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Abstract

KEYWORDS: Preparation uncertainty, measurement uncertainty, entropic uncer-
tainty, joint measurements, multicriterial convex optimization

Uncertainty relations are commonly praised as one of the central pillars of quantum
theory. Usually, they are taught in the �rst weeks of a beginners lecture, and
introduced in the �rst chapters of a textbook. However, their precise operational
meaning and a formulation in a general context, i.e. beyond the example of position
and momentum observables, are often left out. The reasoning for this is twofold:
On one hand, an exact operational de�nition of uncertainty, indeterminacy and

a corresponding uncertainty principle has been the content of many debates since
the early days of quantum mechanics until today. From a modern perspective,
we have the consent that there are at least the two notions of preparation and
measurement uncertainty: the �rst notion prohibits the existence of dissipation
free states and the latter one the existence of error free joint measurements.
On the other hand, we have that, the mathematical tools, which are needed

for comprehensive treatment of uncertainty relations in a general context, are
still under development and usually go far beyond the mathematical level of an
introductory course.
In this thesis we will investigate these two notions of uncertainty, their corre-

sponding uncertainty relations, such as their interplay. The aim of this thesis is to
give answers to the central questions:

(1.) Which quantities should be used to formulate uncertainty?
(2.) How can we compute uncertainty relations for those?
(3.) Are there connections between the two notions of uncertainty?

We will do this, whenever possible, in a most general context and with a focus on
relevant examples, otherwise. Therefore, we will consider constructions of mea-
surement errors and deviation measures that quantify uncertainty, based on, so
called, cost functions. Commonly used uncertainty measures like variances, en-
tropies, and the Hamming distance are examples for these. We will investigate the
structure of the corresponding uncertainty relations and provide several methods
that enable us to compute them. The third question is addressed by a theorem that
shows, for sharp observables, that measurement uncertainty relations can be lower
bounded by preparation uncertainty relations, whenever the same cost function is
used.





Kurzzusammenfassung

SCHLAGWORTE: Preparationsunschärfe, Messunschärfe, entropische Unschärfe,
gemeinsame Messungen, multikriterielle konvexe Optimierung

Unschärferelationen sind ein zentraler Grundpfeiler der Quantentheorie. Üblicher
Weise, werden sie bereits in den ersten Wochen einer Grundvorlesung und in den
ersten Kapiteln eines Lehrbuches über Quantenmechanik eingeführt. Eine präzise
Erläuterung ihrer operationellen Bedeutung sowie eine Formulierung in einem all-
gemeinen Kontext, d.h. jenseits des Beispiels von Ort und Impuls, wird jedoch
meistens ausgelassen. Hierfür sind die folgenden zwei Gründe zu vermuten:
Zum einen ist eine exakte De�nition der Begri�ichkeit von Unschärfe, Unbes-

timmtheit, und eines diesbezüglichen Prinzips, der Inhalt vieler Debatten, seit den
frühen Tagen der Quantentheorie bis heute. Aus heutiger Sicht herrscht hierzu
der Konsens, dass, in jedem Fall, zwischen den Begri�en Preparations Unschärfe
und Messunschäfe unterschieden werden muss. Hierbei verbietet der erste Be-
gri� die Existenz von nicht dissipartiven Zuständen und der zweite die Existenz
von fehlerfreien gemeinsamen Messungen. Zum anderen, be�nden sich die, für
eine zufriedenstellende Behandlung von Unschärferelationen notwendigen, math-
ematischen Methoden noch in Entwicklung und überschreiten sicherlich den An-
forderungshorizont einer Einführungsvorlesung.
In dieser Arbeit werden die beiden obigen Begri�e von Unschärfe, die zuge-

hörigen Relationen, sowie ihre Zusammenhänge, untersucht. Hierbei besteht
das Ziel antworten auf die folgenden zentralen Fragestellungen zu geben:
(1.) Welche Gröÿen erlauben eine quantitative Formulierung von Unschärfe?
(2.) Lassen sich die entsprechenden Unschärferelationen berechnen?
(3.) Gibt es Verbindungen zwischen den beiden Unschärfebegri�en?
Diese Fragen werden, wann immer dies möglich ist, in einem allgemeinen Kon-
text, und ansonsten mit einem Fokus auf relevante Beispiele, beantwortet wer-
den. Hierzu werden Konstruktionen von Messfehlern und Streumaÿen, die auf, so
genannten, Kostenfunktionen fuÿen, betrachtet. Üblicher Weise benutzte Unschär-
femaÿe, wie Varianzen, Entropien und Hamming-Abstände sind Beispiele hierfür.
Im Detail werden die Struktur der zugehörigen Unschärferelationen und Metho-
den zur Berechnung dieser, betrachtet. Die dritte der obigen Fragen wird mit
einem Theorem beantwortet werden das aussagt, dass, für scharfe Observable,
Preparationsunschärferelationen untere Abschätzungen für Messunschärferelatio-
nen liefern, wenn beide Gröÿen bezüglich der gleichen Kostenfunktion betrachtet
werden.





Acknowledgements

First and foremost I want to thank my advisor Reinhard F. Werner. He
has taught me, by example, how a good scientist has to work and think. I
appreciate all contributions of time, ideas, and funding to make my Ph.D.
experience so productive.

I thank my fellow groupmates for all the stimulating discussions, for the
sleepless nights we were working together in order to �nish our projects,
and for all the fun we have had in the last �ve years. In particular, I am
grateful to Kais Abdelkhalek, Leander Fiedler, Lars Dammeier and David
Reeb, for all the time they spend in our joint works.

I would also like to thank my other collaborators: Adrian Auer, Guido
Burkard, Wissam Chemissany, Jörg Duhme, Berge Englert, Fabian Fur-
rer, Hans Maassen, Gianpiero Mangano, Philippe Raynal and Chrisian
Schoder for all the fruitful work.

Furthermore, I would like to thank all my colleagues and friends from other
institutions for all the great exchanges, discussions and new insights they
provided me over the years. I am especially grateful to: Silvestre Abruzzo,
Adrian Auer, Ana Costa-Sprotte, Otfried Gühne, Anna L./K. Hashagen,
Timo Holz, Hans Maassen, Cornelia Spee, and Giuseppe Vitagliano.

There were many people who granted me a lot of help, advice, and open
ears for �nishing this thesis. Thanks to Coco, Inken, Kais, Lars, Louis
and Reinhard.

Last but not the least, I would like to thank my family and my girlfriend:
my parents, my brother, my sister and Coco for supporting me throughout
writing this thesis and my life in general. I would especially like to thank
my grandmother for providing me with warm food, words of wisdom and
a car.

René Schwonnek





Contents

Publications xv

1 Introduction 1

1.1 Two notions of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Structure and summary . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Measurement uncertainty relations based on cost functions 31

2.1 Measurement Uncertainty for Finite Quantum Observables [SRW16] 34

3 Preparation uncertainty relations based on cost functions 49

3.1 Preparation uncertainty for cost functions . . . . . . . . . . . . . . 49
3.2 Connections between preparation uncertainty and measurement un-

certainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Uncertainty based on variances 63

4.1 State-independent Uncertainty Relations and Entanglement detec-
tion in noisy Systems [SDW17] . . . . . . . . . . . . . . . . . . . . 66

4.2 A non-algorithmic bound on variance based uncertainty relations . . 72

5 An information theoretic view on measurement uncertainty 77

5.1 Uncertainty relations for the discrete metric . . . . . . . . . . . . . 78
5.2 Entropic measurement uncertainty relations . . . . . . . . . . . . . 81

6 Entropic uncertainty relations 93

6.1 Additivity of entropic uncertainty relations[S18] . . . . . . . . . . . 94
6.2 The computation of entropic uncertainty relations . . . . . . . . . . 106

7 Entropic uncertainty relations for mutual unbiased bases 113

7.1 Optimality of entropic uncertainty relations [ASM+15] . . . . . . . 114



Contents

8 Continuous systems: a modi�ed Heisenberg algebra 139

8.1 Optimal uncertainty relations in a modi�ed Heisenberg algebra
[ACF+16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Conclusions 155

Literature 166

Appendix 190

xii







Contents

Publications

1. L. Dammeier, R. Schwonnek, and R. F. Werner: Uncertainty relations for

angular momentum, 2015, New Journal of Physics 17 (9),093046.

2. [ASM+15]
K. Abdelkhalek, R. Schwonnek, H. Maassen, F. Furrer, J. Duhme, P. Raynal,
B.-G. Englert, and R. F. Werner: Optimality of entropic uncertainty rela-

tions, 2015, International Journal of Quantum Information 13 (06), 1550045.

3. A. Auer∗, R. Schwonnek∗, C. Schoder, L. Dammeier, R. F. Werner, and
G. Burkard, Entanglement distillation using the exchange interaction, 2016,
Applied Physics B 122 (3), 51.

4. [SRW16]
R. Schwonnek, D. Reeb, and R. F. Werner, Measurement uncertainty rela-

tions, 2016 Mathematics 4 (2),38.

5. [ACF+16]
K. Abdelkhalek, W. Chemissany, L. Fiedler, G. Mangano, and R. Schwon-
nek, Optimal uncertainty relations in a modi�ed Heisenberg algebra, 2016,
Physical Review D 94 (12), 123505.

6. [SDW17]
R. Schwonnek, L. Dammeier, and R. F. Werner: State-independent uncer-

tainty relations and entanglement detection, 2017,
Physical Review Letters 119.170404

7. [S18]
R. Schwonnek, Additivity of entropic uncertainty relations, 2018,
Quantum 2, 59

8. R. Schwonnek, and R. F. Werner: Wigner distributions for n arbitrary op-

erators

arXiv:1802.08342

9. R. Schwonnek, and R. F. Werner: Properties of Wigner distributions for n

arbitrary operators

arXiv:1802.08343

Publications labelled by author abbreviation and year (e.g. [XYZ 123]) are part of this thesis.

xv





CHAPTER 1

Introduction

'Nebenbei sind auch einige Punkte der mathematischen Struktur etwas

ausführlicher dargelegt;' - E. H. Kennard

The existence of unavoidable uncertainties and incompatibilities in a quantum
measurement process is clearly one of the most characteristic implications of the
quantum theory. These limitations mark one of the sharp lines that allows us to
distinguish quantum from classical physics.
From a mathematical perspective, the origin of uncertainty can be traced back

to the interplay of the quantum mechanical state space, which is, in contrast to
classical theories, not a simplex, with the set of quantum measurements. However,
from a practical perspective, this interplay can usually not be adequately captured,
neither analytically or numerically. Here, uncertainty relations come into play,
yielding a simpli�ed picture that still captures the necessary information on 'goes'
and 'no-goes' that are needed in applications like for example security proofs or
the detection of non-local correlations.
In this thesis, we will omit considerations to the philosophical implications of

uncertainty for the nature of reality, the reality of nature, and the role of an
observer within these. Di�erent perspectives to those questions can be found
in [BE67,Pop89] and in [Hei44].



Chapter 1: Introduction

To avoid those considerations here, we will restrict our view on quantum theory
to a minimal, operational, rather technical, perspective:
From this perspective every experiment in quantum mechanics can be abstracted

to the fundamental steps of state preparation and measuring, see Fig. 1.1. Thereby,
a state is handled as description for a repeatable preparation procedure and a
measurement as a 'black box' that maps states to probability distributions of
measurement outcomes.

Figure 1.1: Basic setting of an experiment in quantum mechanics: A state ρ is
measured on a device A. Repetitive measuring gives rise to a probability distribu-
tion.

The only way in which we can in�uence an experiment is by choosing state
preparations and measurements and the only observations we can make are the
particular outcomes of a measurement and their respective statistics.
Within this spirit, we will aim to bind every quantity that characterises un-

certainties and uncertainty relations to probability distributions of measurement
outcomes. Thereby, we will have in mind that we have to take care of the individ-
ual structure a particular outcome set has. As a consequence, we can not assign
a single universal quantity that meaningful quanti�es uncertainty in any situa-
tion. Rather than that we will start by considering general classes of uncertainty
measures and have a look at particular examples afterwards.

1.1 Two notions of uncertainty

In this thesis we will distinguish the following two fundamental notions of uncer-
tainty:

Preparation uncertainty

The �rst notion, the one that has been considered in the literature mostly, and the
one that is introduced in any textbook or beginners course on quantum mechanics,
is preparation uncertainty. Here, we are interested in classifying the spread/the
deviation of the statistics obtained by measuring an observable A on a state ρ.

2



1.1 Two notions of uncertainty

Whenever a non-zero spread is present in a particular statistic, we will say that
ρ has an uncertainty with respect to the measurement A. Depending on the
context, typically variances ∆2

ρA or entropies H(A|ρ) are used to quantify this
spread. However, in this thesis we will also introduce a more general class of
deviation measures ν(A|ρ), for which variances and entropies are examples, that
is based on what we will call a cost function.
We can compare di�erent measurement devices, say A and B, with respect to

their preparation uncertainty by the type of experiment that is sketched in Fig. 1.2.
Here, we test each device separately by individual copies of the same state ρ. The
individual shots of such a test are performed independently and no correlations
between them are introduced. Hence, all measurements could either be performed
at di�erent times or locations, or also simultaneously and in the same lab.

Figure 1.2: Elemental scenario
for a test of preparation uncer-
tainty. Two instances of the same
state ρ are measured with ideal
devices A and B. The deviation
ν(A|ρ) is compared to the devia-
tion ν(B|ρ)

.

At the end of a test-round we obtain a pair of deviations (ν(A|ρ), ν(B|ρ)).
Here, a preparation uncertainty relation describes the relation between ν(A|ρ) and
ν(B|ρ). More precisely, an uncertainty relation restricts the values, that ν(B|ρ)

can attain, when we �x the value of ν(A|ρ), and vice versa. In practice we have to
perform aminimization over all quantum states in order to get such a relation. The
prototype for a preparation uncertainty relation is Kennard's inequality [Ken27]
for position and momentum:

∆2
ρQ∆2

ρP ≥
~2

4
(1.1)

Here, we can directly infer that for all states, that attain a ∆2
ρQ close to zero, ∆2

ρP

has to be very big. In general the aim of a preparation uncertainty relation is to
quantify statements like:

'there is no state ρ such that

the deviations of A and B measurements

are simultaniously small'.

3



Chapter 1: Introduction

We note that, in the above setting, we do not have to specify the 'state after
a measurement', since no particular instance of a state is measured twice. There-
fore, this notion gives no description of folkloric, and in this context misplaced,
statements like:

'an A measurement, with uncertainty ∆2
ρA, (1.2)

disturbs a B measurement by ∆2
ρB' .

Statements of this kind are captured as subcase of the following notion of uncer-
tainty:

Measurement uncertainty

The second notion, measurement uncertainty, is the one most discussed and de-
bated since the early days of quantum theory until today. In this thesis we will
adapt the position of [BLW14b] and treat measurement uncertainty as the opera-
tional counterpart of preparation uncertainty:
Here, we are interested in �nding devices that can perform a A and a B mea-

surement jointly in one shot. This is, if A and B are measurements with outcomes
on the sets ΩA and ΩB, we will consider measurement devices, R, with outcomes
on the joint outcome set ΩA × ΩB. For every state ρ, such a device will give us,
in every shot, a tuple (ai, bj), from which we will interpret the ai component as
A-type outcome and the bj component as B-type outcome. Throughout this thesis
we will use the convention to denote the corresponding marginal observables, i.e.
the restriction of (ai, bj) to ai or bj, by A′ and B′.
In general, more precisely: if A and B are incompatible, there is no device which

achieves this task without an inavoidable inprecession. Therefore, we will have
to classify the proximity between measurement devices, i.e. this inprecession, by
introducing error measures ε(A|A′).
Whenever such an error is present, we will say that a device A′ has a measure-

ment uncertainty with respect to the measurement A.
Those error measures are constructed in two steps: Firstly we will test both

devices, A and A′, as for preparation uncertainty, on instances of a common state
ρ (see Fig. 1.3), and compare the resulting probability distributions. In order to
avoid trivialities, we want that those probability distributions are similar for all
states on which we test. Hence, we will, secondly, take either the mean value or
consider a worst case in order to judge the proximity of our devices.
Note that, for measurement devices in a classical world, tests in comparable

situations would be performed in a slightly di�erent way: Here, the measured
quantities, think for example of the position and the momentum of a macroscopic

4



1.1 Two notions of uncertainty

Figure 1.3: Elemental scenario
for a test of measurement uncer-
tainty. A joint measurement R
with marginals A′ and B′ is used
to approximate the ideal observ-
ables A and B. The proxim-
ity/error for A to A′ is compared
to the proximity/error of B to B′

object, have a well de�ned value. Hence, we can compare the outcomes of an
approximate measurement device with this 'correct' value and judge its quality by
the corresponding deviation. This does even not change if we test our approxi-
mate device on a probabilistic ensemble of di�erent macroscopic objects. Since we
can still assign a 'correct' measurement outcome to each single shot, we are able
to distinguish between the spread of the correct values within the ensemble and
a spread within the outcome statistic, originated by a disturbativ measurement
process.
This picture does not carry over to the quantum world: the existence of prepa-

ration uncertainty relations prohibits us to assign a corresponding 'correct' value
to an arbitrary quantum state. However, when we are in the special situation that
our ideal measurements A and B have eigenvectors corresponding to deterministic
outcomes of a respective measurement we can mimic a classical test. Here, we
test A′ only on those eigenstates and want that a 'good' approximation shows an
almost 'correct' value at least in these cases.
In order to speak about measurement uncertainty relations, two ideal measure-

ments are compared with a joint measurement device R as sketched in Fig. 1.3.
Here it is important to have in mind that the error quantities ε(A|A′) and ε(B|B′)
are evaluated on di�erent and independent states. This is, the worst case state
that leads to ε(A|A′) does usually not coincide with the state that attains the
worst case for ε(B|B′). Again we want to restrict the possible values, that ε(A|A′)
can attain, when we �x ε(B|B′), and vice versa, in order to get statements like:

'there is no joint measurement R such that

the marginals A′ and B′ are good approximations

for the measurements A and B simoultaniously′.

At the end a statement like the above demands us to perform a minimization
of the error quantities with respect to all joint measurements. A prototype for

5



Chapter 1: Introduction

a measurement uncertainty relation, again between position and momentum, is
provided in [BLW14b]:

∆2
M(Q,Q′)∆2

M(P, P ′) ≥ ~2

4
. (1.3)

Here, the quantity ∆2
M(Q,Q′), which is the worst case Wasserstein-2 distance

between outcome distributions, is used as error measure. Due to a high symmetry
in the interplay of the underlying observables, to which we will comment in this
thesis in chapter Ch. 3 later on, the bounds of the r.h.s. of (1.3) and (1.1) coincide.

1.2 Previous works

In the following, we will only brie�y wrap up the historical development of the
aforementioned notions of uncertainty. A full review of the research history is
especially di�cult because of the following reasons: Uncertainty is regarded as a
fundamental concept. Hence, many authors contribute with many di�erent per-
ceptions, de�nitions and conclusions. Furthermore, uncertainty as a 'principle',
but not as a mathematical theorem is employed in many hand-wavy explanations
and even calculations. This is especially easy, because there are many illustrative
but insu�cient explanations around. An example for this is the analogy to clas-
sical waves. Because uncertainty is so fundamental, there is no concept (beside
the mathematical foundations of quantum theory) it can be based on, or checked
against. The transition from a physicists intuition to a mathematical theorem is
hard in general and the uncertainty principle is no exception to this.
For an overview of the existing literature, we will limit ourselves at this place to

mention only Heisenbergs initial contribution, its common textbook formulation
(1.1), and recent developments.

Historical development

A comprehensive review of historical backgrounds are given for example in [BR18,
BHL07,Bus85,BLPY16]. An analysis of Heisenbergs intention, such as a critical
discussion of its recent receptions by [Oza13] and [BLW13] can be found in [HU16],
see also [Wer17].

6



1.2 Previous works

In his seminal paper [Hei27] Heisenberg introduced what was later on phrased the

uncertainty principle. On p.3-4 he wrote:

'also je genauer der Ort bestimmt ist, desto ungenauer ist der Impuls bekannt

und umgekehrt;'

'That is, the more precisely the position is determined, the more imprecisely will

the impulse [momentum] be known, and vice versa.' (translation of [Hei27] taken
from [Hei84]) ,

which is some lines later expressed by the heuristic relation

p1q1 ∼ ~.

Here, p1 and q1 are introduced as 'approximately the average error ', [Hei84], of the
position q and the momentum p, and the symbol '∼' is explained as 'being on the
order of'. Heisenberg explains the intuition behind this relation by introducing his
famous γ-ray microscope as a gedankenexperiment, see [BR18] for a comprehensive
description. However, an explicit mathematical de�nition of the above quantities
was left out. Some months after Heisenbergs publication, a possible de�nition was
given by Kennard [Ken27], and independently by Weyl [Wey28], who parsed q1 and
p1 by standard deviations ∆ρP and ∆ρQ in order to derive the inequality (1.1),
which is today phrased in most textbooks as Heisenberg's uncertainty principle.
Although, Heisenberg seems to have accepted this as the mathematical formulation
of his ideas, the debate of the precise formulation of the uncertainty principle was
not settled by this and is still ongoing.
First of all, we can see that Kennard's formulation (1.1) clearly describes the

setting of preparation uncertainty. By its mathematical de�nition the expression
∆ρQ refers to a full position measurement and, hence, does not coincide with the
'tuning of a wavelength' in a γ-ray microscope. This interpretation was already
present in the community for a long time phrased as minimal interpretation, see
for example Ballentine's comment [Bal69] who refers to Margenau's contribution
[MC67] in the collection [BE67].
However, popular receptions of Heisenberg's statement are usually of the form

(1.2), which clearly refers to a limitation on joint measurements. From our per-
spective, the γ-ray microscope can be regarded as prototype for this. The idea
to use joint measurements, in order to mathematically formalize an uncertainty
principle, goes back to the 80's, see for example [Bus85]. A discussion of the two
notions and an introduction to joint measurements can be found in [BHL07].

7



Chapter 1: Introduction

At this point we should note that, in the past, and especially within the last
decade, there have been many other attempts to formalize an uncertainty principle
based on Heisenberg's original work.
In conclusion, we can not assign a unique mathematical interpretation to Heisen-

berg's work. However, the notion of measurement uncertainty based on joint mea-
surements, as it is used in this work, is surely interesting by its own, as it has a
clear operational interpretation and mathematical description. Furthermore, the
optimizers in a corresponding measurement uncertainty yield a blueprint for useful
devices in regard of many applications.

Recent developments

The following collection of previous works should give an overview on recent con-
tributions to this �eld, it does not have the aspiration of being complete or selected
solely by importance:

Preparation uncertainty: A huge part of the literature on preparation un-
certainty, that appeared in the last years, unfortunately, puts its focus on state-
dependent relations, and thereby mostly on extensions of Robertson's [Rob29] and
Schrödinger's [Sch30] inequality. In the next section, we will see that those rela-
tions do not �t our criteria for an uncertainty relation, since they do not give rise to
state-independent statements. A convincing argumentation for state-independence
was given by Deutsch's [Deu83] in the 80's.
Variance based state-independent uncertainty relations for spin measurements

can be found for example in [HT03,Gü04,SR95,HPDR11,DSW15] such as in the
recent works [SZ18, dGMSS18]. A special case of spin-measurements are qubits,
here the most optimizations can be solved analytically, see [AAHB16] for variances
and [GMR03] for entropies. Entropic uncertainty relations for spin measurements
also have been considered in [SR98, RMM17b,DSW15] such as in, [GL04,Gü04,
XGM+17], with the scope of an application to entanglement detection.
A connection between entropic and variance based uncertainty relations is made

in [Hua12]. A profound overview on entropic preparation uncertainty is provided
by the reviews [WW10,CBTW17] and the references therein.
Uncertainty relations for continuous measurements have been considered mainly

in the context of momentum and position observables. Beside Kennard's fun-
damental result (1.1), further directions of investigation are sums of phasespace
observables [KW14, KW16] and representations of modi�ed Heisenberg algebras
[KMM95,KM97].

8



1.2 Previous works

Measurement uncertainty: Due to its connection to Heisenbergs original for-
mulation many works consider measurement uncertainty relations for position and
momentum. This thesis stands in the line of [Wer04,BLW14b,BLW13]. Alterna-
tive error measures were proposed in [App98] and also in [Oza04]. An alternative
error measure that can be computed e�ciently for all �nite observables is the so
called white noise robustness see [HKR15].
Measurement uncertainty relations for arbitrary dichotomic measurements on

qubits can be computed analytically, see [BB15, YO14, BLW14a]. An analytic
result on uncertainty relations that bound the worst error of a spin measurement
in arbitrary directions can be found in [DSW15]. Relations for qubit-strings, with
error measures based on Hamming distance, were investigated in the bachelor
thesis [Jav16] and relations, with error measures based on the discrete metric, can
be found in the bachelor thesis [Fra15]. In the bachelor thesis [Kus16] uncertainty
relations for position and momentum measurements with a �nite operating range
were investigated. An application of measurement uncertainty as security criterion
for, so called, data locking protocols was established in the master thesis [Kö17].
Uncertainty relations and error-disturbance relations in terms of conditional

entropies have been considered in [BHOW14] and in [AB16], with explicit results
for the case of qubits. In [BGT18, BGT17] measurement uncertainty in terms
of the relative entropy is considered. However, here the authors do not regard
independent error measures ε(A|A′) and ε(A|A′), rather than they provide an
uncertainty index, which is obtained by measuring all three devices from Fig. 1.3
on the same state.
Closely related to measurement uncertainty is the characterization of an error-

disturbance trade-o�. Here, the interest is focused on �nding quantum instru-
ments, which provide a measurement with a small error, on one hand, and a
minimal disturbed state after the measurement, on the other. A framework in
terms of cb-norms is provided in [RSH16]. Computable optimal bounds for the
error-disturbance trade-o� can be found in [HW18].
Prototypes for joint measurements are cloning devices, where the ideal observ-

ables can be measured afterwards. Optimal cloners are considered in [Wer98],
optimal asymmetric cloners, i.e. those who establish a whole trade-o� relation,
can be found in [Has17]. The special class of phase-space covariant asymmetric
cloners was considered in [CF05]. It turns out that these cloning devices coincide
with the optimal joint measurements of position and momentum from [BLW14b].

9



Chapter 1: Introduction

1.3 Preliminaries

Measurements

Measurements are the central objects of this thesis. We will encounter them as
ideal measurements, i.e. as input to an optimization problem, as well as approx-
imate joint measurement, i.e. as output of an optimization. Throughout this
thesis the terms measurement, (measurement-) device, and observable are used in-
terchangeably. Mathematically, all three terms refer to the same class of objects,
namely positive operator valued measures (POVMs), which will be introduced im-
mediately. However, we will assign a slight distinction to those terms by their
connotation: We will use the term measurement in the general case. The term
(measurement-) device puts an obvious reference to an actual implementation of a
measurement. Hence, it is used more likely in the context of explaining an opera-
tional interpretation. The term observable, which is the term most commonly used
in textbooks, has a reference to quantities with a counterpart in classical physics,
like position-observable or phase-space observables.

• POVMs: In a single shot of a quantum measurement a quantum state ρ,
given as density operator on a Hilbert space H, is mapped to a measure-
ment outcome x, originating from a set Ω. In order to describe the statistics,
that arise when we go beyond single shots, positive operator valued mea-

sures (POVMs) are used to describe the correspondence of ρ to a probability
measure µρ de�ned on (Ω,AΩ), where AΩ denotes a sigma algebra on Ω.

We interpret a linear combination ρ = λξ+ (1−λ)σ as statistical mixture of
the states (preparation procedures) ξ and σ, which, when measured, should
result in a corresponding mixture λµξ + (1 − λ)µσ of outcome statistics.
Hence, the mapping ρ 7→ µρ has to be linear. For a measurement A, we will
use the notation/representation

µρ(ω) = tr(A[ω]ρ) =

∫

ω

tr(A[dω]ρ)

to denote the measure of an ω ∈ AΩ, evaluated on ρ. Hereby, A[ω] is a
bounded operator on H. Hence, we understand the mapping ω 7→ A[ω],
in this sense, as operator valued measure. In order to ensure that µρ is a
probability measure, for all ρ, we have the properties

µρ(Ω) = 1 7→ A[Ω] = IH and 0 ≤ µρ(ω) ≤ 1 7→ 0 ≤ A[Ω] ≤ IH.

10



1.3 Preliminaries

In the most parts of this thesis, we will encounter measurements with �nite
outcome sets Ω = {ω1, . . . , ωn} labelled by i ∈ I = {1, . . . , n}. In this case,
a measure is fully described by �xing {A[ω1], . . . , A[ωn]}. Whenever, the
outcome set Ω is clear from the context, we will use the abbreviation

A(i) := A[ωi]

and call A(i) the POVM element corresponding to ωi. Here we have to
respect the properties

0 ≤ A(i) ≤ IH and
∑

i∈I
A(i) = IH

in order to obtain a probability measure on Ω.

• Sharp and projective measurements: We call a measurement projective
if the operator part of the corresponding POVM has its support only on
projection operators, i.e. when we have

A[ω]2 = A[ω] ∀ω ∈ AΩ.

For �nite Ω, this directly implies that we have

A(i)2 = A(i) and A(i)A(j) = 0 for i 6= j

In extension, we call a �nite measurement a sharp measurement if all POVM
elements A(i) are one-dimensional projections, i.e.

rank(A(i)) = 1

In this case we can assign a unique eigenvector |φi〉 to the outcome i by

A(i) = |φi〉〈φi|.

In this thesis we will use the common abbreviation φi := |φi〉〈φi| to denote
the eigenstate φi. These eigenstates will play an important role in the fol-
lowing, because they correspond to an input to a measurement A with the
deterministic outcome ωi. Thereby we have that this outcome i results with
certainty only for the particular input φi. Later on we will use exactly this
property to de�ne ensembles of test states, in order to judge the quality of
an approximation A′ to A.

11



Chapter 1: Introduction

• joint measurements: Consider a collection of 'ideal measurements'
A1, . . . , An with outcome sets Ω1, . . . ,Ωn. Throughout this thesis, a measure-
ment with outcomes on Ω1×· · ·×Ωn will be denoted as joint measurement of
A1, . . . , An. We will use the convention to denote such a joint measurement
by R and the set of all joint measurements byR. Any joint measurement can
be reduced to a measurement A′j on Ωj by reducing it to the corresponding
marginal measure, i.e. for ωj ∈ AΩi

we take

A′[ωj] = R[Ω1 ∧ · · · ∧ ωj ∧ · · · ∧ Ωn].

For �nite outcome sets, the POVM elements of the j-th marginal measure-
ment A′j are given by

A′j(ij) =
∑

i1,...in|ij

R(i1, . . . , in).

We will call a joint measurement approximative if the marginal POVMs di�er
from the ideal ones,

Aj(i) 6= A′j(i),

and a perfect joint measurement otherwise. A collection of measurements
for which a perfect joint measurement exists is also called compatible, and
incompatible otherwise. A basic theorem on compatibility [BLPY16] states
that: A sharp measurement A is compatible with some measurement B if
and only if

[A(i), B(j)] = 0

holds for all i, j. Furthermore, we have that the respective perfect joint
measurement admits the product form

R(i, j) = A(i)B(j).

The extension of this statement to general measurements fails, i.e. there
are compatible measurements with non-commuting POVM elements, see for
example [RRW13].

12



1.3 Preliminaries

Uncertainty relations as multicriterial optimum

One major part of this thesis is devoted to de�ne and compute measures, like
errors ε for measurement uncertainty, or deviations ν for preparation uncertainty,
that quantify the uncertainty of a particular state or an explicit approximative
device with respect to an ideal measurement.

• Uncertainty regions: Assume we have given such a measure and a col-
lection of ideal measurements A1, . . . , An. Evaluating ν or ε on a particular
state or joint measurement will give us a tuple of errors

(
ε(A1|A′1), . . . , ε(An|A′n)

)

or a tuple of deviations

(
ν(A1|ρ), . . . , ν(An|ρ)

)
.

Here we can think, at least in principle, of evaluating ν or ε on all possible
states or all joint measurements, which will provide us with a set U ⊂ Rn,
called uncertainty region, i.e.

Uε := {ε(A1|A′1), . . . , ε(An|A′n)|R is a joint measurement}

or

Uν = {ν(A1|ρ), . . . , ν(An|ρ)|ρ is a quantum state} ,

which contains all information on the respective uncertainty between our
ideal measurements.

• Two measurements: For a start, let us consider the uncertainty between
two ideal measurement, i.e. an uncertainty region U ⊂ R2. An example for
such a set is sketched in Fig. 1.4, here the white space around the origin
indicates the existence of an uncertainty trade-o�. More precisely, we can
observe:

for all u = (u1, u2) ∈ U : (1.4)

whenever u1 is small, u2 has to be big, e.v.v.

The purpose of an uncertainty relation is to give a quantitative description
for this. At the end, this description may come as a monotone increasing

13



Chapter 1: Introduction

Figure 1.4: A uncertainty region U with its Pareto dominated region PDR(U) and
its positive convex hull U+. An optimal tight uncertainty relation is
described by all points from U that are placed on the strong Pareto
boundary U∗ (thick green line). Optimal linear uncertainty relations
are described by the the lower boundary of the positive convex hull
(thick yellow line).

function f2, which allows us to impose restriction on u1 based on an exclusive
assumption on u2. With this we would be able to conclude:

∀u ∈ U : u1 ≥ f2(α) if u2 ≤ α, (1.5)

Here, we clearly have a pointwise biggest function f2, to which we will refer
as optimal uncertainty relation.

We could also have aimed to make the above statement the other way around,
i.e. put restrictions on u1 and make conclusion on u2. Here, we need a
corresponding function f1. In order to address both perspectives at once, we
will aim to formulate uncertainty relations in a symmetric way by a functional
g : R2 7→ R, which obeys

(i) g(u1, u2) ≥ 0 ∀(u1, u2) ∈ U
(ii) g(u1, u2) ≤ g(u′1, u

′
2) if u1 ≤ u′1 and u2 ≤ u′2. (1.6)

Given such a functional, the functions f1 and f2 can be extracted from the
implicit function g(u1, u2) = 0.

14



1.3 Preliminaries

• State-independence: When obtained for an explicit setting, the functional
g gives us state-independent statements like

∀ρ : g (ν(A1|ρ), ν(A2|ρ)) ≥ 0

or device-independent statements like

∀R : g (ε(A1|A′1), ε(A2|A′2)) ≥ 0.

Here the terms state-independent and device-independent refer to the fact
that the respective functional g, i.e. our uncertainty relation, does not de-
pend on ρ or R. In practice, this ensures that we can put restriction on the
uncertainties of an unknown quantum state or on a non-characterized joint
measurement device, which is the crucial point for many applications of un-
certainty relations. Important examples for this are the testing of non-local
correlations [UBGP15,CSUG17], or applications in cryptography [FFB+12].
We have to note, that not all relations that can be found in the literature
share this property. The most prominent example for this is the relation of
Robertson and Kennard [Ken27,Rob29], which can be found in any textbook:

∆2A∆2B ≥
∣∣∣1
2
〈[A,B]〉ρ

∣∣∣
2

Here, an evaluation of the r.h.s. demands us to know the state ρ. Hence,
no function g can be extracted from this directly. The only way to obtain
such a g is to minimize the r.h.s over all states, which, for �nite dimensions,
unfortunately results in the trivial functional g ≡ 0.

• More than two observables: An observation like (1.4) has more than one
counterpart for the general case of more than two measurements. Here, we
could have imposed restrictions on u1 in order to make conclusions on all
other ui 6=1 or we could have an assumption on ui 6=1 in order to make conclu-
sions on the other ui 6=1 or we could have restrictions on a subset u1, . . . , uj
in order to make conclusions on uj+1, . . . , un. Here, each case demands a dif-
ferent function f , in order to get an analogous statement to (1.5). However,
this particular f can be extracted in all cases from a common functional
g : Rn 7→ R, which gives us implicit functions via

g(u1, . . . , un) = 0.

Finding such functionals, for given measures ν and ε and observables A1, . . . , An,
is the second major task in this thesis. This quest clearly demands to characterize
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those u ∈ U that extremize the above statements, i.e. the most 'certain'/'small'
u ∈ U . In order to judge this extremality, we will rely on the following notion of
multicriterial optimality:

• Pareto optimality: A well established concept for judging multicriterial
optimality is the, so called, Pareto optimality or Pareto e�ciency originated
in the �eld of operations research. Here, we use the natural half ordering on
Rn to say that u dominates u′ and write u v u′, if we have

u1 ≤ u′1, . . . , un ≤ u′n,

for a pair u, u′ ∈ U . In terms of uncertainty, this domination means that no
component of u′ is less uncertain than the respective component of u. Hence,
we are in a position to say that u′ is more uncertain than u and drop u′ as
a candidate for the most 'certain' elements of U .

Figure 1.5: (left) Pareto dominated region PDR(A). (right) Pareto dominated
region PDR(A,B,C,D,E). Here we have U∗ = {B,C,D}.

For the quanti�cation of an uncertainty relation we are interested in the
'most certain' points from U , which we will de�ne as all points from U that
cannot be dominated by another point from U . We will denote this set by U∗
and use the term minimal uncertainty state or optimal approximative device
for the corresponding states or joint measurements.

Note that, not all two points have a strict ordering with respect to '@', see
for example the pair of points (A,B) or (A,D) in Fig. 1.5. Following this
observation, it makes sense to single out the set of all x ∈ Rn that are
dominated by a particular u. We call this set the Pareto dominated region
of u (see Fig. 1.5(left)) , i.e.

PDR(u) := {x ∈ Rn|u v x}.
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For a whole set U , the Pareto dominated region is constructed by taking
the union over the Pareto dominated regions of all elements, i.e. by (see
Fig. 1.5(right))

PDR(U) :=
⋃

u∈U
PDR(u) = {x ∈ Rn|∃u ∈ U : u @ x}.

This set is bigger than U , but still contains the same information about an
uncertainty relation. The (�nite) boundary ∂PDR(U) of this set is called
the Pareto boundary or Pareto frontier, depicted as dashed line in Fig. 1.5.
All points in U are dominated by at least some point from this boundary.
However, it could still be possible that a point from ∂PDR(U) is dominated
by another point from ∂PDR(U), see for example the pair (A,C) with C v
A. If we drop those points from the boundary, the remaining set contains
exactly those points that cannot be dominated by another point, i.e. we get
the desired set U∗, which is, in this context, also called the strong Pareto

boundary. Alternatively, this set can be characterized as the smallest subset
of U that spans the region PDR(U), i.e. as

U∗ = inf{ω ⊂ U|PDR(ω) = PDR(U)}.

A functional description of PDR(U) directly gives us the desired functional
g(u1, . . . , un). More precisely, any g that attains g(u1, . . . , un) = 0 for all
points on the Pareto boundary, and only there, can be easily modi�ed to
also obey the assertions (1.6). Hence, we can identify the Pareto boundary
as graphical representation of an optimal uncertainty relation.

• Convex hulls and linear bounds: Above, we saw that a characterization
of U∗ allows, by recovering PDR(U) and ∂PDR(U), to obtain all possible
uncertainty relations. However, depending on how we choose our uncertainty
measure, this characterization may turn out to be practically untreatable,
see for example the entropic measures in chapter Ch.7. Hence, we should
also consider simpler methods for characterizing PDR(U):

In large parts of this thesis we will concentrate on approximating PDR(U)

by its convex hull, denoted by U+ in the following. An example for this
approximation is depicted in Fig. 1.4, here we can see that some parts of the
Pareto-boundary get lost by this procedure. However, in [SRW16] Sec.3 we
provide a fundamental theorem stating that this approximation gets exact
for all measurement uncertainty relations based on cost-functions.

In practice, the convex hull U+ can be constructed as the intersection of all
linear half spaces containing it, see for example the appendix of [ACF+16]
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Figure 1.6: (left) Halfspace corresponding to a linear functional that gets mini-
mized on B. (right) Positive convex hull of the points {A,B,C,D,E}

for an elaboration on this. Each of those half spaces can be constructed by
minimizing a linear functional

k(u1, . . . , un|a) =
∑

i=1...n

aiui = u · a

given by coe�cients a = (a1, . . . , an). In our particular case, we know that
the Pareto dominated region is, by construction, unbounded for each uj →
∞, i.e. to the upper right (see Fig. 1.4). As a consequence of this, it su�ces
to consider only linear half space corresponding to functionals with a ∈ R+.
For those functionals we have

c∗(a) := min
u∈PDR(U)

k(u1, . . . , un|a) = min
u∈U

k(u1, . . . , un|a) = min
u∈U

u · a. (1.7)

Hence, we can compute U+ from U directly. Explicitly, we get a particular
half space Ha(U) from (1.7) by

Ha(U) :=
{
x ∈ Rn

∣∣∣x · a ≥ c∗(a)
}

and the convex hull by

U+ :=
⋂

a∈R+

Ha(U)

We note that the above also gives

U ⊆ PDR(U) ⊆ U+

on the level of sets.
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Furthermore, any c∗(a) directly gives us an uncertainty relation by

∀u ∈ U : g(u1, . . . , un) := k(u1, . . . , un|a)− c∗(a) ≥ 0

Hence, we will identify any lower bound on c∗(a) as linear uncertainty relation
and c∗(a) itself as the optimal linear uncertainty relation with respect to
weights a.

Semide�nite Programming

Semide�nite programming is a sub�eld of convex optimization, i.e. a certain
class of optimization problems, which will be introduced immediately, with a well
understood theory and well performing algorithms available. A good overview can
be found in [BV04].
In this thesis we will encounter semide�nite programms (SDPs) in the chapters

Ch. 2,3, and Ch. 5. A central result of these chapters is to show that the com-
putation of optimal measurement uncertainty relations and optimal preparation
uncertainty relations, for measurements with �nite outcome sets, can be formu-
lated as semide�nite programs.
For the computation of explicit uncertainty relations we have to solve semidef-

inite programs by the use of a computer. Thereby, computer programs (we used
SDPA and CVX) usually require a SDP to be formulated according to a common
standard form:

• Primal form: Semide�nite programming can be understood as the exten-
sion of linear programming to the cone of positive matrices. Let C,F1, . . . , Fn
be a collection of square-matrices and let c = (c1, . . . , cn) be a vector with
n entries. These are the inputs to our optimization problem. In its primal
form an SDP is given as:

minimize: sp(X) : = tr(CX)

subjected to: tr(FiX) = ci ∀i ∈ 1, . . . , n

X � 0

Here, the optimization runs over the positive matrix X.

• Dual form: The dual form of an SDP is:

maximize: sd(λ) : =
∑

i

ciλi

subjected to:
∑

i

λiFi � C
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Here, the optimization runs over the vector λ. Note that the ordering be-
tween primal and dual form is not �xed uniquely throughout the literature.

• Duality: Both, the primal and the dual form, can be transformed into each
other by computing the respective Lagrange dual [BV04]. Computing the
Lagrange dual also yields a basic result commonly known as weak duality :

Let s∗p and s
∗
d denote the optimal solutions of the primal and dual formula-

tions of an SDP. For any feasible X and any feasible λ we have

s∗p ≥ sd(λ)

s∗d ≤ sp(X).

Typical algorithms, for example interior-point-methods [Kar84], for solving
SDPs are succesively providing approximations to s∗p and s

∗
d by an iteration

on feasible X's and λ's. Here, the duality above allows to assign a precision
estimate, ε = sp(X)− sd(λ). For the purpose of this thesis, such a precision
estimate can be translated to an estimate on the precision of an uncertainty
relation.

In the most cases, the so called Slater condition, see [BV04], is ful�lled, which
gives rise to a strong duality

s∗p = s∗d,

i.e. the promise that any ε gap can be closed within a �nite runtime of an
algorithm. A fundamental result on the e�ciency of SDPs [VB96] states that
this can be done within a runtime that is polynomial in ε, the dimension of
X, and the number of constraints n.

• Inequality constraints: Most SDPs appearing in this thesis do not obey
the standard form above. More precisely, for computing measurement uncer-
tainty relations, (see example [SRW16] Sec. 4), we usually have inequality
constraints of the form

tr(FiX) ≤ ci

X � 0. (1.8)

These can be transformed to the standard form by enlarging the dimension
of X and introducing a new variable 'si ≤ 1', a so called slack variable: In
order to implement (1.8) for a particular i, we replace Fi by Fi ⊕ 1, and X
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by X ⊕ si, which gives the new constraint

tr ((Fi ⊕ 1)(X ⊕ si)) = tr(FiX) + si = ci (1.9)

X � 0 and si ≥ 0.

Here the constraint (1.9) is equivalent to ci − tr(FiX) = s, which can only
be realised by

tr(FiX) ≤ ci

since we have si ≥ 0.

Joint numerical ranges

In many parts of this thesis (see chapter Ch. 3) we will formulate the minimization
of preparation uncertainty as minimization of a linear functional, i.e. of an expecta-
tion value tr(Tiρ), over the set of all quantum states. A corresponding uncertainty
relation then demands us to jointly minimize several functionals {tr(Tiρ)}i=1,...,n.
All information on this is encoded in the set of all joint expectations those func-
tionals can attain. This is the so called joint numerical range

C(T1, . . . , Tn) = {(tr(ρT1), . . . , tr(ρTn)) ∈ Rn|ρ is a quantum state },

which is sometimes also called convex support [Wei11] or gemeinsamer Wertevorat

[Toe18]. The computation of the boundary, i.e. extremal linear functional, of joint
numerical ranges can be achieved by computing maximal eigenvalues. Hence, this
set can be handled numerically in an e�cient way.

Figure 1.7: Joint numerical
range for two operators. The
boundary piecewise consists
of algebraic curves. Flat
parts of the boundary corre-
spond to degeneracies of the
underlying eigenvalue prob-
lem, see [SW18a,SW18b].

.
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Entropies

In the following subsection the basic entropic quantities, needed for an under-
standing of this thesis, are introduced. A comprehensive overview on entropies in
information theory can be found in [Wil13].

• Shannon entropy: In his seminal work [Sha48], Claude Shannon intro-
duced the Shannon entropy of a random variable X with distribution p as

H(X) = −
∑

i

pi log(pi). (1.10)

Note that, by a slight abuse of notation, we will also write H(p) such
as H(p1, . . . , pn) to denote the entropy of a particular distribution p =

(p1, . . . , pn). In this thesis we will frequently consider the Shannon entropy
evaluated on the outcome statistics of quantummeasurements for quantifying
the corresponding preparation uncertainty. Interestingly, Shannon already
used the term 'uncertainty' as intuitive paraphrase for the word 'entropy'.
As postulation, the Shannon entropy is uniquely de�ned by the following
properties (see also [Ré61], and the references therein):

The Shannon entropy (1.10) of a random variable X is a function that only
depends on the underlying probability distribution, that uniquely obeys (
[Fad57] quotet in [Ré61]):

h(1) H(p) = H (π(p)) for all permutations π

h(2) H(t, 1− t) is continous for 0 ≤ t ≤ 1

h(3) H(1/2, 1/2) = 1 the entropy of a fair coin is1[bit]

h(4) H(tp1, (1− t)p1, p2, . . . , pn) = H(p1, . . . , p2) + p1H(t, 1− t)

Note that, the property (iii) �xes the unit of the entropy, i.e. all logarithms
are to be taken to the base 2. At this point, it is also common to de�ne the
entropy to the base e. We will partially use this alternative convention in
this thesis to simplify the mathematical presentation of some proofs.

• Self-information: The de�nition (1.10) can also be understood as an ex-
pectation value

H(X) = 〈I(X, p)〉

of the quantity

I(i, p) = − log(pi). (1.11)
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In the context of information theory this quantity (1.11) is commonly called
self-information. A common paraphrase, used for this quantity, is surprised-
ness. We have the following properties:

(i) − log(pi = 1) = 0
'there is no surprise about
certain events'

(ii) − log(pi = 0) =∞ 'the surprise about
an impossible event is in�nite'

(iii) − log(piqj) = − log(pi)− log(qj)
'the surprise of
independent events is additive'

In this sense (1.11) measures the surprisedness of an event 'i', with proba-
bility pi, taking place. In chapter Ch. 5 we will use the self-information as a
cost function in order to de�ne an entropic measurement error.

• Cross entropy: In the �eld of estimation theory the cross entropy is used
for quantifying the quality an estimative probability distribution q has, with
respect to an ideal but unknown distribution p. For a random variable X,
distributed by p, the cross entropy is de�ned as

H(X; q) = 〈I(X, q)〉 = −
∑

i

pi log(qi),

i.e. as the expected self-information, with respect to q, of events sampled by
X. We will see in chapter Ch. 5 that entropic measurement errors can be
interpreted as a minimization of cross entropies with respect to a distribution
of estimators q.

• Relative entropy: The relative entropy, commonly also called Kullback-

Leibner divergence, is the expected entropic di�erence between a distribution
p and its estimate q, i.e.

D(X||q) = 〈I(X, q)− I(X, p)〉 = H(X; q)−H(X)

=
∑

i

pi log

(
pi
qi

)

Note that the above de�nition requires supp(p) ⊆ supp(q) in order to yield a
�nite quantity. For all probability distributions p and q with supp ⊆ supp(q),
the relative entropy obeys the basic properties

(i) D(p||q) > 0 for p 6= q

(ii) D(p||q) = 0 for p = p,
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i.e. the axioms of a premetric. Hence, it can be used as distance function on
the level of probability distributions. Measurement uncertainty relations in
terms of relative entropies were investigated in [BGT18,BGT17]. In chapter
Ch. 5, we investigate measurement uncertainty relations based on the dis-
crete metric. Those relations give lower bounds, by Pinsker's inequality, on
uncertainty relations in terms of relative entropies.

• Joint entropy: For two, potentially correlated, random variables X and
Y , it is common to write XY to denote a random variable obeying the joint
distribution

pij := P(X = i, Y = y).

Here, the joint entropy of X and Y denotes the Shannon entropy of this joint
distribution

H(XY ) = −
∑

ij

pij log(pij).

The important property of the Shannon entropy is that the joint entropy of
independent random variables X and Y is additive.

H(XY ) = H(X) +H(Y ) for pij = pipj. (1.12)

• Conditional entropy: The conditional entropy is used to quantify the
uncertainty on an unknown random variable X, given information on the
outcomes of a second random variable Y . It is de�ned as the di�erence
between the joint entropy and the entropy of Y , i.e. as

H(X|Y ) = H(XY )−H(Y ) =
∑

ij

pij log(pij).

Here we have the properties:

(i) H(X|Y ) = H(X) if X and Y are independent

(ii) H(X|Y ) = 0 if X is fully determined by Y .

In chapter Ch. 5 we will use the conditional entropy to quantify a measure-
ment uncertainty between devices with di�ering outcome sets. There, we
will use ensembles of test states, distributed by X, as input to a measure-
ment device with an outcome statistic described by Y . Here, the conditional
entropy H(X|Y ) quanti�es the information on the input X that is obtained
by observing only the output Y .

24



1.4 Structure and summary

• Rényi entropy: In the seminal paper [Ré61] Alfréd Rényi suggested to drop
the property h(4), in the postulative de�nition of the Shannon entropy. In
conclusion, he replaced (iv) by the additivity property (1.12), and de�ned,
for α 6= 1, the family of Rényi- entropies

Hα(X) =
1

1− α log

(∑

i

pαi

)
. (1.13)

which obeys this weaker property for α > 0. In the limit of α → 1, the
logarithm in (1.13) vanishes, whereas the pre-factor (1− α)−1 diverges. Re-
markably, we recover the Shannon entropy (1.10) in this case, i.e. we have

lim
α→1

Hα(X) = H(X). (1.14)

Hence, the Rényi entropy gives a generalization of the Shannon entropy.
In this thesis, the Rényi entropy is used excessively in the proofs provided
in the chapters Ch. 5 and Ch. 7. There, we make use of the well known
technique of �rst proving statements on Rényi entropies and then concluding
the respective statements on Shannon entropies by the limit (1.14).

1.4 Structure and summary

Central parts of this thesis, i.e. Ch. 2, 4, and Ch. 6-8, consist of manuscripts
that have already been published in peer-reviewed journals. Each manuscript
is included as a single section, embedded in a separate chapter. The chapters
Ch. 4 and 6 additionally contain unpublished material and results related to the
respective manuscripts. Up to modi�cations of the page layout, all presented
manuscripts are identical to preprint versions that can be found on arXiv.org .
The chapters Ch. 3 and Ch. 5 do not contain any prepublished material. These
chapters contain new results, provided with the aim to build bridges between the
content of the other chapters.
All the work done for this thesis was motivated by the the same set of central

questions, which can be summarized as follows:

(1.) How can we quantify measurement/preparation uncertainty?

(2.) How can we compute measurement/preparation uncertainty relations?

(3.) Can we �nd connections between measurement and preparation uncertainty
relations?
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Chapter 1: Introduction

The scope of this thesis is to provide some satisfying answers to these questions,
whenever possible, in a general context and with a focus on relevant examples,
otherwise.
The main part of this thesis starts at chapter chapter Ch. 2. Here, we will

begin by introducing, so called, cost functions. We will use such cost functions
throughout this work as central tool for modelling the proximity of measurement
outcomes. The main part of this chapter is [SRW16] 'Measurement uncertainty
relations for �nite quantum Observables'. This work has the aim to provide a
general construction for error measures which answers the questions (1.) and (2.)
for the case of measurement uncertainty. We will provide the following three types
of error measures based on cost functions:

(i) Measurement error εM : This error judges the proximity of A′ to A by a test
performed on arbitrary quantum states. Here, A′ is a good approximation
to A when both devices show almost the same outcome statistics for every
input state.

(ii) Calibration error εC : This error is only de�ned for a comparison with respect
to a sharp measurement A. In this case, we have deterministic outcomes x
when we measure A on its eigenstates {φx}. We will construct error measures
by using those eigenstates as input for testing an approximative device A′.
Thereby, a particular eigenstate φx is used as a reference for a 'correct' mea-
surement outcome x. Hence, a good approximation A′ should give outcomes
close to the correct x for all inputs φx.

(iii) Entangled reference frame error εE: This error is only de�ned for sharp
measurement A, too. We test A and A′ on the local sides of a maximally
entangled state φ+. Within the framework of this error, A′ is a good approx-
imation to A if both measurement outcomes are close to each other in any
particular shot. Thereby, the advantage to the calibration error is that the
state φ+ serves as an unbiased test input for arbitrary devices.

Our central contribution to the question (2.) is to show that the optimization
problem corresponding to a measurement uncertainty relation, formulated in terms
of the above quantities, can be formulated as SDP. Hence, we can compute those
relations in the general case.

In chapter Ch. 3 deviation measures ν(A|ρ) in terms of cost functions are
introduced. We will show that the corresponding preparation uncertainty relations
can be computed by solving certain eigenvalue problems, which gives a positive
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1.4 Structure and summary

answer to question (2.), as well. In the second part of this chapter, we will give a
partial answer to question (3.) by proving a basic theorem which states that

preparation uncertainty � measurement uncertainty (1.15)

for linear uncertainty relations with respect to sharp observables.

The chapter Ch.4 is centred on preparation uncertainty relations in terms of
variances, here we will focus on question (2.). An overwhelming part of the litera-
ture on quantum physics, especially textbooks, only considers uncertainty relations
formulated in terms of variances. Hence, their investigation is from a fundamental
interest by itself. However, in the existing literature, explicit uncertainty relations
in terms of variances were only known for some special cases. Finding a general
method for computing them was an open and outstanding problem.
Within the framework established in this thesis, variances can be understood

as deviation ν(A|ρ) with respect to a cost function that has in�nite support. On
the positive side, we have the validity of the result (1.15) for this case. However,
we have the drawback that the techniques, introduced in Ch. 3 for computing un-
certainty relations, fail in this case, because they result in optimization problems
with in�nitely many constraints. Therefore, in [SDW17], the main part of this
chapter, an algorithmic method is provided, which allows to compute linear prepa-
ration uncertainty relations in terms of variances for arbitrary measurements on
a �nite Hilbert space, and, hence, settles this open problem with a wide general-
ity. As additional material to this work, we provide a non-algorithmic method for
computing lower bounds on those relations.

In chapter Ch.5 we will change our view on uncertainty relations to the per-
spective of information theory, by regarding the outcomes i, of a measurement,
as letters from a general alphabet I. Here, we will again start by considering the
question (1.) with respect to measurement uncertainty.
On one hand, we will investigate error measures based on the discrete metric,

such as the according preparation uncertainty relations, for which we again have
the basic connection (1.15), and easy computable uncertainty relations.
On the other, we will provide two types of entropic error measures: The �rst

is based on using the self-information as cost function. This error measure allows
us to compare an ideal device A, with outcomes on an alphabet I, to a device
A′ which gives us a full hypothesis, coming as probability distribution on I, as
output. The second error measure is based on conditional entropies, rather than
on a cost function. This measure allows to compare A to a device A′ which
has its output on an arbitrary alphabet J 6=I. We show that, for both entropic
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Chapter 1: Introduction

error measures, measurement uncertainty relations are lower bounded by linear
preparation uncertainty relations in terms of the Shannon entropy.

In chapter Ch.6 we put our focus on those linear preparation uncertainty
relations in terms of the Shannon entropy. Beside their connection to entropic
measurement uncertainty relations, those relations are interesting by them selves.
They have many applications in the �elds of quantum information theory. For
example: as central estimate in security proofs [FFB+12], as building block for
steering inequalities [CSUG17, RMM17a], and as bound in quantum metrology.
Here, a satisfactory answer to question (2.), for the general case is an outstanding
problem.

Figure 1.8: Basic setting of multipartite uncer-
tainty: A state ρABC... is distributed between par-
ties A,B, . . . . Depending on a coin throw, with
probabilities (λ, 1 − λ), all parties perform mea-
surements XAB... = XA ⊗ XB ⊗ . . . or YAB... =

YA ⊗ YB ⊗ . . . , respectively. The probability dis-
tribution of all outcomes is given by λpXAB...

⊕(1−
λ)pYAB...

. The additivitiy shows that: for �xed λ,
the entropy of this distribution is minimized by
fully separable states ρAB = ρA ⊗ ρB ⊗ . . . .

However, in [S18] 'Additivity of entropic uncertainty relations', which is the
�rst section and the main part of this chapter, a central result on the structure
of those bounds is proven: It is shown, for pairs of local measurements on a n-
partition (see Fig. 1.8), that linear entropic preparation uncertainty relations are
additive. Interestingly, this directly implies that the minimal entropic uncertainty
can always be realized by fully separable states. Furthermore, global uncertainty
bounds now can be deduced from local ones by a single letter formula. As side
result, the generalization of the Maassen and U�nk bound to arbitrary linear
uncertainty relations is provided.
In the second section of this chapter we will provide some novel algorithmic

methods, based on alternating minimization, that can be used to compute lin-
ear entropic preparation uncertainty relations quite reliably for measurements on
moderate small dimensional Hilbert spaces. However, in contrast to the method
provided for variances, this method does not have a promise to converge in any
case, neither does it give lower bounds in �nite runtime, nor a precision estimate.
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1.4 Structure and summary

Figure 1.9: Entropic preparation uncertainty regions for measurements linked by
the Fourier transformation F2, F

⊗2
2 , F⊗3

2 , i.e. in dimension d = 2, 4, 8.
We can see that non-linear improvements to the best linear bounds
(black line, given by the Maassen and U�nk bound) are possible.
Those diagrams show an additivity structure: The uncertainty set UF⊗2

2

is the Minkowski sum of UF2 with itself, and UF⊗3
2

is the Minkowski sum
of UF2 and UF⊗3

2
.

There are indications, which suggest that the underlying optimization might be an
NP-hard approximation problem. We will have a brief comment on this, as well.

In chapter Ch.7 we will consider entropic preparation uncertainty for the ex-
plicit example of two measurements given by a pair of mutually unbiased bases.
Note that this example includes measurement bases linked by a �nite Fourier trans-
formation as important sub case. For mutually unbiased bases, linear preparation
uncertainty relations can be computed easily, because the Maassen and U�nk
bound is tight in this case. However, reliable non-linear bounds are not known for
this neither.
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Chapter 1: Introduction

The main part of this chapter is [ASM+15] 'Optimality of entropic uncertainty
relations', here we investigate such non-linear bounds numerically. Interestingly,
we observe the same additivity behaviour (see Fig. 1.9) which was proven for linear
bounds in [S18], for non-linear bounds, too. As a general result we characterize
the class of measurements for which the Maassen and U�nk bound gives the best
linear bound, and we provide a basic theorem, which characterizes all states that
achieve equality for the Maassen and U�nk inequality.

In chapter Ch.8 we will consider applications of uncertainty relations to possi-
ble e�ects of quantum gravity. Many theories of quantum gravity suggest to modify
the Heisenberg algebra when approaching the scale of Planck units. Depending on
the individual starting point of those theories, the existence of a minimal length,
which should manifest as a ultimate lower bound on the position uncertainty,

∆2(X) ≥ l0 ∀ρ, (1.16)

is postulated, proven, or assumed.
In [ACF+15], the main part of this chapter, we consider a modi�ed algebra of

the form

[x, p] = i~f(p), (1.17)

where f(p) is a symmetric convex function of the momentum operator, that allows
for an expansion

f(p) = 1 + α(p2 + . . . ),

with a parameter α << ~, that is only relevant on very short distances or high
momenta. We investigate those modi�cations within the framework of 'standard
quantum mechanics', i.e. we start with a position operator that is represented as a
multiplication operators on L2(R). In analogy to the Stone-von Neumann theorem,
we provide a basic theorem, which shows that any representation of (1.17), obeying
certain transformation rules, results in a theory that has an e�ective UV-cut-o�
and a minimal length (1.16). From a second perspective, those theories can be
seen as quantum mechanics living on a subspace of band-limited functions. Here,
a position coordinate is still continuous, whereas a position measurement is now
described by a non-projective POVM, which, at the end, leads to a lower limit on
the respective uncertainty.
We provide basic tools that allow to compute modi�ed uncertainty relations.

We also consider uncertainty relations based on the Shannon entropy and the
min-entropy. Interestingly it turns out that the min-entropy is always bigger than
one bit.
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CHAPTER 2

Measurement uncertainty relations based on cost functions

In this chapter we will introduce quantitative descriptions of measurement uncer-
tainty relations. Albeit, we have the aim to do this in a most general manner,
we will restrict the investigation to observables on �nite Hilbert spaces with �-
nite outcome sets. The central part of this chapter is [SRW16], given in the
following section. The central contribution of this work is to provide a couple of
constructions of computable error measures between POVMs. Those will serve
to quantify uncertainty and compute uncertainty relations later on. Our line of
thinking is heavily inspired by classical optimal transportation theory (see for ex-
ample [Vil09]), and our construction can be seen as an operator valued version of
the Monge-Wasserstein-Kantorovic distance. At this point we should note that,
this idea was originaly introduced in [BLW14b,BLW13,Wer04]. However, it was
only applied for particular examples. In contrast, the aim of [SRW16] was to
provide according results in a more general context.
The central bene�t of the constructions provided in [SRW16] is to obtain an

error measure that is based solely on a, so called, cost function. This is a function
that assigns a (transport-) cost to pairs of measurement outcomes and, thus, gives
a quantitative way to compare two measurements in a single shot. Thereby, a
cost function must not necessarily obey the axioms of a metric. In general, we
can regard a cost function as the input that models the nature of the underlying
physical setting in a particular instance of a class of optimization problems. At
the end of the construction, the resulting error measure inherits its operational
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functions

meaning, physical unit, and its transformation behaviour, from the underlying
cost function.
Since cost functions are kept as unspeci�ed objects in [SRW16], we close this

introduction by listing some examples of typical outcome sets and their according
cost functions:

Points on a line

A standard situation in (quantum-) physics is to consider measurements with a
discrete set of measurement outcomes that are (i) part of real numbers and (ii)
the ordering according to the real numbers is a relevant part of the problem. For
example, any observable that is modelled by a self adjoint operator with spec-
trum corresponding measurement outcomes, as done in any textbook, obeys (i).
Furthermore, (ii) is a very natural assumption for physical properties that have a
corresponding quantity in classical physics, like energy, position, momentum, and
angular momentum. Here it is natural to take the euclidean metric |x − y| as
cost function. However, we will also consider cost functions of the type |x − y|m.
For m 6= 1 the triangle inequality is violated, hence this is an example for a cost
function that is not a metric. The case m = 2 is from special interest, because it
is closely related to variances. Since variances have their own relevance at many
points in classical statistics, they will be regarded separately in chapter Ch. 4.

Points on a circle

A situation, where the euclidean distance does not appropriately model the under-
lying setting, are outcome sets with a periodic structure. For example points on a
circle. Here an appropriate cost function should respect this periodicy. Therefore,
it could be based on the angle φ between two points. Furthermore, one can think
of embedding the circle into R2 and take the euclidean distance in this space. This
will lead to a cost function based on arccos(φ). Measurement uncertainty relations
for this case were investigated in [BKW16].
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The discrete metric

As most general case, one has to consider a �nite outcome set with no further
structure on it. Here, the only distinction that can be made is if two elements
are equal or not. Hence, all reasonable non trivial cost functions are proportional
to the discrete metric. This metric equals zero whenever an object is compared
to itself and is constant otherwise. Measurement uncertainty relations with this
metric were investigated in the Bachelor thesis [Fra15]. In this thesis we will have
a closer look at this in chapter Ch. 5.

Strings

A further example, with regard to applications in information theory, and more
precisely coding theory, are strings of characters from some alphabet. Here, we
can compare two strings within the Hamming distance. This is, we compare two
strings, at �rst, on each position within the discrete metric and sum over this
afterwards. At the end, this gives a number, which is proportional to the num-
ber of position where the corresponding symbols are di�erent. Measurement and
preparation uncertainty relations for this case were investigated in [Wer16,Jav16].
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2.1 [SRW16]

Measurement uncertainty relations for �nite quantum Observables

• Authors: René Schwonnek, David Reeb, and Reinhard F. Werner

• Published in: Mathematics 4 (2),38.

• DOI: 10.3390/math4020038

• Presented version: arXiv: 1604.00382

• Contributions: All authors contributed equally.

• Main results:

� De�nition of the measurement error quantities εM(A|A′), εC(A|A′), and
εE(A|A′) for arbitrary cost functions, based on the ansatz of Wasserstein
metrics.

� Uncertainty regions of measurement uncertainties are always convex.

� The computation of optimal measurement uncertainty relations can be
formulated as SDP. The main ingredient for this is the use of the Kantro-
rovic duality for cost functions on �nite domains. Here, the full list of
optimal pricing schemes can be computed.
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Abstract

Measurement uncertainty relations are lower bounds on the errors of any approximate joint
measurement of two or more quantum observables. The aim of this paper is to provide methods
to compute optimal bounds of this type. The basic method is semidefinite programming, which
we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert
space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty
to getting result x rather than y, for any pair (x, y). This induces a notion of optimal transport
cost for a pair of probability distributions, and we include an appendix with a short summary
of optimal transport theory as needed in our context. There are then different ways to form an
overall figure of merit from the comparison of distributions. We consider three, which are related
to different physical testing scenarios. The most thorough test compares the transport distances
between the marginals of a joint measurement and the reference observables for every input state.
Less demanding is a test just on the states for which a “true value” is known in the sense that
the reference observable yields a definite outcome. Finally, we can measure a deviation as a single
expectation value by comparing the two observables on the two parts of a maximally entangled
state. All three error quantities have the property that they vanish if and only if the tested
observable is equal to the reference. The theory is illustrated with some characteristic examples.

1 Introduction

Measurement uncertainty relations are quantitative expressions of complementarity. As Bohr often
emphasized, the predictions of quantum theory are always relative to some definite experimental
arrangement, and these settings often exclude each other. In particular, one has to make a choice of
measuring devices, and typically quantum observables cannot be measured simultaneously. This often
used term is actually misleading, because time has nothing to do with it. For a better formulation
recall that quantum experiments are always statistical, so the predictions refer to the frequency with
which one will see certain outcomes when the whole experiment is repeated very often. So the issue
is not simultaneous measurement of two observables, but joint measurement in the same shot. That
is, a device R is a joint measurement of observable A with outcomes x ∈ X and observable B with
outcomes y ∈ Y , if it produces outcomes of the form (x, y) in such a way that if we ignore outcome
y, the statistics of the x outcomes is always (i.e., for every input state) the same as obtained with a

∗rene.schwonnek@itp.uni-hannover.de
†david.reeb@itp.uni-hannover.de
‡reinhard.werner@itp.uni-hannover.de
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measurement of A, and symmetrically for ignoring x and comparing with B. It is in this sense that
non-commuting projection valued observables fail to be jointly measurable.

However, this is not the end of the story. One is often interested in approximate joint measure-
ments. One such instance is Heisenberg’s famous γ-ray microscope [11], in which a particle’s position
is measured by probing it with light of some wavelength λ, which from the outset sets a scale for
the accuracy of this position measurement. Naturally, the particle’s momentum is changed by the
Compton scattering, so if we make a momentum measurement on the particles after the interaction,
we will find a different distribution from what would have been obtained directly. Note that in this
experiment we get from every particle a position value and momentum value. Moreover, errors can
be quantified by comparing the respective distributions with some ideal reference: The accuracy of
the microscope position measurement is judged by the degree of agreement between the distribution
obtained and the one an ideal position measurement would give. Similarly, the disturbance of mo-
mentum is judged by comparing a directly measured distribution with the one after the interaction.
The same is true for the uncontrollable disturbance of momentum. This refers to a scenario, where
we do not just measure momentum after the interaction, but try to build a device that recovers the
momentum in an optimal way, by making an arbitrary measurement on the particle after the interac-
tion, utilizing everything that is known about the microscope, correcting all known systematic errors,
and even using the outcome of the position measurement. The only requirement is that at the end
of the experiment, for each individual shot, some value of momentum must come out. Even then it
is impossible to always reproduce the pre-microscope distribution of momentum. The tradeoff be-
tween accuracy and disturbance is quantified by a measurement uncertainty relation. Since it simply
quantifies the impossibility of a joint exact measurement, it simultaneously gives bounds on how an
approximate momentum measurement irretrievably disturbs position. The basic setup is shown in
Fig. 1.

Aρ

B

R

ε(A′|A)

ε(B′|B)

ρ

ρ

Figure 1: Basic setup of measurement uncertainty relations. The approximate joint measurement R is
shown in the middle, with its array of output probabilities. The marginals A′ and B′ of this array are
compared with the output probabilities of the reference observables A and B, shown at the top and
at the bottom. The uncertainties ε(A′|A) and ε(B′|B) are quantitative measures for the difference
between these distributions.

Note that in this description of errors we did not ever bring in a comparison with some hypothetical
“true value”. Indeed it was noted already by Kennard [13] that such comparisons are problematic
in quantum mechanics. Even if one is willing to feign hypotheses about the true value of position,
as some hidden variable theorists will, an operational criterion for agreement will always have to be
based on statistical criteria, i.e., the comparison of distributions. Another fundamental feature of this
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view of errors is that it provides a figure of merit for the comparison of two devices, typically some
ideal reference observable and and an approximate version of it. An “accuracy” ε in this sense is a
promise that no matter which input state is chosen, the distributions will not deviate by more than
ε. Such a promise does not involve a particular state. This is in contrast to preparation uncertainty
relations, which quantify the impossibility to find a state for which the distributions of two given
observables (e.g., position and momentum) are both sharp.

Measurement uncertainty relations in the sense described here were first introduced for position
and momentum in [23], and were initially largely ignored. A bit earlier, an attempt by Ozawa [15]
to quantify error-disturbance tradeoffs with state dependent and somewhat unfortunately chosen [7]
quantities had failed, partly for reasons already pointed out in [1]. When experiments confirmed some
predictions of the Ozawa approach (including the failure of the error-disturbance tradeoff), a debate
ensued [4, 16, 6, 2]. Its unresolved part is whether a meaningful role for Ozawa’s definitions can
be found. Technically, the computation of measurement uncertainty for position and momentum in
[6] carries over immediately to more general phase spaces [24, 3]. Apart from some special further
computed instances [8, 5], this remained the only case in which sharp measurement uncertainty
relations could be obtained. This was in stark contrast with preparation uncertainty, for which an
algorithm based on solving ground state problems [8] efficiently provides the optimal relations for
generic sets of observables. The main aim of the current paper is to provide efficient algorithms also
for sharp measurement uncertainty relations.

In order to do that we restrict the setting in some ways, but allow maximal generality in others.
We will restrict to finite dimensional systems, and reference observables which are projection valued
and non-degenerate. Thus, each of the ideal observables will basically be given by an orthonormal
basis in the same d-dimensional Hilbert space. The labels of this basis are the outcomes x ∈ X of
the measurement, where X is a set of d elements. We could choose all X = {1, . . . , d}, but it will
help to keep track of things using a separate set for each observable. Moreover, this includes the
choice X ⊂ R, the set of eigenvalues of some hermitian operator. We allow not just two observables
but any finite number n ≥ 2 of them. This is makes some expressions easier to write down, since
the sum of an expression involving observable A and analogous one for observable B becomes an
indexed sum. We also allow much generality in the way errors are quantified. In earlier works, we
relied on two elements to be chosen for each observable, namely a metric D on the outcome set, and
an error exponent α, distinguishing, say absolute (α = 1), root-mean-square (α = 2), and maximal
(α = ∞) deviations. Deviations were then averages of D(x, y)α. Here we generalize further to an
arbitrary cost function c : X×X → R, which we take to be positive, and zero exactly on the diagonal
(e.g., c(x, y) = D(x, y)α), but not necessarily symmetric. Again this generality comes mostly as a
simplification of notation. For a reference observable A with outcome set X and an approximate
version A′ with the same outcome set, this defines an error ε(A′|A). Our aim is to provide algorithms
for computing the uncertainty diagram associated with such data, of which Fig. 2 gives an example.
The given data for such a diagram are n projection valued observables A1, . . . , An, with outcome sets
Xi, for each of which we are given also a cost function ci : Xi ×Xi → R for quantifying errors. An
approximate joint measurement is then an observable R with outcome set×i

Xi, and hence with
POVM elements R(x1, . . . , xn), where xi ∈ Xi. By ignoring every output but one we get the n
marginal observables

A′i(xi) =
∑

x1,...,xi−1,xi+1,...,xn

R(x1, . . . , xn) (1)

and a corresponding tuple
~ε(R) =

(
ε(A′1|A1), . . . , ε(A′n|An)

)
(2)

of errors. The set UL of such tuples, as R runs over all joint measurements, is the uncertainty region.
The surface bounding this set from below describes the uncertainty tradeoffs. For n = 2 we call it the
tradeoff curve. Measurement uncertainty is the phenomenon that, for general reference observables
Ai, the uncertainty region is bounded away from the origin. In principle there are many ways to
express this mathematically, from a complete characterization of the exact tradeoff curve, which is
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usually hard to get, to bounds which are simpler to state, but suboptimal. Linear bounds will play a
special role in this paper.

ε(L′3|L3)

1

1
2/3

1

2/3

ε(L′2|L2)

ε(L′1|L1)

Figure 2: Uncertainty regions for three reference observables, namely the angular momentum compo-
nents L1, L2, L3 for spin 1, each with outcome set X = {−1, 0,+1} and the choice c(x, y) = (x− y)2

for the cost function. The three regions indicated correspond to the different overall figures of merit
εM (A′|A) ≥ εC(A′|A) ≥ εE(A′|A) described in Sect. 2.

We will consider three ways to build a single error quantity out of the comparison of distributions,
denoted by εM (A′|A), εC(A′|A), and εE(A′|A). These will be defined in Sect. 2. For every choice
of observables and cost functions, each will give an uncertainty region, denoted by UM , UC , and UE ,
respectively. Since the errors are all based on the same cost function c, they are directly comparable
(see Fig. 2). We show in Sect. 3 that the three regions are convex, and hence characterized completely
by linear bounds. In Sect. 4 we show how to calculate the optimal linear lower bounds by semidefinite
programs. Finally, an Appendix collects the basic information on the beautiful theory of optimal
transport, which is needed in Sects. 2.1 and 4.1.

2 Deviation measures for observables

Here we define the measures we use to quantify how well an observable A′ approximates a desired
observable A. In this section we do not use the marginal condition (1), so A′ is an arbitrary observable
with the same outcome set X as A, i.e., we drop all indices i identifying the different observables.
Our error quantities are operational in the sense that each is motivated by an experimental setup,
which will in particular provide a natural way to measure them. All error definitions are based on
the same cost function c : X × X → R, where c(x, y) is the “cost” of getting a result x ∈ X, when
y ∈ X would have been correct. The only assumptions are that c(x, y) ≥ 0 with c(x, y) = 0 iff x = y.

As described above, we consider a quantum system with Hilbert space Cd. As a reference ob-
servable A we allow any complete von Neumann measurement on this system, that is, any observ-
able whose the set X of possible measurement outcomes has size |X| = d and whose POVM ele-
ments A(y) ∈ B(Cd) (y ∈ X) are mutually orthogonal projectors of rank 1; we can then also write
A(y) = |φy〉〈φy| with an orthonormal basis {φy} of Cd. For the approximating observable A′ the
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POVM elements A′(x) (with x ∈ X) are arbitrary with A′(x) ≥ 0 and
∑
x∈X A(x) = 1.

The comparison will be based on a comparison of output distributions, for which we use the
following notations: Given a quantum state ρ on this system, i.e., a density operator with ρ ≥ 0
and tr ρ = 1, and an observable such as A, we will denote the outcome distribution by ρA, so
(ρA)(y) := tr(ρAy). This is a probability distribution on the outcome set X and can be determined
physically as the empirical outcome distribution after many experiments.

For comparing just two probability distributions p : X → R+ and q : X → R+, a canonical choice
is the “minimum transport cost”

č(p, q) := inf
γ

{∑

xy

c(x, y)γ(x, y)
∣∣ γ couples p to q

}
, (3)

where the infimum runs over the set of all couplings, or “transport plans” γ : X ×X → R+ of p to
q, i.e., the set of all probability distributions γ satisfying the marginal conditions

∑
y γ(x, y) = p(x)

and
∑
x γ(x, y) = q(y). The motivations for this notion, and the methods to compute it efficiently

are described in the Appendix. Since X is finite, the infimum is over a compact set, so it is always
attained. Moreover, since we assumed c ≥ 0 and c(x, y) = 0 ⇔ x = y, we also have č(p, q) ≥ 0 with
equality iff p = q. If one of the distributions, say q, is concentrated on a point ỹ, only one coupling
exists, namely γ(x, y) = p(x)δyỹ. In this case we abbreviate č(p, q) = č(p, ỹ), and get

č(p, ỹ) =
∑

x

p(x)c(x, ỹ), (4)

i.e., the average cost of moving all the points x distributed according to p to ỹ.

2.1 Maximal measurement error εM(A′|A).

A

A′

εM (A′|A)

ρ

ρ

Figure 3: For the maximal measurement error εM (A′|A) the transport distance of output distributions
is maximized over all input states ρ.

The worst case error over all input states is

εM (A′|A) := sup
ρ

{
č(ρA′, ρA)

∣∣ ρ quantum state on Cd
}
, (5)

which we call the maximal measurement error. Note that, like the cost function c and the transport
costs č, the measure εM (A′|A) need not be symmetric in its arguments, which is sensible as the
reference and approximating observables have distinct roles. Similar definitions for the deviation of
an approximating measurement from an ideal one have been made, for specific cost functions, in [4, 6]
and [8] before.

The definition (5) makes sense even if the reference observable A is not a von Neumann mea-
surement. Instead, the only requirement is that A and A′ be general observables with the same
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(finite) outcome set X, not necessarily of size d. All our results below that involve only the maximal
measurement error immediately generalize to this case as well.

One can see that it is expensive to determine the quantity εM (A′|A) experimentally according to
the definition: one would have to measure and compare the outcome statistics ρA′ and ρA for all
possible input states ρ, which form a continuous set. The following definition of observable deviation
alleviates this burden.

2.2 Calibration error εC(A′|A).

A

A′

εC(A′|A)
y

y

|φy〉〈φy |

|φy〉〈φy |

Figure 4: For the calibration error εC(A′|A), the input state is constrained to the eigenstates of A,
say with sharp A-value y, and the cost of moving the A′-distribution to y is maximized over y.

Calibration is a process by which one tests a measuring device on inputs (or measured objects)
for which the “true value” is known. Even in quantum mechanics we can set this up by demanding
that the measurement of the reference observable on the input state gives a sharp value y. In a
general scenario with continuous outcomes this can only be asked with a finite error δ, which goes
to zero at the end [4], but in the present finite scenario we can just demand (ρA)(y) = 1. Since, for
every outcome y of a von Neumann measurement, there is only one state with this property (namely
ρ = |φy〉〈φy|) we can simplify even further, and define the calibration error by

εC(A′|A) := sup
y,ρ
{č(ρA′, y)

∣∣ tr(ρA(y)) = 1} = max
y

∑

x

〈φy|A′(x)|φy〉 c(x, y). (6)

Note that the calibration idea only makes sense when there are sufficiently many states for which
the reference observable has deterministic outcomes, i.e., for projective observables A.

A closely related quantity has recently been proposed by Appleby [2]. It is formulated for real
valued quantities with cost function c(x, y) = (x − y)2, and has the virtue that it can be expressed
entirely in terms of first and second moments of the probability distributions involved. So for any ρ,
let m and v be the mean and variance of ρA, and v′ the mean quadratic deviation of ρA′ from m.
Then Appleby defines

εD(A′|A) = sup
ρ

(
√
v′ −√v)2. (7)

Here we added the square to make Appleby’s quantity comparable to our variance-like (rather than
standard deviation-like) quantities, and chose the letter D, because Appleby calls this the D-error.
Since in the supremum we have also the states for which A has a sharp distribution (i.e. v = 0),
we clearly have εD(A′|A) ≥ εC(A′|A). On the other hand, let Φ(x) = t(x − m)2 and Ψ(y) =
t/(1−t)(y−m)2 with some parameter t ∈ (−∞, 1). Then one easily checks that Φ(x)−Ψ(y) ≤ (x−y)2,
so (Φ,Ψ) is a pricing scheme in the sense defined in the Appendix. Therefore

č(ρA′, ρA) ≥
∑

x

(ρA′)(x)Φ(x)−
∑

y

(ρA)(y)Ψ(y) = t v′ − t

1− t v. (8)
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Maximizing this expression over t gives exactly (7). Therefore εC(A′|A) ≤ εD(A′|A) ≤ εM (A′|A).

2.3 Entangled reference error εE(A′|A).

AT

Ω

A′

εE(A′|A)

Figure 5: The entangled reference error εE(A′|A) is a single expectation value, namely of the cost
c(x, y), where y is the output of AT and x the output of A′. Like the other error quantities this
expectation vanishes iff A′ = A.

In quantum information theory a standard way of providing a reference state for later comparison
is by applying a channel or observable to one half of a maximally entangled system. Two observables
would be compared by measuring them (or suitable modifications) on the two parts of a maximally
entangled system. Let us denote the entangled vector by Ω = d−1/2

∑
k |kk〉. Since later we will look

at several distinct reference observables, the basis kets |k〉 in this expression have no special relation
to A or its eigenbasis φy. We denote by XT the transpose of an operator X in the |k〉 basis, and by
AT the observable with POVM elements A(y)T = |φy〉〈φy|, where φy is the complex conjugate of φy
in |k〉-basis. These transposes are needed due to the well-known relation (X ⊗1)Ω = (1⊗XT)Ω. We
now consider an experiment, in which A′ is measured on the first part and AT on the second part of
the entangled system, so we get the outcome pair (x, y) with probability

p(x, y) = 〈Ω|A′(x)⊗A(y)T|Ω〉 = 〈Ω|A′(x)A(y)⊗ 1|Ω〉 =
1

d
tr
(
A′(x)A(y)

)
. (9)

As A is a complete von Neumann measurement, this probability distribution is concentrated on the
diagonal (x = y) iff A′ = A, i.e., there are no errors of A′ relative to A. Averaging with the error
costs we get a quantity we call the entangled reference error

εE(A′|A) :=
∑

xy

1

d
tr
(
A′(x)A(y)

)
c(x, y). (10)

Note that this quantity is measured as a single expectation value in the experiment with source
Ω. Moreover, when we later want to measure different such deviations for the various marginals, the
source and the tested joint measurement device can be kept fixed, and only the various reference
observables AT

i acting on the second part need to be adapted suitably.

2.4 Summary and comparison

The quantities εM (A′|A), εC(A′|A) and εE(A′|A) constitute three different ways to quantify the
deviation of an observable A′ from a projective reference observable A. Nevertheless, they are all
based on the same distance-like measure, the cost function c on the outcome set X. Therefore it
makes sense to compare them quantitatively. Indeed, they are ordered as follows:

εM (A′|A) ≥ εC(A′|A) ≥ εE(A′|A). (11)
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Here the first inequality follows by restricting the supremum (5) to states which are sharp for A, and
the second by noting the (6) is the maximum of a function of y, of which (10) is the average.

Moreover, as we argued before Eq. (10), εE(A′|A) = 0 if and only if A = A′, which is hence
equivalent also to εM (A′|A) = 0 and εC(A′|A) = 0.

3 Convexity of uncertainty diagrams

In this section we will consider tuples (A1, . . . , An) of projection valued non-degenerated observables,
as described in the introduction. We will collect some basic properties of the uncertainty regions UL,
where L ∈ {M,C,E}, that is,

UL :=
{(
εL(A′1|A1), . . . , εL(A′n|An)

) ∣∣∣ A′i marginals of a joint measurement
}
. (12)

For two observables B1 and B2 with the same outcome set we can easily realize their mixture,
or convex combination B = tB1 + (1 − t)B2 by flipping a coin with probability t for heads in each
instance and then apply B1 when heads is up and B2 otherwise. In terms of POVM elements this
reads B(x) = tB1(x) + (1− t)B2(x). We show first that this mixing operation does not increase the
error quantities from Sect. 2.

Lemma 1. For L ∈ {M,D,C,E} the error quantity εL(B|A), is a convex function of B , i. e. for
B = tB1 + (1− t)B2 and t ∈ [0, 1]:

εL(B|A) ≤ t εL(B1|A) + (1− t) εL(B1|A). (13)

Proof. The basic fact used here is that the pointwise supremum of affine functions (i.e., those for
which equality holds in the definition of a convex function) is convex. This is geometrically obvious,
and easily verified from the definitions. Hence we only have to check that each of the error quantities
is indeed represented as a supremum of functions, which are affine in the observable B.

For L = E we even get an affine function, because (10) is linear in A′. For L = C equation (6)
has the required form. For L = M the definition (5) is as a supremum, but the function č is defined
as an infimum. However, we can use the duality theory described in the Appendix (e.g. in (49)) to
write it instead as a supremum over pricing schemes, of an expression which is just the expectation
of Φ(x) plus a constant, and therefore an affine function. Finally, for Appleby’s case (7), we get the
same supremum, but over a subset of pricing schemes (the quadratic ones, see below (7)).

The convexity of the error quantities distinguishes measurement from preparation uncertainty.
Indeed, the variances appearing in preparation uncertainty relations are typically concave functions,
because they arise from minimizing the expectation of (x−m)2 over m. Consequently, the preparation
uncertainty regions may have gaps, and non-trivial behaviour on the side of large variances. The
following proposition will show that measurement uncertainty regions are better behaved.

For every cost function c on a set X we can define a “radius” c∗, the largest transportation cost
from the uniform distribution (the “center” of the set of probability distributions) and a “diameter”
c∗, the largest transportation cost between any two distributions:

c∗ = max
y

∑

x

c(x, y)/d c∗ = max
xy

c(x, y). (14)

Proposition 1. Let n observables Ai and cost functions ci be given, and define cMi = cCi = c∗i
and cEi = ci

∗. Then, for L ∈ {M,C,E}, the uncertainty regions UL is a convex set and has the
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following (monotonicity) property: When ~x = (x1, . . . , xn) ∈ UL and ~y = (yi, . . . , yn) ∈ Rn such that
xi ≤ yi ≤ cLi , then ~y ∈ UL.

Proof. Let us first clarify how to make the worst possible measurement B, according to the various
error criteria, for which we go back to the setting of Sect. 2, with just one observable A, and cost
function c. In all cases, the worst measurement is one with constant and deterministic output, i.e.,
B(x) = δx∗,x1. For L = C and L = M such a measurement will have εL(B|A) = maxy c(x

∗, y), and
we can choose x∗ to make this equal to c∗ = cL. For L = E we get instead the average, which is
maximized by c∗.

We can now make a given joint measurement R worse by replacing it partly by a bad one, say for
the first observable A1. That is, we set, for λ ∈ [0, 1],

R̃(x1, x2, . . . , xn) = λB1(x1)
∑

y1

R(y1, x2, . . . , xn) + (1− λ)R(x1, x2, . . . , xn). (15)

Then all marginals Ã′i for i 6= 1 are unchanged, but Ã′1(x1) = λB1(x1) + (1 − λ)A′(x1). Now as
λ changes from 0 to 1, the point in the uncertainty diagram will move continuously in the first
coordinate direction from ~x to the point in which the first coordinate is replaced by its maximum
value (see Fig. 6(left)). Obviously, the same holds for every other coordinate direction, which proves
the monotonicity statement of the proposition.

~εL(R)

~εL(B1)
εL(A′1|A1)

εL(A′2|A2)
c∗2

c∗1

~εL(R̃) ~εL(V )

~εL(R1)

εL(A′1|A1)

εL(A′2|A2)
c∗2

c∗1

~εL(R2)~εL(R)

λ~εL(R1) + (1− λ)~εL(R2)

Figure 6: The blue shaded region corresponds to the monotonicity statement for ~εL(R). (left) R̃ is

a mixture of R and B1. We can also get an observable V by mixing the second marginal of R̃ with
B2 and thus reach every point in the blue shaded region. (right) ~εL(R) is componentwise convex. So
the mixture of the points ~εL(R1) and ~εL(R2) is always in the monotonicity region corresponding to
~εL(R).

Let R1 and R2 be two observables, and let R = λR1 + (1 − λ)R2 be their mixture. For proving the
convexity of UL we will have to show that every point on the line between ~εL(R1) and ~εL(R2) can
be attained by a tuple of errors corresponding to some allowed observable (see Fig. 6 (right)). Now
lemma 1 tells us that every component of ~εL(R) is convex, which implies that ~εL(R) ≤ λ~εL(R1) +
(1 − λ)~εL(R2). But, by monotonicity, this also means that λ~εL(R1) + (1 − λ)~ε(R2) is in UL again,
which shows the convexity of UL.

3.1 Example: Phase space pairs

As is plainly visible from Fig. 2, the three error criteria considered here usually give different results.
However, under suitable circumstances they all coincide. This is the case for conjugate pairs related
by Fourier transform [24]. The techniques needed to show this are the same as for the standard
position/momentum case [6, 22], and in addition imply that the region for preparation uncertainty is
also the same.
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In the finite case there is not much to choose: We have to start from a finite abelian group,
which we think of as position space, and its dual group, which is then the analogue of momentum
space. The unitary connecting the two observables is the finite Fourier associated with the group.
The cost function needs to be translation invariant, i.e., c(x, y) = c(x − y). Then, by an averaging
argument, we find for all error measures that a covariant phase space observable minimizes measure-
ment uncertainty (all three versions). The marginals of such an observable can be simulated by first
doing the corresponding reference measurement, and then adding some random noise. This implies
[8] that εM (A′|A) = εC(A′|A). But we know more about this noise: It is independent of the input
state so that the average and the maximum of the noise (as a function of the input) coincide, i.e.,
εC(A′|A) = εE(A′|A). Finally, we know that the noise of the position marginal is distributed accord-
ing to the position distribution of a certain quantum state which is, up to normalization and a unitary
parity inversion, the POVM element of the covariant phase space observable at the origin. The same
holds for the momentum noise. But then the two noise quantities are exactly related like the position
and momentum distributions of a state, and the tradeoff curve for that problem is exactly preparation
uncertainty, with variance criteria based on the same cost function.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε(A′1|A1)

ε(A′2|A2)

Figure 7: The uncertainty tradeoff curves for discrete position/momentum pairs, with discrete metric.
In this case all uncertainty regions, also the one for preparation uncertainty, coincide. The parameter
of the above tradeoff curves is the order d = 2, 3, . . . , 10, · · · ,∞ of the underlying abelian group.

If we choose the discrete metric for c, the uncertainty region depends only on the number d of
elements in the group we started from [24]. The largest ε for all quantities is the distance from a
maximally mixed state to any pure state, which is ∆ = (1− 1/d). The exact tradeoff curve is then an
ellipse, touching the axes at the points (0,∆) and (∆, 0). The resulting family of curves, parameterized
by d, is shown in Fig. 7. In general, however, the tradeoff curve requires the solution of a non-trivial
family of ground state problems, and cannot be given in closed form. For bit strings of length n, and
the cost some convex function of Hamming distance there is an expression for large n [24].
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4 Computing uncertainty regions via semidefinite program-
ming

We show here how the uncertainty regions – and therefore optimal uncertainty relations – corre-
sponding to each of the three error measures can actually be computed, for any given set of projective
observables A1, . . . , An and cost functions c1, . . . , cn. Our algorithms will come in the form of semidef-
inite programs (SDPs) [20, 19], facilitating efficient numerical computation of the uncertainty regions
via the many existing program packages to solve SDPs. Moreover, the accuracy of such numerical
results can be rigorously certified via the duality theory of SDPs. To obtain the illustrations in this
paper we used the CVX package [10, 9] under MATLAB.

As all our uncertainty regions UL ⊂ Rn (for L = M,C,E) are convex and closed (Sect. 3), they
are completely characterized by their supporting hyperplanes (for a reference to convex geometry see
[17]). Due to the monotonicity property stated in Prop. 1 some of these hyperplanes just cut off the
set parallel along the planes xi = cLi . The only hyperplanes of interest are thus those with nonnegative
normal vectors ~w = (w1, . . . , wn) ∈ Rn+ (see Fig. 8). Each hyperplane is completely specified by its
“offset” bL(~w) away from the origin, and this function determines UL:

bL(~w) := inf
{
~w · ~ε

∣∣∣ ~ε ∈ UL
}
, (16)

UL =
{
~ε ∈ Rn

∣∣∣ ∀~w ∈ Rn+ : ~w · ~ε ≥ bL(~w) and ∀i : εi ≤ cLi
}
. (17)

In fact, due to homogeneity bL(t~w) = t bL(~w) we can restrict everywhere to the subset of vectors
~w ∈ Rn+ that, for example, satisfy

∑
i wi = 1, suggesting an interpretation of the wi as weights of

the different uncertainties εi. Our algorithms will, besides evaluating bL(~w), also allow to compute
an (approximate) minimizer ~ε, so that one can plot the boundary of the uncertainty region UL by
sampling over ~w, which is how the figures in this paper were obtained.

εL(A′1|A1)

εL(A′2|A2)

UL

~w

Figure 8: The lower bound of the uncertainty region UL can be described by its supporting hyperplanes
(red line) with a normal vector ~w ∈ Rn+ .

Let us further note that knowledge of bL(~w) for some ~w ∈ Rn+ immediately yields a quantitative
uncertainty relation: every error tuple ~ε ∈ UL attainable via a joint measurement is constrained by the
affine inequality ~w · ~ε ≥ bL(~w), meaning that some weighted average of the attainable error quantities
εi cannot become too small. When bL(~w) > 0 is strictly positive, this excludes in particular the zero
error point ~ε = ~0. The obtained uncertainty relations are optimal in the sense that there exists ~ε ∈ UL
which attains strict equality ~w · ~ε = bL(~w).

Having reduced the computation of an uncertainty region essentially to determining bL(~w) (pos-
sibly along with an optimizer ~ε), we now treat each case L = M,C,E in turn.
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4.1 Computing the uncertainty region UM

On the face of it, the computation of the offset bM (~w) looks daunting: expanding the definitions we
obtain

bM (~w) = inf
R

n∑

i=1

wi sup
ρ
či(ρA

′
i, ρAi), (18)

where the infimum runs over all joint measurements R with outcome set X1 × . . . × Xn, inducing
the marginal observables A′i = A′i(R) according to (1), and the supremum over all sets of n quantum
states ρ1, . . . , ρn, and where the transport costs či(p, q) are given as a further infimum (3) over the
couplings γi of p = ρA′i and q = ρAi.

The first simplification is to replace the infimum over each coupling γi, via a dual representation
of the transport costs, by a maximum over optimal pricing schemes (Φα,Ψα), which are certain pairs
of functions Φα,Ψα : Xi → R, where α runs over some finite label set Si. The characterization
and computation of the pairs (Φα,Ψα), which depend only on the chosen cost function ci on Xi, is
described in the Appendix. The simplified expression for the optimal transport costs is then

či(p, q) = max
α∈Si

∑

x

Φα(x) p(x)−
∑

y

Ψα(y)q(y). (19)

We can then continue our computation of bM (~w):

bM (~w) = inf
R

∑

i

wi sup
ρ

max
α∈Si

(∑

x

Φα(x) tr[ρA′i(x)]−
∑

y

Ψα(y) tr[ρAi(y)]
)

(20)

= inf
R

∑

i

wi max
α∈Si

sup
ρ

tr
[
ρ
(∑

x

Φα(x)A′i(x)−
∑

y

Ψα(y)Ai(y)
)]

(21)

= inf
R

∑

i

wi max
α∈Si

λmax

(∑

x

Φα(x)A′i(x)−
∑

y

Ψα(y)Ai(y)
)
, (22)

where λmax(Bi,α) denotes the maximum eigenvalue of a Hermitian operatorBi,α. Note that λmax(Bi,α) =
inf{µi |Bi,α ≤ µi1}, which one can also recognize as the dual formulation of the convex optimization
supρ tr(ρBi,α) over density matrices, so that

max
α∈Si

λmax(Bi,α) = inf{µi | ∀α ∈ Si : Bi,α ≤ µi1} (23)

We obtain thus a single constrained minimization:

bM (~w) = inf
R,{µi}

{∑

i

wiµi
∣∣ ∀i∀α ∈ Si :

∑

x

Φα(x)A′i(x)−
∑

y

Ψα(y)Ai(y) ≤ µi1
}
. (24)

Making the constraints on the POVM elements R(x1, . . . , xn) of the joint observable R explicit and
expressing the maginal observables A′i = A′i(R) directly in terms of them by (1), we finally obtain the
following SDP representation for the quantity bM (~w):

bM (~w) = inf
∑
i wiµi

with real variables µi and d× d-matrix variables R(x1, . . . , xn) subject to
µi1 ≥∑x1,...,xn

Φα(xi)R(x1, . . . , xn)−∑y Ψα(y)A(y) ∀i ∀α ∈ Si
R(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn∑

x1,...,xn
R(x1, . . . , xn) = 1.

(25)
The derivation above shows further that, when wi > 0, the µi attaining the infimum equals µi =
supρ či(ρA

′
i, ρAi) = εM (A′i|Ai), where A′i is the marginal coming from a corresponding optimal joint
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measurement R(xi, . . . , xn). Since numerical SDP solvers usually output an (approximate) optimal
variable assignment, one obtains in this way directly a boundary point ~ε = (µ1, . . . , µn) of UM when
all wi are strictly positive. If wi = 0 vanishes, a corresponding boundary point ~ε can be computed via
εi = εM (A′i|Ai) = maxα∈Si λmax(

∑
x1,...,xn

Φα(xi)R(x1, . . . , xn) −∑y Ψα(y)A(y)) from an optimal
assignment for the POVM elements R(x1, . . . , xn).

For completeness we also display the corresponding dual program [20] (note that strong duality
holds, and the optima of both the primal and the dual problem are attained):

bM (~w) = sup tr[C]−∑i,α tr[Di,α

∑
y Ψα(y)Ai(y)]

with d× d-matrix variables C and Di,α subject to
C ≤∑i,α Φα(xi)Di,α ∀x1, . . . , xn
0 ≤ Di,α ∀i∀α ∈ Si
wi =

∑
α tr[Di,α] ∀i.

(26)

4.2 Computing the uncertainty region UC

To compute the offset function bC(~w) for the calibration uncertainty region UC we use the last form
in (6) and recall that the projectors onto the sharp eigenstates of Ai (see Sect. 2.2) are exactly the
POVM elements Ai(x) for x ∈ Xi:

bC(~w) = inf
R

∑

i

wi max
y

∑

x

tr[A′i(x)Ai(y)]ci(x, y) (27)

= inf
R

∑

i

wi sup
{λi,y}

∑

y

λi,y
∑

x

tr[A′i(x)Ai(y)]ci(x, y) (28)

= inf
R

sup
{λi,y}

∑

x1,...,xn

tr
[
R(x1, . . . , xn)

∑

i,y

wiλi,yci(xi, y)Ai(y)
]

(29)

where again the infimum runs over all joint measurements R, inducing the marginals A′i, and we
have turned, for each i = 1, . . . , n, the maximum over y into a linear optimization over probabilities
λi,y ≥ 0 (y = 1, . . . , d) subject to the normalization constraint

∑
y λi,y = 1. In the last step, we have

made the A′i explicit via (1).

The first main step towards a tractable form is von Neumann’s minimax theorem [14, 18]: As the
sets of joint measurements R and of probabilities {λi,y} are both convex and the optimization function
is an affine function of R and, separately, also an affine function of the {λi,y}, we can interchange the
infimum and the supremum:

bC(~w) = sup
{λi,y}

inf
R

∑

x1,...,xn

tr
[
R(x1, . . . , xn)

∑

i,y

wiλi,yci(xi, y)Ai(y)
]
. (30)

The second main step is to use SDP duality [19] to turn the constrained infimum over R into a
supremum, abbreviating the POVM elements as R(x1, . . . , xn) = Rξ:

inf
{Rξ}

{∑

ξ

RξBξ

∣∣∣ Rξ ≥ 0 ∀ξ,
∑

ξ

Rξ = 1

}
= sup

Y

{
tr[Y ]

∣∣∣ Y ≤ Bξ ∀ξ
}
, (31)

which is very similar to a dual formulation often employed in optimal ambiguous state discrimination
[12, 25].

Putting everything together, we arrive at the following SDP representation for the offset quantity
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bC(~w):

bC(~w) = sup tr[Y ]
with real variables λi,y and a d× d-matrix variable Y subject to

Y ≤∑i,y wiλi,yci(xi, y)Ai(y) ∀x1, . . . , xn
λi,y ≥ 0 ∀i ∀y∑

y λi,y = 1 ∀i.

(32)

The dual SDP program reads (again, strong duality holds, and both optima are attained):

bC(~w) = inf
∑
i wimi

with real variables mi and d× d-matrix variables R(x1, . . . , xn) subject to
mi ≥

∑
x1,...,xn

tr
[
R(x1, . . . , xn)Ai(y)

]
ci(xi, y) ∀i ∀y

R(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn∑
x1,...,xn

R(x1, . . . , xn) = 1.

(33)

This dual version can immediately be recognized as a translation of Eq. (27) into SDP form, via an
alternative way of expressing the maximum over y (or via the linear programming dual of sup{λi,y}
from Eq. (29)).

To compute a boundary point ~ε of UC lying on the supporting hyperplane with normal vector
~w, it is best to solve the dual SDP (33) and obtain ~ε = (m1, . . . ,mn) from an (approximate) op-
timal assignment of the mi. Again, this works when wi > 0, whereas otherwise one can compute
εi = maxy

∑
x1,...,xn

tr[R(x1, . . . , xn)Ai(y)]ci(xi, y) from an optimal assingment of the R(x1, . . . , xn).
From many primal-dual numerical SDP solvers (such as CVX [10, 9]), one can alternatively obtain op-
timal POVM elements R(x1, . . . , xn) also from solving the primal SDP (32) as optimal dual variables
corresponding to the constraints Y ≤ . . ., and compute ~ε from there.

4.3 Computing the uncertainty region UE

As one can see by comparing the last expressions in the defining equations (6) and (10), respectively,
the evaluation of bE(~w) is quite similar to (27), except that the maximum over y is replaced by a
uniform average over y. This simply corresponds to fixing λi,y = 1/d for all i, y in Eq. (29), instead
of taking the supremum. Therefore, the primal and dual SDPs for the offset bE(~w) are

bE(~w) = sup 1
d tr[Y ]

with a d× d-matrix variable Y subject to
Y ≤∑i,y wici(xi, y)Ai(y) ∀x1, . . . , xn.

(34)

and

bE(~w) = inf 1
d

∑
i

∑
y

∑
x1,...,xn

wi tr
[
R(x1, . . . , xn)Ai(y)

]
ci(xi, y)

with d× d-matrix variables R(x1, . . . , xn) subject to
R(x1, . . . , xn) ≥ 0 ∀x1, . . . , xn∑

x1,...,xn
R(x1, . . . , xn) = 1.

(35)

The computation of a corresponding boundary point ~ε ∈ UE is similar as above.

Acknowledgements

We thank Oliver Sachse and Kais Abdelkhalek for valuable discussions. The authors acknowledge
financial support from the BMBF project Q.com-Q, the DFG project WE1240/20 and the ERC grant
DQSIM.

14



CHAPTER 3

Preparation uncertainty relations based on cost functions

In the previous chapter we used transport theory, i.e. Wasserstein distances, in
order to construct error measures from general cost functions, this enabled us to
formulate measurement uncertainty relations. A meaningful aspect of this formula-
tion is that the error between POVMs inherits the unit and the scaling behaviour
from the underlying cost function. In this chapter we will introduce deviation
measures based on cost function. With those measures in hand we then formulate
preparation uncertainty relations, which again come with the unit and the scaling
behaviour of the underlying cost function. Since both notions of uncertainty now
can be formulated with this property, it is operationally meaningful to compare
them. This comparison is placed in the second part of this chapter. We will do
this by a basic theorem, which states that

preparation uncertainty ≺ measurement uncertainty

whenever we consider linear uncertainty relations and sharp observables. At the
end of this chapter we will comment on cases where the lower bounds for both
notions of uncertainty coincide and provide examples of unsharp measurements
where the above fails.

3.1 Preparation uncertainty for cost functions

For the formulation of preparation uncertainty relations with respect to a cost
function a deviation measure on the level of probability distributions is needed. In



Chapter 3: Preparation uncertainty relations based on cost

functions

classical statistics, the standard example of such a measure is the variance. For a
real valued random variable X, it is typically introduced as

∆2X = 〈|X − 〈X〉|2〉 . (3.1)

However, (3.1) can be formulated alternatively by the variational expression

∆2X = min
x0∈R
〈|X − x0|2〉 . (3.2)

It is straight forward to check that the minimum in (3.2) will be attained on
x0 = 〈X〉, such that both de�nitions, (3.1) and (3.2), coincide. From a more
general point of view, the squared euclidean distance, in (3.2), can be interpreted
as cost function which is employed to measure the expected deviation of X from
a constant estimate x0.
For general cost functions, this concept is generalized by the following de�nition:

De�nition 3.1. Let X be a random variable with outcomes on the set
ΩX , which is distributed by the probability distribution p : ΩX 7→ [0, 1].
Furthermore, let c(x, y) be a cost function on a pair of outcome sets
(ΩX ,ΩY ). For X we de�ne the deviation w.r.t. to c as the minimal
expected transport cost from X to a constant estimate from ΩY

ν(X) := min
y∈ΩY

〈c(X, y)〉 = min
y∈ΩY

∑

x

p(x)c(x, y). (3.3)

De�nition 3.2. For a quantum state ρ and a measurement A, with
POVM elements {A(x)}, we de�ne the deviation with respect to c on
the level of outcome distributions:

ν(A|ρ) := min
y∈ΩY

tr

(
ρ
∑

x

A(x)c(x, y)

)
.

In regard of the above de�nition and its operational interpretation as transport
cost to an optimal constant estimate it is reasonable to consider probabilistic
estimators as well. The following corollary shows that the above de�nition does
not change under this more general consideration.

Corollary 3.3. Let Y denote the set of all random variables that are

independent of X and have values in ΩY . The minimal expected trans-

port cost between X and Y ∈ Y is realized by a point measure, i.e. we

have

inf
Y ∈Y
〈c(X, Y )〉 = ν(X).
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3.1 Preparation uncertainty for cost functions

Proof. This corollary immediately follows from the convex structure of the under-
lying minimization problem. Let p be the distribution of X and let q denote the
distribution of a Y ∈ Y . Then we know from independence that the joint distri-
bution of X and Y can be written as p(x)q(y) for any (x, y) ∈ ΩX × ΩY . Within
this notation we have

inf
Y ∈Y
〈c(X, Y )〉 = min

q

∑

x,y

p(x)q(y)c(x, y) .

We substitute kX(y) =
∑

x p(x)c(x, y) and get

min
q

∑

y

q(y)kX(y) ≥ min
q

∑

y

q(y) min
y0∈Ωy

k(y0)

= min
y0∈ΩY

k(y0) = min
y0∈ΩY

∑

x

p(x)c(x, y) = ν(X)

For all cost functions, ν(A|ρ) is a concave functional on the set of quantum
states, i.e., for λ ∈ [0, 1] and states ρ and σ, we have

ν(A|λρ+ (1− λ)σ) ≥ λ ν(A|ρ) + (1− λ) ν(A|σ).

This essential property directly follows from the concavity of the minimum and
the linearity of taking the expectation value with respect to a quantum state.
However, if ν(A|ρ) is used as a measure of uncertainty, it is often meaningful to

demand the cost function to be a premetric. In this case the axioms of a premetric
can be directly translated into the following properties that make ν(A, ρ) a proper
measure of uncertainty. If c(x, y) is a premetric we have:

1. c(x, y) ≥ 0 ⇒ ν(A|ρ) ≥ 0 ∀ρ
2. c(x, y) = 0⇔ x = y ⇒ ν(A|φx) = 0 i� φx is an eigenstate of A.

We note that, for the above to be well de�ned, we have to assume that c is a
function on ΩX × ΩX , i.e. we compare two random variables on the same set of
outcomes. On one hand, we can motivate this assumption by the purpose of quan-
tifying the spread of a probability distribution on its outcome set. On the other, we
need this assumption in our current de�nition of measurement uncertainty, more
precisely in the de�nition of a joint measurement with approximative marginals.
However, in this thesis we will also encounter cases where we compare distributions
on di�erent outcome sets ΩX 6= ΩY . This will be considered in chapter Ch. 5 in
the context of entropic quantities.
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Figure 3.1: The uncertainty region for spin-1 angular momentum measure-
ments Lx and Ly, with cost function c(x, y) = |x − y|2. All attain-
able points are placed in the joint numerical range of F (x, y) for some
(x, y) ∈ {−1, 0, 1}2. We have F (0, 1), F (0,−1) = green, F (0, 0) = yellow,
F (−1, 1), F (1,−1), F (1, 1), F (−1,−1) = blue, and F (1, 0), F (−1, 0) = cyan. The
boundary of the uncertainty region Uν is marked in red.

Computing uncertainty diagrams: Computing uncertainty relations for ob-
servables with respect to continuous outcome sets is a presumably very hard prob-
lem. The special case of variances is considered in the next chapter, but beside
this, a general method for the continuous case is outstanding. In contrast, mea-
surements with �nite outcome sets can be handled straight forwardly. Here, we
can compute uncertainty relations as follows:
Let A1 . . . An be a collection of measurements, with outcome sets Ω1, . . . ,Ωn. To
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each yi ∈ Ωi we associate an operator

KAi
(yi) :=

∑

x∈Ωi

Ai(x)c(x, yi)

and to each tuple of outcomes (y1, . . . , yn) ∈ Ω1 × · · · × ΩN we associate the joint
numerical range

F (y1, . . . , yn) :=
{(

tr(ρKA1(y1)), . . . , tr(ρKAn(yn))
)∣∣∣ρ is a quantum state

}
.

In terms of the KAi
(yi) , the uncertainty region can be written as

U(A1 . . . An) =
{

(ν(A1|ρ), . . . , ν(An|ρ))
∣∣ρ is a quantum state

}

=
{

min
y1...yn

(
tr(ρKA1(y1)), . . . , tr(ρKAn(yn))

)∣∣∣ρ is a quantum state
}
.(3.4)

Dropping the minimization in (3.4) will enlarge the set. Hence, we have

U(A1 . . . An) ⊆
⋃

y1,...,yn

F (y1, . . . , yn).

However, by dropping the minimization in (3.4), only non-optimal points will be
added to U(A1 . . . An). Therefore, we have

PDR
[
UP (A1 . . . An)

]
= PDR

[ ⋃

y1,...,yn

F (y1, . . . , yn)
]

=
⋃

y1,...,yn

PDR
[
F (y1, . . . , yn)

]
,

which is a union of �nitely many sets, if all Ωi are �nite. Here, we can com-
pute the Pareto boundary by, �rstly, computing the Pareto boundary for any set
F (y1, . . . , yn) individually and selecting the optimal points from these boundaries
afterwards. Because F (y1, . . . , yn) is a joint numerical range, its boundary can be
computed e�ciently. Furthermore, if we directly want to compute the minimal
uncertainty uj of a Aj measurement, under the assumption that the uncertainties
of all other measurements are not bigger than some ui, for i 6= j, we have to
compute

uj = min {ν(Aj|ρ) |ρ : ν(Ai|ρ) ≥ ui∀i 6= j}
= min

{
tr
(
ρKAj

(xj)
)
|xj ∈ Ωj &∀xi ∈ Ωi : tr (ρKAi

(xi)) ≥ ui
}

= min
xj∈Ωj

min
{

tr
(
ρKAj

(xj)
)
|∀xi ∈ Ωi : tr (ρKAi

(xi)) ≥ ui
}
,

which can easily be done by solving the above SDP for any xj ∈ Ωj individually,
and then taking the minimum over all xj afterwards.
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Examples: As an example, the sets F (x, y) are computed for two cases: The �rst
example are spin-1 measurements with c(x, y) = |x− y|2 (see Fig. 3.1). Here, the
actual uncertainty region (red boundary) is depicted as well. In this �gure, we can
immediately see that the actual uncertainty region is way smaller than the union
of all the F (x, y), however the bigger set only contains additional points with high
uncertainty. We will come back to this example in Fig. 3.3 and Fig. 4.1.

Figure 3.2: Preparation uncertainty regions for phasespace observables (X, P) with
dimensions d = 2, . . . , 7 (ordered from top left to bottom right). We have c(x, y) =

|x−y| and X, P projective and linked by the d-dimensional Fourier transformation.
The outcome sets are ΩX = ΩP = {1, . . . , d}. In this case all uncertainty regions
are convex.
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measurement uncertainty

As a second example, (see Fig. 3.2), we depict the sets F (x, y) for discrete
phase space observables X P (see also [Wer16] for a comprehensive treatment of
uncertainty relations in this case). Phase space observables are constructed by
considering two sharp measurements with outcomes on {1, . . . , d}, and eigenbases
related by the Zn Fourier-transformation. Hereby, each set of outcomes is treated
as a set of labels corresponding to a representation of Zn.

3.2 Connections between preparation uncertainty and

measurement uncertainty

In this section we will draw a connection between linear measurement and prepara-
tion uncertainty relations in the context of general cost functions. For the moment
we will consider only sharp measurement and comment on unsharp measurements
later.
For a collection of projective measurements, we can make the following ob-

servation: Preparation uncertainty relations within a collection of measurements
vanish, whenever the observables share at least one common eigenvector, i.e the
measurement operators of all observables commute on some subspace. In contrast
to this, it can be shown that (see [BLPY16]), a joint measurement between sharp
measurements only exists, i.e. we have a vanishing measurement uncertainty, if
the observables commute on the whole Hilbert space. Therefore, the existence
of a measurement uncertainty relation is more restrictive than the existence of a
preparation uncertainty relation. Hence, we should ask for ways to lower bound
measurement uncertainty given a preparation uncertainty relation.
We will answer this question by the following theorem (Thm. 3.4), which states

that, for a �xed cost function, any linear uncertainty relation for the entanglement
reference frame error can be lower bounded by a corresponding linear preparation
uncertainty:

Theorem 3.4. Let A = (A1 . . . An) be a collection of sharp mea-

surements, let ρ be a quantum state, and let R (A1, . . . An) be the set

of all joint measurements R that approximate A1 . . . An by marginals

A′1 . . . A
′
n. For the entanglement reference frame error, given by the

vector

~εE(A|A′) := (εE(A1|A′1), . . . , εE(An|A′n)) ,

and the preparation uncertainty, given by the vector

~ν(A|ρ) := (ν(A1|ρ), . . . , ν(An|ρ)) ,
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and for all positive weights ~a = (a1 . . . an) we have:

inf
R
~a · ~εE(A|A′) ≥ inf

ρ
~a · ~ν(ρ|A).

Proof. Let Ωi denote the outcome set of the measurement Ai. For shorthand
notation we will always assume that the variables xi and yi come from Ωi and that
any summation over xi or yi runs over the Ωi. Since the measurements Ai are
sharp, we will assume w.l.o.g. that all Ωi have the same size d, i.e. the dimension
of the underlying Hilbert space. As usual, in the following, the joint measurement
R is given by a POVM on the joint outcome set Ω1×· · ·×Ωn with e�ect operators
R(y1, . . . , yn), which obey

∑

y1,...,yn

R(y1, . . . , yn) = I and R(y1, . . . , yn) ≥ 0.

At �rst step, we note that the preparation uncertainty bound

cprep := inf
ρ
~a · ~ν(ρ|A) = inf

ρ
tr

(
ρ
∑

i

ai min
yi

∑

xi

c(xi, yi)Ai(xi)

)

gives the best constant cprep such that,
∑

i

ai
∑

xi

c(xi, yi)Ai(xi) ≥ cprep I (3.5)

holds for all y1, . . . , yn. We will need this form in a moment for lower bounding
the measurement error.
Secondly, we recall that for any collection of self-adjoint operators T (z) and a

minimization over POVMs Q the duality relation

inf

{∑

z

T (z)Q(z)
∣∣∣
∑

z

Q(z) = I, Q(z) ≥ 0

}

≥ sup {tr(Y )|∀z : T (z) � Y } (3.6)

holds. This can be checked by bounding each T (z) from below by a feasible Y ,
which gives:

tr

(∑

z

T (z)Q(z)

)
≥ tr

(∑

z

Y Q(z)

)
= tr (Y ) .

Note that in generic cases we even have equality in (3.6), i.e. a strong duality
holds. However, for the purpose of this proof, we only need weak duality in (3.6).

56



3.2 Connections between preparation uncertainty and

measurement uncertainty

Using the de�nition of the entanglement reference frame error, we expand:

inf
R
~a · ~εE(A|A′) = inf

R

N∑

i=1

aiεE(Ai|A′i)

= inf
R

∑

i

ai
1

d

∑

y1,...,yN ,xi

tr (Ai(xi)R(y1, . . . , yn)) c(xi, yi)

= inf
R

tr

( ∑

y1,...,yN

[∑

i

ai
1

d

∑

xi

Ai(xi)c(xi, yi)
]
R(y1, . . . , yn)

)
,

where we can use the duality from (3.6) and get

inf
R
~a · ~εE(A|A′) ≥ sup

{
tr(Y )

∣∣∣Y � 1

d

∑

i

ai
∑

xi

c(xi, yi)Ai(xi)

}
. (3.7)

Here we can use (3.5) to check that Y = cprep
d

I is a feasible point in optimization
on the r.h.s. of (3.7). Hence, we get the desired statement

inf
R
~a · ~εE(A|A′) ≥ cprep tr(I/d) = cprep. (3.8)

On the �rst view, the above theorem considers only the entanglement reference
error. However, it follows directly from the de�nitions of the other error quantities
(see [SRW16] eq. (11) ) that the entanglement reference error is smaller than the
calibration error, which again is smaller than the measurement error. This ordering
does not change when we consider positive weighted linear combinations of these
errors. Hence we have

inf
R
~a · ~εM(A|A′) ≥ inf

R
~a · ~εC(A|A′) ≥ inf

R
~a · ~εE(A|A′) ≥ inf

ρ
~a · ~ν(ρ|A).

In terms of positive convex hulls this implies that the respective sets include each
other, i.e. we have

U+
M ⊆ U+

C ⊆ U+
E ⊆ U+

ν .

For the example of spin-1 measurements in orthogonal directions, this is depicted
in Fig. 3.3. In Sec. 2.1 it is shown that the uncertainty regions, for a measurement
uncertainty, are always convex. That directly implies, that the Pareto boundary
of U+

L always equals the Pareto Boundary of UL, for L = M,C,E. However, this is
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not always true for a preparation uncertainty region, which already could be seen
in Fig. 3.1 and Fig. 3.2. Hence, it could happen that

PDR(Uε) * PDR(Uν).

An example for this is provided in Fig. 3.3, here the red line, corresponding to the
the Pareto boundary of the preparation uncertainty region, crosses the boundaries
of the measurement uncertainty regions of the calibration and the entanglement
reference error.

Equality: The crucial estimate in the proof of Thm. 3.4 happens between (3.7)
and (3.8). Here, we estimate an expression of the form

sup {tr(Y )|T (z) � Y ∀z} (3.9)

from below by the trace of the best feasible Y ∝ I. In general this estimate does
not need to be tight, i.e. the linear preparations uncertainty relation can be smaller
than the corresponding linear measurement uncertainty relation, see e.g. Fig. 3.3.
However, there are relevant cases of symmetries where equality holds:
Let G be a group with an irreducible representation {Ug}g∈G and let the param-

eters z be elements of G. We have equality in the above estimate if the operators
T (z) are covariant with respect to the action of Ug, i.e. if we have that

UgT (z)U †g = T (z + g)

holds for all z, g ∈ G. In this case we have: If Y is feasible, i.e. Y � T (z)∀z ∈ G,
any rotation UgY U †g is feasible, too. Hence, we can conclude

1

|G|
∑

g∈G
UgY U

†
g � T (z),

the feasibility of group mean of Y . Because of

tr

(
1

|G|
∑

g∈G
UgY U

†
g

)
=

1

|G|
∑

g∈G
tr
(
UgY U

†
g

)
= tr(Y ),

taking the group mean does not change the trace of Y , i.e. the objective function
in our optimization (3.9). Therefore, we can conclude that for any optimizer Y ∗,
its group mean 1

|G|
∑

g∈G UgY
∗U †g is an optimizer, too. However, we have

1

|G|
∑

g∈G
UgY

∗U †g ∝ I,
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if the representation {Ug}g∈G is irreducible, and, therefore, equality in the central
estimate of Thm. 3.4.
An example of this symmetry are �nite phase-space observables X and P, together

with a cost function that respects the underlying translation invariance, see the
example for Fig. 3.2 and [Wer16]. Here, our measurements are given by POVMs
with elements {X(q)} and {P (p)}, and outcome tuples z = (p, q) ∈ {1, . . . d}2 ∼=
Zd × Zd, from which we get the discrete position and momentum operators

X =
∑

X(q)q and P =
∑

P (p)p.

The group G = Zd × Zd is represented by the Weyl operators W (p, q), i.e. by

W (p, q) = e−ipX+iqP, (3.10)

which acts on the POVM elements X(q′) and P (p′) by

W (p, q)X(q′)W (p, q)† = X(q′ + q) (3.11)

and

W (p, q)P (p′)W (p, q)† = P (p′ + p).

For weights λ, (1− λ), the corresponding operators T are given by

T (p, q) =
1

d

∑

(p′,q′)∈{1,...d}2

(
λ c(q′, q)X(q′) + (1− λ) c(p′, p)P (p′)

)
,

with a cost function that obeys c(x + d, y) = c(x, y + d) = c(x, y). Here, we can
straight forwardly check the necessary covariance condition

W (p, q)T (p′, q′)W (p, q) = T (p+ p′, q + q′)

by using the transformation rules (3.10) and (3.11). Therefore, we have the equality

inf
R
λεE(X|X′) + (1− λ)εE(P|P′) = inf

ρ
λν(X|ρ) + (1− λ)ν(P|ρ)

Because of the high symmetry, we can make an even stronger statement for this
particular example: Firstly, it can be checked easily that all test states attain the
same individual error. Hence, the calibration error and the entanglement reference
frame error coincide. Secondly, see [BLW14b] for a proof, the worst error is attained
on test-states. Hence, the measurement error coincides with the other two errors,
as well. Therefore, Fig. 3.2 actually shows the boundary of all four uncertainty
regions UM ,UC ,UE, and Uν .
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Figure 3.3: Preparation and measurement uncertainty regions of spin-1 angular
momentum measurements Lx and Ly in orthogonal directions, with
cost function c(x, y) = |x − y|2. The red line indicates the shape of
the preparation uncertainty region, and the yellow line its convex hull.
This example shows that only the convex hull is a lower bound on the
measurement uncertainty regions, indicated in green and blue.

Nøisy measurements: In Thm. 3.4 we only considered sharp measurements.
The calibration and the entanglement reference frame error are only de�ned for
this case. Albeit, for the general case of unsharp measurements, the measurement
error εM and the deviation ν are well de�ned, a statement analogous to Thm. 3.4
may fail: Consider the measurements from the above example modi�ed to

X̃(q) := (1− δ)X(q) + δI

and

P̃ (p) := (1− δ)P (p) + δI,
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with a noise parameter δ ∈ (0, 1). For δ = 0 we get equality between the mea-
surement and the preparation uncertainty. However, if we increase the noise all
preparation uncertainties will increase, too. In the limit δ = 1 we will apply mea-
surements which will give us a uniform distribution on all measurement outcomes,
independent of the input state. In contrast, the measurement error will decrease
when we increase the noise. Furthermore, for a su�ciently big δ, the measure-
ments X̃ and P̃ will become compatible. Hence, the measurement error will vanish
completely.
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CHAPTER 4

Uncertainty based on variances

In this chapter we will have a closer look at preparation uncertainty relations in
terms of variances. In accordance to the chapters before, we will keep the re-
striction of considering only observables on �nite Hilbert spaces and outcome sets.
However, for computing the minimal deviation to a point measure (see(3.2)) we
will allow to embed outcome sets into the real numbers and we will �x the eu-
clidean distance as cost function. By this extension the moments of a probability
distribution, especially the expectation value, get an explicit meaning. As men-
tioned before, this makes sense for quantities that have a discrete outcome set in
quantum physics but a continuous outcome set in classical physics, like for exam-
ple: energies and angular momenta. For a �xed cost function, we are now also in a
position to compare ∆2

ρA, the variance of a measurement A, with the correspond-
ing discrete deviation ν(A, ρ). Because the variance is computed as minimum over
the bigger set (compare (3.2) and (3.3)), we have

∆2
ρA ≤ ν(A, ρ),

which also carries over to an inclusion of the corresponding uncertainty regions,
see Fig. 4.1. Furthermore, this shows that a state-independent variance based
uncertainty relation gives a lower bound on the corresponding measurement un-
certaintiy relation. This was already used, with equality, for the special case of
position and momentum in [BLW14b,BLW13]. Unfortunately, the computational
methods developed in chapter Ch. 3, for �nite outcome sets, are inapplicable for
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Figure 4.1: Comparison of the uncertainty regions for variances (∆2
ρLx,∆

2
ρLy)

and the discrete uncertainty (with red boundary) (ν(Lx, ρ), ν(Ly, ρ))

for measurements of angular momentum components in spin-1 repre-
sentation. The minimization, in the de�nition of the variance, is eval-
uated on the bigger set. Hence, the uncertainty region of the discrete
uncertainty is included in the uncertainty region of variances.

variances, because in this case a minimization over the uncountable set of the real
numbers has to be performed.
In general it is worth to concentrate on variances, because they are doubtlessly

the most common measure of deviation used at many points in classical statistics
and even though in quantum uncertainty, most prominently in the works of Ken-
nard [Ken27], Robertson [Rob29], and Schrödinger [Sch35]. In reference to those
works, the vast majority of publications on quantum uncertainty, published in the
last decade, (see sources in the introduction), has variances as measure of choice,
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as well. Thereby, most of them do not, or only insu�ciently, address the question
of state-independent optimality.
The central part of this chapter is [SDW17], given in the next section. Here we

addressed this question for arbitrary measurements. More precisely: we provide a
simple and e�cient algorithm that allows to compute linear uncertainty relations
for any pre assigned precision, with estimates approaching the optimal bound from
below.
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4.1 [SDW17]

State-independent Uncertainty Relations and Entanglement detection in noisy Sys-

tems

• Authors: René Schwonnek, Lars Dammeier, and Reinhard F. Werner

• Published in: Physical Review Letters 119, 170404 (2017)

• DOI: 10.1103/PhysRevLett.119.170404

• Presented version: The presented version is identical to arXiv:1705.10679,
the literature and the supplemental material are placed at the end of this
thesis.

• Contributions: The central ideas and the implementation of the algorithm
were contributed by René Schwonnek.

• Main results:

� Linear variance based uncertainty relations can be represented as opti-
mization problem over a three-dimensional joint numerical range.

� An algorithm for solving this optimization is presented. This algorithm
produces lower bounds, and an error estimate.

� Linear uncertainty relations can also be computed for general POVMs.
An improved entanglement detection scheme, based on the tomography
of local noise sources, is provided.
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State-independent uncertainty relations and entanglement detection in noisy systems

René Schwonnek,∗ Lars Dammeier,† and Reinhard F. Werner‡

Leibniz Universität Hannover - Institut für Theoretische Physik
(Dated: April 7, 2018)

Quantifying quantum mechanical uncertainty is vital for the increasing number of experiments
that reach the uncertainty limited regime. We present a method for computing tight variance
uncertainty relations, i.e., the optimal state-independent lower bound for the sum of the variances
for any set of two or more measurements. The bounds come with a guaranteed error estimate,
so results of pre-assigned accuracy can be obtained straightforwardly. Our method also works for
POVM measurements. Therefore, it can be used for detecting entanglement in noisy environments,
even in cases where conventional spin squeezing criteria fail because of detector noise.

PACS numbers: 03.65.Ta, 02.60.Pn, 03.67.Mn

INTRODUCTION

Uncertainty relations quantitatively express a phe-
nomenon which is ubiquitous in quantum mechanics:
Given two observables A and B, it is usually impossi-
ble to prepare a state such that the respective outcome
distributions of these observables are both sharp. Of
course, for the best known example of this, the posi-
tion and momentum observables, the relation is in every
textbook. It was �rst established by Kennard [1], who
turned Heisenberg's heuristic ideas [2] into a quantitative
statement. In particular, it was his idea to consider the
variances [3] of momentum and position in the state ρ
as the mathematical expression of sharpness. Kennard's
relation ∆2

ρ(P ) ∆2
ρ(Q) ≥ ~2/4 is tight, i.e., the constant

on the right hand side is the best possible, because it is
attained for Gaussian pure states.

The aim of our paper is to provide an e�cient method
to obtain the best possible bounds for any given pair of
measurements A, B. This is of direct use in the increas-
ing number of experiments that reach the uncertainty-
limited regime. A particular application is the certi�ca-
tion of entanglement via steering inequalities [4�6]. In
such applications, even if one does not necessarily need
an optimal bound, it is crucial to have a correct one, i.e.,
a bound valid for all states. Any algorithm based on com-
puting the uncertainties �for su�ciently many states� will
fail to guarantee this correctness. In particular, in high
dimensional Hilbert spaces, typical states will not have
uncertainties near the boundary, so it is actually hard to
explore the set of uncertainty pairs (∆2

ρ(A),∆2
ρ(B)) �from

within�. Our method uses instead an �outer� approxima-
tion, which has the virtue that in every step it provides a
correct bound. The bound is iteratively improved, con-
verging to the optimal one. This feature sets our method
apart from several recent works, in which ad hoc methods
were used to provide uncertainty bounds. The problem
of getting optimal uncertainty bounds becomes more dif-
�cult as the dimension d of the Hilbert space increases.
Indeed, naively it would seem to be a search problem on
the 2d− 2 dimensional manifold of pure states, which in

〈A〉
〈B〉

〈A2 +B2〉

FIG. 1. Minimizing the sum of the variances of two observ-
ables A and B can be expressed entirely in terms of the set
C of possible triples (〈A〉ρ, 〈B〉ρ, 〈A2 + B2〉ρ) (red solid con-
vex body), namely as �nding that vertical displacement of
the surface z = x2 + y2 (green paraboloid) which just touches
C from below. We successively approximate C by polytopes
(blue edges, boxed vertices) from the outside, and perform
the minimization on this polytope. This gives a converging
sequence of correct state-independent uncertainty relations.

bad cases might scale exponentially with d. However, we
can do much better. We reformulate the problem as a ge-
ometric problem in three dimensions, namely of getting a
sequence of outer polyhedral approximation of a certain
convex set, see Fig. 1. Any such approximation gives a
valid uncertainty bound. In the iteration step, i.e., for
computing a tighter approximation, one has to compute
the lowest eigenvalue of a certain hermitian combination
of the operators A and B. Those eigenvalue problems
now determine the scaling of our method as a function
of dimension, which will be a low order polynomial in
d. Moreover, if additional information is available about
A and B, for example, if they are both sparse in the
same basis, eigenvalue computations can be speeded up
considerably, and our method will speed up by the same
factor.

Tight uncertainty bounds have only been obtained for
a few speci�c pairs of observables. One example is an-
gular momentum measurement, where bounds for two or
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three orthogonal spin components [4, 7, 8] are known. In
those cases symmetry crucially helps to reduce the prob-
lem. Other examples are qubits [9], for which the low
dimension allows an analytical solution.
There are also variants, in which the sharpness of a dis-

tribution is measured by other quantities than the usual
variance [10�13], for instance entropies [14�25] and its
generalization to majorazation uncertainty relations [26�
28], or where more than two observables are considered
simultaneously [29�31]. Quite di�erent methods [32] are
needed for optimal measurement uncertainty relations
[10], or information-disturbance bounds [10], so we will
not consider these aspects here.

METHODS

Linear state independent bounds

Since we are interested in state-independent bounds
[33] we have no use for the often-cited general relation by
Robertson [34] (and its improvements [35]), which have a

state-dependent expression like 〈i[A,B]〉2ρ, or similar, on
the right hand side. Indeed, any relation of product form
∆2
ρ(A) ∆2

ρ(B) ≥ c is useless for state-independent rela-
tions in �nite dimension: A and B have discrete eigen-
values, so the trivial c = 0 is the best possible bound.
We therefore consider bounds of the form

∆2
ρ(A) + ∆2

ρ(B) ≥ c. (1)

Here, c is the largest constant for which the above holds
on any quantum state ρ. Since our method handles ar-
bitrary A and B we can also admit factors here, i.e.,
inequalities of the form α∆2

ρ(A) + β∆2
ρ(B) ≥ c(α, β).

Each of these constrains the set of uncertainty pairs
(∆2

ρ(A),∆2
ρ(B)) to a half-plane, and together they out-

line the uncertainty set (or, more precisely its �lower con-
vex hull�, see Fig. 4 and [7, 9, 32]).
To see the connection to eigenvalue problems we write

the optimal constant in (1) as

c = min
ρ

min
a,b

〈
(A− a1I)2 + (B − b1I)2

〉
ρ
. (2)

Here we just wrote the variance as the minimal quadratic
deviation, using that the minimum with respect to a is
attained at the expectation a = 〈A〉ρ. On the other hand,
if we �x a and b, the minimization with respect to ρ is ex-
actly the ground state problem for the operator in paren-
theses. This suggested our previous ansatz [7], which we
call the see-saw algorithm: One alternatingly minimizes
with respect to ρ and (a, b). In many practical cases
this converges quickly, and with the safeguard of trying
out several initial values it seems fairly reliable. How-
ever, in general the method of Alternating Minimization
may easily fail to �nd the global minimum, and there

C

r′ µ(x) = µ(v∗)

v∗
v∗∗

µ(x) = µ(v∗∗)

FIG. 2. Two dimensional sketch of geometry and the ba-
sic algorithm: The set C (red) with its outer approximation
P(R) (blue and blue dasehd) and the extremal points E(R)
(white squares). By adding the direction r′, the polyhedral
approximation is re�ned and the lower bound c−(R) is im-
proved from µ(v∗) (dashed green parabola) to µ(v∗∗) (green
parabola).

is no proof of convergence. Intermediate results of the
see-saw algorithm give an upper bound on c, but as an
upper bound on a lower bound this is useless for appli-
cations. Moreover, there are indications that the see-saw
algorithm actually may get trapped.

Geometry of outer approximations

In contrast, the method described in this paper is an
outer method, in which all intermediate steps give valid
lower and upper bounds on c. Its geometric core is the
joint numerical range

C =
{(
〈A〉ρ , 〈B〉ρ ,

〈
A2 +B2

〉
ρ

) ∣∣∣ ρ ∈ S(H)
}
, (3)

where S(H) denotes the state space, i.e., the set of
density operators. Notice �rst that this set contains
all the information necessary to compute c from (2).
With the quadratic functional µ(x) := z − x2 − y2 of
x = (x, y, z) ∈ R3 we �nd

c = min
ρ∈S(H)

∆2
ρ(A) + ∆2

ρ(B) = min
x∈C

µ(x). (4)

Now the set C is clearly convex and compact, because
the state space S(H) has these properties, and they are
preserved by the map taking ρ to the tuple of expec-
tations. The set C is therefore completely described by
the linear inequalities it satis�es. To get such inequal-
ities, let r = (r1, r2, r3) be a real vector, and consider
H(r) = r1A + r2B + r3(A2 + B2). Let h(r) denote the
smallest eigenvalue of this operator. Then, for any state
ρ, and hence the corresponding tuple x ∈ C of expecta-
tions:

r · x = 〈H(r)〉ρ ≥ h(r). (5)

Now let R ⊂ R3 be any �nite set of vectors, and con-
sider the polytope P(R) of those points x, which just
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satisfy the inequalities (5) with r ∈ R. Since these vec-
tors satisfy fewer constraints than C, we have C ⊂ P(R),
i.e., this is an outer approximation of C. Denote by E(R)
the set of extreme points of P(R), which is also �nite.
Then

c ≥ min
x∈P(R)

µ(x) = min
x∈E(R)

µ(x) =: c−(R). (6)

Here we have used, �rstly, that the minimum over a larger
set is smaller, and, secondly, that the functional µ is con-
cave, so that the minimum over a compact convex set
is attained at an extreme point. Hence for every �nite
set R of directions, we get a lower bound on c, which is
computed as a �nite minimum over E(R). On the other
hand, for each r ∈ R we get a point x∗(r), with equality
in Eq. (5). Then

c ≤ min
r∈R

µ(x∗(r)) =: c+(R). (7)

So for every set R, this procedure estimates the optimal
constant c up to a precision ε = c+(R)− c−(R).

Basic algorithm

The idea of the algorithm is now to let the set R grow
step by step, which shrinks P(R), so c−(R) increases and
c+(R) decreases (see Fig. 2 and Fig. 3). The algorithm
terminates when ε is below the target accuracy.
Apart from the set R it is useful to keep track of the

polytope P(R) in the form of a list of vertices E(R) and
edges. To arrive at the next approximationR′ = R∪{r′}:

1. Determine a vertex v∗ ∈ E(R) at which µ becomes
minimal, and set

r′ = ∇µ|v∗ . (8)

2. Solve the minimum-eigenvalue problem for H(r′).
This provides the bound h(r′) for the new inequal-
ity (5), and an expectation tuple x∗ corresponding
to the ground state.

3. Compute µ(x∗) and update c+(R′), if this is
smaller than the current value.

4. Take the new inequality (5), and compute the in-
tersections with all current edges of P(R). This
will give some new extreme points for E(R′), and
corresponding edges.

5. Evaluate µ on the new extreme points in E(R′) and
update c−(R′). Terminate if c+(R′)− c−(R′) is as
small as desired. Otherwise go to step 1.

All these steps except the choice in step 1 are dictated
by the geometry of outer approximation. The rationale of
the choice (8) (apart from its �avour of gradient search)

steps : 0

vertices : 8

c−(R) : −198.724

ε : 205.504

steps : 1

vertices : 10

c−(R) : −196.176

ε : 202.956

steps : 10

vertices : 28

c−(R) : −15.948

ε : 22.724

steps : 63

vertices : 132

c−(R) : 6.629

ε : 0.007

FIG. 3. Improving the outer approximation of C (red convex
body) by adding more directions to the setR. Every direction
r ∈ R gives a face of P(R) (blue polytope). New directions
are chosen such that the vertex with the lowest value of µ
will be cut o�. Example generated from randomly chosen
A,B ∈ R10×10.

is that, whenever possible, it will eliminate the vertex
v∗ from P(R′), and thus strictly increase c−(R), unless
there are other vertices with the same value of µ, which
have �rst to be eliminated in a similar manner. A proof
of this statement is provided in the appendix. As an
application of our method, we derived the uncertainty
relations for two non-orthogonal spin components, see
the appendix.

Generalization to POVMs

Our method can be applied with minimal modi�ca-
tions to generalized measurements, i.e. observables given
by positive operator valued measures (POVMs). In gen-
eral, a POVM measurement A is described by its out-
comes {ai} and corresponding e�ects {Ei} [36, 37], where
the probability of obtaining the outcome ai ∈ R is given
by tr(ρEi). The moments of an outcome distribution
are then given by the expectations of the moment op-
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erators A(n) =
∑
i(ai)

nEi. The only di�erence from
the �standard� projection valued case is that the identity
A(n) =

(
A(1)

)n
no longer holds. But this is not required

for our method.
We therefore only need to express variances as

∆2
ρ(A) = 〈A(2)〉ρ − 〈A(1)〉2ρ, and replace in (3) and the

de�nition of H(r): A2 by A(2), A by A(1), and analo-
gously for B.

APPLICATION TO ENTANGLEMENT

DETECTION

In [4, 5], it was shown that every state-independent
uncertainty relation like (4) yields a non-linear entan-
glement witness, when applied to local measurements in
a bipartition. Here the following scenario is considered:
Two parties, Alice and Bob, can perform local measure-
ments A1, A2 such as B1, B2, on an unknown quantum
state ρ. Their goal is to decide if ρ is entangled or not.
For this, they measure the 'sum observables' M1,M2,
given by

Mi = Ai ⊗ 1I + 1I⊗Bi. (9)

In the POVM case this is generalized to measuring Ai
on Alice's side, Bi on Bob's, and adding the outcomes,
which results in

M
(1)
i = A

(1)
i ⊗ 1I + 1I⊗B(1)

i (10)

M
(2)
i = A

(2)
i ⊗ 1I + 2A

(1)
i ⊗B

(1)
i + 1I⊗B(2)

i . (11)

Now if ρ = ρA ⊗ ρB is uncorrelated, variances just add
up, so

∆2
ρ(M1) + ∆2

ρ(M2) ≥ cA + cB , (12)

where cA and cB are the optimal uncertainty constants
for the observable pairs (A1, A2) and (B1, B2), respec-
tively. Since the variance is concave, this inequality holds
also for all convex combinations of uncorrelated states,
i.e., for all separable states [4].
Hence if (12) is violated, ρ must be entangled. Of

course, there is also an uncertainty bound cM for the ob-
servable pair (M1,M2). So the interesting range allowing
the conclusion �ρ is entangled� is marked by

cA + cB > ∆2
ρ(M1) + ∆2

ρ(M2) ≥ cM . (13)

For angular momentum measurements, (12) can be
seen [38] as a spin-squeezing criterion. As such, it re-
quires the same experimental data as other spin squeez-
ing criteria, see [39, 40], namely only a measurement of
�rst and second moments of the total angular momen-
tum. In contrast to entanglement criteria based on sin-
gle outcomes, this requirement is very advantageous in
typical experimental implementation, especially includ-
ing many particle systems, see [41].

We further sharpen this criterion by applying it to the
observable pairs (µA1, λA2) and (µB1, λB2). In this way
we get two convex regions of pairs (∆2

ρ(M1),∆2
ρ(M2)): A

larger one containing the pairs achievable with arbitrary
states, given by the bounds of the type cM , and a smaller
one attainable by separable states, given by the bounds
of the type cA + cB . As Fig. 4 shows, this increases the
parameter range for which entanglement can be certi�ed.
The linear uncertainty bound with equal weights as a
function of the local noise, evaluated for measurements
M1 and M2 on separable and entangled states is shown
by Fig. 8.

Entanglement detection with noisy detectors

The generalization to POVMs increases the possibil-
ities for entanglement detection. Suppose for the sake
of discussion that before hitting the detector each sub-
system goes through a known noisy channel. This typ-
ically increases variance [42], so traditional spin squeez-
ing inequalities would often fail to detect entanglement.
Indeed the state after the action of the noisy channels
may well fail to be entangled. On the other hand, we
might be interested in the presence of entanglement be-

fore the action of the noise. This is the appropriate view
when the noise is inherent in the detection process. The
noise is thus applied in the Heisenberg picture, turn-
ing even a standard projection valued measurement into

2

1.5

1

0.5

α = 0

α = 0.2

α = 0.5entangled

separable

21.510.5

∆2
ρ(M

α
1 )

∆2
ρ(M

α
2 )

FIG. 4. Uncertainty regions for entangled and separable
states. Superposition of the graphs for di�erent noise levels α:
green= 0, blue= 0.2, red= 0.5. In this example we consider
local measurements of orthogonal spin-1 components, i.e.
Mi = LAi + LBi .
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a proper POVM. This might easily �nd entanglement,
which would go undetected by a direct application of the
spin squeezing criterion.
These possibilities are shown in Fig. 4 by superim-

posing the entanglement detection regions for three dif-
ferent noise levels of a partially depolarizing channel
ρ 7→ (1 − α)ρ + αρ0, where ρ0 ∝ 1I is the maximally
mixed state, and α is a noise parameter. Increasing α
shifts the diagram towards larger variances, but even for
a modest noise level of α = 0.2 the entanglement detec-
tion region lies entirely in the region where traditional
spin squeezing (corresponding to α = 0) would never
�nd any entanglement.

CONCLUSIONS AND OUTLOOK

We provided an algorithm for determining the opti-
mal uncertainty bounds for two arbitrary observables.
The precision of the bound is controlled as a duality gap,
so terminating the iteration at any step gives a certi�ed
lower uncertainty bound together with an error estimate.
The method can, in principle, be extended to more

observables, or to variances based not on quadratic but
higher order deviations. However, this would increase
the dimension of the geometric problem. Thus at every
new approximation step one has to determine the inter-
section of the polytope with the new supporting hyper-
plane. This requires a better book-keeping of the topo-
logical structure of the polytopes, and a local version of
the vertex enumeration problem [43].
The inequalities derived here have an immediate ap-

plication to entanglement detection by generalized spin
squeezing criteria. The possibility to use arbitrary ob-
servables (rather than orthogonal angular momentum
components) greatly increases the versatility of this
method.
It is an apparently open problem how strong the

method becomes with arbitrary Ai, Bj , i.e. is every en-
tangled state violating a local uncertainty relation. The
problem has been studied carefully for orthogonal spin
components [5, 6], but we do not know of a characteriza-
tion of the (un-)detectable, possibly entangled states.
We gratefully acknowledge inspiring conversations and

email exchange with Marcus Cramer, Otfried Gühne,
Géza Tóth, Kais Abdelkhalek, David Reeb and Terry
Farrelly.
We also acknowledge the �nancial support from the RTG
1991 and CRC 1227 DQ-mat funded by the DFG and
the collaborative research project Q.com-Q funded by the
BMBF.



Chapter 4: Uncertainty based on variances

4.2 A non-algorithmic bound on variance based uncertainty

relations

In [SDW17] an algorithmic approach for computing lower bounds on linear un-
certainty relations is provided. The central iteration step of this algorithm is to
produce an increasing set of directions R, which are used as face normals for
approximating the joint numerical range C by an outer polyhedron.
Beside this algorithmic approach, we might alternatively directly aim to con-

struct a �xed set of directions R0, in order to build an outer approximation and
obtain bounds c−(R0) such as c+(R0). Those directions could also be used as
an initial set-up for the above algorithm. However, not every set of directions
guarantees non-trivial results, i.e.

(i) c−(R0) should always be non-negative

(ii) c−(R0) should be zero, if and only if the optimal bound c is zero.

Triviality, in the above sense, usually occurs when R0 is chosen too small, i.e.
if the resulting approximation is too inaccurate. In contrast, if R0 is too big,
computations might become unhandy in practice.
In this section, we will provide an appropriate set R0, for projective measure-

ments. This set leads to a non-trivial bound c−(R0), but is still e�ciently small,
i.e. |R0| ≈ d2. Furthermore, R0 can be directly deduced from the spectra of the
observables A and B, which makes it easy to compute in practice.

Theorem 4.1. Let {ai} and {bi} be the outcomes of projective mea-

surements A and B given in non-decreasing order. A non-trivial set of

initial directions is given by the union R0 = RP0 ∪RG, with

RP0 = {(−ai − ai+1,−bj − bj+1, 1) |i, j ∈ {1, · · · , d}}
∪ {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)}
∪ {(−a1 − ad,−b1 − bd,−1)}

and

RG =
{
∇µ|Pij

= (−ai,−bj, 1) |i, j ∈ {1, · · · , d}
}
.

Proof. Consider the points Pij = (ai, bj, a
2
i + b2

j), which only depend on the mea-
surement outcomes {ai} and {bi}, and construct a convex polytope P0 = conv(Pij)

by taking the Pij as vertices.
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4.2 A non-algorithmic bound on variance based uncertainty

relations

This proof is based on the following three properties, which will be proven
immediately:

(i) P0 is an outer approximation, i.e.: C ⊆ P0 = conv(Pij)

(ii) The variance functional µ vanishes on the vertices of P0, i.e. µ(Pij) = 0.
Therefore, we have a non-negative µ in the interior of P0

(iii) P0 has only O(d2) vertices, faces and edges.

Here our central idea, for constructing R0, is to approximate C by an re�nement
of P0. This is always possible (because of (i)), not to complex (because of (iii)),
and will always lead to bounds with positive µ (because of (ii)).

C

r′ µ(v∗)

v∗
v ∗ ∗

µ(v ∗ ∗)

C

Pij

Pij

C

C

C

Pij

Pij

Cr′

Pij

rp

C

Pij

Figure 4.2: On one hand, the
points Pij are chosen such that
µ(Pij) = 0 and, on the other,
such that C is included in the
convex polytope P0, which is
constructed by taking the Pij as
vertices. Here, the set RP0 con-
sists of the face normals of this
polyhedron. This ensures non-
negativity. The set RG consists
of the gradients of µ evaluated
at the Pij, which grants that
the points Pij are not included
in P(R0). Hence, approximat-
ing C with directions R0 gives a
strict improvement to P0. There-
fore, a non-trivial bound c−(R0)

is guaranteed.
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At �rst, we will take the face normals of P0 as directions RP0 for an approxi-
mation of C. Geometrically spoken (see Fig. 4.2): we shift the faces of P0 to its
interior until they 'touch' the approximated set C. This will give us a new polytope
P(RP) that lies in-between C and P0. By this, we have the guarantee that the
bound c−(RP) will be non-negative. The computation of the face normals RP0

can be found at the end of this proof.
However, non-triviality is not guaranteed by RP , because it could happen that

some vertices of the polygon P(RP) equal some of the Pij even if these points are
not in C, i.e. some faces of P0 could be 'touched' by C such that they will not
'move' when we try to shift them to the interior. If this is the case for all adjacent
faces of a point Pij, this point will also not 'move'.
Secondly, in order to ensure that the above does not happen, we have to add

further faces to P(RP), in order to 'remove' all points Pij that are not in C. For
this we take the gradients of the functional µ at the points Pij as further directions
RG (see Fig. 4.2,below). Explicitly, these additional directions are given by

RG =
{
∇µ|Pij

= (−ai,−bj, 1) |i, j ∈ {1, · · · , d}
}
.

All together, computing c−(R0) and c+(R0) for

R0 = RP ∪RG

guarantees to obtain a state independent and non trivial uncertainty relation by
only requiring to solve |R0| = O(d2) ground state problems for constructing P(R0).

(i) C is included in conv({Pij}: As in [SDW115], the joint numerical range C can
be written as

C = {x ∈ R3|r.x ≥ h(r) ∀r ∈ R3},

with

h(r) = min
ρ
〈r1A+ r2B + r3

(
A2 +B2

)
〉ρ.

By setting

h0(r) : = min
x∈P0

r.x

we can write P0, in a similar way:

P0 = {x ∈ R3|r.x ≥ h0(r) ∀r ∈ R3}. (4.1)
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4.2 A non-algorithmic bound on variance based uncertainty

relations

So, for proving the inclusion C ⊂ P0, it su�ces to show

h0(r) ≤ h(r) ∀r ∈ R3 (4.2)

Because then, every point of C will also ful�l the de�ning constrains given in (4.1).
We can see the validity of (4.2) by,

h(r) = min
ρ
〈r1A+ r2B + r3

(
A2 +B2

)
〉ρ

≥ min
ρ
〈r1A+ r3A

2〉ρ + min
ρ
〈r2B + r3B

2〉ρ
≥ min

ij

(
r1ai + r3a

2
i + r2bj + r3b

2
j

)

= min
ij

r.Pij = h0(r)

Here, we used the sub-additivity of the minimum in the �rst step. In the second
step we used that the minimal expectation of any measurement will be attained
on a point density and, in the last step, we used that the minimum of a linear
functional on a convex set will be attained on its extreme points.

(ii) µ(Pij) = 0: The points µ(Pij) were constructed by taking the spectral tuples
(ai, bj) and projecting them to the paraboloid µ(x, y, z) = 0. Hence, (ii) can easily
be checked by plugging Pij = (ai, bj, a

2
i + b2

j) into µ(x, y, z) = z − x2 − y2.

(iii) number of vertices, edges and faces: We have (including degeneracies) d out-
comes ai or bj. Hence, we have d2 pairs (ai, bj).

The facenormals of P0 (sketch): We want to show that the face normals

RP = {(−ai − ai+1,−bj − bj+1, 1) |i, j ∈ {1, · · · , d}}
∪ {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)}
∪ {(−a1 − ad,−b1 − bd,−1)} ,

with {ai} and {bi} given in non decreasing order, describe the faces of P0.
At �rst, we show that any of those directions gives a face of P0: Consider a

direction rij = (−ai − ai+1,−bj − bj+1, 1). It is straight forward to check that this
direction is the normal of a plane through the points {Pi,j, Pi+1,j, Pi,j+1, Pi+1,j+1}.
This plane is a face of P0, if we have

min
Pkl

rijPkl = rijPij = rijPi+1,j = rijPi,j+1 = rijPi+1,j+1. (4.3)

We expand the �rst minimum in (4.3) and get

min
(x,y,x2+y2)∈{Pkl}

rij(x, y) = x2 − aix− ai+1x+ y2 − bjy − bj+1y. (4.4)
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For general (x, y) ∈ R2, the convex quadratic functional on the r.h.s. of (4.4) has
its minimum on x∗ = 1/2(ai + ai+1) and y∗ = 1/2(bj + bj+1). For the discrete
minimization, the minimum in (4.4) is attained at those points Pkl, which are the
closest to (x∗, y∗). These are the points {Pi,j, Pi+1,j, Pi,j+1, Pi+1,j+1}, because the
ai and bj are given in non-decreasing order.
With the same argumentation as above, it can be checked that the points of

the form P1,j, Pd,j, Pi,1, and Pi,d, form faces corresponding to the normals rside =

{(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)}, and that the points {P1,1, Pd,1, P1,d, Pd,d}
form a face with the normal rtop = {(−a1 − ad,−b1 − bd,−1)}.
We can check that all those faces correspond to a polyeder by Euler's formula

[Eul58]

#vertices−#edges+ #faces = 2.

Careful counting shows (compare Fig. 4.3): The directions rij belong to (d − 1)2

faces, with 2d(d− 1) edges. The directions rside add 4 new faces with 4 new edges,
and the face rtop only adds a new face between points that are already connected
by edges. Hence, we get

(
d2
)

#vertices

−
(
2d(d− 1) + 4

)
#edges

+
(
(d− 1)2 + 4 + 1

)
#faces

= 2

Figure 4.3: Planar graph repre-
sentation of P0: The face nor-
mals •rij and •rside are indi-
cated. The face corresponding to
rtop corresponds to the outer re-
gion of this graph.
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CHAPTER 5

An information theoretic view on measurement uncertainty

In this chapter we will change our view on uncertainty relations to an information
theoretic perspective. Here, we regard the outcomes of a measurement as elements
of a �nite set with non-speci�ed structure. Without loss of generality, we assume
that the elements of an outcome set are labelled by labels coming from the index
set {1, ..., n}, also called alphabet in the following. From this perspective we con-
centrate our interest to the probability that a particular label occurs as outcome
of a measurement.
In the following sections we will introduce di�erent error measures and their

resulting measurement uncertainty relations, and we will investigate their interplay
with preparation uncertainty relations, as well. A diagram of all those interplays
can be found at the end of this section. In the �rst section we will concentrate
on the discrete metric as cost function. Here we will introduce the according
errors εdm(A,A′) and deviations νdm(A|ρ). In the second section we will put our
focus on entropic quantities. On one hand, we will show that the, so called,
self-information − log(pi) can be used as cost function that provides us an error
measures εinfo(A, A′) and will lead to preparation uncertainty relations, in terms
of the Shannon entropy H(A|ρ), in a natural way.
On the other, we will consider measurement uncertainty formulated in terms of

conditional entropies H(X|RX). In contrast to all other relations provided in this
thesis, those relations can be de�ned between arbitrary outcome spaces. Hence,
we can drop the marginal construction from the de�nition of a joint measurement.
However, this construction does not rely on an underlying cost function directly
and we will see that only an analogue to the entanglement reference error is well
de�ned in this case.



Chapter 5: An information theoretic view on measurement

uncertainty

5.1 Uncertainty relations for the discrete metric

For this section let I = {1, . . . , n} denote a �nite alphabet with n letters. In the
following we will apply the constructions from [SRW16] and the corresponding
discrete preparation uncertainty, from Ch.3, with discrete metric c(i, j) = 1 − δij
as cost function. For this case, the measurement error was also investigated in the
bachelor thesis [Fra15]. It turned out that, due to the simple form of the discrete
metric, the corresponding Wasserstein distance and the measurement error can
be expressed in a simpli�ed way, too. In this thesis, we will also consider the
corresponding calibration and entangled reference frame errors. We will see that
both errors admit an even simpler form.

Measurement errors: For the discrete metric, the minimization of the trans-
port cost, between probability distributions p and p′, can be solved analytically.
Here, ( see e.g. [Vil09, p.22] or [Fra15] for a proof) the minimal transport cost is
given by the half of the 1-norm distance:

č(p, p′) =
1

2
‖p− p′‖1.

Commonly, this quantity is also called the total variational distance. Alternatively
(see [Fra15]), this norm distance can be written as minimization of a function,
linear in p, p′, over all subsets of I, i.e. as

1

2
‖p− p′‖1 = max

X⊂I

∑

i∈X
pi − p′i.

This particular form is advantageous when we consider p and p′ to be the outcome
probabilities of measurements A and A′ on a state ρ. We can use the linearity and
write the measurement error as

εdmM (A|A′) = sup
ρ

max
X⊂I

∑

i∈X
tr (ρA(i))− tr (ρA′(i))

= max
X⊂I

sup
ρ

tr

(
ρ
∑

i∈X
A(i)− A′(i)

)
.

Here, we use the notation A(X) =
∑

i∈X A(i) and interpret the supremum over all
states as operator norm. Hence, we have

εdmM (A|A′) = max
X⊂I
‖A(X)− A′(X)‖∞

If A is a sharp measurement, with eigenprojectors {φi := A(i)}i∈I , we are in a
position to assign a calibration error εdmC (A|A′) and an entangled reference frame
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5.1 Uncertainty relations for the discrete metric

error εdmE (A|A′). Using the de�nitions in Eq.(6) and Eq.(10) from [SRW16] we get

εdmC (A|A′) = max
i

∑

j∈I
tr (A′(j)φi) c(i, j)

= max
i∈I

∑

j 6=i
tr (A′(j)φi) = 1−min

i∈I
tr (A′(i)φi)

for the calibration error and

εdmE (A|A′) =
1

d

∑

i

∑

j∈I
tr (A′(j)φi) c(i, j) (5.1)

=
1

d

∑

i∈I

∑

j 6=i
tr (A′(j)φi) = 1− 1

d

∑

i∈I
tr (A′(i)φi)

for the entanglement reference frame error. We can see that both error quantities
only depend on the probabilities pj=i := tr (A′(i)φi), in a way that maximizing
these probabilities will decrease the error. Those probabilities have a clear oper-
ational meaning: If we test a device A′ with an eigenstate φi, the probability for
getting the correct outcome i is given by pj=i. Thereby, the probabilities for the
other outcomes occur only indirectly by the relation pi=j = 1− pj 6=i. Hence, for a
test on φi all labels j 6= i are treated equally by our error quantities. This nicely
illustrates the nature of the underlying metric.
Despite the fact that all three error quantities now appear in a simple and

intuitively interpretable form, the computation of a corresponding measurement
uncertainty relation still demands to consider the semi de�nite boundary condi-
tions of a joint measurement. Hence, this computation still has to be done by
solving an SDP using the formulation given in [SRW16] Sec.3 .

Preparation uncertainty: According to the de�nition Def. 3.1, the generalized
deviation in terms of the discrete metric is given by

ν(A|ρ) = min
j

∑

i

tr(φiρ)c(i, j)

= min
j

∑

i

tr(φiρ)(1− δij) = 1−max
j

tr (φjρ) .

After performing the maximization over j, this quantity only depends on a single
outcome probability pjmax = tr (φjmaxρ), too. Again this probability, i.e the prob-
ability of the most probable outcome, has a clear interpretation and also many
applications in information theory. Indeed, by taking the negative logarithm of
pjmax , we retrieve the so called min entropy

H∞(pAρ ) = − log (pjmax) ,
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which is usually considered instead of pjmax itself.
For a collection of measurements A1, . . . , Am and weights a1, . . . , am, the mini-

mization problem for the corresponding linear uncertainty relation is given by

inf
ρ

∑

j=1...m

αjν(Aj|ρ) = 1− sup
ρ

∑

j=1...m

αj max
i

tr (Aj(i) ρ)

= 1− max
i1...im

∥∥∥
∑

j=1...m

αjAj(ij)
∥∥∥
∞
, (5.2)

which can be solved in the general case by computing the norm above for all
combinations (i1, . . . , im) ∈ {1, . . . , d}m separately. For the special case of only
two ideal sharp measurements, say A and B, this can be further simpli�ed:
Here, all necessary information on the problem is given by specifying the overlaps
〈φAi |φBj 〉 between the respective eigenstates of A and B.

Lemma 5.1. Let A and B denote sharp measurements with eigenstates

{φAi } and {φBi }. The linear preparation uncertainty between A and B

is given by

inf
ρ
a ν(A|ρ) + b ν(B|ρ) =

1

2

(
2− a− b−

√
a2 + b2 + 2ab(2c∗ − 1)

)

and therefore only depends on the maximal overlap

c∗ = max
ij
|〈φAi |φBj 〉|

Proof. The central part of this proof is to evaluate the norm from (5.2) for weights
(a, b) and eigenstates A(i) = φAi , B(j) = φBj . We have to compute

ηij :=
∥∥∥aφAi + bφBj

∥∥∥
∞

(5.3)

This can be done completely within the two dimensional subspace spanned by
the vectors |φAi 〉 and |φBj 〉. The norm (5.3) is unitarily invariant. Hence, we can
represent those vectors, w.l.o.g., as

|φAi 〉 = (1, 0) and |φBj 〉 = (cos(θ), sin(θ))

with a relative angle θ, i.e. cos(θ) = |〈φAi |φBj 〉|. Within this representation (5.3) is
reduced to the norm of a 2 × 2 matrix, which can be computed analytically. We
get:
∥∥∥∥
(
a+ b cos2(θ) b cos(θ) sin(θ)

b cos(θ) sin(θ) b sin2(θ)

)∥∥∥∥
∞

=
1

2

(
a+ b+

√
a2 + b2 + 2ab(2 cos(θ)− 1)

)
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For θ ∈ (0, π/2), i.e. for cos(θ) ∈ (0, 1), this norm is a monotonously increasing
function of cos(θ). Therefore, the uncertainty relation

1−max
i,j

ηij

is saturated on the indices (i, j) belonging to the largest angle/overlap

c∗ = max
ij
|〈φAi |φBj 〉|

For the special case of equal weights a = b = 1, the lemma Lem. 5.1 gives the
simple uncertainty relation

inf
ρ
ν(A|ρ) + ν(B|ρ) = 1− c∗ (5.4)

and by this a direct interpretation for the constant c∗. Furthermore, this constant,
more precisely its negative logarithm, plays a prominent role for preparation uncer-
tainty relations in terms of Shannon entropies, as well. Here, we have the Maassen
and U�nk bound [MU88] :

inf
ρ

1

2
H(A|ρ) +

1

2
H(B|ρ) ≥ −log(c∗),

which is, in contrast to (5.4), only a lower bound, that is tight only for the very
special cases documented in [ASM+15] (Sec.7.1).

5.2 Entropic measurement uncertainty relations

In this section we will provide two constructions for the formulation of measure-
ment errors in terms of entropic quantities. For sharp measurements, we will show
that both types of error lead to measurement uncertainty relations that can be
lower bounded by linear preparation uncertainty relations in terms of the Shannon
entropy.

The self-information is a cost function

The following lemma shows that we can reinterpret the Shannon entropy as devi-
ation with respect the to the self-information as cost function.
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Lemma 5.2. Let Pn denote the set of all probability distributions over

an alphabet I of length n. Furthermore, let c : I × Pn 7→ R+ be the

function that assigns the self-information, with respect to a distribution

q ∈ Pn, to a label i ∈ I, i.e.

c(i, q) = − log(qi).

Let X be a random variable with outcomes on I, distributed by some

p ∈ Pn. The Shannon entropy of p, i.e. X, is given by the deviation of

X with respect to c as cost function, i.e. we have

H(X) = −
∑

i∈I
pi log(pi) = inf

q∈Pn

〈c(X, q)〉p = ν(X, p)

Proof. Let p, q ∈ Pn be probability distributions. The relative entropy D(p||q),
between those distributions is always non negative, i.e. we have

0 ≤ D(p||q) =
∑

i∈I
pi log

(
pi
qi

)
. (5.5)

This estimate is also known as Gibbs' inequality. By expanding the logarithm,
this is equivalent to

−
∑

i∈I
pi log(pi) ≤ −

∑

i∈I
pi log(qi) ∀q ∈ Pn.

Equality in (5.5) is achieved by p = q. Therefore we have

−
∑

i∈I
pi log(pi) = min

q∈Pn

∑

i∈I
pi (− log(qi)) = min

q∈Pn

∑

i∈I
pic(i, q) = inf

q∈Pn

〈c(X, q)〉p

Given the self-information as cost function, we can employ the construction from
[SRW16] to obtain the according measurement error quantities. Those quantities
can be used to compare a measurement A, with outcomes i from the alphabet I,
with a measurement A′, that has outcomes q on the set of probability distributions
Pn, with n = |I|. Hence, we will have to model this measurement by an operator
valued measure with continuous support. In the following we will write A′[ω] to
denote the operator valued measure corresponding to a measurable set ω ⊂ Pn.
Furthermore, we will use the notation

∫

ω

tr (A′[dq]ρ)
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5.2 Entropic measurement uncertainty relations

to denote the probability that a measurement on a state ρ gives a guess (probability
distribution) q ∈ ω as outcome.
When tested on eigenstates {φi}, such a device A′ has a clear operational inter-

pretation: for every test state φi the correct answer, a perfect measurement device
would give, is i. An approximate device with outcomes on I, as in the last section,
will give this correct answer with some probability, or a di�ering label j 6= i with
the opposite probability. A device A′, as in this section, will instead respond to a
test state φi with an educated guess of the form:

'with probability q1 the input was φ1, with probability q2 the input was φ2, and
so on. . . '

Here, A′ would be a perfect approximation, i.e. equivalent, to a sharp measure-
ment A, if A′ always gives the certain answer q : qj = δij, resulting to the input
φi. In the following, we will restrict to sharp measurements and regard only error
measures evaluated on eigenstates of an ideal measurement. Although, all quanti-
ties of this section are also well de�ned for the more general cases, an investigation
of those cases is still open and, therefore, not presented here.

De�nition 5.3. According to [SRW16], the entropic calibration and
the entropic entangled reference frame error are given by

εinfoC (A|A′) = sup
i∈I

∫

Pn

tr
(
A′[dq]φi

)(
− log(qi)

)

and

εinfoE (A|A′) = −1

d

∫

Pn

tr
(
A′[dq]

∑

i∈I
φi log(qi)

)
. (5.6)

Since Pn is continuous, we had to replace the sum over all outcomes by an
integral with respect to the operator valued measure A′[dq]. A careful check of
Thm. 3.4 shows that this theorem is valid in this case as well. Therefore, we can
directly conclude the following corollary:

Corollary 5.4. Let A1, . . . , Am be a collection of sharp measurements

with outcomes on the alphabet I, and let ~a = (a1, . . . , am) be a vector

of positive weights. For any joint measurement R, with outcomes on

Pn × · · · × Pn, let A′j denote the respective marginals with outcomes on

Pn. We have

inf
R

∑

j=1,...,m

ajε
info
E (Aj|A′j) ≥ inf

ρ

∑

j=1,...,m

ajH(Aj|ρ).
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It is clear from the de�nition that in this case the entangled reference error is
smaller than the calibration error, as well. Hence, by using the shorthand notation
of Ch. 3, we can state:

inf
R
~a · ~ε infoC (A|A′) ≥ inf

R
~a · ~ε infoE (A|A′) ≥ inf

ρ
~a · ~H(A|ρ).

Furthermore, there is a direct correspondence between the devices from this
section and the devices from the last: In a single shot, a device A′ gives us a
probability distribution q as outcome. Given such a particular outcome, we can
take a sample from this distribution and obtain a single outcome from the alphabet
I. By this procedure, see Fig. 5.1, we emulate a device A′ with outcomes on I.

Figure 5.1: We can emulate a device A′, with outcomes on I, by sampling from
the single-shot outcome q of A′.

In this context it also makes sense to compare the error quantities εinfoM (Aj|A′j) and
εdmM (Aj|A′j). As the following lemma shows, we have an explicit hierarchy:

Lemma 5.5. Let A1, . . . , Am be a collection of sharp measurements

with outcomes on I, and let ~a = (a1, . . . , am) be a vector of positive

weights.

(i)For any joint measurement R, with outcomes on Pn × · · · × Pn, let
A′j denote the respective marginal measurement with outcomes on Pn.
(ii)For any joint measurement R, with outcomes on I × · · · × I, let A′j
denote the respective marginal measurement with outcomes on I.

We have

inf
R

∑

j=1,...,m

ajε
info
E (Aj|A′j) ≥ inf

R

∑

j=1,...,m

ajε
dm
E (Aj|A′j) (5.7)

Proof. At �rst, consider a �xed device A′. To this device we assign a second device
A′, which is given by the POVM elements

A′(j) :=

∫

Pn

A′[dq]qj.
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If we sample from the outcomes q of a measurement device A′, the probability
of getting the outcome j, as response to the input φi, is given by

pij = tr(A′(j)φi) =

∫

Pn

tr(A′[dq]φi)qj.

Hence, our emulated device A′ attains the error (see (5.1))

εdmM (Aj|A′j) = 1− 1

d

∑

i∈I
pii

= 1− 1

d

∑

i∈I

∫

Pn

tr(A′[dq]φi)qi

=
1

d

∑

i∈I

∫

Pn

tr(A′[dq]φi)(1− qi)

We have 0 ≤ qi ≤ 1. Hence, we can employ the estimate 1− qi ≤ − log(qi) in the
above and get

εdmM (Aj|A′j) ≤
1

d

∑

i∈I

∫

Pn

tr(A′[dq]φi) (− log(qi)) = εinfoM (Aj|A′j).

This already gives us the necessary tool for proving (5.7). If we apply the above
estimate for all marginal observables of any R, we will directly obtain a joint
measurement R with smaller absolute error.

Interpretation of εinfoM : The entropic reference frame error εinfoE (A|A′), see (5.6),
can be rewritten as

εinfoE (A|A′) =

∫

Pn

tr(A′[dq])

d

∑

i∈I

tr(A′[dq]φi)

tr(A′[dq])
log

(
1

qi

)
.

Here, we substitute the states

ρq =
A′[dq]

tr(A′[dq])

and the probabilities

(pAρq)i = tr(ρqφi) =
tr(A′[dq]φi)

tr(A′[dq])
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and the probability measure

µ[dq] = tr

(
A′[dq]

d

)

to get

εinfoE (A|A′) =

∫

Pn

µ[dq]
∑

i∈I

(
pAρq

)
i
log

(
1

qi

)
. (5.8)

The sum in (5.8) is also known as cross entropy, denoted by H(p; q). We get

εinfoE (A|A′) =

∫

Pn

µ[dq]H
(
pAρq ; q

)
, (5.9)

which provides us with an explicit interpretation for εinfoE (A|A′):
In statistics the cross entropy H(p; q) serves as a quality measure for the ap-

proximation of an unknown distribution p by a known distribution q. Explicitly
in the �eld of machine learning, the cross entropy is commonly used as objective

function for the optimization of models [DBKMR05]. In our case
(
pAρq

)
i
describes

the conditional probability for having the input state φi, given that the device A′

produced the guess q. Here, H
(
pAρq ; q

)
measures if the guess q is a good model

for the actual distribution pAρq . The measure µ(ω) is independent of φi and corre-
sponds to the probability that a particular q ∈ ω is produced as guess. Therefore,
εinfoE (A|A′) can be seen as the expected quality of this approximation.
Alternatively, the error εinfoE (A|A′) can be expressed in terms of the relative

entropy. By the use of

D(p||q) = H(p; q)−H(p),

in (5.9) we get

εinfoE (A|A′) =

∫

Pn

µ[dq]D
(
pAρq

∥∥∥q
)

+

∫

Pn

µ[dq]H (A|ρq) . (5.10)

Here we can omit the �rst term and get the estimate

εinfoE (A|A′) ≥
∫

Pn

µ[dq]H (A|ρq) . (5.11)

At the end of this chapter we will see that the optimal devices for a measurement
uncertainty relation always attain tightness in this estimate.
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A second proof of Cor. 5.4: As an alternative to the use of Thm. 3.4, the
corollary Cor. 5.4 can be proven as a conclusion from the following observations:
For a collection of measurements A = A1, . . . , Am, a joint measurement R corre-

sponds to a measure R [dq1 ∧ · · · ∧ dqm], that will give us an ensemble of states

ρq1,...,qm :=
R [dq1 ∧ · · · ∧ dqm]

tr (R [dq1 ∧ · · · ∧ dqm])

distributed by the measure

µ
[
dq1 ∧ · · · ∧ dqm

]
= tr(R

[
dq1 ∧ · · · ∧ dqm

]
)/d

The states corresponding to the marginal measurements A′j are therefore given by
the mixture

ρqj =
R [Pn ∧ · · · dqj ∧ · · · ∧ Pn]

tr (R [Pn ∧ · · · dqj ∧ · · · ∧ Pn])

=

∫

(Pn)m−1

tr (R [dq1 ∧ · · · ∧ dqm])

tr (R [Pn ∧ · · · dqj ∧ · · · ∧ Pn])

R [dq1 ∧ · · · dqj ∧ · · · ∧ dqm]

tr (R [dq1 ∧ · · · ∧ dqm])

=

∫

(Pn)m−1

µ [dq1 ∧ · · · ∧ dqm]

µ [Pn ∧ · · · dqj ∧ · · · ∧ Pn]
ρq1,...,qj (5.12)

Hence, the linear uncertainty of some R, with respect to A and weights ~a, is given
by

∑

j=1...m

ajε
info
E (A|A′) =

∑

j=1...m

aj

∫

Pn

µ
[
Pn ∧ · · · dqj ∧ · · · ∧ Pn

]
H
(
pAqj ; q

j
)
.

In the above we can use the estimate (5.11), the decomposition (5.12), and the
concavity of the entropy, to get

∑

j=1...m

ajε
info
E (A|A′) ≥

∑

j=1...m

aj

∫

Pn

µ
[
Pn ∧ · · · dqj ∧ · · · ∧ Pn

]
H
(
Aj|ρqj

)

≥
∑

j=1...m

aj

∫

(Pn)m
µ
[
dq1 ∧ · · · ∧ dqm

]
H (Aj|ρq1...qm) (5.13)

≥ inf
ρ

∑

j=1...m

ajH(Aj|ρ)

which not only proves Cor. 5.4, but also gives us some new insight in the structure
of this problem. Most interestingly, the integrand in (5.13) does not longer rely
on the marginal observables A′j, but rather directly on the outcomes of the joint
measurement R. More precisely, the integral in (5.13) will not change if we regroup
or reparametrize the joint outcome set Pn × · · · × Pn. In the next subsection we
will build on this observation and provide a marginal independent approach to
entropic measurement uncertainty.
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uncertainty

A marginal independent approach

From a more general perspective, the outcomes of a joint measurement R can be
seen as raw data, which is then post-processed (by reducing it to the marginals),
in order to obtain an approximation for an ideal measurement. However, when
testing a device R by some test states φi, it is intuitively clear that such a post-
processing can not add new information on the desired outcome i to the resulting
data. More drastically spoken: in the best case we can hope that a post-processing
does not delete parts of this information. This perspective suggests to drop this
post-processing step and to work on the raw data directly. Furthermore, this raw
data need not necessarily be an outcome on the joint set of outcomes of the ideal
observables. It could be anything.
Hence, the motivation for the following subsection is to quantify the obtainable

information about a set of incompatible ideal measurements, that is gained by
performing a further measurement R. However, before starting this, we have to
clarify what kind of information should be recovered by R. The way we take in
this subsection was suggested in [AB16, BHOW14]: we take a classical random
variable X with outputs on I, in order to draw a random distribution of input
test states φi. Then the outcomes of R are used to extract this information on X
from measuring this test ensemble. Later on, we repeat this with a second random
variable Y and test states ψi corresponding to a second ideal observable B. Here
we can compare the extracted information and start looking for an optimal device
R that realizes a trade o�.
For the above setting, the common information theoretic quantity to judge the

information on X, that is contained in the outcomes of R, is the conditional in-

formation of the joint distribution of inputs and outputs

H(X|RX) = H(XRX)−H(RX),

where RX denotes the random variable corresponding to the outcomes of R. We
note that, the above quantity strongly depends on the entropy of the test statis-
tics X. A natural choice, as done in [AB16, BHOW14], is to assume a uniform
distributed X, i.e. to assume a maximal entropy H(X) = log(d). A typical moti-
vation for this, borrowed from information theory, is to consider a communication
scenario where X contains classical data that is encoded by the φi's and should
be recovered by measuring R. If this classical data is optimally compressed, i.e.
encoded at the Shannon limit, the according random variable X will appear uni-
formly distributed.
Furthermore, we can motivate this choice by the entangled reference frame error:

Here we prepare the input states by measuring one half of a maximally entangled
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5.2 Entropic measurement uncertainty relations

state φ+. This will give us the same input ensemble as preparing a test ensemble
of φi's by a uniform X.
We note that we have H(X|RX) ≤ H(X) in general. Hence, the idea of a

calibration error will fail in this setting, because any deterministic input has the
entropy H(X) = 0. This is clear intuitively: if there is only one single input, there
is no information to recover.
For the following let k ∈ K be an outcome of the outcome set K of R. Further-

more, let X be distributed by some probability distribution p on labels i ∈ I. The
joint distribution for testing (X, {φi}i∈I) on R is given by

pik =
1

d
tr(R(k)φi),

and the probability of obtaining the outcome k is

pk =
∑

i∈I
pik = tr

(
R(k)

∑

i∈I

1

d
φi

)
=

1

d
tr(R(k))

Within this notation the conditional entropy is given by

H(X|RX) = −
∑

i∈I,k∈K
pik log(pik) +

∑

k∈K
pk log(pk)

= −
∑

i∈I,k∈K

1

d
tr(R(k)φi) log

(
tr(R(k)φi)

d

)
+

1

d

∑

k∈K
tr(R(k)) log

(
tr(R(k))

d

)

= −
∑

k∈K

1

d
tr(R(k))

∑

i∈I

tr(R(k)φi)

tr(R(k))
log

(
tr(R(k)φi)

tr(R(k))

)

Here, we can again substitute the renormalized POVM elements as quantum states

ρk :=
tr(R(k)φi)

tr(R(k))

and get

H(X|RX) =
∑

k∈K
pkH (A|ρk) (5.14)

For K = Pn, the above expression is equal to the integral in (5.13), if we replace
the sum by an integral. Hence, we found the generalization of this construction
to arbitrary outcome sets K. However, we can also do the converse, i.e. convert a
device R, with outcomes on K, into a device A′, with outcomes in Pn:
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uncertainty

Figure 5.2: We can convert a device R, with outcomes on K, to a device A′, with
outcomes on Pn, too.

Consider a �xed device R, which is tested with respect to an ideal sharp measure-
ment A. We can assign a device A′ by taking the conditional distribution, deduced
from the ρk's, as guesses, i.e. whenever we obtain a measurement outcome k, as
response to an unknown input, we provide the guess

pAρk =
1

tr(R(k))
(tr(R(k))φ1, . . . , tr(R(k)φn) .

This procedure (see Fig. 5.2) gives us a device A′, that is described by the POVM

A′[dq] =
∑

k∈K
R(k)δ(q − pAρk)dq.

If we compute the entropic entanglement reference error of this device, the relative
entropy in (5.10) vanishes by construction. Hence, we directly get (5.14), i.e.

εinfoM (A|A′) =
∑

k∈K
pkH (A|ρk) . (5.15)

This construction also works if we consider more than one ideal sharp observable.
Therefore, we get the following lemma:

Lemma 5.6. Let A1, . . . , Am be a collection of sharp measurements

with outcomes on the alphabet I.

(i) Let X1 . . . Xm be a collection of uniform and independent distributed

random variables on I. For any measurement R, with outcomes on a

measurable set K, let RX1 , . . . , RXm denote the random variables corre-

sponding to the outcomes of R, when tested on the respective eigenstates

of Ai with distribution Xi.

(ii) Let R be a joint measurement as in Cor. 5.4.

Let ~a = (a1, . . . , am) be a vector of positive weights. Then

inf
R

∑

j=1,...,m

ajH(Xj|RXj) = inf
R

∑

j=1...m

ajε
info
E (A|A′) (5.16)
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5.2 Entropic measurement uncertainty relations

Proof. Since we consider arbitrary outcome sets K, the device R comes from the
bigger variation class, such that we get

inf
R

∑

j=1,...,n

ajH(Xj|RXj) = inf
R

∑

j=1...m

ajε
info
E (A|A′)

by (5.13). However, if we �xed a particular R, and consider a device A′ with POVM
elements

R[dq1 ∧ · · · ∧ dqn] =
∑

k∈K
R(k)δ(q1 − pA1

ρk
) · . . . δ(qn − pAn

ρk
).

we get the desired equality in (5.16) by the same argumentation as in (5.15).

Note that this lemma directly implies that linear measurement uncertainty re-
lations in terms of the conditional entropy are bounded from below by entropic
preparation uncertainty relations, as well. For completeness all linear uncertainty
relations from this chapter and their interplay are organized in the following dia-
gram:

Figure 5.3: The upper half of this diagram corresponds to the uncertainty measures
based on the discrete metric and the lower one to entropic uncertainty
measures. Equality from the left to the right can be realised by phase
space observables, see the example in chapter Ch. 3. Equality from the
top to the bottom can only be achieved if all uncertainties vanish.
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CHAPTER 6

Entropic uncertainty relations

In this chapter we focus on the general structure of linear entropic preparation
uncertainty relations in terms of the Shannon entropy. In the last chapter we saw
that those uncertainty relations serve as lower bounds on both types of entropic
measurement uncertainty relations. Beside this property, entropic preparation
uncertainty relations are from interest by their own, because they are used as
estimate all over quantum information theory (see the references in [S18] and
[ASM+15] for examples). However, there is only little known on their structure in
the general case.
For the case of two sharp measurements, and equal weights, a couple of com-

putable lower bounds on the optimal linear uncertainty relation are known (see the
introducon in [ASM+15]). The most prominent of them is the Maassen and U�nk
bound [MU88]. In this chapter we will contribute to a better understanding of
the structure of entropic uncertainty relations by [S18], placed in the next section.
Here a proof of the additivity of entropic uncertainty relations is provided. The
basic tool of this proof is to connect entropic uncertainty relations to so called
(p, q)-norms.
In the second part of this chapter we will provide new numerical methods for

computing linear entropic preparation uncertainty relations. These methods are
based on an alternating minimization ansatz, which works �ne for moderately
small dimensions, but possibility fails in high dimension. Therefore, we will also
comment on known results on the hardness of computing (p, q)-norms, which is
closely connected to the hardness of this problem.



Chapter 6: Entropic uncertainty relations

6.1 [S18]

Additivity of entropic uncertainty relations

• Author: René Schwonnek

• Published in: Quantum 2, 59 (2018)

• DOI: 10.22331/q-2018-03-30-59

• Presented version: The presented version is identical to arXiv:1801.04602v4,
the literature is placed at the end of this thesis.

• Main results:

� (p, q) - norms are multiplicative for p ≤ q

� Linear entropic uncertainty relations for pairs of sharp measurements
are additive.

� Additivity fails for three measurements.

� The Maassen and U�nk bound is generalized to linear relations with
arbitrary weights.
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Additivity of entropic uncertainty relations
René Schwonnek

Institut für Theoretische Physik, Leibniz Universität Hannover, Germany
April 7, 2018

We consider the uncertainty between two
pairs of local projective measurements per-
formed on a multipartite system. We show
that the optimal bound in any linear uncer-
tainty relation, formulated in terms of the
Shannon entropy, is additive. This directly im-
plies, against naive intuition, that the minimal
entropic uncertainty can always be realized by
fully separable states. Hence, in contradic-
tion to proposals by other authors, no entan-
glement witness can be constructed solely by
comparing the attainable uncertainties of en-
tangled and separable states. However, our re-
sult gives rise to a huge simplification for com-
puting global uncertainty bounds as they now
can be deduced from local ones.
Furthermore, we provide the natural gener-

alization of the Maassen and Uffink inequality
for linear uncertainty relations with arbitrary
positive coefficients.

Introduction
Uncertainty and entanglement are doubtless two of
the most prominent and drastic properties that set
apart quantum physics from a classical view on the
world. Their interplay contains a rich structure,
which is neither su�ciently understood nor fully dis-
covered. In this work, we reveal a new aspect of this
structure: the additivity of entropic uncertainty rela-
tions.
For product measurements in a multipartition, we

show that the optimal bound cABC... in a linear un-
certainty relation satis�es

cABC··· = cA + cB + cC + . . . , (1)

where cA, cB , cC , . . . are bounds that only depend on
local measurements. This result implies that minimal
uncertainty for product measurements can always be
realized by uncorrelated states. Hence, we have an
example for a task which is not improved by the use
of entanglement.
We will quantify the uncertainty of a measurement

by the Shannon entropy of its outcome distribution.
For this case, the corresponding linear uncertainty

bound cABC... gives the central estimate in many ap-
plications like: entropic steering witnesses [1�4], un-
certainty relations with side-information [5], some se-
curity proofs [6] and many more.
When speaking about uncertainty, we consider so

called preparation uncertainty relations [7�14]. From
an operational point of view, a preparation uncer-
tainty describes fundamental limitations, i.e. a trade-
o�, on the certainty of predicting outcomes of sev-
eral measurements that are performed on instances
of the same state. This should not be confused [15]
with its operational counterpart named measurement
uncertainty[16�20]. A measurement uncertainty rela-
tion describes the ability of producing a measurement
device which approximates several incompatible mea-
surement devices in one shot.
The calculations in this work focus on uncertainty

relations in a bipartite setting. However, all results
can easily be generalized to a multipartite setting by
an iteration of statements on bipartitions. The ba-
sic measurement setting, which we consider for bi-
partitions, is depicted in Fig. 1. We consider a pair

ρAB

XA

YA

{1, 0}

1

0

XB

YB

1

0

A

B

λpXAB
⊕

µpYAB

Figure 1: Basic setting of product measurements on a biparti-
tion: pairs of measurementsXA, XB or YA, YB are applied to
a joint state ρAB at the respective sides of a bipartition. One
bit of information is transmitted for communicating whether
the X or the Y measurements are performed. The weights
(λ, µ) denote the probabilities corresponding to this choice.

of measurements, XAB = XAXB and YAB = YAYB ,
to which we will refer as the global measurements of
(tensor) product form. Each of those global measure-
ments of product form is implemented by applying
local measurements at the respective sides of a bipar-
tition between parties denoted by A and B. Hereby,
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the variables XA, XB and YA, YB will refer to those
local measurements applied to the respective sides.
We only consider projective measurements, but be-

side this we impose no further restrictions on the in-
dividual measurements. So the only property that
measurements like XA and XB have to share is the
common label 'X', besides this, they could be non-
commuting or even de�ned on Hilbert spaces with
di�erent dimensions.
The main result of this work is stated in Prop.1 in

Sec. 3. In that section, we also collect some remarks
on possible and impossible generalizations and the
construction of entanglement witnesses. The proof of
Prop.1 is placed at the end of this paper, as it relies
on two basic theorems stated in Sec.4 and Sec.5.
Thm.1, in Sec.4, clari�es and expands the known

connection between the logarithm of (p, q)-norms and
entropic uncertainty relations. As a special case of
this theorem we obtain Lem.1 which states the nat-
ural generalization of the well known Maassen and
U�nk bound [21] to weighted uncertainty relations.
Thm.2, in Sec.5, states that (p, q)-norms, in a certain
parameter range, are multiplicative, which at the end
leads to the desired statement on the additivity of
uncertainty relations.
Before stating the main result, we collect, in Sec.1,

some general observations on the behavior of uncer-
tainty relations for product measurements with re-
spect to di�erent classes of correlated states. Fur-
thermore, in Sec. 2, we will motivate and explain the
explicit form of linear uncertainty relations used in
this work.

1 Uncertainty in bipartitions
All uncertainty relations considered is this paper
are state-independent. In practice, �nding a state-
independent relation leads to the problem of jointly
minimizing a tuple of given uncertainty measures,
here the Shannon entropy of XAB and YAB , over all
states. This minimum, or a lower bound on it, then
gives the aforementioned trade-o�, which then allows
to formulate statements like: "whenever the uncer-
tainty of XAB is small, the uncertainty of YAB has to
be bigger than some state-independent constant" .
Considering the measured state, ρAB , it is natural

to distinguish between the three classes: uncorrelated,
classically correlated and non-classical correlated. In
regard of the uncertainty in a corresponding global
measurement, states in these classes share some com-
mon features:
If the measured state is uncorrelated, i.e a prod-

uct state ρAB = ρA ⊗ ρB , the outcomes of the lo-
cal measurements are uncorrelated as well. Hence,
the uncertainty of a global measurement is completely
determined by the uncertainty of the local measure-
ments on the respective local states ρA and ρB . More-
over, in our case, the additivity of the Shannon en-

tropy, tells us that the uncertainty of a global mea-
surement is simply the sum of the uncertainty of the
local ones. In the same way any trade-o� on the global
uncertainties can be deduced from local ones.
If the measured state is classically correlated,

i.e a convex combination of product states [22], ad-
ditivity of local uncertainties does not longer hold.
More generally, whenever we consider a concave un-
certainty measure [23], like the Shannon entropy, the
global uncertainty of a single global measurement is
smaller than the sum of the local uncertainties. Intu-
itively this makes sense because a correlation allows
to deduce information on the potential measurement
outcomes of one side given a particular measurement
outcome on the other. However, a linear uncertainty
relation for a pair of global measurements is not af-
fected by this, i.e a trade-o� will again be saturated
by product states. This is because the uncertainty re-
lation between two measurements, restricted to some
convex set of states, will always be attained on an
extreme point of this set.
However, if measurements are applied to an entan-

gled state, more precisely to a state which shows
EPR-steering [24�26] with respect to the measure-
ments XAB and YAB , it is in general not clear how
a trade-o� between global uncertainties relates to the
corresponding trade-o� between local ones. Just have
in mind that steering implies the absence of any lo-
cal state model, which is usually proven by showing
that any such model would violate a local uncertainty
relation.
In principle one would expect to obtain smaller un-

certainty bounds by also considering entangled states,
and there are many entanglement witnesses known
based on this idea (see also Rem. 3 in the following
section).

2 Linear uncertainty relations
We note that there are many uncertainty measures,
most prominently variances [8, 10]. Variance, and
similar constructed measures [17, 27], describe the
deviation from a mean value, which clearly demands
to assign a metric structure to the set of measure-
ment outcomes. From a physicist's perspective this
makes sense in many situations [11] but can also cause
strange behaviours in situations where this metric
structure has to be imposed arti�cially [28]. However,
from the perspective of information theory, this seems
to be an unnecessary dependency. Especially when
uncertainties with respect to multipartitions are con-
sidered, it is not clear at all how such a metric should
be constructed. Hence, it can be dropped and a quan-
tity that only depends on probability distributions of
measurement outcomes has to be used. We will use
the Shannon entropy. It ful�lls the above require-
ment, does not change when the labeling of the mea-
surement outcomes are permuted, and has a clear op-
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erational interpretation [29, 30]. Remarkably, Claude
Shannon himself used the term 'uncertainty' as an in-
tuitive paraphrase for the quantity today known as
'entropy' [29]. Historically, the decision to call the
Shannon entropy an 'entropy' goes back to a sugges-
tion John von Neumann gave to Shannon, when he
was visiting Weyl in 1940 (there are, at least, three
versions of this anecdote known [31], the most popular
is [32]).
Because we are not interested in assigning values

to measurement outcomes, a measurement, say X, is
su�ciently described by its POVM elements, {Xi}.
So, given a state ρ, the probability of obtaining the
i-th outcome is computed by tr(ρXi). The respec-
tive probability distribution of all outcomes is de-
noted by the vector pxρ . Within this notation the
Shannon entropy of a X measurement is given by
H(X|ρ) := −∑i

(
pxρ
)
i
log
(
pxρ
)
i
. As we restrict our-

selves to non-degenerate projective measurements, all
necessary information on a pair of measurements, X
and Y , is captured by a unitary U that links the mea-
surement basis. We will use the convention to write
U as transformation from the {Xi} to the {Yi}-basis,
i.e. we will take U such that Yi = UXiU

† holds.
Our basic objects of interest are optimal, state-

independent and linear relations. This is, for �xed
weights λ, µ ∈ R+ we are interested in the best con-
stant c(λ, µ) for which the linear inequality

λH(X|ρ) + µH(Y |ρ) ≥ c(λ, µ) (2)

holds on all states ρ.
Such a relation has two common interpretations:

On one hand one can consider a guessing game, see
also [33]. On the other, a relation like (2) can be
interpreted geometrically as in Fig. 2.

Linear uncertainty: a guessing game

For the moment, consider a player, called Eve, who
plays against an opponent, called Alice. Depen-
dent on a coin throw, in each round, Alice performs
measurement XA or YA on a local quantum state.
Thereby the weights λ and µ are the weights of the
coin and the l.h.s. of (2) describes the total uncer-
tainty Eve has on Alice's outcomes in each round. To
be more precise, up to a (λ, µ)-dependent constant,
the l.h.s of (2) equals the Shannon entropy of the
outcome distribution λpXAρ ⊕ µpYAρ .
Eve's role in this game is to �rst choose a state ρ,

observe the coin throw, wait for the measurements
to be performed by Alice, and then ask binary ques-
tions to her opponent in order to get certainty on the
outcomes. Thereby, the Shannon entropy sum on the
l.h.s of (2) (with logarithm to the base 2) equals the
expected amount questions Eve has to ask using an
optimal strategy based on a �xed ρ. Hence, the value
c(λ, µ) denotes the minimal amount of expected ques-
tions, attainable by choosing an optimal ρ.
For a bipartite setting, Fig. 1, a second player,

say Bob, joins the game. Here, Eve will play the

Figure 2: Uncertainty set for measurements performed on
a qubit. Any linear uncertainty relation, (2), with weights
(λ, µ), gives the description of a tangent to the uncertainty
set. All attainable pairs of entropies lie above this tangent.

above game against Alice and Bob, simultaneously.
Thereby, Alice and Bob share a common coin, and,
therefore, apply measurements with the same labels
(XAB or YAB). The obvious question that arises in
this context is if Eve gets an advantage in this si-
multaneous game by using an entangled state or not.
Prop. 1 in the next section answers the above ques-
tion negatively, which is somehow unexpected as in
principle the possible usage of non-classical correla-
tions enlarges Eve's strategies. For example: Eve
could have used a maximally entangled state, adjusted
such that all measurements Alice and Bob perform
are maximally correlated. In this case the remaining
uncertainty Eve has, would only be the uncertainty
on the outcomes of one of the parties. However, the
marginals of a maximally entangled state are maxi-
mally mixed. Hence, Eve still has a serious amount of
uncertainty (log d), which turns out to be not small
enough for beating a strategy based on minimizing
the uncertainty of the local measurements individu-
ally. For the case of product-MUBs in prime square
dimension [34], it turns out that the minimal uncer-
tainty realizable by a maximally entangled state ac-
tually equals the optimal bound.

Linear uncertainty: the positive convex hull

The second interpretation comes from considering the
set of all attainable uncertainty pairs, the so called
uncertainty set

U = {(H(X|ρ), H(Y |ρ)) |ρ is a quantum state} . (3)

In principle this set contains all information on the un-
certainty trade-o� between two measurements. More
precisely, the white space in the lower-left corner of
a diagram like Fig. 2 indicates that both uncertain-
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ties cannot be small simultaneously. In this context, a
state-independent uncertainty gives a quantitative de-
scription of this white space. Unfortunately, it turns
out that computing U can be very hard, because the
whole state-space has to be considered. Here a lin-
ear inequality, like (2), gives an outer approximation
of this set. More precisely, if c(λ, µ) is the optimal
constant in (2), this inequality describes a halfspace
bounded from the lower-left by a tangent on U . This
tangent has the slope µ/λ. The points on which this
tangent touches the boundary of U corresponds to
states which realize equality in (2). Those states are
called minimal-uncertainty states. Given all those
tangents, i.e. c(λ, µ) for all positive (λ, µ), we can
intersect all corresponding halfspaces and get a con-
vex set which we call the positive convex hull of U ,
denoted by U in the following. Geometrically, the
positive convex hull can be constructed by taking the
convex hull of U and adding to it all points that have
bigger uncertainties then, at least, some point in U .
If U is convex, like in the example above, U contains

the full information on the relevant parts of U . If U
is not convex, U still gives a variety of state indepen-
dent uncertainty relations, but there is still place for
�nding improvements, see [34].

3 Additivity, implications and applica-
tions
We are now able to state our main result

Proposition 1 (Additivity of linear uncertainty rela-
tions). Let cA(λ, µ) and cB(λ, µ) be state-independent
lower bounds on the linear entropic uncertainty for lo-
cal measurements XA, XB and YA, YB, with weights
(λ, µ). This means we have that

λH(XA|ρA) + µH(YA|ρA) ≥ cA(λ, µ)
λH(XB |ρB) + µH(YB |ρB) ≥ cB(λ, µ) (4)

holds on any state ρA from B(HA) and ρB from
B(HB). Let XAB and YAB be the joint global mea-
surements that arise from locally performing XA, XB

and YA, YB respectively. Then

λH(XAB |ρAB) + µH(YAB |ρAB) ≥ cA(λ, µ) + cB(λ, µ)
(5)

holds for all states ρAB from B(HA ⊗HB). Further-
more, if cA and cB are optimal bounds, then

cAB(λ, µ) := cA(λ, µ) + cB(λ, µ) (6)

is the optimal bound in (5), i.e. linear entropic un-
certainty relations are additive.

The proof of this proposition is placed at the end
of Sec. 5. We will proceed this section by collecting
some remarks related to the above proposition:

Remark 1 (Product states). Assume that cA(λ, µ)
and cB(λ, µ) are optimal constants, and φA and φB
are the states that saturate the corresponding uncer-
tainty relations (4). Then the product state φAB :=
φA ⊗ φB saturates (5), due to the additivity of the
Shannon-entropy. However, this does not imply that
all states that saturate (4) have to be product states.
Examples for this, involving MUBs of product form,
are provided in [34].

Remark 2 (Minkowski sums of uncertainty regions).
Prop. 1 shows how the uncertainty set UAB , of the
product measurement, relates to the uncertainty sets
UA and UB of corresponding local measurements: For
the case of an optimal cAB(λ, µ), and fixed (λ, µ),
equality in (5) can always be realized by product
states (see Rem. 1). In an uncertainty diagram, like
Fig. 3, those states correspond to points on the lower-
left boundary of an uncertainty set, and, in general,
they produce the finite extreme points of the positive
convex hull of an uncertainty set.

Figure 3: Uncertainty sets of local measurements can be
combined by the Minkowski sum: Uncertainty sets (green and
yellow) for two pairs of local measurements on Qubits and
the uncertainty set of the corresponding global measurements
(blue).

For product states we have the additivity of the
Shannon entropy, which gives
(
H(XAB |φA ⊗ φB)
H(YAB |φA ⊗ φB)

)
=
(
H(XA|φA)
H(YA|φA)

)
+
(
H(XB |φB)
H(YB |φB)

)

(7)

This implies that we can get every extreme point of
UAB by taking the sum of two extreme points of UA
and UB . Due to convexity the same holds for all
points in UAB and we can get this set as Minkowski
sum [35].

UAB = UAB � UB (8)

For convex uncertainty regions, arising from local
measurements, this is depicted in Fig. 3. For this
example, it is also true that UAB itself is given as
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Figure 4: Multiparite setting: Additivity of entropic uncer-
tainty relations also holds if a pair of global product mea-
surements for many local parties is considered.

Minkowski sum of local uncertainty sets. However,
we have to note, this behavior cannot be concluded
from Prop. 1 alone.

Remark 3 (Relation to existing entanglement wit-
nesses). A well know method for constructing non-
linear entanglement witnesses is based on computing
the minimal value of a functional, like the sum of
uncertainties [36–38], attainable on separable states.
Given an unknown quantum state, the value of this
functional is measured. If the measured value under-
goes the limit set by separable states, the presence of
entanglement is witnessed. For uncertainty relations
based on the sum of general Schur concave functionals
this method was proposed in [4], including Shannon
entropy, i.e. the l.h.s. of (5), as central example.

Our result Prop. 1 shows that this method will not
work for Shannon entropies, because there is no en-
tangled state that undergoes the limit set by separable
states. We note that there is no mathematical contra-
diction between Prop. 1 and [4]. We only show that
the set of examples for the method proposed in [4] is
empty.

For uncertainty relations in terms of Shannon, Tsal-
lis and Renyi entropies a similar procedure for con-
structing witnesses was proposed by [37, 39]. Here
explicit examples for states, that can be witnessed to
be entangled, were provided. Again, our proposition
Prop. 1 is not in contradiction to this work because
in [37, 39] observables with a non-local degeneracy
where considered.

Prop. 1 can easily be generalized to a multipartite
setting, see Fig. 4 :

Corollary 1 (Generalization to multipartite mea-
surements). Assume parties A1 . . . An that lo-
cally perform measurements, XA1 , . . . , XAn or
YA1 , . . . , YAn , with weights ~λ = (λ1, . . . , λn). In anal-
ogy to (4), let cA1(~λ), . . . , cAn(~λ) denote optimal lo-
cal bounds and let cA1···An(~λ) be the optimal bound
corresponding to product measurements XA1...An and
YA1...An . We have

cA1...An(~λ) =
n∑

i=1
cAi(~λ) (9)

This follows by iterating (6).

Remark 4 (Generalization to three measurements).
The generalization of Prop. 1 to three measurements,
say XAB , YAB and ZAB , fails in general. The follow-
ing counterexample was provided by O. Gühne [40]:
For both parties we consider local measurements de-
duced from the three Pauli operators on a qubit and
take all weights equal to one. In short hand nota-
tion we write XAB = σX ⊗ σX , YAB = σY ⊗ σY , and
ZAB = σZ ⊗ σZ . In this case, the minimal local un-
certainty sum is attained on eigenstates of the Pauli
operators. If such a state is measured, the entropy
for one of the measurements is zero and maximal for
the others. Hence, the local uncertainty sum is always
bigger than 2 [bit]. Therefore we have

H (σX ⊗ σX |φA ⊗ φB) +
H (σY ⊗ σY |φA ⊗ φB) +
H (σZ ⊗ σZ |φA ⊗ φB) ≥ 4 (10)

for all product states. In contrast to this a Bell state,
say Ψ−, will give the entropy of 1[bit], for all above
measurements. Hence we have,

H
(
σX ⊗ σX |Ψ−

)
+

H
(
σY ⊗ σY |Ψ−

)
+

H
(
σZ ⊗ σZ |Ψ−

)
= 3 � 4. (11)

4 Lower bounds from (p, q)-norms
The quite standard technique for analyzing a linear
uncertainty relation is to connect it to the (p, q)-
norm (see (12) below) of the basis transformation U .
Thereby, the majority of previous works in this �eld
is concentrating only on handling the case of equal
weights λ = µ = 1, which is connected to the (p, q)-
norm for the case 1/p + 1/q = 1. However, for the
purpose of this work, i.e. for proving Prop. 1, we have
to extend this connection to arbitrary (λ, µ). We will
do this by Thm. 1 on the next page.
A historically important example for the use of the

connection between (p, q)-norms and entropic uncer-
tainties, is provided by Bialynicki-Birula and Myciel-
ski [41]. They used Beckner's result [42], who com-
puted the (p, q)-norm of the Fourier-Transfromation,
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for proving the corresponding uncertainty relation,
between position and momentum, conjectured by
Hirschmann [43]. Also Maassen and U�nk [21] took
this way for proving their famous relation. Our result
gives a direct generalization of this, meaning we will
recover the Maassen and U�nk relation at the end
of this section as special case of (50). Albeit, before
stating our result, we will start this section by shortly
reviewing the previously known way for connecting
(p, q)-norms with linear uncertainty relation, see also
[44, 45] for further details:
The (p, q)-norm, i.e the lp → lq operator norm, of

a basis transformation U is given by

‖U‖q,p := sup
φ∈H

‖Uφ‖q
‖φ‖p

. (12)

Here, the limit of ‖U‖q,p for (p, q) → (2, 2) goes to
1. However, when p and q are �xed on the curve
1/p + 1/q = 1, the leading order of ‖U‖q,p around
(p, q) = (2, 2) recovers the uncertainty relation (2) in
the case of equal weights λ = µ = 1/2, see [41, 43].
More precisely, taking the negative logarithm of

(12) gives

− log ‖U‖q,p = inf
φ∈H

log ‖φ‖p − log ‖Uφ‖q . (13)

Here, we can identify the squared modulus of the com-
ponents of φ as probabilities of the X and Y measure-
ment outcomes

|(φ)i|2 = 〈φ|Xi |φ〉 = (pXφ )i
|(Uφ)i|2 = 〈φ|Yi |φ〉 = (pYφ )i (14)

and substitute

‖φ‖p =
(
‖pXφ ‖p/2

)2
and ‖Uφ‖q =

(
‖pYφ ‖q/2

)2
.

(15)

By this, (13) gives a linear relation in terms of the
α-Renyi entropy [46], Hα(p) = α

1−α log(‖p‖α). Here
we get

inf
φ∈H

2− p
p

Hp/2(X|φ)− 2− q
q

Hq/2(Y |φ) = − log ‖U‖2
q,p .

(16)

If we evaluate this on the curve 1/p + 1/q = 1, for
p ≤ 2 ≤ q, we can use

2− p
p

= 1
p
− 1
q

= q − 2
q

, (17)

which can be employed to (16), in order to get

inf
φ∈H

Hp/2(X|φ) +Hq/2(Y |φ) =
(

1
q
− 1
p

)−1
log ‖U‖2

q,p .

(18)

Here, the limit (p, q) → (2, 2), in the l.h.s of (18),
gives the limit from the Renyi to the Shannon en-
tropy. This gives the l.h.s. of the uncertainty relation

(2) for λ = µ = 1. Hence, the functional depen-
dence of ‖U‖q,p on (p, q) in the limit (p, q) → (2, 2)
gives the optimal bound c(1, 1), in (2). For the
case of the L2(R)-Fourier transformation the norm
‖UF‖q,p =

√
p1/p/

√
q1/q was computed by Beckner

[42], leading to c(1, 1) = log(πe). However, to the
best of our knowledge, computing ‖U‖q,p, for general
U and (p, q), is an outstanding problem, and presum-
ably very hard [47, 48]. Albeit, for special choices of
(p, q) this problem gets treatable, see [49] for a list of
those. The known cases include p = q = 2, p =∞ or
q =∞ such as p = 1 or q = 1.
The central idea of Maassen's and U�nk's work [21]

is to show that the easy case of (p = 1, q = ∞), here
we have ‖U‖1,∞ = maxij |Uij |, gives a lower bound on
c(1, 1). More precisely, they show that, for 1 ≤ p ≤ 2
and on the line 1/p + 1/q = 1, the r.h.s. of (18)
approaches c(1, 1) from below. Note that this is far
from being obvious. Explicitly, for p ≤ 2 ≤ q we have
Hq/2(Y |φ) ≥ H(Y |φ) and Hp/2(X|φ) ≤ H(X|φ),
so one term approaches the limit from above and
the other approaches the limit from below. Whereas
Maassen and U�nk showed, using the Riesz-Thorin
interpolation [50, 51], that the infφ of the sum of both
approaches the limit from below.
The following Theorem, Thm.1, extends the above

to the case of arbitrary (λ, µ). Notably, we have to
take (p, q) from curves with 1/p+ 1/q 6= 1, those are
depicted in Fig. 5. In contrast to Maassen and U�nk,
the central inequality we use is the∞-norm versions of
the Golden Thompson inequality (see [52�54] and the
blog of T.Tao [55] for a proof and related discussions).

Theorem 1. Let c(λ, µ), with λ, µ ∈ R+, be the op-
timal constant in the linear weighted entropic uncer-
tainty relation

c(λ, µ) := inf
ρ
λH (X|ρ) + µH (Y |ρ) . (19)

Then:
(i) c(λ, µ) is bounded from below by −N log (ωN (λ, µ))

with ωN (λ, µ) = sup
x∈Br(Cd)
y∈Bs(Cd)

∣∣x†Uy
∣∣ (20)

and r = 2N
N + 2λ s = 2N

N + 2µ (21)

where
Br(Ω) := {x ∈ Ω| 1 ≥ ‖x‖r}

denotes the unit r-norm Ball on Ω.

(ii) For λ, µ ≤ N/2 we can write

ωN (λ, µ) = sup
φ∈Cd

‖Uφ‖r′

‖φ‖s
= sup
φ∈Cd

‖Uφ‖s′

‖φ‖r
(22)

with r′ = 2N
N − 2λ s′ = 2N

N − 2µ (23)

(24)
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(iii) For µ, λ ∈ R+\{0}, we have

c(λ, µ) = lim
N→∞

−N log (ωN (λ, µ)) (25)

4

3

2
0 1 2

r′

s

λ/µ = 1λ/µ = 0.1 µ/λ = 0.1

Figure 5: Evaluating ‖U‖r′,s on the depicted curves gives a
lower bound for c(λ, µ), (see Thm. 1). Because c(λ, µ) is
a linear bound it is 1-homogenious in (λ, µ). Hence all in-
formation on the optimal bound c(λ, µ) can be recovered by
knowing it for any fixed ratio λ/µ. The thick red curve corre-
sponds to the case 1/r′ +1/s = 1 which gives bounds c(1, 1)
from below. For s = 1 the norm ‖U‖r′,s=1 can be computed
analytically, this gives a generalization of the Masssen and
Uffink bound (see Lem. 1).

Proof. The starting point of this proof is a modifica-
tion of a technique, used by Frank and Lieb in [56],
for reproving the Maassen and Uffink bound (see also
the talk of Hans Maassen [44], for a finite dimensional
version).

For probability distributions p,q ∈ B1(Rd+) we de-
fine the operators

A(p) := −
∑

Xi log(pi) and B(q) := −
∑

Yi log(qi)
(26)

such that we can rewrite the Shannon entropy as

H (X|ρ) = tr(ρA(pXρ )) and H (Y |ρ) = tr(ρB(pYρ ))
(27)

Based on this, we can further rewrite the Shannon
entropy as an optimization over a linear function in ρ
by using the positivity of the relative entropy, i.e. we
have D(p||q) =

∑
pi log(pi)−

∑
pi log(qi) ≥ 0, which

implies −∑ pi log(qi) ≥ H(p). We obtain

H (X|ρ) = inf
p

tr(ρA(p)), (28)

such as the respective statement for H (Y |ρ) and
B(q). If we employ this rewriting to c(λ, µ), we ob-
tain the minimal entropy sum as a minimization over
a parametrized eigenvalue problem, namely

c(λ, µ) = inf
ρ
λH (X|ρ) + µH (Y |ρ)

= inf
p,q,ρ

tr (ρ (λA(p) + µB(q))) (29)

Now we will turn the minimization, over ρ, into a
maximization by applying the convex function e−x/N ,
with N ≥ 1, to the weighted sum of A and B. This
will map the smallest eigenvalue of λA + µB to the
largest of e−

λA(p)+µB(q)
N and so on. In order to get back

the correct value of c we will have to apply the inverse
function, −N log(x), afterwards. We get

c(λ, µ) = −N log
(

sup
p,q,ρ

tr
(
ρe−

λA(p)+µB(q)
N

))
. (30)

Due to the positivity of the operator exponential, i.e.
A and B are hermitian, the optimization over ρ is
equivalent to the Schatten-∞ norm. We have

c(λ, µ) = −N log
(

sup
p,q

∥∥∥e−
λA(p)+µB(q)

N

∥∥∥
∞

)
(31)

At this point we apply the Golden-Thompson inequal-
ity

‖eS+T ‖p ≤ ‖eSeT ‖p (32)

and expand the resulting exponentials, as well as the
Schatten norm. We get

c(λ, µ) ≥ -N log
(

sup
p,q

∥∥∥e−
λA(p)
N e−

µB(q)
N

∥∥∥
∞

)
(33)

= -N log


sup

p,q

∥∥∥∥∥∥
∑

ij

Xip
λ/N
i Yjq

µ/N
j

∥∥∥∥∥∥
∞


 (34)

= -N log


 sup

p,q
|x〉,|y〉

〈
x
∣∣∑

ij

Xip
λ/N
i Yjq

µ/N
j

∣∣y
〉



(35)

Now we substitute pλ/Ni =: χi and q
µ/N
j =: ξj , and

expand |x〉 =
∑
xi |ei〉 and |y〉 =

∑
yj |fj〉, with com-

ponent vectors x,y ∈ B2(Cd). By this the r.h.s of (35)
becomes

−N log


sup
χ,x

sup
ξ,y

∣∣∣∣∣∣
∑

ij

χixi 〈ei|fj〉 ξjyj

∣∣∣∣∣∣


 . (36)

Here we can identify 〈ei|fj〉 = Uij , i.e. the overlaps
are the components of U when represented in the basis
X. At this point, it is straightforward to check that
χ ∈ BN/λ(Rd+) and ξ ∈ BN/µ(Rd+). Using the gener-
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alized Hölder inequality we can fuse some of the max-
imizations above as follows: On one hand, we have

(∑
|χixi|r

) 1
r ≤ ‖x‖2‖χ‖N/λ ≤ 1 (37)

and
(∑

|ξjyj |s
) 1
s ≤ ‖y‖2‖ξ‖N/µ ≤ 1

for 1
r

= 1
2 + λ

N
and 1

s
= 1

2 + µ

N
, (38)

which means that the vectors v and w, with vi = χixi
and wj = ξjyj , are in Br(C) and Bs(C) respectively.

On the other hand, the converse is also true, i.e.
every v and w from Br(Cd) and Bs(Cd) can be real-
ized by suitable choices of x, χ and y, ξ. For example,
we can always set

xi = |vi|rλ/N and χi = |vi|2/rei arg(vi) (39)

for getting x and χ from v, componentwise. For this
particular choice we can check that

xiχi = |vi|r(λ/N+1/2)ei arg(vi)

= |vi|r/rei arg(vi) = vi (40)

holds, such that we will get back v. Furthermore x ∈
BN/λ(Rd+) and χ ∈ B2(Cd) follows by writing out
∑

i

x
N/λ
i =

∑

i

vri ≤ 1 and
∑

i

χ2
i =

∑

i

vri ≤ 1.

(41)

If we use the above in (36), we can replace supx,χ by
supv and supy,ξ by supw, in order to get the statement
(i) with

ωN := sup
v∈Br(Cd)
w∈Bs(Cd)

∣∣v†Uw
∣∣ . (42)

For showing the statement (ii), we take r′, with 1 =
1/r + 1/r′. If λ ≤ N/2 holds we have r′ ≥ 0 and
we can use the tightness of the Hölder inequality to
rewrite

sup
v∈Br

∣∣v†Uw
∣∣ = ‖Uw‖r′ , (43)

i.e. the maximization over Br gives the dual norm of
r. Substituting w by φ = w‖φ‖s then gives

ωN = sup
φ∈Cd

‖Uφ‖r′

‖φ‖s
(44)

Here the analogous rewriting applies with s′ given by
1 = 1/s+ 1/s′, if µ ≤ λ/2 holds.

For showing (iii), i.e.

c = lim
N→∞

−N log(ωN ) , (45)

it suffices to expand all exponentials in (31) and (33)
up to the first order in N . On this order the Golden-
Thomson inequality is a equality.

Remark 5 (The Maassen and Uffink bound). For
the case of N = 2 and λ = µ = 1, in Thm.1, we get
s = r = 1 and s′ = r′ = ∞. Hence, we recover the
Maassen-Uffink bound [21]. Explicitly, we have

ω2(1, 1) = sup
x∈B1(Cd)
y∈B1(Cd)

∣∣x†Uy
∣∣ = max

ij
|Uij | . (46)

Here we used that
∣∣x†Uy

∣∣ is convex in x and y. Hence,
supx,y is attained at the extreme points of B1(Cd).
Up to a phase, those extreme points have the form
(0, · · · , 0, 1, 0 · · · , 0) , i.e. they have their support only
on a single site. So, choosing x and y, with support
on the i− th and j− th site, will give

∣∣x†Uy
∣∣ = |Uij |.

Remark 6 (Renyi-Entropies). Alternatively, the
bound obtained in Thm. 1 can be expressed in terms
of Renyi-entropies: Using statement (i), (ii) and (iii)
together directly gives

c(λ, µ) ≥ −N log ‖U‖r′,s

= inf
φ∈H

N log ‖φ‖r −N log ‖Uφ‖s′ . (47)

Here a straightforward computation shows

2− r
r

= λ/N and 2− s′
s′

= −µ/N. (48)

So, when we proceed as in (13), substituting the Renyi
entropy in (47) gives

c(λ, µ) ≥ inf
φ∈H

λHr/2(X|φ) + µHs′/2(Y |φ). (49)

Lemma 1 (Generalization of the Maassen and Uffink
bound). Let ui denote the i-th column of the basis
transformation U that links the measurements X and
Y . Then, for 1 ≥ λ ≥ µ ≥ 0 and all states ρ we have

λH(X|ρ) + µH(Y |ρ) ≥ −2λ log
(

sup
i=1···d

∥∥ui
∥∥
t

)
.

(50)

with

t = 2
(1− µ/λ) (51)

Note that for the case 1 ≥ µ ≥ λ ≥ 0 the same holds,
if U is replaced by U†, i.e. by the transformation be-
tween Y and X.

Proof. The linear uncertainty bound c(λ, µ) is homo-
geneous in (λ, µ). Hence, we can consider

c(λ, µ) = λc(1, µ/λ) (52)

We will apply Thm. 1, with N = 2, in order to get a
lower bound. Here, we have s = 2

1+µ/λ and

ω2(1, µ/λ) = sup
x∈B1(Cd)
y∈Bs(Cd)

∣∣x†Uy
∣∣ = sup

i=1,··· ,d
y∈Bs(Cd)

|ui y| .

(53)
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Here the second equality stems from the same argu-
mentation as in Rem. 5. The sup over Bs(Cd) on the
most right of (53), gives the norm dual to s, given by
t = 2

1−µ/λ . All in all we have,

c(1, µ/λ) ≥ −2 log (ω(1, µ/λ))

= −2 log
(

sup
i=1···d

∥∥ui
∥∥
t

)
(54)

Remark 7 (More than two observables). As men-
tioned in Sec. 3, the proposition Prop. 1 does not
generalize to three measurements. A reasoning, or
at least a hint, for this can be found by carefully fol-
lowing the proof of Thm. 1. In principle, the ansatz
in (29) can be generalized to more than two measure-
ments as well, and all following steps work out in a
similar way, up to (33). Here the Golden-Thompson
inequality was used. It is well known, that the di-
rect generalization of this inequality to three opera-
tors fails to hold. Hence, the technique of our proof
cannot be generalized for this case. We note that
there is an ongoing work of exploring more sophisti-
cated generalizations of this inequality [57–60]. How-
ever, we leave relating this to entropic uncertainty for
future work.

5 Additivity of bounds from multiplica-
tivity of (p, q)-norms
In this section we will provide the proof of Prop. 1, i.e.
the additivity of linear uncertainty relations. By using
Thm.1 from the section before we can formulate the
linear uncertainty in terms of the logarithm of a (p, q)-
norm. At this point, it is straightforward to check that
the additivity of the linear uncertainty is equivalent
to the multiplicativity of the (p, q)-norm. In fact, the
following theorem Thm.2 provides that, for p and q
coming from the correct range: The (p, q) norm of a
transformation which admits a product form UAB =
UA ⊗ UB is multiplicative.

Theorem 2 (Global bounds from local bounds). Let
XAB and YAB be tensor-product bases of a Hilbert
space HAB = HA ⊗HB, i.e. we have XAB = {Xi

A ⊗
Xi
B}i=1,··· ,d and YAB = {Y iA ⊗ Y iB}i=1,··· ,d, such as

UAB = UA ⊗ UB. Furthermore let ηA and ηB denote
the optimal constants for

‖UAφ‖q ≤ ηA‖φ‖p ∀φ ∈ HA
‖UBφ‖q ≤ ηB‖φ‖p ∀φ ∈ HB . (55)

If 1 ≤ p ≤ q then

‖UAB φ‖q ≤ ηAηB‖φ‖p ∀φ ∈ HAB (56)

holds with ηAηB = ηAB as optimal constant.

Proof. We note that a related result, for pointwise
positive maps between Lebesque spaces, was discov-
ered by Grey and Sinnamon [61].

The basic object of this proof will be the p⊗q-norm
which will be defined immediately. The basic work of
this proof is devoted to show some properties of this
norm from which the statement directly follows.

Let |φ〉 ∈ H with components φ = {φij} sorted
within the product base XAB by φij = 〈φ|eAi ⊗ eBj 〉
and consider the norm

‖φ‖q⊗p :=



∑

i


∑

j

|φij |p



q
p




1
q

. (57)

This norm shares the following properties

(i) ‖φ‖q⊗q = ‖φ‖q (58)
(ii) ‖(I⊗ V φ)‖r⊗q ≤ ‖φ‖r⊗p ηV (59)
(iii) ‖φ‖q⊗p ≤ ‖Fφ‖p⊗q (60)
with Fφ1 ⊗ φ2 = φ2 ⊗ φ1 and p ≤ q.

We will show the validity of (i − iii) in a moment.
First notice that, if (i − iii) are valid we can easily
conclude

‖UABφ‖q = ‖UA ⊗ UBφ‖q⊗q
= ‖(I⊗ UB)(UA ⊗ I)φ‖q⊗q
≤ ηB‖UA ⊗ Iφ‖q⊗p
≤ ηB‖I⊗ UAFφ‖p⊗q
≤ ηBηA‖Fφ‖p⊗p
= ηBηA‖φ‖p . (61)

Furthermore, if we consider states that realize equal-
ity in (55), i.e. states that belong to optimal ηA and
ηB . The tensor-product of two of those states will
realize, due to multiplicativity of the p-norm, equal-
ity in (56) as well. Hence, (61) will prove the main
statement of this Theorem.

Property (i) follows directly by plugging p = q in
the definition of the p⊗ q norm, here is nothing more
to prove. The property (ii) follows by expressing I⊗V
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as δikVjl in X-Basis and

‖(I⊗ V φ)‖r⊗q =



∑

i


∑

j

∣∣∣∣∣
∑

lk

δikVjlφkl

∣∣∣∣∣

q



r
q




1
r

(62)

=



∑

i


∑

j

∣∣∣∣∣
∑

l

Vjlφil

∣∣∣∣∣

q



r
q




1
r

(63)

=
(∑

i

‖V φi‖ rq

) 1
r

(64)

≤ ηV



∑

i


∑

j

|φij |p



r
p




1
r

= ηV ‖φ‖r⊗p . (65)

As a last step, (iii) is a direct consequence of
Minkowski’s inequality / lp-triangle inequality (see
[62]), i.e. if p ≥ 1 :

(∑

y

∣∣∣∣∣
∑

x

axy

∣∣∣∣∣

p ) 1
p

≤
∑

x

(∑

y

|axy|p
) 1
p

(66)

So, if 1 ≤ q/p we can use this inequality as follows

‖φ‖q⊗p =



∑

i


∑

j

|φij |p



q
p




1
q

=



∑

i

∣∣∣∣∣∣
∑

j

|φij |p
∣∣∣∣∣∣

q
p




1
q/p

1
p

≤


∑

j

(∑

i

|φij |p
q
p

) p
q




1
p

= ‖Fφ‖p⊗q (67)

and show the validity of (iii).

Lemma 2 (Multiplicativity of the (p, q)-norm).
For 1 ≤ p ≤ q, the (p, q)-norm of a product unitary
UAB = UA ⊗ UB is multiplicative, i.e. we have

||UAB ||q,p = ||UA||q,p||UB ||q,p. (68)

Proof. This is a direct consequence of Thm. 2. Using
the definition of the (p, q)-norm we can parse ηA =
||UA||q,p, ηB = ||UB ||q,p and ηAB = ||UAB ||q,p, if we
consider ηA, ηB and ηAB to be optimal bounds.

Proof of Prop. 1

Proof. For proving Prop. 1 it suffices to proof the ad-
ditivity of the optimal case, i.e. we will consider cA,

cB and cAB to already be constants for the best linear
uncertainty bound. If the additivity

cAB = cA + cB (69)

holds we can directly conclude that the sum of lower
bounds on cA and cB gives a valid lower bound on
cAB as well.

Given measurements XAB and YAB , specified by a
product unitary UAB = UA ⊗ UB , we use Thm. 1 to
rewrite cA, cB and cAB as the limit of logarithms of
(p, q)-norms. We assume λ ≤ µ both to be finite and
N to be sufficiently large such that we can use Thm. 1
part (ii) (here we needed λ, µ ≤ N/2), and get

cA = − lim
N→∞

log (||UA||r,s) (70)

cB = − lim
N→∞

log (||UB ||r,s) (71)

cAB = − lim
N→∞

log (||UAB ||r,s) (72)

Using r, s, as given in (20) it is straightforward to
check that λ, µ ≤ N/2 implies 1 ≤ r ≤ s. Therefore,
we can use Lem. 2 and get

cAB = − lim
N→∞

log (||UA||r,s||UB ||r,s)

= − lim
N→∞

log (||UA||r,s) + log (||UB ||r,s)

= cA + cB . (73)

Outlook and conclusion
In this work we showed that linear uncertainty rela-
tions between product type measurements in multi-
partions are additive. Prop. 1 gives some clear struc-
ture to the problem of computing entropic uncertainty
bounds. Especially in the context of quantum-coding
in cryptography, this result might turn out to be use-
ful, because now it is possible to compute uncertainty
bounds in the limit of in�nite system sizes for block-
coding schemes [6, 63, 64].
The generalization of the Maassen and U�nk

bound for arbitrary weights (λ, µ), provided in Lem. 1,
can also be directly employed in a multipartite setting
in order to obtain valid state-independent uncertainty
relations for this case. However, this bound is easy
computable, it is only a lower bound and presumably
only tight in high symmetrical cases (see [34] for a
characterization of tightness for the usual Maassen
and U�nk bound). The more general problem of
providing a 'good' method for computing the optimal
bound cAB remains open. We note that there are only
few and special cases, including angular momentum
and mutual unbiased bases, where this optimal bound
is actually known. Thereby, the cases where the op-
timal bound can be computed analytically are even
fewer [34, 65, 66] and the known numerical methods
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only work for very small dimensional problems [67].
Here the proof of Thm. 1 might give a new ansatz for
better numerics. Explicitly, the minimization in (29)
and maximization in (42) are giving rise to apply the
method of alternating minimization.
In Sec. 4 we presented an extension to the known

connections between the logarithm of (p, q)-norms and
linear uncertainty relations in terms of the shannon
entropy. However, the technique used seems to apply
only for the special case we considered. An adap-
tion of this technique to sets of more than two local
measurements is not possible without major modi�ca-
tions. As mentioned in Rem. 7, this would require to
incorporate generalizations of the Golden-Thompson
inequality which seems to be a fruitful topic for fu-
ture work. The technique from the proof of Thm. 1
might also fail if general POVMs instead of projec-
tive measurements are considered. Moreover, it is not
clear if Prop. 1 will hold in this case. A third gen-
eralization, that does not hold, arises by considering
arbitrary Schur-concave functions. Here, the natural
question is to ask if at least any entanglement witness
can be constructed. A very recent result [68] shows
that such witnesses, in fact, can be constructed from
Tsallis entropies.

Acknowledgements
R.S. acknowledges K. Abdelkhalek, O. Gühne, A.
Costa, I. Siemon, and R.F. Werner for all the help-
ful discussions and comments. Furthermore, R.S. ac-
knowledges Coco, Inken and Lars for a careful read-
ing and correcting of this manuscript. R.S. also ac-
knowledges �nancial support by the RTG 1991 and
the SFB DQ-Mat, both founded by the DFG, and the
project Q.com-q founded by the BMBF. Finally R.S.
acknowledges the hospitality of the Centro de Ciencias
de Benasque Pedro Pascual and Petronilla, granted at
the beginning of this project. The publication of this
article was funded by the Open Access Fund of the
Leibniz Universität Hannover.



Chapter 6: Entropic uncertainty relations

6.2 The computation of entropic uncertainty relations

In the last section, [S18], an central additivity result for entropic uncertainty re-
lations was proven. For two sharp measurement, this result allows to reduce the
computation of global linear entropic uncertainty relations to the computation of
local bounds. However, the computation of those local bounds stays open. The
aim of this section is to provide some insight into to this problem: In the follow-
ing we will �rst collect known results on the computational hardness of a closely
related problem, and then provide some numerical methods.

Known hardness results on (p, q)-norms

For two sharp observables, A and B, related by a unitary U , the (p, q)-norm of U

‖U‖p,q = sup
φ∈Cd

‖Uφ‖q
‖φ‖p

turned out to be the proper tool for analysing entropic uncertainty relations. Be-
side their connection to entropic uncertainty, (p, q)-norms have many more appli-
cations, especially in the �eld of operational research (see [Ste05] for an overview).
Hence, there is a wide range of literature focusing on computing (p, q)-norms. In
the following we will list known results on the computability and in-computability
of those norms. However, for the parameter range of (p, q)'s that relates to uncer-
tainty relations many questions are still open and some of the proof techniques,
that were used for other parameters, fail. Therefore, we can, unfortunately not,
have a conclusive statement on the computational hardness of uncertainty rela-
tions, yet.
The (p, q)-norm of a generic d× d-matrix M can be computed e�ciently for the

cases:

• p = q = 2 In this case the norm reduces to the 'usual' operator norm of M ,
which will be attained on the biggest singular value.

• p = 1 In this case the extreme points of the set ‖φ‖1 = 1 are of the form
(0, . . . , 0, eit, 0 . . . ). The functional ‖Uφ‖q is convex. Hence, the norm ‖U‖1,q

will be attained on one of those extreme points.

• q = ∞ This case is dual to p = 1, by the duality described in [S18] Thm.1
(22).

In Fig. 6.1, those parameter tuples are marked by blue and green lines and boxed.
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6.2 The computation of entropic uncertainty relations

Figure 6.1: Known results on the hardness of computing (p, q)-norms.

Computing the (p, q)-norm of a generic d × d-matrix M is proven to be NP-hard
for:

• p = ∞, q = 1 This was proven in [Roh00]. This hardness result can be
understood intuitively for the corresponding real valued problem in: The set
‖φ‖∞ = 1, with φ ∈ Rd, has 2d extreme points of the form (x1, . . . , xn), with
xi ∈ {1,−1}. The only information available in the generic case is, that the
convex functional ‖Uφ‖1 will attain its maximum on one of those extreme
points. Hence, one has to check all of them separately. Explicitly, [Roh00]
provided a mapping of the max-cut problem to this case. In [HO10], the
more general case p = ∞, 1 ≤ q ≤ ∞ was proven to be NP-hard with the
same line of argumentation.

• p = q 6= 1, 2,∞ This was proven in [HO10], by providing instances for general
p = q that can be reduced to the case p =∞, 1 ≤ q ≤ ∞.

• 1 ≤ q < p ≤ ∞ This case was proven in [Ste05], by decoding the Knapsack
problem into this case.

In Fig. 6.1, the corresponding parameter regions are marked with red colors.
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Chapter 6: Entropic uncertainty relations

We recall from [S18] Sec. 4, that the (p, q)-norm relates to linear entropic un-
certainty relations, in terms of Rényi entropies, by

−2 log (‖U‖p,q) = inf
ρ

2− p
p

Hp/2(A|ρ) +
q − 2

q
Hq/2(A|ρ) (6.1)

Here, we have a proper uncertainty relation if the pre-factors in (6.1) correspond
to positive weights. This is the case for p ≤ 2 and q ≥ 2. In Fig. 6.1, this region is
marked by a green shaded box. Within this area, the point (2, 2) is special when
we consider the (p, q)-norm of an unitary, since this norm will always be equal to
one. Here, Thm. 1 from [S18] tells us that we will need to compute the (p, q)-norm
in a region around this point in order to get an uncertainty relation. In contrast,
the other computable points within the green region are giving valid uncertainty
relations:

• p = 1, q =∞ Here, we get ‖U‖1,∞ = maxij |Uij|, which leads to the Maassen
and U�nk bound.

• p = 1, q > 2 Here, we get ‖U‖1,∞ = maxij ‖ui‖q, which leads to the general-
ized the Maassen and U�nk bound for arbitrary positive weights provided
in [S18] Lem. 1.

However, a hardness result for the missing region, 1 < p < 2 and 2 < q < ∞,
which is, in [Ste05], phrased to be the 'bad case', remains outstanding.

Algorithmic methods for computing entropic uncertainty relations and

(p, q)-norms

In the following two algorithms are presented. Both algorithms are extremely
simple and e�cient to implement and they both attain a (local) optimum very
quickly. In contrast to the algorithm presented in Ch. 4, the algorithms in this
section do not provide a precision estimate ε. Furthermore, both algorithms rely
on a randomly chosen starting point and a convergence to a global optimum is not
guaranteed. Hence, they can not be used to proof a hardness statement.

(p, q)-norms: By use of the (Hölder) identity

‖z‖q = sup
x

|〈x, z〉|
‖x‖q′

with 1/q′ + 1/q = 1,

the (p, q)-norm can be rewritten as

‖U‖p,q = sup
y∈Bp(Cd)

x∈Bq′ (Cd)

|〈x|U |y〉| := sup
y∈Bp(Cd)

x∈Bq′ (Cd)

LU(x, y).
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6.2 The computation of entropic uncertainty relations

From this perspective, we have to solve a double maximization of the functional
LU(x, y), which is, up to a phase, linear in x and y, where both variables are
coming from a convex set. This suggests the following algorithm:

0. Pick a feasible tuple (x0, y0) at random.

1. Fix y0 and compute

x∗ = argmax{|〈x|Uy0〉| |x ∈ Bq′(Cd)},

2. Fix x∗ and compute

y∗ = argmax{|〈U †x∗|y〉| |y ∈ Bp(Cd)},

3. Set x0 = x∗ and y0 = y∗ and proceed with step 1 .

The method that underlies the above algorithm is commonly called alternating

maximization (see for example [GB05]). The value of the objective functional
LU(x, y) is increased by improving x and y alternatingly. Hence, a full loop of the
above algorithm guarantees to output a tuple (x∗, y∗) with

LU(x∗, y∗) ≥ LU(x0, y0).

The crucial point in an alternating maximization is the ability to compute an
improvement of LU(x, y), if one of the parameters x or y is �xed. In the above
case we have to maximize a linear functional over the p-norm ball Bp(Cd), i.e. we
have to solve problems of the form

z∗ = argmax{|〈z|λ〉| |z ∈ Bp(Cd)},

which is an easy problem: We have

|〈z|λ〉| =
∣∣∣∣∣
∑

i

ziλi

∣∣∣∣∣ ≤
∑

i

|ziλi| .

Here, equality is attained when the vectors z and λ have componentwise coinciding
phases. We can assume λ ∈ Rd

+ with out loss of generality. In this case we only
have to consider z ∈ Rd

+, as well. We know by convexity, that the optimizer z∗ has
to be on the boundary of Bp(Cd), which is described by the functional ‖z‖pp = 0.
The linear functional 〈z|λ〉 is maximized if the gradient of the boundary is parallel
to λ. Computing this gradient gives componentwise conditions

αλi = ∂i‖z‖pp = ∂i
∑

i

zpi = pzp−1
i ,
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Chapter 6: Entropic uncertainty relations

with a constant α that regulates the norm of z. Hence, we get

z∗ =
λ

1
p−1

‖λ 1
p−1‖p

,

where the power of a vector has to be understood componentwise.
This algorithm converges very quickly to a stationary point. Thereby, it is not

guaranteed that this stationary point corresponds to the global maximum.
In practice, this algorithm will be performed many times with many random

starting points and the hope to meet the global optimum in one of those runs.
Interestingly, all tested examples show a �nite and small set of those stationary
points, which raises the hope to actually attain the global optimum by a �nite
amount of runs.

Linear entropic uncertainty relations: The following algorithm is based on an
alternating optimization too. It can compute linear entropic uncertainty relations
for collections of arbitrary, not necessarily sharp, measurements:
For a measurement A, with POVM elements A(i) and outcomes on an alphabet

Ω, and a probability distribution p ∈ P|Ω|, de�ne the operator

KA(p) = −
∑

i∈ω
log(pi)A(i)

The expectation of this operator, with respect to a state ρ, gives the cross entropy
between the distribution pAρ and p, i.e.

tr (ρKA(p)) = −
∑

i

tr(ρA(i)) log(pi)

Hence, we have

H(A|ρ) = min
p∈P|Ω|

tr (ρKA(p)) .

Let A1, . . . , An be a collection of measurements. Within the formulation above,
the optimal linear entropic uncertainty relation can be computed by:

min
ρ

∑

j

ajH(Aj|ρ) = min
ρ

min
p1,...,pn

tr

(
ρ
∑

j

ajKAj
(pj)

)

: = min
ρ

min
p1,...,pn

L(p1, . . . , pn, ρ),

where p1, . . . , pn denotes a collection of probability distributions on the alphabets
Ω1, . . . ,Ωn.
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6.2 The computation of entropic uncertainty relations

The objective functional L(p1, . . . , pn, ρ) can be minimized by the following al-
gorithm:

0. Pick feasible starting parameters ρ0 and p1
0, . . . , p

j
0 at random.

1. Fix p1
0, . . . , p

n
0 and

ρ∗ = argmin
{

tr

(
ρ
∑

j

ajKAj
(pj)

)∣∣∣ρ ∈ quantum states
}

2. Fix ρ∗ and compute

(
p1
∗, . . . , p

n
∗
)

= argmin
{

tr

(
ρ∗
∑

j

ajKAj
(pj)

)∣∣∣∀j : pj ∈ P|Ωj |
}

3. Set p1
0 = p1

∗, . . . , p
n
0 = pn∗ and ρ0 = ρ∗, and proceed with step 1.

Here, the minimum in step 1. is attained on the smallest eigenvector of the positive
operator

∑
j ajKAj

(pj). Hence, computing ρ∗ is easy. For a �xed ρ∗, the minimum
in step 2. is attained if the distributions pj match the distributions corresponding
to a Aj measurement of ρ, i.e. by

pj = pAj
ρ =

(
tr(Aj(1)ρ), tr(Aj(2)ρ), . . .

)
.

This circumstance was already used in the proof of Thm. 1 in [S18] and can be
directly deduced from the positivity of the relative entropy.
Also this algorithm converges quickly to a stationary point and, in all tested

examples, the set of stationary points was moderately small, as well. However,
in a direct comparison the �rst algorithm has less stationary point and performs
numerically much more stable because no logarithms have to be computed.
The unfortunate drawback of both algorithms is that in �nite runtime only

upper bounds on the optimal uncertainty are produced. Hence, in contrast to the
method in chapter Ch. 4, they can not be used to derive reliable security criteria
or steering witnesses. However, it should be made clear that the above algorithms
still provide a step forward with respect to the methods used in previous works.
There uncertainty relations were either obtained by random sampling pure states
or by parametrizing a (small) dimensional statespace in order to use 'black box
algorithms' like mathematica's NMinimize[ ], see for example [RMM17b].
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CHAPTER 7

Entropic uncertainty relations for mutual unbiased bases

In this chapter we will study entropic preparation uncertainty relations for an
explicit class of examples. We will consider pairs of sharp measurements with
mutually unbiased eigenbases, thereby we will mostly concentrate on bases linked
by a �nite Fourier transformation. For those cases the Maassen and U�nk bound
represents the optimal linear uncertainty relations. However, the corresponding
uncertainty regions are not convex. Hence, there is still place for non-linear im-
provements.
The central part of this chapter is [ASM+15] 'Optimality of entropic uncertainty

relations', here we investigate those non-linear bounds numerically. Interestingly,
we observe the same additivity behaviour (see Fig. 1.9) which was proven for linear
bounds in [S18], for non-linear bounds, too. As a general result we characterize
the class of measurement for which the Maassen and U�nk bound gives the best
linear bound, and we provide a basic theorem, which characterizes all states that
achieve equality for the Maassen and U�nk inequality.



Chapter 7: Entropic uncertainty relations for mutual unbiased

bases

7.1 [ASM+15]

Optimality of entropic uncertainty relations

• Authors: Kais Abdelkhalek, René Schwonnek, Hans Maassen, Fabian Fur-
rer, Jörg Duhme, Philippe Raynal, Berthold-Georg Englert, Reinhard F.
Werner

• Published in: International Journal of Quantum Informormation 13,
1550045 (2015)

• DOI: 10.1142/S0219749915500458

• Presented version: The presented version is identical to arXiv:1509.00398,
the literature is placed at the end of this thesis.

• Contributions: The main contributions to this work were provided by
Kais Abdelkhalek and René Schwonnek. Theorem IV.1 elaborates on an
unpublished work contributed by Hans Maassen. Central ideas for a proof
of the theorem V.2 and V.3 were contributed by René Schwonnek. The
additivity conjectures V.6 and V.7 are inspired by numerical investigations
done by Kais Abdelkhalek and René Schwonnek.

• Main results:

� Measurements with a tight Maassen and U�nk bound are characterized.

� The states that achieve equality in the Maassen and U�nk bound are
characterized.

� The optimal non-linear bound can always be realized by pure states.

� The structure of non-linear bounds for MUBs is investigated numeri-
cally.
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Optimality of entropic uncertainty relations

Kais Abdelkhalek,1 René Schwonnek,1 Hans Maassen,2 Fabian Furrer,3 Jörg

Duhme,1 Philippe Raynal,4, 5 Berthold-Georg Englert,4, 6, 7 and Reinhard F. Werner1

1Institut für Theoretische Physik, Leibniz Universität Hannover, Germany
2Department of Mathematics, Radboud University, Nijmegen, The Netherlands

3Department of Physics, University of Tokyo, Japan
4Centre for Quantum Technologies, National University of Singapore, Singapore
5University Scholars Programme, National University of Singapore, Singapore

6Department of Physics, National University of Singapore, Singapore
7MajuLab, CNRS-UNS-NUS-NTU International Joint Unit, UMI 3654, Singapore

The entropic uncertainty relation proven by Maassen and Uffink for arbitrary pairs of two
observables is known to be non-optimal. Here, we call an uncertainty relation optimal, if the
lower bound can be attained for any value of either of the corresponding uncertainties. In this
work we establish optimal uncertainty relations by characterising the optimal lower bound in
scenarios similar to the Maassen-Uffink type. We disprove a conjecture by Englert et al. and
generalise various previous results. However, we are still far from a complete understanding
and, based on numerical investigation and analytical results in small dimension, we present
a number of conjectures.

I. INTRODUCTION

As a characteristic trait, quantum systems possess properties that are incompatible — properties
that are equally real but mutually exclusive. In a pair of incompatible properties, if we have precise
knowledge about one property, what we know about the other is necessarily imprecise. More
generally, we can trade knowledge about one property for knowledge about the other and so know
both imperfectly, and quantify the lack of knowledge by a suitable measure of uncertainty. Then,
the compromises allowed by nature have their mathematical expressions in the form of uncertainty
relations, which are inequalities that follow from the formalism of quantum theory.

The study of uncertainty tradeoffs originated in Heisenberg’s pioneering work[1] of 1927 and
was soon brought into a clear mathematical form by Kennard[2]. Weyl gave another early proof[3].
He was apparently unaware of Heisenberg’s paper and gives credit for the idea to Pauli, who seems
to have learned it from Heisenberg in a letter prior to the publication of [1]. The modern textbook
proof combining the Schwarz inequality with the commutation relations is due to Robertson[4]. In
this tradition the “uncertainty of observable X in the state ρ” is identified with the root of the
variance of the probability distribution of the outcomes of an X-measurement on particles prepared
according to ρ, i.e.,

δX =
√

tr (ρX2)− tr(ρX)2 , (1)

The key requirement for Heisenberg’s uncertainty relation δQ δP ≥ ~/2 to hold is that these
variances are evaluated in the same state. The relation is thus a quantitative expression of the ob-
servation that there are no dispersion-free states, and is hence of the type “preparation uncertainty
relation”. This is in contrast to “measurement uncertainty relations” which express the feature of
quantum mechanics that some observables may not be measured jointly, which also implies that
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any measurement of one observable X implies a disturbance of the other in the sense that it cannot
be inferred from a measurement on the state after an X-measurement. This aspect, although more
prominent in Heisenberg’s paper than the preparation side, was made precise only recently[5] (also
[6, 7]).

In this paper we are interested in preparation uncertainty relations for quantum systems of finite
dimension d. A standard scenario in which this is of interest is the tradeoff between Welcher-Weg
information and interference patterns at a multiport interferometer. In this minimalistic instance
of wave-particle duality[8] one observable would detect particles on each of the internal paths of
the interferometer, thus detecting a particle-like property, whereas the detectors at the end pick up
wave-like interference. Uncertainty in this situation expresses the physical fact that if we prepare
incoming particles so that they all go along the same path, we loose the interference contrast and,
conversely, that large interference contrast is only possible when all paths are “traversed” with
roughly equal probability. Another standard context for finite-dimensional uncertainty relations
is quantum information theory, particularly quantum key distribution. Large parts of this theory
have been developed in finite dimension, and there are many situations in which the incompati-
bility as expressed by uncertainty relations plays an important role (e.g. in security proofs[9] of
cryptographic protocols).

What is common to these motivating instances of finite-dimensional uncertainty is that the
outcomes of the respective observables are labelled in a completely arbitrary way. However, a
variance depends not only on the abstract outcomes and their probabilities, but also on the real
numbers we assign to them. For example, by multiplying all these numbers by the same factor we
also multiply δX. Moreover, variance will change if we permute the outcomes, which is as easy to
do with beams in optical fibers as with freely re-codable bits of information. Basically motivated
by such considerations, Deutsch[10] suggested to use entropies to quantify the (lack of) sharpness
of a probability distribution. This led to the famous entropic uncertainty relation established by
Maassen and Uffink[11], to which we will refer to as the MU bound. It describes the sharpness
tradeoff for the outcome distributions pρX and pρY of two observables X,Y in the same state ρ in
terms of their Rényi entropies Hα, Hβ (see (6)), provided that these parameters satisfy the duality
relation

1

α
+

1

β
= 2 . (2)

When the observables X and Y are given in terms of their eigenbases {xi} and {yj}, so that
pρX(i) = 〈xi|ρ|xi〉 and pρY (j) = 〈yj |ρ|yj〉, the MU bound is

Hα(pρX) +Hβ(pρY ) ≥ − log max
j,k
|〈yk|xj〉|2 . (3)

The bound becomes zero when the two bases share a vector, and maximal (namely log d) if the
bases are mutually unbiased, so that all scalar products 〈yk|xj〉 have the same modulus.

An alternative to entropies would again be variances, once one realizes that for defining a
variance it is not really necessary to have R-valued random variables. It suffices to have outcomes
in a metric space Ω with metric ∆, so that the variance of a probability measure µ on Ω becomes

var(µ) = inf
η∈Ω

∫
µ(dω) ∆(ω, η)2 . (4)

When Ω = {1, . . . , d} the only permutation invariant metrics are ∆(i, j) = c(1 − δij), and we will
just fix the constant c = 1. Then

var(p) = min
j

∑

i

p(i) (1− δij)2 = 1−max
j
p(j) . (5)
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Up to a rescaling this is the so-called min entropy H∞(p) = − log maxj p(j).
How then should we write an uncertainty relation in this general context? We will see that it is

not wise to fix in advance the functional form of the tradeoff relation between Hα(pX) and Hβ(pY ).
Instead, the best and most intuitive representation of the tradeoff is the diagram of all pairs
(Hα(pX), Hβ(pY )), ranging over all choices of input states ρ. An advantage of this representation

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

H(pY )

H(pX)

H(pY )

H(pX)

FIG. 1: Entropy pairs for d = 2 and the observables X = σz and Y = (σx + σz)/
√

2. Left panel: The
shaded set gives all pairs (H(pρX), H(pρY )). The contours describe the subsets which can be reached by pure
states with a fixed admixture of ρ = 1/2. Right panel: The shaded set is the “monotone closure” of the one
on the left (see text). The solid curve represents the optimal bound: For entropy pairs on this bound it is
impossible to reduce one entropy without enlarging the other. The thin line closer to the origin is the MU
bound.

is also that it changes in a simple way by a rescaling like the replacement of the variance (5)
by H∞. For qubits (d = 2), all measures of sharpness are functions of each other, so all such
diagrams are equivalent. Figure 1 is drawn for the Shannon entropy H = H1. Some details of the
diagram of all pairs of entropies, shown on the left, are clearly not relevant for the uncertainty
tradeoff, in which we ask how small we can simultaneously make the entropies. For this question
it is the lower left corner of the diagram which matters, i.e., the set in the right diagram. It can
be described as adding to any pair of entropies the full closed positive (north-east) quadrant above
it. It is completely described by its lower left boundary, consisting of those entropy pairs with the
property that for no other state one can have one entropy strictly smaller and the other at least
as small. We consider the resulting curve as the complete description of the uncertainty tradeoffs
between the entropies involved. Characterising this curve is the aim of this paper.

We will always consider a quantum system in a d-dimensional Hilbert space, and consider two
projection valued observables with d outcomes. This amounts to the choice of two bases {xi}
and {yj}, and for the question at hand the choice is completely described by the unitary overlap
matrix Uij = 〈xi|yj〉 modulo multiplication by diagonal unitary matrices or permutation matrices
from either side. In the motivating standard case, closest to the case of position and momentum
of continuous variables, the U represents the discrete Fourier transform of either the cyclic group
of n elements or, if n is composite, another finite abelian group of order n. More generally, we
also consider complex Hadamard matrices, i.e., unitary operators such that |Uij | = 1/

√
d for all
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i, j. The bases are then called mutually unbiased, and we can think of a multiport interferometer
generalizing a 50:50-beam splitter. Such bases also represent complementary pairs of measurements
from the informational point of view. However, we will not restrict our study to these special classes
of unitary matrices — several results will hold for arbitrary unitary matrices. For generalized
observables (POVMs) or k-tuples of observables similar questions can be asked, but we will not
consider them in this paper. For the quantification of uncertainty or unsharpness we use the Rényi
entropies Hα (1/2 ≤ α ≤ ∞), and denote by H = H1 the standard case of the Shannon entropy.
Mostly we assume that the Rényi parameters α and β used for X and Y , respectively, satisfy
the duality relation (2). Again, the questions make sense also for other measures, e.g., related to
majorization, or for variances, but these will not be considered here. We will also restrict ourselves
to state-independent bounds, i.e., to the entropy pairs achievable by arbitrary states. When more is
known about the state, for example about further expectation values, the entropy diagram for the
subset may be quite different. Thus we do not consider inequalities like the Robertson inequality
for variances, where the lower bound depends on the expectation of a commutator.

Outline. In Sect. II we briefly define all the relevant quantities and state our problem in precise
mathematical terms. We present a brief review of previous results in Sect. III. In Sect. IV we
provide a characterization of the case of equality in the MU bound and thereby show that the MU
bound is not optimal in almost all cases. Our main results are presented in Sect. V. We are not
able to completely solve the problem in all its generality. However, we provide strong conjectures
(Sect. V E) which, if true, heavily reduce the complexity of the problem.

II. PRELIMINARIES AND NOTATION

For α ∈ [1
2 ,∞] the α-Rényi entropy of a probability distribution p ∈ (0, 1)d is defined by

Hα(p) =





1
1−α log

∑d
j=1 p(j)

α if α 6= 1,∞

−∑d
j=1 p(j) log p(j) if α = 1

− log maxj p(j) if α =∞ .

(6)

The logarithms can be taken in any base (as long as it is always the same base). We follow
the information theory convention of using base -2 logarithms, although base d would also be
natural in our context, as it would normalize the range to 0 ≤ Hα(p) ≤ log d = 1. Monotone
functions of the entropies tell the same story. In this sense we also cover “Tsallis entropies”
Tα(p) = (1− α)−1(1−∑j p(j)

α).
Each entropy diagram will be drawn for a fixed choice of observables (i.e., bases) X,Y and

values of the Rényi parameters α, β, so that we consider a map f from the state space to R2
+ given

by

f(ρ) =
(
f1(ρ), f2(ρ)

)
=
(
Hα(pρX), Hβ(pρY )

)
. (7)

For any choice we can define the order relation v on the state space, so that ρ v ρ′ stands for
“f1(ρ) ≤ f1(ρ′) and f2(ρ) ≤ f2(ρ′)”. The uncertainty diagram is the monotone closure of the range
{f(ρ)}, i.e., it is the set S containing precisely the pairs (h1, h2) ∈ S for which there is a state ρ
with fi(ρ) ≤ hi for i = 1, 2 (compare FIG. 1). We call a state ρ optimal if ρ′ v ρ implies ρ v ρ′, and
hence f(ρ) = f(ρ′). The corresponding optimal points in the entropy plane are characterized by
the property that the uncertainty diagram contains no points to their south-west. We call the set
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of all optimal points the curve of minimal entropies or the optimal bound. Therefore the optimal
bound corresponds to a function γ : (0, log d)→ (0, log d) for which

Hα(pρX) ≥ γ
(
Hβ(pρY )

)
(8)

with the property that equality can be obtained for all possible values of Hβ(pρY ).
If for some state the MU bound is saturated we call this state an equality state. The corre-

sponding point in the entropy plane is an equality point. If an equality point exists we call the
MU bound tight. The MU bound is said to be optimal, whenever it completely coincides with the
optimal bound.

A Hadamard matrix is a unitary matrix U with elements satisfying |Ujk| = 1/
√
d. The Fourier

matrix is the matrix UF with components satisfying

UFjk =
1√
d

e
2πi
d
jk , j, k = 0, ..., d− 1 . (9)

The Fourier matrix is hence a special instance of a Hadamard matrix. This example generalizes
to the wider setting of finite abelian groups, rather than just the cyclic group of d elements as in
(9). To this end we consider the index set J for the first matrix index of U to equipped with a
commutative binary operation “+” turning it into a group. The second index is similarly labelled
by the so-called dual group, denoted here by K. A symmetric way to express the relation between
these groups is via the canonical bicharacter of the pair (J,K), which is a function ζ : J ×K → C.
It has the property that the for every k the function j 7→ ζ(j, k) is a homomorphism from J to
the complex numbers with modulus 1, and that, conversely every such homomorphism is of this
form for some unique k ∈ K. Moreover, the same is true vice versa for the functions k 7→ ζ(j, k)
with fixed j ∈ J . The Fourier matrix in this case is Ujk = d−1/2ζ(j, k), where d = |J | = |K|. It is
unitary and obviously a Hadamard matrix. When d is not a prime there are several non-isomorphic
abelian groups of order d.

III. PREVIOUS RESULTS

There has been considerable work to generalize and improve the MU bound, e.g. by using more
general entropy functions [12] or more than two observables [13–16] (see also [17] for a review on
entropic uncertainty relations). Most efforts, however, considered only the sum of the entropies
(e.g. [18–25]), thereby already fixing the functional form of the tradeoff relation and not capturing
all the information contained in the entropy diagram.

In this work we are instead interested in characterising the curve of minimal entropies which
we consider the optimal lower bound on the two entropies involved. There are, to the best of
our knowledge, only very few results in the literature about the curve of minimal entropies in the
finite-dimensional setting. In [26, 27] the authors note that the MU bound is not optimal in the
simplest case of dimension d = 2 and compute the optimal bound for general unitary operators,
but restricted to the Shannon case α = β = 1. In [8] a conjecture about the entropy minimizing
states is presented. We will see that this conjecture needs improvement.

IV. EQUALITY IN THE MAASSEN-UFFINK UNCERTAINTY RELATION

The MU bound provides a lower bound on the sum of two Rényi entropies that satisfy the
duality relation (2). When characterising the curve of minimal entropies, it is natural to first
investigate the case of equality in the MU bound. If the unitary operator linking the observables
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is a Hadamard matrix, it is clear that the MU bound is tight. Indeed, any eigenvector of the
observables, {xi} or {yi}, is an equality state. But can one also find equality points for arbitrary
unitary operators?

There already exist some results in the literature discussing this question, most importantly
[28] and [29]. In the latter work the authors show the link between the two concepts of uncertainty
principle and data processing inequality. Using this link the characterisation of all states that
saturate the uncertainty relation reduces to the question of characterising all states for which the
application of a certain channel does not imply loss of information. Employing this technique the
authors can characterize all quantum states that saturate the MU bound in the restricted setting
of observables related by Fourier transformation and Shannon entropies. A more general result
was obtained in [28], namely a complete characterisation of all equality points in the special case
α = β = 1, i.e. for Shannon entropies. Here we present an alternative proof of the uncertainty
relation which allows us to generalize these from Shannon entropies to the case of arbitrary pairs
of Rényi entropies that satisfy the duality relation.

The main result of this section is the following Theorem. In its formulation the “support” of a
probability distribution is the set of points with non-zero probability, and |M | denotes the number
of elements of a set M .

Theorem IV.1. Let α, β > 1
2 be such that 1/α + 1/β = 2, and let X,Y be bases with c =

maxj,k |〈yk|xj〉|. Let ρ be a state, and denote by sX and sY the supports of the distributions pρX
and pρY . Then equality in the MU uncertainty relation

Hα(pρX) +Hβ(pρY ) ≥ log
1

c2
(10)

is reached if and only if ρ = |ψ〉〈ψ| is a pure state and, possibly after multiplying the basis vectors
xi, yj with suitable phases, the following condition holds:

〈xi|ψ〉 = |sX |−1/2 , 〈yj |ψ〉 = |sY |−1/2, and 〈yj |xi〉 = c for i ∈ sX and j ∈ sY . (11)

Moreover,

|sX | |sY | =
1

c2
. (12)

Proof. We assume first that ρ = |ψ〉〈ψ| is pure, and will show that this choice is even necessary at
the end of the proof. We fix ψ from now on, and choose phases for the basis elements so that, for
i ∈ sX , j ∈ sY we have

ϕi = 〈xi|ψ〉 > 0 and ϕ̂j = 〈yj |ψ〉 > 0. (13)

Note that this will change neither c nor the probability distributions. Furthermore, we assume
without loss of generality that α ≤ β. We usually eliminate β by the duality relation, so the basic
parameter to choose is α with 1/2 < α ≤ 1.

Our proof is inspired by interpolation theory, and involves the application of the maximum
principle to a certain analytic “magic function” F . We do not pretend that finding this function
is straightforward, since we also came by it in several stages of generalization and simplification.
We define

F (z) = c1−zλz
∑

i,j∈s
ϕαzi 〈xi|yj〉 ϕ̂βzj (14)

with λ =
(
‖ϕα‖2 ‖ϕ̂β‖2

)−1
, (15)
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G
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Re(z)

FIG. 2: Domain of F in the complex plane

where “i, j ∈ s” is short hand for i ∈ sX and
j ∈ sY , and ϕα is the componentwise power of ϕ,
so that

‖ϕα‖22 =
∑

i

ϕ2α
i , (16)

and similarly for ϕ̂. The domain G on which this
function is analyzed is the strip

G = {z ∈ C | 1 ≤ Re z ≤ 2}, (17)

which is also depicted in FIG. 2. Now since the
sum (14) is finite and |rαz| = rαRe z is bounded
on G for every r > 0, F is also bounded on G, and
the restriction of an entire analytic function. We
claim that it is bounded in absolute value by 1.
We estimate this separately for the two boundary
lines. That is, for r ∈ R we have, with Uij = 〈xi|yj〉

|F (1 + ir)| = λ

∣∣∣∣∣∣
∑

i,j∈s
ϕ
α(1+ir)
i Uijϕ̂

β(1+ir)
j

∣∣∣∣∣∣

= λ
∣∣∣〈ϕα(1−ir)|U |ϕ̂β(1+ir)〉

∣∣∣
≤ λ‖ϕα(1−ir)‖2‖ϕ̂β(1+ir)‖2
= λ‖ϕα‖2 ‖ϕ̂β‖2 = 1. (18)

On the other hand,

|F (2 + ir)| = c−1λ2

∣∣∣∣∣∣
∑

i,j∈s
ϕ
α(2+ir)
i Uijϕ̂

β(2+ir)
j

∣∣∣∣∣∣

≤ λ2
∑

i,j∈s
ϕ2
i |Uij/c| ϕ̂2β

j (19)

≤ λ2
∑

i,j∈s
ϕ2α
i ϕ̂2β

j (20)

= λ2‖ϕα‖22 ‖ϕ̂β‖22 = 1. (21)

Hence, by the maximum principle, |F (z)| ≤ 1 for all z ∈ G.
In order to relate this to entropies we consider the special value z = 1/α, which always lies in

the strip, but for α = 1 is a boundary point. We get

F

(
1

α

)
= c1−1/αλ1/α

∑

ij∈s
ϕi Uijϕ̂

β/α
j

= c1−1/αλ1/α
∑

j

ϕ̂
1+β/α
j (22)

= c1−1/α
(
‖ϕα‖−1/α

2 ‖ϕ̂β‖−1/α
2

)
‖ϕ̂β‖22 (23)

= c1−1/α‖ϕα‖−1/α
2 ‖ϕ̂β‖1/β2 , (24)
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where at (22) we used that
∑

i ϕiUij = ϕ̂j , and at (23) the definition of λ and duality of α and β.
For taking the logarithm of this expression we use that

log
(
‖ϕα‖−1/α

2

)
= −1− α

2α
Hα(ϕ2)

and log
(
‖ϕ̂β‖1/β2

)
=

1− β
2β

Hβ(ϕ̂2) = Hβ(ϕ̂2) (25)

and get, equivalently to F (1/α) ≤ 1, the inequality

logF

(
1

α

)
= −1− α

2α

(
log(c2) +Hα(ϕ2) +Hβ(ϕ̂2)

)
≤ 0. (26)

For α 6= 1 we cancel the common factor and get the MU inequality. For α = 1 we always get
F (1) = 1, and the MU inequality is obtained by taking the limit α → 1. However, it is better to
express it instead by the derivative of F . For α = β = 1 we get

F ′(1) = − log c− 1

2
H1(ϕ2)− 1

2
H1(ϕ̂2) ≤ 0, (27)

because for small ε we must have F (1 + ε) ≤ 1.
The advantage of this derivation of the MU inequality is that we have powerful characterizations

of the equality case. So suppose that equality holds in the MU inequality. Then for α < 1 this
means that F attains its maximum modulus 1 at the interior point 1/α of the strip G, and the
Phragmén-Lindelöf Theorem[30] tells us that F = 1 is the constant function. For α = 1 we need a
variant of the maximum principle due to Hopf[31] (see, e.g. Thm. 2.7 in [32]), saying precisely that
if the maximum is attained at the boundary with vanishing derivative we once again must have a
constant function. In either case we conclude that F (z) = 1 for all z ∈ G.

With this information we can go back to the above estimates for (21), which must now be tight.
The first step, the triangle inequality (19), is tight if all terms in the sum have the same argument,
so up to a common phase the Uij for i ∈ sX and j ∈ sY must be positive. With the phase
convention (13) this means Uij > 0 for all i, j in the supports. The second estimate (20) is only
tight when all Uij also have the maximum allowed modulus c. Hence Uij = c. If we consider U as
an operator on vectors with support sY it thus maps to constant functions, so ϕ must be constant
on sX . By the same token ϕ̂ must be constant on sY . Taking into account the normalizations we
get all assertions of the theorem in the pure case ρ = |ψ〉〈ψ|.

It remains to show that all equality states must be pure. So let ψ now be any unit vector in
the support of ρ and σ = |ψ〉〈ψ|. Then we can write ρ = λσ + (1 − λ)ρ′ with λ > 0, ρ′ some
other state, and similar convex relationships for the probability distributions. By concavity of the
entropies, σ must also be an equality state. Moreover, by strict concavity, σ and ρ must have the
same distributions pσX = pρX and pσY = pρY , and hence the same supports sX , sY . Going through
the proof for the pure equality state |ψ〉〈ψ|, and in particular adopting the phase conventions made
for ψ we find that Uij = c for all i ∈ sX and j ∈ sY . But then, if we apply U to any other unit
vector ψ′ in the support of ρ we find that Uψ′ is constant on its support sY . Hence ψ′ equals ψ
up to a phase, the support of ρ is one-dimensional, and ρ must be pure.

An alternative proof of the necessity of purity, at least for the Shannon case α = β = 1, is via
inequality[12]

H(pρX) +H(pρY ) ≥ log
1

c2
+H(ρ). (28)

Clearly, for equality states the correction term, the von Neumann entropy H(ρ), has to vanish, i.e.,
the state must be pure.
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An immediate consequence of Theorem IV.1 is that for most overlap matrices no equality states
exist, because 1/c2 is not an integer. Since the rows of a unitary matrix must be normalized,
this integer is at most d, in which case we must have a Hadamard matrix. When 1/c2 < d one
can build examples with equality by first solving a unitary matrix completion problem, starting
from the known sx × sY block. One then has to modify the matrix by unitary rotations on the
complementary blocks so that all matrix elements become ≤ c. The lowest-dimensional example
is 2 = 1/c2 < d = 3, and the overlap matrix

U =




a a 0
b −b a
−b b a


 with a =

1√
2

and b =
1

2
. (29)

Some higher-dimensional examples can be generated by replacing the matrix elements a and b by
aU1 and bU2, where U1, U2 are any Hadamard matrices of the same dimension.

By definition, Hadamard matrices have d orthogonal equality states with supports (|sX |, |sY |) =
(1, d) and (d, 1), respectively. In prime dimension this is clearly the only possibility. However, even
if the dimension is composite there may be no more than this, as the example[33]

C6 =
1√
6




1 1 1 1 1 1
1 −1 −η −η2 η2 η
1 −η−1 1 η2 −η3 η2

1 −η−2 η−2 −1 η2 −η2

1 η−2 −η−3 η−2 1 −η
1 η−1 η−2 −η−2 −η−1 −1




(30)

with η = 1−
√

3
2 + i

√√
3

2 , shows. Here one can mechanically check that none of the 300 3 × 2-
submatrices has the property that all elements become equal after multiplication of rows and
columns with suitable phases. Hence from Theorem IV.1 it is clear that the point (log 3, log 2) on
the MU-line is not accessible for any state.

In the special case of a Fourier matrix (see the end of Sect. II for notations) we can get a complete
description of the equality cases from Theorem IV.1, as has been observed in Theorem 4.(1) of [29]
for the special case of a cyclic group. We will do the same for an arbitrary finite abelian group J .
It turns out that the equality states are then directly linked to the subgroups of J and its dual K.
The subgroups always come in pairs, i.e., when L ⊂ J is a subgroup, so is its annihilator[34]

L⊥ = {k ∈ K | ∀j ∈ L ζ(j, k) = 1} ⊂ K. (31)

The basic result about annihilators is that (L⊥)⊥ = L for every subgroup, so there is a ono-to-one
correspondence between the subgroups of J and K, under which L1 ⊂ L2 ⇔ L⊥1 ⊃ L⊥2 . For any
non-empty set L ⊂ J , we denote by χL the `2-normalized indicator function, i.e., χL(j) = |L|−1/2

for j ∈ L and χL(j) = 0 otherwise.

Corollary IV.2. Let J be a finite abelian group, with Fourier matrix U , and L ⊂ J a subgroup.
Then

UχL = χL⊥ , (32)

and the vectors of the form χ′(j′) = ζ(j′, k)χL(j′ − j), where j ∈ J/L and k ∈ K/L⊥ are an
orthonormal basis so that each |χ′〉〈χ′| is an equality state. Moreover, all equality states are of this
form.
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Note that in the formula for χ′ we can take arbitrary j ∈ J and k ∈ K, but two such choices
(j1, k1) and (j2, k2) define the same function χ′ when j1−j2 ∈ L and k1−k2 ∈ L⊥. This observation
is expressed by taking j, k in the respective quotients.

We remark that, by the fundamental structure theorem of finite abelian groups, every such
group is a cartesian product of cyclic groups, and has subgroups of every order which divides d
(see Thm. 4.3 in [35]). Hence the equality points on the MU line are all points (log d1, log d2) with
d1d2 = d.

Proof. Let |ψ〉〈ψ| be an equality state. The Theorem then says that for j ∈ sX , and k ∈ sY we
must have ζ(j, k) = µ(k)ν(j) for suitable phase-valued functions µ : sY → C and ν : sX → C.
Now we can apply translations as in the construction of χ′ in the Corollary to get an equality state
with 0 ∈ sX and 0 ∈ sY , from which we get µ(k)ν(0) = 1 and µ(0)ν(j) = 1, so that the functions
µ, ν are actually constant. After applying an overall phase factor we can assume without loss of
generality, that ζ(j, k) = 1 for j ∈ sX , and k ∈ sY , and that ψ = χsX . In terms of annihilators this
is expressed equivalently by sY ⊂ s⊥X or sX ⊂ s⊥Y .

When k ∈ s⊥X we still have ζ(j, k) = 1 for j ∈ sX . But then (Uψ)(k) = (Uψ)(0) > 0 and we
must also have k ∈ sY . It follows that s⊥X ⊂ sY . Combined with the already established reverse
inclusion we get that sY = s⊥X and, symmetrically sX = s⊥Y . Note that since any set of the form A⊥

is automatically a subgroup, we have shown that we can take sX = L, sY = L⊥ for some subgroup
L ⊂ J .

We have so far only shown that UχL is constant on L⊥, namely equal to
√
|L|/|J |, coming from

the summation of |L| terms equal to |L|−1/2, and observing the overall normalization factor |L|−1/2

FIG. 3: Numerical sampling of the entropy diagram for dimensions d = 2 (light shading), d = 3 (medium
shading) and d = 6 (dark shading) for Fourier-related observables and Shannon entropies. By Theorem
IV.1 the number of equality states corresponds to the number of divisors of the respective dimension. The
optimal bounds (solid curves) are obtained by applying Conjecture V.6 and Conjecture V.7 presented in
Sect. V E.
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of the Fourier matrix. We also have to show that
∑

j∈L ζ(j, k) = 0 whenever k /∈ L⊥. However, in
that case k induces a non-constant complex homomorphism on L, so it suffices to show that such
functions add up to 0 on any finite abelian group. However, this is immediately obvious for cyclic
groups, and hence follows for arbitrary groups by the structure theorem. So we conclude that UχL
is proportional to χL⊥ , and since U is unitary, it must be equal, and |L⊥| |L| = |J |.

Finally, let us count the translates χ′ for a given subgroup. Clearly, they are orthogonal to χL
whenever either j +L∩L = ∅ or k+L⊥ ∩L ⊥= ∅. In other words, by taking one representative g
from each class in G/H and also one k from each class in K/L⊥ we get an orthogonal family. This
has (|J |/|L|) (|K|/|L⊥|) = |J |, i.e., is an orthonormal basis.

For a product of abelian groups the Fourier matrix is the tensor product of the Fourier matrices
of the factors. Moreover one gets many equality states by tensoring, i.e., by taking subgroups of
the form L1×L2 ⊂ J1× J2. This additive structure is quite apparent from FIG. 3). It is therefore
useful to note that this is also true without assuming the group structure. This is shown by the
following result.

Corollary IV.3. Let U1, U2 be unitary operators of dimension d1 and d2, respectively. Suppose
that for each unitary operator there exist an equality state σ1

eq and σ2
eq as characterized by Theorem

IV.1. Then the state σeq = σ1
eq ⊗ σ2

eq is an equality state for the unitary operator U1 ⊗ U2.

Proof. First, note that maxj,k |(U1 ⊗ U2)jk| = maxj,k |U1,jk| maxj,k |U2,jk|. The MU relation then
implies that, for any state σ on a d1 d2-dimensional Hilbert space,

Hα(pσX) +Hβ(pσY ) ≥ −2 log max
j,k
|(U1 ⊗ U2)jk| = −2 log max

j,k
|U1,jk| max

j,k
|U2,jk| . (33)

In particular, for the state σeq = σ1
eq ⊗ σ2

eq, we have

Hα(p
σeq
X ) +Hβ(p

σeq
Y ) = Hα(p

σ1
eq

X ) +Hα(p
σ2
eq

X ) +Hβ(p
σ1
eq

Y ) +Hβ(p
σ2
eq

Y )

= −2 log max
j,k
|U1,jk| max

j,k
|U2,jk| . (34)

Hence, σeq is an equality state for U1 ⊗ U2.

This Corollary should not be taken to suggest that only products will be equality states. For
example, take the Fourier matrix of any abelian group of the form J×J , which is the tensor product
of two copies of the Fourier matrix of J . Then each subgroup L with |J | elements generates a basis of
equality states for the point (log |J |, log |J |). These are tensor product states for the subgroup L =
{(j, 0)|j ∈ J} = J × {0}. But for H = {(j, j)|j ∈ J} we get a maximally entangled equality state.
Again, the basic idea of this example generalizes to more general settings. If U1 is any Hadamard
matrix and U1 its complex conjugate, the maximally entangled vector ψ = d−1/2

∑
j |jj〉 is invariant

under U = U1 ⊗ U1. Hence both ψ and Uψ = ψ belong to the equidistribution on d points, and
|ψ〉〈ψ| is an equality state with entropies (log d, log d), just like |φ〉〈φ| with φ = d−1/2

∑
j |1j〉.

Perhaps one of the more surprising aspects of Theorem IV.1 is that neither the characterization
of the equality states nor indeed the value of the lower bound depends on α, β. Hence we have

Corollary IV.4. Let σeq be an equality state, i.e. it saturates the uncertainty relation for some
α, β > 1

2 satisfying the duality relation. Then σeq is also an equality state for all other pairs (α, β)
that satisfy the duality relation, including (α, β) = (1/2,∞), (∞, 1/2).

The boundary cases for the inequality are proved by taking the limits on (α, β), and since the
lower bound is independent of these, equality carries over. However, additional states may then also
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FIG. 4: Typical entropy diagram for Hadamard related observables in prime dimension for different values
of α, β satisfying the duality relation (2): α = 1/2 (light shading), α = 0.6 (medium shading) and α = 0.75
(dark shading). The MU bound is optimal if and only if α = 1/2.

satisfy equality. Indeed, Theorem IV.1 does not hold in this case. As a counterexample consider
an arbitrary Hadamard matrix U . Without loss of generality we can take it dephased, i.e., with
all entries in the first row and column equal to 1/

√
d. Consider then some arbitrary state ψ ∈ Rd+

with real and positive components to find

max
k
|(Uψ)k|2 ≥ |(Ũψ)1|2 =

1

d

(∑

k

ψk

)2

. (35)

Taking the logarithm and using the definitions (6) this is equivalent to

log d ≥ H 1
2
(pψX) +H∞(pψY ), (36)

which is ≥ log d by the MU inequality. Hence all such states are equality states, and we can
continuously interpolate between H 1

2
= 0 and H 1

2
= log d. Thus the MU bound coincides with the

optimal bound (see FIG. 4) and there is a continuum of equality states in contrast to Theorem IV.1.
Another feature is true only in the boundary case, namely that for every U there is an equality

state. To see this, let us consider an eigenstate xj of X, for which H1/2(p
xj
X ) = 0. But at the same

time we have

min
j
H∞(p

xj
Y ) = min

j
(− log max

k
|〈yk|xj〉|2) = −2 log c . (37)

One could summarize this by saying that in the boundary case {α, β} = {1/2,∞} the MU bound
is just too good to allow a useful characterization of equality.
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FIG. 5: Consequences of concavity for the set of entropy pairs.

V. CHARACTERISATION OF THE CURVE OF MINIMAL ENTROPY PAIRS

Due to the study of equality in the previous section it is clear that the MU bound is, in almost all
cases, not optimal, i.e. it does not coincide with the curve of minimal entropy pairs. To characterize
this optimal bound is the aim of this section. We establish three general results that hold for
arbitrary dimension: First, we prove that the curve of minimal entropies can be parametrized by
pure states. Second, we show that for all real-valued unitary operators we can restrict the problem
to real states. And last, we establish a necessary criterion for the Fourier case which all optimal
states must satisfy thereby being able to characterize a whole class of potentially optimal states.
Additionally, we provide a complete characterisation of the optimal bound for the simplest case
of two-dimensional state space, d = 2. For d = 3 there is an analytic expression[8], which is well-
confirmed by numerics, although not proved. However, for higher dimensions the optimal bound
remains unknown. Nevertheless, we present random samples that suggest a number of conjectures,
which, if true, vastly simplify the characterisation of the optimal bound.

A. Sufficiency of pure states

In this section we show that the optimal bound can be parametrized by pure states. At a first
glance, this result may seem not too surprising since the situation is clear when minimizing only
one concave functional f(ρ) over all states: In this case one can immediately restrict to pure states,
since one of the convex components ρ′ of ρ must always give a value f(ρ′) ≤ f(ρ). However, the
situation is not so simple when we consider a pair of concave functions, and the image of the state
space under a two-component mapping f = (f1, f2) as in (7). The direct consequence of concavity
is then that for, say ρ = (ρ1 +ρ2)/2, the point f(ρ) lies above the midpoint M =

(
f(ρ1)+f(ρ2)

)
/2

in the coordinatewise ordering, i.e., fi(ρ) ≥
(
fi(ρ1) + fi(ρ2)

)
/2 for i = 1, 2 (see FIG. 5). We

therefore cannot conclude that the set {f(ρ)} is convex: the midpoint M is not in general in the
set. Indeed this is clearly shown by the entropy diagrams, from which it is also clear that the
complement is not convex either, except in simple cases.

For the same reasons it is not obvious that it is sufficient to restrict to pure states. This is
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highlighted by looking at the problem a bit more generally, considering the pairs of probability
distributions in two bases.

Proposition V.1. Consider two orthonormal bases X,Y in a Hilbert space and let pρX , p
ρ
Y denote

the respective probability distributions in the state ρ. Then

• If d = 2, then for every state ρ there is pure state σ such that pρX = pσX and pρY = pσY .

• If d ≤ 3, then for every ρ we can find a convex decomposition ρ =
∑

i λiσi into pure states
σi with pρX = pσiX for all i.

For larger dimensions both statements fail.

Thus, for d = 2 the range {f(ρ)} is already exhausted by pure states, and for d = 3 the
monotone closed uncertainty diagram can be computed just with pure states. For if f(ρ) is any
point in the diagram, we can decompose into the σi, without any increase of f1, so by concavity we
know one of the pure components has smaller f2. However, this proof strategy will fail for d ≥ 4.

Proof. (1) For d = 2, the set of quantum states ρ with the same distribution pρX is the intersection
of the Bloch ball with a hyperplane. Intersecting with the hyperplane for pρY we get a line, which
also intersects the Bloch sphere, i.e., there is a pure state with the same distributions.

(not 1) The example uses Fourier transform in d = 3. Two density operators have the same
position distribution iff their diagonals coincide and the same momentum distribution iff the sums∑

x〈x|ρ|x+ y〉 coincide for all y. Now consider a diagonal matrix with diagonal entries (1, 1, 0)/2.
A pure state with this diagonal will have just one non-zero phase in the 1-2 matrix element, so the
sum with y = 1 will be non-zero other than for the mixed state.

(2) Let us consider the convex subset K(p) of states with pρX = p. We have to show that for
d = 3 all extreme points of this set are, in fact, pure. Our method will also show that this fails for
d ≥ 4.

First observe by just conjugating with a positive diagonal operator from right and left we get
an isomorphism of K(p) and K(q), as long as p, q have the same support (of size d). So we may as
well take p to be uniform, for which we write K(1) (Normalization factors are irrelevant here).

Let us sort the potential extreme points by rank. Full rank is not possible, since then any vector
with uniform distribution could be subtracted with a positive weight. Rank 1 is uninteresting,
because it is of the form we want to exclude. This takes care of d = 2 and leaves only the rank 2
case for d = 3.

So let us consider the case of rank 2 for general d. Let φ1, φ2 be two linearly independent
vectors in the range of the density operator ρ = |φ1〉〈φ1| + |φ2〉〈φ2|. The condition that ρ has
uniform position distribution means that |φ1(x)|2 + |φ1(x)|2 = 1 for all x. In other words, the
pair Φ(x) =

(
φ1(x), φ2(x)

)
∈ C2 is a unit vector for every x . Then we ask whether there is any

non-zero vector Ψ ∈ Cd of the form Ψ(x) = α1φ1(x) +α2φ2(x) such that |Ψ(x)| = 1 for all x. This
would be a convex component of ρ with even distribution, so we could further decompose ρ.

We can read this as a scalar product |〈α,Φ(x)〉|2. Think of the Φ(x) and of α as represented
on the Bloch sphere, where the geodesic distance is just a function of the above scalar product. So
our question reduces to: Given d vectors on the sphere, can we find one further vector which has
the same distance from each of them?

Now for d = 2 this is obvious, and for d = 3 it works just like in the planar geometry of triangles:
The locus of all points which have the same distance from Φ(1) and Φ(2) is a great circle bisecting
their connecting geodesic at a right angle. Intersect with the bisector for Φ(2) and Φ(3), which
gives a point which has the same distance from all three points. Therefore, for d = 3, there are no
extreme points of rank 2, hence all are of rank 1 as claimed.
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FIG. 6: States appearing in the proof of Theorem V.2 as mapped to the two entropies plane.

For higher d it is easy to find d points, which do not lie on a circle, i.e., there is no point
equidistant from all of them. Hence there are extreme points of K(1) of rank 2.

Surprisingly however, pure states can be shown to saturate all uncertainty diagrams, practically
without assumptions on X,Y, α, β.

Theorem V.2. Let f1, f2 be continuous concave functionals on the state space, define the order
relation v as after equation (7). Then for every state ρ there is a pure state σ such that σ v ρ.

Proof. The plan of the proof is to show that for every non-pure ρ we can find another state σ of
strictly smaller rank such that σ v ρ. Then we can successively lower the rank, arriving finally at
a pure state.

Consider the face F of the state space generated by ρ. Its topological boundary ∂F consists
precisely of the possible convex components of ρ of lower rank, and is connected. For each point
σ ∈ ∂F there is a unique “antipode” σH. It is defined as

σH =
1

λ

(
ρ− (1− λ)σ

)
(38)

for the smallest λ for which the right hand side is positive semidefinite. It is clearly a state of
reduced rank, i.e., σH ∈ ∂F . We note that the required weight λ cannot be 0 or 1.

We need not consider the case that σ v ρ, since otherwise we have found the desired element.
Therefore, by exchanging the functions f1 and f2 if necessary, we may assume that f1(σ) > f1(ρ).
We cannot also have f1(σH) ≥ f1(ρ). Indeed, this would lead to the contradiction

f1(ρ) ≥ (1− λ)f1(σ) + λf1(σH) > f1(ρ). (39)

Now consider a continuous curve [0, 1] 3 t 7→ γ(t) ∈ ∂F connecting σ and σH, i.e., such that
γ(0) = σ and γ(1) = σH (see FIG. 6). Since f1 was assumed to be continuous the previous argument
shows that, for some t, f1

(
γ(t)

)
= f1(ρ).

If f2

(
γ(t)

)
≤ f2(ρ) we have found the desired element γ(t) v ρ. The non-trivial case to

consider is therefore f2

(
γ(t)

)
> f2(ρ), or ρ v γ(t). Let λ ∈ (0, 1) be the weight so that ρ =
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(1− λ)γ(t) + λγ(t)H. Then by concavity, for i = 1, 2,

fi(ρ) ≥ (1− λ)fi
(
γ(t)

)
+ λfi(γ(t)H)

≥ (1− λ)fi(ρ) + λfi
(
γ(t)H

)

i.e., fi(ρ) ≥ fi
(
γ(t)H

)
. (40)

Therefore γ(t)H v ρ.

B. Sufficiency of real states for real unitary matrices

From the previous section we know that for all unitary operators the complete optimal bound
can be parametrized by pure states. Now we show that if the unitary matrix linking the two
observables is real-valued, then we can further restrict the set of states for the complete optimal
bound to the set of real-valued vectors. In this whole subsection we fix the Hilbert space to
be Cd with componentwise complex conjugation, so that the real vectors Rd ⊂ Cd are naturally
embedded.

Theorem V.3. Let f1, f2 be continuous concave functionals on the state space and their inputs
linked by a real unitary operator Ureal. Also define the order relation v as after equation (7). Then
for every state ρ there is a pure and real state σ such that σ v ρ.

Proof. The idea of the proof is to employ again the proof technique of Theorem V.2, i.e. decompose
a state in two states with the desired property (in this case, real states) and use the concavity
property of the functions.

Let ψ ∈ Cd be a pure state. Since we are interested in a decomposition into real states, it is
natural to consider the decomposition

ψ =
√
λv + i

√
1− λw (41)

where v, w ∈ Rd are the normalized real and imaginary part of ψ and λ = |Re(ψ)|2 ranges from 0
to 1. We are only interested in the case where neither v v ψ nor w v ψ, otherwise the statement
follows immediately. Furthermore, we assume without loss of generality that f1(v) > f1(ψ). Similar
to the proof in Theorem V.2 we cannot also have that f1(w) > f1(ψ) because we would then find
the contradiction

f1(ψ) ≥ λf1(v) + (1− λ)f1(w) > f1(w) . (42)

Consider now the states

ϕ(t) := eitψ (43)

and their normalized real and imaginary part

γ(t) := Re
(
ϕ(t)

)
/|Re

(
ϕ(t)

)
| ,

σ(t) := Im
(
ϕ(t)

)
/| Im

(
ϕ(t)

)
| (44)

such that

ϕ(t) =
√
µ(t)γ(t) + i

√
1− µ(t)σ(t) , (45)
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where µ(t) = ||γ(t)||. Note that fi(ϕ(t)) = fi(ψ) for all t ∈ (0, 2π). Also note that for a real-valued

unitary operator the probability distributions p
ϕ(t)
X and p

ϕ(t)
Y have the same form

p
ϕ(t)
X/Y = µ(t)p

γ(t)
X/Y +

(
1− µ(t)

)
p
σ(t)
X/Y . (46)

Due to continuity we know that there exists t0 such that either γ(t0) v ψ, from which we obtain
the desired statement, or ψ v γ(t0). Using the concavity of the functions fi, the latter then implies

fi(ψ) = fi
(
ϕ(t0)

)
≥ µ(t0)fi

(
γ(t0)

)
+
(
1− µ(t0)

)
fi
(
σ(t0)

)

≥ µ(t0)fi(ψ) +
(
1− µ(t0)

)
fi
(
σ(t0)

)
, (47)

from which obtain fi
(
σ(t0)

)
≤ fi(ψ), or equivalently σ(t0) v ψ.

C. Variatonal method

So far we characterized the optimal bound by the order relation v. Equivalently, we may also
consider an optimisation problem as mentioned in (8): Given some fixed value of Hβ(pρY ) = δ the
optimal bound γ is described by minimising Hα(pρX), i.e.

γ(δ) = min
ρ
{Hα(pρX)|Hβ(pρY ) = δ} , (48)

where δ ranges from 0 to log d. However, performing this optimisation is in general quite difficult,
especially because a nice characterisation of the constant entropy set {ρ|Hβ(pρY ) = δ} is not known.
Instead, we restrict to optimising over a subset of this constant entropy set, namely states with
varied phases. Clearly, this method will not yield a sufficient criterion for a state to be optimal.
However, it provides us with a necessary criterion which allows us to identify a whole class of
candidates of optimal states.

More concretely, using Theorem V.2 we consider pure states ϕ ∈ Cd and denote the components
of the phase-varied state in Y basis by

ψj = ϕj exp

(
2πi

d
θj

)
(49)

for some phases θj . Varying these phases does not change the probability distribution, pψY = pϕY ,
and hence the phase varied states form a subset of the constant entropy set. For observables
linked by Fourier transformation, we can optimize Hα(pψX) over these states to find the following
extremality criterion:

Lemma V.4. Let the two observables X and Y be linked by the Fourier matrix (9) and let ψ
denote an optimal state of this setup. Furthermore, let ψ̂ denote the Fourier transform of ψ. Then
ψ satisfies

Im


ψk

d∑

j=1

∂Hα(pψX)

∂|ψ̂j |2
ψ̂j exp

(2πijk

d

)

 = 0 ∀k. (50)

Proof. In order to optimize Hα(pψX) we compute

∂Hα(pψX)

∂θk

∣∣∣∣∣
θ=0

=
d∑

j=1

∂Hα(pϕX)

∂|ψ̂j |2
∂|ψ̂j |2
∂θk

∣∣∣∣∣∣
θ=0

!
= 0 . (51)
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With ω := exp
(

2πi
d

)
the Fourier transform of ψ is defined as ψ̂j := 1√

d

∑d
m=1 ψmω

jm and, hence,

|ψ̂j |2 =
1

d

d∑

m,n=1

ϕmϕn ω
j(m−n)+θm−θn . (52)

Therefore we have

∂|ψ̂j |2
∂θk

∣∣∣∣∣
θ=0

=
1

d

d∑

m,n=1

ϕmϕnω
j(m−n)+θm−θn

∣∣∣∣∣∣
θ=0

=
2πi

d2
Im
(
ϕkϕ̂jω

jk
)

(53)

Combining (51) and (53) we obtain the desired statement.

Any optimal state must necessarily satisfy the above criterion. This allows us to characterize a
whole class of potentially optimal states:

Lemma V.5. Let ϕ be a real-real symmetric state, i.e. a real state, ϕ ∈ Rd, satisfying the symmetry
condition

ϕ(j) = ϕ(d− j) ∀j = 1, ..., d− 1 (54)

or, equivalently, a real state with real Fourier transform, ϕ̂ ∈ Rd. Then ϕ satisfies the extremality
criterion (50).

Proof. We first note a simple, but important property of real-real symmetric states: If ϕ is a real-
real symmetric state and ξ is a state with components ξj = f(ϕj), where f is any function taking
real numbers to real numbers, then ξ is also a real-real symmetric state. For example, the Fourier
transform of any real-real symmetric state is also real-real symmetric.

Now ϕ is assumed to be real-real symmetric. Hence, ϕ̂ is real-real symmetric. Define

ξj :=
∂Hα(pψX)

∂|ϕ̂j |2
ϕ̂j (55)

and note that ξ is also real-real symmetric. Importantly this implies that its Fourier transform, ξ̂
is real. We therefore have for all k

Im


ϕk

d∑

j=1

∂Hα(pψX)

∂|ϕ̂j |2
ϕ̂j exp

(2πijk

d

)

 = Im




d∑

j=1

ξj exp
(2πijk

d

)

 = Im

(
ξ̂
)

= 0 , (56)

which finishes the proof.

D. Simplest case: d = 2

The results we presented so far are not sufficient to provide a complete characterisation of the
curve of minimal entropy pairs. In what follows we therefore restrict to small dimension in order
to reduce the complexity of the problem.

More concretely, we investigate the simplest case, where the dimension of the Hilbert space is
d = 2. In [26, 27] the authors characterized the curve of minimal entropy pairs for all unitary
operators while restricting to the case of Shannon entropies. We now generalize their result to
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FIG. 7: The optimal bound can be completely characterized in the qubit case (solid curves). The plot
illustrates two entropy diagrams for randomly chosen unitary operators and entropy-pairs with α = β = 10
(light shading) and α = β = 8 (dark shading).

arbitrary pairs of Rényi entropies: First we show that for each 2 × 2 unitary operator U there
is a real unitary operator Ũ with the same entropy diagram. Then from Theorem V.3 we can
immediately infer that the lower bound can be parametrized by real states. More concretely,
our aim is to show that any unitary operator, which we can always write in {xi} basis up to an
(irrelevant) global phase as

U =

(
cos(ϕ) sin(ϕ)e−iθ

− sin(ϕ)eiθ cos(ϕ)

)
, (57)

is equivalent to the matrix

Ũ =

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
. (58)

Indeed, the entropy diagram does not change if we first modify the unitary operator to U ′ = UV
if V is a unitary operator satisfying V xi = exp(iϕi)xi for some phases ϕi and all i, since then for
any state ρ there exists a state ρ′ that yields the same pair of entropies. To see this, let ρ′ = V †ρV
to find that

pρ
′
X(i) = 〈xi|ρ′|xi〉 = 〈xi|V †ρV |xi〉 = 〈xi|ρ|xi〉 = pρX(i) (59)

and

pρ
′
Y ′(j) = 〈y′j |ρ′|y′j〉 = 〈yj |V V †ρV V †|yj〉 = 〈yj |ρ|yj〉 = pρY (j) . (60)

Now consider the modification

U ′ =
(

cos(ϕ) sin(ϕ)
− sin(ϕ)eiθ cos(ϕ)eiθ

)
(61)
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obtained via the unitary operator

Vθ =

(
1 0
0 eiθ

)
(62)

However, U ′ yields exactly the same probability distribution as Ũ . Hence, by Theorem V.3 the
curve of minimal entropy pairs can be parametrized by real states.

Since the real states form a one-parameter family it is not difficult to check that the states

ψ =
(
cos(ξ), sin(ξ)

)
, (63)

where the range of ξ is either (0, arccos(|U1,1|) or (arccos(|U1,1|), π/2) depending on whether
arccos(|U1,1)| ∈ (π/4, 3π/4) or not, parametrize the curve of minimal entropy pairs for all uni-
tary operators and all Rényi entropies. The problem is therefore completely solved in the simplest
case d = 2 (see FIG. 7).

E. Numerical sampling and conjectures

In the previous section we characterized the optimal bound in the special case of dimension
d = 2. To the best of our knowledge the problem is unsolved for all other dimensions. Instead
the authors of [8] provide a conjecture stating that the curve of minimal entropies is traced out by
states of the form

ψ = (
√
p2,
√
p2, ..., ,

√
p2,
√
p1)T (64)

with p1 + (d− 1)p2 = 1 in the case of complex Hadamard matrices and Shannon entropies. Due to
the results of [26, 27] it is clear that this conjecture is correct for d = 2. The conjecture also holds
true in the case d = 3 if we trust the numerics presented in FIG. 3, where the solid curve directly
corresponds to the states (64). However, for d = 4 we show that the conjecture already fails: For
complex Hadamard matrices c = 1/

√
d and, hence, according to our analysis of equality in the MU

bound there must be three distinct equality points, whereas the conjectured states only yield two
equality points (see FIG. 8).

However, we present two different conjectures which, if correct, explain how the bound in FIG. 3
and 8 can be obtained:

Conjecture V.6. (Product states for matrices with product form)
Let the unitary operator U linking the two observables be a matrix of the form U = U1⊗U2. Then
for any state ρ there exists a product state ρ1 ⊗ ρ2 with the same pair of entropies.

The consequence of this our first conjecture is that the curve of minimal entropies for product
form unitary operators in some composite dimension d = d1 d2 is just comprised of tensor prod-
ucts of states that parametrize the curve in dimension d1 and d2, respectively. Indeed, from the
additivity of the Rényi entropy it then directly follows that a state ρd = ρd1 ⊗ ρd2 is optimal with
respect to the unitary operator U = Ud1 ⊗Ud2 if and only if the marginals ρd1 and ρd2 are optimal
with respect to the unitary operators Ud1 and Ud2 , respectively. We note that this conjecture also
agrees with our findings for the equality states, especially Corollary IV.3.

Conjecture V.7. (Decomposition of the Fourier matrix)
Let the two observables be linked by the Fourier matrix UFd of composite dimension d = d1 d2. Then
the entropy diagram does not change if we replace UFd by UFd1 ⊗ UFd2.
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FIG. 8: Random sample of the entropy diagram for dimensions d = 2 (light shading), d = 4 (medium
shading) and d = 8 (dark shading) for Fourier related observables and Shannon entropies. Our results
falsify a previous conjecture by Englert et al. (dashed curves). Instead the optimal bounds are given by the
solid curves, which are obtained by applying Conjecture V.6 and Conjecture V.7.

The consequence of this second conjecture is that, although the Fourier matrix can, in general,
not be decomposed into a tensor product of Fourier matrices of smaller dimension, the entropy
diagram (and hence the curve of minimal entropy pairs) does not change under this replacement.
Hence, if this conjecture were true, we could apply Conjecture V.6 and characterize the curve of
minimal entropy pairs by states of product form, where the marginals parametrize the optimal
bound in the respective smaller dimension.

As an example let us consider Fourier related observables in dimension d = 4. Employing both
conjectures we know that it suffices to consider only the problem of characterising the optimal
bound for Fourier related observables in dimension d = 2. But for such observables we already
characterized the bound completely (see Sect. V D) and, hence, the optimal bound in d = 4 is
traced out by product states with marginals given by (63). Indeed, this result agrees with the
random sample (FIG. 8). In FIG. 3 we also show other examples, where the numerics validate the
two conjectures above.

Note that the above conjectures are statements about the case of composite dimension, effec-
tively stating that for a large class of unitary operators one only needs to solve the problem in
prime dimension. The prime-dimensional case, however, still remains a hard problem. But we can
provide two further conjectures that, if correct, vastly reduce the complexity of calculating the
optimal bound in these instances:

Conjecture V.8. (Independence of the optimal states of (α, β))
If ρ is an optimal state for any unitary operator and any α, β > 1

2 satisfying the duality relation
(2), then ρ is also an optimal state for all other dual pairs.

This conjecture can be seen as an extension of Corollary IV.4. Note that we again excluded
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FIG. 9: Random sample of the entropy diagram for real-real symmetric states in dimensions d = 2 (light
shading), d = 4 (medium shading) and d = 8 (dark shading) for Fourier related observables and Shannon
entropies. Restricting to real-real symmetric states does not yield the complete entropy diagram (grey), but
seems to be sufficient to characterize the optimal bound.

the extremal case {α, β} = {1/2,∞} for the same reasons as explained in Sect. IV. In FIG. 4 the
optimal bounds, although differently shaped, are traced out be the same states which supports
Conjecture V.8.

The last conjecture only considers the case of observables linked by the Fourier matrix.

Conjecture V.9. (Sufficiency of real-real symmetric states for Fourier)
If ρ is an optimal state for the Fourier case, then there is a real-real symmetric state σ as given by
(54) with the same entropy pair.

According to this conjecture it is sufficient to analyse the problem only for real-real symmetric
states, which yields a huge simplification in both analytical and numerical treatments of the prob-
lem. As an example consider Fourier related observables in dimension d = 3. If Conjecture V.9
were correct, we already knew a characterisation of the optimal bound, since the real-real sym-
metric states in this case form a one-parameter family and therefore trace out the desired curve.
Indeed, for d = 3 the real-real symmetric states coincide with the states conjectured by [8] which,
as mentioned above, trace out the bound if we trust numerics. FIG. 9 also suggests the validity of
Conjecture V.9.

Furthermore, we note that real-real symmetric states are closed under the tensor product, in
the sense that any tensor product of two real-real symmetric states is again a real-real symmetric
state. Hence, Conjecture V.6 and Conjecture V.9 agree with each other.
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VI. CONCLUSION AND OUTLOOK

We investigated the curve of minimal entropies that completely describes the entropic uncer-
tainty tradeoff between two observables. We showed that the lower bound on the sum of two
entropies as given by the Maassen-Uffink uncertainty relation is not optimal in almost all cases
and hence does not correspond to the curve of minimal entropies. To show this, we presented a
novel proof of the MU bound that allowed us to analyse the case of equality in the uncertainty
relation.

In order to characterize the curve of minimal entropies, we provided three main results: First,
we showed that the optimal bound can be traced out by pure states. Second, the optimal bound for
real-valued unitary operators can be traced out by real-valued pure states. And last, we presented
an extremality criterion, which any optimal state must satisfy. Numerical and analytical results
for the case of small dimension suggest a number of conjectures that, if true, lead to a drastic
reduction of the optimisation space. The optimal lower bound could then be computed.
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CHAPTER 8

Continuous systems: a modi�ed Heisenberg algebra

In this chapter we will investigate preparation uncertainty relations of a simple
model for physics in the regime of a hypothetical Planck scale. Various theories
of quantum gravity propose the existence of a so called minimal length that sets
an ultimate lower scale to physics. Regarded form the quantum perspective of
quantum-gravity, this minimal length should manifests itself as a lower bound
on uncertainty of position. This circumstance is sometimes called the generalized

uncertainty principle (GUP).
In the following section we will consider a class of modi�cations of the Heisen-

berg algebra, which was suggested, among others, by string theory. We derive a
list of su�cient criteria, those modi�cations have to obey, in order to lead to a
minimal length/ position uncertainty. In opposition to other works from this �eld,
we do not insist on self adjoint position operators, rather than that we will show
that a position measurement, acting on physical states, is well described by an
inherent noisy POVM, which naturally leads to a lower bound on any prepara-
tion uncertainty relation. We will investigate this minimal uncertainty in terms of
variances, Shannon entropies and min entropies. Thereby, we will show that the
notion of a minimal uncertainty state strongly depends on the underlying uncer-
tainty measure, which shines a doubtful light on some heuristic applications of the
GUP appearing in literature.
From a purely mathematical perspective, the resulting picture of 'Planck scale

quantum mechanics' has many coincidences to the well established �eld of signal
processing. Here, classical uncertainty relations have been extensively investigated
by Landau, Slepian, and Pollak [SP61, LP61, LP62]. Within this analogy, states
that obey a UV cutt-o� correspond to band limited functions and an apparent
discreteness of space-time to the well known e�ect of Nyquist-sampling.
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Optimal uncertainty relations in a modified Heisenberg algebra
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Various theories that aim at unifying gravity with quantum mechanics suggest modifications of
the Heisenberg algebra for position and momentum. From the perspective of quantum mechanics,
such modifications lead to new uncertainty relations which are thought (but not proven) to imply
the existence of a minimal observable length. Here we prove this statement in a framework of
sufficient physical and structural assumptions. Moreover, we present a general method that allows to
formulate optimal and state-independent variance-based uncertainty relations. In addition, instead
of variances, we make use of entropies as a measure of uncertainty and provide uncertainty relations
in terms of min- and Shannon entropies. We compute the corresponding entropic minimal lengths
and find that the minimal length in terms of min-entropy is exactly one bit.

I. INTRODUCTION

A considerable amount of efforts has been devoted to
reconcile gravity with quantum mechanics, but the con-
ventional field theoretic avenues for quantizing general
relativity have suffered issues in renormalisability. Sev-
eral theories such as string theory have suggested that the
sought-after quantum gravity has to be effectively cut off
in the ultraviolet, leading to the notion of minimal length
[1–3] (see also [4] and [5] and references therein). In other
words, the gravitational effects become significantly im-
portant upon probing physics at an energy scale as large
as the Planck scale. Such a nontrivial premise of the
minimal position uncertainty has been corroborated by
string theoretic arguments [1, 6], leading to the so-called
generalized uncertainty principle.

There had been a consensus within the high energy
physics community that such a minimal length has a
quantum mechanical origin which should effectively be
formulated in the form of a non-zero minimal uncertainty
for a position measurement. In its simplest version, this
can be obtained by explicitly constructing position and
momentum operators x and p that satisfy a deformed
Heisenberg algebra

[x,p] = i~f(p), (1)

where the precise form of the modification f(p) depends
on which theory and approach is used [1, 6–8], see also
e.g. [9–11] for deformations in configuration space. Re-
cently, a deformation of (1) where the r.h.s. is assumed
to be a stochastic gaussian variable has been also consid-
ered [12]. Large parts of related literature focuses on the
case where f(p) = 1 + βp2 and uncertainty is measured

∗ kais.abdelkhalek@itp.uni-hannover.de
† wissam.chemissany@itp.uni-hannover.de,wissamch@mit.edu
‡ leander.fiedler@itp.uni-hannover.de
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¶ rene.schwonnek@itp.uni-hannover.de

Fig. 1: Probability distributions of a position measurement on
quantum states suspected to a UV cut-off (see (36)). Which
one is the “sharpest”? All three distributions attain a min-
imal length in their own sense: the blue, dotted one attains
minimal length in terms of variances as typically considered
in the literature. The black, solid distribution has the high-
est peak and the red, dashed distribution has the smallest
entropy. The latter two distributions have infinite variance,
although they appear to be localised to some extent.

in terms of variances. This specific modification corre-
sponds to the first term in a Taylor expansion in p2 and
reflects the expected simplest deviation from the stan-
dard case. In this work we allow modifications that sat-
isfy a number of physically well-motivated assumptions
(see Section II) and are otherwise completely general.
Despite the substantial understanding that had been

gained in previous approaches, there still exist concep-
tual shortcomings in the study of the origin of minimal
lengths. Firstly, the term “minimal length” should not
be interpreted as an actual geometric length. Instead,
minimal length refers to the perception that, in a mod-
ified algebra, the probability distributions obtained in a
position measurement cannot become arbitrarily sharp.
Hence, minimal length should rather be dubbed and al-
ways be understood as “minimal position uncertainty”.
Secondly, if minimal length is to be understood as an
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immediate consequence of modifying the Heisenberg al-
gebra, it is important to show that all possible pairs of
operators x and p that satisfy this algebra lead to a non-
zero minimal position uncertainty. If such a statement
is not correct in all its generality, what assumptions are
needed besides modifying the algebra to prove minimal
length? In the standard case this question is answered
by the Stone-von Neumann theorem, in the present con-
text the situation is not at all clear. Most work related
to the study of minimal length focused only on show-
ing the mere existence of such operators neglecting such
uniqueness considerations[70].

Thirdly, no general method to compute optimal and
state-independent uncertainty relations for a given mod-
ification f(p) has been developed so far. While such rela-
tions directly yield minimal length, they are of scientific
interest on their own, since they express the influence of
the modification on all states. For example, experimen-
tal proposals like [13] aim at observing a modified uncer-
tainty relation in an uncertainty regime where minimal
length cannot be attained.

As a last point, characterizing minimal length in terms
of variances is at least controversial: on one hand vari-
ances characterise well the uncertainty for most unimodal
distributions, especially if they are Gaussian. On the
other hand, variances of multimodal distributions are
known to show strange and unwanted behaviour if inter-
preted as a measure of uncertainty (as is done for minimal
lengths). There is no reason why a position distribution
should in general be unimodal, especially since non-zero
minimal length immediately implies that Gaussian states
are not part of the considered Hilbert space. Hence, in
most cases variances are not a good candidate to capture
the notion of minimal length as can also be seen from
Fig. 1. In Section IV we discuss this in more detail.

Which measure to use instead is far from unique and
depends on the operational task that shall be accom-
plished. Entropies as a measure of uncertainty have
been proven tremendously useful in various fields, such
as quantum information theory (see e.g. [14]), quantum
thermodynamics (see [15] for a survey), or quantum grav-
ity (for recent work and references see [16]). For example,
the uncertainty principle has been made operationally
precise in the form of entropic uncertainty relations which
for instance are an essential part of security proofs of
quantum cryptographic protocols (e.g. [17]) and are still
focus of much investigation [18–20], see also the reviews
[21, 22]. It thus seems beneficial to formulate entropic
uncertainty relations in the context of modified Heisen-
berg algebras thereby introducing the concept of entropic
minimal length. We investigate its implications compared
to those obtained by its variance-based counterpart, see
[23].

In this work we develop the underlying quantum me-
chanical setting in which one can study the direct conse-
quences of modifying the Heisenberg algebra in view of
the existence of non-zero minimal lengths. Then, tem-
porarily complying with the consensus to formulate min-

imal length in terms of variances, we provide a general
framework from which optimal and state-independent
uncertainty relations and minimal lengths can be cal-
culated efficiently. Here, the term “optimal” refers to
Pareto optimality, which originates in the theory of opti-
misation [24]. We will also argue why a typical approach
that invokes equality in the Robertson-Kennard relation
(15) does not provide an optimal uncertainty relation.
Lastly, we compute and discuss implications and advan-
tages of an entropic formulation of minimal length. In
particular, we introduce minimal length in terms of the
Shannon entropy (or differential entropy in the continu-
ous setting) and show that both the minimal length value
and the corresponding minimizing states are not equiva-
lent to those obtained for the “standard” minimal length
in terms of variances. We also discuss how a further
feature appears when using entropies, namely a maxi-
mal entropy in momentum space. Finally, we compute
minimal length in terms of the min-entropy, which quan-
tifies the maximum probability of correctly predicting
the outcome of a position measurement. Intriguingly, we
find an intimate connection between variance-based and
min-entropy based minimal length: for scenarios with
normalised variance-based minimal length, the mininal
length in terms of min-entropy is also normalised, mean-
ing that the best possible localisation of space is exactly
one bit.

II. REPRESENTATION OF THE MODIFIED
HEISENBERG ALGEBRA

Let us consider the position operator x, i.e. the mul-
tiplication operator on the Hilbert space H := L2(R).
In this section we characterise properties of momentum
operators p that satisfy the modified Heisenberg alge-
bra (1). After briefly summarising and unifying previous
constructions that showed the existence of operators p
that lead to minimal lengths effects, we present our main
result of this section that proves the uniqueness of such
constructions.
More concretely, we aim at characterising a linear, self-

adjoint operator p with dense domain in a closed sub-
space P of a Hilbert space H with spectrum coinciding
with R that satisfies the modified Heisenberg algebra[71]
(we set ~ = 1 in the following)

[x,p] = if(p) , (2)

where f : R→ R satisfies

(i) f(0) = 1 ,

(ii) f(p) = f(−p) for all p ∈ R ,

(iii) f(p) is convex on R+, i.e. ∀p, p′ ≥ 0:
f(λp+ (1− λ)p′) ≤ λf(p) + (1− λ)f(p′).

Assumption (i) ensures that for small momentum we re-
trieve the original unmodified Heisenberg algebra, while
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Fig. 2: Theorem 1 gives sufficient conditions for represent-
ing the operator p as a function p(k), where k denotes the
unmodified momentum operator (here shown for the modi-
fication f(p) = 1 + βp2). We show that the support of k
must be restricted to an interval [−kmax, kmax], i.e. mod-
ifying the algebra directly leads to UV cut-off and, hence,
minimal length.

assumption (ii) translates to the statement that momen-
tum should not have a preferred direction. The last as-
sumption (iii) is a generalisation of modifications that
were considered previously in the literature [3, 5] and
implies that higher momentum leads to stronger effects
of the modification.

Since f(p) is adimensional, it depends on momentum
via the product

√
β p , with β a constant with dimension

of inverse squared momentum (or inverse squared mass
in natural units), which sets the scale where deviations
with respect to the standard picture are important[72].
In natural units β is naturally expected to be of the order
of m−2

Pl , with mPl the Planck mass, but we consider this
scale as a free parameter.

Previous works aimed at explicitly constructing opera-
tors p that satisfy the algebra (2) and lead to a non-trivial
minimal length. Before discussing subtleties arising in
these approaches, we briefly review these constructions
which may be unified as follows: consider the unmodified
momentum operator k on H such that x and k satisfy
the standard commutation relation

[x,k] = iI , (3)

i.e. the momentum operator is given by

k = F†xF , (4)

with F the Fourier transform acting on states φ ∈ H via

(Fφ)(k) = 1√
2π

∫
eikxφ(x)dx . (5)

We can then deform the spectrum of k until we find a
linear operator p = p(k) that satisfies (2) (see Fig. 2).
More concretely, by functional calculus we can evaluate
the commutator

[x,p] =
[
i
d

dk
, p(k)

]
= i

d

dk
p(k) , (6)

to find that (2) translates to the differential equation

d

dk
p(k) = f(p(k)) . (7)

By the implicit function theorem we obtain the solution

k(p) =
∫ p

p0

dp′
1

f(p′) , (8)

where we set p0 = 0, such that the momentum operators
p and k yield the same physics in the small-momentum
regime. For all cases where this integral is finite in the
limit p → ∞, this implies the existence of a momentum
cut-off,

kmax :=
∫ ∞

0
dp′

1
f(p′) . (9)

This argument, commonly found in related literature
[3, 25], shows that for states with support in the in-
terval [−kmax, kmax] there exist operators x and p sat-
isfying the modified commutation relation (2). More-
over, the operator p is just defined on a proper subspace
P = L2([−kmax, kmax]) of the Hilbert space H (Fig. 3).
In particular, states with vanishing position uncertainty
which have, by (5), a broad momentum distribution are
no longer contained in P, hence implying the existence
of a non-trivial minimal length. In this sense the exis-

Fig. 3: For an unmodified algebra, minimal uncertainty is
obtained for states φ from a state space H. In the case of the
usual Heisenberg algebra the corresponding minimal length
becomes trivial, that is, all states in H are physical. If a
modification of the algebra directly leads to a restricted state
space P that does not contain such states, one obtains non-
trivial minimal length as a direct consequence of modifying
the algebra.

tence of a momentum cut-off, sometimes also referred to
as a UV cut-off, directly implies the existence of a non-
trivial minimal length. Conversely, if P = H, i.e. there
is no momentum cut-off, there are states with vanish-
ing position uncertainty as is the case for the unmodified
Heisenberg algebra.
However, in order to interpret the momentum cut-off

and the corresponding minimal length as a direct con-
sequence of modifying the algebra, it is not sufficient to
just show the existence of operators that allow for non-
trivial minimal lengths as above. Instead, one needs to
show that all operators x and p satisfying (2) lead to
this effect. In this section we show that this is indeed
the case if, given x is the standard position operator, we
additionally require that the spectral projections of the
canonical momentum operator k = F†xF and the modi-
fied momentum operator p are close to each other in the
regime of small momenta. This assumption immediately
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implies that, in this regime, the probability distributions
induced by k and p are almost the same, which agrees
with the intuition that observable effects of the modified
algebra only occur for high momenta. More precisely, we
require that there exists ε0 > 0 such that for all ε ∈ (0, ε0)
there is an ε′ > 0 and δ > 0 with δ ∼ O(ε3) such that

‖Ek([−ε, ε])− Ep([−ε′, ε′])‖ < δ , (10)

where Ek and Ep denote the spectral projections of k
and p, respectively. With this assumption we show the
following theorem (see Appendix for the proof):

Theorem 1. Let x be the position operator and k =
F†xF be the unmodified momentum operator as defined
above. Denote by p a modified momentum operator on a
Hilbert space P, i.e. x and p satisfy the modified Heisen-
berg algebra (2) for all states in P. If additionally (10)
is satisfied, then

• there exists a momentum cut-off, i.e. there is an
interval

I = [−kmax, kmax] ⊆ R , (11)

with kmax as in (9) such that P = L2(I),

• there is a function p : I → R such that for all states
in P

p = p(k) . (12)

Hence, p is indeed a function of k, which legiti-
mates the standard construction after eq. (5).

In other words, the scope of Theorem 1 can be sum-
marised as follows: assume an experimenter who, on a
length scale that is above Planck length, can agree on
a clear notion of what the position x and the unmodi-
fied momentum k, i.e. a particular representation of the
Heisenberg algebra, should be. If he extrapolates his no-
tion of x down to lower scales, and assumes that a modi-
fied algebra has a consistent limit to what he observed on
higher scales, he obtains by Theorem 1 a unique notion
of what p is in this situation. Theorem 1 can therefore
be seen as the reason why the aforementioned construc-
tion is indeed meaningful: the construction describes all
possible modified momentum operators p. Importantly,
it proves the existence of a UV cut-off and a correspond-
ing non-trivial minimal length as a direct consequence of
modifying the underlying algebra.

Note that Theorem 1 builds on the natural assumption
that measurement probabilities should be similar when
measuring the modified momentum operator p or the
unmodified momentum operator k in the regime of small
momentum. This assumption is essential since it provides
a means to characterise the action of x on states in P:
as the position operator x induces shifts in k-momentum
space, knowing that p and k are not too different in
the small-momentum regime implies that x also induces
shifts in p-momentum space (up to some arbitrarily small

error). By how much x is shifting a state in k- or p-
space is governed by the respective commutation rela-
tion. Hence, while x induces constant shifts in k-space,
the strength of shifting in p-space is monotonically in-
creasing with higher momentum as is the modification
f (Assumption (iii)). This leads to normalizability con-
straints: for high enough momentum the shift becomes
too large for the corresponding states to be normalizable.
The cut-off parameter kmax is exactly the momentum
value for which the states cannot be normalised anymore.
The self-adjoint position operator x has a domain

dense inH. Theorem 1 shows however that, if the modifi-
cation f(p) is such that kmax is finite, the relevant Hilbert
space P is strictly smaller than H. So, how can the mea-
surements of position be described if acted on states in
P? This is in particular interesting since the position
operator x restricted to P is not self-adjoint anymore.
Nevertheless, a position measurement still has a well-
understood description, known as a POVM (positive op-
erator valued measure). POVMs describe the most gen-
eral form of a quantum measurement (see e.g. [14]). An
explicit construction of the position operator as a POVM
on a restricted state space can be found in [26].

III. OPTIMAL UNCERTAINTY RELATIONS IN
TERMS OF VARIANCES

The concept of minimal length expresses the fact that
for all states position measurements will in general not
produce arbitrarily sharp outcome distributions. This is
typically quantified by computing the minimal variance
of this distribution

l2min = min
ψ∈P

∆x , (13)

where

∆x = 〈ψ|x2|ψ〉 − 〈ψ|x|ψ〉2. (14)

As such, minimal length is intimately related to the con-
cept of uncertainty relations, which place constraints on
how sharp the distribution for some observable A can be,
given the sharpness of the distribution of another, say B.
The standard example of such an uncertainty relation is
the one due to Robertson and Kennard [27, 28], i.e.

∆A∆B ≥ 1
4 |〈ψ|[A,B]|ψ〉|2 . (15)

A naive approach to compute the minimal length is to
impose equality in (15) and then search for minimising
states within the corresponding subset of states. In this
section we will remark that this approach will fail in most
cases due to the state dependence of the lower bound in
(15). Instead, we provide a general framework to obtain
optimal and state-independent uncertainty relations for
a modified Heisenberg algebra in the first part of this
section. As a side product this allows to directly com-
pute the corresponding minimal length. Then, in the
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second part of the section, we exemplarily apply this
framework to the modification f(p) = 1+βp2, since here
all differential equations can be solved analytically. We
obtain the same uncertainty relation as in [3], but now
with a proof of its optimality. We also apply our frame-
work to other modifications, i.e f(p) = cosh(

√
βp) and

f(p) = 1 + βp2 + β2p4/4, employing numerical tools (see
also [29] for a treatment of higher order modifications
f(p)).

A. A general method for finding uncertainty
relations and minimal length

Uncertainty relations allow to lower bound the uncer-
tainty of one measurement, given the uncertainty of an-
other measurement. Having this in mind, a good way
to generally think about uncertainty is in terms of dia-
grams, as shown in Fig. 4 [3, 18, 20]. Here, the blue
shaded region indicates the set U of all tuples (∆p,∆x)
that can be obtained by measuring both p and x on the
same state ψ, where ψ is taken from P. In the following
we will refer to U as the uncertainty region.

Fig. 4: The boundary of U for the modified (with f(p) =
1 + βp2) and standard (long dashed black curve) Heisenberg
algebra. We show the point corresponding to the maximally
localized state (26), for which ∆x = 1/∆p = β. The tradeoff
curve (solid red line) γU (λ) branch below this point corre-
sponds to ground states of (deformed) harmonic oscillators
(36) with, from right to left, increasing frequency ω ∈ ]0,∞[.
The upper part of the curve (short dashed red line) is ob-
tained by considering states ψ(k) ∝ cos(

√
βk)γλ with γλ < 1,

which are not the ground state of a harmonic oscillator.

Uncertainty relations express the fact that there is no
state such that both variances are getting simultaneously

arbitrary small. If this is the case, the point (0, 0) is not
contained in U and the uncertainty diagram has some
empty space around the origin.
However, we can still ask for the “smallest” points in
U , i. e. the points on the “lower left” boundary of U ,
which are obtained by minimising one variance under the
constraint that the other stays below some fixed thresh-
old, and vice versa [18, 20]. In Fig.4 this trade-off curve
is indicated by a solid red line and henceforth referred
to as an optimal and state-independent uncertainty rela-
tion. Here, the term “optimal” means that for any at-
tainable value for ∆p, or equivalently for ∆x, we can find
a state in P such that the uncertainty relation is tight,
i.e. that equality is attained. “State-independent” means
that the uncertainty relation only depends on functions
of the variances ∆p, ∆x and constants, but not on any
other quantities that depend on the state. Hence an op-
timal and state-independent uncertainty relation defines
a trade-off curve such that for any attainable value of
∆p, we can directly conclude the best lower bound on
∆x that will hold for all states in P, and vice versa.
Importantly, minimal length as defined in (13) can

be directly computed if such an uncertainty relation is
known by simply optimising over all possible values of
∆p. For this and other operationally motivated rea-
sons pointed out by David Deutsch in the 80’s [30], opti-
mal and state-independent uncertainty relations are the
ones to look for. However, such uncertainty relations are
usually also the hardest ones to obtain because they al-
ways involve a constrained optimization problem over the
whole state space.
At this point it might be important to recall the of-

ten ignored fact that, in general, an optimal and state-
independent uncertainty relation cannot be inferred from
the relation (15), which in our case takes the form

∆x∆p ≥ 1
4 |〈ψ|f(p)|ψ〉|2 . (16)

Here, the expectation value on the right hand side of (16)
(or (15)) is generally state-dependent, such that evaluat-
ing the uncertainty relation for a particular state does
not allow to directly conclude anything about the uncer-
tainty of any other state. In particular, it is generally not
true, in neither direction, that states, which are giving
equality in (15), correspond to points on the boundary
of an uncertainty region. This circumstance can be ex-
emplary checked by considering any non-commuting pair
of measurements, e.g. two angular momentum compo-
nents [18]. This has also been pointed out by [31, 32]
for the case of the smallest value of ∆x. In general, this
makes the method to investigate equality in (15) and to
infer minimal length, quite problematic.
However, there are at least two exceptions to the above

criticism: the one is the usual Heisenberg algebra, where
the right hand side of (15) is the same for every nor-
malized state and thus state-independent. Optimality
is granted by Gaussian states, for which it is well-known
that they achieve equality in (15) in the whole parameter
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range of ∆p and ∆x, respectively.
The other exception has been exploited in [3] for the

case of a modified Heisenberg algebra with f(p) = 1 +
βp2. If we take the square root on both sides of (16), the
right hand side only contains a constant, some factors
and the second moment of p and thus one obtains a state-
independent uncertainty relation
√

∆x∆p ≥ 1
2
(
1 + β∆p + 〈p〉2

)
≥ 1

2 (1 + β∆p) . (17)

Whilst this was not spelled out in [3] directly, this bound
is in fact optimal as we will show at the end of this section
by a straightforward application of Theorem 2.

For a large class of modifications (see Subsection C in
the appendix) we can set

g(p) := f(−
√
|p|) , (18)

and substitute this into (16). Then, in a similar spirit as
above, we obtain

∆x ≥ g(∆p)2

4∆p , (19)

which is state-independent but in general not optimal
(see the blue line in Fig. 5).

To the best of our knowledge no universal method for
obtaining an optimal, state-independent uncertainty re-
lation for an arbitrary pair of observables A and B is
known. However, it is possible to obtain lower bounds
(and by this a state-independent uncertainty relation)
on every uncertainty region by computing its convex hull
(see [18, 33, 34] and Subsection B in the appendix). Such
a bound will become optimal whenever U itself is convex.
In this case an uncertainty relation can always be char-
acterised by a function u(λ) with λ ∈ [0, 1] and a set of
linear inequalities

λ∆x + (1− λ)∆p ≥ u(λ) . (20)

The function u(λ) will give us a full description of the
boundary of the convex hull of U (see Subsection B in
the appendix and Fig.10). If needed, one can recover the
trade-off curve, denoted by ξU (λ) in the following, by the
formula

ξU (λ) = (u(λ) + (1− λ)u′(λ), u(λ)− λu′(λ)) . (21)

Note that, given a particular form of u(λ), one can always
find a substitution for λ in (21), such that (21) has a form
that only depends on ∆x and ∆p.

The following theorem states that the ansatz above
is already sufficient for providing an optimal uncertainty
relation.

Theorem 2. Let U be the uncertainty region of x and
p satisfying a modified algebra with a modification f(p)
that obeys the assumptions described in section II. Then

1. the lower boundary, i.e. the trade-off curve, of U
lies completely on the boundary of a convex set,

2. states corresponding to this trade-off curve always
have expectation 〈p〉 = 0 and can be chosen to have
〈x〉 = 0,

3. these states are ground states of the modified har-
monic oscillator

Hλ = λx2 + (1− λ)p2.

A proof and a mathematically more dedicated formu-
lation of the statements 1 and 2 from Theorem 2 can be
found in Subsection B in the appendix. However, state-
ment 3 can be concluded directly from 1 and 2 using (20):
from 1 we know that we can obtain the optimal bound
u(λ) by minimising the expression λ∆x + (1− λ)∆p for
fixed λ over all states in P. Using 2 we arrive at

u(λ) = min
ψ∈P
〈ψ|(λx2 + (1− λ)p2)|ψ〉, (22)

which is exactly the ground state energy of a harmonic
oscillator in the modified algebra. Moreover, when we
represent p and x in the domain of k, we can state the
following:

Corollary 3. An optimal and state-independent uncer-
tainty relation can be directly obtained by solving the
ground state problem of the Schrödinger operator

Hλ = −λ∂2
k + (1− λ)p(k)2 , (23)

with Dirichlet boundary conditions at ±kmax and a sym-
metric, convex and positive potential p(k)2. This uncer-
tainty relation saturates (20) and can be found by solving

Hλψλ(k) = u(λ)ψλ(k) , (24)

where u(λ) is given by the ground state energy of (23).

Fortunately, these kind of problems have been the con-
tent of many extensive studies (see for example [35, 36])
since the early days of quantum mechanics. Indeed, well-
established numerical methods and analytical solutions
for several particular instances of p(k) are available.
Asking for an optimal bound in expression (20) for the

special case λ = 1 directly translates into characteris-
ing the minimal length l2min in terms of variances. By
Corollary 3 this turns into the task of finding the state
ψ(k) and the minimal value u(1) = l2min such that the
differential equation

−∂2
kψ(k) = l2minψ(k) , (25)

holds with the boundary condition ψ(±kmax) = 0. But
this is just the ground state problem of a particle in a
box with length 2kmax and this is solved by

ψ(k) = 1√
kmax

cos
(
π

2
k

kmax

)
, (26)

so that

l2min = π2

4k2
max

. (27)
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Fig. 5: Uncertainty regions U for the modifications f1 = cosh(
√
βp) (left figure) and f2 = 1+βp2+β2p4/4 (right figure) bounded

by the red lines. The black dashed lines show the standard Heisenberg bound for the position and unmodified momentum
operator. The blue lines show the not optimal but state-independent bounds from (19).

Note that all these results are completely general and
hold for all modifications that satisfy the conditions (i)
- (iii) of section II. As such they not only generalise
previous results obtained in [31, 32], but also allow to
drastically improve earlier approaches as they provide a
means to straightforwardly compute optimal uncertainty
relations and minimal lengths.

To illustrate this point, let us consider the most studied
modification

f(p) = 1 + βp2, (28)
for which a value for minimal length and its correspond-
ing quantum state is already known, while the uniqueness
of the construction of x and p has been left open. In [3]
the authors also provide a state-independent uncertainty
relation. Using our results we can directly prove that
this uncertainty relation is actually optimal. Addition-
ally, we show how, from such an uncertainty relation,
one can easily retrieve the aforementioned results which
were previously obtained in a much more mathematically
involved manner. The purpose of this example is there-
fore to show the validity of our results and to provide a
step-by-step recipe to compute uncertainty relations and
minimal lengths by making use of the main results pre-
sented so far in this paper.
As a first step, note that f(p) satisfies the requirements
(i) - (iii). Hence we know by Theorem 1 that the modi-
fied momentum operator p must be a hermitian operator
that satisfies the differential equation (7). This yields

p(k) = 1√
β

tan(
√
βk) . (29)

Also, by (9) we can compute the momentum cut-off,

kmax = π

2
√
β
. (30)

The optimal state-independent uncertainty relation is
characterised by the trade-off curve of the uncertainty

region U , the exact form of which depends on the mod-
ification. By Theorem 2 we know that the states ψλ
parametrising this trade-off curve are ground states of
the modified harmonic oscillator with Hamiltonian Hλ =
λx2 + (1− λ)p2, i.e.

Hλψλ = u(λ)ψλ . (31)

We rewrite this condition by explicitly inserting the pa-
rameter β to render all terms adimensional. By dividing
by λ we then have
(

1
β

x2 + 1− λ
λ

β p2
)
ψλ = u(λ)

λ
ψλ ≡ γ(λ)ψλ . (32)

The ground states of these Hamiltonians correspond to
vectors in the kernel of the annihilation operator

aλ = x/
√
β + iγλ

√
β p , (33)

since Hλ always[73] satisfies

1
λ

Hλ = 1
β

x2 + (γ2
λ − γλ)β p2 = a†λaλ + γλI , (34)

when choosing γλ such that γ2
λ− γλ = (1−λ)/λ. Hence,

we have aλψλ = 0, which translates into the differential
equation

∂kψλ(k) + γλ
√
β tan(

√
βk)ψλ(k) = 0 , (35)

with the solution

ψλ(k) =
(
β

π

)1/4( Γ(1 + γλ)
Γ(1/2 + γλ)

)1/2
cos(

√
βk)γλ , (36)

where

γλ = 1
2

(
1 +

√
1 + 41− λ

λ

)
. (37)
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These states parametrise the complete trade-off curve of
the uncertainty region U as depicted in Fig. 4 and there-
fore yield an optimal state-independent uncertainty re-
lation for the modification f(p) = 1 + βp2. More con-
cretely, we can evaluate the variances ∆x and ∆p for
these states

∆x = β
γ2
λ

2γλ − 1 , ∆p = 1
β

1
2γλ − 1 , (38)

where we invoked Theorem 2 to set 〈x〉 = 〈p〉 = 0.
Notice that for λ→ 0 (i.e. γλ →∞), the state becomes

a plane wave, while λ = 1 (γλ = 1) corresponds to the
maximally localized state

ψ(k) =
√

2
√
β

π
cos(

√
βk) , (39)

for which ∆x = l2min = β, compare with (26) and (27).
The results (36) and (37) as well as the trade-off curve
coincide with those obtained in [3] (compare with Eq.
(69) in that paper) with the identification

1− λ
λ

= 1
(βmω)2 . (40)

See also [37], where the harmonic oscillator problem in
presence of a minimal length uncertainty relation is also
solved in arbitrary dimensions. However, our findings
greatly simplify and extend the derivation of these re-
sults, while proving uniqueness properties and the opti-
mality of the state-independent uncertainty relation, and
allowing to treat any modification f that satisfies (I) -
(III).

The above discussion allows for interesting physics
to become visible: when looking at the trade-off curve
traced out by the states ψ(k) (see Fig. 4) the position
variance decreases with increasing momentum variance -
exactly up to the point where the frequency of the har-
monic oscillator diverges, λ = γλ = 1. At this point the
state reaches the maximal possible localisation in space,
the endpoint of the solid red line in Fig. 4. Actually,
using (38) it is easy to check that the states (36) still sat-
urate the generalized uncertainty principle bound even
for γλ < 1 but they do not correspond to the ground
state of a harmonic oscillator, see (40), but rather can
be formally seen as eigenstates of a quadratic potential
with an imaginary frequency ω. This regime corresponds
to the upper branch in Fig. 4 (dashed red line). When
γλ decreases, both ∆x and ∆p grow and diverge in the
limit γλ → 1/2. Yet, the states with any γλ > −1/2 are
normalizable, so that we can associate to them an en-
tropy in both momentum and position space, as we will
see in the next section.

IV. ENTROPIC BOUNDS

In this section we introduce, compute and discuss im-
plications of an entropic formulation of uncertainty and

minimal length. Here, one might be tempted to ask why
using variances is not always a good choice to quantify
the uncertainty of two measurements, especially since we
dedicated the whole last section to exactly this setting.
The answer is that the emphasis of the previous section
lies in the formulation of optimal and state-independent
uncertainty relations which best describe minimal un-
certainties and are always superior to statements about
minimal length only or state-dependent uncertainty rela-
tions. The concept of optimal and state-independent un-
certainty relations is however, completely independent of
the chosen uncertainty measure: one can formulate such
relations using variances as done in the last section, or
compute so-called entropic uncertainty relations as sug-
gested by David Deutsch in his seminal paper [30], which
will be the content of this section. Before introducing
entropies, let us first clarify why variances as measure of
uncertainty are problematic.
In [30] David Deutsch argued that variances suffer from

the fact that they depend on the specific ordering and la-
beling of measurement outcomes. To illustrate this point
consider a fair coin that yields “heads” or “tails” with
equal probability. To be able to quantify the uncertainty
about the outcome of one toin coss in terms of variances,
one needs to artificially associate real numbers to heads
or tails. In other words, variances depend on the choice of
the labels of the possible outcomes - to the extent that we
can choose this “measure of uncertainty” to become ar-
bitrarily small or large, while intuitively our uncertainty
is the same, independent of the labeling.
As another example that is related to this problem

let us consider a spin measurement on a spin-1 parti-
cle [21, 38]. Let us assume that we only know that the
outcomes {−1,+1} occur with equal probability p−1 =
p+1 = 1/4, whereas with highest probability p0 = 1/2 we
obtain outcome 0. Now imagine that we get additional
information about the source telling us that we never ob-
tain outcome zero. Our state of knowledge changes and
so does the probability distribution, which now is given
by p−1 = p+1 = 1/2 and p0 = 0. Here a “good” measure
of uncertainty should mirror our decrease of uncertainty
by not increasing during this process. However, variances
do not satisfy this minimal requirement: in fact, the vari-
ance in the above example will increase by getting further
information and it is easy to construct similar examples
when we consider continuous observables as well.
For unbounded observables yet another problem arises:

namely the variance of a random variable can diverge al-
though the corresponding probability distribution seems
to be “located” in some sense. Prominent examples for
this are Cauchy distributions and Lévy distributions.
Moreover, this effect also occurs for two of the distri-
butions shown in Fig. 1. Here, the black and the red
curve correspond to distributions which appear to be “lo-
calised” even though their variances diverge.
All these examples are a consequence of the variance

depending on the outcomes and not only on the underly-
ing probability distribution. In finite dimensions a well-
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known alternative to variances, that does not suffer from
this drawbacks, are entropies [22, 30, 39]. The most
prominent one is the Shannon entropy[74] of a discrete
probability distribution w : Z→ (0, 1),

H(w) := −
∑

i

wi log(wi) , (41)

which was introduced in the seminal work [40]. Later
Alfréd Rényi introduced a whole family of entropies Hα

[41], called Rényi-α entropies, which also do not suffer
from the above drawbacks and contain the Shannon en-
tropy in the limiting case α → 1. In this work we will
consider only the Shannon entropy and the min-entropy
H∞, which arises in the limit α→∞

H∞(w) = − log(max
i
wi) . (42)

Note that these two entropies are so far only defined in
a finite-dimensional setting. In the following we will de-
fine and compute minimal length in terms of Shannon
entropies and min-entropies for continuous variables.

A. Shannon entropy

In [40] Shannon presented a generalisation of (41) for
continuous variables with a probability density w : R →
R

h(w) = −
∫
dy w(y) log (w(y)) , (43)

which is called the differential entropy. This quantity can
be negative and even reach the value −∞, which might,
on a first view, appear to be an astonishing property for
an uncertainty measure. We therefore give some clarifi-
cation of its meaning. Consider a continuous valued ob-
servable given by a random variable Y with outcomes y
on the whole real line. Now assume that an experimenter
tries to measure this observable with a device that has a
finite operating range, lets say in an interval I. Assume
further that her measurement device only has a finite
resolution, say ε, which means that the device can only
decide whether the outcome of a measurement is in a par-
ticular interval of length ε or not. Now the experimenter
can divide the operating range I into bins Ωiε of length
ε and will thus, effectively, obtain a description of her
measurement by a discrete random variable, say Y Iε with
approximately |I|/ε different outcomes. Here computing
entropies like (41) or (42) for this random variable will
give her a good description of the information theoretic
uncertainty.

The experimenter might then take a better device, i. e.
one with a finer resolution and a larger operating range.
In this case the entropy increases because the number
of possible measurement results will increase. Moreover,
in the limit |I| → ∞ and ε → 0 the entropy will reach

infinity. Nevertheless, assuming that Y is distributed by
w, for (41), we can write down this limit as

lim
|I|→∞
ε→0

H(Y Iε ) = lim
|I|→∞
ε→0

−
∑

i

P(Y,Ωiε) log(P(Y,Ωiε)) , (44)

where P(Y,Ωiε) denotes the probability of measuring a
result in the bin Ωiε. For small ε and a bin with center
yi we might approximate this probability by εw(yi) and
get

H(Y Iε ) ≈ −
∑

i

εw(yi) log (w(yi))

−
∑

i

εw(yi) log(ε) , (45)

which gives

lim
ε→0

lim
|I|→∞

H(Y Iε ) = h(w) +∞ . (46)

Hence the quantity h(w) can be understood as a devia-
tion from infinity. However the limit, in (46), strongly
depends on the experimenter choice of dividing the in-
terval I into equidistant bins. This choice corresponds to
the assumption that, not knowing anything about Y , the
probability of obtaining an outcome in any bin ΩIε should
be the same when sampling from a uniform distribution
on I. This assumption might become controversial (see
[42]) when taking the limit |I| to infinity, because there
is no notion of a uniform distribution on the whole real
line. In the following, we will see that we will have to
take care of such a choice of a reference measure when
defining entropies for the modified momentum.
At this point we should also emphasise that, even if the

absolute value h(w) has only a rather indirect operational
meaning, h(w) is still a good quantity to judge if one dis-
tribution is “sharper” than another, and thus minimizing
h(w) will give us a good notion to characterise minimal
length quantum states. Moreover, h(w) can be used to
compute other information theoretic quantities like the
mutual information I(A,B) = h(A) + h(B) − h(AB)
which quantifies the correlation between two random
variables A and B. Here h(A) denotes the Shannon en-
tropy of the probability density of the random variable
A. It was shown in [40], that the “∞” term from (46)
cancels out, such that I(A,B) arises as a rigorous limit
of a discrete quantity.
Let us now define and compute the corresponding min-

imal length in terms of the Shannon entropy. To this end,
we consider the Shannon entropy of a probability distri-
bution obtained by measuring x on a state ψ ∈ P. As-
suming that we are given ψ as a function ψ(k) of the co-
ordinate k we can obtain its representation as a function
φ(x) of the coordinate x by applying a Fourier trans-
formation. In this case the amplitude |φ(x)|2 will cor-
respond to a probability density on R normalized with
respect to the measure ’dx’ and we set

hx(φ) = −
∫

R
dx|φ(x)|2 log |φ(x)|2 , (47)
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Fig. 6: Different binnings of measurement data lead to dif-
ferent uncertainty measures. Here we choose a binning such
that all bins have the same probability in our definition of the
Shannon entropy.

in order to define the Shannon entropy of a position
measurement. In analogy to the “standard” (but prob-
lematic) definition of minimal length, minimal length in
terms of entropies is now defined by the minimal entropy
that a probability distribution obtained by a position
measurement can have [75]

Γmin = min
ψ∈P

hx(F(ψ)) . (48)

Measuring the unmodified momentum k on ψ ∈ P will
give us the probability distribution |ψ(k)|2 such that we
will define the unmodified momentum entropy as

hk(ψ) = −
∫

I

dk|ψ(k)|2 log |ψ(k)|2 , (49)

where the interval I ranges from −kmax to +kmax.
As mentioned in the previous subsection, the subtlety

of choosing an appropriate reference measure emerges:
when we represent ψ as a function ψ̃(p) of the coordinate
p, the probability of measuring a certain value p from an
interval (a, b) is given by

P(p ∈ (a, b),p, ψ) =
∫ b

a

dp

f(p) |ψ̃(p)|2 , (50)

which is no longer translation invariant, due to the scal-
ing factor 1/f(p). Here the experimenter from the above
example has to adapt to this when choosing bins: one
choice would be to keep on taking bins with equal length.
Another choice, the one we use in this work, is to take
bins such that for all bins the probability obtained by
measuring a function ψ̃(p), which is constant on a par-
ticular bin, is the same (see Fig. 6). In this case a bin,
with center a and volume ε, will correspond to an in-
terval (p(−ε/2 + p−1(a)), p(p−1(a) + ε/2), where p and
p−1 are obtained by representing p as a function of k.
By evaluating the limit of ε → 0 we see that we there-
fore should define the entropy of a modified momentum
measurement via[76]

hp(ψ̃) = −
∫

R

dp

f(p) |ψ̃(p)|2 log |ψ̃(p)|2 . (51)

Notice that for p and k both choices will lead to the
same definition of an entropy. Furthermore, hp as defined

above has the nice advantage that it arises from hk by
an integral substitution and thus does not change, i. e.

hp(ψ̃) = hk(ψ) . (52)

Thus, the optimization of hp over all states represented
as functions of p ∈ R amounts to optimizing hk over all
functions of k ∈ I. Finally, hp also depends on f(p) only
through the cut-off parameter kmax. All results that can
be shown for an arbitrary kmax are therefore valid for
arbitrary modifications f(p).
Having defined the entropic uncertainty measures,

we can now compute the corresponding uncertainty re-
lations. To this end, we consider all possible pairs
(hx(φ), hk(ψ)) which are attainable by ψ(k) ∈ P where
φ(x) = F [ψ](x). We recall that in the standard scenario,
β = 0, both momentum and position entropies can be-
come arbitrarily small or large if one consider sequences
of states which converge (in the distribution sense) to the
x or p eigenfunctions. In this case the “physical” states
satisfies the Bialynicki-Birula (BB) bound [43, 44], ob-
tained by the Babenko-Beckner inequality [45],

hk(ψ) + hx(φ) ≥ log(πe) , (53)

which is again saturated, as for the product of variances
(see Theorem 2), by the ground states of harmonic oscil-
lators with arbitrary frequency ω.
For a modified algebra, the existence of a momentum

cut-off is expected to imply a minimal value for hx. Be-
fore discussing its value, it is worth noticing that the rep-
resentation of a modified algebra also implies a maximal
entropy hp in momentum space. This maximal entropy
is attained for any series of functions converging to the
uniform distribution on I = [−kmax, kmax], and reads

max
ψ∈P

hk(ψ) = −
∫

I

1
|I| log

(
1
|I|

)
dk = log(2kmax). (54)

In particular for the family of states from (36) this bound
is obtained if we take the limit γλ → 0, (see Fig. 8).
If we combine (54) with the (BB) bound we find that

hx(φ) ≥ 1− log
(

2kmax
π

)
, (55)

implying a lower bound on the entropy hx. For a modi-
fication f(p) = 1 + βp2 this reads

hk(ψ) ≤ log(π)− 1
2 log(β) (56)

and

hx(φ) ≥ 1 + 1
2 log(β). (57)

Yet, this bound is not optimal, because the (BB) bound,
the dashed line in Fig. 7, becomes tight only on Gaussian
functions, see [46]. Still however, all entropy pairs have
to lie “above” this line.
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Fig. 7: Entropic uncertainty region in the hx − hp plane for
the modification f(p) = 1 + βp2. The dashed line is the
Bialynicki-Birula bound which is still valid in our setting but
not longer optimal. The horizontal dotted line shows the up-
per bound on the entropy hp. The marked points correspond
to the hx − hp pairs for the maximally localized states, the
state of minimal position entropy and the one with maximal
momentum entropy, respectively. Physical states are conjec-
tured to lie on the right of the solid line and below the dotted
horizontal line.

In analogy with the standard result for the entropy
bound, and motivated by our results of the previous sec-
tion about the optimal uncertainty relation in terms of
variances, we conjecture that the analogue of the (BB)
curve corresponds to the states ψλ(k) ∝ cos(

√
βk)γλ ,

which we saw for γλ ≥ 1 represents the ground state of
the deformed harmonic oscillator, while for γλ < 1 they
still saturate the optimal bound in terms of variances,
but can be seen as eigenstates of an imaginary frequency
oscillator. This curve is shown as the convex solid line in
Fig. 7.

We were unable to obtain an analytic form for the cor-
responding values of hx, which have been computed nu-
merically. On the other hand, we can give a simple ex-
pression for hk in terms of special functions. To this end
let us observe that the states (36) can be also written as

ψλ(k) = 1√
κ(γ)

exp
(
−γ

∫ k

0
p(k′)dk′

)
, (58)

where we omit the argument γ ≡ γλ for readability and

κ(γ) =
√
π

β

Γ(1/2 + γ)
Γ(1 + γ) . (59)

Fig. 8: Minimal length states (36) for β = 1 and γλ = 1
(red, dashed, variance), γλ = 1/2 (blue, dotted, Shannon
entropy) and γλ ≈ 0 (black, solid, min-entropy) as in Fig. 1
but in k-representation. These minimal length states differ
from the states with maximal momentum uncertainty in the
case of variances and Shannon entropy. For min-entropies
however the minimal length state also yields maximal possible
momentum uncertainty.

Thus, their entropy hk reads

hk =
∫

I

dk
1

κ(γ) exp
(
−2 γ

∫ k

0
p(k′)dk′

)
×

×
(

2 γ
∫ k

0
p(k′)dk′ + log(κ(γ))

)
, (60)

or

hk = log(κ(γ))− 1
κ(γ)γ

d

dγ
κ(γ). (61)

Using (59), we finally find

hp = hk = log
(√

π

β

Γ(1/2 + γ)
Γ(1 + γ)

)
+

+ γN (γ)− γN
(
γ − 1

2

)
, (62)

with N (γ) the harmonic numbers.
This new boundary curve, shown in Fig. 7, can be

divided into three parts, corresponding to different
properties of the optimal states (58) (we fix here β = 1):

• for large positive values of hx and large negative hp
the curve asymptotically reaches the (BB) bound, as ex-
pected (the role played by the cut-off β can be neglected
in this regime). As hx decreases the curve starts bending
and leaves the (BB) straight line. The solid circle shown
in Fig. 7 denotes the states of maximal localization in
terms of variances studied in the previous section, for
which

hk = log(2π/e) and hx ' 1.374. (63)

Till this point the optimal states are the ψλ(k) with
γλ ≥ 1, i.e. the ground states of the deformed harmonic
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oscillators;

• as γ falls below unity, the value of hx continues to
decrease, until γ = 1/2, which corresponds to the cross
in Fig. 7. We have for this state

hk = 1 and hx ' 1.310, (64)

which represents the state of minimal entropy in posi-
tion. We see that minimal length in terms of entropy is
not equivalent to minimal length in terms of variances.
Indeed, all optimal states in this branch of the curve
have finite x and p variances, with the exception of the
point γ = 1/2, see the previous section. The minimal
position entropy can thus, be attained by considering a
sequence of such states with γ → 1/2. In this limit the
variances of both x and p diverge (see Fig. 4), while
their entropies stay finite;

• for even smaller values of γ < 1/2, hx increases and
so does hk until it reaches its maximal value, correspond-
ing to a constant wave function in I (γ = 0), up to an
arbitrary k dependent phase. This state is shown in the
entropy plane as the filled square in Fig. 7

hk = log(π) and hx ' 1.524, (65)

This part of the curve, 1/2 > γ > 0, corresponds to
normalizable wave functions but with infinite variances
for both x and p. Thus, it is an open boundary for
"physical" states, if by so we mean states which are in
the domain of position and momentum operators.

The solid line and the part of the horizontal line
hk = log(π) starting from the filled square bounds a con-
vex region. Our conjecture is that this is in fact, the
region in which all entropy pairs for states from P have
to lie in. We cannot present here a proof of this, but
we have performed a numerical scan of pairs hx − hk
corresponding to a random sample of 100000 states built
from superposing low excited states (see Eq. (69) in next
subsection).

B. Min-entropy

Considering min-entropies in order to quantify the un-
certainty of a measurement is meaningful for several rea-
sons: on one hand H∞ (see (42)) sets a lower bound
on all other entropies within the Rényi-α family, i.e.
H∞ ≤ Hα for all α ∈ R+. On the other hand it has
a direct operational interpretation in the following sense:
consider again an experimenter who now samples a (dis-
crete) random variable Y Iε and assume that she tries to
guess the outcome of a particular sample. In this case
the quantity exp

(
−H∞(Y Iε )

)
gives the highest guessing

probability she can attain when doing so. In the same
spirit, the min-entropy h∞(w), i.e. the continuous coun-
terpart/analogue of H∞, of a probability density w is

given as

h∞(w) = − log
(

ess sup
x
|w(x)|

)
. (66)

Here the essential supremum ess supx |w(x)| (66) is
needed to correctly deal with sets of measure zero. In
particular, when regarding a partitioning of an interval
into bins in the limit of vanishing bin size, the essential
supremum arises as the natural limit of a supremum over
finite bins. Operationally, this quantity can therefore be
understood as follows: consider we choose a partition-
ing into bins Ωi of size |Ωi| in a measurement scenario in
which the outcomes are distributed according to a proba-
bility density w(x). If the experimenter was to guess the
bin in which the next measurement outcome will occur,
the success probability Pi =

∫
Ωi w(x) is upper bounded

by Pi ≤ c∗|Ωi| with c∗ some constant that may depend
on the binning sizes, but is independent of the bin i.
The min-entropy characterises the smallest constant c∗
for all possible binning sizes which is exactly given by
ess supx |w(x)|.
Using the framework developed in this paper we are

able to directly compute the minimal length in terms of
min-entropy

Γ∞min := inf
ψ∈P

[
− log

(
ess sup

x
|φ(x)|2

)]
(67)

= − log
(

sup
ψ∈P

ess sup
x
|φ(x)|2

)
, (68)

as follows: consider the “particle in a box” basis for the
interval [−kmax, kmax], i.e.

ψn(k) = 1√
kmax

sin
[

πn

2kmax
(k − kmax)

]
, (69)

with its Fourier transform

φn(x) =
(
πn2kmax

2

)1/2 sin(kmaxx− πn
2 )

k2
maxx

2 − π2n2

4
e−πn2 i . (70)

We can then decompose any ψ ∈ P by ψ(k) =∑
n αnψn(k) with a square summable sequence αn. In

the same way, its Fourier transform φ = F [ψ] reads
φ(x) =

∑
n αnφn(x). We therefore have

Γ∞min = − log
(

sup
α:||α||l2 =1

sup
x

∣∣∑

n

αnφn(x)
∣∣2
)
, (71)

where we used the fact that the φn(x) are smooth to
replace the essential supremum with the ordinary supre-
mum. The term |∑n αnφn(x)|2 can be rewritten as a
scalar product |〈αn|φn(x)〉l2 |2 which, due to the Cauchy-
Schwarz inequality, is maximised by 〈φn(x)|φn(x)〉2.
Also note that by choosing the phase of ψ appropriately
we can without loss of generality set the maximum of
the φn(x) to be at x = 0. Some algebra shows that
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Fig. 9: Entropic uncertainty region for min-entropies h∞. The
minimal length Γ∞min is analytically computed in (72). As for
Shannon entropies, the min-entropy of momentum attains an
upper bound (dashed line), max hp∞ = log(2kmax), for the uni-
form distribution on the interval I. Numerical evaluation in-
dicates that any entropy pair satisfying these two constraints
can be attained. Hence the uncertainty region Uh∞ and the
corresponding trade-off curve are given by the shaded region
and the solid line, respectively.

∑
n |φn(0)|2 = kmax/π, proving that the minimal length

in terms of min-entropy is given by (see Fig. 9)

Γ∞min = − log(kmax/π) . (72)

In particular, whenever the variance-based minimal
length is normalised, i.e. l2min = 1, the minimal length in
terms of min-entropy is given bys

Γ∞min = log 2 ≡ 1 [bit] , (73)

i.e. the minimal length is exactly one bit.

V. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Minimal length is to be understood as the minimal
possible uncertainty about position measurements due to
a modification of the Heisenberg algebra. Nevertheless,
two questions remained to be settled: first, under what
assumptions does a modification actually imply minimal
length? This line of thought is in contrast to previous at-
tempts where only the existence of operators was shown
which both show minimal length and satisfy the algebra.
Despite its importance this question has not been an-
swered so far to the best of our knowledge. One of our
main results, Theorem 1, clarifies this issue and proves
under physically well-motivated assumptions the unique-
ness of such operators. As such it justifies results ob-
tained in previous literature.

Second, one should operationally motivate the choice
of uncertainty measure used to define minimal length,
since such measures are far from unique. The choice to
use variances is in this context not at all an obvious one.
Instead entropic measures are known to have an opera-
tional interpretation while not suffering from a number
of severe deficiencies that variances show if interpreted
as a measure of uncertainty. We therefore introduce and

show implications of an entropic formulation of minimal
length.
Our main results can be summarized as follows: the

states which correspond to the maximal possible local-
ization in the x space in terms of variance ∆x and of the
Shannon entropy hx or min-entropy hx∞, are different,
showing that the physical notion of minimal length itself
depends on the particular choice adapted to its opera-
tional meaning. The min-entropy lower bounds all other
Rényi-α entropies; likewise the minimal length in terms
of min-entropy is a lower bound to all other entropic min-
imal lengths and turns out to be exactly one bit. On the
other side, entropic bounds also show another novel fea-
ture, namely the presence of an upper bound on the en-
tropy in p space hp or hp∞ for "physical states". In other
words deformations of the standard Heisenberg algebra
leading to a minimal length lead to a lower limit on the
information we can get on a given state in terms of its
momentum distribution. This is not the case if we use
variances to quantify this information, since the value of
∆p can be arbitrarily large.
We have established a framework that allows to com-

pute optimal and state-independent uncertainty relations
for modified Heisenberg algebras (see e.g. Theorem 2
and Corollary 3). Optimal and state-independent uncer-
tainty relations directly yield minimal lengths, but con-
tain much more information as they describe the uncer-
tainties for all quantum states in the modified algebra.
One of the natural generalizations would be to extend

our setting to higher dimensions. We hope that the study
of the entropic uncertainties in three and four dimensions
may shed some light on the plausible connection that
might exist between previous limits such as bound on in-
formation storage (holographic bound) [47–49], bounds
on information scrambling/chaos [50], bounds on quan-
tum evolution [51–53] (see also the book [54]) and quan-
tum computation/complexity [55–57].
It might be also interesting to apply the general treat-

ment of the geometry of the Heisenberg algebra in the
context of Aharonov’s reformulation of quantum theory
in terms of modular variables, see [58], in the case we
have considered of a deformed Heisenberg algebra.
Finally, our new entropic bounds on hx and hp are

directly applicable to the entropic steering inequalities
formulated in [59] and thus lead to new limitations on
the amount of entanglement that can be shared between
two distant parties governed by a modified Heisenberg
algebra.
It is worth noting that one of our main results, The-

orem 1, directly links the study of quantum physics in
a modified algebra to the study of classical informa-
tion processing of bandlimited analog signals. Quantum
states are then replaced by the complex current in a wire,
the considered observables change from position and mo-
mentum to time and frequency (again linked by Fourier
transformation). A momentum cut-off due to a modi-
fied algebra can therefore be understood as a frequency
(or “band”) limitation of the complex current. We al-
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ready exploited this analogy to some extent by consider-
ing operationally more relevant uncertainty measures as
was first done in the well-studied field [60–62] of classical
information processing. By considering the Nyquist sam-
pling theorem steps into this direction have been taken
by [63]. However, we strongly believe that one can obtain
many more fundamental insights in the field of modified
algebras by just transferring results and concepts from
classical information theory.
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Conclusions

In order to draw a conclusion to this thesis we can have a second look at our initial
three questions:

(1.) How can we quantify measurement/preparation uncertainty?

The choice of the 'correct' error measure for quantifying measurement uncertainty
has been the content of several debates within the last decade (most prominently
[Oza13] vs. [BLW13]). In this thesis we adapted the position of [BLW14b] and
identify measurement uncertainty with the task of �nding good approximate joint
measurements.
In chapter Ch. 2 we provided a framework that allows to construct such error

measures in a wide range of situations. Thereby, the underlying construction can
be seen as a direct generalization of the error measures from [BLW14b]. The core
of our framework are cost functions. They are regarded as an open input to the
mathematical construction of an error measure. In a particular situation, this open
input can be taken as a tool to model the nature of the underlying physics in order
to get a meaningful measurement uncertainty relation.
We used this tool in chapter Ch. 5 for deducing measurement uncertainty rela-

tions for information theoretic applications. We considered error measures based
on the discrete metric. This metric is the natural choice for comparing two mea-
surements with coinciding but unstructured outcome sets. However, our con-
struction is not limited to this, since, by a suitable choice of the cost function,
measurements with di�erent outcome sets can be compared, as well. We had to
take care of this, in the de�nition of entropic measurement uncertainty relations.
Previous literature on preparation uncertainty relations was concentrated on

taking variances and Shannon entropies as deviation measure. In this thesis, i.e.
in chapter Ch. 3, we additionally introduced a generalized notion of deviation
based on a general cost function. This construction yields variances and Shannon
entropies as particular examples, obtained by taking the square euclidean distance
or the self-information as cost function.



Chapter 8: conclusions

(2.) How can we compute measurement/preparation uncertainty

relations?

In chapter Ch. 2 we proved the convexity of measurement uncertainty regions.
This implies that all uncertainty relations can be described by a collection of linear
uncertainty relations. For measurements on �nite Hilbert spaces and with �nite
outcome sets, those linear relations can be computed by semide�nite programming.
Hence, we can conclude that, in a �nite setting, measurement uncertainty relations
are e�ciently computable.
However, this changes for continuous outcome sets. Here, the methods devel-

oped for �nite observables are not applicable any more. Hence, computing optimal
entropic measurement uncertainty relations remains an open problem. The best
we achieved in this case is to provide lower bounds in terms of uncertainty rela-
tions based on the discrete metric and, for sharp measurements, by linear entropic
preparation uncertainty relations.
For �nite Hilbert spaces and deviation measures based on cost functions with

�nite support, the uncertainty region consists of a union of �nitely many joint
numerical ranges. Hence, in this case, preparation uncertainty relations can be
computed e�ciently, as well.
For preparation uncertainty in terms of variances an algorithmic method is pro-

vided, which allows to satisfactorily compute linear uncertainty relations. However,
variance based uncertainty regions do not necessarily have to be convex. Hence,
non-linear improvements are possible and an open topic. The algorithmic method
also works for general POVMs. This was used in [SDW7] to improve an existing
entanglement-detection scheme with respect to local noise. Here the new method
allowed us to compute the in�uence of local noise sources, i.e. of noisy detectors,
within a fully quantum mechanical framework which then leads to more sensitive
con�dence intervals for a detection of entanglement.
We provided algorithmic methods for computing preparation uncertainty in

terms of entropies, too. Unfortunately, these methods produce, in �nite runtime,
only upper bounds on the optimal uncertainty and do not provide a gap estimate.
Hence, they should better not be used in critical applications like security proofs
or entanglement detection schemes. For the special, but very common, case of two
sharp measurements, we proved an additivity theorem for the global uncertainty
of local measurements. In this case only local bounds have to be computed. An
interesting application of this result are multi qubit systems, here all local bounds
can be computed easily.
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(3.) Can we �nd connections between measurement and preparation

unceratinty relations?

By using the constructions provided in this thesis, measurement and preparation
uncertainty can both be based on a cost function. Therefore, it makes sense to
compare a measurement and a preparation uncertainty relation for a common cost
function. Within these terms, an answer to the above question is given by Thm. 3.4
in chapter Ch. 3.
Here we proved that the statement

preparation uncertainty � measurement uncertainty

holds for linear measurement uncertainty relations between sharp measurements.
Interestingly, the analogous statement will fail if we compare the corresponding
non-linear uncertainty relations, here we expect no clear ordering. An analogous
statement will also fail for non-sharp measurements.
In chapter Ch. 5, we had a closer look at this statement for information the-

oretic quantities. For the special case of two sharp measurements A and B

and equal weights, we can assign a second meaning to the maximal overlap,
c∗ = maxij |〈φAi |φBj 〉| which was previously only used as indicator for the pres-
ence of preparation uncertainty relations: He we have the bound

εdm(A|A′) + εdm(B|B′) ≥ 2(1− c∗),

for errors based on the discrete metric, and

εinfo(A|A′) + εinfo(B|B′) ≥ −2 log(c∗),

for errors based on the self-information.
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Appendix: Optimal Transport

A.1 Kantorovich duality

In this appendix we collect the basic theory of optimal transport adapted to the finite setting at
hand. This eliminates all the topological and measure theoretic fine points that can be found, e.g., in
Villani’s book [21], which we also recommend for extended proofs of the statements in our summary.
We slightly generalize the setting from the cost functions used in the main text of this paper: We
allow the two variables on which the cost function depends to range over different sets. This might
actually be useful for comparing observables, which then need not have the same outcome sets. Which
outcomes are considered to be close or the same must be specified in terms of the cost function. We
introduce this generalization here less for the sake of applications rather than for a simplification of
the proofs, in particular for the book-keeping of paths in the proof of Lemma 2.

The basic setting is that of two finite sets X and Y , and a arbitrary function c : X × Y → R,
called the cost function. The task is to optimize the transport of some distribution of stuff on X,
described by a distribution function p : X → R+, to a final distribution q : Y → R+ on Y when
the transportation of one unit of stuff from the point x to the point y costs c(x, y). In the first such
scenario ever considered, namely by Gaspar Monge, the “stuff” was earth, the distribution p a hill,
and q a fortress. Villani [21] likes to phrase the scenario in terms of bread produced at bakeries x ∈ X
to be delivered to cafés y ∈ Y . This makes plain that optimal transport is sometimes considered a
branch of mathematical economics, and indeed Leonid Kantorovich, who created much of the theory,
received a Nobel prize in economics. In our case the “stuff” will be probability.

A transport plan (or coupling) will be a probability distribution γ : X × Y → R+, which encodes
how much stuff is moved from any x to any y. Since all of p is to be moved,

∑
y γ(x, y) = p(x), and

since all stuff is to be delivered,
∑
x γ(x, y) = q(y). Now, for any transport plan γ we get a total cost

of
∑
x,y γ(x, y)c(x, y), and we are interested in the optimum

č(p, q) = inf
γ

{∑

xy

c(x, y)γ(x, y)
∣∣ γ couples p to q

}
. (36)

This is called the primal problem, to which there is also a dual problem. In economic language it
concerns pricing schemes, that is, pairs of functions Φ : X → R and Ψ : Y → R satisfying the
inequality

Φ(x)−Ψ(y) ≤ c(x, y) for all x ∈ X, y ∈ Y, (37)

and demands to maximize

ĉ(p, q) = sup
Φ,Ψ

{∑

x

Φ(x)p(x)−
∑

y

Ψ(y)q(y)
∣∣ (Φ,Ψ) is a pricing scheme

}
. (38)

In Villani’s example [21], think of a consortium of bakeries and cafés, that used to organize the
transport themselves according to some plan γ. Now they are thinking of hiring a contractor, which
offers to do the job, charging Φ(x) for every unit picked up from bakery x, and giving Ψ(y) to café y
on delivery (these numbers can be negative). Their offer is that this will reduce overall costs, since
their pricing scheme satisfies (37). Indeed, the overall charge to the consortium will be

∑

x

Φ(x)p(x)−
∑

y

Ψ(y)q(y) =
∑

xy

(
Φ(x)−Ψ(y)

)
γ(x, y) ≤

∑

xy

c(x, y)γ(x, y). (39)

Taking the sup on the left hand side of this inequality (the company will try to maximize their profits
by adjusting the pricing scheme (Φ,Ψ)) and the inf on the right hand side (the transport plan γ was

15



already optimized), we get ĉ(p, q) ≤ č(p, q). It can be shown via the general duality theory of linear
programming [20] that the duality gap closes in this case, i.e., we actually always have

ĉ(p, q) = č(p, q). (40)

So the consortium will face the same transport costs in the end if the contractor chooses an opti-
mal pricing scheme. (Note that both the infimum and the supremum in the definitions of č and ĉ,
respectively, are attained as X and Y are finite sets.)

What is especially interesting for us, however, is that the structure of the optimal solutions for
both variational problems is very special, and both problems can be reduced to a combinatorial
optimization over finitely many possibilities, which furthermore can be constructed independently of
p and q. Indeed, pricing schemes and transport plans are both related to certain subsets of X × Y .
We define S(γ) ⊆ X × Y as the support of γ, i.e., the set of pairs on which γ(x, y) > 0. For a pricing
scheme (Φ,Ψ) we define the equality set E(Φ,Ψ) as the set of points (x, y) for which equality holds
in (37). Then equality holds in (39) if and only if S(γ) ⊂ E(Φ,Ψ). Note that for γ to satisfy the
marginal condition for given p and q, its support S(γ) cannot become too small (depending on p and
q). On the other hand, E(Φ,Ψ) cannot be too large, because the resulting system of equations for
Φ(x) and Ψ(y) would become overdetermined and inconsistent. The kind of set for which they meet
is described in the following Definition.

Definition 1. Let X,Y be finite sets and c : X × Y → R a function. Then a subset Γ ⊂ X × Y
is called cyclically c-monotone (“ccm” for short), if for any sequence of distinct pairs (x1, y1) ∈
Γ, . . . , (xn, yn) ∈ Γ, and any permutation π of {1, . . . , n} the inequality

n∑

i=1

c(xi, yi) ≤
n∑

i=1

c(xi, yπi) (41)

holds. When Γ is not properly contained in another cyclically c-monotone set, it is called maximally
cyclically c-monotone (“mccm” for short).

A basic example of a ccm set is the equality set E(Φ,Ψ) for any pricing scheme (Φ,Ψ). Indeed,
for (xi, yi) ∈ E(Φ,Ψ) and any permutation π we have

n∑

i=1

c(xi, yi) =

n∑

i=1

(
Φ(xi)−Ψ(yi)

)
) =

n∑

i=1

(
Φ(xi)−Ψ(yπi)

)
≤

n∑

i=1

c(xi, yπi) (42)

The role of ccm sets in the variational problems (36) and (38) is summarized in the following propo-
sition.

Proposition 2. Let X,Y, c, p, q be given as above. Then

(1) A coupling γ minimizes (36) if and only if S(γ) is ccm.

(2) The dual problem (38) has a maximizer (Φ,Ψ) for which E(Φ,Ψ) is mccm.

(3) If Γ ⊆ X × Y is mccm, there is a pricing scheme (Φ,Ψ) with E(Φ,Ψ) = Γ, and (Φ,Ψ) is
uniquely determined by Γ up to the addition of the same constant to Φ and to Ψ.

Sketch of proof.
(1) Suppose (xi, yi) ∈ S(γ) (i = 1, . . . , n), and let π be any permutation. Set δ = mini γ(xi, yi). Then
we can modify γ by subtracting δ from any γ(xi, yi) and adding δ to γ(xi, yπi). This operation keeps
γ ≥ 0 and does not change the marginals. The target functional in the infimum (36) is changed by δ
times the difference of the two sides of (41). For a minimizer γ this change must be ≥ 0, which gives
inequality (41). For the converse we need a Lemma, whose proof will be sketched below.
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Lemma 2. For any ccm set Γ there is some pricing scheme (Φ,Ψ) with E(Φ,Ψ) ⊇ Γ.

By applying this to Γ = S(γ) we find that the duality gap closes for γ, i.e., equality holds in (39),
and hence γ is a minimizer.

(2) Every subset Γ ⊂ X×Y can be thought of as a bipartite graph with vertices X∪Y and an edge
joining x ∈ X and y ∈ Y iff (x, y) ∈ Γ (see Fig. 9). We call Γ connected, if any two vertices are linked
by a sequence of edges. Consider now the equality set E(Φ,Ψ) of some pricing scheme. We modify
(Φ,Ψ) by picking some connected component, and setting Φ′(x) = Φ(x) + a and Ψ′(y) = Ψ(y) + a for
all x, y in that component. If |a| is sufficiently small, (Φ′,Ψ′) will still satisfy all the inequalities (37),
and E(Φ′,Ψ′) = E(Φ,Ψ). The target functional in the optimization (38) depends linearly on a, so
moving in the appropriate direction will increase, or at least not decrease it. We can continue until
another one of the inequalities (37) becomes tight. At this point E(Φ′,Ψ′) ) E(Φ,Ψ). This process
can be continued until the equality set E(Φ,Ψ) is connected. Then (Φ,Ψ) is uniquely determined by
E(Φ,Ψ) up to a common constant.

1 11

3

2

1

3

2

3 33

44

3

1

1

2

2

3

3

4

4

X

Y

X Y

Figure 9: Representation of a subset Γ ⊂ X × Y (left) as a bipartite graph (right). The graph is a
connected tree.

It remains to show that connected equality sets E(Φ,Ψ) are mccm. Suppose that Γ ⊇ E(Φ,Ψ) is
ccm. Then by Lemma 2 we can find a pricing scheme (Φ′,Ψ′) with E(Φ′,Ψ′) ⊇ E(Φ,Ψ). But using
just the equalities in (37) coming from the connected E(Φ,Ψ), we already find that Φ′ = Φ + a and
Ψ′ = Ψ + a, so we must have E(Φ′,Ψ′) = E(Φ,Ψ).

(3) is trivial from the proof of (2) that mccm sets are connected.

Proof sketch of Lemma 2. Our proof will give some additional information on the set of all pricing
schemes that satisfy E(Φ,Ψ) ⊃ Γ and Φ(x0) = 0 for some reference point x0 ∈ X to fix the otherwise
arbitrary additive constant. Namely we will explicitly construct the largest element (Φ+,Ψ+) of this
set and the smallest (Φ−,Ψ−), so that all other schemes (Φ,Ψ) satisfy

Φ−(x) ≤ Φ(x) ≤ Φ+(x) and Ψ−(y) ≤ Ψ(y) ≤ Ψ+(y) (43)

for all x ∈ X and y ∈ Y . The idea is to optimize the sums of certain costs over paths in X ∪ Y .

We define a Γ-adapted path as a sequence of vertices z1, . . . , zn ∈ X ∪ Y such that the zi ∈ X ⇒
(zi, zi+1) ∈ Γ, and zi ∈ Y ⇒ zi+1 ∈ X. For such a path we define

c(z1, . . . , zn) =
n−1∑

i=1

c(zi, zi+1), (44)
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with the convention c(y, x) := −c(x, y) for x ∈ X, y ∈ Y . Then Γ is ccm if and only if c(z1, . . . , zn, z1) ≤
0 for every Γ-adapted closed path. This is immediate for cyclic permutations, and follows for more
general ones by cycle decomposition. The assertion of Lemma 2 is trivial if Γ = ∅, so we can pick a
point x0 ∈ X for which some edge (x0, y) ∈ Γ exists. Then, for any z ∈ X ∪ Y , we define, for z 6= x0,

χ+(z) := − sup c(x0, . . . , z) and χ−(z) := sup c(z, . . . , x0), (45)

where the suprema are over all Γ-adapted paths between the specified endpoints, we define χ+(x0) :=
χ−(x0) := 0, and empty suprema are defined as −∞. Then χ± are the maximal and minimal pricing
schemes, when written as two functions Φ±(x) = χ±(x) and Ψ±(y) = χ±(y) for x ∈ X and y ∈ Y .

For proving these assertions, consider paths of the type (x0, . . . , y, x). For this to be Γ-adapted,
there is no constraint on the last link, so

−χ+(y)− c(x, y) ≤ −χ+(x), and sup
y

{
−χ+(y)− c(x, y)

}
= χ+(x). (46)

Here the inequality follows because the adapted paths x0 → x going via y as the last step are a
subclass of all adapted paths and give a smaller supremum. The second statement follows, because
for x 6= x0 there has to be some last step from Y to x. The inequality (46) also shows that (Φ+,Ψ+)
is a pricing scheme. The same argument applied to the decomposition of paths (x0, . . . , x, y) with
(x, y) ∈ Γ gives the inequality

−χ+(x) + c(x, y) ≤ −χ+(y) for (x, y) ∈ Γ. (47)

Combined with inequality (46) we get that (Φ+,Ψ+) has equality set E(Φ+,Ψ+) at least Γ. The
corresponding statements for χ− follow by first considering paths (y, x, . . . , x0) and then (x, y . . . , x0)
with (x, y) ∈ Γ.

Finally, in order to show the inequalities (43), let (Φ,Ψ) be a tight pricing scheme with Φ(x0) = 0
and E(Φ,Ψ) ⊃ Γ. Consider first any Γ-adapted path (x0, y0, x1, . . . , xn, y). Then,

c(x0, . . . , xn, y) =

n−1∑

i=0

(
Φ(xi)−Ψ(yi)− c(xi+1, yi)

)
+Φ(xn)−Ψ(y)

= Φ(x0)−Ψ(y) +

n−1∑

i=0

(
Φ(xi+1)−Ψ(yi)− c(xi+1, yi)

)

≤ Φ(x0)−Ψ(y) = −Ψ(y), (48)

because the sum is termwise non-positive due to the pricing scheme property. Hence by taking the
supremum we get χ+(y) ≥ Ψ(y). The other inequalities follow with the same arguments applied to
paths of the type (x0, . . . , yn, x), (x, y0, . . . , x0), and (y, x1, . . . , x0).

Let us summarize the consequences of Proposition 2 for the computation of minimal costs (36).
Given any cost function c, the first step is to enumerate the corresponding mccm sets, say Γα, α ∈ S,
for some finite label set S, and to compute for each of these the pricing scheme (Φα,Ψα) (up to an
overall additive constant, see Proposition 2). This step depends only on the chosen cost function c.
Then, for any distributions p, q we get

ĉ(p, q) = č(p, q) = max
α∈S

∑

x

Φα(x)p(x)−
∑

y

Ψα(y)q(y). (49)

This is very fast to compute, so the preparatory work of determining the (Φα,Ψα) is well invested
if many such expressions have to be computed. However, even more important for us that (49)
simplifies the variational problem sufficiently so that we can combine it with the optimization over
joint measurements (see Sect. 4.1). Of course, this leaves open the question of how to determine all
mccm sets for a cost function. Some remarks about this will be collected in the next subsection.
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A.2 How to find all mccm sets

We will begin with a basic algorithm for the general finite setting, in which X,Y , and the cost
function c are arbitrary. Often the task can be greatly simplified if more structure is given. These
simplifications will be described in the following sections.

The basic algorithm will be a growth process for ccm subsets Γ ⊆ X × Y , which stops as soon
as Γ is connected (cf. the proof of Proposition 2(2)). After that, we can compute the unique pricing
scheme (Φ,Ψ) with equality on Γ by solving the system of linear equations with (x, y) ∈ Γ from (37).
This scheme may have additional equality pairs extending Γ to an mccm set. Hence, the same (Φ,Ψ)
and mccm sets may arise from another route of the growth process. Nevertheless, we can stop the
growth when Γ is connected, and eliminate doubles as a last step of the algorithm. The main part of
the algorithm will thus aim at finding all connected ccm trees, where by definition a tree is a graph
containing no cycles. We take each tree to be given by a list of edges (x1, y1), . . . (xN , yN ), which we
take to be written in lexicographic ordering, relative to some arbitrary numberings X = {1, . . . , |X|}
and Y = {1, . . . , |Y |}. Hence the first element in the list will be (1, y), where y is the first element
connected to 1 ∈ X.

At stage k of the algorithm we will have a list of all possible initial sequences (x1, y1), . . . (xk, yk)
of lexicographically ordered ccm trees. For each such sequence the possible next elements will be
determined, and all the resulting edge-lists of length k+ 1 form the next stage of the algorithm. Now
suppose we have some list (x1, y1), . . . (xk, yk). What can the next pair (x′, y′) be? There are two
possibilities:

(a) x′ = xk is unchanged. Then lexicographic ordering dictates that y′ > yk. Suppose that y′ is
already connected to some x < xk. Then adding the edge (xk, y

′) would imply that y′ could
be reached in two different ways from the starting node (x = 1). Since we are looking only for
trees, we must therefore restrict to only those y′ > yk which are yet unconnected.

(b) x is incremented. Since in the end all vertices x must lie in one connected component, the next
one has to be x′ = xk + 1. Since the graphs at any stage should be connected, y′ must be a
previously connected Y -vertex.

With each new addition we also check the ccm property of the resulting graph. The best way to do
this is to store with any graph the functions Φ,Ψ on the set of already connected nodes (starting from
Φ(1) = 0), and update them with any growth step. We then only have to verify inequality (37) for
every new node paired with every old one. Since the equality set of any pricing scheme is ccm, this
is sufficient. The algorithm will stop as soon as all nodes are included, i.e., after |X|+ |Y | − 1 steps.

A.3 The linearly ordered case

When we look at standard quantum observables, given by a Hermitian operator A, the outcomes
are understood to be the eigenvalues of A, i.e., real numbers. Moreover, we typically look at cost
functions which depend on the difference (x− y) of two eigenvalues, i.e.,

c(x, y) = h
(
x− y

)
. (50)

For the Wasserstein distances one uses h(t) = |t|α with α ≥ 1. The following Lemma allows, in
addition, arbitrary convex, not necessarily even functions h.

Lemma 3. Let h : R→ R be convex, and c be given by (50). Then for x1 ≤ x2 and y1 ≤ y2 we have

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1), (51)

with strict inequality if h is strictly convex, x1 < x2 and y1 < y2.
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Proof. Since x2−x1 ≥ 0 and y2−y1 ≥ 0, there exists λ ∈ [0, 1] such that (1−λ)(x2−x1) = λ(y2−y1).
This implies x1−y1 = λ(x1−y2)+(1−λ)(x2−y1), so that convexity of h gives c(x1, y1) = h(x1−y1) ≤
λh(x1 − y2) + (1 − λ)h(x2 − y1) = λc(x1, y2) + (1 − λ)c(x2, y1). The same choice of λ also implies
x2 − y2 = (1 − λ)(x1 − y2) + λ(x2 − y1), so that similarly c(x2, y2) ≤ (1 − λ)c(x1, y2) + λc(x2, y1).
Adding up the two inequalities yields the desired result. If x1 < x2 and y1 < y2 are strict inequalities,
then λ ∈ (0, 1), so that strict convexity of h gives a strict overall inequality.

As a consequence, if Γ is a ccm set for the cost function c and (x1, y1) ∈ Γ, then all (x, y) ∈ Γ
satisfy either x ≤ x1 and y ≤ y1 or x ≥ x1 and y ≥ y1. Loosely speaking, while in Γ, one can only
move north-east or south-west, but never north-west or south-east.

This has immediate consequences for ccm sets: In each step in the lexicographically ordered list
(see the algorithm in the previous subsection) one either has to increase x by one or increase y by one,
going from (1, 1) to the maximum. This is a simple drive on the Manhattan grid, and is parameterized
by the instructions on whether to go north or east in every step. Of the |X|+ |Y |− 2 necessary steps,
|X| − 1 have to go in the east direction, so altogether we will have at most

r =

(
|X|+ |Y | − 2
|X| − 1

)
(52)

mccm sets and pricing schemes. They are quickly enumerated without going through the full tree
search described in the previous subsection.

A.4 The metric case

Another case in which a little bit more can be said is the following [21, Case 5.4, p.56]:

Lemma 4. Let X = Y , and consider a cost function c(x, y) which is a metric on X. Then:
(1) Optimal pricing schemes satisfy Φ = Ψ, and the Lipshitz condition |Φ(x)− Φ(y)| ≤ c(x, y).
(2) All mccm sets contain the diagonal.

Proof. Any pricing schemes satisfies Φ(x) − Ψ(x) ≤ c(x, x) = 0, i.e., Φ(x) ≤ Ψ(x). For an optimal
scheme, and y ∈ X, we can find x′ such that Ψ(y) = Φ(x′)− c(x′, y). Hence

Ψ(y)−Ψ(x) ≤
(
Φ(x′)− c(x′, y)

)
+
(
c(x′, x)− Φ(x′)

)
≤ c(y, x). (53)

By exchanging x and y we get |Ψ(y)−Ψ(x)| ≤ c(y, x). Moreover, given x, some y will satisfy

Φ(x) = Ψ(y) + c(x, y) ≥ Ψ(x), (54)

which combined with the previous first inequality gives Φ = Ψ. In particular, every (x, x) belongs to
the equality set.

One even more special case is that of the discrete metric, c(x, y) = 1− δxy. In this case it makes
no sense to look at error exponents, because c(x, y)α = c(x, y). Moreover, the Lipshitz condition
|Φ(x)− Φ(y)| ≤ c(x, y) is vacuous for x = y, and otherwise only asserts that Φ(x)− Φ(y) ≤ 1, which
after adjustment of a constant just means that |Φ(x)| ≤ 1/2 for all x. Hence the transportation cost
is just the `1 norm up to a factor, i.e.,

č(p, q) =
1

2
sup
|Φ|≤1

∑

x

(p(x)− q(x))Φ(x) =
1

2

∑

x

|p(x)− q(x)|. (55)
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Appendix

Strict monotonicity of the gap

We will consider measurements A and B which could
also be represented by two general POVMs. Further-
more, we will assume that we already have an initial outer
approximation of the corresponding set C by a polyhe-
dron P(R0), constructed from initial directionsR0. Such
a set of directions can be constructed by taking the face
normals of a cube, as in Fig. 3.
Let v∗ be a vertex of E(R) on which the minimum of

µ is attained, i.e. c−(R) = µ(v∗) and take r′ = ∇µ|v∗

as new direction such as R′ := R ∪ r′ as new set of
directions, in every step. Then the bound c−(R) will
either increase after a �nite round of such steps or attain
a global minimum on C.

Proof. We will show that, by taking r′ as above, the point
v∗ will be removed from the resulting polyhedron P(R′)
whenever v∗ is not in C. From this statement we can
conclude that: If v∗ is removed, and there is no point in
C which attains the value c−(R′), the new bound c−(R′)
will fail to increase if and only if there is another extremal
point in E(R′) that also attains the same minimal value
of µ. However, because E(R′) is a �nite set, all those
points will be removed from it after a �nite round of
steps. Hence, the bound c− will increase after a �nite
round of steps.
In the alternative case, when v∗ is in C, the upper

bound c+ will also be attained on v∗, such that c+ =
c− = c. Therefore, we already would have found the
optimal bound.
Consider a �xed v∗ and the level-set Mv∗ = {x ∈

R3|µ(x) ≥ µ(v∗)}. The set Mv∗ is convex and obviously
contains C and P(R) as subsets. µ is a quadratic func-
tional, so its gradient is well de�ned everywhere. More-
over, the direction r′ = ∇µ|v∗ is the normal direction of
the tangent space ofMv∗ at the point v∗. Due to convex-
ity, Mv∗ is described by linear inequalities corresponding
to its tangent spaces, which implies that

r′.x ≥ r′.v∗ (14)

for all points x from Mv∗ , and so, for all x from C
and P(R), as well. More precisely, we have r′.v∗ =
min{r′.x|x ∈ Mv∗}, with a minimum that is attained
uniquely on v∗, because µ is strictly concave. If we now
consider the new set of directionR′ and its corresponding
inequalities for constructing P(R′), see (5), we have

r′.x ≥ h(r′) = min{r′.x|x ∈ C} ≥ r′.v∗ (15)

for all x ∈ P(R′). Hereby, equality in the last part of
(15) holds if and only if v∗ ∈ C. In all other cases the
functional r′.x separates the set P(R′) from the point
v∗.

Precision per Step

A crucial property of any numerical method is its per-
formance. For the method provided in this work we mea-
sure it by the numerical precision in comparison to the
number of steps required. As a benchmarking we com-
puted several random examples and illustrated three of
them in Fig. 5. We observe that in the typical case,
there are two di�erent kinds of scaling behaviour. Dur-
ing the �rst part of steps, the precision increases slower
than in the second. In the regime of the �rst steps the
algorithm improves the outer approximation at very dif-
ferent points. However, once the outer polyherdron is �ne
enough, the algorithm generates vertices close to the ac-
tual optimum. If this optimum is unique, the algorithm
will go to a regime where all improvements are made
locally. In Fig. 5 this transition from global to local op-
timization is marked. After this point the improvement
of precision per step, measured in decimal places of the
gap ε, scales linear.

steps

decimal
precision

(i) (ii) (iii)(log1/10 ε)

transition to
local optimization

FIG. 5. Typical scaling behaviour of the gap ε in dependence
of the steps made by the algorithm. Here depicted for three
di�erent randomly chosen pairs of operators, see Tab. I. In the
above examples, the optimal uncertainty bound is attained at
a unique point on C, hence we observe a localization of our
algorithm around this point. When this happens the scaling
of the precision ε, measured in decimal places, becomes linear,
i.e. ε ≈ 10−λ#steps .
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sample method size steps

(i) Haar random 30× 30 110

(ii)
Haar random eigenvectors
uniform dist. spectrum 200× 200 214

(iii) Haar random 200× 200 326

TABLE I. Parameters of di�erent random examples, see also
Fig.-5, in order to benchmark the performance of the algo-
rithm.

This behaviour agrees with the worst case example
given in Fig. 6, where we considered two orthogonal an-
gular momentum components, Lz and Lx. Here rotations
around the y-axis, in terms of spin components, impose
a rotational degree of freedom on the set of all linear
combinations of the operators Lz, Lx and L2

x + L2
z =

s(s+1)−L2
y. This results in a region C that is rotational

symmetric, as well. As the variance sum itself shares the
same symmetry the optimum on C will be attained on a
continuum of points.

decimal precision

log1/10(ε)

s = 1

s = 10

s = 30

steps

FIG. 6. Scaling behaviour of the precision ε for orthogonal
angular momentum components. Depicted for di�erent spins
s: red=1, green =10, blue= 30. In these examples the optimal
value of the uncertainty bound is not attained on a �nite set of
points, hence we have no localization of the algorithm. This
benchmarks the worst case with respect to scaling. In the
above example we rescaled the spectra of the operators to the
unit interval. From the �gure above can been seen that the
algorithm shows the same scaling behaviour in all three cases.
This illustrates that, the amount of steps the algorithm takes
for reaching a certain target precision, is independent of the
underlying Hilbert space dimension.

This is a worst case scenario, because our method has
to improve the outer approximation on a continuum of
points. Hence, no localization of the algorithm can be
expected, and no transition in a linear scaling regime
happens, for this compare Fig. 5 with Fig. 6. Note that,
in this highly symetrical case there is no need to performe
the algorithm on the whole set C. If we take care of

the ounderlying symmetry the problem reduces to a fast
scaling problem on a two dimensioal subset of C again.

Examples

Non-orthogonal spin components:

We computed the minimal uncertainty for a measurement
of two spin-s components that span an angle φ. Without
loss of generality we can assume one of the components
to be given by Lz and the other one to lie in the Lz −Lx
plane. So we can take

Lφ = cosφLz + sinφLx. (16)

The value of the uncertainty bound in dependence of the
angle φ is shown in Fig. 7 and Tab. II.

0

π
s=3

s=2 s=1
φ

∆Lz + ∆Lφ

Lz

Lφ
φ

FIG. 7. Polar plot of the uncertainty bound between the non-
orthogonal spin components Lz and Lφ as a function of the
angle φ, depicted for spins s = 1, 2, 3

spin/angle 0 π
8

π
4

3π
8

π
2

1 0 0.0378 0.1431 0.2910 0.4365

2 0 0.0743 0.2754 0.5318 0.7478

3 0 0.1108 0.3984 0.7444 1.0131

TABLE II. Numerical values for the uncertainty of non-
orthogonal spin components Lz and Lφ. Due to periodicity
only angles from the interval [0, π/2] are relevant.

Entanglement detection with local noise

8/3

7/8

0 0.2 0.4 0.6 0.8 1

separable states
entangled states

∆2
ρ(M

α
1 ) + ∆2

ρ(M
α
2 )

α

FIG. 8. Linear uncertainty bounds with equal weights in
dependence of local noise, evaluated for measurements M1

and M2 on separable and entangled states. Any state that
yields a variance sum below the blue solid line is entangled.
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APPENDIX

APPENDIX A: PROOF OF THEOREM 1

Starting point of our examination is the Hilbert space
H := L2(R,dx), witht the usual Borel-Lebesgue mea-
sure, together with the standard position operator x with
dense domain D(x) = {ψ ∈ H | ‖xψ‖2 <∞}. Recall that
x is self-adjoint on D(x) and has continuous spectrum
σ(x) = R. The standard momentum operator k on H
with its domain D(k) of weakly differentiable functions
in H is related to x by the Fourier-transform on H and it
is self-adjoint. They fulfill the standard Heisenberg com-
mutation relation [x,k]ψ = iψ for ψ in a dense domain
of analyic vectors for both operators.

Our aim is to examine the situation where there is
another linear and self-adjoint operator p on H, possibly
unbounded and with domain D(p) such that there exists
a sufficiently well-behaved function f : R→ R such that

[x,p]ψ = if(p)ψ (A1)

for some sensible choice of ψ ∈ H.
More precisely we even expect the operator p having

domain D(p) just on a sub-Hilbert space P ⊂ H and such
that it is self-adjoint only in P and the commutation
relation (A1) only holds true for suitable vectors ψ ∈
P. Even more, we want to show that under suitable
assumptions on the function f we can find a function
p : I ⊆ R → R such that p = p(k) and I is a possibly
unbounded interval. The Hilbert space P can then be
identified with L2(I).

It is important here that we consider an embedding of
P into the larger space H = L2(R) since this allows us
later to interpret the operator p as a modified version of
the momentum operator.

1. An example

We start with an example from which we extract the
essential structure we use later in our assertion. For this
consider, as above, the Hilbert space H = L2(R,dx),
and standard position and momentum operators x and
k satisfying the standard canonical commutation rela-
tions xkψ− kxψ = iψ on a common dense set D of ana-
lytic vectors ψ. Denote by Ek the spectral measure of k.
Note that both operators, k and x, have simple spectrum
σ(k) = R = σ(x). That is, they are unitarily equivalent
to a position operator on some L2(R, µ), where µ is a
suitable measure [64, 65]. We consider the representa-
tion, where k (the momentum operator) acts on H as
the position operator, i.e. ∀ψ ∈ D(k) : (kψ)(k) = kψ(k),
and where D(k) is the domain of k.

Now consider the real-valued function p on R given by
p(k) = tan ◦ χI(k), k ∈ R, where χI is the characteristic
function on the interval I = [−π2 , π2 ]. From this we get a

self-adjoint operator

p := p(k) =
∫

R
p(λ)Ek(dλ).

with domain D̃(p) = {ψ ∈ H |
∫
R |p(λ)|2d〈ψ,Ek(λ)ψ〉 <

∞} and d〈ψ,Ek(λ)ψ〉 is the unique measure (on the
Borel-σ-algebra B(R)) given by 〈ψ,Ek(·)ψ〉.
Let P := L2(I, dx) ⊂ H and denote by P the projec-

tion H → P. Then it is easy to check that p = p(PkP ),
and, when regarded as an operator, p is self-adjoint on
the domain D(p) = D̃(p) ∩ P. Note that the operator
PkP is bounded, since the function k 7→ k is bounded
on I.
Denote the operator PkP , when regarded as operator

on the Hilbert space P, by kP . Then kP has simple spec-
trum σ(kP ) = R, and the self-adjoint, unbounded opera-
tor p, as operator on P has spectrum σ(R). Furthermore,
as such, p = p(kP ), and since the function tan is bijec-
tive on I, σ(p) is simple. Note that, when regarded as
operator on H the spectrum is not simple anymore, since
zero is then an infinitely degenerate eigenvalue of p. In
any case the spectral projections of p commute with the
spectral projections of k and kP , i.e. the operators kP
and p strongly commute.
Since the tangent is analytic the dense subspace of an-

alytic vectors D for p in P is contained in the space of an-
alytic vectors for x. For example, the smooth, compactly
supported functions in I that exponentially decay at the
boundary of I are analytic for p, and also for x. More-
over, for ψ ∈ D we have that xpψ − pxψ = i(1 + p2)ψ.
Now let U : R × H → H be the unitary 1-parameter

group of translations generated by x. Then for Ω ∈ B(R)
and t ∈ R we have that UtEk(Ω)U−t = Ek(Ω + t), where
Ω + t = {x + t |x ∈ Ω}. If g : R → R is an analytic
function we get (UtEk(Ω)U−tψ)(k) = χΩ(g(k−t))ψ(k) =
χΩg (k)ψ(k), where we set Ωg := {k ∈ R | g(k− t) ∈ Ω} =
g−1(Ω) + t. Hence UtEp(Ω)U−t = Ek(Ωp) = Ep(Ω′) +Q
with Ω′ := p(Ωp) ∩ [−π2 , π2 ] and Q = Ek(Ωp \ [−π2 , π2 ]).
This can also be used to see that for all ε ≤ π

2 there exists
an ε′ > 0 such that Ek([−ε, ε]) = Ep([−ε′, ε′]) by simply
choosing ε′ = arctan ε.

2. The general case

Assumptions. Given H, x, k as before. Let f : R→ R
be a function with the following properties:

• f is smooth.

• f(0) = 1.

• f is symmetric, i.e. ∀p ∈ R : f(−p) = f(p).

• f is convex on R+.

Furthermore there exists a closed subspace P ⊆ H with
projection P : H → P such that (p,D(p)) satisfies:

• D(p) ⊂ P
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• (p,D(p)) is a self-adoint, linear operator on P

• The spectrum σ(p) is continuous, coincides with R,
and is simple. I.e. there exists a vector ψ ∈ P such
that for any other vector φ ∈ P there exists a func-
tion f ∈ L2(σ(p), µ) such that φ =

∫
R f(t)dEp(t)ψ

and µ is the measure given by µ(Ω) = (Ep(Ω)ψ,ψ).

• There exists a dense subspace D ⊂ P such that:
∀ψ ∈ D : xpψ − pxψ = if(p)ψ.

• For all ψ ∈ D and for all n ∈ N it holds that xnψ ∈
D and pnψ ∈ D. In other words, D is a dense set
of analytic vectors in P for both, x and p.

We say that the objects (f,p,D(p),P) are admissible if
they satisfy all of the above assumptions.

The existence of dense subsets of analytic vectors for x,
respectively p follows from the simplicity of their spectra
[64, Theorem 69.3]. We want, however, that there exists a
common set of analytic vectors for both operators, which
is contained just in P.

By [64, Theorem 69.2] (or [65, Proposition 5.18]) the
assumption that p has simple spectrum implies that P ∼=
L2(R, µ), that is, vectors ψ ∈ P correspond to (equiva-
lence classes of) functions ψ ∈ L2(R, µ). Furthermore,
by abuse of notation, ∀ψ ∈ D(p) : (pψ)(p) = pψ(p).

Definition 1 ([35]). Let A and B be unbounded self-
adjoint operators on some Hilbert space H and EA and
EB their projection-valued measures over R. We say that
A and B strongly commute, if for all measurable sets
Ω,Ω′ ⊂ R the according spectral projections commute,
i.e. EA(Ω)EB(Ω′) = EB(Ω′)EA(Ω).

Theorem 4. Given the standard position and momen-
tum operators x and k on H = L2(R) and given
(f,p,D(p),P) admissible. Denote by B(R) the Borel-
σ-algebra on R and by Ek, Ep the spectral measures for
k and p, respectively.
Consider the following conditions:

• There exists ε0 such that ∀ 0 < ε ≤ ε0 ∃ε′ > 0 and
∃δ > 0 it holds:

‖Ek([−ε, ε])− Ep([−ε′, ε′])‖ < δ (A2)

and δ ∈ O(ε3).

• Given the strongly-continuous 1-paramter group Ut
of translations generated by x we require that for
any measurable set Ω ∈ B(R) there exists a mea-
sureable set Ω′ ∈ B(R) and a projection Q ≤
I− P , where P is the projection onto P, such that
UtEp(Ω)U−t = Ep(Ω′) +Q.

Then it follows that k, when restricted to P, has a self-
adjoint extension kP on P and that p and kP strongly
commute as operators on P.

By [65, Corollary 5.28] there then exists a dense linear
subspace in P invariant under both operators p and the
restricted k, such that they commute on vectors from
this domain.

Proof. The idea is to show that the spectral projections
commute for any pair of finite Borel sets Ω,Ω′ ∈ B(H).
These sets can be partitioned into finitely many intervals
of diameter ε and ε′. The spectral projections of k for
these intervals are simply translates of [−ε′, ε] by the uni-
tary group Ut generated by the position operator x. The
idea now is to show that we can approximate the pro-
jections U−tEp([−ε, ε])Ut by spectral projections Ep(Ω̃)
for some Ω̃ ∈ B(R) which depends on ε, ε′ and t. Note
that since B(R) is generated by open and bounded inter-
vals, and since spectral measures are countably additive
the assertion holds for all measurable sets if its holds for
bounded open intervals.
Let Ω,Ω′ ∈ B(R) be bounded and open intervals.

Choose any ε, ε′ > 0 and let Ωαε and Ωβε be a cover of
Ω and Ω′ by disjoint open intervals Ωαε := (−ε+α, ε+α)
and α, β are the corresponding indices for the shifts. By
countable additivity it follows

[Ek(Ω), Ep(Ω′)] =
∑

α,β

[Ek(Ωαε ), Ep(Ωβε )].

The unitary group Ut generated by x acts as transla-
tions on L2(R) when we view k as multiplication oper-
ator. Hence we have for the spectral projections Ek(Ω)
for some measurable set Ω ∈ B(R) that UtEk(Ω)U−t =
Ek(Ω + t). I.e. for each index α we get Ek(Ωαε ) =
UαEk(Ωε)U−α where Ωε := Ω0

ε .
Now choose ε < ε0 and let ε′ and δ such that
‖Ek(Ωε) − Ep(Ωε′)‖ < δ. Choose index sets I, J such
that Ω ⊂ ⋃α∈I Ωαε =: ΩIε and Ω′ ⊂ ⋃β∈J Ωβε′ =: ΩJε′ . It is
enough to show that the commutators [Ek(ΩIε ), Ep(ΩJε′)]
are small since this implies that this is also true for the
smaller projections Ek(Ω) and Ep(Ω′).
By assumption we get for all such α and with the no-

tation Ωε′ := Ω0
ε′

‖Ek(Ωαε )− UαEp(Ωε′)U−α‖ < δ.

Furthermore, we have that for each α ∈ I there exists a
measureable set Ωαε′ and a projections Qα ≤ I − P such
that

UαEp(Ωε′)U−α = Ep(Ωαε′) +Qα.

Hence, we obtain the following estimate:

‖[Ek(Ω), Ep(Ω′)]‖ ≤
∑

α,β

‖[Ek(Ωαε ), Ep(Ωβε )]‖

≤
∑

α,β

(
‖[UαEp(Ωε′)U−α, Ep(Ωβε )‖+ 2δ

)

=
∑

α,β

[
Ep(Ωαε′) +Qα, Ep(Ωβε ]‖+ 2δ

)

=
∑

α,β

2δ = 2|J ||I|δ ≤ 4|Ω||Ω′|
ε2

δ.



17

Since this estimate only depends on the partitioning of Ω
and Ω′ into small intervals and since we can choose this
partitioning arbitrarily small, it follows that

∀Ω,Ω′ ∈ B(R) : ‖[Ek(Ω), Ep(Ω′)]‖ = 0.

In particular this implies that for all measurable sets Ω ∈
B(R) the projections Ek(Ω) commute with the projection
P : H → P. By [64, Theorem 75.1] this implies that P
is a function of k, i.e. there exists a measurable function
χP on R such that P =

∫
R χP (λ)Ek(dλ). Furthermore,

χP is positive, χ2
P = χP and ‖χP ‖∞ = 1, hence it is an

indicator function of some measurable set I ∈ B(R), and
the projection P coincides with Ek(I). The restriction of
k to P is therefore given by

kP =
∫

R
χP (λ)λEk(dλ).

q.e.d.

Proposition 1. Given the standard position and mo-
mentum operators x and k on H = L2(R) and given
(f,p,D(p),P) admissible, satisfying the assumptions in
Theorem 4. Then there exists an interval I ⊆ R such that
P = L2(I), and a function p : I → R such that p = p(k)
on P. The interval is determined by the function f in
the following sense:
• If the function g(p) =

∫ p
0

1
f(s)ds is bounded then

I = [−kmax, kmax] and kmax is given by

kmax =
∫ ∞

0

1
f(p)dp.

• If g is unbounded then I = R.
Proof. By the previous theorem the operators kP and p
strongly commute on P. Let I ⊂ R the measureable set
with Ek(I) = P and P : H → P the projection onto P.
By assumption the spectrum of p is simple and therefore
the spectral projections Ek(Ω) with Ω ⊂ I are bounded
functions of p [35, Theorem VII.5]. Since for any such
Ω Ek(Ω) is a projection there exists a measureable set
Θ ⊂ R such that Ek(Ω) = Ep(Θ). Therefore there ex-
ists an almost everywhere finite, measureable, real-valued
function g on R such that

PkP =
∫

R
g(λ)Ep(dλ),

i.e. PkP = g(p). Now let ψ ∈ D. Then, by assumption

[x,p]ψ = if(p)ψ.

Then

[x, g(p)]ψ = ig′(p)f(p)ψ.

But, since [x,k]ψ = iψ we must have that g′ = 1
f , there-

fore

g(p) =
∫ p

0

1
f(s)ds.

Since the spectrum σ(g(p)) of g(p) is the essential range
of the function g we see that the spectrum of PkP is the
interval I = [−kmax, kmax], if g is bounded, and R if g
is unbounded. Hence the subspace P is isomorphic to
L2(I).
Conversely, since k has simple spectrum, there exists

a function h such that p = h(k), and this function is
necessarily unbounded. q.e.d.

APPENDIX B: PROOF OF THEOREM 2

We consider observables x and p that obey a modified
commutation relation as described is Section II. Since
we are interested in uncertainty relations that are opti-
mal for all states, we need to consider mixed states as
well. In order to focus on pure states one would need
to first show that for all mixed states there exists a pure
state that is “more optimal”, a notion that we will make
precise in the following.
We denote by Ω the set of mixed states ρ, given by the
density operators from B(P). When considering vari-
ances, the corresponding uncertainty region is given by

U =
{

(∆ρx,∆ρp) ∈ R2
+
∣∣ρ ∈ Ω

}
. (B1)

We can give a precise definition of the trade-off curve by
introducing a partial ordering relation “<” (“≤”), which
is given by saying that v < w (v ≤ w), for v, w ∈ R2,
if every component of v is smaller (small or equal) than
the corresponding component of w. The trade-off curve
Γ(U), i.e. the desired optimal and state-independent un-
certainty relation, is then given by all tuples from U that
are minimal in U with respect to the above ordering “<”,
i.e.

Γ(U) =
{
v ∈ U

∣∣@w ∈ U : w < v
}
. (B2)

Unfortunately, no general efficient method for computing
this trade-off curve is known. However, in Theorem 5, we
circumvent this circumstance by first providing a lower
bound on Γ(U) and then showing that this bound can
be attained. For the first step we need the notion of a
lower convex hull Ulc: This is obtained by first filling up
U with all points that are more uncertain than, at least,
some point from U , and then taking the convex hull of
this set, i.e.

Ulc = Conv
({
v ∈ R2∣∣∃w ∈ U : w ≤ v

})
. (B3)

Note that this does not add any additional extremal
points other than those already contained in the convex
hull of U (which are therefore already contained in U).

Theorem 5. Let x, p, Ω, U and Ulc be given as described
above and let U00 denote the set of attainable tuples of
second moments, i.e.

U00 =
{

(tr(ρx2), tr(ρp2))|ρ ∈ Ω
}
. (B4)
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Fig. 10: The lower convex hull Ulc (blue region) of some set U
(grey region) is obtained by considering hyperplanes (dashed
blue lines) for λ ∈ (0, 1). As in (20) the trade-off curve Γ(Ulc)
(solid blue line) of the convex hull can be parametrised by
values u(λ). The trade-off curve Γ(Ulc) is never “worse” than
the trade-off curve Γ(U) (solid red line); both curves coincide
if U is convex itself.

The notation indicates that U00 corresponds to the set
obtained by restricting U to states with expectations 〈x〉 =
〈p〉 = 0. Then

Γ(Ulc) = Γ(U) = Γ(U00) . (B5)

Proof. For any two sets V1 and V2 we introduce a partial
ordering relation “�” on the corresponding curves Γ(V1)
and Γ(V2), respectively, by saying that Γ(V1) � Γ(V2)
if and only if for all points v2 ∈ Γ(V2) there is a point
v1 ∈ Γ(V1) such that v1 ≤ v2.

By construction we know that Ulc is convex and
Γ(Ulc) � Γ(U). Note that U00 is also convex since it
is obtained as the range of an affine map of the convex
set Ω. Additionally, points in Γ(U00) are always in U and
hence

Γ(Ulc) � Γ(U) � Γ(U00) . (B6)

In the following we will prove that in fact Γ(Ulc) =
Γ(U00), which immediately implies the desired statement
(B5).

Since Ulc is convex, it is fully characterised by the in-
tersection of its supporting halfspaces (see for example
[33]), i.e. there is a function u(λ) such that

Ulc =
{

(v1, v2) ∈ R2
+|∀λ ∈ R : λv1 + (1− λ)v2 ≥ u(λ)

}

(B7)

The boundary of Ulc is the set of points which have an
intersection with a supporting hyperplane, i.e. λv1 +
(1− λ)v2 = u(λ). Moreover, Γ(Ulc) consists of points on

the boundary, hence that attain equality for λ ∈ (0, 1).
Conversely, u(λ) can be obtained by minimizing λv1 +
(1 − λ)v2 over all points in Ulc, for a fixed λ. However,
for λ in [0, 1], this minimization of a linear functional will
attain its minimum also on extremal points of Ulc, which
are contained in the boundary of U . We therefore can
write

u(λ) = inf
ρ∈Ω

λ∆ρx + (1− λ)∆ρp . (B8)

At this stage we can reformulate the variance of an ob-
servable A as

∆ρA = min
a∈R
〈(A− a)2〉ρ , (B9)

such that the r.h.s of (B8) turns into
min
α,η∈R

inf
ρ∈Ω

λ〈(x− η)2〉ρ + (1− λ)〈(p− α)2〉ρ . (B10)

The expectation of x can be shifted by multiplying with
exp(iηk). As p commutes with k, (see section II) this
procedure will not affect the variance ∆p, such that we
can always set η = 0 in the following. If we now represent
p as a function of the coordinate k and x as i∂k, the
minimization over ρ in (B10) corresponds to finding the
ground state energy, Eα, of the Schrödinger operator

Hα := −λ∂2
k + Vα(k) (B11)

with potential Vα(k) = (1− λ)(p(k)− α)2, i.e.
u(λ) = min

α
Eα. (B12)

As Vα(k) is positive and thus bounded from below for
every α, there is a unique function V̌α(k) which gives
the best convex approximation to Vα(k) from below, i.e
the super graph of V̌α(k) is the convex hull of the super
graph of Vα(k). If needed, V̌α(k) can be obtained by
Legendre transforming Vα(k) twice. Now, for all states
ρ, we have 〈Vα(k)〉ρ ≥ 〈V̌α(k)〉ρ and hence we can lower
bound Eα by Ěα, which is the ground state energy of the
Schrödinger operator −λ∂2

k + V̌α(k).
Note that V̌α(k) is a convex function in α, because

Vα(k) is convex in α. We can therefore employ Corollary
13.6 from [66] to show that Ěα is a convex function of α,
too.
Moreover, V̌α inherits the symmetry V̌α(−k) = V̌−α(k)

from Vα(k), which can be implemented by a unitary au-
tomorphism on Ω. This shows the symmetry Ěα = Ě−α,
which directly implies that Ěα becomes minimal for
α = 0. But here we have that V̌0(k) = V0(k), because
V0(k) is already a convex function, which yields

Ě0 = E0 = u(λ). (B13)
We thus know that, for λ ∈ (0, 1), the extremal points

of Ulc (which are in Γ(Ulc)) have zero expectation in x
and p, i.e. they lie within U00. Since Γ(Ulc) � Γ(U00)
we even know that on these points the boundaries Γ(Ulc)
and Γ(U00) coincide. But as Ulc and U00 are both convex,
this implies that Γ(Ulc) = Γ(U00). q.e.d.
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APPENDIX C: A STATE-INDEPENDENT BUT
NOT SO OPTIMAL BOUND

Assume a modification f(p) of the Heisenberg alge-
bra with Taylor expansion f(p) = 1 +

∑∞
n=1 anp

2n and
an ≥ 0 for all n ∈ N. This implies that f is convex,
monotonously increasing for p ≥ 0, smooth and symmet-
ric around the origin with f(0) = 1, hence fulfilling our
assumptions (i-iii) in the main text. If we set

g(p) := f(−
√
|p|) , (C1)

we can see that

g(p2) = f(−
√
|p2|) = f(−|p|) = f(|p|) = f(p) . (C2)

Now, restricted to p > 0, g(p) arises as a concatenation
of convex functions, thus g is also convex in this param-
eter range. Inserting (C2) into the Robertson Kennard
relation (16), and using Jensen’s inequality together with
the convexity of g, we get

∆x∆p ≥ 1
4 |〈f(p)〉|2 ≥ 1

4 |g(〈p2〉)|2 .

Now we can substitute 〈p2〉 = ∆p + 〈p〉2 and use the
properties of g as well as the convexity of the absolute
square, to arrive after a simple calculation at

∆x∆p ≥ 1
4 |g(∆p + 〈p〉2)|2

≥ 1
4 |g(∆p)|2 + 1

4 |g(〈p〉2)|2 − 1 .

Here the state-dependent term 1
4 |g(〈p〉2)|2 is greater than

or equal to one, such that we can conclude the state-
independent bound

∆x∆p ≥ 1
4g(∆p)2 . (C3)

However this bound is not optimal for general modifica-
tions. Examples for this can be seen in Fig. 5.
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