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All digraphs are determined that have the property that when any vertex and any edge
that are not adjacent are deleted, the connectivity number decreases by two.

1. Introduction and notation

Whereas the characterization of all graphs having the property that the deletion of any
two edges decreases the connectivity number by two is rather easy, and well known [6] (see
Section 2), the characterization of all graphs with the analogous property for the deletion
of two vertices instead of two edges seems to be hopeless. So the following idea suggests
itself. A graph or digraph G is called vertex-edge-critically n-connected (abbreviated to
n-ve-critical), if the deletion of any vertex v and any edge e not incident to v decreases the
connectivity number n of G by two (and such v and e exist). If we do not want to specify
the connectivity number, we write vertex-edge-critical or ve-critical. When 1 determined
the minimum number of 1-factors of a (2k)-connected graph containing a 1-factor, the
ve-critical graphs played an important role and all ve-critical undirected graphs were
characterized there {2]. It was shown in [2] that every ve-critical undirected graph is
obtained in the following way. For an integer m > 1, take vertex-disjoint circuits of length
m + 2 and vertex-disjoint copies of K, (the complementary graph of the complete graph
K., on m vertices) and take all edges between these vertex-disjoint graphs. We will give
an easier proof of this characterization in Section 3 by using the characterization of all
minimally n-connected graphs with exactly n + 1 vertices of degree n, given in [3). The
main result of the paper is the characterization of all ve-critical digraphs in Sections 4
and 5: every vertex-edge-critical digraph arises from a vertex-edge-critical undirected graph
by replacing every edge with a pair of oppositely directed edges.

First we will put together our notation and definitions. A (directed) multigraph G =
(V,E) consisting of the vertex set V(G) = V and the edge set E(G) = E may have
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multiple edges, but no loops. A maltidigraph is a directed multigraph. The set of edges
between the vertices x and y ( in the directed case, from x to y) in G is denoted by
[x,y]e, and, for X, Y < V(G), [X, Y] := Uxex,er [x, y]g. Distinct edges from [x, y]¢ are
distinguished by an upper index, for instance [x,y). If G is directed and e € [x, y]g, then
x is the tail and y is the head of e. The set of edges in G with tail in x (head in x) is
denoted by E*(x;G) (E~(x;G)). A graph has no multiple edges and is undirected and a
directed graph or digraph has no multiple edges of the same direction. For emphasis, we
sometimes say undirected (multi-)graph for (multi-)graph. In a graph or digraph we write
[x, y] for the edge from x to y. An edge [x, y] of a digraph D is symmetric, if [y, x] € E(D)
also, and asymmetric, otherwise. If every edge of a digraph D is symmetric, we call D
symmetric. In a drawing of a digraph, a pair of symmetric edges is displayed as a line
without an arrow-head. Edges e € [x,y]g and €' € [x/,)']¢ of a directed multigraph G
are consecutive if y = x’ or y = x holds. For a multigraph G, the directed multigraph G
arises from G by replacing every edge of G with a pair of oppositely directed edges. For
a directed or undirected multigraph G and a positive integer n, G" is constructed from
G by replacing every edge of G with n edges. The dual of a digraph D arises from D by
reversing the direction of every edge of D. The vertex number and the edge number of G
are denoted by |G| and ||G||, respectively. For a vertex set A, we define ANG := ANV (G),
and x € G means x € V(G). For A < V(G), the submultigraph of G spanned by A4 is
G(A) := G—(V(G)— A). For undirected G and x € G, we use d(x; G) to denote the degree
of x in G, and N(x;G) is the set of neighbours of x in G. For directed G and x € G, we use
d*(x; G) (d~(x; G)) to denote the outdegree (indegree) of x in G, and N*(x;G) (N~ (x; G))
is the set of outneighbours (inneighbours) of x in G. For a digraph D and x € D, we
define Ns(x;D) := N*(x;D) N N~(x; D), Né(x; D) := N¥(x; D) — Ny(x; D) and d5(x; D) :=
INE(x; D)| for e € {+,—}, and A,(D) := max{d5(x;D) : x € D and € € {+,—}}. A directed
multigraph D is called n-regular if d*(x;D) = d=(x;D) = n for every x € D. If there is
no doubt which graph is meant, we drop it in the above notation. N denotes the set of
positive integers, n is always from N, and N, :={n € N : n < m} for m > 0.

A path and a circuit in G pass through every vertex of G at most once. If G is
directed, they are continuously directed. For x,y € G, an x,y-path P is a path from
x to y, and for u,v € P such that u is before v on P in the directed case, P[u,v] is
the u,v-path contained in P and P[u,0) := P[u,v] — {v} =: P[u,0] —v. We consider
paths and circuits as subgraphs, but write them as a sequence of their vertices in the
order passed through (for multidigraphs, in the direction of the path or the circuit). We
say that the paths Py,...,P, in G cover G if ey, V(P:) = V(G) holds. In a directed
or undirected multigraph G, x, y-paths P,Q are openly disjoint if they are distinct and
V(P) N V(Q) = {x,y} holds. The maximum number of pairwise openly disjoint x, y-
paths in G is denoted by «(x,y;G). The connectivity number k(G) of G is defined by
K(G) = minyz, k(x,y;G) for |G| = 2 and k(G) := |G| — 1 for |G| < 1. In an analogous
manner, the edge-connectivity number A(G) is defined by edge-disjoint paths. A directed
or undirected multigraph G is k-minimally n-(edge- )connected, for k € N, iff ||G|| > k and,
for all E' < E(G) with |E’| < k, we have k(G — E') =n— |E'| ((G —E') = n—|E'|). For
1-minimally n-connected we say minimally n-connected. Let us make precise the definition
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of ve-criticality: a (di-)graph G is vertex-edge-critically n-connected iff k(G) = n > 2, and
for every v € V(G) and e € E(G —v), k(G—v — e) = n— 2 holds.

A sequence vy, [v1,01], 01, [V2, 1], 02, [V2,D2)s . . ., [V, Dpl, T, [1,05] Of vertices vy,77,...,0,
and distinct edges of a digraph D is called an alternating cycle in D. Normally, we
omit the edges in the notation and write uf,ﬁ, v;r ,---,0, for an alternating cycle, where
the upper index + at v; means that the edges (cyclically) on either side of v; have
their tails in v;. Sometimes we consider an alternating cycle as a subdigraph of D. If
Gy,...,G, are graphs (digraphs) with V(Gi) N V(G;) = @ for i # j, the graph (digraph)
>oie1 Gi =G+ Gy + - + G, is defined as

(UV(G,-),UE(G,-)UU{[x,y]:xeG,'andye U V(G,-)}).

i=1 i=1 i=1 JeN,—{i}

If all G; are isomorphic, we write nG, := Y [ | G;. If Gy,...,G, are not vertex-disjoint,
we define )", G; by vertex-disjoint copies of Gy,...,G,. If G = H, + H, and E(H,) =,
we also write G = V(H;) + H,. For an integer m > 3, C,, denotes an undirected circuit
of length m. For integers m > 3, k > 0, I > 0, the multidigraph D = C¥' is defined by
V(D) :=N,, and [[i,i + 1]p| =k, |[i + 1,i]p| = | for i modulo m.

2. 2-minimally n(-edge)-connected graphs

B. Maurer and P. Slater determined in [6] all 2-minimally n-connected graphs and all
2-minimally n-edge-connected multigraphs. We give a simpler proof of the latter result,
and show that, in the proof of the former, it is not necessary to use the fact from [1] that
every minimally n-connected graph has at least n + 1 vertices of degree n.

Let G = (V,E).be a 2-minimally n-connected multigraph. Consider any x € V. There
are an e € E incident to X, say, ¢ € [x,yjs and a system of n openly disjoint x,y-
paths Py,...,P,. From k(G — e) < n, it easily follows that k(x,y;G) = n by Menger’s
Theorem. Hence e € |J_, E(P;). For every ¢’ € E — {e}, k(G — {e,€'}) = n — 2 holds and
implies k(x,y; G — {e,€'}) = n — 2 by Menger’s Theorem. Hence ¢’ € |J__, E(P;) and thus
E = ., E(P;) and d(x) = n follow. Hence G is finite and n-regular. If |G| > 3, there is
az €V —{x,y}, and z is on exactly one of the paths P,,...,P,, since E = J_, E(P))
holds and Py, ..., P, are openly disjoint. Hence E = |J._, E(P;) implies d(z) = 2, and G is
2-regular. So we have somewhat generalized a result from Maurer and Slater.

Theorem 1. [6] The only 2-minimally n-connected multigraphs are K3 and, for n = 2, the
circuits C,,.

Let G = (V,E) now be a 2-minimally n-edge-connected multigraph, and choose x € V
and e € [x,y]g as above. Now there are edge-disjoint x, y-paths Py,...,P,. As above,
E = Ji_, E(P) and d(x) = n follow. Again, G is finite and n-regular. Let us assume
|G| = 3 and consider z € V — {x,y}. Then every edge incident to z belongs to exactly
one of Py,...,P,. Hence n is even and exactly n/2 of P,..., P, pass through z. Suppose
N(x) = {y,y1,-..,y¢}. Then |G| > 3 and E = (J_, E(P) imply {yi,...,y} # 0. We
define a directed multigraph D on the vertex set {yi,...,yx}. Every path P; of length
at least 2 generates the following edges of D (and there are no further edges in D):
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if z is the first vertex of P; after x, then z € {yi,...,yx} and we add the edges [z,u}/
for all u € (P;j —z) N {y1,...,yx}. We prove that D has no circuit. Suppose there is a
circuit in D, and this may have the edges [z;,u;]*,..., [Zm, 4m)’" in this cyclic order (hence
u; = z;41). By definition of D, ji,..., j. are distinct, since zy,...,z, are. If we replace P;
with the x, y-path P]fi = Pj[x,z] U Pj_ [ui-y,y] for i = 1,...,m (i modulo m), we get from
Py,...,P, asystem P,..., P, of edge-disjoint x, y-paths in G. But J_, E(P{) < UL, E(P)
holds, contradicting the remarks above. Hence D is acyclic and there is a z € V(D) with
d=(z;D) = 0. This means that all the n/2 paths P; containing z have E(P;) N [x,z]¢ # 0.
But this implies |[x,z]g| = n/2. Considering an ¢ € [x,z]¢ instead of e, we get, in the
same way, a vertex z’' # z with |[x,z']g| = n/2. Since G is n-regular and finite, we get
G= CI"G/lz. The following theorem summarizes what we have proved.

Theorem 2. [6] The only 2-minimally n-edge-connected multigraphs are K} and, for even
n/2

n>4, also Cy°.

Obviously, the deletion of two consecutive edges of a digraph cannot decrease the
connectivity number or edge-connectivity number by two (c¢f. [6]). So it is natural to
consider only the deletion of non-consecutive edges in a digraph. Let us call a multidigraph
D weakly 2-minimally n-connected (weakly 2-minimally n-edge-connected), if k(D) =n > 2
(A(D) = n = 2), but for all non-consecutive e, # e, from E(D), we have k(D — {ej,e2}) =
n—2 (MDD —{e,e2}) =n—2).

Let D = (V, E) be a weakly 2-minimally n-connected multigraph. Choosing [x, ylp # 0
and openly disjoint x, y-paths Py, ..., P,, we conclude, as above, E — (E~(x) U E*(y)) <
Ui=1 E(P;). Hence D is n-regular and finite. Let us assume |D| > 3. Then D has no multiple
edges, since D is n-regular and x(D) = n > 2. Since only one edge of |J_, E(P;) has its
head in z € V — {x,y}, we get n =2 and [y,z] € E for all z € V — {x,y}. Now D ~K;
follows easily.

Theorem 1d. The only weakly 2-minimally n-connected multidigraphs are
IZS and IE; forn=2.

Let us now consider a weakly 2-minimally n-edge-connected multidigraph D = (V, E).
If [x,y]p # @ and Py,..., P, are edge-disjoint x, y-paths, E —(E~(x)UE*(y)) = UL, E(P)
follows as above. Hence D is n-regular and finite. Put m := max, ey |[x, y]p| and choose
x,y € V such that m = |[x, y]p| holds. If N*(x) = {y} holds, then m = n and E — (E~(x)U
E*(x)) < [x,y]p. But this implies D = IZ; or D = Cg"o. So we assume |N*t(x)| = 2.
Let Py,..., P, be edge-disjoint x, y-paths. As in the proof of Theorem 2, we find a z €
N*(x)—{y} such that z € P; implies [x,z]p NE(P;) # 0. Set k := |{i € N, : z € P;}|. Since
z € N*(x) and d*(x) = n, we have k = |[x,z]p| = 1. Since E—(E~(x)UE*(y)) € U, E(P))
and d=(z) = n, we conclude |[y,z]lp]| =n—k. Sincem+k <dt(x)=nand n—k <m
by choice of m, it follows that n — k = m. Since E — (E~(x) U E*(z)) is contained in
the n-edge-disjoint x,z-paths of D({x,y,z}), we conclude E~(y) — [x,ylp = [z,y]p and
EY(y) — v,zlp = [y, x]p, hence |[z, y]p| = k = |[v, x]p|. Furthermore, |D| = 3 follows,
since D is n-regular and k > 1. So D = C§’”‘k, and we have proved the following theorem.
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Theorem 2d. The only weakly 2-minimally n-edge-connected multidigraphs are IZ;‘ and Cg"'"k
for k € N,

3. Vertex-edge-critical undirected graphs

First we will deduce some common properties of undirected and directed ve-critical
graphs. Subsequently, we will determine all ve-critical undirected graphs.

Let G = (V, E) be an n-ve-critical graph or digraph. Consider an edge e = [x,y] € E
and openly disjoint x, y-paths Py,...,P, in G. Forv € V — {x,y}, K(G—v —e) =n—2
by assumption, hence x(x,y;G — v — e) = n — 2 follows easily from Menger’s Theorem.
But this implies v € |Ji_, V(P;), hence V = |J_, V(P:) and G is finite. On the other hand,
if for every edge [x,y] of a graph or digraph G with x(G) = n > 2, every system of n
openly disjoint x, y-paths covers G, obviously G is n-ve-critical. We state this equivalence
formally.

Lemma 1. A graph or digraph G with k(G) = n > 2 is n-ve-critical, iff for every edge [x,y]
of G, every system of openly disjoint x, y-paths Py,..., P, covers G.

From this, the following property is easily deduced.

Lemma 2. Every n-ve-critical graph or digraph is finite and n-regular.

Proof. It remains to show that an n-ve-critical G is n-regular. Consider an edge [x, ]
of G and openly disjoint x, y-paths Py,...,P, in G. Suppose there is an edge [x,z] in G
that is not on any P;. Since Py,...,P, cover G by Lemma 1, there is a P; containing z,
say, z € P,. Then the openly disjoint x, y-paths Py,..., P,_, P,, where P, := x, P,[z, y], do
not cover G, contradicting Lemma 1. Hence d(x) = n or d*(x) = n, respectively, and G is
n-regular. O

If we delete a vertex v from an n-ve-critical graph or digraph G, then G— v is minimally
(n — 1)-connected. So one can apply the results on minimally n-connected graphs and
digraphs. By Lemma 2, G — v has exactly n vertices of degree n — 1 or n vertices of
outdegree n— 1 and n vertices of indegree n— 1, respectively. On the other hand, it is well
known [1] that a minimally (n— 1)-connected graph has at least n vertices of degree n—1,
and in [3] even a characterization of all minimally (n — 1)-connected graphs containing
exactly n vertices of degree n — 1 was obtained. This permits a straightforward proof of
the characterization theorem on n-ve-critical undirected graphs, which was first proved in
[2] using the fact known from [1] that every circuit in a minimally n-connected graph
contains a vertex of degree n. First, we state the above mentioned result for minimally
n-connected graphs.

Theorem A. [3] For n > 2, all minimally n-connected graphs containing exactly n+ 1 vertices
of degree n are obtained in the following way.

(a) For an integer m € N, U {0}, let H be an (n — m)-regular, (n — m)-connected graph on

n+ 1 vertices. Then K,, + H is minimally n-connected, containing exactly n+ 1 vertices
of degree n.
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(b) For an integer m with 4 < m < n, let H be an (n—m)-regular, (n—m)-connected graph on
n— 1 vertices, and let P be a path with |P| = m. Then P + H is minimally n-connected,
containing exactly n + 1 vertices of degree n.

For characterizing all ve-critical graphs, we need a further lemma.

Lemma 3. If G + H is a non-complete, ve-critical, undirected or directed graph, H is ve-
critical or ||H|| = 0.

Proof. Set n := k(G + H) and m := n—|G|. Using Lemma 2, we sece that H is m-regular
and m-connected. We assume ||H|| > 0. Then x(H) = m > 0 holds. Suppose m = 1 and
consider an edge [x,y] € E(H) # §. There are n openly disjoint x, y-paths in G+ H({x, y}).
This implies |G + H| = n+ 1 by Lemma 1, hence G + H is complete. This contradiction
shows k(H) > 2. Since for e € E(H), every separating vertex set S of (G + H) — e with
|S| = n — 1 must contain V(G), it is easy to see that H is ve-critical, since G+ H is. [J

Without difficulty, we now get the following result.

Theorem 3. [2] The vertex-edge-critical graphs are exactly the graphs Gy = kK +1Cpy2,
where m > 1,k,l are non-negative integers such that k(Gmy;) = 2 holds.

Proof. Suppose G is a ve-critical graph of the form ZL] Kum + 25-:1 Cy; with m; € N.
Since G is regular by Lemma 2, we get immediately that m; = m; = -+ = m; and
ny =ny---=mnand ny =my + 2, if k> 0 and | > 0. This implies G = G x;. On the
other hand, it is easy to check that the graphs Gy, with x(Gnx;) = 2 are ve-critical. So it
remains to show that every ve-critical graph has the form Y K, + 3 Cy,. We will prove
this by induction on the connectivity number.

Let G be an (n + 1)-ve-critical graph. If n = 1, then G is a circuit by Lemma 2. So
suppose n > 2 and choose v € V(G). Then G — v is minimally n-connected and has
exactly n + 1 vertices of degree n, namely N(v;G). So G — v has the structure described
in Theorem A. If G —v = K, + H, as in case (a) of Theorem A, then G = K41 + H,
where V(K 1) = V(Kn)U{v}. If G is complete or ||H|| = 0, then G has the form wanted.
Otherwise, Lemma 3 implies that H is ve-critical, and hence, by the induction hypothesis,
H has the form Z—Ifm,. + > Cy;, and hence G does as well. If G—v =P + H, as in case
(b) of Theorem A, then G = C + H, where C is a circuit containing v with the property
C — v = P. By an application of Lemma 3 and the induction hypothesis as in case (a),
the proof is complete. [}

4. Vertex-edge-critical directed graphs: introduction and preliminaries.

Of course, every n-ve-critical graph G provides an n-ve-critical digraph 5 The aim of this
paper is to show that we get every ve-critical digraph in this way, i.e., that every ve-critical
digraph is symmetric. With regard to Theorem 3, we will then have proved the following
- theorem.

Lad

Theorem 4. The vertex-edge-critical digraphs are exactly the digraphs Gpy; with
K(Gmit) = 2.
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The proof of this theorem cannot be based on an analogue of Theorem A: only recently
[5], I have shown that every minimally n-connected digraph has at least n + 1 vertices of
outdegree n (that there are at least n such vertices was known before from [4]), but at the
moment there is no hope to characterize all minimally n-connected digraphs containing
exactly n + 1 vertices of outdegree n and n + 1 vertices of indegree n. However, there is
an analogue in the directed case to the fact that a minimally n-connected graph does not
contain a circuit consisting only of vertices of degree exceeding n, which we will state
now.

Let D = (V,E) be a minimally n-connected digraph. Let Dy be the subdigraph of D
given by V(Dg) :={v € V :d*(v;D) > n or d(v;D) > n} and E(Dy) = {[x,y] € E :
d*(x;D) > n and d~(y; D) > n}. It was proved in [4] that Dy has no alternating cycle.

Theorem B. [4] For every minimally n-connected digraph D, Dy does not contain an alter-
nating cycle.

To every digraph D, we let correspond a bipartite undirected graph D as follows: take
vertices x' # x” for every x € V(D) so that {x/,x"} N {)’,y"} = @ holds for x # y, and
define D by V(D) := |J,.p{x,x"} and E(D) := {[x,y"] : [x,y] € E(D)}. The following
equivalence is easily seen and was shown in [4].

Lemma C. [4] A4 digraph D does not have an alternating cycle iff D is a forest.

In the following, D = (V,E) always denotes an n-ve-critical digraph containing an
asymmetric edge that has a minimum number of vertices. Our aim is to show that
such a digraph cannot exist. By Lemma 2, D is finite and n-regular and |D| > n + 2
holds. Since the dual digraph of a ve-critical digraph is ve-critical again, for every result
on D, there is a dual one, which we will use, but, in general, not state explicitly. For
x € V, H := D — x is minimally (n — 1)-connected. So Hy and Hj are defined, and we
set Dy := Hy and F, := Ho— ({)" : y € Nf(x)} U{)' : y € N7 (x)}). Defining R(x) :=
V—(Nt(x)UN~(x)U{x}), we observe Dy = (V —(N;(x)U{x}), [NF (x)UR(x), R(x)UN; (x)]p),
since D is n-regular. Furthermore, F, has the partition F, := {y’ : y € N} (x) U R(x)},
F; = {y” : y € R(x)UN; (x)} into independent vertex sets. Since D is n-regular by Lemma
2, we have d}(x) = d; (x) =: d,(x), and hence |F;| = |F/|. By Theorem B and Lemma C,
F, is a forest. Theorem B implies the following important properties of D.

Lemma 4.

(a) Ifaf,'dl,a;,...,ﬁk is an alternating cycle of D, then for every x € V —{ay,...,a}, there
is an i € Ny such that [a;, x]) € E or [x,a;] € E holds.

(b) If z ¢ N*(X)UN™*(y) for distinct x,y,z € V, then IN*(z) NNT(x) N N*(y)| = IN*(x)N
N*(y)l -1

Proof. (a) If [a;,x] ¢ E and [x,a;] ¢ E holds for all i € Ny, then a,ay,...,3 is an
alternating cycle in D,, contradicting Theorem B.

(b) For u # v in N*(x) N N*(y), x*,u, y*,v is an alternating cycle in D. If z ¢ N¥(x) U
N*(y)u{x,y}, we get [z,u] € E or [z,v] € E by (a). This implies IN*(z)"\N+(x)NN*(y)| >
IN*+(x) N N*(y)| — 1. 0
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Lemma 5. For all vertices x # y of D, the following statements are true:

(@) if [x,y] €E, then INT(xX)N N~ ()l <n—2;
(b)if [x,y] € E, then INT(X)NN*(y)|<n—2;
(c) N*(x) # N*(y).

Proof. (a) Suppose [x,y] € E and [N*(x) " N~(y)| > n— 1. Then there are n openly
disjoint x, y-paths in D(N*(x)U{x}). These paths cover D by Lemma 1, which implies the
contradiction |D| =n + 1.

(b) Suppose [x,y] € E and [Nt (x)NN*(y)| > n—1. Let z be the element of N*(y)— N*(x).
Suppose z # x, and consider a system of n openly disjoint y,z-paths in D. Obviously,
these paths cannot contain x. So Lemma 1 implies z = x. But then § := N*(x) — {y} =
Nt(y) — {x} with |S| = n— 1 is separating, since |D| > n + 2 holds. This contradiction
proves (b).

(c) We suppose there are vertices x # y in D with N¥(x) = N*(y) =: N. For z €
V —(NU{x,y}), we get IN*'(z)NN| > n—1 by Lemma 4 (b). Hence (b) implies
[z,x] ¢ E and [z,y] ¢ E and, therefore, N~ (x) = N = N~(y) holds. Suppose there
is an edge [z,Z] € E(D — (N U {x,y})) and consider n openly disjoint z,Zz-paths in D.
Since [INT(z)NN| = n— 1 and N*(x) = N*(y) = N, these paths cannot contain both
the vertices x and y. So Lemma 1 implies ||D — (N U {x,y})|| = 0. In particular, for
z € V—(NU{x,y}), we get N*(z) = N and so also N=(z) = N. Altogether, we have
shown D = (V — N) 4+ D(N). Hence ||D(N)|| = 0 holds or D(N) is ve-critical by Lemma 3.
If ||D(N)|| =0 holds, D is symmetric, contrary to our assumption. So D(N) is ve-critical.
But then D(N) is symmetric by choice of D as a minimal counterexample, hence D is
symmetric as well. This contradiction proves (c). (W

Lemma 5 (a) and (b) mean that for every x € V, the maximum outdegree and maximum
indegree of D(N*(x)) are at most n — 2, and, dually, the same holds for D(N~(x)). We
now deduce some properties of F, from Lemma 3.

Lemma 6.

(a) For every v € Fy, d(v; Fx)} > 1 and for every v € Fx — gV y"}, d(v; Fx) = 2 holds.
(b) For F=F,and F=F)], |{ve F :d(;F,)=1}|=c+ Y (d(v;Fx)—2) holds, where
veF
d(v:Fx)23
¢ denotes the number of components of F,.

Proof. (a) By duality, it suffices to consider a v € F. Then there is a z € N} (x) U R(x)
such that z’ = v holds. Since [z,x] ¢ E, we have d(z’; F,) = n— [N*(z; D) n N*(x;D)|.
So Lemma 5 (c) implies d(z’; Fx) > 1. Assume z € N}(x). Then d(z'; F,) > 2 by Lemma
5 (b).

(b) Since F;, F; is a bipartition of the forest F, into independent sets F, and Fy of the
same cardinality, we get

D dw;F) =|IFdl =[Fl—c=2F|—c=(}_2) —c.

veFy veF;
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This proves assertion (b), since there are no isolated vertices in F, by (a) and the case
F = F} is dual. (]

Lemma 6 (b) provides at least one vertex z € NJ(x) U R(x) # @ with d(z'; F,) = 1,
and by Lemma 6 (a), every such vertex is in R(x). So there is a vertex z € R(x) with
IN*(z) " N*(x)| = n—1, and we define R*(x) := {z € R(x) : IN*(z) " N*(x)] = n—1}.
R~ (x) is defined dually as {z € R(x) : IN"(z)n N~ (x)| = n— 1}. We emphasize once again
that R*(x) # @ and R~(x) # 0.

We need a series of preliminary lemmas. Herein, xo always denotes any vertex of D.

Lemma 7.

(a) If x € N}(xo) such that R™(xp) ¢ N*(x) holds, then [N~ (x) N N=(x¢)] = n—2 and
INT(x) N (N (x0) U R(x0))| = L.
(b) For all x € N}(xq) but at most one, |N~(x) N (NJ(x0) U R(xp))| = 1 holds.

Proof. (a) Suppose there is z € R™(x¢)— N*(x). Since [x, xo] ¢ E, we can apply the dual of
Lemma 4 (b) for xg,z, x, and get IN“(x)NN~(xg)"NN7(z)] = IN"(xo) NN~ (z)| -1 =n—-2,
by definition of R™{xg). This implies [N~ (x) N N~(xp)| = n— 2 by the dual of Lemma 5(b),
s0 INT(x) N (NF(xo) UR(xp))| =n—|N"(x) "N N~ (x0)| — 1 = 1 follows.

Since for every z € R™(xp), the definition of R™(x¢) implies that [N=(z) N N} (xp)| < 1
holds, (b) follows from (a), since R™(xg) # 0. d

Lemma 8.

(a) If v € R*(xg), x € N¥(xg) — N*(v), and y € N=(x) N (N (x0) U R(x¢)), then [v,y] €
E or y € R*(xo) holds.
(b) If x € N*(xg) such that |RT(xg) — N™(x)| = 2 holds, then N™(x) N\ N; (xp) = 0.

Proof. (a) Suppose [v,y] ¢ E. Since [xo,y] ¢ E also,'we can apply Lemma 4 (b) to
x0,0,y and get [N*(y) N Nt (xo) N N*(v)] > |[N*(xo) N N*(v)| — 1 = n— 2. This implies
INT(y) " N*t(xp)] = n— 1, since x € N*(y) — N*(v) holds. Hence, by Lemma 5 (b),
y € N~(xo) holds, so y € R(xp) and even y € R*(xg) by Lemma 5 (c).

(b) Suppose there are v; # vy in Rt(xo) — N~(x) for an x € N¥(xg), and there is a
y € N™(x) N N7 (xo). Then (a) implies [v;,y] € E for i = 1,2. Since N*(v;) N N*(xp) =
Nt(xo) — {x} for i = 1,2, we get N*(v;) = N*(v;), which contradicts Lemma 5 (c). d

For every [x,y] € E, we have IN*(x) N N~(y)| < n—2 by Lemma 5 (a). Let us assume
equality holds. Then (D — [x,y]) — (N*(x) " N~(y)) has exactly one x, y-path, since every
such path does contain V —(N*(x)NN~(y)) by Lemma 1. This path has length at least 3.

Lemma 9. Let [x,y] € E be such that S := N*(x) N\ N~(y) has exactly n — 2 vertices, and
let P :x,xy,...,Xk, Xx41 be the x, y-path in (D — [x,y]) — S. Then the following statements
are true.

(@) N*(x1) = {x,x2} US and N~(x;) = {xi—1,y} US;

(b)S = N~ (x)— [y,x] € E.
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Proof. Since, by Lemma 1, N*(x;) N {x3,...,xx+1} = @ holds, we must have N*(x|)
V —{x3,...,Xk+1}, hence N¥(x;) = {x,x2} US. The other claim in (a) follows by duality.
Now suppose S = N~ (x). Then there are n— 1 openly disjoint x;, x-paths in D({x;,x}US)
by (a). There is a z € N™(x) N {x2,...,Xk+1}, and by Lemma 1, P[xy,z],x does contain
{x2,...,Xk41}, which implies z = xx+1 = y, and hence (b). d

If we assume that [x,y] € E is asymmetric, and that A,(D) = 1 holds, then S =
Nt(x) N N~(y) is a subset of N~ (x), and Lemma 9 (b) implies |S| < n — 3. It is possible
to improve this result.

Lemma 10. Let [x,y] € E be asymmetric and assume /\,(D) = 1. Then

(@) INF(x)NN~(y)| <n—4, and
(b) INT(x)NN*(y)| < n—3 hold.

Proof. (a) We suppose S := N*(x) N N™(y) has at least n — 3 elements. Since A,(D) =1
holds, [x,y] is the only asymmetric edge with tail in x. Hence, there is exactly one
asymmetric edge in D with head in x, say [)/, x]. In particular, we see S € N~(x) and,
dually, S = N*(y). Then Lemma 9 (b) implies |S| = n—3, since [x, y] is asymmetric. Hence,
there are two openly disjoint x, y-paths P; : x, x"l,...,x;'(i g (=12)in (D —[x,y]) - S.
Furthermore, k; > 2 holds, and Py, P, cover D — S by Lemma 1, in particular, y' €
Py [x},y) U P,[x3,y). First, we prove a few properties.

(1) SU{xit} & N*(x}) for i = 1,2 (mod 2).

Suppose SU{x3} = N*(x!). Then SU{x?} = N*(x!)Nn N~(x) holds. Applying Lemma 9
to [x},x] € E, we get from the second equality in Lemma 9 (a) the contradiction that
[V, x] is symmetric.

(2) For i = 1,2 (mod 2), [x},x5"'] € E and |N*(x}) N (S U {x{"'})| = n — 3 hold.

By (1), there is at least one edge from x} to Pi[x}, y] U Pipq[xt, y] for i = 1,2. By
Lemma 1, this can be only the edge [x},x5"], since k; > 2. Hence (2) follows.
Dually, we get [x;;i_l,x;;’iill] € E for i = 1,2 (see Figure 1).

(3) § = N*(xi) for i = 1,2.

Suppose, for instance, S & N¥(x!), say s € S — N*(x}). Then §' := (S — {shu {x}} =
N*(x}) holds by (2). Set D' := (D — [x},x]) — §". If ¥ ¢ {x},x}}, we can easily find
openly disjoint x},x-paths Q; with y' € Q; and Q, with [y,s] € E(Q,) in D' such that
Qi N{x},x}} =0 and [Q2N{x} ,x2}| =1, contradicting Lemma 1. Hence, y’ € {x; ,x},}
holds. Suppose there is a z # ¥ in N~(s) N (P;[x}, y) U P2[x3,¥)). If {y',z} ¢ V(P) and
{y',z} & V(P,), using [x},x3] € E, we get, obviously, openly disjoint x}, x-paths Q1,0 in
D' with y ¢ V(Q1) U V(Q,), contradicting Lemma 1. So {y’,z} = V(P;) or {)/,z} < V(P3)
holds. Then we find, again, two openly disjoint x}, x-paths in D’ — y, namely in the former
case (then x; = y') the paths x|, P,{x},x} _,1,y’,x and Pi[x,z],s,x, and in the latter
case (then x, = y') the paths xi, P[x3,z],s,x and Py[x},x; 1.y, x. (Note that k > 3
in the former case, since in this case k; > 3, hence xj # x; holds, but there is only
the edge [x3,x!] from x? to P[x},y] by (2)). This contradiction with Lemma 1 shows
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Figure 1

N~(s) = (S — {s}) U{x,y,y',x}}. Now it is easy to find in D n openly disjoint x,s-paths
not containing {x ,xz } — {y'}. This contradiction to Lemma 1 proves (3).

We may assume )’ € P, hence y' € P;[x,y). If [x},x}] € E holds, by using (3) and
(2), it is easy to find n openly disjoint x3,x-paths in D — y, contradicting Lemma 1.
So [x},x}] € E is asymmetric. Hence [x?,x}] € E is symmetric, since A,(D) = 1, that
is [x},x}] € E holds. By using (3) and (2) again, we now easily find n openly disjoint
x}, x-paths in D — y. This contradiction to Lemma 1 proves (a).

(b) If IN*(x)NN*(y)| > n—2 holds, then |[N*(x)NN~(y)| > n—3 follows, since A,(D) =1,
thus at most one of the edges [y, z] for z € N*(x)NN*(y) is asymmetric. Hence (b) follows
from (a). a

Lemma 11. |D| > n+ 4 holds.

Proof. If A,(D) = 2, we choose an xo with d,(xp) = 2 and get IN*(xg) UN"(xo)| = n+2,
hence |D| > n+4, since R(xo) # §. If A,(D) = 1, we choose an asymmetric edge [x, y] € E
and get [INT(x) UN*(y)| > n+ 3 by Lemma 10 (b), hence [D| > n+ 4. a

Lemma 12. If d,(xo) > 0, then

(@) Uperrizg N *(v) 2 N*(xp) and
(b) |[R*(x0)] = 2 hold.

Proof. Since IN*(v)NN*(xp)] = n—1 for v € R*(xo), it suffices to prove (a). Suppose there
is an x € N*(x9) —U,egr+(x) N*(v). There is a v € R*(xo), and N*(v) — N*(xo) has exactly
one element, say, z. Consider any y € ¥V —(N*(xo)U{xo,v,2}) and suppose [y, x] € E. Then
Lemma 8 (a) implies y € R*(xg), contradicting the choice of x. This contradiction shows
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Figure 2

N~(x) = N*(x0) U {xo, 2}, hence IN~(x)NN*(x)| =n—2 and [z,x] € E by Lemma 5 (a).
Set S := N~(x) N N*(xq), and let y be the vertex of N*(x0) — (S U {x}) (see Figure 2).
We apply Lemma 9 (a) to [xo,x] € E and to the only xo,x-path P : xq,y,...,2,x in
(D — [x0,x]) — S, and get S = N~(z) and [y,xo] € E, [x,z] € E. Since [v,z] € E and
S = N*(v) N N~(z), the path v, y, x, X, z must cover D — § by Lemma 1. But this implies
|D| = n + 3, contradicting Lemma 11. O

5. Proof of Theorem 4

As in section 3, let D = (V, E) be a minimal counterexample to Theorem 4, and n := k(D).
We will show that D cannot have an asymmetric edge. First we prove that D must contain
many symmetric edges.

(1) Ag(D) < 2.

Suppose there is an xg € V with dy(xo) > 3. Since |R*(xo)| > 2 by Lemma 12 (b), Lemma
7 (b) implies da(x0) = 3 and [R*(xp)| = 2, since [N*(v) "\ N*(u) N NF(xo)| = d,(xo) — 2 for
u # v in R*(xo). Set NJ = {x{,x2,x3} and choose v € R™(xg) # . Then INT()NNF(x)| <
1, say, [x;,v] & E for i = 1,2. Hence, Lemma 7 (a) implies |N~(x;) NN~ (xg)] =n—2 and
thus [N7(x;) " R*(xg)] = 1 by Lemma 7 (b) (or 12 (a)) for i = 1,2. Therefore, we
have d~(x;; D(N; (x0))) = 0 for i = 1,2. Furthermore, |N~(x;) N R*(xo)] = 1 fori = 1,2
implies R*(xo) & N~(x3). Since [x3,x;] ¢ E, and [x3,x0] ¢ E, we get from the dual
of Lemma 4 (b) that |[N=(x3) N N=(xo) N N=(x1)| = [N~ (x0) N N-(x))]—1 =n-3,
s0 N7(x3) € N™(xo) U {x0} U R*(x¢). Together, we have seen [ID(NF(xo))ll = 0 and so
d(x;;Fy,) = 3 for i € N3. But this implies |[R*(xg)| > 4 by Lemma 6 (b) and (a). This
contradiction proves (1). a

In the next step we show the following,
(2) da(D) =1
Suppose A,(D) > 2, hence A,(D) = 2 by (1). Let xo € V with da(xp) = 2, say,
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Figure 3

N}(xo) = {xx2} and N;(x¢) = {y1,y2}. By Lemma 12 (b), |[R*(x0)| > 2 holds. Consider
any v € R (xg) # 9. Since [IN"(v)NN}(xq)| < 1, say, [x,v] & E. Then [N~ (x2)NN~(xo)| >
n—2 by Lemma 4 (b). Since [N~ (x2) N Ns(xp)| > n— 2 is not possible by Lemma 9 (b),
N=(x2) N N7 (xo) # 0 follows, say, [y2,x2] € E. Since |N~(x2) N (N~ (xp) U {x0})| = n—1
and y; € N~(x;), Lemma 8 (b) implies |[R*(xo)| = 2, say, R*(xo) = {v1,v2} and [N~(x2) N
R*(x0)| = 1, say, v € N™(x2). Hence [v3,x;] ¢ E, so N*(v;) N N*(xo) = Ny(x0) U {x1},
and since y; € N~ (x3), we get [v1,y2] € E from Lemma 8 (a). Hence [vy,y;] ¢ E, and
Lemma 8 (a) implies [y}, x2] € E, hence |[N~(x3)NNy(xo)| = n—3. Furthermore, [vy,y(] ¢ E
implies |N*(y;) N N*(v;) " N*(xp)] = n—2 by Lemma 4 (b). Since Ny(xo) < N*(y1)
is not possible by the dual of Lemma 9 (b), the last inequality implies [y;,x;] € E.
(So far, we have got the edges without or with one arrow-head in Figure 3.) Since
[x1,x2] € E and [N (x2) "N N~ (xg)l = n—2, we get IN"(x))NN~-(x2) NN~ (xp)| =n—3
from Lemma 4 (b). Since {xo,v1,y1} S N™(x1), but {xo,v1,y1} N N~(x2) N N~(x0) = 0,
we conclude (v, x;] ¢ E, hence Ny(xo) < N*(vy). So Lemma 8 (a) implies, as above, that
[v2,¥1] € E and [y2,x1] ¢ E, hence |N~(x1) N Ns(xo)| =n— 3.

Since |[R™(xo)| = 2 holds by duality, there are only two z € F; with d(z;Fy) = 1 by
Lemma 6 (a), and so Lemma 6 (b) implies d(y;; Fyx,) < 2 for i = 1 or i = 2. Suppose
d(y{; Fx,) < 2. This means [N~ (y;) N N™(xp)] = n— 2. Now we will point out n openly
disjoint vy, x1-paths that do not cover D. If z denotes the vertex of Ns(xg) — N~(xy), then
k(v1, x1; D({v1, X1 }U(Ns(x0)—{2}))) = n—2 and «(vy, x1; D{{vy, x1, 2, y2, X0, y1})— [v1, x1])) =
2 hold, since N=(y1) N {z,y2} # 0. So we get n openly disjoint v, x;-paths that do not



270 W. Mader

contain x, (and v;). This contradiction to Lemma 1 proves A,(D) < 1, since the case
d(y5; Fx,) < 2 is analogous. Since D is not symmetric, A,4(D) = 1 follows.

By (2), there is an xp € ¥V with da(x) = 1, say, Nf(xo) = {x} and N (xo) = {y}. For
such an xo, we now prove the following,

(3) R*(x0) = R™(x0) = R(xo), ID(R(x0))ll = 0, and R(xo) & N*(x) " N~(y) hold.

Choose v € R*(xp). If [v,y] ¢ E, then [INT(y) N N*(xo)] = n— 2 by Lemma 4 (b),
which contradicts Lemma 10 (b). Hence y € N*(v) and N*(v) € N*(x0)UN"(xp) follows.
Consider z € R(xp) — {v}. Since z ¢ N*(v), Lemma 4 (b) implies

IN*(z) N N¥ (xo) "N*(v)| 2 n—2. (@)

Let us suppose [z,v] € E. Then [z,v] is an asymmetric edge with INT(z)NN*(v)| > n—2,
contradicting Lemma 10 (b). Hence N~(v) = N*(xp) U N=(xo) follows. This implies
v € R™(xp) and [x,v] € E by Lemma 5 (c). So we have shown R*(xp) S R™(x¢). Since the
other inclusion is dual, we get R*(xo) = R™(xq). Furthermore, we have seen

NT(@©UN~(v) € Nt (x0)UN"(xp) for all v € R*(x), B

hence ||D(R*(xp))|] =0, and R*(xp) = N*(x) N N=(y).
So it only remains to prove R(xp) = R*(xp). Suppose R := R(xo) — R*(xo) # 0. First
we show

N*(z)) N N*(x0) = Nt(z2) " N¥(xo) for all z;,z, € R (7)

We can choose v, # v; from R*(xp), since |R*(xo)| > 2 by Lemma 12 (b). Since
y € N*(v;) " N*(1;), Lemma 5 (c) implies N*(v;) N N*(xo) # Nt(v2) N N*(xo). Using ()
for vy and v;, we conclude N*(z) N N*(xg) = N*(v;) N N*(v;) N N*(xp) for every z € R,
since |[N*(z) N N*(xp)| < n— 2. This implies (7).

Let us now consider D := D,, — R*(x) and F := F,, — User+(xg){V'sv"}- Since [N*(z) 0
N*(xp)l < n—2 and |[N~(z) N N~ (xo)| <n—2 for z € R = R(xg) — R™(xp), using (f), we
see d(z; F) > 2 for all z € V(F) — {x,y"}. Since F is a forest with |F| > 4, it must be an
x',y"-path. There are z;,2> € R, such that [x/,z{] € E(F) and [z}, "] € E(F) hold. Using
() and (y), Lemma 10 (b) implies, that D,,(R) is symmetric. This implies z; = z,, since
d*(z;D) = d~(z;D)(= 2) holds for every z € R. Then the undirected graph G with the
property G = Dy, (R) has one vertex of degree 1, namely z;, and all the other vertices of
degree 2. This contradiction shows R = §, and (3) is proved.

By Lemma 12 (b) and (3), r := |R(xg)| = |R¥(x0)| = 2 holds. Define § := N~(y)n
Nt(xg) and T := N*(x¢) — S. Since R(xo) = N~(y) by 3), N~(y) = R(x¢) U S, hence
S| = n—rand |T| = r hold. Since d,(y) = 1, and thus N*(y) — N=(y) = {xo}, we
conclude R(y) = T. Since |[D(T)|| = O by (3), using Lemma 5 (c), we immediately have
the following.

(4) Foreveryt € T, INT(t) N (S U R(x¢))] > n— 1 and for all t; # ¢, from T, S U R(xq) <
N*(t;) U N*(t;) holds.

Now we will complete the proof of Theorem 4 by constructing for an edge [u,v]) in D n
openly disjoint u, v-paths, that do not cover D. This contradicts Lemma 1.
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First, we assume there is a zg € R(xo) with N*(zg) 2 S. Then {z0,y] € E by (3).
Since zp € R*(xg) by (3), there is only one vertex in S — N¥(zg), say sg, and T <
N¥(zo) holds. Then «(zq,y; D({z0,y} U (S — {s0}))) = n —r holds. By (4), it is easy
to find r disjoint edges in [T,(R(xo) — {z0}) U {s0}]p, since r > 2 holds. This implies
k(z0, ¥; D({y, 50} U R(xp) U T) — [20,y]) = r. Together, this gives n openly disjoint zg, y-
paths not containing xo. Since the asymmetric edge [y, xo] was arbitrary, this contradiction
establishes our next claim.

(5) For every asymmetric edge {u,v] € E and every t € R(v), N~ ()N N*(v) = N*(t) holds.

For every z € R(xg), therefore, S = N*(z) and thus k(z, y; D({z,y}US)) = n—r+1 holds.
Choose zg € R(xg) and define T’ := N*(z0)NT. Then |T’| = r—1 holds. If r > 3, we get, as
above, r—1 disjoint edges in [T’, R(xo)—{z0}]p, hence x(zo, y; D({y }UR(x0)UT')—[z0, y]) =
r—1, so there are n openly disjoint zp, y-paths not containing xo. This contradiction shows
r=2

So we have |S| = n— 2, and Lemma 10 (b) shows that N*(y) 2 S is impossible. Hence
there is an asymmetric edge [so, y] € [S, {y}]p- Since d,(y) = 1, all the edges [R(xo), {y}Ip
are symmetric, hence R(xp) < N*(y) holds by (3). So we have R(xg) = N~ (sp) N N*(y),
and (5) implies R(xp) = N*(t) for every t € R(y) = T. So we see k(zg, v; D — xp) = n, since
k(z0, ¥; D({y} U R(x0) U T')) = 2. This contradiction to Lemma 1 completes the proof of
Theorem 4.
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