([0, T ], Hs−1

iso ) be the solution of the
equation {

(i∂t − P )u(t, x) = 0

u(0, x) = u0

for u0 ∈ Hs
iso. The wavefront set of u(t) is given by

WFiso(u(t)) = exp(tHp2) WFiso(u0).

Proof. We will use a variant of the method of positive commutators.4
Using the substitution

u 7→ Λ−su, P 7→ Λ−sPΛs

we may assume that u ∈ C([0, T ], H1
iso) ∩ C1([0, T ], L2(Rd)) and u0 ∈ L2(Rd). We will show

by induction that

WFkiso(u(t)) = exp(tHp2) WFkiso(u0). (2.8)

For k = 0 this is clear by the assumption that the equation is well-posed in L2.
We now assume that (2.8) is true for k−1. Let (x0, ξ0) 6∈WFkiso(u0). In particular, (x0, ξ0) 6∈

WFk−1
iso (u0) and by the inductive hypothesis

exp(tHp2)(x0, ξ0) 6∈WFk−1
iso (u(t)), t ∈ [0, T ].

Hence, there exists a B ∈ C∞([0, T ], Gk−1) such that exp(tHp2)(x0, ξ0) ∈ ell(B(t)) and
B(t)u(t) ∈ L2 for all t ∈ [0, T ].

Let a0 ∈ Γk such that a0 is elliptic at (x0, ξ0) and a(t) = a0 ◦exp(tHp2) has essential support

ess-supp a(t) ⊂ ell(B(t)), t ∈ [0, T ].

4In our case the commutator is actually zero.
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We set aε = a0 · (1 + ε(|x|2 + |ξ|2))−1/2 and de�ne aε(t) = aε ◦ exp(tHp2).
De�ne the operators A(t) = aw(t, x,D) and Aε(t) = awε (t, x,D) ∈ Gk−1 for ε > 0

small. The operator Aε(t) converges to A(t) in the topology of Gk+1. By Property 2 of the
operator wavefront set, WF′(Aε(t)) ⊂ ell(B(t)) and hence, by microlocal elliptic regularity,
Aε(t)u(t) ∈ L2. Since P is self-adjoint Re (iPAε(t)u(t), Aε(t)u(t))L2 = 0 and we obtain

2‖Aε(t)u(t)‖∂t‖Aε(t)u(t)‖ = ∂t‖Aε(t)u(t)‖2

= 2 Re ((∂tAε(t))u(t) +Aε(t)∂tu(t), Aε(t)u(t))L2

= 2 Re ([∂t + iP,Aε(t)]u(t), Aε(t)u(t))L2

≤ 2 ‖[∂t + iP,Aε(t)]u(t)‖ · ‖Aε(t)u(t)‖.

(2.9)

Note that [∂t, Aε(t)]u(t) = (∂tAε(t))u(t). Integrating inequality (2.9) yields

‖Aε(t)u(t)‖ ≤ ‖Aε(0)u0‖+

∫ t

0
‖[∂s + iP,Aε(s)]u(s)‖ ds. (2.10)

Now, the k−2-principal symbol of the commutator is (∂s+Hp2)aε(s) = 0. Thus, the right-hand
side of (2.10) is uniformly bounded as ε→ 0. We conclude that A(t)u(t) ∈ L2 and therefore,
exp(tHp2)(x0, ξ0) 6∈WFkiso(u(t)).

The other inclusion follow from reversing the time t 7→ −t.

Remark 2.5.2. The positive commutator argument can be extended to more complicated situa-
tions, for instance for non-smooth pseudodi�erential calculi [29] or in the presence of radial
points [42].

In Chapter 4, we calculate the classical wavefront set. From Lemma 2.4.13 and Proposition 2.5.1
it is clear that the singularities reappear only at certain times.

Let exp(tHp2)(y, η) = (x(t, y, η), ξ(t, y, η)) the Hamiltonian �ow of the vector �eld Hp2 ,

Γt =
{
η ∈ Rd \ {0} : exp(tHp2)(0, η) ∈ {0} × Rd

}
,

and de�ne the function Ξt : Γt → Rd, which is given by Ξt(η) = ξ(t, 0, η). It satis�es

exp(tHp2)(0, η) = (0,Ξt(η)).

Note that Ξt is homogeneous of degree one. Set Gt = suppU0(t)u× Ξt(Γt) and

Xtf =

∫ t

0
f ◦ exp(sHp2)ds.

The main theorem of Chapter 4 is the following.

Theorem 2.5.3. Let u ∈ E ′ + S and t ∈ R. The classical wavefront set of U(t)u satis�es

WF(U(t)u) ⊂ {(x,Ξt(η)) ∈ Gt : ∂η〈x,Ξt(η)〉 − ∂ηXtp1(0, η)− y⊥Γt, (y, η) ∈WF(u)} .
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2.6. Parametrices for Longer Times

For the propagation of the isotropic singularities, we did not have to construct a parametrix of
the time-dependent Schrödinger equation{

(i∂t −H)u(t, x) = 0

u(0, x) = u0.

Here, as before H ∈ G2
cl(Rd) is a self-adjoint elliptic operator and u0 ∈ S ′(Rd).

It was shown by Hel�er–Robert [24] that there is always a short-time parametrix Ũ(t)
for U(t) = e−itH as an oscillatory integral. For the re�ned Weyl asymptotics one needs
parametrices for arbitrary times.

2.6.1. Hel�er–Robert Parametrix

The idea of Hel�er–Robert is to construct a parametrix for the operator e−itH as an oscillatory
integral of the form

Ũ(t, x, y) =

∫
ei(φ2(t,x,η)+φ1(t,x,η)−yη)a(t, x, η)dη,

where φj is homogeneous of degree j and a is an amplitude outside a compact set.
The eikonal equation for φ2 = φ2(t, x, η) is{

∂tφ2 + p2(x, ∂xφ2) = 0

φ2(0, x, η) = xη.
(2.11)

The eikonal equation for φ1 = φ1(t, x, η) is more complicated:{
∂tφ1 + p1(x, ∂xφ2) + 〈∂ξp2(x, ∂xφ2), ∂xφ1〉 = 0

φ1(0, x, η) = 0.
(2.12)

This type of parametrix is used in Section 3.5 to calculate the contribution to the Schrödinger
trace near t = 0. For the singularities at times t = 2πk this approach is not suited since the
eikonal equation degenerates at t = π/2.

2.6.2. Reduced Parametrix

In Chapter 3 we will construct a parametrix which is better suited if one wants to keep track of
the secondary phase function φ1, but at the cost of losing information about the amplitude. Set
H0 = Opw(p̃), where p̃ ∈ Γ2

cl and p̃ = σ2(H) outside a compact set in R2d.
The main idea is to split the propagator into two parts:

e−itH = e−itH0F (t).
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The operator U0(t) = e−itH0 is called the “free” propagator and F (t) the reduced propagator.
Set P (t) = U0(−t)(H −H0)U0(t). It is straightforward to verify that{

(i∂t − P (t))F (t) = 0

F (0) = I .
(2.13)

By Hel�er–Robert’s Egorov theorem [22], P (t) ∈ G1. This means that we have lowered the
order, but the operator is now time-dependent.

If H = pw(x,D) with p ∼ p2 + p1 + . . . , then by Egorov’s theorem [22] we obtain that

σ1(P (t)) = p1 ◦ exp(tHp2), (2.14)

In the special case that p2 is a polynomial, we can apply the exact Egorov theorem (cf. Hörmander
[31]) to obtain that

P (t) = ((p− p2) ◦ exp(tHp2))w(x,D),

where p2 = σ2(H).
We write P (t) = OpR(pR(t)) for some pR ∈ C∞(R,Γ1

cl(Rd)). Using the ansatz F̃ (t) =
OpR(eiφ1a) to solve (2.13), we arrive at the equation

−∂tφ1(t)eiφ1(t)a(t) + ieiφ1(t)∂ta(t) = pR(t) #R e
iφ1(t)a(t).

If we set φ1 ∈ C∞(R× R2d,R) such that φ1 is given outside a compact set K ⊂ R2d by

φ1(t, x, η) = −
∫ t

0
p1(exp(sHp2)(x, η))ds,

then φ1(t) solves the eikonal equation{
∂tφ1(t, x, η) + (p1 ◦ exp(tHp2))(x, η) = 0

φ1(0, x, η) = 0

outside of R×K . The system of transport equations can be solved for all t to arbitrary order
(cf. Proposition 2.1.2 and Lemma 3.3.1. Repeating the arguments as in the proof of Lemma 3.3.1
we obtain a parametrix of F (t) for arbitrary times t.
Lemma 2.6.1. There is an operator

F̃ (t) = OpR(eiφ1(t)a(t))

where φ1 as above and a ∈ C∞(Rt,Γ0
cl), such that{

(i∂t − P (t))F̃ (t) ∈ C∞(Rt,L(S ′,S))

F̃ (0)− I ∈ L(S ′,S).

Now, we compose this parametrix with a parametrix for the “free” propagator e−itH0 , which
is constructed as in Hel�er–Robert. In the case of the quantum harmonic oscillator, we can use
the Mehler formula. The composition theorem is proved in Section 3.3.
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2.7. Spectral Theory of the Perturbed Harmonic Oscillator

In this section, we want to complement the result of Chapter 3 by the observation that for the
quantum harmonic oscillator with at least two rationally related frequencies, we always obtain
the improved remainder estimate in the Weyl law.

2.7.1. Second Order Operators

Let H ∈ G2
cl(Rd) be an elliptic self-adjoint operator. We show that H has discrete spectrum

and the Schrödinger trace is well-de�ned as a distribution. Without loss of generality we may
assume that H is bounded from below. Thus, the resolvent (H − µ)−1 de�ned for µ� 0 and
since H : H2

iso → L2, we have

(H − µ)−1 : L2 → H2
iso.

The embedding H2
iso → L2 is compact, therefore (H − µ)−1 is a compact self-adjoint operator

on L2 and has discrete spectrum accumulating at 0. Thus, H has discrete spectrum

λ1 ≤ λ2 ≤ · · · → ∞.

To de�ne the trace of e−itH , we �rst note that we may assume that H is positive. The operator
H−N is trace-class for N � 0. Let φ ∈ S(R) be a test function. We formally calculate

〈φ,Tr e−itH〉 = 〈φ,TrH−NHNe−itH〉
= iN 〈φ,TrH−N∂Nt e

−itH〉
= 〈(−i∂t)Nφ,TrH−Ne−itH〉.

Now, H−Ne−itH is trace-class since e−itH is unitary and therefore the last line is well-de�ned.
We de�ne Tr e−itH by this expression.

2.7.2. Improved Remainder Estimates

Let (M, g) be a compact, connected, and oriented Riemannian manifold and denote by ∆g the
Laplacian and p(x, ξ) = gij(x)ξiξj its principal symbol. The operator

√
∆g is a �rst order

pseudodi�erential operator with principal symbol√p.
Hörmander [26] proved that the counting function N(λ) of the eigenvalues of

√
∆g satisfy

N(λ) = (2π)−dλd
∫
{p≤1}

dx dξ +O(λd−1).

This estimate is sharp. For instance if M = S2, we can explicitly calculate the eigenvalues
and the high multiplicities of the eigenvalues prohibit an improved remainder estimate. The
famous Theorem by Duistermaat–Guillemin [13] states that the estimate can be improved if the
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co-geodesic �ow γt, which is the Hamiltonian �ow for the principal symbol, is not periodic.
More precisely, if the set {(x, ξ) ∈ S∗M : ∃t > 0, γt(x, ξ) = (x, ξ)} has measure zero as a
subset of S∗M , then one obtains the estimate

N(λ) = (2π)−dλd
∫
{p≤1}

dxdξ + o(λd−1).

Note that for arbitrary �rst order pseudodi�erential operators, there is an additional term
homogeneous of degree d− 1.

It was shown by Hel�er–Robert, that the general sharp remainder estimate is O(λd−1). More
precisely they showed:

Theorem 2.7.1 (Hel�er–Robert [23]). LetH ∈ G2m
cl (R2d) be an elliptic isotropic pseudodi�eren-

tial operator with real-valued Weyl-quantized symbol p ∼ p2m+p2m−1 + . . . , and p2m(x, ξ) > 0
for (x, ξ) 6= 0. The counting function N(λ) of the eigenvalues of H satis�es

N(λ) = γ0λ
d/m + γ1λ

(d−1/2)/m +O(λ(d−1)/m),

where

γ0 = (2π)−d
∫
{p2m≤1}

dx dξ and γ1 = −(2π)−d
∫
{p2m=1}

p2m−1
dS

|∇p2m|
.

The goal of Chapter 3 is to show that in the isotropic calculus, even if the Hamiltonian �ow
of the principal symbol is periodic, under a suitable assumption on the subprincipal symbol, we
obtain a similar improvement. In order to see this, set

Xf =

∫ 2π

0
f ◦ exp(tH0)dt.

This is the average over the �ow of the classical harmonic oscillator.

Theorem 2.7.2 (Doll–Gannot–Wunsch [11]). Let p ∈ Γ2
cl(R2d) be real-valued with p2 =

(1/2)(|x|2 + |ξ|2) and set H = pw(x,D). Assume that, when restricted to S2d−1, the set where
∇Xp1 vanishes to in�nite order has measure zero. We have the improved Weyl asymptotics

N(λ) = (2π)−d
∫
{p2+p1≤λ}

dxdη − (2π)−d
∫
{p2=λ}

p0(x, η)
dS

|∇p2|
+ o(λd−1). (2.15)

If we consider the harmonic oscillator with arbitrary frequencies,

H0 = 1/2(∆ +
∑
j

ω2
jx

2
j ),

for ωj ∈ (0,∞), then we expect that in the generic case we should obtain a similar improvement.
More generally, consider an isotropic symbol p ∈ Γ2

cl(Rd) with the following properties:
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• p ∼
∑∞

j=0 p2−j ,

• σ2(p) = p2 = 1/2(|ξ|2 +
∑

j ω
2
jx

2
j ), and

• p is real-valued.

As usual set H = pw(x,D) and Hp2 is the Hamiltonian vector �eld of p2.
We can use the propagation of isotropic singularities theorem to prove a result on the singular

support of the trace of e−itH :

Proposition 2.7.3. The singularities of the Schrödinger trace satisfy

sing-supp e−itH ⊂ {t ∈ R : ∃z ∈ R2d \ {0} such that exp(tHp2)z = z}.

Remark 2.7.4. Note that this result holds for any elliptic self-adjoint pseudodi�erential operator
H ∈ G2(R2d) with positive principal symbol. The proof is almost identical to the proof of
Proposition 3.1.1.

The Duistermaat–Guillemin theorem for isotropic pseudodi�erential operators was proved
by Petkov–Robert [51] in the semiclassical setting. A proof in the non-semiclassical setting
follows from similar arguments as in the Chapters 3 and 4. For simplicity, we will assume that
the principal symbol comes from an an harmonic oscillator with irrationally related frequencies.

Theorem 2.7.5. Let p be as above and assume that there are j0, j1 ∈ {1, . . . , d} such that
ωj0/ωj1 ∈ R \Q. Then,

N(λ) = (2π)−d
∫
{p2+p1≤λ}

dxdξ − (2π)−d
∫
{p2=λ}

p0(x, η)
dS

|∇p2|
+ o(λd−1),

where dS is the surface-measure on {p2 = λ}.

Proof. To calculate the contribution of the trace at t = 0, we use the same argument as in the
proof of Proposition 3.5.1. Therefore, it only remains to show that for any χ ∈ S(R) with
χ̂ ∈ C∞c ((0,∞)) the trace ful�lls

(dN ∗ χ)(λ) = o(λd−1).

By Proposition 2.7.3 it su�ces to consider the case that supp χ̂ is close to ω−1
j0
πk for some �xed

j0 and some k ∈ Z. By assumption there are two irrationally related frequencies, so there is at
least one ωj1 such that supp χ̂ ∩ ω−1

j1
πZ = ∅Without loss of generality we may thus assume

that there is a 1 ≤ k < d such that

supp χ̂ ∩ π

ωj
(1/2 + Z) = ∅, for all j ≤ k,

supp χ̂ ∩ π

ωj
Z = ∅, for all j > k.
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As the �rst step, we construct a parametrix of the operator e−itH0 for arbitrary times t > 0.
Since the propagator is just the product of the 1-dimensional propagators in each variable, we
have to only consider the cases j ≤ k and j > k and the full propagator is given by the product

e−itH0(x, y) =
d∏
j=1

U0(ωjt, xj , yj).

Case 1: j ≤ k. By Proposition 2.3.4 and the discussion thereafter, it is clear that

χ̂(t)U0(ωjt, xj , yj) = χ̂(t)aj(t)

∫
ei(φ2(ωjt,xj ,ηj)−yjηj)dη,

where aj(t) = iν(2π)−1/2 cos(ωjt)
−1/2 and ν ∈ {0, 1, 2, 3} is a Maslov factor.

Case 2: j > k. By [17, Exercise 11.1]

χ(t)U0(ωjt, xj , yj) = χ̂(t)aj(t)e
iφ̃2(ωjt,xj ,yj),

where aj(t) = iν(2π)−1/2 sin(ωjt)
−1/2 and ν ∈ {0, 1, 2, 3} is a Maslov factor. The phase

function is given by

φ̃2(t, xj , yj) =
1

sin(t)
(−xjyj +

1

2
cos(t)(x2

j + y2
j )).

Combining this yields

e−itH0(x, y) =

∫
Rk
eφ(t,x,y,η)a(t) dη,

with a(t) =
∏d
j=1 aj(t) and

φ(t, x, y, η) =

k∑
j=1

(φ2(ωjt, xj , ηj)− yjηj) +

d∑
j=k+1

φ̃2(ωjt, xj , yj).

We want to construct a parametrix for U(t) = U0(t)F (t), where the reduced propagator
F (t) solves (2.13) with P (t) = eitH0(H −H0)e−itH0 .

By Lemma 2.6.1 there is a parametrix F̃ (t) of F (t), given by

F̃ (t) =

∫
ei(x−y)ξ+iφ1(t,y,ξ)b(t, y, ξ) d̄ξ,

where φ1(t, y, ξ) = −
∫ t

0 p1 ◦ exp(tHp2)dt and b ∈ C∞(R,Γ0
cl). The composition is almost

trivial, because F̃ (t) is right-quantized and the composition is reduced to the identity

δ(x− y) =

∫
ei(x−y)ξ d̄ξ.
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Summing up, we obtain that a parametrix for U(t) is given by

Ũ(t, x, y) =

∫
Rk
ei(φ(t,x,y,η)+φ1(t,y,η,0))a(t)b(t, y, η, 0) dη.

Here (η, 0) ∈ Rk × Rd−k.
Now, calculating the inverse Fourier transform of Tr Ũ(t)χ̂(t) in t and changing coordinates

(x, y, η) 7→ λ1/2(x, y, η) yields

F−1
t→λ{χ̂(t) Tr Ũ(t, x, x)}(λ)

= λ(d+k)/2

∫
Rd+k

eiλ(φ(t,x,x,η)+λ−1/2φ1(t,x,η,0)+t)χ̂(t)a(t)b(t, λ1/2x, λ1/2η, 0) dη dx.

This oscillatory integral satis�es the assumptions 1.–4. from Proposition 3.4.1 and thus, we use
the same argument as in the �rst step of the proof of Proposition 3.4.1 to conclude that

(dN ∗ χ)(λ) = F−1
t→λ{χ̂(t) Tr Ũ(t, x, x)}(λ) +O(λ−∞) = O(λ(d+k)/2−1)

and since k < d we have shown that

(dN ∗ χ)(λ) = o(λd−1).



CHAPTER 3

Improved Remainder Estimates
for the Weyl Asymptotic

3.1. Introduction

This chapter is taken from the article [11]. The section about the isotropic calculus has been
deleted. The results which are needed can be found in Section 2.4.

3.1.1. Main Results

Let H0 = 1
2(∆ + |x|2) denote the isotropic harmonic oscillator on Rd, where ∆ is the non-

negative Laplacian. ThusH0 is the Weyl quantizationH0 = Opw(p2), where p2 = (1/2)(|x|2 +
|ξ|2). Consider a perturbation

H = Opw(p),

where p di�ers from p2 by a classical isotropic 1-symbol. In other words, p admits an asymptotic
expansion

p ∼ p2 + p1 + p0 + . . . , (3.1)

where each pj is homogeneous of degree j jointly in (x, ξ). Furthermore, assume that p is real
valued, hence H∗ = H by properties of the Weyl calculus.

Since p2(x, ξ) > 0 for (x, ξ) 6= 0, the resolvent of H is compact and H has discrete spectrum

λ1 ≤ λ2 ≤ · · · → +∞,

where each eigenvalue is listed with multiplicity. Let Eλ denote the corresponding spectral
projector onto (−∞, λ], so if N(λ) =

∑
λj≤λ 1 is the counting function, then N(λ) = TrEλ.

Moreover, the Fourier transform of the spectral measure satis�es U(t) = Fλ→tdEλ, where U(t)
is the propagator for the time-dependent Schrödinger equation{

(i∂t −H)U(t) = 0

U(0) = I .

This implies that
Fλ→tN ′(λ) = TrU(t), (3.2)
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where the trace of U(t) is de�ned as a tempered distribution (cf. [13] and Section 3.3.6). It is
clear from (3.2) that there is a relationship between the singularities of TrU(t) and the growth
of N(λ) as λ→∞. A proof of the following Poisson relation can be found in [24], but we will
give a short and simple proof in the special case of interest here:

Proposition 3.1.1. Singularities of the Schrödinger trace TrU(t) satisfy

sing-supp TrU(t) ⊂ 2πZ.

Let H0 denote the Hamilton vector �eld of p2 = (1/2)(|x|2 + |ξ|2), whose �ow (x(t), ξ(t)) =
exp(tH0)(x0, ξ0) satis�es

x(t) = cos(t)x0 + sin(t)ξ0,

ξ(t) = cos(t)ξ0 − sin(t)x0.

Given a function f ∈ C∞(R2d−1), let Xf denote1 the average of f over one period of the �ow,

Xf(x, ξ) =

∫ 2π

0
f(exp(tH0)(x, ξ)) dt. (3.3)

When restricted to the sphere, Xf can also be viewed as the average of f over the �bers of the
complex Hopf �bration S2d−1 → CPd−1. Indeed, consider the map

(x, ξ) 7→ x+ iξ,

which identi�es R2d with Cd. This map intertwines the action of exp(tH0) with complex
rotations z 7→ e−itz, and by restriction to S2d−1 the latter action induces the complex Hopf
�bration S2d−1 → CPd−1 with �ber S1.

The following theorem, which constitutes the main result of this chapter, shows that the
singularities of TrU(t) at nonzero times, and hence also the remainder term in the Weyl law,
depend on properties of Xp1 (recall from (3.1) that p1 is the subprincipal symbol of H).

Theorem 3.1.2. Assume that when restricted to S2d−1, the set where ∇Xp1 vanishes to in�nite
order has measure zero. If χ ∈ C∞c ((−2π, 2π)), then for all n ∈ Z\{0},

F−1
t→λχ(t− 2πn) TrU(t) = o(λd−1). (3.4)

If Xp1 is Morse–Bott on S2d−1 with k > 0 nondegenerate directions, then

F−1
t→λχ(t− 2πn) TrU(t) = O(λd−1−k/4). (3.5)

In either of the cases considered above, there holds the Weyl formula

N(λ) = (2π)−d
∫
{p2+p1≤λ}

dxdη − (2π)−d
∫
{p2=λ}

p0(x, η)
dS

|∇p2|
+ o(λd−1). (3.6)

1This is a kind of X-ray transform, hence the notation.
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Observe that Xp1 is never Morse since it is constant along the integral curves of H0. On the
other hand, the pullback of a Morse function on CPd−1 by the complex Hopf �bration yields
a function p1 on S2d−1 such that Xp1 admits 2d − 2 nondegenerate directions. Thus in any
dimension d ≥ 2 there are always examples of p1 satisfying the Morse–Bott hypothesis of
Theorem 3.1.2.

The two-term Weyl asymptotic (3.6) in Theorem 3.1.2 should be viewed as a re�nement of
the more general asymptotic formula

N(λ) = (2π)−dλd
∫
{p2≤1}

dxdη − (2π)−dλd−1/2

∫
{p2=1}

p1
dS

|∇p2|
+O(λd−1) (3.7)

established earlier by Hel�er–Robert [23] for arbitrary 1-symbol perturbations. Indeed, (3.7) is
recovered from the leading order term in (3.6) by writing the volume of {p2 + p1 ≤ λ} as λd
times the volume of {p2 + λ−1/2p1 ≤ 1} and expanding the latter volume in powers of λ−1/2.

The necessity of a nondegeneracy hypothesis on p1 in Theorem 3.1.2 is apparent already from
the unperturbed harmonic oscillator H0. Its eigenfunctions are given by products of Hermite
functions, de�ned for a multiindex α = (α1, . . . , αd) by

ψα(x) = π−d/4(2|α|α!)−1/2Hα(x)e−|x|
2/2,

with Hj the j’th Hermite polynomial and Hα =
∏d
j=1Hαj (xj); the corresponding eigenvalues

are
|α|+ d

2
.

Thus the eigenvalues are λ = j + d/2 for j ∈ N, arising with multiplicity

p(λ− d/2, d),

where p(j, d) denotes the the number of ways of writing j as a sum of d nonnegative integers.
Since in fact

p(j, d) =

(
d+ j − 1

j

)
,

and this quantity is bounded below for j ∈ N by a multiple of jd−1, the remainder term in the
Weyl law for H0 certainly cannot be o(λd−1).

The improvement in the Weyl law is not directly related to the propagation of singularities:
If u ∈ S ′, we show that

WFcl(U(2πk)u) = {(x+ k∂ξ(Xp1)(0, ξ), ξ) : (x, ξ) ∈WFcl(u)}.

If we consider the operator H = H0 +
√
H0, for which the symbol of the perturbation is

p1(x, ξ) =
√
p2(x, ξ), we see that singularities at time t = 2πk are shifted by 2πk∂ξ|ξ|. On

the other hand there is no improvement in the Weyl law, because the eigenvalues of H are
j + d/2 +

√
j + d/2 and the multiplicity remains p(j, d).
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3.1.2. Strategy of Proof

As in §3.1.1, denote the free Hamiltonian (namely the exact harmonic oscillator) by H0 =
Opw(p2) and the perturbed one by H = Opw(p). Further, let

U(t) = e−itH , U0(t) = e−itH0 , F (t) = U0(−t)U(t)

be the perturbed, free, and “reduced” propagator, respectively. Then, F (t) satis�es the evolution
equation {

(i∂t − P (t))F (t) = 0

F (0) = I,
(3.8)

where P (t) = U0(−t)(H −H0)U0(t). The main strategy is to show, following the methods of
Hel�er–Robert in [23], that F (t) has an oscillatory integral parametrix with an explicit phase
function. It is then possible to construct a parametrix for U(t) by composing the parametrix
for F (t) with the free propagator U0(t), whose Schwartz kernel is given explicitly by Mehler’s
formula. Finally, via another more delicate stationary phase computation, we arrive at estimates
on the singularities of TrU(t). The results on spectral asymptotics then follow via a known
Tauberian theorem (see Lemma 3.5.2).

3.1.3. Prior Results

It has been known since the work of Zelditch [68] (see also [64]) that singularities of the
propagator for perturbations of the harmonic oscillator by a symbolic potential V (x) ∈ S0(Rd)
reconstruct at times t ∈ πZ.Moreover, if the potential is merely bounded with all its derivatives,
Zelditch showed that sing-supp TrU(t) ⊂ 2πZ. It was later shown by Kapitanski–Rodnianski–
Yajima [34] that the singular support of TrU(t) is contained in 2πZ supposing only that the
perturbation is subquadratic.

More general propagation of singularities for geometric generalizations of the harmonic
oscillator to manifolds with large conic ends (“scattering manifolds”) was also studied by the
Wunsch in [65] and re�ned by Mao–Nakamura [38], which allows for perturbations in the
symbol class S1−ε(Rd) for any ε > 0.

That something dramatic happens for potential perturbations in S1(Rd), by contrast, is clear
from the results of Doi [9], where the author shows that the location in space of the singularities
of the Schrödinger propagator at times t ∈ πZ is indeed subject to an interesting geometric
shift from this type of perturbation.

Hel�er–Robert [23] studied the singularity at t = 0 of the Schrödinger trace (and, conse-
quently, the Weyl law) for the class of perturbations under consideration here, viz., those that
are isotropic operators of order 1. While this class does not include potential perturbations of
order 1, hence is perhaps less natural on physical grounds, it is more natural from the point
of view of symplectic geometry. The analysis in [23] was limited to the study of the main
singularity at t = 0, hence did not include the considerations of the global �ow studied here.
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The parametrix construction of [23] is essential in our work, however, as we extend (a version
of) it to long times via composition with the free propagator.

The novelty of our result lies in the delicate perturbation resulting from a one-symbol. This is
unlike the case famously considered by Duistermaat–Guillemin in [13] under which a genericity
hypothesis on the geodesic �ow yields an improvement to the Weyl law remainder for the Lapla-
cian on a compact manifold. For isotropic pseudodi�erential operators the analoguous version
of the theorem by Duistermaat–Guillemin is also true (see for instance Petkov–Robert [51] in
the semiclassical setting). In our case, the most naive version of propagation of singularities,
as described by isotropic wavefront set, is una�ected by the perturbation. The perturbative
e�ect can be seen heuristically as a higher-order correction to the motion of Lagrangian sub-
spaces of T ∗Rn: at times t ∈ 2πZ, the Lagrangian N∗{0}, for instance, has evolved under the
bicharacteristic �ow to another Lagrangian that is asymptotic to N∗{0} as |ξ| → ∞, but it is
the next-order term in the asymptotics of this Lagrangian that governs the contribution to the
Schrödinger trace, and hence to the Weyl law remainder term.

3.2. Singularities of the Trace

3.2.1. Propagation of Isotropic Wavefront Set

Since P (t) = U0(−t)(H − H0)U0(t) and H − H0 ∈ G1, it follows from the exact Egorov
theorem that

P (t) ∈ G1, P (t)∗ = P (t), (3.9)
and P (t) is in fact a smooth family of such operators. Somewhat surprisingly, the evolution
generated by P (t) does not move around isotropic wavefront set; this uses essentially the
property of the isotropic calculus that errors are two orders lower. The analogous result of
course fails for usual wavefront set if P (t) is replaced with an ordinary �rst order, self-adjoint
pseudodi�erential operator such as

√
∆.

Lemma 3.2.1. Let P (t) ∈ G1 be a smooth family of self-adjoint operators, and assume there is a
solution F (t) of the equation {

(i∂t − P (t))F (t) = 0

F (0) = I

such that F ∈ C0(Rt;L(Hs
iso, H

s
iso))∩C1(Rt;L(Hs

iso, H
s−1
iso )) for each s ∈ R. Then, the isotropic

wavefront set satis�es WFiso F (t)u = WFiso u for each u ∈ S ′ and t ∈ R.

Proof. Suppose that u ∈ S ′, hence there exists s0 such that u ∈ Hs0
iso, and by hypothesis

F (t)u ∈ Hs0
iso for all t ∈ R. The goal is to show by induction that for every k, the set

WFkiso F (t)u is invariant; this is trivially true for k = s0, as the wavefront set remains empty.
Suppose that U ⊂ S2d−1 is open, and WFkiso u ∩ U = ∅. The inductive step is completed by

showing that
WFk−1

iso F (t)u ∩ U = ∅ =⇒WFkiso F (t)u ∩ U = ∅.
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Let A ∈ Gk be �xed independently of t such that WF′A ⊂ U . Choose a bounded family

{Aε : ε ∈ [0, 1)} ⊂ Gk

such that A0 = A and Aε ∈ Gk−1 for each ε ∈ (0, 1). Furthermore, assume that WF′Aε ⊂ U
for ε ∈ [0, 1). For instance, let Aε = SεA, where

Sε = Opw((1 + ε(|x|2 + |ξ|2))−1/2).

Observe in this case that Aε → A in the topology of Gk+1. Using (3.8), compute

d

dt
AεF (t) = −iP (t)(AεF (t))− i[Aε, P (t)]F (t).

Since P (t) is self-adjoint and AεF (t)u ∈ L2(Rd) by the inductive hypothesis,

d

dt
‖AεF (t)u‖2 = 2 Re ((d/dt)AεF (t)u,AεF (t)u)L2

= −2 Re (i[Aε, P (t)]F (t)u,AεF (t)u)L2

≤ 2‖AεF (t)u‖ ‖[Aε, P (t)]F (t)u‖.

(3.10)

On the other hand, since Aε is bounded in Gk, it (crucially) follows that [Aε, P (t)] is bounded
in Gk−1 for ε ∈ [0, 1). Furthermore, the operator wavefront set of [Aε, P (t)] is contained in U .
Now integrate to �nd that

‖AεF (t)u‖2 ≤ et‖Aεu‖2 + et
∫ t

0
e−s‖[Aε, P (s)]F (s)u‖2 ds

for each �xed t, where the right hand side is uniformly bounded as ε → 0. From the weak
compactness of the unit ball in L2(Rd), conclude that AεkF (t)u has a weak limit in L2(Rd)
along a sequence of εk → 0, hence in S ′(Rd) as well. On the other hand, AεF (t)u→ AF (t)u
in S ′(Rd), since Aε → A in Gk+1. It follows that AF (t)u ∈ L2(Rd), and we have shown that
for t > 0,

WFiso F (t)u ⊂WFiso u.

To obtain the reverse inclusion, we repeat the argument above, integrating a time-reversed
version of (3.10) from t to 0 instead of 0 to t.

Lemma 3.2.1 can be applied to the evolution equation (3.8): in that case F (t) = U0(−t)U(t)
and both operators in this composition preserve Hs

iso for each s; thus F (t) has the requisite
mapping properties. The invariance of isotropic wavefront set under U(t) follows directly from
Lemma 3.2.1:

Proposition 3.2.2. For all u ∈ S ′ and t ∈ R,

WFiso U(t)u = WFiso U0(t)u = exp(tH0) WFiso u.
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Proof. Since U0(t)u = F (−t)U(t)u, the �rst equality follows from Lemma 3.2.1, while the
second follows from the exact Egorov theorem for U0(t).

Equipped with Proposition 3.2.2, there is a simple proof of Proposition 3.1.1 following the
strategy of [65].

Proof of Proposition 3.1.1. Pick any small interval I not containing a multiple of 2π. By com-
pactness of the sphere, there exists a partition of unity {a2

j : j ∈ J} of S2d−1 such that
aj · (aj ◦ exp(tH0)) = 0 for all j ∈ J and t ∈ I. Using an iterative construction in the
calculus, it is possible to �nd Aj ∈ G0 satisfying σ0(Aj) = aj and WF′(A) ⊂ supp aj , such
that ∑

A2
j = I +R,

whereR ∈ G−∞ (cf. [65, Corollary 4.7]). Then, computing in the sense of tempered distributions,

TrU(t) = Tr
∑

A2
jU(t)−RU(t)

= Tr
∑

AjU(t)Aj −RU(t).
(3.11)

The term AjU(t)Aj maps S ′ → S by propagation of singularities (Proposition 3.2.2), as do
all its derivatives, and RU(t) also has this property. Hence the right hand side of (3.11) and
all its derivatives are bounded for t ∈ I, so TrU(t) ∈ C∞(I). This completes the proof of
Proposition 3.1.1.

3.3. Parametrix

3.3.1. Oscillatory Integrals

Throughout the rest of the chapter it will be important to consider oscillatory integrals of the
form

I(a, ψ)(z) =

∫
eiψ(z,η)a(z, η) dη, (z, η) ∈ Rk × Rm, (3.12)

where ψ is a real-valued quadratic form in (z, η). References for this material are [22, Chapter
III] and [1]. If ψ satis�es the nondegeneracy hypothesis

rank
(
∂2
ηzψ ∂2

ηηψ
)

= k +m, (3.13)

then (3.12) de�nes a distribution I(a, ψ) ∈ S ′(Rk) provided the amplitude a(z, η) ∈ C∞(Rk+m)
satis�es

|∂αz,ηa(z, η)| ≤ Cα 〈z〉M 〈η〉M (3.14)

for some �xed M ∈ R and every α. This also means it is possible to consider phases of the form

ψ = ψ2 + ψ1,
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where ψ2 is a quadratic form satisfying (3.13), and ψ1 is real-valued satisfying the bounds

|∂αz,ηψ1(z, η)| ≤ Cα

for each |α| ≥ 1. Indeed, for the purposes of regularization, it su�ces to absorb eiψ1 into the
amplitude, since eiψ1a satis�es (3.14).

Now suppose that ψ is a real-valued quadratic form in (x, y, η) ∈ Rd×Rd×Rm. If ψ satis�es

det

(
∂2
xyψ ∂2

xηψ

∂2
ηyψ ∂2

ηηψ

)
6= 0 (3.15)

and a(x, y, η) satis�es (3.14) with z = (x, y), then I(a, ψ)(x, y) is the Schwartz kernel of
an operator mapping S(Rd) → S(Rd) and S ′(Rd) → S ′(Rd). Furthermore, if a(x, y, η) ∈
S(R2d × Rm), then the corresponding operator is residual, namely it maps S ′(Rd)→ S(Rd).

3.3.2. Mehler’s Formula

As discussed in Section 3.1.2, the goal is to approximate U(t) by �rst approximating F (t) by an
operator with oscillatory integral kernel of the form

F̃ (t)(x, y) =

∫
ei〈x−y,η〉+iφ1(t,x,η)a(t, x, η) dη,

where F̃ (t)− F (t) is regularizing in suitable sense, and φ1 is an explicit phase function which
is homogeneous of degree 1 in (x, η). This is useful since U(t) = U0(t)F (t), and the Schwartz
kernel of U0(t) is explicitly given by Mehler’s formula, which is now recalled.

Begin by de�ning the phase function

φ2(t, x, η) = sec(t)(〈x, η〉 − sin(t)(|x|2 + |η|2)/2), (3.16)

where (x, η) ∈ R2d. This is well de�ned for any t /∈ 2πZ ± π/2, and for any such t the
quadratic form φ2(t, x, η)− 〈y, η〉 satis�es (3.15). It is well known that the Schwartz kernel of
U0(t) satis�es

U0(t)(x, y) = (2π)−d
(−1)dn

cos(t)d/2

∫
eiφ2(t,x,η)−i〈y,η〉dη,

where n is such that t− 2πn ∈ (−π/2, π/2). Thus U0(t)(x, y) is of the form (3.12), where for
each �xed t the amplitude is constant.

3.3.3. Parametrix for the Reduced Propagator

Recall that the reduced propagator F (t) = U0(−t)U(t) solves the evolution equation{
(i∂t − P (t))F (t) = 0

F (0) = I .
(3.17)
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Here P (t) ∈ G1
cl is a smooth family of classical isotropic operators, and in the notation of (3.1)

its total Weyl symbol p(t) satis�es

p(t) = (p− p2) ◦ exp(tH0)

by the exact Egorov theorem. In particular, its homogeneous of degree 1 principal symbol
p1(t) = σ1(p(t)) is simply p1(t) = p1 ◦ exp(tH0). De�ne

φ1(t, x, ξ) = −
∫ t

0
p1 ◦ exp(sH0)(x, ξ) ds, (3.18)

noting for future reference that φ1(2πn, •) = −Xnp1 = −nXp1 for each n ∈ Z, where Xp1 is
given by (3.3).

In the following lemma we construct an oscillatory integral parametrix for F (t).

Lemma 3.3.1. There exists a ∈ C∞(Rt; Γ0
cl) and an operator F̃ (t) with Schwartz kernel

F̃ (t)(x, y) =

∫
ei〈x−y,ξ〉+iφ1(t,x,ξ)a(t, x, ξ) dξ (3.19)

approximately solving (3.17) in the sense that

(i∂t − P (t))F̃ (t) ∈ C∞(Rt;L(S ′,S)), F̃ (0) = I +K,

whereK : S ′ → S . Here, the function φ1 is given by (3.18).

Note that unlike the construction of [23] (which we are adapting to our purposes), this holds
for arbitrarily long time.

Proof. We seek an approximate solution to (3.17) of the form (3.19). The starting point is the
action of an isotropic pseudodi�erential operator on oscillatory integral of the form (3.19), as in
[23, Section III] or [22, Theorem 2.5.1]. In order to apply these results directly, �rst write P (t)
as a left quantization,

P (t) = OpL(p̃(t)),

where the homogeneous degree 1 part of p̃(t) is still p1(t).
Suppose that a ∈ C∞(Rt; Γ0

cl) and φ1 ∈ C∞(Rt × R2d). Let b(t, x, ξ) = eiφ1(t,x,ξ)a(t, x, ξ),
and then de�ne

c(t, x, ξ) = e−i〈x,ξ〉P (t)(ei〈•,ξ〉b(t, •, ξ)).

Referring to [23, Section III], it follows that c has an asymptotic expansion

c(t, x, ξ) =
∑
|α|<N

cα(t, x, y, ξ) + c(N)(t, x, y, ξ),
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where cα is given by the formula

cα(t, x, ξ) = (α!)−1∂αξ p̃(t, x, ξ)Dα
x b(t, z, ξ).

Furthermore, given T > 0 and t ∈ [−T, T ], the remainder c(N) satis�es the uniform bound

|∂kt ∂βx∂
γ
ξ c

(N)(t, x, ξ)| ≤ Ckβγ 〈(x, ξ)〉k+1−N . (3.20)

Disregarding smoothness at (x, ξ) = 0 at �rst, formally apply this result with a symbol having
an asymptotic expansion

∞∑
k=0

a(k)(t, x, ξ),

where each a(k)(t, •) is homogeneous of degree −k outside a compact set, and φ(t, •) which is
homogeneous of degree 1. Recalling that b = eiφ1a and separating terms by homogeneity, �rst
obtain from (3.17) the eikonal equation{

∂tφ1 + p1(t, x, ξ) = 0

φ1(0, x, ξ) = 0.

This equation is solved by (3.18), recalling that p1(t) = p1 ◦ exp(tH0). Next, obtain a sequence
of transport equations, the �rst of which has the form{

∂ta
(0) = f(t, x, ξ)a(0)

a(0)(0, x, η) = 1,

where f(t, x, ξ) is homogeneous of degree 0. Observe that this equation can be solved for all
time since the characteristics are straight lines. There are similar expressions for a(k) (with
inhomogeneous term depending on a(0), . . . , a(k−1) and with vanishing initial value). Let
ã ∈ C∞(Rt;R2d \ {0}) be such that

ã(t, x, ξ) ∼
∞∑
k=0

a(k)(t, x, ξ), (3.21)

and then set a(t, x, ξ) = ζ(x, ξ)ã(t, x, ξ), where ζ ∈ C∞(R2d) is such that ζ(x, ξ) = 0 for
|(x, ξ)| ≤ 1 and ζ(x, ξ) = 1 for |(x, ξ)| ≥ 2. Thus a is everywhere smooth, and φ1 is also
smooth on the support of a.

Let F̃ (t) be given by (3.19), and FN (t) be the corresponding integral when (3.21) is summed
from 0 to N . There are two errors when applying (i∂t −H) to FN (t): the �rst arises since the
eikonal and transport equations are only satis�ed outside a compact set, hence the corresponding
error is residual. The second error arises since the corresponding amplitude aN is only a
�nite sum of terms. For this we simply cite [23, Lemma III.6] for mapping properties of the
corresponding oscillatory integral with amplitude c(N+1)(t, x, ξ). SinceN is arbitrary, the proof
is complete.
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Observe that F̃ (t)(x, y) is indeed the distributional kernel of an operatorS ′ → S ′ as described
in Section 3.3.1: clearly the quadratic form 〈x− y, ξ〉 satis�es the hypotheses (3.13), and as in
the proof of Lemma 3.3.1 is may be assumed that φ1 is smooth on the support of a.

3.3.4. Composition

In this section we analyze the composition Ũ(t) = U0(t)F̃ (t), which will give a parametrix
for U(t). Observe that Ũ(t) is well de�ned as an operator between tempered distributions, for
example.

Although some information about the composition can be gleaned from the general theory
in [22, Chapter 2], a more precise description of the resulting phase is needed here; for this
reason the calculations that follow will be explicit. Write

F̃ (t) =

∫
ei〈x−y,η〉+iφ1(t,x,η)b1(t, x, η) dη,

U0(t) =

∫
eiφ2(t,x,η)−i〈y,η〉b2(t, x, η) dη,

for appropriate amplitudes bj ∈ C∞(Rt; Γ0), where φ2 is given by (3.16), and φ1 is given by
(3.18). Of course the formula for U0(t) only makes sense if t− 2πn ∈ (−π/2, π/2) for some
n ∈ Z. As remarked at the end of the previous section, it may be assumed that φ1 is smooth on
the support of b1.

Formally then, the composition has Schwartz kernel

Ũ(t)(x, y) =

∫
eiφ2(t,x,η)−i〈y,η〉+iφ1(t,y,η)b(t, x, y, η) dη,

where the amplitude b = b(t, x, y, η) is given by

b(t, x, y, η) =

∫
ei〈z−y,ξ−η〉+i(φ1(t,z,ξ)−φ1(t,y,η))b2(t, x, η)b1(t, z, ξ) dzdξ

=

∫
ei〈z,ξ〉eiφ1(t,y+z,η+ξ)−iφ1(t,y,η)b2(t, x, η)b1(t, y + z, η + ξ) dzdξ. (3.22)

In analyzing the latter integral, there is no di�culty in supposing more generally that bj ∈
C∞(Rt; Γmj ) for some mj ∈ R. Since all the dependence on t henceforth will be smooth and
parametric, for notational simplicity the dependence on t will be suppressed. De�ne

a0(x, y, z, η, ξ) = eiφ1(y+z,η+ξ)−iφ1(y,η)b2(x, η)b1(y + z, η + ξ).

While bj have improved decay under di�erentiation for j = 1, 2, this is not the case for a0 due
to the homogeneous of degree 1 phase factor. Thus

|∂αa0| ≤ Cα 〈(x, η)〉m2 〈(y + z, η + ξ)〉m1
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for each α. Now integrate by parts using the operator L = (1 + |z|2 + |ξ|2)−1(1 + ∆z + ∆ξ)
to see that

|(Lt)k ∂αx,y,ηa0| ≤ Cαk 〈(x, η)〉m2 〈(y, η)〉m1 〈(z, ξ)〉|m1|−2k . (3.23)

Choosing k > d+ |m1|/2 shows that b given by (3.22) is smooth and satis�es

|∂αb| ≤ Cα 〈(x, η)〉m2 〈(y, η)〉m1

for each α.
This result must be improved to include symbol bounds when x = y; this is important when

taking the distributional trace of Ũ(t).

Lemma 3.3.2. The pullback of the amplitude b by the map (t, x, η) 7→ (t, x, x, η) lies in
C∞(Rt; Γm1+m2).

Proof. As in the previous paragraph the smooth dependence on t will follow immediately by
di�erentiating under the integral sign, and so to simplify notation the dependence on t will be
again be dropped.

First, observe that it su�ces to consider the integral (3.22) over |(z, ξ)| ≤ (1/2)|(x, η)|, since
on the complement b(x, x, η) is rapidly decaying in (x, η) by (3.23). So now de�ne

bλ(x, η) = b(λ1/2x, λ1/2x, λ1/2η),

where 1 ≤ |(x, η)| ≤ 2. In order to prove the lemma it su�ces to show the uniform bounds∣∣∂αx,ηbλ(x, η)
∣∣ ≤ Cαλ(m1+m2)/2 (3.24)

as λ→∞. For this, de�ne

gλ(z, ξ, x, η) = a(λ1/2x, λ1/2η)b(λ1/2(x+ z), λ1/2(η + ξ)),

noting that
|∂αgλ(z, ξ, x, η)| ≤ Cαλ(m1+m2)/2 (3.25)

uniformly in 1 ≤ |(x, η)| ≤ 2 and |(z, ξ)| ≤ 1/2. A Taylor expansion of φ1(z + x, ξ + η) at
(x, η) yields

φ1(z + x, ξ + η) = φ1(x, η) + 〈z, ∂xφ1(x, η)〉+ 〈ξ, ∂ηφ1(x, η)〉

+
∑
|α|=2

(z, ξ)αfα(x, z, η, ξ)

for some smooth functions fα, so if we de�ne

Φµ(x, z, η, ξ) = zξ + µφ1(z + x, ξ + η)− µφ1(x, η)
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for a parameter µ ∈ R, then

Φµ = zξ + µ
(
z∂yφ1(y, η) + ξ∂ηφ1(y, η) +

∑
|α|=2

(z, ξ)αfα(z, ξ, x, η)
)
.

Using homogeneity of the phase, the rescaled amplitude bλ(x, η) can be written via a change of
variables as

bλ(x, η) = λd
∫
eiλΦµgλ(z, ξ, x, η) dzdξ (3.26)

by setting µ = λ−1/2. Let Cµ = {dz,ξΦµ = 0} denote the set of stationary points; thus
(z, ξ) ∈ Cµ if and only if

ξ + µ∂zφ1(z + x, ξ + η) = 0,

z + µ∂ξφ1(z + x, ξ + η) = 0.

By the implicit function theorem, we can parametrize (z, ξ) by (µ, x, η) near any �xed (x0, η0)
for |µ| su�ciently small, and obtain

|z(µ, x, η)|+ |ξ(µ, x, η)| ≤ C|µ|.

In particular these points satisfy |(z, ξ)| ≤ 1/2 for |µ| su�ciently small and 1 ≤ |(x, η)| ≤ 2,
hence the derivative bounds (3.25) for gλ will apply.

We can now estimate the integral (3.26) and its derivatives, initially treating µ as a parameter;
assume without loss that gλ(z, ξ, x, η) vanishes for |(z, ξ)| ≥ 1/3. Consider a typical derivative
∂γx,ηgλ. This is a sum of terms, where those with ` ≤ |γ| derivatives landing on the exponential
factor can be written as

λd(λµ)`
∫
eiλΦµ

(
∂γ
′
x,ηgλ

) ∑
|β|=`

(z, ξ)βhβ dzdξ (3.27)

for some smooth functions hβ = hβ(z, ξ, y, η, µ) and |γ′| ≤ |γ|.
Now apply the method of stationary phase, recalling the bounds (3.25). At the critical set

Cµ, each term (z, ξ)βhβ(z, ξ, y, η) in (3.27) gives an additional factor of order O(|µ|`/2), since
both critical points z(µ, y, η), ξ(µ, y, η) are of order O(|µ|). When µ = λ−1/2 this cancels with
the factor of λ`/2 in front of the integral in (3.27). The stationary phase formula eliminates the
prefactor of λd, showing that

|∂αbλ(x, η)| = O(λ(m1+m2)/2)

near (x0, η0). Since the set where 1 ≤ |(x, η)| ≤ 2 is compact, this implies the symbol estimates
(3.24) everywhere on the latter set.

More generally, Lemma 3.3.2 is true whenever φ2 is a quadratic form satisfying (3.13) and φ1

is homogeneous of degree 1.
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Corollary 3.3.3. If t− 2πn ∈ (−π/2, π/2) for some n ∈ Z, then the Schwartz kernel of Ũ(t) is
given by an oscillatory integral

Ũ(t, x, y) =

∫
eiφ2(t,x,η)−i〈y,η〉+iφ1(t,x,η)b(t, x, y, η) dη,

where φ2 is given by (3.16), and φ1 is given by (3.18). The pullback of b ∈ C∞(Rt × R3d) by the
map (t, x, η) 7→ (t, x, x, η) lies in C∞(Rt; Γ0).

Proof. This follows directly from Lemma 3.3.2.

Let R(t) = (i∂t − P (t))F̃ (t). A brief calculation shows that Ũ(t) satis�es the equation{
(i∂t −H)Ũ(t) = U0(t)R(t)

Ũ(0) = I +K.
(3.28)

It follows by Duhamel’s principle that

Ũ(t)− U(t) = U(t)K − i
∫ t

0
U(t− s)U0(t)R(t) ds. (3.29)

Recall that U0(t) and U(t) both preserve the scale of isotropic Sobolev spaces. Since R(t) is a
smooth family of residual operators and K is residual, it follows immediately from (3.29) that

R̃(t) = Ũ(t)− U(t) ∈ C∞(Rt;L(H−Niso , HN
iso)) (3.30)

for each N .
As in Lemma 3.3.1, there is no loss in assuming that the amplitude b(t, x, y, η) in Ũ(t) is

supported away from (x, y, η) = 0: inserting a cuto� modi�es Ũ(t) by a residual operator
which does not a�ect the error analysis above. In particular, it may be assumed that φ1 is
smooth on the support of b.

3.3.5. Propagation of Classical Singularities

Let u ∈ E ′+S , so in particular WFiso(u) ⊂ {(0, ξ) : ξ ∈ Rd}. We want to calculate the classical
wavefront set WFcl(U(t)u) of u. By Lemma 2.4.13, if {(0, ξ) : ξ ∈ Rd} ∩WFiso(v) = ∅ then
v ∈ C∞. Applying this to v = U(t)u, it follows by Proposition 3.2.2 that U(t)u ∈ C∞ except at
times t ∈ πZ, and at those times, it follows by Mehler’s formula that

WFcl(U0(kπ)u) = {(−1)k(x, ξ) : (x, ξ) ∈WFcl(u)}.

It remains to calculate how singularities are moved by the reduced propagator F (t).
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We now assume more generally that u ∈ S ′. Equation (3.30) (and preceding discussion)
implies that the parametrix constructed in Lemma 3.3.1 satis�es F − F̃ ∈ C∞(Rt,L(S ′,S)).
The classical wavefront set is thus completely determined by the parametrix:

WFcl(F (t)u) = WFcl(F̃ (t)u+ (F (t)− F̃ (t))u) = WFcl(F̃ (t)u),

because (F (t)− F̃ (t))u ∈ S ⊂ C∞.
Recall that

F̃ (t) =

∫
ei(〈x−y,ξ〉+φ1(t,x,ξ))a(t, x, ξ)dξ

=

∫
eiφ(t,x,y,ξ)ã(t, x, ξ)dξ,

with φ = 〈x− y, ξ〉+ φ1(t, 0, ξ) and

ã(t, x, ξ) = ei(φ1(t,x,ξ)−φ1(t,0,ξ))a(t, x, ξ).

Note that φ is homogeneous of degree one in ξ and since, locally, φ1(t, x, ξ)− φ1(t, 0, ξ) ∈ S0

we see that the amplitude is (locally) a Kohn-Nirenberg 0-symbol, ã ∈ S0. Thus, the oscillatory
integral F̃ (t) satis�es the assumptions of Theorem 8.1.9 from [30], and we obtain the following:

Proposition 3.3.4. The wavefront set of the integral kernel of F (t) is given by

WFcl(F (t)) ⊂
{

(x, x+ ∂ξφ1(t, 0, ξ), ξ,−ξ) : x ∈ Rd, ξ ∈ Rd \ {0}
}
.

If we want to calculate the wavefront set of F (t)u for u ∈ S ′ we have to show that there are
no contributions to wavefront set coming from in�nity. Fix t0 ∈ R and let K ⊂ Rd compact
with χ1 ∈ C∞c (K); set

r = max
(x,ξ)∈K×Rd

|x+ ∂ξφ1(t0, x, ξ)|.

Note that ∂ξφ1 is homogeneous of degree zero in (x, ξ) and therefore r <∞. Let χ2 ∈ C∞(Rd)
with suppχ2 ∪Br+1(0) = ∅ and homogeneous of degree zero outside of Br+2(0).

It su�ces to show that χ1(x)χ2(y)F̃ (t0, x, y) ∈ S(R2d). Set Φ = 〈x − y, ξ〉 + φ1(t0, x, ξ)
and de�ne the operator L by

Lu =
〈∂ξΦ, Dξu〉
|∂ξΦ|2

.

L is well-de�ned on suppχ1(x)χ2(y) and satis�es LeiΦ = eiΦ and for all a ∈ Γm and N ∈ N,

|(Lt)Na(x, ξ)| ≤ C〈x− y + ∂ξφ1(t0)〉−N 〈(x, ξ)〉m−N

≤ C〈y〉−N 〈ξ〉m−N .

Integration by parts with this operator shows that χ1(x)χ2(y)F̃ (t0, x, y) and all its derivatives
are rapidly decaying, hence for any u ∈ S ′, we know that WFclF (t)u ∩ π−1K is determined
by the restriction of u to Br+1(0), and is as follows:



3.3. Parametrix 49

Proposition 3.3.5. For u ∈ S ′,

WFcl(F (t)u) = {(x− ∂ξφ1(t, 0, ξ), ξ) : (x, ξ) ∈WFcl(u)} .

Proof. The usual calculus of wavefront sets, together with Proposition 3.3.4, shows that

WFcl(F (t)u) ⊂ {(x− ∂ξφ1(t, 0, ξ), ξ) : (x, ξ) ∈WFcl(u)} . (3.31)

It remains to upgrade this containment of sets to equality. To do this, we simply observe that by
the calculus of wavefront sets and a second use of Proposition 3.3.4,

WFclF
∗(t)u ⊂ {(x, ξ) : (x− ∂ξφ1(t, 0, ξ), ξ) ∈WFcl(u)} .

On the other handF (t)∗F (t) = I, hence the containment in (3.31) must have been equality.

Corollary 3.3.6. Let u ∈ S ′ and k ∈ Z. The wavefront set of the full propagator is given by

WFcl(U(πk)u) =

{
(−1)k

(
x+

∫ πk

0
∂ξ(p1(t, 0, ξ))dt, ξ

)
: (x, ξ) ∈WFcl(u)

}
.

If t 6∈ πZ and u ∈ E ′ + S then WFcl(U(t)u) = ∅.

For t = 2πk this becomes

WFcl(U(2πk)u) = {(x+ k∂ξ(Xp1)(0, ξ), ξ) : (x, ξ) ∈WFcl(u)}.

3.3.6. Traces

Recall that TrU(t) is well de�ned as a tempered distribution. More precisely, if χ ∈ S(R), then
the Schwartz kernel of ∫

χ(t)U(t) dt (3.32)

lies in S(R2d), hence the operator is of trace-class. Indeed, if {ej} is an orthonormal basis for
L2(Rd) consisting of eigenvectors of H with corresponding eigenvalues λj , then (3.32) has
Schwartz kernel

∞∑
j=0

χ̂(λj)ej(x)ej(y),

which converges in S(R2d) since χ̂ is rapidly decreasing. In order to obtain results on singulari-
ties of TrU(t), it su�ces to study the trace of Ũ(t) and its Fourier transform (cf. Lemme (IV.1)
of [23]):

Lemma 3.3.7. If χ ∈ C∞c (R), then R̃(t) = Ũ(t)− U(t) is of trace class, and∣∣Tr

∫
eitλχ(t)R̃(t) dt

∣∣ ≤ Ck 〈λ〉−N
for each λ ∈ R and N > 0.
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Proof. For N � 0 operators in L(H−Niso , HN
iso) are of trace-class (see [31, Lemma 19.3.2]). Using

repeated integration by parts, the claim follows from (3.30).

On the other hand, if χ ∈ C∞c ((−π/2, π/2)), then the operator∫
χ(t− 2πn)Ũ(t) dt

also has its Schwartz kernel in S(R2d). Replacing χ with eitλχ, it follows that the trace of
F−1
t→λχ(t− 2πn)Ũ(t) is

(2π)−1

∫
eitλ+iφ2(t,x,η)−i〈x,η〉+iφ1(t,x,η)χ(t− 2πn)b(t, x, x, η) dtdxdη.

In the next section we will evaluate this integral as λ→∞.

3.4. Stationary Phase

In this section we apply the method of stationary phase to evaluate an integral of the form

I(λ) =

∫
ei(tλ+ψ2(t,x,η)+ψ1(t,x,η))χ(t)a(t, x, η) dtdxdη (3.33)

as λ → ∞, where χ ∈ C∞c (R). Letting (r, θ) denote polar coordinates on R2d, we will also
express various functions of (x, η) in terms of (r, θ). The assumptions are as follows:

1. ψj(t, •) is homogeneous of degree j,

2. a ∈ C∞(Rt; Γ0(Rdx)), and ψj are smooth on the support of a,

3. there exists a unique t0 ∈ suppχ such that ψ2(t0, •) = 0,

4. there exists a unique r0 > 0 such that ∂tψ2(t0, r0, θ) = −1 for all θ ∈ S2d−1.

De�ne the set where the restriction of∇ψ1(t0, •) to S2d−1 vanishes to in�nite order,

Πt0 =
{
θ ∈ S2d−1 : ∂αθ (ψ1(t0, 1, θ)) = 0 for all α ∈ N2d−1 \ 0

}
.

We can now state our main result on the asymptotics of I(λ):

Proposition 3.4.1. If Πt0 has measure zero, then the integral (3.33) satis�es

I(λ) = o(λd−1).

If, instead, the restriction of ψ1(t0, •) to S2d−1 is Morse-Bott with k > 0 non-degenerate directions,
then

I(λ) = O(λd−1−k/4).
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Proof. To begin, rewrite the integral (3.33) in polar coordinates, and then make the change of
variables r 7→ λ1/2r. By homogeneity of the phases,

I(λ) = λd
∫
eiλ(ψ2(t,r,θ)+λ−1/2ψ1(t,r,θ)+t)χ(t)a(t, λ1/2r, θ) dt r2d−1drdθ. (3.34)

Observe that the exponential term in this integral can be written as exp(iλΨµ), where

Ψµ(t, r, θ) = ψ2(t, r, θ) + µψ1(t, r, θ) + t

and µ = λ−1/2. The proof proceeds in two steps.
Step 1: Stationary phase in (t, r): First we apply the method of stationary phase to the

variables (r, t) for |µ| small, treating µ and θ as parameters. Let

Cµ = {(t, r) : dr,tΨµ(t, r, θ) = 0}

denote the corresponding stationary set. Now (r∂r)ψj = jψj by homogeneity of the phases, so
the stationary points are where {

2ψ2 + µψ1 = 0

∂tψ2 + µ∂tψ1 + 1 = 0.
(3.35)

By hypothesis, if θ0 ∈ S2d−1 is �xed and µ = 0, then these equations are satis�ed on the
support of the function (t, r) 7→ χ(t)a(t, λ1/2r, θ0) precisely when t = t0, r = r0.

Using the implicit function theorem, parametrize Cµ ∩ supp(χ · a) near θ0 for small |µ|.
Indeed, di�erentiating the equations (3.35) in (t, r) at µ = 0, r = r0, t = t0 yields the invertible
Hessian matrix (

0 −2
−2 ∂2

t ψ2

)
.

Denote by t = t(µ, θ) and r = r(µ, θ) the corresponding critical points. Furthermore, by the
implicit function theorem (

∂µr
∂µt

)
=

1

4

(
ψ1∂

2
t ψ2 + 2∂tψ1

2ψ1

)
at µ = 0, r = r0, t = t0. Now Taylor expand Ψµ(t(µ, θ), r(µ, θ), θ) at µ = 0 to �nd that

Ψµ(t(µ, θ), r(µ, θ), θ) = t0 + µψ1(t0, r0, θ) + µ2γ(µ, θ)

near µ = 0, θ = θ0, where γ = γ(µ, θ) is a smooth function of µ and θ.
Next, apply the method of stationary phase to the integral

J(λ, µ, θ) = λd
∫
eiλΨµχ(t)a(t, λ1/2r, θ) dt r2d−1dr,
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treating θ ∈ S2d−1 and µ as parameters. In fact, it may be assumed a(t, λ1/2r, θ) has support on
{r ≤ 3r0}. Indeed, consider the following operator, which is well de�ned on {r ≥ 2r0}∩suppχ:

L = λ−1((∂tφ2 + 1)2 + 4φ2
2)−1 ((∂tφ2 + 1)∂t + 2φ2∂r) .

Due to the symbol bounds on a,

|(Lt)k(eiλ1/2ψ1χ(t)a(t, λ1/2r, θ)r2d−1)| ≤ Ckλ−k/2r2d−1−2k.

Inserting a cuto� to {r ≥ 2r0} in the integrand of (3.34) and integrating by parts using L gives
a contribution of order O(λ−∞). By stationary phase, for any M ≥ 1,

J(λ, µ, θ) = λd−1eiλ(t0+iµψ1(t0,r0,θ))aM (λ1/2, µ, θ) +O(λd−1−M )

uniformly in θ for |µ| su�ciently small; here, aM is a function depending smoothly on
(λ1/2, µ, θ). Note that while successive terms in the stationary phase expansion involve di�er-
entiation of a(t, λ1/2r, θ) with respect to r, the symbol estimates on a ensure uniform bounds
on each aM as λ→∞.

Step 2: Stationary phase in θ: Recall that I(λ) is the integral of J(λ, λ−1/2, θ) over S2d−1

with respect to θ. In other words, for each M ,

I(λ) = λd−1eiλt0
∫
eiλ

1/2ψ1(t0,r0,θ)aM (λ1/2, λ−1/2, θ) dθ +O(λd−1−M ). (3.36)

We now complete the proof of Proposition 3.4.1. If (x, η) ∈ S2d−1 \ Πt0 , then there exists an
α ∈ N2d−1 such that

∂αθ ψ1 6= 0,

in a neighborhood of (x, η) within S2d−1. By the weak stationary phase lemma for degenerate
stationary points [60, p. 342, Proposition 5] and a covering argument, the contribution of the
integral over S2d−1 \Πt0 is o(λd−1) (cf. [19]). Therefore,

I(λ) = λd−1eiλt0
∫

Πt0

eiλ
1/2ψ1(t0,r0,θ)b(λ1/2, λ−1/2, θ) dθ + o(λd−1).

This implies that if Πt0 is of measure zero then

I(λ) = o(λd−1),

which proves the �rst part of Proposition 3.4.1. For the second part, the condition that
ψ1(t0, r0, •) is Morse-Bott with k nondegenerate directions implies that I(λ) = O(λd−1−k/4)
by [30, Theorem 7.7.6], so taking M ≥ k/4 �nishes the proof.
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3.5. Spectral Asymptotics

3.5.1. Singularity at t = 0

In this section we calculate the leading order asymptotics of the singularity of TrU(t) at
t = 0. More precisely, we obtain the λ → ∞ behavior of its inverse Fourier transform, after
a suitable molli�cation. For this we use a short-time parametrix for U(t) constructed in [23].
This construction actually applies to any self-adjoint classical elliptic isotropic operator of order
2, and for this reason we state Proposition 3.5.1 below quite generally.

Let p ∈ Γ2
cl(Rd) be real-valued and elliptic, and then set P = Opw(p). Denote by N(λ) =∑

λj≤λ 1 the counting function for the eigenvalues of P .

Proposition 3.5.1. Let ρ ∈ S(R) be such that ρ̂ has compact support in (−ε, ε). If ε > 0 is
su�ciently small, then

(N ∗ ρ)(λ) = (2π)−d
∫
{p2+p1≤λ}

dxdη − (2π)−d
∫
{p2=λ}

p0(x, η)
dS

|∇p2|

+O(λd−3/2).

Proof. Let U(t) denote the Schrödinger propagator for P . As remarked above, we will use a
parametrix UN (t) for U(t) taken from [23], which exists on some time interval (−ε, ε) (note
that UN (t) di�ers from the long time parametrix constructed in Corollary 3.3.3). In the notation
of [23],

UN (t, x, y) = (2π)−d
∫
ei(S2(t,x,η)−〈y,η〉+S1(t,x,η))aN (t, x, η) dη.

Here S2, S1 are appropriate phase functions, and the symbol aN is a �nite sum

aN (t, x, η) =
N∑
k=0

a(k)(t, x, η),

where each a(k)(t, •) is homogeneous of degree −k outside a compact set and vanishes near
(x, η) = 0. Note, however, that in [23] the operator P is the left quantization of p rather than its
Weyl quantization. In order to extract the leading order behavior of these quantities, �rst write

Opw(p) = OpL(p̃)

with p̃ ∈ Γ2
cl and p̃j = pj for j = 1, 2, but

p̃0 = p0 − (i/2) 〈∂x, ∂ξ〉 p2. (3.37)

Referring to [23, Equations 37-38] for the transport equations satis�ed by a(k) and using (3.37),
we �nd that

aN (0, x, η) = 1, ∂ta
(0)(0, x, η) = −ip0 − (1/2) 〈∂x, ∂ξ〉 p2.
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Recalling that Fλ→tN ′(λ) = TrU(t), we have Fλ→t{N ′ ∗ ρ} = ρ̂(t) TrU(t). Motivated by
this, de�ne the distribution K(t) = ρ̂(t) TrUN (t), so that

K(t) = (2π)−dρ̂(t)

∫
ei(S2(t,x,η)−〈x,η〉+S1(t,x,η))aN (t, x, η) dxdη.

This makes sense so long as ρ̂(t) has support on the interval where UN (t) is well de�ned.
By [23, Equations 35-36], S2(0, x, η) = 〈x, η〉 and S1(0, x, η) = 0, so by Taylor’s theorem

S2(t, x, η)− 〈x, η〉+ S1(t, x, η) = tψ(t, x, η)

with ψ a smooth function. More precisely, ψ is given to leading order in t by

ψ(t, •) = −(p2 + p1) + (t/2)(〈∂ξp2, ∂xp2〉+ 〈∂ξp1, ∂xp2〉+ 〈∂ξp2, ∂xp1〉) + t2r(t, •).

We now follow the argument of [32, Lemma 29.1.3]. First, de�ne

A(t, λ) = (2π)−d
∫
{−ψ(t)≤λ}

aN (t, x, η)ρ̂(t) dxdη.

Now for su�ciently small |t|, the function−ψ(t, •) is elliptic in Γ2
cl, and as in the aforementioned

lemma
A(t, λ) ∈ Sd(Rt;Rλ)

is a Kohn–Nirenberg symbol for |t| su�ciently small (see (A.1)). Furthermore, it is an exercise
in distribution theory to see that

K(t) =

∫
R
e−itλ∂λA(t, λ) dλ.

ThusK(t) is a conormal distribution, which can be written as the Fourier transform of a symbol
by applying [31, Lemma 18.2.1]. If we let B(λ) = eiDtDλA(t, λ)|t=0 and recall the de�nition of
K(t), then

F−1
t→λ{ρ̂(t) TrUN (t)}(λ) = ∂λB(λ).

Expand B(λ) = A(0, λ)− i∂t∂λA(0, λ) +R(λ), where R ∈ Sd−2(R). Also let dS denote the
induced surface measure on {p2 = λ}. First,

A(0, λ) = (2π)−d
∫
{p2+p1≤λ}

dxdη.

For the next term in the expansion, recall that aN (0, x, η) = 1 and compute

−i∂tA(0, λ) = (2π)−d〈−i∂ta,H(ψ + λ)〉
∣∣
t=0
− i(2π)−d〈a∂tψ, δ(ψ + λ)〉

∣∣
t=0

= −(2π)−d〈p̃0, H(λ− p2)〉 − (i/2)(2π)−d〈〈∂xp2, ∂ξp2〉 , δ(λ− p2)〉+ e(λ)
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for some e(λ) ∈ Sd−1/2(R). Here H denotes the Heaviside function, and the pairings are in
the sense of distributions. Integration by parts furthermore yields

〈〈∂xp2, ∂ξp2〉 , δ(λ− p2)〉 = 〈〈∂x, ∂ξ〉 p2, H(λ− p2)〉.

Since the pullback of δ is given by δ(λ− p2) = |∇p2|−1dS, compute from (3.37) that

−i∂λ∂tA(0, λ) = −(2π)−d〈p̃0 + (i/2) 〈∂x, ∂ξ〉 p2, δ(λ− p2)〉+O(λd−3/2)

= −(2π)−d
∫
{p2=λ}

p0|∇p2|−1dS +O(λd−3/2).

Finally, for any k,

(N ′ ∗ ρ)(λ) = F−1
t→λ{ρ̂TrU}(λ)

= F−1
t→λ{ρ̂TrUN}(λ) +O(λ−k)

= ∂λB(λ) +O(λ−k).

providedN = N(k) is su�ciently large (cf. Lemma IV.1 in [23]). Integrating this equation gives
the desired result.

3.5.2. Proof of Theorem 3.1.2

We now return to the setting of Theorem 3.1.2, so that in Proposition 3.5.1 we take the operator
P = H . Begin by �xing an appropriate cuto� function in the time domain. Choose a real valued
function ρ ∈ S(R) with the following properties:

1. ρ(λ) > 0 for all λ ∈ R,

2. ρ̂(t) = 1 on (−ε, ε) for some ε ∈ (0, π/2),

3. supp ρ̂ ⊂ (−π/2, π/2),

4. ρ is even.

In order to compare N(λ) with (N ∗ ρ)(λ), we will need the following Fourier Tauberian
theorem, from the appendix of [56]. This result is implicit in [13], and has its roots in [26, 36].

Lemma 3.5.2 (Theorem B.5.1 in [56]). Let ρ be as above, and ν ∈ R. If (N ′ ∗ ρ)(λ) = O(λν)
and

(N ′ ∗ χ)(λ) = o(λν)

for each function χ satisfying χ̂ ∈ C∞c (R), supp χ̂ ⊂ (0,+∞), then

N(λ) = (N ∗ ρ)(λ) + o(λν).
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In order to prove Theorem 3.1.2 it su�ces to establish (3.4) and (3.5), since then the Weyl law
(3.6) is an immediate corollary of Lemma 3.5.2. Indeed, using Proposition 3.1.1 and a suitable
partition of unity, either of the conclusions (3.4) or (3.5) implies that

F−1
t→λ{χ(t) TrU(t)}(λ) = o(λd−1).

for any function χ ∈ C∞c (R) with suppχ ⊂ (0,∞) (here χ is playing the role of χ̂ in Lemma
3.5.2). Now Proposition 3.5.1 in particular shows that

(N ∗ ρ)(λ) = O(λd),

which together verify the hypotheses of Lemma 3.5.2. This establishes the two term asymptotics
(3.6) for N(λ).

Thus, we aim to show

F−1
t→λ{χ(t) TrU(t)}(λ) = o(λd−1)

whenever suppχ ⊂ (2πn− ε, 2πn+ ε), where n ∈ N \ 0 and ε ∈ (0, π/2). By Lemma 3.3.7,
for any N > 0

F−1
t→λ{χ(t) TrU(t)}(λ) = F−1

t→λ{χ(t) Tr Ũ(t)}(λ) +O(λ−N ).

Now use Corollary 3.3.3 to see that

F−1
t→λ{χ(t) Tr Ũ(t)}(λ) =

∫
eitλei(φ2(t,x,η)−〈x,η〉+φ1(t,x,η))χ(t)a(t, x, η) dtdxdη.

Apply Proposition 3.4.1 with

ψ2(t, x, η) = φ2(t, x, η)− 〈x, η〉 , ψ1(t, x, η) = φ1(t, x, η).

Since φ2(t, x, η) = sec(t)(xη − sin(t)(|x|2 + |η|2)/2) and χ is supported close to 2πn, the
hypotheses of Proposition 3.4.1 for the phases ψ2, ψ1 and symbol a are satis�ed. Indeed, in the
notation of the latter proposition, we take

t0 = 2πn, r0 =
√

2.

Now suppose that the restriction of∇Xp1 to S2d−1 vanishes to in�nite order only on a set of
measure zero. Then∇φ1(2πn, •) = −∇Xnp1 = −n∇Xp1, so∇φ1(2πn, •) vanishes to in�nite
order only on a set of measure zero in S2d−1 as soon as n 6= 0. In that case Proposition 3.4.1
shows that

F−1
t→λ{χ(t) Tr Ũ(t)}(λ) = o(λd−1).

Similarly, if the restriction of Xp1 to S2d−1 is Morse–Bott with k > 0 nondegenerate directions,
then φ1(2πn, •) has the same property for n 6= 0. This completes the proof of Theorem
3.1.2.



CHAPTER 4

Recurrence of Singularities

4.1. Introduction

This chapter is taken from the article [10]. The section about the global pseudodi�erential
calculi has been shortened, since the isotropic calculus was introduced in Section 2.4.

It is well-known that the harmonic oscillatorH0 = 1/2(∆+ |x|2) on Rd has the property that
for compactly supported initial data u0 ∈ E ′(Rd), the solution u(t) = e−itH0u0 to the dynamical
Schrödinger equation is smooth for t 6∈ πZ and u(πk) = (−iR)ku, where Ru(x) = u(−x) is
the re�ection operator. In particular, we can calculate the wavefront set of u(t):

WFcl(u(t)) =

{
(−1)kWFcl(u0) t = πk, k ∈ Z,
∅ t 6∈ πZ.

(4.1)

Let p ∈ Γ2
cl be a real-valued classical elliptic isotropic symbol of order 2 and set

H = pw(x,D) and H0 = pw2 (x,D), 1

the pseudodi�erential operator and the “free” operator,2 respectively. We consider the dynamical
Schrödinger equation: {

(i∂t −H)u(t) = 0

u(0) = u0.
(4.2)

We seek to describe the wavefront set of u(t) in terms of the singularities of u0.
We denote the propagator of the equation by U(t) = e−itH , similarly U0(t) = e−itH0 for

the free equation. We proceed in two steps: First, we calculate the wavefront set for the free
propagator and then for the reduced propagator F (t) = U0(−t)U(t).

As usual denote by H0(x, ξ) = ∂ξp2∂x − ∂xp2∂ξ the Hamiltonian vector �eld associated to
the Hamiltonian function p2 and t 7→ exp(tH0) its �ow. Let t > 0 be arbitrary. We write

exp(tH0)(y, η) = (x(t, y, η), ξ(t, y, η)).

1To be precise, we set H0 = p̃w(x,D), where p̃ = p2 outside a compact set in R2d.
2The notion “free” is borrowed from scattering theory.
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Let Γt =
{
η ∈ Rd \ 0: exp(tH0)(0, η) ∈ 0× Rd

}
and de�ne the function Ξt : Γt → Rd,

which is given by Ξt(η) = ξ(t, 0, η). It satis�es

exp(tH0)(0, η) = (0,Ξt(η)).

Note that Ξt is homogeneous of degree one. Set Gt = suppU0(t)u× Ξt(Γt).
In the following we assume that the manifolds Λt = {(x, y, ξ, η) : exp(tH0)(y, η) = (x, ξ)}

and 0× R2d \ {0} intersect cleanly for all t ∈ R.

Proposition 4.1.1. Assume that u ∈ S ′ is a tempered distribution. The wavefront set of U0(t)u
satis�es

WFcl(U0(t)u) ∩Gt ⊂ {(x,Ξt(η)) ∈ Gt : y − ∂η〈x,Ξt(η)〉⊥Γt, (y, η) ∈WFcl(u)} .

If u ∈ E ′, there cannot appear any other singularities:

WFcl(U0(t)u) ⊂ {(x,Ξt(η)) ∈ Gt : y − ∂η〈x,Ξt(η)〉⊥Γt, (y, η) ∈WFcl(u)} .

Remark 4.1.2. If p2(x, ξ) = 1/2(|ξ|2 +
∑

j ωjx
2
j ) then this proposition follows from Mehler’s

formula (see Section 4.6).
We follow the notation of [11] and denote the integral over the �ow of H0 by Xt for any

t ∈ R:

Xtf =

∫ t

0
f ◦ exp(sH0)ds.

The wavefront set of the reduced propagator can be completely determined:

Proposition 4.1.3. Let u ∈ S ′ and t ∈ R. Then

WFcl(F (t)u) = {(x+ ∂ξXtp1(0, ξ), ξ) : (x, ξ) ∈WFcl(u)} .

Combining Proposition 4.1.1 and Proposition 4.1.3 yields

Theorem 4.1.4. Let u ∈ E ′ + S and t ∈ R. The classical wavefront set of U(t)u is a subset of

{(x,Ξt(η)) ∈ Gt : ∂η〈x,Ξt(η)〉 − ∂ηXtp1(0, η)− y⊥Γt, (y, η) ∈WFcl(u)} .

History

The usual setting is the Laplacian on Rd plus a potential perturbations, that is

H = H0 + V,

with H0 the harmonic oscillator and V = V (x) a potential perturbation. Zelditch [68] proved
that for V ∈ S0

cl that the singular support of e−itHu is equal to the singular support of
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e−itH0u by calculating the Schwartz-kernel. This was improved by Weinstein [64] to show
that the wavefront sets are equal. Further results for zeroth order perturbations were obtained
by Kapitanski–Rodnianski–Yajima [34], Mao–Nakamura [38], and Wunsch [65]. In the case
V ∈ S1

cl, Doi [9] and Mao [37] showed for the harmonic oscillator that singularities are shifted.
For the anharmonic oscillator there appear weaker singularities even for potentials V ∈ C∞c (cf.
Doi [9]).

Recurrence of singularities for the harmonic oscillator with perturbation by a pseudodi�eren-
tial operator in the isotropic calculus was proved in [11].

Outline

The rest of this chapter is structed as follows: In Section 4.2 we recall basic properties about
the the SG-calculus. The main part of the chapter is Section 4.3. We construct a parametrix
as an oscillatory integral for the free propagator for arbitrary large times t and determine the
wavefront set after reducing the oscillatory integral such that the phase is homogeneous of
degree one in the �ber-variables. Section 4.4 treats the reduced propagator. There, we use a
commutator argument in the SG-calculus to determine the classical wavefront set. Section 4.5
is a re�ned version of the stationary phase lemma, where the phase is not linear in the large
parameter λ. We conclude with two examples, where the leading term is a quadratic form, to
illustrate the results.

4.2. SG-Calculus

The SG-calculus is due to Cordes [3], the corresponding wavefront sets at in�nity can be found
in Coriasco–Maniccia [5]. A self-contained introduction to global pseudodi�erential calculi can
be found in [49].

The SG-calculus (also called scattering calculus for asymptotically Euclidean manifolds) di�ers
from the isotropic calculus by the fact that taking derivatives in x does not a�ect the decay in ξ
and vice versa. The SG-calculus is in a way the more natural way of de�ning pseudodi�erential
operators on Rd, but it is not suited for second order di�erential operators such as the harmonic
oscillator.
De�nition 4.2.1. Let mψ,me be real numbers. The class SGmψ ,me(Rd) consists of functions
a ∈ C∞(R2d) such that for all multiindices α, β ∈ Nd the is an estimate

|∂αx ∂
β
ξ a(x, ξ)| .α,β 〈ξ〉mψ−|β|〈x〉me−|α|.

We de�ne the corresponding class of SG-pseudodi�erential operators:

Op SGmψ ,me = {aw(x,D) : a ∈ SGmψ ,me} .

The SG-calculus enjoys the following properities:
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(i) Op SG =
⋃
mψ ,me

Op SGmψ ,me is a ∗-algebra.

(ii) Di�erential operators of the form ∑
|α|≤me,|β|≤mψ

aα,βx
αDβ

lie in Op SGmψ ,me .

(iii) There are two principal symbol maps σψ, σe,

σψ : Op SGmψ ,me → SGmψ ,me / SGmψ−1,me ,

σe : Op SGmψ ,me → SGmψ ,me / SGmψ ,me−1,

such that the following principal symbol sequences are exact:

0→ Op SGmψ−1,me → Op SGmψ ,me σ
ψ

→ SGmψ ,me / SGmψ−1,me ,

0→ Op SGmψ ,me−1 → Op SGmψ ,me σe→ SGmψ ,me / SGmψ ,me−1 .

We note that for ellipticity one needs a third principal symbol, σψ,e.

(iv) If A ∈ Op SGmψ ,me , B ∈ Op SGm′ψ ,m
′
e , then

[A,B] ∈ Op SGmψ+m′ψ−1,me+m′e−1

and satis�es
σ•m•+m′•−1([A,B]) =

1

i
{σ•m•(A), σ•m′•(B)},

for • ∈ ψ, e and with the Poisson bracket indicating the (well-de�ned) equivalence class
of the Poisson bracket of representatives of the equivalence classes of each of the principal
symbols.

(v) Every A ∈ Op SG0,0 de�nes a continuous linear map on L2(Rd).

(vi) The SG-Sobolev spaces, Hsψ ,se
SG are de�ned for sψ, se ∈ R by

f ∈ Hsψ ,se
SG ⇐⇒ 〈x〉se〈D〉sψf ∈ L2(Rd).

For all mψ,me, sψ, se ∈ R and all A ∈ Op SGmψ ,me ,

A : H
sψ ,se
SG → H

sψ−mψ ,se−me
SG

is continuous.
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(vii) The scale of SG-Sobolev spaces satis�es⋂
mψ ,me

H
mψ ,me
SG = S(Rd),

⋃
mψ ,me

H
mψ ,me
SG = S ′(Rd).

(viii) The classical wavefront set of u ∈ S ′ is given by

WFclu =
⋂

A∈Op SG0,−∞

Au∈S

Σψ(A),

where Σψ is set of points (x, ξ) ∈ Rd × Rd \ {0} such that σψ(a)(x, ξ) = 0.

4.3. The Free Propagator

We start with reviewing the construction of a parametrix for the free propagator U0(t) = e−itH0

in the FIO calculus of Hel�er–Robert (cf. [22, Chapter 3]). Let T > 0 such that there exists a
short-time parametrix Ũ0 of U0 until time T and Ũ0 has the form

Ũ0(t) =

∫
ei(φ2(t,x,ξ)−yξ)a(t, x, ξ) dξ,

where a ∈ C([0, T ],Γ0
cl) and φ2 ∈ C([0, T ], C∞(R2d)), with the following properties for t ∈

[0, T ] and |(x, ξ)| > 1:

• φ2 is homogeneous of degree 2 in (x, ξ),

• φ2 solves the eikonal equation{
∂tφ2(t) + p2(x, ∂xφ2) = 0

φ2(0) = xξ,

• det ∂x∂ξφ2(t) 6= 0 for t ∈ [0, T ],

• exp(−tH0)(x, ∂xφ2) = (∂ξφ2, ξ).

The short-time parametrix is constructed by solving the eikonal equation and transport equations
for the homogeneous terms of the amplitude aj . The time T > 0 depends on the eikonal equation
and the transport equation for a0. Using Borel summation and Duhamel’s formula (cf. [22,
Proposition 3.1.1]), we obtain that

Ũ0(t)− U0(t) ∈ C∞([0, T ],L(S ′(Rd),S(Rd))).
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Let t0 > 0 and write t0 =
∑N

j=1 tj such that tj ∈ (0, T ). Using the group property of U0, we
obtain for u ∈ S ′,

U0(t0) = U0(t1) · · ·U0(tN )

∈ Ũ0(t1) · · · Ũ0(tN ) + L(S ′(Rd),S(Rd)).

The parametrix Ũ0(tj) has kernel

Ũ0(tj , zj−1, zj) =

∫
ei(φ2(t,zj−1,ξj)−zjξ)a(t, zj−1, ξj) dξj .

We write x = z0 and y = zN , then a parametrix for t = t0 is given by

Ũ0(t0) =

∫
eiφ(x,y,θ)a(x, θ)dθ,

where

θ = (z1, . . . , zN−1, ξ1, . . . , ξN ),

φ(z0, zN , θ) =
N∑
j=1

φ2(tj , zj−1, ξj)− zjξj ,

a(s, z0, θ) =

N−1∏
j=1

a(tj , zj−1, ξj) · a(tN , zN−1, θ).

One advantage of the isotropic calculus is that the new phase function φ = φ(x, y, θ) is
homogeneous of degree 2 in all variables for |(x, y, θ)| large enough.

4.3.1. Classical Flow and Lagrangian Submanifolds

Given an Hamiltonian function p2 we associate the �ow t 7→ exp(tH0) and de�ne the set

Λ = {(x, y, ξ,−η) : exp(t0H0)(y, η) = (x, ξ)} .

We note that Λ is a Lagrangian submanifold of R4d.
In this section, we always assume that t = t0 and omit t from the notation, for instance we

write exp(−t0H0)(x, ξ) = (y(x, ξ), η(x, ξ)).
As mentioned in the introduction, we work under the assumption that Λ and 0× R2d \ {0}

intersect cleanly, that means that Λ0 = Λ ∩ 0× R2d \ {0} is a smooth manifold and

TwΛ0 = TwΛ ∩ Tw(0× R2d), w ∈ Λ0.
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At a point w0 = (0, 0, ξ0, η0) ∈ Λ0 the tangent space is given by

Tw0Λ0 =
{

(0, 0, ξ, η) ∈ R4d : ∂ξy(0, ξ0)ξ = 0, ∂ξη(0, ξ0)ξ = η
}
.

The dimension of Λ0 is given by a function (x, ξ) 7→ e(ξ, η), which is a locally constant integer
with e ≤ d. Further,

e(ξ0, η0) = dimTw0Λ0

= d− rk ∂ξy(0, ξ0)

= rk ∂ξη(0, ξ0).

The critical set of φ(x, y, θ) is de�ned by

Cφ = {(x, y, θ) : ∂θφ(x, y, θ) = 0},

with

∂θφ =

(
∂zφ2(tj , zj , ξj+1)− ξj
∂ξφ2(tj , zj−1, ξj)− zj

)
.

The phase function is non-degenerate and (cf. [12]) as a direct consequence of the regular value
theorem, we see that

Lemma 4.3.1. The set Cφ is a manifold of dimension 2d.

We have a di�eomorphism

λφ : Cφ → Λ,

(x, y, θ) 7→ (x, y, ∂xφ(x, y, θ), ∂yφ(x, y, θ)).

Since cleanness is preserved under di�eomorphisms the manifolds Cφ and 0× RN intersect
cleanly. We denote the intersection by Cφ,0. The manifold Cφ,0 and its tangential bundle are
given by

Cφ,0 = {(0, 0, θ) : ∂θφ(0, 0, θ) = 0} ,
T(0,0,θ0)Cφ,0 = {(0, 0, δθ) : ∂θ∂θφ(0, 0, θ0)δθ = 0} ,

so we conclude that for (0, 0, θ0) ∈ Cφ,0 and (0, 0, ξ0, η0) = λφ(0, 0, θ0),

N − rk ∂θ,θφ(0, 0, θ0) = rk ∂ξη(0, ξ0) = e(ξ0, η0).

The next proposition is implicit in the work of Hel�er–Robert:
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Proposition 4.3.2. Let a ∈ Γm and t ∈ R arbitrary. Then

B = eit0H0a(x,D)e−it0H0

is an isotropic pseudodi�erential operator, B ∈ Gm and its principal symbol is given by

σm(B)(y, η) = σm(a)(exp(t0H0)(y, η)).

Proof. By Corollary 2.10.7 from [22] and the parametrix construction, the operator B is an
isotropic pseudodi�erential operator with principal symbol

σm(B)(y,−∂yφ(x, y, θ)) = σm(A)(x, ∂xφ(x, y, θ)),

for (x, y, θ) ∈ Cφ. Using the di�eomorphism λφ and the de�nition of Λ, we see that this is
nothing but

σm(B)(y, η) = σm(A)(exp(t0H0)(y, η))

as claimed.

Proposition 4.3.3. Let u ∈ S ′(Rd). One has

WFiso(U0(t0)u) = exp(t0H0) WFiso(u).

Proof. It su�ces to prove that WFiso(U0(t0)u) ⊃ exp(t0H0) WFiso(u), equality follows from
time-reversal.

Let (x0, ξ0) 6∈ WFiso(U0(t0)u). Then there is a Q ∈ G0
cl such that σ0(Q)(x0, ξ0) = 1 and

QU0(t0)u ∈ S . This implies by Proposition 4.3.2

Pu = U0(−t0)QU0(t0)u ∈ S,

and σ0(P )(y, η) = σ0(Q)(exp(t0H0)(y, η)). Set (y0, η0) = exp(−t0H0)(x0, ξ0). Then the
principal symbol at (y0, η0) is σ0(P )(y0, η0) = 1 and therefore (y0, η0) 6∈WFiso(u).

4.3.2. Recurrence of Singularities

Now, we investigate the recurrence of classical singularities, which is more delicate. We de�ne
the reduced phase function φred by

φred(t0, x, y, η) = xΞt0(η)− yη.

Proposition 4.3.4. The propagator at time t = t0 is locally given by

U0(t0, x, y) =

∫
Γ
eiφred(t0,x,y,η)ã(t0, x, y, η)dη

modulo a smoothing operator. Here, ã ∈ S0 is a local Kohn-Nirenberg symbol and Γ = {η ∈
Rd \ {0} : (0, 0, ξ,−η) ∈ Λ0 for some ξ ∈ Rd}.
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To prove this proposition, we �rst split the parametrix of U0(t0) into a sum of oscillatory
integrals supported near connected components of the critical set Cφ,0. Then, we reduce the
number of �ber-variables similarly as in the case of Fourier integral operators on compact
manifolds (cf. Hörmander [32]). In the last step, we show that the resulting amplitude satis�es
the Kohn-Nirenberg estimates.

Proof. We write

φ(x, y, θ) = φ(0, 0, θ) + x∂xφ(0, 0, θ) + y∂yφ(0, 0, θ) +
∑
|α|=2

(x, y)αfα(x, y, θ)

for some smooth functions fα and set f(x, y, θ) =
∑
|α|=2(x, y)αfα(x, y, θ). Also, we set

ψ(x, y, θ) = x∂xφ(0, 0, θ) + y∂yφ(0, 0, θ) and φ0(θ) = φ(0, 0, θ).

By choosing a function χ ∈ C∞c ([0,∞)) such that χ(r) = 1 for r < R for some R > 0, we
may assume that the phase φ(0, 0, θ) is homogeneous on RN . In fact, the operator with kernel∫

RN
eiφ(x,y,θ)χ(|θ|)a(x, θ)dθ

is regularizing, so may replace in the following a(x, θ) by (1− χ(|θ|))a(x, θ). The set Cφ,0 is
conic and we can choose a conic partition of unity {χj} such that Cφ,0∩ suppχj is a connected
manifold of dimension N − ej . From now on we restrict our considerations to one χj .

After a linear transformation, we may assume (θ′, θ′′) ∈ Rej × RN−ej on suppχj such that

rk ∂θ′′θ′′φ0(θ) = N − ej .

Homogeneity of φ0(θ) implies that φ0(θ) = 0 on Cφ,0. Using the implicit function theorem to
the equation ∂θ′′φ0(θ) = 0, we obtain a smooth map g : Rej → RN−ej that is homogeneous of
degree 1 outside a compact set such that

(θ′, θ′′) ∈ Cφ,0 if and only if θ′′ = g(θ′).

We introduce new coordinates

(ϑ′, ϑ′′) = (θ′, θ′′ − g(θ′))

and the phase function

ϕ0(ϑ) = φ0(θ).

Then (ϑ′, ϑ′′) ∈ Cφ,0 if and only if ϑ′′ = 0. So, we have that

Cϕ0 = {∂ϑϕ0 = 0} = Cφ,0.
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There exists a quadratic form Q = Q(ϑ′′) with the same signature as ∂ϑ′′ϑ′′ϕ0 such that Q and
ϕ0 are equivalent in the sense of [22, De�nition 2.10.13] by Proposition 2.10.14 in [22]. Since all
coordinate transformations are homogeneous of degree 1, the amplitude and the functions ψ
and f are of the same form as before.

So, we may assume that φ(0, 0, θ) depends only on θ′′ and Cφ,0 = Rej × 0. The propagator
at time t = t0 becomes

U0(t0) =

∫
Rej

∫
RN−ej

eiϕ(x,y,ϑ′,ϑ′′)a(x, ϑ′, ϑ′′)dϑ′dθ′′

=

∫
Rej

eiψ(x,y,θ′,0)ã(x, y, θ′)dθ′,

with

ã(x, y, θ′) =

∫
RN−ej

eiφ0(θ′′)+i(ψ(x,y,θ′,θ′′)−ψ(x,y,θ′,0))+if(x,y,θ)a(x, θ′, θ′′)dθ′′.

We now show that ψ(x, y, θ′, 0) is nothing but φred in local coordinates. Since in our adapted
coordinates Cφ,0 = Rej × 0, we see that

ψ(x, y, θ′, 0) = ψ(x, y, θ)|Cφ,0 .

Using the di�eomorphism λφ : Cφ → Λ, we see that

exp(t0H0)(0, ∂xφ(0, 0, θ′, 0)) = (0,−∂yφ(0, 0, θ′)).

By the inverse function theorem, there exists a map η 7→ θ′ such that

−∂yφ(0, 0, θ′(η), 0) = η.

Thus, ψ(x, y, θ′(η), 0) = φred(t0, x, y, η).
The map η 7→ θ′ is homogeneous of degree 1. Therefore, it only remains to show that ã is a

Kohn-Nirenberg symbol. We de�ne the amplitude

c(x, y, θ) = eif(x,y,θ)a(x, y, θ)

and we write the ψ-phase as

ψ(x, y, θ′, θ′′)− ψ(x, y, θ′, 0) = 〈θ′′, g(x, y, θ′, θ′′)〉,

with g(x, y, θ′, θ′′) =
∫ 1

0 ∂θ′′ψ(x, y, θ′, tθ′′)dt. Note that the functions c and g satisfy

|∂αx ∂βy ∂
γ
θ c(x, y, θ)| .α,β,γ 〈θ〉

−|γ|〈(x, y)〉|α|+|β|+2|γ|,

|∂αx ∂βy ∂
γ
θ g(x, y, θ)| .α,β,γ 〈θ〉−|γ|〈x〉1−|α|〈y〉1−|β|.
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We have to show that ã ∈ S0 on compact sets, in fact we will show that the following
estimate holds:

|∂αx ∂βy ∂
γ
θ′ ã(x, y, θ′)| .α,β,γ 〈θ′〉−|γ|〈(x, y)〉|α|+|β|+2|γ|.

A typical term is of the form

I(x, y, θ′) =

∫
RN−e

eiφ0(θ′′)ei〈g,θ
′′〉

k∏
j=1

〈θ′′, ∂κjx,y,θ′g〉c(x, y, θ)dθ
′′. (4.3)

We use the standard Paley-Littlewood decomposition: Choose a χ̃ ∈ C∞c (RN−e) such that χ̃ ≥ 0
everywhere, χ̃(x) = 1 for |x| ≤ 1, and χ̃(x) = 0 for x ≥ 2. Set χj(x) = χ̃(x/2j)− χ̃(x/2j−1).
Then

1 = χ̃(x) +
∞∑
j=1

χj(x) for all x ∈ RN−e.

For λ = 2j , we have

I(x, y, θ′) =
∞∑
j=1

λN−e
∫
RN−e

eiλ
2φ0(θ′′)eiλ〈g,θ

′′〉χ1(θ′′)
k∏
j=1

〈λθ′′, ∂κjx,y,θ′g〉c(x, y, θ
′, λθ′′)dθ′′

+

∫
RN−e

eiφ0(θ′′)ei〈g,θ
′′〉χ̃(θ′′)

k∏
j=1

〈θ′′, ∂κjx,y,θ′g〉c(x, y, θ
′, θ′′)dθ′′.

In order to estimate the sum, we observe that θ′′-derivatives of the function

eiλ〈g,θ
′′〉χ1(θ′′)

∏
j

〈λθ′′, ∂γjθ′ g〉c(x, y, θ
′, λθ′′)

can be estimated by

λk+|γ|〈θ′〉−|γ|〈x〉1−|α|〈y〉1−|β|,

where κ = (α, β, γ) ∈ Ndx × Ndy × Neθ′ for the multiindex κ =
∑k

j=1 κj . Using Theorem 7.7.1
from [30], we obtain that for all M > 0, each summand can be estimated by

λN−e−Mλk+|γ|〈θ′〉−|γ|〈x〉1−|α|〈y〉1−|β|.

Choosing M > N − e+ k+ |γ|+ 1, we can sum the geometric series, which yields the desired
bound.

For the last term, we have to use the method of stationary phase. We note that it su�ces to
show that

|∂αx ∂βy ∂
γ
θ′ ã(x, y, λθ′)| ≤ Cα,β,γ

as λ→∞ for Cα,β,γ independent of λ. We check that c(x, y, λθ) and all of its derivatives are
bounded by some constant independent of λ. Therefore, Proposition 4.5.1 proves the claim.
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Proof of Proposition 4.1.1. We have constructed a suitable parametrix in Proposition 4.3.4. By
Theorem 8.1.9. in [30] the wavefront set of the distribution U0(t) is given by

WFcl(U0(t)) ⊂ {(x, y,Ξt(η),−η) : η ∈ Γt, y − ∂η〈x,Ξt(η)〉⊥Γt} .

By the calculus of wavefront sets, we obtain that for any (x, η) ∈ R2d such that η ∈ Γt and
(x,Ξt(η)) ∈WFcl(U0(t)u) then (∂η〈x,Ξ(η)〉, η) ∈WFcl(u).

Now, let u ∈ E ′. Assume that there is a (x0, ξ0) ∈ WFcl(U0(t)u) such that ξ0 6∈ Ξt(Γt),
that is there exists (y0, η0) ∈ R2d \ {0} such that exp(tH0)(0, ξ0) = (y0, η0) and y0 6= 0.
By Lemma 2.4.13, (0, ξ0) ∈WFiso(U0(t)u). We have seen that the isotropic wavefront set is
shifted by the Hamiltonian �ow (Proposition 4.3.3) and therefore (y0, η0) = exp(−tH0)(0, ξ0) ∈
WFiso(u). By de�nition of the set Γt, y0 6= 0, but this contradicts the assumption that u was
compactly supported using Lemma 2.4.12.

4.4. The Reduced Equation

The reduced propagator F (t) = U0(−t)U(t) satis�es{
(∂t − U0(−t)(H −H0)U0(t))F (t) = 0

F (0) = I .
(4.4)

We de�ne the operator P (t) = U0(−t)(H −H0)U0(t). By Proposition 4.3.2, P (t) ∈ G1
cl and

the principal symbol is given by

σ1(P (t)) = p1 ◦ exp(tH0).

Proposition 4.4.1. For all u ∈ S ′ and t ∈ R,

WFiso(F (t)u) = WFiso(u).

Proof. This follows from Lemma 3.1 in [11].

Proposition 4.4.2. Let a ∈ C([0, T ], SG1,1
cl ) be real-valued and assume that there is a bounded

setK ⊂ SG1,1 such that for all |t| ≤ T , a(t) ∈ K Consider for u0 ∈ S ′ the equation{
(i∂t − a(t, x,D))u(t) = 0

u(0) = u0.
(4.5)

Let u ∈ C(R,S ′) be a solution of (4.5). The wavefront set of u(t) is given by

WFcl(u(t)) = ΨtWFcl(u0),

where Ψt is the Hamiltonian �ow associated to the function σψ(a(t, x,D)).
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Remark 4.4.3. If we exchange the role x and ξ, we can prove that WFe evolves according to the
Hamiltonian �ow Ψe

t of the symbol σe(a(t, x,D)),

WFe(u(t)) = Ψe
t WFe(u0),

under the assumption that a admits an asymptotic expansion into terms homogeneous in x.
Using the fact that the SG-estimates are weaker then the isotropic estimates (cf. [49, Section

3.1]) we obtain the propagation of singularities result for F (t):

Proof of Proposition 4.1.3. The symbol p(t) ∈ Γ1
cl ⊂ SG1,1 has principal ψ-symbol given by

(p1 ◦ exp(tH0))(0, ξ) and Proposition 4.4.2 implies that the wavefront set is

WFcl(F (t)u) = {(x+ ∂ξXtp1(0, ξ), ξ) : (x, ξ) ∈WFcl(u)} .

Proposition 4.4.2 also follows from [5]. We give a self-contained proof using a commutator
argument (cf. Hörmander [31, Theorem 23.1.4]).

Proof. Let (x0, ξ0) 6∈WFcl(u0) then there is a symbol b ∈ SG0,−∞
cl such that b(x0, ξ0) = 1 and

b(x,D)u0 ∈ S .
We construct a symbol q ∈ C∞([0, T ], SG0,−∞

cl ) with the following properties

• [i∂t − a(t, x,D), q(t, x,D)] ∈ C([0, T ],Op SG−∞,−∞),

• q(0, x, ξ) = b(x, ξ),

• σψq(t) = Ψtσ
ψb.

If we write q(t, x, ξ) ∼
∑

j q−j(t, x, ξ) where q−j(t) ∈ SG−j,−∞cl is homogeneous of degree
−j in ξ, we can see that the ψ-principal symbol of the commutator is given by

σψ([i∂t − a(t, x,D), q(t, x,D)]) = i{τ + a0(t, x, ξ), q0(t, x, ξ)} = i(∂t +Ha0)q0,

where Ha0 = ∂ξa0∂x − ∂xa0∂ξ is the Hamiltonian vector �eld of a0. The term of order −j is
given by

i(∂t +Ha0)q−j +Rj

with Rj depending on q0, . . . , q−j+1. By the assumption that a(t) is contained in a �xed
bounded set for all |t| ≤ T , the equations{

(∂ty, ∂tη) = (∂ξa0(t, y, η),−∂xa0(t, y, η))

(y(0), η(0)) = (x, ξ)
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have a unique solution for time |t| ≤ T . The map Ψt(x, ξ) = (y(t, x, ξ), η(t, x, ξ)) is the Hamil-
tonian �ow of the principal symbol σψ(a(t, x,D)) and de�nes a symplectomorphism, which is
homogeneous in the second component, (y(t, x, λξ), η(t, x, λξ)) = (y(t, x, ξ), λη(t, x, ξ)). If
we set q0 = b0(Ψ−1

t (x, ξ)) then q0 solves{
(∂t +Ha0)q0(t) = 0

q0(0) = b0.

Similarly, we solve the inhomogeneous equations for q−j , j > 0 by

q−j(t, x, ξ) = b−j(Ψ
−1
t (x, ξ)) + i

∫ t

0
Rj(Ψ

−1
t−s(x, ξ))ds.

If we set q(t, x, ξ) ∼
∑∞

j=0 q−j(t, x, ξ) we obtain a symbol with the desired properties. This
implies that if u(t) is a solution to (4.5) with initial data u0 then{

(i∂t − a(t, x,D))q(t, x,D)u(t) ∈ C([0, T ],S(Rd))
q(0, x,D)u(0) ∈ S(Rd).

Using an energy estimate (cf. Hörmander [31, Theorem 23.1.2]) we conclude that q(t, x,D)u(t) ∈
Hsψ ,se for every sψ, se ∈ R and thus q(t, x,D)u(t) ∈ S . This implies by the construction that
Ψt(x0, ξ0) 6∈WFcl(u(t)).

The whole argument can be carried out if we replace t by−t and therefore we obtain equality
of the wavefront sets.

4.5. Stationary Phase with Inhomogeneous Phase Function

We will derive a formula for calculating stationary phase integrals

I(λ, y) = λd
∫
Rd
eiλ

2φ(x)+iλ(ψ(x,y)−ψ(0,y))a(λ, x, y)dx.

The function a is smooth and satis�es an estimate |∂αx ∂
β
y a(λ, x, y)| ≤ Cα,βλm and we assume

that there is a compact setK ⊂ Rd×Rn such that for every λ ∈ R, supp a(λ) ⊂ K . The phase
functions φ ∈ C∞(Rd) and ψ ∈ C∞(Rd × Rn) satisfy

• φ and ψ are real-valued,

• φ(0) = ∂xφ(0) = 0,

• ∂xxφ(0) is non-singular.
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Proposition 4.5.1. For every α ∈ Nn,

|∂αy I(λ, y)| .α λm.

Proof. De�ne the phase function

Φµ(x, y) = φ(x) + µ(ψ(x, y)− ψ(0, y)),

for µ > 0 small enough the matrix ∂xxΦµ is invertible and therefore we may apply the regular
value theorem to obtain a map (µ, y) 7→ x(µ, y) parametrizing CΦµ = {∂xΦµ = 0}. Expanding
x(µ, y) into powers of µ yields

x(µ, y) = µx̃(µ, y), x̃ ∈ C∞(R+ × Rn,Rd).

The assumptions on φ imply that

Φµ|CΦµ
= φ(µx̃(µ, y)) + µ(ψ(µx̃(µ, y), y)− ψ(0, y))

= φ(0) + µ∂xφ(0) +O(µ2)

= O(µ2).

Now, we can estimate I(λ, y) and its derivatives. The only case where derivatives could
cause problems is when they fall on the exponential, in which case one has terms of the form

λd+l

∫
Rd
eiλ

2φ(x)+iλ(ψ(x,y)−ψ(0,y))
l∏

j=1

(
∂yij (ψ(x, y)− ψ(0, y))

)
a(x, y)dx.

We apply the method of stationary phase and see that each term ∂y(ψ(x, y) − ψ(0, y)) is of
order O(λ−1) since

∂y(ψ(x, y)− ψ(0, y))|CΦµ
= µ∂x,yψ(0, y) +O(µ2)

and in our case µ = λ−1, further the stationary phase eliminates the prefactor of λd and obtain

|∂αy I(λ, y)| . λm

as claimed.

4.6. Examples

We will consider speci�c cases of p ∈ Γ2
cl to illustrate the results.
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4.6.1. Isotropic Harmonic Oscillator

We consider the free Hamiltonian

H0 =
1

2

(
∆ + |x|2

)
,

with principal symbol p2 = 1/2(|x|2 + |ξ|2). It is well-known (cf. Grigis–Sjöstrand [17, Chapter
11]) that the propagator is smoothing for t 6∈ πZ and compactly supported initial data. For
t ∈ πZ, we have

e−ikπH0 = (−iR)k,

where Rf(x) = f(−x) is the re�ection operator. This implies that for u ∈ S ′ such that
WFiso(u) ⊂ 0× Rd, the wavefront set of e−itH0 is given by

WFcl(e
−itH0u) =

{
(−1)kWFcl(u) t = πk, k ∈ Z,
∅ t 6∈ πZ.

Proposition 4.1.3 then implies

Corollary 4.6.1. Let u ∈ S ′ such that WFiso(u) ⊂ 0× Rd then

WFcl(e
−iπkHu) =

{
(−1)k (x+ ∂ξ(Xπkp1)(0, ξ), ξ) : (x, ξ) ∈WFcl(u)

}
and WFcl(e

−itHu) = ∅ if t 6∈ πZ.

This was already proved in [11] using an explicit parametrix of the reduced propagator.

4.6.2. Anisotropic Harmonic Oscillator

Now we take the principal symbol p2 ∈ Γ2
cl(Rd) with

p2 =
1

2

|ξ|2 +

d∑
j=1

ω2
jx

2
j

 .

The Hamiltonian �ow of p2 is given by

xj(t) = cos(ωjt)xj(0) +
sin(ωjt)

ωj
ξj(0),

ξj(t) = cos(ωjt)ξj(0) + ωj sin(ωjt)xj(0).

Again by Mehler’s formula, we have an explicit solution operator:

U0(t) =

∫
ei(φ(t,x,η)−yη)a(t) dη
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with

φ(t, x, η) =
d∑
j=1

1

cos(ωjt)

(
xjηj − 1/2 sin(ωjt)(ωjx

2
j + ω−1

j η2
j )
)

and a(t) =
∏d
j=1 | cos(ωjt)|1/2.

For simplicity, assume that d = 2 and ωj = j. Then the �ow is periodic with minimal period
2π and the propagator is given at the recurrence points by

e−iπ
k
2
H0 = (−iR)k ⊗ (i−1/2F)k, k ∈ Z.

That means that e−iπ
k
2
H0u(x, y) = eiπk/4(Fy)ku((−1)kx, y). Note that we take the unitary

Fourier transform

Fu(ξ) = (2π)−d/2
∫
e−ixξu(x) dx.

From this, we identify the wavefront set of e−itH0u for compactly supported initial data u ∈ E ′
as follows:

WFcl(e
−itH0u) =



{
− (x, y, ξ, 0) : (x, z, ξ, 0) ∈WFcl(u) for some z ∈ R,

− (x, y) ∈ supp e−itH0u
}
, t ∈ π/2 + πZ,{

(x, (−1)ky, ξ, (−1)kη) : (x, y, ξ, η) ∈WFcl(u)
}
, t = πk, k ∈ Z,

∅, t 6∈ π
2Z.

Let p ∈ Γ2
cl with principal symbol p2 as above and setH = pw(x,D). Using Proposition 4.1.3

we can calculate the wavefront set of e−itHu in terms of the wavefront set of u. This contrasts
the case of potential perturbations, where even smooth compactly supported potential can give
rise to new singularities (cf. Doi [9] and Zelditch [68]) and we can determine the singularities at
time t = π/2, which was not possible in [9].



CHAPTER 5

Asymptotically Euclidean Manifolds

5.1. Sca�ering Manifolds

As mentioned in Example 2.4.2, the isotropic calculus is not suited for potential perturbations
of the Laplacian. If we change the de�ning symbol estimates to the one we used in Chapter 4,
we can circumvent of this problem:
De�nition 5.1.1. Let mψ,me ∈ R. A function a ∈ C∞(R2d) is in the symbol class SGmψ ,me if
for all α, β ∈ Nd, the estimate

|∂αx ∂
β
ξ a(x, ξ)| . 〈x〉me−|β|〈ξ〉mψ−|α|

holds.
As in the case of the isotropic symbols, these spaces become Fréchet spaces with the obvious

seminorms.
In Chapter 4, we introduced the calculus of SG pseudodi�erential operators on Rd. For

non-compact manifolds, it is also possible to de�ne the SG calculus, but we have to keep track
of the admissible coordinate changes “near in�nity” (cf. Schrohe [57]). It is more convenient to
radially compactify Rd and de�ne all objects on the compacti�ed space with boundary. The
theory will extend to manifolds that asymptotically look like Euclidean space.

Many di�erent applications of the scattering pseudodi�erential calculus (or more generally
pseudodi�erential calculi on non-compact manifolds) have been found in recent years: In
general relativity it was shown by Hintz–Vasy [25] that the Kerr–de Sitter solution is nonlinearly
stable and Vasy [62] proved meromorphic continuation of the resolvent of the Laplacian for
asymptotically hyperbolic manifolds, and there has been a high interest in Hadamard states
in quantum �eld theory (cf. Radzikowski [52] and Vasy–Wrochna [63], and see the examples
below).

5.1.1. Manifolds with Corners

Manifolds with corners appear naturally when considering the kernels of operators on manifolds
with boundary: The product of two manifolds with boundary is a manifold with corners.
Therefore, many questions concerning manifolds with corners already arose for boundary value
problems (cf. Grieser [16] and Melrose [40, 41]).
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No global bdfTwo global bdfs

Figure 5.1.: An example and a counterexample of a mwc (cf. Grieser [16]).

There are various de�nitions of manifolds with corners. Fortunately, we only need products
of (two) manifolds with boundaries. The de�nition of a manifold with boundary causes no
di�culties: They are paracompact Hausdor� spaces that are locally homeomorphic toR+×Rd−1

and the transition maps between local charts are smooth functions. If we now naively model
d-dimensional manifolds with corners X on (R+)k × Rd−k, we include manifolds, such as the
raindrop, that do not have global boundary de�ning functions (bdf), see Figure 5.1. To avoid
this, we will use a de�nition that asserts that all boundary hypersurfaces are embedded.
De�nition 5.1.2 (Joyce [33]). Let X be a paracompact Hausdor� space and d ≥ 1.

• A d-dimensional chart on X with boundary is a pair (U, φ) such that U ⊂ R+ ×Rd−1 is
open and φ : U → φ(U) ⊂ X is a homeomorphism.

• A d-dimensional chart on X with corners is a pair (U, φ) such that for some 0 ≤ k ≤ d
and U ⊂ Rk+ × Rd−k is open and φ : U → φ(U) ⊂ X is a homeomorphism.

As usual two charts (U, φ), (V, ψ) are compatible if either U ∩ V = ∅ or U ∩ V 6= ∅ and
φ−1 ◦ ψ is a di�eomorphism.1 Furthermore, we de�ne a d-dimensional atlas (with boundary
or with corners) to be a family of charts {(Uj , φj)} that are pairwise compatible and satisfy
X =

⋃
j φj(Uj).

De�nition 5.1.3. A manifold with boundary X is a paracompact Hausdor� space together with
a maximal atlas of d-dimensional charts with boundary.

To de�ne the boundary hypersurfaces, we �rst de�ne the depth of a point p ∈ X . For
this let X be a topological space and (U, φ) a d-dimensional chart with corners such that
φ(p) = 0 ∈ Rk+ × Rd−k. We de�ne the depth as the number k, depth(p) = k and the depth k
stratum

∂kX = {p ∈ X |depth(p) = k}.

Note that this de�nition of the depth is independent of the choice of chart. A boundary
hypersurface (bhs) is the closure of a connected component of ∂1X .

1For the half-space (and octants) functions are said to be smooth if they are restrictions of smooth functions.
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De�nition 5.1.4. Let X be a paracompact Hausdor� space together with a maximal atlas of
d-dimensional charts with corners. We say that X is a manifold with corners (mwc) if all
boundary hypersurfaces are embedded.
Remark 5.1.5. Joyce calls this notion a (compact) manifold with embedded corners (cf. Remark
2.11 in [33]). Melrose [42, 43] calls them just manifold with corners.

Some elementary properties of the depth strata are as follows:

Proposition 5.1.6 (Joyce [33]). Let X be a manifold with corners. It holds that

• X =
⊔d
k=0 ∂kX .

• ∂kX is a manifold without boundary.

• X is a manifold without boundary if ∂kX = ∅ for all k > 0.

• X is a manifold with boundary if ∂kX = ∅ for all k > 1.

We call ∂X =
⊔d
k=1 ∂kX the boundary ofX . It is the topological boundary ifX is embedded

into a manifold without boundary X̃ of the same dimension d. Given a relatively open subset
U of a manifold with corner X , we say that U is interior if U ∩ ∂X = ∅. If, on the other hand,
U contains all interior points of the boundary U ∩ ∂X , we call U a boundary neighborhood.

In the following, we will always assume that X is compact.

5.1.2. Boundary Defining Functions

As in the case of manifolds without boundary, functions are called smooth if they are smooth in
local charts. Let X be a manifold with corners and K ⊂ X a boundary hypersurface. A smooth
function ρ : X → R is called a boundary de�ning function (bdf) for K if

• ρ(x) ≥ 0 if x ∈ X

• ρ(x) = 0 if and only if x ∈ K ,

• dρ(x) 6= 0 on K .

The assumption that all bhs are embedded implies that there exists a bdf for every bhs. If the
boundary hypersurfaces are not embedded, bdfs only exist locally. Thus, we can always assume
that there is a �nite collection of bdfs {ρj} such that their di�erentials are linearly independent
and for every bhs there exists exactly one corresponding bdf ρj .

For any point p ∈ X the depth depth(p) is nothing but the number of independent boundary
de�ning functions vanishing at p.

Let X be a manifold with boundary. By the collar neighborhood theorem (cf. Milnor [46,
Corollary 3.5]), there exists a neighborhood U of the boundary ∂X such that U is di�eomorphic
to [0, 1) × ∂X . Thus, we can choose coordinates (ρX , x) such that ρX is the bdf and x are



5.1. Scattering Manifolds 77

coordinates on the boundary ∂X . Of course we can localize this construction to a small
part of the boundary. On manifolds with corners, we may take a small neighborhood U
near the boundary such that U is a product of manifolds with boundary. We can apply the
theorem for every manifold with boundary and obtain local coordinates (ρ1, . . . , ρk, x), where
k = maxx∈U depth(x).

5.1.3. Compactification

We will now show how to compactify Rd to the upper hemisphere Sd+. In Chapter 6 there will
be a di�erent compacti�cation and it will be shown that they are equivalent.

Consider the stereographical projection

SP : Rd → Sd+,

x 7→
(

1

〈x〉
,
x

〈x〉

)
= (ρ, y).

We see that ρ is a boundary de�ning function on Sd+ and we have the property that ρ · x = y
and we can always choose d− 1 of these functions y′ such that (ρ, y′) are coordinates on Sd+,
but mostly we do not need to choose coordinates.

Let gRd = dx2 be the standard metric on Rd. In polar coordinates we have that

gRd = dr2 + r2dωSd−1 ,

where ωSd−1 is the induced metric on the sphere Sd−1. Setting ρ = 1/r yields the metric

dρ2

ρ4
+
ωSd−1

ρ2
.

This is the motivating example of scattering metrics.

5.1.4. Asymptotically Euclidean Manifolds

Now, we want to discuss the geometric structure near the boundary. Let X be a manifold with
boundary with �xed bdf ρX . Inspired by the example of the compacti�cation of Rd we call a
Riemannian metric gX on the interior a scattering metric if in a neighborhood of the boundary,
the metric takes the form

gX(ρX , x) =
dρ2

X

ρ4
X

+
h(ρX , x)

ρ2
X

,

where h is a smooth symmetric 2-tensor that is positive-de�nite if restricted to the boundary
∂X . Locally near the boundary, we may write h(ρX , x) =

∑d
j,k=0 hij(ρX , x)dxi ⊗ dxj with

the convention that x0 = ρX , x = (x1, . . . , xd).
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The triple (X, ρX , gX) is called a scattering manifold or an asymptotically Euclidean manifold.
We will also write (X, gX), where the choice of bdf ρX is implicit. Note that the class of scattering
metrics depends on the choice of boundary de�ning function ρX , since a change ρX 7→ cρX
adds a factor c−2 in the �rst summand.

5.2. Sca�ering Calculus

Now we will introduce the calculus of scattering pseudodi�erential operators. We will mainly
follow [42, 43]. Schrohe [57] de�ned the calculus directly on non-compact manifolds, without
using the compacti�cation. A semiclassical version is due to Wunsch–Zworski [67].

5.2.1. Di�erential Operators

Before de�ning the algebra of pseudodi�erential operators, we de�ne the natural di�erential
operators in a geometric way.

Let Vb(X) be the set of vector �elds that are tangent to the boundary. The scattering vector
�elds are de�ned by Vsc(X) = ρXVb(X). There is a natural vector bundle overX , the scattering
tangent bundle scTX , such that the scattering vector �elds are the sections of this bundle,
Vsc(X) = C∞(X, scTX), given by scTpX = Vsc(X)/Ip(X) · Vsc(X), where Ip(X) is the set
of vector �elds fV , such that f ∈ C∞(X), f(p) = 0 and V ∈ Vsc(X). In local coordinates
(ρX , x) near the boundary, this vector bundle is spanned by {ρ2

X∂ρX , ρX∂x1 , . . . , ρX∂xd−1
}.

The dual bundle to the scattering tangent bundle is denoted by scT ∗X and is called the scattering
cotangent bundle. Locally, a covector v ∈ scT ∗X is given by

v = a
dρX
ρ2
X

+
∑
j

bj
dxj
ρX

,

where a, bj ∈ R. Here, we view dρX
ρ2
X

and dxj
ρX

as the dual covectors to ρ2
X∂ρX and ρX∂xj . Hence,

they are well-de�ned up to the boundary ρX = 0.
As in the case of usual di�erential operators, we can de�ne the scattering di�erential operators

Diffsc(X) as the smallest algebra generated by Vsc(X) and by multiplication with smooth
functions f ∈ C∞(X). Thus, we have locally

A ∈ Diffsc(X) if and only if A =
∑
α,k

aα,k(ρX , x)(ρ2
X∂ρX )k(ρX∂x)α,

where the sum is locally �nite.
Let Pm(scT ∗X) the set of smooth functions on scT ∗X that are polynominals of degree m in

the �ber and P [m](scT ∗X) the subset of homogeneous polynominal is the �ber.
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The set of scattering di�erential operators is a subset of the di�erential operators on X and
therefore for every m ∈ N the symbol map σ restricts to a map

σψ : Diffmsc(X)→ P [m](scT ∗X),

σψ(A) =
∑

k+|α|=m

aα,k(ρX , x)(iξ0)k(iξ′)α,

where Diffmsc = Diffsc ∩Diffm.
There is also another symbol, measuring the decay at in�nity:

σe : Diffmsc(X)→ Pm(scT ∗∂XX),

σe(A) =
∑

k+|α|≤m

aα,k(0, x)(iξ0)k(iξ′)α.

This de�nition is independent of the speci�c quantization, because the commutator of ρ2
X∂ρX

and ρX∂x is ρX(ρX∂x) and therefore commutators vanish as operators aρ2
X∂ρX + bρX∂x at

ρX = 0.
The joint symbol σ = (σψ, σe) induces an exact sequence

0→ ρX Diff
mψ−1
sc (X)→ Diff

mψ
sc (X)

σ→ P
mψ
sc (X)→ 0,

where

P
mψ
sc (X) = {(f1, f2) ∈ P [mψ ](scT ∗X)× Pmψ(scT ∗∂XX) : f2 − f1|∂X ∈ Pmψ−1(scT ∗∂XX)}.

We de�ne the full class of scattering di�erential operators Diff
mψ ,me
sc = ρ−meX Diff

mψ
sc and

similarly Pmψ ,mesc and obtain the exact sequence

0→ Diff
mψ−1,me−1
sc (X)→ Diff

mψ ,me
sc (X)

σ→ P
mψ ,me
sc (X)→ 0. (5.1)

The natural space to consider symbols of di�erential operators is the cotangential bundle. In
our case this is a non-compact manifold with boundary, T ∗X . Since we do not want to treat non-
compactness and boundaries (we introduced the boundary to get rid of the non-compactness in
the �rst place), we will also apply the compacti�cation SP to the �bres of T ∗X . This yields the
manifold with corners scT

∗
X with boundary de�ning functions ρX and ρΞ.

The Laplace-Beltrami operator can be de�ned in the interior ofX and extends to a di�erential
operator on Ċ∞(X). In fact the Laplacian is the natural example of a scattering di�erential
operator.

For simplicity, we assume that the metric h(ρX , x) is of the form

h(ρX , x) =
d∑

i,j=1

hij(ρX , x)dxi ⊗ dxj .
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If we set η0 = dρX
ρ2
X

and η = dy
ρ2
X

, then the metric g is given by

g(ρX , x, η0, η) = η2
0 +

d∑
i,j=1

hij(ρX , x)ηiηj

and the �berwise compacti�cation in η = (η0, η), SP : η 7→ (ρΞ, η · ρΞ) yields

g(ρX , x, ρΞ, ξ) =
1

ρ2
Ξ

ξ2
0 +

d∑
i,j=1

hij(ρX , x)ξiξj

 .

Proposition 5.2.1 (Melrose [40] and Melrose–Zworski [45]). The Laplacian ∆ on a scattering
manifold (X, g) is a scattering di�erential operator of order 2, 0 with principal symbol

g ∈ ρ−2
Ξ C

∞(scT
∗
X)

modulo lower order terms ρ−1
Ξ C∞ and ρXC∞.

5.2.2. Pseudodi�erential Operators

The space of amplitudes Smψ ,mesc is given by functions

a ∈ ρ−meX ρ
−mψ
Ξ C∞(scT

∗
X).

More generally, we can de�ne amplitudes on any manifold with corners. This de�nition does
not depend on the choice of boundary de�ning functions and can be localized in the obvious
way.

We will only de�ne scattering pseudodi�erential operators on Rd and use coordinate in-
variance to de�ne them on arbitrary manifolds. Alternatively, one could de�ne the operators
directly by their kernels on X ×X .

We denote by
SP2 : Rd × Rd → Sd+ × Sd+ (5.2)

the radial compacti�cation in both components, which is given by (x, ξ) 7→ (SP(x),SP(ξ)).
The boundary de�ning function ρ for Sd+ can be chosen to be given by SP∗ ρ = 〈x〉−1. Let ρX
such a boundary de�ning function for the �rst factor in (5.2) and ρΞ for the second factor.

The classical pseudodi�erential operators are de�ned as follows: The class Ψ
mψ ,me
sc (Sd+) is

given by those operators A : C∞c (Sd+)→ ˙C∞(Sd+) such that if A′ is de�ned by

SP∗(Aφ) = A′(SP∗ φ)

for all φ ∈ C∞c (Sd+), then the kernel of A′ is given by

A′(x, y) =

∫
ei(x−y)ξ(SP∗2 a)(x, ξ)d̄ξ,
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Xo

scT ∗X
scT ∗∂XX

scS∗X scS∗∂XX

∂X

Figure 5.2.: The space scT
∗
X .

where a ∈ ρ−meX ρ
−mψ
Ξ C∞(Sd+ × Sd+) is an amplitude. Using coordinate-invariance (cf. [42]) we

can de�ne Ψ
mψ ,me
sc (X) for an arbitrary compact manifold with boundary X .

This gives a calculus of pseudodi�erential operators with the following properties (cf. [42]):

• It is a bi-�ltered algebra:

Ψ
mψ,1,me,1
sc (X) ◦Ψ

mψ,2,me,2
sc (X) ⊂ Ψ

mψ,1+mψ2
,me,1+me,2

sc (X).

• It is a superset of the scattering di�erential operators:

Diff
mψ ,me
sc (X) ⊂ Ψ

mψ ,me
sc (X).

Remark 5.2.2. We note that the me order has a di�erent sign-convention than in [42]. With our
convention, the class of residual operators is Ψ−∞,−∞sc (Sd+).

5.2.3. Principal Symbol and Wavefront Sets

SetW = ∂scT
∗
X .2 This is a topological manifold, but there is no natural smooth structure.

It is the union of two manifolds with boundaryW = Wψ ∪ We, whereWψ = scS∗X and
We = scT

∗
∂XX . We de�ne the smooth functions onW as follows:

C∞(W) = {(ue, uψ) ∈ C∞(We)× C∞(Wψ) : ue|Wψ,e = uψ|Wψ,e}.

Proposition 5.2.3 (Melrose [42]). There exists a principal symbol map σ = (σψ, σe) such that
the following sequence is exact:

0→ Ψ
mψ−1,me−1
sc (X)→ Ψ

mψ ,me
sc (X)

σ→ C∞(W)→ 0.

2Melrose [42] calls this space CscX .
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Consider a scattering pseudodi�erential operator A with symbol a ∈ ρ−meX ρ
−mψ
Ξ C∞. Write

a = ρ−meX ρ
−mψ
Ξ f . Near a point z ∈ W , we de�ne the symbols

σe(a)(ρX , x, ρΞ, ξ) = ρ−meX ρ
−mψ
Ξ f(0, x, ρΞ, ξ), z ∈ scT ∗∂XX,

σψ(a)(ρX , x, ρΞ, ξ) = ρ−meX ρ
−mψ
Ξ f(ρX , x, 0, ξ), z ∈ scS∗X,

σψ,e(a)(ρX , x, ρΞ, ξ) = ρ−meX ρ
−mψ
Ξ f(0, x, 0, ξ), z ∈ scS∗∂XX.

The tuple σ(a) = (σe(a), σψ(a)) can be viewed as a function σ(a) ∈ C∞(W) and σψ,e(a) is
the restriction to the corner.

The symbol a is called elliptic at z ∈ W if σ(a)(z) 6= 0 and it is called characteristic at z if
σ(a)(z) = 0. The set of all characteristic points of a scattering pseudodi�erential operator is
denoted by Σmψ ,me(A).

The scattering wavefront set is de�ned for an arbitrary u ∈ C−∞(X) as

WFsc(u) =
⋂

A∈Ψ0,0
sc (X)

Au∈Ċ∞(X)

Σ0,0(A) ⊂ W.

We may split the wavefront set into three components WFsc(u) = WFψsc(u) ∪WFesc(u) ∪
WFψ,esc (u), where WF•sc(u) = WFsc(u) ∩W•.

• The usual wavefront set is contained in the scattering wavefront set:

(x, ξ) ∈WFcl(u) if and only if (x, (0, ξ/〈ξ〉)) ∈WFψsc(u),

for any x ∈ Xo. Note that here we use the compacti�cation to describe the point “at
in�nity” in the direction of ξ 6= 0.

• If X = Sd+, then the Fourier transform on Rd can be lifted to the compacti�cation X (cf.
Melrose [42]) and changes the variables in the wavefront set:

(x, ξ) ∈WFsc(u)⇔ (ξ,−x) ∈WFsc(Fu)

• Scattering pseudodi�erential operators are microlocal (cf. Melrose [42]):

WFsc(Au) ⊂WFsc(u).

5.3. Lagrangian Distributions

In Chapter 6 we introduce a class of geometric distributions which are natural in the setting
of scattering geometry. There are two main ingredients to Lagrangian distributions: First, we
have a de�nition of amplitudes, which generalize the symbol of a pseudodi�erential operator.
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Secondly, the underlying symplectic geometry, which describes the structure of the singularities.
As in the case of scattering pseudodi�erential operators, the relevant manifold isW . Therefore,
we de�ne scattering Lagrangian submanifolds as subsets ofW : The manifoldsWψ andWe are
contact manifolds with contact forms αψ and αe induced by the symplectic form ω on scT

∗
X .

De�nition 5.3.1 (De�nition 2.16 in [4]). A closed subset Λ ⊂ W is called a sc-Lagrangian if

• Λψ = Λ ∩Wψ is a smooth Legendrian submanifold with respect to the contact form αψ

onWψ .

• Λe = Λ ∩We is a smooth Legendrian submanifold with respect to the contact form αe

onWe.

• Λψ has a boundary if and only if Λe has a boundary and in that case the intersection is
clean.

Without assuming Legendrian properties, this gives a natural de�nition of smooth submani-
folds onW . Such submanifolds are given by the restriction of a submanifold L ⊂ scTX toW .
Smooth functions on L are restrictions of smooth functions onW .

We de�ne clean phase functions associated to such Lagrangian submanifold (cf. De�nition
2.5 and De�nition 2.18). It was shown already by Coriasco–Schulz [7] that there always exists
a phase function φ locally parametrizing the Lagrangian submanifold. Locally, Lagrangian
distributions are given by an oscillatory integral of the form

Iφ(x) =

∫
Y
eiφ(x,y)a(x, y)

where Y is a manifold with boundary and a ∈ ρ−meX ρ
−mψ
Y C∞(X × Y, scΩ1/2(X)× scΩ1(Y ))

is an amplitude and scΩ• is a suitably rescaled density bundle Ω• (cf. Melrose [42]).
The class of Lagrangian distribution Ime,mψ(X,Λ) is now de�ned as a locally �nite sum of

such oscillatory integrals with an invariantly de�ned order, which coincides with the de�nition
of Hörmander [27] for mψ and Melrose–Zworski [45] for me.

Theorem 5.3.2. Let Λ ⊂ W be a sc-Lagrangian submanifold. There exists a surjective principal
symbol map

jΛ
me,mψ

: Ime,mψ(X,Λ)→ C∞(Λ,MΛ),

where MΛ is the Maslov bundle. Its kernel is Ime−1,mψ−1(X,Λ) and therefore we have the
identi�cation

Ime,mψ(X,Λ)/Ime−1,mψ−1(X,Λ) ∼= C∞(Λ,MΛ).
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5.4. Examples

We will now present two examples of distributions that are contained in our class of Lagrangian
distributions. It is obvious by choosing the base manifoldX to be compact without boundary that
the classical Fourier integral operators de�ned by Hörmander [27] (cf. Duistermaat–Hörmander
[14]) are contained in the class de�ned in Chapter 6 by choosing the base manifold X to be
compact without boundary.

The �rst example sketches how distributions appear that have wavefront set only in the
e-component, which is in a sense dual to the case of Hörmander. The second example illustrates
where the classical theory of Duistermaat–Hörmander does not give the best results and one
has to take the non-compactness into account.

5.4.1. The Sca�ering Matrix

Let (X, ρ, g) be a scattering manifold and denote by ∆ the Laplace-Beltrami operator on X .
Choose an arbitrary smooth function f ∈ C∞(∂X). It was shown by Melrose [42] that there is
a unique function u ∈ C∞(X) for every λ 6= 0 such that

(∆− λ2)u = 0

and u has an asymptotic expansion u = eiλρ
−1
ρ(d−1)/2f1 + e−iλρ

−1
ρ(d−1)/2f2, where f1, f2 ∈

C∞(X) and f1|∂X = f . One may de�ne the scattering matrix3

S(λ) : C∞(∂X)→ C∞(∂X),

f 7→ f2|∂X .

In [45] it was proved that the scattering matrix S(λ) is a Fourier integral operator on the
boundary ∂X . The underlying canonical transformation is given by the symplectomorphism

exp(πH√h) : T ∗∂X \ 0→ T ∗∂X \ 0,

where H√h is the Hamiltonian vector �eld associated to the square root of the metric h on the
boundary ∂X .

For the proof the authors introduce a class of geometric distributions onX , which are smooth
in the interior ofX and oscillatory near the boundary, hence not regular in the sense of Schwartz
functions:

The symplectic structure of scT ∗X induces a natural contact structure on scT ∗∂XX , where
the contact form scα is given in canonical coordinates (ρ, x, τ, ξ) by

scα = dτ + ξ · dx.
3The scattering matrix is usually not a matrix. If X = R or in the case of hyperbolic manifolds with all ends being

cusps it is a matrix.
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A submanifoldG of scT ∗∂XX is called sc-Legendrian if scα vanishes onG and dimG = dimX−1.
As in the case of Lagrangian submanifolds, a non-degenerate phase function φ ∈ C∞(∂X×Rn)
parametrizes G if

(x, θ) 7→ (x,−φ(x, θ), dxφ(x, θ)) = (x, τ, ξ)

is a local di�eomorphism from {dθφ = 0} to G.
The class of Legendrian distribution is de�ned as sums of oscillatory integrals of the form

u(ρ, x) =

∫
eiρ
−1φ(x,θ)a(ρ, x, θ) dθ,

where a ∈ ρm−s/2+d/4C∞c (X × U) is supported in a small neighborhood of the boundary and
U is an open subset of Rs.

The convention for the order me in Section 6.5 is de�ned such that it coincides with the order
of Legendrian distributions.

5.4.2. �antum Field Theory

Let (M, g) be an orientable complete d + 1-dimensional pseudo-Riemannian manifold with
signature (−,+, . . . ,+). We then call (M, g) a space-time. As in the case of Riemannian
manifolds, we can de�ne a geometric second order di�erential operator by

�u = −|g|−1/2∂µ

(
|g|1/2gµν∂ν

)
u,

which is not elliptic, but hyperbolic and it is the natural generalization of the wave operator
−Dtt + ∆ on Riemannian manifolds.

At each point x ∈M , we can de�ne time-like, space-like and null tangent vectors v ∈ TxM ,
by gx(v, v) < 0, gx(v, v) > 0, and gx(v, v) = 0, respectively. A curve is called causal, if every
tangent vector is either time-like or null.

Let S be a smooth space-like hypersurface meaning that all tangent vectors are space-like.
It is called a Cauchy hypersurface if every inextendible causal curve intersects S exactly once.
The manifold (M, g) is called globally hyperbolic if it admits a Cauchy hypersurface S. If this is
the case, M is di�eomorphic to R× S (cf. Hawking–Ellis [21] for an overview of the causal
structure) and the initial value problem for the wave equation

�u = 0

u|S = u(x)

∂νu|S = v(x)

is well-posed for any Cauchy-hypersurface S. Here, ∂ν denotes the normal derivative with
respect to S.
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From now on assume that (M, g) is a d + 1-dimensional globally hyperbolic space-time.
Denote by L∗M the co-light cone

L∗M = {(p, ζ) ∈ T ∗M \ 0: g−1
p (ζ, ζ) = 0},

where g−1 is the dual metric to g on T ∗M . We want to consider the inhomogeneous Klein-
Gordon equation:

(�+m2)u = f,

for �xed m > 0. The characteristic set of �+m is the co-light cone Σ(�) = L∗M . It is clear
that this equation has many di�erent solutions, because we have not speci�ed any initial data.
Therefore, there are many di�erent fundamental bi-solutions GKG ∈ D′(M ×M) satisfying

(�p +m2)GKG(p, q) = δ(p− q),
(�q +m2)GKG(p, q) = δ(p− q).

By Proposition A.4.3, every such fundamental solution has restricted wavefront set

WFcl(GKG) ⊂ N∗∆M×M ∪ L∗M × L∗M,

where ∆M×M is the diagonal. If d ≥ 2, then L∗M has two connected components, the forward
and the backward light cone. It was shown by Duistermaat–Hörmander [14] that there are
four di�erent distinguished fundamental solutions to the Klein-Gordon equation, characterized
by its wavefront set, and they constructed parametrices modulo C∞. Intuitively speaking, we
can choose for every connected component, whether singularities are propagated forward or
backward in time (cf. Figure 5.3).

The downside of the distinguished parametrices of Duistermaat–Hörmander is that they
di�er from the real fundamental solution by a smooth function and that error is in general not
compact.

For a quantum �eld model, we consider a distribution ω2 ∈ D′(M) ⊗ D′(M). We assume
that ω2 has the following properties (cf. [52]):

Positive type If f ∈ C∞c (M), then

ω2(f̄ ⊗ f) ≥ 0.

Klein-Gordon equation For all f, g ∈ C∞c (M),

ω2((�+m2)f ⊗ g) = ω2(f ⊗ (�+m2)g) = 0.

Commutator For any f, g ∈ C∞c (M)

ω2(f ⊗ g)− ω2(g ⊗ f) = i∆(f ⊗ g),

where ∆ = GA −GR and GA, GR are the advanced and retarded fundamental solutions
of the Klein-Gordon equation.
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WFcl(GF ) WFcl(GAF ) WFcl(GA) WFcl(GR)

Figure 5.3.: Wave fronts of the distinguished fundamental solutions. From left to right: The
Feynman propagator, the anti-Feynman propagator, the advanced fundamental
solution, and the retarded fundamental solution.

On Minkowski space R1+d
t,x with metric gM = −dt2 + dx2, the two-point function is de�ned

by
ω2(f ⊗ g) =

1

i
〈∆+(t− s, x− y), f(t, x)g(s, y)〉

and ∆+ is given by the oscillatory integral

∆+(t, x) =
i

2

∫
Rd
eiψ(t,x,ξ)(m2 + |ξ|2)−1/2 d̄ξ,

where the phase function is ψ(t, x, ξ) = −t
√
m2 + |ξ|2 + 〈x, ξ〉 (cf. Reed–Simon [53, Theorem

IX.34] and Dang [8]). The phase function ψ is a symbol in SG1,1(Rd+1 ×Rd) and therefore the
oscillatory integral can be interpreted as an oscillatory integral in the scattering calculus (cf.
[6]).



CHAPTER 6

Lagrangian Distributions on
Asymptotically Euclidean Manifolds

6.1. Introduction

This chapter is taken from [4], where the section about manifolds with corners has been removed
and a more general discussion can be found in Section 5.1.1.

Lagrangian distributions were de�ned by Hörmander [27] as a tool to obtain a global calculus
of Fourier integral operators. The latter are widely applied, e.g. in the study of partial di�erential
equations [14], spectral theory [13], index theory [2] and mathematical physics [18]. Motivating
examples for the necessity of studying Lagrangian distributions on asymptotically Euclidean
spaces include fundamental solutions to the Klein-Gordon equation, which exhibit Lagrangian
behavior “at in�nity”, see [7], as well as simple or multi-layers which arise when solving partial
di�erential equations along in�nite boundaries or Cauchy hypersurfaces, see [3].

In local coordinates, a classical Lagrangian distribution u on a manifold X is given by an
oscillatory integral of the form

Iϕ(a) =

∫
Rs
eiϕa(x, θ) dθ, (6.1)

for some symbol a ∈ Sm(Rd × Rs) and a phase function ϕ on a subset of Rd × Rs bounded
in x. A class of oscillatory integrals on Euclidean spaces, the local model for our theory, was
studied in [6].

The key feature of the theory of Lagrangian distributions is that each such distribution is
globally associated to a Lagrangian submanifold Λ ⊂ T ∗X and that its leading order behavior
can be invariantly described by its principal symbol which is a section in a line bundle on Λ.

In this chapter, we prove that the situation on asymptotically Euclidean manifolds is similar,
but with a more delicate structure “at in�nity”. To make this precise, we work within the
framework of scattering geometry, developed in [42, 45], see also [20, 67]. In the chapter, we
continue the introduction of Chapter 5 to scattering manifolds and add to it a class of naturally
arising morphisms, the scattering maps. We note that the scattering manifolds may also be seen
as Lie manifolds, and in this way our theory complements recent advances in the theory of
Lagrangian distributions and Fourier integral operators on such singular spaces (via groupoid
techniques), see [35].
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The prototype of a scattering geometry is the Euclidean space Rd, identi�ed with a ball
under radial compacti�cation. For this setting, a �tting theory of Lagrangian submanifolds on
Rd was developed in [7]. As a �rst step, we adapt this to general scattering manifolds with
boundary X = Xo ∪ ∂X , the boundary being viewed as in�nity. On such manifolds, the
environment for microlocalization is then the compacti�ed scattering cotangent bundle scT

∗
X ,

a manifold with corners of codimension 2 and its boundary W = ∂scT
∗
X . This boundary

may be seen as a strati�ed space, and the two boundary faces of scT
∗
X , which intersect in the

corner, inherit a type of contact structure. The geometric objects of study in our theory are then
Legendrian submanifolds of the facesW which intersect in the corner and are the boundary of
some Lagrangian submanifold in the interior and smooth (distribution) densities thereon.

The link with Lagrangian distributions is now as follows. We prove that, despite the singular
geometry, any Lagrangian submanifold Λ ⊂ W locally admits a parametrization through some
phase function ϕ, via a generalization of the map

λϕ : Cϕ → Λϕ (x, θ) 7→
(
x, dxϕ(x, θ)

)
,

where Cϕ = (dθϕ)−1{0}. For each such a phase function, a Lagrangian distribution can be
expressed locally as an oscillatory integral as in (6.1). Up to Maslov factors and some density
identi�cations, the restriction of a(x, θ) to Cϕ yields the (principal) symbol σ(u) of u and is
interpreted as a (density valued) function on Λ by identi�cation via λϕ.

Indeed, the main theorem characterizing the principal symbol will be:

Theorem. Let Λ be a sc-Lagrangian on X . Then there exists a surjective principal symbol map

jΛ
me,mψ

: Ime,mψ(X,Λ)→ C∞(Λ,MΛ ⊗ Ω1/2),

whereMΛ is the Maslov bundle and Ω1/2 denotes the half-density bundle over Λ. Moreover, its
null space is Ime−1,mψ−1(X,Λ) and we have the short exact sequence

0 −→ Ime−1,mψ−1(X,Λ) −→ Ime,mψ(X,Λ)
jΛme,mψ−−−−−→ C∞(Λ,MΛ ⊗ Ω1/2) −→ 0.

Equivalently,
Ime,mψ(X,Λ)/Ime−1,mψ−1(X,Λ) ' C∞(Λ,MΛ ⊗ Ω1/2).

Summarizing, our results show that the theory of Lagrangian distributions, classically studied
either locally or on compact manifolds, may be generalized to a theory of Lagrangian distribu-
tions on Euclidean spaces or manifolds with boundaries, hence a much wider class of geometries.
It is formulated in a way that makes it easily transferable to other singular geometries as well
as manifolds with corners, see [44].

This chapter is organized as follows. In Section 6.2 we give an introduction to scattering
geometry. In particular, we discuss the natural class of maps between scattering manifolds,
compacti�cation and scattering amplitudes. In Section 6.3 we de�ne the Lagrangian submani-
folds and phase functions that arise in our theory. In Section 6.4 we discuss the techniques of
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classifying phase functions which parametrize the same Lagrangian submanifold. In Section 6.5
we de�ne the Lagrangian distributions in this setting, starting from oscillatory integrals, and
study their transformation properties. Finally, in Section 6.6, we de�ne the principal symbol of
Lagrangian distributions and prove its invariance.

6.2. Preliminary Definitions

In the following, we will recall some elements of the geometric theory known as “scattering
geometry”, cf. [42, 43, 45, 67]. To start with, we need to recall some groundwork on the analysis
on manifolds with corners, for which we adopt the de�nition of [41, 44], cf. also [39] and [33]
for a discussion on the di�erent notions of manifolds with corners in the literature.

6.2.1. Further Elements of Sca�ering Geometry

The class of mwc that interest us is that of (products of) �ber bundles where both the base as
well as the �ber are allowed to be a compact manifold with boundary (abbreviated “mwb”). The
archetype of such a mwc is the product of two mwbs. Indeed, ifX and Y are mwbs,B = X×Y
is a mwc. We write B = ∂B and we have (adopting the notation of [7, 15])

B = (∂X × Y o) ∪ (Xo × ∂Y )︸ ︷︷ ︸
=∂1B

∪ (∂X × ∂Y )︸ ︷︷ ︸
=∂2B

=: Be ∪ Bψ ∪ Bψe.

We present another compacti�cation of Rd, which has the advantage that its image is a subset
of Rd in a natural way.
De�nition 6.2.1 (Radial compacti�cation of Rd). Pick any di�eomorphism ι : Rd → (Bd)o that,
for |x| > 3, is given by

ι : x 7→ x

|x|

(
1− 1

|x|

)
.

Then its inverse is given, for |y| ≥ 2
3 , by

ι−1 : y 7→ y

|y|
(1− |y|)−1.

The map ι is called the radial compacti�cation map. We may hence view Rd as the interior of
the mwb Bd and call ∂Bd “in�nity”.

Denote by [x] a smooth function Rd → (0,∞) that, for |x| > 3, is given by x 7→ |x|. Then
(ι−1)∗[x]−1 is a boundary de�ning function on Bd (and we view [x]−1 as a boundary de�ning
function on Rd). Indeed, for |y| > 2/3 it is given by y 7→ 1− |y| = ρY .
Remark 6.2.2. The compacti�cation ι and SP are equivalent, meaning they yield di�eomorphic
manifolds. In fact, for |x| > 3, we may write

〈x〉−1 = [x]−1 1

1 + [x]−2 , [x]−1 = 〈x〉−1 1√
1− 〈x〉−2

.
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Hence, 〈x〉−1 and [x]−1 yield equivalent boundary de�ning functions on Rd.

6.2.2. Exterior Derivative

The exterior derivative d lifts to a well-de�ned scattering di�erential scd on the scattering
geometric structure. In coordinates, with ρ a local boundary de�ning function, we write

scdf = ρ2∂ρf
dρ

ρ2
+

d−1∑
j=1

ρ∂xjf
dxj
ρ
. (6.2)

Note that for f ∈ C∞(X), this means that as a section of scT ∗X , scdf necessarily vanishes on
the boundary. In fact, we may extend scd to the space ρ−1C∞(X) and obtain a map

scd : ρ−1C∞(X) −→ scΘ(X) = Γ(scT ∗X).

That is, in local coordinates near the boundary,

scd(ρ−1f) = ρ−1 scdf − f dρ
ρ2

= (−f + ρ∂ρf)
dρ

ρ2
+

d−1∑
j=1

∂xjf
dxj
ρ
.

Remark 6.2.3. We note that ρ−1C∞(X) and similarly de�ned spaces are independent of the
actual choice of boundary de�ning function ρ (cf. Remark 5.1.5).

De�nition 6.2.4 (Scattering vector �elds on product type manifolds). For a product B = X × Y ,
with (X, ρX) and (Y, ρY ) mwbs, we may introduce scV(B) as ρXρY (bV(B)). Near a corner
point the resulting bundle scT ∗B is hence generated, if x = (ρX , x) and y = (ρY , y) are local
coordinates on X and Y respectively, by

ρ2
XρY ∂ρX , ρXρY ∂xj , ρXρ

2
Y ∂ρY , ρXρY ∂yk .

The space scV(B) splits into horizontal and vertical vector �elds,1 scVX(B) and scVY (B),
respectively, and we de�ne scΘX(B) as the set of (scattering) 1-forms w ∈ scΘ1(B) such that
w(v) = 0 for all v ∈ scVY (B).

Given complete set of coordinates x = (ρX , x), y = (ρY , y) on X and Y , respectively, we
see that scΘX(B) is the set of sections generated by

dρX
ρ2
XρY

,
dxj
ρXρY

.

1Consider the projection prX : B → X . Then v ∈ scV(B) satis�es v ∈ scVX(B) if v(pr∗Xf) = 0 for all
f ∈ C∞(X). The set scVY (B) is de�ned in analogy.
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The underlying vector bundle will be denoted by scHXB. Similarly, we de�ne scΘY (B) and
scHYB. It is important to note that we have the following “rescaling identi�cations”:

scΘX(B) 3 dρX
ρ2
XρY

←→ ρ−1
Y

dρX
ρ2
X

∈ ρ−1
Y C

∞(Y, scΘ(X)),

scΘX(B) 3 dxj
ρXρY

←→ ρ−1
Y

dxj
ρX
∈ ρ−1

Y C
∞(Y, scΘ(X)).

(6.3)

Again, we may de�ne the scattering exterior di�erential scd, induced by the usual exterior
di�erential d, and extend it to a map

scd : ρ−1
X ρ−1

Y C
∞(B) −→ scΘ(B).

In terms of the scattering di�erentials on X and Y we may decompose scd as scd = scdX + scdY ,
where

scdX : ρ−1
X ρ−1

Y C
∞(B)→ scΘX(B),

scdY : ρ−1
X ρ−1

Y C
∞(B)→ scΘY (B).

6.2.3. Amplitudes

De�nition 6.2.5 (Amplitudes of product-type). Let B be a mwc, {ρj}j=1...k a complete set of
bdfs. Then a is called an amplitude of order m ∈ Rk if

a ∈ ρ−m1
1 · · · ρ−mkk C∞(B).

For an open subset U of X , a locally de�ned amplitude of product type is an element of
ρ−m1

1 · · · ρ−mkk C∞(U). For p ∈ ∂X we call a elliptic at p if ρm1
1 · · · ρ

mk
k a(p) 6= 0. We write

Ċ∞0 (X) :=
⋂

m∈Rk
ρm1

1 · · · ρ
mk
k C

∞(B)

for the smooth functions vanishing at the boundary of in�nite order.
For p ∈ ∂B we call a rapidly decaying at p if there exists a neighbourhood U of p such that a

vanishes of in�nite order on U ∩ ∂B, that is a ∈ Ċ∞0 (U).
We now study the leading boundary behavior of these amplitudes. For simplicity, we only

consider B = X × Y for mwbs X and Y .
De�nition 6.2.6. Let a ∈ ρ−meX ρ

−mψ
Y C∞(B) and write a = ρ−meX ρ

−mψ
Y f for some f ∈ C∞(B).

Given a coordinate neighbourhood U of a point p ∈ B•, we de�ne symbols σ•(a) of a on U by
σe(a)(x,y) = ρ−meX ρ

−mψ
Y f(0, x,y), p ∈ Be ∪ Bψe

σψ(a)(x,y) = ρ−meX ρ
−mψ
Y f(x, 0, y), p ∈ Bψ ∪ Bψe

σψe(a)(x,y) = ρ−meX ρ
−mψ
Y f(0, x, 0, y) p ∈ Bψe.

The tuple (σψ(a), σe(a), σψe(a)) is denoted by σ(a) and called the principal symbol.
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Fix ε > 0 so small that ρX and ρY can be chosen as coordinates on B respectively whenever
ρX < ε and ρY < ε. We choose a cut-o� function χ ∈ C∞(R) such that χ(t) = 0 for t > ε/2
and χ(t) = 1 for t < ε/4.

De�nition 6.2.7. For any a ∈ ρ−meX ρ
−mψ
Y C∞(B) the amplitude

ap(x,y) = χ(ρX)σe(a)(x,y) + χ(ρY )σψ(a)(x,y)− χ(ρX)χ(ρY )σψe(a)(x,y)

is called the principal part of a.
While ap does depend on the choice of χ, its leading boundary asymptotic do not. By Taylor

expansion of f , we obtain:

Lemma 6.2.8. The principal part ap of a satis�es a− ap ∈ ρ−me+1
X ρ

−mψ+1
Y C∞(B).

Example 6.2.9 (Classical SG-symbols). Let B = Bd × Bs, where Bd and Bs are the radial
compacti�cations ofRd andRs. The space of so-called classical SG-symbols, SG

me,mψ
cl (Rd×Rs),

is that of a ∈ C∞(Rd × Rs) such that (ι−1 × ι−1)∗a ∈ ρ−meX ρ
−mψ
Y C∞(B). These symbols are

then precisely those that satisfy the estimates∣∣∣∂αx ∂βθ a(x, θ)
∣∣∣ . 〈x〉me−|α|〈θ〉mψ−|β| (6.4)

and admit a polyhomogeneous expansion, see [15, 42, 67] and the principal symbol of a corre-
sponds to its homogeneous coe�cients, see [15, Chap. 8.2].

We will need to consider density-valued amplitudes and integrate amplitudes on mwbs.
For this, we introduce the space of scattering σ-density bundles, cf. [42], where scΩσ(X) =
ρ−σ(d+1)Ωσ(X) in terms of the usual σ-density bundle. Note that scΩσ does not depend on the
choice of boundary de�ning function.
Example 6.2.10. Under the radial compacti�cation, the canonical Lebesgue integration den-
sity on Rd, dx ∈ Ω1(Rd), is mapped to ι∗dx ∈ scΩ1(Bd). In particular, we obtain ι∗dx =
ρ−(d+1)dρ dSd. More generally, if (X, g) is a scattering manifold, then the metric induces a
canonical volume scattering 1-density µg .

Since the density bundle is a line bundle, any choice of scattering density provides a section
of it and allows for an identi�cation of scattering densities on X and C∞-functions.

We denote the set of all smooth sections of the bundle scΩσ(X) by C∞(X, scΩσ(X)), and
the tempered distribution densities (Ċ∞0 )′(X, scΩσ(X)) are the continuous linear functionals
on Ċ∞0 (X, scΩ1−σ(X)).

Lemma 6.2.11. Let X be a mwb and Y a manifold without boundary. Then, integration over Y
induces a map ∫

Y
: C∞c (X × Y, scΩ1(X × Y )) −→ ρ− dimY

X C∞c (X, scΩ1(X)).
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Remark 6.2.12. More generally, letX,Y be mwbs and Z a manifold without boundary. Consider
a di�erentiable �bration f : X → Y with typical �ber Z . For every scattering density
µ ∈ C∞(X, scΩ1(X)) the pushforward

f∗µ ∈ ρ− dimZ
Y C∞c (Y, scΩ1(Y ))

is de�ned locally by integration along the �ber.
Let (U,ψ) be a trivializing neighborhood of the �ber bundle, that is U ⊂ Y open, ψ : X →

U × Z smooth and f |f−1(U) = prM ◦ ψ. Assume without loss of generality that µ is supported
on f−1(U). Then set

f∗µ =

∫
Z
µ ◦ ψj .

6.2.4. Sca�ering Maps

We now introduce and characterize the class of maps whose pull-backs preserve amplitudes
of product type. They are a special case of interior b-maps in the sense of [41], and humbly
mimicking Melrose’s naming conventions we call them sc-maps. We �rst introduce them on
manifolds with boundary and then generalize to manifolds with higher corner degeneracy, such
as products of mwcs.
De�nition 6.2.13 (sc-maps on mwb). Let Y and Z be mwbs. Suppose Ψ : Y → Z . Then Ψ is
called an sc-map if for any m ∈ R and a ∈ ρ−mZ C∞(Z) it holds that:

1. Ψ∗a ∈ ρ−mY C∞(Y );

2. if p ∈ Ψ(Y ) with p = Ψ(q) and (ρmZ a)(p) > 0, then (ρmY Ψ∗a)(q) > 0.

Remark 6.2.14. In particular, Ψ maps the boundary of Y into that of Z . It also follows that
TΨ maps inward pointing vectors at the boundary (meaning vectors with strictly positive
∂ρ-component) to inward pointing vectors at the corresponding points. Indeed, we see that, at
the boundary, Ψ∗∂ρZ = h−1∂ρY .
Remark 6.2.15. It is obvious that the composition of two sc-maps is again a sc-map.

It is straightforward to adapt this de�nition to that of a local sc-map by replacing Y and Z
with open subsets.

Lemma 6.2.16 (sc-maps in coordinates). Let Y and Z be mwbs, U ⊂ Y and V ⊂ Z open
subsets. A smooth map Ψ : U → V is a local sc-map if and only if for the boundary de�ning
functions on Y and Z , ρY and ρZ , respectively, we have

Ψ∗ρZ = ρY h for some h ∈ C∞(Y ) with h > 0. (6.5)

Hence, any local di�eomorphism of mwbs is a local scattering map. Moreover:
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Lemma 6.2.17. Let X,Z be mwbs. Given any open, bounded set U ⊂ Rd, de�ne the projection
prZ : Z × U → Z, (z, y) 7→ z. Then IX ×prZ is a sc-map.

We now investigate the action of pull-backs by sc-maps on the objects introduced above. The
following assertions can be veri�ed in local coordinates.

Lemma 6.2.18. Let Y and Z be mwbs, U ⊂ Y and V ⊂ Z open subsets. Let Ψ : U → V be a
local sc-map. Then, the following properties hold true.

• Ψ∗ yields a map ρmZ
scΘk(V ) → ρmY

scΘk(U) for any m ∈ R and k ∈ N. Moreover, for
θ ∈ ρmZ scΘk(V ), we have scd(Ψ∗θ) = Ψ∗(scdθ).

• Ψ∗ yields a map scΩσ(V )→ scΩσ(U) for any σ ∈ [0, 1].

• The map T ∗Ψ : T ∗V → T ∗U lifts to a map scT
∗
Ψ : scT

∗
V → scT

∗
U . In local coordinates,

away from �ber-in�nity, scT
∗
Ψ is given by

(Ψ(y), ζ) 7→
(
y, ι(t(JΨ)(ι−1ζ))

)
,

wherein JΨ is the Jacobian of Ψ at y. The extension to �ber-in�nity is obtained by taking
interior limits |ζ|−1 → 0.

We observe that sc-maps provide a natural class of maps between scattering manifolds.

Corollary 6.2.19. Suppose Y is a mwb, (Z, ρZ , g) a scattering manifold, Ψ a sc-map Y → Z
which is an immersion. Then (Y,Ψ∗ρZ ,Ψ

∗g) is a scattering manifold.

Proof. We �rst observe that Ψ∗ρZ is a boundary de�ning function on Y . Indeed,

dΨ∗ρZ = h dρY + ρY dh. (6.6)

This implies, at the boundary, h dρY 6= 0. The scattering metric on Z pulls back to

Ψ∗g = Ψ∗
(dρZ)⊗2

ρ4
Z

+ Ψ∗
g∂
ρ2
Z

=
(dΨ∗ρZ)⊗2

(Ψ∗ρZ)4
+

Ψ∗g∂
(Ψ∗ρZ)2

,

which is again a scattering metric.

Corollary 6.2.20. Any scattering manifold Y of dimension s is locally isometric to Bs with some
scattering metric. Moreover, any scattering density on Y can locally be written as the pull-back by
one on Bs.

We now extend the notion of sc-map to manifolds with corners.
De�nition 6.2.21 (sc-maps on mwc). Let Y and Z be mwcs. Then, a smooth map Ψ : Y → Z is
a local sc-map for some complete sets of local bdfs {ρYi}i∈I and {ρZi}i∈I if:

For all i ∈ I we have Ψ∗ρZi = ρYihi for some hi ∈ C∞(Y ) with hi > 0.
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Remark 6.2.22. In particular, Ψ maps the boundary of Y into that of Z .
As mentioned before, sc-maps are special cases of b-maps. In fact, they are those interior

b-maps that are smooth maps in the sense of [33]. The only di�erence with the smooth maps in
[33] is that, therein, Ψ∗ρZi ≡ 0 is allowed.
Example 6.2.23. In particular, if Ψ1 : Y1 → Z1 and Ψ2 : Y2 → Z2 are sc-maps on mwb, then
Ψ1 ×Ψ2 : Y1 × Y2 → Z1 × Z2 is a sc-map on the resulting product mwc.
Remark 6.2.24. Note that we �x the ordering of the boundary de�ning functions. This is
important, in particular, when considering sc-maps between products X × Y → X × Z or of
the form X × Y → scT

∗
X . Most of the times, the choice of bdfs will be clear from the context.

Note that, on a mwb, it is possible to extend any map ∂X 7→ ∂X with x 7→ x′ to a scattering
map, by setting (ρX , x) 7→ (ρX , x

′) in a collar neighbourhood of ∂X given byX ∼= [0, ε)×∂X .
The following proposition grants us the ability to continue scattering maps from a corner into
the interior.

Proposition 6.2.25. Let B1 = X1× Y1 and B2 = X2× Y2 be products of mwbs. Let Ψe, Ψψ be
two (local) scattering maps near a point p ∈ Bψe1 ,

Ψe : Be1 −→ Be2 and Ψψ : Bψ1 −→ B
ψ
2

such that Ψe = Ψψ when restricted to Bψe1 . Then there exists a (local) scattering map Ψ on a
neighbourhood U ⊂ B1 of p with Ψ• = Ψ|B• such that

∂ρX1
Ψ∗ρY2 = ∂ρY1

Ψ∗ρX2 = 0 on B1. (6.7)

If Ψe and Ψψ are local di�eomorphisms near p (in their respective boundary faces), then Ψ is a
local di�eomorphism near p.

Proof. This is Whitney’s extension theorem for smooth functions, applied to the system of
functions (and their derivatives)

(Ψe)∗x, (Ψe)∗y, (Ψe)∗ρY on Be1,

(Ψψ)∗ρX , (Ψ
ψ)∗x, (Ψψ)∗y on Bψ1 ,

together with the conditions (6.7) and

Dx,yΨ
∗ρY2 = 0 on Bψ1 ,

Dx,yΨ
∗ρX2 = 0 on Be1.

Note that, if Ψe and Ψψ are local di�eomorphisms at p, the di�erential of Ψ is an invertible
block matrix, and hence Ψ is a local di�eomorphism.
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Lemma 6.2.26. Consider a sc-map Ψ : X × Y → X × Y of product form Ψ = ΨX × ΨY ,
with sc-maps onX,Y , ΨX and ΨY , respectively. Assume a ∈ ρ−mψY ρ−meX C∞(X × Y ). With the
notation of De�nition 6.2.6 and 6.2.7, we have:

σψ(Ψ∗a)−Ψ∗(σψa) ∈ ρ−mψ+1
Y ρ−meX C∞,

σe(Ψ∗a)−Ψ∗(σea) ∈ ρ−mψY ρ−me+1
X C∞,

(Ψ∗a)p −Ψ∗(ap) ∈ ρ
−mψ+1
Y ρ−me+1

X C∞.

Proof. We will only prove the �rst identity, the others follows by similar arguments. Write
(Ψ∗ρX)(x) = ρXhX(x) and (Ψ∗ρY )(y) = ρY hY (y). If a = ρ−meX ρ

−mψ
Y f then

(Ψ∗a)(x,y) = ρ−meX ρ
−mψ
Y h−meX (x)h

−mψ
Y (y)(Ψ∗f)(x,y).

This implies

σψ(Ψ∗a)(x,y) = ρ−meX ρ
−mψ
Y h−meX (x)h

−mψ
Y (0, y)(Ψ∗f)(x, 0, y),

Ψ∗(σψa)(x,y) = ρ−meX ρ
−mψ
Y h−meX (x)h

−mψ
Y (y)(Ψ∗f)(x, 0, y).

Using Taylor’s theorem, we obtain that h−mψY (y)−h−mψY (0, y) ∈ ρY C∞(X×Y ), and therefore
σψ(Ψ∗a)−Ψ∗(σψa) ∈ ρ−mψ+1

Y ρ−meX C∞(X × Y ), as claimed.

Corollary 6.2.27. The principal part of a ∈ ρ−mψY ρ−meX C∞(X×Y ) is well-de�ned as an element
of

ρ−meX ρ
−mψ
Y C∞(X × Y )/ρ−me+1

X ρ
−mψ+1
Y C∞(X × Y ),

and does not depend on the choice of boundary-de�ning functions ρX , ρY on X,Y .

Remark 6.2.28. Note that the space

ρ−meX ρ
−mψ
Y C∞(X × Y )/ρ−me+1

X ρ
−mψ+1
Y C∞(X × Y )

can be identi�ed with C∞(∂(X × Y )), which identi�es our notion of principal symbol with
that of [43, Section 6.4].

The following lemma is one of the main technical tools in this chapter. We have already
observed that the local model of a scattering manifold near the boundary is the radial com-
pacti�cation of Rd. We now show that scattering maps arise naturally as the composition of
vector-valued amplitudes and radial compacti�cation. Furthermore, we clarify the relation
between total derivative and the scattering di�erential under compacti�cation.
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Lemma 6.2.29. Let Y be amwb. Let f ∈ ρ−1
Y C∞(Y,Rd)with ρY |f | 6= 0 on ∂Y .2 Then, Ψ = ι◦f

extends to a local sc-map Y → Bd. Moreover, the matrix of coe�cients of

scdf =


scdf1
...

scdfd


has the same rank as the di�erential TΨ of Ψ.

Proof. Since ι is a di�eomorphism, ι◦f is a smooth map while ρY > ε and we may thus restrict
our attention to a neighbourhood of ∂Y where ρY |f | is everywhere non-vanishing. As usual,
we pick a suitable collar neighbourhood of product type such that locally Y = [0, ε)× ∂Y , and
we write dim(Y ) = s and y = (ρY , y) for the coordinates. There we need to compute Ψ∗ρZ .
Write f(ρY , y) = ρ−1

Y h(ρY , y) for h ∈ C∞(Y,Rd) with h(0, y) 6= 0 for all (0, y) ∈ ∂Y . Since
ρY is assumed su�ciently small, |f(y)| = ρ−1

Y |h(y)| may be assumed su�ciently large and
hence

Ψ(y) = (ι ◦ f)(y) =
f(y)

|f(y)|

(
1− 1

|f(y)|

)
=

h(y)

|h(y)|

(
1− ρY
|h(y)|

)
.

In this form, Ψ clearly extends up to the boundary. The boundary de�ning function on Bd is, in
this coordinate patch, ρZ = 1− |x|. Thus,

Ψ∗ρZ =
1

|f(y)|
= ρY

1

ρY |f(y)|
.

By assumption, ρY |f(y)| = |h(y)| is smooth and non-vanishing, which proves that Ψ is an
sc-map.

For the second half of the statement we �rst observe that, since ι is a di�eomorphism
Rd → (Bd)o and scd coincides, up to a rescaling by a non-vanishing factor, with the usual
di�erential in the interior, we may restrict our attention to the boundary ∂Y . Then we compute

scdf(y) = ρ2
Y ∂ρY f(y)

dρY
ρ2
Y

+
s−1∑
j=1

ρY ∂yjf(y)
dyj
ρY

= (−h(y) + ρY ∂ρY h(y))
dρY
ρ2
Y

+

s−1∑
j=1

∂yjh(y)
dyj
ρY

.

We identify scdf with its coe�cients (s× d)-dimensional block matrix(
−h(y) + ρY ∂ρY h(y) (∂yjh(y))j=1,...,s−1

)
.

2This means ρY f is the restriction to Y o of an element of g ∈ C∞(Y,Rd) with g 6= 0 on ∂Y .
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At the boundary ρY = 0 we obtain(
−h (∂yjh)j=1,...,s−1

)
(0, y). (6.8)

We want to compare the rank of (6.8) with that of the di�erential of Ψ at the point (0, y) ∈ ∂Y .
As shown above, the function Ψ is given, at an arbitrary point y = (ρY , y) close enough to ∂Y ,
by

h(y)

|h(y)|

(
1− ρY
|h(y)|

)
,

whose di�erential at (0, y) is the block matrix

TΨ(0, y) =
(
− h
|h|2 + ∂ρY

h
|h|

(
∂yj

h
|h|

)
j=1,...,s−1

)
(0, y). (6.9)

Now observe that, since they are derivatives of unit vectors, ∂yj h|h| and ∂ρY h
|h| are orthogonal

to h, which is itself non-zero.3 Therefore, the rank of TΨ(0, y) equals that of the block matrix(
−h

(
∂yj

h
|h|

)
j=1,...,s−1

)
(0, y). (6.10)

Finally, we have that

∂yjh = ∂yj

(
|h| h
|h|

)
= |h|∂yj

h

|h|︸ ︷︷ ︸
collinear to ∂yj

h
|h|

+
(h · ∂yjh)

|h|2
h︸ ︷︷ ︸

collinear to h

.

This means that the null space (and hence the ranks) of (6.8) and (6.10) coincide.

Example 6.2.30. The simplest example for a map where Lemma 6.2.29 applies is given by the
map f = ι−1 : Bd → Rd.
Remark 6.2.31. Recall (cf. [31, App. C.3]) that the intersection of two C∞-submanifolds Y and
Z of a C∞-manifold X is clean with excess e ∈ N if Y ∩Z is a C∞-submanifold of X satisfying

Tx(Y ∩ Z) = TxY ∩ TxZ, ∀x ∈ Y ∩ Z,
codim(Y ) + codim(Z) = codim(Y ∩ Z) + e.

Example 6.2.32. Let X be a mwb and a ∈ ρ−meX ρ
−mψ
Bs C∞(X × Bs). In this example, we extend

a to a local symbol on a suitable subset of X × Bs+1.
We view Bs+1 as embedded in Rs+1 with coordinates (y1, . . . , ys, ỹ). De�ne

 : Bs+1 → Bs × (−1, 1), (y, ỹ) 7→

(
y√

1− ỹ2
, ỹ

)
,

3Recall that, in fact, |v(t)| = 1⇔ v(t) · v(t) = 1⇒ 2v(t) · v′(t) = 0⇔ v(t) ⊥ v′(t).
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where y = (y1, . . . , ys). For every ε ∈ (0, 1), we obtain coordinates on

U = −1 {Bs × (−ε, ε)} = Bs+1 ∩ {|ỹ| < ε},

cf. Figure 6.1. We note that U is a �bration of base Bs and �ber (−ε, ε).

Bs

Bs+1



Bs

Bs × (−ε, ε)

Figure 6.1.: The action of  visualized

We verify that  is a sc-map. For this we now view Bs × (−ε, ε) as a (non-compact) manifold
with boundary4 with boundary de�ning function ρZ = 1− [y]. Observe that near the boundary
we have

∗ρZ = 1− [y]√
1− ỹ2

= (1−
√

[y]2 + ỹ2) · 1√
1− ỹ2

·
√

1− ỹ2 − [y]

1−
√
ỹ2 + [y]2

= ρBs+1h.

Since |ỹ| < ε, h is positive and in C∞(U). Hence  is an sc-map.
As usual, we may perform the same construction �ber-wise on a �ber bundle by considering

local product decompositions to obtain a local sc-map. Namely, let X be an arbitrary mwb.
Then Ψ = IX × is again a sc-map on the product X ×

(
Bs × (−ε, ε)

)
. Using Lemma 6.2.17

and Remark 6.2.15, wee see that Ψ̃ = Ψ ◦ (IX ×prBs) : X × U → X × Bs is a sc-map. Hence,
Ψ̃∗a ∈ ρ−meX ρ

−mψ
Bs+1C

∞(X × U).

4This means we view Bs × (−ε, ε) as embedded in the manifold with boundary Bs × S1, which can be embedded
in Ss × S1. For higher dimension, we embed (−ε, ε)r ↪→ Tr .
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6.3. Phase Functions and Lagrangian Submanifolds

6.3.1. Clean Phase Functions

De�nition 6.3.1 (Phase functions). Let X and Y be mwbs, B = X × Y . Let U be an open subset
in B. Then, a real valued ϕ ∈ ρ−1

X ρ−1
Y C∞(U) is a local (sc-)phase function if it is the restriction

of some ϕ̃ ∈ ρ−1
X ρ−1

Y C∞(B) to U such that scdϕ̃(p) 6= 0 for all p ∈ Bψ ∩ ∂U .
If U = B, that is ϕ ∈ ρ−1

X ρ−1
Y C∞(B) with scdϕ(p)|Bψ 6= 0, we call ϕ a global sc-phase

function.
Remark 6.3.2. Phrased di�erently, if U is an interior open set, ϕ is just a smooth function. In
the non-trivial case of U being a boundary neighbourhood, the above de�nition means that,
for every p ∈ ∂B in the ψ- or ψe-component of the boundary of U , there exists an element
ζ ∈ scV(B) such that ζ(ϕ) is elliptic at p, meaning ζ(ϕ) ∈ C∞(X×Y ) satis�es

(
ζϕ
)
(p) 6= 0. It

is, by compactness, bounded away from zero at the possible limit points in ∂U . In the following,
we usually do not write ϕ̃ but simply identify ϕ̃ and ϕ at these limit points.
Example 6.3.3 (SG-phase functions). If B = Bd × Bs, such ϕ correspond to so-called (classical)
SG-phase functions on Rd × Rs, cf. [6, 7], but with a relaxed condition as ‖x‖ → ∞. Indeed,
in light of the SG-estimates (6.4), the previous de�nition translates to

|〈x〉−1∇θϕ|2 + |〈θ〉−1∇xϕ|2 ≥ C for |θ| � 0. (6.11)

The relationship between these and “standard” phase functions which are homogeneous in θ
is discussed in [7]. Examples of SG-phase functions are the standard Fourier phase x · θ on
Rdx × Rdθ and x0〈θ〉 − x · θ on Rd+1

x0,x × Rdθ .

De�nition 6.3.4 (The set of critical points). Let B = X × Y , ϕ ∈ ρ−1
X ρ−1

Y C∞(B) a (local) phase
function. A point p ∈ B (in the domain of ϕ) is called a critical point of ϕ if scdY ϕ(p) = 0, that
is, if ζ(ϕ)(p) = 0 for every ζ ∈ scVY (B). We de�ne

Cϕ = {p ∈ B | scdY ϕ(p) = 0}. (6.12)

We set Cϕ = Cϕ ∩ B and specify

C•ϕ = Cϕ ∩ B• for • ∈ {e, ψ, ψe}.

We now adapt the usual de�nition of a clean phase function from the classical setting to the
case with boundary.
De�nition 6.3.5 (Clean phase functions). A phase function ϕ is called clean if the following
conditions hold:

1.) there exists a neighbourhood U ⊂ B of ∂B such that Cϕ ∩ U is a manifold with corners
with ∂Cϕ ⊂ ∂B;
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2.) the tangent space of TpCϕ is at every point p given by those vectors in v ∈ TpB such
that v(ζ(ϕ)) = 0 for all ζ ∈ scVY , that is, T (scdY ϕ)v = 0;

3.) the intersections C•ϕ = Cϕ ∩ B• are clean.

The last condition is equivalent to the existence of w ∈ TC•ϕC
•
ϕ such that

(T scdY ϕ)(w + ∂ρ•) = 0. (6.13)

This means that, for some w tangent to B•, we have w + ∂ρ• ∈ TC•ϕCϕ. Here, ρ• is a bdf of B•.
We now discuss the implications of these conditions.

Lemma 6.3.6. Let ϕ be a clean phase function. Then either we are in the “non-corner crossing
case” 1a.) or in the “corner crossing case” 1b.), namely,

1. both Ceϕ and Cψϕ are closed manifolds (without boundary) and Cψeϕ = ∅;

2. Cϕ consists of two components, Ceϕ and Cψϕ , which are both submanifolds (with boundary),

of the same dimension dim(Cϕ) − 1, with joint boundary Cψeϕ = ∂Ceϕ = ∂Cψϕ of B. The
intersection of Ceϕ and Cψϕ in Cψeϕ is again clean.

In both cases, the di�erential of scdY ϕ : B → scT ∗B, viewed as a map T (scdY ϕ) : TB →
T (scT ∗B), characterizes TC•ϕ: The tangent space of Ceϕ and Cψϕ at each point p is given by those
vectors v ∈ TB• such that v(ζ(ϕ)) = 0 for all ζ ∈ scVY , that is T (scdY ϕ)v = 0.

By condition 3.) of De�nition 6.3.5, we have dim(ker(T (scdY ϕ))) = dimCϕ. Hence, the
restrictions of T (scdY ϕ) to the individual boundary components of B on Cϕ are of constant
rank. Namely,

rk(T (scdY ϕ)) =


s− e on Coϕ,
s− e− 1 on Cψϕ and Ceϕ,
s− e− 2 on Cψeϕ ,

for some �xed number e, called the excess of ϕ, which is given by

e = dimCϕ − d.

Remark 6.3.7. Conversely, if the rank of T (scdY ϕ) is constant in a neighborhood of each critical
point of scdY ϕ, then ϕ is clean by the constant rank theorem. In case e = 0, ϕ is called
non-degenerate, and the two characterizations coincide. The corresponding case of SG-phase
functions (on Rd) was studied in [7].
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6.3.2. The Associated Lagrangian

In the classical local theory without boundary on subsets of Rd × (Rs \ {0}), see [31, Chapter
XXI.2], the set of critical points Cϕ is realized as an immersed Lagrangian in T ∗Rd by the map
(x, θ)→ (x, ϕ′x(x, θ)). In the present setting, the situation is more complicated. Following [7],
we de�ne an analogous map λϕ on the mwc B = X × Y into scT

∗
X .

For that, we consider the following sequence of maps: Using the “rescaling identi�cations”
(6.3), we may view (x,y) → scdXϕ(x,y) as a map in ρ−1

Y C∞(Y, scΘ(X)). Since scΘ(X) are
the sections of scT

∗
X , composing with the radial compacti�cation yields, in view of Lemma

6.2.29, a map into the compacti�ed �bers of scT
∗
X .

De�nition 6.3.8. The map λϕ : B → scT
∗
X is de�ned by

(x,y) 7→
(
x, ι(scdXϕ(x,y))

)
.

Lemma 6.3.9. There is a neighbourhood U ⊂ B of Cϕ such that λϕ : U → scT
∗
X is a local

sc-map.

Proof. We write, x = (ρX , x), y = (ρY , y) for coordinates in B, x and ξ = (ρΞ, ξ) for
coordinates in scT

∗
X . Since λϕ is the identity in the �rst set of variables, we have λ∗ϕx = x. In

the second set of variables, λϕ acts as ι ◦ scdXϕ, with scdXϕ ∈ ρ−1
Y C∞(Y, scΘ(X)). Notice that

on Cψϕ∪Cψeϕ , we have scdXϕ(x,y) 6= 0, since scdϕ 6= 0 onBψ∪Bψe and scdY ϕ = 0 on Cϕ. Hence,
due to compactness, we may �nd a neighbourhood of Cψϕ ∪ Cψeϕ on which scdXϕ(x,y) 6= 0.
Writing ϕ = ρ−1

X ρ−1
Y f for f ∈ C∞(X × Y ), this means

(−f + ρX∂ρXf)
dρX
ρ2
XρY

+
d−1∑
j=1

∂xjf
dxj
ρXρY

6= 0.

Rescaling and viewing scdXϕ as a map in ρ−1
Y C∞(Y, scΘ(X)), we express scdXϕ as

scdXϕ = ρ−1
Y

(−f + ρX∂ρXf)
dρX
ρ2
X

+

d−1∑
j=1

∂xjf
dxj
ρX

 . (6.14)

Composing with ι, we are therefore in the situation of Lemma 6.2.29, up to additional smooth
dependence on the X-variables, and conclude that λϕ is a local sc-map.

On Ceϕ, away from Cψeϕ , we have that ρY 6= 0 and correspondingly scdXϕ(x,y) stays bounded.
Since ι maps bounded arguments into the interior, we �nd λϕ∗ρΞ 6= 0. Since λϕ is smooth, λϕ
is an sc-map.

In particular, ι(scdXϕ(x,y)) maps boundary points with ρY = 0 to boundary points of the
�ber, that is toWψ ∪Wψe.
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De�nition 6.3.10. We de�ne Lϕ = λϕ(Cϕ) and Λϕ := λϕ(Cϕ). We further write Λ•ϕ for
λϕ(C•ϕ) ⊂ W• for • ∈ {e, ψ, ψe}. We say that ϕ parametrizes Lϕ and Λϕ.

Theorem 6.3.11. The map λϕ : Cϕ → scT
∗
X is of constant rank d. Its image Lϕ as well as

the boundary and corner faces Λ•ϕ = λϕ(C•ϕ) are immersed manifolds of dimension dim Λ•ϕ =
dim C•ϕ − e. Furthermore, λϕ : Cϕ → Λϕ is a submersion.

The proof is inspired by that of Lemma 2.3.2 in [12] (adapted to clean phase functions), but
much more involved, due to the presence of the compacti�cation. We treat this new phenomenon
by carefully applying Lemma 6.2.29.

Proof. We obtain the rank of Tλϕ for λϕ : Cϕ → scT
∗
X by computing the dimension of

its null space. Let v = δρX · ∂ρX + δx · ∂x + δρY · ∂ρY + δy · ∂y be a vector at a point
p = (ρX , x, ρY , y) ∈ Cϕ. For the moment, we assume ρY > 0. We write λϕ = (I×ι) ◦ `ϕ with

`ϕ : X × Y o → scT ∗X (x, y) 7→ (x, scdXϕ(x, y)).

Assume that T`ϕ(p)v = 0 and v ∈ TpCϕ. The condition T`ϕ(p)v = 0 implies that δρX = 0
and δx = 0. Let ṽ = δρY · ∂ρY + δy · ∂y . Hence the assumptions are reduced to

ṽscdXϕ(p) = 0,

ṽscdY ϕ(p) = 0,
(6.15)

where ṽ is interpreted as acting on the coe�cient functions of the di�erentials.
In coordinates, these coe�cient functions are given by

scdXϕ(p) = ρ−1
Y (−f + ρX∂ρXf, ∂xf)(p), scdY ϕ(p) = (−f + ρY ∂ρY f, ∂yf)(p).

On Cϕ, where −f + ρY ∂ρY f = 0 and ∂yf = 0 hold true, it is easily seen that (6.15) is
equivalent to 

ρXρ
−2
Y (ρY ∂ρY − 1)∂ρXf ρXρ

−1
Y ∂ρX∂yf

ρ−2
Y (ρY ∂ρY − 1)∂xf ρ−1

Y ∂x∂yf
ρY ∂ρY ∂ρY f ρY ∂ρY ∂yf
∂ρY ∂yf ∂y∂yf

(δρYδy
)

= 0. (6.16)

The cleanness condition translates to the dimension of the nullspace of T scdXϕ being con-
stantly e. We identify T scdY ϕ with the matrix

J =


(ρY ∂ρY − 1)∂ρXf ∂y∂ρXf
(ρY ∂ρY − 1)∂xf ∂y∂xf
ρY ∂ρY ∂ρY f ∂y∂ρY f
ρY ∂ρY ∂yf ∂y∂yf

 . (6.17)
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The matrices appearing in (6.16) and (6.17) are related by

J =


ρY ρ

−1
X 0 0 0

0 ρY 0 0

0 0 ρ−1
Y 0

0 0 0 1



ρXρ

−2
Y (ρY ∂ρY − 1)∂ρXf ρXρ

−1
Y ∂ρX∂yf

ρ−2
Y (ρY ∂ρY − 1)∂xf ρ−1

Y ∂x∂yf
ρY ∂ρY ∂ρY f ρY ∂ρY ∂yf
∂ρY ∂yf ∂y∂yf

(ρY 0
0 1

)
.

This proves that (6.15) is equivalent to v ∈ kerT scdY ϕ under our assumptions ρY > 0 and
ρX > 0, and the rank of `ϕ is given by

rk `ϕ = dimTpCϕ − dim kerT scdY ϕ = (d+ e)− e = d.

Now assume that ρX = 0. We see that the �rst row of (6.16) vanishes identically, but we have
the additional condition (6.13), implying that, at ρX = 0, the �rst row of (6.17) depends linearly
on the other rows. Therefore, the rank of `ϕ is still d at points with ρX = 0. The composition
with I×ι changes nothing for ρY > 0, since ι is a di�eomorphism there.

To perform the limit ρY → 0, we have to examine carefully the e�ect of the presence of
the compacti�cation ι, in the spirit of the proof of Lemma 6.2.29. For v ∈ TpCϕ such that
Tλϕ(p)v = 0, that is, as above, of the form

v = δρY · ∂ρY + δy · ∂y,

we now obtain the set of equations

v
(
ι scdXϕ

)
(p) = 0,

vscdY ϕ(p) = 0,
(6.18)

which are equivalent to the set of equations(
∂ρY ι

scdXϕ ∂yι
scdXϕ

∂ρY ∂yf ∂y∂yf

)(
δρY
δy

)
= 0. (6.19)

We need to compare the rank of the coe�cient matrix in (6.19) with that of T scdY ϕ at points of
the form (ρX , x, 0, y). For this purpose, we go through a series of “reductions”, along the lines
of the proof of Lemma 6.2.29, to simplify the comparison. First, we can identify scdXϕ with

ρ−1
Y

(
−f + ρX∂ρXf

∂xf

)
=: ρ−1

Y h.

Note that h 6= 0 near Cψϕ , since ϕ is a phase function. As in the proof of Lemma 6.2.29, the
evaluation at (ρX , x, 0, y) then gives(

∂ρY ι
scdXϕ ∂yι

scdXϕ
∂ρY ∂yf ∂y∂yf

)
=

(
− h
|h|2 + ∂ρY

h
|h| ∂y

h
|h|

∂ρY ∂yf ∂y∂yf

)
. (6.20)
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Since all derivatives of h
|h| are orthogonal to h

|h| and h 6= 0, the rank of the matrix (6.20) equals
the one of (

− h
|h|2 ∂y

h
|h|

0 ∂y∂yf

)
. (6.21)

In fact, in (6.20), as well as in (6.21), the �rst column is linearly independent of the others. Now
we write

∂yj
h

|h|
=

1

|h|
∂yjh−

(h · ∂yjh)

|h|3
h︸ ︷︷ ︸

collinear to h

,

and remove the collinear summands, which again does not change the rank of the matrix (6.21).
Therefore, the rank of (6.20) is the same as the one of(

− h
|h|2

1
|h|∂yh

0 ∂y∂yf

)
. (6.22)

Multiplying the �rst d rows and the �rst column of (6.22) by the non-vanishing factor |h|, again
the rank does not change, and we can look at

(
−h ∂yh
0 ∂y∂yf

)
=

f − ρX∂ρXf −∂yf + ρX∂y∂ρXf
−∂xf ∂y∂xf

0 ∂y∂yf

 . (6.23)

On Cϕ at ρY = 0 this equals −ρX∂ρXf ρX∂y∂ρXf
−∂xf ∂y∂xf

0 ∂y∂yf

 . (6.24)

Finally, we observe that the dimension of the null space of (6.24) is, by cleanness of ϕ (in
particular by (6.13) applied to Cψϕ or Cψeϕ ), the same as the one of

−∂ρXf ∂y∂ρXf
−∂xf ∂y∂xf

0 ∂y∂ρY f
0 ∂y∂yf

 = T scdY ϕ|Cψϕ , (6.25)

namely e. Therefore, the rank of λϕ equals d = (d + e) − e near Cϕ, which concludes the
proof.

Lemma 6.3.12. The map λϕ : Cϕ → Lϕ is a local �bration and the �ber is everywhere a smooth
manifold without boundary.
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Proof. Since λϕ is locally an sc-map, Tλϕ maps the set of vectors at the boundary that are
inwards pointing into itself, see Remark 6.2.14. Therefore λϕ is a so-called “tame” submersion in
the sense of [50, Lemma 1.3]. As such, it is a local �bration and the �ber is a manifold without
boundary.

6.3.3. Symplectic Properties of the Associated Lagrangian

As in the classical theory, Lϕ is an immersed Lagrangian submanifold, and its boundary faces
Λ• are immersed Legendrian submanifolds. Let us brie�y recall these concepts. For more
information, the reader is referred to [7, 20, 45].

As a cotangent space, T ∗Xo carries a natural symplectic 2-form ω induced by the canonical
1-form α ∈ C∞(T ∗Xo, T ∗(T ∗Xo)) as ω = dα. This 1-form can be recovered from ω by setting
α = %ψy ω for the radial vector �eld %ψ on C∞(T ∗Xo), which is given by %ψ = ξ · ∂ξ in
canonical coordinates.
We now write (x, ξ) = (ρX , x, ρΞ, ξ) for the coordinates in the mwc scT

∗
X which are obtained

from the rescaled canonical coordinates under radial compacti�cation in the �ber, cf. [45]. Then
%ψ corresponds to ρΞ∂ρΞ on C∞(T

∗
Xo). For the purpose of scattering geometry, it is natural

to rescale further and de�ne, on T ∗(scT
∗
X)o,

αψ := ρ2
Ξ∂ρΞyω.

There exists another form of interest, namely

αe := ρ2
X∂ρXyω.

We now extend these forms to T ∗(scT
∗
X) and de�ne the boundary restrictions of α•. Observe

that, while their explicit form depends on the choice of bdfs, the induced contact structure at
the boundary does not, see next Lemma 6.3.13

Lemma 6.3.13. The forms α• extend to 1-forms onW•, denoted by the same letter. The induced
contact structures do not depend on the choice of bdfs.

Example 6.3.14. On T ∗Rd ∼= Rd × Rd, with canonical coordinates (x, ξ), the vector �elds %ψ
and %e correspond to %ψ = ξ · ∂ξ and %e = x · ∂x. The symplectic 2-form is

∑
j dξj ∧ dxj and

hence
%ψyω = ξ · dx and %eyω = −x · dξ.

Obviously, the coe�cients of these forms diverge as [ξ]→∞ and [x]→∞. The rescaled forms
“at the boundary at in�nity” then correspond to

αψ =
ξ

[ξ]
· dx and αe = − x

[x]
· dξ.

After a choice of coordinates near the respective boundaries, this is the general local geometric
situation.
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We are now in the position to formulate the symplectic properties of Λϕ, cf. [6]. Recall that a
submanifold N of a symplectic manifold (M,ω) is Lagrangian if ω|TN = 0 and a submanifold
N of a contact manifold (M,α) is Legendrian if α|TN = 0.

Proposition 6.3.15. The immersed manifolds de�ned in Theorem 6.3.11 satisfy:

1.) Loϕ is an immersed Lagrangian submanifold with respect to the 2-form ω on (scT
∗
X)o ∼=

T ∗X ;

2.) Λψϕ is Legendrian with respect to the canonical 1-form αψ onWψ ∼= S∗(Xo);

3.) Λeϕ is Legendrian with respect to the 1-form αe onWe ∼= T ∗∂XX .

We take this as the de�nition of an sc-Lagrangian, cf. [7].
De�nition 6.3.16 (sc-Lagrangians). Let Λ := Λψ ∪ Λe ⊂ W . Λ is called an sc-Lagrangian if:

1.) Λψ = Λ∩Wψ is Legendrian with respect to the canonical 1-form αψ onWψ = scS∗XoX ;

2.) Λe = Λ ∩We is Legendrian with respect to the 1-form αe onWe = scT ∗∂XX ;

3.) Λψ has a boundary if and only if Λe has a boundary, and, in this case,

Λψe := ∂Λψ = ∂Λe = Λψ ∩ ∂Λe,

with clean intersection.

Figure 6.2, which is taken from [7], summarizes, schematically, the relative positions of Λeϕ
and Λψϕ near the corner in W . We may take the analysis one step further in order to stress the

Wψ

We

Wψe

Λψe

x, ξ
ρX

ρΞ Λe

Λψ

Figure 6.2.: Intersection of Λψ ⊂ Wψ and Λe ⊂ We at the cornerWψe

Legendrian character of the boundary components near the corner and to reveal the symplectic
properties of Λψe by blow-up. For the sake of brevity here, we move this analysis to the appendix,
Section 6.7.

We may sum up our previous analysis by stating the next Theorem 6.3.17.
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Theorem 6.3.17. For a clean phase function ϕ, the image Λϕ under λϕ of Cϕ is an immersed
sc-Lagrangian.

De�nition 6.3.18. We say that an sc-Lagrangian Λ is locally parametrized by a phase function ϕ
if, over the domain of de�nition of ϕ, we have Λ = Λϕ.

In particular, if Λ is locally parametrized by a phase function, then it is admissible. Conversely,
we have the following result, cf. [7].

Proposition 6.3.19. If Λ is an sc-Lagrangian, then it is locally parametrizable by a clean phase
function ϕ, that is Λ• ∩ U• = Λ•ϕ ∩ U• for some open U ⊂ W•. In particular, Λ arises as the
boundary of some Lagrangian submanifold Lϕ of scT

∗
X .

Remark 6.3.20. The proof of Proposition 6.3.19 in [7] is based on concrete parametrizations
in Rd × Rd. It applies here nonetheless, since any d-dimensional manifold with boundary X
can be locally modelled by Bd. Hence, scT

∗
X can be locally modelled by Bd × Bd and thus,

under inverse radial compacti�cation (applied to both factors), by Rd × Rd. Note that in [7] we
imposed additional conditions, namely

Λe ∩ (∂X × ι({0})) = ∅, (6.26)

and that x · ξ = 0 in local canonical coordinates on Λψe, since this is always true for a
parametrized Lagrangian (see (6.27) below). However, condition (6.26) is equivalent to the
stronger assumption that scdϕ 6= 0 also on Be, which we do not impose here. The assumption
x · ξ = 0, in turn, is super�uous, since it already follows from the symplectic assumptions on
Λψe, as we now show.

Assume that both ξ · dx ≡ 0 and −x · dξ ≡ 0 on a bi-conic submanifold L of Rd ×Rd. Then
we must have d(x · ξ) = 0. However, when |x| and |ξ| tend to∞, this blows up unless x · ξ = 0.
This shows that x · ξ = 0 is indeed automatically ful�lled.

This corresponds to the fact that, for the bi-homogenous principal symbol of a phase function
ϕψe, we have, when ∇θϕ(x, θ) = 0, that (cf. [7])

〈x,∇xϕ(x, θ)〉 = ϕ(x, θ) = 〈θ,∇θϕ(x, θ)〉 = 0, (6.27)

where we have used Euler’s identity for homogeneous functions twice.

6.3.4. Sca�ering Conormal Bundles

In this section, we consider the simple example of a scattering conormal bundle. Consider a
k-dimensional submanifold X ′ ⊂ X which intersects the boundary of X cleanly or not at all
(called p-submanifold in [44]). In the following, we assume an intersection with the boundary.
Then there exist local coordinates (ρX , x

′, x′′) such that X ′ is locally given by

X ′ = {(ρX , x′, x′′) | ρX ≥ 0, x′ = 0 ∈ Rd−1−k, x′′ ∈ Rk−1}.
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We can now consider the compacti�ed scattering conormal scT
∗
X ′ ⊂ scT

∗
X′X . The boundary

faces of scT
∗
X ′ constitute a Lagrangian.

In fact, write X = ι(Rd), so that X ′ corresponds to a subspace of Rd of the form

X ′ = {(x′, x′′) | x′ = 0 ∈ Rd−k, x′′ ∈ Rk}.

We can then introduce Y = ι(Rd−k) and φ(x, y) = x′ · y on Rd ×Rd−k , which is an SG-phase
function, taking into account (6.11). The true phase function on X × Y is then (ι−1 × ι−1)∗φ.
We can then compute Cϕ = X ′ × Y and Λϕ = scT

∗
X ′.

Indeed, in the Euclidean setting, Λϕ corresponds to the the three conic manifolds

Λeϕ = {(0, x′′, ξ′, 0)} ⊂ (R \ {0}d)× Rd

Λψeϕ = {(0, x′′, ξ′, 0)} ⊂ (R \ {0}d)× (R \ {0}d)

Λψϕ = {(0, x′′, ξ′, 0)} ⊂ Rd × (R \ {0}d)

which have the claimed symplectic properties. Compacti�cation of the Rd-components and
projection of the conic (R \ {0}d)-component to the corresponding sphere then yields the
compacti�ed notions in scT

∗
X .

6.4. Phase Functions which Parametrize the Same Lagrangian

In this section, we adapt the classical techniques for exchanging the phase function locally
parametrizing a given Lagrangian, see [61, Chapter 8.1], to the setting with boundary. Since
Λϕ, not Lϕ, is our true object of interest, we say that two phase functions ϕi, i = 1, 2, lo-
cally parametrize the same Lagrangian at p0 ∈ W if Λϕ1 = Λϕ2 in a small (relatively) open
neighbourhood of p0 in the respective boundary faces.

Our �rst observation is the following:

Lemma 6.4.1. If ϕ ∈ ρ−1
X ρ−1

Bs C∞(X ×Bs) is a local phase function and r ∈ C∞(X ×Bs), then
ϕ+ r is still a local phase function and it parametrizes the same Lagrangian as ϕ.

Proof. Since r ∈ C∞(X × Bs), scdr = 0 when restricted to the boundary. Therefore, ϕ+ r is
still a local phase function. By the same reason, Cϕ = Cϕ+r . Finally, we have

λϕ+r(x, by) = (x, ι(scdX(ϕ+ r))).

Computing scdX(ϕ+ r) in coordinates, see (6.14),

scdXϕ = ρ−1
Y

(−f + ρX∂ρXf + ρY ρ
2
X∂ρXr)

dρX
ρ2
X

+

d−1∑
j=1

(∂xjf + ρY ρX∂xjr)
dxj
ρX

 ,

we observe that at ρX = 0, the contribution from r vanishes. The same is true in the limit of
ρY → 0 under application of ι, see also Lemma 6.2.29.
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6.4.1. Increasing Fiber Variables

Given a clean phase function ϕ ∈ ρ−1
X ρ−1

Bs C
∞(X×Bs) with excess e, de�ne the phase function

ψ̃ ∈ ρ−1
X ρ−1

Bs C
∞(X × Bs × (−ε, ε)) as follows:

ψ̃(x,y, ỹ) = ϕ(x,y) +
ỹ2

ρXρBs
.

We see that scdψ̃ 6= 0 when scdϕ 6= 0 and scdBs×(−ε,ε)ψ̃ = 0 if and only if ỹ = 0 and scdBsϕ = 0.
Thus,

C
ψ̃

= {(x,y, 0) | (x,y) ∈ Cϕ} ,

which implies that the excess is not changed, and Λ
ψ̃

= Λϕ. Summing up, ψ is a local clean
phase function in s+ 1 �ber variables with the same excess e as ϕ and (locally) parametrizing
the same Lagrangian as ϕ.

This construction may once again be moved to balls, by using Example 6.2.32 and setting
ψ = Ψ∗ψ̃. Then ψ ∈ ρ−1

X ρ−1
Bs+1C

∞(X × U). Using the fact that scdψ = Ψ∗ψ̃, we see that ψ is
a clean phase function parametrizing Λϕ with excess e. Again, X × Bs can be exchanged by
any relatively open subset, hence starting with local phase functions.

6.4.2. Reduction of the Fiber Variables

Starting again from a clean phase function ϕ ∈ ρ−1
X ρ−1

Bs C
∞(X × Bs) with excess e, we now

construct a (local) phase function ψ in the smallest possible number of phase variables (without
changing the excess) which (locally) parametrizes the same Lagrangian. The argument is similar
to the classical one, but extra attention needs to be paid at to what happens near points with
ρY = 0, namely, we never seek to get rid of ρY as a parameter.

Remark 6.4.2. In the classical theory, meaning for homogeneous phase functions, it is possible to
reduce the number of �ber variables under the assumption that the matrix ∂2

θθϕ(x, θ) has rank
r > 0 on Cϕ. However, since a classical phase function ϕ is homogeneous in θ, it holds that
θ · ∇θϕ = ϕ and hence the second radial derivative is automatically zero on Cϕ. Furthermore,
the radial variable can always be chosen to parametrize Λϕ.

We proceed as in the proof of Theorem 6.3.11. We �rst recall that, for p0 ∈ Cϕ, writing
ϕ = ρ−1

Y ρ−1
X f with f ∈ C∞(X × Bs), we have there

0 = scdY ϕ = (−f + ρY ∂ρY f, ∂ykf) . (6.28)

We then identify TY scdY ϕ in coordinates with the matrix

JY ϕ =

(
ρY ∂

2
ρY
f −∂yjf + ρY ∂yj∂ρY f

∂ρY ∂ykf ∂yj∂ykf

)
. (6.29)
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We see, using (6.28), that on Cψϕ ⊂ {ρY = 0} this becomes

JY ϕ
∣∣
Cψϕ

=

(
0 0

∂ρY ∂ykf ∂yj∂ykf

)
. (6.30)

Therefore, the rank of this matrix is at most s− 1. Indeed, we observe that, by (6.13), at ρY = 0
we have dρY 6= 0 on TCψϕ and hence we can always choose ρY as a parameter to locally
describe Cψϕ .
Remark 6.4.3. By the same argument, ρX can be chosen as a parameter close to Be, while, close
to Bψe, both ρX and ρY can be chosen as parameters to represent Cϕ.

We now seek to reduce the remaining set of variables under the assumption that

The matrix
(
∂yj∂ykρXρY ϕ

)
jk

has rank r > 0 at p0 ∈ Cψϕ ∪ Cψeϕ . (6.31)

Since at points where ρY 6= 0 the variable ρY behaves like all other variables, the same restriction
does not hold near a point p ∈ Ceϕ. Here, we simply assume that

The matrix TY scdY ϕ has rank r > 0 at p0 ∈ Ceϕ. (6.32)

Since up to multiplication by ρY > 0 in one row, (6.29) is the Hessian of h (with respect to
y), this is equivalent to rk(HY f) = r > 0. The two conditions may be summarized into one.
Namely, consider the scattering Hessian (with respect to the y-variables) of ϕ

scHY ϕ =

(
ρ2
Y ρX∂ρY ρ

2
Y ρX∂ρY ϕ ρY ρX∂yjρ

2
Y ρX∂ρY ϕ

ρ2
Y ρX∂ρY ρY ρX∂ykϕ ρY ρX∂yjρY ρX∂ykϕ

)
= ρY ρX

(
ρ2
Y ∂

2
ρY
f −∂yjf + ρY ∂yj∂ρY f

ρY ∂ρY ∂ykf ∂yj∂ykf

)
.

(6.33)

Then ρ−1
Y ρ−1

X
scHY ϕ becomes, at a point in Cϕ:

ρ−1
Y ρ−1

X
scHY ϕ =

(
0 0
0 ∂yj∂ykf

)
, if p0 ∈ Cψϕ ∪ Cψeϕ ;

ρ−1
Y ρ−1

X
scHY ϕ =

(
ρ2
Y ∂

2
ρY
f ρY ∂yj∂ρY f

ρY ∂ρY ∂ykf ∂yj∂ykf

)
, if p0 ∈ Ceϕ.

Notice that we can factorize these matrices as(
ρY 0
0 1

)(
∂2
ρY
f ∂yj∂ρY f

∂ρY ∂ykf ∂yj∂ykf

)(
ρY 0
0 1

)
, (6.34)

the rank of which therefore is, for ρY 6= 0, that of the standard Hessian of f , HY f . Therefore,
our assumption may be expressed as:

The matrix ρ−1
Y ρ−1

X
scHY ϕ has rank r > 0 at p0 ∈ Cϕ. (6.35)
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We may now proceed as in the standard theory and introduce a splitting of variables y = (y′,y′′)
such that (∂y′′∂y′′f)jk is an invertible r × r matrix. We can then apply the implicit function
theorem to

0 = scdY ϕ = (−f + ρY ∂ρY f, ∂ykf)

at p0. We obtain a map from an open neighbourhood of p0,

k : (x,y′) 7→
(
x,y′,y′′(x,y′)

)
,

such that Cϕ and the range of k locally coincide. Note that k is a scattering map, since ρY is
always one of the y′ near the ψ-face.

Then ϕred = ϕ ◦ k is a clean local phase function in d× (s− r) variables with excess e, and
k provides a local isomorphism Cϕred

→ Cϕ. Furthermore, at stationary points p0 and k(p0),
we have that ι(scdXϕred) = ι(scdXϕ), since scdY ϕ = 0 there. Hence, ϕred locally parametrizes
the same Lagrangian as ϕ.
Remark 6.4.4. Note that, after applying a change of coordinates in the y variables, ϕred may be
assumed to be de�ned on Bd × Bs−r , see also Lemma 6.4.7 below.

Summing up, we can formulate the next Proposition 6.4.5.

Proposition 6.4.5. Let ϕ ∈ ρ−1
Y ρ−1

X C∞(X × Bs) be a local clean phase function of excess e.
Assume

ρ−1
Y ρ−1

X
scHY ϕ has rank r > 0 at a stationary boundary point p0 ∈ Cϕ.

We may then de�ne a local phase function ϕ ∈ ρ−1
Y ρ−1

X C∞(X × Bs−r) of excess e parametrizing
the same Lagrangian.

We mention that, locally, the minimal number of �ber variables y that a clean phase function
of excess e locally parametrizing Lϕ has to possess is

smin = d+ e− n,

where n is the (local) number of independent x variables on Lϕ. This follows from a simple
dimension argument: the dimension of Lϕ is d, that of Cϕ is d+ e, and the one of the projection
to x of Cϕ coincides with that of Lϕ. Note that, by cleanness of the intersection Cϕ ∩ Bψ , near
Λψ we have smin > 0.

6.4.3. Increasing the Excess

Given a (local) clean phase function ϕ ∈ ρ−1
X ρ−1

Bs C
∞(X × Bs) with excess e, de�ne ψ :=

pr∗X×Bsϕ on X × (Bs × (−ε, ε)), viewing Bs × (−ε, ε) as an open subset of Bs × S1, which is
a manifold with boundary whose boundary de�ning function may be chosen as pr∗BsρBs . In
particular we have, with the obvious identi�cations,

scdBs×(−ε,ε)ψ = pr∗X×Bs (scdBsϕ) .
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Then Cψ = Cϕ × (−ε, ε) and hence dim(C•ψ) = dim(C•ϕ) + 1. Furthermore, λψ = pr∗X×Bsλϕ
and Λϕ = Λψ . Summing up, ψ is a local clean phase function in s + 1 �ber variables with
excess e+ 1, de�ned and (locally) parametrizing the same Lagrangian as ϕ.

As before, we may choose to keep working on balls by invoking the construction from
Example 6.2.32 and replacing ψ with

Ψ∗ψ = Ψ̃∗ϕ ∈ ρ−1
X ρ−1

Bs+1C∞(X × U).

In this way, since Ψ is a di�eomorphism, ψ becomes a clean phase function with excess e+ 1
de�ned on a relatively open subset of X × Bs+1 and similarly we may raise the excess by any
natural number.
Example 6.4.6. The standard Fourier phase on R × R, ϕ(x, ξ) = x · ξ, cannot be seen as an
SG-phase on all of R× R2 by setting ψ(x, ξ, η) = x · ξ. Indeed,

〈x〉2|∇xϕ(x)|2 + 〈(ξ, η)〉|∇ξ,ηϕ|2 = (1 + x2)ξ2 + (1 + ξ2 + η2)x2 (6.36)
= 〈x〉〈ξ〉+ x2η2 − 1

For ξ = 0 and x = 0 and η →∞, this vanishes but should be bounded from below by c(1+ |η|)2

if ψ were an SG-phase function, given (6.11).
Reviewing Example 6.2.32, the ray ξ = 0, x = 0 and η 6= 0 corresponds precisely to the poles

in Figure 6.1 which were cut o�. Indeed, (6.36) is bounded from below by 〈x〉2〈(ξ, η)〉2 in any
neighbourhood where |ξ||η| > c and hence a local phase function in such sets.

6.4.4. Elimination of Excess

Assume now that ϕ is a phase function on X × Bs with excess e and that at some point
p0 = (ρX,0, x0, ρY,0, y0) ∈ Cϕ we have λϕ(p0) = (ρX,0, x0, ρΞ,0, ξ0). Then, by Lemma 6.3.12,
the preimage of (ρX,0, x0, ρΞ,0, ξ0) under λϕ, meaning the �ber in Cϕ through p0, is an e-
dimensional smooth submanifold. Locally, since λϕ is a submersion we may, by [33, Prop. 5.1],
reduce to the case of a projection, that is, we may �nd a splitting y = (y′, y′′) near p0 such that
λϕ does not depend on y′′. Then,

ϕ̃(ρX , x, ρY , y
′) := ϕ(ρX , x, ρY , y

′, y′′0)

de�nes a phase function without excess (i.e., a non-degenerate phase function) that parametrizes
the same Lagrangian as ϕ. As usual, we may again reduce to the case of a ball and hence replace
ϕ by a phase function on an open subset of X × Bs−e.

6.4.5. Equivalence of Phase Functions

We will now discuss the changes of phase function under a change of coordinates and which
phase functions can be considered equivalent. We �rst check how the stationary points of a
phase function transform under changes by local di�eomorphisms.
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Lemma 6.4.7. Let X1, Y1, X2, Y2 be mwbs, set Bi = Xi × Yi, i ∈ {1, 2}, and let ϕ ∈
ρ−1
X2
ρ−1
Y2
C∞(B2) be a (local) phase function. Assume g : X1 → X2, h : Y1 → Y2 to be dif-

feomorphisms, and set F = g × h. Then, F ∗ϕ ∈ ρ−1
X1
ρ−1
Y1
C∞(B1) is a (local) phase function with

the same excess of ϕ, and we have

CF ∗ϕ =
{

(x1,y1) ∈ B1 |F (x1,y1) ∈ Cϕ
}
, LF ∗ϕ = (scT

∗
g)(Lϕ).

Remark 6.4.8. This means that, while the boundary de�ning function ρΞ1 of scT
∗
X1 does not

vanish, LF ∗ϕ can then be computed as

LF ∗ϕ =
{

(x1, ι(
t(Jg)ι−1(ξ1)) ∈ scT

∗
X1 | (g(x1), ξ1) ∈ Lϕ

}
.

As ρΞ → 0, ΛψF ∗ϕ is obtained by taking interior limits, see also Lemma 6.2.29.

Proof of Lemma 6.4.7. The result for Cϕ follows immediately from the �rst assertion in Lemma
6.2.18. The statement for Lϕ then follows by writing

λF ∗ϕ(x1,y1) = (scT
∗
g)(λϕ(x2,y2)) (6.37)

near a point (x1,y1) ∈ (CF ∗ϕ)o such that (x2,y2) = (g(x1), h(x1,y1)). Indeed, at these
stationary points, scdXF

∗ϕ = F ∗(scdXϕ), since there scdY ϕ = 0. Since equality (6.37) holds in
the interior, the result at the boundary faces can be obtained as interior limits (see also Lemma
6.3.9).

Remark 6.4.9. The di�eomorphism g × h may be replaced by a single di�eomorphism F :
X1 × Y1 → X2 × Y2 locally of product type near the boundary faces of X2 × Y2, i.e., a (local)
di�eomorphism that is a �bered-map at the boundary.

We now de�ne in which sense two phase functions may be considered equivalent.

De�nition 6.4.10. Let X , Y1, Y2 be mwbs, Bi = X × Yi. Let ϕi ∈ ρ−1
X ρ−1

Yi
C∞(Bi). We say

that ϕ1 and ϕ2 are equivalent at a pair of boundary points (x0,y0
1) ∈ B1 and (x0,y0

2) ∈ B2

if there exists a local di�eomorphism F : X × Y2 → X × Y1 of the form F = id × g with
g(x0,y0

2) = y0
1 such that the following two conditions are met:

F ∗ϕ1 − ϕ2 is smooth in a neighbourhood U of (x0,y0
2), (6.38)

ρXρY2 (F ∗ϕ1 − ϕ2) restricted to Cϕ2 ∩ ∂U vanishes to second order. (6.39)

Lemma 6.4.11. Equivalent phase functions parametrize the same Lagrangian, meaning ΛF ∗ϕ =
Λϕ and we have CF ∗ϕ1 = Cϕ2 .

Proof. This follows from Lemmas 6.4.1 and 6.4.7.
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We now associate to any local phase function its principal phase part, which corresponds in
the SG-case to the leading homogeneous components of ϕ. From the fact that the principal part
of De�nition 6.2.7 is obtained from the boundary restrictions of ϕ, we observe, using F = I× I
and Lemma 6.2.8:

Lemma 6.4.12. A local phase function ϕ and its principal part ϕp are equivalent.

Remark 6.4.13. In particular, each phase function is locally equivalent at the e- and ψ-face,
respectively, to a homogeneous (w.r.t. ρX or ρY ) phase function, after a choice of collar
decomposition. In general, this is not true near the corner Bψe.

Since the di�erence in condition (6.39) is restricted to the boundary, it does not restrict the
behavior ofF ∗ϕ1−ϕ2 into the direction transversal to the boundary, e.g. ∂ρXρXρY2(F ∗ϕ1−ϕ2)
at Ceϕ2

. The following lemma states the transformation behavior of this directional derivative.

Lemma 6.4.14. Let X,Y1, Y2 be mwbs and let F : X × Y2 → X × Y1 be a sc-map of the form
F = I×Ψ. Set h = ρ−1

Y2
F ∗ρY1 . Consider a clean phase function ϕ onX×Y1. Write f = ρXρY2ϕ.

Then we have the following transformation laws:

hF ∗∂ρY1
ρ−1
X f = ∂ρY2

F ∗ρ−1
X f, on F ∗Cψϕ ,

F ∗ρ−1
Y1
∂ρXf = ∂ρXF

∗ρ−1
Y1
f, on F ∗Ceϕ.

Proof. On F ∗Cψϕ , we have that

∂ρY2
F ∗f = hF ∗∂ρY1

f + F ∗(∂y1f)∂ρY2
y1 = hF ∗∂ρY1

f,

where we have used ∂y1f = 0 on F ∗Cψϕ . This proves the �rst equality.
On F ∗Ceϕ, we compute

∂ρXF
∗ρ−1
Y1
f1 = F ∗ρ−1

Y1
∂ρXf1 + F ∗(∂ρY1

ρ−1
Y1
f1) ∂ρXF

∗ρY1 + F ∗(ρ−1
Y1
∂y1f1) ∂ρXF

∗y1

= ρ−1
Y2
h−1F ∗∂ρXf1.

Therein, we used ∂y1f1 = 0 and ∂Y1ρ
−1
Y1
f1 = 0 on Cϕ1 .

Remark 6.4.15. The previous lemma, combined with Lemma 6.4.12, will imply that, away from
the corner, any phase function can be replaced by an equivalent phase function without radial
derivative (at Cϕ) and the vanishing of this derivative at Cϕ is preserved under application of
scattering maps.

This corresponds to the fact that, in the classical theory, one can always choose a homogeneous
phase function. The (non-homogeneous) terms of lower order which arise in transformations
can be absorbed into the amplitude.

The rest of this section will be dedicated to establishing a necessary and su�cient criterion
for the local equivalence of phase functions.
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Lemma 6.4.16. Let X , Y1, Y2 be mwbs such that dim(Y1) = dim(Y2), and set Bi = X × Yi,
i ∈ {1, 2}. Let ϕi ∈ ρ−1

X ρ−1
Yi
C∞(Bi) be phase functions which have the same excess, and assume

that there exist p0
i = (x0,y0

i ) ∈ Cϕi , i ∈ {1, 2}, such that

λϕ1(x0,y0
1) = λϕ2(x0,y0

2),

and, close to (x0,y0
i ), i ∈ {1, 2}, both phases parametrize the same Lagrangian Λ, i.e., locally

Λ = Λϕi , i ∈ {1, 2}. Then, there exists a local di�eomorphism F : B2 → B1 of the form F = I×g
with F (x0,y0

2) = (x0,y0
1), such that F ∗ϕ1 = ρXρY2 f̃1 with CF ∗ϕ1 = Cϕ2 , locally. Moreover,

locally near (x0,y0
2),

(f2 − f̃1)|B2 vanishes of second order at any point of Cϕ2 . (6.40)

Remark 6.4.17. Notice that (6.40) means that the principal part of F ∗ϕ1 and ϕ2 in Lemma 6.4.16
coincide on Cϕ2 .

Proof of Lemma 6.4.16. Since λϕi are local �brations from Cϕi to Λϕi , i ∈ {1, 2}, and Λϕ1 =
Λϕ2 = Λ, there is a local �bered di�eomorphism F : B2 → B1 of the form F = I×g, locally
locally near (x0,y0

1) = F (x0,y0
2), such that the following diagram is commutative.

Λ

Cϕ2 Cϕ1

λϕ2 λϕ1

∃F

Note that F is not uniquely determined, not even on Cϕ2 when the phases are merely clean and
not non-degenerate.

After application of F , we may assume that Y1 = Y2 =: Y , y0
1 = y0

2 =: y0 and, locally,
Cϕ1 = Cϕ2 =: Cϕ. We now show that the restriction of f1 and f2 to a relative neighbourhood
of (x0,y0) in Cϕ vanishes of second order. Recall that, since scdY ϕ1 = scdY ϕ2 = 0, for any
p = (x,y) ∈ Cϕ we have(

ρY ∂ρY f1 − f1 ∂ykf1

)
=
(
ρY ∂ρY f2 − f2 ∂ykf2

)
= 0 (6.41)

Furthermore, since ϕ1 and ϕ2 parametrize the same Lagrangian, we also have λϕ1(p) = λϕ2(p),
that is, ι(scdXϕ1(p)) = ι(scdXϕ2(p)). We treat separately the cases p ∈ Ceϕ and p ∈ Cψϕ ∪ Cψeϕ .

If p ∈ Ceϕ, we then �nd

ι((ρ−1
Y ρX∂ρXf1(p)− f1(p), ρ−1

Y ∂xkf1(p))) = ι((ρ−1
Y ρX∂ρXf2(p)− f2(p), ρ−1

Y ∂xkf2(p))).
(6.42)

Since ρY 6= 0 on Ceϕ, and ι is a di�eomorphism on the interior, this implies

f1(p) = f2(p), ∂xkf1(p) = ∂xkf2(p), k = 1, . . . , d− 1.
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Combining this with (6.41), this further implies

∂ρY f1(p) = ∂ρY f2(p), ∂ykf1(p) = ∂ykf2(p), k = 1, . . . , s− 1.

Since (x,y) are a complete set of variables on Be, we can indeed conclude that f1− f2 vanishes
of second order along Ceϕ.

If p ∈ Cψϕ or p ∈ Cψeϕ , (6.41) implies that

f1(p) = f2(p) = 0, ∂ykf1(p) = ∂ykf2(p), k = 1, . . . , s− 1.

We have to evaluate (6.42) as a limit ρY → 0+, using, as in Lemma 6.2.29, ι(z) = z
|z|(1−

1
|z|).

We obtain that, with

v1 = (ρX∂ρXf1, ∂xkf1), v2 = (ρX∂ρXf2, ∂xkf2),

v1
‖v1‖ = v2

‖v2‖ , but not necessarily v1 = v2, in which case the proof would be complete. We now
modify F in order to achieve v1 = v2. Notice that, since ϕ1 and ϕ2 are phase functions, we
have v1 6= 0 at Cϕ. We can therefore scale ϕ1 by means of the local di�eomorphism (near Cϕ)

F̃ : (ρY , y)→ (ρY r(ρX , x, ρY , y), y),

where r(ρX , x, ρY , y) = ‖v2‖
‖v1‖ . Notice that, by our previous computations, r|Ceϕ∪Cψeϕ = 1, and F̃

is the identity for ρY = 0. Therefore, by Lemma 6.4.7,

C
F̃ ∗ϕ1

= Cϕ1 , and Λ
F̃ ∗ϕ1

= Λϕ1 .

By de�nition, for F̃ ∗ϕ1 we have

f̃1 := ρXρY F̃
∗ϕ1 =

‖v2‖
‖v1‖

(F ∗f1).

Therefore,
(ρX∂ρX f̃1, ∂xk f̃1) =

‖v2‖
‖v1‖

· (ρXF ∗(∂ρXf1), F ∗(∂xk f̃1)) =: ṽ1,

since the derivatives acting on r produce a ρY factor, and then vanish along Cψϕ . Hence, ṽ1 = v2,
which completes the proof.

Remark 6.4.18. The additional computations in the proof of the previous lemma near the face
Cψϕ correspond to the fact that, classically, x · θ and x · (2θ) both parametrize

Λ =
{

(0, ξ) | ξ ∈ Rd \ {0}
}
.

In fact, we observe from the same proof that we may choose the norm of (ρX∂ρXf1, ∂xkf1) at
any point of Λψϕ without changing Λϕ.
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Theorem 6.4.19 (Equivalence of phase functions). LetX , Y1, Y2 be mwbs such that dim(Y1) =
dim(Y2), and set Bi = X × Yi, i ∈ {1, 2}. Let ϕi ∈ ρ−1

X ρ−1
Yi
C∞(Bi), i ∈ {1, 2}, be phase

functions which have the same excess, assume that there exist (x0,y0
i ) ∈ Cϕi , i ∈ {1, 2}, such that

λϕ1(x0,y0
1) = λϕ2(x0,y0

2),

and, close to (x0,y0
i ), i ∈ {1, 2}, both phase functions parametrize the same Lagrangian Λ, i.e.,

locally Λ = Λϕi , i ∈ {1, 2}. Then, it is necessary and su�cient for ϕ1 and ϕ2 to be equivalent at
(x0,y0

1) and (x0,y0
2) that there it holds that

sgn
(
ρ−1
Y1
ρ−1
X

scHY1ϕ1

)
= sgn

(
ρ−1
Y2
ρ−1
X

scHY2ϕ2

)
. (6.43)

Remark 6.4.20. Before we go into the details of the proof, we recall the expression for the
di�erential in condition (6.43) in coordinates. By (6.34) we have, writing ϕ = ρ−1

X ρ−1
Y f ,

ρ−1
Y ρ−1

X
scHY ϕ =

(
ρY 0
0 1

)(
∂2
ρY
f ∂yj∂ρY f

∂ρY ∂ykf ∂yj∂ykf

)(
ρY 0
0 1

)
.

Hence, for ρY 6= 0, the signature of this matrix is that of HY f , whereas for ρY = 0 it is that
of the Hessian of f restricted to ρY = 0, that is, only with respect to the boundary variables,(
∂yj∂ykf(0, y)

)
jk

.

Proof of Theorem 6.4.19. We �rst prove that condition (6.43) is necessary. In view of Lemma
6.4.11, we only need to compare scHY1ϕ1 and scHY2ϕ2 by writing

scHY2ϕ2 = scHY2F
∗ϕ1 + scHY2(ϕ2 − F ∗ϕ1). (6.44)

We write r = (ϕ2 − F ∗ϕ1), which, by assumption, satis�es r ∈ C∞(X × Y2). Therefore,
ρ−1
Y2
ρ−1
X

scHY2r vanishes at the boundary. Indeed, in local coordinates we have

ρ−1
Y ρ−1

X
scHY2r =

(
ρY ρX∂ρY ρ

2
Y ∂ρY r ρ2

Y ρX∂yj∂ρY r
ρY ρX∂ρY ρY ∂ykr ρY ρX∂yj∂ykr

)
.

Thus, we have, at the boundary,

sgn
(
ρ−1
Y2
ρ−1
X

scHY2F
∗ϕ1

)
= sgn

(
ρ−1
Y2
ρ−1
X

scHY2ϕ2

)
. (6.45)

By computing these di�erentials in coordinates at corresponding stationary points, using (6.34),
this implies (6.43).

For the su�ciency of (6.43), we assume familiarity of the reader with the equivalence of
phase function theorem in the usual homogeneous setting, see [61, Prop. 4.1.3], [61, Prop. 4.1.3]
and sketch brie�y that the argument goes through with little modi�cation.

By Lemma 6.4.16 we may assume Y1 = Y2. Note that equivalence is achieved forϕi = ρXρY fi
if the fi agree on the boundary. The condition on scHY ϕi means precisely that the signatures of



120 Chapter 6. Lagrangian Distributions on Asymptotically Euclidean Manifolds

the Hessians of the fi in the tangential derivatives agree in the interior and the signatures of the
Hessians of the restriction of the fi to ρY = 0 as well, see Remark 6.4.20. As such, we may use
the same techniques as in the classical situation to construct a di�eomorphism on the boundary
which transforms the restriction of f1 into that of f2, cf. also [7]. This di�eomorphism is then
extended by means of Proposition 6.2.25 into the interior. For sake of brevity, we omit the details
here.

Remark 6.4.21. Note that near (x0,y0) ∈ Cψϕ , we can also invoke the classical equivalence
theorem directly. We need to �nd a transformation

F : (x, 0, y) 7→ (x, 0, ỹ(x, y))

such that F ∗ϕ1 = ϕ2. For λ > 0 we set φj(x, λ, y) = λfj(x, 0, y), j ∈ {1, 2}. Then φj
are equivalent phase functions in the usual homogeneous sense on X × (R+ × Y ). Indeed,
evaluating dφj and scdϕj in coordinates, we see that dφj 6= 0 and φj is manifestly homogeneous.
Furthermore, the signatures of HY φj are the same as those of scHY ϕj . Since the fj are equal
up to second order, the φj are equivalent in the usual sense and there exists a λ-homogeneous
G : (x, λ, y) 7→ (x, λ, ỹ(λ,x, y)) which is homogeneous such that G∗φ1 = φ2. Setting
F = G|λ=1 and possibly applying a scaling, as in the proof of Lemma 6.4.16, concludes the
proof for (x0,y0) ∈ Cψϕ .

6.5. Lagrangian Distributions

In this section, we will address the class of Lagrangian distributions on scattering manifolds.
First, we introduce oscillatory integrals associated with a phase function and show that they are
well-de�ned in the usual sense. Then, we de�ne Lagrangian distributions as a locally �nite sum
of oscillatory integrals, where the phase function parametrizes a Lagrangian submanifold. Using
the results from the previous section, we are able to reduce the number of �ber-variables to a
minimum and see that the order of the Lagrangian distribution is well-de�ned independently of
the dimension of the �ber.

6.5.1. Oscillatory Integrals Associated with a Phase Function

De�nition 6.5.1. Let Y be a mwb. For the remainder of this section, mε with ε ∈ (0, 1], denotes
a family of functions mε ∈ Ċ∞0 (Y ) such that for all k ∈ N, α ∈ Nd−1

0 and ε > 0,∣∣∣(ρ2
Y ∂ρY )k(ρY ∂y)

αmε(y)
∣∣∣ ≤ Ck,α ρk+|α|

Y , (6.46)

such that, for all y ∈ Y o, we have mε(y)→ 1 as ε→ 0.
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Remark 6.5.2. We make the observation that (6.46) does not depend on the choice of bdf and is
preserved under pullbacks by sc-maps. It is possible to �nd such a family on any manifold with
boundary. In fact, any choice of tubular neighbourhoodU of ∂Y such thatU ∼= [0, δ)×∂Y with
coordinates (ρY , y) introduces a dilation in the �rst variable. Take a function χ ∈ C∞c [0,∞)
such that χ(x) = 1 on [0, δ]. Then set mε = 1 on Y \ U and

mε(ρY , y) =

{
χ(ερ−1

Y ) if ερ−1
Y > δ/2,

1 otherwise.

De�nition 6.5.3. Consider X , Y mwbs, U ⊂ X × Y an open subset, ϕ ∈ ρ−1
X ρ−1

Y C∞(U) a
phase function and a ∈ ρ−meX ρ

−mψ
Y C∞(X × Y, scΩ1/2(X)× scΩ1(Y )) an amplitude supported

in U . Then Iϕ(a) ∈ (Ċ∞0 )′(X, scΩ1/2(X)) is de�ned as the distributional 1/2-density acting
on f ∈ Ċ∞0 (X, scΩ1/2(X)) by

〈Iϕ(a), f〉 := lim
ε↘0

∫∫
X×Y

(
eiϕa · (f ⊗mε)

)
. (6.47)

Remark 6.5.4. If X and Y are equipped with a scattering metric, we have a canonical identi�ca-
tion of functions and 1-densities provided by the volume form. Therefore, we can freely choose
whether to view functions and distributions as matching (distributional) 1-, 0- or 1

2 -densities.

Remark 6.5.5. When X = Bd and Y = Bs, these oscillatory integrals correspond, under
(inverse) radial compacti�cation, to the tempered oscillatory integrals analyzed in [7, 58].

Lemma 6.5.6. The expression (6.47) yields a well-de�ned tempered distribution (density) on X .
In particular, it is independent of the choice ofmε.

Proof. Assume, without loss of generality, that we have a �xed scattering metric and we can
identify scattering densities and functions. Let U ⊂ X × Y =: B be an open neighborhood of
the boundary Bψ such that scdϕ 6= 0 on U .

On X × Y \ U , the dominated convergence theorem implies that (6.47) is well-de�ned. The
integrand uε = eiϕa(f⊗mε) converges pointwise and is dominated by |a ·f |, which is bounded
for ρY > c.

OnU , as in the classical theory, we can de�ne a �rst order scattering di�erentialL ∈ Diff1
sc(U)

which has the property that Leiϕ = eiϕ. By Proposition 1 from [42], we see that Lt ∈ Diff1
sc(U).

Using repeated integration by parts and (6.46), we are able to increase the order in ρX and ρY
to arbitrary powers, and an application of the dominated convergence theorem then �nishes
the proof.

After an arbitrary choice of scattering metrics, we may locally identify (X, gX) and (Y, gY )
with subsets of Bd and Bs, respectively. Then, using some explicit local isomorphism Ψ =
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ΨX ×ΨY , we can identify densities with functions using the induced measures µX and µY .
After use of a partition of unity, we may locally express (6.47) as

〈Iϕ(a), f〉 := lim
ε↘0

∫∫
Bd×Bs

Ψ∗
(
eiϕ(ρX ,x,ρY ,y)a(ρX , x, ρY , y)mε(ρY , y)f(ρX , x)

)
(6.48)

= lim
ε↘0

∫∫
Bd×Bs

eiΨ
∗ϕ(ρX ,x,ρY ,y)m̃ε(ρY , y)ã(ρX , x, ρY , y)f̃(ρX , x)dµBddµBs (6.49)

where f̃ = Ψ∗f |dµBd |−1/2 and ã ∈ ρ−meBd ρ
−mψ
Bs C∞(Bd × Bs) satis�es ãf̃dµBddµBs = af .

Summing up, we may always transform to locally work on Bd ×Bs and in local coordinates we
work with usual oscillatory integrals.

Since (6.47) does not depend on the choice of mε, as it is usual we drop it from the notation
and write, in the sense of oscillatory integrals,

Iϕ(a) :=

∫
Y
eiϕa. (6.50)

Singularities of Oscillatory Integrals

Recall that there is a notion of wavefront-set adapted to the pseudo-di�erential scattering
calculus, called the scattering wavefront-set, cf. [3, 5, 42].
De�nition 6.5.7. Let u ∈ (Ċ∞0 )′(X, scΩ1/2). A point z0 ∈ W = ∂

(
scT
∗
X
)

is not in the
scattering wavefront-set, and we write z0 /∈ WFsc(u), if there exists a scattering pseudo-
di�erential operator A whose symbol is elliptic at z0 such that Au ∈ Ċ∞0 (X, scΩ1/2).

Proposition 6.5.8. For the oscillatory integral in (6.47), we have

WFsc(Iϕ(a)) ⊆ Λϕ.

Furthermore, if z ∈ Λϕ and a is rapidly decaying near λ−1
ϕ (z), then z /∈WFsc(Iϕ(a)).

Remark 6.5.9. The (sc-)singular support of u is de�ned as follows: a point p0 ∈ X is contained
in singsuppsc(u) if and only if for every f ∈ C∞(X) with f(p0) = 1 we have fu /∈ Ċ∞0 (X).
Similar to the classical wavefront-set and singular support, we have that pr1(WFsc(u)) =
singsuppsc(u). Thus, in particular, if a is rapidly decaying near Cϕ, then Iϕ(a) ∈ Ċ∞0 (X).

We refer the reader to [6, 58] for the details of this analysis of the wavefront-sets. The proof
is carried out as in the classical setting: �rst, a characterization of WFsc in terms of cut-o�s
and the Fourier transform is achieved, and then one estimates FIϕ(a) in coordinates.

Proposition 6.5.8 gives another insight why we consider Λϕ as the true object of interest
associated with a phase function, not Lϕ. In fact, considering (6.47) once more, we see that
we may modify phase function and amplitude in the integral by any real valued function
ψ ∈ C∞(X × Y ), writing
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eiϕa = ei(ϕ+ψ)
(
e−iψa

)
.

Then e−iψa ∈ ρ−meX ρ
−mψ
Y C∞(X × Y ), and hence it is still an amplitude, and ϕ+ψ is a new

local phase function. Now, while in general Lϕ 6= Lϕ+ψ , we have Λϕ = Λϕ+ψ , by Lemma
6.4.1. This underlines that only Λϕ and not Lϕ can be associated with Iϕ(a) in an intrinsic way.
Nevertheless, it is often convenient to have Lϕ available during the proofs.

6.5.2. Definition of Lagrangian Distributions

The class of oscillatory integrals associated with a Lagrangian is – as in the classical theory –
not a good distribution space, since in general it is not possible to �nd a single global phase
function to parametrize Λ. Instead, we introduce the following class of Lagrangian distributions.
Note that, by our previous �ndings, we may always reduce an oscillatory integral on X × Y
into a �nite sum of oscillatory integrals over X × Bs for s = dim(Y ).
De�nition 6.5.10 (sc-Lagrangian distributions). Let X be a mwb, Λ ⊂ ∂scT

∗
X a sc-Lagrangian.

Then, Ime,mψ(X,Λ), (me,mψ) ∈ R2, denotes the space of distributions that can be written as a
�nite sum of (local) oscillatory integrals as in (6.50), whose phase functions are clean and locally
parametrize Λ, plus an element of Ċ∞0 (X). More precisely, u ∈ Ime,mψ(X,Λ) if, modulo a
remainder in Ċ∞0 (X),

u =

N∑
j=1

∫
Yj

eiϕjaj , (6.51)

where for j = 1, . . . , N :

1.) Yj is a mwb of dimension sj ;

2.) ϕj ∈ ρ−1
Yj
ρ−1
X C∞(X × Yj) is a local clean phase function with excess ej , de�ned on an

open neighbourhood of the support of aj , which locally parametrizes Λ;

3.) aj ∈ ρ
−mψ,j
Yj

ρ
−me,j
X C∞

(
X × Yj , scΩ1/2(X)× scΩ1(Y )

)
with

(mψ,j ,me,j) =

(
mψ +

d

4
− sj

2
− ej

2
,me −

d

4
+
sj
2
− ej

2

)
.

We also set

I−∞,−∞(X,Λ) =
⋂

(mψ ,me)∈R2

Imψ ,me(X,Λ),

I(X,Λ) = I+∞,+∞(X,Λ) =
⋃

(mψ ,me)∈R2

Imψ ,me(X,Λ).
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Remark 6.5.11. The reason for the choice of the aj in the scattering amplitude densities spaces
of order (me,j ,mψ,j) will be explained in Section 6.5.5.

The next result follows from Proposition 6.5.8.

Proposition 6.5.12. Let Λ ⊂ ∂ scT
∗
X be a sc-Lagrangian, and u ∈ I(X,Λ). Then WFsc(u) ⊆

Λ.

As in the classical case, the class of Lagrangian distributions contains the globally regular
functions (cf. Treves [61, Chapter VIII.3.2]):

Lemma 6.5.13. Let Λ ⊂ ∂ scT
∗
X be a sc-Lagrangian. Then

Ċ∞0 (X, scΩ1/2(X)) = I−∞,−∞(X,Λ). (6.52)

Proof. We �rst prove the inclusion “⊇”. Choose a �nite covering of scT
∗
X with open sets

{Xj}Nj=1 such that there exists a clean phase function ϕj on eachXj parametrizing Λ∩ scT
∗
Xj ,

j = 1, . . . , N . Let {gj}Nj=1 be a smooth partition of unity subordinate to such covering. We
view Xj as a subset of X × Bd, j = 1, . . . , N .

Let χ ∈ Ċ∞0 (Bd, scΩ1(Bd)) such that
∫
χ = 1. For any f ∈ Ċ∞0 (X, scΩ1/2(X)) we set

aj = e−iϕjgj · (f ⊗ χ), fj =

∫
Bd
eiϕjaj , j = 1, . . . , N.

We see that
aj ∈ Ċ∞0 (X × Bd, scΩ1/2(X)× scΩ1(Bd)), j = 1, . . . , N,

and, summing up,

N∑
j=1

fj(x) =

∫
Bd

 N∑
j=1

gj(x, y)

 · (f(x)⊗ χ(y)) = f(x).

The inclusion “⊆” is achieved by di�erentiation under the integral sign.

6.5.3. Examples

We have the following examples of (scattering) Lagrangian distributions.

1. Standard Lagrangian distributions of compact support, [27, 32], in particular Lagrangian
distributions on compact manifolds X without boundary, are scattering Lagrangian
distributions, using the identi�cation

Fiber-conic sets in T ∗X \ {0} ←→ Sets in S∗X rescaling←→ Sets inWψ.
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2. Legendrian distributions of [45]. Here, the distributions are smooth functions whose
singularities at the boundary are of Legendrian type, meaning inWe.

3. Conormal distributions, meaning the distributions where the Lagrangian, see Section
6.3.4, is ∂

(
scT
∗
X ′
)

for a (k-dimensional) p-submanifold X ′ ⊂ Y . These distributions
correspond, under compacti�cation of base and �ber, to the oscillatory integrals given in
local (pre-compacti�ed) Euclidean coordinates by

u(x′, x′′) =

∫
eix
′ξa(x, ξ) dξ, a(x, ξ) ∈ SG

me,mψ
cl (Rd × Rd−k).

A prototypical example is given by (derivatives of) δ0(x′)⊗ 1. These arise as (simple or
multiple) layers when solving partial di�erential equations along in�nite boundaries or
Cauchy surfaces.

4. Examples of scattering Lagrangian distributions which are of none of the previous types
arise in the parametrix construction to hyperbolic equations on unbounded spaces, for
example the two-point function for the Klein-Gordon equation. For a discussion of this
example consider [7].

Remark 6.5.14. Note that, at this stage, the kernels of pseudo-di�erential operators on X ×X
are not scattering conormal distributions associated with the diagonal ∆ ⊂ X ×X when X is
a manifold with boundary. In fact, in this case X ×X is a manifold with corners. Furthermore
∆ ⊂ X × X does not hit the corner ∂X × ∂X in a clean way, that is, ∆ ⊂ X × X is
not a p-submanifold. Similarly, the phase function associated to the SG-phase (x − y)ξ ∈
SG1,1

cl (R2d × Rd) is not clean.
However, the formulation of the theory developed in this chapter admits a natural extension

to manifolds with corners. The geometric obstruction of ∆ ⊂ X ×X – or more generally the
graphs of (scattering) canonical transformations – not being a p-submanifold can be overcome
by lifting the analysis to a blow-up space, see [40, 45]. We postpone this theory of compositions
of canonical relations and calculus of scattering Fourier integral operators to a subsequent
paper.

6.5.4. Transformations of Oscillatory Integrals

In Section 6.4 we have seen several procedures that allow to switch from one phase function to
others that parametrize the same Lagrangian. We will now exploit these to transform oscillatory
integrals into “standard form”. In the sequel, we will always assume, by a partition of unity,
that the support of the amplitude is suitably small.

Transformation Behavior and Equivalent Phase Functions

Now we reconsider (6.48), to express the transformation behavior of the oscillatory integrals
under �ber-preserving di�eomorphisms. With the chosen notation and a local phase function
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ϕ1, we have
Iϕ1(a) =

∫
Y1

eiϕ1a =

∫
Y2

eiF
∗ϕ1F ∗a = IF ∗ϕ1(F ∗a) (6.53)

for any di�eomorphism F : X × Y2 → X × Y1 of the form F = id × g. Assume that ϕ2 is
equivalent to ϕ1 by F , see De�nition 6.4.10. After the transformation, we rewrite (6.53) as∫

Y2

eiϕ2ei(F
∗ϕ1−ϕ2)F ∗a. (6.54)

Now, since F ∗ϕ1 − ϕ2 is smooth up to the boundary, the same holds for ei(F ∗ϕ1−ϕ2) and this
factor can be seen as part of the amplitude. Therefore, we may write

Iϕ1(a) = Iϕ2

(
(F ∗a) exp(i(F ∗ϕ1 − ϕ2))

)
. (6.55)

In particular, we can express Iϕ(a), near any boundary point of the domain of de�nition, using
the principal part of ϕ introduced in De�nition 6.2.7, namely

Iϕp(ã), with ã = a exp
(
i(ϕ− ϕp)

)
. (6.56)

By Lemma 6.4.12, ϕ−ϕp ∈ C∞ and thus ã ∈ ρ−meX ρ
−mψ
Y C∞(B). In the following constructions,

we always assume that ϕ is replaced by its principal part, cf. Remark 6.4.15.

Reduction of the Fiber

We will now analyze the change of boundary behavior under a reduction of �ber variables near
p0 ∈ supp(a) ∩ Cϕ. Hence, we assume that

ρ−1
Y ρ−1

X
scHY ϕ has rank r > 0 at p0 ∈ Cϕ.

We assume, as explained above, that the oscillatory integral is in the form (6.56), namely, ϕ is
replaced by its principal phase part. We observe that, at the boundary point p0,

rk(ρ−1
Y ρ−1

X
scHY ϕ) = rk(ρ−1

Y ρ−1
X

scHY σ(ϕp)).

By Proposition 6.4.5, we can de�ne a local phase function ϕred parametrizing the same La-
grangian as ϕ. In particular, after a change of coordinates by a scattering map, we can assume
(x,y) ∈ X × Bs−r × (−ε, ε)r , and ϕred is given by

ϕred(x, ρY , y
′) = ϕ(x, ρY , y

′, 0),

where ρY = ρBs−r is the boundary de�ning function on Bs−r and on Bs−r × (−ε, ε)r. We
introduce

ϕ̃(x,y) = ϕred(x, ρY , y
′) +

1

2
ρ−1
X ρ−1

Y Q(y′′), (6.57)
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where Q is a non-degenerate quadratic form with the same signature as ∂y′′∂y′′f at p0. Then,
by Theorem 6.4.19, ϕ is equivalent to ϕ̃ by a local di�eomorphism F = id× g. Note that ϕred

is equal to its principal part, because we assumed that ϕ is replaced by ϕp.
We may assume that a is supported in an arbitrarily small neighbourhood of the stationary

points of ϕ. Indeed, we may achieve this for a general amplitude a by applying a cut-o� in y′′
and writing a = φa+ (1− φ)a. The oscillatory integral with amplitude (1− φ)a produces a
term in Ċ∞0 (X,Ω1/2(X)), by Remark 6.5.9.

Therefore, choosing the support of a small enough, we may perform the change of variables
by the local di�eomorphism F as in (6.55). We write, motivated by Lemma 6.2.11 and Example
6.2.32,

ared(x, ỹ)
|dỹ′′|

ρr
Ỹ
· [h(x, ỹ)]r

= (F ∗a)(x, ỹ),

which is assumed supported in some compact subset of (−ε, ε)r. Then Iϕ(a) is transformed
into Iϕred

(b) where

b(x, ρY , y
′) = ρ−rY

∫
(−ε,ε)r

e
i
2
ρ−1
X ρ−1

Y Q(y′′)
(
ei(F

∗ϕ(x,y)−ϕ̃(x,y)) ared(x,y)
)
dy′′. (6.58)

We claim that b(x, ρY , y′) is again a (density valued) amplitude. First, it is clear that b decays
rapidly at (x, ρY , y

′) if a decays rapidly at (x, ρY , y
′, 0). In particular, b is smooth away from B.

We now we apply the stationary phase lemma [30, Lem. 7.7.3] to (6.58), which yields the
asymptotic equivalence, as ρY ρX → 0,

b(x, ρY , y
′) = ρ

r/2
X ρ

−r/2
Y |detQ|−1/2e

i
4
πsgn(Q)ei(F

∗ϕ(x,ρY ,y
′,0)−ϕ̃(x,ρY ,y

′,0))ared(x, ρY , y
′, 0)

+O
(
ρ
−mψ− r2 +1

Y ρ
−me+ r

2
+1

X

)
. (6.59)

Similar asymptotics hold for all derivatives of b. We may hence view b as a (density valued)
amplitude of the order

(m′e,m
′
ψ) =

(
me −

r

2
,mψ +

r

2

)
. (6.60)

By Remark 6.4.15 we see that, away from the corner, F ∗ϕ− ϕ̃ vanishes at Cϕ. Therefore, the
principal part of b does not depend on ϕ. Hence, by comparision of principal parts, cf. Lemma
6.2.8, (6.59) reduces to

b(x, ρY , y
′) ∼ ρr/2X ρ

−r/2
Y |detQ|−1/2e

i
4
πsgn(Q)ared(x, ρY , y

′, 0) (6.61)

modulo terms of lower order.

Elimination of Excess

Assume now thatϕ is a clean phase function of excess e > 0. Near some point in Cϕ, as described
in Section 6.4.4, we may make the following geometric assumptions after application of some
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di�eomorphism F : We assume that Y = Bs−e × (−ε, ε)e and that the �bers of Cϕ → Λϕ are
given by constant (x, ρY , y

′) and arbitrary y′′. We proceed as in [61] and de�ne

ϕ̃(ρX , x, ρY , y
′) := ϕ(ρX , x, ρY , y

′, 0). (6.62)

We observe that for any �xed y′′ the phase function φ(y′′), de�ned as

[φ(y′′)](x, ρY , y
′) = ϕ(x, ρY , y

′, y′′), (6.63)

is equivalent to ϕ̃. Indeed, since ∂y′′scdY ϕ = 0, the di�erential scHY φ(y′′) has the same signature
as scHBs−eϕ̃ and both parametrize the same Lagrangian with the same number of phase variables
(s − e). Therefore, Theorem 6.4.19 guarantees the existence of a family of di�eomorphisms
G(y′′) : (x, ρY , y

′) 7→ (x, g(x, ρY , y
′, y′′)) such that, de�ning G̃ : (x,y) = (x, ρY , y

′, y′′) 7→
(x, g(x, ρY , y

′, y′′), y′′),
G̃∗ϕ− ϕ̃ (6.64)

is smooth everywhere, and vanishes on Cϕ̃ away from the corner by Remark 6.4.15. Then we
may express Iϕ(a) as Iϕ̃(b), where

b(x, ρY , y
′) = ρ−eY

∫
(−ε,ε)e

ei(G̃
∗ϕ−ϕ̃)(x,ρY ,y

′,y′′)(G̃∗a)red(x, ρY , y
′, y′′) dy′′ (6.65)

and
(G̃∗a)red(x,y)

|dy′′|
ρe
Ỹ
· [h(x,y)]e

= (G̃∗a)(x,y).

Since G̃∗ϕ− ϕ̃ is smooth, b is again an amplitude of order

(m̃e, m̃ψ) = (me,mψ + e) . (6.66)

Notice that at points in Cϕ away from the corner, G̃∗ϕ− ϕ̃ vanishes and hence (6.65) reduces to

b(x, ρY , y
′) = ρ−eY

∫
(−ε,ε)e

(G̃∗a)red(x, ρY , y
′, y′′) dy′′. (6.67)

6.5.5. The Order of a Lagrangian Distribution

We will now obtain the de�nition of the order of Iϕ(a) which is invariant with respect to all
the three steps described above.

Lemma 6.5.15. The numbers µψ = mψ + s/2 + e/2 and µe = me− s/2 + e/2 remain constant
under reduction of �ber-variables and elimination of excess.
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Proof. Consider a Lagrangian distributionA = Iϕ(a) where a has ordermψ,me and dimY = s
with excess e and r reduceable �ber variables. After the reduction of �ber, we obtain an amplitude
a′ with order m′e = me − r/2,m′ψ = mψ + r/2 (cf. (6.60)), with excess e′ = e and number
of �ber variables s′ = s − r. The elimination of excess yields an amplitude a# with order
m#
e = me,m

#
ψ = mψ + e (cf. (6.66)), excess e# = 0 and s# = s− e. It is now straightforward

to check that

mψ + s/2 + e/2 = m′ψ + s′/2 + e/2 = m#
ψ + s#/2 + e#/2,

me − s/2 + e/2 = m′e − s′/2 + e/2 = m#
e − s#/2 + e#/2.

This shows that the tuple (µψ, µe) can be used to de�ne the order of a Lagrangian distribution.
We still have the freedom to add arbitrary constants to both orders. In order to choose these

constants, we compare our class of Lagrangian distributions with Hörmander’s Lagrangian
distributions and the Legendrian distributions of Melrose–Zworski [45]. First, consider the
Delta-distribution δ0, which is in the Hörmander class Id/4 and µψ = d/2. Therefore, we
choose mψ = µψ − d/4 to obtain the same ψ-order for δ0. Similarly, the constant function is a
Legendrian distribution of order −d/4 and µe = 0, and therefore we choose me = µe + d/4.
Note that we use the opposite sign convention for the me-order then in [45].

6.6. The Principal Symbol of a Lagrangian Distribution

We will now de�ne the principal symbol map jΛ
me,mψ

on Ime,mψ(X,Λ). Similarly to the classical
theory, it takes values in a suitable (density) bundle on Λ. This is coherent with the notion
of principal symbol map jme,mψ for scattering operators, see [42, 43], as well as of principal
part for classical SG symbols, see [15, 58], which both provide smooth objects de�ned on
W = ∂scT

∗
X ⊃ Λ. We adapt the construction in [61] (see also [27, 32]), starting from the

simplest case of local non-degenerate phase functions parametrizing Λ, up to the general case
of local clean functions.

Let Λ ⊂ W be an sc-Lagrangian, which on B = X × Y is locally parametrized by a local
non-degenerate phase function ϕ ∈ ρ−1

Y ρ−1
X C∞(U), U ⊂ B. Let a ∈ ρ

−mψ
Y ρ−meX C∞

(
X ×

Y, scΩ1/2(X)× scΩ1(Y )
)

be supported in U , and let Iϕ(a) be a (micro-)local representation of
u ∈ Ime,mψ(X,Λ) as a single oscillatory integral.

We now �x a 1-density µX on X . Any choice of 1 density µY on Y then trivializes the
one-dimensional bundle C∞(X × Y, scΩ1/2(X) ⊗ scΩ1(Y )), and any element is given by a
multiple of ρ−(d+1)/2

X ρ−s−1
Y

√
µX ⊗ µY . Any choice of coordinates (ρY , y) in Y allows for us to

express µY locally as ∂µY
∂(ρY ,y) dρY dy, meaning as having a smooth density factor with respect

to the (local) Lebesgue measure. As such, we rewrite the amplitude a ∈ ρ−mψY ρ−meX C∞(X ×
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Y, scΩ1/2(X)⊗ scΩ1(Y )) in any choice of local coordinates as

ρ
mψ
Y ρmeX a(x,y) = a(x,y) ρ

−(d+1)/2
X ρ−s−1

Y

√
µXdρY dy. (6.68)

for a ∈ C∞(X × Y ).

6.6.1. Non-Degenerate Equivalent Phase Functions

As above (cf. (6.14)), when U is a neighbourhood of a point close to the boundary B, we can
there identify scdY ϕ with the map,

(x,y) 7→ Φ(x,y) =
(
− f(x,y) + ρY ∂ρY f(x,y) ∂yf(x,y)

)
∈ Rs,

locally well-de�ned on a neighbourhood of Cϕ within U .
In view of the non-degeneracy of ϕ, Φ has a surjective di�erential, so that we can consider the

pullback of distributions dϕ = Φ∗δ, with δ = δ0 ∈ D′(Rs) the Dirac distribution, concentrated
at the origin, on Rs (cf. [30, Ch. VI]). More explicitly, choosing functions (t1, . . . , td) =: t,
which restrict to a local coordinate system (up to the boundary) on Cϕ, the pull-back dϕ can be
expressed locally as the density

dϕ =

∣∣∣∣det
∂(t,Φ)

∂(x,y)

∣∣∣∣−1

dt = ∆ϕ(t) dt.

Consider another local non-degenerate phase function ϕ̃ parametrizing Λ, de�ned on an open
subset Ũ ⊂ X × Ỹ , such that ϕ̃ = F ∗ϕ, with a (local, �bered) di�eomorphism F = id ×
g : X × Ỹ → X × Y . Since F is a sc-map, there exists a function h ∈ C∞(X × Y ) such that
(F ∗ρY )(x, ỹ) = ρ

Ỹ
· h(x, ỹ).

As above, we identify scdY ϕ̃with the map Φ̃ and de�ne dϕ̃ and ∆ϕ̃(t̃) in terms of the functions
t̃j = F ∗tj , which are local coordinates on Cϕ̃, provided Ũ is small enough.

In the sequel, we show how objects de�ned in these two choices (t, ϕ) and (t̃, ϕ̃) are related.
For that, we implicitly assume all objects evaluated at corresponding points (x,y) ∈ Cϕ
(parametrized by t) and (x, ỹ) = F (x,y) ∈ Cϕ̃ (parametrized by t̃).

Lemma 6.6.1. The functions ∆ϕ̃(t̃) and ∆ϕ(t) are related by

∆ϕ̃(t̃) = h(x,y)s+1

∣∣∣∣det
∂g(x, ỹ)

∂ỹ

∣∣∣∣−2

∆ϕ(t(t̃)).

Proof of Lemma 6.6.1. By direct computation, Φ̃ and Φ are related by a matrix M
ΦΦ̃

via

Φ̃(x, ỹ) = Φ(F (x, ỹ)) ·M
ΦΦ̃

(x, ỹ), (6.69)
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where

M
ΦΦ̃

(x, ỹ) =


[h(x, ỹ)]−2∂ρY

∂ρ
Ỹ

(x, ỹ) [h(x, ỹ)]−2ρ−1

Ỹ

∂ρY
∂ỹ

(x, ỹ)

[h(x, ỹ)]−1ρ
Ỹ

∂y

∂ρ
Ỹ

(x, ỹ) [h(x, ỹ)]−1∂y

∂ỹ
(x, ỹ)


and

|detM
ΦΦ̃

(x, ỹ)| = h(x, ỹ)−s−1 ·
∣∣∣∣det

∂g(x, ỹ)

∂ỹ

∣∣∣∣ .
Di�erentiating (6.69), we obtain, using that Φ̃(x,y) = Φ(F (x, ỹ)) = 0 on Cϕ̃,

∂Φ̃

∂(x, ỹ)
(x, ỹ) = tM

ΦΦ̃
(x, ỹ) · ∂(Φ(F (x, ỹ)))

∂(x, ỹ)

= tM
ΦΦ̃

(x, ỹ) ·
[

∂Φ

∂(x,y)
(F (x, ỹ))

]
· ∂F

∂(x, ỹ)
(x, ỹ).

(6.70)

Furthermore, we have

∂t̃

∂(x, ỹ)
(x, ỹ) =

[
∂t

∂(x,y)
(F (x, ỹ))

]
· ∂F

∂(x, ỹ)
(x, ỹ).

Summing up, we �nd

∂(t̃, Φ̃)

∂(x, ỹ)
(x, ỹ) = diag(1d,

tM
ΦΦ̃

(x, ỹ)) ·
[
∂(t,Φ)

∂(x,y)
(F (x, ỹ))

]
· ∂F

∂(x, ỹ)
(x, ỹ), (6.71)

which in turn implies, using F = I×g,

∆ϕ̃(t̃) =

∣∣∣∣∣ ∂(t̃, Φ̃)

∂(x, ỹ)
(x, ỹ)

∣∣∣∣∣
−1

= [h(x, ỹ)]s+1

∣∣∣∣det
∂g(x, ỹ)

∂ỹ

∣∣∣∣−2

∆ϕ(t(t̃)),

as claimed.

We de�ne
wϕ = (ρ−meX ρ

−mψ−(s+1)/2
Y a)|Cϕ ·

√
|dϕ|, (6.72)

with a given in (6.68), which is a half-density on (the interior of) Cϕ.
To de�ne wϕ̃ accordingly, we check that Iϕ(a) transforms under the action of F as∫

Y
eiϕa =

∫
Ỹ
ei(F

∗ϕ)(x,ỹ)F ∗
[
ρ−meX ρ

−mψ
Y a ρ

−(d+1)/2
X ρ−s−1

Y

√
µX ⊗ dρY dy

]
(x, ỹ)

=

∫
Ỹ
eiϕ̃(x,ỹ)ρ−meX ρ

−mψ
Ỹ

ã(x, ỹ) (ρ
−(d+1)/2
X ρ−s−1

Ỹ

√
µX ⊗ dρỸ dỹ),
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where
ã(x, ỹ) = a(F (x, ỹ))h(x, ỹ)−mψ−s−1

∣∣∣∣det
∂g(x, ỹ)

∂ỹ

∣∣∣∣ . (6.73)

We de�ne, coherently with (6.72), wϕ̃ = ρ−meX ρ
−mψ−(s+1)/2

Ỹ
ã
√
|dϕ̃|.

Lemma 6.6.2. The half-densities wϕ̃ and wϕ are related by

wϕ̃ = F ∗wϕ

in (the interior of) Cϕ̃.

Proof. We obtain from (6.73) and Lemma 6.6.1 that

ã(x, ỹ)
∣∣∆ϕ̃(t̃)

∣∣1/2 = a(F (x, ỹ))h(x, ỹ)−mψ−(s+1)/2
∣∣∆ϕ(t(t̃))

∣∣1/2 .
Then, using the local coordinates t and t̃ = F ∗t introduced above, on Cϕ̃ we �nd

wϕ̃ = F ∗
(
ρ−meX ρ

−mψ−(s+1)/2
Y a

) ∣∣∆ϕ(t(t̃))
∣∣1/2√∣∣dt̃∣∣

= F ∗
(
ρ−meX ρ

−mψ−(s+1)/2
Y a |∆ϕ(t)|1/2

√
|dt|
)

= F ∗wϕ.

As a half-density valued amplitude, wϕ is of order (me,mψ − (s+ 1)/2), as shown by the
computations above. In accordance with the de�nition of the principal part (cf. De�nition 6.2.7),
we set

wϕ =

(
a ·
√
|dϕ|

)∣∣∣∣
Cϕ
.

As seen above, wϕ transforms to wϕ̃ under the pull-back via F . Since λϕ is a local di�eomor-
phism Cϕ → Lϕ, we can also consider

αϕ = (λϕ)∗(wϕ),

which yields a local half-density on Λϕ. The fact that, for the two equivalent phase functions ϕ
and ϕ̃, we have λϕ̃ = λϕ ◦ F , together with the transformation properties of wϕ, shows that

αϕ̃ = αϕ = α,

that is, αϕ̃ and αϕ are equivalent local representations of a half-density α de�ned on Λ, in the
local parametrizations Λϕ̃ and Λϕ, respectively.

We now prove that the same holds true if ϕ̃ is merely a non-degenerate phase function
equivalent to ϕ in the sense of De�nition 6.4.10. First, if we repeat the construction of

√
|dϕ̃|
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described above, all the computations remain valid modulo terms, generated by Φ̃, which contain
an extra factor ρXρỸ . This is due to

F ∗ϕ− ϕ̃ ∈ C∞(Ũ)

⇔ ρ−1
X ρ−1

Ỹ
f̃(x, ỹ) = ρ−1

X ρ−1

Ỹ
h(x, ỹ)−1(F ∗f)(x, ỹ) + g(x, ỹ), g ∈ C∞(Ũ)

⇔ f̃(x, ỹ) = h(x, ỹ)−1(F ∗f)(x, ỹ) + ρXρỸ g(x, ỹ), g ∈ C∞(Ũ).

Then, by rescaling wϕ̃ through multiplication by ρmeX ρ
mψ+(s+1)/2

Ỹ
and then restricting wϕ on

Cϕ̃, such additional terms identically vanish.
Moreover, by Lemma 6.4.12 and Remark 6.4.15, we know that, in a neighbourhood Ũ of

any point in the interior of Ceϕ̃ or Cψϕ̃ , which does not intersect Cψeϕ̃ , it can be assumed, after
passage to the principal parts, that ϕ̃ = F ∗ϕ on Cϕ̃ ∩ ∂Ũ , see Section 6.5.4. It follows that the
factor exp(i(F ∗ϕ− ϕ̃)), appearing in ã (cf. (6.55)) also disappears, away from the corner, when
restricting to the faces Ceϕ̃ or Cψϕ̃ .

Finally, we observe that wϕ and wϕ̃ are obtained as restrictions of smooth objects on X × Y
and X × Ỹ to their respective boundaries. As such, their transformation behavior extends, by
continuity, to the corner as well, producing smooth objects on Cϕ and Cϕ̃. By push-forward
through λϕ̃ and λϕ, we �nd again that αϕ̃ = αϕ = α locally on Λϕ̃ = Λϕ = Λ.

6.6.2. Non-Degenerate Phase Functions, Reduction of the Fiber

We now consider a ϕ such that reduction of �ber variables, see Section 6.4.2, is possible. By
the argument in Section 6.6.1, we may then write Iϕ(a) = Iϕred

(b) with b from (6.58). We now
compare αϕ to the analogously de�ned half-density βϕred

. We can replace the phase function ϕ
by the equivalent phase function given in (6.57), and this does not a�ect αϕ. Hence we may
assume that ϕ is of the form ϕ(x,y) = ϕred(x,y′) + 1

2ρ
−1
X ρ−1

Y 〈Qy′′, y′′〉.
As such, we assume, in this splitting of coordinates, Cϕ ⊂ {(x,y′, 0)}. We �nd:

Lemma 6.6.3. Under the identi�cation Cϕred
× {0} = Cϕ, we have√

|dϕ| = |detQ|−
1
2

√
|dϕred

|.

Proof. We compute

Φ(x,y) =
(
− fred(x,y′) + ρY ∂ρY fred(x,y′) ∂y′fred(x,y′) 0

)
+
(
− 1

2
〈Qy′′, y′′〉 0 ∂y′′Q(y′′)

)
=: (Φred(x,y′) 0) +

(
Ψ(y′′) Qy′′

)
∈ Rs−r × Rr.
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Therefore,

∂(t,Φ)

∂(x,y)
(x,y) =



∂t

∂x
(x,y)

∂t

∂y′
(x,y)

∂t

∂y′′
(x,y)

∂Φred

∂x
(x,y′)

∂Φred

∂y′
(x,y′) −1

2

∂Ψ

∂y′′
(y′′)

0 0 Q

 .

Consequently, √
|dϕ| =

∣∣∣∣det
∂(t,Φ)

∂(x,y)

∣∣∣∣−1/2

Cϕ̃

√
|dt|

=

∣∣∣∣det
∂(t,Φred)

∂(x,y′)

∣∣∣∣− 1
2

Cϕred

· | detQ|−
1
2

√
|dt|

= |detQ|−
1
2

√
|dϕred

|.

Notice that5 a = ared. We compute, by (6.59), modulo amplitudes of lower order,

b(x,y′) = ρ
−me+r/2
X ρ

−mψ−r/2
Y | detQ|−1/2ei

π
4

sgn(Q)a(x,y′, 0)
√
µX(ρ

−(s−r+1)/2
Y |dy′|).

(6.74)

We observe that b is an amplitude of order (me − r/2,mψ + r/2) and �nd

b(x,y′) = | detQ|−1/2ei
π
4

sgn(Q)a(x,y′, 0) +O
(
ρXρY

)
,

which implies, using Lemma 6.6.3,

wϕred
=

(
b(x,y′)

√
|dϕred

|
)∣∣∣∣
Cϕred

= ei
π
4

sgn(Q)

(
a(x,y)

√
|dϕ|

)∣∣∣∣
Cϕ̃

= ei
π
4

sgn(Q)wϕ.

This, in turn, �nally gives

βϕred
= (λϕred

)∗(wϕred
) = ei

π
4

sgn(Q) · (λϕ)∗(wϕ) = ei
π
4

sgn(Q) · αϕ.
5Observe that ared is obtained by splitting of the density and weight factors in two steps.
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6.6.3. Clean Phase Functions, Elimination of the Excess

We now proceed with the last reduction step, namely, we consider a clean phase function and
eliminate its excess. As in Section 6.5.4, we assume Y = Bs−e × (−ε, ε)e with the �bers of
Cϕ → Λϕ given by constant (x, ρY , y

′) and arbitrary y′′ ∈ (−ε, ε)e.
Switching to the phase function ϕ̃ in (6.62), we may write Iϕ(a) = Iϕ̃(b) with b de�ned

in (6.65). We apply the construction of the previous section, and obtain the density βϕ̃ =
(λϕ̃)∗

(
b ·
√
|dϕ̃|

)
Cϕ̃

from the data (ϕ̃, b).
Alternatively, we may study the family of oscillatory integrals Iφ(y′′)(a(y′′)) with phase

functions φ(y′′) de�ned in (6.63) and amplitudes

a(y′′) : (x, ρY , y
′) 7→ ρ−eY a(x, ρY , y

′, y′′) = ρ−eY a(x,y),

with corresponding principal parts a(y′′). Since φ(y′′) is non-degenerate, we can de�ne the
parameter dependent family of half-densities on Λ

αφ(y′′) = (λφ(y′′))∗

(
a(y′′) ·

√
|dφ(y′′)|

)
Cφ(y′′)

,

and �nally set
γϕ̃ =

∫
(−ε,ε)e

αφ(y′′) dy′′. (6.75)

Proposition 6.6.4. The half-densities on Λϕ̃ = Λϕ = Λ given by γϕ̃ and βϕ̃ coincide.

Proof. We consider the smooth family of di�eomorphisms G(y′′) = id× g(y′′), depending on
the parameter y′′, involved in G̃ from (6.64). Assuming the amplitudes a(y′′) supported away
from the corner points, we can suppose, as above, G(y′′)∗φ(y′′) − ϕ̃ = 0. We now compute,
using Lemma 6.4.7 and the expression (6.65), together with the transformation properties of wϕ,

(
bϕ̃ ·

√
|dϕ̃|

)
(x, ρY , y

′)|Cϕ̃ = bϕ̃(x, ρY , y
′)|Cϕ̃

∣∣∣∣∣det
∂(t̃, Φ̃)

∂(x,y′)

∣∣∣∣∣
− 1

2

Cϕ̃

√
|dt̃|

((6.73)⇒) =

∫
(−ε,ε)e

a(G(x,y))|Cϕ̃

∣∣∣∣det
∂g

∂y′
(x,y)

∣∣∣∣
Cϕ̃

[h(x,y)]
−mψ−s−1
Cϕ̃ ×

×

∣∣∣∣∣det
∂(t̃, Φ̃)

∂(x,y′)

∣∣∣∣∣
− 1

2

Cϕ̃

√
|dt̃| dy′′

(Lemma 6.6.1⇒) =

∫
(−ε,ε)e

G(y′′)∗

[
a(x,y)|Cφ(y′′)

∣∣∣∣det
∂(t,Φ(y′′))

∂(x,y′)

∣∣∣∣− 1
2

Cφ(y′′)

√
|dt|

]
dy′′

(Def. of dφ(y′′) ⇒) =

∫
(−ε,ε)e

G(y′′)∗
[(

a(y′′) ·
√
|dφ(y′′)|

)
(x, ρY , y

′)
]
Cφ(y′′)

dy′′.



136 Chapter 6. Lagrangian Distributions on Asymptotically Euclidean Manifolds

Applying (λϕ̃)∗ to the left-hand side, we obtain βϕ̃. To apply (λϕ̃)∗ to the right-hand side, we
�rst recall that ϕ̃ and φ(y′′) are equivalent by G(y′′). Using again Lemma 6.4.7 (see also Lemma
6.4.16), this implies

λϕ̃ = λφ(y′′) ◦G(y′′)⇒ (λϕ̃)∗ = (λφ(y′′))∗ ◦G(y′′)∗. (6.76)

Since λϕ̃ does not depend on y′′, we can take it inside the integral and use (6.76), �nally obtaining

βϕ̃ = (λϕ̃)∗

[∫
(−ε,ε)e

G(y′′)∗
[(

a(y′′) ·
√
|dφ(y′′)|

)]
Cφ(y′′)

dy′′

]

=

∫
(−ε,ε)e

(λφ(y′′))∗ ◦G(y′′)∗ ◦G(y′′)∗
[(

a(y′′) ·
√
|dφ(y′′)|

)]
Cφ(y′′)

dy′′

=

∫
(−ε,ε)e

(λφ(y′′))∗

[(
a(y′′) ·

√
|dφ(y′′)|

)]
Cφ(y′′)

dy′′ =

∫
(−ε,ε)e

αφ(y′′) dy′′ = γϕ̃.

Extension to the corner points as in the previous subsections proves the claim.

We already showed that the half-density α associated with Iϕ(a) is invariant under a change
of equivalent non-degenerate phase functions. Together with the argument above, this also
shows that the half-density γ associated with Iϕ(a) remains the same under the change of
equivalent phase functions which are clean with the same excess.

6.6.4. Principal Symbol and Principal Symbol Map

Let u ∈ Ime,mψ(X,Λ). Consider any local representation of u, as introduced in De�nition
6.5.10, with clean phase function ϕ with excess e associated with Λ and a some local symbol
density. The arguments in the previous subsections show how to associate with these data a
half-density γ, de�ned on Λ. We also showed that switching to an equivalent phase function,
as well as the elimination of the excess, do not change γ. The reduction of the �ber variables
replaces γ with γ′ such that

γ′ = ei
π
4

sgn(Q) γ,

with Q from (6.57). Let γ̃ be the half-density de�ned by an integral representation Iϕ̃(ã), with
another phase function ϕ̃ associated with Λ. Then, similarly to [61], in general we have

γ̃ = ei(σ−σ̃)π
4 γ, (6.77)

where σ = sgn
(
ρ−1
Y ρ−1

X
scHY ϕ

)
, and σ̃ = sgn

(
ρ−1

Ỹ
ρ−1
X

scH
Ỹ
ϕ̃
)

. Denote by r̃ the number of
�ber variable for ϕ̃, s̃ the dimension of Ỹ and ẽ the excess of ϕ̃, and de�ne the integer number

κ =
1

2
(σ − σ̃ − s+ s̃+ e− ẽ).
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Then, (6.77) is equivalent to
iκei(s−e)

π
4 γ = ei(s̃−ẽ)

π
4 γ̃. (6.78)

We are then led to the following de�nition of principal symbol map.
De�nition 6.6.5. Let u ∈ Ime,mψ(X,Λ). We de�ne I (u) = {(Yj , ϕj)} as the collection of
manifolds and associated clean phase functions (Yj , ϕj) locally parametrizing Λ, giving rise to
local representations of u in the form Iϕj (aj). With each pair (Y, ϕ) ∈ I (u) we associate the
half-density γ, as described in Subsection 6.6.3, in such a manner that, for any other element
(Ỹ , ϕ̃) ∈ I (u), we have the coherence relation (6.78) in λϕ(Y )∩λϕ̃(Ỹ ). We call the collection
of half-densities {γj}, each one associated with (Yj , ϕj) ∈ I (u), the principal symbol of u, and
write jΛ

me,mψ
(u) = {γj}.

By an argument completely similar to the one in [61], we can prove the following result.

Theorem 6.6.6. Let Λ be a sc-Lagrangian on X . Then, the map

jΛ
me,mψ

: Ime,mψ(X,Λ) 3 u 7→ {γj} (6.79)

given in De�nition 6.6.5 is surjective. Moreover, the null space of the map (6.79) is given by
Ime−1,mψ−1(X,Λ), and thus (6.79) de�nes a bijection

classes in Ime,mψ(X,Λ)/Ime−1,mψ−1(X,Λ) 7→ {γj}.

The image space of jΛ
me,mψ

can be seen as C∞(Λ,MΛ ⊗ Ω1/2), whereMΛ is the Maslov bundle
over Λ.

6.7. Resolution of Lagrangian Singularities near the Corner

In this appendix, we show that Λψe may be viewed as a Legendre manifold with respect to a
(degenerate) contact form, well de�ned on the blow-up of the corner componentWψe of scT

∗
X .

We have already stated that the forms

αψ := ρ2
Ξ∂ρΞyω and αe := ρ2

X∂ρXyω.

are well-de�ned in the interior near the respective boundary faceWe orWψ and extend to it.
The freedom in choosing the boundary de�ning function has as a consequence that these forms
are merely well-de�ned up to a multiple by a positive function, however their contact structure
at the boundary (which is all we need to characterize Λ• as Legendrian) is independent of the
choice of bdfs. Neither form extends to the corner componentWψe. Instead of the rescaled
1-forms, we now consider the non-rescaled forms

scαψ := ρΞ∂ρΞyω
scαe := ρX∂ρXyω

as sections of scT ∗(scT ∗Xo). Then, these extend as scattering one forms on scT
∗
X , cf. [45,

(2.11)].
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Lemma 6.7.1. The forms scαψ and scαe extend from scT ∗Xo to scattering one-forms on scT
∗
X .

In a particular choice of coordinates (see [45] and Remark 6.2.2) they are given by

scαe =
dη1

ρXρΞ
− η1dρΞ

ρXρ2
Ξ

+ η′′
dx

ρXρΞ
,

scαψ = η1
dρX
ρΞρ2

X

+ η′′
dx

ρXρΞ
.

Here, η = (η1, η
′′) are smooth functions of (ρΞ, ξ), d− 1 of which may be chosen as coordinates.

Again, the (scattering) contact structures of these forms, when restricted to the respective
boundary faces, do not depend on the choice of bdf, since two choices of bdf only di�er by
positive factors. These forms scα• will then vanish on Λ•, • ∈ {e, ψ}, since one can identify
the kernels of scα• with that of α• by rescaling there. Furthermore, both scαψ as well as scαe

vanish when restricted to Λψe.
Example 6.7.2. On T ∗Rd with canonical coordinates (x, ξ), this corresponds to both the forms

ξ · dx and − x · dξ

vanishing on the bi-conic (in x and ξ) manifold with base Λψe, cf. [7].
Hence, Λψe is, in some sense, (scattering) isotropic.6 We note, however, that the Λψe is not

Lagrangian with respect to any symplectic form onWψe, since

dim(Λψe) = d− 2 6= d− 1 =
dim(Wψe)

2
.

However, we may now blow-up the cornerWψe in scT (X) and consider the front face β−1(Wψe)
in [scT (X);Wψe], which is a 2d− 1 dimensional manifold, see Figure 6.3. Here,

β : [scT (X);Wψe]→ scT (X),

is the blow-down map.

Proposition 6.7.3. The lift of the form

αψe =
ρXρΞ

2
(scαψ + scαe)

to the blowup space

[scT
∗
X;Wψe]

β−−→ scT
∗
X

restricts to a contact 1-form on the front face β−1Wψe. Moreover, β−1(Λψe) is Legendrian with
respect to αψe.

6Not with respect to the standard symplectic form, since it does not extend to the boundary, but to a rescaling of it.
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Wψ

We

β−1(Wψe)

β−1(Λψe)
∂(β−1(Λψe))

Λψ

Λe

Figure 6.3.: Resolution of Λeϕ near the corner

Proof. We note that
αψe = ρXρΞ

1

2
(ρX∂ρX + ρΞ∂ρΞ)yω.

In the special choice of coordinates of Lemma 6.7.1, we compute

αψe =
1

2
η1

(
dρX
ρX
− dρΞ

ρΞ

)
+

1

2
dη1 + η′′dx

Now, smooth coordinates on the blow up of scT
∗
X alongWψe = {ρX = ρΞ = 0} are given by{

ρ = ρX τ = ρΞ
ρX

(x, ξ) ρX > ρX

ρ = ρΞ τ = ρX
ρΞ

(x, ξ) ρΞ > ρX
(6.80)

In any case, β∗αψe is of the form

αψe = ±1

2
η1
dτ

τ
+

1

2
dη1 + η′′dx

Since τ = 0 marks the boundary of the front face β−1Wψe, αψe is a 1-form on the interior of
β−1Wψe. Finally, αψe vanishes on β−1Λψe since scαψ and scαe vanish on Λψe.
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Appendix

A.1. Conventions

We use the following conventions.

• We use the usual notation for the natural numbers N, including 0, the integers Z, the
rational numbers Q, and the real numbers R. We will write R+ for the interval [0,∞).

• Denote the set of smooth functions by C∞, the smooth functions with compact support
by C∞c .

• We will use the multiindex notations xα =
∏
j x

αj
j , ∂

α
x =

∏
j ∂

αj
xj , α! =

∏
j αj !, and

|α| =
∑

j αj for x ∈ Rd and α ∈ Nd. Thus, we can write the k-th derivative as

f (k)(x; y, . . . , y) =
∑
|α|=k

k!

α!
∂αx f(x)yα.

• The L2-bilinear product will be denoted by

〈u, v〉L2 =

∫
u(x)v(x)dx.

The sesquilinear product and the norm a denoted by

(u, v)L2 = 〈u, v̄〉L2 ,

‖u‖L2 = 〈u, ū〉1/2
L2 .

We will drop the L2-subscript if it is causes no confusion.

• Estimates are often written as f . g. This means

f(x) . g(x) if and only if f(x) ≤ Cg(x),

for some C > 0. The constant C might depend on additional parameters.
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• We write n� k to indicate that n is signi�cant larger than k.

• The big-O and small-O are de�ned as

f(λ) = O(g(λ)) if and only if |f(λ)| . |g(λ)| for λ� 0,

f(λ) = o(g(λ)) if and only if |f(λ)|/|g(λ)| → 0 as λ→∞.

• The japanese bracket is de�ned by

〈x〉 = (1 + |x|2)1/2,

for x ∈ Rd, and it satis�es for any k ∈ R the Peetre inequality

〈x+ y〉k . 〈x〉k〈y〉|k|.

• The measure d̄x = (2π)−d dx turns the Fourier transform

Fu(ξ) =

∫
e−ixξu(x)dx

into a unitary operator F : L2(Rd, dx)→ L2(Rd, d̄ξ).

• We set Dxj = −i∂xj or more generally, Dα = i−|α|∂α.

• The Laplacian ∆ = −
∑

j ∂
2
xj is non-negative.

A.2. Distributions

Let X be an open subset of Rd. A distribution u ∈ D′(X) is a linear form on C∞c (X) such that
for all compact sets K ⊂ X , there exists a k ∈ N such that

|u(φ)| .
∑
|α|≤k

sup
x∈K
|∂αxφ(x)|, φ ∈ C∞c (K).

If f ∈ L1
loc then we can de�ne a distribution uf by

uf (φ) =

∫
X
f(x)φ(x)dx,

and we will identify uf and f . Therefore, we will also write

〈u, φ〉 = u(φ).
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We can de�ne multiplication by smooth function and di�erentiation as follows: For any
smooth function f ∈ C∞(X) and distribution u ∈ D′(X) the distribution f · u is given by

〈fu, φ〉 = 〈u, f · φ〉

and ∂xu is de�ned by

〈∂xu, φ〉 = −〈u, ∂xφ〉

for all φ ∈ C∞c (X). We say that x ∈ suppu if there exists no neighborhood of x such that the
restriction of u to U is zero. The set of compactly supported distributions is denoted by

E ′(X) := {u ∈ D′ : suppu is compact }.

It is not possible to de�ne the Fourier transform for general distributions. Thus, we consider
the set of Schwartz functions on Rd. A function f ∈ C∞(Rd) is in S(Rd) if for all α, β ∈ Nd,

|〈x〉β∂αx f(x)| <∞.

These semi-norms turn S(Rd) into a Fréchet space. The topological dual space is denoted by
S ′(Rd) and called the set of tempered distributions. We have the following inclusions:

C∞c (Rd) ⊂ S(Rd) ⊂ S ′(Rd) ⊂ D′(Rd).

Example A.2.1. The most important distribution that does not come from a function is the
Delta-distribution δx0 ∈ S ′(Rd) given by

δx0(f) = f(x0),

for x0 ∈ Rd.
Sometimes we will write for a distributions u, v that u(x) = v(x) this has to be intepreted as
〈u, f〉 = 〈v, f〉 for all f ∈ C∞c (Rd) or equivalently u = v.

A.3. Fourier Transform

Let u ∈ S(Rd) then we de�ne the Fourier transform of u by

Fu(ξ) = û(ξ) =

∫
Rd
e−ixξu(x) dx.

The Fourier transform is an isomorphism S(Rd)→ S(Rd) with inverse

F−1v(x) =

∫
Rd
eixξv(ξ) d̄ξ.
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Furthermore, the Fourier transform satis�es the Plancharel identity:

〈Fu, v〉L2 = 〈u,Fv〉L2 ,

and therefore

‖Fu‖L2 = (2π)d‖u‖L2 .

Thus, we may extend the de�nition of the Fourier transform to L2-functions and tempered
distributions by duality.

In particular, if dµ is a measure the Fourier transform is given by

Fdµ(ξ) =

∫
e−ixξdµ(x).

• Derivatives:

F{∂αxu}(ξ) = (iξ)αû(ξ).

• Convolution:

F{u ∗ v}(ξ) = û(ξ)v̂(ξ).

• The delta distribution:

F{δx0}(ξ) = eix0ξ.

A.4. Wavefront Sets

Let u ∈ D′(Rd) be a distribution. We want to investigate in which sense u fails to be a smooth
function.

Let x0 ∈ Rd. We say that x0 is not in the singular support of u, x0 6∈ sing-suppu if there
exists χx0 ∈ C∞c (Rd) a cut-o� function supported near x0 such that

χx0u ∈ C∞c (Rd)

in the sense that there exists a function f ∈ C∞c (Rd) such that for all φ ∈ C∞c (Rd),

u(χx0φ) = 〈f, χx0φ〉.

A more re�ned de�nition is the wavefront set.
De�nition A.4.1. Let (x0, ξ0) ∈ T ∗Rd \ 0. We say that (x0, ξ0) 6∈ WFcl(u) if there exists a
smooth cut-o� function χx0 ∈ C∞c (Rd) supported near x0 such that

F{χx0u}(ξ) . 〈ξ〉
−N

for any N > 0 in a small conic neighborhood of ξ0.



144 A. Appendix

If π1 denotes the canonical projection T ∗Rd → Rd then the singular support is given by

sing-suppu = π1WFcl(u).

This means that the singular support measures, where the distribution is not smooth and the
wavefront set measures also in which direction.

Proposition A.4.2. Let P a di�erential operator with smooth coe�cients and u ∈ S ′(Rd) then

WFcl(Pu) ⊂WFcl(u)

Proof. This follows from the fact that for smooth functions a ∈ C∞, WFcl(au) ⊂WFcl(u) and
WFcl(∂xu) ⊂WFcl(u).

Conversely we can characterize the wavefront set of u in terms of the wavefront set of Pu
and the set, where P fails to be elliptic: Let P =

∑
|α|≤m aα(x)Dα a di�erential operator with

smooth coe�cients and

σm(P ) =
∑
|α|=m

aα(x)ξα

its principal symbol. Let Σ(P ) = {(x, ξ) ∈ T ∗Rd \ 0: σm(P )(x, ξ) = 0}.

Proposition A.4.3. If u ∈ D′(Rd) then

WFcl(u) ⊂WFcl(Pu) ∪ Σ(P ).

The proof uses a construction of a pseudodi�erential parametrix of P away from the charac-
teristic set Σ(P ) and can be found in [31]. Of course the assumptions on P can be relaxed to P
being a pseudodi�erential operator of order m.

Example A.4.4. The wavefront set of δx0 is given by

WFcl(δx0) = {x0} × Rd \ {0}.

The wavefront set of the characteristic function χΩ of a smooth domain Ω ⊂ Rd is given by

WFcl(χΩ) = N∗Ω,

where N∗Ω is the conormal bundle of Ω.
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A.4.1. Kohn-Nirenberg Symbols

The usual Kohn–Nirenberg symbol class is given by

Sm(Rd;Rn) =
{
a(y, η) ∈ C∞(Rd × Rn) : |∂αy ∂βη a| ≤ Cαβ〈η〉

m−|β|}. (A.1)

A symbol a ∈ Sm is elliptic at (y0, η0) ∈ Rd×Rn \ {0} if in a neighborhood of y0 and in conic
neighborhood of η0 the following estimate holds:

|a(y, η)| & 〈η〉m,

where the implied constant is independent of η.
The usual class of pseudodi�erential operators Ψm is de�ned by using these symbol estimates

and then the characterization of the wavefront set is as follows (cf. [31]):

WFcl(u) =
⋂
A∈Ψ0

Au∈C∞

Σ(A),

where the characteristic set Σ(A) is de�ned as the complement of the elliptic set. Notice that in
this case it is conic in η, not in (y, η).
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