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Abstract

The predictions of quantum mechanics often differ from our everyday experiences. In the
classical case, the state of a system can be predicted precisely, assuming the exact knowl-
edge of all parameters. This is not possible in quantum mechanics. For example, the spin of
one particle can be simultaneously in two different states, until a measurement defines the
actual state. If multiple particles are in such superposition states, their spins can be coupled
with each other such that the measurement of one particle changes the physical state of
the other particles. This coupling effect is a fundamental part of quantum mechanics and
is called entanglement. It is a central requirement for applications in the fields of quantum
communication, quantum cryptography and quantum computing. One possibility to create
entanglement are spin-changing collisions in a spinor Bose-Einstein condensate. These colli-
sions are described by a nonlinear process, which creates non-classical correlations between
all atoms of the Bose-Einstein condensate.

Within this thesis, 3’Rb spinor Bose-Einstein condensates are used to demonstrate Einstein-
Podolsky-Rosen entanglement by the generation and analysis of a two-mode entangled state
in spin space [Al]. These states are applied in an interferometric measurement with a reso-
lution of 2.051)31 dB beyond the standard quantum limit [A2]. Depending on the dynamics,
the process can also be analogous to the dynamical Casimir effect [A3]. The entanglement
between the particles in these publications is strongly connected with their indistinguishability.
It is thus possible to make the particles distinguishable again and recover the entanglement
between the now separated particles? This question is approached by cutting an entangled
state of indistinguishable particles into two spatially separated atomic modes - creating a
two-mode entangled state in real space. As shown in Ref. [A4], the entanglement between
the two separated clouds of a Bose-Einstein condensate can be measured directly. In the
future, the created state can be employed for a test of quantum nonlocality.
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Zusammenfassung

Die Vorhersagen der Quantenmechanik stehen oft im Widerspruch mit unseren alltaglichen
Erfahrungen. Im klassischen Fall kann der Zustand eines Systems bei genauer Kenntnis aller
Parameter prazise vorausgesagt werden. Quantenmechanisch ist dies nicht moglich. Der
Spin eines Teilchens kann sich beispielsweise gleichzeitig in zwei verschiedenen Zustanden
befinden, bis eine Messung seinen Zustand definiert. Befinden sich mehrere Teilchen in Su-
perpositionszustanden, konnen ihre Spins miteinander gekoppelt sein, sodass die Messung
eines Teilchens den physikalischen Zustand der anderen Teilchen andert. Dieser Kopp-
lungseffekt ist fundamentaler Bestandteil der Quantenmechanik und wird Verschrankung
genannt. Er ist eine zentrale Voraussetzung fur viele Anwendungen in den Forschungsfeldern
Quantenkommunikation, Quantenkryptographie und Quanteninformationsverarbeitung. Eine
Moglichkeit Verschrankung zu erzeugen sind Spin-andernde StoBe in einem Spinor-Bose-
Einstein-Kondensat. Diese StoBe werden durch einen nichtlinearen Prozess beschrieben, der
nichtklassische Korrelationen zwischen allen Atomen des Bose-Einstein-Kondensats erzeugt.
Innerhalb dieses Arbeit werden 8"Rb Spinor-Bose-Einstein-Kondensate genutzt um Einstein-
Podolsky-Rosen-Verschrankung durch die Analyse eines zwei-moden verschrankten Zustandes
nachzuweisen [Al]. Diese Zustande werden in einer interferometrischen Messung genutzt,
um eine Aufldsung von 2.05703% dB jenseits des Standard-Quantum-Limits zu erreichen.
Abhangig von der Art der Anregung ist der Prozess analog zum dynamischen Casimir-Effekt
[A3]. Die Verschrankung der Teilchen ist in diesen Arbeiten stark mit ihrer Ununterscheid-
barkeit verknipft. Ist es moglich die Teilchen wieder unterscheidbar zu machen und die
Verschrankung zwischen den nun separierten Teilchen zu erhalten? Um diese Frage zu beant-
worten wird ein verschrankter Zustand ununterscheibarer Teilchen in zwei raumlich getrennte
Moden geteilt - was einen zwei-moden verschrankten Zustand im realen Raum erzeugt. In
Ref. [A4] wird gezeigt, dass die Verschrankung zwischen zwei getrennten atomaren Wolken
eines Bose-Einstein-Kondensats direkt gemessen werden kann. In der Zukunft kann der Zu-
stand fir einen Test der Nichtlokalitat verwendet werden.

Schlagworter: Bose-Einstein-Kondensat, Spindynamik, Verschrankung
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1 Introduction

God does not play dice with our universe.
A. Einstein

This statement expresses Einstein's opinion that no theory with intrinsic uncertainties can be
complete. He assumes that, they only appear due to a lack of information about the system.
Consequently, no real uncertainties exist from Einstein's point of view. This statement is
correct in the classical description of our world. However, it is not valid on scales at which
the wave nature of matter is important. The transition between these two regions is subject
of state-of-the-art research [1, 2, 3]. Measurement devices, in particular atom interferome-
ters, operating in the quantum regime have a broad range of applications. They are used to
measure gravitational acceleration [4, 5], the rotation of the earth [6, 7, 8], the time [9, 10]
and physical constants for example the gravitational [11, 12] or the fine-structure constant
[13, 14]. Furthermore, atom clocks operate with an outstanding stability [10]. Despite the
rapid technical progress, the accuracy of these measurements is fundamentally limited by
shot noise or projection noise. This noise occurs from counting uncorrelated particles and
gives rise to the standard quantum limit, which scales as 1/\/N with the number of particles
N. By inducing non-classical correlations between the particles, the standard quantum limit
can be overcome and thus enhance the measurement precision [15]. These strong and non-
classical correlations are called entanglement and are a pure quantum mechanical property.
Using entangled states to enhance the measurement precision is realized with thermal atoms
[16] and as presented in this thesis with Bose-Einstein condensates. For certain entangled
states, the measurement precision is only limited by the fundamental Heisenberg limit, which
scales as 1/N. Entangled states are a crucial resource in the research fields of quantum com-
munication [17], quantum cryptography [18], quantum sensors [19] and quantum information
processing [20]. Up to know fully controllable entangled states of ten photons [21] and 20
ions [22] have been created, while in Bose-Einstein condensates states with 910 entangled
atoms [23] have been generated at the cost of the individual control of the particles.

This thesis compares different possibilities to generate entanglement and shows how indistin-
guishability and entanglement are connected with each other in Bose-Einstein condensates.
In the first chapter of this thesis, squeezing is explained on the example of a harmonic oscilla-
tor. The next chapter addresses the question how entanglement can be created and classified.
Therefore, different methods to create entanglement in Bose-Einstein condensates with non-
linear atom-atom interactions are compared. Using the results of this chapter, an overview
about the commonly used measures of entanglement is given. The last chapter addresses
the question how a Bell test can be realized with the state characterized in Ref. [A4].



2 Squeezing

The mathematical description of a quantized single-mode field is equivalent to a quantum
harmonic oscillator [24]. Therefore, the harmonic oscillator is taken as example to introduce
the concepts of quadrature squeezing and homodyne detection.

2.1 Single-mode quadrature squeezed states

The Hamiltonian of a single-mode harmonic oscillator is given by H = w(afa + 1/2) with
the creation and annihilation operators a' and a. These operators define to the quadratures
X =1/v2(a+a') and P = i/v/2(a—a'). They oscillate 90° phase-shifted with the frequency
w and can be interpreted as dimensionless field amplitudes, e.g. as position and momentum of
a classical harmonic oscillator or as amplitude of an electro-magnetic wave. The ground-state
wave function of a harmonic oscillator is then given by Wy(X) = 7—1/4 e X2 or equiva-
lently by Wo(P) = 7~ /*e~"*/2. Vacuum fluctuations lead to non-zero uncertainties in the
quadratures of the ground state in contrast to the classical case. This quantum mechanical
uncertainty is equally distributed among the quadratures AX = AP = 1/2 (see Fig. 2.1a).
While the product of both quadrature uncertainties is bounded by the Heisenberg uncertainty
principle AXAP > 1/4, it is possible to reduce one uncertainty at the cost of the other.
These states are called single-mode squeezed states. In consequence this means, that the
uncertainty of one quadrature can be smaller then 1/2. The mathematical description follows
Ref. [25]. By introducing the squeezing parameter R > 0, the squeezed wave functions can
be written as Wx(X) = VR/(n'/4) e XR*/2 and Wi(P) = 1/(x"/*V/R) e (P/R?/2. The
uncertainties of the quadratures are then given by (AX?) = 1/(2R?) and (AP?) = R?/2.
Reproducing the result of the unsqueezed state for R = 1 and for any other value of R leading
to a single-mode squeezed state. These single-mode squeezed states can be decomposed into
a superposition of even Fock states Uy = 1/veosh® Y., _o V@!/2rni(— tanh R)? [2n). This
representation shows that squeezed states contain many excited states as shown in Fig. 2.1b.

2.2 Two-mode quadrature squeezed states

The system is now expanded to two coupled harmonic oscillators. The X quadratures of both
oscillators (and also the P quadratures) therefore depend on each other. If the coordinates
X 4 and P, are measured in different realizations, they can be used to predict Xz and Pg
with an uncertainty depended on the coupling between the oscillators. If the correlations are
strong enough this leads to two-mode squeezed states. A two-mode squeezed state in a cav-
ity system is shown in Fig. 2.2. A simple example is the two-mode squeezed vacuum, whose
wave functions can be written as W(X 4, Xg) = 1/ e~ (XatXs)*/(4R?) o= R*(Xa=X5)*/4 gnd
Up(Pa, Pg) = Vyme (Pa=Ps)*/(4R?) o=R*(Pa+Ps)*/4  As indicated before, the correlations
do not show in the individual X and P quadratures, instead they are in the sum of the P
quadratures and the difference of the X quadratures. For R > 1, these correlations are
squeezed and for R=0 the individual quadratures are independent. The Fock state basis



Bloch-sphere
Harmonic oscillator picture Quadrature representation representation

(a) vacuum state |0)

S ‘)df’

(b) single-mode squeezed vacuum state

Figure 2.1: Different representations of (a) the vacuum state of the harmonic oscillator. The
potential is shown as black line and the abscissa can correspond to either the X quadrature
or P quadrature. The ground-state wave function corresponds to a disk in the quadrature
picture. For a single-mode squeezed state (b) the wave function is a superposition of many
weighted wave functions of even excited states. This effect Bose-Einstein condensateomes
visible in the quadrature picture. Furthermore, the quadrature representation can be seen as
an approximation in the Bloch-sphere picture, visualized as brown tangent plain at the north
pole of the Bloch spheres. The south pole corresponds to the mode of local oscillator |0)
and the north pole to the harmonic oscillator [1).

representation is given by W = Yeosh ), (tanh R)" |n,n). In this description, the fact
that only twin Fock states contribute to the state becomes obvious.

2.3 Homodyne Detection and the Bloch sphere

To access the quadratures experimentally, the mode has to be coupled with a strong classical
field, the so-called local oscillator. The coupling leads to an enhancement of the signal by
a factor 24/ N o with the local oscillator particle number N g. The local oscillator phase
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Figure 2.2: A two-mode squeezed state shown in the electro-magnetic wave and quadrature
representation. While the uncertainties of each state are above the standard quantum limit
(orange areas), the correlations between the X- and P-quadratures show squeezed fluctua-
tions. Therefore, with a measurement of the electric field of A (full lines), it is possible to
predict the same quadrature of state B (dashed lines) with an uncertainty below the standard
quantum limit .

determines the direction of the phase-space displacement yielding the general quadrature
Xy = X cosf + Psinf with the quadrature angle 6 [25]. This coupling is realized by
a beam splitter operation between the modes of the harmonic and local oscillator. The
population of each beam splitter port has to be measured. Furthermore, by tuning the phase
of the local oscillator, homodyning can be seen as a tool to measure the density matrix
of the underlying quantum state [26]. To describe and visualize the coupling process the
multi-particle Bloch sphere is used. In our description, the north pole corresponds to the
mode of the local oscillator |0) and the south pole to the quantum state |1), which we
want to analyze. The main axes of the sphere are defined by the collective spin operators
J: = 1/2(a’b + b'a), J, = 1/2i(a’d — b'a) and J, = 1/2(a’a — b'b) with the bosonic
annihilation a and b and creation operators a' and b' of the modes |0) and |1). They obey
the commutation relations for angular momentum operators [Jy, J;| = i€gm Jm, Which results
in the uncertainty relations AJyAJ; > 1/2|(J;,,)|. The quadrature description can be seen
as an approximation in the Bloch-sphere picture, visualized as a tangent plane at one pole
of the Bloch sphere (see Fig. 2.1). In this framework the quadrature description is called
parametric approximation and the quadratures can be obtained from the vector components
according to X = /2/NJ, and P = —/2/NJ,. The highly populated mode |0) belonging
to the opposite pole is replaced conforming to <a$a0) = N.



3 Entanglement generation based on
atomic interactions

The concepts developed for the harmonic oscillator are transferred to spinor Bose-Einstein
condensates. The non-classical correlations arise in the spin and spatial degrees of freedom.
This chapter compares different techniques to create entanglement. A common way to quan-
tify the amount of squeezing compares the squeezed fluctuations to the standard quantum
limit and gives the suppression in dB. The arrangement of the chapter follows the structure
of Fig. 3.1.

1  Riedel et al. [27]

2 Fadel et al. [28]

3.2 Spin-changing dynamics 3 Strobel etal.  [29]

utilizing a phase transition 4 Muessel et al. [30]

5  Kunkel et al. [31]

?u:n;hs o 6 Hamley etal.  [32]

o], 7 Peise et al. [A1]
ee 00 @@ OO0 |00 00

8  Kruse et al. [A2]

9 Lange et al. [A4]

10 Luo et al. [23]

11 Zou et al. [33]

12 Hoang et al. [34]
13 Hoang et al. [35]
14 Lange et al. [A3]
15 Bucker et al. [36]
16 Hofferberth et [37]
al.
17 Lopes et al. [38]
18 Esteve et al. [39]

Figure 3.1: Entanglement generation in spinor Bose-Einstein condensates by utilizing atomic
interactions in 8"Rb. In the left column the atomic collisions between the atoms in the level
F =1 mpr = —-1and F = 2, mp = +1 are tuned to create non-classical states. This
can either be done with a state dependent potential or by utilizing a Feshbach resonance.
In the middle group, the transitions between the polar, broken-axisymmetry and twin Fock
phase can be exploited with a quench, ramp or modulation of the quadratic Zeeman energy
to create entanglement. The insets visualize the ground state occupation probabilities in
F =1, mp=—1,0,1 (from left to right). The right column shows all approaches, which
utilize an external degree of freedom.

Linear coupling interactions between the modes just rotate spins on the Bloch sphere and
hence do not create correlations between them [40]. Therefore, generating non-classical cor-
relations requires non-linear terms in the Hamiltonian. Depending on the type of atom-atom



interaction, one can differentiate between two schemes (see Fig. 3.1): Firstly, spin-dependent
dynamics where a state dependent phase shift leads to a sheering on the Bloch sphere and
thus redistributes the uncertainties. And secondly, spin-changing dynamics change the spin
of single particles under conservation of the total spin.

3.1 Spin-dependent dynamics

In the case of spin-dependent dynamics, atoms in the same state collide, generating entan-
glement and realizing a one-axis twisting scheme. The Hamiltonian is given by Hor = xJ?
[40], where x is the interaction strength. The dynamics can be visualized as a rotation
around J, depending on J,. The uncertainty distribution is thereby redistributed, leading
to an effective shearing. This dynamics were first observed in 8’Rb Bose-Einstein con-
densates [27, 41] between the states in the level |A) = |F =1,mp=—1) and |B) =
|F'=2,mp =+1). To study this scheme the collisional interactions defined as U;; =
2ma™l fm [ dr|;(r)|*|¥,;(r)[* with the s-wave scattering length a’’ and the atomic mass
m have to be considered. The inter-species collisional interaction U4 5 has to be reduced with
respect to the intra-species interactions U4 4 and Up s to increase the interaction strength
X = Uaa+Upp —2Uap [15]. The interaction strength is typically nearly zero, because
Uaa+ Upp = 2U 4. Increasing the interaction strength or equivalently reducing the term
U has so far been realized in two different ways, either with a state selective microwave
potential [27] or by utilizing a Feshbach resonance [41] (see Fig. 3.1). This dynamics was
be performed on an atom chip and in an optical dipole trap, respectively. One-axis twist-
ing dynamics creates spin-squeezed states at short evolution times. A value of 8.2dB spin
squeezing beyond the standard quantum limit was reached with detection noise subtracted
in Ref. [41]. For longer evolution times, over-squeezed states are created, which are still
useful for metrology beyond the the standard quantum limit. However, their evaluation is
much more complicated. Experimentally, they can be detected by measuring the Fisher in-
formation [29]. At an even longer squeezing time of yt = 7/2, one-axis twisting generates
a NOON state |Uyoon) = 1/V2(|N) 4 10) + €™ 0) , |N) ) allowing for Heisenberg lim-
ited metrology [15]. These states are extremely sensitive, i.e. they are destroyed if a single
spin is measured. Because of this extreme sensitivity, NOON states have so far not been
experimentally realized in Bose-Einstein condensates.

3.2 Spin-changing dynamics: Hamiltonian

The second scheme is an analog to optical parametric down conversion and is sketched in
Fig. 3.2. It utilizes the phase transitions in 8"Rb Bose-Einstein condensates to create non-
classical states. The F' = 1 manifold is in general used for experiments [42, 43, 44, AL, A2,
A3, A4]. The many-body Hamiltonian can be written as Hsp = (¢ + E,)(Ny1 + N_1) +
20U (aladasia_ —|—a0a0a11a11) with N; = ala; with i = +1,0, —1. The energy difference
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Figure 3.2: Sketch of spin-chaning collisions for three different values of ¢q. Each value is
resonant to a different mode. The mode structures are indicated as gray shaded areas.

2q of two atoms in |0) compared to an atom pair in |£1) can be identified as quadratic
Zeeman energy. N; with [ = —1,0+ 1 stands for the atom number in the respective Zeeman
level. E,, denotes the eigenenergies of the effective potential V' = Vi + (Up + Uy )ng(r) — i
with the external trapping potential Vi, the mean field term (U + U;)no(r) and chemical
potential y. The last term 2CU; (alala 1a_i + aoaoallail) represents the spin-changing
dynamics of the system. The overlap integral C'is given by [ ¢*(r)¢*,(r)¢o(r)do(r)dr
between the corresponding modes of the Zeeman levels. The interaction parameter U; de-
scribes the collisions of two atoms in |0) and changing their spins to |+1) and is given by
Uy = 4n(ly — lo)/3m with the scattering lengths 5 and [y and the atomic mass m. The
ground state in the polar phase is given in the Fock basis by | N1, No, N_1) = |0, N,0). At
high values of ¢, in the twin Fock phase, the energy is minimized for the state |[N/2,0, N/2).
Between these phases lies the broken-axisymmetry phase in which the ground state is de-
scribed by the superposition Z]kvz/(?) di |k, No — 2k, k).

In the low depletion limit Ng ~ N = N,; + Ny + N_; > 1, the parametric approximation
can be applied ag — /N, which transforms the Bloch sphere into a plane (see Fig. 2.1b).
On resonance ¢ = —F,, and at short times the Hamiltonian Bose-Einstein condensateomes
Hsp ~ Q(ailail +aiia_1) with Q = 2CU; N, generating the two-mode squeezed vacuum.
By applying the basis change from |+1) and |—1) to |\S) and |A), the Hamiltonian transforms
into Hsp = Q/2[(akal, + asas) — (alal, + a4a,)]. The two-mode squeezed state is in the
base of |S) and |A) transfromed into two single-mode squeezed states. The squeezing can
then be visualized on two Bloch spheres with the modes |S), |0) and |A), |0). The change in
q can be performed in different ways (see Fig. 3.1), which are discussed in the next paragraph.

Spin-changing dynamics: Quench, Ramp and Modulation of ¢

By quenching ¢ the system cannot follow adiabatically, which results in a population of
excited eigenstates of Hgp. For short evolution times, a two-mode squeezed state is cre-
ated, which has been detected in Refs. [45, 32, A1, A2]. Up to 8.3dB squeezing beyond
the standard quantum limit have been demonstrated so far [32]. For longer times, a large
fraction of the Bose-Einstein condensate is transferred. The point of view also changes, the
correlation manifest between the modes in the levels |[£1). The resulting twin Fock state
exhibits multi-particle entanglement [46] and is useful for quantum metrology beyond the



shot-noise limit [43].

Instead of quenching, ¢ can be ramped almost adiabatically as proposed in Ref. [47]. This
technique was demonstrated in Refs. [23, 33, 34]. The speed of a system to follow a ramp
adiabatically depends on the size of the energy gap between the ground and first excited
state. The gap size at the phase transition scales with N~'/3. This behavior was studied in
Ref. [34]. Owing to atom losses in the 35 s ramp from the polar into the broken-axisymmetry
phase no entanglement is detected. A number squeezing of 10.7dB is reached by ramping
into the twin Fock phase [23]. After the 3s ramp a minimum of 910 atoms are entangled.
The non-adiabaticity of this ramp results in oscillations in the broken-axisymmetry phase.
However, this has not strongly influenced the conversion efficiency of 96 %, taking the atom
loss of 10 % not into account.

Another possibility is to modulate ¢ periodically in time. If the modulation frequency is
around 2¢q, atom pairs from |0) can be excited into the states |[£1). To modulate the
quadratic Zeeman term in time, one can either change the magnetic field [35] or use a near-
resonant microwave field oscillating in intensity [A3]. The resonances depend on different
parameters. While the modulation amplitude has no influence on the resonance position,
mean-field interactions have [35 ,A3]. In our work [A3], this effect manifests strongly on
mode position of the excited states of the trapping potential.

Dynamical Casimir Effect

If the modes of the excitation are empty before initiating the dynamics, the excitation is
a pure quantum mechanical effect, because a classical oscillator cannot be parametrically
amplified from the ground state. This effect is analogous to the dynamical Casimir ef-
fect [48, 49] as described in Ref. [A3]. Ref. [35] used the same setup and showed 5dB
squeezing. However, this could be a result of a loss of contrast and does therefore not
proof entanglement. The verification of entanglement and with this the verification of the
underlying pair creation process is added in Ref. [A3]. Continuous-variable entanglement
is demonstrated with a significance of 2.9 standard deviations [A3].

Other approaches use momentum states to measure analogues to the dynamical Casimir
effect with cold atoms. In Ref. [50], superfluid Cesium is quenched with a jump in the
magnetic field near a Feshbach resonance. The ensemble is initiated in its vibrational
ground state. The quench gives rise to excitations manifesting as density fluctuations
of the cloud. The interference of these excitations is studied, which leads to emergence
of different momenta in dependence of the time after the quench. This phenomenon
is also an analogue to Sakharov oscillations [51]. In Ref. [52], the speed of sound in a
Bose-Einstein condensate is modulated with the external trapping potential generating
Bogoliubov excitations. These excitations are detected with a position- and time-sensitive
detector and the correlations between the different velocity classes are studied. While a
quench of the trap frequency leads to a broad velocity distribution, a modulation results in
a well-defined velocity class. However, no quantum correlations could be measured using
second-order correlations functions. One possible explanation for this fact is that thermal
and not vacuum fluctuations lead to the excitations.




All three ways to change ¢ create non-classical states, while the needed time and resulting
state depend on the used type.

3.3 Methods utilizing the external degrees of freedom

One possibility to create correlations between the atoms of a Bose-Einstein condensate utilizes
different trap modes. Therefore, the position of an elongated optical dipole trap is changed
rapidly in time to created excitations in a higher-order trap mode. The deexcitation into
the ground mode is studied in Ref. [36]. To conserve energy and momentum, atom pairs
with opposite momenta are created in an orthogonal direction. A Ramsey interferometer
is realized between the ground and first excited state of the trap in Ref. [53]. Neither for
the correlated momenta [36], nor for the two trap modes [53] sub-shot-noise fluctuations
could be observed. In another approach a magnetic double-well potential is created with a
radio-frequency field [37]. A full Mach-Zender interferometer between the atoms in the two
wells is realized in Ref. [54]. Despite number squeezing of 5.7dB is detected after the first
beam splitter no sub-shot-noise phase resolution is achieved.

Another method applies an optical dipole trap superimposed with a moving optical lattice
[38, 55]. The lattice creates correlated momentum pairs in a Bragg scattering process
analogue to a four-wave mixing process. Mirrors and beam splitters can be realized with
Bragg scattering. The different momentum classes are detected with a microchannel plate
detector. In Ref. [38], this approach generates two modes with opposite momenta to measure
an atomic analogue of the Hong-Ou-Mandel effect [56]. A second order correlation function
is applied to analyze the momentum pairs. The scheme is extended in Ref. [55] to four
modes. Due to the Bragg scattering, many momentum classes are generated. This opens
the possibility to measure Bell correlations. Up to now, entanglement has not been proved
yet[55].

Furthermore, an optical lattice can be used to split the Bose-Einstein condensate into different
wells. In Ref. [39], this approach is used to split the condensate in up to six parts. Owing to
tunneling of the atoms number squeezing can be detected between the wells. Additionally,
a phase coherence factor is extracted out of the entanglement pattern, which in comparison
with the number squeezing indicates entanglement.



4 Types of entangled states in
Bose-Einstein condensates

Different classes of entangled states exist different properties. Unfortunately, there is no
general scheme, that tests an entangled system to which class it belongs. Therefore, the
different classes of entanglement need different indicators, that are especially designed for
them. An overview of relevant different classes of entangled states and how to prove them
is given in this chapter (see Fig. 4.1).

1 Schmied et al.  [57]

sriengiement 2 Kunkel et al. [31]

— 3 Fadel et al. [28]

4 Peise et al. [Al]

5 Lange et al. [A4]

6 Liicke et al. [43]

7 Gross et al. [41]

8 Riedel et al. [27]

9 Zou et al. [33]

Spatially Metrologically 10 Kruse et al. [A2]
separated 5 6,7,8,9, 10, 11 useful 11 Lange et al. [A3]

Figure 4.1: Overview of relevant classes of entangled states and experimental demonstrations
with Bose-Einstein condensates. A strict subclass to entangled states are the Einstein-
Podolsky-Rosen correlated states, which violate an inferred Heisenberg uncertainty relation
and therefore allow for steering. States, which violate a Bell inequality, are a strict subclass
of Einstein-Podolsky-Rosen correlated states. These states can be used to show non-locality.
All entangled states can be further divided into metrologically useful and spatially separated
states.

4.1 The thought experiment of Einstein, Podolsky and
Rosen

Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics in
their famous paper from 1935 [58]. They assume a perfectly correlated system: A source
emits two particles A and B with opposite momenta at the same time (see Fig. 4.2). There-
fore, the positions of both particles with respect to the source are perfectly correlated, while
their momenta are perfectly anti-correlated. By measuring the position (or momentum) of
particle A, the position (or momentum) of particle B can be precisely predicted. If both
observables are measured in different realizations, it predetermines the outcome of a mea-
surement. This is forbidden in quantum mechanics, because their uncertainties are subject
to the Heisenberg uncertainty APgAXg > 1/2. Thus the authors conclude that quantum
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mechanics has to be incomplete. In Schrodinger’s response [59, 60], this seeming violation
of Heisenberg uncertainty principle was described by introducing the term entanglement and
he brought up the idea that a measurement on one subsystem steers the outcome of the
other subsystem. Nowadays, every non-separable state is called entangled. A clear definition
and how entanglement can be measured is given in the next section.

4.2 Separability criteria

A pure product state of a bipartite system with the respective density matrices p' with
[ = A, B can be written as p* ® p®. A mixed product state can be seen as a sum of pure
states weighted by the probability p; for the ith state. Every state that cannot be written in
the form p = Y, pip{* ® pP is bipartite entangled [61]. For a more general scenario, it follows
that every separable state can be written as linear combination of pure state density matrixes
[62]. The question if a given density matrix is entangled or not is called the separability
problem. No general solution to this problem exists up to now.

It is practically favorable to differentiate between discrete- and continuous-variable entangle-
ment. The Peres-Horodecki criterion is sufficient for the 2 x 2 and 2 x 3 dimensional case for
discrete variables [63]. A general overview about discrete-variable separability criteria is given
in Ref. [61]. The Peres-Horodecki criterion can be transferred to continuous variable sys-
tems [64]. This criterion is equivalent with Ref. [65] relying only on second-order moments.
Therefore, this criterion is well suited to verify entanglement of quadrature squeezed states.
The quadratures along two orthogonal directions have to be measured and the fluctuations of
their sum or respectively their difference has to stay below two times the standard quantum
limit Vi + V3 < 2. In Ref. [Al], we measured this sum to be Vi, + V34 = 0.85 and violated
the criterion with 15 standard deviations, while in Ref. [A3] the criterion was violated with 2.3
standard deviations. This shows non-separability of the identical atoms in our Bose-Einstein
condensate. However, how is entanglement be defined between indistinguishable particles?

4.3 ldentical particles and entanglement

Bose-Einstein condensates with seemingly thousands of entangled particles have been created
[23]. The origin of many-particle entangled states in Bose-Einstein condensates lies in the
symmetrization principle. For Bosons, every state has to be symmetrized over all particles
per definition, which leads to this high degrees of entanglement. On the other hand, for
entangled states it must be possible to define distinguishable subsystems. Furthermore, these
subsystems must be able to exist as separate systems [66]. These requirements are necessary
to the original concept of entanglement to make sense and rule out individual particles. In this
sense, entanglement in Bose-Einstein condensate’s can be seen as a mathematical artifact
due to the symmetrization of the state [67, 68]. The next three sections show the usefulness
of entangled Bose-Einstein condensate’s. The last section shows how this opposition can be
solved.
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4.4 Metrologically useful entanglement

Every classical interferometer is limited by standard quantum limit. There are different ways
to overcome this bound. One possibility is to use classical input states in combination with a
non-linear beam splitter, which generates entanglement. This scheme is realized in Ref. [41]
reaching 2.1dB. Increasing the atom number is strongly intertwined with the squeezing
generation. To decouple these processes, the empty vacuum port can be squeezed, realizing
Caves's squeezing [69]. We demonstrate this technique in Ref. [A2]. Firstly, spin-changing
collisions create a quadrature-squeezed state. As described in the previous chapter, this
process creates two single-mode squeezed states. The two input modes of the interferometer
|S) and |0) are coupled with a radio-frequency pulse and the phase shift is realized by utilizing
the clock transition |1,0) — |2,0). We realized 2.1dB squeezing beyond the standard
quantum limit with this scheme. Instead of squeezed states, other types of states can be
utilized to generate sub-shot-noise resolution. For example, twin Fock states are applied to
show an interferometric sensitivity of 1.6 dB beyond the standard quantum limit [43]. The
input state was created with the quenching technique. Alternatively, a ramp can be used to
create the non-classical input state [33]. A phase measurement precision of 2.05dB beyond
the two-mode standard quantum limit is reached with this technique. Furthermore, all three
modes in |0) and |£1) can determine the interferometric phase. A resolution of 2.4 dB beyond
the three-mode standard quantum limit is observed. A different kind of interferometer, an
active SU(1, 1) interferometer, is realized in Ref. [70, 71]. Spin-changing collisions take the
role of non-linear beam splitters. The disadvantage of this technique lies in the low number
of atoms taking part in the interferometric sequence, while a large number of atoms is needed
to initialize the dynamics.

4.5 Two-mode entanglement in spin space and
Einstein-Podolsky-Rosen entanglement

The thought experiment of EPR, in which
the result of one measurement on sub-

(a)

& | , G%: Pa system A can be used to predict the out-
L [ come sub-system B seemingly better than
>'<A X, >'<B =X+ X, allowed by the Heisenberg uncertainty prin-
(b) ciple, defines an independent class of entan-
/\ glement. The description of EPR entangle-
N \ /T%_ €06 V5 ment is generalized for not perfectly corre-
A ©O€-

Figure 4.2: Einstein-Podolsky-Rosen entangle-
ment: (@) in the original thought experiment
and (b) between the spin states of 8"Rb.

lated system. By measuring X 4 and Py it
is possible to predict the outcome of a mea-
surement on sub-system B with the uncer-
tainties AX*" and AP} These prediction
uncertainties violate an inferred Heisenberg
inequality AXIMAPI > 1/2 for EPR en-

tangled states. The directionality that measurements on sub-system A can be used to violate
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such an inequality, is called steering. If one subsystem can steer another subsystem, the re-
version is not necessarily true. A continuous-variable criterion Vi X V3 < 1/4 is developed
to reveal EPR correlations for the symmetric case in which subsystem A can steer subsystem
B and vice versa in Ref. [72]. The first measurement of EPR with massive particles is per-
formed in Ref. [Al]. Spin-changing collisions are used to create a two-mode spin squeezed
state (see Fig. 4.2). To access the quadratures and reveal EPR correlation between them
atomic homodyne detection is applied. The product of the quadrature variances is measured,
yielding Vi x V7 = 0.18 with 2.4 standard deviations below the threshold of 1/4 of the
EPR criterion. This violation reveals EPR correlations for the first time with massive particles
in the spin degree of freedom and is also a proof of a two-way steering scenario. Further-
more, atomic homodyne detection is also demonstrated as a tool for quantum tomography
to reconstruct the density matrix of the quantum state [Al].

4.6 Bell tests and correlations

The strongest form of entangled states are Bell correlated states. Bell pointed out that
entanglement is incompatible with a local theory of nature [73]. He developed inequalities
which can test for non-locality. Every entangled state which can be used to violate a Bell
inequality is therefore called Bell correlated. The first loophole-free Bell test was performed
in 2015 with electron spins [74]. The largest system violating a Bell inequality so far consist
of 14 ions [75]. Performing Bell tests with Bose-Einstein condensates, which consist of
a few hundred or thousand of atoms is of particular interest to study relations between
global properties of the state and the underlying correlations which cause a violation of
a Bell inequality. The challenge lies in the fact that typically only global measurements
can be performed which do not allow to test the locally causal nature. Therefore, the
term Bell test refers to tests of non-locality and measurements, which assume non-locality,
prove Bell correlations. Witness inequalities rely on the assumption that the particles do
not communicate or interact through unknown channels to relax the requirement that every
observer can perform local measurements. Such a witness inequality is derived in Ref. [76]
for a many-body quantum spin system. This witness was violated using a spin-squeezed
Bose-Einstein condensate with a significance of 3.8 standard deviations below the threshold
[57]. The same type of witness was violated with 124 standard deviations below the threshold
by using cold atoms [77]. A Bell test with Bose-Einstein condensates has not been realized
up to now.

4.7 Two-mode entanglement in the spatial degree of
freedom

As shown in the previous sections spinor Bose-Einstein condensate’s have been used to show
EPR [Al] and Bell correlations [57]. However, the treatment of the indistinguishably of the

atoms remains unsolved. There are several theoretical proposals how to make the atoms
distinguishable without destroying the entanglement. One possiblity is to let the Bose-
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Einstein condensate expand for a long time. The atomic cloud Bose-Einstein condensateomes
so dilute that every particle can be individually addressed [78]. An alternative approach is
given in Refs. [79, 80] where particle entanglement is converted into mode entanglement.
We realized this step in Ref. [A4]. By utilizing the
- mode structure of an excited trap mode (see Fig. 3.2)
" entanglement between two distinct atomic clouds has
been measured. To perform the experiment up to 6000
atoms are transferred via spin-changing collisions (see
Fig. 4.3). The resulting twin Fock state is split along
a natural line of zero density. This step divides Bose-
Einstein condensate into two distinguishable parts. This
process also splits the twin Fock state in |£1) into two
separated twin Fock states. To verify entanglement be-
tween the states a criterion especially sensitive for twin
Fock states is developed and applied. A violation of 2.8
standard deviations is achieved, which shows that the
entanglement and indistinguishability can be decoupled
from each other. Complementary to our work, entan-
glement and EPR correlations are measured between
different parts of a Bose-Einstein condensate. After
generating the many-particle entangled state, the con-
densate expands either in free fall [28] or in a single-
beam optical dipole trap [31]. Then, different patterns
and splitting ratios of the atomic cloud are studied to
confirm that the entanglement is distributed equally be-
tween all atoms [28]. While Refs. [28, A4] show only two-partite entanglement, Ref. [31]
demonstrates up to five-partite entanglement. EPR correlations between different parts and
splitting ratios of the atomic cloud are measured in Ref. [28]. One-way EPR steering could be
observed up to a gap size between the parts of the Bose-Einstein condensate of around 4 pm.
Two-way EPR steering between spatial regions is observed in Refs. [31, 28]. Furthermore,
three-way steering and steering with a discarded fraction of 30 % of the Bose-Einstein con-
densate corresponding to a distance of 13 yzm between the two parts is measured in Ref. [31].
These results show the flexibility of Bose-Einstein condensates, since entanglement is detected
with different criteria and between different regions of the condensate. The fundamental as-
pect is resolved, that indistinguishability in a Bose-Einstein condensate can be revoked, while
the entanglement is not destroyed. Furthermore, local properties of Bose-Einstein conden-
sates can be used, for example in quantum information tasks or to perform a Bell test as
shown in the outlook.

Figure 4.3: Entanglement between
the two clouds (indicated by green
lines) in the system is detected by
analyzing spin correlations. The
atomic density profile is shown in
the background.
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5 QOutlook

Bell tests between spatially separated parts of Bose-Einstein condensates have not yet been
performed, as shown in Fig. 4.1. The state created in Ref. [A4] can be utilized as a resource
for such a test. The principle is sketched in the following.

In 1992, Yurke and Stoler proposed a Bell test with two independent single-particle sources
[81]. The scheme transferred to our setup is sketched in Fig. 5.1a by setting the atom number
of the two Fock states to one. A Bell inequality violation can be obtained even though the
emitted particles are created with different sources, because the entanglement is created
by the beam splitting process. The symmetrization principle leads to the entangled input
state 1v/2(|+1) ,|[=1)5 +|—1) 4 |[+1)5). The entanglement is generated by the first beam
splitting process with BS,; and BS_;, which entangles one Fock state with the vacuum.
The second beam splitters BS;, and BSk combine the output ports of the first beam splitters
and by analyzing the correlations between the detected photons it is possible to violate a Bell
inequality.

(a) 88,

/ BS., /\\ ¢ 2 //\ BS, \

Ny N
\ merr S \ e
£ BS, F
(b) (c) (d)
" 0.18f
22 _____ 1V R —— - i
1 \ / ,X / _ 0-12 & 0.14f -
4 S . g
0 \ N\ \7 =, 0.08 . § 0.10
1 . 0.06
classical region 0.04 . . . . . .
0.5 1.0 15 2.0 10 20 30 40 50 10 20 30 40 50
@[Tr] NA+NB NA+N3

Figure 5.1: Bell test with two Fock states: (@) The idea of Ref. [82] adapted to our setup:
The two Fock states are created with spin-changing collisions in the levels mg = +1 in the
first excited trap mode. (b) Bell violation witness () for different phases. The colors stand
for Ng+ Ng = 2==10=,100". (c) Number of not detected atoms N, which still
lead to a Bell equality violation. (d) Angle resolution necessary to see a violation.

Laloé and Mullin extended this idea in two different ways for higher particle numbers [82]
and for more participating Fock states [83]. The scheme for two Fock states can be adapted
to our case. These states are created with spin-changing collisions in the levels |£1) in the
first excited mode of the dipole trap. This ensures that both Fock states have the same
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atom number N4 = Np, for which the highest violation can be reached [82]. The setup is
visualized in Fig. 5.1a. The spin-changing transfer into the first excited spatial mode of the
trapping potential comprises the beam splitting process into a left and right well and hence
realizing BSy; and BS_;.

The phase shift is only applied at the right part of the Bose-Einstein condensate. This shift
can be realized with a detuned light field. To enable spatial addressability of the Bose-
Einstein condensate, a beam dump can be used to block the light at the region of the left
part. Therefore, the Bose-Einstein condensate has to be large enough. To ensure this, the
phase shift pulse can be applied after a certain free fall time, in which the Bose-Einstein
condensate expands. The beam splitters BSir and BSy can be realized by a microwave
coupling between the states |[+1). In summary, all optical elements can be realized within
our experiment. In a next step, the experimental requirements to observe a Bell inequality
violation are discussed more quantitatively. Ref. [82] incorporates detection noise in the form
of not-detected atoms. Since the Bell test relies on a parity measurement, this noise has to
be smaller than one atom. Fig 5.1c shows the number of not-detected atoms as a function
of the total number of particles, which can be accepted and still violate a Bell inequality.
Because the absolute detection noise decreases with an increasing atom number it is favorable
to perform the test with small atom numbers. Furthermore, as seen in Fig. 5.1b, the angle
between the two parts has to be measured with high accuracy. The angle spread, at which
a violation occurs, decreases with an increasing atom number, as shown in Fig. 5.1d. This
in another reason to use Fock states with small atom numbers. In conclusion, this scheme
can be adapted to Bose-Einstein condensates to perform a Bell test at our experiment.
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