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For hyperbolic systems in one spatial dimension dtu + Cdxu = f(u), u{t,x) £ Rd, we
study sequences of oscillating solutions by their Young-measure limit, /*, and develop
tools to study the evolution of fi directly from the Young measure, v, of the initial
data. For d Sj 2 we construct a flow mapping, St, such that jx{i) = St(v) is the
unique Young-measure solution for initial value v. For d ̂  3 we establish existence
and uniqueness of Young measures that have product structure, that is the
oscillations in direction of the Riemann invariants are independent. Counterexamples
show that neither /n nor the marginal measures of the Riemann invariants are
uniquely determined from u, except if a certain structural interaction condition for /
is satisfied. We rely on ideas of transport theory and make use of the Wasserstein
distance on the space of probability measures.

1. Introduction

Whenever partial differential equations allow for highly oscillatory solutions it is
desirable to find methods to study the evolution of such oscillations. Since the oscil-
lations can be described by Young measures, it is advantageous to derive evolution
equations for them. Such evolution equations can be understood as macroscopic
equations for microscopic effects.

Here we consider spatially one-dimensional semilinear hyperbolic systems of first
order, given in the form

dtu + Cdxu = f{u), (1.1)

where t,x €R and u = u(t,x) G Rd. The system is called hyperbolic if C is diago-
nalizable and has only real eigenvalues. Hence, without loss of generality we assume
that C is diagonal, namely C = diag(ci,..., c<z). The whole theory presented below
can be generalized from right-hand sides f(u) to /(£, x,«), where / : M2 x Rd -> Rd

is measurable and globally Lipschitz continuous in u. However, for notational sim-
plicity we restrict ourselves to right-hand sides depending solely on u.

A solution, u, of (1.1) is a function in Lj^c(E
2,]Rd) that satisfies (1.1) in the

sense of distributions. Our interest lies in sequences (ii")n6N of solutions that have
a Young measure (YM) limit /x € YMc(M

2,Md), written as un -^^^ /x (see the be-
ginning of § 2 for a short introduction to YMs).
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DEFINITION 1.1. A YM /x is called a Young-measure solution of (1.1) if it is the
YM limit of a sequence (un)nen °f solutions of (1.1) that is bounded in L^C(]R2, Rd).

A pair (/x, v) £ YMC(R2, Rd) x YMC(M, Rd) is called a YM solution of the Cauchy
problem for (1.1) if there exists a sequence (un)n€^ of solutions of (1.1) that is
bounded in Lg>c(R

2, Rd) and satisfies un -^^ /x in YMC(R2, Rd) and un(0, •) -^-> v
in YMC(B

This definition implies that the set of all YM solutions of (1.1) is closed with
respect to the weak* topology. There is also the notion of 'measure-valued solution'
due to DiPerna ( [5]) which is the same as ours if it is used in the strong sense, as for
instance in [6]. However, often the notion of measured-valued solutions is used in
a much weaker sense, enforcing equations only for simple averages, see remark 3.2
and the definition on p. 387 of [4]. To avoid misunderstandings we thus stay with
our naming.

The Cauchy problem in the sense of YM solutions is to find /x for a given v.
One such a is easily constructed as follows. Choose a sequence vn 6 L^c(R,M.d)
with vn ^H v, then there exist weak solutions un G Lg>c(R

2,Rd) of (1.1) with
un(0, x) = vn(x). The fundamental theorem for YMs guarantees the existence of n
such that un > /x, after extracting a subsequence. The following questions are
in order.

(Ql) Is fj, uniquely determined by u?

(Q2) How is /x(0, •) related to v?

(Q3) Is there an evolution equation for /i such that it can be calculated directly from
v, without using sequences (un)ne-M?

Such evolution equations for fj, allow us to describe microscopic effects macro-
scopically, and they are important if the qualitative behaviour of n(t) for t —> oo is
to be studied, see [21,25,26].

Similar questions were already treated in [18-23] and [7,13]; however, there YM
solutions are described by studying the evolution of their moments

E(t,x,a) =

a e NQ. If all moments E(t, x,a), a £ NQ, are known, then the measure fi(t, x) can
be uniquely reconstructed. Yet, useful evolution equations for the moments can only
be obtained for certain polynomial right-hand sides. Our analysis is much closer to
the work in [10,11], where equations from nonlinear optics are studied.

To explain our main ideas and results we need the notion of marginal measures. If
un J 5 ^ . ^ e Y M C ( I 2 , Rd), then the marginal measures fij e YMC(M2, R) are either
denned by u™ - ^ * fij or by {iij(dvj),ipj{vj))Vi€^ = {n{dv),i)}j{vj))veSid. Prom the
vector of marginals, £L = (/xi,... ,/Ltd) G (YMc(M

2,]R))d, it is generally not possible
to reconstruct the full measure /J,, unless it is equal to the product measure (8>j=i/Xj-
Notice that our choice C = diag(ci , . . . , c<j) implies that \Xj is the marginal measure
associated to the Riemann invariant Uj of dtu + Cdxu = f(u).



Young-measure solutions of semilinear hyperbolic problems 87

A partial answer to the questions Q1-Q3 is given in § 8 where we show that, for
Lipschitz continuous / and initial conditions u.j(0, •) = i/j, system (1.1) always has
a unique product-measure solution, that is n(t,x) = ®1j=iiij (t,x). Moreover, the
vector of marginals p, solves the evolution equation

+ CjdxHj + dUjfij[f^\t, x, UJ)] = 0, fij(O, x) = i/j(x), for j = 1,. . . , d,

where /j is obtained from fj(u) by averaging all variables Uk except for Uj, see
(3.12). We call this system the non-resonance system associated to (1.1). It will be
the organizing centre of this work.

There is a vague analogy between our uniqueness result for product-measure
solutions and the uniqueness result in [4] for a parabolic equation for forward-
backward type. There, the 'independence lemma' (4.1) is crucial to deduce unique-
ness (see [4, remark 1, p. 393]).

Obviously, product-measure solutions generalize the classical solutions u(t, x) in
the most natural way as classical solutions are YM solutions in the form n(t, x) =
$u(t,x) a nd point measures are always product measures. In this sense, (1.2) can
be understood as a genuine generalization of (1.1). In light of [11] and of our re-
sults one should think of the product-measure structure as the generic case, while
other measures occur only in special resonant situations. There is also an entropy
argument favouring the set of product-measure solutions. Assume that /j, is either
purely discrete or has a density, such that the information entropy is denned. Then
the information entropy of fj, is smaller than the information entropy of <8>ffJ,j with
equality, if and only if fi is the product measure (see [1, theorem 1.4.3]). In our
example 6.2, we make a small comparison of the information entropy for a general
YM solution to the product-measure solution.

Our existence and uniqueness results for (1.2), given in §4, avoids the use of the
moments E(t, x, a) and is based on ideas from transport theory for Vlasov systems
(see, for example, [3]). A similar approach is employed in [25,26] to study the YM
solutions of certain regularizations of a non-monotone wave equation. Our solutions
are constructed iteratively such that p,n+1 is obtained by solving (1.2), where /• '
is replaced by gj = f^ '. Thus, the problem for p,n+1 is linear and easily solved by
transporting v along the characteristics. The key feature in transport theory is that
it is much easier to set up a contraction argument for the mapping gn i->- gn+l in
place of the mapping p,n i-» p,n+1, see the proof of theorem 4.1. Adding up, we can
associate with (1.2) a flow group (St)teR o n (YMC(M, R))d, such that StoST = St+T

and p,(t) = St(P) is the unique solution of (1.2). Moreover, t H-> St{v) is weak*
continuous.

In dimensions d ^ 2, the questions Q1-Q3 can be answered completely. For d = 2
and c\ 7̂  C2 and / Lipschitz continuous, the YM fi is uniquely determined by u, has
the form yu = ji\ <8> fi2, and (/zi,/i2) solves (1.2). Moreover, /Zj(O, •) = Vj implying
/z(0, •) ^ v in general. The product structure was already established in [6,10,21],
and is a consequence of the div-curl lemma of Murat [12] and Tartar [17]. In [11],
the case d = 3 with wave speeds Cj depending on (t, x) is treated: under certain non-
resonance conditions (excluding the constant case) it is shown that (JL =
by using 'trilinear compensated compactness'.
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For d ^ 3 with constant Cj, the answer to Ql is no, in general. In §6.2 we
present a linear, uncoupled problem (f(u) = 0) where the marginals are uniquely
determined, but \i differs from the associated product measure on a bounded open
set. This leads us to the following restriction of our view to the marginals.

(Ql) Is p. = (fii,..., fid) uniquely determined by v = (i>\,..., vd) ?

(Q2) How is p(0, •) related to D?

(Q3) Is there an evolution equation for p ?

Theorem 3.5 answers question Q2 with p(0, •) = P, since the marginals of YM
solutions of (1.1) depend weak* continuous on time. Again using the div-curl lemma
question Ql can be answered in the affirmative if the right-hand side / satisfies the
interaction condition

d

fj(u) = ^9j,k{uhuk), for j = l,...,d. (1.3)
fc=i

Then, the evolution equation for p is again given by (1.2) and we have p{t) = St(y).
This allows us, in particular, to solve all linear problems (see § 6.1).

Section 6.3 treats the well-known example (see [10])

(dt - dx)u! = 0, dtu2 = 2ulU3, (dt+dx)u3=0, (1.4)

which does not satisfy the interaction condition. We explicitly construct two YM
solutions [i and 77 for the same initial data, P, such that p and fj are different. Hence
the answer to question Ql is no, in general.

In § 7 we establish continuity properties of St as a mapping from (YMC(K, M))d

into itself. In the weak* topology, continuity holds if the interaction condition (1.3)
is valid. However, there is another useful topology given by the Wasserstein distance
for probability measures:

dw(/x,J7) = supfK/^) - {V^)\ • Lip(V') < 1},

see § 2 for more details. This distance is ideally suited for problems involving trans-
port of measures, for instance we obtain

Of V^

AyN(v(x),R(x))p Ax
R /

(1.5)
where L is the Lipschitz constant of / .

Convergence in the Wasserstein metric distp implies weak* convergence but not
vice versa. The interplay between these two topologies plays a crucial role in our
existence of product-measure solutions in §8. Considering initial data v™(x) =
Vj(x,nu)jx) with Vj e C(R x T,R) we are able to show that

i £ ^ 7 ; and u« ™ ^ = ®fo,
whenever (wi,... ,u>d) satisfies a non-resonance condition of small divisor type, cf.
lemma 8.2. Here,

{7j(x),ip)= tp(Vj(x,z))dz and {fXj(x),tp} = tp(Uj(t,x - Cjt,z))dz,
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where U G C(M2 x T, Rd) solves the auxiliary system (8.3), which is a direct coun-
terpart to the non-resonance system (1.2). This weak* convergence follows by a
direct and lengthy comparison of u™(t, x) and Uj(t, x — Cjt, nuij{x — Cjt)); but now
we can approximate general initial data v by a sequence 7 m with 7"1 as above,
such that disti(7m,i/) —> 0 for m —> 00. With (1.5), the associated YM solutions
Hm = ^_1fx^1 converge to a limit /x* that is again a product measure. In fact, to
show /x* = (8>i/Ltj it is essential to have convergence in the Wasserstein metric, since
the set of product measures is not closed in the weak* topology.

2. Young measures

We first give the main definitions and facts about Young measures (YM). Through-
out this work we are concerned with sequences un : Mfc —> Rd that are bounded in
L^c(R

k). That is, for each R > 0 there exists C = C(R) such that \un(y)\ ^ C
for all n G N and almost every (a.e.) y with \y\ ^ R (in the sense of the Lebesgue
measure). Thus, we can simplify the notion of YMs for our purposes. We refer to [2]
for a general treatment and only give the definitions for our special case.

Let M(Rd) be the set of (signed) Radon measures on Rd which is the dual space
of Cg(Rd,R) (decaying continuous functions) equipped with the supremum norm.
The dual pairing is written as

(fi,ip) = (fj,(du),ip(u))ueRd =

A mapping \x : Rfc —>• M(Rd) is called weak* measurable, if, for each ip G
the mapping x 1—> (fj,(x),ip) is (Lebesgue) measurable. By P(Rd) c M(Rd) we denote
the subset of probability measures, i.e. /x is positive ((/x, ip) ^ 0 for all ip G C® (Rd, R)
with ip(y) ^ 0 for all y) and has mass 1 ((/i, 1) = 1).

Then, the set of YMs is defined as

11V1C[K. , JK )

= {fj,: Rfe -> P(Rd) : fi weak* measurable, diam[sppt(/x(-))] G L^c(Rfc)}.

The subscript 'c' is used to denote the property of compact support. As usual /x
is identified with the equivalence class of all mappings \x that satisfy /2(y) = \i{y)
almost everywhere. We use the following notion of weak* convergence of YMs:

\xn A /x°° <=> 3R G LfoC(Rk) : diam[sppt(/xn(a;))] < R(x) for a.e. x and

I \f(p G C"(R ), V ^ G C 0 ( R ) : / <p(y)(fi (y),ip) dy—> / 0(y)(/xoo(y),-!/)) dy
V JRk Js.h

Here Cc
fe(Rd,R) denotes the functions in Cfc(Rd,R) with compact support. The

notion contains an unusual assumption on the support of the sequences that guar-
antees that also the limit fi°° has locally bounded support. For the present purposes
this notion of convergence is sufficient, and it should be possible to generalize our
theory to YMs without bounded support.

Given a Caratheodory function <P = <&(y, u) G Rm (i.e. $ is measurable in y for
all u and continuous in u for a.e. y) the pull back of a YM fj, G YMc(Rfc,Rm) to a
YM p, = $,/z G YMc(Rfc,Rd) is defined as

(p(y,dw),^(w))weRm = {fi(y,du),^(<P(y,u)))ueRd, for all V € CC(R"\R).
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A function u £ L^c(R
k ,M.d) defines a YM \x via /i(y) = Su^, where Sa is the

Dirac measure located at y = a, i.e. {5a,ip) = ip{a). For a sequence (w")ra€N we say
that un converges to the YM fi if Sun A /j, and write shortly un > /x. Every YM /x
can be approximated by L°° functions, i.e. there exists un £ L^c(R

k, M.d) such that
un y (x. Of course YM limits are only interesting if the sequence un converges
weakly but not strongly, since un —> u°° implies that the associated YM limit is
/x = <5uoo. The most important consequence of the YM construction is the ability
to control the convergence of nonlinear functions of un. For every Caratheodory
function g = g(y, u) we have

un Y M ^ ^ ^ „»(.)) Y M ^ . (2.!)

The fundamental theorem for Young measures (see [2]) states that for every
sequence (un)n that is bounded in L^c(R

fc,Md) there exists a subsequence (u™m)m

and a YM // e YMc(E
fc,lRd) such that M"™ ^ A \I for m ->• oo. Here we see an

advantage of our more restrictive notion of convergence, since we do not need to
worry about mass leaking out to infinity.

A YM n e YMc(M
fe,M<i) defines a distribution on Rk x Md via

f

JueKfc

Thus, partial derivatives dVifi and dUj/j, are well defined in the sense of distribu-
tions. A term Du/j,(y)[h(y, u)] is defined via application of test functions
<t>(y)i>{u) as

r
, du)), Dui>(u)[h(y, u)])ueRd dy.

Here, and further on, it suffices to use test functions in product form (<£(y, u) =
4>{y)ip{u)) since the set of finite linear combinations of such products is dense in
o c (M x M J.

We need the notion of marginal measures and product measures. If

J = {ji,---,3m} C {l,...,d},

we shortly write uij for {WJ1, . . . ,Wjm) £ MTO and the marginal measure Mj\x is
defined by

If J = {jf}, we shortly write /Xj for M^yfi, which is the YM of the Uj-component
alone, namely tx™ > /ij. If J = { 1 , . . . , d}\{j} we shortly write fi^j. For measures
Uj e P(MmO the product measure p, = m ® • • • <g> /xn £ p(R"»i+-+mre) i s defined
via

n

(p(d(wi,... ,wn)),

for all functions ipj £ Cc(M.mj,M). (The set of linear combinations of functions
ipi(wi) • ... • ipn(wn) is dense in Cc(Mm,R) defining p uniquely.) Point measures
$u(t,x) a r e simple examples of product measures since
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Throughout this work, it is important to distinguish between the two spaces
X1 = (YMc(M

fc,M))d and X2 = YMc(R
k,Rd). The product O is a mapping from

X\ into X2, and taking the one-dimensional marginals gives a mapping

/ Z H » (ni,...,fid)-

Note that .M<8> is the identity on Xi, but ®.M projects X2 onto the product
measures. We use the shorthand notation fi = M/J, G (YMc(R

fe,M))d for the
d-tuple of marginals, which is not to be confused with the rf-dimensional YM
if a V A / r /"njfc TQ><A
\X KI 11V1C yiK. , lr£ J .

An important tool in our transport theory for YM is the following Wasserstein
distance d\y between two probability measures. For measures y,\,H2 G Pc(Rd) it is
denned via

According to [15, § 5.3] this is equivalent to the case p = 1 for the Kantorovich-
Rubinstein functional:

KRp(Mi,/X2) =in{{((r,(du,dv),\u-v\r)(u,v)eR2d)
1/p : rj € P(M2d),>i77 = ( /x i ,^ )} ,

where .M extracts the two marginal measures with respect to u and v, respectively.
See also [14,25-27] for other applications of the Wasserstein distances to nonlinear
partial differential equations.

From the first definition we see that the Wasserstein distance is easy to handle and
works particularly well together with Lipschitz continuous functions, thus allowing
us to derive Gronwall estimates for differences of YM solutions. The transport
of measures is continuous in the Wasserstein distance but discontinuous in the
norm topology, e.g. for t i-> St we have dw{St,Ss) = \t — s\ but \\St — 5S\\ = 2 for
t ^ s. Moreover, we have a simple estimate for the Wasserstein distance of product
measures.

LEMMA 2.1. For fi,fj e (Pc(M))d we have dw(<8>/Xj,®?7j) < Ylt=i dw(Mfc>%)-

Proof. Define ^ = [<8>fjUj] ® [®t+1m} implying £(0) = ®r]i and ^ = ®HJ. For
i> € C(Ed.R) let ipk = Aktp e C(R,R) with

Now we estimate
d

fc=i

fc=i
d

fc=i fc=i

where Lip(Akip) ^ Lip(^) was used. •
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Since all YMs have locally bounded supports, we can always restrict our view
to a finite ball BR = {u G Md : |u| ^ R} such that P(BR) c Pc(IRd). Prom [15,
theorem 6.3.3] we know that (P(BR),d-w) is a complete metric space. It contains
the set

f n

I Y^Sui • n G N, a,- ^ 0, ^ O j = 1, uj G 5

as dense subset. We will use the following helpful result.

LEMMA 2.2. The topology on P(BR) induced by the Wasserstein distance is iden-
tical to the weak* topology ofM(Bji) restricted to P(BR).

This is a direct consequence of the following general fact. Let X be a separable
Banach space such that the Banach space Y is densely and compactly embedded
into X. Then, the weak* topology on the closed unit ball B in the dual space X'
is identical to the topology induced by the norm || • \\Y>. To obtain lemma 2.2, take
X = C°(BR) and Y = CLip{BR).

Using the Wasserstein distance we define the Wasserstein metric on YMc(i7, I
as follows

distp(/i,/t) = / (dw(n(x),p,(x)))pdx
\Jxen

Considering classical functions / ,g G Lao{fl) as YMs we find distp(5/,<$9) = | | / -
<?||i>. Convergence in this metric immediately implies weak* convergence but not
vice versa. In particular, it is more difficult to approximate a YM v in the metric
distp(-,-) than in the weak* sense. We will need the following two approximation
results.

LEMMA 2.3. Let Q c Rm be open and bounded and n G YMc(f2,Rd). Then, for
each e > 0 there exists a continuous function g : Q x Md —¥ [0, oo) such that
d i s t i l , 7) < e where the YM -y is given by {y(x),i[>} = JRd g(x,u)ip(u)du.

Proof. Choose R > 0 such that sppt(ry(x)) C BR for a.e. x G f2. Since x i-> r](x) G
P(BR) is weak* measurable, it is also measurable as a mapping into the metric
space (P(BR),dw) due to lemma 2.2. Hence,

r

v(y) dy,

where Bxa = {y G f2 : \x — y\ < a}, exists in the sense of dw-convergence, lies in
P( .BR) , and satisfies lima_^o Va{x) = rj(x) for a.e. x G Q. Thus, we find a > 0 such
that disti(77a,ry) < \e.

For K G (0,1) we define

gK(x,v) = {fja(x),>PK(u-v))ueBR, with!?K(u;) = - ^ - m a x { K - \w\,0},

where ca is chosen such that JRd &K dw = 1. Using gK as a density we obtain the
YM 7K. With \&K(v) — \PK(w)\ ^ cdK^d~1|u - w\ and continuity of x i-> 7?a(x), we
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conclude continuity of gK in (x,u). Moreover,

dw(rja(x),jK(x)) =s\ip<\{fja,tp) - / gK(x,v)ip(v)dv : Lip(^) ^ 1 \
11 JBR )

where TKip(u) = JB &K(u - v)ip(v) dv. With

/

- if>(u)) dv

- v)Lip(ip)\u -v\dv = cdK~Lip(ip),

we conclude that disti(?7Q,7K) ^ c~dKvo\(f2). Thus, we find n > 0 such that
f?a) < e. D

The above results shows that YMs can be approximated by YMs having a den-
sity that depends continuously on (x,u). The next result states that YMs can be
approximated by limits of rapidly oscillating almost-periodic functions in the fol-
lowing sense. Let V G C(R x T,M), with T = M/z, and vn(x) = V(x,wnx) with
LU ^ 0. Then,

JT

see proposition 8.4 for this result and a generalization to higher dimension.

PROPOSITION 2.4. For each v e YMc((a, b),M) and e > 0, there exists V €
C([a,b] x T,R) such that disti(1 ,̂77) < s where r\ G YMc((o,6),R) is defined via
(TI(X),1>) = fTi/>(V(x,z))dz.

Proof. With lemma 2.3, we find g G C([a, b] x [-R, R], [0, 00)) such that

disti(z/,7) < | e , where {^(x),ijj) = / g(x,v)ip(v)dv.

For K G (0,1), let gK(x,v) = K/{2R) + (1 — K,)g(x,v), then the associated YM, j K ,
satisfies

< 2KR.

We let r] = ̂ K and obtain disti(^, rj) < e by choosing K sufficiently small.
It remains to show that r\ can be represented by a suitable function V(x,z).

To this end, use the distribution function G(x,v) = f^_RgK(x,w)dw, which satis-
fies dvG(x,v) ^ K/(2R) for v £ (—R,R). Hence, the inverse, H(x,-) = G(x, •)~1,
exists and satisfies H G C([a,b] x [0,1], [—R, R]). The desired function V is given
by V(x, z) = H(x, \2z - 1|) for z G [0,1], where V(x, 0) = V(x, 1) allows us to take
zeT. U
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3. Partial differential equations

Before going to the general case we give some notations for the case of one single
velocity, that is C = C\I. The associated hyperbolic problem is

dtu + c1dxu = f(t,x,u), u(0,x) =v(x) Gld . (3.1)

Here we also allow / to be a Caratheodory function (measurable in (t, x) and
continuous in u). If / is Lipschitz continuous in u, the solution is given in the form
u(t, x) = <P(t, x - c\t, v(x — C\t)), where <£ is defined such that a(t) = <P(t, y, a0) is
the unique solution of a = f(t, y + c\t, a), a(0) = a0.

Recall that /z is called a YM solution of (3.1) if it is the YM limit of a sequence
(un)n of (weak) solutions of (3.1) that is bounded in Lg>c(]R

2,]Rd).

THEOREM 3.1. Every YM solution fi e YMc(M2,Rd) of (3.1) satisfies

,u)]=O. (3.2)

/ / / is Lipschitz continuous, then every YM solution (//, v) of the Cauchy problem
(3.1) satisfies

fi(t, x) = $(t, x - cit, -)*v(x - at), (3.3)

where $(t, y, a) is the flow mapping associated to the ODE a — f(t, y + c\t, a).

Proof. To show the first assertion we use that for any ip € C^(Rd,M.) the function
wn(t,x) = ip(un(t,x)) is a weak solution of dtw

n + c1dxw
n = Duip(un)[f(t,x,un)].

This means that for every test function <j> = <j>{t,x) € C^(M.2,M.),

f [(dt(t> + Cldx<P)x/j(un) + <pDuiP(un)[f(t, x, un)}} d(t, x) = 0.
J(t,x)eR2

Using un > fi we can go to the limit in each of the terms and obtain exactly
(3.2).

The second assertion follows easily since un(t,x) = 0(t,x — C\t,vn(x — c\t)) is
the form of the weak classical solution. As $ is a Caratheodory function we find,
by (2.1), that un(0, •) -^-+ v implies fi(t,x) = $(t,x- c\t)*v{x - erf). D

REMARK 3.2. The notion of measure-valued solutions, as introduced by DiPerna [5]
and used in [6], is the same as our YM solutions. However, it is often used only
in the following very weak sense. A similar discussion of these two notions is given
in [4]. For a general (quasilinear) equation

dt[a{u)\+dx[b{u)] = f{u), (3.4)

a YM n is called a measure-valued solution if

dt(n(t, x, du),a(u))Ud + dx(fj,(t, x, du), b(u))Rd = (fi(t, x, du), f{u))Rd (3.5)

holds in the sense of distributions. This is only a statement on the averages of the
functions a, b and / with respect to the YM, whereas our definition is concerned
with the full information on the measure. For instance,

fj,(t, x) = a(t, x)S-! + (3{t, x)50 + (1 - a(t,x) - p(t, x))5±, a, /?, 1 - a - 0 > 0,
(3.6)
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is a measure-valued solution of (dt+cdx)u = 0 if and only if (dt+cdx)[l-2a-f3] = 0.
For a YM solution we need more: (dt + cdx)a - (dt + cdx)P = 0.

One might hope that adding; entropy conditions to (3.5\ restricts the set of
measure-valued solutions. Here the entropy condition reads (dt + cdx){fi,g) ^ 0
for all convex g, and for our fi this is equivalent to (dt + cdx)f3 > 0. Hence, the
above notion of measure-valued solutions (even including entropy conditions) is
much weaker than that of YM solutions used here. The former notion is mainly
intended for problems where (3.5) is just an intermediate step, and subsequently it
is shown that fi is in fact a point measure 6u(tiXy Then, it is immediate that the
function u = u(t, x) is a solution of (3.4).

At first sight a generalization of (3.2) for cases of different wave speeds Cj might
be

dtfi + C8xfi + Dufi[f(u)} = 0, (3.7)

which, of course, needs a suitable interpretation in the sense of distributions, namely

t, x, du), (dt(t> + CTdxcj>) • i>(u) + <t> • Dui;(u)[f(u)})umd d(t, x) = 0,

(3.8)

for all test functions (j> G Cc
1(M2,lRd) and ip e Cc

1(Rd,Kd). However, this is far too
much to ask for; in fact, it does not even allow for all classical solutions. This is easily
seen by taking d = 2, c\ ^ c2 and / = 0. Then, u(t, x) = (sin(x - cxt), sin(x - c2t))
is a classical solution, but (3.8) is violated for n(t,x) = <5u(tiX) and tp such that
ip(u) = (u2,0) for |u| ̂  2. The problem is that the test functions ip should be such
that CDuip(u) = Duip(u)C for all u. Only under this condition we know that for
any weak solution u of (1.1) the function w(t, x) = ip(u(t, x)) solves dtw + Cdxw =
DuiP(u(t,x))f(t,x,u(t,x)).

We now assume that the system matrix C is diagonal with C = diag(ci, ...,Cd)
with all wave speeds Cj different. Then CDuip(u) = Duip(u)C can only hold for all
u if ip has the form ( ^ i ( u i ) , . . . ,ipd(ud))- The case of having some multiple wave
speeds is completely analogous, if we take the corresponding component Uj lying in
Kmj w i th associated marginal measures fij e YMc(M2,lRm^). For the sake of simple
notations we restrict ourselves to rrij = 1, but in the general case everything is the
same, word for word. (That explains why we chose to prove theorems 3.1 and 5.1
in the vector-valued setting.)

The restriction to scalar test functions leads to a system of d coupled equations,
namely

/
7M
/ (/i(du), (dt<t> + Cjdx<l>)^{uj) + 4>^'(uj)fj(u))ueR" d(«, x) = 0 , for j = 1 , . . . , d,

C3.9\

for all test functions <fi G C,}(]R2,]R) and ip G Cl(M.,M). Using the same argument
as for the first assertion of theorem 3.1 we obtain the following result.

THEOREM 3.3. Every YM solution of (1.1) satisfies (3.9), respectively, (3.10) be-
low.
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The main problem with system (3.9) is that it is generally not enough to de-
termine the temporal evolution of YM solutions, even if suitable initial conditions
are provided. In fact, (3.9) is no longer sufficient to determine the set of all YM
solutions of (1.1) uniquely.

Using the marginal measures p. = (/xi,...,/i<j) = Mfi we can write (3.9) in a
compact manner:

dtH + CjdxH = -dUj ( Q < # [fj ( • ) ] ) , j = l,...,d, (3.10)

where Q^J\g(-)](t,x) is the measure on R defined by

ip M- (fi(t,x,du),ip(uj)g(u))ueRd,

and thus is exactly the average of g with respect to the conditional measure of fx
under the condition Uj.

The formulation of (3.10) shows the obvious problem that the left-hand side
only contains the marginals fij, whereas on the right-hand side the full measure
fi is needed that generally cannot be reconstructed from the vector of marginals
p = (fj,i,..., fid)- Moreover, we must recall that (3.10) necessarily holds for any YM
solution fi of (1.1). However, theorems 5.1 and 5.3 show that in cases with d ^ 2
the validity of (3.10) is not sufficient for fi being a YM solution.

Thus, we propose an alternative to the correct system (3.10). This is found by
assuming that fi is the product measure <g>/j,j. Whence the closure problem of going
from the marginals, ft, to the full measure, fx, disappears. The arising system is
called the non-resonance system, and the question arises how the solutions of this
system are related to the correct solutions. The non-resonance system reads

(3.11)

where the functions fj are denned via

ff{t,x,Uj) = (®k&Hk(t,x,*Vk)Jj(u))U3i&*-i. (3.12)

The function fy1' is thus the average of fj with respect to all variables except for
Uj, and the following result holds by a simple comparison of the definitions of the
terms.

LEMMA 3.4. If fx = ®d
j=1fij, then Q$[fj(u)] = ff\uj)fij.

For general YM solutions fi this formula does not hold, see example 6.3.
The non-resonance system (3.11) governs the marginals p = MJJL, in the case

when fi is a product measure (see also [10,11]). However, its importance reaches
further, and we summarize some of it here.

(1) We can prove existence and uniqueness of solutions if initial conditions v are
added. We can define a flow St on (YMc(M,]R))d such that p(t) = St{0) (see
§4).

(2) Every solution of (3.11) defines a YM solution fi = <8>ffj,j of (1.1), even if
there are other YM solutions that are not in product form. This fact, which
is proved in §8, cannot be deduced from (3.10) since this is only a necessary
condition for a YM solution.
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(3) Under certain interaction conditions on / (see (5.3)), the marginals p, =
of every YM solution fi automatically satisfy the non-resonance system (3.11),
even if /i itself is not a product measure.

We now make explicit in what sense a YM solution /j, attains initial conditions.

T H E O R E M 3.5. Let n be a YM solution of (1.1). Then for all j = l,...,d the
mappings t t-y /J.j(t, •) £ YMC(R, R) are weak* continuous.

Proof. If n is a YM solution then there exists a sequence un of solutions such that
un y \x and in particular w™ y fij.

Take any test functions </>, tp £ CQ (R, R), then (dt+Cjdx)^ is essentially bounded
over n £ N on the support of (p. Denote this bound by K. Thus, we find

<j>(x)[ip(u](t, X)) - ljj{un{t + T, X + CjT))} dx

[<t>(y - CJT) - <H?/)]VK(£ + r, y)) dy

< IMILI| |^'IIL~-K'M + ||0'IUI||V'IIL<»|C,-T|.

Since the last term does not depend on n we can go to the limit n —y oo in the
first term and obtain JR <f>{x){HJ(t + r ,x) , tp) dx = JR<j)(x)(fij(t,x), ip) dx + O(\T\)
for differentiable test functions. By density of C1 in C° and boundedness of t i->-
fm<fi(x)(ij,j(t,x),il>} dx, the continuity holds for all test functions. •

This result allows us to prescribe initial conditions in the form /^(O, •) = i/j £
YMC(R, R). It is not clear whether a similar continuity result holds for the full
measure fi. Yet, the sequence un{t,x) = (cos(n(x + t)),sm(n(x - t))) provides a
simple example for a sequence such that

U
YM , G YMC and

where t t-y [i(t, •) is weak* continuous but /u(0, •) ^ v. In fact, // is a product
measure, which is independent of (t,x), and v is the ^-independent measure of
uniform distribution on the circle u\ + u\ = 1.

4. Existence and uniqueness

We prove existence and uniqueness for the non-resonance system (3.11).

THEOREM 4.1. Assume that f : Rd —y Rd is bounded and globally Lipschitz con-
tinuous u. Then, for any given v G (YMC(R,R))d, there exists a unique solution
p, £ (YMc(R2,R))d of system (3.11) satisfying the initial condition /z(0, •) = v.

For the proof we set up an iteration scheme of Banach-Picard type as is usually
done for semilinear wave equations. However, this is not possible in the space of
YM since the norm in the space of measures is much too strong. We therefore
use an idea that is well known in the theory of transport equations of Vlasov
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type (see [3] or [9, §4.3]). This idea says that iterations should better be done
on the characteristic curves along which the mass is transported. For the present
result we will in fact iterate the right-hand sides, / • , in a suitable function space.
If convergence to a limit /* occurs, then the desired solutions /i* are found by
theorem 3.1.

Proof. To set up the iteration procedure, define the mapping p = S(g) (the notion
g indicates that g is a <i-tuple of scalar functions of the form (<?i (iii), . . . , gd(ud))T),
which associates with g the unique solutions p of (3.11) with right-hand sides gj and
initial conditions Vj. Moreover, we define g = R(p) by averaging the fixed function
/ according to (3.12).

We start by letting pw(t,-) = P, then /(") = R(p^) and ^ n + 1 ) = S(f^)
defines the iteration. Instead of studying the mapping p(n+1^ = S o R(p^) in the
space of YM, it is much more convenient to consider the mapping /(n + 1) = T(/(n))
with T = Ro S, which is easier to handle since d scalar functions are iterated.

We define a function space Z, such that T is well denned on Z = Zd:

Z = {g :R2 xR-+R: g measurable, \g(t,x, a)\ < C,

and \g(t,x,a) — g(t,x,/3)\ ^ L\a — j3\ for a.e. t,x and all a,/3},

where C and L are the L°°-norm and the Lipschitz constant of / , respectively. The
space Z is a complete metric space (closed subset of a Banach space) when the
norm

\\g-h\\z = sup{\g(t,x,a) - h(t,x,a)\e~3m :t,x GR, a € R } ,

is used.
For each p, € (YMc(R

2,M))d, the function g = R(p) lies always in Z, since
averaging neither increases the I/°°-bound nor the Lipschitz constant that are given
from / . Moreover, for each g € Z, the flow mappings #j associated with (3.11) are
globally well defined such that the mapping S : Z ->• (YMc(K

2,M))d exists. Thus,
f = R o S maps Z into itself. Our aim is to show that f is a contraction. For
g,h S Z we want to estimate T(g) — T(h). To that end we solve for each j and
y e R the ODEs

ot = gj(t,y + Cjt,a), a(0) = 70,

The associated flow maps are called <?j and !fj, respectively. A Gronwall estimate
gives

3L|t|

|*j(i,I/,7o) -^( t ,J / ,7o) | = \<*{t) - m \ ^ -^-hi-hjh, (4-1)

since
\9j(t,z,a) - hj{t,z,p)\ < L\a - 0\ +e3L^\\9j - hj\\z.

The two measures solving (3.11) with initial condition v and nonlinearity g and
h are denoted by /J,9 and fJ1, respectively, such that /z| = <&j*Vj and ^ = &j*Vj.
Hence, g = T(g) has the form

gj (t, x, Uj) = {®k^jvk(y, dwk), fj{^ (t,y,W!),...,Uj,..., # d ( t , y , wd)))Rd-i,
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where y = x — Cjt, and the analogous expression for h = T(h) holds. Employing
(4.1) and the Lipschitz continuity of fj in uk, k ̂  j , leads us to

e3L\t\

9j(t,x,Uj) - hj{t,x,Uj)\ < L-^j-Wgj - hj\\z,

for a.e. (t,x) and all Uj. But this is the desired result

\\f{g)-f{h)\\z^\\\g-h\\z.

The unique fixed point /* defines a unique YM /2* = §(f*), which is the solution
of our problem. •

Thus, we have obtained global existence and uniqueness of solutions for the non-
resonance system (3.11). Together with the continuity result in theorem 3.5 we are
able to define the flow mapping (<St)t<=R associated with (3.11) by

I (iMc(K,lKjj ->• (YMC(K,K)J
> : 1 - -u \ ^4 >

Then, St has the group property StoST = St+T for all t, r e K. In § 7 we study the
continuity properties of St with respect to the argument V. From theorem 3.5 we
know that the map t \—>• St(P) £ YMC(R,M) is weak* continuous; now we can say
more.

PROPOSITION 4.2. The mapping t >-> /J,j(t,x — Cjt, •) £ M(R) is continuous in the
Wasserstein distance, that is dw(fJ'j(t,x — Cjt),fij(s,x — Cjs)) = O(\t — s\) fort —> s.

Proof. From |/j(u)| ^ M we deduce

\$j(t,x — Cjt,Uj) — <Pj(s,x — CjS,v,j)\ ^ \t — s\M.

Thus,

sup \(iij(O,x),ip(<Pj(t,x-cjt,-))-ip($j(s,x-cjs,-))) ^M\t-s

where (n(0,x),g) ^ Ĥ Hoo was used. D

At the end of this section we provide an estimate on the variance Vax(fij) of the
marginals fij. For any measure /x 6 M(R) we have

Var(/x) = (n,w2)weR - ((^,w)wSR)2 = (n(dv), (n(dw), \{v - w)2)weR)veR.

With
LjJ=sup{\dUjfj(u)\:u£Rd},

we obtain the following result.

PROPOSITION 4.3. For each j and t £ R we have the estimate

^ l l ^ (0 , a;)) < Var(^-(t, x - Cjt)) < e2L^M Var(^-(0>X))- (4-3)
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Proof. We recall that (J,j(t) is just the pull back of Uj with respect to the flow
mapping $ j , namely

Hj{t, x) = $j(t, x - Cjt, -)*Vj(x - Cjt).

Hence,

where the argument x — Cjt was suppressed for notational convenience. Now the
result follows from the Lipschitz continuity of $j(t, •) and <Pj(t, •)~1 with Lipschitz
constant eLj^'*l. D

As in [7], we say that fij has microstructure in the point (to,Xo) if it lies in the
support of the function Var(/Zj(-, •)). The above proposition shows that microstruc-
ture is transported along characteristics and can neither be generated nor destroyed
in finite time. This is of course due to our assumption that the oscillations in each
characteristic direction are non-resonant.

5. Convergence results

We are now asking under what conditions the marginals /x of a general YM solutions
H of (1.1) solve the non-resonance system (3.11). Some results of this section are
well known (see, for example, [10,21]), however, we state and prove them for com-
pleteness. To this end we use the theory of compactness through compensation in
the form of the div-curl lemma in [12,17]. The basic observation for our semilinear
hyperbolic problem is that oscillatory behaviour of u™ can only occur perpendicular
to the characteristics given by x = y + Cjt. Thus, if we have just two different wave
speeds, the oscillations occur in linearly independent directions and the YM limit
has to be a product measure.

THEOREM 5.1. Consider vn e Lgc(M?,Rk) and wn G Lg>c(]R
2,Rm) and assume

that there exists b,c £ K such that the sequences vn, wn, (dt + bdx)v
n and (dt +

cdx)w
n are bounded in L^C(]R2). Moreover, assume

vn YM^ v e Y M C ( R 2 , Rk) and wn -^U UJ e YMC(E2, R m ) .

Then, if b =̂  c, we have

(vn, wn) -^U V®UJ£ YMC(R2,Rk + m) .

Proof. The result is equivalent to

<l>(t,x)il>i(yn(t,x))ifa(wn(t,x))d(t,x)-> I (t>(t,x)1'1{t,x)<p2{t,x)d(t,x),

where Wi(t,x) = (u(t,x,dv),ipi(v))Rk and &2(t,x) = {oj{t,x,dw),i>2{w))Rm (5.1)

for all test functions <j>, ipi and xp2- The convergence of vn and wn towards v and
cu, respectively, just means that ip\(vn) —> tf'i and ^ t " " ) —> &2- The desired result
(5.1) is equivalent to having ipi{vn)ip2{wn) A $ri< 2̂- We let

gn = (Mvn),Wi(vn))T and hn =
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such that
divgn = (dt + bdx)Mvn) = DvMvn)[(dt + bdx)v

n]
and

cmlhn = Dwip2(w
n)[(dt + cdx)w

n]

are bounded in L°°. Now, the div-curl lemma asserts that the scalar product,
gn • hn = (c — b)tpi(vn)ip2(wn)> converges weak* to the scalar product of the weak*
limits of gn and hn, namely (c — 0)^1^2- This is the desired result. •

Since for every weak solution un that is bounded in L^c the functions (dj +
Cjdx)u™ are equal to fj(un(t, #)), and thus also bounded in L^c, theorem 5.1 states
that for every YM solution \i of (1.1) the two-dimensional marginals M^^fx are,
because of Cj 7̂  ck, always product measures, namely

M{j,fc}M = Mj ® fJ'k- (5-2)

This fact was found already in [6,10,21]. In [11] the generalization

is shown for cases of generic non-constant wave speeds Cj(t, x), Ck(t, x) and c;(£, x).
Additionally, a generalization of the following theorem to 'triple interactions' is
given there.

THEOREM 5.2. Assume that f is continuous and that \i is a YM solution of (1.1).
If all Cj are different and if the functions fj satisfy the interaction condition

d

f j ( u ) = J 2 9 j , k ( u j , u k ) , j = l,...,d, (5.3)
fc=i

with continuous functions gjk, then fl = M.\i G (YMc(M
2,M))d is a solution of

(3.11).
Under the additional assumption that f is Lipschitz continuous, the marginals

p of any YM solution \x of (1-1) are uniquely determined by the initial conditions
v G (YMc(E,K))d and hai>e the form p,(t) = St(i>).

This result does not say that (5.3) implies /J, = <g)/Zj. The importance is that even
without fi being a product measure we still can conclude that (3.11) is true. In
particular, all linear systems satisfy (5.3) and, thus, can be solved explicitly (see
§ 6.1). In § 6.2 we present an example with / = 0 such that (3.11) trivially holds but
still n is not a product measure. In [11, § 5.1], condition (5.3) is called 'propagation
of compactness'.

Proof. Since (3.10) holds for every YM solution, the only thing we have to show is
that, under the given assumptions, the identity

holds (compare to lemma 3.4). Since fj = J2k9j,k it suffices to show the identity
for each term separately:
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where we have used (5.2) for the second identity. •

Since condition (5.3) is trivially satisfied for d ̂  2 we have proved that the flow
mapping St of (4.2) describes the general YM solutions of (1.1). For dimension
d ^ 3 no such description of all YM solutions exists (note however the generaliza-
tions in [11] to the case Cj(t, x)). Nevertheless, it is possible to give some non-trivial
restrictions on YM solutions by using a tool that generalizes YM and is called
.ff-measure in [22] and defect measure in [8]. We give a short introduction in Ap-
pendix A.

THEOREM 5.3. Let /z e YMc(M
2,IRd) be a YM solution of (1.1), Take any three

im e {l,...,d} such that cin ^ cim for n ^ m. Then for all 4>m e C#(R,M),
m= 1,2,3, and a.e. (t,x) we have

m = l m = l

for a.e. (t,x), where E^m{t,x) — (fiim(t, x), 4>m(uim)).
In the case of four components with c^ ^ Cj2 and Ci3 ̂  Cii we have

4

(Vim,(<l>Tn{Uim) ~ E^)2)1 2.
m = l m = l

These estimates follow from theorems A.2 and A.3, respectively, when we apply
them to the sequences

wn
im =<j)m(u1lj- E^m, where un ^ M.

Note that application of Holder's inequality only gives

N N

which has worse exponents for N ^ 3.
The interaction condition (5.3) can be reformulated for / € C2 by using

Then (5.3) is equivalent to KjM = 0 for (fc, I) & Rj = {(fc, l)e{l,. • •, d}2 : k ^ I ±
j ^ k}. The importance of Kjtk,i was known before (cf. [24]), since it enables us to
control the strength of oscillations in the j-component. The strength of oscillation
o-j for the sequence u™ is defined as the variance of the marginal fij:

o-j(t,x) — Var(/Zj(i,z)) = {nj(t,x,dv), (v - Ej)2)R,

with
Ej(t,x) = (nj(t,x,dv),v)K.

Here Ej is the expectation value of \ij that is the weak* limit of u™.
For the non-resonant case we provided a simple estimate in proposition 4.3. For

the general case, there is a result due to Tartar [24] as follows.
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THEOREM 5.4. Let j e { 1 , . . . ,d} be given. Assume that all Kjtk,i, (k,l) € Rj, and
o.j = sup{dUjfj(u) : u € M.d} are finite and that ck ^ Cj for k ^ j . If \i is a YM
solution of (1.1), then the following differential inequality holds:

(dt + Cjdx)o-j ̂  loLjOj + 2 ^2 Kjikii{fi(t,x,du), \UJ - Ej\ \uk - Ek\ \ut -

(5.6)

Proof. It suffices to consider the case j = 1, since all coordinates are similar. In the
weak form of

(dt +Cldx){u^)m = mK)™"1/!^"),

we can pass to the limit by using the YM convergence and obtain the weak form of

(dt +cldx)al = 2^(du),«i/i(u))Kd - 2E1(fi(du),f1(u))R*. (5.7)

The right-hand side takes the form 2(/Lt(du), («i — E{)(fi(u) — fi(E)))Rd. We esti-
mate this expression by using an elementary representation formula holding for all
C2 functions,

h(Euu2,...)-f1(E)
d fi

= J2 dUkf1(E1,u
s
2,...,u

s
d)ds(uk-Ek)

d .1

= Y] dUkfi{Eu...,u
s
k,Ek+i,...)ds(uk -Ek)

kT2J°
/•I /-I

/ / dulduJ1(E1,u
s
2
t,...,us

k,u
s
k
t
+1,...)sdtds(uk-Ek)(ul~El)

JoJo

/•I /-I

X) / /
(k,i)eR1

with the short-hand u^ = un + s(En — un). The terms in the first sum are in fact
equal to fi(Ei,..., uk, Ek+i, •••)— fi(E) and theorem 5.1 can be applied giving

u ...,uk, Ek+1,...)-

(Ei,... ,uk,Ek+i,...) - fi(E))R = 0 .

Hence, taking care of the additional term / («) - f(E1,u2,...), the right-hand side
in (5.7) can be estimated from above by

E1\ ^ KhKl\uk - Ek\\ut - Et\
(k,i)eRi

This establishes the desired result. •

Exploiting (5.4) we derive a differential inequality for the strength of oscillations.

COROLLARY 5.5. Under the assumptions of theorem 5.4 we have

(dt + Cjdx)o-j < 2^-o-j- + 2a)/2 J2 Ki,k,icrl'2a]/2. (5.8)
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Proof. Let {ii,i2,h) = (j,k,l) and Em = (fxim, \uim -Eim\), then Em < a]1^ and

3 . , 3

I I I"*™ -Eim\)= {^l[(him ~ Ei
1 ' \ 1

3 r / 3 x 1 1/2

1 1
3 3 % 3

.1/2

-IK"-
I

Here, theorem 5.1 was used for the first equality and (5.4) for the first estimate. •
If all Kjtk,i = 0 for all (k, I) € Rj, then the variable Uj cannot develop oscillations

if Uj is zero at t = 0, even if nonlinear interactions take place through fj. This is
compatible with our existence theorem and the representation of the solution using
the one-dimensional flow mapping $j as in theorem 3.1. In fact, if condition (5.3)
is satisfied, then we know that the marginals \ij satisfy the non-resonance system
(3.11), and thus estimate (4.3) holds.

If condition (5.3) is violated such that one Kjtk,i is non-zero, then non-zero a^oi
can generate non-trivial Uj. Note that Uj = 0 is just one solution of the differential
inequality, but the right-hand side is not Lipschitz continuous such that the classical
Gronwall estimate does not hold. The example in § 6.3 provides such a case, namely
u\ = 03 = \ and (72 = ^.t2.

There are situations where estimate (5.8) is useful for problems not satisfying
condition (5.3). In some applications one knows a priori that for certain j the
components uj do not oscillate but have a strong limit u?°. Let us assume that
these components have indices j = m+ 1, . . . , d. Then, we can relax the interaction
condition (5.3) to

m

j\U) — /^9j,k\uji uhi um+li • • • i ud)i J — 1, . . . , u . \p")

THEOREM 5.6. Assume that f satisfies the relaxed interaction condition (5.9). Let
fi be a YM solutions of (1.1) with fij{t,x) = 6Wj(tjX) for j = m + 1, . . . ,d. Then,
p, = Mfi is a solution of (3.11).

Under the additional assumption that f is Lipschitz continuous, the marginals
ft of any YM solution fi of (1.1) are uniquely determined by (3.11) and the initial
conditions v € (YMC(R, E))d with Vj = ̂ ( x ) for j = m+1,... ,d.

The proof of this statement is an easy generalization of the above results, hence
we omit the details. Notice that under the assumptions of the theorem in (5.8) each
term in the sum over Rj vanishes: either Kjtk,i or u^ui is equal to 0.
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A typical application is the semilinear wave equation

dfw — d\w + g(w,dtw,dxw), w(0,x) = wo, dtw(0,x) =

Letting u = (dtw + dxw, dtw - dxw, w)T we obtain

/-I 0 0\ / h(u) \
dtu + 0 1 0 \dxu = h(u) , u(0, x) = | Wl - dxw0 | ,

\ 0 0 0/ \UUl +W2)/

where h{u) = g(u3, \{u\ + u2), \{u\ — u2))- For this system, a sequence of initial
conditions needs 8XWQ and WJ" bounded, hence the initial condition for u3 is au-
tomatically convergent. Thus, u3 is the non-oscillating component, and since the
right-hand side in the u3 equation is \{u\ + u2) the relaxed interaction condition
(5.9) is satisfied for any g.

6. Some examples

6.1. Linear coupled systems

For the linear system (with Cj ̂  Cfc)

(dt + CJ8X)UJ — otjUj + y^ a,jikuk, j — 1 , . . . , d,

with initial conditions i>, there is a simple way to calculate the marginals p,(t) =
St{y) of any YM solution fi. Since interaction condition (5.3) holds, the marginals
[i satisfy (3.11). With the mean value Ej = {/J,J,UJ} we arrive at

{dt + Cjdx)nj + dUjHj ajUj + ̂  ajykEk = 0, ^{0, •) = Vj.
L kjij J

Testing this equation with ipj{uj) = Uj we obtain the linear system

k, Ej(0,x) = {VJ(X),UJ),

which is a classical linear hyperbolic system. It can be solved iteratively as in the
proof of theorem 4.1. As soon as all Ek are known, we let

9j(t,x) = ^aji

k¥=j

and find

fJ,j(t,x) = $j(t,X- Cjt)*Vj{x - Cjt),

where

Thus, each marginal fXj is an affine linear transformation of the initial value on the
given characteristic. Coupling only occurs on the level of the mean values.
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6.2. Non-uniqueness in an uncoupled linear system

We consider three uncoupled linear equations

(dt + Cjdx)uj = 0, with ci < c2 = 0 < c3, (6.1)

having the solutions

u"(i,x) = H(aj(yj)nyj + Oj(yj)), where yj = x - Cjt, (6.2)

where H(s) = H(s + 2) with H(s) = 1 for s G [0,1) and H(s) = 0 for s e [1, 2). The
functions 0j are arbitrary functions in L°°(M) whereas atj is assumed to be positive
and piecewise constant.

Since H attains the values 0 and 1 with equal distribution, it is immediate that

for all (t,x) and j = 1,2,3. The full YM fi e YMC(M2,IR3) is, in general, not inde-
pendent of (t, x), however, its support is concentrated in the finite set {0,1}3. Know-
ing the marginals \ij explicitly, and using the fact that the three two-dimensional
marginals are product measures with equal mass in each of the four points (cf.
(5.2)), we conclude that n{t,x) is uniquely determined by the function

Obviously, wn —¥ 7 where wn = u"u2u3. Our construction shows that it is possible
to generate quite general functions ~/(t,x).

Given the above form of the solutions w" we can calculate 7 explicitly as follows.
Let (to,xo) be a point such that otj and 6j are continuous in XQ — Cjt0- Then,

* f wn(t,x)d(t,x),

where

Q(e,to,xo) = {(t,x) : \x - x0 - c\(t — to)| < £, |a; — x0 - c3(t - to)\ < e},

can be approximated up to an error e>(l)£_>o (uniformly in n) by

x H(a2n(z2 + ° 3 ^ ^ 3 ) + e2^H(a3n(z3+y3) + 03)d(yi,y3),

where ctj and 0j are evaluated at Zj = x0 — Cjt0. Hence,

7(^0,^0) = lim lim (3^(to,xo),
e—>0 n—>oo

whenever the limit exists.

PROPOSITION 6.1. The limit limn_j.oo/3" exists and is independent of e. Define

,. x c3a2(x0 - c2t0) . -cia2(x0 - c2t0)
Kl(tO,XO) = - —r, K3(t0,X0)-(c3 -ci)ati(x0 - c i t 0 ) ' ' (C3-
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and the function F : R -> M by F(s) = \{s2 - s) for s 6 [0,1], F(-s) = F(s) and
F(s + 2) = F(s) for s e K. Then, i(to,xo) is given as follows. If Kj = Pj/qj for
qj,Pj € N such that Pj/qj is relatively prime and if q\, P\, q3 and p3 are odd, then

where r = gcd(gi,Q2) (greatest common divisor) and

O = 02- PiOi/qi - p303/q3.

In all other cases for (KI,K3) we have j(to,xo) = g.

Proof. We first consider the case that either KI 0 Q or K3 £ Q, then /3"(io, #o) —> g
for n -t oo. This follows from the fact that at least in one of the integration
directions yj the integrand is really quasi-periodic.

Now assume Kj = qj/pj relatively prime. The integrand of /3" is now periodic in
(2/1,2/3), and for n —>• 00 we find the limit

which is independent of e. W is found by integration with respect to £1:

WquPl(s)= I H(qi^)H(s + pi£i)d£i = J^ / H{
./£i€(0,2) k_Q J2k/q1

2 -̂—' pi

2 giPi

Here we used the relation # ( s ) = \ + F"(s). The last equality is easily deduced
from

1 29l-i
w'(v) = ~ E (-i)n

n = 0

which is identically 0 for even qxpi and equal to (2 /p i ) [ | - H(qiy)] for odd
The integration with respect to £3 yields

7 = 4

with

M(s) = '
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Now, M can be expressed as
-, 2 ? 3

If gi = rqi and q3 = rg3 with r = gcd(qi,q3) then q\Pz/q3 is relatively prime, and
we obtain

implying M(s) = 0 for even gij>3 and

for odd gip3. Putting everything together the result is established. •

CONJECTURE 6.2. For every YM solution /i of (6.1) with sppt(^(t,x)) C {0,1}3

the estimate \^{t,x) — | | ^ ^ /lolds /or a.e. (t, x) £ R2.

From |F(s)| ^ j j , we immediately conclude that all solutions constructed above
satisfy the assertion in the conjecture. However, we were not able to prove the result
for general YM solutions. The if-measure theory provides a non-trivial bound as
well, namely \i{t,x) - | | < \/2/16, see (5.4).

We now restrict ourselves to the case c\ = — 1, C2 = 0 and c3 = 1 for simplicity.
Moreover, we assume a2 = 2 such that Kj(t,x) = l/ctj(x - Cjt). The functions
atj, j = 1,3, are chosen piecewise constant such that a,(x) = 1 if x 6 (—1,1) and
ctj(x) — 2 else. Hence, proposition 6.1 implies

. , l [O for|x + i | > 2 or \x-t\>2,
v ' ' 8 \r)(t,x) for|z + i | < 2 and \x -1\ < 2,

where
7](t, x) = F(0i(i + t) - Q2[x) + 63(x - t)).

The functions 9j are completely arbitrary.
Thus, we have constructed a YM solution /x e YMC(1R2,]R3) of (6.1), which devi-

ates from the product of its marginal measures fij = \{80 + 5\) on an open bounded
subset of R2. This implies that it is not possible to solve initial value problems
uniquely.

In this case the YM solution /i(i, x) is supported on the eight points in S = {0,1}3,
such that it is possible to define the discrete information entropy

Entr(/i) = -y^p

where pu = //({«}). Since pu either equals 7 or | — 7 depending on whether the
number of Is in u is odd or even, we have

Entr(^) = - 4 [ 7 l o g 7 + ( i - 7 ) l o g ( i - 7 ) ] ,

which assumes its maximum value log8 for 1 — \- Thus, the above example shows
that the information entropy of a YM solution may increase as well as decrease
with time.
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6.3. A nonlinear example

We treat a system of three equations that was already used in [10]. It shows
that oscillations in some components can generate oscillations in other components.
This provides an example where even the marginal measures fij are not uniquely
determined.

Consider the system

(dt - dx)ui = 0, dtu2 = 2uiu3, (dt + dx)u3 = 0, (6.3)

which has wave speeds 1, 0 and +1. We associate the YM initial conditions

Hi(0,x) = fi3{0,x) = %(60 + 6i), A*2(0,x) = 60.

There is a unique product-measure solution fj, = /xi ® \xi ® fi3 (see theorem 8.1)
solving the non-resonance system, which is given explicitly in (7.1) below. Since
the first and third equations are decoupled we have fj,j(t,x) = ^(60 + 61) for all
(t,x) and j = 1,3. Averaging the right-hand side of the second equation according
to (3.12) gives the constant | . Thus, the ^-component has the point measure
H2(t,x) = 6t/2- This product-measure solution is also easily obtained by considering
the sequence of solutions un with initial conditions

< ( 0 , a;) = H(nx), v%(0, x) = H(umx), u%(0, x) = 0, (6.4)

where H is defined directly after (6.2) and ui = 2 or u $ Q.
Since interaction condition (5.3) does not hold, we can expect more general solu-

tions. We consider the sequence un of solutions given by the initial values in (6.4)
but now with ui = 1. Integrating along the characteristic for ii^, the integrand is
periodic, and we find

v£(t,x)= I 2H(n(x-s))H(n(x + s))ds = tG(xn) + R(t,x,n),
Jo

with G(s) = G(s + 1) = G(-s) and G(s) = 2s for s £ [0, \] and R(t,x,n) =
0(l/n)n_>oo uniformly in (t,x) £ M2. The marginal measure fj,2(t,x) is distributed
uniformly between «2 = 0 and «2 = t. For t > 0 the joint measure fi(t, x) has its
support concentrated on four line segments in R3, namely sppt(/i(£, a;)) = {u G M3 :
ui,u3 e {0,1}, U2 G [0,i]}. A geometric consideration of the periodic functions
H(n(x ± t)) and tG(nx) gives

f

+ J {i>(l,v,0)+iP(0,v,l)}t-^dv. (6.5)

We now show by explicit calculation that /j,, denned by (6.5), solves (3.10), i.e.

(dt-dx)ni=0, dtfJ,2 + dU2r]2 = 0, (dt + dx)fj,3 = 0,

where

m(t,x) = Q^puittaKt.ar) € M(R),

can be calculated explicitly from (6.5) to give

,ip) = /
Jo

(v)v/t2 dv,
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cf. the definition of Q after (3.10). The first and third equations are trivial since
Mi = A*3 = ^(So + Si), which is independent of (t, x). The second equation takes the
form

JR2
t,x) =0,

for every <p G C*(R2,R) and tp G C^(R,R). Employing

\M2) Vv = / dt;
Jo *

we obtain the desired result

Here we have 772 = (,u2/t)fi2 7̂  f2 (u2)lJ,2 = |M2> which contrasts nicely with the
result of lemma 3.4 since fi is not a product measure.

For this solution the oscillation strengths are a\ = 03 = \ and 02 = j^t2- With
a2 = 0 and ^2,1,3 = 2 the differential inequality (5.8) can be justified, namely

\t = (dt + 0dx)a2 < 0cr2 + 4{cr1a2a3)
1/2 = \t\/Vu.

7. Continuity properties of St

In this section we study the continuity properties of the flow St defined in (4.2)
that defines, via p,(t) = St(P), the solutions of the non-resonance system (3.11). An
important observation is that continuity with respect to the weak* topology does
not hold without further assumptions. Consider again system (6.3) treated above.
The associated non-resonance system is given by

dxm = 0, dt//2 + du2M2[2(/ii,ui)(/Z3,u3)] = 0 , 9t/i3 + 9x/x3 = 0.

(7.1)

The solution p,°°(t) = St(P°°) with initial conditions

u°° = v™ = i(<50 + 50 and 2̂°° = 60,

is given by

fi?(t,x)=^(t,x) = ±(60 + 61) and fi%>(t,x) = 5t/2.
Moreover, the classical solutions un given in § 6.3 also define solutions p,n = St(Pn)
of (7.1) via fj,J(t,x) = 6yr>(t,x)- These solutions satisfy

£> n 4p°° and /2nA/2*(i),

for n —> 00, where //* = nf for j = 1,3 but

1 /•'
1 Jo

Hence, ^{t) 7̂  /J^it) for t ^ 0, and St is not weak* continuous.
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Thus, it is not surprising that our positive result concerning the weak* continuity
involves the interaction condition (5.3).

THEOREM 7.1. Assume that f is globally Lipschitz continuous and satisfies the
interaction condition (5.3). Then, for each f e 1 the flow mapping St is weak*
continuous from (YMC(R, R))d into itself.

Proof. We have to show that Dn —»• v°° implies

fj, {t) = i>t{v ; -> • / / ( t ) = 6 t ( i / ).

We use theorem 5.2 (involving the interaction condition) and the fact that the set
of all YM solutions of (1.1) is weak* closed.

To each vn we can associate a YM solution, \in G YMc(R2,Rd), such that
Mfin(0,-) = vn. By theorem 5.2 we then know that A4fin = p,n. On the other
hand, after extracting a subsequence if necessary, there is r\ € YMc(R2,Rd) with
f/1 —> rj. Since rj also is a YM solution we conclude again that fj = M.r\ has the form
fj(t) = St(fj{0)). It remains to show p,n(t) A fj(t) in (YMc(R,R))d and fj(O) = v°°.

We choose a function </> £ CQ(WL,M.) with (j> ^ 0 and fR(f>(t)dt — 1. As in the
proof of theorem 3.5 we obtain the following estimate: for any ip,tp G CQ(IR, M) we
have

-4>(e(s-t))<p(x)(nj{s,x),t/j)d(s,x)- / y{x){nj{t,x),ip) dx
e Jm.

Ce, (7.2)

for any marginal measure fij of any YM solution \i of (1.1). Here C depends only
on the L^c bounds for diam[sppt(/z(-))], and on the test functions. Applying (7.2)
to n" and rjj and taking the difference gives

I I Hi 'Yx 111 (~t T* I T) • (•/ T* I 7/J \ (1 T*

-</)(e(s-t))^(x)(Ai™(s,a;) - r]j(s,x),ip) d(s,x]

With yti™ A r)j in YMC(R2,R) we conclude fij(t, •) A ^ ( t , •) in YMC(R,R) for each
t. Moreover, since /i™(0, •) = i/", we conclude that ẑ ?0 = ^ ( 0 , •). D

Next we establish continuity properties of St in the stronger topology defined by
the Wasserstein metric. This approximation result will be useful in the next section.
For this part we do not need any interaction condition on the nonlinearity f(u).

Our aim is to compare the solutions ji(t) = St(v) and fj{t) = StiR) if the distance
between v and R is controlled. We recall the definition of the Wasserstein distance

,A) = sup{|(/z, V) - <A,̂ >I : ̂  G C^R" 1 ,^ ) , H^'llicc < 1},

for [i,fie Pc(Rm). We define the functions

a,j(t,x) = dw{iij(t,x),r)j(t,x)),

and show that these functions can be controlled by their values at t = 0.

THEOREM 7.2. Let Lj<k = su-p{\dUkfj(u)\ : u e R d } . Then, for all pairs (p,,fj) of
solutions of (3.11), the positive functions a,j € L1

C^>
C(R2,R) defined above satisfy the
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rt

aj(t,x) ^eLj-jltlaj{O,x~cjt)+ / eL''^t~s)Dj(s,x - Cj{t - s ) ) d s , j = l,...,d,
Jo

(7.3)

where Dj(t,x) = Y,k^jLj,kak{t,x).

Proof. The solutions ju and ?j are defined via the averaged functions

Qj (t, x, Uj) = fj (t, x, Uj) and hj (t, x, Uj) = fj (t, x, Uj).

Using lemma 2.1 we find the estimate

\gj{t,x,Uj) -hj(t,x,Uj)\

) , fj(u))\ ^ Dj(t,x). (7.4)

The flow mappings <?j and !fj are defined via fj and gj, respectively, such that
fij(t,y + Cjt) = <£j(£,y)*//j(O,y) and similarly for rjj. Both mappings are Lipschitz
continuous with constant eLjJ^. We find

" 1*1 (̂0,yJ + s u p d ^ ^ y . O - ^ C * , ! / , 0 1 : S e K } . (7.5)

The estimate between the flow mappings is obtained from the estimate for gj —
Let

a(t)=$(t,y,Q and

such that d = gj(t,y + Cjt,a) and similarly for j3. Using (7.4) we find that

\a(t) - p{t)\ ^ f [Ljtj\a{s) - (3(s)\ + Dj(s,y + Cjs)} ds.
Jo

With Gronwall's inequality we find the ^-independent bound
rtrt

/

Jo10

Inserting this into (7.5) for y = x — Cjt, we obtain the desired inequality (7.3). •

Note that the integral inequalities give rise to an upper bound for a(t, x) in the
form aj (t,x) < bj (£, x) for t ^ 0 where b(t, x) is the solution of the linear hyperbolic
system

d

dtbj + Cjdxbj = ] T Ljtkbk, for t ^ 0 and 6(0,x) = o(0, x).
k=i

This follows simply by comparing the Picard iterations for 6 with the corresponding
iterations of inequality (7.3). The classical IP estimates for this linear equation lead
to the following useful continuity result for St.
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COROLLARY 7.3. Let L = max{LJ)fc : j , k = 1 , . . . ,d} and p G [l,oo]. Then, for
each v,R£ (YMc(M,]R))d, we have

distp(<St(j/), St(R)) < eL d | t | distp(i>, K), £ € E,

where

distplistp(u,R)p= f J2(

«£/i the usual modification in the case p = oo.

Of course these results can be localized to finite domains by using the finite
propagation speed.

8. Product measure solutions

The main goal of this section is the following result.

THEOREM 8.1. Let f : Rd -> Rd be bounded and globally Lipschitz continuous and
Cj / cfc for j ^ k. Then, for all D G (YMc(K,M))d, equation (1.1) has a YM
solution n in product form, \i = <8)̂ =1JUj. It is uniquely determined by p,(t) = St{v).

This theorem confirms that product-measure solutions play a distinguished role
in the set of all YM solutions. However, for d > 2 there are always other YM
solutions, even in the linear case, see example 6.2.

The proof of this theorem is the content of this section and consists of the
following steps. First we consider Vj, which can be approximated by functions
vj(x) = Vjix^^x) with K!J) ->• oo and Vj £ C(E x T,E), where T = E / z . This
defines solutions un and we have to control their oscillations in order to exclude
resonances. One possible way is to use oscillation frequencies «;„' of different order,
for instance equal to n-3. We use another approach with all oscillations of the same
length-scale by letting «4 =nuij, where the frequency vector u = (OJI, ... ,ujd)
satisfies certain non-resonance conditions which are well known in the theory of
quasiperiodic motions (cf. [16]). Thus, it is possible to show that u™(t, x) has asymp-
totically the form

Uj (t, x — Cjt, nojj (x — Cjt)),

where U e C(R 2 x T ,K d ) is determined by (Vi,...,Vd). From this we conclude
un - ^ > ®fnj with

^x),^) = / ip(Uj(t,x-Cjt,z))dz.
Jzef

In a final step we use proposition 2.4 to show that all initial data v can be approx-
imated in the Wasserstein metric disti by initial data of the above form. With the
continuity of St in the metric disti we conclude the existence of the YM solution
in product form, since convergence in the Wasserstein distance is fine enough to
preserve the product structure.

For the frequencies cjj in vj(x) = Vj(x,nuijx), Vj G C(M x T,E), we use the
following non-resonance condition.



114 A. Mielke

LEMMA 8.2. For each e > 0 there exists u> G Md such that for all j = 1,. . . ,d and
all p £Zd\ {0} the following estimate holds:

d

e\p\~d~l, and if pj = 0 then ^2pkuk{ck - Cj) > e\p\~d~l. (8.1)

Proof. The result is a little different from the standard small denominator estimates,
since we have to satisfy d + 1 different estimates simultaneously with only one set
of (jjj. However, the proof is almost identical to the classical one (cf. [16]).

To construct a suitable to, we study for each j S {0, . . . , d} and p the size of the
set Q(j,p) of points w that violate (8.1) (here j = 0 stands for the first estimate not
involving Cj). Since O(J,p) lies between two hyperplanes with distance 2e|p|~d+1,
the volume of the intersection of n(j,p) with B(r) = {ui : \u\ < r} is less than
2bd-i£rd~1\p\~d~1, where bd-i is the volume of the unit ball in I^" 1 . Summing
over all j and p ^ O we find that the volume of (J • f2(j,p) intersected with B(r)
is less than bcir

d~1s, where

Hence, making r sufficiently large there is an w e -B(r) that does not lie in any of
the sets fl(j,p). D

We now study weak solutions un of (1.1) that satisfy the initial conditions

v%(0,x) = Vj(x,Tta>jx), j = l,...,d. (8.2)

With inspiration from [10,13] we construct an auxiliary solution un in the form
u™(t,x) = Uj(t,x — Cjt,nuij(x — Cjt)), where the functions Uj satisfy

+ / /;([/i(s,2/j,i(s), • ) , . . . , f/j(s, 2/i, ̂ ) ,^+i (s ,y j , j+ i (s ) , - ) , - - . )ds , (8.3)
Js=0

where

VjAs) = Vj - (°k ~ Cj)s, Z^j = (Zi, . . . , Zj- d \

and fj is defined as

,..., Ud{zd)) dzjj.

PROPOSITION 8.3. Assume Vj € C(R x T,R) and / : Kd ->• Md is globally Lipschitz
continuous. Then, (8.3) has a unique global solution U £ C(R2 x T,M.d).

Proof. This result follows exactly by the scheme of the proof for theorem 4.1. •
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From the construction of U and un it is clear that the limits M™ > fij exist
with

f1

(Hj(t,x,dv),ip(v))$i= / ip(Uj(t,x,Zj))dzj, (8.4)
J Zj=0

and that the marginals, p,, satisfy the non-resonance system (3.11), that is p,(i) =
<S((P). However, the following lemma tells us more: the YM associated to un is in
fact the product measure generated by the marginals.

PROPOSITION 8.4. Letco e M.d satisfy (8.1), assume U G C(M2 xT,Rd), and define
un via

Uj(t,x) = U(t,x - Cjt,nu)j(x - Cjt)).

Then, un > fi = <8>d_iyUj with fij given in (8.4).

Proof. For each <p and ipj we have to show that

converges towards

TT / ipj(U(t,x - Cjt, Zj)) dzj d(t,x).£,z)TT /
j J z j

However, this follows immediately from the special form of un and theorem B.I
below, if we set

d

g(t,x,z) = Y[ ^j(Uj(t,x - Cjt, Zj)).
i=i

D

It remains to compare the true solutions un of (1.1) with initial conditions (8.2)
with our auxiliary functions un. If we show un — un —> 0 in L^^IR2), then un

converges to the same YM as un, which is the product measure ®(J,J. Since, on
the one hand, each un is a classical solution and, on the other hand, J2 satisfies
the non-resonance system (3.11), we can conclude that (1.1) always has one YM
solution that is a product measure and, thus, the unique solution of (3.11).

PROPOSITION 8.5. Let f be Lipschitz continuous in u and let UJ e~Rd satisfy (8.1).
Assume that the initial condition V G (YMC(R, R))d is given via V G C(R x
T,Kd), such thatvj(x) = Vj(x,nu>jx) -^-> Vj. Then, the solutions un of (1.1) with
un(0, x) = vn(x) satisfy un —^> \i and \x has the form \x = ®pbj with p,(t) = St(v).

Proof. It remains to show that the difference wn = un - un converges strongly
to zero. This will be done by deriving a Gronwall estimate for wn. The integral
equation for uj, in the case j = 1, reads

/
Jo

ds,
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with yj — x — Cjt and Vj,k(s) = Vj — (cfc - Cj)s. We define a sequence of auxiliary
functions Un G C(R2 x T, Rd) satisfying

f /i(^r(s)y1,«i))^2
n(a)j/1,2

Jo
and similarly for [7™. The existence of these functions t/n, follows again by a con-
traction mapping argument as in the proof of theorem 4.1. The construction is done
exactly such that

Uj(t,x) = Un(t, x - Cjt,nuij(x - Cjt)) and w^(t,x) = Wn(t,x — Cjt,nuij(x — Cjt)),

where Wn = Un — U. Taking the difference of the two integral equations, the
difference Wn is estimated by Lipschitz continuity as follows:

sup{\WZ(s,yj,k(s),zk)\}ds+ I /

where pi(n,s,yi,Zi) is defined as

and similarly for Pj(n, s, yj). With c^ = max{|cj - ck\ : j , fc = 1, . . . , d} and any
given T > 0 we thus have

an(t) < /

for t e [0,T], where

a"(t) = ||W

and

i?(n,i)= sup j / pj(n,s,yj,Zj)di

Gronwall's estimate and the monotonicity of i? in t yields an(t) < eLtR(n,t).
Hence, it is sufficient to show that R(n, t) converges to 0 for n —> CXD. But this is

a consequence of theorem B.2 below, since p\ has the form

Pi(n,s,yi,zi) = 9i(s,y1,zi,nLj2{yi + (c2 - ci)s),... ,mod(yi + (cd-ci)s)),

where gi € C(R2 x Td) with

by the definition of p\. Note that g only needs to be considered on the compact
domain

{(s,yi,z):se[0,T], \yi\^cA(t-s), zeTd},

where it is uniformly continuous. •
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We are now ready to prove the main result by approximation in the Wasserstein
metric.

Proof of theorem 8.1. For 9 G (YMC(R, R))d there exists, according to proposi-
tion 2.4, a sequence j n such that

distLi( (_njn) )(7n,i>) < 1/n

and

(7?(x),V>= / ^{V?{x,z))dz,
Jzet

with V™ G C(R x T,R). (Here we used the subscript Lx((a, &)) in the Wasserstein
distance to indicate that this approximation is only valid on a bounded domain.)
Thus, proposition 8.5 is applicable, which provides YM solutions \xn = <8> =̂i/xJ with
Hn{t) = <St(7

n). The continuity of St, shown in corollary 7.3, gives

distLH{a)b)){j2n(t),ii*(t)) -> 0, with t**(t) = St(9),

for all bounded intervals (a, 6) C R. With lemma 2.1 this implies
d

dw(iin(t,x),®ii*(t,x)) = dw(®[j,](t,x),®n*(t,x)) = Y^dvf(»k(t,x),nl) -)• 0,
fc=i

for a.e. (t,x). Hence, \xn —> /z* = <g>/Zj and the weak* closedness of the set of YM
solutions tells us that fi* is the desired solution. D
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Appendix A. ff-measures and multilinear products

In this appendix we provide a result concerning the product of three sequences of
weakly converging functions. To this end we use the iJ-measure as introduced in
[22], the same object is called defect measure in [8]. Let un be a sequence converging
weakly to zero in L2(Mm,Rd), then there exists a subsequence n& and a family Hij
of complex-valued Radon measures on Mm x S771"1 such that for every test function
<Pi,<p2 G C0(Km,C) and every function <2> G C(S m - 1 ,C) the identity

= lim 1
holds, where the overline denotes complex conjugation and Tm the m-dimensional
Fourier transform. The matrix (Hij) of complex-valued measures is called the H-
measure of the subsequence unk. The function # G C(Sn~1) allows us to detect in
which direction, £/|£|, the oscillations are dominant.
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Our application involves in fact sequences that are bounded in L^c(M.m). There-
fore no concentration effects can occur, and we consider Hij as a family Hij{x) G
M(Sm"1) such that

(Hij(dx,<kj),<t){x)${w)) = / <t>(x)(Mj(x,<iu}),$(w)) dx.

In particular,
u^uf A ( ^ ( - ) , l s m - i ) ,

which follows easily from the definition if <£ = 1, since then the Fourier transform
can be undone by Parseval's identity. We also have positive definiteness, flij — \Xji
and

d

Y^ > o,
for all <j>k, which we will use in the form

\(lHi,$)\2 ^{fUufyiHij,*), (A 2)

for all $ G C(STO~1). This and all the following estimates have to be understood as
estimates for scalar measurable functions which hold for a.e. x G IRm.

For Young measure solutions of semilinear hyperbolic systems we gain additional
information by using the differential equations. Now we restrict the analysis to
x = (xi,x2) GM2.

LEMMA A.I. Let 6 = (c, s) G S1. Assume that u™ as well as (sdXl — cdX2)uj = gn

are bounded sequences in L^c(M?, R) converging weakly to zero and that (u™) A Vj.
Then, the associated H-measure is

This results says that the oscillations of u™ are perpendicular to the characteristic
direction and the amplitude is given by the weak limit Vj of (u?)2- The fact that
Hjj is localized in the points 9 and — 9 is the contents of [22, theorem 1.6]. The
mass is equally distributed between the two points since /ijj is invariant under the
involution — idgi.

The classical result of compactness through compensation follows easily from
(A2) and lemma A.I if 6i ^ ±%: from (A2) we know that the support of Hij(x)
lies in the intersection of the supports of /-tu(x) and fijj(x), but this is empty and
hence /x̂ - = 0, which means ufu™ A 0.

T H E O R E M A.2 . Let 9j = (CJ,SJ) G S1 for j = 1,2,3 such that 6j ^ ±6i for i ^ j .

Assume that (u^,U2,u^) as well as (sjdXl — Cjdx^u™ = g™ be bounded sequences

in Lfoc(M.2) converging weakly to zero. Then,

[(u])2 4 VJ and u?u£u5 A 7] = ^ [7
2 sj \v1v2vi). (A3)

Proof. Since iJ-measures are constructed to deal with bilinear products we define
U4 = u™W2- Using 9\ ^ ±$2 the compactness through compensation (cf. theo-
rem 5.1) gives

u\ = «>£ A o, « ) 2 = « ) 2 K) 2 A VlV2.
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We now apply the if-measure theory to the pair (ug, u4) and obtain, after choosing
a suitable subsequence, the measures /U33, fi34 and [i44 such that

7 = (/i34, l§ i ) , V3 = (/Z33, lg i ) , ViV2 = (^44, Is1)-

Together with (A 2) this implies the desired result except for the factor | .
To obtain the better result we use that ^33 is concentrated with equal weight in

03 and -#3 . Again using (A 2) we conclude that ^34 is concentrated in these two
points and thus,

72 = 0*34, 2 2

Since v3 = ^33({#3, —#3}) the result is established if we show that n44({93, —O3}) ^
\v\V2- This will follow from an additional symmetry of /Z44 that stems from the fact
that u% is the product of two functions that have oscillations in linearly independent
directions. Define the map T : E2 —> M.2 via

^)2, J and a =

and the induced mapping

T I S ' ^ S V H T(W) =

If the symmetry

%fi4i(x) = II44(X), for a.e. x G K2 (A4)

holds, we have /i44({T(±#3)}) = /X44({^3})- However, since #3 is different from
±#i, ±62 we have four points of equal mass. Hence,

It suffices to prove (A 4) for Lebesgue points, since they form a set of full measure.
A point y is called a Lebesgue point if

lim —2 / (/x44 (x), $} dx = (/i44 (2/), $) ,

for each <? G C^S1). Our next construction reduces the analysis to the case 5™ = 0
which makes the functions constant along characteristics.

Take any such y and define the functions

which satisfy \un(x) - un{x)\ = O(\x - y\) uniformly in n by our assumptions. To
see this, use the differential equation along the characteristics and integrate #™.
Extracting a suitable subsequence we find u" A ej with |ej(x)| = O(\x — y\).

Consider u™(x) = u?(x) — ej(x), then

(Sj8Xl - CjdX2)u? = 0, un
3 A 0, \un

3{x) - v^{x)\ = O(\x - y\).

Extracting a further subsequence u\ = u^u^ defines an if-measure ^44 that satisfies

f (fiM(x),$)dx= f (fi44(x
J\x-y\^.£ J\x-y\^.e
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by comparing the arguments in the respective limits in (A 1). We find that y is also
a Lebesgue point for /} 4 4 and /z44(j/) = ^a(y)- Hence, it suffices to show (A 4) for
y-aiv)- Without loss of generality we can also take y = 0.

The symmetry of /z44 deduces from the product form

uj(a:) = < ( 0 i • x)wZ(62 • z),

where u;"(s) = u™{s6j). For test functions

with Vj e C0(R, C) we find

where 4̂ is the inverse of the matrix (#i,#2)T- In particular, Aej = (—lyaROj and
det A = a. Using the trivial relation

we can now change the sign of Aej • £ for j = 1 and 2 independently. With TTAej =
y ej we conclude that

where the substitution r\ = T£ was used. Taking the limit n —>• oo we obtain the
desired result since it suffices to test with functions in product form. •

We note that the above constant | in (A 3) is optimal. It is attained for the func-
tions w™(£, x) = cos(bjn(x — Cjt)) with b = (1,2,1) and c = (1,0,-1), where Vj = \
and 7 = \. For products of four functions we have the following result.

T H E O R E M A . 3 . Let 6j = (CJ,SJ) € S1 for j = 1, . . . , 4 such that 6>i ^ ± 0 2 and

83 ^ ±64. Assume that u™ as well as (sjdXl — CjdX2)u™ = g™ be bounded sequences

in Lfoc(M.2) converging weakly to zero. Then,

[(u™)2 A Vj and u^u^u^ui A 7] => [y2 ^ viv2v3v4}.

Proof. As in the proof of theorem A. 2 we can associate if-measures fiy, k,l = 5,6,
to the sequences uV; = u™u2 and Wg = M3U4 such that

7 = (fi56, lS i) , v^2 = (/X55, Is1), ^3^4 = (Mee, IS1)-

Now the result is a consequence of (A 2). •

Appendix B. Quasiperiodic averaging

THEOREM B.I . Let LO e Rd be chosen such that (8.1) holds. If g € C0(M2 x Td,M),
then the sequence hn, defined by

hn(t, x) = g(t, x, nwi{x - cit),..., nud(x - cdt)),
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satisfies

/ 4>(t,x)hn(t,x)d(t,x) -> / <j>(t,x) g(t,x,z)dzd(t,x), for all (f> £ C°(E2).
JR2 JK.2 JTd

(Bl)

Proof. We proceed as in classical ergodic theory [16], and first assume that g is
(d + l)-times continuously differentiable in the z variable. Then, g has a Fourier
series expansion

g(t,x,z) =

whose coefficients are continuous in (t,x) and satisfy the estimate \gp\ < C(l +
|p|)~d~1. Note that the right-hand side in (B 1) is exactly the integral of 4>go- Hence,
after subtracting the average we may assume that go = 0 such that it remains to
show that the left-hand side converges to zero.

Given a positive e there is, by uniform continuity, a positive 6 such that

\cf>(t,x) - (t>{s,y)\,\g(t,x,z) - g(s,y,z)\ <

whenever \t - s\ + \x - y\ ^ 6. Assume sppt(^) C [—N5,N6]2, then

/
JR2

2nd(t,x)

J V - 1

k,l=-NJQk-

/ (f>(kS,l5)g(kS,lS,riLOi(x - erf),... ,nud(x - cdt))d(t,x)

where Qk,i = [k5, (k + 1)6] x [16, (I + 1)6]. Thus, it remains to make each of the
integrals over Qk,i small. Here, we use n —> oo, go(k6,j8) = 0 and the small divisor
estimate (8.1). Using that Qk,i is a square and the estimate

./o
' ds mm{5, I/a},

we find that

\9P\ min{5, l/(2im\p •

This proves the result since 6 and iV are fixed (for fixed e) and, hence, each integral
over Qkti can be made smaller than e/(N2), such that the whole integral is bounded
by e. This proves the assertion for the differentiable case.

We know that the linear mapping A : g >->•(/ <fihn d(t, x))ne® produces, for every
continuous g, a bounded sequence. Since g is uniformly continuous on the support
of <j> it can be approximated by a sequence <7(m) of Cd+1 functions, all having zero
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mean. However, because of the above arguments all the sequences

Ag(m)=^j<ph?m)d(t,x^j

converge to 0 for n —¥ oo. Whence also the sequence Ag has to converge to 0. •

THEOREM B.2. Let g e C(R2 x Td) with

g(s, x, z) dz^i = 0, for all (s,x,zi).L
Define the function

p(n, t, x, zi) = g(t, x, z1,nu>2(x + (c2 - c i ) t ) , . . . , nwd(x + (cd -

where ui satisfies (8.1). Then, for each R we have

sup< / p(n, s,x,zi)ds :t€[0,R], \x\ < R, Z\ G T > -> 0, for n ->• oo.
I Jo )

Proof. We proceed completely analogous to the above result. We first establish the
result in the case that g is (d + l)-times continuously differentiate with respect
to Zjfi, such that for each (t, x,zi) a Fourier series expansion with the appropriate
decay for the coefficients exists. This decay is uniform in (t, x, z\) for given R as in
the supremum above.

Now, the integrals over s S [0, t] can be modified by making the s variable
piecewise constant on intervals Ik = [kS, (k + 1)6]. Then, integration over s € Ik can
be performed on the Fourier series that shows, by using the small divisor estimate
(8.1), that the integral over /^ goes to zero for n —> oo. It is important that all
these considerations can be done uniformly in (t,x, z\).

Finally, for general not necessarily differentiable g we approximate by sufficiently
smooth functions and argue as in the proof of theorem (B.I). •
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