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The ionization relaxation and radiative cooling of weakly unsteady shock waves in 
krypton and xenon is examined. We find that, besides radiation energy loss, the 
shock-tube boundary layers and shock attenuation strongly influence the radiative- 
cooling region. Calculations taking these effects into account are in excellent 
agreement with experimental values of electron densities. The contribution of line 
radiation to total radiation energy loss is obtained, and amounts to about 54 yo a t  
temperatures of 10000 K in krypton. For xenon, first comparisons indicate a similar 
result. 

1. Introduction 
There have been numerous investigations of the radiative cooling behaviour of 

shock waves in inert gases (e.g. Oettinger & Bershader 1967; Horn, Wong & 
Bershader 1967; Pinkgre & Valentin 1974; Glass & Liu 1978; Vaguin et al. 1978 in 
argon; Rehder et al. 1969; Glass, Liu & Tang 1977 in krypton; Enomoto 1972 in 
xenon). Considerable effort has been made in calculating the line-radiation energy 
loss and in employing reabsorption models (Horn et al. 1967; Enomoto 1972). 
Frequently, calculations do not include the relaxation zone, but are started at the 
beginning of the radiative-cooling region. Despite this simplification, only rough 
agreement has been obtained, in many cases, between theoretical and experimental 
results of electron-density values. This can be caused by neglecting or simplifying the 
effects of boundary layers and shock attenuation. 

The aim of this paper is to treat continuum and line radiation in a concise manner 
(see $2)) and to maintain, as far as possible, high accuracy in the case of weakly 
unsteady shock waves of medium Mach numbers (8-12) in krypton and xenon. 

To achieve this, use is made of the gasdynamical equations for unsteady flow, 
including a boundary-layer term as well as the radiative energy loss. The time history 
of the particle densities in the shock-tube plasma is described by a two-level model. 
Details of the calculation are given in $3. In $4 computed electron densities are 
compared with experimental values for krypton and xenon shock waves. 

2. Computation of radiation energy loss 
It is well known that, besides collisional processes, radiative effects play an 

important role in non-equilibrium ionization. For medium Mach numbers and in the 
range of density considered here (upstream density 0.02-0.1 kg/m3) effects of the 
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optically thick, photoionizing continuum radiation can be neglected (Krauss-Varban 
1981). Also, resonant line radiation - in comparison with collisional processes - gives 
rise to appreciable rates of excitation only ahead of the shock front. Far more 
important is the energy loss due to optically thin continuum and line radiation. Ln 
addition to  boundary-layer effects and shock attenuation, radiation cooling determines 
the downstream behaviour of the electron density investigated here. 

The contributions to the radiation energy loss per unit volume and time ( Q )  are 
due to radiative recombination (Qfb) and bremsstrahlung in the field of the ions (Q#) ,  
free-free transitions in the field of the atoms (Qff)) and line radiation (QL): 

(1) 

In the Kramers-TJnsold theory the energy loss due to  continuum radiation in the field 
of the ions (see e.g. Horn et al. 1967) is described by 

Q = QTb + Qjf’ + QP + QL. 

where A = 6.842 x J m3 KB. ne and T, are the electron density and temperature, 
k and h are Boltzmann’s and Planck’s constants respectively, Zeff is an effective 
nuclear charge and v, is the cut-off frequency. 

A more exact and physically justified description is obtained by quantum- 
mechanical calculations, the results of which are presented in terms of the 
temperature- and frequency-dependent [-factor (see e.g. Hofsao 1978). The emission 
coefficient q, reads 

where 

g+ is the statistical weight of the ions in the ground state, and u+ is the partition 
function of the ions. 

To obtain an expression equivalent to ( 2 ) ,  we integrated (4) numerically, utilizing 
the E-fact,ors ef and tfb (excluding the ionizing part) calculated by Hofsafi (1978 and 
personal communication). As a very good approximation, the integrated [-factor can 
be described by a linear temperature dependence, similar to the expression shown 
in brackets in ( 2 ) :  

Q,t,+Qb? = A 3 A ( A + F ) ,  ( 5 )  

where 
= 2.11, h$2 = 1.95 eV for krypton 

and 

= 2.70, hq52 = 2.14 eV for xenon. 

Using the symbol G(v) for the absorption coefficient (without induced emission) per 
density of electrons (n,) and atoms (na), the radiation energy loss due to freefree 
transitions in the field of the atoms can be written as 
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T (K) 
FIGURE 1. Radiation energy loss due to free-free transitions in the field of the atoms (normalized 
to unit density of electrons and atoms). The curves (a )  and ( b )  correspond to krypton and xenon 
respectively. 

We numerically integrated (6) with theoretical values of k(v, T,) calculated by 
Geltman (1973). No values were given for wavelengths h < 0.5 pm, resulting in an 
estimated uncertainty for QiF) of about 30 % at 9500 K, which equals the theoretical 
error of the values for h 2 0.5 pm. However, these uncertainties are not crucial, if 
the contribution of Q@ to total continuum energy loss does not exceed 20 % in the 
radiative-cooling region, which is the case in the temperat)ure and density ranges 
considered here. The results are shown in figure 1. 

Horn et al. (1967) and Enomoto (1972) obtained an expression for the energy loss 
of line radiation QL by summing over all contributing transitions and assuming a 
model for reabsorption. Because of the uncertainties in transition probabilities, it is 
questionable whether the considerable additional effort is justified. Instead, we follow 
Glass et al. (1977), and make use of an adjustable factor for the contribution of line 

where 
Qcont = Qfb + Qfi’ + &It’. 

I n  contrast with absolute values, one can obtain the relative temperature dependence 
a(T)  with little effort: in local thermodynamic equilibrium (LTE) this temperature 
dependence results mainly from the proportionality to the respective upper-level 
density, as opposed to the proportionality to ne in the case of the continuum. By 
making simple assumptions about the contributions of the different multiplets (here 
the results found for argon (Horn et al. 1967) have been transferred to krypton), one 
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FIGURE 2. Temperature dependence a(T)  of the contribution of line radiation. Left scale : percentage 
of total radiation energy loss. The circles denote some values of a obtained by fitting computed 
to experimental electron densities in the radiative-cooling region (see $4). 

obtains a temperature dependence shown in figure 2. The curve is displayed 
neglecting a small correction term due to the different n, dependence of &if"); 
additionally, some experimental values have been indicated (see $4). 

For the limited temperature range occurring in the radiative-cooling region, a 
constant value of a can be used to a reasonable degree of accuracy. 

3. Governing equations and numerical methods of solution 
Since we are mainly interested in electron densities, we make use of the well-known 

two-level model in describing the krypton and xenon energy levels. Uniting the four 
lowest excited levels and averaged with the statistical weights, the excited model-level 
is given mean energies of 10.18 eV (krypton) and 8.359 eV (xenon). 

As usual, because of the high threshold energy, rates for direct ionization from the 
ground state are neglected. Consequently the rate equations read 

J p 2e) = ne(,, a, = k:+ no n, - k:, no ni + ky+ n, n, - k;, n: - k:, n:. 

In the rate coefficients k of excitation and ionization, the indices e, a and r denote 
collisions with electrons and atoms respectively and radiation. The subscripts 0, 1, + 
and e refer to the ground state, excited level, ion and electron respectively. 

Naturally, line radiation transitions are not considered here. Consistent with a 
two-level model, for radiative recombination we make the assumption that, except 
for the resonant continuum, all recombination processes lead to the excited model- 
level (see also $4) : 



Relaxation and radiative cooling in unsteady shock waves 379 

This rate coefficient was obtained by numerical integration of 

At a temperature of 10000 K, (10) gives 

2.9 x m3/s (krypton) and 3.7 x m3/s (xenon). 

The collisional-rate coefficients for the inverse processes are calculated from those 
of the direct processes, utilizing the method of detailed balancing. As usual, a linear 
cross-section law and a Maxwellian distribution of velocities have been assumed. The 
rate coefficients then are related to the cross-section constants SkL (see e.g. Demmig 
1977), for which we have used the following values (those for xenon are in 
parentheses) : 

Sil = 2.0 x (1 .1  x m2/J,  Si+ = 0.5 (0.5) m2/J, 

Szl = 5.2 x (8.0 x m2/J,  = 4.0 (4.0) m2/J. 

As discussed in Frobe, Muller & Botticher (1983), ~!3? and thus the relaxation time 
are strongly influenced by small degrees of impurities of the gas. However, at the end 
of the relaxation zone a variation of Sp only results in a time shift. 

For deviations from a Maxwellian velocity distribution of the electrons and effects 
on the ionizational relaxation in shock waves see Meyer-PruBner (1983). Close to the 
point of relaxation, however, and in the radiation-cooling region of interest here, 
deviations no longer persist because LTE conditions are approached. 

The gasdynamical equations of one-dimensional unsteady flow read (Demmig 1977) 

} ( 1 1 )  

1),p+p- au = -R, p-+- Dou aP = 0, p--- Doh DOP- - - Q .  
Dt ax Dt ax Dt Dt 

u is the flow velocity, p is the pressure and p is the total mass density. The quantity 
R in the equation of continuity describes the influence of the boundary layer in the 
shock tube (as a mass-loss term). Q is the radiation energy loss defined in (7). The 
specific enthalpy h contains the energy densities of excitation and ionization. 
Additionally, the equations of state for the ideal monatomic gas are used. 

T, is determined by the electron-energy equation, which balances the energy gain 
due to elastic electron-atom and electron-ion collisions and the energy loss originating 
from the inelastic processes. By detailed calculation and employing general rate 
equations (Murty 1971), the total radiation energy-loss term Q of (7) can be shown 
to enter the electron-energy equation (Krauss-Varban 1981 ). 

For the calculation of the elastic electron-atom collisional frequency we used the 
momentum transfer cross-section QE of Frost & Phelps (1964), which in the case of 
krypton is multiplied by a factor of 2, according to the results of Muller (1981). 

Because of the limitations of the common boundary-layer model used, which is 
based on a similarity assumption and transferred to  a shock tube with quadratic 
cross-section, the quantity R is multiplied by a correction factor cR close to unity, 
which has to be determined experimentally. Eventually, we hope to improve this 
description by detailed boundary-layer calculations. Unfortunately, in the case of 
unsteady flow, such calculations can only be done by investing considerable effort. 

For the numerical calculation, the system of hyperbolic differential equations ( 12) 
is transformed into its characteristic normal form. It is solved with a first-order 
method of characteristics as described by Demmig (1 978). The electron-energy 
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4. Results and discussion 
The calculated electron-density time histories have been compared with experim- 

ental results obtained by two-wavelength interferometry (Schopper 1976; and 
subsequent experimental work). When radiation energy loss is taken into account, 
a very good agreement ofthe electron densities results in the vicinity of the maximum 
and in the radiation cooling region (see figures 3-6; for the relaxation time see the 
comment on Sll in $3).  On the average the theoretical maxima only show a deviation 

FIGURE 3. Computed electron-density profiles in krypton a t  two locations, separated by 1 m. The 
solid curve corresponds to the location of measurement of the experimental data denoted by circles. 
Mach number 10.29, test-gas density 0.0450 kg m-3, equilibrium temperature 9050 K ;  a = 1.6, 
cR = 1.8, attenuation coefficient 1.3 yo m-l. 

equation is solved by the secant method. The stiff rate equations require a special 
procedure: wc used the method of Liniger & Willoughby (1970) of first order and, 
alternatively, a method of second order reported by Steihaug & Wolfbrandt (1979). 
The computation proceeds as indicated in Demmig (1978). 

It appeared to be advantageous to improve the accuracy of the particle densities 
and electron temperature in one single iteration a t  every gasdynamical step. This 
is because of the strong coupling of the electron-energy equation and the rate 
equations. The method of Steihaug & Wolfbrandt gave rise to $ - & shorter execution 
times than the first method ; problems of stability did not appear. Giving an accuracy 
of about 2 yo in the particle densities, execution times amounted to  between 1-10 s 
on a CD CYBER 76. 
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c* = 1.0 
2.0 

3 .O 

t (PS) 

FIQURE 6. Computed electron-density profiles for three different values of the correction factor for 
the boundary layer: cR = 1.0, 2.0 and 3.0 as indicated. Shock conditions and experimental data 
as in figure 5 ;  a = 1.4. 

of 2.5 yo from the experimental values. Larger discrepancies occur at  later times 
at the measuring location (2 100-150 ps after passage of the shock front), when the 
transition from a laminar to a turbulent boundary layer takes place and the boundary- 
layer model used becomes invalid (experiments by Stielow (1983, personal communi- 
cation) using schlieren photographs support this assumption). 

Dependent on the Mach number, the radiation shortens the relaxation time (0 for 
M, = 10, 10% for M, = 12) and causes a general decrease of the electron-density 
maximum of about 9 % in krypton and 13 yo in xenon. Whereas the radiation-loss term 
in the electron-energy equation is important, the radiative-recombination rate only 
has a minor effect on n,, and virtually no effect on n,. 

Comparison of the electron densities a t  two different locations of measurement 
shows clearly the necessity of an unsteady description of real shock waves (see 
figure 3).  Figure 5 shows a variation of the contribution a of line radiation; figure 6 
exhibits the effect of the correction factor cR for the boundary layer. Both quantities 
influence the electron-density maximum as well as the radiative-cooling region. 

A number of experiments in krypton have been evaluated to determine these free 
parameters. We approximated the calculated values of In n, by a straight line in the 
radiative-cooling region and employed a least-square fit (see figure 2 for some 
resulting values of a). Using the relative temperature dependence a(T)  of figure 2, 
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and also considering the absolute value of the electron-density maximum, we 
obtained 

1.60 a t T =  9000K, 
1.15 a t  T = 10000 K, 

cR = 1.8k0.2 and a = 

equivalent to a contribution of line radiation to total radiation energy loss of 62 yo 
and 54 Yo, respectively. 

Inspection of the electron gradient in the avalanche region supports these results. 
The value of a is in fair agreement with the result of Glass et al. (1977), who obtained 
about 50 yo at temperatures around 11 000 K. 

First comparisons of calculated electron densities with experimental values in 
xenon (Schwarz 1983) indicate cR being closer to  unity, and a contribution of line 
radiation to total radiation energy loss similar to  the result in krypton, contrary to 
the value obtained by Enomoto (1972). (For Mach number 10 Enomoto obtained 
80 % , which amounts to 74 % , taking into account the different theoretical continuum- 
radiation values his result was based on.) 

We would like to thank W. Botticher and the members of the shock-tube group 
of our institute for many helpful discussions and for providing their experimental 
results used in this work. 
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