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We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive
images and the application of feedback. In our experiments, the atom number N ∼ 106 is determined by

high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN <
ffiffiffiffi
N

p
. Based on

this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a
second imaging series probes the number stabilized cloud. By this method, we show that the atom number
in ultracold clouds can be prepared below the shot noise level.
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Over the past decade, experiments with ultracold atomic
samples have matured from the proof-of-concept level to a
development platform for technologies such as quantum
sensors and quantum simulators. One rapidly expanding
technique is the manipulation of quantum systems using
measurements and feedback [1–3]. To limit the backaction,
usually a “weak” measurement is employed, such as
detecting the phase shift induced by an atomic ensemble
on an off-resonant laser beam [4]. Recent experiments have
demonstrated feedback control of motion in an optical
lattice [5], a quantum memory for light [6], deterministic
spin squeezing [7], stabilization of an atomic system
against decoherence [8], extending the interrogation time
in Ramsey experiments [9], and feedback cooling of a spin
ensemble [10].
To fully exploit the potential of ultracold clouds in

emerging quantum technologies, these atomic samples
must be prepared with unprecedented precision. For in-
stance, precise atom number preparation is crucial to
improving the precision of atomic clocks, which is pres-
ently limited by collisional shifts [11]. It is of particular
relevance for techniques that employ interactions to pro-
duce nonclassical states for improved interferometric sen-
sitivity [12–15]. In general, if the number fluctuations of an
atomic ensemble in a single spatial mode can be sup-
pressed, the many-particle state becomes nonclassical,
yielding a resource for atom interferometry beyond the
standard quantum limit [16]. Sub-Poissonian preparation of
micro- and mesoscopic atomic samples was recently
demonstrated by using single-site addressing in an optical
lattice [17], three-body collisions [18,19], nondestructive
measurements of nanofiber-based systems [20], and careful
tailoring of the trapping potential for fermionic [21] and
bosonic systems [22]. However, despite initial attempts
towards the compensation of number fluctuations in ultra-
cold atomic clouds [23], the high precision preparation of
large atom numbers remains an unsolved challenge.
In this Letter, we stabilize the atom number in ultracold

clouds through the real-time analysis of dispersive images

and feedback, as shown in Fig. 1(a). After initial evapo-
rative cooling of an atomic cloud, a first set of nonde-
structive Faraday images F1 determines the number of
atoms. We characterize this imaging method and show it
achieves an atom number uncertainty below the shot noise
level. Based on the analysis of the images, feedback is
applied to reduce the atom number to a user-defined target,
whereupon a second imaging series F2 probes the remain-
ing number of atoms in the cloud. We show that this
technique can stabilize the atom number below the shot
noise level.
The evolution of the atom number distribution through-

out the sequence can be understood as follows. The high
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FIG. 1. (a) Experimental sequence. An evaporatively cooled
cloud is probed by two series of Faraday images, where rf loss
pulses between F1 and F2 remove a controllable fraction of the
atom cloud. (b) Experiment schematic. Faraday imaging probes a
cold atom cloud held in a magnetic trap. The images are
processed in real time, and the outcome can be used to determine
the fraction of atoms removed by rf loss, thereby producing a
number stabilized cloud.

PRL 117, 073604 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 AUGUST 2016

0031-9007=16=117(7)=073604(5) 073604-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.073604
http://dx.doi.org/10.1103/PhysRevLett.117.073604
http://dx.doi.org/10.1103/PhysRevLett.117.073604
http://dx.doi.org/10.1103/PhysRevLett.117.073604


precision of the Faraday imaging sets the width of the atom
number distribution at F1 below the shot noise level. To
stabilize the atom number, a precise fraction of the atoms is
removed from the cloud, causing the width of the atom
number distribution to grow. In general, the loss process
between F1 and F2 can be modeled by a master equation,
the solution of which yields the probability distribution for
the number of trapped atoms as a function of time [24]. For
single-particle loss, however, the atom number distribution
is Poissonian, which may be approximated by a binomial
distribution for large N due to the central limit theorem.
This motivates the following simplified model: Starting
with N0 atoms in the trap, where each atom has a
probability p of remaining trapped, the number of remain-
ing atoms has a binomial distribution N ∼ BðN0; pÞ, with
mean value hNi ¼ N0p and variance N0pð1 − pÞ. Thus,
the relative uncertainty of the number of atoms remaining
in the cloud is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞ=hNip
. From this simple

analysis, it is clear that for low levels of applied loss
(p≃ 1), samples with a relative uncertainty well below the
shot noise level 1=

ffiffiffiffiffiffiffiffihNip
can be prepared, provided the

feedback does not add additional noise.
Having outlined the sequence to stabilize the atom

number, we now give a more detailed description of the
experiment. Figure 1(b) shows a schematic of the key
components in the experimental setup. Ultracold atomic
clouds are produced by forced radio-frequency (rf) evapo-
ration in an Ioffe-Pritchard magnetic trap. The trap has
radial and axial trapping frequencies of ωρ ¼ 2π × 296 Hz
and ωz ¼ 2π × 17.1 Hz, at a 330 mG bias field. The rf
evaporation is stopped at a frequency of 1900 kHz,
yielding on average 6.7 × 106 87Rb atoms at 18 μK in
the jF ¼ 2; mF ¼ 2i state.
The dispersive imaging employs off-resonant light

pulses propagating along the z direction, with an initial
polarization along y. The Faraday effect leads to a rotation
of the linear polarization by an angle θ ∝ ~n, with ~n the
column density [25]. The rotated light is sent through a
polarizing beam splitter (PBS) and imaged on an electron
multiplying charge coupled device (EMCCD) camera. This
configuration realizes a “dark field” dispersive imaging
technique [25,26]. The Faraday imaging sequence is
realized with light that is blue detuned by δ ¼
2π × ð1200� 1Þ MHz from the F ¼ 2 → F0 ¼ 3 transi-
tion. Over the spatial extent of the cloud, the intensity
distribution is approximately uniform at a value of
0.5 mW=cm2. The imaging light is monitored on a photo-
diode (PD) on the reflecting port of the PBS, and based on
this signal, the imaging power is stabilized. F1 and F2
contain 50 and 100 rectangular pulses, respectively, with a
cycle period of 7 ms. For each pulse, an image is acquired
on the camera.
These images are evaluated in real time on a field

programmable gate array (FPGA), which calculates the
fraction of atoms to be removed. To apply feedback, the

FPGA controls a synthesizer to generate rf pulses that
induce the desired loss. A 10 s delay between F1 and F2
allows time for the loss pulses to be applied and for the
cloud to thermalize. In the absence of applied loss, the
cloud contains on average 4.3 × 106 atoms at 10 μK after
F2. The temperature and atom number at F2 are the
combined result of free evaporation and single-particle
loss due to finite background pressure. Following F2, the
trap is extinguished and the cloud is probed by resonant
absorption imaging after 10 ms time of flight.
In the following, we evaluate the precision attained by

Faraday imaging and then characterize the applied loss
mechanism. Based on these results, we characterize the
correlation between the measurements at F1 and F2, since
this sets the limit for the precision that can be obtained by
feedback. Finally, we show that atomic clouds below the
shot noise level can be prepared by our feedback technique.
In the dark field Faraday imaging method, the light

intensity on the camera scales with the “signal,” defined as
S≡ sin2 θ. We calculate this signal experimentally by
S ¼ ½IðθÞ=Iref − 1�CS, where Iref is the intensity of the
nonrotated light that leaks through the PBS due to its finite
extinction ratio (“cube suppression”) CS ∼ 10−3 [25]. The
reference intensity Iref is obtained from a region outside the
atomic signal, and the baseline level of the camera is
removed from IðθÞ and Iref by analyzing a masked region
of the camera chip [27]. This procedure makes S indepen-
dent of the EMCCD gain, which is prone to drift. The
rotation angle, and hence the atomic density, can be
obtained from θ ¼ arcsinð ffiffiffi

S
p Þ, but, in practice, this is

complicated by detection noise where θ is small, leading to
negative values of S.
To avoid such technical issues on the FPGA, we

calculate the signal sum ΣS by summing S in a region
of interest that encompasses the cloud. In the limit of small
Faraday rotation angles, S ≈ θ2, yielding ΣS ∝ N2=T for
the thermal clouds in this work. We have characterized the
scaling of ΣS with N and T using results from absorption
imaging. We find the observed functional dependence is
well described by an empirical model motivated by the
small angle dependence of ΣS and that, to a good
approximation, the fluctuations in temperature can be
neglected [27]. Due to the quadratic dependence of ΣS
on N in the small angle limit, the relative fluctuations in the
signal sum ΔΣS=ΣS ≈ 2ΔN=N are approximately twice as
large as those in N, making it a sensitive atom number
probe. This approach allows us to exploit the high precision
of Faraday imaging in combination with the accuracy of
absorption imaging to determine the atom number.
The precision of this Faraday imaging technique can

be obtained from an analysis of the fluctuations in ΣS.
Figure 2(a) shows ΣS at F1 as a function of image number
using an imaging pulse duration of t ¼ 0.66 ms. The signal
sum decreases over the 50 imaging pulses as a result of
atom loss, primarily due to spontaneous scattering into
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untrapped electronic states. The fluctuations of the signal
sum about this mean decay correspond to the light shot
noise, the stochastic noise arising from atom loss, and
potential technical noise. Since the mean atom loss is
deterministic, one can remove the decay by normalizing ΣS
with its mean over several experimental runs and shift it to
be centered on 0. Figure 2(b) shows this normalized signal
E≡ ΣS=hΣSi − 1, which we call the “error.” We use the
mean value of each error trace as a measure of the atom
number in a given experimental run.
To characterize the imaging noise, we calculate the

two-sample deviations ΔΣ and ΔE of ΣS and E, respec-
tively, for each trace. The relative uncertainty of ΣS in a
single imaging sequence is then given by the mean of ΔΣ
over M imaging pulses σΣ ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

M − 1
p ÞhðΔΣ=ΣSÞi, and

equivalently for E it is σE ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p ÞhΔEi. In total, the
relative uncertainties are given by the mean value over
several experimental runs denoted by hσΣi and hσEi.
Figure 2(c) shows the relative uncertainties of the signal

sum hσΣi and the error hσEi as a function of imaging pulse
duration t. Initially, hσΣi decreases as the imaging pulse
duration is increased, but at 0.5 ms it reaches a minimum
and then increases approximately linearly with t. The
relative uncertainty hσEi shows the same initial behavior
but does not increase for the range of t we consider. To
understand this scaling, we use the following noise model

[30]: σMod ¼ ½At−1 þ Btþ Ct2 þD�1=2. The first term is
the variance due to light shot noise; the second and third
terms describe stochastic and mean atom loss, respectively;
finally, the constant term D represents technical noise
sources in the EMCCD, uncertainty in the imaging light
detuning, and noise arising from the evaluation of S. The
loss parameters are closely linked because they describe
two effects of single atom loss: In the limit of low loss,
C ¼ 2B2, where Bt ¼ N0ð1 − pÞ=2, and since N0 ∼ 106

and p≃ 1, the noise term Bt describing stochastic atom
loss is negligible compared to Ct2. Fits to hσΣi and hσEi are
shown in Fig. 2(c). The fit to hσΣi is dominated by the light
shot noise and mean atom loss terms; this is characteristic
of the two-sample deviation in an imaging method that
induces significant atom loss [31]. The fitted values of A
and C are consistent with estimates obtained from direct
evaluation of the images. In contrast, hσEi is well fitted by
only the light shot noise and technical noise, since the mean
atom loss contribution has been removed by normalization.
Indeed, for t≲ 1 ms, hσEi is approximately equal to the
light noise, a fact we will employ in the following. At the
optimal pulse duration of t ¼ 0.66 ms, the relative uncer-
tainty of E is 5 × 10−4, which yields a relative uncertainty
in the detected atom number of 2.5 × 10−4. The imaging
shows a similar performance at F2, for which the optimal
imaging pulse duration is 0.55 ms. Thus, the Faraday
imaging technique allows us to determine the atom number
for clouds containing ∼5 × 106 atoms approximately a
factor of 2 below the atom shot noise level.
To perform feedback, we require a mechanism to remove

atoms from the cloud. It is important that this mechanism
provides sufficiently fine resolution and does not drastically
alter other parameters of the system such as the cloud’s
temperature. A convenient loss mechanism is realized by
applying a variable number of fast rf pulses: These pulses
transiently lower the trapping potential [32], whereby
atoms are lost due to spilling. In general, we employ an
rf corresponding to 95% of the trap depth U0, with a pulse
duration of 8.4 μs repeated every 50.4 μs. Since the elastic
collision rate throughout the experiment after F1 is
∼100 Hz, this pulse duration is short compared to the
mean time between collisions. These parameters are chosen
to achieve a very small fractional loss of ∼10−5 per pulse,
thus providing fine digital resolution. For example, to
remove 10% of the atoms, we apply ∼104 loss pulses.
Based on these results, we characterize the level of

correlation between the measurements at F1 and F2. The
fluctuations of this correlation set the limit for the precision
that can be achieved with feedback, since the feedback
strength for a desired result at F2 is calculated from the
signal obtained at F1. The correlation is measured for
several fixed applied loss settings. Figure 3 (inset) shows
the outcome of such a measurement in terms of the mean
measured error at F1 and F2, where the error varies by
�40% due to the natural fluctuations of the experiment;
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FIG. 2. (a) Signal sum ΣS vs image number for F1. Black lines
show traces for 10 representative runs with imaging pulse
duration t ¼ 0.66 ms, and the dashed red line represents the
mean trace hΣSi for the entire data set. (b) Error E for the same
runs as (a). (c) Relative uncertainty vs t. Red circles represent
hσΣi, the solid red line represents the fit of the imaging model
σMod, and the dash-dotted red line represents the mean atom loss
contribution to σMod fit ∝ t. Black squares represent hσEi, the
solid black line represents the fit of σMod, the dotted black line
represents the light shot noise contribution to σMod fit ∝ 1=

ffiffi
t

p
,

and the dashed black line represents the constant technical noise
contribution to σMod fit. Error bars denote the standard error of the
mean over several experimental runs.
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this corresponds to a �20% span in atom number. To
evaluate how well E1 and E2 are correlated, we fit a
quadratic function to the data and subtract this fit from the
data. The relative fluctuations between E1 and E2 are then
determined by taking the two-sample deviation over
successive runs of the experiment to remove slow drifts
in the apparatus such as changes in the trap bottom.
Figure 3 shows the relative uncertainty in the detected

total signal at F2 for a number of fixed loss settings,
corresponding to several mean numbers of atoms remaining
in the trap. These correlation data allow for an analysis of
the inherent noise sources. The data are well described by
contributions from the imaging noise and from the sto-
chastic noise due to the atom loss between the two imaging
series. The imaging noise is given by the light shot noise
and technical noise contributions in F1 and F2 (corre-
sponding to hσEi for each imaging series) added in
quadrature. It has been fitted by a function ∝ 1=N, which
we expect from error propagation [27]. For the stochastic
atom loss contribution, the relative uncertainty in the
number of atoms remaining in the cloud

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞ=hNip

is shown, which has been transformed into the signal sum
using the model linking ΣS to N and T. The total noise,
given by the quadrature sum of these contributions shows
very good agreement with the experimental data. This
crucial result shows that there are no unknown technical
noise sources that influence the number of atoms between
F1 and F2, which is a prerequisite to perform feedback
below the shot noise level.

The achievements outlined above allow us to turn to the
active stabilizationof the atomnumber by feedback.Basedon
the average error in F1, the fraction of atoms removed from
the cloud is controlled by varying the number of applied loss
pulses. To generate a reference signal hΣref

S i for this feedback,
we typically cycle the experiment with no applied loss for
∼50 runs. In subsequent experimental runs with feedback,
E10 ≡ ΣS=hΣref

S i − 1 is determined at F1, and the number of
rf loss pulses NLoss is calculated using a cubic feedback
function NLoss ¼ gE10ð1þ qE10 þ cE102Þ þ d. This func-
tion approximates the atom loss that is exponential in the
number of applied loss pulses. The linear g, quadratic q, and
cubic c gain parameters as well as the offset d are determined
by evaluating the outcome over several experimental runs for
a trial set of feedback parameters and iterating [27]. Figure 3
(inset) shows a data set where the feedback parameters have
been optimized to achieve a stabilized value of E2 for all
initial errors E10 that are larger than the target value. In this
case, the stabilized atom number is ∼90% of the mean atom
number of the free running experiment.
Finally, the uncertainty in the stabilized sample is

characterized to verify that the feedback mechanism does
not add additional noise and that stabilization below the
shot noise level can be achieved. We take the two-sample
deviation of E2 over successive runs of the experiment for
several target atom numbers. The relative uncertainty is
shown as red circles in Fig. 4. For clouds prepared at
N ≳ 2.5 × 106, the feedback achieves a level of stabiliza-
tion that is limited by the fundamental noise imposed by the
single-particle loss mechanism, showing that the feedback
does not induce additional noise. These clouds are stabi-
lized at or below the atom shot noise level 1=

ffiffiffiffi
N

p
.

For samples stabilized to lower atom numbers, the
observed noise exceeds the correlation data and the noise
model. For N < 2.5 × 106, we remove more than 60% of
the atoms from the cloud, whereby the modeling of the
exponential loss by the cubic feedback function becomes
less accurate. Additionally, the passive stability of the
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apparatus, such as drifts in the trap bottom, becomes a
significant source of noise in the stabilized atom number for
high fractional loss.
In conclusion, we have prepared number stabilized atom

clouds through feedback. An investigation of our nonde-
structive imaging technique yielded an uncertainty in the
measured atom number that was about a factor of 2 smaller
than the atom shot noise level. The precision of correlation
measurementswithin an experimental realizationwas entirely
determined by the removed fraction of atoms, demonstrating
the absence of technical noise sources between the imaging
series. Finally, feedback based on a nondestructive measure-
ment allowed for stabilization at or below the level of 1=

ffiffiffiffi
N

p
for large atom clouds with N ≳ 2.5 × 106.
The potential of our technique can be further exploited

by employing multiple feedback steps and improved atom
number determination. A second feedback step requiring
only a small removal of atoms would strongly reduce the
induced noise, whereby the imaging noise would become
the limiting factor. To improve the Faraday imaging, more
sophisticated atom number estimators will be used to better
exploit the information from multiple images. Additionally,
the atom number decay due to imaging itself could realize
the final feedback step [31], in which case an algorithm
such as a Kalman filter would stop the imaging series when
the target atom number is detected. However, even at the
present level, our technique can make a considerable
contribution to improve the precision of current [11] or
nonclassical [12–15] atom interferometers.
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