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1 Introduction

Supersymmetric Minkowski compactifications of string or M-theory on Ricci-flat spaces

generically result in effective field theories with a large number of perturbatively flat di-

rections of the scalar potential. The geometry of these moduli spaces is well understood,

often even beyond the classical level, and exploring the mechanisms that lead to moduli

stabilization in realistic string backgrounds is an important task of string phenomenology.

Much less, by contrast, is known about the structure of moduli spaces of anti-de

Sitter (AdS) vacua. While such AdS moduli might be encountered in intermediate steps

of moduli stabilization scenarios, e.g. prior to de Sitter “uplifts”, they play an even more

fundamental role in the context of the AdS/CFT correspondence, where they correspond

to exactly marginal operators of the holographically dual conformal field theory (CFT).

The space of exactly marginal couplings is known as the conformal manifold, C, of the
CFT, and it comes equipped with the Zamolodchikov metric [1]. Therefore, knowledge

of AdS moduli spaces can provide valuable information about C. Within the AdS/CFT

correspondence, the study of C started in [2–4].

A first step towards a better understanding of general AdS moduli spaces of string

compactifications is the investigation of anti-de Sitter solutions of lower-dimensional su-

pergravity theories. These moduli spaces form submanifolds of the scalar field spaces, M,

of the corresponding supergravity theories and may depend on additional data such as the

gauge couplings or other deformation parameters. Uncovering the interrelations between

these geometric structures defines an interesting mathematical problem in its own right

that is highly sensitive to the spacetime dimension and the amount of supersymmetry

present.
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In [5, 6], the moduli spaces of AdS4 vacua that preserve all the available supersym-

metries of four-dimensional (4D), N = 1, 2, 4 supergravity were investigated. For N = 1

supergravity, it was found in [5] that the moduli space C is a real submanifold of the orig-

inal Kähler manifold M with at best half the dimension. For N = 2 supergravity, C is

generically a product of a real submanifold of the special-Kähler geometry of the vector

multiplet sector and a Kähler submanifold of the quaternion Kähler space of the hyper-

multiplets [5]. For N = 4 supergravity, on the other hand, the moduli space was found to

be trivial in that only isolated AdS backgrounds can exist [6]. Although 4D supergravity

is expected to capture at best parts of the holographic dual of a 3D SCFT, the above

results are consistent with what is known on conformal manifolds of 3D superconformal

field theories [7–10]. Motivated by the results of [6] and the fact that N = 2 SCFTs in

4D are intensely studied,1 we investigate, in this paper, fully supersymmetric AdS5 vacua

of 5D, N = 4 supergravity theories (i.e. AdS backgrounds that preserve all of the 16 real

supercharges).2

5D, N = 4 gauged supergravities were constructed in [13–16], and several specific

examples of fully supersymmetric AdS5 vacua have previously appeared in the literature.

In [13], for instance, pure N = 4 supergravity with a gauge group SU(2) × U(1) was

constructed and shown to exhibit a fully supersymmetric AdS5 background. In this case,

two of the six graviphotons have to be dualized to tensor fields, which carry charge under

the U(1) factor of the gauge group. In [15], the coupling of N = 4 supergravity to vector

(or dual tensor) multiplets was studied and particular AdS5 backgrounds were found —

again for the gauge group SU(2) × U(1). From the AdS/CFT perspective, the necessity

of this gauge group was discussed in [17] for orbifold compactifications of type IIB string

theory dual to 4D, N = 2 superconformal quiver gauge theories [18]. The 5D candidate

gauged supergravity theory of the Zn orbifolds of the five-sphere was identified in [17] to

be a specific N = 4 truncation of N = 8 supergravity with additional vector and tensor

multiplets from the twisted sectors. A moduli space of the form SU(1,m)/
(

U(1)×SU(m)
)

was implicitly identified in [17] for these theories by looking at the set of holographic

RG-flows induced by certain mass deformations.

Using the most general gaugings [16] in terms of the embedding tensor formalism [19–

21], we determine here the general gauge group that can lead to an N = 4 AdS5 vacuum

and identify the possible moduli spaces. The most general gauge group turns out to be of

the form G = U(1)×H, where H must contain an SU(2) subgroup gauged by three vector

fields from the supergravity multiplet, and the U(1) must act at least on two tensor fields

from the supergravity multiplet. The general moduli space of these theories is shown to be

of the form3

C =
SU(1,m)

U(1)× SU(m)
. (1.1)

1For a recent review see [11] and references therein.
2In [12] a similar analysis is performed for supersynmmetric AdS7 backgrounds of seven-dimensional

half-maximal supergravities where, as in D = 4, no supersymmetric moduli space exists. Correspondingly,

it can be shown that on the dual SCFT side no supersymmetric exactly marginal operators exist [9, 10, 12].
3This resembles the result for two-dimensional (4,4) SCFTs that have SO(4,m)/

(

SO(4) × SO(m)
)

as

conformal manifold [22, 23].
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Our analysis is intrinsically five-dimensional and at the classical level, so that within

the AdS/CFT correspondence one would generally expect it to capture only part of the full

story. A sufficient condition for the validity of a purely five-dimensional analysis in AdS

backgrounds is when the five-dimensional fields form a consistent truncation of the ten-

dimensional theory, as is for example the case for the untwisted sector of 5-sphere orbifold

compactifications [17]. Working with classical supergravity means that the moduli space

given in (1.1) should a priori only hold in the large-N limit (N being the number of colors

in the dual SCFT). For an SU(2) gauge group, for instance, it has indeed been shown

in [24, 25] that the Zamolodchikov metric has a more complicated form which agrees with

the metric on C given in (1.1) only at leading order. Ref. [26] showed that the conformal

manifold in any 4D,N = 2 SCFT is a Kähler manifold which in addition obeys the relations

of tt∗ geometry [27]. Finally, ref. [28] established that the corresponding Kähler potential is

given by the sphere partition function of the SCFT while ref. [29] proved Kählerness of the

metric using supersymmetric Ward identities. As we will show, consistency of (1.1) with the

tt∗ geometry of [26] imposes a constraint on the leading and subleading large-N behaviour

of the three-point functions that appear in the OPE of exactly marginal operators.

The paper is organized as follows. In section 2, we recall the properties of N = 4

gauged supergravity that we need for our analysis. In section 3, we analyze N = 4 AdS5
backgrounds and determine the constraints on the embedding tensor. We then show that

an SU(2) × U(1) group is necessarily gauged by the graviphotons, and we also determine

the allowed structure of the full gauge group G, thereby classifying all possible N = 4

AdS5 vacua. In section 4, we determine the moduli space of the above AdS vacua, and in

section 5 we discuss our results in terms of dual 4D, N = 2 SCFT. Finally, appendix A

summarizes our Γ-matrix conventions, while in appendix B we discuss the large-N be-

haviour of correlation functions in the SCFT and the constraints which can be derived

from the consistency with (1.1).

2 N = 4 gauged supergravity

In this section, we recall the properties of 5D, N = 4 gauged supergravity [13–16] that are

relevant for our analysis. The generic spectrum of ungauged N = 4 supergravity consists

of the gravity multiplet together with n vector multiplets. The gravity multiplet contains

the graviton gµν , four gravitini ψ
i
µ, i = 1, . . . , 4, six vectors A

[ij]
µ , A0

µ, four spin-1/2 fermions

χi, and one real scalar Σ. The vector fields A
[ij]
µ are antisymmetric in i and j and satisfy

the additional condition

A[ij]
µ Ωij = 0 , (2.1)

where Ωij is the symplectic metric of USp(4), the R-symmetry group of 5D, N = 4 super-

symmetry. Thus, the Aij
µ transform in the 5 of USp(4), while A0

µ is a USp(4) singlet.

We label the vector multiplets with the index a = 1, . . . , n. Each vector multiplet

contains a vector Aa
µ, four spin-1/2 gaugini λai, and 5 scalars φa[ij], which are also anti-

symmetric in i and j and symplectic traceless analogous to (2.1). Altogether, the spectrum

thus features the graviton, four gravitini, (6+n) vector bosons, (4+4n) spin-1/2 fermions,

and (5n+ 1) scalars.

– 3 –
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The target space, M, of the scalar fields is the coset

M = SO(1, 1)× SO(5, n)

SO(5)× SO(n)
, (2.2)

where the first factor is spanned by Σ while the second factor is spanned by the scalars

φa[ij] in the vector multiplets.

The second factor in (2.2) is conveniently parametrized by the vielbein V = (Vm
M ,Va

M ),

with M = 1, . . . , n+ 5, m = 1, . . . , 5. V is an element of SO(5, n) and thus obeys

ηMN = −Vm
MVm

N + Va
MVa

N , (2.3)

where ηMN = diag(−1,−1,−1,−1,−1,+1, . . . ,+1) is the flat SO(5, n) metric. Alterna-

tively, the coset can be represented by the positive definite scalar metric

MMN = Vm
MVm

N + Va
MVa

N = 2Vm
MVm

N + ηMN , (2.4)

which also plays the role of the gauge kinetic matrix for the (5+ n) vector fields combined

as AM
µ = (A

[ij]
µ , Aa

µ).

The isometry group of the scalar manifold, SO(1, 1) × SO(5, n), extends to a global

symmetry of the entire ungauged supergravity action, which is also subject to a local com-

posite invariance under Spin(5)× SO(n). In order to express the boson-fermion couplings

in a way that makes these symmetries manifest, one uses the group isomorphism between

USp(4) and Spin(5) to express the SO(5) index m of the scalar vielbeine Vm
M in terms of

USp(4) indices i, j via SO(5) gamma matrices,

V ij
M := Vm

M (Γm)ij . (2.5)

V ij
M is then antisymmetric and symplectic traceless in i and j and hence transforms in the

5 of USp(4). More details on this and our precise conventions are given in appendix A.

In the gauged versions of these theories, a subgroup of the global symmetry group

SO(1, 1) × SO(5, n) is promoted to a local gauge symmetry by introducing minimal cou-

plings to the gauge fields and a few further terms to restore supersymmetry. This breaks

part of the global symmetry group and, as a special feature of five dimensions, may require

the conversion of some of the vector fields to antisymmetric tensor fields [13, 15]. This

conversion concerns vector fields that would transform in nontrivial representations of the

gauge group other than the adjoint representation and also occurs for N = 8 [30–32] and

N = 2 [33] supergravity. In the case at hand, a conversion to tensor fields would in par-

ticular be necessary if the original representation4 (5+ n)−1 ⊕ 12 of the global symmetry

group SO(5, n)× SO(1, 1) decomposes w.r.t. the gauge group G ⊂ SO(5, n)× SO(1, 1) as

(5+ n)−1 ⊕ 12 −→ singlets of G⊕ non-singlets of G⊕ adj. of G , (2.6)

and would then affect the non-singlets of G.

4The subscripts denote the charge under SO(1, 1).
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In the so-called embedding tensor formalism [19–21], one can rewrite the theory such

that the original global symmetry SO(1, 1)×SO(5, n) remains manifest. In order to do this,

one has to work with a redundant field content that contains a tensor field for each of the

original vector fields. The gauge couplings are then described by three field-independent

SO(1, 1) × SO(5, n)-tensors (the embedding tensors) denoted by ξM , ξ[MN ], f[MNP ]. Their

transformation under SO(5, n) follows from the indicated index structure, and, with respect

to SO(1, 1), ξM and f[MNP ] carry charge −1/2, while ξ[MN ] has charge +1. The entries

of the embedding tensors are real numbers, and supersymmetry imposes a set of coupled

consistency conditions on them known as the quadratic constraints [16]5

ξMξM = 0 , ξMNξN = 0 , ξP fPMN = 0 ,

3fR[MNfPQ]
R = 2f[MNP ξQ] , ξM

QfQNP = ξMξNP − ξ[NξP ]M .
(2.7)

The possible solutions to these constraints parameterize the different consistent gauged

N = 4 supergravity theories. In particular, they determine the gauge group and its precise

embedding in the global symmetry group SO(1, 1) × SO(5, n), the order parameters for

spontaneous supersymmetry breaking, and the scalar potential.

The full bosonic Lagrangian is recorded in [16] but for the analysis in this paper, we

only need the potential V and the kinetic terms of the scalar fields, which are given by

e−1L =
1

16
(DµMMN )(DµMMN )− 3

2
Σ−2(DµΣ)(D

µΣ)− V (M, ξ, f) + . . . . (2.8)

The gauge covariant derivative reads

Dµ = ∇µ −AM
µ fM

NP tNP −A0
µξ

NP tNP −AM
µ ξN tMN −AM

µ ξM t0̂ , (2.9)

where tMN = t[MN ] are generators of SO(5, n), t0̂ is the generator of SO(1, 1), and we have

absorbed the gauge coupling into the embedding tensor components.

The conditions for a supersymmetric AdS-background can be concisely formulated in

terms of the scalar components of the N = 4 supersymmetry transformations. For the four

gravitini ψi
µ, the four spin-1/2 fermions in the gravitational multiplet χi, and the gaugini

λi
a, they are given by [16]

δψµi = Dµǫi +
i√
6
ΩijA

jk
1 Γµǫk + . . . ,

δχi =
√
2ΩijA

kj
2 ǫk + . . . ,

δλa
i =

√
2ΩijA

a kj
2 ǫk + . . . ,

(2.10)

where ǫj are the four supersymmetry parameters, and the dots indicate terms that vanish

in a maximally symmetric space-time background. The fermion shift matrices in these

5Here and in the following, the SO(5, n) indices M,N, . . . are raised and lowered with ηMN and ηMN as

in [16]. Consistency with VA
MVN

A = δNM and VM
A VB

M = δBA then requires raising and lowering the SO(5) ×

SO(n) indices A,B, . . . with ηAB and ηAB , i.e. we have Va
M = VMa and Vm

M = −VMm. This differs from

the conventions used in [14, 15], where M,N, . . . are raised and lowered with MMN and its inverse, while

A,B, . . . are raised and lowered with the Kronecker delta to ensure consistency with VN
B being the inverse

of VA
M .

– 5 –
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expressions are defined as

Aij
1 =

1√
6

(

− ζ(ij) + 2ρ(ij)
)

,

Aij
2 =

1√
6

(

ζ(ij) + ρ(ij) +
3

2
τ [ij]

)

,

Aa ij
2 =

1

2

(

− ζa[ij] + ρa(ij) −
√
2

4
τaΩij

)

,

(2.11)

where

τ [ij] = Σ−1V ij
MξM , τa = Σ−1Va

MξM ,

ζ(ij) =
√
2Σ2ΩklV ik

MVjl
NξMN , ζa[ij] = Σ2Va

MV ij
N ξMN ,

ρ(ij) = −2

3
Σ−1V ik

MVjl
NVP

klf
MN

P , ρa(ij) =
√
2Σ−1ΩklVa

MV ik
N Vjl

P fMNP .

(2.12)

In terms of the shift matrices, the scalar potential is given by

1

4
ΩijV = Ωkl

(

Aa ik
2 Aa jl

2 +Aik
2 Ajl

2 −Aik
1 Ajl

1

)

. (2.13)

3 N = 4 AdS5 backgrounds

In this section, we study N = 4 gauged supergravities that admit a fully supersymmetric

AdS5 background, i.e. with all sixteen supercharges left unbroken. The latter requirement

demands that the supersymmetry variations (2.10) have to vanish in the AdS5 background.

Inspecting (2.10) and (2.13), we see that this implies

〈Aij
2 〉 = 〈Aa ij

2 〉 = 0 , (3.1)

〈Aij
1 A1kj〉 =

1

4
|µ|2 δik , (3.2)

where 〈V 〉 = −|µ|2 is the cosmological constant, which arises from the covariant deriva-

tive in the gravitino variation, and 〈·〉 indicates that a quantity is evaluated in the AdS-

background.

3.1 Constraints on the gauging

We will now extract the constraints that are imposed by (3.1) and (3.2) on the embedding

tensor components, i.e. on the possible gaugings that can lead to N = 4 AdS vacua.

Let us begin with the evaluation of (3.1). Inspection of (2.11) reveals that Aa ij
2 de-

composes into three different representations of USp(4), so that all three terms in Aa ij
2

have to vanish separately in the vacuum. Similarly, in Aij
2 the last term is antisymmetric

and thus also has to vanish in the vacuum, while the first two terms in Aij
2 have to cancel

each other. Thus, eqs. (3.1) are equivalent to

〈τ [ij]〉 = 〈τa〉 = 〈ζa[ij]〉 = 〈ρa(ij)〉 = 0 , 〈ζ(ij)〉+ 〈ρ(ij)〉 = 0 . (3.3)

– 6 –
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Using (2.12), the vanishing of 〈τ [ij]〉 and 〈τa〉 immediately gives6

ξM = 0 . (3.4)

In order to evaluate the rest of (3.3), it is convenient to convert the SO(5, n) covariant

embedding tensor components fMNP and ξMN to the SO(5) × SO(n) covariant tensors

fABC := 〈VA
M 〉〈VB

N 〉〈VC
P 〉fMNP and ξAB := 〈VA

M 〉〈VB
N 〉ξMN . The splitting A = (m, a) then

defines components such as fmnp or ξma, i.e.

fmnp ≡ 〈Vm
M 〉〈Vn

N 〉〈Vp
P 〉fMNP , ξma ≡ 〈Vm

M 〉〈Va
N 〉ξMN , etc. , (3.5)

which is the way the embedding tensor appears in the background values of the fermion

shift matrices (2.12). We recall that the indices a, b, . . . and m,n, . . . are raised and lowered

with, respectively, plus and minus the Kronecker delta.

Using this and the SO(5) γ-matrix notation of appendix A, the remaining three equa-

tions of (3.3) are now equivalent to

ξamΓm = 0 , famnΓmn = 0 ,
3√
2
〈Σ3〉 ξmnΓmn = −fmnpΓmnp , (3.6)

or, using (A.11)–(A.13),

ξam = 0 , famn = 0 , 3
√
2〈Σ3〉 ξqr = ǫmnpqrf

mnp . (3.7)

It remains to analyze (3.2). Using the last equation in (3.3), it can be expressed solely

in terms of ζ(ij) so that it becomes a constraint on ξmn:

1

4
|µ|2 14 = −3〈Σ4〉 ξmnξpqΓmnΓpq = −3

2
〈Σ4〉 ξmnξpq {Γmn,Γpq} . (3.8)

With (A.17), this decomposes into the two conditions

ξ[mnξpq] = 0 , (3.9)

ξmnξmn =
|µ|2

24〈Σ4〉 6= 0 . (3.10)

Note that for ξmn = 0, no N = 4 supersymmetric AdS5 background can occur. The

condition ξmn 6= 0 means that among the 5-plet of graviphotons of the ungauged theory

some are necessarily charged under the U(1) gauge group, so that these must be con-

verted to antisymmetric tensor fields in order to carry out the gauging, cf. our discussion

around (2.6). Interestingly, also in 4D, N = 4 gauged supergravity, an N = 4 AdS vacuum

requires a gauging with a special feature, namely magnetic gaugings [6].7

6We also see from (2.9) that DµΣ depends only on ξM and thus, for N = 4 AdS backgrounds, Σ is

uncharged and DµΣ reduces to an ordinary partial derivative.
7In [34], the dimensional reduction of 5D, N = 2 supergravity with charged tensor fields to 4D was

found to lead to magnetic gaugings in 4D. This does not necessarily mean, however, that a dimensional

reduction of the above 5D, N = 4 AdS vacua would yield the 4D, N = 4 vacua of [6].

– 7 –
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Finally, inserting ξM = 0 in (2.7), we see that the quadratic constraints consider-

ably simplify, leaving only the Jacobi identity for the structure constants fMN
P and their

orthogonality to ξMN :

fRM [NfPQ]
R = 0 , (3.11)

ξMQfQNP = 0 . (3.12)

3.2 Solving the constraints for ξMN and fMNP

What is left to do is to solve the constraints (3.7), (3.9)–(3.12), which will then specify the

possible gauge groups and their precise embeddings in SO(5, n). These group structures

become most transparent if one works with the actual representation matrices of the gauge

group as they appear in the gauge covariant derivative (2.9) (subject to ξM = 0) when it

acts on the scalar vielbein VA
M . The latter transforms in the fundamental representation of

SO(5, n), where the generators tMN take the form

(tMN )P
Q = δQ[MηN ]P , (3.13)

so that the VA
M couple to the gauge fields A0

µ and AM
µ with, respectively, the representation

matrices

(T0)N
P := −ξQR(tQR)N

P = ξN
P , (3.14)

(TM )N
P := −fM

QR(tQR)N
P = fMN

P . (3.15)

Eqs. (3.11) and (3.12) imply that these representation matrices satisfy the commutation

relations

[T0, TM ] = 0 , [TM , TN ] = −fMN
PTP , (3.16)

i.e. T0 generates an Abelian group factor. Let us now evaluate how (3.7), (3.9) and (3.10)

further constrain T0, TM and their commutation relations.

We start with the equation ξma = 0, which implies that the U(1) factor gauged by

A0 acts on the gravity multiplet (via the generator (T0)m
n = ξm

n) and on the vector

multiplets (via the generator (T0)a
b = ξa

b) independently, i.e. this U(1) is a subgroup of

SO(5)× SO(n) in SO(5, n).

Next we consider the condition fmna = 0. It implies that the Tm close among them-

selves and hence generate a proper subgroup of the gauge group. Moreover, (Tm)M
N =

fmM
N must be block diagonal so that this subgroup does not mix fields from the gravity

multiplet with fields from the vector multiplets, i.e. it is a subgroup of SO(5)×SO(n). We

have thus found that T0 and Tm generate compact subgroups that do not mix gravity mul-

tiplet and vector multiplet sector, so that their action on these two sectors can be studied

independently.

We begin with the action of T0 and Tm within the gravity multiplet, which is described

by the components ξmn and fmnp. Note that both of these tensors must be non-zero (and

proprtional to the AdS curvature), as eq. (3.10) requires ξmn 6= 0, which then also implies

fmnp 6= 0 by the last of eqs. (3.7). We now use that, by certain SO(5) transformations,

– 8 –



J
H
E
P
1
0
(
2
0
1
5
)
0
8
3

the antisymmetric bilinear form ξmn can always be brought to canonical form where at

most ξ12 = −ξ21 and ξ34 = −ξ43 are non-zero.8 Without loss of generality, we can assume

ξ12 = −ξ21 6= 0. The primitivity condition (3.9) then implies ξ34 = −ξ43 = 0.

Since ξ12 is the only nontrivial component of ξmn, it implies, via (3.7), that the only

non-vanishing structure constants fmnp are f345 and permutations thereof, so that the total

gauge group that acts within the gravity multiplet is U(1)×SU(2). Note that ξmnfnpq = 0

(cf. (3.12)) is then automatically satisfied. In the following, we split the index m into

m̃ = 1, 2 and m′ = 3, 4, 5, so that ξm
′n′

= 0 = f m̃ñp̃.

We now turn to the part of the gauge group that acts nontrivially on the vector multi-

plet sector, i.e. to the components ξab, fabm and fabc. Note that unlike ξmn and fmnp none

of these components necessarily needs to be non-vanishing for an N = 4 supersymmetric

AdS vacuum to exist.

We start with ξab. If ξab 6= 0, we see from (3.14) that the U(1) gauged by A0
µ is a

diagonal U(1) of a U(1) in SO(5) and a U(1) in SO(n), whereas for ξab = 0 it is entirely

contained in SO(5). Just as we did for ξmn, we can use suitable SO(n) transformations to

bring also ξab, and hence the U(1) generator T0, into canonical block-diagonal form,

T0 = diag(αǫ,03, β1ǫ, β2ǫ, . . . , βpǫ, 0, . . . , 0) , (3.17)

where α, β1, . . . , βp are non-vanishing real numbers, which can always be assumed positive

after possible exchanges of the relevant rows and coloumns, and ǫ = iσ2. Here, the special

case ξab = 0 is meant to corresponds to p = 0, i.e. there would then be no ǫ-blocks with

β-coefficients. In analogy with the above decomposition m = (m̃,m′), we then decompose

the indices a, b, . . . and use ã, b̃, . . . = 1, . . . , 2p for the directions in which ξab is non-trivial,

and a′, b′, . . . = 2p + 1, . . . , n for the rest. The conditions ξm̃MfMNP = ξm̃ñfñNP = 0 and

ξãMfMNP = ξãb̃fb̃NP = 0 then imply that all components fMNP with at least one ã or one

m̃ index must vanish, so that modulo index permutations only fm′n′p′ , fa′b′m′ and fa′b′c′

can be non-zero. The (5+n)×(5+n)-matrices Tm′ , Ta′ thus may have the following general

form:

Tm′ =











02
fm′n′

p′

02p
fm′a′

b′











, Ta′ =











02
03 fa′m′

c′

02p
fa′b′

n′

fa′b′
c′











. (3.18)

Using the the above pattern of possibly nontrivial structure constants, the Jacobi

identity (3.11) implies that the three matrices fm′a′
b′ form a representation of SO(3) on

the vector multiplet sector,

fm′a′
b′fn′b′

c′ − fn′a′
b′fm′b′

c′ = −fm′n′
p′fp′a′

c′ , (3.19)

or, equivalently, that the Tm′ as given in (3.18) satisfy the SO(3) algebra,

[Tm′ , Tn′ ] = −fm′n′
p′Tp′ , (3.20)

8An SO(5) rotation about the 1-axis can rotate the vector ξ1m into the 2-direction, followed by a rotation

about the 2-axis that rotates ξ2m along the 1-direction. Subsequent SO(3) rotations about the 4- and 3-axis

can similarly eliminate all remaining components of ξ3m and ξ4m up to ξ34 = −ξ43.
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whereas the remaining commutators are of the form

[Tm′ , Ta′ ] = −fm′a′
b′Tb′ , [Ta′ , Tb′ ] = −fa′b′

c′Tc′ − fa′b′
m′

Tm′ . (3.21)

If fm′a′b′ = 0, the gauge group, G, obviously simplifies to G = U(1) × SU(2) × Hc,

where Hc ⊂ SO(n − 2p) ⊂ SO(n) is a compact subgroup with structure constants fa′b′
c′

that only acts on the vector multiplets and whose adjoint representation can be embedded

into the fundamental representation of SO(n− 2p).9

In the case fm′a′b′ 6= 0, the gauge group is instead given by G = U(1) × H, where

H ⊂ SO(3, n − 2p) ⊂ SO(3, n) ⊂ SO(5, n) must contain SO(3) as a subgroup and is in

general non-compact with commutation relations of the form (3.20)–(3.21). The simplest

nontrivial example of this kind occurs for n = 3 and is given by fm′n′p′ = −ǫm′n′p′ , fm′a′b′ =

+ǫ(m′−2)a′b′ , and fa′b′c′ = 0, i.e. the Tm′ generate SO(3), and the Ta′ generate three non-

compact directions that transform as a triplet under the SO(3). Since their algebra closes

again in the Tm′ , the Ta′ and the Tm′ altogether generate the simple gauge group H =

SO(3, 1). By turning on fa′b′c′ = λǫa′b′c′ , the Ta′ get an admixture of a compact direction

of the SO(3) acting on the vector multiplet sector. For λ < 2, the gauge group remains

SO(3, 1). For λ > 2, the gauge group becomes SO(3) × SO(3) instead. In the case of

λ = 2, the gauge group becomes the non-semi-simple gauge group of Euclidean rotations

and translations in three dimensions.

We should point out that in general for H to be simple, one has to make sure that the

non-degenerate Cartan-Killing metric of H can be embedded into the SO(3, n− 2p) metric

diag(− − − + . . .+), with the negative entries corresponding to SO(3) ⊂ H. This means

that a simple H must have SO(3) as its maximally compact subgroup. Similar to the 4D

case [35], this severely restricts the possible simple gauge groups H that can lead to N = 4

AdS vacua and leaves essentially the above H = SO(3, 1) and H = SL(3,R) as the only

possibilities. For non-simple H there are of course many more possibilities.

To summarize, the necessary gauge group structure for an N = 4 AdS5 vacuum is

G = U(1)×Hnc ×Hc , (3.22)

where Hnc has the SU(2) as its maximally compact subgroup that is gauged by three

graviphotons, and Hc is a compact group that is gauged only under vector multiplet gauge

fields. The U(1) is a diagonal subgroup of a necessary SO(2) ⊂ SO(5) and an optional

SO(2) ⊂ SO(n). In the case of Hnc being simple we find that it is either SO(3), SO(3, 1)

or SL(3,R).

We finally note that all vector fields of the ungauged theory that are acted on non-

trivially by T0 must be dualized to antisymmetric tensor fields in the gauged theory, which

is in particular true for A1
µ and A2

µ from the gravity multiplet. This together with the

gauge group U(1)× SU(2) in the pure supergravity sector is consistent with the fact that

the N = 4 AdS5 superalgebra has R-symmetry group U(1) × SU(2) and that the gravity

9Any semisimple compact group Hc can be embedded in this way into an SO(N) for sufficiently large

N ≥ dim(Hc) by identifying the Cartan-Killing metric of Lie(Hc) with the (relevant part of the) SO(N)

metric.
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multiplet representing this R-symmetry group has four vector fields transforming as 30⊕10
and two antisymmetric tensor fields transforming as singlets under SU(2) and a doublet

under U(1) (see e.g. [17] for a related discussion).

4 N = 4 moduli space

In the previous section, we determined the general form of the gauge groups that can lead

to N = 4 supersymmetric AdS vacua. The purpose of this section is to determine the

N = 4 moduli spaces of these vacua, i.e. the manifold of scalar field deformations that

preserve all four supersymmetries of a given N = 4 AdS background. To this end, we

use the same method as in [5, 6] and vary the supersymmetry conditions (3.1)–(3.2) so

as to find all possible directions in the scalar field space M that are left undetermined

when (3.1)–(3.2) are preserved. More concretely, we look for continuous solutions of

δAij
1 = δAij

2 = δAij
2a = 0 , (4.1)

in the vicinity of a fully supersymmetric AdS5 background.10 To start with, we parameter-

ize the variations of the vielbein V by defining the 5n scalar field fluctuations δφma around

an AdS5 background value 〈V〉 by

V = 〈V〉 exp[2 δφma(tma)] , (4.2)

where tma are the (5 + n) × (5 + n) matrices given in (3.13) corresponding to the coset

SO(5, n)/
(

SO(5)× SO(n)
)

. This implies

δVm
M = 〈Va

M 〉 δφma, δVa
M = 〈Vm

M 〉 δφma, (4.3)

which are also consistent with (2.3). For the inverse vielbein, consistency with the relation

VA
MVM

B = δA
B gives

δVM
m = −〈VM

a 〉 δφma, δVM
a = −〈VM

m 〉 δφma. (4.4)

To linear order in δφ, the metric MMN defined in (2.4) is then given by

MMN = 〈MMN 〉+ 4〈Vm
(M 〉〈Va

N)〉δφma +O(δφ2) . (4.5)

Applying the above variations to the three equations (3.7) gives, respectively, the

following conditions on δφma and δΣ:

ξnmδφna + ξabδφmb = 0 , (4.6)

fpmnδφpa + fabnδφmb + fambδφnb = 0 , (4.7)

δΣ = 0 , (4.8)

10Note that the scalar potential is quadratic in Aij
1
, Aij

2
, Aij

2a so that the solutions of (4.1) are automatically

flat directions of the scalar potential.
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where, for the last equation, we used the identities δξmn = 0 and δfmnp = 0. These are

simple consequences of (4.3) and ξma = 0 = fmna, which, together with (4.8), also imply

that (3.9) and (3.10) are automatically preserved.

Thus (4.8) fixes Σ, while (4.6) and (4.7) are the only nontrivial conditions on the other

moduli. We will now show that these conditions mean that the moduli space is isomorphic

to the coset space SU(1,m)/
(

U(1) × SU(m)
)

for some m ≤ p where p denotes the index

range for which ξãb̃ is nontrivial (cf. the discussion in the previous section below (3.17)).

To see this, we first examine (4.6). As only ξm̃ñ and ξãb̃ can be non-vanishing, eq. (4.6)

is trivial for (m, a) = (m′, a′) and yields three nontrivial equations for the other index

combinations:

δφña′ = 0 , δφm′b̃ = 0 , (4.9)

ξñm̃δφñã + ξãb̃δφm̃b̃ = 0 . (4.10)

Thus, only δφm′a′ and δφm̃ã can be nontrivial, with the latter being constrained by (4.10).

Eq. (4.7), finally, only constrains the components δφm′a′ to satisfy

fp′m′n′

δφp′a′ + fa′b′n′

δφm′b′ + fa′m′b′δφn′b′ = 0 . (4.11)

This constraint was already discussed in detail in [6], where it was shown that its solution

is given by

δφm′a′ = fa′b′m′

λb′ , (4.12)

where λb′ is an arbitrary (infinitesimal) real vector.

Eq. (4.12) implies that δφm′a′ can only be nontrivial for fa′b′m′ 6= 0, i.e. for non-

compact gauge groups. Moreover, if we consider (Xa′
b′m′

) := fa′
b′m′

as a (q × 3q) matrix

(where a′, b′ . . . = 1, . . . , q), we see that the number of independent δφm′a′ is equal to

rk(X) ≤ q, which is also the number of independent non-compact gauge group generators.

As the non-compact gauge symmetries have to be spontaneously broken in a given vacuum,

the δφm′a′ are the natural candidates for the Goldstone bosons eaten by the corresponding

non-compact gauge fields. The physical moduli space would then only consists of the

scalars δφm̃ã subject to the constraint (4.10). We now confirm explicitly that the δφm′a′

are indeed the Goldstone bosons eaten by the massive vectors and then give the geometric

interpretation of the constraint (4.10) to identify the physical moduli space.

In order to identify δφm′a′ with Goldstone bosons, we consider the gauge covariant

derivative of the scalar field matrix MMN (cf. (4.5)) and introduce DµMAB := 〈VM
A 〉〈VN

B 〉
DµMMN . Using (2.9) and keeping only the linear terms in δφ and AM

µ , we obtain

DµMAB = 〈VM
A 〉〈VN

B 〉
(

4〈Vm
(M 〉〈Va

N)〉∂µδφma+2AP
µ fP (M

Q〈MN)Q〉+2A0
µξ(M

Q〈MN)Q〉+. . .
)

.

(4.13)

Introducing AC
µ := 〈VC

M 〉AM
µ and using 〈VM

A VN
B MMN 〉 = δAB, this can be written as

DµMAB = 4δm(Aδ
a
B)∂µδφ

ma + 2AC
µ fC(A

DδB)D + 2A0
µξ(A

DδB)D + . . . , (4.14)

which for (A,B) = (m′, a′) becomes, using (4.12),

2fm′a′b′∂µλ
b′ − 2Ab′

µ f
m′a′b′ + . . . . (4.15)
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From this expression, we read off that under a local gauge transformation δAb′
µ = ∂µΛ

b′+. . .

with Λb′ = λb′ , the nontrivial flat directions δφm′a′ are absorbed by the vector fields Ab′
µ .

Moreover, we see that the kinetic term DµMMNDµMMN = DµMABD
µMAB in the action

results in mass terms of the form M̂2
a′b′ ∼ fa′

c′m′

fb′
c′m′

= (XXT )a′b′ . This precisely gives

mass to the rk(X) non-compact gauge bosons, which thus eat all independent δφm′a′ , as

claimed above. One also notes that in the N = 4 supersymmetric AdS-backgrounds all

four graviphotons Am′

, A0 remain massless and thus, as expected, the SU(2) × U(1) part

of the gauge symmetry is always unbroken.

We now return to the only true moduli, the δφm̃ã that are subject to the con-

straint (4.10). For convenience we will assume the form (3.17) for T0. In the following we

show that, for βi = α (i = 1, . . . , p), this constraint describes the canonical embedding of

SU(1, p)

U(1)× SU(p)
⊂ SO(2, 2p)

SO(2)× SO(2p)
⊂ SO(5, n)

SO(5)× SO(n)
, (4.16)

and hence that the N = 4 moduli space is isomorphic to SU(1, p)/
(

U(1) × SU(p)
)

. If not

all βi are equal to α, the moduli space becomes SU(1,m)/
(

U(1)×SU(m)
)

for some m < p.

To see this, we recall the canonical embedding of the Lie algebra su(1, p) into the

Lie algebra so(2, 2p). Obviously, δφm̃ã parameterizes the coset space SO(2, 2p)/
(

SO(2) ×
SO(2p)

)

. Decomposing the (2× 2p) matrix δφm̃ã into (2× 2) blocks Ai, i = 1, . . . , p,

(δφm̃ã) =
(

A1 · · · Ap

)

, (4.17)

the condition (4.10) becomes

αǫAi − βiAiǫ = 0 (no sum) . (4.18)

If α = βi, this implies Ai = xi12 + yiǫ for some real numbers xi, yi, whereas α 6= βi implies

Ai = 0. Assuming α = βi for all i = 1, . . . , p, the so(2, 2p) matrix parameterized by

the δφm̃ã,












02 A1 · · · Ap

AT
1 02 · · · 02
...

...
...

AT
p 02 · · · 02













(4.19)

is thus equivalent to the non-compact part of a general su(1, p) matrix,













0 x1 + iy1 · · · xp + iyp
x1 − iy1 0 · · · 0

...
...

...

xp − iyp 0 · · · 0













(4.20)

upon the canonical embedding x + iy → x12 + yǫ of C into Mat(2,R). Now the starting

point of our considerations was an arbitrary N = 4 vacuum point. This means that condi-

tion (4.10) holds not only at the point of consideration, but also in a neighborhood in the
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space of N = 4 vacua. Therefore the moduli space is homogeneous and is given by expo-

nentiating the modes fulfilling (4.10). For βi = α ∀ i, the scalars δφm̃ã thus parameterize

SU(1, p)/
(

U(1)× SU(p)
)

.

If some of the βi are not equal to α, the corresponding xi and yi vanish and the moduli

space is SU(1,m)/
(

U(1) × SU(m)
)

for m < p, where m counts the number of βi that are

equal to α. This reduced moduli space is consistent with the fact that the coefficients α and

βi determine the charges and the masses of the tensor fields. Only for a particular mass

of the tensor fields will there be a massless scalar in the corresponding tensor multiplet,

which just corresponds to the case βi = α for the relevant index i.

To summarize, the moduli space of an N = 4 supersymmetric AdS5 vacuum is always

of the form

C =
SU(1,m)

U(1)× SU(m)
(4.21)

for some m with 2m ≤ n, where n denotes the original number of vector multiplets in the

ungauged theory. In addition, m counts the number of tensor fields in tensor multiplets

that are charged with respect to the U(1) gauge group factor with the same charge as the

two tensor fields from the gravity multiplet.

The above type of moduli space was also found in [17] in a particular subset of 5D,

N = 4 gauged supergravity theories that arise in type IIB compactifications on orbifolds

of S5. Our results show that all N = 4 AdS vacua of 5D gauged supergravity have this

moduli space. Note that for m = 1 this gives the familiar moduli space of N = 4 super

Yang-Mills theory with the metric g ∼ (τ − τ̄)−2, which also occurs in the untwisted sector

of the half-maximally supersymmetric 5-sphere orbifolds discussed in [17].

The coset space CHm := SU(1,m)/
(

U(1) × SU(m)
)

is sometimes called the complex

(or Hermitian) hyperpolic space and has several geometric properties that are also impor-

tant for the rest of this paper. We first note that CHm is the non-compact Riemannian

symmetric space dual11 to the complex projective space CPm = SU(1+m)/
(

U(1)×SU(m)
)

and that it is a Hermitian symmetric space of complex dimension m with isometry group

SU(1,m). Like all Hermitian symmetric spaces, CHm is a Kähler manifold, and a form of

the Kähler potential that makes the SU(m) isometry subgroup manifest is

K = −M3 ln(1− ziz̄i) , (4.22)

where zi (i = 1, . . . ,m) are dimensionless local complex coordinates on the manifold. For

future use we also included the dependence on the five-dimensional Planck mass M which

up to this point was chosen to be unity.12 Note that for dimensionless scalar fields the

metric and K have mass dimension three (in 5D) and indeed from (4.22) one finds

gij̄ = M3

(

δij

(1− zkz̄k)
+

z̄izj

(1− zkz̄k)2

)

. (4.23)

11The dual of a symmetric space G/H with Cartan decomposition Lie(G) = Lie(H)⊕ k is the symmetric

space G′/H with Cartan decomposition Lie(G′) = Lie(H)⊕ik (cf. [36]). If G/H is compact and has positive

sectional curvature, then G′/H is non-compact and has negative sectional curvature, and vice versa.
12For m = 1 there exists a coordinate transformation which puts K into the form K = −M3 ln(τ − τ̄).
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CHm is also a special-Kähler manifold with holomorphic prepotential (see e.g. [37] for

further details on the special-Kähler geometry in various symplectic frames)13

F (X) =
i

2
XIηIJX

J , (4.24)

where (XI) = (X0, Xi), I = 0, 1, . . . ,m are homogeneous special coordinates related to the

zi via Xi/X0 = zi, and ηIJ = diag(+1,−1, . . . ,−1). In general, the Riemann curvature

tensor of special-Kähler manifolds obeys [38]

Rl
jm̄k = −M6gll̄Cl̄m̄k̄g

k̄nCnkj +M−3(gm̄jδ
l
k + gm̄kδ

l
j) , (4.25)

where Cijk = eK/M3

Fijk, with Fijk being the third derivatives of the prepotential F .14

Since for the case at hand F is quadratic, we have Cijk = 0 and thus the Riemann tensor

of CHm obeys

Rl
jm̄k = M−3(gm̄jδ

l
k + gm̄kδ

l
j) . (4.26)

This property of C is closely related to the tt∗-geometry of the dual SCFT, as we discuss

in appendix B.

5 Holography and the N = 2 SCFT conformal manifold

So far our analysis has been entirely within 5D, N = 4 gauged supergravity. As we

mentioned in the introduction, one of the motivations to study supersymmetric AdS-

backgrounds comes from the relation to holographically dual superconformal field theory

(SCFT) within the AdS/CFT correspondence. For the case at hand, this would be a 4D,

N = 2 SCFT with eight ordinary and eight superconformal supercharges. The holographic

dictionary between higher-dimensional type IIB backgrounds of the form AdSD × Y10−D,

where Y10−D is an appropriate compact manifold, has been discussed in [40, 41] and re-

viewed, for example, in [42]. Here we only focussed on the AdSD factor and did not consider

any relation to solutions of higher-dimensional supergravities or string theories. It has not

yet been firmly established which aspects are captured by our lower-dimensional analysis.

However, for consistent truncations it is expected that the lower-dimensional supergravity

does give reliable predictions for the dual SCFT in the large-N limit. General consis-

tent truncations to five-dimensional N = 2 and N = 4 gauged supergravities have been

performed for instance in [43–48], but most of these truncations focus on gauged super-

gravities where the AdS5 vacuum is only N = 2 supersymmetric. It would be interesting to

find consistent truncations to five-dimensional supergravity for models with N = 4 vacua,

as for instance the examples of [17], and to understand whether localized sources in the

higher-dimensional theory can be included in such an analysis.

13
CHm is a special-Kähler manifold of the “local” type, i.e. one that could arise in the vector multiplet

sector of 4D, N = 2 supergravity, but not in rigid 4D, N = 2 supersymmetry. Such a distinction could not

be given for the AdS4 moduli spaces studied in [5].
14Here we follow the conventions of [39]. Note that Cijk and Rl

jm̄k are dimensionless, so that with

gij̄ ∼ M3 both sides of (4.25) are in fact proportional to M3.
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If a suitable consistent truncation to 5D, N = 4 supergravity exists, one might still

wonder whether there could be moduli among the modes one has truncated out, in par-

ticular among the infinite tower of Kaluza-Klein modes. While the high masses of generic

KK modes would usually prevent them from being moduli, in AdS spacetimes there could

be a scalar in a KK-multiplet that has mass zero even though the other members of the

multiplet have smaller and/or larger masses, as happens e.g. in the KK decomposition of

type IIB supergravity on the five-sphere [49, 50]. An exactly marginal operator, however,

also has to be a singlet of the R-symmetry group of the SCFT, so that any AdS-modulus

candidate among the truncated modes would have to be neutral under the SU(2) × U(1)

part of the 5D gauge group. If this group is realized geometrically in the compactification

space, a modulus in a KK multiplet would have to be inert under this geometric symmetry,

which is typically not the case.

Keeping such issues in mind, let us now become a bit more specific and discuss possible

interpretations of our result. In section 3, we found that the AdS-backgrounds necessarily

have an unbroken U(1)× SU(2) symmetry gauged by the graviphotons, which indeed cor-

responds to the U(1)× SU(2) R-symmetry of the dual N = 2 SCFT. The unbroken gauge

factor Hc ⊂ SO(n) has to be related to an unbroken flavour symmetry of the SCFT. We

also found that non-compact symmetries can be gauged, but they are always spontaneously

broken in the vacuum.

In section 4, we derived the coset space SU(1,m)/
(

U(1)×SU(m)
)

as the moduli space

of the AdS-backgrounds. In the dual SCFT, this corresponds to the conformal manifold,

i.e. the space of exactly marginal couplings ϕi [3]. They deform a given SCFT, S∗, as

S[ϕ] = S∗ +
∑

i

∫

ϕiOi , (5.1)

where the Oi denote the exactly marginal operators of S∗.15 This deformation space is

endowed with a natural metric, the Zamolodchikov metric given by

gij(ϕ) = x2∆〈Oi(x)Oj(0)〉S[ϕ] . (5.2)

The holographic dictionary states that in the large N -limit this metric should agree with

the metric on the moduli space of AdS-backgrounds. In section 4, we derived such moduli

spaces in 5D supergravity, and thus it is of interest to do a more detailed comparison.

First of all there is the question to what extent the Zamolodchikov metric is already

constrained by supersymmetry. Mimicking an argument first employed by N. Seiberg

in [22], one can promote ϕi to a background supermultiplet. This in turn constrains the

metric of this multiplet to obey the properties imposed by the supersymmetry of the given

SCFT. For example in an D = 4, N = 1 SCFT this argument constrains gij(ϕ) to be a

Kähler metric, which has indeed been shown by other means in [51].

In 4D, N = 2 SCFT, the marginal operators Oi reside in conformal chiral multiplets

with Weyl weight w = 2, while the deformation parameters ϕi are members of chiral

15The notation S∗ is somewhat symbolic as we include the possibility of non-Lagrangian theories. Fur-

thermore, the marginal operators Oi we are interested in preserve all supercharges and thus have scaling

dimension ∆ = 2, are R-symmetry singlets and form the highest components of their N = 2 superfields.
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multiplets with w = 0. Unfortunately, the geometry of Weyl multiplets with arbitrary Weyl

weight is not known.16 In [26] it was shown that the metric on C is Kähler and additionally

obeys the tt∗-geometry [27]. Moreover, the Kähler potential gives the sphere partition

function, as has been shown by using localization techniques in [28] and supersymmetric

Ward identities in [29]. The moduli space C = CHm we obtained in section 4 is both

Kähler and obeys the tt∗-geometry, as discussed in appendix B. In fact, it is the specific

special-Kähler manifold with a quadratic prepotential. Of course, in our approach we only

capture the large-N limit of the exact Zamolodchikov metric and therefore we are led to

conjecture that our result arises only in that limit. In appendix B, we discuss in more

detail the large-N limit in view of [26] and argue for a specific subleading behaviour of

the Zamolodchikov metric as well as the (single and double trace) operators of dimension

four in cases where our analysis applies. Our result also suggests that the sphere partition

function of suitable D = 4, N = 2 SCFTs should simplify in the large-N limit to agree

with the exponential of the Kähler potential of (4.21).

6 Conclusion

In this paper, we identified all five-dimensional, N = 4 gauged supergravity theories that

allow for N = 4 AdS5 vacua and determined the moduli spaces of these solutions. The

requirement of a fully supersymmetric AdS vacuum constrains the gauge group of the su-

pergravity theory to be of the general form U(1) × H, where H must contain an SU(2)

subgroup gauged by three graviphotons, and the U(1) factor is gauged by another gravipho-

ton and must (at least) act nontrivially on two tensor fields in the gravity multiplet.

The moduli space of the resulting vacua was found to be the special-Kähler manifold

SU(1,m)/
(

U(1)× SU(m)
)

, where m counts the number of tensor fields from tensor multi-

plets with the same U(1) charge as the two tensor fields from the gravity multiplet.

We discussed this result in the context of the AdS/CFT correspondence, where the

holographic dual of the AdS moduli space is given by the conformal manifold of dual 4D,

N = 2 SCFTs. In cases where the truncation to five dimensions captures all essential

features of the ten-dimensional theory this determines the large-N behavior of the confor-

mal manifold and via the result of [28] also the large-N behavior of the sphere partition

function of the SCFT. Comparison with the tt∗-like geometry found in [26] indicates that

our result might constrain the large-N behavior of three-point functions that appear in the

OPE of exactly marginal operators.
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A SO(5) vs. USp(4) bases

The R-symmetry group of the N = 4 Poincaré superalgebra in five space-time dimensions

is given by USp(4) ≡ U(4) ∩ Sp(4,C). We denote the corresponding symplectic form by

Ωij , i, j = 1, . . . , 4, so that USp(4) is generated by Hermitian(4 × 4)-matrices Ui
j that

satisfy UTΩ+ΩU = 0. The fermions of N = 4 supergravity transform in the fundamental

representation of USp(4). In order to describe their couplings to the scalar fields (Vm
M ,Va

M )

of the coset space SO(5, n)/SO(5) × SO(n), one converts the SO(5) index m = 1, . . . , 5

to USp(4) indices i, j using the group isomorphism USp(4) ∼= Spin(5) that follows from

properties of the SO(5) Clifford algebra. In the following, we briefly review some useful

identities related to this isomorphism and match it to the supergravity conventions used

in this paper (for further details see e.g. [54, 55]).

The Clifford algebra in five Euclidean dimensions is represented by (4 × 4) gamma

matrices Γm, m,n, . . . = 1, . . . , 5 satisfying

{Γm,Γn} = 2δmn1 ⇐⇒ Γmi
jΓn j

k + (m ↔ n) = 2δmnδ
k
i . (A.1)

As in any odd dimension, there are actually two equivalence classes of irreducible represen-

tations of (A.1). They differ in how one defines the the fifth gamma matrix in terms of the

first four, which leaves a sign ambiguity: Γ5 = ±Γ1Γ2Γ3Γ4. Apart from eqs. (A.13)–(A.16),

all equations in this appendix are insensitive to this sign choice.

5D rotational invariance requires the Γm to be traceless, and for a Euclidean Clifford

algebra, they may also always be chosen to be Hermitian, as we will assume from now on:

Γm = Γ†
m . (A.2)

For any representation of this type, there exists then a “charge conjugation matrix” C with

the following properties:

ΓT
m = Γ∗

m = CΓmC−1 , C = −CT , C∗ = −C−1. (A.3)

These relations imply, in particular, that (CΓm) and (CΓmnpq) are antisymmetric, whereas

(CΓmn) and (CΓmnp) are symmetric matrices. Due to its antisymmetry and invertibility,

we can identify C with a symplectic form Ω as follows:

Ωij := Cij , Ωij := Cji = −Cij . (A.4)

Here, Cij denote the entries of C, whereas Cij are meant to be the components of the

inverse matrix C−1 so that CijCjk = δik, and hence ΩijΩkj = δik. Ω can then be used to

raise and lower USp(4) indices i, j, . . . according to the convention [14]

V i = ΩijVj , Vi = V jΩji . (A.5)
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We can then define

Γij
m := ΩikΓmk

j = (CΓm)ij , Γmij := Γmi
kΩkj = (ΓmC−1T )ij . (A.6)

Γij
m has the properties

Γij
m = −Γji

m , Γij
mΩij = 0 , (Γij

m)∗ = Ωil ΩjkΓ
lk
m , (A.7)

where the first identity is just the antisymmetry of (CΓm), the second is the tracelessness

of Γm, and the third equation a consequence of the reality properties (A.3). Completely

analogous identities are inherited by the coset representatives

V ij
M := Vm

MΓij
m . (A.8)

Using the above properties, it is easy to see that the SO(5) generators

Mmn :=
i

4
[Γm,Γn] (A.9)

are Hermitian (4× 4)-matrices that also satisfy

(Mmn)
T · Ω+ Ω ·Mmn = 0 , (A.10)

i.e. that they can be viewed as generators of USp(4) in the fundamental representation.

We close with some useful identities:

Γij
mΓn ij = 4δmn , (A.11)

tr(ΓmnΓpq) = 4(δmqδnp − δmpδnq) , (A.12)

Γm = ± 1

24
ǫmnpqrΓ

npqr, (A.13)

Γmn = ∓1

6
ǫmnpqrΓ

pqr, (A.14)

Γmnp = ∓1

2
ǫmnpqrΓ

qr, (A.15)

Γmnpq = ±ǫmnpqrΓ
r, (A.16)

{Γmn,Γpq} = 2Γmnpq + 2δnpδmq − 2δnqδmp , (A.17)

where we use ǫ12345 = 1, and the signs refer to the sign choice Γ5 = ±Γ1Γ2Γ3Γ4.
17

B Large N counting

In [26], the Riemann tensor of the metric on the conformal manifold of a 4D, N = 2 SCFT

was found to satisfy the relation

Rl
ij̄k = −CM

ik gMN̄C∗N̄
j̄q̄ gq̄l + gkj̄δ

l
i + gij̄δ

l
k . (B.1)

17In the main body of this work we will use the plus sign.
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Here, CM
ij are the chiral ring coefficients between chiral primaries Oi, Oj of conformal

dimension ∆ = 2 and OM of conformal dimension ∆ = 4, whereas gij̄ and gMN̄ denote the

Zamolodchikov metrics for these operators. The chiral ring coefficients can be expressed

in terms of 3-point correlator coefficients CijM̄ as

CijM̄ = CN
ij gNM̄ . (B.2)

Note that all quantities in (B.1) are dimensionless and no powers of any mass scale as

in (4.25) appear.

Our 5D supergravity analysis, on the other hand, led to AdS-moduli spaces of the

form SU(m, 1)/
(

SU(m) × U(1)
)

, which obeys (4.26). Since (B.1) resembles (4.25), it is

worthwhile to establish a closer connection. Note that the two formulas differ in that

the OPE coefficients CijM do not coincide with the Cijk of special geometry. Therefore

a comparison is not straightforward. As the supergravity approximation in AdS/CFT is

generally only valid for large N (N being the number of colors), it is useful to understand

the large-N behaviour of the various terms in (B.1).

In [56], extremal 2- and 3-point correlators of single trace chiral primary operators in

4D, N = 4 super Yang-Mills theories were computed in the weak coupling limit and at

strong ’t Hooft coupling λ = Ng2YM ≫ 1 using the dual supergravity side of the AdS/CFT

correspondence. The results were found to agree. We recall here the N dependence of the

correlators in the weak coupling analysis.

We normalize the Yang-Mills action as S =−
∫

1
2g2

YM

TrF 2+ . . .=−
∫

1
4g2

YM

F aF a+ . . .,

where F =F aT a with the U(N) generators T a (a=1, . . . , N2), which we assume to be in the

fundamental representation of U(N), i.e. they are (N×N) matrices with Tr(T aT b)= 1
2δ

ab.

The scalar fields φα = φα
aT

a (α = 1, . . . , 6) have scaling dimension ∆ = 1, transform in

the fundamental representation of the R-symmetry group SO(6) and have the propagators

〈φα
a (x)φ

β
b (y)〉 =

g2YMδabδ
αβ

(2π)2|x− y|2 . (B.3)

As we are interested in massless supergravity scalar fields (the AdS moduli), we need to

focus on marginal operators in the dual SCFT. They have scaling dimension ∆ = 2 for

the lowest component scalar field (i.e. ∆ = 4 for the highest component of the superfield)

and can be composed from two fundamental scalar fields φα
a as a single trace operator18

Oαβ := Tr(φαφβ) . (B.4)

Using Wick’s theorem, the free 2-point function of two such single trace operators O is of

the form

g(x, y) = 〈Oαβ(x)Oγδ(y)〉 = N2g4YM(δαγδβδ + cyclic)

(2π)4|x− y|4 . (B.5)

18Here and in the following, the SO(6) indices α, β, . . . should always be thought of as being in a completely

symmetric and traceless combination, which, however, we do not make explicit as it does not affect the

large N scaling. Likewise, we are really interested in SU(N) instead of U(N) generators only.
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More generally, we have [56]

g(x, y) = 〈Oα1...αkOβ1...βk〉 = Nkg2kYM(δα1β1 . . . δαkβk + cyclic)

(2π)2k|x− y|2k , (B.6)

for the single trace operators Oα1...αk = Tr(φα1 . . . φαk). We need the case k = 4 for the

∆ = 4 single trace operators, for which we read off the scaling N4g8YM.

Next, let us consider the 2-point function of the ∆ = 4 double trace operators defined

as Oαβ,γδ(x) := Tr
(

φα(x)φβ(x)
)

Tr
(

φγ(x)φδ(x)
)

. It scales like N4g8YM, because Wick’s

theorem gives rise to terms such as δabδcdδefδghδaeδbfδcgδdh ∼ N2N2. Note that among

the dimension 4 operators that can be formed from the scalars φα, there are only the single

trace operators Oαβγδ and the double trace operators Oαβ,γδ, when one restricts oneself to

the traceless SU(N) generators.

The 3-point functions we need to consider are thus of the form

〈OαβOγδOǫηκλ〉
〈OαβOγδOǫη,κλ〉 .

(B.7)

The first 3-point function scales as λ4/N ∼ N3 [56]. The second 3-point function can be

directly determined with Wick’s theorem and gives a contribution that scales as N4g8YM

(because it leads to δabδ
abδcdδ

cd ∼ N2N2), as well as one that scales as N2g8YM (coming

from a contraction that collapses to δabδ
ab ∼ N2). If the above scalings are also valid at

strong ’t Hooft coupling and also in general N = 2 SCFTs, one would have the following

scalings:
gij̄ ∼ λ2 ∼ N2,

gIJ̄ ∼ λ4 ∼ N4,

CijI ∼ λ4/N ∼ N3, (I ∼ single trace ∆ = 4) ,

CijI ∼ λ4

(

1 +
1

N2

)

∼ N4 +N2, (I ∼ double trace ∆ = 4) .

(B.8)

Note that we inferred from (4.22) that on the supergravity side gij̄ ∼ M3, which, using the

AdS/CFT dictionary, indeed implies gij̄ ∼ N2 on the dual side.

Putting everything together, the right hand side of (B.1) then scales as

gkj̄δ
l
i + gij̄δ

l
k ∼ N2 +N0 + . . . ,

single trace ∼ N3N3N−4N−2 ∼ N0 + . . . ,

double trace ∼ (N4 +N2)(N4 +N2)N−4N−2 +N2 ∼ N2 +N0 + . . . .

(B.9)

Note that the left-hand side of (B.1) is independent of N as it is the (scale-invariant)

Riemann tensor. This means that at leading order (N2) the terms on the right-hand side

universally have to cancel each other.19 This predicts, on the one hand, a certain leading

behavior for the OPE coefficients CijI for double trace operators. Moreover, it predicts

a very specific subleading contributions (N0) of the metric gij̄ and the double trace OPE

coefficients, as well as a specific leading behaviour of the OPE coefficients CijI for single

trace operators. Only if they conspire in the right way, they can be consistent with the

supergravity result (4.21). It would be interesting to check this in explicit SCFTs.

19We thank K. Papadodimas for extensive discussions on this point.
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