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Abstract

The interaction of a railway vehicle and the track is of significant importance for the operational
safety and the economic efficiency of the entire system “railway”. Generally, the wheel-rail contact
possesses a high stiffness so that very high dynamic contact forces and strong interactions between
vehicle and track can occur. For the operational safety, it has to be guaranteed that the forces do
not cause damage of vehicle and track. Furthermore, wear occurs in the wheel-rail contact. The
rate of the wear progress and the distribution of the wear on the running surfaces of wheels and
rails have a significant impact on the maintenance effort and thereby on the economic efficiency of
the entire system “railway”.

Real-life experiments concerning railway vehicles require a high effort and thereby are costly.
Moreover, they can be quite risky especially during the test phase of a new vehicle or for new
operational conditions. Therefore, the computational simulation has become an important tool for
the investigation of the dynamic behaviour of a railway vehicle.

Generally, every simulation model is a simplification of the real system to be investigated. For the
simulation of the dynamic behaviour of a railway vehicle the modelling as a multi-body system is
applied very often. For this purpose, commercially available programs exist. For the modelling
of a railway vehicle as a multi-body system, components like the wheelsets, bogie frames, car
body and track are described by rigid bodies. These bodies are connected to each other by force
elements representing the suspension and the wheel-rail contacts.

Since the wheel-rail contact is very stiff, strong dynamic forces can occur in the contact; these
forces are acting on the wheelset and the rail. Because of these strong forces it seems to be obvious
to model the wheelset and the rail as flexible bodies. This modelling, however, is not used as the
standard method. Furthermore, it is known from earlier investigations that for certain profiles the
wheel-rail contact is very sensitive to relative motions between wheel rim and rail head. Since such
relative motions can also be caused by deformations, modelling these components components as
flexible bodies and investigating the impact of these flexibilities on the behaviour of the system
seems to be desirable.

As already mentioned, the wheel-rail contact is the essential element for the wear of wheels and
rails. Many simulations for the investigation of the wear either use quite rough types of modelling
or the dynamic behaviour of the vehicle is determined first using a simulation model for the dy-
namics and the wear is determined afterwards using a detailed contact model. Both methods have
several drawbacks so that the development of a simulation model, which is capable to calculate
the dynamic behaviour of the vehicle-track system and the wear occurring in the contact simul-
taneously, is desirable. The base for such a model is the integration of a detailed model for the
wheel-rail contact into the entire system.

The elements “wheelset”, “rail” and “wheel-rail contact” are the three essential components for the
vehicle-track interaction. In the present work, the modelling of these three components is enhanced
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and refined in the following way:

1. The wheelset is modelled as a flexible body. Here, the essential issues are to fully take into
account the rotation of the wheelset due to the overturning and the related gyroscopic effects
as well as to describe the forces resulting from the wheel-rail contact; due to the overturning,
these forces act as a circulating load.

2. In the enhanced track model, the rail as modelled as flexible bodies, which are supported by
discrete sleepers. In order to describe the motion of the rail head in a more accurate way, the
model of the rail also takes deformations of the cross section into account; such deformations
are not described by the usually used beam models.

3. The modelling of the wheel-rail contact is based on a consideration of wheel and rail as elas-
tic halfspaces. Using the contact model, which is developed here, also non-elliptic contact
areas can be determined; such contact areas can occur for several profile combinations of
wheel and rail, but cannot be described by the widely used Hertzian theory. For the con-
tact model, an iterative solution of the discretized contact equations is used. A particular
challenge is the development of a fast solving algorithm for the contact equations.

Based on the refined and enhanced models for the subsystems “wheelset”, “rail” and “wheel-rail
contact” a vehicle-track model is developed. This model describes a passenger coach having two
bogies, each one equipped with two wheelsets; this coach is running on a straight track. Using
this model, the functional efficiency of the newly developed models for the subsystems as well
as the impact of the flexibilities of wheelsets and rails on the running behaviour of the coach are
investigated. This is done for two running states, i.e. the centred running and the permanent
hunting. Furthermore, the impact of the flexibilities of wheelsets and rails is compared with those
of different contact geometries and different friction coefficients in the wheel-rail contact.

Keywords: railway vehicle, flexible wheelset, flexible rail, flexible track, wheel-rail contact,
rolling contact,non-elliptic contact, elastic multibody system, finite element model, cyclic system,
vehicle-track interaction, hunting.



Zusammenfassung

Die Wechselwirkung von Schienenfahrzeug und Gleis ist von erheblicher Bedeutung für die Si-
cherheit und die Wirtschaftlichkeit des Gesamtsystems „Eisenbahn“. Generell besitzt der Rad-
Schiene-Kontakt eine hohe Steifigkeit, so dass hier sehr hohe dynamische Kontaktkräfte und starke
Wechselwirkungen von Fahrzeug und Fahrweg auftreten können. Für die Sicherheit des Betriebs
muss gewährleistet sein, dass die Kräfte nicht zu Beschädigungen von Fahrzeug und Fahrweg füh-
ren. Weiterhin tritt im Rad-Schiene-Kontakt Verschleiß auf. Die Geschwindigkeit des Verschleiß-
fortschritts und die Verteilung des Verschleißes auf den Laufflächen von Rädern und Schienen
haben einen erheblichen Einfluss auf den Wartungsaufwand und damit auf die Wirtschaftlichkeit
des Gesamtsystems „Eisenbahn“.

Reale Versuche mit Schienenfahrzeugen sind sehr aufwendig und damit teuer. Zudem können sie
insbesondere während der Erprobungsphase eines neuen Fahrzeugs oder neuer Betriebsbedingun-
gen mit erheblichen Risiken verbunden sein. Aus diesem Grund ist die computergestützte Simula-
tion ein wichtiges Werkzeug zur Untersuchung des dynamischen Verhaltens von Schienenfahrzeu-
gen geworden.

Prinzipiell stellt jedes Simulationsmodell eine Vereinfachung des untersuchten realen Systems dar.
Für die Simulation des dynamischen Verhaltens von Schienenfahrzeugen wird sehr häufig die Mo-
dellierung als Mehrkörpersystem verwendet. Für diese Aufgabe existieren kommerziell erhältli-
che Simulationsprogramme. Bei der Modellierung eines Schienenfahrzeugs als Mehrkörpersystem
werden Komponenten wie Radsätze, Fahrwerkrahmen, Wagenkasten und Gleis durch starre Kör-
per beschrieben. Diese Körper sind durch Kraftelemente, die die Federung und die Rad-Schiene-
Kontakte repräsentieren, miteinander verbunden.

Da der Rad-Schiene-Kontakt sehr steif ist, können starke dynamische Kräfte im Kontakt auftre-
ten, die auf den Radsatz und die Schiene einwirken. Aufgrund dieser starken Kräfte erscheint es
naheliegend, sowohl den Radsatz als auch die Schiene als flexible Körper zu modellieren. Diese
Modellierung wird jedoch bis heute nicht standardmäßig verwendet. Weiterhin ist aus früheren Un-
tersuchungen bekannt, dass der Rad-Schiene-Kontakt für einige Profile sehr empfindlich auf Rela-
tivbewegungen des Radkranzes und des Schienenkopfes reagiert. Da derartige Relativbewegungen
auch durch Deformationsbewegungen von Radsatz und Schiene verursacht werden, erscheinen ei-
ne Modellierung dieser Komponenten als flexible Körper und eine Untersuchung des Einflusses
dieser Flexibilitäten auf das Systemverhalten ebenfalls wünschenswert.

Wie schon erwähnt, stellt der Rad-Schiene-Kontakt das entscheidende Element für den Verschleiß
von Rad und Schiene dar. Viele Simulationen zur Untersuchung des Verschleißes verwenden ent-
weder relativ grobe Modellierungen, oder es werden zunächst das dynamische Verhalten des Fahr-
zeugs mit einem Simulationsmodell für die Dynamik und anschließend der Verschleiß mit einem
detaillierteren Kontaktmodell bestimmt. Beide Vorgehensweisen weisen Nachteile auf, so dass die
Entwicklung eines Simulationsmodells wünschenswert ist, mit dem sowohl das dynamische Ver-
halten des Fahrzeug-Fahrweg-Systems als auch der im Kontakt auftretende Verschleiß simultan
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berechnet werden können. Die Basis für ein solches Modell besteht in der Integration eines detail-
lierten Modells für den Rad-Schiene-Kontakt in das Gesamtmodell.

Die Elemente „Radsatz“, „Schiene“ und „Rad-Schiene-Kontakt“ sind die drei wesentlichen Kom-
ponenten für die Fahrzeug-Fahrweg-Wechselwirkung. In der vorliegenden Arbeit werden die Mo-
dellierungen dieser drei Komponenten in folgender Weise erweitert und verfeinert:

1. Der Radsatz wird als flexibler Körper modelliert. Die wesentliche Problemstellung besteht
hierbei sowohl in der vollen Berücksichtigung der Rotation des Radsatzes infolge des Ab-
rollens und der damit verbundenen Kreiseleffekte als auch in der Beschreibung der aus dem
Rad-Schiene-Kontakt resultierenden Kräfte, die aufgrund des Abrollens für den Radsatz eine
umlaufende Belastung darstellen.

2. In dem erweiterten Gleismodell werden die Schienen als flexible Körper modelliert, die von
diskreten Schwellen gestützt werden. Um die Bewegung des Schienenkopfes genauer zu
beschreiben, berücksichtigt das Modell der Schiene auch Deformationen des Qürschnitts,
die von den üblicherweise verwendeten Balkenmodellen nicht abgebildet werden.

3. Die Modellierung des Rad-Schiene-Kontakts beruht auf der Beschreibung von Rad und
Schiene als elastische Halbräume. Mit dem hier entwickelten Kontaktmodell lassen sich
auch nicht-elliptische Kontaktflächen bestimmen, die für mehrere Profilkombinationen von
Rad und Schiene auftreten können, jedoch von der häufig verwendeten Hertz’schen Theorie
nicht erfasst werden. Das Kontaktmodell verwendet eine iterative Lösung der diskretisierten
Gleichungen für den Kontakt. Eine besondere Herausforderung besteht in der Entwicklung
eines schnellen Lösungsalgorithmus für die Kontaktgleichungen.

Auf der Basis der verfeinerten und erweiterten Modelle für die Subsysteme „Radsatz“, „Schiene“
und „Rad-Schiene-Kontakt“ wird ein Fahrzeug-Fahrweg-Modell entwickelt. Dieses Modell be-
schreibt einen vierachsigen Reisezugwagen mit zwei Drehgestellen, der auf einem geraden Gleis
läuft. Mit diesem Modell werden sowohl die Funktionstüchtigkeit der neu entwickelten Model-
lierungen der Subsysteme als auch der Einfluss der Flexibilität von Radsätzen und Schienen auf
das Laufverhalten des Wagens untersucht. Dies geschieht anhand zweier Fahrszenarien, nämlich
dem zentrischen Geradeauslauf und dem Wellenlauf, auch Schlingern gennant. Weiterhin wird
der Einfluss der Flexibilitäten von Radsätzen und Schienen mit den Einflüssen unterschiedlicher
Kontaktgeometrien und unterschiedlicher Reibbeiwerte im Rad-Schiene-Kontakt verglichen.

Schlagworte: Schienenfahrzeug, flexibler Radsatz, flexible Schiene, flexibles Gleis, Rad-Schiene-
Kontakt, Rollkontakt, nicht-elliptischer Kontakt, elastisches Mehrkörpersystem, Finite-Elemente-
Modell, zyklisches System, Fahrzeug-Fahrweg-Wechselwirkung, Schlingerlauf.
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Chapter 1

Introduction

The introduction of the railways meant a tremendous increase of mobility. Until the 19th century,
the only ways to travel on ground were walking or for the few, who could afford, riding on a horse
or using a carriage hauled by horses. The railway however provided an affordable travelling even
to further destinations to a high percentage of people. The railway also enabled new, up to then
unknown possibilities concerning the transport of cargo. It can be seen as an indicator for this
strong improvement of performance that the railway networks in Europe and North America grew
and expanded very fast. Another indicator for the high transport performance of the railway is the
fact that it became very soon an integral part of strategic military planning1, which relied on the
railways’ high transport capacity and high transport speed compared to the other ways of transport.

In the 20th century the railways were confronted with new competitors. In Europe and North
America the automobile, which had been a very luxurious and exquisite article in the first decades
after its invention in 1886, evolved after World War 2 into an affordable product: Privately owned
cars became a common standard even for the middle class. Trucks, mostly originally designed for
military purposes, were becoming widely used for cargo transport. Also, the building of motor-
ways allowed for an increase of driving speed. Concerning passenger travel, also air traffic became
a stronger competitor even for travelling within a continent. In America the long-distance passen-
ger trains nearly vanished as a consequence of this competition. In Middle and Western Europe
the state-owned railway companies took the challenge by improving their offer, which meant a
higher standard of comfort as well as higher travelling speeds to shorten the travelling time; one
example for these improved offers were the Trans Europ Express (TEE) trains, which were intro-
duced in 1957, see e.g. Mertens [44]. One aspect to improve the competitiveness of the railway
was replacing the steam locomotives which hauled most of the trains before World War 2 by ve-
hicles equipped with diesel motors or electrical propulsion. These propulsion systems, especially
the electric propulsion, enable higher power and performance combined with better energetic ef-
ficiency and less maintenance effort of the vehicles. Another aspect was the development of new
running gears which provided save operation and good ride comfort even at higher running speeds.
An overview of the development of running gears and their design features is e.g. given by Baur
in his bilingual book [5] about bogies. In his thesis [36], Kratochwille also gives an overview on
this development with special focus on the yaw damper, which is an essential component for many
running gears designed for high speeds.

In 1969 the German Federal Ministry for Transport gave order to carry out a study officially called

1It can be seen as an indicator for the high importance of the railways for military strategy that taking photographs
of railways was prohibited for a long time in many countries, especially in Europe.
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“Studie über ein Hochleistungsschnellverkehrssystem” (study on a high-performance rapid trans-
port system), short “HSB-Studie” (HSB study). This study [18] was completed in 1971 and cov-
ered several aspects concerning railway operation at higher speed. It should be kept in mind that
at this time the regular maximum speed for trains in Germany was 160 km/h with very few ex-
ceptions. One of these exceptions were the demonstration runs during the International Traffic
Exhibition in 1965 in Munich; these trains, which consisted of regular passenger coaches hauled
by the electric locomotives of the series E03, were publically accessible and ran regularly with
a top speed of 200 km/h between Munich and Augsburg. One appendix of the HSB study dealt
with running dynamics, which was investigated using mechanical models of the vehicles. The
study concluded that concerning the guidance of the vehicles within in the track the limiting speed
is located at about 270 km/h. The study also mentioned the world speed record set in France in
1955, when a test train consisting of the electric locomotive BB-9004 and three passenger coaches
reached a maximum speed of 331 km/h on the line south of Bordeaux, but stated that “after this,
damages were detected.” 2

An overview on the actual development of high-speed railways is given by Hughes [19]; some
milestones regarding the development of high speed traffic shall be cited here:

• 1955: World speed record 331 km/h set by the French locomotive BB-9004 hauling three
coaches

• 1964: Begin of regular operation of the Japanese Shinkansen train between Tokyo and Osaka
at 210 km/h

• 1965: First publically accessible runs at 200 km/h in Europe by special trains hauled by the
German locomotives of the type E03 during the International Traffic Exhibition in Munich

• 1967: First regular service at 200 km/h in Europe by the French train “Le Capitole” hauled
by specially modified locomotives of the type BB-9200, see [44]

• 1981: World speed record 380 km/h set by the French high-speed train TGV 16 (“Train á
Grande Vitesse” = high-speed train); begin of regular operation of the TGV-SE (“Sud-Est”
= South-East) at 270 km/h

• 1988: World speed record 406 km/h set by the German high-speed train ICE-V (“Intercity
Experimental”, later “Intercity Express”, “Vorserie” = prototype)

• 1989: Begin of regular operation of the French high-speed train TGV-A (“Atlantique” =
atlantic) at 300 km/h

• 1990: World speed record 515 km/h set by the French high-speed train TGV-A 325

• 2007: World speed record 574 km/h set by the French high-speed trainset TGV-V150
(“Vitesse 150” = speed 150 [m/s], i.e. 540 km/h)

2Original quote from [18], section A7/1, page 38: “Die größte bisher kurzzeitig gefahrene Geschwindigkeit gibt
die SNCF mit 331 km/h an, wonach allerdings Schäden auftraten, wobei aber zu bedenken ist, daß es sich um konven-
tionellen Oberbau (nicht einmal durchgehend geschweißt) handelte.” Free translation: “The highest speed achieved
until now for a short time is reported by SNCF [“Société Nationale des Chemins de fer Français” = French national
railways] with 331 km/h, but after this, damages were detected; it has, however, to be considered that it was a conven-
tional track, ([the rails were] not even continuously welded).”
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It should be noted that the world speed records were set in experimental runs which were not
accessible for public. Also, the TGV trainsets used for these record runs were specially modified
or even specially composed as it was the case for the trainset TGV-V150. – The chronology shows
a remarkable increase of the speeds, especially the development between 1981 and 2007. Starting
with the world record run of 380 km/h in 1981 it proves in an impressive and convincing way that
the speed limit of 270 km/h assumed in the HSB study was incorrect; the question which maximum
speed can be achieved by a railway vehicle isn’t completely answered till today. It should be
pointed out that before the high-speed runs the behaviour of the vehicles was carefully studied on
the base of mathematical-mechanical models, see e.g. [61] and [10]. These investigations helped
to reduce the risks of exploring unknown speed ranges during the practical test runs. This may
illustrate the advance of the simulation models as well as of the design of the running gears.

Altogether, this short overview shows the importance of mechanical modelling of railway vehi-
cles and the simulation of their dynamic behaviour, which have become an important part of the
development of the railway. The dynamic behaviour of railway vehicles is influenced by several
factors; to get a better understanding of these factors, of the problems they cause and of the re-
quirements the specific characteristics of the railway will be considered in the following and it will
be discussed how these characteristics are influencing the entire behaviour of the complete railway
system.

1.1 Specific characteristics of the railway

Like many transport systems, railways consists of both infrastructure and vehicles. In the fol-
lowing, some specific characteristics of railways in contrast to other transport systems will be
considered. Generally, the motions of a vehicle and the forces related to them can be categorized
with respect to the vehicle’s own orientation:

• vertical motions and forces: Support

• lateral motions and forces: Guidance

• longitudinal motions: Propulsion and braking

The railway is a track-guided ground vehicle, i.e.:

• For support and guidance a ground vehicle interacts with solid ground in contrast to ships
and aircrafts, which interact with water and air, respectively.

• The trajectory of a track-guided vehicle is given by the trajectory of the track, i.e. the vehicle
operator can only determine the speed, but not the course of the vehicle in contrast to road
vehicle where the course can be changed by steering. This means that a railway vehicle needs
an automatic guidance mechanism, which corrects deviations from the ideal trajectory.

For all railways, forces responsible for support and for guidance are transmitted by a solid contact
between a wheel and a rail which are usually made of steel. This wheel-rail contact transmits
forces by two principles: Forces which act normal to the contact surface are transmitted by positive
interlocking, while forces acting tangential to the contact surface are transmitted by friction. With
very few exceptions, propulsion and braking forces are also transmitted by the wheel-rail contact.
Exceptions, in which braking forces are transmitted independently of the wheel-rail contact, are
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vehicles equipped with electromagnetic track brakes or linear eddy current brakes. The best known
exceptions concerning the transmission of propulsion forces are rack railways or cog railways,
which use a toothed rack rail and a cog wheel to transmit longitudinal forces. It should be pointed
out that due to the transmission of forces by friction in the rolling contact, slip and hence wear in
the contact occurs; this cannot be avoided.

From these principles

1. transmission of supporting, guiding, propulsion, and braking forces by a solid contact of a
steel wheels and steel rails

2. automatic guidance by the running gear and the infrastructure

which are specific for the railway a number of specific characteristics of the entire system “railway”
arise.

Since the support and guiding forces of the railway vehicle are transmitted by a solid contact,
the railway vehicle has to be in contact with the infrastructure at any time; a loss of this contact
usually means a derailment, which generally implies severe damage to the infrastructure and the
vehicle and sometimes also includes casualties and therefore has to be avoided by all means. Due
to this, the railway requires a continuous infrastructure, which is costly with respect to building
and to maintenance. In contrast to this, aircrafts and watercrafts usually just need a punctual
infrastructure like airports and harbours, respectively.

Since the wheels and the rails of a railway are usually made of steel, the wheel-rail contact is very
stiff. This means that unevennesses of the running surfaces in the magnitude of less than 1 mm can
already cause high dynamic forces in the wheel-rail contact, which should be avoided. Such an
accuracy can only be achieved by a specifically built infrastructure. It is evident that this required
accuracy makes the building and the maintenance of the infrastructure costly. For road vehicles,
these requirements to the infrastructure are in contrast to this less strong: Road vehicles are usually
equipped with rubber tyres, which can cushion unevennesses of the infrastructure in the magnitude
of few millimeters.3

A specific characteristic of a railway is that a comparatively fine tuning of the vehicle and the
infrastructure is required. Of course, all kinds of vehicles are subjected to certain geometrical limits
given by their infrastructure, which limit their main dimensions like length, width and height; this
also applies for aircrafts and watercrafts especially regarding airports and harbours, respectively.
Regarding ground vehicles in general, the geometry of the infrastructure, which the vehicles have
to follow, gives certain restrictions to the vehicles and their operation: The space around a road or a
track, which is generally kept clear, limits the admissible width and height of the vehicle; the radius
of a curve limits the admissible length of the vehicle in order to ensure that it doesn’t exceed the
aforementioned space. It is also obvious that the radius of a curve together with the cant, i.e. the
inclination with respect to the longitudinal axis, limits the admissible speed at which the vehicle
can pass the curve. But regarding the cross section of the running surface, it can be said that an
ideal road has a plain surface, which may have a cross slope; ruts, i.e. longitudinal depressions
of the road surface, are an unwanted result of wear and thereby considered as a deviation from

3For road vehicles, the line for a built infrastructure, which is required for operation, is difficult to draw. At slow
speeds, most cars can also run on unmade or nearly unmade ways like country roads or rural roads. Some road vehicles
like dump trucks, which are used e.g. on construction sites, or agricultural vehicles are specially designed for off-road
operation on unmade ground. However, such vehicles can be considered as special cases; the majority of road vehicles,
which are used for passenger traffic or cargo transport, are designed to be operated on tarmac roads, i.e. they require
a built infrastructure.



Chapter 1. Introduction 15

the ideal plain. The width of the road puts an upper, but no lower limit on the track axle, i.e. the
transverse distance between the wheels. To put it bluntly: Each road, on which a truck can run, can
also be used with a car and even with a bicycle from the technical point of view. In contrast to this,
the track gauge, i.e. the transverse distance between the two rails of a track, prescribes a certain
range with an upper and a lower limit for the wheel gauge, i.e. the transverse distance between
the two wheels, for a railway vehicle which shall run on this track. Furthermore, the shape of the
rail profile has an impact on a basic function of a railway vehicle: Since a railway vehicle has no
steering devices by which the driver could influence the vehicle’s course, it needs an automatic
guidance mechanism. This guiding mechanism is strongly influenced by the shape of the profiles
of both wheel and rail; this will be discussed in detail in section 2.2.1. The wheel profile of a
vehicle is usually adapted to the rail profile of the network on which the vehicle shall run in order
to achieve the resulting geometry which is required for a good running behaviour. Therefore, it
can’t be said that there is an ideal cross sectional geometry of a railway track in general, whilst for
a road a plain surface can be considered to be the ideal running surface.

It can be concluded that for a railway the vehicles are very tightly bound to a continuous built
infrastructure having relatively narrow tolerances. This fact makes the railway comparatively vul-
nerable even to small local faults. Of course, at many transport systems the infrastructure and the
vehicles are subjected to interaction forces leading to a deterioration of both subsystems over time.
In the case of the railway, such deterioration is caused by the wear of wheels and rails and by
damage of the subgrade due to the loads, temperature changes and vegetation. Therefore, costly
maintenance of the vehicles as well as of the infrastructure is required. The more, in the case of the
railway, the maintenance of the infrastructure usually means a stronger disturbance of the regular
operation. For the general maintenance of a motorway, for instance, the traffic may be reduced
from several lanes to one lane in one direction, but this still allows a reduced operation. In contrast
to this, a railway track has to be closed completely for general maintenance. Furthermore, a rail-
way vehicle needs a turnout to change from one track to another, while road vehicles can change
the lane of a road at every location of the road from the technical point of view. Since turnouts
are comparatively complex and expensive constructions, they are installed only at very few points.
As a consequence, the maintenance of even a very short section of the track can require the tem-
porary closure of a far longer section depending on the distance between two turnouts, which may
strongly reduce the capacity of the railway line. All this underlines the need for long maintenance
intervals especially for the track; however, this can only achieved by a proper adaption of vehicle
and track.

As already mentioned, because of the stiffness of the wheel-rail contact using steel, even geometric
disturbances having a magnitude of about 1 mm can lead to high dynamic forces in the contact.
Such dynamic forces are undesirable for several reasons. High dynamic forces cause strong loads
on the components, which may lead to fatigue or even catastrophic failure. Furthermore, dynamic
forces having higher frequencies can excite structural vibrations of the wheels and the rails. Such
structural vibrations can cause noise which is annoying for the passengers as well as for the resi-
dents living near a railway line.

Thus it is highly desirable to design railway vehicles and tracks in such a way that the damage
caused by the vehicle-track interaction is low. However, as explained before, this requires a good
adaptation between vehicles and tracks. This adaptation is not limited to the geometry of the track
and the running gears but also applies for their dynamic behaviour. In real life, there are a lot of
factors like the geometrical shape of the components which have an influence on their structural
dynamics and parameters like masses, stiffnesses and dampings. Although field measurements are
valuable, it is sometimes difficult to trace back an effect to few specific parameters on the base
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of field measurements only and to separate characteristic effects from random influences. Here,
a computer-based simulation provides a more systematic investigation, because single parameters
can be changed in a defined way to study their influence on the behaviour of the entire system.
However, this requires a sufficient accuracy of the modelling of the system. These aspects will be
discussed in later sections of this work.

1.2 Requirements to a railway vehicle

The essential task of a railway vehicle is to fulfil a given mission profile, i.e. the transport of
passengers or cargo on one or several defined networks, in an economically efficient way and by
keeping the requirements with respect to safety and environmental compliance. The following
consideration is limited to aspects, which are related to the dynamics of the running gear. Other
mechanical problems like e.g. energy consumption, braking or aerodynamics and non-mechanical
problems like constructional design (general architecture, gauging, maintenance friendliness etc.),
vehicle equipment (energy supply, air conditioning, passenger information etc.) or certain envi-
ronmental issues (recycling of materials, environmental compliance of operational materials etc.)
will not be discussed in this work.

The requirements for the running gears which arise from the general requirements for the vehicle
can be described by the following main topics although there may be some interference between
the single topics:

1. Running stability: Since a railway vehicle is a track guided vehicle, it has to be guaranteed
that the vehicle follows the trajectory which is given by the track within a certain range of
tolerance. Exceeding this range of tolerance leads to the derailment of the vehicle which
usually causes considerable damage to the vehicle and the track. The vehicle is guided by
forces acting in the wheel-rail contact. If these forces exceed certain limits severe damage
to the track may ensue which again can lead to a derailment of the vehicle. Therefore, the
running stability is a safety aspect.

2. Vibration insulation: Mechanical vibrations are uncomfortable to the human body and can
also cause damage and failure of vehicle components. Mechanical vibrations of the running
gear are mainly excited by track imperfections; therefore they cannot be completely avoided.
Nevertheless, their propagation and transmission to other parts of the vehicle, especially to
the passengers and to the cargo, should be minimised. Regarding the effect of mechanical
vibrations on the human body, the frequency plays an important role. The issue of comfort is
related to the low-frequency range below 80 Hz, especially below 20 Hz. From the mechani-
cal point of view, the human body is a vibration system, which has certain eigenfrequencies.
Exciting the human body with these frequencies may result e.g. in nausea. This problem
is of concern for the passengers and the operation personnel of the vehicle. High-frequent
vibrations are related to noise, which is not only relevant for the passengers, but also for
persons in the neighbourhood of the railway line. Therefore, vibration insulation has also an
environmental aspect.

3. Durability: For a safe operation it must be guaranteed that the materials of which the vehicle
and the track consist can take the loads occurring during operation without failing. There-
fore, also the durability is relevant for safety. To fulfil this requirement, the components must
be properly designed and dimensioned on the one hand. On the other hand, dynamic effects,
which lead to high peaks of the loads, should be minimized.
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4. Wear behaviour: In the contact between wheel and rail forces are transmitted and tangential
relative motions occur. The contact area is very small; therefore, high local stresses occur.
Furthermore, the tangential forces are transmitted by friction and are inevitably linked to
slip; together, they cause wear of the running surfaces which cannot be completely avoided.
Therefore, wheels and rails have to be maintained, i.e. they are reprofiled or replaced as soon
as a certain limit regarding the deviation from the ideal shape is reached. As discussed in
section 1.1, especially the maintenance of the railway track often causes strong restrictions
of operation. Therefore it is evident that the intervals of maintenance have a strong impact
on the economical efficiency of the entire railway system including the vehicle and the track.
A non-uniform wear, i.e. an inhomogeneous distribution of the wear on the running surfaces,
is especially disadvantageous: As mentioned before in section 1.1, the profiles of the wheel
and the rail have a strong impact on the vehicle’s running behaviour. If the wear is non-
uniform in lateral direction, the shapes of the profiles are changed. This can cause changes
of the running behaviour, mostly deterioration. The non-uniform distribution of wear in the
circumferential direction of the wheel and in the longitudinal direction of the rail is known
as corrugation. Corrugated running surfaces, either of the wheel, of the rail or of both, lead
to high dynamic forces. Such forces can cause high stresses in the components of the vehicle
and the track with negative impact on the durability, as mentioned in topic 3. Furthermore,
high frequent dynamic forces can excite structural vibrations of the wheel and the rails and
thereby cause noise.

Moreover, it has to be ensured that the running gear fulfils these requirements, especially those,
which are relevant for the operational safety, under varying conditions. Some of these conditions
are random within a certain range, while others are defined. Probably the best known example for
a randomly varying operational condition is the friction in the wheel-rail contact. As mentioned in
section 1.1, the friction is one principle for the transmission of the forces acting in the wheel-rail
contact; it is obvious that the wheel-rail forces have a strong impact on the dynamic behaviour of
the vehicle. The friction depends on the current state of the contact surfaces; it can be affected by
environmental conditions like temperature or moisture. Regarding the railway, this is especially
important since the track is located outdoors and thereby subjected to changing environmental
conditions. An example for varying, but defined conditions is the operation of one and the same
vehicle on two or more different railway networks. As described in section 1.1, it is a special char-
acteristic of railways that they need a comparatively fine adaptation between the vehicle and the
infrastructure compared to other transport systems like cars, ships and planes. Even if two railway
networks use the same track gauge, the tracks can still differ in other geometric properties like
e.g. the profile shape of the rail head or the inclination of the rails which can influence the contact
geometry, i.e. the position of the contact on the running surfaces of wheel and rail. This again
has an impact on the forces acting in the wheel-rail contact and thereby on the vibrations of the
entire vehicle and on its running stability. This problem is one aspect of interoperability, i.e. the
capacity of a railway vehicle to be operated on different networks which is especially important in
the context of cross-border traffic in Europe: Due to historical reasons, many states of Europe or
private companies developed their own networks which were initially insulated from each other;
only later, connections between the networks were established. Thereby, the aforementioned pa-
rameters of the track geometry can vary from country to country or even within one country; in
some cases, this may lead to undesired mechanical behaviour of a vehicle, when it is operated on
a network for which it was not designed originally.

To make sure that the actual design of the running gear fulfils these requirements, the behaviour
of the vehicle is simulated before the actual manufacturing of the vehicle or before operating it
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under new, hitherto not encountered conditions: By using suitable mathematical-mechanical mod-
els which are realised on the base of computer software the motions of the vehicle’s components
and the loads acting on them are calculated. Thereby, dangerous states like derailment or over-
loading and subsequent damage and failure of a component can be recognized in time. But also
within the safe range, i.e. below the safety limits, the vehicle or the vehicle-track system can
be optimised to match criteria like low noise emission or good wear behaviour to minimise the
maintenance effort. The mechanical properties and characteristics of the components, of which
the vehicle-track system consists, as well as the operating conditions given by the trajectory of the
track, the track geometry, friction etc. are described by parameters, i.e. numerical values, which
can be comparatively easily modified. Thereby, the behaviour of different variants of the vehicle
in different operational scenarios can be studied and investigated to find the version which meets
the requirements best.

1.3 Motivation, aim and goal of this work

In order to specify the aim and the goal of this work, several various aspects regarding the mod-
elling and the requirements to a railway, which are relevant for the modelling, will be considered
and discussed first. Although some of the topics seem to be basically unrelated and although there
may also be some interference and overlapping between other ones, they all are relevant for the
motivation of this work; thus, they are all treated in this section.

The topics listed and discussed in section 1.2 show that the running gear, which is even a subsystem
of the entire vehicle and of the entire system “railway”, has to fufil several different requirements.
It has also been said already that the computer-based simulation of the mechanical behaviour en-
ables an assessment and an optimization of a railway system and its subsystems and components
at comparatively low efforts and costs and low risk. However, there is no “universal model” for a
railway system. The choice of the modelling regarding the scope and the detailing depends on sev-
eral factors. In this context, “scope” means, which components are taken into account, i.e. a single
component like a wheelset, a subsystem like a bogie or an entire railway vehicle both consist-
ing of several components or even a complete train including several vehicles; “detailing” means,
how accurate the components included in the model are modelled, e.g. whether a component is
considered as a rigid body or its structural dynamics is taken into account.

Generally, the modelling should follow the principle “as simple as possible, as complex as nec-
essary”, i.e. all components and all effects, which are relevant, shall be taken into account and
everything, which is not relevant, should be neglected. However, distinguishing between what is
relevant and what is not may sometimes be difficult so that this question can only be answered
based on a comparison of the results obtained with different models; for instance, if the results ob-
tained from a very detailed and from a simpler model hardly differ from each other, this strengthens
the reliability of the simpler model. Of course, the choice of a suitable model requires a certain
experience. This experience again depends on the technical system itself and on the issues and
aspects to be investigated. If the system itself and its operating conditions are similar to existing
examples and if it is investigated with respect to known aspects, then there is a high amount of
experience. Conversely, if a system differs from its precursors e.g. by its structure, if it is operated
under different conditions or if it is investigated with respect to a new, hitherto unknown aspect,
then there is less experience so that a new assessment of the modelling itself may be necessary.

Regarding railway vehicles and their running gears, there are certain designs like bogies equipped
with wheelsets, which have basically the same structure, although different types differ from each
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other in specific design details. They also differ in the values of their mechanical parameters like
the stiffness and damping of the suspensions, but the feasible range of these parameters is limited
because of certain requirements4. Therefore and since these constructions have been used for a
long time, there is a high amount of experience, so that their dynamic behaviour is basically known.
Moreover, for a long time railway vehicles have to be assessed with respect to certain issues like
running stability, safety against derailment or ride comfort. The survey paper by Bruni, Vinolas,
Berg, Polach and Stichel [8] from 2011 gives a list of common analysis types; the frequency range,
which is of interest in this context, is located between 0 Hz and 20 Hz. The paper states also that
the modelling of railway vehicles as multibody systems has become a major design instrument in
railway engineering. Already 15 years earlier in 1996, Vohla [77] stated in his thesis that simulating
the running of a railway vehicle on a straight track and its quasi-static running in a curve can be
considered as state of the art, while the simulation of the dynamic running in a curve is considered
as nearly state of the art. Moreover, Vohla classified the running on a straight track and in a curve as
“classical running dynamics” and low frequent dynamics, i.e. located in the frequency range below
20 Hz. Thereby, the multibody modelling of railway vehicles can be regarded as an established
standard modelling method.

As already mentioned, the question of the necessary complexity may be rethought if a system is
operated under different conditions or if it is investigated regarding new aspects. Probably the best
known example for a change of the operational conditions is the increase of the running speed, as
shown by the milestones listed in section 1. However, the size of the wheels used for high-speed
trains is practically the same as for passenger coaches and freight cars used since the introduction
of the railway; due to the height of the floor above the rail head, the wheel diameter for such railway
vehicles is usually limited to about 1 m5; for locomotives, a larger diameter of about 1.2 m is usual,
but also this value is rarely exceeded. As a result, the angular speed of the wheels has increased in
nearly the same way as the running speed. Thereby, the influence of gyroscopic effects resulting
from the overturning motion of the wheelset increases so that a suitable mechanical model for a
high-speed railway vehicle should take this effect into account.

An example for a case, in which investigations with respect to a hitherto unknown problem became
necessary, is given by Popp, Knothe and Pöpper in [54]: When high-speed trains were introduced
in Germany at the beginning of the 1990s, problems like ballast deterioration and corrugation of
both wheels and rails, which also lead to an increase of noise emission, occurred in an up-to-
then unknown and unexpected degree. Against the background of the characteristics of the railway
system and its requirements as described before, it is evident that this required an increased mainte-
nance effort and worsened the cost-efficiency of the entire system. The phenomena of corrugation
and ballast deterioration are located in the medium frequency range between 40 Hz and 400 Hz
according to [54]. The work by Heiß [17] showed that the lowest structural eigenfrequencies for
a trailer wheelset of a passenger coach occur at 76.0 Hz (first antimetric torsional eigenmode),
76.7 Hz (first symmetric bending eigenmode) and 148.4 Hz (first antimetric bending eigenmode),
i.e. several eigenfrequencies associated with structural vibrations are lying in this frequency range.
It is obvious that modelling the wheelset as a rigid body, as it is used in the “classical” running

4For instance, in order to achieve a good ride comfort the suspension of a railway vehicle for passenger traffic is
designed in such a way that the eigenfrequencies associated to eigenmodes including large motions of the carbody
lie below 2 Hz. The criteria for comfort are based on the mechanical properties of the human body. Since these
properties haven’t changed drastically in the past and since it is very unlikely that they will drastically change in the
next decades, carbody eigenmodes below 2 Hz can be considered as a specific characteristics of a railway vehicle for
passenger traffic.

5The TGV-V150 trainset, which set the current world speed record of 574.8 km/h, was equipped with larger wheels
than the serial version of the train; they had a diameter of 1.092 m so that the limit of 1 m was only slightly exceeded.
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dynamics, is not sufficient to describe the effects occurring in the medium frequency range.

In the context of the specific characteristics of the railway system decribed in section 1.1 it has
been explained how tightly bound a railway vehicle is to its infrastructure. Furthermore, under the
topic 4 listed in section 1.2 the problem of wear has been discussed; furthermore, the impact of
the wear on the economy of the railway was considered. In this context it should be noted that
the economic pressure on the railways has increased; in Europe it may be seen as an indicator
for this that the formerly public railway companies6 have been converted into private enterprise
companies taking part in economic competition. Therefore, the issue of wear is becoming more
and more important for the railway so that an optimization of the wear behaviour in order to
reduce maintenance costs is desirable. It has already been mentioned that there are different types
of wear. As described in the previous paragraph, the investigation of corrugation at high-speed
railways requires a modelling, which takes into account the structural dynamics of the wheelset.
According to the survey paper by Bruni, Vinolas, Berg, Polach and Stichel [8], considering the
frequency range between 0 Hz and 20 Hz is sufficient for wear issues; although not explicitly
stated, the authors apparently refer to profile wear in this context. But although the modelling
of the wheelsets as rigid bodies seems to be appropriate for this frequency range, the extension
to describe the wheelsets and also the track as flexible structures may also be useful with respect
to wear. Generally, wear only occurs where two bodies are actually in contact; therefore, an
investigation of the wear behaviour requires a comparatively precise determination of the actual
position of the contact area. For several combinations of wheel and rail profiles it is known that the
contact geometry can be very sensitive to the relative kinematics, i.e. even a small change of the
position of the wheel rim relative to the rail head can lead to a drastic change of the position of the
contact area. It seems to be possible that structural deformations of the wheelset and the rail can
also cause such changes of the relative kinematics, especially against the background to the high
loads, to which these components are subjected. At least, an investigation of the impact, which
structural deformations of wheelsets and rails have on the wheel-rail contact, seems to be sensible.

It is evident that the complexity of a computer-based mathematical-mechanical model is limited by
the performance of the available computer hardware. In some cases it can therefore be necessary
either to reduce the scope or the detailing of the model or both or to split the calculation into
separate steps, in which models with different detailing and different scope are used. For instance,
since considerable motions of the carbody mainly occur in the frequency range below 2 Hz, the
scope of a model for an investigation of the behaviour in the medium frequency range between
40 Hz and 400 Hz may be reduced to one bogie. However, this strategy may contain a risk: One
objective of the simulation is the optimization of the components and their design. Usually, a
component is optimized with respect to one or several optimization criteria. If the model, which
is used for the optimization, is focused on one or only few components, the optimization might
be disadvantageous to the behaviour of the entire system. This is especially true for railways,
since here a very strong interdependence between the vehicle and the track exists. Of course,
a “universal model” of a railway system covering all aspects of analysis is not recommendable,
but a modelling, which is suitable for different types of analysis, should make sense, even if not
every single detail is absolutely necessary for each analysis. Also for the sake of consistency
such a modelling covering not all, but several aspects seems reasonable. – An example for a
calculation split into several steps is the investigation of wear: In the first step a multibody system
of the vehicle-track system including a simpler model for the wheel-rail contact could be used to

6Even the names of some railway companies indicate their past as public companies, e.g. FS (Italy) = “Ferrovie
dello Stato” = “railways of the state”, SJ (Sweden) = “Statens Järnvägar” = “railways of the state” or PKP (Poland) =
“Polskie Koleje Państwowe” = “Polish state railways”.
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determine the relative motions between the wheel rim and the rail head in the contact. For the
multibody simulation only the resulting wheel-rail force is required so that local deviations of the
stress distribution in the contact can be tolerated. In the second step, these relative motions could
be applied to a detailed contact model to determine the wear occurring in the contact. As already
mentioned, wear can only occur where the two bodies are actually in contact; thus a contact model
for the investigation of wear should precisely determine the position and the shape of the contact
area and the distribution of the stresses and relative tangential motions in this area. Since two
different contact models can have slightly different characteristics, some adaptation of the data
gained from the multibody simulation may be required, before it can be applied to the wear model.
Therefore, a consistent modelling, where the wear or at least the stress distribution is calculated
simultaneously to the motions of the vehicle-track system, should be preferable.

In the last decades the performance of computers has significantly increased so that consider-
able computational power is also affordable even for non-professional users and consumers. This
enables also more complex calculations within an acceptable time. Although it is not a direct
comparison, an example may illustrate this: In his thesis [77] Vohla estimated the required CPU
time for simulating the dynamic behaviour of a single wheelset, whereby the two rolling contacts
are described by the detailed program CONTACT; this program is based on an iterative solution
of the discretized contact problem. Based on the technology of a RISC processor from 1990, the
simulation of five seconds real time would require 100 years of CPU time. In the present work,
calculation results will be presented, which were obtained with a model describing an entire pas-
senger coach and using an iterative solution for all eight wheel-rail contacts. Depending on the
configuration of the model, the simulation of one second real time took between two and sixteen
hours using a PC for private consumers without parallelization of the code. Therefore, it may also
be an interesting aspect to explore the possibilities of current computer performance regarding the
scope and the detailing of models, which can be handled.

Based on these considerations the aim and the goal of the present work are formulated. The
goal is to develop an enhanced and refined modelling of a railway vehicle running on a track.
The wheel-rail contact is the connection between the railway vehicle and the infrastructure; here,
the forces are transmitted and the wear occurs. The closest components to the contact are the
wheelset and the rail. Therefore, in the new vehicle-track model the components “wheelset”,
“rail” and “wheel-rail contact”, which are the key components for the vehicle-track interaction,
are described by refined models. The wheelsets and the rails are modelled as flexible bodies.
Thereby, the frequency range, for which the refined model is valid, is extended; furthermore,
taking into account structural deformations of the wheelset and the rail provides a more precise
description of the relative kinematics of wheel and rail in the contact. The model of the flexible
wheelset also takes gyroscopic effects resulting from the overturning into account so that it is
suitable for high running speeds as discussed before. To provide a basis for wear investigations, a
very precise model for the wheel-rail contact, which enables the direct calculation of the contact
stresses, is developed. By investigating two scenarios, i.e. the centred running and the permanent
or “unstable” hunting7 both on an ideal track without imperfections, the influences of the structural
flexibilities of both wheelsets and rails on the behaviour of the entire system and on the wheel-rail
contact are investigated. For these investigations, different model versions are used, in which
the wheelsets and the rails are either modelled as flexible or as rigid bodies; the comparison of the
results obtained from the different model variants show the impact of the flexibilities. Furthermore,

7From the mathematical point of view, the expression “unstable hunting” is incorrect, since the amplitudes of the
attractor for the permanent hunting are limited and not infinite. However, since the expression “unstable hunting” is
widely used, it is also used here.
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the calculations are carried out using different wheel-rail geometries and different values for the
friction coefficient of the wheel-rail contact. Thereby, the impacts on the running behaviour of
the structural flexibilities of wheelsets and rails on the one hand and of the varied parameters
on the other hand can be compared. Moreover, this also helps to answer the question, whether
structural flexibilities always have the same impact or whether this impact varies depending on
other conditions.

1.4 Structure of the work

Chapter 2 contains an overview of the state of the art regarding the mechanical modelling of railway
systems. Section 2.1 gives a brief general overview on different methods of mechanical modelling.
Section 2.2 presents selected works regarding the modelling of a railway vehicle and discusses
them with respect to their aim and the used modelling method. In section 2.3 different methods to
model a railway track are presented and selected works covering the track modelling are presented.
Section 2.4 deals with models for the wheel-rail contact.

The concept of cyclic structures is very useful for the modelling of the wheelsets as well as of the
track. Therefore, in the chapter 3, this concept and some important properties of cyclic systems
will be shown and discussed.

The modelling of the wheelsets and the rails as flexible bodies requires a structural dynamics
model; the basis of the models used for these two bodies will be presented in the chapter 4. Like
for many technical structures, the finite element method (FEM) is a suitable modelling method.
Both the wheelset and the rail possess a particular geometry, which enables a description based on
the concept of cyclic systems; this concept provides a drastic reduction of the computational effort
without loss of accuracy.

The following three chapters 5, 6 and 7 deal with the refined models for the three key components
“wheelset”, “track” and “wheel-rail contact” for the vehicle-track interaction.

In chapter 5 a mechanical description of the wheelset as a rotating flexible body is developed.
This formulation combines the description of a flexible body with the concept of cyclic systems
described in the section 3. Some basic characteristics of the resulting equations of motion are
presented and discussed. Section 5.6 describes the finite element model of a wheelset based on the
modelling developed in the chapter 4; from this model, the shape functions used to describe the
structural deformations are obtained.

Chapter 6 presents a track model, which is developed based on the concept of cyclic systems. A
special focus lies on the modelling of the rail, since this component is closely connected to the
wheel-rail contact.

Chapter 7 deals with several aspects regarding the modelling of the wheel-rail contact. A method
to connect the wheel-rail contact model to the flexible bodies representing the wheelset and the
rail is developed in section 7.1. In section 7.2 the analysis of the contact geometry is presented.
The section 7.3 treats the modelling of the contact mechanics, i.e. the basic formulation, the
discretization and the solving algorithm for the discretized problem.

In the chapter 8 two scenarios are investigated using the refined modelling. In the section 8.1 the
centred running on an undisturbed straight track is considered, while the section 8.2 deals with
the permanent hunting motion. In this chapter different model versions are used, in which the
structural flexibilities of the wheelsets and of the rails are either taken into account or neglected.
By comparing the results obtained from the different model variants the influence of the structural
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flexibilities can be analyzed. Furthermore, the calculations are carried out using different track
geometries and different values of the friction coefficient.

Chapter 9 contains final conclusions and an outlook.



Chapter 2

Modelling of railways: State of the art

The modelling of a railway, i.e. the vehicle and the track, as a mechanical system includes several
topics. Roughly spoken, the entire railway system can be split into three main subsystems, which
are interacting with each other:

1. the vehicle

2. the wheel-rail contact

3. the track

A schematic overview on the structure of the railway system and its subsystems is given in
Fig.2.0.1. The subsystems “vehicle” and “track” are connected by n wheel-rail contact elements.

Track

W/R W/R ... W/R... W/R

Kinematics and forces

Kinematics and forces

Vehicle

Figure 2.0.1: General structure of a railway system (W/R: wheel-rail contact)

Between the vehicle and the track on the one hand and the wheel-rail contacts on the other hand
forces and kinematical quantities like displacements and velocities are exchanged.

There are several methods to model the subsystems “vehicle”, “wheel-rail contact” and “track”,
which differ with respect to detailing, effort and validity. Although it might sound rather trivial, the
choice of the entire model depends on the phenomenon, which shall be modelled. This question
can be split into several aspects. The limits between the following topics are sometimes a bit
blurred and there are also some interdependencies. However, some important aspects determining
the choice of the model are:

• Scope of the model: Which components shall be modelled, e.g. an entire vehicle, a single
running gear etc.?

24
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• Focus of the model: What is of main interest, e.g. the vehicle or the track?

• Frequency range: Which frequencies can be expected to occur?

As it will turn out, the frequency range is an important aspect, not only for the modelling of
the subsystems themselves, but also for the amount of the model. For instance, since at a common
passenger coach eigenfrequencies including motions of the entire carbody are located below 10 Hz,
the influence of the carbody motions can be neglected e.g. in an investigation concerning curve
squealing, which is located in the range of several kHz.

A very general criterion is the distinction between planar and spatial vehicle-track models. In
Fig.2.0.2 and Fig.2.0.3 a planar and a spatial vehicle-track model are displayed in principle. The

W/R W/RW/R W/R

Figure 2.0.2: Planar vehicle-track model

W/R W/R

W/R W/R

W/R W/R

W/R W/R

Figure 2.0.3: Spatial vehicle-track model

basic assumption for a planar model is that the complete vehicle-track system is strictly symmetric
of with respect to the middle cross plain, i.e. the plain spanned by the longitudinal and the ver-
tical axis. Therefore, only translational motions in vertical and longitudinal directions and pitch
motions, i.e. rotational motions around the lateral axis, are possible. Due to this planar models are
mainly used for investigations of the vertical dynamics. If also lateral, yaw and roll motions are
taken into account, the symmetry with respect to the middle cross plain is lost. Thereby, for the
modelling of lateral dynamics a spatial model is required.

Splitting the entire system “railway” into several subsystems suggests a modular structure of the
model. If interfaces between the subsystems are defined, then the subsystems can be described
by different models with different degrees of detailing and different modelling depth. This works
in both ways: On the one hand, a detailed model can be simplified by replacing the models for
the subsystems step-by-step by simpler models. The comparison of the results obtained with the
different model variants helps to ensure the reliability of the modelling. On the other hand, a
mechanical design, which has been obtained by a simple model, can be validated using a detailed
model to make sure that no unwanted effects have been overlooked.

In the following sections an overview on different methods of mechanical modelling and on dif-
ferent models for the aforementioned subsystems “vehicle”, “track”, and “wheel-rail contact” will
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be given.

2.1 Modelling methods

A very comprehensive overview on different modelling methods for technical systems and their
applicability is given by Schiehlen and Eberhard in [64] and [63]; in [55] and [56], Popp and
Schiehlen present a similar overview. Based on [64], [63], [55] and [56], the different modelling
methods and their characteristics listed in Table 2.1.1. The main aspects of these modelling meth-

Mechanical model Geometric shape Stiffness distribution Number of degrees
of freedom

Multi-body system complicated inhomogeneous finite (small)
Finite element system complicated homogeneous finite (large)

Continuous system simple homogeneous infinite

Table 2.1.1: Models of mechanical systems according to Schiehlen and Eberhard [64], [63] and
Popp and Schiehlen [55], [56]

ods, especially with respect to the modelling of railways, will be presented in the following con-
siderations.

2.1.1 Multibody models

The method of multibody modelling is nowadays a widely used method to simulate the mechanical
behaviour of technical systems such as vehicles or robots. There are several books dealing with the
fundamentals of multibody modelling such as e.g. the books by Roberson and Schwertassek [59],
by Shabana [68] or by Schiehlen and Eberhard [64], [63]. Several simulation software systems,
which are based on the multibody modelling, are commercially available. Many of these programs
offer a graphical user interface, which makes the generation of the model comparatively easy. The
equations of motion are generated automatically and solved numerically. The post-processing of
many MBS models includes animation tools, which give an instructive impression of the system’s
motions, but also diagrams for certain physical quantities, e.g. displacements, forces etc., can be
created. Altogether this underlines that this method is well established. In the following consider-
ations the method of multibody modelling will be very briefly described; also some mathematical
aspects are presented, since this will be an important topic for some modelling aspects.

A “classical” multibody system (MBS) consists of several rigid bodies, which have an inertia with
respect to translational and rotational motions. The motions of the bodies are described by joints,
which allow translations and rotations depending on the type of the joint. Thereby, the degrees of
freedom (DOFs) of the system are defined. Between the bodies, force elements are acting, which
are connected to the bodies at special points, the so-called markers. The force of the element
depends on the relative motions, i.e. relative position and relative velocity, of the points, between
which the element acts. The best-known force elements are springs and dampers, but also the
rolling contact between wheel and rail can be modelled as a force element.

Schiehlen and Eberhard [64], [63] give the following equations of motion for a multibody system:

M(y, t) ÿ(t)+k(ẏ,y, t) = q(ẏ,y, t)⇒M(y, t) ÿ(t)+ f(ẏ,y, t) = 0 (2.1.1)
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Here, the vector y = y(t) contains the degrees of freedom of the multibody system. The matrix
M(y, t) is the mass matrix. The vectors k(ẏ,y, t) and q(ẏ,y, t) represent the Coriolis forces and
the generalized external forces, respectively. From the mathematical point of view the equation
of motion according to (2.1.1) is a system of nonlinear ordinary differential equations (ODE).
Usually, the initial state described by the position y(t = t0) = y0 and the velocity ẏ(t = t0) = ẏ0 is
given; then, the wanted solution of the equation of motion (2.1.1) is the time history of the system’s
motions described by y(t) and ẏ(t) for t0 ≤ t ≤ Tend . Thus the mathematical problem to be solved
is an initial value problem. The solution of this problem is usually obtained from a numerical
integration; to this end the equation of motion can be reformulated using the state vector z(t) in
order to obtain an system of ordinary differential equations of first order:

z(t) =
[

y(t)
ẏ(t)

]
,

[
ẏ(t)
ÿ(t)

]
︸ ︷︷ ︸

ż(t)

=

[
ẏ(t)

−M(y(t), t)−1 f(ẏ(t),y(t), t)

]
︸ ︷︷ ︸

F(ẏ(t),y(t),t)=F(z(t),t)

⇒ ż(t) = F(z(t), t), z(t = t0) = z0

(2.1.2)
The determination of the wanted solution z(t) is called integration of the differential equation.
Usually, the solution can only be determined numerically. There are a lot of numerical algorithms
to solve this problem; an overview is given e.g. by Roos and Schwetlick in [60]. In this book [60],
on which the following considerations are based, a scalar initial value problem of the following
kind

u′(x) = f (x,u(x)) , u(x0) = u0 (2.1.3)

is discussed; according to [60] the results can, however, also be applied on a system of differential
equations using vectors. The numerical solution for the interval [x0,b] provides the wanted solution
u(x) at N +1 ∈ N discrete points xk:

xk = x0 + k h, h =
b− x0

N
, k = 0, . . . ,N⇒ uk = u(xk) (2.1.4)

The parameter N denotes the number of time steps; the parameter h is the stepsize. The methods for
numerical integration can be classified with respect to several aspects. One of these classifications
distinguishes between explicit and implicit methods. According to [60] a multistep integration
method to solve the scalar initial value problem (2.1.3) has the following structure:

1
h
(αkui+k +αk−1ui+k−1 + . . .+α0ui) = βk fi+k +βk−1 fi+k−1 + . . .+β0 fi, fk = f (xk,uk) (2.1.5)

The values u j and f j = f (x j,u j) for j = i, . . . , i+ k−1 are known and thereby available; the value
ui+k is the new value to be determined. For an explicit method it is valid βk = 0; therefore the
equation (2.1.5) can be resolved with respect to the new value ui+k so that it can be determined
from known values without any iteration:

ui+k =
1

αk
[h (βk−1 fi+k−1 + . . .+β0 fi)− (αk−1ui+k−1 + . . .+α0ui)] (2.1.6)

For βk 6= 0 the method is implicit; in this case the equation contains the new value ui+k and the
function fi+k = f (ui+k,xi+k):

ui+k−
βk

hαk
fi+k = ui+k−

βk

hαk
f (ui+k,xi+k)

=
1

αk
[h (βk−1 fi+k−1 + . . .+β0 fi)− (αk−1ui+k−1 + . . .+α0ui)] (2.1.7)
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Since the function f (x,u) is usually nonlinear, the wanted solution ui+k can only be obtained from
solving a nonlinear equation. Usually, this requires an iteration, i.e. the function f (xi+k,ui+k) has
to be evaluated several times. It is evident that thereby the computational effort for each time step
is higher for an implicit integration method than for an explicit one. By transferring the implicit
integration method on the initial value problem for the multibody model it is obtained:

tk = t0 + k h, h =
Tend− t0

N
, zk = z(tk), Fk = (zk, tk)

⇒ zi+k−
βk

hαk
Fi+k = zi+k−

βk

hαk
F(zi+k, ti+k)

=
1

αk
[h (βk−1Fi+k−1 + . . .+β0Fi)− (αk−1zi+k−1 + . . .+α0zi)] (2.1.8)

In many cases the equations of motion for a multibody system require an implicit integration
method. Therefore, the function Fi+k = F(zi+k, ti+k) usually has to be evaluated several times for
each part zi+k of the wanted solution. From this it follows that the function F(z, t), which repre-
sents the mechanical modelling, should be numerically efficient to provide a low computational
effort. As (2.1.2) shows the function F(z, t) contains the function f(ẏ,y, t), which describes the
generalized forces acting on the bodies. In some cases these forces cannot be determined by a
simple explicit equation, but by an algorithm consisting of several steps. This is the case e.g. for
several models describing the wheel-rail contact. Thus the aspect of numerical efficiency will be
discussed later in the context of different models for the wheel-rail contact.

2.1.2 Finite element systems

The finite element method (FE method or FEM) is basically a discretization method for boundary
value problems, see e.g. the book by Roos and Schwetlick [60]. It is used to determine an approxi-
mative solution of a differential equation for a certain region for given conditions at the boundaries
of the region. The wanted solution is the function f(x) describing the distribution of the physical
quantity f across the region, in which the location is denoted by x. This region can have a different
number of dimensions, i.e. it can be a one-dimensional, two-dimensional or three-dimensional
region, so that the coordinate x can be a scalar variable or a two-dimensional or three-dimensional
vector. The physical quantity f, too, can be scalar or a vector. Generally, the FE method can be
applied to several physical problems having different physical quantities, e.g. displacements due
to deformation, the temperature or the intensity of electric and magnetic fields.

A short description of the basic idea for the FE method shall be given. The following considera-
tion, which is quite rough, follows the book about finite elements by Schwarz [67], although the
nomenclature is modified. The region, for which the solution f(x) shall be determined, is divided
into several smaller regions Ek, which have a simple geometry; these regions describe the finite
elements. Within one element, the distribution of f is expressed by local shape functions n(k)

i (x).
The shape functions are scaled by the values fi = f(xi) at certain points Pi defined by xi; these
points are called “nodes”. The shape functions are defined in such a way that the function n(k)

i has
the value 1 at the point Pi and vanishes at all other points. This leads to:

f(x) =
Nk

∑
i=1

n(k)
i (x) fi, n(k)

i (xj) =

{
1 for j = i
0 for j 6= i , fi = f(xi) (2.1.9)

The number Nk denotes the number of the nodes of the element Ek. Here, the discretization be-
comes visible: The distribution f(x) within the element is expressed by the values fi at the nodes Pi,
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i.e. it depends on a finite number of variables. Within the element Ek, the shape functions n(k)
i (x)

are usually defined by simple functions like polynomials; outside the element, the shape functions
vanish. The union of the elements Ek is the complete region, for which the wanted solution f(x)
shall be determined. Based on the single elements, the complete solution is approximated in the
following way:

f(x) =
NN

∑
i=1

Ni(x) fi, Ni(xj) =

{
1 for j = i
0 for j 6= i , fi = f(xi) (2.1.10)

Here, the functions Ni(x) are the global shape functions; they are determined by all local shape
function n(k)

i , which don’t vanish at the point Pi.

By applying this method on a deformable mechanical structure a finite element system (FE sys-
tem) is obtained. According to Schiehlen and Eberhard [64], [63] such an FE system consists of
deformable elements possessing a mass and thereby an inertia; at the nodes discrete forces and
torques are applied to the system. As a result,

The finite elements can be classified in various ways regarding mathematical mechanical aspects.
Some of these aspects are:

1. Dimension and shape of the element:

(a) One-dimensional elements

(b) Two-dimensional elements: triangular shape or trapezoidal shape

(c) Three-dimensional elements: tetrahedron shape or hexahedron shape

2. Type of the shape function: Linear functions, quadratic functions, cubic functions

3. Type of the deformation:

(a) One-dimensional elements: bending, torsion, axial deformation

(b) Two-dimensional elements: plane element, plate element, shell element

(c) Three-dimensional elements: volume element

The aspects are not completely independent from each other. For instance, a beam element, which
describes bending motions, usually requires cubic shape functions; linear shape functions are not
sufficient.

The single finite elements have a simple geometry. However, from these elements also geometri-
cally complex structures can be composed if a sufficient number of elements is used. But due to the
comparatively simple spline functions also for simpler geometries a certain number of elements
may be necessary to achieve the required accuracy of the solution. From the mathematical and nu-
merical point of view, the FE system is usually described by a large system of coupled equations,
i.e. a system of high order; the number of the equations depends on the number of the nodes and
the type of the shape functions. Therefore, the system of equations can usually only be solved by
a computer.

Since the FE method can be applied even to geometrically complex structures, it has become a
widely used method in engineering; several commercial software systems based on this method
are available. Usually these software systems include a graphical interface for the generation of
the model and for the visualization of the results.
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The application of the FE method to deformation mechanics covers several problems in mechanical
engineering. Here, only two problems shall be briefly described. For the strength analysis the FE
method is used to determine the stresses acting in the structure for given loads. The comparison of
these stresses to the specific strength of the used material shows, whether the structure withstands
the loads or whether a failure is to be expected. In the structural eigenfrequency analysis, the val-
ues of the eigenfrequencies and the mode shapes, to which the eigenfrequencies are associated, are
determined. This analysis is important insofar as an excitation of a structure with its eigenfrequen-
cies can cause large deformations, which again can lead to high stresses in the structure and even
to its subsequent failure.

2.1.3 Flexible multibody systems

As described in section 2.1.1, a “classical” multibody system consists of rigid bodies connected
by joints, i.e. the bodies can’t perform any deformations. In some cases, the modelling of a
component as a rigid body can be insufficient. This can be the case if the forces acting on the body
are so high that the deformations of the body can’t be neglected. Another possible case is that the
forces acting on the body excite structural vibrations of the body; this occurs if the frequency of
the forces approaches a structural eigenfrequency of the body.

There are several possibilities to deal with this problem. One possibility is to resolve the compo-
nent into several rigid bodies, which are connected by flexible elements. An example in the context
of railway vehicle dynamics is the work by Morys [46]; in this work, a wheelset is described by
eight rigid bodies, which are connected by elastic elements. The advantage of this method is that
it can be performed within the multibody formalism, i.e. no extension of the multibody formal-
ism is necessary. The main effort of this modelling method is required for choosing a suitable
partition of the entire body into single rigid bodies and determining and “tuning” the parameters
for masses and stiffnesses in such a way that the combination of rigid bodies and elastic elements
reproduces the structural dynamics for the relevant eigenmodes. As a main disadvantage, Morys
himself mentions that several types of eigenmodes cannot be described using this method.

Another possibility is the extension to elastic multibody systems or flexible multibody systems,
where deformations of certain bodies are admissible. There are several approaches; according
to Schiehlen and Eberhard [64], [63] the floating frame of reference formulation (FFRF) can be
applied if the deformations are small. In this formulation the motion of the flexible body is de-
scribed by superposing the large nonlinear motion of the floating frame of reference and the small
linearized deformations with respect to this frame. For the description of the structural dynamics
an FE model of the body, as described in section 2.1.2, can be used. However, as mentioned in
section 2.1.2, an FE model is usually described by a system of high order. Therefore, the original
FE model is often reduced for this application. For instance, the deformation field of the flexible
body can be described by a modal synthesis; here, shape functions, which are obtained from the
FE model, are scaled by modal coordinates, which constitute the degrees of freedom for the defor-
mations. As an example, the eigenmodes of the flexible body can be used as shape functions. For
the shape functions, coefficients based on integrals have to be calculated.
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2.2 Vehicle models

As described in section 1.2, a vehicle has to match several requirements and criteria, which are
related to different phenomena. These phenomena are located in different frequency ranges and
therefore require different types of models, which are suitable for their description. In this section,
problems located in different frequency ranges and models for their description will be presented
and discussed.

The physical behaviour of the wheelset on a straight track is closely related to the running stability
of the vehicle and essential for the function, for the construction and for the mechanical design
of the vehicle. Therefore, this behaviour will be discussed first, also with respect to different
modelling depths and to the phenomena, which can be described by these models.

2.2.1 Characteristic behaviour of the wheelset

Railway vehicles are track-guided vehicles, i.e. they don’t possess any steering devices, by which
the driver can influence the course of the vehicle. The vehicle’s course is determined by the track
and the vehicle needs an automatic steering mechanism to follow the track and to compensate
deviations. The essential element for the track guidance of a vehicle is the wheelset. In addition to
the supporting function and to the propulsion and the braking the wheelseet is also responsible for
the guidance. The two characteristic features of a conventional wheelset are:

1. The wheels are coupled by a rigid axle. Thereby, both wheels have the same rotational speed.

2. The wheels have a non-cylindrical shape 1. Thereby, the current rolling radius of each wheel
depends on the effective position of the wheelset relative to the track.

Up to today, several alternative concepts for the track guidance have been developed, e.g. con-
structions based on independently rotating wheels, which use mechatronic control in newer time.
However, the vast majority of railway vehicles all over the world still uses conventional wheelsets.

A detailed description of the modelling of a railway vehicle’s running behaviour is given by Knothe
and Stichel in [35] and by Wickens in [80]. In these books, also the historical development of the
modelling is described. Therefore, the following discussion is limited to the essential methods,
concepts and features of different types of modelling. Furthermore, the performance of the dif-
ferent modelling types will be discussed, i.e. which modelling concepts are necessary for the
description of several phenomena. An overview on the different modelling methods is given in
Tab.2.2.2. This also underlines the motivation of this work and its classification.

The following considerations shall give a more detailed description of the modelling methods.

1In a few cases, cylindrical wheels are used. An example is the underground railway in Berlin. However, wheelsets
having cylindrical wheels don’t show the hunting behaviour.
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Modelling Described phenomena

Kinematical rolling

• Periodical lateral and yaw motions (hunting
motion)

• Qualitative impact of running speed, conicity,
rolling radius and track gauge

Linear dynamical equations of mo-
tion

• Existence of the critical speed (increasing and
decreasing of the hunting motion)

• Interaction with other components, e.g. bogie
frame, track etc.

Nonlinear contact modelling

• Limit cycle behaviour, i.e. existence of limits
cycles with defined amplitudes

• Flange contact

Flexible wheelset

• Deformation of the wheelset under statical and
dynamical loads

• Impact of the deformation on the contact and
thereby on the running behaviour

Table 2.2.2: Modelling methods for the wheelset’s running behaviour

Kinematical rolling: Klingel’s equation
The first and probably best known modelling of the wheelset’s running behaviour was published
by Klingel in 1883 [32]. The basic assumptions for this modelling are:

1. The wheels have the shape of a truncated cone. The rails have a rectangular cross section.

2. The wheelset and the track are rigid.

3. Kinematical rolling is assumed, i.e. no relative velocities between wheel and rail occur in
the contact point.

An overview on the model is given in Fig.2.2.4.

Here, 2a0, r0 and δ0 denote the track gauge, the nominal rolling radius and half the cone angle.
Based on this, Klingel’s equation can be derived:

y′′(x)+
tanδ0

a0 r0
y(x) = 0 (2.2.11)
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Figure 2.2.4: Hunting according to Klingel

The equation is solved by a periodic function. Thereby, the wavelength λ of the hunting motion is
obtained2:

y(x) = ŷsin
(

2π

λ
x+φ

)
⇒ λ = 2π

√
a0 r0

tanδ0
(2.2.12)

Apparently, the hunting motion has a constant wavelength. It should be pointed out that this
equation is obtained from purely kinematical considerations, i.e. concerning forces acting on the
wheelset it is assumed that the forces are sufficient to generate this motion.

For a long time, Klingel’s equation was used for the mechanical design of railway vehicles. It
provided an estimation of the hunting frequency in a given range of the running speed. However,
to describe the running behaviour of the wheelset at higher speed, Klingel’s equation is not suitable.
The limits of its validity can be demonstrated in a comparatively simple way: Let v0 be a constant
running speed so that there is a proportional relation x = v0t between the covered distance x and
the time t. After inserting this relation into the solution (2.2.12) of Klingel’s equation the lateral
acceleration of the wheelset is obtained by the second derivative with respect to time:

x = v0t⇒ y(t) = ŷsin
(

2π

λ
v0t +φ

)
⇒ ÿ(t) =− ŷ

(
2π

λ

)2

v0
2︸ ︷︷ ︸

ˆ̈y

sin
(

2π

λ
v0t +φ

)
(2.2.13)

The amplitude ˆ̈y of the lateral acceleration grows with the square of the running speed v0
2. Since an

acceleration is caused by forces acting on a body, also the guiding forces accelerating the wheelset
in lateral direction have to grow proportionally to v0

2 to provide this motion. However, the guid-
ance of the wheelset is mostly performed by frictional forces and – in a small amount – by normal
forces acting in the contact. Both forces are limited by the weight of the wheelset in the case of
a free wheelset or by the weight of the vehicle, if the wheelset is assumed to be mounted to a ve-
hicle. Thereby, the guiding forces cannot be arbitrarily high and hence Klingel’s equation cannot
describe the running behaviour at high running speeds.

As already mentioned, the motion described by Klingel’s equation is obtained from purely kine-
matical considerations. The only requirement is that the forces acting in the contact are high
enough to enable the described motion; in other words: Forces can be determined as reaction
forces for a given motion, but the equation is not derived from a formulation based on forces.
Therefore, Klingel’s equation cannot describe interactions between the wheelset and other compo-
nents of the vehicle like the bogie frame: If a wheelset described by Klingel’s equation is coupled
to a vehicle by suspension elements like springs and dampers, then the motion of the wheelset acts

2According to [76] and [16], the expression “hunting” denotes a coupled lateral and yaw motion (or “nosing” as
the rotation around the vertical axis is called in [76]) of the wheelset, i.e. it is a pure kinematical expression, which
makes no statement on the stability of the motion, i.e. whether it increases or decreases.
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as a given kinematical excitation for the vehicle and the other components have no influence on
the wheelset’s running behaviour. This also limits the applicability of Klingel’s equation.

Nevertheless, Klingel’s equation gives an estimation, which parameters have an influence on the
running behaviour: A higher value for the half cone angle δ0 leads to a shorter wavelength λ and
thereby to a higher frequency f of the motion due to the relation f = v0/λ. This relation also
shows that the frequency of the hunting motion increases with the running speed v0, although in
real life this increase is not linear, since the wavelength is not constant. Thereby, higher lateral
contact forces between wheel and rail are to be expected for higher running speeds.

Linear equations of motions for the wheelset
To model the effects, which occur at higher running speeds and result from interactions with other
components of the vehicle, the equations of motion for the wheelset are derived based on the laws
by Newton and Euler. This requires also a description of the forces acting in the wheel-rail con-
tact, especially the lateral and longitudinal forces, which are important for the lateral and the yaw
motions, respectively. In his book [26] Kalker gives very detailed descriptions of different theories
regarding the rolling contact. Generally, the tangential forces transmitted by friction depend on the
creepages in the contact. The creepage is defined as the ratio of the relative velocity in the contact
to the running speed v0. In reverse, this means that for the equations of motions relative motions
in the contact are admissible in contrast to the kinematical rolling, where it was assumed that the
relative velocities in the contact vanish. One theory described in [26] is Kalker’s linear theory;
a shorter description of this theory can be found in e.g. [3] or [55]. For small creepages νi the
relation between the tangential forces and the creepages is given by the following relations:

F1 = −abGC11︸ ︷︷ ︸
f11

v1,rel

v0︸ ︷︷ ︸
ν1

(2.2.14)

F2 = −abGC22︸ ︷︷ ︸
f22

v2,rel

v0︸ ︷︷ ︸
ν2

−(ab)3/2 GC23︸ ︷︷ ︸
f23

ω3,rel

v0︸ ︷︷ ︸
ν3

(2.2.15)

M3 = (ab)3/2 GC23︸ ︷︷ ︸
f23

v2,rel

v0︸ ︷︷ ︸
ν2

−(ab)2 GC33︸ ︷︷ ︸
f33

ω3,rel

v0︸ ︷︷ ︸
ν3

(2.2.16)

Here, F1, F2 and M3 denote the longitudial tangential force, the lateral tangential force and the
spin torque acting aroung the axis normal to the contact. Furthermore, v1,rel , v2,rel and ω3,rel
represent the relative translational velocities in longitudinal and lateral direction and the relative
angular velocity around the normal axis of the contact. As already mentioned, the creepages νi
are defined as the ratio of the relative velocity to the runing speed v0. According to the Hertzian
contact theory, on which Kalker’s linear theory is based, the contact area of two elastic bodies is
an ellipse having the semiaxes a and b. The material properties of wheel and rail are represented
by the shear modulus G. The coefficients Ci j are the so-called Kalker coefficients, which depend
on the ratio a/b of the semiaxes of the contact ellipse and on Poisson’s ratio ν for the materials of
wheel and rail. A more detailed discussion of Kalker’s linear theory will be given in section 2.4.1.
For a better overview, the products of the semiaxes a and b, the shear modulus G and the Kalker
coefficients Ci j are represented by the coefficients fi j for the following considerations.



Chapter 2. Modelling of railways: State of the art 35

Based on this theory, the linear dynamical equations of motions for the free wheelset can be de-
rived, as given e.g. by Popp and Schiehlen in [55]:[

mW 0
0 JA,W

][
ÿ(t)
ψ̈(t)

]
+

(
2
v0

[
f22 f23
− f23 a0

2 f11 + f33

]
+ JP,W

δ0 v0

a0 r0

[
0 −1
1 0

])[
ẏ(t)
ψ̇(t)

]
+

[
mW gδ0

a0
−2 f22

2 f11
δ0 a0

r0
2 f23

][
y(t)
ψ(t)

]
=

[
0
0

]
(2.2.17)

Here, mW, JA,W and JP,W denote the mass, the equatorial and the polar moment of inertia of the
wheelset, respectively. The coefficient g is the acceleration due to the earth’s gravitation. Fur-
thermore, the conicity δ0� 1 is assumed to be very small so that the approximations sinδ0 ≈ δ0,
cosδ0 ≈ 1 and tanδ0 ≈ δ0 are admissible.

The structure of the equations of motion already shows several characteristics of the wheelset’s
dynamical running behaviour: The damping effect of the contact forces diminishes with increasing
running speed v0. Furthermore, the matrix of the forces depending on the displacements is non-
symmetric, which indicates circulatoric forces, i.e. non-conservative forces. The combination of
both influences leads to the effect that the wheelset’s lateral and yaw motions are asymptotically
stable below a certain running speed, which is called critical speed v0,crit . For v0 < v0,crit , the
lateral and the yaw motions decay, so that the wheelset centres itself within the track. Above the
critical speed, the wheelset shows unstable behaviour, i.e. an initial disturbance of the lateral and
the yaw motion increases. The stability of the motion can be determined by inserting the usual
solution for a linear differential equation based on the exponential function. Thereby, the system
of linear equations can be reduced to an algebraic problem:

Mÿ(t)+Pẏ(t)+Qy(t) = 0, y(t) = ŷi eλi t ⇒
[
Mλi

2 +Pλi +Q
]

ŷi = 0 (2.2.18)

The non-trivial solution is obtained by solving the eigenvalue problem:

ŷi 6= 0⇒ det
[
Mλi

2 +Pλi +Q
]
= 0 (2.2.19)

At the critical speed, the maximum real part of all eigenvalues vanishes:

v0 = v0,crit ⇒max
i

ℜλi = 0 (2.2.20)

As already mentioned, the equations of motions are derived based on forces and torques acting on
the wheelset. Thereby, the model of the wheelset can be extended to the model of a bogie or of a
complete vehicle, where the interactions, i.e. the mutual influence of the bodies’ motions on each
other, are taken into account. Such models are presented in the thesis by Ihme [20] and in the book
by Garg and Dukkipatti [14]. Based on such a model, the influences of mechanical parameters
like the suspensions’ stiffnesses and dampings on the running behaviour can be investigated. As
a further extension of this modelling, track disturbances exciting oscillations of the vehicle can be
taken into account. This also was presented by Ihme [20].

Nonlinear influences and effects
As shown in the previous section, the linear equations of motion show several considerable ad-
vantages compared Klingel’s equation based on the purely kinematical consideration. However, as
their name already says, the linear equations of motion don’t take nonlinear effects into account.
However, nonlinear effects can have an strong influence on the running behaviour of the vehicle.
In his thesis [76] van Bommel lists two important nonlinear influences regarding the wheelset:



36 Chapter 2. Modelling of railways: State of the art

1. The geometry of the wheel-rail contact is nonlinear, i.e. the relation between the lateral
displacement y and the difference of the rolling radii ∆r of the right and the left wheel is
nonlinear. Here the wheel flanges, which limit the lateral displacement of the wheelset, play
an important role. In Fig.2.2.5 the difference of the rolling radii vs. the lateral displacement
for the wear-optimized wheel profile S1002 combined with the rail profile UIC60 is shown;
this profile combination is widely used in railway operation. In this figure, the strong in-
crease of the rolling radii difference for high lateral displacements, which results from the
flange contact, can clearly be seen. Fig.2.2.5 also shows that a nonlinear relation between the
rolling radii and the lateral displacement can already occur for lateral displacements below
the flange contact.

2. The traction characteristics, i.e. the relation between the creepages and the tangential forces,
is nonlinear. The tangential forces are caused by friction and can thereby not exceed a limit
Tmax = µN given by the current normal force N and the friction coefficient µ. For high
creepages, the nonlinear characteristics has a considerable influence.

Figure 2.2.5: Function of the rolling radii difference depending on the lateral displacement. Wheel
profile: S1002, rail profil: UIC 60, cant 1/40

As it has been shown in (2.2.18) and (2.2.19), the analysis and the mathematical treatment of a
linear system is comparatively easy; the eigenvalues λi obtained from the analysis give a good
characterization of the system’s behaviour. In contrast to this, the analysis of a nonlinear system
is far more difficult. A nonlinear system can be characterised by its attractors. An attractor is a
state or a certain sequence of states, towards which the dynamical behaviour of the system evolves.
There are several types of attractors: Fixed points, limit cycles, limit tori and strange attractors,
see e.g. the book by Magnus, Popp, and Sextro [41] on oscillations.

In the case of the railway vehicle, the desired attractor is a fixed point attractor, which describes
the centred position of the wheelset within the track. A fixed point attractor is characterised by a
constant, time-invariant state y f p of the system. The stability of such an attractor can be investi-
gated by linearisation based on a Taylor expansion. A nonlinear function f (x) can be approximated
in the range around the reference point x0 by the following linear function flin(x) using the first
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derivative f ′(x0) of the original function at the reference point as the gradient:

flin(x) = f (x0)+ f ′(x0)(x− x0) , f ′(x) =
d f (x)

dx
(2.2.21)

Linearising the function of the rolling radii difference around the wheelset’s centred position, i.e.
for y0 = 0 and ψ0 = 0, gives a linearised conicity tanδ0. From the linearisation of the traction
characteristics for very small creepages, the coefficients f11, f22, f23 and f33 are obtained, which
have already been introduced in the equations (2.2.14), (2.2.15) and (2.2.16). These coefficients
and the linearised conicity tanδ0 ≈ δ0 can be inserted in to the equations of motion (2.2.17). By
varying the running speed v0 the value can be found, at which an eigenvalue having a non-negative
real part occurs, see (2.2.20). This value will be called linear critical speed vcrit,lin. Below this
running speed, the centred position is stable , i.e. after a disturbance the wheelset tries to reach
this attractor again. Above this critical speed, the amplitudes of the wheelset’s motion grows and
exceeds all limits, according to the solution of given by the exponential function with a positive
real part ℜλi, as described in (2.2.18).

In real life, the lateral motion of the wheelset is limited by its flanges. Therefore, a limit cycle
attractor can occur for a wheelset. A limit cycle is a periodic oscillation of the system with a
defined amplitude. Although the lateral motion of the wheelset doesn’t exceed all limits, the limit
cycle oscillation can be dangerous: For the flange contact, very high forces can occur, which can
cause considerable damage of the track.

In total, the dynamical behaviour of the wheelset under consideration of the nonlinear contact
geometry and the nonlinear traction characteristics can be described by the diagram shown in
Fig.2.2.6. Here, the attractors are displayed as the relation between the maximum lateral displace-
ment ŷ and the running speed v0.

Stationary
behaviour

Periodic
behaviour
(limit cycle)

Figure 2.2.6: Generic scheme of the wheelset’s attractors

The attractors only exist for certain ranges of the running speed: The centred position only is a
stable attractor for v0 < vcrit,lin and the limit cycle only exists for v0 > vcrit,nonlin. Each attractor
possesses a certain basin of attraction: If the initial condition of the system lies within the basin
of attraction of a certain attractor, then the motions of the system will approach this attractor, if
now other external disturbances are applied. If the running speed lies below both critical speeds,
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i.e. v0 < vrit,lin∧v0 < vcrit,nonlin, then only one attractor, namely the centred position, exists so that
the wheelset will centre itself within the track for every initial condition. If the running speed is
higher than both critical speeds, i.e. v0 > vcrit,lin ∧ v0 > vcrit,nonlin, then a limit cycle oscillation
will occur for each initial condition. In many cases, the nonlinear critical speed is lower than
the linear critical speed, i.e. v0,crit,nonlin < v0,crit,lin: The lowest speed, at which a permanent
hunting can occur, is lower than the speed, at which the centred position becomes unstable. In the
range of vcrit,nonlin < v0 < vcrit,lin both attractor coexist. It depends on the initial conditions of the
system, which attractor the system tries to reach. Since on the one hand the limit cycle motion
can cause damages to the track and can therefore be dangerous and since on the other hand the
nonlinear critical speed vcrit,nonlin, at which the limit cycle motion starts, is lower than the linear
critical speed vcrit,lin, the knowledge of vcrit,nonlin is important for the mechanical design of the
vehicle. However, the determination of this nonlinear critical speed requires suitable methods for
analysing the nonlinear dynamics of the vehicle. Such methods will be presented and discussed in
the following considerations.

It should be pointed out explicitly that Fig.2.2.6 gives only a qualitive description of the wheelset’s
dynamical behaviour. A complete vehicle possesses several wheelsets, which can also be arranged
in bogies. The wheelsets, the bogie frames and the carbody are coupled by elements, which can
also have nonlinear characteristics. Examples are rubber springs, bumpstops for limiting motions
or dry friction elements as used for the yaw damping in the bogies of the types MD 522 or SGP 300.
The latter problem of a moment caused by dry friction, which can also occur in the pivot connecting
the car body and the bogie, has also been investigated by van Bommel in his work [76]. Due to
the coupling elements acting between the wheelsets and the bogie frame and between the bogie
frames and the car body very complex dynamical interactions can occur. Thereby, the permanent
hunting motion may not appear as a limit cycle, i.e. a strictly periodic motion, but as a limit torus,
i.e. a quasi-periodic motion. Such a quasi-periodic motion consists of several harmonic functions,
whereas the quotient of at least two frequencies is not rational.

The nonlinear effects occurring at a railway vehicle have a strong impact on the running behaviour
and thereby are relevant for the mechanical design of the vehicle. Hence, there are several ways to
treat these nonlinear effects:

1. Since the analysis of linear systems is comparatively easy to handle and gives a quick and
descriptive insight into the systems behaviour, one possibility is to approximate the nonlinear
system by a linear one. The “strict linearisation” in the sense of approximating the nonlinear
function f (x) by the first terms of a Taylor expansion according to (2.2.21) is only valid for
small motions around the centred position. Therefore, for larger displacements the quasi-
linearisation can be applied; this method is also known as the Krylov-Bogoliubov method,
see e.g. [41]3. Here, x is assumed to be a harmonic function with the amplitude x̂. Thereby,
the linearisation of the function f (x) is performed by:

k =
1
πx̂

∫ 2π

0
f (x̂cosφ)cosφdφ⇒ f (x)≈ k x (2.2.22)

Here, the coefficient k depends on the amplitude x̂, which has to be chosen. Applying this
method to the difference of the rolling radii depending on the lateral displacement of the
wheelset leads to the well-known equivalent conicity. The advantage of this method is that
it works very fast and is thereby well suited for parameter studies, e.g. for parameters of the
primary or secondary suspension as shown by Diepen in [11]. Its disadvantage is that it uses
a very rough approximation of the actual motion.

3In [41] the German transliteration “Bogoljubov” is used.



Chapter 2. Modelling of railways: State of the art 39

2. The numerical integration is the most universal method to analyse the behaviour of a nonlin-
ear system. If the vehicle is modelled as a multibody system as described in section 2.1.1,
its dynamics can be formulated as an initial value problem, i.e. a system of differential
equations described in the state space and a given initial value:

ż(t) = F(z(t), t),z(t = t0) = z0 (2.2.23)

The application of this method only requires that the solution exists. Therefore, its advantage
is its universal applicability. The disadvantage is that is some cases a very high computa-
tional effort is necessary: To find an attractor, e.g. a limit cycle or a limit torus, an integration
over a very long simulation interval may be required to make sure that all transient motions
have died out. Furthermore, the differential equations describing the motion of a railway ve-
hicle can be very stiff; there are several books like e.g. [60] dealing with the problem of stiff
differential equations. The numerical integration of such sitff differential equations requires
an implicit integration method, which usually leads to a higher computational effort than an
explicit method, as discussed in section 2.1.1.

3. The main problem to determine the attractor of a nonlinear system is that transient motions
have to die out completely. In some cases this can require a long time and thereby a high
computational effort. Since the attractor of permanent hunting is often a limit cycle, it is ob-
vious to exploit the strict periodicity of the limit cycle z(t) = z(t +T ), i.e. after one period
of the duration T the same state described by the state vector z(t) occurs. Moelle [45] used
a Galerkin method, wheras the state vector is described by a Fourier series. Thereby, a nu-
merical integration of the system’s equations is avoided in this method. Kaas-Petersen [22]
applied the method of path-following on the hunting of a railway vehicle. This approach has
been successfully applied by Schupp [66] to more complex systems. Also its applicability
was extended by Schupp from systems of ordinary differential equations (ODE) to systems
of differential-algebraic equations (DAE). The limit cycle is obtained by a direct calculation:
A residual function R = z(z0,T )− z0, which depends on the initial state z0 and the duration
T of the period, is minimised. The state z(z0,T ) is obtained by solving the initial value prob-
lem (2.2.23). The advantage of such methods is that they calculate the limit cycle attractor
directly and thereby avoid long numerical integrations, which may be necessary for a pure
numerical integration. The disadvantage is that the applicability of such methods is limited
to limit cycle attractors, since these methods exploit the periodicity of such an attractor.

2.2.2 Low frequency range

In the low frequency range mostly problems of running dynamics are located. In a recent paper by
Bruni, Vinolas, Berg, Polach, and Stichel [8] a list of analysis types is given; this list includes issues
like carbody sway in curves, safety against derailment, track shift forces, stability, ride comfort,
wear and gauging. It is explicitly stated that for some issues like carbody sway, gauging, wear and
ride comfort the frequency range between 0 Hz and 20 Hz is of main interest.

Generally, a railway vehicle possesses at least one carbody, which contains the payload or the
passengers or in the case of a locomotive the propulsion plant, and several wheelsets. If the vehicle
uses bogies running gears, the vehicle also possesses bogie frames. The carbody, the wheelsets,
and the bogie frames are connected by flexible elements forming the primary suspension acting
between the wheelset and the bogie frame and the secondary suspension acting between the bogie
frame and the carbody. With respect to Tab. 2.1.1 the railway vehicle has a complex geometry.
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Furthermore, the flexible elements of the primary and secondary suspensions are usually distinctly
softer than the comparatively stiff wheelsets, bogie frames, and carbody. Therefore it is obvious to
model a railway vehicle as a multibody system.

In this frequency range, the entire vehicle is considered and modelled as a multi-body system.
Usually, the main components like the carbody, the bogie frame and the wheelset are modelled as
rigid bodies. The bodies are connected by force elements representing the springs and dampers
of the primary and the secondary suspension. In some cases this modelling is enhanced, e.g. by
modelling motor units or wheelset bearings as separate bodies or by splitting the carbody, the
bogie frame or the wheelset into several separate bodies to approximate the structural dynamics.
The survey by Bruni, Vinolas, Berg, Polach, and Stichel [8] gives an overview on modelling of the
suspension components and track in multibody models of railway vehicles, since the modelling of
these components is highly important for the accuracy of the model.

In his thesis van Bommel [76] investigates the hunting motion of a two-axled vehicle; it is explicitly
mentioned that this can also represent a bogie. The system consists of three bodies representing
the two wheelsets and the carbody, which are connected by linear springs and dampers; thus the
mechanical model is a multibody system even if van Bommel didn’t use this expression4. This
work is one of the earliest, in which the influence of the nonlinearities resulting from the wheel-
rail contact geometry and from the friction characteristics, as discussed in section 2.2.1, are taken
into account.

The HSB study [18] is a study about several problems related to railway operations at higher speed;
it had been ordered by the German Federal Ministry of Transport. In Appendix 7 of the HSB study
several different mechanical models are presented to investigate the running behaviour at higher
speeds. For the vertical dynamics a quite simple model is used; here, the vehicle model consists
of just two rigid bodies describing the wheelset and a part of the carbody. The model is excited
by sinusoidal rail irregularities. Furthermore, a more complex vehicle-track model is presented.
The vehicle model describes an entire passenger coach equipped with two two-axle bogies. The
model consists of seven rigid bodies, which represent the carbody, the two bogie frames, and the
four wheelsets. The wheel-rail contact geometry is nonlinear so that the influence of the flange
is taken into account. With this model the stability of the running behaviour is investigated. In
the simulated scenario the vehicle is excited by a lateral wind gust; thereby hunting of the vehicle
is initiated. The diagrams show a hunting frequency of approx. 2.75 Hz at a running speed of
270 km/h, which is clearly located in the low frequency range.

Sauvage [61] gives an overview on the influence of several parameters on the running behaviour at
high speeds. The critical speed is determined depending on the equivalent conicity, the longitudinal
and lateral stiffnesses of the primary suspension etc.

Diepen [11] investigated the running behaviour of a passenger coach used for intercity traffic. The
bogie frames and the wheelsets are modelled as rigid bodies. The carbody is represented by two
rigid bodies, which are connected by a spherical joint and rotational springs. Thereby, the lowest
bending and torsional eigenmodes of the carbody are approximated. This is an example for the
approximation of a flexible structure by connected rigid bodies within the multi-body formalism.
Based on this model, Diepen analyzes the influence of several parameters like stiffnesses of the
primary and the secondary suspension on the riding comfort.

Kratochwille [36] investigated the influence of switchable yaw dampers on the running behaviour

4According to Schiehlen and Eberhard [64], [63] the interest in multibody systems didn’t increase until after 1965,
when a need for this arose from space technology; since then also computer-based formalisms are developed. The
thesis by van Bommel [76] appeared in 1964, i.e. before this time.
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of a passenger coach. On the one hand, stiff yaw dampers have a stabilizing effect on the running
behaviour and thereby enable higher running speeds. On the other hand, on curved lines stiff yaw
dampers are disadvantageous, since the moment against relative yaw motions, which is caused
by the dampers, leads to higher lateral forces and thereby to increased wear. The multi-body
model describes a trailer coach of the German ICE train equipped with prototype bogies. The
model includes seven rigid bodies representing the carbody, the two bogie frames and the four
wheelsets. Using this model, the running through different curves with varying radius for different
characteristics of the yaw damper is simulated. A special focus lies on the resulting lateral force
ΣY between the wheelset and the track, since this is relevant for the operational safety and the
homologation of the vehicle.

In the works of Zhai, Wang and Cai [83] and by Xiao, Jin, Wen, Zhu and Zhang [82] a passenger
coach is modelled by a multi-body system, which includes seven rigid bodies to describe the
carbody, the two bogie frames and the four wheelsets. Zhai, Wang and Cai [83] investigate two
scenarios of passing a curve, i.e. a tight curve at low running speeds and a curve having a large
radius at high speeds. The evaluation focuses on the vertical and lateral wheel-rail forces. Xiao, Jin,
Wen, Zhu and Zhang [82] analyse the scenario of passing a track buckle having different shapes
with respect to the risk of derailment. It can be concluded that in both cases the low-frequent
running dynamics is considered.

The work of Polach and Kaiser [53] is focused on the nonlinear analysis of the running stability
with special respect to the applicability of the path-following method. The model represents a
double-deck passenger coach. The model is developed in a commercially available multi-body
simulation software environment. The carbody consists of two bodies, which are connected by a
revolute joint and a rotational spring to approximate torsional deformations. In a similar way, the
bogie frames are modelled by two bodies so that twisting deformations of the frames are taken into
account. The running behaviour is investigated for different wheel-rail profile combinations and
different characteristics of the yaw dampers.

Multi-body models consisting of rigid bodies are also used to determine loads, which are acting
on certain components. The works of Flach [13] and Stichel [70] are focused on the durability
of the bogie frame. In both works, a passenger coach of the ICE train of the first generation is
modelled as a multi-body system using rigid bodies. By simulating different scenarios using the
multi-body model the forces acting on the bogie frame are determined. They are put as loads
on a finite element model of the frame to analyze stresses and fatigue. Thus, the finite element
analysis is used as a postprocessing, i.e. structural deformations of the bogie frame are not taken
into account in the simulation of the dynamics.

Wear problems concerning the profiles of wheel and rail are also phenomena, which are located
in the low-frequency range. Due to the sliding friction, which occurs the wheel-rail contact, wear
occurs. With ongoing wear the shapes of the profiles are changing. The changed geometry of the
profiles leads to changes of the running behaviour. Therefore, the evolution of the wear is usually
simulated by an interplay between the running dynamics and the wear behaviour. The modelling
of the wear requires a more realistic determination of the actual location of the wheel-rail contact
and of the stresses occurring in the contact.

Kim [30] investigated the running of a passenger coach on the Gotthard line in Switzerland, which
is characterized by many curves. The model of the passenger coach is a multi-body model, where
rigid bodies represent the carbody and the bogie frames. The wheelset is composed of several rigid
bodies connected by rotational springs: The axle is split into two bodies for an approximation of
torsional motions. The bending deformation of the wheelset is approximated by modelling the
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wheels as separate rigid bodies, which are connected to the axle by spherical joints. This modelling
can be seen as an example for a lumped-mass modelling of a flexible structure. Compared to the
modelling of the wheelset as one rigid body, a more realistic determination of the actual contact
geometry is provided.

Weidemann [79] investigates the running dynamics and the wear behaviour for monobloc wheels
and resilient wheels. At resilient wheels, the wheel disc including the hub on the one hand and
the wheel rim on the other hand are separate parts; between the wheel discs and the wheel rim a
rubber layer is placed. The model by Weidemann is a multi-body model consisting of rigid bodies.
It describes a passenger coach with two bogies and four wheelsets. Therefore, the wheelset having
resilient wheels consists of the “basic wheelset”, which includes the axle, the two brake discs and
the two wheel discs, and of two wheel rims. The wheel rims can perform translations around the
symmetry axis of the wheelset and all three relative rotations. The rubber elements are modelled
by force elements.

Schelle [62] investigated the wear occurring at the wheels of freight locomotives, which run on a
curvy line in the Harz mountains in Germany. The locomotive is modelled as a multi-body system
consisting of rigid bodies, which represent the carbody, the bogie frames, the wheelsets, but also
the traction motor units, the wheelset bearings and the traction rods. Realistic operation scenarios
of the locomotive are simulated using a detailed representation of the topology of the track. The
wear is calculated by evaluating the stresses in the wheel-rail contact. Based on the wear, changes
of the profiles of wheel and rail are calculated. The evolution of the profiles is a result of the
interplay between the dynamical behaviour, which causes wear in the contact and thereby slowly
changes the shapes of the profiles, and the evolution of the profiles, which have an impact on the
running behaviour.

In the work by Kaiser and Popp [23] also the limit cycle behaviour of a passenger coach is investi-
gated; here, the wheelsets are modelled as flexible bodies. The results show a destabilizing effect
of the wheelsets’ structural flexibility, i.e. the permanent hunting starts at lower running speeds
and the lateral amplitudes of the wheelsets increase. In [24] this investigation was continued us-
ing a refined finite element model for the wheelset and a detailed model of the track; in the track
model, the rails are modelled as flexible bodies and the periodic support by discrete sleepers is
taken into account. The results confirmed the destabilizing effect of the structural flexibilities of
the wheelsets and also showed a destabilizing effect of the track flexibility.

2.2.3 High frequency range

Phenomena located in the high frequency range are usually related to structural vibrations of com-
ponents. Due to structural vibrations and motions of the surface sound can be radiated, which
is heard as noise. In the context of vehicle dynamics, investigations of the high frequency be-
haviour are mainly focused on the wheelsets. High-frequent structural vibrations of the wheelsets
are mainly caused by two different excitation mechanisms resulting in two different types of noise.
The rolling noise is caused by irregularities of the running surfaces of wheels and rails, e.g. due
to corrugation. These irregularities cause dynamic fluctuations of the normal forces in the con-
tact leading to structural vibrations of the wheelsets. The other mechanism is the squealing noise,
which can occur during the passing of a curve. In this case the structural vibrations are excited
by tangential forces acting in the wheel-rail contact; the squealing noise is usually related to high
lateral creepages in the contact. Therefore, it mainly occurs for high angles of attack between the
wheel and the rail, e.g. in tight curves.
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It is obvious that the description of phenomena, which are strongly related to structural vibrations
of the wheelset, requires a comparatively detailed modelling of the wheelsets. Here, the finite
element method is mainly used, since it has nearly no restrictions with respect to the geometry
of the structure. There are several commercially available software systems based on the finite
element method.

In his work [17] Heiß develops a finite element model of a trailing wheelset to analyze the acoustic
behaviour. This model consists of brick elements, i.e. three-dimensional elements with the shape
of a hexahedron. By exploiting symmetry properties of the structure, the model is reduced to one
eighth of the original structure; the eigenmodes having different symmetry properties are obtained
by applying suitable boundary conditions to the reduced model. Heiß gives an overview of the
eigenmodes and classifies them with respect to their symmetry properties and other characteristics
like e.g. node lines. Since this provides a basic understanding of the structural dynamics not only
of a wheelset, but generally of a rotational symmetric structure, a comprehensive discussion of the
results can be found in the book by Gasch, Knothe, and Liebich [15].

The problem of curve squealing has been investigated in many works so that only a small selection
of such works is given here. Works dealing with this phenomenon have been given published by
Schneider [65], Fingberg [12], Périard [50], and Ben Othman [6]. In all these works, the wheelset
has been modelled by finite elements.

Fingberg [12] used a self-developed finite element model for the wheelset. By exploiting the
symmetry of the wheelset with respect to the middle cross plain the wheelset is reduced to one half;
the eigenmodes with different symmetry properties are obtained by applying different boundary
conditions to the node in the middle cross plain. The wheel is modelled by annular shell elements
exploiting the rotational symmetry of the wheel.

Périard [50] used a commercially available software package to model a wheelset; the whole model
consists of three-dimensional brick elements.

Ben Othman [6] developed a finite element model of a wheelset using commercially available soft-
ware tools. In his model the wheels consisting of the wheel disc, the wheel rim, and a rubber layer
between the disc and the rim is modelled by volume elements, i.e. three-dimensional elements,
while beam elements are used for the axle.

In models for the investigation of the curve squealing the dynamical behaviour of the other compo-
nents like the carbody and the bogie frame are less important. In his work [6] Ben Othman states
that for the squealing noise the influence of other components besides the wheel can be neglected
without loss of accuracy. In the works by Schneider [65] and Fingberg [12] only one wheelset is
considered. A quasi-static curve running is assumed, so that the position of the wheelset within the
track is constant with respect to the lateral displacement and to the yaw angle. In contrast to this
Périard [50] considers the curve squealing of a tram as a transient process; thus a multibody model
of the tram is used to determine the position of the wheelset within the track.

2.2.4 Medium-frequency range

The medium-frequency range can be characterised by a combination of several characteristics of
the low-frequency range as well as of the high-frequency range. On the one hand, the frequency
is low enough that interactions between the different bodies, e.g. between the wheelset and the
bogie frame, have to be taken into account. On the other hand, the frequency is high enough
that effects of structural dynamics have an influence. For instance, the lowest structural eigenfre-
quencies of a trailer wheelset used for passenger coaches are located at approx. 80 Hz, where the
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first antisymmetric torsional eigenmode and the first symmetric bending eigenmode occur. There-
fore, Popp, Knothe and Pöpper [54] defined the range between approx. 40 Hz and 400 Hz as
the medium-frequency range. Due to the combination of the interaction of several bodies on the
one hand and the consideration of structural dynamics on the other hand, models for the medium
frequency range possess a rather high number of degrees of freedom.

An important phenomenon, which is located in the medium frequency range, is the corrugation.
This denotes an irregular distribution of wear over the circumference of the wheel or over the length
of the rail. In the case of the wheel, periodic deviations of the running surface from the ideal
rotational symmetric shape are also known as “polygonalization”. Since the wheel and the rail
consist of steel, they are very stiff. Therefore, high dynamic normal forces occur during running
even for small deviations of the running surfaces from the “ideal”, i.e. a rotational symmetric
shape in the case of the wheel and a prismatic shape in the case of the rail. Such high dynamic
forces cause high loads for the wheel and the rail, which increase the material damage and can lead
to fatigue and thereby to failure. Furthermore, dynamic forces excite structural vibrations of the
wheel and the rail, which can cause noise.

The “grumbling noise” of the German ICE trains of the first generation is a phenomenon located
in the medium frequency range. This noise was related to an irregular wear of the wheels with
respect to the circumference. This type of wear is known as polygonalization in the case of the
wheels or as corrugation. The term “corrugation” also denotes an irregular distribution of wear
over the length of the rails.

Morys [46] developed a model for the investigation of the polygonalization of the ICE wheels.
The model includes a bogie with two wheelsets, a carbody and a flexible track. The carbody
is connected to the bogie by the one pivot. At its other pivot a longitudinal motion along the
track is applied. Each wheelset consists of 8 rigid bodies representing the two wheels and the
four brake discs including the corresponding parts of the axle and the journals. The rigid bodies
are connected by spherical joints and rotational springs. By comparing the eigenfrequencies of
the wheelset model with those obtained from a finite element model and by measurements, the
springs are tuned. While the lowest eigenmodes are represented very well, differences occur for
eigenmodes, which include deformations of the wheel disc. The advantage of the wheelset model
is that it is developed completely within a commercially available multibody system simulation
environment, i.e. no extension of the multibody system formalism is required. Since the wheels
are modelled as rigid bodies, their coupling with the wheel-rail contact module is quite easy. As
a disadvantage, Morys himself mentions that not all eigenmodes obtained from the finite element
model can be reproduced by the multibody model of the wheelset. – The model of the track will
be discussed in the section about track modelling.

Also in order to investigate the “grumbling noise” of the ICE train, Szolc modelled the wheelset as
a discrete-continuous structure in [72] and [73]. The wheelset’s axle is considered as a shaft, which
can describe bending deformations according to the Bernoulli-Euler beam theory and torsional
deformations. The deformation is described by a modal synthesis using the eigenmodes of the
beam and the rod. The wheels and the brake discs are modelled as rigid rings, which are coupled
to the axle by massless isotropic membranes. Since the wheel rim is considered as a rigid body, the
problem of coupling the flexible wheelset with the wheel-rail contact is solved in a very easy way.
In [72] the model contains only one wheelset, which is connected by linear springs and dampers to
an infinite mass moving along the track. Later in [73] Szolc extended the modelling to a bogie with
two wheelsets, both modelled as discrete-continuous systems. Here, the bogie frame is modelled
as a rigid body, to which the wheelsets are connected by linear springs and dampers. The bogie
frame is connected by linear springs and dampers, which represent the secondary suspension, to
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the carbody, which is guided along the track.

The thesis by Küsel [38] also deals with the polygonalization of the wheels. In this work Küsel
uses a wheelset model, which can also be described as a discrete-continuous model. The wheelset
model describes a trailing wheelset equipped with four brake discs. The model consists of eight
rigid bodies; two bodies represent the wheel hubs including the journals; two further bodies rep-
resent the wheel rims. Each brake disc is also represented by a rigid body. In total the wheelset
model possesses 15 degrees of freedom: Each wheel hub can perform independent longitudinal and
vertical displacements and three independent rotations; the lateral displacement is equal for both
wheel hubs. Furthermore, each wheel rim can perform two inclinations relative to the wheel hubs.
The axle is modelled as a continuum, which can perform bending motions and torsional motions;
their distribution is described by a cubic polynom for the bending motions and a linear polynom
for the torsional motions. The current shape of the axle is determined by the relative motions of
the wheel hubs. Each wheel hub is connected to one wheel rim by a plate representing the wheel
web; a cubic polynom describes the distribution of the deformation along the radial coordinate.
Also here, the current deformation of the wheel web depends on the relative motions between the
wheel hub and the wheel rim. The complete model consists of one wheelset connected by linear
springs and dampers to the bogie frame, which is guided along the track.

In [23], Kaiser and Popp present the model of a vehicle in which the wheelsets are modelled as
flexible bodies; here, a comparatively simple finite element model is used for the wheelsets. By
applying a formulation based on the Arbitrary Lagrangian Eulerian (ALE) approach, the equations
of motion can be formulated as a system of linear differential equations with constant coefficients
whereby gyroscopic effects are fully taken into account. This enables the calculation of a frequency
response function for an excitation force acting at the wheel-rail contact. The results show several
resonance peaks in the medium-frequency range which cannot be obtained by using a rigid body
model.

The variety of modeling methods described above shows that there is yet no “standard modelling”
for the modelling in the medium frequency range, in contrast to the low frequency range, where
the multibody modelling can be considered as the standard method. A possible reason might be
that problems occurring in the medium frequency range like the “grumbling noise” of the ICE train
have recently emerged and are therefore comparatively new, as described by Popp, Knothe, and
Pöpper in [54].

2.3 Track models

The track links the vehicle to the environment. It transmits the forces at the wheel-rail contact,
which are responsible for support, guidance, driving and braking, to the subgrade or the substruc-
ture like e.g. a bridge.

One of the basest problems concerning the modelling of a railway system is that the length of the
track is far higher than the length of the vehicles: For instance, a common passenger coach as used
in Europe has a length over buffers of 25.4 m or 26.4 m, depending on the standard. In contrast
to this, a track covers a length of several kilometers. It is evident that those zones of the track are
of highest interest, where the vehicles are currently located and where thereby the load are applied
on the track; this is valid for practically all investigations, be the vehicle or the track in the focus
of the investigation.

Nevertheless, the high length of the track in combination with the structural damping has an im-
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portant impact on its dynamical behaviour: The structural vibrations of a flexible structure can
be interpreted as waves travelling through the structure; these waves are reflected and the bound-
aries of the structure. As a result, for certain wavelengths the interference of the waves travelling
through the structure forms a standing wave; the associated frequencies are the eigenfrequencies
of the structure. However, for a railway track things become more complicated: On the one hand
the track has a high length; on the other hand the track possesses a considerable damping resulting
from the subgrade and from the fastening between the rail and the sleeper so that the waves become
weaker while they are travelling through the track. As a result the wave reflection at the ends of
the track plays hardly a role regarding the dynamic behaviour of the track.

Furthermore, a vehicle covers a very long distance when running at high speeds: For a running
speed of v0 = 270 km/h, which lies in the range of regular operation speed for several of high
speed railway systems, the vehicle covers a distance of ∆s = v0 ∆t = 75 m within a time interval
of ∆t = 1 s. Thus, the simulation of a time interval of 10 s would require a track model having a
length of at least 750 m. Assuming a sleeper spacing of ∆sS = 0.6 m this results in 1250 sleeper
bays. It is evident that such a large model is difficult to handle even for today’s computer systems.

An overview on the modelling of railway tracks is given by Knothe in [33]. In [34] Knothe and
Grassie give an overview on track models for higher frequency ranges; this article the lower bound
for higher frequencies is assumed at 20 Hz. In the following, some aspects concerning the meth-
ods of track modelling will be discussed. Based on these considerations, the track models are
categorized, although the limits between the different categories are sometimes a bit blurred.

Track models can be divided into inertially fixed models and moved models. The basic principles
of these two modelling types are illustrated in Fig.2.3.7.

v
0

Figure 2.3.7: Above: Inertially fixed track model; below: Moving track model

In an inertially fixed track model, the section of the track, which is considered, is constant,
i.e. the same track section is considered all the time, while the vehicle is passing through the
considered section. In contrast to this, in a moving track model the track section, where the
vehicle is currently located, is considered, i.e. the actual section of the track, which is considered,
is changing over time.

Generally, it can be said that inertially fixed track models are used for investigations focused on the
track and on the subgrade, while moving track models are used for investigations focused on the
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vehicle. For instance, the impact of a load history by a passing train on the track and its components
like pads and sleepers and on the subgrade can be analyzed using an inertially fixed track model.

As illustrated in the figures Fig.2.0.1, Fig.2.0.2, and Fig.2.0.3 the subsystems “vehicle” and “track”
are not connected directly, but indirectly by the wheel-rail contact elements. Usually, the wheel-
rail contact is modelled by a force element. The inputs of such a force element are the relative
kinematics of the coupling points, between which the force element acts. Its outputs are the forces
and torques, which are determined based on the relative kinematics and on the specific force law
of the element. These forces and torques are applied on the aforementioned points. In the case
of the wheel-rail contact the kinematical inputs are usually determined for the lowest point of the
wheel and for the point on the rail head, where the wheel is currently located.

Regarding the kinematics and the forces, which are exchanged by the subsystems “vehicle” and
“track” on the one hand and the subsystem “wheel-rail contact” on the other hand, only the recep-
tance behaviour of the subsystems “vehicle” and “track” is relevant, i.e.: The relation between a
dynamical force acting on the coupling point and the kinematics of the point as a reaction to the
excitation is important, but not the actual mechanical structure of the subsystem. Thus there are
two basic modelling strategies for moving track models, if the investigation focuses on the vehicle:
Structural models and substitution models. Also between these two categories, the limits are
sometimes a bit blurred; nevertheless some basic characteristics can be formulated.

Structural models consist of elements, which represent actual components of the track like rails,
sleepers, pads etc. Therefore, the parameters of the elements are physical quantities like e.g. the
mass of a sleeper or the bending stiffness of a rail. Thereby, the influence of such parameters on
the dynamical behaviour can be investigated. However, in some cases like e.g. for the stiffness
and the damping of a pad are difficult to be determined. The modelling effort is relatively high:
The rail is usually modelled as a continuum, e.g. as a beam. This contributes to the relatively high
order of the mathematical description. Since the rail is modelled as a continuum, it is usually not a
problem to apply several wheel-rail contact forces on the rail and thereby to take the interaction of
wheelsets via the track into account. Also, physical effects like wave propagation within the track
can be taken into account.

Substitution models reproduce the dynamical behaviour of the track, i.e. the motion of the rail
head under the influence of wheel-rail forces, without taking care of its actual structure. A substi-
tution model can be formulated in a “purely mathematical” way or consist of “mechanical standard
elements” like masses, springs and dampers. In the second case, the substitution track model can
be easily integrated into an MBS formalism. The parameters of substitution models have no physi-
cal meaning. They are tuned in such a way that the model shows the same receptance behaviour as
the actual track. Thereby, measured track receptances can be reproduced. Usually, the receptance
is measured by inertially fixed devices. Thereby, the substitution model usually doesn’t take into
account effects of wave propagation within the track, which is a justified approach as long as the
running speed is far lower than the speed of wave propagation. It is also evident that, since the
substitution model only reproduces the receptance of the rail head, “internal” physical quantities
of the track like e.g. the forces acting between the rail and the sleepers are not available. The com-
plexity of a substitution model, i.e. its structure of the model and its number of degrees of freedom
depends on the desired accuracy of the model. To model the dynamical behaviour of the track
required for low-frequent running dynamics a model with less than 10 degrees of freedom may be
sufficient. Usually, each wheelset is supported by one separate substitution track model. In order
to model interactions between the wheelsets via the track coupling elements between the single
track models are required, which make the entire model more complex. As already mentioned, a
substitution model only represents the receptance behaviour of the track; therefore structural track
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models are usually moving track models. Since a structural track model is not suitable to determine
“internal” physical quantities of the track, a fixed track model, which usually focuses on the track
and its internal processes, based on the substitution approach doesn’t appear to be sensible.

In the following sections, some substitution and structural models for the track will be considered.

2.3.1 Substitution track models

As already mentioned, substitution track models reproduce the receptance behaviour of the rail
head to excitation by wheel-rail forces. This can be done in different ways.

A substitution model with a purely mathematical description was developed by Fingberg [12]. In
this model, the receptance behaviour of the track is described by several decoupled modal equa-
tions:

mCiüCi(t)+dCiu̇Ci(t)+ cCiqCi(t) = FC(t),uC =
nC

∑
i=1

uCi(t) (2.3.24)

The receptance behaviour of the track is described for several spatial directions (longitudinal, lat-
eral, vertical), which are here indicated by C.

Another possibility is to assemble the substitution track model of masses, springs and dampers,
i.e. of standard elements of multi-body system modelling. Thereby, such models can be easily
described within the multi-body formalism, which is also used for the modelling of vehicles. The
overview given by Bruni, Vinolas, Berg, Polach, and Stichel [8] also deals with the of track mod-
elling using the multibody method and presents several track models consisting of the masses,
springs and dampers.

Substitution track models, which are based on the multi-body modelling, have different modelling
depths. Comparatively simple models were used by Kim [30] and by Netter [48].

Figure 2.3.8: Substitution track model according to [18] and [30].

Figure 2.3.9: Substitution track model according to [48] and [8].

Figure 2.3.10: Substitution track model according to [21].
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A more complex model was presented in the Manchester benchmark by Iwnicki [21]. This model
was e.g. used by Mahr [42] and by Schelle [62]. In both works, existing multi-body simulation
programs were used, so that the integration of the track model into the complete vehicle-track
system model was quite easy.

In the work of Berg and Chaar [9] several substitution models with different complexity are pre-
sented. The parameters of the models are tuned to reproduce receptances, which were obtained

Figure 2.3.11: Substitution track models according to Chaar and Berg [9].

from field measurements.

In the works by Kurzeck [37] and by Szolc [72], [73] phenomena located in the medium frequency
range are investigated. The track models used in these works can be categorized as substitution
models, since they don’t describe the rail by a flexible continuum. However, these models have
a higher degree of detailing. The work by Kurzeck [37] is focused on roaring noise occurring at
urban light railways; its frequency is located near 80 Hz. The track model developed by Kurzeck
contains a flexible component assembled from finite beam elements to include the effect of struc-
tural vibrations of the sleeper in the vertical-lateral plain. – The works of Szolc [72], [73] deal
with the vehicle-track interaction in the range between 30 Hz and 500 Hz. The model presented
by Szolc in [72] describes a single wheelset, which is supported by track model system composed
of masses, springs and dampers. The parameters of these elements are, however, not constant,
but vary depending on the longitudinal coordinate of the track. Thereby, it is taken into account
that the dynamical behaviour of the track is different for excitations above one sleeper on the one
hand and between two sleepers on the other hand. In [73] Szolc extended the model from a single
wheelset to a bogie having two wheelsets. In the extended model each wheelset is supported by
one aforementioned track model system. To take the interaction between the wheelsets via the
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track into account both track model systems are coupled by springs so that an interaction between
the two wheelsets via the track is possible. – The track models by Kurzeck [37] and by Szolc [72],
[73] can be seen as examples that substitution models can also be used for problems located above
the frequency range of pure running dynamics.

Wu [81] developed a substitution model for the track, which is valid for the medium and high
frequency range; here, the medium frequency range is located between 50 Hz and 500 Hz. The
substitution model consists of linear springs and dampers and of masses performing translations.
The parameters of these elements are tuned by comparing the frequency response function of
the substitution model with the one of a detailed structural track model. For different cases of
excitation, e.g. vertical or lateral excitation or symmetric or antimetric excitation with respect to
the plane spanned by the longitudinal and vertical axis, different substitution models are developed.
Furthermore, the influence of the discrete support of the rail by sleepers is taken into account by
using parameters depending on the longitudinal coordinate of the track.

2.3.2 Aspects of structural track models

Structural models are based on the actual structure of the track. Usually, the rail is modelled as
a continuum, which can at least perform bending motions, but also other motions like torsion.
This modelling enables to take the effects of wave propagation within the track into account. At
high speeds, effects of wave propagation become more important, since the running speed of the
vehicle comes closer to the propagation velocity of the waves. This was e.g. substantiated by
Triantafyllidis and Prange: In [74] and [75] Triantafyllidis and Prange analyzed measurements
taken during the world record run of the German ICE prototype train, which reached a top speed
of 406 km/h on May 1st, 1988. The evaluation showed a considerable influence of the Doppler
effect.

The class of structural track models covers a wide range of different model types. Thus in this
section some important aspects regarding structural track models will be discussed. In the next
section, some existing track models will be discussed with respect to their modelling regarding
these aspects and to their purpose. Some of these aspects are:

• Modelling of the rail

• Modelling of the support, number of layers

• Inertially fixed track model or moving track model

• Linear track model or nonlinear track model

• Length and boundary conditions of the track model

• Domain of the model: Time domain or frequency domain

These aspects will be discussed in the following; it will turn out that some of these aspects are
not independent from each other. Generally, the first three aspects focus mainly on the mechanical
modelling, while the last three aspects are more relevant for the mathematical treatment of the
model.

Basically the railway track consists of two rails and a support, by which they are connected to the
subgrade. Since the rails and the support are the main elements of the rail, it is obvious to consider
first their characteristics and their modelling, i.e. their mechanical representation in a track model.
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Modelling of the rail: As already said, in a structural track model the rail is modelled as a flexible,
deformable structure, i.e. as a continuum. Two important characteristics of the rails are:

• The dimension of the rail regarding its length is far higher than regarding its cross section.
The widely used rail profile 60E1 has a width of 150 mm and a height of 172 mm, while a
track is several kilometers long and the rails are nowadays usually welded.

• Usually the rail has a prismatic shape, i.e. its cross section is constant over its length; excep-
tions mainly occur for turnouts and crossings.

From this it follows that the rail has a simple geometry. With respect to the different modelling
method listed in Tab. 2.1.1 this means that the rail can be modelled as a continuous system; of
course, it can also be modelled as a finite element system. In the first approach, there are generally
two aspects regarding the modelling of the rail:

1. Longitudinal distribution of the deformations

2. Degrees of freedom of the deformations

Regarding the longitudinal distribution of the deformations, there are two basic strategies:

1. Modelling as a continuous system: The distribution of the rail’s deformations is described
by continuous functions, i.e. the functions are defined for the whole length of the modelled
rail. In many cases, the exponential function and the sine and the cosine function derived
from it are used.

2. Modelling as a finite element system: The distribution of the rail’s deformations is described
by local functions, which are only defined piecewise for finite intervals.

The categorization of the degrees of freedom of deformation and the related models is more com-
plex:

1. Rail models assuming undeformed cross sections (one-dimensional continua)

(a) Vertical bending

i. Bernoulli-Euler beam
ii. Timoshenko beam

(b) Vertical and lateral bending plus torsion

i. Bernoulli-Euler beam
ii. Timoshenko beam

2. Rail models taking into account cross sectional deformations

(a) Two-dimensional models

(b) Three-dimensional models
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The aspects, by which the different categories are distinguished, will be discussed in the following
considerations.

One-dimensional models assume that the continuum is composed of sections having the infinitesi-
mal length dx. A further assumption is that each section is rigid, i.e. the shape of the cross section
remains unchanged and deformations are described by motions of the sections relative to each
other. Each infinitesimal section of such a rail model can have at most six degrees of freedom,
i.e. three translational and three rotational degrees of freedom, since this is the maxium number of
degrees of freedom for a rigid body.

At railway systems the vertical forces resulting mainly from the weight of the vehicles are generally
larger than lateral forces, since the lateral forces are limited by the vertical forces, the friction
coefficient µ in the contact and the inclination of the running surfaces. Therefore, most track
models take at least the vertical motions of the rail into account; these vertical motions are related
to bending deformations of the rail. In cases, in which the vertical dynamics of the vehicle-track
system is of interest as e.g. the influence of corrugated rails or wheel flats, a model considering
only the vertical bending is sufficient. With respect to the distinction between plain and spatial
models, as discussed in section 2 a plain model usually describes the vertical bending.

The vertical bending of the rail can be extended to bending in vertical and lateral direction. If
lateral motions of the rail head are described, usually also torsional motions of the rail are taken
into accout. The wheel-rail forces are acting on the rail head, while the rail is connected to the
sleeper by a pad at its foot. Thereby, regarding the lateral direction the rail is loaded by eccentric
forces; thus, the consideration of torsion in addition to lateral bending motions is obvious. The
torsion causes not only a lateral displacement of the rail head, but also a roll motion of the rail
head, i.e. a rotation around the longitudinal axis of the rail. In this context it should be pointed out
that the wheel-rail contact geometry, i.e. the location of the actual contact area between wheel and
rail, can be very sensitive to changes of the relative position of the rail head and the wheel rim.
Bezin, Iwnicki, and Cavalletti [7] underline the impact of the rail head’s roll motion on the contact
geometry.

If the rail is modelled as a one-dimensional continuum, then its bending motions in vertical and, if
taken into account, in lateral direction are described based on a beam theory. Probably the simplest
model for the rail is the Bernoulli-Euler beam. In this theory it is assumed that the cross section
is always perpendicular to the bending line; thus no shear deformations are taken into account.
Each infinitesimal section possesses one degree of freedom per translational displacement, i.e. one
degree of freedom, if bending only in vertical direction is possible, and two degrees of freedom,
if vertical and lateral bending is taken into account. The deformation with respect to one direc-
tion is described by the displacement w(x, t) depending on the longitudinal coordinate x and the
time t. The rotation angle γ(x, t) of the infinitesimal section is approximately determined by the
inclination, i.e. γ(x, t)≈ w′(x, t) = ∂

∂xw(x, t); thus it is dependent on w(x, t) in a kinematical way
and thereby it is not a degree of freedom. Furthermore, the rotational inertia of the cross section
is neglected in the Bernoulli-Euler beam theory. Thus this theory is mainly suited for long slender
beams and large wavelengths of the bending deformation.

The Timoshenko beam theory is a more detailed theory to describe bending motions. This theory
takes the rotational inertia of the cross sections and the shear deformation, which are both neglected
in the Bernoulli-Euler beam theory, into account. Therefore, the translational displacement w(x, t)
and the rotational displacement γ(x, t) of an infinitesimal section are separate degrees of freedom.
The Timoshenko beam theory is suitable for shorter beams and bending deformations of shorter
wavelengths, where the wavelength of the rail’s deformation comes closer to the dimensions of
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the cross section. Such shorter wavelengths are usually related to higher frequencies so that a rail
model based on the Timoshenko beam theory is valid for a greater frequency range than a model
based on the Bernoulli-Euler beam theory. A recent work, in which the influence of the beam
modelling on the dynamic behaviour of the track model is investigated, is the thesis by Kaps [28].
The advantage of the Timoshenko beam theory is its applicability to more cases and its wider range
of validity. Its disadvantage is that it requires a higher mathematical effort; as already described,
an infinitesimal section has two degrees of freedom per direction of bending, i.e. two degrees of
freedom for vertical bending and four degrees of freedom for vertical and lateral bending.

As already mentioned, one-dimensional models are based on the assumption that the cross section
remains undeformed and maintains its original shape. However, this assumption may be problem-
atic in some cases. As already mentioned in the context of lateral motions, the rail is subjected to
eccentric lateral loads. Furthermore, the rail has a comparatively thin web. Thereby, deformations
of the cross section may be expected. Deformations of the cross section can include lateral and
roll motions of the rail head; since the wheel-rail contact geometry can be very sensitive even to
the relative kinematics of the rail head and the wheel rim, such deformations of the cross section
may also have an impact on the wheel-rail interaction. Regarding the behaviour at frequencies of
several kHz, deformations of the cross section also occur for vertical loading.

There are several possibilities to formulate rail models, which take cross-sectional deformations
into account. The rail can be assembled from one-dimensional elements like beams and two-
dimensional elements like plates and shells. It can also be modelled by three-dimensional finite
elements, i.e. by volume elements.

Modelling of the support: At a real track the rails are supported by sleepers or slabs; between
the rails on the one hand and the sleepers or slabs on the other hand flexible pads are installed. It
should be pointed out that in real life the rail is not continuously supported, but periodically by
discrete fastening elements. In [33] Knothe gives a hierarchy of track models with respect to two
aspects:

• Number of the layers

1. One-layer model: The rails and the sleepers are represented by one layer having an
inertia.

2. Two-layer model: The rails and the sleepers are represented by two separate layers,
both having a mass; thereby, relative motions between the rails and the sleepers are
possible.

3. Two-layer model with elastic sleepers: The upper and the lower layer represent the rails
and the sleepers, respectively; in addition deformations of the sleepers are taken into
account.

4. Three-layer model: In addition to the rails and the sleepers the ballast is represented by
a separate third layer having a mass.

• Modelling of the support; this modelling aspect can be split into two subaspects so that there
are four possible combinations:

1. (a) Continuous support: The sleepers and, if modelled as a separate layer, the ballast
are modelled as continuous layers having a mass. Between the layers having a
mass continuous viscoelastic layers are located.
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(b) Discrete support: The sleepers and, if modelled as a separate layer, the ballast
are modelled by discrete bodies. The rail is not continuously, but non-uniformly
supported.

2. (a) Foundation models: The lowest layer is connected to a rigid ground by a viscoelas-
tic foundation.

(b) Halfspace models: The lowest layer is supported by a halfspace representing the
underground.

As already mentioned, rails are connected by sleepers or slabs by discrete fastening elements. A
usual value for the longitudinal spacing between two fastening elements is ∆s = 0.6 m. The mod-
elling approach of a continuous support replaces the discrete fastening elements by a continuous
visco-elastic layer, which has constant parameters with respect to the longitudinal direction. The
advantage of this approach is that the equations describing the model can be treated in an easier
way regarding their mathematical solution. However, this modelling is only admissible if the wave-
length of the rail’s deformations are far higher than the spacing of the fastenings. Probably the best
known effect, which cannot be reproduced by a continuous support, is the so-called pinned-pinned
mode of the rails; for this motion, the vibration nodes of the rails occur at the location of the fasten-
ings so that the vibration of the rails is only weakly damped. The modelling of a discrete support
considers the fastening elements as single discrete elements. Thereby, effects resulting from the
non-uniform support like the pinned-pinned mode can be modelled so that a track model using a
discrete support is usually valid for higher frequency ranges. The disadvantage is the higher math-
ematical effort for the solution of the model. Due to the discrete support the dynamic properties
of the track model vary along the longitudinal coordinate; for instance, if a force acts on the rail in
the middle of a sleeper bay, it causes a larger deformation than it would do, if it acts directly above
one sleeper.

Furthermore, the supporting elements can be modelled with different detailing. Regarding the
discrete sleeper the representation by a rigid body is the simplest model. More refined models of
the sleepers and of the slabs take their deformational motions into account, e.g. by modelling the
sleeper as a beam or by modelling the slab as a plate. There are also different aspects regarding
the modelling of the fastening system, which connects the rail and the sleeper. In many cases the
fastening is modelled as a force element; here, different characteristics for the relation between the
deformation and the force can be applied. Furthermore, the pad, which acts between the rail foot
and the rail seat of the sleeper, can either be modelled as a compact force element, i.e. a single
discrete force element acting between two points, or by distributed force elements or a layer taking
into account its actual geometric dimensions.

Linear and nonlinear track models: Usually, the motions for the several elements of a structural
track model are comparatively small; therefore, a linearization with respect to the kinematics is
possible in many cases, e.g. approximating the sine function sinϕ ≈ ϕ for very small angles ϕ.
Nevertheless, also in track models nonlinear effects can occur. Such a nonlinear phenomenon is a
sleeper void, i.e. in the unloaded state the sleeper is not supported by the subgrade, but only hangs
under the rail. A nonlinearity occurs if the deformation of the track is high enough so that the gap
between the sleeper and the support vanishes and forces start to act between these two components.
The calculation of the track model in the frequency domain and the modal decomposition of a track
model are methods, which can only be applied on linear models; a nonlinear track model cannot
be treated with these methods.

Domain of the model: Generally, it can be distinguished between frequency domain models
and time domain models. In the frequency domain, usually the receptance function, i.e. the
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response of the model to a harmonic excitation, is determined. Thereby, also infinitely long track
models can be handled. However, the dynamics can only be determined for a harmonic excitation,
i.e. for a periodic excitation; transient processes cannot be described. Furthermore, as already
mentioned before, the model has to be linear to treat it in the frequency domain. In contrast to this,
time domain models can describe transient processes; they can also contain nonlinear elements.
However, a model has to be finite to be treated in the time domain.

Model length and boundary conditions: As already mentioned a real track has a much larger
longitudinal dimension than a railway vehicle. Thereby, the effect of reflection for deformation
waves, which are excited by the wheel-rail contact forces acting on the track and are propagating
through the track structure, is extremely weak. This lack of wave reflection has a strong impact
on the track’s dynamic behaviour; therefore, a structural track model should reproduce it with a
sufficient accuracy. One possibility is to model the track as an infinite structure. However, the
dynamic behaviour of an infinite structure can only be treated in the frequency domain; for a
harmonic excitation the frequency response function can be calculated. In order to model transient
dynamics the calculation has to be done in the time domain; this requires a finite model. To limit
the computational effort a finite structural track model is much shorter than a real track. In this
context the question arises how long the model has to be and which boundary conditions have to
be applied at its ends. Simply spoken it can be said that the track model has to be long enough so
that the influence of the boundary conditions at its ends on the dynamic behaviour at the current
location of the wheel-rail contact is negligible. To say it more precisely, the track model has to be
long enough to make sure that the waves, which are propagating through the track, are so weak,
when they reach the end, that their reflection at the ends has practically no influence.

It is obvious that in order to minimize the aforementioned influence of wave reflection at the rails’
ends, the ends of the track have to be located as far as possible from the zone, where the wheel-rail
forces are acting on the rail. For a finite track model this zone is typically located in the middle
of the track model. In the case of an inertially fixed finite track model the locations of the ends
remain constant. However, for a moving finite track model it has to be ensured that the vehicle
never reaches the end of the track; one reason is to avoid that the vehicle falls off the track, another
reason is that the effect of the wave reflection at the end of the track model becomes stronger, when
the vehicle approaches this end. There are several possibilities to solve this problem:

• The track model is assembled before the vehicle and dismounted behind the vehicle, i.e. if
an element of the track is far enough behind the vehicle, it is separated from the track at the
rear end and connected to the track at the front end.

• The deformations of the rail are described by shape functions, which are moving together
with the vehicle. If the support is modelled by discrete elements, then the supporting ele-
ments, i.e. the sleepers and the fastening elements connecting the rails and the sleepers, are
moving along the rails with the running speed v0 in the opposite direction of the vehicle’s
running.

• The boundary conditions at the ends of the track model are set equal. Thereby the track
model forms a ring so that the vehicle never reaches the end of the track model. It should
be pointed out that this does not necessary mean that the track is curved; the topology of
the structural track model on the one hand and the topology of the trajectory of the track are
separated from each other.
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2.3.3 Examples for structural track models

In the following, some structural track models based on these modelling principles will be dis-
cussed.

The vehicle-track models used by Zhai, Wang and Cai [83] and by Xiao, Jin, Wen, Zhu, and Zhang
[82] are similar in several aspects: The track models can be categorized as discrete-continuous
models: They consist of two rails modelled by beams, which can perform bending motions in
vertical and lateral direction and also torsional motions. In [83], the Euler-Bernoulli beam theory
is used, while in [82] the Timoshenko beam theory is applied. The rails are described by a modal
synthesis using trigonometric functions.

to be continued...

For the investigation of wheel polygonalization, Morys [46] developed track model, which consists
of a chain of 30 track modules. Each module includes two Euler-Bernoulli beams representing the
rails and a rigid body representing the sleeper. The beams can perform vertical and lateral bending
deformations. Springs and dampers connect the sleeper to the rails and to the fixed ground. At
the rear end of the last module and at the front end of the first module, boundary conditions for
a rigid support are applied. The number of the track modules, which determine the length of the
track model, is chosen in such a way that the reaction forces at the end of the flexible track model
become sufficiently low. While the bogie moves along the track, the currently last track module is
disconnected from the currently second-last one, shifted forward and connected to the front end of
the currently first track module. Thereby, the track is disassembled behind the bogie and assembled
before the bogie so that the bogie is always located in the middle of the flexible track.

For cyclic track models the boundary conditions at the ends of the rails are set equal. Thereby,
the track forms a “ring with neglected curvature”. As a consequence, the vehicle never reaches an
end of the track and therefore cannot “fall off the track”. This modelling class covers a wide range
of models with different modelling depth. A comparatively simple cyclic track model is used by
Mazzola, Bruni, Martínez-Casas and Baeza in [43]. For the track symmetric motions are assumed
so that only one half of the track has to be modelled. The rail can perform bending motions in the
vertical and lateral direction as well as torsional motions; the bending is described based on the
Timoshenko beam theory. The rail is supported by discrete sleepers; they are modelled as rigid
bodies and can perform only vertical translations. Each sleeper is connected to the rail and to the
fixed environment by springs and dampers representing the pads and the underground.

The model developed by Ripke [58] considers the track as a cyclic structure. The boundary condi-
tions at both ends of the track model are set equal. Thereby, the track forms a “ring with neglected
curvature”. As a consequence, the vehicle never reaches an end of the track and therefore cannot
“fall off the track”.

A recent track model has been presented by Baeza and Ouyang [4]. This model is a cyclic track
model, i.e. a is a finite model, where the boundary conditions at its ends are set equal. The
rail can perform bending motions in vertical and lateral direction and torsional motions. The
bending of the rail is described by the Timoshenko beam theory. The longitudinal distribution of
the deformations is described by sine and cosine functions so that the cyclic boundary condition is
automatically fulfilled. The sleepers are modelled by finite beam elements using the Timoshenko
beam theory. They are connected by a viscoelastic foundation to a rigid ground; thus the model
can be classified as a two-layer model with elastic sleepers. Baeza and Ouyang give an interesting
interpretation of their model: On the track, which is considered to be infinite, an infinite number of
identical vehicles is rolling; the distance between two vehicles is the length L. Therefore the cyclic
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model represents one characteristic sample of the infinite train-track system, which has the length
L. Furthermore, Baeza and Ouyang mention explicitly that the model can consider nonlinearities.

to be continued...

2.4 Wheel-rail contact models

In real life the wheel-rail contact is a small region, in which forces are transmitted between the
wheel and the rail. The forces are transmitted by two principles, form closure, i.e. normal stresses,
and force closure, i.e. tangential stresses caused by friction.

In multibody models the wheel-rail contact is usually modelled as a force element. This force
element acts between two coupling points or markers, one belonging to the rail, the other one
belonging to the wheel. The inputs of the force element are the kinematics of the two points;
its outputs are the resulting forces, which are applied on the bodies. Thus it can be said that the
kinematics and forces are interchanged at the coupling points. Regarding the modelling of the
wheel-rail contact within a multibody model several aspects should be considered:

1. As described in section 2.1.1 the equations of motion for a multibody system are a system
of ordinary differential equations (ODE) or of differential-algebraic equations (DAE). The
mathematical problem is an initial value problem, i.e. the wanted solution z(t) is obtained
by integrating the equations of motion starting from a given initial value z0 = z(t = t0).
In many cases an implicit integration is necessary; such an implicit integration requires an
iterative solution of a system of nonlinear equations for each time step and thereby usually
several evaluations of the equation of motion ż(t) = F(z(t), t). The procedure to calculate
the resulting forces for a kinematical input has to be carried out for each evaluation. In this
context it becomes clear that a wheel-rail contact model used for a multibody simulation
needs a high computational efficiency.

2. As mentioned before, kinematics and forces are interchanged between the bodies on the one
hand and the force element on the other hand at the coupling points. The discrete forces
applied on the bodies are the resulting wheel-rail forces resulting from integrating the stress
field over the contact area AC:

fWR,res =
∫
AC

 τ1(x,y)
τ2(x,y)
p(x,y)

dA (2.4.25)

Since for the dynamics of the multibody system only the resulting force fWR,res is required,
local deviations of the stress distributions τ1(x,y), τ2(x,y), and p(x,y) from the exact solution
can be tolerated.

Owing to these aspects, i.e. on the one hand the need for a fast calculation and on the other hand
a greater tolerance with respect to the actual stress distribution, wheel-rail contact models used in
multibody modelling are often based on simplified solutions for the wheel-rail contact.

In the context of multibody dynamics the Hertzian theory and Kalker’s linear theory are often
used. Thus these theories will be presented and discussed shortly in the following section, also
with respect to the aforementioned aspects. The discussion of their limitations for the application
on the wheel-rail contact will help to understand the aim of other models.
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Since the wheel-rail contact area is very small compared to the dimensions of the wheel and the
rail, the modelling of the contact area requires a finer resolution for the description of the elastic-
ity. Therefore, the “local elasticity” describing the deformations in the contact is often separated
from the “global elasticity” describing deformations of the entire structure, e.g. bending. Models
describing the contact between a wheel and a rail, which are both modelled as flexible bodies, are
comparatively rare. An example is the work by Pletz, Daves and Ossberger [52], who simulated the
passing of a railway wheel through the crossing nose of a switch in a finite element environment.
Here, the local and the global elasticity are not treated separately, but due to the high computational
effort the model is limited to one wheel and a section of 3 m of the switch.

Usually, the treatment of the wheel-rail contact is split into several steps; this is e.g. described by
Vohla [77]:

1. Contact geometry problem

2. Normal contact problem

3. Tangential contact problem

In the following sections, an overview on models for the normal and the tangential contact problem
will be given.

2.4.1 Elliptic contact

A well known theory for the contact of two elastic bodies was developed by Hertz. An overview
of this theory is given e.g. by Ayasse and Chollet in [3]; the following considerations are based
on this source. A more detailed description is given e.g. by Kalker in [26]. The Hertzian theory
gives a solution of the equation of Boussinesq and Cerrutti for the normal contact. The theory
assumes that in the contact region, the undeformed surfaces of the two bodies are described by
elliptic paraboloids of the following form:

z1(x,y) =−A1x2−B1y2, z2(x,y) = A2x2 +B2y2 (2.4.26)

The parameters Ai and Bi are determined from the curvature radii rx,i and ry,i of the bodies in the
contact:

Ai =
1

2rx,i
, Bi =

1
2ry,i

(2.4.27)

If the surface of the body is convex, the radius is positive. The formulation of the surfaces assumes
that the curvatures of the surfaces are constant within the contact region.

The approach of the bodies caused by the deformation in the contact is expressed by δ0. Thereby
an interpenetration δ(x,y) of the undeformed surfaces occurs, which can be formulated as:

δ(x,y) = z2(x,y)+δ0− z1(x,y) = δ0− (A1 +A2)x2− (B1 +B2)y2 = δ0−Ax2−By2 (2.4.28)

In the following considerations the resulting curvature parameters A and B are assumed to be
positive, i.e. A > 0 and B > 0. – The boundary of the interpenetration area is obtained by setting
δ(x,y) = 0. It turns out that the interpenetration area is an ellipse having the semi-axes ag and bg:

0 = δ0−Ax2−By2⇒ 1 =
Ax2

δ0
+

By2

δ0
=

(
x
ag

)2

+

(
y
bg

)2

⇒ ag =

√
δ0

A
, bg =

√
δ0

B
(2.4.29)
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The actual contact area is smaller than the interpenetration area, but has also the shape of an ellipse.
The semi-axes are determined by:

a = m
[

3
2

N
1−ν2

E
1

A+B

]1/3

, b = n
[

3
2

N
1−ν2

E
1

A+B

]1/3

(2.4.30)

Here, E and ν denote Young’s modulus and Poisson’s ratio of the material, respectively; N is the
normal force pressing the two bodies against each other. The dimensionless coefficients m and n
are the Hertzian coefficients, which will be explained later on. The relation between the approach
δ0 and the normal force N is given by:

δ0 = r

[(
3
2

N
1−ν2

E

)2

(A+B)

]1/3

(2.4.31)

Also r is a dimensionless Hertzian coefficient. The distribution of the pressure p(x,y) is given by
a half ellipsoid:

p(x,y) = pmax

√
1−
(x

a

)2
−
(y

b

)2
, pmax =

3
2

N
πab

(2.4.32)

The coefficients m, n, and r are obtained from evaluating elliptic integrals, see e.g. Kalker [26]:
a
b
=
√

1− k2

⇒ D =

π/2∫
0

sin2
ψ(

1− k2 sin2
ψ
)1/2 dψ,C =

π/2∫
0

sin2
ψ cos2 ψ(

1− k2 sin2
ψ
)3/2 dψ, E =

π/2∫
0

(
1− k2 sin2

ψ
)1/2

dψ

(2.4.33)

These integrals can be evaluated only numerically; this requires a considerable computational
effort. Usually, the coefficients m, n, and r are precalculated and stored in tables depending on the
auxiliary parameter cosθ, which is defined by:

cosθ =
|A−B|
A+B

(2.4.34)

Assuming that A and B are positive the expression can be reformulated to:

cosθ =
|A−B|
A+B

=
|1− (B/A)|
1+(B/A)

(2.4.35)

As already mentioned, the Hertzian coefficients m, n, and r are usually given in tables depending
on the parameter cosθ. Since the parameter cosθ is related to the ratio B/A, also the coefficients
m, n, and r finally depend on A/B.

Based on the equations (2.4.30) and (2.4.31) a direct relation between the semiaxes a and b and
the approach δ0 can be formulated. For the square of the semiaxis a it is valid:

a2 = m2
(

3
2

N
1−ν2

E

)2/3( 1
A+B

)2/3

⇒
(

3
2

N
1−ν2

E

)2/3

=
a2

m2 (A+B)2/3 (2.4.36)

By inserting this into (2.4.31) the normal force N and the material parameters E and ν are elimi-
nated:

δ0 = r
(

3
2

N
1−ν2

E

)2/3

(A+B)1/3 = r
a2

m2 (A+B)2/3(A+B)1/3︸ ︷︷ ︸
(A+B)

⇒ a = m

√
δ0

r (A+B)
(2.4.37)
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In an analogous way the semiaxis b can be expressed by:

b = n

√
δ0

r (A+B)
(2.4.38)

These relations show that the semiaxes a and b of the contact ellipse can be determined purely
based on the geometry of the contact. As described above the curvature parameters A and B are
given by the geometrical shape of the two bodies in contact; the Hertzian parameters m, n, and r
depend on the ratio A/B and thereby also on the geometry.

For the tangential contact, the linear theory by Kalker is widely used. This theory gives a relation
between the creepages in the contact patch and the transmitted tangential forces. The creepages are
defined as the ratio between the relative velocity and the running speed v0. The relative motions
in the contact are described by the longitudinal relative velocity v1,rel , the lateral relative velocity
v2,rel and the relative angular velocity ω3,rel around the normal axis of the contact area. In Kalker’s
linear theory it is assumed that the creepages are very small. In this case the relation between the
relative velocities and the longitudinal force F1, the lateral force F2 and the spin moment M3, which
are transmitted in the contact, is given by:

F1 = −abGC11
v1,rel

v0
(2.4.39)

F2 = −abGC22
v2,rel

v0
− (ab)3/2 GC23

ω3,rel

v0
(2.4.40)

M3 = (ab)3/2 GC23
v2,rel

v0
− (ab)2 GC33

ω3,rel

v0
(2.4.41)

Here, a and b denote the semiaxes of the contact ellipse, as determined according to (2.4.30). The
shear modulus of the material is denoted by G. The coefficients Ci j are the so-called Kalker coef-
ficients. They depend on the minimum ratio of the semiaxes g = min(a/b,b/a) and on Poisson’s
ratio ν. Therefore, the coefficients can be precalculated and stored in tables, as done by Kalker.

The big advantage of the Hertzian theory and Kalker’s linear theory is their very low computational
effort: The coefficients m, n, r, and Ci j required by the calculation depend on just one or two
parameters. Thereby, values of the coefficients can be precalculated for discrete values of the
parameters; the values required for the actual calculation can then by determined by interpolation
between the precalculated values.

2.4.2 Normal contact

The application of the Hertzian theory on wheel-rail contacts can be problematic in several cases.
As described above, a basic assumption of the Hertzian theory is that the curvatures of the surfaces
are constant within the contact region. However, this assumption isn’t always valid for wheel-rail
contacts, because many rail profiles are composed of circular arcs having different radii. Thereby,
discontinuities of the curvature occur, which lead to non-elliptic contact areas. It should be pointed
out that this problem isn’t just a theoretical consideration. Kleiner [31] conducted experiments, in
which a pressure sensitive film was placed between a railway wheel and a rail. At such films
the colour changes, when a specific pressure is exceeded. Therefore, the boundary between the
regions of different colours can be interpreted as an isobar. The experimental results obtained
by Kleiner clearly showed that non-elliptic contact areas occur in wheel-rail contacts for several
relative positions.



Chapter 2. Modelling of railways: State of the art 61

The Hertzian theory assumes that the interpenetration area and the contact area are ellipses. Since
ellipses are uniquely defined by their two semi-axes, they form a family of curves, which are
characterised by two parameters. As the short discussion of the Hertzian theory and Kalker’s
linear theory in section 2.4.1 shows, only the ratio of the semi-axes, i.e. only one parameter, is
actually needed for the determination coefficients required for the calculation of the forces. In
contrast to this, the non-elliptic contact areas, which can occur in wheel-rail contacts, cannot be
described by a family of curves depending on so few parameters. There are several ways to treat
the problem of non-elliptic contact areas. An overview is given by Piotrowski and Chollet in [51].
Generally, there are three possibilities to treat the non-elliptic contact:

1. Replacing the non-elliptic contact area by an equivalent ellipse

2. Estimation of the non-elliptic contact area based on the geometrically determined interpen-
etration area

3. Determination of the non-elliptic contact area by solving the equations based on the contact
mechanics

One possibility is to replace the non-elliptic contact area by an equivalent ellipse. An example
is the method presented by Vollebregt, Weidemann and Kienberger in [78]: The semi-axes of the
ellipse are set equal to the maximum dimensions of the interpenetration area in longitudinal and
lateral direction.

A further possibility is the estimation of the contact area. In the Hertzian theory, the interpenetra-
tion area as well as the contact area are ellipses, i.e. geometrically similar shapes. According to
(2.4.29) the semiaxes of the interpenetration ellipse are given by:

ag =

√
δ0

A
, bg =

√
δ0

B
(2.4.42)

Furthermore the semiaxes a and b of the contact ellipse can be determined purely based on the
contact geometry, as shown in section 2.4.1. According to (2.4.37) and (2.4.38) it is valid:

a = m

√
δ0

r (A+B)
, b = n

√
δ0

r (A+B)
(2.4.43)

The actual contact ellipse having the semiaxes a and b is always smaller than the interpenetration
ellipse having the semiaxes ag and bg. Thus the contact ellipse can be obtained from the interpene-
tration ellipse by reducing the approach δ0 and correcting the ratio of the resulting semiaxes, since
the ratio ag/bg is not identical to the ration a/b.

Furthermore, at least the radius of the wheel in circumferential direction is constant. Based on this,
some properties of the Hertzian contact can be applied on the non-elliptic contact to estimate the
contact area and the pressure distribution. An approximation for the contact area can be obtained
by reducing the interpenetration between the surfaces of wheel and rail, thereby reducing the in-
terpenetration area and considering the reduced interpenetration area as the contact area. Since
the ratio of the semi-axes is not the same for the interpenetration ellipse and the contact ellipse,
a shape correction can be applied, as presented by Ayasse and Chollet in [2]. Models, which are
based on an estimation of the contact area, were developed by Kik and Piotrowski [29], Linder
[40], Quost, Sebes, Eddhahak, Ayasse, Chollet, Gautier and Thouverez [57]. The model by Linder
was enhanced by Weidemann [79] to calculate the wear occurring in the wheel-rail contact.
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The third possibility is to determine the stress distribution in the contact by solving the mechanical
equations, which describe the contact. The main difficulty in this context is that the solution has to
be determined iteratively. Probably the best known program for this task is the software CONTACT
originally developed by Kalker; basics for this program can be found in Kalker’s fundamental book
[26].

2.4.3 Tangential contact

The tangential contact model describes the forces transmitted by friction. Due to the characteristics
of the dry friction, the transmittable tangential tension is limited by the normal pressure and the
friction coefficient. As a result, the relation between the creepage in the contact and the tangential
forces shows a saturation characteristics, i.e. the tangential force cannot exceed a certain value.
The appropriate modelling of this characteristics can be seen as a main problem regarding the
modelling of the tangential contact. A survey on different tangential contact models is given e.g.
by Kalker in [27].

The model by Shen, Hedrick and Elkins [69] uses a heuristic approach to describe the transition
between the nearly linear behaviour for very small creepages and the saturation. In the first step
the longitudinal and lateral tangential forces F ′1 and F ′2 are calculated using Kalker’s linear theory.

F ′1 =−abGC11
v1,rel

v0
, F ′2 =−abGC22

v2,rel

v0
− (ab)3/2 GC23

ω3,rel

v0
(2.4.44)

The spin moment is neglected. Since the resulting tangential force F ′R determined by

F ′R =

√
F ′1

2 +F ′2
2 (2.4.45)

may exceed the maximum transmittable tangential force µN, a parameter τ is introduced

τ =
F ′R

3µN
⇒ FR

µN
=

{
1− (1− τ)3 for 0≤ τ < 1

1 for τ≥ 1
(2.4.46)

For τ≥ 1 the saturation is reached. After determining FR according to (2.4.46) the actual tangential
forces F1 and F2 are obtained by scaling the forces F ′1 and F ′2:

F1 =
FR

F ′R
F ′1, F2 =

FR

F ′R
F ′2 (2.4.47)

The FASTSIM algorithm developed by Kalker [25] avoids the iterative calculation of the tangential
stresses. To illustrate the simplification, the relation between the tangential deformations and the
tangential stresses should be considered once again: If the two bodies in contact are described
by half-spaces, which show linear material behaviour and have the same material parameters G
and ν, then the relation between the tangential deformations u1 and u2 on the one hand and the
tangential stresses τ1 and τ2 on the other hand are given by the following equations of Boussinesq
and Cerrutti:

u1(X ,Y ) =
1

πG

∫
AC

H11(X− x,Y − y)τ1(x,y)dA+
1

πG

∫
AC

H12(X− x,Y − y)τ2(x,y)dA (2.4.48)

u2(X ,Y ) =
1

πG

∫
AC

H12(X− x,Y − y)τ1(x,y)dA+
1

πG

∫
AC

H22(X− x,Y − y)τ2(x,y)dA (2.4.49)



Chapter 2. Modelling of railways: State of the art 63

Since the influence functions H11 and H22 are always positive, i.e. H11(X− x,Y − y)> 0 and
H22(X− x,Y − y)> 0, the determination of the tangential displacements u1(X ,Y ) and u2(X ,Y )
required the evaluation the entire stress field given by τ1(x,y) and τ2(x,y). For the FASTSIM
algorithm this relation is replaced by the much more simpler relation

τ1(X ,Y ) = L1 u1(X ,Y ), τ2(X ,Y ) = L2 u2(X ,Y ) (2.4.50)

i.e. the deformations u1(X ,Y ) and u2(X ,Y ) only depend on the stresses τ1(X ,Y ) and τ2(X ,Y ),
respectively, at the particular point defined by X and Y , but not on the entire stress distribution
τ1(x,y) and τ2(x,y). Kalker gave a very illustrating interpretation of this simplification, see [26]:
“In this theory the elastic wheel and rail are modelled by a set of springs [...]. Each set consists
of a number of small three-spring systems so that each point of the surface of wheel and rail can
elasticaily displace in any direction independently of its neighbours.” – The coefficients L1 and L2
depend on the Kalker coefficients C11, C22 and C23. In the practical application, the contact ellipse
is separated in longitudinal stripes so that a particle, which travels through the contact area, moves
along a stripe. The stripes are again separated into rectangles. Starting at the leading edge, the
tangential stresses are evaluated successively by going along the stripe. At each step it is checked,
whether calculated stresses τ̃1(x,y) and τ̃2(x,y) exceed the local transmittable stress τmax(x,y),
which is determined by the local pressure p(x,y) and the friction coefficient µ. If the maximum
transmittable stress is exceeded, then the stresses τ̃1(x,y) and τ̃2(x,y) are scaled down.√

τ̃1(x,y)
2 + τ̃2(x,y)

2 ≤ τmax(x,y) = µ p(x,y) ⇒ τi(x,y) = τ̃i(x,y) (2.4.51)√
τ̃1(x,y)

2 + τ̃2(x,y)
2 > τmax(x,y) = µ p(x,y) ⇒ τi(x,y) =

τmax(x,y)√
τ̃1(x,y)

2 + τ̃2(x,y)
2

τ̃i(x,y)

(2.4.52)

In the FASTSIM algorithm the contact area is divided into longitudinal stripes, which are consid-
ered separately. Therefore, it is possible to combine the FASTSIM algorithm with normal contact
models based on a description of the contact area by stripes, see e.g. the works by Linder [40], by
Weidemann [79] or by Quost, Sebes, Eddhahak, Ayasse, Chollet, Gautier and Thouverez [57].
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Cyclic systems

A cyclic system consists of n identical segments, which a arranged in a circular way; the number
n of the segments is a natural number and it is greater than 2, i.e. n ∈ N, n > 2. Here, the zeroth
and the n-th segment are identical. In technical systems components, which can be considered as
cyclic systems, are not rare. Such components are usually rotational symmetric like e.g. turbines
or wheels. Axisymmetric structures, too, be considered as cyclic structures; here, the number of
segments n can be chosen arbitrarily.

The description of structures as cyclic systems enables a distinct reduction of the computational
effort without loss of accuracy. Therefore, this concept has been used for various applications like
in the work by Panning [49] about the vibration of turbines. Although a railway track is not a
circular structure, it nevertheless consists of identical segments and is thereby a periodic structure,
so that it can also be approximated as a cyclic structure as done by Ripke [58]. In this work, the
concept of the cyclic system is an important base for the description of the wheelset and the track.
Therefore, the characteristics of a linear cyclic system shall be considered in this section.

Following the nomenclature given in [64], [63] and [55], the equation of motion for an ordinary
linear mechanical system is given by:

Mÿ(t)+Pẏ(t)+Qy(t) = h(t), M = MT, x 6= 0⇒ xT Mx > 0 (3.0.1)

For the matrices, it is valid:

M = MT, x 6= 0⇒ xT Mx > 0, P = D+G, D = DT, G =−GT, Q = K+N, K = KT, N =−NT

(3.0.2)
The equation of motion for a linear cyclic system have the same structure as the one for an ordinary
linear mechanical system:

MC ÿC(t)+PC ẏC(t)+QC yC(t) = hC(t) (3.0.3)

Here and in the following, the index C is used to denote the vectors and matrices for a cyclic system.
The vector yC(t), which describes the current displacements, has the following structure:

yC(t) =


y(0)(t)
y(1)(t)

...
y(n−1)(t)

 (3.0.4)

64
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The subvector y( j)(t) describes the displacements for the j-th segment; it is of order NS. Since the
cyclic structure consists of n identical segments, the vector yC(t) is of order n ·NS. The properties
of the matrices MC, PC and QC are exemplified for the matrix QC; this matrix has the following
structure:

QC =



Q(0) Q(1) 0 · · · 0 Q(−1)

Q(−1) Q(0) Q(1) · · · 0 0

0 Q(−1) Q(0) . . . 0 0
...

... . . . . . . . . . ...

0 0 0 . . . Q(0) Q(1)

Q(1) 0 0 · · · Q(−1) Q(0)


(3.0.5)

For the matrices MC and PC the submatrices Q(I) have to be replaced by the related submatrices
M(I) and P(I), respectively. The submatrices Q(I), P(I) and M(I) are of order NS×NS; thereby, the
matrices QC, PC and MC are of order (n ·NS)× (n ·NS).

In a cyclic system the n segments are arranged in a circular way, so that the zeroth and the n-
th element are identical. Because of this, it is rather obvious to describe the cyclic system by a
Fourier series, since this description is very useful for periodic functions. Therefore, the main
characteristics of Fourier series shall be considered in the following section 3.1. In the section 3.2,
the discrete Fourier series is used to describe the motions for the individual segments, which form
the cyclic structure; based on this, a transformation, which enables a very efficient formulation of
the linear cyclic system, will be developed. The modal decomposition is an established method of
analyzing linear systems and reducing the computational effort for their evaluation; in the section
3.3, this method will be described and subsequently applied to the linear cyclic system. The most
important results will finally be concluded and discussed in the section 3.4; in this section, also
practical aspects of the computation will be addressed.

As already mentioned, a cyclic system consists of n > 2 circularly arranged identical segments.
Here, n is a natural number, i.e. n ∈ N. Furthermore, the following relation, which will be used
several times in this work, is valid:

n > 2⇒ 0 <
1
n
<

1
2
⇒−1

2
<−1

n
< 0 (3.0.6)

In the present work the matrices MC, PC and QC are assumed to be real matrices; therefore, their
submatrices M(I), P(I) and Q(I) are real matrices, too. Nevertheless, in the following consider-
ations complex numbers will be used in the context of Fourier series since they provide a very
compact formulation. Therefore, some relations, which are applied several times, shall briefly be
summarized here; these relations are derived in the appendix A.2. A complex number z ∈ C can
be expressed in the following way.

z = a+ ib = ℜz+ iℑz, ℜz = a, ℑz = b, a,b ∈ R (3.0.7)

Here, ℜz and ℑz denote the real part and the imaginary part, respectively, of z. The complex
conjugate z of a complex number z is obtained by changing the sign of the imaginary part.

z = ℜz− iℑz (3.0.8)

As it is shown in the appendix A.2, the conjugation on the one hand and the addition, the subtrac-
tion and the multiplication of complex numbers on the other hand can be carried out independently;
therefore, it is valid:

z1,z2,z3,z4 ∈ C : z1 z2 + z3 z4 = z1 z2 + z3 z4, z1 z2− z3 z4 = z1 z2− z3 z4 (3.0.9)
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The addition and multiplication of matrices is defined by appropriate additions and multiplications
of their coefficients. Based on (3.0.9) it is therefore valid for the linear combination of two matrices
A and B, which uses the scalar factors c and d:

c,d ∈ C, A,B ∈ CN×P : cA+d B = c A+d B (3.0.10)

Also based on (3.0.9), it is valid for the multiplication and addition of the matrices A, B, X and Y:

A,B ∈ CN×P, X,Y ∈ CP×Q : AX+BY = A X+B Y (3.0.11)

3.1 Fourier series

A Fourier series describes a function f (x) by a linear combination of trigonometric functions.
For the following considerations, the properties of the exponential function and its relation to
the trigonometric functions play an essential role. The mathematical basics are presented and
discussed in the appendix A.3; here, only the results shall be given. According to Euler’s formula
it is valid for an exponential function with an imaginary exponent:

φ ∈ R : eiφ = cosφ+ i sinφ ⇒ ℜeiφ = cosφ, ℑeiφ = sinφ (3.1.12)

Here and in the following, the argument φ is generally assumed to be a real number, i.e. φ ∈ R.
For the complex conjugate of eiφ it is valid:

e−iφ = eiφ = cosφ− i sinφ (3.1.13)

By solving the sum and the difference of the relations (3.1.12) and (3.1.13) the cosine function and
the sine function can be expressed in the following way:

cosφ =
eiφ + e−iφ

2
, sinφ =

eiφ− e−iφ

2i
= i

e−iφ− eiφ

2
(3.1.14)

For the exponential function it is valid:

m ∈ Z⇔ e2πm i = cos(2πm)︸ ︷︷ ︸
1

+i sin(2πm)︸ ︷︷ ︸
0

= 1 (3.1.15)

Based on this, it can be derived:

m ∈ Z : 1 = e2πim⇒ eimφ = eimφ e2πim = eimφ+2πim = eim(φ+2π) (3.1.16)
⇒ cos(m(φ+2π)) = ℜeim(φ+2π) = ℜeimφ = cos(mφ) (3.1.17)

⇒ sin(m(φ+2π)) = ℑeim(φ+2π) = ℑeimφ = sin(mφ) (3.1.18)

3.1.1 Continuous Fourier series

A Fourier series describes a function f (φ) by a linear combination of trigonometric functions
having different periodicities k:

f (φ) = A0 +
∞

∑
K=1

[AK cos(Kφ)+BK sin(Kφ)] , φ ∈ R, f (φ),AK,BK ∈ C, K ∈ Z (3.1.19)
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As shown in (3.1.17) and (3.1.18) the functions cos(Kφ) and sin(Kφ) are periodic with period 2π:

k ∈ Z : cos(K (φ+2π)) = cos(Kφ), sin(K (φ+2π)) = sin(Kφ) (3.1.20)

Thereby, also their linear combination describing the function f (φ) is periodic with period 2π, i.e.
f (φ+2π) = f (φ).

By applying the relations according to (3.1.14) the expression contained in the bracket of (3.1.19)
can be reformulated in the following way:

K 6= 0 : AK cos(Kφ)+BK sin(Kφ) = AK
eiKφ + e−iKφ

2
+BK

eiKφ− e−iKφ

2i

=

(
AK

2
+

BK

2i

)
︸ ︷︷ ︸

CK

eiKφ +

(
AK

2
− BK

2i

)
︸ ︷︷ ︸

C−K

e−iKφ (3.1.21)

Thereby, the new Fourier coefficients CK and C−K are defined. The relations between CK , C−K , AK
and BK are obtained to:

CK =
AK

2
+

BK

2i
, C−K =

AK

2
− BK

2i
⇒ CK +C−K = AK, CK−C−K =

BK

i
⇒ BK = i(CK−C−K)

(3.1.22)
The coefficients CK and C−K can be simplified in the following way:

1 =−i2⇒ i−1 =−i⇒CK =
AK

2
+

BK

2i
=

AK

2
− i

BK

2
, C−K =

AK

2
− BK

2i
=

AK

2
+ i

BK

2
(3.1.23)

In total, it is valid for the relations between CK and C−K on the one hand and AK and BK on the
other hand:

CK =
AK− iBK

2
, C−K =

AK + iBK

2
, AK =CK +C−K, BK = i(CK−C−K) (3.1.24)

By defining
C0 = A0 (3.1.25)

and applying the following transformation of a sum, which is derived in the appendix A.1:

K̂

∑
K=−K̂

XK = X0 +
K̂

∑
K=1

(XK +X−K) (3.1.26)

the Fourier series can be formulated in a very compact way:

f (φ) = A0 +
∞

∑
K=1

(AK cos(Kφ)+BK sin(Kφ))

=C0 ei·0·φ︸︷︷︸
1

+
∞

∑
K=1

(
CK eiKφ +C−K e−iKφ

)
=

∞

∑
K=−∞

CK eiKφ (3.1.27)

It can be shown that the coefficients CK are uniquely defined for a given function f (φ). In this
context, the orthogonality of the exponential functions is an essential property. In order to consider
this, the integral of the product of two functions eiKφ and eiLφ over one period 0≤ x≤ 2π has to
be considered:

2π∫
0

eiKφ eiLφ dφ =

2π∫
0

ei(K+L)φ dφ (3.1.28)
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For the evaluation of the integral two cases have to be distinguished. For K +L = 0 it is valid:

K +L = 0 ⇒ ei(K+L)φ = ei·0·φ = e0 = 1 ⇒
2π∫

0

ei(K+L)φ dφ =

2π∫
0

dφ = 2π (3.1.29)

For K +L 6= 0 it is obtained:

2π∫
0

ei(K+L)φ dφ =
ei(K+L)φ

i(K +L)

∣∣∣∣∣
2π

0

=
e2πi(K+L)− ei(K+L)·0

i(K +L)
=

e2πi(K+L)− e0

i(K +L)
=

e2πi(K+L)−1
i(K +L)

(3.1.30)

Since K and L are integers, their sum K +L is an integer, too. By applying the relation (3.1.15),
the integral (3.1.30) can be evaluated:

K,L ∈ Z ⇒ K +L ∈ Z ⇒ e2πi(K+L) = 1 ⇒
2π∫

0

ei(K+L)φ dφ =
e2πi(K+L)−1

i(K +L)
=

1−1
i(K +L)

= 0

(3.1.31)
In total, it is valid:

2π∫
0

ei(K+L)φ dφ =

{
2π for K +L = 0 ⇔ K =−L
0 for K +L 6= 0 ⇔ K 6=−L (3.1.32)

Multiplying the equation (3.1.27) by eiLφ, L ∈ Z, rearranging it and applying the relation (3.1.32)
leads to:

2π∫
0

f (φ)eiLφ dφ =

2π∫
0

(
∞

∑
K=−∞

CK eiKφ eiLφ

)
dφ =

∞

∑
K=−∞

CK

2π∫
0

ei(K+L)φ dφ = 2πC−L (3.1.33)

Solving this relation to C−L and using the substitution K =−L leads to:

2π∫
0

f (φ)eiLφ dφ = 2πC−L ⇒ C−L =
1

2π

2π∫
0

f (φ)eiLφ dφ ⇒ CK =
1

2π

2π∫
0

f (φ)e−iKφ dφ (3.1.34)

This result indicates that the Fourier coefficient CK is uniquely defined for a given function f (φ)
and a given periodicity K ∈ Z.

3.1.2 Discrete Fourier series

A discrete Fourier series is obtained if the function f (φ) is evaluated only for n ∈ N discrete val-
ues φj, j ∈ {N0 | 0≤ j ≤ n−1}. Although there is in principle no restriction with respect to the
selection of the values for φj, it is nevertheless reasonable to choose n equidistant values within
the interval φ0 ≤ φj < φ0 +2π, whereas the length of the interval results from the periodicity of the
function f (φ) with period 2π:

φj = φ0 +
2π

n
j, n ∈ N, j ∈ {N0 | 0≤ j ≤ n−1} , φ0 ∈ R (3.1.35)
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Inserting the discrete values φj into the the Fourier series given by (3.1.27) leads to:

f (φj) =
∞

∑
K=−∞

CK eiKφj =
∞

∑
K=−∞

CK eiK (φ0+
2π

n j) =
∞

∑
K=−∞

CK eiKφ0 eiK 2π

n j =
∞

∑
K=−∞

CK eiKφ0
(

e
2π

n i
)K j

(3.1.36)
For the sake of brevity and of a better overview the root of unity ζ will be used in the following.
The root of unity is defined by:

ζ = e
2π

n i (3.1.37)

Based on the relation (3.1.15), the following relation, which will be used several times in this work,
can be derived:

p ∈ Z⇔ 1 = e2π p i = e
2π

n pn i =
(

e
2π

n i
)pn

= ζ
pn (3.1.38)

Using the definition of the root of unity ζ according to (3.1.37) the discrete Fourier series can be
formulated in the following way:

eiK 2π

n j =
(

e
2π

n i
)K j

= ζ
K j⇒ f j = f (φj) =

∞

∑
K=−∞

CK eiKφ0 eiK 2π

n j =
∞

∑
K=−∞

CK eiKφ0 ζ
K j (3.1.39)

By applying (3.1.38) it can be derived:

M, j ∈ Z⇒M · j ∈ Z⇒ ζ
M j n = ζ

M n j = 1⇒ ζ
K j = ζ

K j
ζ

M n j = ζ
(K+M n) j (3.1.40)

Apparently, the value ζ(K+M n) j, M ∈ Z, does not depend on M. Therefore, it is reasonable to
express the periodicity K in the following way by using a basic periodicity k and an integer m.

K = k+mn, K,k,m ∈ Z⇒ ζ
K j = ζ

(k+mn) j = ζ
k j

ζ
mn j︸︷︷︸
1

(3.1.41)

In order to assign a unique value for the basic periodicity k to each periodicity K, an interval for k
has to be defined:

kmin ≤ k ≤ kmax, kmin,kmax ∈ Z (3.1.42)

The bounds kmin and kmax have to be defined in such a way that for m 6= 0 a periodicity K = k+mn
lies outside the interval. This is achieved by the following relation between the bounds kmin and
kmax:

kmin +n = kmax +1 ⇔ kmin = kmax +1−n ⇔ kmin +n−1 = kmax (3.1.43)

As long as this condition is fulfilled, the bounds kmin and kmax can be chosen arbitrarily. This will
be considered later.

By using the formulation K = k+mn the discrete Fourier series according to (3.1.39) is reformu-
lated in the following way:

f j =
∞

∑
K=−∞

CK eiKφ0 ζ
k j =

kmax

∑
k=kmin

∞

∑
m=−∞

Ck+mn ei(k+mn)φ0 ζ
(k+mn) j︸ ︷︷ ︸

ζk j

=
kmax

∑
k=kmin

[
∞

∑
m=−∞

Ck+mn ei(k+mn)φ0

]
︸ ︷︷ ︸

ck

ζ
k j =

kmax

∑
k=kmin

ck ζ
k j (3.1.44)
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While the continuous Fourier series can be a sum of an infinite number of terms, the discrete
Fourier series only consists of a limited number n of terms. Therefore, the relation between the
values f j and the coefficients ck can be formulated as a system of linear equations:

f0
...
f j
...

fn−1


︸ ︷︷ ︸

f

=


ζkmin·0 · · · ζk·0 · · · ζkmax·0

...
...

...
ζkmin· j · · · ζk· j · · · ζkmax· j

...
...

...
ζkmin·(n−1) · · · ζk·(n−1) · · · ζkmax·(n−1)


︸ ︷︷ ︸

T


ckmin

...
ck
...

ckmax


︸ ︷︷ ︸

c

(3.1.45)

As it has been done for the continuous Fourier series in the previous section 3.1.1, the orthogonality
of the functions used for the Fourier series shall also be considered here. Since the function ζk j is
only evaluated for a finite number of points defined by j, it is obvious to arrange the powers ζk j for
the periodicity k in a vector tk; thereby, the transformation matrix T can be described by arranging
the vectors tk for kmin ≤ k ≤ kmax as column vectors.

tk =


ζk·0

...
ζk· j

...
ζk·(n−1)

⇒ T =
[
tkmin · · · tk · · · tkmax

]
(3.1.46)

In order to consider the orthogonality, the scalar product of two vectors tk and tl has to be evaluated:

tk
H tl = tk

T tl (3.1.47)

Since the vector tk is complex, the Hermitian transposition zH = zT is used instead of the “normal”
transposition zT according to Strang [71]. One reason given by Strang is the following: The
module of a real vector x is obtained in the following way:

xT =
[
x1 x2 · · · xn

]
⇒ |x|=

√
xT x =

√
x12 + x22 + . . .+ xn2 (3.1.48)

The application of this rule to a complex vector z, however, may lead to an apparently wrong result,
as it can be seen from the following example:

z =
[

1
i

]
⇒ zT =

[
1 i

]
⇒
√

zT z =
√

12 + i2 =
√

1−1 = 0 (3.1.49)

According to this, the module |z| of the vector z would be zero. Based on the rule for the absolute
value |z| of a complex number z, which is derived in the appendix A.2:

|z|=
√

z z =
√

(ℜz)2 +(ℑz)2 (3.1.50)

the scalar product zH z using the Hermitian transposition leads to the following correct result:

z =
[

1
i

]
⇒ zH =

[
1 −i

]
⇒ |z|=

√
zH z =

√
12− i2 =

√
1+1 =

√
2 (3.1.51)
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For the Hermitian transpose tk
H the complex conjugate ζk j is required. Based on the relation

(3.1.13) it is valid:

eiφ = e−iφ⇒ ζk j = e
2π

n ik j = e−
2π

n ik j = ζ
−k j (3.1.52)

Thereby, the scalar product of the two vectors tk and tl can be formulated:

tk
H tl =

[
ζ−k·0 · · · ζ−k· j · · · ζ−k·(n−1)

]


ζl·0

...
ζl· j

...
ζl·(n−1)

=
n−1

∑
j=0

ζ
−k· j

ζ
l· j =

n−1

∑
j=0

ζ
(−k+l)· j (3.1.53)

It will turn out later that the evaluation of a sum of this kind is fundamental in the context of cyclic
systems; therefore, this problem shall be considered in a more generalized way by using the power
ζp j, p ∈ Z, from which the expression (3.1.53) can be derived as a special case p =−k+ l. For
the evaluation, the following rule for a geometric series, which is derived in the appendix A.6 is
used:

n−1

∑
j=0

q j =

{
1−qn

1−q for q 6= 1∧q 6= 0
n for q = 1

(3.1.54)

By reformulating the power ζp j and setting ζp = q it is obtained based on (3.1.54):

n−1

∑
j=0

ζ
p j =

n−1

∑
j=0

(ζp) j =

{
1−(ζp)n

1−ζp for ζp 6= 1∧ζp 6= 0
n for ζp = 1

(3.1.55)

Based on the relation (3.1.38) the numerator can be evaluated immediately; since p is an integer,
it is valid:

p ∈ Z : ζ
pn = 1⇒ 1− (ζp)n = 1−ζ

pn = 1−1 = 0 (3.1.56)

Transforming the power ζp leads to:

ζ
p =

(
e

2π

n i
)p

= e2πi p
n (3.1.57)

Here, it becomes evident that the case ζp = 0 cannot occur so that the requirement ζp 6= 0 can be
omitted in the following. According to (3.1.15), it is valid:

m ∈ Z⇔ e2πim = 1 (3.1.58)

Applying this relation to the power ζp leads to:

p
n
∈ Z⇔ ζ

p = e2πi p
n = 1 (3.1.59)

As discussed in the appendix A.3, where the relation (3.1.58) is derived, the deduction can be made
in both directions. In the present case this means that the case q = ζp = 1 occurs if and only if the
quotient p

n is an integer. Thereby, the evaluation of the sum over j leads to the following result:

n−1

∑
j=0

ζ
p j =

n−1

∑
j=0

e2πi p
n j =

{
0 for p

n /∈ Z
n for p

n ∈ Z (3.1.60)
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The result indicates that the sum is either equal to n or vanishes, i.e. for a given n there are only
two possible results; this corresponds to the orthogonality relation for the functions eiK x, which
has been considered for the continuous Fourier series in the previous section 3.1.1. However, in
contrast to the continuous Fourier series, where the periodicity K is unlimited, the periodicity k
used in the discrete Fourier series is limited by the bounds kmin and kmax. Therefore, the pairs
〈k, l〉, for which the scalar product tk

H tl does not vanish, have to fulfil three conditions; the first
two are determined by the range of the periodicity and the third one results from the condition
according to (3.1.60):

kmin ≤ k ≤ kmax ∧ kmin ≤ l ≤ kmax ∧
−k+ l

n
∈ Z⇒ tk

H tl = n 6= 0 (3.1.61)

Since the third condition contains the expression −k+ l, its range has to be determined first. To
this end, the range of k is reformulated:

kmin ≤ k ≤ kmax ⇔−kmin ≥−k ≥−kmax (3.1.62)

Combining this with the range of l leads to

−kmax ≤−k ≤−kmin ∧ kmin ≤ l ≤ kmax⇒−kmax + kmin ≤−k+ l ≤−kmin + kmax (3.1.63)

The relation between kmin and kmax according to (3.1.43) is transformed in the following way:

kmin +n = kmax +1⇒ n−1 = kmax− kmin (3.1.64)

Since n is a natural number, it is positive so that dividing an inequation by n does not change the
relations. Therefore, inserting the relation (3.1.64) into (3.1.63) and dividing the result by n leads
to:

−kmax + kmin =−n+1≤−k+ l ≤−kmin + kmax = n−1⇒−1+
1
n
≤ −k+ l

n
≤ 1− 1

n
(3.1.65)

Also from n ∈ N it can be derived:

n ∈ N⇒ n≥ 1⇒ 0 <
1
n
≤ 1⇒−1 <−1+

1
n
≤ 0⇒ 1 > 1− 1

n
≥ 0 (3.1.66)

Thereby, the range of the quotient −k+l
n is finally determined:

−1 <−1+
1
n
≤ −k+ l

n
≤ 1− 1

n
< 1⇒−1 <

−k+ l
n

< 1 (3.1.67)

Based on this, the condition (3.1.61) can be formulated in the following way:

−1 <
−k+ l

n
< 1 ∧ −k+ l

n
∈ Z⇒ tk

H tl = n 6= 0 (3.1.68)

Apparently, in the range −1 < M < 1, M = 0 is the only integer M ∈ Z. Thereby, it is valid:

−1 <
−k+ l

n
< 1 ∧ −k+ l

n
∈ Z⇒ −k+ l

n
= 0⇒ k = l⇒ tk

H tk = n 6= 0 (3.1.69)

Conversely, this means based on (3.1.60) that for k 6= l the scalar product tk
H tl vanishes. In total it

is valid:

kmin ≤ k ≤ kmax ∧ kmin ≤ l ≤ kmax : tk
H tl =

n−1

∑
j=0

ζ
(−k+l) j =

{
0 for k 6= l

n for k = l
(3.1.70)
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This shows that the column vectors tk and tl , k 6= l, are orthogonal. Based on (3.1.70), it is obtained
for the matrix product TH T:

TH T =


tkmin

H

...
tk

H

...
tkmax

H


[
tkmin · · · tl · · · tkmax

]
=


n 0 · · · 0 0

0 n . . . 0 0
... . . . . . . . . . ...

0 0 . . . n 0
0 0 · · · 0 n

= nI⇒ 1
n

TH = T−1

(3.1.71)
Thereby, the inverse matrix T−1 is determined; it is valid:

f = Tc⇒ c = T−1 f =
1
n

TH f (3.1.72)

The existence of T−1 proves that for n given values f j vector contained in the vector f the coeffi-
cients ck of the discrete Fourier series, which form the vector c, are uniquely defined. By inserting
the matrix T according to (3.1.45) into (3.1.72) and by applying the relation ζk j = ζ−k j derived in
(3.1.52) it is obtained:

ckmin
...

ck
...

ckmax


︸ ︷︷ ︸

c

=
1
n


ζ−kmin·0 · · · ζ−kmin· j · · · ζ−kmin·(n−1)

...
...

...
ζ−k·0 · · · ζ−k· j · · · ζ−k·(n−1)

...
...

...
ζ−kmax·0 · · · ζ−kmax· j · · · ζ−kmax·(n−1)


︸ ︷︷ ︸

TH=T T


f0
...
f j
...

fn−1


︸ ︷︷ ︸

f

⇒ ck =
1
n

(
n−1

∑
j=0

f j ζ
−k j

)
(3.1.73)

Thereby, the determination of the coefficients ck for the given values f j is obtained.

3.1.3 Fourier series for real functions

In the previous sections 3.1.1 the description of a function f (φ) by a continuous Fourier series
has been developed; from this the description of the values f j = f (φj) for discrete equidistant
arguments φj by a discrete Fourier series has been derived in 3.1.2. Here, the arguments φ and
φj were assumed to be real numbers, while the function f (φ) was assumed to be complex. Since
set of the real numbers R is a subset of the set of the complex numbers C, the methods described
in the sections 3.1.1 and 3.1.2 can also be applied to a real function f (φ) ∈ R. This case shall be
considered in the following.

In the section 3.1.1 the following two formulations of a continuous Fourier series have been shown:

f (φ) = A0 +
∞

∑
K=1

[AK cos(Kφ)+BK sin(Kφ)] =
∞

∑
K=−∞

CK eiKφ, φ ∈ R, K ∈ Z (3.1.74)

For a given function f (φ) the coefficients CK are obtained according to the following relation:

CK =
1

2π

2π∫
0

f (φ)e−iKφ dφ (3.1.75)
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The variable φ and the fraction 1
2π

are real numbers so that they are not affected by the conjugation.
By applying the relation (3.1.13) it is obtained for the complex conjugate CK:

CK =
1

2π

2π∫
0

f (φ)e−iKφ dφ =
1

2π

2π∫
0

f (φ) e−iKφ dφ =
1

2π

2π∫
0

f (φ) eiKφ dφ (3.1.76)

If the values of f (φ) are real, too, then it is valid:

f (φ) ∈ R⇒ f (φ) = f (φ)⇒CK =
1

2π

2π∫
0

f (φ) eiKφ dφ =
1

2π

2π∫
0

f (φ) e−i(−K)φ dφ =C−K (3.1.77)

The result indicates that for a real function f (φ) ∈ R it is valid for the coefficients C−K =CK . From
this, it follows for K = 0:

f (φ) ∈ R⇒C0 =C0⇒ 0 =C0−C0 = 2iℑC0⇒ ℑC0 = 0⇒C0 ∈ R (3.1.78)

The same considerations can be applied to the coefficients ck of the discrete Fourier series. As
derived in the previous section 3.1.2, it is valid:

f j =
kmax

∑
k=kmin

ck ζ
k j, ck =

1
n

(
n−1

∑
j=0

f j ζ
−k j

)
(3.1.79)

By taking n ∈ N into account and applying the relation ζk j = ζ−k j according to (3.1.52) it is ob-
tained for the complex conjugate ck:

ck =
1
n

(
n−1

∑
j=0

f j ζ−k j

)
=

1
n

(
n−1

∑
j=0

f j ζ−k j

)
=

1
n

(
n−1

∑
j=0

f j ζ
k j

)
(3.1.80)

If the values f j are real numbers, it can be derived:

f j ∈ R⇒ f j = f j⇒ ck =
1
n

(
n−1

∑
j=0

f j ζ
k j

)
=

1
n

(
n−1

∑
j=0

f j ζ
−(−k) j

)
= c−k (3.1.81)

Also here, for a real function f j ∈ R the relation ck = c−k is valid. From this it follows for k = 0:

f j ∈ R⇒ c0 = c0⇒ 0 = c0− c0 = 2iℑc0⇒ ℑc0 = 0⇒ c0 ∈ R (3.1.82)

As described in the previous section 3.1.2, for the derivation of a discrete Fourier series from a
continuous Fourier series it is necessary to a basic periodicity k to each periodicity K used in the
continuous Fourier series. To this end, the range of the basic periodicity k has to limited:

kmin ≤ k ≤ kmax, kmax = kmin +n−1 ⇔ kmax− kmin = n−1 (3.1.83)

For the evaluation of the product TH T and for the determination of the inverse matrix T−1 only the
difference kmax− kmin = n−1 has been used so that one bound kmin or kmax can be chosen arbitrar-
ily, while other bound is determined by kmax = kmin +n−1 or kmin = kmax−n+1, respectively.
Of course, there are some obvious choices for reasonable values. One possibility is the following
interval:

kmin = 0≤ k ≤ kmax = n−1 (3.1.84)
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Here, the values for k are non-negative and as small as possible. Another possibility is to choose
the bounds in a similar way as for the continuous Fourier series according to (3.1.74), i.e. defining
an interval, which is centred around zero. Thereby, the relation (3.1.81) can be applied for f j ∈ R;
this enables a simpler and more instructive interpretation of the result. If the interval is centred
around zero, then the upper and the lower bounds have the same absolute values and differ only by
their signs, i.e. −kmin = kmax. Combining this condition with the relation (3.1.83) leads to:

−kmin = kmax∧kmax−kmin = n−1⇒ 2kmax = n−1⇒ kmax =−kmin =
n−1

2
=

n
2
− 1

2
(3.1.85)

The bounds kmin and kmax have to be integers. Based on (3.1.85) this can only be achieved if n is
an odd number; therefore, the condition for the lower and upper bound has to be modified, e.g. in
the following way:

−kmin = kmax−1∧ kmax− kmin = n−1⇒ 2kmax = n⇒ kmax =
n
2
⇒ kmin =−

n
2
+1 (3.1.86)

In total, the bounds for the discrete Fourier series can be formulated in the following way:

Odd number n : n ∈ N∧ n
2
/∈ N : kmin =−

n−1
2

, kmax =
n−1

2
⇒ kmin =−kmax (3.1.87)

Even number n : n ∈ N∧ n
2
∈ N : kmin =−

n
2
+1, kmax =

n
2
⇒ kmin =−kmax +1 (3.1.88)

From the comparison of the bounds kmin and kmax for the two different cases it can be concluded:

kmin ≥−
n−1

2
, kmax ≤

n
2
⇒−n

2
+

1
2
≤ kmin ≤ k ≤ kmax ≤

n
2
⇒−n

2
+

1
2
≤ k ≤ n

2
(3.1.89)

Thereby, a generalized formulation for the range of k, which covers all numbers n, is obtained.

In the section 3.1.1 the following relation has been derived:

CK eiKφ +C−K e−iKφ = (CK +C−K)︸ ︷︷ ︸
AK

cos(Kφ)︸ ︷︷ ︸
ℜeiKφ

+ i(CK−C−K)︸ ︷︷ ︸
BK

sinφ︸︷︷︸
ℑeiKφ

(3.1.90)

The power ζk j is obtained from eiKφ for K = k and φ = 2π

n j ; based on (3.1.90), it can be formulated:

eik 2π

n j =
(

e
2π

n i
)k j

= ζ
k j⇒ ck ζ

k j + c−k ζ
−k j = (ck + c−k)︸ ︷︷ ︸

ak

cos
(

2π

n
k j
)

︸ ︷︷ ︸
ℜζk j

+ i(ck− c−k)︸ ︷︷ ︸
bk

sin
(

2π

n
k j
)

︸ ︷︷ ︸
ℑζk j

(3.1.91)
Thereby, the coefficients ak and bk are defined. It can be shown that for real values f j the coeffi-
cients ak and bk are real numbers, too:

f j ∈ R⇒ c−k = ck⇒ ak = ck + c−k = ck + ck = 2ℜck ∈ R⇒ ak ∈ R
⇒ bk = i(ck− c−k) = i(ck− ck) = 2ℑck ∈ R⇒ bk ∈ R (3.1.92)

By applying the transformation

K̂

∑
K=−K̂

XK = X0 +
K̂

∑
K=1

(XK +X−K) (3.1.93)
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and by setting a0 = c0 the discrete Fourier series for an odd number n can be formulated in the
following way:

f j =

n−1
2

∑
k=− n−1

2

ck ζ
k j = c0 +

n−1
2

∑
k=1

(
ck ζ

k j + c−k ζ
−k j
)
= a0 +

n−1
2

∑
k=1

[
ak cos

(
2π

n
k j
)
+bk sin

(
2π

n
k j
)]

(3.1.94)
For an even number n the periodicity k = n

2 has to be treated separately; here, it is valid:

j ∈ Z : ζ
n
2 j = ei 2π

n
n
2 j = eiπ j =

(
eiπ
) j

= (cosπ+ i sinπ) j = (−1) j ∈ {−1,1} (3.1.95)

Therefore, it is obtained for c n
2
:

ζ
− n

2 j =
1

ζ
n
2 j =

1

(−1) j =

(
1
−1

) j

= (−1) j⇒ c n
2
=

1
n

(
n−1

∑
j=0

f j ζ
− n

2 j

)
=

1
n

(
n−1

∑
j=0

f j (−1) j

)
(3.1.96)

It can be shown that if the values f j are real then the coefficient c n
2
, too, is a real number:

f j ∈ R∧ (−1) j ∈ {−1,1} ⊂ R⇒ f j ζ
− n

2 j ∈ R⇒ c n
2
∈ R (3.1.97)

By splitting the sum, applying the transformation (3.1.93) and setting c0 = a0 and c n
2
= a n

2
the

discrete Fourier series for an even number n can be formulated in the following way:

f j =

n
2

∑
k=− n

2+1
ck ζ

k j =

n
2−1

∑
k=− n

2+1
ck ζ

k j + c n
2

ζ
n
2 j = c0 +

n
2−1

∑
k=1

(
ck ζ

k j + c−k ζ
−k j
)
+ c n

2
(−1) j

= a0 +

n
2−1

∑
k=1

[
ak cos

(
2π

n
k j
)
+bk sin

(
2π

n
k j
)]

+a n
2
(−1) j (3.1.98)

3.2 Transformation of the linear cyclic system

In the section 3.1, continuous and discrete Fourier series have been considered. According to
(3.1.44), the n discrete values f j of the function f (x) are expressed in the following way:

φj = φ0 +
2π

n
j, n ∈ N, j ∈ {N0 | 0≤ j ≤ n−1} , φ0 ∈ R

f (φj) = f j =
kmax

∑
k=kmin

ck ζ
k j, ζ = e

2π

n i, k ∈ Z, kmax = kmin +n−1 (3.2.99)

The formulation for scalar values f j can be extended easily for vectors and matrices. Based on
this, the vector y( j) describing the displacements of the j-th segment is formulated in the following
way:

y( j)(t) =
kmax

∑
k=kmin

yk(t)ζ
k j, ζ = e

2π

n i, k ∈ Z, kmax = kmin +n−1 (3.2.100)

The relation between the vector yC containing the subvectors y( j) for the segments on the one hand
and the vector yF containing the Fourier vectors yk on the other hand can be expressed by the
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following matrix equation:
y(0)(t)

...
y( j)(t)

...
y(n−1)(t)


︸ ︷︷ ︸

yC(t)

=


Iζkmin·0 · · · Iζk·0 · · · Iζkmax·0

...
...

...
Iζkmin·j · · · Iζk·j · · · Iζkmax·j

...
...

...
Iζkmin·(n−1) · · · Iζk·(n−1) · · · Iζkmax·(n−1)


︸ ︷︷ ︸

TCF


ykmin(t)

...
yk(t)

...
ykmax(t)


︸ ︷︷ ︸

yF(t)

(3.2.101)

For the sake of clarity, it is indicated here that the vectors y( j)(t) and yk(t) forming the vectors
yC(t) and yF(t), respectively, depend on the time t, while the powers ζk·j and the transformation
matrix TCF are constant. The transformation matrix TCF can be described by the submatrices Tk
representing the hypercolumns:

Tk =


Iζk·0

...
Iζk· j

...
Iζk·(n−1)

 ⇒ T =
[
Tkmin · · · Tk · · · Tkmax

]
(3.2.102)

In order to clarify the structure of the transformation matrix TCF, also exponents containing zero
as a factor are written in full. – Since the matrix TCF is constant, it obtained for the vectors of the
velocity and of the acceleration:

yC(t) = TCF yF(t)⇒ ẏC(t) = TCF ẏF(t)⇒ ÿC(t) = TCF ÿF(t) (3.2.103)

For the derivatives of the subvectors y( j)(t) it is valid:

y( j)(t) =
kmax

∑
k=kmin

yk(t)ζ
k j⇒ ẏ( j)(t) =

kmax

∑
k=kmin

ẏk(t)ζ
k j⇒ ÿ( j)(t) =

kmax

∑
k=kmin

ÿk(t)ζ
k j (3.2.104)

The vector of the virtual velocity δ′ẏC is derived from the vector ẏC(t):

ẏC(t) = TCF ẏF(t)⇒ δ
′ẏC = TCF δ

′ẏF (3.2.105)

Thereby, it is valid for its subvectors δ′ẏ( j)

ẏ( j)(t) =
kmax

∑
k=kmin

ẏk(t)ζ
k j⇒ δ

′ẏ( j) =
kmax

∑
k=kmin

δ
′ẏk ζ

k j (3.2.106)

For the following considerations it is assumed that the vector of the virtual velocity δ′ẏC is a real
vector, i.e. its imaginary part vanishes so that it is equal to its complex conjugate vector.

ℑδ
′ẏC = 0 ⇒ δ

′ẏC = δ′ẏC = TCF δ′ẏF = TCF δ′ẏF (3.2.107)

The transposition of the vector δ′ẏC leads to

δ
′ẏC

T
=
(

TCF δ′ẏF
)T

= δ′ẏF
T

TCF
T
= δ
′ẏF

H TCF
H (3.2.108)
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The relations (3.2.103) and (3.2.108) are now inserted into the equation of motion for the linear
cyclic system. For the sake of brevity and of a better overview, the dependency of the vectors
yC(t), ẏC(t) and ÿC(t) on the time t will not be indicated explicitly in the following. By inserting
the relations it is obtained:

δ
′ẏC

T
(MC ÿC+PC ẏC+QC yC) = δ

′ẏF
H TCF

H (MCTCF ÿF+PCTCF ẏF+QCTCF yF)
= δ
′ẏF

H (TCF
H MCTCF ÿF+TCF

H PCTCF ẏF+TCF
H QCTCF yF

)
(3.2.109)

In the following considerations the matrix products TCF
H MCTCF, TCF

H PCTCF and TCF
H QCTCF

will be evaluated. To this end, the product TCF
H CCTCF will be considered; here, CC is a generalized

matrix, which has the following structure:

CC =


C1|1 C1|2 C1|3 · · · C1|n
C2|1 C2|2 C2|3 · · · C2|n
C3|1 C3|2 C3|3 · · · C3|n

...
...

... . . . ...
Cn|1 Cn|2 Cn|3 · · · Cn|n

=


C(0) C(1) C(2) · · · C(n−1)

C(n−1) C(0) C(1) · · · C(n−2)

C(n−2) C(n−1) C(0) · · · C(n−3)

...
...

... . . . ...
C(1) C(2) C(3) · · · C(0)

 (3.2.110)

Here, it is valid for the submatrices CI|J:

CI|J =

{
C(J−I) for J ≥ I
C(J−I+n) for J < I

(3.2.111)

As it will be shown later, the wanted products TCF
H MCTCF, TCF

H PCTCF and TCF
H QCTCF can be

derived from the product TCF
H CCTCF by replacing the submatrices C(K) with the corresponding

submatrices M(K), P(K) and Q(K), respectively.

For the following considerations the description of the transformation matrix TCF by hypercolumns
Tk according to (3.2.102) is used. Based on this, it is obtained for the product CCTCF:

CCTCF = CC

[
Tkmin · · · Tl · · · Tkmax

]
=
[
CC Tkmin · · · CC Tl · · · CC Tkmax

]
(3.2.112)

The successive multiplication by TCF
H leads to:

TCF
HCCTCF =


Tkmin

H

...
Tk

H

...
Tkmax

H


[
CC Tkmin · · · CC Tl · · · CC Tkmax

]

=


Tkmin

H CC Tkmin · · · Tkmin
H CC Tl · · · Tkmin

H CC Tkmax
...

...
...

Tk
H CC Tkmin · · · Tk

H CC Tl · · · Tk
H CC Tkmax

...
...

...
Tkmax

H CC Tkmin · · · Tkmax
H CC Tl · · · Tkmax

H CC Tkmax

 (3.2.113)

For the evaluation of the products Tk
H CC Tl , of which the matrix TCF

HCCTCF is composed, it is
useful to adapt the indices. By using the substitution J = j+1⇔ j = J−1 the column matrix Tl
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of the transformation matrix TCF is formulated in the following way:

j = J−1, 0≤ j ≤ n−1⇒ Tl =


Iζl·0

...
Iζl· j

...
Iζl·(n−1)

=


Iζl·0

...
Iζl·(J−1)

...
Iζl·(n−1)

 , 1≤ J ≤ n (3.2.114)

The multiplication of the matrix CC with the column matrix Tl from the right hand side leads to:

CCTl =


C1|1 · · · C1|J · · · C1|n

...
...

...
CI|1 · · · CI|J · · · CI|n

...
...

...
Cn|1 · · · Cn|J · · · Cn|n




Iζl·0

...
Iζl·(J−1)

...
Iζl·(n−1)

=
n

∑
J=1


C1|J ζl·(J−1)

...
CI|J ζl·(J−1)

...
Cn|J ζl·(J−1)

 (3.2.115)

In order to take advantage from the structure of the matrix CC, the submatrices CI|J are replaced
according to (3.2.111). While for I = 1 the condition J ≥ I is always fulfilled so that the sum can
be treated in whole, the sums for 2≤ I ≤ n have to be split up in order to cover both conditions
J ≥ I and J < I.

I = 1 :
n

∑
J=1

CI|J ζ
l·(J−1) =

n

∑
J=I

C(J−I)
ζ

l·(J−1) (3.2.116)

2≤ I ≤ n :
n

∑
J=1

CI|J ζ
l·(J−1) =

I−1

∑
J=1

CI|J ζ
l·(J−1)+

n

∑
J=I

CI|J ζ
l·(J−1)

=
I−1

∑
J=1

C(J−I+n)
ζ

l·(J−1)+
n

∑
J=I

C(J−I)
ζ

l·(J−1) (3.2.117)

For the following transformations, the index shift for a sum, which is derived in the appendix A.1,
will be applied several times. It is valid:

l = k+ c⇒
kmax

∑
k=kmin

Xk =
kmax+c

∑
l=kmin+c

Xl−c, k, l,c ∈ Z (3.2.118)

Based on this, the sum (3.2.116) and the second partial sum of (3.2.117) are transformed in the
following way:

J = i+ I⇒ i = J− I⇒
n

∑
J=I

C(J−I)
ζ

l·(J−1) =
n−I

∑
i=0

C(i)
ζ

l·(i+I−1) =
n−I

∑
i=0

C(i)
ζ

l·i
ζ

l·(I−1) (3.2.119)

For the first partial sum of (3.2.117) the following index shift is applied:

J = i+ I−n⇒ i = J− I +n

⇒
I−1

∑
J=1

C(J−I+n)
ζ

l·(J−1) =
n−1

∑
i=n−I+1

C(i)
ζ

l·(i+I−n−1) =
n−1

∑
i=n−I+1

C(i)
ζ

l·i
ζ

l·(I−1)
ζ
−l·n (3.2.120)

As derived in (3.1.38) it is valid:

p ∈ Z, n ∈ N : ζ
pn = 1 (3.2.121)
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Since l is an integer, this relation can be used in order to simplify the sum (3.2.120). Finally, the
two transformed partial sums (3.2.119) and (3.2.120) can be merged; thereby, it is obtained:

n

∑
J=1

CI|J ζ
l·(J−1) =

n

∑
J=I

C(J−I)
ζ

l·(J−1)+
I−1

∑
J=1

C(J−I+n)
ζ

l·(J−1)

=
n−I

∑
i=0

C(i)
ζ

l·i
ζ

l·(I−1)+
n−1

∑
i=n−I+1

C(i)
ζ

l·i
ζ

l·(I−1)
ζ
−l·n︸︷︷︸
1

=
n−1

∑
i=0

C(i)
ζ

l·i
ζ

l·(I−1)

(3.2.122)

It can be seen that for setting I = 1 the expressions (3.2.119) and (3.2.122) yield the same result so
that the formulation (3.2.122) is valid for all values of I, i.e. for 1≤ I ≤ n.

After merging the sums, the index I has disappeared from the bounds and is contained only in the
power ζl·(I−1), which is independent from the summation index i. Therefore, this power can be
factored out so that it is obtained:

n

∑
J=1

CI|J ζ
l·(J−1) =

n−1

∑
i=0

C(i)
ζ

l·i
ζ

l·(I−1) =

[
n−1

∑
i=0

C(i)
ζ

l·i

]
︸ ︷︷ ︸

Cl

ζ
l·(I−1) = Cl ζ

l·(I−1) (3.2.123)

Based on this, the product CCTl can be formulated in the following way:

CCTl =
n

∑
J=1


C1|J ζl·(J−1)

...
CI|J ζl·(J−1)

...
Cn|J ζl·(J−1)

=


Cl ζl·0

...
Cl ζl·(I−1)

...
Cl ζl·(n−1)

 (3.2.124)

By applying the relation ζk· j = ζ−k· j according to (3.1.52) it is obtained for the complex conjugate
Tk of the column matrix Tk:

Tk =


Iζk·0

...
Iζk· j

...
Iζk·(n−1)

⇒ Tk =


Iζ−k·0

...
Iζ−k· j

...
Iζ−k·(n−1)

 (3.2.125)

In order to adapt the indices used in the submatrices, the substitution j = I−1⇔ I = j+1 is
applied to the product CCTl; this leads to:

I = j+1, 1≤ J ≤ n⇒ CCTl =


Cl ζl·0

...
Cl ζl·(I−1)

...
Cl ζl·(n−1)

=


Cl ζl·0

...
Cl ζl· j

...
Cl ζl·(n−1)

 , 0≤ j ≤ n−1 (3.2.126)
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Using this, the matrix product Tk
H CC Tl can be determined:

Tk
H CCTl = Tk

T CCTl =
[
Iζ−k·0 · · · Iζ−k· j · · · Iζ−k·(n−1)

]


Cl ζl·0

...
Cl ζl· j

...
Cl ζl·(n−1)


=

n−1

∑
j=0

ζ
−k· j Cl ζ

l· j = Cl

n−1

∑
j=0

ζ
(−k+l)· j (3.2.127)

In the section 3.1.2 the following orthogonality relation (3.1.70) has been derived:

kmin ≤ k ≤ kmax ∧ kmin ≤ l ≤ kmax :
n−1

∑
j=0

ζ
(−k+l)· j =

{
0 for k 6= l
n for k = l (3.2.128)

Based on this, it is obtained for the matrix product Tk
H CC Tl:

Tk
H CCTl = Cl

n−1

∑
j=0

ζ
(−k+l)· j =

{
nCk for k = l

0 for k 6= l (3.2.129)

From this, it follows for the transformed matrix TCF
H CCTCF:

TCF
H CCTCF =



Tkmin
H CCTkmin · · · Tkmin

H CCTk · · · Tkmin
H CCTl · · · Tkmin

H CCTkmax
... . . . ...

...
...

Tk
H CCTkmin · · · Tk

H CCTk · · · Tk
H CCTl · · · Tk

H CCTkmax
...

... . . . ...
...

Tl
H CCTkmin · · · Tl

H CCTk · · · Tl
H CCTl · · · Tl

H CCTkmax
...

...
... . . . ...

Tkmax
H CCTkmin · · · Tkmax

H CCTk · · · Tkmax
H CCTl · · · Tkmax

H CCTkmax



= n



Ckmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Ck · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · Cl · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Ckmax


(3.2.130)

This result indicates that the transformed matrix TCF
H CCTCF is a block-diagonal matrix. It should

be pointed out that for the matrix CC no further properties are assumed than the structure described
in (3.2.110), i.e. if CC has this structure the block-diagonal structure of the product TCF

H CCTCF

is obtained regardless of whether the matrix CC is real or complex or whether it is symmetric,
skew-symmetric or has no symmetry property at all.
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By comparing the generalized matrix CC and the matrix QC

CC =


C(0) C(1) C(2) · · · C(n−1)

C(n−1) C(0) C(1) · · · C(n−2)

C(n−2) C(n−1) C(0) · · · C(n−3)

...
...

... . . . ...
C(1) C(2) C(3) · · · C(0)

 , QC =


Q(0) Q(1) 0 · · · Q(−1)

Q(−1) Q(0) Q(1) · · · 0
0 Q(−1) Q(0) · · · 0
...

...
... . . . ...

Q(1) 0 0 · · · Q(0)

 (3.2.131)

it can be seen that the matrix product TCF
H QCTCF can be derived from the product TCF

H CCTCF

by substituting the submatrices C(I) in the following way:

C(I) =


Q(0) for I = 0
Q(1) for I = 1
0 for 2≤ I ≤ n−2
Q(−1) for I = n−1

(3.2.132)

By inserting this into (3.2.129) and applying the relation ζk n = 1 derived from (3.2.121) the matrix
Qk is obtained:

Qk =
n−1

∑
i=0

Q(i)
ζ

k·i = Q(0)
ζ

k·0 +Q(1)
ζ

k·1 +
n−2

∑
i=2

Q(i)︸︷︷︸
0

ζ
k·i +Q(n−1)

ζ
k·(n−1)

= Q(0)+Q(1)
ζ

k +Q(−1)
ζ
−k

ζ
k·n︸︷︷︸
1

= Q(−1)
ζ
−k +Q(0)+Q(1)

ζ
k (3.2.133)

Based on this, the product TCF
H QCTCF is formulated in the following way:

TCF
H QCTCF = n



Qkmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Qk · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · Ql · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Qkmax


(3.2.134)

As already mentioned, the matrices QC, PC and MC have an analogous structure. Therefore, it is
valid for the products TCF

H PCTCF and TCF
H MCTCF:

PC =


P(0) P(1) 0 · · · P(−1)

P(−1) P(0) P(1) · · · 0
0 P(−1) P(0) · · · 0
...

...
... . . . ...

P(1) 0 0 · · · P(0)

⇒ TCF
H PCTCF = n



Pkmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Pk · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · Pl · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Pkmax


(3.2.135)
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MC =


M(0) M(1) 0 · · · M(−1)

M(−1) M(0) M(1) · · · 0
0 M(−1) M(0) · · · 0
...

...
... . . . ...

M(1) 0 0 · · · M(0)

⇒ TCF
H MCTCF = n



Mkmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Mk · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · Ml · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Mkmax


(3.2.136)

The relations between the matrices P(I) and M(I) on the one hand and the matrices Pk and Mk on
the other hand are given by

Pk = P(−1)
ζ
−k +P(0)+P(1)

ζ
k (3.2.137)

Mk = M(−1)
ζ
−k +M(0)+M(1)

ζ
k (3.2.138)

For the product of the transformed matrix TCF
H QCTCF and the vector yF it is obtained:

TCF
H QCTCF yF = n



Qkmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Qk · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · Ql · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Qkmax





ykmin
...

yk
...

yl
...

ykmax


= n



Qkmin ykmin
...

Qk yk
...

Ql yl
...

Qkmax ykmax


(3.2.139)

Due to the block-diagonal structure of the transformed matrices, each subvector of the vector
TCF

H PCTCF ẏF contains one and only one vector yk. Conversely, this means that there are no
coupling terms and thereby no interactions of different periodicities k 6= l. In an analogous way, it
is obtained for the products TCF

H MCTCF ẏF and TCF
H MCTCF ÿF:

TCF
H PCTCF ẏF = n



Pkmin ẏkmin
...

Pk ẏk
...

Pl ẏl
...

Pkmax ẏkmax


, TCF

H MCTCF ÿF = n



Mkmin ÿkmin
...

Mk ÿk
...

Ml ÿl
...

Mkmax ÿkmax


(3.2.140)
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In total it is valid for the left-hand side of the equation of motion:

δ
′ẏC

T
(MC ÿC+PC ẏC+QC yC)
= δ
′ẏF

H (TCF
H MCTCF ÿF+TCF

H PCTCF ẏF+TCF
H QCTCF yF

)

=
[

δ′ẏkmin
H · · · δ′ẏk

H · · · δ′ẏl
H · · · δ′ẏkmin

H
]

n



Mkmin ÿkmin + Pkmin ẏkmin + Qkmin ykmin
...

Mk ÿk + Pk ẏk + Qk yk
...

Ml ÿl + Pl ẏl + Ql yl
...

Mkmax ÿkmax +Pkmax ẏkmax +Qkmax ykmax


= n

kmax

∑
k=kmin

δ
′ẏk

H
(Mk ÿk +Pk ẏk +Qk yk) (3.2.141)

The result shows that the formulation of the motions of a cyclic system by discrete Fourier series
enables a very simple formulation.

The block-diagonal structure of the matrix products TCF
H QCTCF, TCF

H PCTCF and TCF
H MCTCF

has been derived from the consideration of the product TCF
H CCTCF. The evaluation of this product

takes advantage of the structure of the generalized matrix CC according to (3.2.110), but no further
properties have been assumed; in particular this means that the matrix CC can be complex and that
it doesn’t have to have any symmetry properties. However, as mentioned at the beginning of this
chapter, the matrices QC, PC and MC are assumed to be real matrices. Furthermore, for an ordinary
linear mechanical system the matrix M is always symmetric, while the matrices P and Q can be
split up into a symmetric and a skew-symmetric part; since a linear cyclic system is a special case
of an ordinary linear mechanical system, this is also valid for the matrices MC, MC and MC. The
properties of the matrices Mk, Pk and Qk, which are derived from these additional properties, will
be considered in the following.

Again, the matrix QC shall serve as an example. According to (3.2.133) the matrix Qk is obtained
from the submatrices Q(I) of QC in the following way:

Qk = Q(−1)
ζ
−k +Q(0)+Q(1)

ζ
k (3.2.142)

If the matrix QC is a real matrix, i.e. QC = QC, then its submatrices Q(I) are real matrices, too, i.e.
Q(I) = Q(I). In this case, the following relation between the matrices Qk and Q−k can be derived
based on the relation (3.1.52):

ζ
−k = ζk, Q(I) = Q(I)⇒Qk = Q(−1) ζ−k +Q(0)+Q(1) ζk = Q(−1) ζ−k +Q(0)+Q(1) ζk

= Q(−1)
ζ
−(−k)+Q(0)+Q(1)

ζ
−k = Q−k (3.2.143)

In an analogous way it is valid for the real matrices PC = PC and MC = MC:

QC = QC ⇒Q(I) = Q(I) ⇒Q−k = Qk (3.2.144)

PC = PC ⇒ P(I) = P(I) ⇒ P−k = Pk (3.2.145)

MC = MC⇒M(I) = M(I)⇒M−k = Mk (3.2.146)

Next, the symmetry properties shall be considered. Based to the formulation of an ordinary linear
mechanical system according to (3.0.1) and (3.0.2), it is obtained for the matrices of the linear
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cyclic system:

MC = MC
T (3.2.147)

PC = DC+GC, DC = DC
T, GC =−GC

T (3.2.148)
QC = KC+NC, KC = KC

T, NC =−NC
T (3.2.149)

In order to shorten the derivation of the symmetry properties, a generalized matrix BC shall be
considered:

BC = σBC
T⇒


B(0) B(1) 0 · · · B(−1)

B(−1) B(0) B(1) · · · 0
0 B(−1) B(0) · · · 0
...

...
... . . . ...

B(1) 0 0 · · · B(0)

= σ



B(0)T B(−1)T 0 · · · B(1)T

B(1)T B(0)T B(−1)T · · · 0
0 B(1)T B(0)T · · · 0
...

...
... . . . ...

B(−1)T 0 0 · · · B(0)T


(3.2.150)

Here, σ is a scalar factor indicating the sign. For σ = 1, the matrix BC is symmetric; for σ =−1 it
is skew-symmetric. From the comparison of the corresponding submatrices it is obtained:

BC = σBC
T⇒ B(0) = σB(0)T

, B(1) = σB(−1)T
, B(−1) = σB(1)T

(3.2.151)

The matrix Bk is defined in a way analogous to the definition of Qk according to (3.2.142):

Bk = B(−1)
ζ
−k +B(0)+B(1)

ζ
k (3.2.152)

For further considerations, it is assumed that the matrix BC is a real matrix, i.e. BC = BC. For this,
it follows based on (3.3.252):

BC = BC⇒ B(I) = B(I)⇒ Bk = B(0)+ℜζ
k
(

B(1)+B(−1)
)

︸ ︷︷ ︸
ℜBk

+iℑζ
k
(

B(1)−B(−1)
)

︸ ︷︷ ︸
ℑBk

(3.2.153)

By transposing the matrix Bk and applying the relations according to (3.2.151) it is obtained:

Bk
T = B(0)T

+ℜζ
k
(

B(1)T
+B(−1)T)

+ iℑζ
k
(

B(1)T
−B(−1)T)

= σB(0)+ℜζ
k
(

σB(−1)+σB(1)
)
+ iℑζ

k
(

σB(−1)−σB(1)
)

= σ

(
B(0)+ℜζ

k
(

B(1)+B(−1)
))

︸ ︷︷ ︸
ℜBk

−iσℑζ
k
(

B(1)−B(−1)
)

︸ ︷︷ ︸
ℑBk

= σ(ℜBk− iℑBk) = σBk (3.2.154)

The transposition of the results leads to:

Bk
T = σBk⇒ Bk = σBk

T T
= σBk

T
= σBk

H (3.2.155)

Based on this relation, the symmetry properties of the matrices Mk, Dk, Gk, Kk and Nk can be
derived. The mass matrix MC, the damping matrix DC and the stiffness matrix Kk symmetric
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matrices; if they are also real matrices the symmetry properties of the matrices Mk, Dk and Kk can
be derived from (3.2.155) by setting σ = 1. This leads to:

MC = MC
T = MC⇒Mk = M(−1)

ζ
−k +M(0)+M(1)

ζ
k = Mk

H (3.2.156)
DC = DC

T = DC ⇒ Dk = D(−1)
ζ
−k + D(0)+ D(1)

ζ
k = Dk

H (3.2.157)
KC = KC

T = KC ⇒Kk = K(−1)
ζ
−k + K(0)+ K(1)

ζ
k = Kk

H (3.2.158)

The matrices Mk, Dk and Kk are Hermitian matrices, i.e. their real parts are symmetric, while their
imaginary parts are skew-symmetric. – The gyroscopic matrix GC and the circulatoric matrix NC

are skew-symmetric matrices. If they are also real, the symmetry properties of the matrices Gk and
Nk are obtained from (3.2.155) by setting σ =−1. This results in:

GC =−GC
T = GC ⇒Gk = G(−1)

ζ
−k +G(0)+G(1)

ζ
k =−Gk

H (3.2.159)
NC =−NC

T = NC ⇒ Nk = N(−1)
ζ
−k + N(0)+ N(1)

ζ
k = −Nk

H (3.2.160)

The matrices Gk and Nk are skew-Hermitian, i.e. their real parts are skew-symmetric, while their
imaginary parts are symmetric.

3.3 Modal decomposition of a cyclic system

Depending on the system’s size and complexity, the matrices M, P and Q for a linear mechanical
system can be rather large; as a result, the calculation effort to solve the system’s equations of
motion can be high. Therefore, it is desirable to transform the equations of motion into a form,
which is easier to handle from the computational point of view. Here, the modal description of the
system is a highly useful method, which is described in several books, e.g. [15]. In several cases,
this transformation also enables a reduction of number of the degrees of freedom with a relatively
small loss of accuracy.

In the following considerations, the principle of the modal decomposition and of the modal trans-
formation will be developed and applied to the cyclic system. The relations will be developed for
several types of systems, whereas in the following sequence each system can be considered as a
special case of the previous system.

1. The most generalized type of linear dynamic system is described by the state space repre-
sentation given by the following equation:

ż(t) = Az(t)+b(t) (3.3.161)

Here, z(t) is the state vector, A is the system matrix, and b(t) is the input vector. In the
state space representation, the system is described by a system of ordinary linear first order
differential equations.

2. An ordinary linear mechanical system is described by the following equation of motion:

M ÿ(t)+P ẏ(t)+Q y(t) = h(t), M = MT (3.3.162)

The equation of motion is a system of ordinary linear second order differential equations.
The corresponding state space equation is obtained to:[

0 I
−M−1 Q −M−1 P

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸

z(t)

+

[
0

M−1 h(t)

]
︸ ︷︷ ︸

b(t)

(3.3.163)
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This equation is a special case of (3.3.161) in so far as in this case the system matrix A
has a particular structure, i.e. it is composed by submatrices, which again are based on the
matrices M, P and Q, while in (3.3.161) no particular structure A is required.

3. The equation of motion for a linear cyclic system is given by:

MC ÿC(t)+PC ẏC(t)+QC yC(t) = hC(t), MC = MC
T (3.3.164)

While the equation of motion has the same structure as for the ordinary linear mechanical
system, the matrices MC, PC and QC and the vectors ÿC(t), ẏC(t), yC(t) and hC(t) and have
a special structure; therefore, the linear cyclic system is a special case of the ordinary linear
mechanical system. These structures of the matrices and the vectors are exemplified for the
matrices QC and yC(t):

QC =



Q(0) Q(1) 0 · · · 0 Q(−1)

Q(−1) Q(0) Q(1) · · · 0 0

0 Q(−1) Q(0) . . . 0 0
...

... . . . . . . . . . ...

0 0 0 . . . Q(0) Q(1)

Q(1) 0 0 · · · Q(−1) Q(0)


, yC(t) =



y(0)(t)
y(1)(t)

...
y( j)(t)

...
y(n−1)(t)


(3.3.165)

4. For a damped linear cyclic system the equation of motion is given by:

MC ÿC(t)+DC ẏC(t)+KC yC(t) = hC(t), MC = MC
T, DC = DC

T, KC = KC
T (3.3.166)

Here, the damping matrix DC and the stiffness matrix KC have structure analogous to the
one shown for QC in (3.3.165). In addition to this, the matrices DC and KC are symmetric
matrices; thereby, the damped linear cyclic system is a special case of the linear cyclic
system described by (3.3.164), where no symmetry properties for the matrices PC and QC

are required. – Generally, a damped linear system is a special case of an ordinary linear
mechanical system described by (3.3.162), for which it is set P = D = DT and Q = K = KT.
The designation “damped system” for such a system is taken from [15].

Since each of the systems listed above can be considered as a special case of the previous system,
all relations developed for one system can also be applied on the following one, i.e. for instance,
all relations, which are valid for the ordinary linear mechanical system, are also valid for a linear
cyclic system and thereby also for a damped linear cyclic system. By taking advantage from the
additional properties, which are valid for the special cases, further relations for the considered
special case will be derived.

In the section 3.3.1, the principle of the modal decomposition and of the modal transformation
will be considered for the systems described by (3.3.161) and (3.3.162). These considerations are
based on the book by Gasch, Knothe, and Liebich [15] on structural dynamics, although some
modifications are made, especially with respect to some mathematical formulations according to
the book by Strang [71] on linear algebra. Also, the nomenclature of the matrices used in [15] is
adapted to the one used in [64], [63] and [55]. – In the section 3.3.2, the methods developed in
the section 3.3.1 will be applied to a linear cyclic system described by (3.3.164) and the specific
results will be discussed. The special case of a damped cyclic system described by (3.3.166) will
be considered in the section 3.3.3.
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3.3.1 Modal decomposition of an ordinary linear system

Since the state space representation given by (3.3.161) is the most generalized formulation for a
linear dynamic system, the transformation of this equation shall be considered first. This transfor-
mation is based on the diagonalization of the matrix A using its eigenvectors. An eigenvector wI
of a matrix A is defined in the following way:

AwI = λI wI ⇔ (A−λI I)wI = 0, wI 6= 0 (3.3.167)

Here, λI is the eigenvalue, to which the eigenvector wI is associated. For the non-trivial solution
wI 6= 0 it is valid:

(A−λI I) wI︸︷︷︸
6=0

= 0⇒ det(A−λI I) = 0 (3.3.168)

The problem (3.3.167) is a right eigenvector problem, because the matrix A is multiplied by the
vector wI from the right side. A left eigenvector problem is obtained by multiplying the matrix
A with the vector vI from the left hand side; if vI 6= 0 is a left eigenvector associated with the
eigenvalue λI , it has to fulfil the following condition:

vI
H A = λI vI

H⇔ vI
H (A−λI I) = 0, vI 6= 0 (3.3.169)

As discussed in the section 3.1.2 the Hermitian transpose vI
H is used instead of the “simple”

transpose vI
T, as recommended by Strang [71]. In this context it should be mentioned that e.g. in

the algorithms contained in the well-known software library LAPACK [1] the Hermitian transpose
is used for the left eigenvectors. – It should be noted that for the indexing of the eigenvalues and
eigenvectors uppercase letters like I and J will be used in order to avoid confusion with the segment
index j or the periodicities k, which are written as lowercase letters as introduced in the previous
section 3.2.

Multiplying the equations (3.3.167) and (3.3.169) by vJ
H and wI , respectively, and subtracting the

results leads to:

AwI = λI wI ⇒ vJ
H AwI = λI vJ

H wI (3.3.170)
vJ

H A = λJ vJ
H ⇒ vJ

H AwI = λJ vJ
H wI (3.3.171)

⇒ 0 = (λI−λJ) vJ
H wI (3.3.172)

A product vanishes if at least one of its factors vanishes. Based on this the orthogonality of two
eigenvectors vJ and wI belonging to two different eigenvalues λI 6= λJ can be derived:

λI 6= λJ ⇒ λI−λJ 6= 0⇒ vJ
HwI = 0 (3.3.173)

Of course, the matrix A can also have multiple eigenvectors so that the eigenvectors vJ and wI are
orthogonal, although the eigenvalues, to which they are associated, are equal, i.e. λI = λJ for i 6= l.
This case will be considered later, when it becomes relevant. For the following consideration
it is assumed that all eigenvectors of the matrix A are orthogonal and that the eigenvectors are
normalized in the following way:

vI
H wJ =

{
1 for I = J
0 for I 6= J (3.3.174)

Based on this orthogonality relation the state space equation according to (3.3.163):

ż(t) = Az(t)+b(t) (3.3.175)
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can now be transformed. To this end, the state vector z(t) is formulated as a linear combination
of the right eigenvectors wJ; here, the time-dependent scalar factors qJ(t) are the modal coordi-
nates. According to Strang [71], a matrix of the order N×N has N eigenvalues and thereby N
eigenvectors. By using all N eigenvectors of the matrix A it is obtained for z(t) and its derivative
ż(t):

z(t) =
N

∑
J=1

wJ qJ(t)⇒ ż(t) =
N

∑
J=1

wJ q̇J(t) (3.3.176)

Inserting this formulation into the state space representation (3.3.175) and applying the condition
for the right eigenvector according to (3.3.167) leads to:

N

∑
J=1

wJ q̇J(t)︸ ︷︷ ︸
ż(t)

= A
N

∑
J=1

wJ qJ(t)︸ ︷︷ ︸
z(t)

+b(t) =
N

∑
J=1

AwJ qJ(t)+b(t) =
N

∑
J=1

λJ wJ qJ(t)+b(t) (3.3.177)

Multiplying the equation by vI
H leads to:

vI
H

N

∑
J=1

wJ q̇J(t) = vI
H

(
N

∑
J=1

λJ wJ qJ(t)+b(t)

)
⇒

N

∑
J=1

vI
H wJ q̇J(t) =

N

∑
J=1

λJ vI
H wJ qJ(t)+vI

H b(t)

(3.3.178)
According to the orthogonality relation (3.3.174), the products vI

H wJ vanish for I 6= J. Therefore,
also the summands for I 6= J vanish so that only the summand for I = J remains. Since the vectors
are normalized so that it is valid vI

H wI = 1, it is finally obtained:

N

∑
J=1

vI
H wJ q̇J(t) =

N

∑
J=1

λJ vI
H wJ qJ(t)+vI

H b(t)⇒ q̇I(t) = λI qI(t)+vI
H b(t) (3.3.179)

Since the matrix A has N eigenvectors, N decoupled differential equations are obtained. It is
evident that the solution process of the N decoupled equations requires a far lower computational
effort than the one of the original state space representation according to (3.3.163). Of course, the
determination of the eigenvalues and eigenvectors of A requires a certain effort; however, this has
to be carried out only once.

The conditions described above, i.e.

det(A−λI I) = 0, AwI = λI wI, wI 6= 0, vI
H A = λI vI

H, vI 6= 0 (3.3.180)

are the standard formulation for the problem of determining eigenvalues λI and their associated
eigenvectors wI and vI . The majority of computational algorithms like e.g. those contained in
the well-known software library LAPACK [1] are adapted to this formulation. Practically, this
means that the square matrix A of the order N×N has to be provided and the algorithm returns the
eigenvalues λI and the associated eigenvectors.

An ordinary linear mechanical system is a special case of a linear dynamic system. Therefore,
as discussed in the section 3.3, for an ordinary linear mechanical system the system matrix A
has a particular structure, as shown in (3.3.163). In the followig considerations, the conditions
according to (3.3.180) will be reformulated by taking advantage from the structure of A describing
an ordinary linear mechanical system. In this case the matrix A is composed of submatrices, which
again are derived from the matrices M, P and Q used in the equations of motion. Therefore, also
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the vectors wI and vI will be formulated using subvectors. By using this formulation it is obtained
for the right eigenvector problem:

wI =

[
yI|1
yI|2

]
⇒ λI

[
yI|1
yI|2

]
=

[
0 I

−M−1 Q −M−1 P

]
︸ ︷︷ ︸

A

[
yI|1
yI|2

]
=

[
yI|2

−M−1 Q yI|1−M−1 P yI|2

]

(3.3.181)
⇒ λI yI|1 = yI|2 (3.3.182)

λI yI|2 =−M−1 Q yI|1−M−1 P yI|2⇒ 0 = λI yI|2 +M−1 P yI|2 +M−1 Q yI|1 (3.3.183)

Multiplying the relation (3.3.183) by M, eliminating the vector yI|2 according to (3.3.182) and
setting yI|1 ≡ yI leads to:

0 = M λI λI yI|1︸ ︷︷ ︸
yI|2

+M M−1︸ ︷︷ ︸
I

P λI yI|1︸ ︷︷ ︸
yI|2

+M M−1︸ ︷︷ ︸
I

Q yI|1 =
(

λI
2 M+λI P+Q

)
yI (3.3.184)

For the non-trivial solution the following condition has to be fulfilled:

0 =
(

λI
2 M+λI P+Q

)
yI ∧yI 6= 0⇒ det

(
λI

2 M+λI P+Q
)
= 0 (3.3.185)

Due to the condition yI|1 = yI 6= 0 it is ensured that at least one subvector of wI is different from
the zero vector 0 so that also wI is different from 0. This is also valid for the case λI = 0, for which
the vector yI|2 = λI yI|1 is equal to 0.

The evaluation of the left eigenvector problem leads to:

vI =

[
xI|1
xI|2

]
⇒ λI

[
xI|1

H xI|2
H]= [xI|1

H xI|2
H][ 0 I
−M−1 Q −M−1 P

]
=
[
−xI|2

H M−1 Q xI|1
H−xI|2

H M−1 P
]

(3.3.186)

⇒ λI xI|1
H =−xI|2

H M−1 Q⇒ 0 = λI xI|1
H +xI|2

H M−1 Q (3.3.187)

λI xI|2
H = xI|1

H−xI|2
H M−1 P⇒ xI|1

H = λI xI|2
H +xI|2

H M−1 P (3.3.188)

The vector xI|1 can be eliminated by inserting the relation (3.3.188) into (3.3.187). This leads to:

0 = λI
(
λI xI|2

H +xI|2
H M−1 P

)︸ ︷︷ ︸
xI|1H

+xI|2
H M−1 Q = λI

2 xI|2
H +λI xI|2

H M−1 P+xI|2
H M−1 Q

(3.3.189)
By substituting xI|2

H in an appropriate way the inverse M−1 is eliminated.

xI|2
H = xI

H M⇒ 0 = λI
2 xI

H M+λI xI
H MM−1︸ ︷︷ ︸

I

P+xI
H MM−1︸ ︷︷ ︸

I

Q = xI
H
(

λI
2 M+λI P+Q

)
(3.3.190)

Here, the non-trivial solution has to fulfil the following condition:

0 = xI
H
(

λI
2 M+λI P+Q

)
∧xI 6= 0⇒ det

(
λI

2 M+λI P+Q
)
= 0 (3.3.191)

It should be noted that for the ordinary linear mechanical system the formulations (3.3.185) and
(3.3.191) are equivalent to the formulations according to (3.3.180). For the numerical treatment,
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the formulations (3.3.185) and (3.3.191) are not very suitable; however, as it will turn out later,
they can be useful in some special cases like e.g. double eigenvalues.

In the equations (3.3.170), (3.3.171), (3.3.172) and (3.3.173) it has been shown that eigenvectors
vJ

H and wI , which are associated to different eigenvalues λJ 6= λI , are orthogonal. However, in
some cases, double or multiple eigenvalues can occur. In order to evaluate the orthogonality in
this case, the scalar product vJ

H wI of a left eigenvector and a right eigenvector shall be expressed
based on the matrices M, P and Q of the original equation. Using the subvectors yI|1, yI|2, xJ|1 and
xJ|2 it is valid:

vJ
H wI =

[
xJ|1

H xJ|2
H][yI|1

yI|2

]
= xJ|1

H yI|1 +xJ|2
H yI|2 (3.3.192)

The vector yI|2 can be eliminated immediately by applying the relation (3.3.182); furthermore, it
is set yI ≡ yI|1; thereby, it is obtained:

λI yI|1 = yI|2⇒ vJ
H wI = xJ|1

H yI|1 +xJ|2
H yI|2 = xJ|1

H yI|1 +xJ|2
H

λI yI|1 = xJ|1
H yI +λI xJ|2

H yI
(3.3.193)

The vector xJ|1
H can be eliminated in two ways. The first possibility is to resolve the relation

(3.3.188) to xI|1
H and to substitute the index I by J:

0 = λI xI|2
H +xI|2

H M−1 P−xI|1
H⇒ xJ|1

H = λJ xJ|2
H +xJ|2

H M−1 P (3.3.194)

Inserting this into (3.3.193) leads to:

vJ
H wI = xJ|1

H yI +λI xJ|2
H yI =

(
λJ xJ|2

H +xJ|2
H M−1 P

)
yI +λI xJ|2

H yI

= (λI +λJ)xJ|2
H yI +xJ|2

H M−1 P yI (3.3.195)

The second possibility uses the relation (3.3.188); substituting the index I by J leads to:

λI xI|1
H =−xI|2

H M−1 Q⇒ λJ xJ|1
H =−xJ|2

H M−1 Q (3.3.196)

After multiplying the scalar product (3.3.193) by λJ , the expression λJ yJ|1 can be substituted.
Thereby, it is obtained:

λJ vJ
H wI = λJ xJ|1

H yI +λJ λI xJ|2
H yI =−xJ|2

H M−1 Q yI +λI λJ xJ|2
H yI (3.3.197)

By applying the substitution xJ|2
H = xJ

H M the two results (3.3.195) and (3.3.197) are reformu-
lated in the following way:

vJ
H wI = (λI +λJ)xJ|2

H yI +xJ|2
H M−1 P yI = (λI +λJ)xJ

H M yI +xJ
H M M−1︸ ︷︷ ︸

I

P yI

(3.3.198)
λJ vJ

H wI =−xJ|2
H M−1 Q yI +λI λJ xJ|2

H yI =−xJ
H M M−1︸ ︷︷ ︸

I

Q yI +λI λJ xJ
H M yI (3.3.199)

Thereby, the product vJ
H wI can be expressed in the two ways using the matrices M, P and Q:

vJ
H wI = (λI +λJ)xJ

H M yI +xJ
H P yI (3.3.200)

λJ vJ
H wI =−xJ

H Q yI +λI λJ xJ
H M yI (3.3.201)
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3.3.2 Eigenvectors of a linear cyclic system

As mentioned before, a cyclic linear system is a special case of an ordinary mechanical linear
system. Therefore, the relations developed in the previous section 3.3.1 can be applied also to the
cyclic linear system. The equation of motion and the state space representation are obtained by
simply replacing the generalized matrices M, P and Q and the vectors y(t) and h(t) by the matrices
MC, PC and QC and by the vectors hC(t) and hC(t), respectively. Thereby, it is obtained:

MC ÿC(t)+PC ẏC(t)+QC yC(t) = hC(t) (3.3.202)

⇔
[

ẏC(t)
ÿC(t)

]
︸ ︷︷ ︸

żC(t)

=

[
0 I

−MC
−1 QC −MC

−1 PC

]
︸ ︷︷ ︸

AC

[
yC(t)
ẏC(t)

]
︸ ︷︷ ︸

zC(t)

+

[
0

MC
−1 hC(t)

]
︸ ︷︷ ︸

bC(t)

(3.3.203)

Based on relations for an ordinary linear mechanical system the eigenvectors wCI and vCI for a
linear cyclic system will be considered in the following. The relations for the eigenvectors of a
cyclic system are formulated by replacing the matrices M, P and Q in the relations developed in
the section 3.3.1 by the matrices MC, PC and QC, respectively. Thereby, it is obtained for the right
eigenvector problem of the cyclic system:

λI

[
yCI1
yCI2

]
︸ ︷︷ ︸

wCI

=

[
0 I

−MC
−1 QC −MC

−1 PC

]
︸ ︷︷ ︸

AC

[
yCI1
yCI2

]
︸ ︷︷ ︸

wCI

(3.3.204)

⇒ 0 =
(

λI
2 MC+λI PC+QC

)
yCI, yCI = yCI1 6= 0 (3.3.205)

For the left eigenvector problem of the cyclic system it is valid:

λI
[
xCI1

H xCI2
H]︸ ︷︷ ︸

vCIH

=
[
xCI1

H xCI2
H]︸ ︷︷ ︸

vCIH

[
0 I

−MC
−1 QC −MC

−1 PC

]
︸ ︷︷ ︸

AC

(3.3.206)

⇒ 0 = xCI
H
(

λI
2 MC+λI PC+QC

)
, xCI

H MC = xCI2
H, xCI 6= 0 (3.3.207)

In the following considerations, the specific properties of the eigenvectors of a linear cyclic system
will be derived by applying the transformation developed in the section 3.2; this transformations
takes advantage from the structure of the matrices MC, PC and QC according to (3.0.5). Here, the
formulations (3.3.205) and (3.3.207) will be used since they are more suitable than the formulations
(3.3.204) and (3.3.206).

For a linear cyclic system the eigenvectors yCI and xCI can be formulated in the following way:

y(0)I
...

y( j)
I
...

y(n−1)
I


︸ ︷︷ ︸

yCI

=


Iζkmin·0 · · · Iζk·0 · · · Iζkmax·0

...
...

...
Iζkmin· j · · · Iζk· j · · · Iζkmax· j

...
...

...
Iζkmin·(n−1) · · · Iζk·(n−1) · · · Iζkmax·(n−1)


︸ ︷︷ ︸

TCF


yI,kmin

...
yI,k

...
yI,kmax


︸ ︷︷ ︸

yFI

⇒ y( j)
I =

kmax

∑
k=kmin

yI,k ζ
k· j

(3.3.208)
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x(0)I
...

x( j)
I
...

x(n−1)
I


︸ ︷︷ ︸

xCI

=


Iζkmin·0 · · · Iζk·0 · · · Iζkmax·0

...
...

...
Iζkmin· j · · · Iζk· j · · · Iζkmax· j

...
...

...
Iζkmin·(n−1) · · · Iζk·(n−1) · · · Iζkmax·(n−1)


︸ ︷︷ ︸

TCF


xI,kmin

...
xI,k

...
xI,kmax


︸ ︷︷ ︸

xFI

⇒ x( j)
I =

kmax

∑
k=kmin

xI,k ζ
k· j

(3.3.209)
By multiplying the condition (3.3.205) by TCF

H and inserting the formulation of the eigenvector
according to (3.3.208) it is obtained:

0 = TCF
H
(

λI
2 MC+λI PC+QC

)
TCF yFI︸ ︷︷ ︸

yCI

⇒ 0 =
(

λI
2 TCF

H MCTCF+λI TCF
H PCTCF+TCF

H QCTCF

)
yFI (3.3.210)

In the section 3.2 it has been determined that the product TCF
H QCTCF is a block-diagonal matrix.

Thereby, it is valid:

TCF
H QCTCF yFI = n



Qkmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Qk · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · QJ · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Qkmax





yI,kmin
...

yI,k
...

yI,l
...

yI,kmax


= n



Qkmin yI,kmin
...

Qk yI,k
...

QJ yI,l
...

Qkmax yI,kmax


(3.3.211)

The matrices PC and MC have a structure analogous to QC. Thereby, it is valid:

0
...
0
...
0
...
0


= λI

2 n



Mkmin yI,kmin
...

Mk yI,k
...

MJ yI,l
...

Mkmax yI,kmax


︸ ︷︷ ︸

TCF
H MC TCF yFI

+λI n



Pkmin yI,kmin
...

Pk yI,k
...

PJ yI,l
...

Pkmax yI,kmax


︸ ︷︷ ︸

TCF
H PC TCF yFI

+n



Qkmin yI,kmin
...

Qk yI,k
...

QJ yI,l
...

Qkmax yI,kmax


︸ ︷︷ ︸

TCF
H QC TCF yFI

(3.3.212)

The evaluation of the subvectors leads to:

k ∈ {k ∈ Z|kmin ≤ k ≤ kmax} : 0 = λI
2 n Mk yI,k +λI n Pk yI,k +n Qk yI,k

⇒ 0 =
(

λI
2 Mk +λI Pk +Qk

)
yI,k (3.3.213)

It should be noted that the factor n > 2, which results from the transformation, is eliminated since
it appears in all three terms. – In an analogous way the left eigenvector problem is multiplied by
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TCF and the formulation of the left eigenvector according to (3.3.209) is applied. This leads to:

0 = xFI
H TCF

H︸ ︷︷ ︸
xCIH

(
λI

2 MC+λI PC+QC

)
TCF

⇒ 0 = xFI
H
(

λI
2 TCF

H MCTCF+λI TCF
H PCTCF+TCF

H QCTCF

)
(3.3.214)

Due to the block-diagonal structure of the product TCF
H QCTCF it is obtained:

xFI
H TCF

H QCTCF =
[
xI,kmin

H · · · xI,k
H · · · xI,l

H · · · xI,kmax
H ]n



Qkmin · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · Qk · · · 0 · · · 0
...

... . . . ...
...

0 · · · 0 · · · QJ · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · Qkmax


= n

[
xI,kmin

H Qkmin · · · xI,k
H Qk · · · xI,l

H QJ · · · xI,kmax
H Qkmax

]
(3.3.215)

Also here, the analogous structure of the matrices QC, PC and MC is applied; from this it follows:[
0 · · · 0 · · · 0 · · · 0

]
= λI

2 n
[
xI,kmin

H Mkmin · · · xI,k
H Mk · · · xI,l

H MJ · · · xI,kmax
H Mkmax

]︸ ︷︷ ︸
xFIH TCF

H MC TCF

+λI n
[
xI,kmin

H Pkmin · · · xI,k
H Pk · · · xI,l

H PJ · · · xI,kmax
H Pkmax

]︸ ︷︷ ︸
xFIH TCF

H PC TCF

+n
[
xI,kmin

H Qkmin · · · xI,k
H Qk · · · xI,l

H QJ · · · xI,kmax
H Qkmax

]︸ ︷︷ ︸
xFIH TCF

H QC TCF

(3.3.216)

By evaluating the subvectors it is obtained:

k ∈ {k ∈ Z|kmin ≤ k ≤ kmax} : 0 = λI
2 n xI,k

H Mk +λI n xI,k
H Pk +n xI,k

H Qk

⇒ 0 = xI,k
H
(

λI
2 Mk +λI Pk +Qk

)
(3.3.217)

According to (3.3.208) and (3.3.209) the vectors yFI and xFI are composed of subvectors yI,k and
xI,k, respectively. For the wanted non-trivial solutions yFI 6= 0 and xFI 6= 0 it is sufficient if at least
one subvector is different from the zero vector 0. Therefore, it is set for the subvectors yI,k and
xI,k, which form the vectors yFI and xFI:

yI,k =

{
YI 6= 0 for k = kI
0 for k 6= kI

⇒ yFI 6= 0 (3.3.218)

xI,k =

{
XI 6= 0 for k = kI
0 for k 6= kI

⇒ xFI 6= 0 (3.3.219)

Here, kI is the periodicity for the eigenvectors yCI and xCI of the cyclic system. For the periodicities
k 6= kI the chosen vectors yI,k = 0 and xI,k = 0 are the trivial solutions, which generally fulfil the
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conditions (3.3.213) and (3.3.217):

k 6= kI : yI,k = 0⇒
(

λI
2 Mk +λI Pk +Qk

)
yI,k = 0 (3.3.220)

xI,k = 0⇒ xI,k
H
(

λI
2 Mk +λI Pk +Qk

)
= 0 (3.3.221)

The eigenvalue λI and the vectors YI and XI are determined by solving the decoupled eigenvector
problems for the periodicity kI; this problem is described by the following equations:

det
(

λI
2 MkI +λI PkI +QkI

)
= 0 (3.3.222)(

λI
2 MkI +λI PkI +QkI

)
YI = 0, YI 6= 0 (3.3.223)

XI
H
(

λI
2 MkI +λI PkI +QkI

)
= 0, XI 6= 0 (3.3.224)

By solving these equations the non-trivial solutions YI and XI , which fulfil the conditions (3.3.213)
and (3.3.217) for k = kI , are determined. For the vectors y( j)

I and x( j)
I , which form the eigenvectors

yCI and xCI , respectively, it is obtained:

yI,k =

{
YI 6= 0 for k = kI
0 for k 6= kI

⇒ y( j)
I =

kmax

∑
k=kmin

yI,k ζ
k j = YI ζ

kI j 6= 0⇒ yCI 6= 0 (3.3.225)

xI,k =

{
XI 6= 0 for k = kI
0 for k 6= kI

⇒ x( j)
I =

kmax

∑
k=kmin

xI,k ζ
k j = XI ζ

kI j 6= 0⇒ xCI 6= 0 (3.3.226)

As a result, the eigenvectors yCI and xCI for the entire cyclic system are found; together with the
eigenvalue λI , to which the vectors are associated, they fulfil the following conditions:(

λI
2 MC+λI PC+QC

)
yCI = 0, yCI 6= 0 (3.3.227)

xCI
H
(

λI
2 MC+λI PC+QC

)
= 0, xCI 6= 0 (3.3.228)

As it can be seen from (3.3.225) and (3.3.226) each eigenvector has only one periodicity kI due to
the decoupling of the motions for different periodicities. Of course, it is possible that double eigen-
values occur, i.e. for I 6= J two eigenvalues λI = λJ are equal; in this case, a linear combination of
the two right eigenvectors yCI and yCJ , too, is a right eigenvector:(

λI
2 MC+λI PC+QC

)
yCI = 0,

(
λJ

2 MC+λJ PC+QC

)
yCJ = 0 (3.3.229)

λI = λJ ⇒
(

λI
2 MC+λI PC+QC

)
(aI yCI +aJ yCJ) = 0, aI,aJ ∈ C (3.3.230)

⇒ aI y( j)
I +aJ y( j)

J = aI YI ζ
kI j +aJ YJ ζ

kJ j (3.3.231)

In an analogous way, this is valid for the left eigenvectors, i.e. the linear combination
bI xCI +bJ xCJ , bI,bJ ∈ C of the left eigenvectors xCI and yCJ , too, is a left eigenvector. If the
eigenvectors have different periodicities kI 6= kJ , the resulting linear combination has more than
one periodicity. In the present case, where no further properties of the matrices MC, PC and QC are
assumed, the occurrence of such double eigenvalues is a coincidence, which cannot be assumed in
general.

In the previous section 3.3.1 the eigenvector problem has been formulated in two ways, one based
on the original equation of motion, the other one using the state space representation. These
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relations are relevant for the formulating the eigenvector problem in the standardized form, so that
existing numerical algorithms e.g. as contained in the well-known software library LAPACK [1]
can be applied; this aspect will be considered later. Furthermore, these relations are important in
the context of the orthogonality of eigenvectors, particularly in the context to the already mentioned
problem of double eigenvalues. For a right eigenvector wI associated to the eigenvalue λI and a
left eigenvector vJ associated to the eigenvalue λJ it is valid:

λI

[
yI1
yI2

]
︸ ︷︷ ︸

wI

=

[
0 I

−M−1 Q −M−1 P

]
︸ ︷︷ ︸

A

[
yI1
yI2

]
︸ ︷︷ ︸

wI

, yI = yI1 (3.3.232)

λJ
[
xJ1

H xJ2
H]︸ ︷︷ ︸

vJH

=
[
xJ1

H xJ2
H ]︸ ︷︷ ︸

vJH

[
0 I

−M−1 Q −M−1 P

]
︸ ︷︷ ︸

A

, xJ
H = xJ2

H M (3.3.233)

⇒ vJ
H wI = (λI +λJ)xJ

H M yI +xJ
H P yI (3.3.234)

⇒ λJ vJ
H wI =−xJ

H Q yI +λI λJ xJ
H M yI (3.3.235)

By applying this to the eigenvector problem of the cyclic system described by (3.3.204), (3.3.205),
(3.3.206) and (3.3.207) it is obtained:

vCJ
H wCI = (λI +λJ)xCJ

H MC yCI +xCJ
H PC yCI

= (λI +λJ)xFJ
H TCF

H MCTCF yFI +xFJ
H TCF

H PCTCF yFI (3.3.236)
λJ vCJ

H wCI =−xCJ
H QC yCI +λI λJ xCJ

H MC yCI

=−xFJ
H TCF

H QCTCF yFI +λI λJ xFJ
H TCF

H MCTCF yFI (3.3.237)

The product xFJ
H TCF

H QCTCF yFI is evaluated based on (3.3.211); by multiplying this expression
by xFJ

H it is obtained:

[
xJ,kmin

H · · · xJ,k
H · · · xJ,l

H · · · xJ,kmax
H ]︸ ︷︷ ︸

xFJH

n



Qkmin yI,kmin
...

Qk yI,k
...

QJ yI,l
...

Qkmax yI,kmax


︸ ︷︷ ︸

TCF
H QC TCF yFI

= n
kmax

∑
k=kmin

xJ,k
H Qk yI,k (3.3.238)

For the vectors yI,k it is valid:

yI,k =

{
YI 6= 0 for k = kI
0 for k 6= kI

(3.3.239)

Since only one vector yI,k is different from the zero vector, all summands of the sum contained in
(3.3.238) except the one for k = kI vanish immediately so that it is obtained:

xCJ
H QC yCI = xFJ

H TCF
H QCTCF yFI = n

kmax

∑
k=kmin

xJ,k
H Qk yI,k = nxJ,kI

H QkI YI (3.3.240)
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Based on (3.3.226) it is valid for the vectors xJ,k:

xJ,k =

{
XJ 6= 0 for k = kJ
0 for k 6= kJ

(3.3.241)

Applying this to the expression (3.3.240) leads to:

xCJ
H QC yCI = nxJ,kI

H QkI YI =

{
nXJ

H QkI YI for kI = kJ
0 for kI 6= kJ

(3.3.242)

Due to the analogous structure of the matrices QC, PC and MC it is valid:

xCJ
H PC yCI = nxJ,kI

H PkI YI =

{
nXJ

H PkI YI for kI = kJ
0 for kI 6= kJ

(3.3.243)

xCJ
H MC yCI = nxJ,kI

H MkI YI =

{
nXJ

H MkI YI for kI = kJ
0 for kI 6= kJ

(3.3.244)

For different periodicities kI 6= kJ the eigenvectors xCJ and yCI are orthogonal with respect to all
three matrices MC, PC and QC. By inserting these results into the relations (3.3.236) and (3.3.236)
that for different periodicities kI 6= kJ also the eigenvectors wCI and vCJ , which are obtained for the
system matrix AC, are orthogonal:

kI 6= kJ ⇒ vCJ
H wCI = (λI +λJ)xCJ

H MC yCI︸ ︷︷ ︸
0

+xCJ
H PC yCI︸ ︷︷ ︸

0

= 0 (3.3.245)

kI 6= kJ ⇒ λJ vCJ
H wCI =−xCJ

H QC yCI︸ ︷︷ ︸
0

+λI λJ xCJ
H MC yCI︸ ︷︷ ︸

0

= 0 (3.3.246)

Since for different periodicities kI 6= kJ the products xCJ
H MC yCI , xCJ

H PC yCI and xCJ
H QC yCI van-

ish, the orthogonality of the vectors does not depend on the eigenvalues λI and λJ . As it can be
seen from (3.3.211) and (3.3.238) the orthogonality results from the block-diagonal structure of
the product TCF

H QCTCF; as discussed in the section 3.2, this block-diagonal structure, in turn, is
a consequence of the structure of the original matrix QC indicated in (3.0.5). In an analogous way
this is valid for the products TCF

H PCTCF and TCF
H MCTCF.

Up to here, only the structure of the matrices MC, PC and QC according to (3.0.5) has been used.
For the following considerations, it is assumed in addition that the matrices MC, PC and QC and
thereby also their submatrices M(I), P(I) and Q(I) are real matrices. The matrices Mk, Pk and Qk
are defined in the following way:

Mk = M(−1)
ζ
−k +M(0)+M(1)

ζ
k, Pk = P(−1)

ζ
−k +P(0)+P(1)

ζ
k,

Qk = Q(−1)
ζ
−k +Q(0)+Q(1)

ζ
k (3.3.247)

As derived in the previous section 3.2 it is valid for the matrices Mk, Pk and Qk:

QC = QC ⇒Q(I) = Q(I) ⇒Q−k = Qk (3.3.248)

PC = PC ⇒ P(I) = P(I) ⇒ P−k = Pk (3.3.249)

MC = MC⇒M(I) = M(I)⇒M−k = Mk (3.3.250)

For the following considerations it is assumed that the range of the periodicity k is centred or nearly
centred around zero, as discussed in the section 3.1.3. As derived in (3.1.89), it is valid:

−n
2
< kmin ≤ k ≤ kmax ≤

n
2
⇒−n

2
< k ≤ n

2
(3.3.251)
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Since the range for k is nearly centred around zero, for nearly each periodicity k a corresponding
negative value −k, too, is contained in the interval so that the relations (3.3.248), (3.3.249) and
(3.3.250) can be used.

Since the submatrices M(I), P(I) and Q(I) are real, the matrices Mk, Pk and Qk can easily be split
up into their real and imaginary parts. As an example, the matrix Qk shall be considered; it is valid:

ζ
−k = ζk, Q(I) = Q(I)⇒Qk = Q(−1)

(
ℜζ

k− iℑζ
k
)

︸ ︷︷ ︸
ζ−k

+Q(0)+Q(1)
(

ℜζ
k + iℑζ

k
)

︸ ︷︷ ︸
ζk

= Q(0)+ℜζ
k
(

Q(1)+Q(−1)
)

︸ ︷︷ ︸
ℜQk

+iℑζ
k
(

Q(1)−Q(−1)
)

︸ ︷︷ ︸
ℑQk

(3.3.252)

It shall first be checked, for which periodicities k the matrix Qk is real; to this end, the power ζk

has to be considered:

ζ
k = e

2π

n ik = cos
(

2π

n
k
)
+ i sin

(
2π

n
k
)
⇒ℜζ

k = cos
(

2π

n
k
)
, ℑζ

k = sin
(

2π

n
k
)

(3.3.253)

For the sine function it is valid:
m ∈ Z⇔ sin(mπ) = 0 (3.3.254)

By applying this to the imaginary part ℑζk according to (3.3.253) it is obtained:

ℑζ
k = sin

(
2π

n
k
)
= 0⇔ 2k

n
∈ Z (3.3.255)

By dividing the relation (3.3.251) by n
2 , the range for the quotient 2k

n is obtained so that the values
for 2k

n ∈ Z can be determined:

−n
2
< k ≤ n

2
⇒−1 <

2k
n
≤ 1, −1 <

2k
n
≤ 1∧ 2k

n
∈ Z⇒ 2k

n
∈ {0,1} (3.3.256)

The periodicities k, for which the power ζk is a real number, are obtained to:

2k
n

= 0⇒ k = 0⇒ ζ
k = ζ

0 = 1 (3.3.257)

2k
n

= 1⇒ k =
n
2
⇒ ζ

k = ζ
n
2 = e

2π

n i n
2 = eπ i = cos(π)+ i sin(π) =−1 (3.3.258)

Based on the definition of the matrices Qk, Pk and Mk according to (3.3.247), the matrices Q0, P0
and M0 are given by:

ζ
k = ζ

0 = 1⇒Q0 = Q(−1)+Q(0)+Q(1), P0 = P(−1)+P(0)+P(1), M0 = M(−1)+M(0)+M(1)

(3.3.259)
The eigenvectors of the cyclic system, which have the periodicity kI = 0, are obtained to:

kI = 0⇒ ζ
kI j = ζ

0 = 1⇒ y( j)
I = YI, x( j)

I = XI (3.3.260)

While the periodicity k = 0 occurs for all values n, the second periodicity k = n
2 , for which the

matrices Qk, Pk and Mk are real matrices, only occurs for an even number n, i.e. n
2 ∈ N, because

the periodicity k is an integer. Then, the matrices Q n
2
, P n

2
and M n

2
are obtained to:

ζ
k = ζ

n
2 =−1⇒Q0 = Q(0)−Q(1)−Q(−1), P0 = P(0)−P(1)−P(−1), M0 = M(0)−M(1)−M(−1)

(3.3.261)
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For the eigenvectors having the periodicity kI =
n
2 it is valid:

kI =
n
2
⇒ ζ

kI j =
(

ζ
kI
) j

= (−1) j⇒ y( j)
I = (−1) j YI, x( j)

I = (−1) j XI (3.3.262)

For all other periodicities, i.e. for k 6= 0∧ k 6= n
2 , the imaginary parts of the power ζk and thereby

also of the power ζ−k = ζk do not vanish, so that the matrices Qk, Pk and Mk can be complex.
However, by taking advantage from the relations Q−k = Qk, P−k = Pk and M−k = Mk according to
(3.3.248), (3.3.249) and (3.3.250) the eigenvector problem can be formulated using real matrices.
The basis is the condition (3.3.213), which must be fulfilled for each eigenvalue λI and for each
periodicity k. For the two periodicities k and −k it is valid:

0 =
(

λI
2 Mk +λI Pk +Qk

)
yI,k (3.3.263)

0 =
(

λI
2 M−k +λI P−k +Q−k

)
yI,−k (3.3.264)

By splitting the matrices Mk, Pk and Qk into their real and imaginary parts the content of the
bracket in (3.3.263) is reformulated in the following way:

λI
2 Mk +λI Pk +Qk = λI

2 (ℜMk + iℑMk)+λI (ℜPk + iℑPk)+(ℜQk + iℑQk)

= λI
2

ℜMk +λI ℜPk +ℜQk + i
(

λI
2

ℑMk +λI ℑPk +ℑQk

)
(3.3.265)

It should be noted that although the terms are grouped with respect to the factor i the two groups
λI

2
ℜMk +λI ℜPk +ℜQk and λI

2
ℑMk +λI ℑPk +ℑQk are not necessarily equal to the real part

and the imaginary part of λI
2 Mk +λI Pk +Qk, since the eigenvalue λI can be a complex number. –

By applying the relations (3.3.248), (3.3.249) and (3.3.250) the expression contained in (3.3.264)
is treated in an analogous way:

λI
2 M−k +λI P−k +Q−k = λI

2 Mk +λI Pk +Qk

= λI
2 (ℜMk− iℑMk)+λI (ℜPk− iℑPk)+(ℜQk− iℑQk)

= λI
2

ℜMk +λI ℜPk +ℜQk− i
(

λI
2

ℑMk +λI ℑPk +ℑQk

)
(3.3.266)

Adding the two equations (3.3.263) and (3.3.264) and applying the relations (3.3.265) and
(3.3.266) leads to:

0 =
(

λI
2 Mk +λI Pk +Qk

)
yI,k +

(
λI

2 M−k +λI P−k +Q−k

)
yI,−k

=
[
λI

2
ℜMk +λI ℜPk +ℜQk + i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
yI,k

+
[
λI

2
ℜMk +λI ℜPk +ℜQk− i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
yI,−k

=
(

λI
2

ℜMk +λI ℜPk +ℜQk

)(
yI,k +yI,−k

)
+
(

λI
2

ℑMk +λI ℑPk +ℑQk

)(
iyI,k− iyI,−k

)
(3.3.267)

By multiplying both equations (3.3.263) and (3.3.264) by i, subtracting them and again applying
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the transformations (3.3.265) and (3.3.266) it is obtained:

0 = i
(

λI
2 Mk +λI Pk +Qk

)
yI,k− i

(
λI

2 M−k +λI P−k +Q−k

)
yI,−k

= i
[
λI

2
ℜMk +λI ℜPk +ℜQk + i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
yI,k

−i
[
λI

2
ℜMk +λI ℜPk +ℜQk− i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
yI,−k

=
(

λI
2

ℜMk +λI ℜPk +ℜQk

)
i
(
yI,k−yI,−k

)
+ i2

(
λI

2
ℑMk +λI ℑPk +ℑQk

)(
yI,k +yI,−k

)
=
(

λI
2

ℜMk +λI ℜPk +ℜQk

)(
iyI,k− iyI,−k

)
−
(

λI
2

ℑMk +λI ℑPk +ℑQk

)(
yI,k +yI,−k

)
(3.3.268)

There are several possibilities to formulate the two equations as a right eigenvector problem using
real matrices. In following formulation, the equation (3.3.267) is expressed by the first hyperrow,
while the equation (3.3.268) is expressed by the second hyperrow:[

0
0

]
=

(
λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])[
yI,k +yI,−k

iyI,k− iyI,−k

]
(3.3.269)

In an alternative formulation, the first hyperrow represents the equation (3.3.268), while the eval-
uation of the second hyperrow yields the equation (3.3.268) multiplied by −1:[

0
0

]
=

(
λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])[
iyI,k− iyI,−k
−yI,k−yI,−k

]
(3.3.270)

It should be pointed out that both formulations (3.3.269) and (3.3.270) are based on the equa-
tions (3.3.267) and (3.3.268), which again are obtained from combining the eigenvector conditions
(3.3.263) and (3.3.264) for the periodicities k and −k.

Both formulations (3.3.269) and (3.3.270) use the same matrices, but a different formulation for
the eigenvector. According to (3.3.218), the subvectors yI,k of the eigenvector yFI have been chosen
as zero vectors except the vector yI,kI = YI 6= 0.

yI,k =

{
YI 6= 0 for k = kI
0 for k 6= kI

(3.3.271)

Therefore, it is valid for kI 6= 0:

kI 6= 0⇒ kI 6=−kI ⇒ yI,kI = YI ∧yI,−kI = 0 (3.3.272)

Based on this, the conditions (3.3.263) and (3.3.264) for k = kI are formulated and subsequently
expressed by the two formulations (3.3.269) and (3.3.270). As a result, it is obtained:

0 =
(

λI
2 MkI +λI PkI +QkI

)
yI,kI , yI,kI = YI 6= 0 (3.3.273)

0 =
(

λI
2 M−kI +λI P−kI +Q−kI

)
yI,−kI , yI,−kI = 0 (3.3.274)

⇒ 0 =

(
λI

2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜPkI ℑPkI

−ℑPkI ℜPkI

]
+

[
ℜQkI ℑQkI

−ℑQkI ℜQkI

])[
YI

iYI

]
︸ ︷︷ ︸

Y∗I1

(3.3.275)

0 =

(
λI

2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜPkI ℑPkI

−ℑPkI ℜPkI

]
+

[
ℜQkI ℑQkI

−ℑQkI ℜQkI

])[
iYI

i2YI

]
︸ ︷︷ ︸

Y∗I2

(3.3.276)
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It is evident that the two vectors Y∗I1 and Y∗I2 differ only by the factor i. Generally, if the vector
wI 6= 0 is an eigenvector for a matrix A, than the vector cwI , c ∈ C, too, is an eigenvector so that a
scalar factor is not relevant. Therefore, both equations (3.3.275) and (3.3.276) are equivalent. For
this reason, the formulation (3.3.269) will be used for further considerations.

As mentioned before, the two formulations (3.3.269) and (3.3.270), which are valid for the peri-
odicity k, are derived from the conditions (3.3.263) and (3.3.264), which are valid for the period-
icities k and −k, respectively. Therefore, by solving the following equation, which is derived from
(3.3.269) for k = |kI|, both vectors yI,|kI | and yI,−|kI | are obtained:

0 =

(
λI

2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λI

[
ℜP|kI | ℑP|kI |
−ℑP|kI | ℜP|kI |

]
+

[
ℜQ|kI | ℑQ|kI |
−ℑQ|kI | ℜQ|kI |

])[
yI,|kI |+yI,−|kI |

iyI,|kI |− iyI,−|kI |

]
(3.3.277)

For the vectors y( j)
I , which form the right eigenvectors wCI , it is valid:

yI,k =

{
yI,kI = YI 6= 0 for k = kI
0 for k 6= kI

⇒ y( j)
I =

kmax

∑
k=kmin

yI,k ζ
k j = YI ζ

kI j (3.3.278)

From this, the following formulation, which covers both cases kI > 0 and kI < 0 is derived. By
using the absolute value |kI| it is valid:

kI > 0 : yI,|kI | = yI,kI = YI 6= 0∧yI,−|kI | = yI,−kI = 0 (3.3.279)
kI < 0 : yI,|kI | = yI,−kI = 0 ∧yI,−|kI | = yI,kI = YI 6= 0 (3.3.280)

By using the relation ζ−k j = ζk j it is obtained:

y( j)
I = yI,|kI | ζ

|kI | j +yI,−|kI | ζ
−|kI | j = yI,|kI | ζ

|kI | j +yI,−|kI | ζ
|kI | j

= yI,|kI |

(
ℜζ
|kI | j + iℑζ

|kI | j
)
+yI,−|kI |

(
ℜζ
|kI | j− iℑζ

|kI | j
)

=
(
yI,|kI |+yI,−|kI |

)
ℜζ
|kI | j +

(
iyI,|kI |− iyI,−|kI |

)
ℑζ
|kI | j (3.3.281)

For the sake of brevity and for a better overview the vectors ΣYI and ∆YI shall be introduced:

ΣYI = yI,|kI |+yI,−|kI |∧∆YI = iyI,|kI |− iyI,−|kI | (3.3.282)

⇔ yI,|kI | =
1
2
(ΣYI− i∆YI)∧yI,−|kI | =

1
2
(ΣYI + i∆YI) (3.3.283)

In total, the determination of the subvectors y( j)
I can be formulated in the following way:

0 =

(
λI

2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λI

[
ℜP|kI | ℑP|kI |
−ℑP|kI | ℜP|kI |

]
+

[
ℜQ|kI | ℑQ|kI |
−ℑQ|kI | ℜQ|kI |

])[
ΣYI
∆YI

]
,

[
ΣYI
∆YI

]
6= 0

(3.3.284)

y( j)
I = ΣYI cos

(
2π

n
|kI| j

)
︸ ︷︷ ︸

ℜζ|kI | j

+∆YI sin
(

2π

n
|kI| j

)
︸ ︷︷ ︸

ℑζ|kI | j

=
[
Iℜζ|kI | j Iℑζ|kI | j

][ΣYI
∆YI

]
(3.3.285)

The solution of the equation (3.3.284) yields the vectors ΣYI and ∆YI , from which the vectors y( j)
I

are determined according to (3.3.285). For many practical applications, this formulation should
be sufficient. If however, the “original” eigenvectors according to (3.3.225) are required, i.e. the
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formulation using one periodicity kI ∈ Z, which can be negative, then this formulation can be
reconstructed by combining the relations (3.3.281) and (3.3.283):

y( j)
I = yI,|kI | ζ

|kI | j +yI,−|kI | ζ
−|kI | j =

1
2
(ΣYI− i∆YI)ζ

|kI | j +
1
2
(ΣYI + i∆YI)ζ

−|kI | j (3.3.286)

If λI is a single eigenvector, either the vector yI,|kI | or the vector yI,−|kI | vanishes.

The left eigenvector problem is reformulated in an analogous way. From the condition (3.3.217) it
follows for k and −k:

0 = xI,k
H
(

λI
2 Mk +λI Pk +Qk

)
(3.3.287)

0 = xI,−k
H
(

λI
2 M−k +λI P−k +Q−k

)
(3.3.288)

Adding these two equations and applying the transformations (3.3.265) and (3.3.266) leads to:

0 = xI,k
H
(

λI
2 Mk +λI Pk +Qk

)
+xI,−k

H
(

λI
2 M−k +λI P−k +Q−k

)
= xI,k

H
[
λI

2
ℜMk +λI ℜPk +ℜQk + i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
+xI,−k

H
[
λI

2
ℜMk +λI ℜPk +ℜQk− i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
=
(
xI,−k

H +xI,k
H)(

λI
2

ℜMk +λI ℜPk +ℜQk

)
−
(
ixI,−k

H− ixI,k
H)(

λI
2

ℑMk +λI ℑPk +ℑQk

)
(3.3.289)

By multiplying the equations (3.3.287) and (3.3.288) by i, subtracting them and again applying the
transformations (3.3.265) and (3.3.266) it is obtained:

0 =−ixI,k
H
(

λI
2 Mk +λI Pk +Qk

)
+ ixI,−k

H
(

λI
2 M−k +λI P−k +Q−k

)
=−ixI,k

H
[
λI

2
ℜMk +λI ℜPk +ℜQk + i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
+ixI,−k

H
[
λI

2
ℜMk +λI ℜPk +ℜQk− i

(
λI

2
ℑMk +λI ℑPk +ℑQk

)]
=
(
ixI,−k

H− ixI,k
H)(

λI
2

ℜMk +λI ℜPk +ℜQk

)
+
(
−i2
)︸ ︷︷ ︸

1

(
xI,−k

H +xI,k
H)(

λI
2

ℑMk +λI ℑPk +ℑQk

)
(3.3.290)

Also here, the two resulting equations (3.3.289) and (3.3.290) can be arranged in two ways. Here,
the matrices are arranged in the same way as in the formulations (3.3.269) and (3.3.270):

[
0 0

]
=
[
xI,−k

H +xI,k
H ixI,−k

H− ixI,k
H](λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])
(3.3.291)

[
0 0

]
=
[
ixI,−k

H− ixI,k
H −xI,−k

H−xI,k
H](λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])
(3.3.292)
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The vectors xI,k are chosen in the same way as the vectors yI,k:

xI,k =

{
XI 6= 0 for k = kI
0 for k 6= kI

(3.3.293)

Thereby, for kI 6= 0 it is valid kI 6=−kI; from this it follows xI,kI = XI 6= 0 and xI,−kI = 0. Setting
k = kI , inserting the vectors xI,kI and xI,−kI and applying the relation i2 =−1 leads to:

0 = xI,k
H
(

λI
2 MkI +λI PkI +QkI

)
, xI,kI = XI 6= 0 (3.3.294)

0 = xI,−k
H
(

λI
2 M−kI +λI P−kI +Q−kI

)
, xI,−kI = 0 (3.3.295)

⇒ 0 =
[
XI

H −iXI
H](

λI
2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜPkI ℑPkI

−ℑPkI ℜPkI

]
+

[
ℜQkI ℑQkI

−ℑQkI ℜQkI

])
(3.3.296)

0 =
[
−iXI

H i2XI
H](

λI
2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜPkI ℑPkI

−ℑPkI ℜPkI

]
+

[
ℜQkI ℑQkI

−ℑQkI ℜQkI

])
(3.3.297)

It is evident that the equation (3.3.296) can be transformed into the equation (3.3.297) by multi-
plying it by −i; therefore, both equations (3.3.296) and (3.3.297) are equivalent.

By setting k = |kI| it is obtained:

0 =
[
xI,−|kI |

H +xI,|kI |
H ixI,−|kI |

H− ixI,|kI |
H ](

λI
2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λI

[
ℜP|kI | ℑP|kI |
−ℑP|kI | ℜP|kI |

]
+

[
ℜQ|kI | ℑQ|kI |
−ℑQ|kI | ℜQ|kI |

])
(3.3.298)

The left eigenvectors have the same structure as the right eigenvectors; therefore, the following
reformulation, which has been derived for the subvectors y( j)

I , is also applied here:

x( j)
I = xI,|kI | ζ

|kI | j +xI,−|kI | ζ
−|kI | j =

(
xI,|kI |+xI,−|kI |

)︸ ︷︷ ︸
ΣXI

ℜζ
|kI | j +

(
ixI,|kI |− ixI,−|kI |

)︸ ︷︷ ︸
∆XI

ℑζ
|kI | j (3.3.299)

The Hermitian transposition consists of a transposition and a conjugation; while this poses no
problem for the vector ΣXI , it has to be noted that the scalar factors i have to be conjugated.
Thereby, it is obtained for the Hermitian transposes ΣXI and ∆XI:

ΣXI = xI,|kI |+ xI,−|kI | ⇒ ΣXI
H = xI,|kI |

H + xI,−|kI |
H (3.3.300)

∆XI = ixI,|kI |− ixI,−|kI |⇒ ∆XI
H = i xI,|kI |

H− i xI,−|kI | =−ixI,|kI |
H + ixI,−|kI | (3.3.301)

Thereby, the left eigenvector problem is finally formulated in the following way:

0 =
[
ΣXI

H
∆XI

H]︸ ︷︷ ︸
6=0

(
λI

2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λI

[
ℜP|kI | ℑP|kI |
−ℑP|kI | ℜP|kI |

]
+

[
ℜQ|kI | ℑQ|kI |
−ℑQ|kI | ℜQ|kI |

])
(3.3.302)
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The subvectors x( j)
I are obtained in an analogous way as the subvectors y( j)

I :

x( j)
I = ΣXI cos

(
2π

n
|kI| j

)
︸ ︷︷ ︸

ℜζ|kI | j

+∆XI sin
(

2π

n
|kI| j

)
︸ ︷︷ ︸

ℑζ|kI | j

=
[
Iℜζ|kI | j Iℑζ|kI | j

][ΣXI
∆XI

]
(3.3.303)

Furthermore, also the “original” formulation using only one periodicity can be determined from
the following relation:

x( j)
I = xI,|kI | ζ

|kI | j +xI,−|kI | ζ
−|kI | j =

1
2
(ΣXI− i∆XI)ζ

|kI | j +
1
2
(ΣXI + i∆XI)ζ

−|kI | j (3.3.304)

3.3.3 Damped cyclic systems

As already mentioned in Section 3.3.1, damped linear systems, i.e. systems, in which no gyro-
scopic forces and no circulatoric forces occur, are an important special case of an ordinary linear
mechanical system. The equation of motion is derived from (3.0.1) by setting G = 0⇔ P = D and
N = 0⇔Q = K; this leads to:

Mÿ(t)+D ẏ(t)+K y(t) = h(t), M = MT, D = DT, K = KT (3.3.305)

Therefore, for a damped cyclic system, the equation of motion is given by:

MC ÿC(t)+DC ẏC(t)+KC yC(t) = hC(t), MC = MC
T, DC = DC

T, KC = KC
T (3.3.306)

Since a damped linear system is a special case of an ordinary linear system, so that all relations,
which have been developed in the previous section 3.3.2, can be applied also here. Practically,
this means that these relations are still valid after replacing the non-symmetric matrices QC and PC

by the symmetric matrices KC and DC. In particular, the products TCF
H DCTCF and TCF

H KCTCF

have the same block-diagonal structure as the products TCF
H PCTCF and TCF

H QCTCF. Therefore,
an eigenvector yCI for damped linear cyclic system is determined in the same way as for a linear
cyclic system, for which the matrices PC and QC don’t have any symmetry properties. The vectors
y( j)

I and x( j)
I , which form the eigenvectors yCI and xCI , are chosen to:

yI,k =

{
YI 6= 0 for k = kI

0 for k 6= kI
⇒ y( j)

I = YI ζ
kI j (3.3.307)

xI,k =

{
XI 6= 0 for k = kI

0 for k 6= kI
⇒ x( j)

I = XI ζ
kI j (3.3.308)

The vectors YI and XI have to fulfill the following conditions:

0 =
(

λI
2 MkI +λI DkI +KkI

)
YI, YI 6= 0 (3.3.309)

0 = XI
H
(

λI
2 MkI +λI DkI +KkI

)
, XI 6= 0 (3.3.310)

As introduced in the section 3.2, the matrix Mk is defined by:

Mk = M(−1)
ζ
−k +M(0)+M(1)

ζ
k (3.3.311)

If MC is a real matrix, then the following relation between Mk and M−k is valid:

MC = MC⇒M(I) = M(I)⇒M−k = Mk (3.3.312)
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It should be noted that this relation is a consequence of the structure of MC, which is analogous
to the structure of QC shown in (3.0.5), i.e. it is independent from the symmetry. Furthermore, it
has been shown in the section 3.2 that if MC is a real symmetric matrix then the Mk is a Hermitian
matrix:

MC = MC
T = MC⇒Mk = Mk

H = Mk
T (3.3.313)

In contrast to the relation (3.3.312), this one is derived from the symmetry of MC. By combining
the two relations (3.3.312) and (3.3.313) it is obtained:

MC = MC
T = MC⇒Mk = Mk

T
= M−k

T⇒Mk
T = M−k (3.3.314)

The matrices DC and KC have the same relevant properties as the matrix MC, i.e. they have the
structure according to (3.0.5), they are real matrices and they are symmetric. Therefore it is valid:

MC = MC = MC
T⇒Mk = M−k

T⇒Mk
T = M−k (3.3.315)

DC = DC = DC
T ⇒ Dk = D−k

T ⇒ Dk
T = D−k (3.3.316)

KC = KC = KC
T ⇒Kk = K−k

T ⇒Kk
T = K−k (3.3.317)

For the following consideration it is useful to express the Hermitian transpose XI
H by transposition

and conjugation. Thereby, the left eigenvector problem according to (3.3.310) is reformulated in
the following way:

XI
H = XI

T⇒ 0 = XI
T
(

λI
2 MkI +λI DkI +KkI

)
(3.3.318)

By transposing the right eigenvector problem according to (3.3.309) and the left eigenvector prob-
lem (3.3.318) and applying the relations (3.3.317), (3.3.316) and (3.3.315) it is obtained:

0 = YI
T
(

λI
2 MkI

T +λI DkI
T +KkI

T
)
= YI

T
(

λI
2 M−kI +λI D−kI +K−kI

)
(3.3.319)

0 =
(

λI
2 MkI

T +λI DkI
T +KkI

T
)

XI =
(

λI
2 M−kI +λI D−kI +K−kI

)
XI (3.3.320)

According to (3.3.318) the vector XI is different from the zero vector so that its complex conjugate
XI , too, is different from the zero vector. Apparently, the vector XI is a right eigenvector associated
with the eigenvalue λI for the periodicity k =−kI .

For the sake of clarity, two indices I 6= J shall be used in the following considerations in order
to distinguish the two eigenvectors. The structure and the conditions for the eigenvectors yCI and
xCI , which are associated to the eigenvalue λI , are already described by the equations (3.3.307),
(3.3.308), (3.3.309) and (3.3.318). The eigenvectors yCJ and xCJ , which are associated with the
eigenvalue λJ are defined in an analogous way:

yJ,k =

{
YJ 6= 0 for k = kJ

0 for k 6= kJ
⇒ y( j)

J = YJ ζ
kJ j (3.3.321)

xJ,k =

{
XJ 6= 0 for k = kJ

0 for k 6= kJ
⇒ x( j)

J = XJ ζ
kJ j (3.3.322)

For the vectors YJ and XJ it is valid:

0 =
(

λJ
2 MkJ +λJ DkJ +KkJ

)
YJ, YJ 6= 0 (3.3.323)

0 = XJ
H
(

λJ
2 MkJ +λJ DkJ +KkJ

)
, XJ 6= 0 (3.3.324)
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For the double eigenvalue it is valid λJ = λI = λ∗I , while the relation between the two periodicities
is given by kJ =−kI . Thereby, the transposed left eigenvector problem for k = kI , as derived in
(3.3.320), can also be interpreted as the right eigenvector problem for k = kJ:

0 =
(

λI
2 M−kI +λI D−kI +K−kI

)
XI =

(
λ
∗
I

2 MkJ +λ
∗
I DkJ +KkJ

)
YJ ⇒ YJ = XI (3.3.325)

In an analogous way, the relation between the transposed right eigenvector problem for k = kI
described by (3.3.319) and the left eigenvector problem for k = kJ is obtained:

0 = YI
T
(

λI
2 M−kI +λI D−kI +K−kI

)
= XJ

T
(

λ
∗
I

2 MkJ +λ
∗
I DkJ +KkJ

)
⇒ XJ = YI ⇒ XJ = YI

(3.3.326)
In the section 3.3.2 the products xCI

H MC yCJ , xCI
H PC yCJ and xCI

H QC yCJ , which are relevant for
the orthogonality of two eigenvectors, have been considered. If the vectors yI,k and xJ,k are chosen
in the following way:

yI,k =

{
YI 6= 0 for k = kI
0 for k 6= kI

, xJ,k =

{
XJ 6= 0 for k = kJ
0 for k 6= kJ

(3.3.327)

then the evaluation of the products xCI
H MC yCJ , xCI

H PC yCJ and xCI
H QC yCJ leads to:

xCJ
H MC yCI =

{
nXJ

H MkI YI for kI = kJ
0 for kI 6= kJ

(3.3.328)

xCJ
H PC yCI =

{
nXJ

H PkI YI for kI = kJ
0 for kI 6= kJ

(3.3.329)

xCJ
H QC yCI =

{
nXJ

H QkI YI for kI = kJ
0 for kI 6= kJ

(3.3.330)

These relations are solely based on the structure of the matrices MC, PC and QC, i.e. no further
properties like e.g. symmetry properties were assumed for the matrices. Therefore, these relations
are also valid for the special case PC = DC = DC

T and QC = KC = KC
T:

xCJ
H DC yCI =

{
nXJ

H DkI YI for kI = kJ
0 for kI 6= kJ

, xCJ
H KC yCI =

{
nXJ

H KkI YI for kI = kJ
0 for kI 6= kJ

(3.3.331)
According to (3.3.307) and (3.3.308), the eigenvectors yCI and xCI have the periodicity kI , while
the eigenvectors yCJ and xCJ have the periodicity kJ according to (3.3.321) and (3.3.322). The
periodicities kI and kJ only differ by the sign, i.e. kI =−kJ , so that for kI 6= 0 the periodicities
kI and kJ are in fact different, i.e. kI 6= kJ . From (3.3.328), (3.3.328) and (3.3.328) it follows
that eigenvectors, which have different periodicities, are orthogonal. Thereby, it is shown that
for kJ =−kI 6= 0 the vectors yCI and xCI on the one hand and yCJ and xCJ on the other hand are
orthogonal. From this it follows that the eigenvalue λ∗I = λI = λJ is in fact a double eigenvalue.

If the right eigenvectors yCI and yCJ are associated to a double eigenvalue λI = λJ = λ∗I , then their
linear combination, too, is a right eigenvector, as it is shown in the following:

0 =
(

λI
2 MC+ λI DC+KC

)
yCI ⇒ 0 =

(
λ
∗
I

2 MC+λ
∗
I DC+KC

)
aI yCI, aI ∈ C (3.3.332)

0 =
(

λJ
2 MC+λJ DC+KC

)
yCJ ⇒ 0 =

(
λ
∗
I

2 MC+λ
∗
I DC+KC

)
aJ yCJ, aJ ∈ C (3.3.333)

0 =
(

λ
∗
I

2 MC+λ
∗
I DC+KC

)
(aI yCI +aJ yCJ) (3.3.334)
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In an analogous way it is valid for the left eigenvectors xCI and xCJ , which are associated with the
double eigenvalue λI = λJ = λ∗I :

0 = xCI
H
(

λI
2 MC+ λI DC+KC

)
⇒ 0 = bI xCI

H
(

λ
∗
I

2 MC+λ
∗
I DC+KC

)
, bI ∈ C (3.3.335)

0 = xCJ
H
(

λJ
2 MC+λJ DC+KC

)
⇒ 0 = bJ xCJ

H
(

λ
∗
I

2 MC+λ
∗
I DC+KC

)
, bJ ∈ C (3.3.336)

0 =
(
bI xCI

H +bJ xCJ
H)(

λ
∗
I

2 MC+λ
∗
I DC+KC

)
(3.3.337)

The complex conjugates bI and bJ are used because of the Hermitian transposition, which consists
of a transposition and a conjugation, which also affects the scalar factors.

Both linear combinations aI yCI +aJ yCJ and bI xCI +bJ xCJ can be formulated in the following way
using sums and differences:

aI yCI +aJ yCJ =
aI +aJ

2
(yCI +yCJ)+

aI−aJ

2
(yCI−yCJ) (3.3.338)

bI xCI +bJ xCJ =
bI +bJ

2
(xCI +xCJ)+

bI−bJ

2
(xCI−xCJ) (3.3.339)

It can be shown that the sums and the differences of the vectors are orthogonal for all three matrices.
As an example, the matrix MC shall be considered; it is valid:

(xCI +xCJ)
H MC (yCI−yCJ) =

(
xCI

H +xCJ
H)MC (yCI−yCJ)

= xCI
H MC yCI−xCI

H MC yCJ︸ ︷︷ ︸
0

+xCJ
H MC yCI︸ ︷︷ ︸

0

−xCJ
H MC yCJ (3.3.340)

(xCI−xCJ)
H MC (yCI +yCJ) =

(
xCI

H−xCJ
H)MC (yCI +yCJ)

= xCI
H MC yCI +xCI

H MC yCJ︸ ︷︷ ︸
0

−xCJ
H MC yCI︸ ︷︷ ︸

0

−xCJ
H MC yCJ (3.3.341)

The evaluation is based on the relation (3.3.328). According to this, the second and the third term
vanish immediately because of the different periodicities kI 6= kJ . For the evaluation of the remain-
ing terms, the relations YJ = XI and XJ = YI , which are obtained from (3.3.325) and (3.3.326),
respectively, are applied. This leads to:

YJ = XI ⇒ xCI
H MC yCI = nXI

H MkI YI = nXI
T MkI YI = nYJ

T MkI YI (3.3.342)

YJ = XI ⇒ xCJ
H MC yCJ = nXJ

H MkJ YJ = nXJ
T MkJ YJ = nYI

T MkJ YJ (3.3.343)

The product YI
T MkJ YJ is a scalar so that it is not affected by a transposition:

xCJ
H MC yCJ = nYI

T MkJ YJ = n
(
YI

T MkJ YJ
)T

= nYJ
T MkJ

T YI (3.3.344)

For the matrix MkJ
T it valid based on (3.3.315) and on kJ =−kI:

Mk
T = M−k, kJ =−kI ⇒MkJ

T = M−kJ = MkI (3.3.345)

Thereby, it is valid:

xCJ
H MC yCJ = nYJ

T MkJ
T YI = nYJ

T MkI YI = xCI
H MC yCI (3.3.346)
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From this it follows:

(xCI +xCJ)
H MC (yCI−yCJ) = xCI

H MC yCI−xCJ
H MC yCJ = 0 (3.3.347)

(xCI−xCJ)
H MC (yCI +yCJ) = xCI

H MC yCI−xCJ
H MC yCJ = 0 (3.3.348)

Since the matrices KC and DC have the same structure and the same symmetry property as the
matrix MC, it is valid:

(xCI +xCJ)
H MC (yCI−yCJ) = 0, (xCI−xCJ)

H MC (yCI +yCJ) = 0 (3.3.349)

(xCI +xCJ)
H DC (yCI−yCJ) = 0, (xCI−xCJ)

H DC (yCI +yCJ) = 0 (3.3.350)

(xCI +xCJ)
H KC (yCI−yCJ) = 0, (xCI−xCJ)

H KC (yCI +yCJ) = 0 (3.3.351)

Also here, the two eigenvector problems for k = kI and k = kJ =−kI shall be transformed into an
eigenvector problem using real matrices. In section 3.3.2, the following reformulation, which is
based on the relations M−k = Mk, P−k = Pk and Q−k = Qk has been derived:

0 =
(

λI
2 Mk +λI Pk +Qk

)
yI,k (3.3.352)

0 =
(

λI
2 M−k +λI P−k +Q−k

)
yI,−k (3.3.353)

⇒ 0 =

(
λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])[
yI,k +yI,−k

iyI,k− iyI,−k

]
(3.3.354)

0 =

(
λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])[
iyI,k− iyI,−k
−yI,k−yI,−k

]
(3.3.355)

If λI = λJ = λ∗I is a double eigenvalue, for which it is valid kI =−kJ 6= 0, then it is obtained:

0 =
(

λI
2MkI +λIDkI +KkI

)
YI =

(
λ
∗
I

2MkI +λ
∗
I DkI +KkI

)
YI, YI 6= 0 (3.3.356)

0 =
(

λJ
2MkJ +λJDkJ +KkJ

)
YJ =

(
λ
∗
I

2M−kI +λ
∗
I D−kI +K−kI

)
YJ, YJ 6= 0 (3.3.357)

⇒ 0 =

(
λI

2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜDkI ℑDkI

−ℑDkI ℜDkI

]
+

[
ℜKkI ℑKkI

−ℑKkI ℜKkI

])[
YI +YJ

iYI− iYJ

]
︸ ︷︷ ︸

Y∗I1

(3.3.358)

0 =

(
λI

2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜDkI ℑDkI

−ℑDkI ℜDkI

]
+

[
ℜKkI ℑKkI

−ℑKkI ℜKkI

])[
iYI− iYJ
−YI−YJ

]
︸ ︷︷ ︸

Y∗I2

(3.3.359)

In the previous section 3.3.2 it has been shown that for a single eigenvalue the two formulations
(3.3.354) and (3.3.355) can be transformed into each other by multiplying the vector by a scalar
factor and are thereby equivalent. The comparison of the two formulations (3.3.358) and (3.3.359),
however, shows that the sum YI +YJ is contained in the upper subvector of Y∗I1 and in the lower
subvector of Y∗I2, while the difference YI +YJ is contained in the other subvector. Since both
vectors YI and YJ are different from the zero vector, the two vectors Y∗I1 and Y∗I2 cannot be trans-
formed into each other by a multiplication by a scalar factor and are thereby linearly independent.
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As shown in the previous section 3.3.2, the formulations (3.3.354) and (3.3.355) are obtained by
adding and subtracting the conditions (3.3.352) and (3.3.353). Therefore, it is obvious to evaluate
the vectors Y∗I1 and Y∗I2 based on the consideration of the sum and the difference of the vectors
yCI and yCJ , which is a special case of a linear combination. Since the periodicities kI and kJ of
the eigenvectors associated with the double eigenvalue λ∗I = λI = λJ only differ by the sign, i.e.
kJ =−kI , it is assumed for the following consideration that kI is positive, while kJ is negative.
Based on the relation

kJ =−kI ⇒ ζ
kJ j = ζ

−kI j = ζkI j (3.3.360)

it is obtained for the sum y( j)
I +y( j)

J :

y( j)
I +y( j)

J = YI ζ
kI j +YJ ζ

kJ j = YI

(
ℜζ

kI j + iℑζ
kI j
)
+YJ

(
ℜζ

kI j− iℑζ
kI j
)

= (YI +YJ)︸ ︷︷ ︸
ΣY∗I

ℜζ
kI j + i(YI−YJ)︸ ︷︷ ︸

∆Y∗I

ℑζ
kI j (3.3.361)

For the difference y( j)
I −y( j)

J it is valid:

y( j)
I −y( j)

J = YI ζ
kI j−YJ ζ

kJ j = YI

(
ℜζ

kI j + iℑζ
kI j
)
−YJ

(
ℜζ

kI j− iℑζ
kI j
)

= (YI−YJ)ℜζ
kI j + i(YI +YJ)ℑζ

kI j (3.3.362)

The multiplication by i leads to:

i
(

y( j)
I −y( j)

J

)
= i(YI−YJ)ℜζ

kI j + i2 (YI +YJ)ℑζ
kI j = i(YI−YJ)︸ ︷︷ ︸

∆Y∗I

ℜζ
kI j− (YI +YJ)︸ ︷︷ ︸

ΣY∗I

ℑζ
kI j

(3.3.363)
Based on this, the eigenvectors of the damped linear cyclic system can be formulated using the
equations (3.3.358) and (3.3.359):

0 =

(
λI

2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜDkI ℑDkI

−ℑDkI ℜDkI

]
+

[
ℜKkI ℑKkI

−ℑKkI ℜKkI

])[
ΣY∗I
∆Y∗I

]
,

[
ΣY∗I
∆Y∗I

]
6= 0

(3.3.364)

y( j)
I1 = y( j)

I +y( j)
J = ΣY∗I ℜζ

kI j +∆Y∗I ℑζ
kI j =

[
IℜζkI j IℑζkI j

][ΣY∗I
∆Y∗I

]
(3.3.365)

0 =

(
λI

2
[

ℜMkI ℑMkI

−ℑMkI ℜMkI

]
+λI

[
ℜDkI ℑDkI

−ℑDkI ℜDkI

]
+

[
ℜKkI ℑKkI

−ℑKkI ℜKkI

])[
∆Y∗I
−ΣY∗I

]
,

[
∆Y∗I
−ΣY∗I

]
6= 0

(3.3.366)

y( j)
I2 = i

(
y( j)

I −y( j)
J

)
= ∆Y∗I ℜζ

kI j−ΣY∗I ℑζ
kI j =

[
IℜζkI j IℑζkI j

][ ∆Y∗I
−ΣY∗I

]
(3.3.367)

Also here, the “original” eigenvectors YI and YJ can be determined from the vectors ΣY∗I and ∆Y∗I .

ΣY∗I = YI +YJ ∧∆Y∗I = i(YI−YJ)⇔ YI =
1
2
(ΣY∗I − i∆Y∗I )∧YJ =

1
2
(ΣY∗I + i∆Y∗I ) (3.3.368)

The left eigenvectors are treated in an analogous way as the right eigenvectors. For the sum and
the difference of x( j)

I and x( j)
J it is valid:

x( j)
I +x( j)

J = XI ζ
kI j +XJ ζ

kJ j = (XI +XJ)ℜζ
kI j + i(XI−XJ)ℑζ

kI j (3.3.369)

i
(

x( j)
I −x( j)

J

)
= i
(

XI ζ
kI j +XJ ζ

kJ j
)
= i(XI−XJ)ℜζ

kI j− (XI +XJ)ℑζ
kI j (3.3.370)
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For the damped linear cyclic system, the vectors XI and XJ don’t have to be determined separately,
but are already known from the comparison for the transposed right eigenvector problems (3.3.319)
and (3.3.320). Inserting these relations and applying the relation i =−i leads to:

YJ = XI ⇔ XI = YJ, XJ = YI (3.3.371)
⇒ XI +XJ = YJ +YI = YJ +YI = ΣY∗I (3.3.372)

i(XI−XJ) =− i
(
YJ−YI

)
= i

(
YI−YJ

)
= i(YI−YJ) = ∆Y∗I (3.3.373)

Based on this, the left eigenvectors are obtained to:

x( j)
I +x( j)

J = (XI +XJ)ℜζ
kI j + i(XI−XJ)ℑζ

kI j = ΣY∗I ℜζ
kI j +∆Y∗I ℑζ

kI j (3.3.374)

i
(

x( j)
I −x( j)

J

)
= i(XI−XJ)ℜζ

kI j− (XI +XJ)ℑζ
kI j = ∆Y∗I ℜζ

kI j−ΣY∗I ℑζ
kI j (3.3.375)

The comparison of this result with the formulation of the right eigenvectors y( j)
I1 and y( j)

I2 leads to:

y( j)
I1 = y( j)

I +y( j)
J = ΣY∗I ℜζ

kI j +∆Y∗I ℑζ
kI j (3.3.376)

⇒ y( j)
I1 = ΣY∗I ℜζkI j +∆Y∗I ℑζkI j = ΣY∗I ℜζ

kI j +∆Y∗I ℑζ
kI j = x( j)

I +x( j)
J (3.3.377)

y( j)
I2 = i

(
y( j)

I −y( j)
J

)
= ∆Y∗I ℜζ

kI j−ΣY∗I ℑζ
kI j (3.3.378)

⇒ y( j)
I2 = ∆Y∗I ℜζkI j−ΣY∗I ℑζkI j = ∆Y∗I ℜζ

kI j−ΣY∗I ℑζ
kI j = i

(
x( j)

I −x( j)
J

)
(3.3.379)

As shown before, the sums yCI +yCJ and xCI +xCJ are orthogonal to the differences yCI−yCJ and
xCI−xCJ . The orthogonality is not affected by any scalar factor. Therefore, it is reasonable to
define the left eigenvectors x( j)

I1 and x( j)
I2 in the following way:

y( j)
I1 = y( j)

I +y( j)
J ⇒ y( j)

I1 = x( j)
I +x( j)

J = x( j)
I1 (3.3.380)

y( j)
I2 = i

(
y( j)

I −y( j)
J

)
⇒ y( j)

I2 = i
(

x( j)
I −x( j)

J

)
= x( j)

I2 (3.3.381)

3.4 Conclusion

In this chapter, the equations of motion for a linear cyclic system given by

MC ÿC(t)+PC ẏC(t)+QC yC(t) = hC(t) (3.4.382)

have been considered; in this section, the results of the consideration shall be concluded briefly.

The vectors y( j), which describe the displacements for the j-th segment, can be described by a
discrete Fourier series using the root of unity ζ:

y( j)(t) =
kmax

∑
k=kmin

yk(t)ζ
k j, ζ = e

2π

n i, k ∈ Z, kmax = kmin +n−1 (3.4.383)

⇒


y(0)(t)

...
y( j)(t)

...
y(n−1)(t)


︸ ︷︷ ︸

yC(t)

=


Iζkmin·0 · · · Iζk·0 · · · Iζkmax·0

...
...

...
Iζkmin·j · · · Iζk·j · · · Iζkmax·j

...
...

...
Iζkmin·(n−1) · · · Iζk·(n−1) · · · Iζkmax·(n−1)


︸ ︷︷ ︸

TCF


ykmin(t)

...
yk(t)

...
ykmax(t)


︸ ︷︷ ︸

yF(t)

(3.4.384)
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Although the bounds kmin and kmax, which limit the range of the periodicity k, can be chosen
arbitrarily as long as the condition kmax = kmin +n−1 is fulfilled, it is nevertheless reasonable to
use a range for k, which is exactly or nearly centred around zero. Therefore, it is valid for k:

−n
2
< k ≤ n

2
(3.4.385)

By assuming that the vector δ′ẏC, which describes the virtual velocities, is a real vector, the left
hand side of the equations of motion can be transformed in the following way:

δ
′ẏC

T
(MC ÿC+PC ẏC+QC yC) = δ

′ẏF
H (TCF

H MCTCF ÿF+TCF
H PCTCF ẏF+TCF

H QCTCF yF
)

= n
kmax

∑
k=kmin

δ
′ẏk

H
(Mk ÿk +Pk ẏk +Qk yk) (3.4.386)

Due to the transformation, the terms of the left-hand side of the equation of motion are decoupled
for different periodicities k, i.e. there is no interaction between motions having different periodic-
ities. The matrices Qk, Pk and Mk are determined in the following way:

QC =



Q(0) Q(1) 0 · · · 0 Q(−1)

Q(−1) Q(0) Q(1) · · · 0 0

0 Q(−1) Q(0) . . . 0 0
...

... . . . . . . . . . ...

0 0 0 . . . Q(0) Q(1)

Q(1) 0 0 · · · Q(−1) Q(0)


⇒Qk = Q(−1)

ζ
−k +Q(0)+Q(1)

ζ
k (3.4.387)

PC =



P(0) P(1) 0 · · · 0 P(−1)

P(−1) P(0) P(1) · · · 0 0

0 P(−1) P(0) . . . 0 0
...

... . . . . . . . . . ...

0 0 0 . . . P(0) P(1)

P(1) 0 0 · · · P(−1) P(0)


⇒ Pk = P(−1)

ζ
−k +P(0)+P(1)

ζ
k (3.4.388)

MC =



M(0) M(1) 0 · · · 0 M(−1)

M(−1) M(0) M(1) · · · 0 0

0 M(−1) M(0) . . . 0 0
...

... . . . . . . . . . ...

0 0 0 . . . M(0) M(1)

M(1) 0 0 · · · M(−1) M(0)


⇒Mk = M(−1)

ζ
−k +M(0)+M(1)

ζ
k

(3.4.389)
The right eigenvector yCI and the left eigenvector xCI of a linear cyclic system fulfil the following
conditions:

0 =
(

λI
2 MC+λI PC+QC

)
yCI, yCI 6= 0 (3.4.390)

0 = xCI
H
(

λI
2 MC+λI PC+QC

)
, xCI 6= 0 (3.4.391)
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Each eigenvector yCI and xCI can be formulated in the following way using the periodicity kI:

yCI =



y(0)I
...

y( j)
I
...

y(n−1)
I


=


YI
...

YI ζkI j

...
YI ζkI (n−1)

 , xCI =



x(0)I
...

x( j)
I
...

x(n−1)
I


=


XI
...

XI ζkI j

...
XI ζkI (n−1)

 (3.4.392)

If two eigenvectors xCI and yCJ have different periodicities kI 6= kJ , they are orthogonal regardless
of their eigenvalues λI and λJ , to which they are associated, because of the decoupling shown in
(3.4.386). The eigenvalue λI and the vectors YI and XI fulfil the following conditions:

det
(

λI
2 MkI +λI PkI +QkI

)
= 0 (3.4.393)(

λI
2 MkI +λI PkI +QkI

)
YI = 0, YI 6= 0 (3.4.394)

XI
H
(

λI
2 MkI +λI PkI +QkI

)
= 0, XI 6= 0 (3.4.395)

The matrices MC, PC and QC are usually real matrices; thereby, also their submatrices M(J), P(J)

and Q(J), too, are real. According to (3.4.387), (3.4.388) and (3.4.389), the matrices Mk, Pk and
Qk are linear combination of the submatrices M(J), P(J) and Q(J) using the powers ζk and ζ−k = ζk

as scalar factors. Based on this, three different cases can be distinguished. For k = 0 the matrices
Mk, Pk and Qk are real matrices:

k= 0 : M0 =M(0)+M(−1)+M(1), P0 =P(0)+P(−1)+P(1), Q0 =Q(0)+Q(−1)+Q(1) (3.4.396)

In this case, all segment vectors y( j)
I and x( j)

I are equal, respectively; it is valid:

kI = 0⇒ ζ
kI j = 1⇒ y( j)

I = YI, x( j)
I = XI (3.4.397)

The second case k = n
2 only occurs for even numbers n; here, it is valid for the matrices Mk, Pk

and Qk:

k =
n
2

: M n
2
= M(0)−M(−1)−M(1), P n

2
= P(0)−P(−1)−P(1), Q n

2
= Q(0)−Q(−1)−Q(1)

(3.4.398)
Here, the vectors y( j)

I and x( j)
I differ only by sign, which alternates; therefore, it is valid:

kI =
n
2
⇒ ζ

kI j = (−1) j⇒ y( j)
I = (−1) j YI, x( j)

I = (−1) j XI (3.4.399)

For all other periodicities, i.e. k 6= 0∧ k 6= n
2 , the matrices Mk, Pk and Qk can be complex; splitting

these matrices into their real parts and imaginary parts leads to:

ℜMk = M(0)+ℜζ
k
(

M(1)+M(−1)
)
, ℑMk = ℑζ

k
(

M(1)−M(−1)
)

(3.4.400)

ℜPk = P(0) +ℜζ
k
(

P(1)+P(−1)
)
, ℑPk = ℑζ

k
(

P(1)−P(−1)
)

(3.4.401)

ℜQk = Q(0) +ℜζ
k
(

Q(1)+Q(−1)
)
, ℑQk = ℑζ

k
(

Q(1)−Q(−1)
)

(3.4.402)
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Here, it is valid for the matrices:

M−k = Mk, P−k = Pk, Q−k = Qk (3.4.403)

In this case it is useful to combine the conditions for the corresponding periodicities k and−k. The
advantage of this formulation is that it uses real matrices and covers both periodicities k and −k

0 =
(

λI
2 Mk +λI Pk +Qk

)
yI,k∧0 =

(
λI

2 M−k +λI P−k +Q−k

)
yI,−k

⇒ 0 =

(
λI

2
[

ℜMk ℑMk
−ℑMk ℜMk

]
+λI

[
ℜPk ℑPk
−ℑPk ℜPk

]
+

[
ℜQk ℑQk
−ℑQk ℜQk

])[
yI,k +yI,−k

iyI,k− iyI,−k

]
(3.4.404)

The subvectors y( j)
I having the periodicity kI are now determined in the following way:

0 =

(
λI

2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λI

[
ℜP|kI | ℑP|kI |
−ℑP|kI | ℜP|kI |

]
+

[
ℜQ|kI | ℑQ|kI |
−ℑQ|kI | ℜQ|kI |

])[
ΣYI
∆YI

]
(3.4.405)

y( j)
I =

[
Iℜζ|kI | j Iℑζ|kI | j

][ΣYI
∆YI

]
= ΣYI cos

(
2π

n
|kI| j

)
+∆YI sin

(
2π

n
|kI| j

)
(3.4.406)

A damped linear cyclic system is a special case of a linear cyclic system. Its equation of motion is
given by:

MC ÿC(t)+DC ẏC(t)+KC yC(t) = hC(t), MC = MC
T, DC = DC

T, KC = KC
T (3.4.407)

Here, the matrices DC and KC have the same structure as indicated for the matrices PC and QC in
(3.4.388) and (3.4.387), respectively; in addition, all matrices are symmetric, so that it is valid for
their submatrices:

M(0) = M(0)T
, M(−1) = M(1)T

, D(0) = D(0)T
, D(−1) = D(1)T

, K(0) = K(0)T
, K(−1) = K(1)T

(3.4.408)
In this case, all matrices Mk, Dk and Kk are Hermitian matrices, i.e. their real parts are symmetric,
while their imaginary parts are skew-symmetric:

Mk = M(−1)
ζ
−k +M(0)+M(1)

ζ
k = Mk

H⇒ℜMk = ℜMk
T, ℑMk =−ℑMk

T (3.4.409)
Dk = D(−1)

ζ
−k + D(0)+ D(1)

ζ
k = Dk

H⇒ℜDk = ℜDk
T, ℑDk =−ℑDk

T (3.4.410)
Kk = K(−1)

ζ
−k + K(0)+ K(1)

ζ
k = Kk

H⇒ℜKk = ℜKk
T, ℑKk =−ℑKk

T (3.4.411)

Based on this, all eigenvalues of a damped linear system for the periodicity kI 6= 0∧ kI 6= n
2 are

double eigenvalues. For a double eigenvalue λI = λJ = λ∗I it is valid:

0 =

(
λ
∗
I

2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λ
∗
I

[
ℜD|kI | ℑD|kI |
−ℑD|kI | ℜD|kI |

]
+

[
ℜK|kI | ℑK|kI |
−ℑK|kI | ℜK|kI |

])[
ΣY∗I
∆Y∗I

]
(3.4.412)

⇒ y( j)
I1 =

[
Iℜζ|kI | j Iℑζ|kI | j

][ΣY∗I
∆Y∗I

]
= ΣY∗I cos

(
2π

n
|kI| j

)
+∆Y∗I sin

(
2π

n
|kI| j

)
(3.4.413)

0 =

(
λ
∗
I

2
[

ℜM|kI | ℑM|kI |
−ℑM|kI | ℜM|kI |

]
+λ
∗
I

[
ℜD|kI | ℑD|kI |
−ℑD|kI | ℜD|kI |

]
+

[
ℜK|kI | ℑK|kI |
−ℑK|kI | ℜK|kI |

])[
∆Y∗I
−ΣY∗I

]
(3.4.414)

⇒ y( j)
I2 =

[
Iℜζ|kI | j Iℑζ|kI | j

][ ∆Y∗I
−ΣY∗I

]
= ∆Y∗I cos

(
2π

n
|kI| j

)
−ΣY∗I sin

(
2π

n
|kI| j

)
(3.4.415)
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The double eigenvectors represent the isotropy of the cyclic structure. Since the structure consists
of n identical segments, which are arranged circularly, it has no preferred spatial orientation with
respect to this circle. Therefore, for each motion, which is not rotational symmetric (kI = 0) or
described by alternating signs (kI =

n
2 ), two parameters are required in order to determine the

amplitude and the spatial orientation of the resulting motion.

For the practical determination of the eigenvalues and eigenvectors, the conditions (3.4.393),
(3.4.394) and (3.4.395) have to be transformed into the following formulation, which is used by
many solving algorithms like e.g. those contained in the widely used library LAPACK [1]:

det(A−λI I) = 0, AwI = λI wI, vI
H A = λI vI

H (3.4.416)

In the present case, this formulation is obtained by using the state space representation of an ordi-
nary linear mechanical system. Here, the matrix A has the following structure:

M ÿ(t)+P ẏ(t)+Q y(t) = h(t)⇒ A =

[
0 I

−M−1Q −M−1P

]
(3.4.417)

According to (3.4.387), (3.4.388) and (3.4.389) the matrices Qk, Pk and Mk are linear combinations
of the submatrices Q(J), P(J) and M(J), which are of order NS×NS. Therefore, also the matrices
Qk, Pk and Mk are of order NS×NS. As discussed before, for the periodicities k = 0 and k = n

2
the matrices Mk, Pk and Qk are always real matrices. In this case, the matrix Ak can be derived
directly from the conditions (3.4.394) and (3.4.395). It is valid:

k = 0∨ k =
n
2

: Ak =

[
0 I

−Mk
−1 Qk −Mk

−1 Pk

]
, Ak ∈ R2·NS×2·NS (3.4.418)

Here, the vectors y( j)
I are determined in the following way:

(Ak−λI I)wI = 0⇒ wI =

[
YI

λI YI

]
⇒ y( j)

I =

{
YI for kI = 0
YI (−1) j for kI =

n
2

(3.4.419)

For all other periodicities k 6= 0∧ k 6= n
2 , the matrices Mk, Pk and Qk can be complex. In this case,

the real and imaginary parts of the matrices are rearranged in order to formulate the eigenvector
problem using real matrices. As mentioned before, this formulation covers the corresponding
periodicities k and −k, which differ only by the sign; therefore, this calculation has to be carried
out only for positive periodicities k > 0.

0 < k <
n
2

: M∗k =
[

ℜMk ℑMk
−ℑMk ℜMk

]
, P∗k =

[
ℜPk ℑPk
−ℑPk ℜPk

]
,

Q∗k =
[

ℜQk ℑQk
−ℑQk ℜQk

]
, M∗k ,P

∗
k ,Q

∗
k ∈ R2·NS×2·NS

⇒ A∗k =
[

0 I
−M∗k

−1 Q∗k −M∗k
−1 P∗k

]
, A∗k ∈ R4·NS×4·NS (3.4.420)

In this case, the vectors y( j)
I are obtained in the following way:

(Ak−λI I)wI = 0

⇒ y( j)
I =

[
Iℜζk j Iℑζk j 0 0

]
ΣYI
∆YI

λI ΣYI
λI ∆YI

= ΣYI cos
(

2π

n
k j
)
+∆YI sin

(
2π

n
k j
)

(3.4.421)
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At first glance the formulation using the matrices M∗k , P∗k and Q∗k of order 2 ·NS×2 ·NS instead of
the matrices Mk, Pk and Qk of order NS×NS seems to require an increased computational effort.
However, while the matrices M∗k , P∗k and Q∗k are real, the matrices Mk, Pk and Qk can be com-
plex. Regarding the computing, a complex number is stored and processed as two floating point
numbers; furthermore, the multiplication of two complex numbers requires four multiplications
and two additions. Therefore, the formulation using the matrices M∗k ,P

∗
k ,Q

∗
k ∈ R2·NS×2·NS matrices

instead of the matrices Mk,Pk,Qk ∈ CNS×NS does not mean an increased computational effort.

The original matrices MC, PC and QC are of order n ·NS×n ·NS. Therefore, it is valid for the
untransformed linear cyclic system:

AC =

[
0 I

−MC
−1 QC −MC

−1 PC

]
, Ak ∈ R2·n·NS×2·n·NS (3.4.422)

The required computational effort for the analysis of a linear cyclic system of order n ·NS×n ·NS

shall now be compared:

• For an odd number n it has to be solved:

– 1 eigenvector problem of the order 2 ·NS for k = 0

– n−1
2 eigenvector problems of the order 4 ·NS for 0 < k < n

2

• For an even number n it has to be solved:

– 2 eigenvector problems of the order 2 ·NS for k = 0 and k = n
2

– n
2 −1 eigenvector problems of the order 4 ·NS for 0 < k < n

2

• Without applying the transformation it has to be solved:

– 1 eigenvector problem of the order 2 ·n ·NS

There are different algorithms for the numerical solution of an eigenvector problem. The com-
putational effort depends on the order of the problem and for some algorithms on the density or
the sparsity of the matrix, i.e. how many elements are different from zero. However, for nearly all
solving algorithms, the computational effort grows disproportional with the order, see e.g. [60], i.e.
if the order is doubled from N to 2 ·N, then the computational effort for solving a problem of order
2 ·N is more than twice the one required for solving a problem of order N. Thereby, a splitting of
one eigenvalue problem into several separate problems of lower order practically always means a
reduced computational effort. Furthermore, the transformation of the cyclic system is an analytic
method, i.e. the problem is transformed without loss of accuracy. Therefore, the description of a
cyclic system by the method presented in this chapter is useful for the analysis of such a system.



Chapter 4

Structural dynamics of the wheelset and the
rail

In the vehicle-track model, which is developed in this work, the structural flexibility of the
wheelsets and the rails is essential. In order to describe the deformations of a flexible structure, a
modal synthesis is used, i.e. shape functions, which are scaled by modal coordinates, are super-
posed. It is advantageous to use the eigenmodes of the structure as shape functions. This requires
a model for the structural dynamics in order to determine the eigenmodes.

The finite element (FE) method is a widely used method for the analysis of the structural dynamics,
which provides a great flexibility regarding the geometry of the structure. As already discussed
in the section 2.1.2, the modelling of a structure by finite elements results in very large systems
of equations; it is evident that with growing size of the system also the effort for the solution
increases. It should also be kept in mind that the FE method is an approximative method, i.e. it
usually doesn’t determine the exact solution, but only an approximation. For both reasons, it is
advantageous to exploit known properties of the wanted solution in order to reduce the size of the
system; such known properties are in particular symmetries of the structure, which is analyzed.

With the exception of turnouts and crossings, a rail has a prismatic structure. The essential charac-
teristic of a prismatic structure is that its cross section is constant along the axis of the extrusion.
A wheelset having disc wheels can be considered as a solid of revolution, i.e. it has a rotational
symmetry with respect to any angle.

A prism is generated by extruding an area, the so-called cross-sectional area. A solid of revolution
is generated by rotating an area around the axis of symmetry. In the case of the rail and of the
wheelset, the generating areas have a relatively complicated shape so that the distribution of the
displacements over these areas cannot be determined analytically, but only in an approximative
way, e.g. by finite elements. However, the distribution along the axis of extrusion in the case of
the prism and over the circumference can be described by analytical functions. Therefore, it is
advantageous to use a semi-analytic method for the modelling of the structural dynamics of the
rail and the wheelset.

In this chapter, the semi-analytic solution for a prism and for a solid of revolution and finite ele-
ments, which are based on these solutions, will be presented. Although the wheelset and the rail
belong to different subsystems, i.e. the wheelset belongs to the vehicle and the rail belongs to the
track, both structures have several properties in common so that it is obvious to treat them in one
chapter.

The rail and the wheelset will be modelled as three-dimensional solids. Therefore, the basis for
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the structural dynamics is the equation of motion for an isotropic linear elastic medium, as given
e.g. by Landau and Lifshitz in [39]; this is also known as Navier’s equation. By modifying the
nomenclature1 and applying the relation

E = 2G(1+ν) (4.0.1)

between Young’s modulus E, the shear modulus G and Poisson’s ratio ν the equation can be written
in the following way:

ρ ẅ =
E

2(1+ν)
∆w+

E
2(1+ν)(1−2ν)

graddivw = G
[

∆w+
1

1−2ν
graddivw

]
(4.0.2)

Here, ρ denotes the density of the material. The displacement vector w has the following structure:

w =

U(x,y,z, t)
V (x,y,z, t)
W (x,y,z, t)

 (4.0.3)

Based on this, the equations of motions for the different coordinates can be formulated; for the
sake of brevity, the dependency of the displacements U , V and W on the spatial coordinates x, y
and z and on the time t is not indicated explicitly.

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 +

1
1−2ν

∂

∂x

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2U
∂t2 = 0 (4.0.4)

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 +

1
1−2ν

∂

∂y

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2V
∂t2 = 0 (4.0.5)

∂2W
∂x2 +

∂2W
∂y2 +

∂2W
∂z2 +

1
1−2ν

∂

∂z

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2W
∂t2 = 0 (4.0.6)

...

The infinitesimal volume dV can be considered as a triple scalar product. The triple scalar product
of the three vectors~a,~b and~c is the volume of the parallelepiped given by the three vectors:

V =
(
~a×~b

)
·~c (4.0.7)

dV =

(
∂x
∂x

dx× ∂x
∂y

dy
)
· ∂x

∂z
dz =

1
0
0

×
0

1
0

 ·
0

0
1

dx dy dz (4.0.8)

dV =

(
∂x
∂φ

dφ× ∂x
∂y

dy
)
· ∂x

∂r
dr =

 r cosφ

0
−r sinφ

×
0

1
0

 ·
 sinφ

0
cosφ

dφ dy dr

=

 r sinφ

0
r cosφ

 ·
 sinφ

0
cosφ

dφ dy dr = r
(
sin2

φ+ cos2
φ
)

dφ dy dr = r dφ dy dr (4.0.9)

1In [39], the symbol u is used for the displacement. In this work, the symbol u is used for displacements in the
directions of cylindrical coordinates, while displacements in the directions of cartesian coordinates are denoted by w.
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4.1 Finite element modelling

The finite element (FE) method is a widely used and well established method for the solution of
field problems including problems of elasticity. There are several books describing the method,
e.g. the book by Zienkiewicz and Taylor [84]. Therefore, only a brief overview on the FE method
will be given, which is based on [84]. Nevertheless, these fundamentals are required for the devel-
opment of the finite elements for a prismatic solid and for a solid of revolution.

The goal of the analysis is to determine the displacement w(x) at an arbitrary point denoted by
x. First, an element e is considered. This element has certain points, which are called “nodes”;
these nodes will be denoted by the index k. This distribution is approximated by superposing shape
functions Nk(x), which are scaled by the displacements we

k at the nodes.

w(x)≈ w̃(x) = ∑
k

Nk(x)we
k = N(x)we (4.1.10)

The shape functions have to fulfil the following condition:

Nk(xl) =

{
I for l = k
0 for l 6= k ⇒ w̃(xk) = we

k (4.1.11)

From the displacement ũ the strains ε̃ are derived by applying a suitable operator S, which gives
the required derivatives:

ε(x)≈ ε̃(x) = Sw̃(x) = SN(x)︸ ︷︷ ︸
B(x)

we = B(x)we (4.1.12)

The element is loaded by nodal forces qe
k, which are acting at the nodes; the nodal forces for all

nodes form the vector qe. Furthermore, the element is subjected to distributed body forces b(x).
Setting the virtual work of the external nodal forces qe

k equal to the total virtual work of the internal
forces, which is obtained from the integral over the volume V e of the element, leads to:

δwe T qe =
∫

V e

(
δε̃(x)T

σ(x)− δw̃(x)T b(x)
)

dV

= δwe T
∫

V e

(
B(x)T

σ(x)− N(x)T b(x)
)

dV (4.1.13)

In this work, the modelling of the wheelset and the rail as flexible structures is focused of the
analysis of the structural dynamics including the determination of structural eigenmodes. In this
context, initial strains and initial residual stresses are neglected; furthermore, a linear elastic be-
haviour of the material is assumed. Thereby, the relation between the stress σ(x) and the strain
ε(x) is formulated in the following way:

σ(x) = Dε(x)≈ D ε̃(x) = DB(x)we (4.1.14)

Here, the matrix D is the elasticity matrix, which contains the material parameters like Young’s
modulus E, the shear modulus G and Poisson’s ratio ν. It is assumed that within one element these
parameters and thereby also the elasticity matrix D are constant.

In the context of the structural dynamics, the inertia has to be taken into account; this can be done
by the body forces b(x). Moreover, it is assumed that there are no further body forces. Thereby, it
is valid:

b(x) =−ρ ẅ(x)≈−ρ ¨̃w(x) =−ρN(x) ẅe (4.1.15)
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Inserting the relations (4.1.14) and (4.1.15) into (4.1.13) and factoring out the nodal displacement
vector we and its derivative leads to:

δwe T qe =
∫

V e

(
δε̃(x)T

σ(x)+ δw̃(x)T
ρ ¨̃w(x)

)
dV

=
∫

V e

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV

=
∫

V e

(
δwe T B(x)T DB(x)we + δwe T N(x)T

ρN(x) ẅe
)

dV

= δwe T
(∫

V e
B(x)T DB(x)dV we +

∫
V e

N(x)T
ρN(x)dV ẅe

)
= δwe T (Ke we +Me ẅe) (4.1.16)

Here, Ke and Me are the stiffness matrix and the mass matrix of the element, respectively:

Ke =
∫

V e
B(x)T DB(x)dV, Me =

∫
V e

N(x)T
ρN(x)dV (4.1.17)

The stiffness matrix and the mass matrix can also be split into submatrices, which refer to the
single nodes. It is valid:

w̃(x) = N(x)we = ∑
k

Nk(x)we
k (4.1.18)

⇒ ε̃(x) = Sw̃(x) = S

(
∑
k

Nk(x)we
k

)
= ∑

k
SNk(x)︸ ︷︷ ︸

Bk(x)

we
k = ∑

k
Bk(x)we

k (4.1.19)

From these formulations, the expressions for the virtual displacement and for the virtual strain
are derived; regarding the products contained in the integrand, it is necessary to use a different
summation index:

w̃(x) = ∑
k

Nk(x)we
k⇒ δw̃(x) = ∑

i
Ni(x)δwe

i (4.1.20)

ε̃(x) = ∑
k

Bk(x)we
k⇒ δε̃(x) = ∑

i
Bi(x)δwe

i (4.1.21)

By inserting these expressions into (4.1.16) it is obtained:∫
V e

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV

=
∫

V e

[∑
i

Bi(x)δwe
i

]T

D

[
∑
k

Bk(x)we
k

]
+

[
∑

i
Ni(x)δwe

i

]T

ρ

[
∑
k

Nk(x) ẅe
k

]dV

= ∑
i

∑
k

∫
V e

(
δwe

i
T Bi(x)T DBk(x)we

k + δwe
i

T Ni(x)T
ρNk(x) ẅe

k

)
dV

= ∑
i

∑
k

δwe
i

T
(∫

V e
Bi(x)T DBk(x)dV we

k +
∫

V e
Ni(x)T

ρNk(x)dV ẅe
k

)
= ∑

i
∑
k

δwe
i

T
(

Ke
i|k we

k +Me
i|k ẅe

k

)
(4.1.22)
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Here, the matrices Ke
i|k and Me

i|k are defined in the following way:

Ke
i|k =

∫
V e

Bi(x)T DBk(x)dV, Me
i|k =

∫
V e

Ni(x)T
ρNk(x)dV (4.1.23)

The indices i and k refer to the nodes of the element so that the matrices Ke
i|k and Me

i|k describe the
interaction between the i-th and the k-th node of the element. By using a matrix notation, the result
of (4.1.22) can be formulated in the following way:∫

V e

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV

= ∑
i

∑
k

δwe
i

T
(

Ke
i|k we

k +Me
i|k ẅe

k

)

=


δwe

1
...

δwe
i

...


T


Ke
1|1 . . . Ke

1|k . . .
...

...
Ke

i|1 . . . Ke
i|k . . .

...
...




we
1

...
we

k
...

+


Me
1|1 . . . Me

1|k . . .
...

...
Me

i|1 . . . Me
i|k . . .

...
...




ẅe
1

...
ẅe

k
...


 (4.1.24)

The complete element stiffness matrix Ke and the complete element mass matrix Me are composed
of the submatrices Ke

i|k and Me
i|k.

4.2 Prismatic solid

In this section, the basis for a finite element for prismatic structure will be developed. The prismatic
structure is characterized by its length ` and its cross-sectional area AC. The structure is considered
in the cartesian coordinates x, y and z. The coordinate x is pointing in the direction of the 1-
axis, which is the axis of the extrusion. Therefore, the coordinates y and z are the cross-sectional
coordinates. An overview is given in Fig.4.2.1.

Figure 4.2.1: Finite prism element with quadrilateral cross section
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As it can be seen from Fig.4.2.1, the element is a three-dimensional volume element. Therefore,
the displacement w is expressed by the following vector:

w =

U(x,y,z, t)
V (x,y,z, t)
W (x,y,z, t)

 (4.2.25)

Furthermore, it is assumed that the boundary conditions at both ends of the prismatic structure are
equal; therefore, it is valid:

w(x = 0,y,z, t) = w(x = `,y,z, t) (4.2.26)

It should be pointed out that in this section the shape of the cross section and the shape functions,
which describe the distribution of the displacement, are not specified so that the derivation given
in this section is valid for any arbitrary cross section and for any arbitrary shape functions.

Since the element is a three-dimensional volume element, the basis for the following consideration
are Navier’s equations, as introduced in (4.0.2), (4.0.4), (4.0.5) and (4.0.6).

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 +

1
1−2ν

∂

∂x

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2U
∂t2 = 0 (4.2.27)

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 +

1
1−2ν

∂

∂y

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2V
∂t2 = 0 (4.2.28)

∂2W
∂x2 +

∂2W
∂y2 +

∂2W
∂z2 +

1
1−2ν

∂

∂z

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2W
∂t2 = 0 (4.2.29)

Here, G, ν and ρ denote the shear modulus, Poisson’s ratio and the density of the material, respec-
tively.

Similar to a notepad, a prismatic structure can be regarded as a stack of identical sheets, which are
infinitesimally thin. The coordinates of each sheet are the cross-sectional coordinates y and z. If
all sheets are identical, then the material parameters can depend on the cross-sectional coordinates,
but are independent from the longitudinal coordinate x:

G = G(y,z), ν = ν(y,z), ρ = ρ(y,z) (4.2.30)

Therefore, the following semi-analytical solution, which separates the longitudinal coordinate x
from the cross-sectional coordinates y and z can be applied:

w = wk(x,y,z, t) =

Uk(y,z)
Vk(y,z)
Wk(y,z)


︸ ︷︷ ︸

ŵk(y,z)

eik κxeiωkt = ŵk(y,z)eik κx︸ ︷︷ ︸
wk(x,y,z)

eiωkt , κ =
2π

`
, k ∈ Z (4.2.31)

Inserting this semi-analytic solution into Navier’s equations and factoring out the functions eik κx



122 Chapter 4. Structural dynamics of the wheelset and the rail

and eiωkt leads to:

0 =

[
−k2

κ
2Uk +

∂2Uk

∂y2 +
∂2Uk

∂z2 +
ik κ

1−2ν

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Uk ωk

2
]

eik κxeiωkt

(4.2.32)

0 =

[
−k2

κ
2Vk +

∂2Vk

∂y2 +
∂2Vk

∂z2 +
1

1−2ν

∂

∂y

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Vk ωk

2
]

eik κxeiωkt

(4.2.33)

0 =

[
−k2

κ
2Wk +

∂2Wk

∂y2 +
∂2Wk

∂z2 +
1

1−2ν

∂

∂z

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Wk ωk

2
]

eik κxeiωkt

(4.2.34)

According to (4.2.38) the functions Uk =Uk(y,z), Vk =Vk(y,z), and Wk =Wk(y,z) depend only on
the coordinates y and z of the cross section. Therefore, the original three-dimensional field problem
is reduced to a two-dimensional one:

0 =−k2
κ

2Uk +
∂2Uk

∂y2 +
∂2Uk

∂z2 +
ik κ

1−2ν

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Uk ωk

2 (4.2.35)

0 =−k2
κ

2Vk +
∂2Vk

∂y2 +
∂2Vk

∂z2 +
1

1−2ν

∂

∂y

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Vk ωk

2 (4.2.36)

0 =−k2
κ

2Wk +
∂2Wk

∂y2 +
∂2Wk

∂z2 +
1

1−2ν

∂

∂z

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Wk ωk

2 (4.2.37)

It can be seen that the angular velocity ωk appears only as the square ωk
2; thereby, the sign of

ωk has no influence on the reduced equation. Thus, the following expression leads to the same
reduced equations and is thereby a solution, too:

w = wk(x,y,z, t) =

Uk(y,z)
Vk(y,z)
Wk(y,z)


︸ ︷︷ ︸

ŵk(y,z)

eik κxe−iωkt (4.2.38)

In an analogous way the following expression

w = w−k(x,y,z, t) =

U−k(y,z)
V−k(y,z)
W−k(y,z)


︸ ︷︷ ︸

ŵ−k(y,z)

e−ik κxeiω−kt (4.2.39)

leads to:

0 =−k2
κ

2U−k +
∂2U−k

∂y2 +
∂2U−k

∂z2 +
−ik κ

1−2ν

(
−ik κU−k +

∂V−k

∂y
+

∂W−k

∂z

)
+

ρ

G
U−k ω−k

2

(4.2.40)

0 =−k2
κ

2V−k +
∂2V−k

∂y2 +
∂2V−k

∂z2 +
1

1−2ν

∂

∂y

(
−ik κU−k +

∂V−k

∂y
+

∂W−k

∂z

)
+

ρ

G
V−k ω−k

2

(4.2.41)

0 =−k2
κ

2W−k +
∂2W−k

∂y2 +
∂2W−k

∂z2 +
1

1−2ν

∂

∂z

(
−ik κU−k +

∂V−k

∂y
+

∂W−k

∂z

)
+

ρ

G
W−k ω−k

2

(4.2.42)
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The comparison shows that the equations (4.2.41) and (4.2.42) for −k can easily be converted into
the equations (6.2.11) and (6.2.12), respectively, by the following substitutions:

U−k =−Uk, V−k =Vk, W−k =Wk, ω−k = ωk (4.2.43)

By applying these substitutions to the equation (4.2.41) and by subsequently multiplying it by −1,
it is converted into the equation (6.2.10). Based on this semi-analytic solution, a finite element for
the prismatic structure is now developed. It is assumed that the material parameters G, ν and ρ are
constant within one element.

As already mentioned, the prismatic structure can be considered as a stack of identical sheets.
A certain sheet is indicated by the longitudinal coordinate x. Using the basic idea of the finite
element discretization, the distribution of the displacement w over the cross section AC, which
is the area of the sheet, is expressed by shape functions Ni(y,z), which are scaled by the nodal
displacements we

i (x, t) at the i-th node of nN nodes of the element. Since the shape functions
describe the distribution over the cross section, they only depend on the cross-sectional coordinates
y and z.

w(x,y,z, t) =
nN

∑
i=1

Ni(y,z)we
i (x, t) (4.2.44)

For the shape functions Ni(y,z) and for the nodal displacements we
i (x, t) it is valid:

Ni(y j,z j) =

{
I for j = i
0 for j 6= i , we

i (x, t) = wi(x,yi,zi, t) (4.2.45)

According to (4.2.38), a semi-analytic solution of Navier’s equation is given by:

wk(x,y,z, t) = ŵk(y,z)eik κxeiωkt (4.2.46)

Since Navier’s equation is a linear differential equation, also the linear combination of several
solutions is a solution. Therefore, a general solution is given by:

w(x,y,z, t) = ∑
K

∑
I

ŵK,I(y,z)eiωK,It eiK 2π

` x (4.2.47)

In each solution, the longitudinal coordinate x only appears as the argument of the function eik 2π

` x.
Based on this, the nodal displacement we

i (x, t) can be formulated as a Fourier series of the following
form:

w(x,yi,zi, t) = we
i (x, t) = ∑

K
we

i,K(t)eiK 2π

` x (4.2.48)

Finally, the distribution of the displacements within the finite element is formulated in the follow-
ing way:

w(x,y,z, t) =
nN

∑
i=1

Ni(y,z)we
i (x, t) =

nN

∑
i=1

N̂i(y,z)

[
∑
K

we
i,K(t)eiK 2π

` x

]
= ∑

K

nN

∑
i=1

N̂i(y,z)we
i,K(t)eiK 2π

` x

(4.2.49)
The vectors we

i,K(t) and the shape functions Ni(y,z) can be arranged in a vector and a matrix in the
following way:

we
K(t) =


we

1,K(t)
we

2,K(t)
...

we
nN ,K(t)

 , N̂(y,z) =
[
N̂1(y,z) N̂2(y,z) . . . N̂nN (y,z)

]

⇒
nN

∑
i=1

N̂i(y,z)we
i,K(t) = N̂(y,z)we

K(t) (4.2.50)
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Thereby, the displacement can be written as:

w(x,y,z, t) = ∑
K

nN

∑
i=1

N̂i(y,z)we
i,K(t)eiK 2π

` x = ∑
K

N̂(y,z)we
K(t)eiK 2π

` x (4.2.51)

Based on Zienkiewicz and Taylor2 [84], for a three-dimensional continuum, the stress vector σ,
the elasticity matrix D and the strain vector ε are given by:


σx
σy
σz
τxy
τyz
τzx


︸ ︷︷ ︸

σ

=
G

1−2ν


2(1−ν) 2ν 2ν 0 0 0

2ν 2(1−ν) 2ν 0 0 0
2ν 2ν 2(1−ν) 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν


︸ ︷︷ ︸

D



∂U
∂x
∂V
∂y
∂W
∂z

∂U
∂y + ∂V

∂x
∂V
∂z +

∂W
∂y

∂W
∂x + ∂U

∂z


︸ ︷︷ ︸

ε

(4.2.52)
The strain vector can be formulated in the following way:

ε =



∂U
∂x
∂V
∂y
∂W
∂z

∂U
∂y + ∂V

∂x
∂V
∂z +

∂W
∂y

∂W
∂x + ∂U

∂z


=


1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1


︸ ︷︷ ︸

Tx


∂U
∂x
∂V
∂x
∂W
∂x


︸ ︷︷ ︸

∂w
∂x

+


0 0 0
0 1 0
0 0 0
1 0 0
0 0 1
0 0 0


︸ ︷︷ ︸

Ty


∂U
∂y
∂V
∂y
∂W
∂y


︸ ︷︷ ︸

∂w
∂y

+


0 0 0
0 0 0
0 0 1
0 0 0
0 1 0
1 0 0


︸ ︷︷ ︸

Tz


∂U
∂z
∂V
∂z

∂W
∂z


︸ ︷︷ ︸

∂w
∂z

= Tx
∂w
∂x

+Ty
∂w
∂y

+Tz
∂w
∂z

(4.2.53)

For the derivatives of the displacement w(x,y,z, t) it is valid:

∂w
∂x

=

 ∂U
∂x
∂V
∂x
∂W
∂x

=
∂

∂x

(
∑
K

N̂(y,z)we
K(t)eiK 2π

` x

)
= ∑

K
N̂(y,z)we

K(t) iK
2π

`
eiK 2π

` x (4.2.54)

∂w
∂y

=


∂U
∂y
∂V
∂y
∂W
∂y

=
∂

∂y

(
∑
K

N̂(y,z)we
K(t)eiK 2π

` x

)
= ∑

K

∂

∂y
N̂(y,z)we

K(t)eiK 2π

` x (4.2.55)

∂w
∂z

=

 ∂U
∂z
∂V
∂z

∂W
∂z

=
∂

∂z

(
∑
K

N̂(y,z)we
K(t)eiK 2π

` x

)
= ∑

K

∂

∂z
N̂(y,z)we

K(t)eiK 2π

` x (4.2.56)

Inserting these expressions into (4.2.57) and factoring out the function eiK 2π

` x and the vectors we
K(t)

2In [84], Young’s modulus E is used to formulate the matrix D. By applying the relation E = 2G(1+ν), where G
is the shear modulus, enables a more compact notation.
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of the nodal displacements leads to the following formulation of the strain vector:

ε(x) = Tx

[
∑
K

N̂(y,z)we
K(t) iK

2π

`
eiK 2π

` x

]
+Ty

[
∑
K

∂

∂y
N̂(y,z)we

K(t)eiK 2π

` x

]

+Tz

[
∑
K

∂

∂z
N̂(y,z)we

K(t)eiK 2π

` x

]

= ∑
K

[
Tx N̂(y,z) iK

2π

`
+Ty

∂

∂y
N̂(y,z)+Tz

∂

∂z
N̂(y,z)

]
︸ ︷︷ ︸

B̂K(y,z)

we
K(t)eiK 2π

` x

= ∑
K

B̂K(y,z)we
K(t)eiK 2π

` x (4.2.57)

It can be seen that the matrix B̂K(y,z) contains the periodicity K as a factor; this results from the
derivatives with respect to x. Therefore, the matrices B̂K(y,z) have to be denoted using the index K
in contrast to the matrices N̂(y,z), which are equal for all periodicities K so that a distinction with
respect to K is not necessary. – Resolving the matrix N̂ and the vector we

K into the shape functions
and displacements for the single nodes leads to the following formulation of the strain vector:

N̂(y,z)we
K(t) =

nN

∑
i=1

N̂i(y,z)we
i,K(t)

⇒ ∂

∂y
N̂(y,z)we

K(t) =
nN

∑
i=1

∂

∂y
N̂i(y,z)we

i,K(t),
∂

∂z
N̂(y,z)we

K(t) =
nN

∑
i=1

∂

∂z
N̂i(y,z)we

i,K(t) (4.2.58)

ε(x) = Tx

[
∑
K

(
nN

∑
i=1

N̂i(y,z)we
i,K(t)

)
iK

2π

`
eiK 2π

` x

]
+Ty

[
∑
K

(
nN

∑
i=1

∂

∂y
N̂i(y,z)we

i,K(t)

)
eiK 2π

` x

]

+Tz

[
∑
K

(
nN

∑
i=1

∂

∂z
N̂i(y,z)we

i,K(t)

)
eiK 2π

` x

]

= ∑
K

nN

∑
i=1

[
Tx N̂i(y,z) iK

2π

`
+Ty

∂

∂y
N̂i(y,z)+Tz

∂

∂z
N̂i(y,z)

]
︸ ︷︷ ︸

Bi,K(y,z)

we
i,K(t)e

iK 2π

` x

= ∑
K

nN

∑
i=1

B̂i,K(y,z)we
i,K(t)eiK 2π

` x (4.2.59)

Comparing the expressions (4.2.57) and (4.2.59) leads to:

B̂K(y,z)we
K(t) =

nN

∑
i=1

B̂i,K(y,z)we
i,K(t) (4.2.60)

The resolved formulation according to (4.2.59) will be used later.

The displacement w(x,y,z) and the strain ε(x,y,z) have been formulated in the following way:

w(x,y,z, t) = ∑
K

N̂(y,z)eiK 2π

` x we
K (4.2.61)

ε(x,y,z, t) = ∑
K

B̂K(y,z)eiK 2π

` x we
K (4.2.62)
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Here and in the following, the dependence of the discretized displacements we
K on the time t will

not be indicated explicitly for the sake of brevity. From these formulations, the expressions for
the variation of the displacement and of the strain are derived. By replacing the periodicity K by
L ∈ Z, which is necessary for the following formulation, it is valid:

δw(x,y,z) = ∑
L

N̂(y,z)eiL 2π

` x
δwe

L⇒ δw(x,y,z)T = ∑
L

δwe
L

T N̂(y,z)
T eiL 2π

` x (4.2.63)

δε(x,y,z) = ∑
L

B̂L(y,z)eiL 2π

` x
δwe

L⇒ δε(x,y,z)T = ∑
L

δwe
L

T B̂L(y,z)
T eiL 2π

` x (4.2.64)

Inserting these expressions into the right-hand side of (4.1.13) leads to:∫
V e

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV

=
∫

V e

[
∑
L

δwe
L

T B̂L(y,z)
T eiL 2π

` x

]
D

[
∑
K

B̂K(y,z)eiK 2π

` x we
K

]
dV

+
∫

V e

[
∑
L

δwe
L

T N̂(y,z)
T eiL 2π

` x

]
ρ

[
∑
K

N̂(y,z)eiK 2π

` x ẅe
K

]
dV

= ∑
L

∑
K

δwe
L

T
[∫

V e
B̂L(y,z)

T DB̂K(y,z)ei(L+K) 2π

` x dV we
K

+
∫

V e
N̂(y,z)

T
ρ N̂(y,z)ei(L+K) 2π

` x dV ẅe
K

]
(4.2.65)

The infinitesimal volume dV can be expressed based on the triple scalar product, which is also
known as the mixed product. The triple scalar product of the three vectors ~a, ~b and ~c can be
formulated several different ways; its result is the volume VP of the parallelepiped, for which the
three vectors define the edges. It is valid:

VP =~a · (~b×~c) =

a1
a2
a3

 ·
b1

b2
b3

×
c1

c2
c3

= det

a1 b1 c1
a2 b2 c2
a3 b3 c3

 (4.2.66)

In the present case the vectors defining the edges of the infinitesimal volume are obtained from the
partial derivatives of the reference position vector x with respect to the coordinates. Thus, it can
be formulated for the infinitesimal volume dV :

x =
[
x y z

]T (4.2.67)

dV =
∂x
∂x

dx ·
(

∂x
∂y

dy× ∂x
∂z

dz
)
=

1
0
0

 ·
0

1
0

×
0

0
1

dx dy dz =

1
0
0

 ·
1

0
0


︸ ︷︷ ︸

1

dx dy dz

(4.2.68)

The essential characteristic of a prismatic structure is that the shape of the cross section is inde-
pendent from the coordinate pointing in the direction of the extrusion. For the integration over the
volume V e of the prismatic element, the integrations have to be carried out over the length ` and
over the cross-sectional area AC. It can be seen that the integrands consist of factor, which contain
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either the longitudinal coordinate x or the cross sectional coordinates y and z, so that the two inte-
grations are completely separated from each other. Thereby, the integrals can be reformulated in
the following way:∫

V e
B̂L(y,z)

T DB̂K(y,z)ei(L+K) 2π

` x dV =
∫

AC

∫ `

0
B̂L(y,z)

T DB̂K(y,z)ei(L+K) 2π

` x dxdydz

=
∫

AC

B̂L(y,z)
T DB̂K(y,z)dydz

∫ `

0
ei(L+K) 2π

` x dx (4.2.69)∫
V e

N̂(y,z)
T

ρ N̂(y,z)ei(L+K) 2π

` x dV =
∫

AC

∫ `

0
N̂(y,z)

T
ρ N̂(y,z)ei(L+K) 2π

` x dxdydz

=
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz
∫ `

0
ei(L+K) 2π

` x dx (4.2.70)

In order to evaluate the integral over the longitudinal coordinate x, the two cases L+K = 0 and
L+K 6= 0 have to be distinguished. It is valid:

L+K = 0 :
∫ `

0
ei(L+K) 2π

` x dx =
∫ `

0
e0 dx =

∫ `

0
dx = ` (4.2.71)

L+K 6= 0 :
∫ `

0
ei(L+K) 2π

` x dx =
1

L+K
`

2π
ei(L+K) 2π

` x
∣∣∣∣`
0
=

1
L+K

`

2π

[
e2πi(L+K)− e0

]
=

1
L+K

`

2π

[
1 (L+K)−1

]
= 0 (4.2.72)

Thereby, only the integrals for L+K = 0⇔ K =−L remain, while all other integrals vanish. This
leads to:∫

V e

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV

= ∑
L

∑
K

δwe
L

T
[∫

V e
B̂L(y,z)

T DB̂K(y,z)ei(L+K) 2π

` x dV we
K

+
∫

V e
N̂(y,z)

T
ρ N̂(y,z)ei(L+K) 2π

` x dV ẅe
K

]
= ∑

L
δwe

L
T
[∫

AC

B̂L(y,z)
T DB̂−L(y,z)dydz `we

−L +
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz ` ẅe
−L

]
(4.2.73)

It can be seen that beneath the virtual displacement δwL each summand only contains the displace-
ment w−L and its second derivative ẅ−L; this means that with respect to the elasticity and to the
inertia the motions for different periodicities L are decoupled from each other. – The substitution
L =−K for the periodicity gives:

δwe T
(∫

V e
B(x)T DB(x)dV we +

∫
V e

N(x)T
ρN(x)dV ẅe

)
= ∑

L
δwe

L
T
[∫

AC

B̂L(y,z)
T DB̂−L(y,z)dydz `we

−L +
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz ` ẅe
−L

]
= ∑

K
δwe
−K

T
[∫

AC

B̂−K(y,z)
T DB̂K(y,z)dydz `we

K +
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz ` ẅe
K

]
= ∑

K
δwe
−K

T [Ke
K `we

K +Me ` ẅe
K] (4.2.74)
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Here, the matrices Ke
K and Me are the element stiffness matrices and the element mass matri-

ces, respectively. It can be seen that the mass matrix Me of the element is independent from the
periodicity K; therefore, the index K is not required for the mass matrix:

Me =
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz (4.2.75)

By using the formulation of the strain matrix according to (4.2.57), the integrand of the stiffness
matrix can be resolved in the following way:

Ke
K =

∫
AC

B̂−K(y,z)
T DB̂K(y,z)dydz

=
∫

AC

[
−Tx N̂ iK

2π

`
+Ty

∂N̂
∂y

+Tz
∂N̂
∂z

]T

D
[

Tx N̂ iK
2π

`
+Ty

∂N̂
∂y

+Tz
∂N̂
∂z

]
dydz

= −i2︸︷︷︸
1

K2
(

2π

`

)2∫
AC

N̂T Tx
T DTx N̂dydz

+iK
2π

`

∫
AC

[
− N̂T Tx

T D
(

Ty
∂N̂
∂y

+Tz
∂N̂
∂z

)
+

(
∂N̂
∂y

T

Ty
T +

∂N̂
∂z

T

Tz
T

)
DTx N̂

]
dydz

+
∫

AC

(
∂N̂
∂y

T

Ty
T +

∂N̂
∂z

T

Tz
T

)
D
(

Ty
∂N̂
∂y

+Tz
∂N̂
∂z

)
dydz (4.2.76)

The result shows that the complete element stiffness matrix is composed from three types of inte-
grals: the first type contains a product of the shape functions N̂, the second one contains a product
of the shape functions and one of their derivatives and the third one contains the product of two
derivatives.

In section 4.1, a formulation of the element matrices using submatrices, which refer to single
nodes, has been developed. This formulation shall also be applied to the equations describing the
prism element. According to (4.2.50) and (4.2.59) it is valid:

N̂(y,z)we
K(t) =

nN

∑
i=1

N̂i(y,z)we
i,K(t) (4.2.77)

B̂K(y,z)we
K(t) =

nN

∑
i=1

[
Tx N̂i(y,z) iK

2π

`
+Ty

∂

∂y
N̂i(y,z)+Tz

∂

∂z
N̂i(y,z)

]
︸ ︷︷ ︸

Bi,K(y,z)

we
i,K(t) (4.2.78)

Using these expressions, the terms for the stiffness matrix Ke
K and for the mass matrix Me accord-
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ing to (4.2.74) are reformulated. It is valid:

δwe
−K

T Ke
K we

K = δwe
−K

T
∫

AC

B̂−K(y,z)
T DB̂K(y,z)dydz we

K

=
∫

AC

δwe
−K

T B̂−K(y,z)
T DB̂K(y,z)we

K dydz

=
∫

AC

[
nN

∑
i=1

δwe
i,K

T B̂i,−K(y,z)
T
]

D

[
nN

∑
k=1

B̂k,K(y,z)we
k,K

]
dydz

=
nN

∑
i=1

nN

∑
k=1

δwe
i,K

T
∫

AC

B̂i,−K(y,z)
T DB̂k,K(y,z)dydz we

k,K

=
nN

∑
i=1

nN

∑
k=1

δwe
i,K

T Ke
i|k,K we

k,K (4.2.79)

δwe
−K

T Me ẅe
K = δwe

−K
T
∫

AC

N̂−K(y,z)
T

ρ N̂K(y,z)dydz ẅe
K

=
∫

AC

δwe
−K

T N̂(y,z)
T

ρ N̂(y,z) ẅe
K dydz

=
∫

AC

[
nN

∑
i=1

δwe
i,K

T N̂i(y,z)
T
]

ρ

[
nN

∑
k=1

N̂k(y,z) ẅe
k,K

]
dydz

=
nN

∑
i=1

nN

∑
k=1

δwe
i,K

T
∫

AC

N̂i(y,z)
T

ρ N̂k(y,z)dydz ẅe
k,K

=
nN

∑
i=1

nN

∑
k=1

δwe
i,K

T Me
i|k ẅe

k,K (4.2.80)

By applying the definition for the strain matrix B̂i,K(y,z) according to (4.2.78), the stiffness matrix
Ke

i|k,K is resolved in the following way:

Ke
i|k,K =

∫
AC

B̂i,−K(y,z)
T DB̂k,K(y,z)dydz

=
∫

AC

[
−Tx N̂i iK

2π

`
+Ty

∂N̂i

∂y
+Tz

∂N̂i

∂z

]T

D
[

Tx N̂k iK
2π

`
+Ty

∂N̂k

∂y
+Tz

∂N̂k

∂z

]
dydz

= K2
(

2π

`

)2∫
AC

N̂i
T Tx

T DTx N̂k dydz− iK
2π

`

∫
AC

N̂i
T Tx

T D
(

Ty
∂N̂k

∂y
+Tz

∂N̂k

∂z

)
dydz

+iK
2π

`

∫
AC

(
∂N̂i

∂y

T

Ty
T +

∂N̂i

∂z

T

Tz
T

)
DTx N̂k dydz

+
∫

AC

(
∂N̂i

∂y

T

Ty
T +

∂N̂i

∂z

T

Tz
T

)
D
(

Ty
∂N̂k

∂y
+Tz

∂N̂k

∂z

)
dydz (4.2.81)

4.3 Solid of revolution

As it can be seen from Fig. 4.3.2, the solid of revolution or annular element is generated by the
rotation of the area AC around the 2-axis. The area AC is the cross-sectional area; it lies in the
2-3-plane. The 2-axis is chosen as the axis of the axisymmetry, because the finite element, which
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will be developed, is intended to be used for the modelling of the wheelset; in the MBS description
of railway vehicles, the 2-axis is usually the lateral axis.

Figure 4.3.2: Finite annular element with quadrilateral cross section AC

For a solid of revolution, it is advantageous to use cylindrical coordinates. Here, the coordinate y
pointing in the direction of the 2-axis is used as the axial coordinate, while the cartesian coordinates
x and z are replaced by the polar coordinates r and φ. Thereby, the reference position x is given in
the following way:

x
y
z


︸︷︷︸

x

=

cosφ 0 sinφ

0 1 0
sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

0
y
r


︸︷︷︸

c

=

 r sinφ

y
r cosφ

⇒ x = r sinφ, z = r cosφ (4.3.82)

The relation between the derivatives of a function f with respect to the cartesian coordinates x,
y and z on the one hand and those with respect to the cylindrical coordinates r, φ and y can be
formulated in the following way:


1
r

∂ f
∂φ

∂ f
∂y
∂ f
∂r

=

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ


︸ ︷︷ ︸

S2(−φ)


∂ f
∂x
∂ f
∂y
∂ f
∂z

⇒


∂ f
∂x
∂ f
∂y
∂ f
∂z

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)=S2(−φ)−1


1
r

∂ f
∂φ

∂ f
∂y
∂ f
∂r

 (4.3.83)

Using the directions of cylindrical coordinates r, φ and y, the displacements are described by the
radial displacement R, the tangential displacement T and the axial displacement V . For the chosen
orientation of the cylindrical coordinates, the relation between these displacements on the one hand
and the displacements U , V and W in the directions of cartesian coordinates can be formulated in
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the following way: U
V
W


︸ ︷︷ ︸

w

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

T
V
R


︸ ︷︷ ︸

u

⇒ w = S2(φ)u (4.3.84)

Generally, the derivation of the formulations for the cylindrical coordinates is not very complicated,
but quite laborious. Therefore, only the final formulas are presented here. The complete derivation
from the formulation using cartesian coordinates can be found in appendix B.

Also here, Navier’s equations for a linear elastic material are the basis for the structural dynamics:

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 +

1
1−2ν

∂

∂x

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2U
∂t2 = 0 (4.3.85)

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 +

1
1−2ν

∂

∂y

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2V
∂t2 = 0 (4.3.86)

∂2W
∂x2 +

∂2W
∂y2 +

∂2W
∂z2 +

1
1−2ν

∂

∂z

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2W
∂t2 = 0 (4.3.87)

Based on these equations, the formulation for the cylindrical coordinates r, φ and y and for the
displacements R, T and V is developed in detail in appendix B.4. As the result, is it obtained:

0 =
1
r2

∂2T
∂φ2 +

∂2T
∂y2 +

∂2T
∂r2 −

1
r

∂T
∂r
− 1

r2 T +
2
r2

∂R
∂φ

+
1

1−2ν

1
r

∂

∂φ

(
1
r

∂T
∂φ

+
R
r
+

∂R
∂r

+
∂V
∂y

)
− ∂2T

∂t2 (4.3.88)

0 =
1
r2

∂2V
∂φ2 +

∂2V
∂y2 +

∂2V
∂r2 −

1
r

∂V
∂r

+
1

1−2ν

∂

∂y

(
1
r

∂T
∂φ

+
R
r
+

∂R
∂r

+
∂V
∂y

)
− ρ

G
∂2V
∂t2 (4.3.89)

0 =
1
r2

∂2R
∂φ2 +

∂2R
∂y2 +

∂2R
∂r2 −

1
r

∂R
∂r
− 1

r2 R− 2
r2

∂T
∂φ

+
1

1−2ν

∂

∂r

(
1
r

∂T
∂φ

+
R
r
+

∂R
∂r

+
∂V
∂y

)
− ρ

G
∂2R
∂t2 (4.3.90)

Similar to the solution for the prism, which has been discussed in section 4.2, a semi-analytic
solution can also be given for the an axisymmetric structure. Regarding the axial symmetry, it is
assumed that the material parameters G, ν and ρ are constant over the circumference, i.e. these
parameters depend on the radial coordinate r and the axial coordinate φ, but not on the azimuth φ:

G = G(r,y), ν = ν(r,y), ρ = ρ(r,y) (4.3.91)

The body of revolution can be considered to be consisting of rings having an inifinitesimal cross
section; these rings are defined by the radius r and the axial coordinate y. Therefore, it is obvious
to separate the cross sectional coordinates r and y from the azimuth φ. From the relations

x = r sinφ, z = r cosφ (4.3.92)

it is evident that the cylindrical coordinates 〈r,φ,y〉 and 〈r,φ+2πm,y〉, m ∈ Z denote the same
point. Therefore, it is obvious to use a the exponential function having an imaginary exponent
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for the function depending on the azimuth φ. Therefore, the following expression is used as the
semi-analytic solution for the body of revolution:

u = uk(r,φ,y, t) =

 Tk(r,y)
Vk(r,y)
Rk(r,y)


︸ ︷︷ ︸

ûk(y,z)

eik φ eiωkt = ûk(r,y)eik φ︸ ︷︷ ︸
uk(r,φ,y)

eiωkt , k ∈ Z (4.3.93)

By inserting this into the equations (4.3.88), (4.3.89) and (4.3.90) and factoring out the functions
eik φ and eiωkt gives:

0 =

(
− 1

r2 k2Tk +
∂2Tk

∂y2 +
∂2Tk

∂r2 −
1
r

∂Tk

∂r
− 1

r2 Tk +
2
r2 ik Rk

+
1

1−2ν

ik
r

(
1
r

ik Tk +
Rk

r
+

∂Rk

∂r
+

∂Vk

∂y

)
+ωk

2Tk

)
eik φ eiωkt (4.3.94)

0 =

(
− 1

r2 k2Vk +
∂2V
∂y2 +

∂2V
∂r2 −

1
r

∂V
∂r

+
1

1−2ν

∂

∂y

(
1
r

ik Tk +
Rk

r
+

∂Rk

∂r
+

∂Vk

∂y

)
+ωk

2Vk

)
eik φ eiωkt (4.3.95)

0 =

(
− 1

r2 k2Rk +
∂2Rk

∂y2 +
∂2Rk

∂r2 −
1
r

∂Rk

∂r
− 1

r2 Rk−
2
r2 ik Tk

+
1

1−2ν

∂

∂r

(
1
r

ik Tk +
Rk

r
+

∂Rk

∂r
+

∂Vk

∂y

)
+ωk

2Tk

)
eik φ eiωkt (4.3.96)

Since the functions Tk = Tk(r,y), Vk =Vk(r,y) an Rk = Rk(r,y) only depend on the coordinates
r and y, the original three-dimensional problem is reduced to a two-dimensional field problem,
similar as for the prismatic body discussed in section 4.2. This field problem is given by:

0 =−k2 +1
r2 Tk +

∂2Tk

∂y2 +
∂2Tk

∂r2 −
1
r

∂Tk

∂r
+

2ik
r2 Rk

+
1

1−2ν

ik
r

(
ik
r

Tk +
Rk

r
+

∂Rk

∂r
+

∂Vk

∂y

)
+ωk

2Tk (4.3.97)

0 =−k2

r2 Vk +
∂2V
∂y2 +

∂2V
∂r2 −

1
r

∂V
∂r

+
1

1−2ν

∂

∂y

(
ik
r

Tk +
Rk

r
+

∂Rk

∂r
+

∂Vk

∂y

)
+ωk

2Vk (4.3.98)

0 =−k2 +1
r2 Rk +

∂2Rk

∂y2 +
∂2Rk

∂r2 −
1
r

∂Rk

∂r
− 2ik

r2 Tk

+
1

1−2ν

∂

∂r

(
ik
r

Tk +
Rk

r
+

∂Rk

∂r
+

∂Vk

∂y

)
+ωk

2Rk (4.3.99)

In an analogous way, the following expression:

u = u−k(r,φ,y, t) =

 T−k(r,y)
V−k(r,y)
R−k(r,y)


︸ ︷︷ ︸

û−k(y,z)

e−ik φ eiω−kt = û−k(r,y)e−ik φ︸ ︷︷ ︸
u−k(r,φ,y)

eiω−kt , k ∈ Z (4.3.100)
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leads to the following equations for the two-dimensional problem:

0 =−k2 +1
r2 T−k +

∂2T−k

∂y2 +
∂2T−k

∂r2 −
1
r

∂T−k

∂r
− 2ik

r2 R−k

− 1
1−2ν

ik
r

(
− ik

r
T−k +

R−k

r
+

∂R−k

∂r
+

∂V−k

∂y

)
+ω−k

2T−k (4.3.101)

0 =−k2

r2 V−k +
∂2V
∂y2 +

∂2V
∂r2 −

1
r

∂V
∂r

+
1

1−2ν

∂

∂y

(
− ik

r
T−k +

R−k

r
+

∂R−k

∂r
+

∂V−k

∂y

)
+ω−k

2V−k

(4.3.102)

0 =−k2 +1
r2 R−k +

∂2R−k

∂y2 +
∂2R−k

∂r2 −
1
r

∂R−k

∂r
+

2ik
r2 T−k

+
1

1−2ν

∂

∂r

(
− ik

r
T−k +

R−k

r
+

∂R−k

∂r
+

∂V−k

∂y

)
+ω−k

2R−k (4.3.103)

From the comparison of the equations (4.3.98) and (4.3.102) and of the equations (4.3.99) and
(4.3.103), it can be seen that the equations (4.3.102) and (4.3.103) for −k can be converted into
the equations (4.3.98) and (4.3.99) for k, respectively, by applying the following substitutions:

T−k =−Tk, V−k =Vk, R−k = Rk, ω−k = ω−k (4.3.104)

The equation (4.3.101) is converted into the equation (4.3.97) by applying these substitutions and
subsequently multiplying the equation by −1.

Based on this semi-analytic solution, the finite element for the body of revolutio is developed in a
similar way, as it has been used in for the prismatic element in section 4.2. In order to determine
an approximation for the functions Tk(r,y), Vk(r,y) and Rk(r,y), which are the solution of the two-
dimensional field problem described by the equations (4.3.97), (4.3.97) and (4.3.99), the following
discretization is used:Tk(r,y, t)

Vk(r,y, t)
Rk(r,y, t)

=
nN

∑
i=1

Ni(r,y)ue
i,K(t) = N̂(r,y)ue

K(t), N̂i(rj,y j) =

{
1 for j = i
0 for j 6= i (4.3.105)

ue
K(t) =


ue

1,K(t)
ue

2,K(t)
...

ue
nN ,K(t)

 , N̂(r,y) =
[
N̂1(r,y) N̂2(r,y) . . . N̂nN (r,y)

]
(4.3.106)

Based on this, the displacement u(r,φ,y, t) in the direction of cylindrical coordinates is formulated
in the following way:

u(r,φ,y, t) = ∑
K

nN

∑
i=1

Ni(r,y)ue
i,K(t)eiKφ = ∑

K
N̂(r,y)ue

K(t)eiKφ (4.3.107)

As discussed in section 4.1, the basis for the formulation of the finite element modelling for the
structural dynamics is the following expression:

δwe T qe =
∫

V e

(
δε̃(x)T

σ(x)+ δw̃(x)T
ρ ¨̃w(x)

)
dV

= δwe T
(∫

V e
B(x)T DB(x)dV we +

∫
V e

N(x)T
ρN(x)dV ẅe

)
= δwe T (Ke we +Me ẅe) (4.3.108)
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In the present case, the integrand has to be formulated for cylindrical coordinates. For the term
representing the inertia, this is quite simple. It is valid:

w = S2(φ)u⇒ δw = S2(φ)δu, ẅ = S2(φ) ü
⇒ δwT

ρ ẅ = δuT S2(φ)
T

ρS2(φ) ü = δuT S2(−φ)S2(φ)︸ ︷︷ ︸
I

ρ ü = δuT
ρ ü (4.3.109)

The derivation of the term for the virtual work of the deformation is quite laborious. The full
derivation can be found in the sections B.2 and B.3 of the appendix B. Here, only the result shall
be given. It is valid:
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T
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︸ ︷︷ ︸
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= δεcyl
T
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(4.3.110)
The relation between the stresses contained in the vector σcyl and the strains contained in the vector
εcyl is given by:
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τty
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(4.3.111)
Therefore, it can be formulated:

δε
T

σ = δεcyl
T

σcyl = δε
T Dεcyl (4.3.112)
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The strain vector εcyl can be formulated in the following way:
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For the displacement u and its derivatives it is valid:

u =

T
V
R

= ∑
K

N̂(r,y)ue
K(t)eiKφ (4.3.114)
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∑
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K(t) iKeiKφ (4.3.115)
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It can be seen that all vectors contain the function eiKφ. Thereby, it can be formulated:
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In an analogous way to the prismatic solid, also here the strain matrix B̂K(r,y) contains the pe-
riodicity K, which results from the derivative with respect to the angle φ. Therefore, the index
K is required for the matrices B̂K(r,y) in contrast to the matrices N̂(r,y), which are equal for all
periodicities.

Also here, the strain vector εcyl is resolved with respect to the single nodes:
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From the comparison with (4.3.118) it follows:

B̂K(r,y)ue
K(t) =

nN

∑
i=1

B̂i,K(r,y)ue
i,K(t) (4.3.121)

The displacements u and the strains εcyl are formulated in the following way:

u(r,φ,y, t) = ∑
K

N̂(r,y)ue
K eiKφ (4.3.122)

εcyl(r,φ,y, t) = ∑
K

B̂K(r,y)ue
K eiKφ (4.3.123)
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Here and in the following considerations, the dependence of the displacement vectors ue
K on the

time t is not indicated explicitly for the sake of brevity. From these expressions, the virtual dis-
placement and the virtual strain are derived; again, the periodicity K is substituted by L:

δu(r,φ,y) = ∑
L

N̂(r,y)δue
L eiLφ⇒ δu(r,φ,y)T = ∑

L
δue

L
T N̂(r,y)

T eiLφ (4.3.124)

δεcyl(r,φ,y) = ∑
L

B̂L(r,y)δue
L eiLφ⇒ δεcyl(r,φ,y)

T = ∑
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L
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T eiLφ (4.3.125)

By subsequently inserting the expressions for the cylindrical coordinates according to (4.3.109)
and (4.3.112) and the discretisation of the displacements and strains, it is obtained:
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(4.3.126)

The infinitesimal volume dV , which is required for the integration, is determined in an analogous
way as it has been done in section 4.2 for the cartesian coordinates: it is obtained by the triple scalar
product of the partial derivatives of the reference position vector with respect to the coordinates:

x =
[
x y z

]T
=
[
r sinφ y r cosφ

]T (4.3.127)
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dφ dy dr = r dφ dy dr

(4.3.128)

For a body of revolution, the integration has to be carried out over the full circumference, i.e.
from 0 to 2π with respect to the angle φ and over the cross-sectional area AC with respect to the
axial coordinate y and the radial coordinate r. The essential property of the body of revolution is
that the cross section is independent from the angle of rotation. Therefore, the integrals for the
stiffness matrix and for the mass matrix can be formulated as a product of one integral over the
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cross-sectional area AC and another one over the circumference:∫
V e
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In order to evaluate the integral over the circumference, two cases L+K = 0 and L+K 6= 0 have
to be considered. It is valid:

L+K = 0 :
∫ 2π

0
ei(L+K)φ dφ =

∫ 2π

0
e0 dφ =

∫ 2π

0
dφ = 2π (4.3.131)

L+K 6= 0 :
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For L+K 6= 0 the integral over the circumference vanishes; since this integral is contained as a
factor in (4.3.129) and (4.3.130), the complete left-hand sides of (4.3.129) and (4.3.130) vanish in
this case. Only the integrals for L+K = 0⇔ K =−L don’t vanish. Thereby, the following result
is obtained:∫
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(4.3.133)

The result shows that each summand contains the virtual displacement δue
L and the displacement

ue
−L and its second derivative üe

−L. This indicates that motions with different periodicities are de-
coupled from each other with respect to the elasticity and to the inertia. – By using the substitution
K =−L for the indices it is finally obtained:∫
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K(t)] (4.3.134)



Chapter 4. Structural dynamics of the wheelset and the rail 139

Like for the prismatic element, the mass matrix for the axisymmetric element is independent from
the periodicity K.

Also here, the integrand of the stiffness matrix is resolved using the formulation of the strain vector
according to (4.3.118). It is valid:
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In a similar way to the stiffness matrix of the prismatic element, the stiffness matrix of the annular
element is composed of three types of integrals, i.e. integrals over a product of the shape functions,
over a product of the shape function and its derivatives and over a product of two derivatives of the
shape functions.

Based on the following relations

N̂(r,y)ue
K(t) =

nN

∑
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N̂i(r,y)ue
i,K(t) (4.3.136)
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the stiffness matrix and the mass matrix can be resolved into submatrices, which refer to single
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nodes. Inserting these relations into the expressions according to (4.3.134) leads to:
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Using the definition of the strain matrix B̂i,K(r,y) according to (4.3.137) the stiffness matrix Ke
i|k,K

is resolved in the following way:
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4.4 Bilinear interpolation

In the sections 4.2 and 4.3 the general basis for a prismatic and for an annular finite element,
respectively, has been developed. In this derivation, the shape functions Ni(y,z) and Ni(y,r), which
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Figure 4.4.3: Left: unit square of the local coordinates η and ζ; right: actual cross section AC

describe the distribution of the displacement over the cross section of the prism and the annular
solid, respectively, and the nodal displacements we

K and ue
K haven’t been specified except for the

basic conditions, which are generally required for the finite element formulation:

Ni(y j,z j) =

{
I for j = i
0 for j 6= i , we

i (x, t) = wi(x,yi,zi, t) (4.4.141)

Ni(y j,r j) =

{
I for j = i
0 for j 6= i , ue

i (x, t) = ui(x,yi,zi, t) (4.4.142)

In this section, a formulation will be developed, which uses a quadrilateral area for the cross
section and a bilinear interpolation. The four nodes P1, P2, P3 and P4 are located at the corners
of the quadrilateral area. In the following, an area located in the plane using the coordinates y
and z will be considered. This is the description used of the cross-sectional area of the prismatic
element. Nevertheless, the considerations are also valid for the cross-sectional area of the annular
element; the cartesian coordinate z has simply to be replaced by the radial coordinate r.

For the description of the area, the local coordinates η and ζ are used. The range of these coordi-
nates is given by:

η ∈ {R|0≤ η≤ 1} , ζ ∈ {R|0≤ ζ≤ 1} (4.4.143)

so that the complete domain defined by the coordinates is the unit square. This unit square is
mapped to the actual shape of the cross sectional area AC, as shown in Fig. 4.4.3. The mapping is
done by the scalar shape functions Ni(η,ζ), which fulfil the following condition:

Ni(η j,ζ j) =

{
1 for j = i
0 for j 6= i (4.4.144)

For a bilinear interpolation and for the mapping displayed in Fig. 4.4.3, the shape functions are
given by the following expressions:

N1(η,ζ) = (1−η)(1−ζ), N2(η,ζ) = (1−η)ζ, N3(η,ζ) = ηζ, N4(η,ζ) = η(1−ζ) (4.4.145)

The functions Ni(η,ζ) are displayed in Fig. 4.4.4. Using these functions, the two-dimensional
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Figure 4.4.4: Interpolation functions for a bilinear quadrilateral finite element

vector y is described in the following way:

y =

[
y
z

]
=

[
y1
z1

]
︸︷︷ ︸

y1

N1(η,ζ)+

[
y2
z2

]
︸︷︷ ︸

y2

N2(η,ζ)+

[
y3
z3

]
︸︷︷ ︸

y3

N3(η,ζ)+

[
y4
z4

]
︸︷︷ ︸

y4

N4(η,ζ) =
4

∑
i=1

yi Ni(η,ζ)

(4.4.146)
Here, the vectors yi contain the coordinates yi and zi of the nodes Pi. Since the shape functions
according to (4.4.145) fulfil the condition (4.4.144), it is valid: They fulfil the condition:

y(η,ζ) =
4

∑
i=1

yi Ni(η,ζ), Ni(η j,ζ j) =

{
1 for j = i
0 for j 6= i ⇒ y(ηi,ζi) = yi (4.4.147)

In an analogous way, the following mapping is used for the annular element:

y =

[
y
r

]
=

[
y1
r1

]
︸︷︷ ︸

y1

N1(η,ζ)+

[
y2
r2

]
︸︷︷ ︸

y2

N2(η,ζ)+

[
y3
r3

]
︸︷︷ ︸

y3

N3(η,ζ)+

[
y4
r4

]
︸︷︷ ︸

y4

N4(η,ζ) =
4

∑
i=1

yi Ni(η,ζ)

(4.4.148)
In order to determine the stiffness matrix and the mass matrix of the element, an integration over
the area has to be carried out. In section 4.2 the infinitesimal volume dV has been formulated using
the triple scalar product:

dV =
∂x
∂x

dx ·
(

∂x
∂y

dy× ∂x
∂z

dz
)

(4.4.149)

Based on this, the infinitesimal area dA can be formulated by replacing the differential with respect
to x by the unity vector e1 pointing in the direction of the 1-axis. Furthermore, the differentials with
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respect to the coordinates y and z have to be replaced by those with respect to the local coordinates
η and ζ. This leads to:

dA = e1 ·
(

∂x
∂η

dη× ∂x
∂ζ

dζ

)
=

1
0
0

 ·

 0

∂y
∂η

∂z
∂η

dη×

 0
∂y
∂ζ

∂z
∂ζ

dζ


=

1
0
0

 ·
 ∂y

∂η

∂z
∂ζ
− ∂z

∂η

∂y
∂ζ

0
0

dη dζ =

(
∂y
∂η

∂z
∂ζ
− ∂z

∂η

∂y
∂ζ

)
︸ ︷︷ ︸

J

dη dζ = J dη dζ (4.4.150)

The scalar J is the determinant of the Jacobian J:

J =

[
∂y
∂η

∂y
∂ζ

∂z
∂η

∂z
∂ζ

]
⇒ detJ = det

[
∂y
∂η

∂y
∂ζ

∂z
∂η

∂z
∂ζ

]
=

∂y
∂η

∂z
∂ζ
− ∂y

∂ζ

∂z
∂η

= J (4.4.151)

For the used shape functions, the partial derivatives are obtained to:

N1 = (1−η)(1−ζ), N2 = (1−η)ζ, N3 = ηζ, N4 = η(1−ζ)

⇒ ∂N1

∂η
=−(1−ζ),

∂N2

∂η
=−ζ,

∂N3

∂η
= ζ,

∂N4

∂η
= 1−ζ (4.4.152)

⇒ ∂N1

∂ζ
=−(1−η),

∂N2

∂ζ
= 1−η,

∂N3

∂ζ
= η,

∂N4

∂ζ
=−η (4.4.153)

Thereby, it is valid for the elements of the Jacobian:[
∂y
∂η

∂z
∂η

]
=

∂y
∂η

=
∂

∂η

(
4

∑
i=1

yi Ni(η,ζ)

)
=−y1 (1−ζ)−y2 ζ+y3 ζ+y4 (1−ζ)

=

[
y4− y1
z4− z1

]
(1−ζ)+

[
y3− y2
z3− z2

]
ζ (4.4.154)[

∂y
∂ζ

∂z
∂ζ

]
=

∂y
∂ζ

=
∂

∂ζ

(
4

∑
i=1

yi Ni(η,ζ)

)
=−y1 (1−η)+y2 (1−η)+y3 η−y4 η

=

[
y2− y1
z2− z1

]
(1−η)+

[
y3− y4
z3− z4

]
η (4.4.155)

In an analogous way, it is valid for the annular element:[
∂y
∂η

∂r
∂η

]
=

∂y
∂η

=

[
y4− y1
r4− r1

]
(1−ζ)+

[
y3− y2
r3− r2

]
ζ (4.4.156)[

∂y
∂ζ

∂r
∂ζ

]
=

∂y
∂ζ

=

[
y2− y1
r2− r1

]
(1−η)+

[
y3− y4
r3− r4

]
η (4.4.157)

For the distribution of the displacements of the area, the same shape functions Ni(η,ζ) are used.
Thereby, the element based on this approach is an isoparametric element. Furthermore, the same
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shape functions are used for the displacements in all three coordinate directions. For the prismatic
element, the following formulation is obtained:

wK(η,ζ) =
4

∑
i=1

Ui,K
Vi,K
Wi,K


︸ ︷︷ ︸

we
i,K

Ni(η,ζ) =
4

∑
i=1

INi(η,ζ)︸ ︷︷ ︸
N̂i(η,ζ)

we
i,K (4.4.158)

In an analogous way, the following formulation is used for the annular element:

uK(η,ζ) =
4

∑
i=1

Ti,K
Vi,K
Ri,K


︸ ︷︷ ︸

ue
i,K

Ni(η,ζ) =
4

∑
i=1

INi(η,ζ)︸ ︷︷ ︸
N̂i(η,ζ)

ue
i,K (4.4.159)

In the sections 4.2 and 4.3, the strain matrices B̂K have been formulated in the following way
according to (4.2.57) and (4.3.118):

B̂K(y,z) = Tx N̂(y,z) iK
2π

`
+Ty

∂

∂y
N̂(y,z)+Tz

∂

∂z
N̂(y,z) (4.4.160)

B̂K(r,y) =
1
r

[
T0 +TφiK

]
N̂(r,y)+Tr

∂

∂r
N̂(r,y)+Ty

∂

∂y
N̂(r,y) (4.4.161)

It can be seen that for the strain matrices the derivatives of the shape functions N̂ with respect to
y and to z or r are required. According to (4.4.145), the shape functions Ni are formulated for the
local coordinates η and ζ. Based on the chain rule it is valid:

∂Ni

∂η
=

∂Ni

∂y
∂y
∂η

+
∂Ni

∂z
∂z
∂η

(4.4.162)

∂Ni

∂ζ
=

∂Ni

∂y
∂y
∂ζ

+
∂Ni

∂z
∂z
∂ζ

(4.4.163)

Resolving these equations for the wanted derivatives ∂Ni
∂y and ∂Ni

∂z gives:

∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

=

[
∂Ni

∂y
∂y
∂η

+
∂Ni

∂z
∂z
∂η

]
∂z
∂ζ
−
[

∂Ni

∂y
∂y
∂ζ

+
∂Ni

∂z
∂z
∂ζ

]
∂z
∂η

=
∂Ni

∂y

[
∂y
∂η

∂z
∂ζ
− ∂y

∂ζ

∂z
∂η

]
︸ ︷︷ ︸

J

⇒ ∂Ni

∂y
=

1
J

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

]
(4.4.164)

−∂Ni

∂η

∂y
∂ζ

+
∂Ni

∂ζ

∂y
∂η

=−
[

∂Ni

∂y
∂y
∂η

+
∂Ni

∂z
∂z
∂η

]
∂y
∂ζ

+

[
∂Ni

∂y
∂y
∂ζ

+
∂Ni

∂z
∂z
∂ζ

]
∂y
∂η

=
∂Ni

∂z

[
∂z
∂ζ

∂y
∂η
− ∂z

∂η

∂y
∂ζ

]
︸ ︷︷ ︸

J

⇒ ∂Ni

∂z
=

1
J

[
−∂Ni

∂η

∂y
∂ζ

+
∂Ni

∂ζ

∂y
∂η

]
(4.4.165)

According to (4.4.154) and (4.4.155), it is valid:[
∂y
∂η

∂z
∂η

]
=

[
y4− y1
z4− z1

]
(1−ζ)+

[
y3− y2
z3− z2

]
ζ,

[
∂y
∂ζ

∂z
∂ζ

]
=

[
y2− y1
z2− z1

]
(1−η)+

[
y3− y4
z3− z4

]
η

detJ =
∂y
∂η

∂z
∂ζ
− ∂y

∂ζ

∂z
∂η

(4.4.166)
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Thereby, the right-hand sides of (4.4.164) and (4.4.165) contain only functions depending on the
local coordinates η and ζ so that the derivatives ∂Ni

∂y and ∂Ni
∂z of the shape functions can now be

determined for any given values of the coordinates η and ζ.

4.5 Formulation of the semi-analytic elements

By combining the fundamentals for the prismatic structure developed in section 4.2 and for the
axisymmetric structure developed in section 4.3 with the bilinear interpolation developed in sec-
tion 4.4 the semi-analytic elements can now be formulated. In the following subsections, the
required expressions are developed; afterwards, the evaluation is discussed.

4.5.1 Bilinear prism element

The basic equations for the stiffness matrix and for the mass matrix of a prism element, which hare
been derived in section 4.2, are given by:

δwe T
(∫

V e
B(x)T DB(x)dV we +

∫
V e

N(x)T
ρN(x)dV ẅe

)
= ∑

K
δwe
−K

T [Ke
K `we

K +Me ` ẅe
K]

=
nN

∑
i=1

nN

∑
k=1

δwe
i,K

T
[
Ke

i|k,K we
k,K +Me

i|k ẅe
k,K

]
(4.5.167)

As derived in section 4.4, the reference position of a point in the cross-sectional area AC, which
is indicated by y, and the distribution of the displacements w over the cross-sectional area AC are
formulated for the local coordinates η and ζ in the following way:

y(η,ζ) =
4

∑
i=1

[
yi
zi

]
︸︷︷︸

yi

Ni(η,ζ), wK(η,ζ) =
4

∑
i=1

Ui,K
Vi,K
Wi,K


︸ ︷︷ ︸

we
i,K

Ni(η,ζ) =
4

∑
i=1

INi(η,ζ)︸ ︷︷ ︸
N̂i(η,ζ)

we
i,K (4.5.168)

N1(η,ζ) = (1−η)(1−ζ), N2(η,ζ) = (1−η)ζ, N3(η,ζ) = ηζ, N4(η,ζ) = η(1−ζ)

(4.5.169)

Since for the displacement in each direction the same shape function is used, it is advantageous
to use the submatrix formulation. As derived in section 4.2, the submatrices Me

i|k and Ke
i|k,K are

determined in the following way:

Me
i|k =

∫
AC

N̂i(y,z)
T

ρ N̂k(y,z)dydz (4.5.170)

Ke
i|k,K = K2

(
2π

`

)2∫
AC

N̂i
T Tx

T DTx N̂k dydz− iK
2π

`

∫
AC

N̂i
T Tx

T D
(

Ty
∂N̂k

∂y
+Tz

∂N̂k

∂z

)
dydz

+iK
2π

`

∫
AC

(
∂N̂i

∂y

T

Ty
T +

∂N̂i

∂z

T

Tz
T

)
DTx N̂k dydz

+
∫

AC

(
∂N̂i

∂y

T

Ty
T +

∂N̂i

∂z

T

Tz
T

)
D
(

Ty
∂N̂k

∂y
+Tz

∂N̂k

∂z

)
dydz (4.5.171)
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Inserting the shape functions N̂i = INi according to (4.5.168) leads to:

Me
i|k = ρI

∫
AC

Ni Nk dydz (4.5.172)

Ke
i|k,K = K2

(
2π

`

)2

Tx
T DTx

∫
AC

Ni Nk dydz

−iK
2π

`

(
Tx

T DTy

∫
AC

Ni
∂Nk

∂y
dydz+ Tx

T DTz

∫
AC

Ni
∂Nk

∂z
dydz

)
+iK

2π

`

(
Ty

T DTx

∫
AC

∂Ni

∂y
Nk dydz+ Tz

T DTx

∫
AC

∂Ni

∂z
Nk dydz

)
+ Ty

T DTy

∫
AC

∂Ni

∂y
∂Nk

∂y
dydz+ Ty

T DTz

∫
AC

∂Ni

∂y
∂Nk

∂z
dydz

+ Tz
T DTy

∫
AC

∂Ni

∂z
∂Nk

∂y
dydz+ Tz

T DTz

∫
AC

∂Ni

∂z
∂Nk

∂z
dydz (4.5.173)

As already mentioned in section 4.2, there are three types of integrals, namely

1. integrals of the product of two shape functions:∫
AC

Ni Nk dydz (4.5.174)

2. integrals of the product of a shape function and a derivative:∫
AC

Ni
∂Nk

∂y
dydz,

∫
AC

Ni
∂Nk

∂z
dydz,

∫
AC

∂Ni

∂y
Nk dydz,

∫
AC

∂Ni

∂z
Nk dydz (4.5.175)

3. integrals of the product of two derivatives:∫
AC

∂Ni

∂y
∂Nk

∂y
dydz,

∫
AC

∂Ni

∂y
∂Nk

∂z
dydz,

∫
AC

∂Ni

∂z
∂Nk

∂y
dydz,

∫
AC

∂Ni

∂z
∂Nk

∂z
dydz (4.5.176)

In section 4.4 it has been determined:

∂Ni

∂y
=

1
∂y
∂η

∂z
∂ζ
− ∂y

∂ζ

∂z
∂η

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

]
=

1
detJ

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

]
(4.5.177)

∂Ni

∂z
=

1
∂z
∂ζ

∂y
∂η
− ∂z

∂η

∂y
∂ζ

[
−∂Ni

∂η

∂y
∂ζ

+
∂Ni

∂ζ

∂y
∂η

]
=

1
detJ

[
−∂Ni

∂η

∂y
∂ζ

+
∂Ni

∂ζ

∂y
∂η

]
(4.5.178)

Furthermore, it is valid:

dy dz =
(

∂z
∂ζ

∂y
∂η
− ∂z

∂η

∂y
∂ζ

)
dη dζ = detJ dη dζ (4.5.179)

From this, it follows:

∂Nk

∂y
dy dz =

1
detJ

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

]
detJdη dζ =

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

]
dη dζ (4.5.180)

∂Nk

∂z
dy dz =

1
detJ

[
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
detJ dη dζ =

[
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
dη dζ (4.5.181)
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It can be seen that the determinant detJ of the Jacobian is cancelled from the expressions. Based
on this, it can be formulated for the integrals:

∫
AC

Ni Nk dy dz =
∫ 1

0

∫ 1

0
Ni Nk detJdη dζ (4.5.182)∫

AC

Ni
∂Nk

∂y
dy dz =

∫ 1

0

∫ 1

0
Ni

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

]
dη dζ (4.5.183)∫

AC

Ni
∂Nk

∂y
dy dz =

∫ 1

0

∫ 1

0
Ni

[
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
dη dζ (4.5.184)∫

AC

∂Ni

∂y
∂Nk

∂y
dy dz =

∫ 1

0

∫ 1

0

1
detJ

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

][
∂Nk

∂η

∂z
∂ζ
− ∂Nk

∂ζ

∂z
∂η

]
dη dζ (4.5.185)∫

AC

∂Ni

∂y
∂Nk

∂z
dy dz =

∫ 1

0

∫ 1

0

1
detJ

[
∂Ni

∂η

∂z
∂ζ
− ∂Ni

∂ζ

∂z
∂η

][
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
dη dζ (4.5.186)∫

AC

∂Ni

∂z
∂Nk

∂z
dy dz =

∫ 1

0

∫ 1

0

1
detJ

[
−∂Ni

∂η

∂y
∂ζ

+
∂Ni

∂ζ

∂y
∂η

][
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
dη dζ (4.5.187)

4.5.2 Bilinear annular element

In section 4.3, the following basic equations for the stiffness matrix and for the mass matrix of an
annular element have been developed:

δue T
(∫

V e
B(x)T DB(x)dV ue +

∫
V e

N(x)T
ρN(x)dV üe

)
= ∑

K
δue
−K

T [2πKe
K ue

K +2πMe üe
K]

=
nN

∑
i=1

nN

∑
k=1

δue
i,K

T
[
2πKe

i|k,K ue
k,K +2πMe

i|k üe
k,K

]
(4.5.188)

The position y within the cross-sectional area AC and the distribution of the displacements u over
the cross-sectional area AC are described by the bilinear approach developed in section 4.4. Using
the local coordinates η and ζ, the :

y(η,ζ) =
4

∑
i=1

[
yi
ri

]
︸︷︷︸

yi

Ni(η,ζ), uK(η,ζ) =
4

∑
i=1

Ti,K
Vi,K
Ri,K


︸ ︷︷ ︸

ue
i,K

Ni(η,ζ) =
4

∑
i=1

INi(η,ζ)︸ ︷︷ ︸
N̂i(η,ζ)

ue
i,K (4.5.189)

N1(η,ζ) = (1−η)(1−ζ), N2(η,ζ) = (1−η)ζ, N3(η,ζ) = ηζ, N4(η,ζ) = η(1−ζ)

(4.5.190)

Since for the displacement in each direction the same shape function is used, it is advantageous
to use the submatrix formulation. As derived in section 4.3, the submatrices Me

i|k and Ke
i|k,K are
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determined in the following way:

Me
i|k =

∫
AC

N̂i(y,r)
T

ρ N̂k(y,r)r dydr (4.5.191)

Ke
i|k,K =

∫
AC

B̂i,−K(r,y)
T DB̂k,K(r,y)r dr dy

=
∫

AC

1
r

N̂i
T [T0

T− iK Tφ
T] D

[
T0 + iK Tφ

]
N̂k dr dy

+
∫

AC

N̂i
T [T0

T− iK Tφ
T] D

[
Tr

∂N̂k

∂r
+Ty

∂N̂k

∂y

]
dr dy

+
∫

AC

[
∂N̂i

∂r

T

Tr
T +

∂N̂i

∂y

T

Ty
T

]
D
[
T0 + iK Tφ

]
N̂k dr dy

+
∫

AC

[
∂N̂i

∂r

T

Tr
T +

∂N̂i

∂y

T

Ty
T

]
D
[

Tr
∂N̂k

∂r
+Ty

∂N̂k

∂y

]
r dr dy (4.5.192)

Inserting the shape functions N̂i = INi according to (4.5.189) leads to:

Me
i|k = ρI

∫
AC

Ni Nk r dydr (4.5.193)

Ke
i|k,K =

[
T0

T− iK Tφ
T] D

[
T0 + iK Tφ

]∫
AC

1
r

Ni Nk dydz

+
[

T0
T− iK Tφ

T]DTy

∫
AC

Ni
∂Nk

∂y
dydr+

[
T0

T− iK Tφ
T]DTr

∫
AC

Ni
∂Nk

∂r
dydr

+ Ty
T D

[
T0 + iK Tφ

]∫
AC

∂Ni

∂y
Nk dydr+ Tr

T D
[
T0 + iK Tφ

]∫
AC

∂Ni

∂r
Nk dydr

+ Ty
T DTy

∫
AC

∂Ni

∂y
∂Nk

∂y
r dydr+ Ty

T DTr

∫
AC

∂Ni

∂y
∂Nk

∂r
r dydr

+ Tr
T DTy

∫
AC

∂Ni

∂r
∂Nk

∂y
r dydr+ Tr

T DTr

∫
AC

∂Ni

∂z
∂Nk

∂r
r dydr (4.5.194)

Here, four different types of integrals have to be distinguished

1. integrals of the product of two shape functions and the radius r:∫
AC

Ni Nk r dydr (4.5.195)

2. integrals of the product of two shape functions and the reciprocal value of the radius r:∫
AC

1
r

Ni Nk dydr (4.5.196)

3. integrals of the product of a shape function and a derivative:∫
AC

Ni
∂Nk

∂y
dydz,

∫
AC

Ni
∂Nk

∂z
dydz,

∫
AC

∂Ni

∂y
Nk dydz,

∫
AC

∂Ni

∂z
Nk dydz (4.5.197)

4. integrals of the product of two derivatives:∫
AC

∂Ni

∂y
∂Nk

∂y
r dydr,

∫
AC

∂Ni

∂y
∂Nk

∂z
r dydr,

∫
AC

∂Ni

∂z
∂Nk

∂y
r dydr,

∫
AC

∂Ni

∂z
∂Nk

∂z
r dydr (4.5.198)

The product of a derivative and the infinitesimal area element dydr can be derived from the results



Chapter 4. Structural dynamics of the wheelset and the rail 149

of (4.5.180) and (4.5.181) by replacing the coordinate z with r. Thereby, it is obtained:

∂Nk

∂y
dy dr =

1
detJ

[
∂Ni

∂η

∂r
∂ζ
− ∂Ni

∂ζ

∂r
∂η

]
detJdη dζ =

[
∂Ni

∂η

∂r
∂ζ
− ∂Ni

∂ζ

∂r
∂η

]
dη dζ (4.5.199)

∂Nk

∂r
dy dr =

1
detJ

[
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
detJ dη dζ =

[
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
dη dζ (4.5.200)

It can be seen that the determinant detJ of the Jacobian is cancelled from the expressions. Based
on this, it can be formulated for the integrals:∫

AC

Ni Nk r dy dr =
∫ 1

0

∫ 1

0
Ni Nk detJr dη dζ (4.5.201)∫

AC

1
r

Ni Nk dy dr =
∫ 1

0

∫ 1

0

1
r

Ni Nk detJ dη dζ (4.5.202)∫
AC

Ni
∂Nk

∂y
dy dr =

∫ 1

0

∫ 1

0
Ni

[
∂Ni

∂η

∂r
∂ζ
− ∂Ni

∂ζ

∂r
∂η

]
dη dζ (4.5.203)∫

AC

Ni
∂Nk

∂y
dy dr =

∫ 1

0

∫ 1

0
Ni

[
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
dη dζ (4.5.204)∫

AC

∂Ni

∂y
∂Nk

∂y
r dy dr =

∫ 1

0

∫ 1

0

1
detJ

[
∂Ni

∂η

∂r
∂ζ
− ∂Ni

∂ζ

∂r
∂η

][
∂Nk

∂η

∂r
∂ζ
− ∂Nk

∂ζ

∂r
∂η

]
r dη dζ

(4.5.205)∫
AC

∂Ni

∂y
∂Nk

∂r
r dy dr =

∫ 1

0

∫ 1

0

1
detJ

[
∂Ni

∂η

∂r
∂ζ
− ∂Ni

∂ζ

∂r
∂η

][
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
r dη dζ

(4.5.206)∫
AC

∂Ni

∂r
∂Nk

∂r
r dy dr =

∫ 1

0

∫ 1

0

1
detJ

[
−∂Ni

∂η

∂y
∂ζ

+
∂Ni

∂ζ

∂y
∂η

][
−∂Nk

∂η

∂y
∂ζ

+
∂Nk

∂ζ

∂y
∂η

]
r dη dζ

(4.5.207)

4.5.3 Numerical integration

In the sections 4.5.1 and 4.5.2 the integrals for the mass matrix and for the stiffness matrix have
been developed. For some of these integrals, an analytical solution is not possible. This is espe-
cially the case for those integrals, which contain reciprocal values of the determinant detJ of the
Jacobian or of the radial coordinate r. Thus, a numerical evaluation is used. A widely used method
is the Gauss integration. Here, the integral of a function f over a domain D is approximated by
weighted function values at certain points given by ξi and ηi:∫

D
f (ξ,η)dξdη =

N

∑
i=1

f (ξi,ηi)wi (4.5.208)

For the integration over the unit square, Schwarz [67] gives the following coordinates and weights
for the integration points:

In Fig.4.5.5 the positions of the integration points within the unit square are displayed.

Using these parameters, the integral of the function f over the unit square is approximated by:∫ 1

0

∫ 1

0
f (η,ζ)dηdζ =

4

∑
i=1

4

∑
j=1

f (σi,σ j)σi σ j (4.5.209)
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i σi wi

1 0.069 431 8442 0.172 927 4226
2 0.330 009 4782 0.326 072 5774
3 0.669 990 5218 0.326 072 5774
4 0.930 568 1558 0.172 927 4226

z

h
1

1

Figure 4.5.5: Position of the integration points for the Gauss integration



Chapter 5

Description of the rotating flexible wheelset

The description of the wheelset is developed by combining the floating frame of reference formu-
lation for a flexible body with the concept of cyclic systems. In section 5.1 the basic kinematics of
the wheelset are presented. The consideration of a cyclic structure and the related generalization
by an n-tuple of identical particles are developed in section 5.2. In the section 5.3 the formulation
for the cyclic structure is modified by using a description in an intermediate frame. Based on this,
a transformation between the two formulations is derived; in the section 5.4 this transformation
is applied to the equations of motion of a linear cyclic system, which have been developed in the
section 3.2. Furthermore, in the section 5.5, the description of the flexible wheelset by a modal
synthesis is adapted to the transformation derived in the section 3.2. The shape functions required
for the modal synthesis are gained from a finite element model of the wheelset, which is described
in the section 5.6. In the section 5.7 the basic principle of the inertia terms for the n-tuple is devel-
oped and applied to the formulation using the intermediate frame. In the sections 5.8, some basic
characteristics of the inertia terms for the three groups will be discussed. Finally, the description
of external forces for the rotating wheelset is discussed in the section 5.9.

5.1 Kinematics of the wheelset

The basis for the kinematics is the floating frame of reference formulation:

rI
OP = rI

OR+SIR rR
RP (5.1.1)

For the description of the wheelset the body-fixed frame BW is used as the floating frame of ref-
erence R . The reference point RW lies on the centre of the axis of the rotational symmetry of the
wheelset. Thereby, the position of a particle belonging to the wheelset, which is currently located
at the point P is described in the following way:

rI
OP = rI

ORW
+SIBWrBW

RWP
(5.1.2)

The point RW and the frame BW define the current spatial position of the wheelset. In the following
considerations the kinematics of this motion will be developed. Special characteristics of the
kinematics are:

• splitting of the motion into one part given by the motion along the track and another part
describing the relative; this is generally used in railway dynamics

151
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• introducing an intermediate frame performing all motions of the wheelset except the large
rotation due to overturning and special treatment of the overturning motion

• describing the relative kinematics by cylindrical coordinates to exploit the rotational sym-
metry

5.1.1 Rigid body motions

As usual in railway dynamics, the kinematics is split into two parts: The first part is given by the
trajectory of the track; here, the track point T and the track frame T are used. The geometry of the
trajectory is described by the position vector rI

OT and the transformation matrix SIT , which both
depend on the arc length s:

rI
OT = rI

OT(s), SIT = SIT (s) (5.1.3)

The matrix SIT describes the orientation of the track. Changes of the orientation are caused by
curves, superelevations and gradients of the track. The individual coordinate sW = sW(t) indicates
the current position of the wheelset on the trajectory, which describes the track. This position is
determined by the track point TW and the rotation matrix SI T W of the wheelset. It is valid:

s = sW(t)⇒ rI
OTW

= rI
OT(sW), SIT W = SIT (sW) (5.1.4)

The second part describes the motions of the wheelset relative to the track. As mentioned before,
the current position and orientation of the wheelset is described by the reference point RW and the
body-fixed reference frame BW of the wheelset. The relative translations are therefore expressed
by the vector rT

TR:

rT W

TWRW
=

 0
yW(t)
zW(t)

 (5.1.5)

Here, yW and zW indicate the lateral and the vertical displacement of the wheelset, respectively. –
The rotation of the wheelset relative to the track is described by the matrix STWBW describes the
rotation of the entire wheelset with respect to the track. As already mentioned before, the wheelset
is considered as a rotational symmetric structure, whereas the 2-axis of the frame B W is the axis
of symmetry. Furthermore, the wheelset performs a large rotation due to its overturning motion
around its 2-axis. Therefore, it is sensible to modify the usual sequence of the Cardan angles 1-2-3
in such a way that the rotation around the 2-axis is the last in the sequence. By using the roll angle
ϕW, the yaw angle ψW and the overturning angle χW the matrix can be composed from elementary
rotation matrices in the following way:

STWBW = S3 (ψW(t)) S1 (ϕW(t)) S2 (χW(t)) (5.1.6)

For the sake of brevity and for a better overview, the dependency of the arc length coordinate sW(t),
of the translations yW(t) and zW(t) and of the rotation angles ϕW(t), ψW(t), and χW(t) will not be
indicated explicitly in the following considerations. – The matrix STWBW can be split into two parts:

STWBW = S3(ψW)S1(ϕW)︸ ︷︷ ︸
STWAW

S2(χW)︸ ︷︷ ︸
SAWBW

=

cosψW −cosϕW sinψW −sinϕW sinψW

sinψW cosϕW cosψW cosϕW sinψW

0 sinϕW cosϕW

 cosχW 0 sinχW

0 1 0
−sinχW 0 cosχW

 (5.1.7)
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Thereby, an intermediate frame AW is defined, which performs all motions of the undeformed
wheelset except the overturning motion χW. Thus, the frame AW will be referenced as the sliding
frame. – It should be pointed out that the roll angle ϕW and the yaw angle ψW are usually quite
small and stay in a certain range around zero. In contrast to this, the overturning angle χW is a large
angle, which grows while the vehicle is running1.

In total, the rigid body kinematics of the wheelset is formulated in the following way:

rI
ORW

= rI
OT(sW)+SIT (sW)rT W

TWRW
(yW,zW) (5.1.8)

SIBW = SIT (sW)STWAW(ϕW,ψW)SAWBW(χW) (5.1.9)

This formulation shows the influence of the degrees of freedom.

The angular velocity of the wheelset can be formulated by superposing the relative angular veloc-
ities. It is valid:

ω̃
I
I T W

=
∂SI T(sW)

∂sW
ṡW SI T(sW)

T
= ω̃

I
I T W

(ṡW,sW) ⇒ ω
I
I T W

= ω
I
I T W

(ṡW,sW) (5.1.10)

ω
T W

T WAW
=

ϕ̇W cosψW

ϕ̇W sinψW

ψ̇W

= ω
T W

T WAW
(ϕ̇W, ψ̇W,ϕW,ψW) (5.1.11)

ω
AW

AWBW
= ω

BW

AWBW
=

 0
χ̇W

0

= χ̇W e2 (5.1.12)

The absolute angular velocity ωI
IBW

can be composed in the following way:

ω
I
IBW

= ω
I
I T W

(ṡW,sW)+SIT (sW)
[
ω

T W

T WAW
(ϕ̇W, ψ̇W,ϕW,ψW)+STWAW(ϕW,ψW) χ̇W e2

]
(5.1.13)

Here, an advantage of the chosen formulation becomes visible: In the description in the inertial
frame I the absolute angular velocity ωI

IBW
of the wheelset contains the angular velocity χ̇W, but

not the angle χW and thereby also not the functions sin(χW) and cos(χW). This aspect is especially
interesting in the context of linearization, as discussed by Vohla [77].

5.1.2 Relative motions

The relative position of a particle with respect to the body reference point R is described in the
reference frame R by:

rR
RP = xR +wR (xR , t) (5.1.14)

Here, the vector xR describes the position of the particle in the reference state, usually the unde-
formed state. The vector wR describes the deformation field, by which the particle is shifted from
its reference position to its current position. In the present case, the body-fixed frame BW of the
wheelset is chosen as the reference frame. Thereby, the relative kinematics is formulated in the
following way:

rBW

RWP
= xBW +wBW(xBW, t) (5.1.15)

1In the context of the wheelset the expression “pitch motion” for the rotation around the 2-axis is a bit misleading,
since “pitch” suggests a small periodic motion around a reference state, as it is known e.g. for the carbody of a vehicle.
Therefore, the wheelset’s rotation around its 2-axis will be referenced as “overturning motion”; this also underlines
that it is a large motion, which grows while the vehicle is running.
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The wheelset is considered as a rotational symmetric structure, whereas the 2-axis is the axis
of symmetry. Therefore, it is obvious to use cylindrical coordinates for the description of the
kinematics. In the body-fixed frame B , the axial coordinate y, the radial coordinate r and the
azimuth φ are used as cylindrical coordinates. Thereby, the reference position of a particle can be
expressed in the following way:

xBW =

 r sinφ

y
r cosφ

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

0
y
r


︸︷︷︸

c

= xBW(r,φ,y) (5.1.16)

Since the azimuth φ appears as an argument of the trigonometric functions sinφ and cosφ, it is ev-
ident that the that the coordinate triples 〈r,φ,y〉 and 〈r,φ+2πk,y〉, k ∈ Z denote the same reference
point. It should be pointed out that the coordinate triple 〈c,φ〉, which is used in the body-fixed
frame describes a certain particle; thereby, these coordinates are material coordinates. The radial
coordinate r and the axial coordinate y are contained in the vector c. To keep the expressions short,
this vector will be used in the following:

xBW = xBW(r,φ,y) = xBW(c,φ) (5.1.17)

For the deformation vector wBW(xBW, t) , the reference position vector xBW is an argument. Since
the reference position vector depends on the cylindrical coordinates 〈c,φ〉, the deformation field
can also be formulated using these coordinates:

xBW = xBW(c,φ)⇒ wBW(xBW, t) = wBW(c,φ, t) (5.1.18)

The deformation is also described based on cylindrical coordinates. For this sake, the axial de-
formation V , the radial deformation R and the tangential deformation T are used. Thereby, it is
obtained:

wBW(c,φ, t) =

T (c,φ, t)cosφ+R(c,φ, t)sinφ

V (c,φ, t)
R(c,φ, t)cosφ−T (c,φ, t)sinφ

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

T (c,φ, t)
V (c,φ, t)
R(c,φ, t)


︸ ︷︷ ︸

u(c,φ,t)

(5.1.19)

In the following considerations, the symbols c and u indicate the reference position and the de-
formation, respectively, using the directions of cylindrical coordinates. For the description in the
direction of cartesian coordinates, the symbols x and w will be used.

In total, the relative position of the particle with respect to the reference point is expressed by:

rBW

RWP
= xBW +wBW(xBW, t)
= S2(φ)c+S2(φ)u(c,φ, t)
= S2(φ) [c+u(c,φ, t)] (5.1.20)

It should be noted that the rotation matrix S2(φ) is constant. Therefore it is valid:

ṙBW

RWP
= S2(φ)u̇(c,φ, t), δ

′ṙBW

RWP
= S2(φ)δ

′u̇(c,φ), r̈BW

RWP
= S2(φ)ü(c,φ, t), (5.1.21)
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5.1.3 Summary

By combining the following elements formulated in the previous sections 5.1.1 and 5.1.2

• absolute position of the reference point RW of the wheelset:

rI
ORW

= rI
OTW

(sW)+SIT W(sW)rT W

TWRW
(yW,zW) (5.1.22)

• rotation of the body-fixed frame B W of the wheelset, which is used as the floating frame of
reference:

SIBW = SIT W(sW)STWAW(ϕW,ψW)SAWBW(χW) (5.1.23)

• relative position of the point P with respect to the reference point RW:

rBW

RWP
= S2(φ) [c+u(c,φ, t)] (5.1.24)

the current position of a particle, which is located at the point P can be decribed:

rI
OP = rI

ORW
+SIBWrBW

RWP

= rI
OTW

+SIT W rT W

TWRW
+SIT W STWAW SAWBW S2(φ) [c+u(c,φ, t)] (5.1.25)

This formulation is the base for the following considerations. Since these considerations deal only
with the wheelset, the index W, which indicates the wheelset, is skipped for the sake of brevity and
for a better overview if there is no possibility of an ambiguity.

A general overview on the kinematics, which uses the intermediate sliding frame A and cylindrical
coordinates, is given in Fig.5.1.1.

B

I

A

R

P
r

OR r
OP

x

w

O

y

f

c

c

q

r

Figure 5.1.1: Kinematics of a particle located at the point P.

It can be seen that the two sequent rotations with the overturning angle χ and the azimuth φ are
both carried out around the 2-axis. Thereby, the two rotations can be merged into one; here, the
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new angle θ = χ+φ is introduced. In total, the kinematics of the point P is formulated in the
following way, whereas the index W is skipped as mentioned before:

rI
OP = rI

OR+SIT ST ASAB S2(φ) [c+u(c,φ, t)]
= rI

OR+SIA S2(χ)S2(φ)︸ ︷︷ ︸
S2(χ+φ)

[c+u(c,φ, t)] = rI
OR+SIA S2(θ) [c+u(c,φ, t)] (5.1.26)

This description, which uses the sliding frame A as the reference frame, will be discussed later.

5.2 Generalization of a cyclic structure: The n-tuple of parti-
cles

Generally, the equations of motion for a flexible structure are developed by considering a basic
element of the structure. In the general case of a flexible body this basic element is an infinitesimal
mass particle. This strategy is also applied if the flexible body is considered as a cyclic structure;
in this case, however, the basic element can be extended.

As already described, a cyclic system consists of n identical segments, which are arranged in a
circular way. Rotors having such a cyclic structure are not rare in technical applications. Examples
are bladed discs as used for turbines and turbocompressores, spoked wheels, and disc wheels. For
the following consideration the rotational symmetry is exploited. If the zeroth segment contains a
particle, then each other segment contains a corresponding particle. These corresponding particles
form an n-tuple, which can be seen as a basic unit for the cyclic structure, as shown in Fig.5.2.2

An n-tuple of n identical particles is the most basic generalization of a cyclic structure. The refer-
ence position of the j-th particle of the n-tuple is given by:

x( j) = S2(φj)c, φj = φ0 +
2π

n
j (5.2.27)

The n-tuple is uniquely defined by the vector c and the initial azimuth φ0.

A perfectly rotational symmetric structure like a disc wheel can also be described based on this
consideration. However, for such a structure the choice of the number of segments n is arbitrary as
shown in Fig.5.2.3

An overview of the particles belonging to one n-tuple is given in Figure 5.2.4. In the reference state
the particles are located in equidistant way on a circle defined by its radius r and by the distance
y between the reference point R and the circle’s centre. The azimuth φ0 of the zeroth particle with
respect to the 3-axis of the body-fixed frame is given by φ0. Because of the equidistant distribution
of the particles along the circumference the n-tuple is uniquely defined by the coordinates y, r, and
φ0. In the body-fixed frame B the position of the j-th particle in the reference state is described by
the following vector:

xB(c,φj) = xB
j = S2(φj)c, φj = φ0 +

2π

n
j. (5.2.28)

The motions are described in the directions of cylindrical coordinates, since these directions have
the same orientation for each segment; this is an important aspect regarding the description as a
cyclic structure. The displacement of the j-th particle is formulated in the following way:

wB(c,φj) = wB
j = S2(φj)u(c,φj) = S2(φj)u( j) (5.2.29)
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Figure 5.2.2: Examples for cyclic structures and generalization by an n-tuple of corresponding
particles; above: bladed disc; middle: spoked wheel; below: disc wheel.

The displacement u( j) for the j-th particle is introduced for the sake of brevity. If the considered
particle is the j-th particle of an n-tuple, which is uniquely defined by φ0 and c, then the reference
coordinates of the particle are given by φj and c. Furthermore, if the particles of one arbitrary
n-tuple are considered, the dependency on φ0 and c does not have to be indicated explicitly, since
these coordinates define the n-tuple and are therefore valid for all of its particles.

In the following considerations, a formulation using the body-fixed frame B as the floating frame
of reference will be derived to describe the kinematics for the particles of one n-tuple. The current
absolute position of the j-th particle is indicated by the point Pj. It can be formulated:

rI
OPj

= rI
OR+SIB

(
xB

j +wB
j

)
= rI

OR+SIB S2(φj)
(

c+u( j)
)

(5.2.30)

It should be pointed out that the vectors and matrices, which are used in (5.2.30) for describing the
position of the particle, are real; therefore, it is valid:

rI
OR,c,u

( j) ∈ R3, SIB ,S2(φj) ∈ R3×3 (5.2.31)
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Figure 5.2.3: Arbitrary segmentation for a rotational symmetric structure; above: n = 8; middle:
n = 12; below: n = 24.

An overview on the kinematics of the particles belonging to one n-tuple is given in Fig.5.2.5.

According to the concept of cyclic structures discussed in the section 3, the positions of the par-
ticles belonging to one n-tuple are described by a discrete Fourier series. For the angle φj it is
valid:

φj = φ0 +
2π

n
j ⇒ φj−φ0 =

2π

n
j ⇒ eik (φj−φ0) = eik 2π

n j =
(

ei 2π

n

)k j
= ζ

k j, ζ = ei 2π

n (5.2.32)

Here, ζ = ei 2π

n is the root of unity. Based on this, the displacement u( j) of the j-th particle is
expressed in the following way:

u( j) =
kmax

∑
k=kmin

uB
k ζ

k j =
kmax

∑
k=kmin

uB
k eik (φj−φ0), kmax− kmin = n−1 (5.2.33)
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Figure 5.2.4: Corresponding particles forming an n-tuple defined by y, r, and φ0.

As indicated in (5.2.31), the vectors c and u( j) and thereby also the vector p( j) = c+u( j) are real
vectors. In the section 3.1.3 the problem of a discrete Fourier series for n values f j ∈ R has been
considered; in this context it is reasonable to use certain values for the bounds kmin and kmax. Here,
it has to be distinguished whether n is an even or an odd number.

n
2
/∈ N∧n ∈ N, u( j) ∈ R3 : u( j) =

kmax

∑
k=kmin

uB
k ζ

k j, kmax =
n−1

2
, kmin =−kmax (5.2.34)

n
2
∈ N∧n ∈ N, u( j) ∈ R3 : u( j) =

kmax

∑
k=kmin

uB
k ζ

k j, kmax =
n
2
, kmin =−kmax +1 (5.2.35)

If the bounds kmin and kmax are selected in this way, then it is valid:

u( j) ∈ R3⇒ ℑuB
0 = 0, uB

−k = uB
k , ℑuB

n
2
= 0 (5.2.36)

In the body-fixed frame B the relative position of the j-th particle with respect to the reference
point R is given by:

rB
RPj

= S2(φj)
(

c+u( j)
)

(5.2.37)

It will turn out to be useful to formulate the position for the direction of cylindrical coordinates in
the following way:

c+u( j) = c+
kmax

∑
k=kmin

uB
k eik (φj−φ0) =

−1

∑
k=kmin

uB
k e−ik φ0︸ ︷︷ ︸

pB
k

eik φj + c+uB
0︸ ︷︷ ︸

pB
0

+
kmax

∑
k=1

uB
k e−ik φ0︸ ︷︷ ︸

pB
k

eik φj =
kmax

∑
k=kmin

pB
k eik φj

(5.2.38)
Thereby, the position p( j) for the j-th particle is expressed by:

p( j) = c+u( j) =
kmax

∑
k=kmin

pB
k = eik φj , pB

k =

{
c+uB

0 for k = 0

uB
k e−ik φ0 for k 6= 0

(5.2.39)
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Figure 5.2.5: Kinematics of the particles belonging to one n-tuple; 1: Reference configuration of
the n-tuple; 2: Rigid body translation; 3: Rigid body rotation except the overturning
motion; 4: Rigid body rotation due to the overturning motion; 5: Relative motions
due to deformations.

5.3 Description in the sliding frame

In section 5.1.1 the following matrix describing the rotation of the body-fixed frame BW with re-
spect to the inertial frame I has been formulated.

SIBW = SIT W(sW)STWAW(ϕW,ψW)SAWBW(χW) (5.3.40)
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For the sake of brevity, the index W referring to the wheelset is omitted and the matrices SIT W and
STWAW for the following considerations:

SIB = SIT(s)ST A(ϕ,ψ)SAB(χ) = SIA(s,ϕ,ψ)SAB(χ), SAB = S2(χ) (5.3.41)

Since the rotation from the sliding frame A to the body-fixed frame B is the last one in the sequence
of rotations, the sliding frame A performs all motions of the wheelset except the large rotation with
the overturning angle χ around the 2-axis.

In section 5.1.3, the following formulation for the absolute position of a particle located at the point
Pj has been developed; this formulation is based on the floating frame of reference formulation,
which uses the body-fixed frame B as the reference frame, and the description of the relative
position by cylindrical coordinates:

rI
OPj

= rI
OR+SIB S2(φj)

(
c+u( j)

)
= rI

OR+SIB S2(φj)p( j) (5.3.42)

Based on the matrix decomposition according to (5.3.41) the matrix product contained in (5.3.42)
can be reformulated in the following way:

SIB S2(φ) = SIA SAB S2(φ) = SIA S2(χ)S2(φ) = SIA S2(χ+φ) = SIA S2(θ) (5.3.43)

Here, the new azimuth θ = χ+φ, which is used in the sliding frame A , is introduced. By intro-
ducing the azimuth θj for the j-th particle:

θ = χ+φ ⇒ θj = χ+φj ⇒ φj = θj−χ (5.3.44)

the description of the position is reformulated in the following way:

SIB S2(φj) = SIA S2(θj) ⇒ rI
OPj

= rI
OR+SIB S2(φj)p( j) = rI

OR+SIA S2(θj)p( j) (5.3.45)

In the previous section 5.2 the position vector p( j) has been described by the following expression:

p( j) = c+u( j) =
kmax

∑
k=kmin

pB
k eik φj (5.3.46)

In order to complete the formulation for the new azimuth θj in the sliding frame A , the azimuth
φj has to be eliminated. By using the relation (5.3.44), the terms eik φj are reformulated in the
following way:

eik φj = eik (θj−χ) = eik θj−ik χ = e−ik χ eik θj (5.3.47)

Inserting this into (5.3.46) leads to:

p( j) =
kmax

∑
k=kmin

pB
k eik φj =

kmax

∑
k=kmin

pB
k e−ik χ︸ ︷︷ ︸

pA
k

eik θj =
kmax

∑
k=kmin

pA
k eik θj (5.3.48)

Thereby the new vectors pA
k are introduced. The relation between the vectors pA

k and pB
k , which

are used for the formulations using the sliding frame A and the body-fixed frame B , respectively,
is given by:

pA
k = pB

k e−ik χ ⇔ pB
k = pA

k eik χ (5.3.49)
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By inserting the definition for the vectors pB
k according to (5.2.39) it can be formulated:

k = 0 : pA
0 = pB

0 e−i·0·χ︸ ︷︷ ︸
1

= c+uB
0 = c+uA

0 (5.3.50)

k 6= 0 : pA
k = pB

k e−ik χ = uB
k e−ik φ0 e−ik χ = uB

k e−ik χ︸ ︷︷ ︸
uA

k

e−ik φ0 = uA
k e−ik φ0 (5.3.51)

From this, the relation between the deformation vectors uA
k and uB

k is derived:

uA
k = uB

k e−ik χ⇔ uB
k = uA

k eik χ (5.3.52)

Because of ei·0·χ = e0 = 1 the generalized relation (5.3.52) also covers the case uA
0 = uB

0 applied
in (5.3.50). – As introduced in the section 5.2, the displacement u( j) is a real vector; thereby, it is
valid for the vectors uB

k of the Fourier series:

uB
k = uB

−k (5.3.53)

From this it follows for the new vectors uA
k

uA
k = uB

k e−ik χ = uB
k eik χ = uB

−k e−i(−k)χ = uA
−k⇒ uA

k = uA
−k (5.3.54)

For the derivatives it is valid:

uB
k = uA

k eik χ (5.3.55)

u̇B
k =

d
dt

(
uA

k eik χ

)
=
(

u̇A
k + ik χ̇uA

k

)
eik χ =

∗
uA

k eik χ (5.3.56)

üB
k =

d2

dt2

(
uA

k eik χ

)
=
(

üA
k +2ik χ̇uA

k + ik χ̈uA
k − k2

χ̇
2 uA

k

)
eik χ =

∗∗
uA

k eik χ (5.3.57)

The vectors
∗
uA

k and
∗∗
uA

k represent the expressions contained in the brackets. In the following
considerations, they will be used repeatedly for the sake of brevity and a better overview.

Regarding the derivatives of the position vector p( j) is has to be taken into account that the azimuth
θ = χ+φ contains the large angle χ = χ(t) of the overturning motion. Therefore, it is valid for the
derivative of the power eik θj :

d
dt

eik θj =
d
dt

eik (χ+φj) = eik (χ+φj) ik χ̇ = eik θj ik χ̇ (5.3.58)

From this it follows for the derivatives of the position vector p( j):

p( j) =
kmax

∑
k=kmin

pB
k eik φj =

kmax

∑
k=kmin

pA
k eik θj (5.3.59)

ṗ( j) =
kmax

∑
k=kmin

ṗB
k eik φj =

kmax

∑
k=kmin

(
ṗA

k + ik χ̇pA
k

)
eik θj (5.3.60)

p̈( j) =
kmax

∑
k=kmin

ṗB
k eik φj =

kmax

∑
k=kmin

(
p̈A

k +2ik χ̇ ṗA
k + ik χ̈pA

k − k2
χ̇

2pA
k

)
eik θj (5.3.61)

From (5.3.60) the virtual velocity is derived:

δ
′ṗ( j) =

kmax

∑
k=kmin

ṗB
k eik φj =

kmax

∑
k=kmin

(
ṗA

k + ik χ̇pA
k

)
eik θj (5.3.62)
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5.4 Transformation of the linear cyclic system

In the section 3 the description of a linear cyclic system has been discussed. The equation of
motion of a linear cyclic system is given by:

MC ÿC(t)+PC ẏC(t)+QC yC(t) = hC(t) (5.4.63)

The matrices MC, PC and QC have the following structure, which is explained for the generalized
matrix CC:

CC =



C(0) C(1) 0 . . . 0 C(−1)

C(−1) C(0) C(1) . . . 0 0
0 C(−1) C(0) . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . C(0) C(1)

C(1) 0 0 . . . C(−1) C(0)


(5.4.64)

The matrices MC, PC and QC are derived from the matrix CC by replacing the submatrices C(I) by
the matrices M(I), P(I) and Q(I), respectively. All matrices are assumed to be real matrices, i.e.
ℑMC = 0, ℑMC = 0, ℑPC = 0 and ℑQC = 0.

The vector yC(t) is composed of subvectors; the subvector y( j)(t) describes the displacement of
the j-th segment. The subvectors can be expressed by a discrete Fourier series:

yC(t) =


y(0)(t)

...
y( j)(t)

...
y(n−1)(t)

 , y( j)(t) =
kmax

∑
k=kmin

yk(t) ζ
k j , ζ = e

2π

n i, kmax− kmin = n−1 (5.4.65)

Using this formulation, the equation of motion according to (5.4.63) can be transformed. It is
assumed that the vector δ′ẏC is a real vector so that its transpose δ′ẏC T is equal to its Hermitean
transpose δ′ẏCH. The transformation leads to:

δ
′ẏC

T
(MC ÿC+PC ẏC+QC yC) = δ

′ẏF
H (TCF

H MCTCF ÿF+TCF
H PCTCF ẏF+TCF

H QCTCF yF
)

= n
kmax

∑
k=kmin

δ
′ẏk

H
(Mk ÿk +Pk ẏk +Qk yk) (5.4.66)

In section 5.3, the following description for the displacement of the j-th particle of an n-tuple by a
discrete Fourier series has been developed:

u( j) =
kmax

∑
k=kmin

uB
k ζ

k j, kmax− kmin = n−1, ℑu( j) = 0⇒ uB
−k = uB

k , ℑuB
0 = 0, ℑuB

n
2
= 0 (5.4.67)

This description is valid for the body-fixed frame B . Based on geometrical considerations a for-
mulation for the sliding frame A has been developed. Here, the relation between the vectors uA

k
used in the frame A and the original vectors uB

k is given by:

uB
k e−ik χ = uA

k ⇔ uB
k = uA

k eik χ (5.4.68)
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For the derivatives with respect to the time t it is valid:

uB
k = uA

k eikχ (5.4.69)

u̇B
k =

(
u̇A

k + ik χ̇uA
k

)
eikχ (5.4.70)

üB
k =

(
üA

k +2ik χ̇ u̇A
k + ik χ̈uA

k − k2
χ̇

2uA
k

)
eikχ (5.4.71)

Since the vectors y( j)(t) describe displacements of particles belonging to the j-th segment, it is
obvious to apply the relations (5.4.69), (5.4.69) and (5.4.69), which are valid for single particles,
to the vectors yk. This leads to:

yB
k = yA

k eikχ (5.4.72)

ẏB
k =

(
ẏA

k + ik χ̇yA
k

)
eikχ (5.4.73)

ÿB
k =

(
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

)
eikχ (5.4.74)

For the vector of the virtual velocity it is derived from (5.4.73):

δ
′ẏB

k =
(

δ
′ẏA

k + ik δ
′
χ̇yA

k

)
eikχ (5.4.75)

The Hermitean transpose is obtained to:

δ
′ẏB

k
H
=
(

δ
′ẏA

k
H− ik δ

′
χ̇ yA

k
H
)

e−ikχ (5.4.76)

Now, the vectors for B can be replaced. By factoring out the scalar term and collecting the terms
separately for the virtual velocities δ′ẏA

l and for the virtual angular velocity δ′χ̇, the transformation
leads to the following result:

δ
′ẏB

k
H(

Mk ÿB
k +Pk ẏB

k +Qk yB
k

)
=
[

δ
′ẏA

k
H− ik δ

′
χ̇ yA

k
H
]

e−ikχ

(
Mk

[
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

]
eikχ

+Pk

[
ẏA

k + ik χ̇yA
k

]
eikχ +Qk yA

k eikχ

)
=
[

δ
′ẏA

k
H− ik δ

′
χ̇ yA

k
H
](

Mk

[
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

]
+Pk

[
ẏA

k + ik χ̇yA
k

]
+Qk yA

k

)
eikχ e−ikχ︸ ︷︷ ︸

1

= δ
′ẏA

k
H
(

Mk

[
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

]
+Pk

[
ẏA

k + ik χ̇yA
k

]
+Qk yA

k

)
−ik δ

′
χ̇ yA

k
H
(

Mk

[
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

]
+Pk

[
ẏA

k + ik χ̇yA
k

]
+Qk yA

k

)
(5.4.77)

The final result of (5.4.77) shows that the functions eik χ and e−ik χ are eliminated so that the
overturning angle χ = χ(t) does not appear as an argument of a nonlinear function. In order to
formulate the terms for the complete system, the expression (5.4.77) has to be summed over all
periodicities k. Since the virtual velocity δ′χ̇ does not depend on k, it can be factored out from the
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sum. Thereby, it is obtained:

δ
′ẏC

T
(MC ÿC+PC ẏC+QC yC)

=
kmax

∑
k=kmin

δ
′ẏB

k
H(

Mk ÿB
k +Pk ẏB

k +Qk yB
k

)
=

kmax

∑
k=kmin

δ
′ẏA

k
H
(

Mk

[
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

]
+Pk

[
ẏA

k + ik χ̇yA
k

]
+Qk yA

k

)
−δ
′
χ̇

kmax

∑
k=kmin

ik yA
k

H
(

Mk

[
ÿA

k +2ik χ̇ ẏA
k + ik χ̈yA

k − k2
χ̇

2yA
k

]
+Pk

[
ẏA

k + ik χ̇yA
k

]
+Qk yA

k

)
(5.4.78)

In the case of the flexible wheelset, no circulatoric forces are acting within the structure, i.e. NC = 0
so that it is valid QC = KC. Effects, which result from the inertia, are described by the mass
matrix MC and by the gyroscopic matrix GC; these terms will be considered in a separate section.
Beneath the mass matrix and the gyroscopic matrix the stiffness matrix K is an essential term in
the context of a flexible body. Therefore, this term shall be considered more in detail here. For the
transformation it is valid:

δ
′ẏC

T KC yC = n
kmax

∑
k=kmin

δ
′ẏB

k
H

Kk yB
k = n

kmax

∑
k=kmin

[
δ
′ẏA

k
H− ik δ

′
χ̇ yA

k
H
]

e−ikχ Kk yA
k eikχ

= n
kmax

∑
k=kmin

[
δ
′ẏA

k
H Kk yA

k − ik δ
′
χ̇ yA

k
H Kk yA

k

]
e−ikχ eikχ︸ ︷︷ ︸

1

= n
kmax

∑
k=kmin

δ
′ẏA

k
H Kk yA

k − iδ′χ̇n
kmax

∑
k=kmin

k yA
k

H Kk yA
k (5.4.79)

It can be seen that the terms δ′ẏB
k

H Kk yB
k and δ′ẏA

k
H Kk yA

k , which express the conservative part
of the deformation forces for the deformational motions, have an analogous structure. In order
to evaluate the second partial sum, the sum is reformulated using the following relation, which is
derived in the appendix A.1:

k̂

∑
k=−k̂

Xk = X0 +
k̂

∑
l=1

(Xl +X−l) (5.4.80)

Resolving the Hermitean transposes and applying this transformation leads to:

k̂

∑
k=−k̂

kyA
k

HKk yA
k =

k̂

∑
k=−k̂

kyA
k

T
Kk yA

k = 0 · yA
0

T
K0 yA

0︸ ︷︷ ︸
0

+
k̂

∑
l=1

(
l yA

l

T
Kl yA

l − l yA
−l

T
K−l yA

−l

)
(5.4.81)

The result of the product yA
k

T
Kk yA

k is a scalar; therefore, it is not affected by a transposition:

yA
k

T
Kk yA

k =

(
yA

k

T
Kk yA

k

)T

= yA
k

T Kk
T yA

k (5.4.82)

By applying this relation and factoring out the periodicity l it is obtained:

k̂

∑
k=−k̂

kyA
k

HKk yA
k =

k̂

∑
l=1

(
l yA

l

T
Kl yA

l − l yA
−l

T
K−l yA

−l

)
=

k̂

∑
l=1

l
(

yA
l

T
Kl yA

l − yA
−l

T K−l
T yA
−l

)
(5.4.83)
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With the exception of k = n
2 it is valid for the vectors yA

k :

yA
−k = yA

k (5.4.84)

In the section 3.3.3, the following relation has been determined for the matrices Kk:

Kk = Kk
H = K−k

T⇒Kk−K−k
T = 0 (5.4.85)

In total it is valid:

k̂

∑
k=−k̂

k yA
k

H Kk yA
k =

k̂

∑
l=1

l
(

yA
l

T
Kl yA

l − yA
−l

T K−l
T yA
−l

)
=

k̂

∑
l=1

l
(

yA
l

T
Kl yA

l − yA
l

T
K−l

T yA
l

)

=
k̂

∑
l=1

l yA
l

H (Kl−K−l
T)︸ ︷︷ ︸

0

yA
l = 0 (5.4.86)

For the final evaluation, the cases of an odd and an even number n have to be distinguished. For an
odd number n, the lower bound kmin and the upper bound kmax only differ by their signs:

n ∈ N∧ n
2
/∈ N : kmax =

n−1
2

, kmin =−
n−1

2
=−kmax (5.4.87)

Therefore, the relation (5.4.86) can be applied immediately so that it is obtained:

δ
′ẏC

T KC yC = n
kmax

∑
k=kmin

δ
′ẏB

k
H

Kk yB
k = n

kmax

∑
k=kmin

δ
′ẏA

k
H Kk yA

k − iδ′χ̇n
kmax

∑
k=kmin

k yA
k

H Kk yA
k

= n
kmax

∑
k=kmin

δ
′ẏA

k
H Kk yA

k − iδ′χ̇n
kmax

∑
k=−kmax

k yA
k

H Kk yA
k︸ ︷︷ ︸

0

(5.4.88)

For an even number n the bounds are given by:

n
2
∈ N : kmax =

n
2
, kmin =−

n
2
+1 (5.4.89)

In this case, the sum over k has to be split up before the transformation (5.4.86) can be applied.
Thereby, it is obtained:

n
2
∈ N :

kmax

∑
k=kmin

kyA
k

HKk yA
k =

n
2

∑
k=− n

2+1
kyA

k
HKk yA

k =

n
2−1

∑
k=− n

2+1
kyA

k
HKk yA

k︸ ︷︷ ︸
0

+yA
n
2

HK n
2

yA
n
2

(5.4.90)

5.5 Modal synthesis

The purpose of the modal synthesis is the description of the deformation field. Here, shape func-
tions WI(xB), which depend on the reference location indicated by xB , are scaled by the modal
coordinates qI(t) and superimposed:

wB(xB , t) =
NB

∑
I=1

WI(xB)qB
I (t) (5.5.91)
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Generally, the minimum requirement for the shape functions WI(xB) is that they fulfil the geomet-
ric boundary conditions. Usually, selected eigenmodes of the flexible structure are used as shape
functions.

Also in the present case, the eigenmodes of the wheelset shall be used; more precisely, it is reason-
able to use the eigenmodes of the non-rotating wheelset. Of course, the wheelset performs a large
rotation χ, whereby the angular velocity χ̇ can be rather high so that the eigenfrequencies may
change due to gyroscopic effects; however, the angular velocity χ depends on the current running
speed of the vehicle, which can vary.

In the section 3.3.2 it has been shown that for a cyclic system an eigenvector yCI has the following
structure:

(
MCλI

2 +PCλI +QC

)


y(0)I

y(1)I
...

y(n−1)
I


︸ ︷︷ ︸

yCI

= 0, y( j)
I = YI ζ

kI j (5.5.92)

Each eigenvector yCI has one and only one periodicity kI . Furthermore, it has been shown in the
section 3.3.3 that for a damped cyclic system double eigenvalues λI = λJ , I 6= J, occur for k 6= 0;
it is valid: (

MCλI
2 +DCλI +KC

)
yCI = 0, y( j)

I = YI ζ
kI j (5.5.93)(

MCλI
2 +DCλI +KC

)
yCJ = 0, y( j)

J = YJ ζ
−kI j (5.5.94)

As described in the section 3.3.3, the double eigenvectors reflect the isotropy of the cyclic structure.
Due to this isotropy, the structure has no preferred orientation so that for kI 6= 0 an eigenvibration
with the associated eigenfrequency can occur for any spatial orientation. Thereby, two parameters
are required in order to determine the actual amplitude and the actual orientation. From the isotropy
of the cyclic structure, it also follows that for the modal synthesis where selected eigenmodes are
used as shape functions always both eigenmodes associated with a double eigenvalue have to be
used; otherwise, an “artificial anisotropy” would be generated.

In the case of the wheelset, the internal damping of the structure is very weak so that it can be
neglected and the damping matrix DC vanishes. For such an undamped cyclic system, as generally
for undamped systems, the eigenvibration is a harmonic motion so that the eigenvalues λI = iωI
are imaginary. In this case, it is valid:

λI = iωI ⇒
(
−MCωI

2 +KC

)
yCI = 0, y( j)

I = YI ζ
kI j (5.5.95)

The matrices MC and KC and the eigenfrequency ωI
2π

are real; thereby, the conjugation of the eigen-
vector problem leads to:

0 = (−MCωI2 +KC)yCI =
(
−MCωI

2 +KC

)
yCI, y( j)

I = YI ζkI j = YI ζ
−kI j = y( j)

J (5.5.96)

Apparently, for the undamped cyclic system the relation yCJ = yCI is valid for the two eigenvectors
belonging to the double eigenvalue λI = λJ = iωI .

By applying the structure of the cyclic system to the present case, the shape functions UI which
describe the displacements in the directions of cylindrical coordinates can be formulated in the
following way:

UI(c,φj) = UI(c,φ0)ζ
kI j = UI(c,φ0)eikI (φj−φ0) (5.5.97)
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In the section 5.3 a transformation between the descriptions in the body-fixed frame B and in the
sliding frame A has been developed. For the description in the sliding frame A the kinematics has
to be formulated using the azimuth θ, for which it is valid:

θ = χ+φ⇒ φj−χ (5.5.98)

By applying this relation it can be formulated:

u(c,φj, t) =
NB

∑
I=1

UI(c,φj)qB
I (t) =

NB

∑
I=1

UI(c,φ0)eikI (φj−φ0) qB
I (t)

=
NB

∑
I=1

UI(c,φ0)eikI (θj−χ−φ0) qB
I (t) =

NB

∑
I=1

UI(c,φ0)eikI (θj−φ0)︸ ︷︷ ︸
UI(c,θj)

e−ikI χ qB
I (t)︸ ︷︷ ︸

qA
I (t)

(5.5.99)

Thereby, the new modal coordinates qA
I (t) for the formulation in the sliding frame A are intro-

duced; their relation to the modal coordinates qB
I (t) used in the body-fixed frame B is given by:

qA
I (t) = qB

I (t)e−ikI χ⇔ qB
I (t) = qA

I (t)eikI χ (5.5.100)

With respect to the derivatives it has to be taken into account that the azimuth θj contains the large
rotation angle χ and thereby depends on the time t. Therefore, it is valid:

d
dt

UI(c,θj) =
d

dθj

(
UI(c,φ0)eikI (θj−φ0)

) dθj

dt
= UI(c,φ0)eikI (θj−φ0) ikI χ̇ = UI(c,θj) ikI χ̇

(5.5.101)
From this, it follows for the deformation velocity u̇ and the deformation acceleration ü:

u(c,φj, t) =
NB

∑
I=1

UI(c,φj)qB
I =

NB

∑
I=1

UI(c,θj)qA
I (5.5.102)

u̇(c,φj, t) =
NB

∑
I=1

UI(c,φj) q̇B
I =

NB

∑
I=1

UI(c,θj)
(

q̇A
I + ikI χ̇qA

I

)
(5.5.103)

ü(c,φj, t) =
NB

∑
I=1

UI(c,φj) q̈B
I =

NB

∑
I=1

UI(c,θj)
(

q̈A
I +2ikI χ̇ q̇A

I + ikI χ̈qA
I − kI

2
χ̇

2 qA
I

)
(5.5.104)

For the virtual velocity δ′u̇ it is valid:

δ
′u̇(c,φj, t) =

NB

∑
I=1

UI(c,φj)δ
′q̇B

I =
NB

∑
I=1

UI(c,θj)
(

δ
′q̇A

I + ikI δ
′
χ̇qA

I

)
(5.5.105)

The vector u describes the deformations in the directions of cylindrical coordinates; therefore, it
is equal for both frames B and A . The formulation for the directions of cartesian coordinates is
obtained to:

wB(c,φj, t) = S2(φj)u(c,φj, t) =
NB

∑
I=1

S2(φj)UI(c,φj)︸ ︷︷ ︸
WI(c,φj)

qB
I =

NB

∑
I=1

WI(c,φj)qB
I (5.5.106)
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Thereby, the shape functions WI(c,φj) = S2(φj)UI(c,φj) for cartesian coordinates are defined. The
deformation and their derivatives shall now be transformed into the sliding frame A . Here, the
following relation is used:

SAB S2(φj) = S2(χ)S2(φj) = S2(χ+φj) = S2(θj) (5.5.107)

By applying this relation it is obtained:

SAB wB = SAB S2(φj)︸ ︷︷ ︸
S2(θj)

u(c,φj, t) =
NB

∑
I=1

S2(θj)UI(c,θj)︸ ︷︷ ︸
WI(c,θj)

qA
I (5.5.108)

SAB ẇB = SAB S2(φj)︸ ︷︷ ︸
S2(θj)

u̇(c,φj, t) =
NB

∑
I=1

S2(θj)UI(c,θj)︸ ︷︷ ︸
WI(c,θj)

(
q̇A

I + ikI χ̇qA
I

)
(5.5.109)

SAB ẅB = SAB S2(φj)︸ ︷︷ ︸
S2(θj)

ü(c,φj, t) =
NB

∑
I=1

S2(θj)UI(c,θj)︸ ︷︷ ︸
WI(c,θj)

(
q̈A

I +2ikI χ̇ q̇A
I + ikI χ̈qA

I − kI
2

χ̇
2 qA

I

)
(5.5.110)

Here, the notations SAB ẇB and SAB ẅB , which might appear unnecessary complicated, are used
in order to point out that these expressions describe the deformation velocity and the deformation
acceleration in the sliding frame A . In contrast to this, the vectors ẇA and ẅA contain derivatives
of the rotation matrix SAB and thereby also the relative angular velocity ωA

AB between the frames
A and B .

According to (5.5.97) the shape functions UI(c,φj) have been formulated in the following way:

UI(c,φj) = UI(c,φ0)ζ
kI j = UI(c,φ0)eikI (φj−φ0) (5.5.111)

Regarding the derivation of the equations, this formulation is very compact. For practical ap-
plications, however, a formulation using real vectors is more useful. This formulation shall be
derived next. For kI 6= 0 the eigenmodes, which are used as the shape functions, are associated to
double eigenvalues λI = λJ , I 6= J. Furthermore, it can be derived from the eigenvector problem
(5.5.96) for an undamped cyclic system, the second eigenvector UJ(c,φj) is obtained as the com-
plex conjugate of the first eigenvector UI(c,φj). For the pair of the two terms, which use the double
eigenmodes as the shape functions, it is valid:

UI(c,φj)qB
I +UJ(c,φj)qB

J = UI(c,φj)qB
I +UI(c,φj)qB

J

= ℜUI(c,φj)︸ ︷︷ ︸
UI1(c,φj)

(
qB

I +qB
J

)
︸ ︷︷ ︸

qB
I1

+ℑUI(c,φj)︸ ︷︷ ︸
UI2(c,φj)

i
(

qB
I −qB

J

)
︸ ︷︷ ︸

qB
I2

(5.5.112)

Thereby, the real shape functions UI1(c,φj) = ℜUI(c,φj) and UI2(c,φj) = ℑUI(c,φj) and the real
modal coordinates qB

I1 = qB
I +qB

J and qB
I2 = i

(
qB

I −qB
J
)

are introduced. In an analogous way, the
real shape functions UI1(c,θj) and UI2(c,θj) and the real modal coordinates qA

I1 and qA
I2 used for

the description in the sliding frame A are defined:

UI1(c,θj) = ℜUI(c,θj), UI2(c,θj) = ℑUI(c,θj), qA
I1 = qA

I +qA
J , qA

I2 = i
(

qA
I −qA

J

)
(5.5.113)
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Based on this, the terms according to (5.5.102), (5.5.103) and (5.5.104) using a pair of eigenmodes
belonging to a double eigenvalue can be reformulated in the following way:

UI(c,φj)qB
I +UJ(c,φj)qB

J = UI(c,θj)qA
I +UJ(c,θj)qA

J

= UI1(c,θj)qA
I1 +UI2(c,θj)qA

I2 (5.5.114)

UI(c,φj) q̇B
I +UJ(c,φj) q̇B

J = UI(c,θj)
(

q̇A
I + ikI χ̇qA

I

)
+UJ(c,θj)

(
q̇A

J + ikJ χ̇qA
J

)
= UI1(c,θj)

(
q̇A

I1 + kI χ̇qA
I2

)
+UI2(c,θj)

(
q̇A

I2− kI χ̇qA
I1

)
(5.5.115)

UI(c,φj) q̈B
I +UJ(c,φj) q̈B

J = UI(c,θj)
(

q̈A
I +2ikI χ̇ q̇A

I + ikI χ̈qA
I − kI

2
χ̇

2 qA
I

)
+UJ(c,θj)

(
q̈A

J +2ikJ χ̇ q̇A
J + ikJ χ̈qA

J − kJ
2

χ̇
2 qA

J

)
= UI1(c,θj)

(
q̈A

I1 +2kI χ̇ q̇A
I2 + kI χ̈qA

I2− kI
2

χ̇
2 qA

I1

)
+UI2(c,θj)

(
q̈A

I2−2kI χ̇ q̇A
I1 + kI χ̈qA

I1− kI
2

χ̇
2 qA

I2

)
(5.5.116)

5.6 Structural dynamics model of the wheelset

To describe the flexible body by a modal synthesis, shape functions are required. For these shape
functions, eigenmodes of the body are often used. In this section a structural dynamics model of the
wheelset, from which the eigenmodes are obtained, is developed. This model is based on the finite
element method. As described in section 2.1.2, the finite element method is a numerical method for
boundary value problems. Although the problem of determining eigenmodes of a flexible structure
cannot be solved analytically in the present case of the wheelset, it should by noted that numerical
methods generally introduce certain errors into the solution; these errors usually grow with the
order of the problem to be solved. Therefore, it is desirable to reduce the order of the numerical
problem. By exploiting symmetry properties this can be done without loss of accuracy.

In Fig.5.6.6 the wheelset is displayed. This wheelset is a trailing wheelset equipped with two
brake discs. It is used by DB (Deutsche Bahn = German Railways) in passenger coaches for long
distance traffic; it is suitable for running speeds up to 200 km/h. The axle, the wheels, and the hubs
of the brake discs consist of steel, while the brake discs except their hubs consist of cast iron. The
original brake discs possess fins for the cooling; in the present model these fins are not modelled
explicitly, but their influence is considered by multiplying the density and the shear modulus with
reduction factor equal to the filling grade. Furthermore, also the inner rings of the roller bearings,
which also consist of steel, are taken into account, since these components cause a strong increase
of the bending stiffness of the journals.

From Fig.5.6.6 it can be seen that the wheelset is rotational symmetric with respect to the y-axis.
Therefore, a semianalytic solution for rotational symmetric structures will be developed in the
following sections. Furthermore the present wheelset is symmetric with respect to the middle
cross plain, i.e. the plain spanned by the x- and the 3z-axis; this symmetry is independent of the
rotational symmetry. As it will turn out, both symmetries can be exploited to reduce the order of
the finite element model without loss of accuracy.

The basis for the structural dynamics are Navier’s equations for a linear elastic material. For the
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Figure 5.6.6: Geometric shape of the wheelset.

deformations in the directions of Cartesian coordinates, they are given by:

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
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1
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∂
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− ρ

G
∂2U
∂t2 = 0 (5.6.117)

∂2V
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∂2W
∂x2 +

∂2W
∂y2 +

∂2W
∂z2 +

1
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∂
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∂U
∂x

+
∂V
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+
∂W
∂z

)
− ρ

G
∂2W
∂t2 = 0 (5.6.119)

Here, G, ν and ρ denote the shear modulus, Poisson’s ratio and the density of the material, respec-
tively. – As described in section 5.1.2 the reference position of a particle of the wheelset described
in the body-fixed frame B is given by:

xB = S2(φ)c =

 r sinφ

y
r cosφ

=

x
y
z

 (5.6.120)

Thereby the relation between the Cartesian coordinates x and z in the transversal directions on the
one hand and the polar coordinates r and φ on the other hand is given by:

x = r sinφ, z = r cosφ (5.6.121)
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In the following considerations, the wheelset is regarded as a rotational symmetric structure.
Therefore, Navier’s equations are expressed in cylindrical coordinates. The derivation of Navier’s
equation for cylindrical coordinates is quite tedious. Thus, the detailed derivation can be found in
the appendix B.4. As a result, the following three scalar equations are obtained:
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For a rotational symmetric structure the material parameters G, ν and ρ do not depend on the angle
φ, but only on the radial coordinate r and the axial coordinate y:

G = G(r,y), ν = ν(r,y), ρ = ρ(r,y) (5.6.125)

As it has been shown in section 4.2, Navier’s equations can be reduced by the following semi-
analytic solution:

u = uk(r,φ,y, t) =

 Tk(r,y)
Vk(r,y)
Rk(r,y)


︸ ︷︷ ︸

ûk(y,z)

eik φ eiωkt = ûk(r,y)eik φ︸ ︷︷ ︸
uk(r,φ,y)

eiωkt , k ∈ Z (5.6.126)

As a result, it is obtained:
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In section 4.5.2 an annular finite element with a quadrilateral cross section is developed based on
this semi-analytic solution.

In total, exploitation of the rotational symmetry and the plain symmetry enables a drastical reduc-
tion of the grid used for the finite element model; this grid is displayed in Fig.5.6.7. The grid is
inspired by the model by Heiß presented in [17], but slightly refined. In total the grid possesses
499 nodes and 386 elements. As the grid shows, the half wheelset consists of an axle, one wheel
and one brake disc.
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Figure 5.6.7: Finite element grid for the wheelset.

the eigenmodes can be classified by two properties regarding the symmetry, i.e. the periodicity k
regarding the rotational symmetry on the one hand and the symmetric or antimetric shape regarding
the symmetry with respect to the middle cross plain on the other hand. In this section, some
eigenmodes illustrating these properties will be shown. It should be noted that a detailed analysis
of the eigenmodes of a wheelset very similar to the one treated here has been given by Heiss in his
thesis [17]; the most important results of the work by Heiss are also presented and discussed in the
book by Gasch, Knothe, and Liebich [15]. Therefore, the following discussion of the results can
be kept comparatively brief.

In Table 5.6.1 some symmetric and antimetric eigenmodes for different periodicities k are dis-
played. It can be seen that for the periodicities k ≥ 2 nearly identical eigenfrequencies occur for
the symmetric and antimetric eigenmodes. Furthermore, for these eigenmodes the motions are
limited to the wheels, while the axle remains nearly unaffected. The explanation can be obtained
from the consideration of one n-tuple: The resulting centre of gravity of one n-tuple is only influ-
enced by displacements having the periodicities k = 0 or k = 1; for k ≥ 2 the resulting centre of
gravity is unaffected by the displacements. In the present case this means that no resulting force
is exchanged between the axle and the wheels. As a result, for k ≥ 2 the wheels vibrate as if they
were clamped at their hubs.

In Tab.5.6.2 the eigenmodes associated with the four lowest eigenfrequencies for k = 1 are dis-
played. The eigenmodes associated with the eigenfrequencies of 83.376 Hz and 239.78 Hz are
symmetric, while those associated with the eigenfrequencies of 147.20 Hz and 414.65 Hz are anti-
metric. The images show that these eigenmodes are mainly characterized by bending deformations
of the axle and inclinations of the wheels and the brake discs. Furthermore, as discussed in sec-
tion 3.3.3, double eigenvalues occur; Tab.5.6.2 illustrates the relation between the two eigenmodes
associated with a double eigenvalue: For the present case of the periodicity k = 1 the two eigen-
modes are rotated against each other by an angle of 90◦ or π/2.

In Table 5.6.3 some symmetric eigenmodes for different periodicities k ≥ 2 are displayed. Also
here, double eigenmodes occur, which are rotated against each other.
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symmetric antimetric

k = 0

403.01 Hz 302.46 Hz

k = 1

83.376 Hz 147.20 Hz

k = 2

344.63 Hz 344.63 Hz

k = 3

931.03 Hz 931.03 Hz

k = 4

1695.8 Hz 1695.8 Hz

k = 5

2560.2 Hz 2560.2 Hz

k = 6

3480.5 Hz 3480.5 Hz

Table 5.6.1: Symmetric and antimetric eigenmodes of the wheelset for different periodicities k

5.7 Inertia terms for a cyclic structure: General principle

For a flexible body described by the floating frame of reference formulation, the inertia terms
according to Jourdain’s principle are obtained by integrating the scalar product of the absolute
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83.376 Hz 83.376 Hz

147.20 Hz 147.20 Hz

239.78 Hz 239.78 Hz

414.65 Hz 414.65 Hz

Table 5.6.2: Double bending eigenmodes of the wheelset (k = 1)
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k = 2

344.63 Hz 344.63 Hz

k = 3

931.03 Hz 931.03 Hz

k = 4

1695.8 Hz 1695.8 Hz

k = 5

2560.2 Hz 2560.2 Hz

k = 6

3480.5 Hz 3480.5 Hz

Table 5.6.3: Double eigenmodes of the wheelset for periodicities k ≥ 2



Chapter 5. Description of the rotating flexible wheelset 177

virtual velocity δ′vI
OP and the absolute acceleration aI

OP for all particles of the body B; the particles
have the infinitesimal mass dm.

An integral can be considered as a the sum of an infinite number of infinitesimal summands.
Therefore, the properties which are valid for the addition can also be applied to the integration.
One of these properties is the associative property of the addition, i.e. the sequence of the additions
is arbitrary:

(x+ y)+ z = x+(y+ z)⇒ (a+b)+(c+d) = (a+ c)+(b+d) (5.7.130)

Therefore, it is possible to evaluate partial sums, which again are summed up to the entire sum.

If the flexible body is considered as a cyclic structure, then it consists of n identical segments
Sj, 0≤ j ≤ n−1, which are circularly arranged. Based on the associative property, the integral
over the entire body B can be determined by carrying out the integration over each segments and
afterwards summing up the integrals obtained for each segment.

∫
B

δ
′vI
OP

T aI
OP dm =

n−1

∑
j=0

∫
Sj

δ
′vI
OPj

T aI
OPj

dm, Pj ∈ Sj (5.7.131)

Furthermore, since the segments Sj forming the cyclic structure are identical, the particles form
n-tuples of corresponding particles. Here, the point Pj belonging to the j-th segment Sj is de-
fined by the triple

〈
r,y,φ0 +

2π

n j
〉

of cylindrical coordinates. Also, due to the associative property
the sequence of the integration and the summation can be modified without affecting the result.
Therefore, instead of integrating the product δ′vI

OP
T aI

OP over each segment Sj and summing up
the individual integrals the inertia terms can also be determined by summing up the products for
the n-tuple first and subsequently integrating the resulting sum over the zeroth segment S0. Since
the segment are identical, the domain of r and y is equal for each segment and the domain for the
angle φj is shifted by 2π

n j. Therefore, it is valid:

n−1

∑
j=0

∫
Sj

δ
′vI
OPj

T aI
OPj

dm =
∫
S0

(
n−1

∑
j=0

δ
′vI
OPj

T aI
OPj

)
dm (5.7.132)

If the resulting sum has a certain characteristic property, which is independent from the chosen
n-tuple, then this is also a property of the integral. More concretely, if a certain term is eliminated
from the sum δ′vI

OPj

T aI
OPj

over the n-tuple of corresponding particles, then this term is also not
contained in the integral over all mass particles of the body B. Therefore, the evaluation of the sum
over the n-tuple of corresponding particles will turn out to be useful in order to determine some
characteristics of the inertia terms for a cyclic structure.

According to the floating frame of reference formulation, whereby the body-fixed frame B is used
as the reference frame, the current position of a particle located at the point P is given by:

rI
OP = rI

OR+SIB rI
RP (5.7.133)

As described in the appendix C.1, the virtual velocity δ′vI
OP and the acceleration aI

OP for the particle
are obtained to:

δ
′vI
OP = δ

′vI
OR+δ

′
ω̃

I
IB SIB rB

RP+ ω̃
I
IB SIB

δ
′ṙB
RP (5.7.134)

aI
OP = aI

OR+
(

˙̃ωI
IB + ω̃

I
IB ω̃

I
IB

)
SIB rB

RP+2 ω̃
I
IB SIB ṙB

RP+SIB r̈B
RP (5.7.135)
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Due to the overturning motion of the wheelset, the body-fixed frame B performs a large rotation;
thereby, the rotation matrix SIB contains the trigonometric functions sinχ and cosχ. In contrast to
this, the sliding frame A does not perform the large rotation; therefore, the inertia terms for this
formulation shall be considered.

By splitting the rotation matrix SIB , the current position of a particle located at the point Pj is given
by:

rI
OPj

= rI
OR+SIB S2(φj)p( j) = rI

OR+SIA SAB S2(φj)p( j)︸ ︷︷ ︸
rA
RPj

(5.7.136)

For the vector rA
RPj

, which describes the relative position of the j-th particle in the sliding frame, it
is valid:

rA
RPj

= SAB S2(φj)p( j) = S2(χ)S2(φj)p( j) = S2(χ+φj)p( j) = S2(θj)p( j) (5.7.137)

In order to describe the kinematics of the particle in the sliding frame A , the position vector p( j)

has to be formulated using the azimuth θj. In the section 5.3, the following expression has been
derived:

p( j) =
kmax

∑
k=kmin

pA
k eik (θj−φ0) (5.7.138)

The relation between the description of position in the directions of cylindrical coordinates and the
one in the directions of cartesian coordinates is given by the rotation matrix S2(θj). In a rotation
matrix, the rotation angle appears as the argument of the sine and the cosine function. Therefore,
the rotation matrix S2(β) can be decomposed in the following way:

S2(β) =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

=

0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

S2,0

+cosβ

1 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

S2,C

+sinβ

 0 0 1
0 0 0
−1 0 0


︸ ︷︷ ︸

S2,S

(5.7.139)

By applying the relation between the exponential function eiφ and the trigonometric functions cosβ

and sinβ

cosβ =
eiβ + e−iβ

2
, sinβ =

eiβ− e−iβ

2i
=−i

eiβ− e−iβ

2
(5.7.140)

it can be formulated:

S2(β) = S2,0 + cosβS2,C + sinβS2,S = S2,0 +
eiβ + e−iβ

2
S2,C− i

eiβ− e−iβ

2
S2,S

= S2,0 +
1
2
(S2,C− iS2,S)︸ ︷︷ ︸

S2,1

eiβ +
1
2
(S2,C + iS2,S)︸ ︷︷ ︸

S2,−1

e−iβ =
c

∑
c=−1

S2,c eicβ (5.7.141)

Thereby, the rotation matrix S2(β) is formulated as a Fourier series. Based on this, the position
vector rA

RPj
, too, can be expressed by a Fourier polynomial obtained from the product of two

Fourier series. In the formulation for p( j) according to (5.7.138) the difference θj−φ0 is used
as the argument. In order to adapt the Fourier series for the rotation matrix S2(θj), the rotation
around the angle θj is split up into two parts θj−φ0 and θ0. Applying the matrix decomposition
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according to (5.7.141) to the matrix S2(θj−φ0) and inserting the Fourier series for p( j) according
to (5.7.138) leads to:

rA
RPj

= S2(θj)p( j) =

(
c

∑
c=−1

S2,c eicθj

)(
kmax

∑
k=kmin

pA
k eik θj

)
=

c

∑
c=−1

kmax

∑
k=kmin

S2,c pA
k ei(k+c)θj (5.7.142)

Based on the index shift, which is derived in the appendix A.1, the inner sum over k is reformulated
in the following way.

kmax

∑
k=kmin

Xk =
kmax+c

∑
K=kmin+c

XK−c⇒
kmax

∑
k=kmin

S2,c pA
k ei(k+c)θj =

kmax+c

∑
K=kmin+c

S2,c pA
K−c eiK θj (5.7.143)

Resolving the outer sum over c and merging the resulting sums over K leads to:

rA
RPj

=
1

∑
c=−1

kmax

∑
k=kmin

S2,c pA
k ei(k+c)θj =

1

∑
c=−1

kmax+c

∑
K=kmin+c

S2,c pA
K−c eiK θj

=
kmax−1

∑
K=kmin−1

S2,−1 pA
K+1 eiK θj +

kmax

∑
K=kmin

S2,0 pA
K eiK θj +

kmax+1

∑
K=kmin+1

S2,1 pA
K−1 eiK θj

= S2,−1 pA
kmin

ei(kmin−1)θj +
(

S2,−1 pA
kmin+1 +S2,0 pA

kmin

)
eikmin θj

+
kmax−1

∑
K=kmin+1

(
S2,−1 pA

K+1 +S2,0 pA
K +S2,1 pA

K−1

)
eiK θj

+
(

S2,0 pA
kmax

+S2,1 pA
kmax−1

)
eikmax θj +S2,1 pA

kmax
ei(kmax+1)θj

=
kmax+1

∑
K=kmin−1

rA
A ,K eiK θj (5.7.144)

Here, the new vectors rA
A ,K are defined in the following way:

rA
A ,K =



S2(φ0)S2,−1 pA
kmin

for K = kmin−1

S2,−1 pA
kmin+1 +S2,0 pA

kmin
for K = kmin

S2,−1 pA
K+1 +S2,0 pA

K +S2,1 pA
K−1 for kmin +1≤ K ≤ kmax−1

S2,0 pA
kmax

+S2,1 pA
kmax−1 for K = kmax

S2,1 pA
kmax

for K = kmax +1

(5.7.145)

By transforming the vector rA
RPj

into the inertial frame I it is obtained:

rI
RPj

= SIA rA
RPj

= SIA
kmax+1

∑
K=kmin−1

rA
A ,K eiK (θj−φ0) =

kmax+1

∑
K=kmin−1

SIA rA
A ,K eiK θj =

kmax+1

∑
K=kmin−1

rI
A ,K eiK θj (5.7.146)

For the new vectors rI
A ,K it is valid:

rI
A ,K = SIA rA

A ,K (5.7.147)

It should be pointed out that in this formulation (5.7.146) the large overturning angle χ = χ(t) is
implicitly contained in the azimuth θj, but not in the vectors rI

A ,K . This has to be taken into account
for the derivative with respect to the time t. For the derivative of the power eiK (θj−φ0) it is valid:

θj = χ(t)+φ0 +
2π

n
j⇒ d

dt

(
eiK θj

)
=

d
dθj

(
eiK θj

) dθj

dt
= eiK θj iK χ̇(t) (5.7.148)
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Based on this, the velocity vI
RPj

and the acceleration aI
RPj

are obtained to:

rI
RPj

=
kmax+1

∑
K=kmin−1

rI
A ,K eiK θj (5.7.149)

vI
RPj

=
kmax+1

∑
K=kmin−1

(
ṙI

A ,K + iK χ̇rI
A ,K

)
eiK θj =

kmax+1

∑
K=kmin−1

vI
A ,K eiK θj (5.7.150)

aI
RPj

=
kmax+1

∑
K=kmin−1

(
r̈I

A ,K +2iK χ̇ ṙI
A ,K +(iK χ̈−K2

χ̇
2)rI

A ,K

)
eiK θj =

kmax+1

∑
K=kmin−1

aI
A ,K eiK θj

(5.7.151)

The vector of the virtual velocity δ′vI
RPj

is derived from (5.7.150):

δ
′vI
RPj

=
kmax+1

∑
K=kmin−1

δ
′vI

A ,K eiK (θj−φ0) (5.7.152)

Based on this the sum of the product δ′vI
OPj

T aI
OPj

over the n-tuple of corresponding particles can
now be evaluated. It is valid:

n−1

∑
j=0

δ
′vI
OPj

T aI
OPj

=
n−1

∑
j=0

(
δ
′vI
OR+δ

′vI
RPj

)T(
aI
OR+aI

RPj

)
= δ

′vI
OPj

T
(

aI
OR

n−1

∑
j=0

1+
n−1

∑
j=0

aI
RPj

)
+

(
n−1

∑
j=0

δ
′vI
RPj

T
)

aI
OR+

n−1

∑
j=0

δ
′vI
RPj

T aI
RPj

(5.7.153)

For the powers eiK θj contained in the Fourier polynomials for δ′vI
RPj

and aI
RPj

it is valid:

θj = χ+φj = χ+φ0+
2π

n
j⇒ eiK θj = eiK (χ+φ0+

2π

n j) = eiK (χ+φ0) eiK 2π

n j = eiK (χ+φ0) ζ
K j (5.7.154)

The evaluation is based on the following relation:

n−1

∑
j=0

ζ
p j =

{
n for p

n ∈ Z
0 for p

n /∈ Z
(5.7.155)

As derived in section 3.1.3, it is valid for the periodicity:

−n
2
+

1
2
≤ kmin ≤ k ≤ kmax ≤

n
2

(5.7.156)

It is assumed that the cyclic structure consists of n > 2 segments; from this, it can be derived:

2 < n⇒ 1
2
>

1
n
⇒ 1

4
>

1
2n
⇒−1

4
<− 1

2n
(5.7.157)

From this, it follows for the bounds of K:

kmin ≥−
n
2
+

1
2
⇒ kmin−1≥−n

2
− 1

2
⇒ kmin−1

n
≥−1

2
− 1

2n
>−3

4
(5.7.158)

kmax ≤
n
2
⇒ kmax +1≤ n

2
+1⇒ kmax +1

n
≤ 1

2
+

1
n
< 1 (5.7.159)
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Thereby, the range of the quotient K
n is obtained to:

kmin−1≤ K ≤ kmax +1⇒−3
4
≤ kmin−1

n
≤ K

n
≤ kmax +1

n
< 1⇒−3

4
<

K
n
< 1 (5.7.160)

According to (5.7.155), the sum of the powers ζp j does not vanish if the quotient p
n is an integer.

Applying this to the present case leads to:

−3
4
<

K
n
< 1∧ K

n
∈ Z⇒ K = 0⇒

n−1

∑
j=0

ζ
K j =

{
n for K = 0
0 for K 6= 0

(5.7.161)

Based on this, it is obtained for the sum of aI
RPj

:

n−1

∑
j=0

aI
RPj

=
n−1

∑
j=0

kmax+1

∑
K=kmin−1

aI
A ,K eiK θj =

kmax+1

∑
K=kmin−1

n−1

∑
j=0

aI
A ,K eiK (χ+φ0) ζ

K j

=
kmax+1

∑
K=kmin−1

(
aI

A ,K eiK (χ+φ0)

(
n−1

∑
j=0

ζ
K j

))
= naI

A ,0 ei·0·(χ+φ0)︸ ︷︷ ︸
1

= naI
A ,0 (5.7.162)

In an analogous way it is obtained for the sum of δ′vI
RPj

:

n−1

∑
j=0

δ
′vI
RPj

=
kmax+1

∑
K=kmin−1

(
δ
′vI

A ,K eiK (χ+φ0)

(
n−1

∑
j=0

ζ
K j

))
= nδ

′vI
A ,0 ei·0·(χ+φ0)︸ ︷︷ ︸

1

= nδ
′vI

A ,0 (5.7.163)

Inserting these results into (5.7.153) leads to:

n−1

∑
j=0

δ
′vI
OPj

T aI
OPj

= δ
′vI
OPj

T
(

aI
OR

n−1

∑
j=0

1+
n−1

∑
j=0

aI
RPj

)
+

(
n−1

∑
j=0

δ
′vI
RPj

T
)

aI
OR+

n−1

∑
j=0

δ
′vI
RPj

T aI
RPj

= δ
′vI
OPj

T
(

naI
OR+naI

A ,0

)
+nδ

′vI
A ,0

T aI
OR+

n−1

∑
j=0

δ
′vI
RPj

T aI
RPj

(5.7.164)

The result indicates that the inertia terms for the translational motions and the coupling terms
between the translational motions on the one hand and the rotational motions and relative motions
on the other hand do not contain the large overturning angle χ.

The evaluation of the remaining sum is more complicated since in this case the product of two
Fourier polynomials has to be summed up. The vector rI

RPj
which describes the current position

of the j-th particle with respect to the reference point R is a geometric vector and thereby a real
vector; therefore, also the vectors vI

RPj
for the velocity and δ′vI

RPj
for the virtual velocity are real

vectors. A real vector is equal to its complex conjugate so that it can be formulated:

ℑrI
RPj

= 0⇒ rI
RPj

= rI
RPj
⇒ δ

′vI
RPj

= δ′vI
RPj
⇒ δ

′vI
RPj

T
= δ′vI

RPj

T
= δ
′vI
RPj

H
(5.7.165)

For the Hermitean transpose δ′vI
RPj

H it is valid:

δ
′vI
RPj

T
= δ
′vI
RPj

H
=

kmax+1

∑
K=kmin−1

δ
′vI

A ,K
H

eiK θj =
kmax+1

∑
K=kmin−1

δ
′vI

A ,K
H

e−iK θj (5.7.166)
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The periodicities of the two Fourier polynomials which describe the virtual velocity δ′vI
RPj

and the
acceleration aI

RPj
are independent from each other. Therefore, a separate periodicity L is used for

the acceleration, while the bounds remain unchanged. Thereby, the remaining sum over j can be
formulated in the following way:

n−1

∑
j=0

δ
′vI
RPj

T aI
RPj

=
n−1

∑
j=0

(
kmax+1

∑
K=kmin−1

δ
′vI

A ,K
H

e−iK θj

)(
kmax+1

∑
L=kmin−1

aI
A ,L eiLθj

)

=
n−1

∑
j=0

kmax+1

∑
K=kmin−1

kmax+1

∑
L=kmin−1

δ
′vI

A ,K
H aI

A ,L ei(−K+L)θj

=
kmax+1

∑
K=kmin−1

kmax+1

∑
L=kmin−1

(
δ
′vI

A ,K
H aI

A ,L

(
n−1

∑
j=0

ei(L−K)θj

))
(5.7.167)

For the sum over j it is valid:

θj = χ+φ0 +
2π

n
j⇒

n−1

∑
j=0

ei(L−K)θj =
n−1

∑
j=0

ei(L−K)(χ+φ0+
2π

n j) =
n−1

∑
j=0

ei(L−K)(χ+φ0)ei(L−K) 2π

n j

= ei(L−K)(χ+φ0)
n−1

∑
j=0

ζ
(L−K) j (5.7.168)

Also here, the sum over j is evaluated based on (5.7.155); to this end, it has to be determined, for
which pairs 〈K,L〉 the sum of the powers ζ(L−K) j does not vanish. From (5.7.155) it follows for the
present case that for a non-vanishing result the quotient L−K

n is an integer; this is the first condition
for the pairs 〈K,L〉:

L−K
n
∈ Z (5.7.169)

Furthermore, the ranges of the periodicities K and L are limited by the bounds of the sums:

δ
′vI
RPj

T
=

kmax+1

∑
K=kmin−1

δ
′vI

A ,K
H

e−iK θj ⇒ kmin−1≤ K ≤ kmax +1 (5.7.170)

kmax+1

∑
L=kmin−1

aI
A ,L eiLθj ⇒ kmin−1≤ L≤ kmax +1 (5.7.171)

Thereby, two other conditions for the pairs 〈K,L〉 are given.

In order to determine the wanted pairs 〈K,L〉, the range of the quotient L−K
n has to be determined.

Multiplying the condition for K according to (5.7.171) by −1

kmin−1≤ K ≤ kmax +1⇔−kmin +1≥−K ≥−kmax−1 (5.7.172)

and combining the result with the condition for L according to (5.7.171) leads to:

−kmax−1≤−K ≤−kmin +1 ∧ kmin−1≤ L≤ kmax +1
⇒−kmax + kmin−2 =−(kmax− kmin +2)≤ L−K ≤ kmax− kmin +2 (5.7.173)

The relation between the bounds kmin and kmax of the original Fourier series is given by:

kmin +n = kmax +1⇒ n−1 = kmax− kmin⇒ n+1 = kmax− kmin +2 (5.7.174)
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By applying this relation the range of the quotient L−K
n is obtained to:

−(kmax− kmin +2)︸ ︷︷ ︸
−n−1

≤ L−K ≤ kmax− kmin +2︸ ︷︷ ︸
n+1

⇒−1− 1
n
=−

(
1+

1
n

)
≤ L−K

n
≤ 1+

1
n

(5.7.175)
Since the n-tuple consists of n > 2 particles, it is valid:

n > 2⇒ 1
n
<

1
2
⇒ 1+

1
n
<

3
2
⇒−3

2
<−

(
1+

1
n

)
≤ L−K

n
= M ≤ 1+

1
n
<

3
2

(5.7.176)

From this it follows:

−3
2
<

L−K
n

= M <
3
2
∧M ∈ Z⇒M ∈ {−1,0,1} (5.7.177)

This result indicates that for the given ranges of K and L the quotient L−K
n can have three different

integer values. For a given value M the relation between K and L is obtained to:

L−K
n

= M⇒−K +L = M n⇒ L = K +M n (5.7.178)

By inserting this into the condition (5.7.171) it is obtained:

kmin−1≤ L = K +M n≤ kmax +1⇒ kmin−1−M n≤ K ≤ kmax +1−M n (5.7.179)

Thereby, a second condition for K in addition to (5.7.170) is obtained. By using the maximum
function max(a,b) and the minimum function min(a,b):

max(a,b) =
{

a for a≥ b
b for a < b , min(a,b) =

{
b for a≥ b
a for a < b (5.7.180)

it can be formulated:

kmin−1≤= K ≤ kmax +1 ∧ kmin−1−M n≤ K ≤ kmax +1−M n (5.7.181)
⇒max(kmin−1,kmin−1−M n)≤ K ≤min(kmax +1,kmax +1−M n) (5.7.182)

As a result, for each value M a range of K is determined for which the values L are obtained from
the relation (5.7.178). Thereby, the wanted pairs 〈K,L〉, for which the sum

n−1

∑
j=0

ei(L−K)θj = ei(L−K)(χ+φ0)
n−1

∑
j=0

ζ
(L−K) j (5.7.183)

does not vanish, can now be determined. In order to simplify the results, the relation between the
bounds kmin and kmax of the original Fourier series will be applied:

kmin +n = kmax +1⇔ kmin−1+n = kmax⇔ kmin = kmax +1−n (5.7.184)

The evaluation of the range of K, the relation between K and L and the function ei(L−K)(χ+φ0) for
the three values of M leads to:

M =−1 M = 0 M = 1
max(kmin−1,kmin−1−M n) kmin−1+n = kmax kmin−1 kmin−1
min(kmax +1,kmax +1−M n) kmax +1 kmax +1 kmax +1−n = kmin

L = K +M n L = K−n L = K L = K +n
ei(L−K)(χ+φ0) e−in(χ+φ0) ei·0·(χ+φ0) = 1 ein(χ+φ0)
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Based on these results the three sets KM, which contain the wanted pairs 〈K,L〉, are determined:

M =−1 : 〈K,L〉 ∈K−1 = {K,L ∈ Z|kmax ≤ K ≤ kmax +1 ∧ L = K−n} (5.7.185)
M = 0 : 〈K,L〉 ∈K0 = {K,L ∈ Z|kmin−1≤ K ≤ kmax +1 ∧ L = K} (5.7.186)
M = 1 : 〈K,L〉 ∈K1 = {K,L ∈ Z|kmin−1≤ K ≤ kmin ∧ L = K +n} (5.7.187)

The sets K−1 and K1 contain only two pairs 〈K,L〉; by applying the relation (5.7.184) it is obtained:

K−1 = {〈kmax,kmax−n〉 ,〈kmax +1,kmax +1−n〉}= {〈kmax,kmin−1〉 ,〈kmax +1,kmin〉}
(5.7.188)

K1 = {〈kmin−1,kmin−1+n〉 ,〈kmin,kmin +n〉}= {〈kmin−1,kmax〉 ,〈kmin,kmax +1〉}
(5.7.189)

In total it is obtained for the sum of the product δ′vI
RPj

T aI
RPj

over the corresponding particles of
the n-tuple:

n−1

∑
j=0

δ
′vI
RPj

T aI
RPj

=
kmax+1

∑
K=kmin−1

kmax+1

∑
L=kmin−1

(
δ
′vI

A ,K
H aI

A ,L

(
n−1

∑
j=0

ei(L−K)θj

))

=
kmax+1

∑
K=kmin−1

δ
′vI

A ,K
H aI

A ,K n︸ ︷︷ ︸
M=0

+
(
δ
′vI

A ,kmin−1
H aI

A ,kmax
+δ
′vI

A ,kmin

H aI
A ,kmax+1

)
nein(χ+φ0)︸ ︷︷ ︸

M=1

+
(

δ
′vI

A ,kmax

H aI
A ,kmin−1 +δ

′vI
A ,kmax+1

H aI
A ,kmin

)
ne−in(χ+φ0)︸ ︷︷ ︸

M=−1

(5.7.190)

By inserting this result into (5.7.164) it is obtained for the complete inertia terms of the n-tuple:

n−1

∑
j=0

δ
′vI
OPj

T aI
OPj

= δ
′vI
OR

T
(

aI
OR

n−1

∑
j=0

1+
n−1

∑
j=0

aI
RPj

)
+

(
n−1

∑
j=0

δ
′vI
RPj

T
)

aI
OR+

n−1

∑
j=0

δ
′vI
RPj

T aI
RPj

= n

(
δ
′vI
OR

T
(

aI
OR+aI

A ,0

)
+ δ

′vI
A ,0

T aI
OR+

kmax+1

∑
K=kmin−1

δ
′vI

A ,K
H aI

A ,K

)
+n
(
δ
′vI

A ,kmin−1
H aI

A ,kmax
+δ
′vI

A ,kmin

H aI
A ,kmax+1

)
einφ0 einχ

+n
(

δ
′vI

A ,kmax

H aI
A ,kmin−1 +δ

′vI
A ,kmax+1

H aI
A ,kmin

)
e−inφ0 e−inχ (5.7.191)

The result indicates that the for the formulation of the inertia terms in the sliding frame A the large
angle χ, which describes the overturning motion of the wheelset, is nearly completely eliminated;
only the terms which

5.8 Inertia terms for a cyclic structure: Structure of the terms

In the previous section 5.7 the inertia terms for an n-tuple of corresponding particles have been
determined for a formulation which uses the sliding frame A as the reference frame. It turned out
that for this case the large overturning angle χ can be eliminated nearly completely; only very few
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terms, which are associated to the highest periodicities kmin and kmax contain the functions einχ

and e−inχ. However, in the Fourier polynomials, which have been used for this consideration, the
rotational motions and the relative motions of the particles were not treated separately. Therefore,
in the following sections, the inertia terms for the different types of motions shall be considered
separately. The full derivation of the inertia terms is given in the appendix C.

Generally, the motions of a flexible body can be divided into three groups, namely translational
motions, rotational motions and relative motions. Here, the translational motions and the rota-
tional motions are motions of the entire body, which are also known as rigid body motions, while
relative motions usually describe deformations. For the inertia terms, the product of the virtual
velocity δ′vB

OP and the acceleration aI
OP have to be integrated over all infinitesimal masses dm of

the body. For the floating frame of reference formulation where the body-fixed frame B is used as
the reference frame the virtual velocity δ′vB

OP is given by:

δ
′vI
OP = δ

′vI
OR− r̃I

RP δ
′
ω

I
IB +δ

′ṙI
RP (5.8.192)

Thereby, the integrand for the inertia terms can be split up in the following way:

δ
′vI
OP

T aI
OP = δ

′vI
OR

T aI
OP+δ

′
ω

I
IB

T r̃I
RP aI

OP+δ
′ṙI
RP

T aI
OP (5.8.193)

The acceleration is given by:

aI
OP = aI

OR+
(

˙̃ωI
IB + ω̃

I
IB ω̃

I
IB

)
SIB rB

RP+2 ω̃
I
IB SIB ṙB

RP+SIB r̈B
RP (5.8.194)

By factoring out the vectors and matrices δ′vI
OR, aI

OR, SIB , ω̃I
IB and ˙̃ωI

IB , which are equal for all
particles, the inertia terms for the translational motions can be formulated in the following way:∫

B
δ
′vI
OR

T aI
OP dm = δ

′vI
OR

T
(

mB aI
OR+

(
˙̃ωI

IB + ω̃
I
IB ω̃

I
IB

)
SIB

∫
B

rB
RP dm

+2 ω̃
I
IB SIB

∫
B

ṙB
RP dm+SIB

∫
B

r̈B
RP dm

)
(5.8.195)

For the rotational motions the inertia terms are obtained to:∫
B

δ
′
ω

I
IB

T r̃I
RP aI

OP = δ
′
ω

I
IB

T
(

SIB
∫
B

r̃B
RP dm SBI aI

OR−SIB
∫
B

r̃B
RP r̃B

RP dm SBI
ω̇

I
IB

−ω̃
I
IB SIB

∫
B

r̃B
RP r̃B

RP dm SBI
ω

I
IB

+2SIB
∫
B

r̃B
RP

˙̃rB
RP dm SBI

ω
I
IB +SIB

∫
B

r̃B
RP r̈B

RP dm
)

(5.8.196)

For the relative motions it is obtained:∫
B

δ
′ṙI
RP

T aI
OP dm =

∫
B

δ
′ṙB
RP

T
dm SBI aI

OP−
∫
B

δ
′ṙB
RP

T
r̃B
RP dm SBI

ω̇
I
IB

+ω
I
IB

T SIB
∫
B

δ
′ ˙̃rB
RP r̃B

RP dm SBI
ω

I
IB

−
∫
B

δ
′ṙB
RP

T
r̃B
RP dm SBI

ω
I
IB +

∫
B

δ
′ṙB
RP

T
r̈B
RP dm (5.8.197)

The relative position is described by the sum of the reference position vector xB and the deforma-
tion field wB(xB , t):

rB
RP = xB +wB(xB , t) (5.8.198)
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In the body-fixed frame B the reference position vector is constant so that its derivative with respect
to the time t vanishes; thereby, it is valid for the vectors ṙB

RP and r̈B
RP

rB
RP = xB +

NB

∑
I=1

WI(xB)qI ⇒ ṙB
RP =

NB

∑
I=1

WI(xB) q̇I ⇒ r̈B
RP =

NB

∑
I=1

WI(xB) q̈I (5.8.199)

From this it follows for the integrals, which are contained in the inertia terms for the translational
motions: ∫

B
rB
RP dm =

∫
B
xB dm+

NB

∑
I=1

∫
B
WI(xB)dm qI (5.8.200)

∫
B
ṙB
RP dm =

NB

∑
I=1

∫
B
WI(xB)dm q̇I (5.8.201)

∫
B
r̈B
RP dm =

NB

∑
I=1

∫
B
WI(xB)dm q̈I (5.8.202)

The integrals contained in the inertia terms for the rotational motions are reformulated in the fol-
lowing way: ∫

B
r̃B
RP r̃B

RP dm =
∫
B

(
x̃B + w̃B

)(
x̃B + w̃B

)
dm

=
∫
B
x̃B x̃B dm+

∫
B

(
x̃B w̃B + w̃B x̃B

)
dm+

∫
B
w̃B w̃B dm (5.8.203)∫

B
r̃B
RP

˙̃rB
RP dm =

∫
B

(
x̃B + w̃B

)
˙̃wB dm =

∫
B
x̃B ˙̃wB dm+

∫
B
w̃B ˙̃wB dm (5.8.204)∫

B
r̃B
RP r̈B

RP dm =
∫
B

(
x̃B + w̃B

)
ẅB dm =

∫
B
x̃B ẅB dm+

∫
B
w̃B ẅB dm (5.8.205)

Applying the modal synthesis leads to:∫
B

r̃B
RP r̃B

RP dm =
∫
B
x̃B x̃B dm+

NB

∑
I=1

∫
B

(
x̃B W̃I(xB)+W̃I(xB) x̃B

)
dm qI

+
NB

∑
ν=1

NB

∑
I=1

∫
B
W̃ν(xB)W̃I(xB)dm qν qI (5.8.206)

∫
B

r̃B
RP

˙̃rB
RP dm =

NB

∑
I=1

∫
B
x̃B W̃I(xB)dm q̇I +

NB

∑
ν=1

NB

∑
I=1

∫
B
W̃ν(xB)W̃I(xB)dm qν q̇I (5.8.207)

∫
B

r̃B
RP r̈B

RP dm =
NB

∑
I=1

∫
B
x̃B WI(xB)dm q̈I +

NB

∑
ν=1

NB

∑
I=1

∫
B
W̃ν(xB)WI(xB)dm qν q̈I (5.8.208)

For the terms which contain products of deformations, a second independent index ν in addition to
the index I is introduced. – For the inertia terms for the relative motions it is valid:∫

B
δ
′ṙB
RP

T
r̃B
RP dm =

∫
B
δ
′ẇB T(

x̃B + w̃B
)

dm =
∫
B
δ
′ẇB T

x̃B dm+
∫
B
δ
′ẇB T

w̃B dm (5.8.209)∫
B
δ
′ ˙̃rB
RP r̃B

RP dm =
∫
B
δ
′ ˙̃wB
(

x̃B + w̃B
)

dm =
∫
B
δ
′ ˙̃wB x̃B dm+

∫
B
δ
′ ˙̃wB w̃B dm (5.8.210)∫

B
δ
′ṙB
RP

T ˙̃rB
RP dm =

∫
B
δ
′ẇB T ˙̃wB dm (5.8.211)∫

B
δ
′ṙB
RP

T
r̈B
RP dm =

∫
B
δ
′ẇB T

ẅB dm (5.8.212)



Chapter 5. Description of the rotating flexible wheelset 187

Here, the application of the modal synthesis leads to the following formulation:∫
B
δ
′ṙB
RP

T
r̃B
RP dm =

NB

∑
ν=1

(∫
B
Wν(xB)

T
x̃B dm+

NB

∑
I=1

∫
B
Wν(xB)

T
W̃I(xB)dm qI

)
δ
′q̇ν (5.8.213)

∫
B
δ
′ ˙̃rB
RP r̃B

RP dm =
NB

∑
ν=1

(∫
B
W̃ν(xB) x̃B dm+

NB

∑
I=1

∫
B
W̃ν(xB)W̃I(xB)dm qI

)
δ
′q̇ν (5.8.214)

∫
B
δ
′ṙB
RP

T ˙̃rB
RP dm =

NB

∑
ν=1

NB

∑
I=1

∫
B
Wν(xB)

T
W̃I(xB)dm q̇I δ

′q̇ν (5.8.215)

∫
B
δ
′ṙB
RP

T
r̈B
RP dm =

NB

∑
ν=1

NB

∑
I=1

∫
B
Wν(xB)

T
WI(xB)dm q̈I δ

′q̇ν (5.8.216)

5.8.1 Rigid body terms

For the rigid body terms, the integrand contains only the vector xB . Using cylindrical the coordi-
nates c = c(r,y) and φ it is valid:

xB = S2(φ)c⇒ x̃B = S2(φ) c̃ S2(φ)
T⇒ x̃B x̃B = S2(φ) c̃ S2(φ)

T S2(φ)︸ ︷︷ ︸
I

c̃ S2(φ)
T (5.8.217)

Inserting the formulation of the rotation matrix S2(φ) as a Fourier series leads to:

x̃B x̃B = S2(φ) c̃ c̃ S2(φ)
T = S2(φ) c̃ c̃ S2(−φ)

=

(
1

∑
b=−1

S2,b eibφ

)
c̃ c̃

(
1

∑
c=−1

S2,c e−icφ

)
=

1

∑
b=−1

1

∑
c=−1

S2,b c̃ c̃S2,c ei(b−c)φ (5.8.218)

From this it follows for the sums over the corresponding particles of the n-tuple:

n−1

∑
j=0

xB
j =

n−1

∑
j=0

(
1

∑
b=−1

S2,b eibφj

)
c =

n−1

∑
j=0

1

∑
b=−1

S2,b eibφj c =
1

∑
b=−1

(
S2,b c

(
n−1

∑
j=0

eibφj

))
(5.8.219)

n−1

∑
j=0

x̃B
j x̃B

j =
n−1

∑
j=0

1

∑
b=−1

1

∑
c=−1

S2,b c̃ c̃S2,c ei(b−c)φj =
1

∑
b=−1

1

∑
c=−1

(
S2,b c̃ c̃S2,c

(
n−1

∑
j=0

ei(b−c)φj

))
(5.8.220)

The sums over j are evaluated based on the following relation, which contains the evaluation of
the geometric series:

n−1

∑
j=0

ei pφj =
n−1

∑
j=0

ei pφ0 ei p(φj−φ0) = ei pφ0

(
n−1

∑
j=0

ζ
p j

)
=

{
nei pφ0 for p

n ∈ Z
0 for p

n /∈ Z
(5.8.221)

It is assumed that the cyclic structure consists of n > 2 segments; therefore, it is valid:

n > 2⇒ 1
n
<

1
2
⇒ 2

n
< 1 (5.8.222)

For the range of b it is valid:

−1≤ b≤ 1⇒−1
2
<−1

n
≤ b

n
≤ 1

n
<

1
2
⇒−1

2
<

b
n
<

1
2

(5.8.223)
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From this it follows:
−1

2
<

b
n
<

1
2
∧ b

n
∈ Z⇒ b

n
= 0⇒ b = 0 (5.8.224)

Thereby, the evaluation of the sum of xB
j leads to:

n−1

∑
j=0

xB
j =

1

∑
b=−1

(
S2,b c

(
n−1

∑
j=0

eibφj

))
= S2,0 cn = n

0 0 0
0 1 0
0 0 0

0
y
r

= n

0
y
0

 (5.8.225)

The result indicates that the centre of mass of the cyclic structure lies on the 2-axis, which is in this
case the axis of the rotational symmetry. Furthermore, the result does not depend on the angle φ0.

The expression for the inertia tensor contains two sums over the indices b and c. Since the ranges
of b and c are equal, it is valid based on (5.8.223):

−1≤ c≤ 1⇒−1
2
<

c
n
<

1
2
⇒ 1

2
>−c

n
>−1

2
(5.8.226)

From this, it can be derived:

−1
2
<

b
n
<

1
2
∧−1

2
<−c

n
<

1
2
⇒ 1 <

b− c
n

< 1 (5.8.227)

Based on this, it can be derived:

−1 <
b− c

n
< 1∧ b− c

n
∈ Z⇒ b− c

n
= 0⇒ b− c = 0⇒ b = c (5.8.228)

From this, it follows:

n−1

∑
j=0

x̃B
j x̃B

j =
1

∑
b=−1

1

∑
c=−1

(
S2,b c̃ c̃S2,c

(
n−1

∑
j=0

ei(b−c)φj

))
=

1

∑
b=−1

S2,b c̃ c̃S2,b n

= n (S2,−1 c̃ c̃S2,−1 +S2,0 c̃ c̃S2,0 +S2,1 c̃ c̃S2,1) (5.8.229)

With the following matrices:

S2,−1 =
1
2

1 0 −i
0 0 0
i 0 1

, S2,0 =

0 0 0
0 1 0
0 0 0

, S2,1 =
1
2

 1 0 i
0 0 0
−i 0 1

, c̃ c̃ =

−r2− y2 0 0
0 −r2 r y
0 r y −y2


(5.8.230)

it is obtained:

n−1

∑
j=0

x̃B
j x̃B

j = n (S2,−1 c̃ c̃S2,−1 +S2,0 c̃ c̃S2,0 +S2,1 c̃ c̃S2,1)

=−n
2

r2 +2y2 0 0
0 2r2 0
0 0 r2 +2y2

 (5.8.231)

The result is a diagonal matrix, whereby the first and the third diagonal element are equal. Since
the 1-axis and the 3-axis are the transverse axes of the cyclic structure, this result indicates that in
the undeformed reference state the moment of inertia is equal for each transverse axis.
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5.8.2 Terms of first order

In the present case, terms of first order are those terms in which the shape function WI appears one
time as a factor. These terms are the following integrals, which appear in the inertia terms for the
translational and rotational motions:∫

B
WI(xB)dm,

∫
B
x̃B WI(xB)dm,

∫
B
x̃B W̃I(xB)dm,

∫
B

(
x̃B W̃I(xB)+W̃I(xB) x̃B

)
dm (5.8.232)

From these terms, the following integrals contained in the inertia terms for the relative motions can
be derived: ∫

B
Wν(xB)

T
x̃B dm,

∫
B
W̃ν(xB) x̃B dm (5.8.233)

With the exception of a very small region around the reference point, the absolute value
∣∣xB ∣∣

of the reference position vector is far greater then the absolute value
∣∣wB ∣∣ of the deformation

vector; therefore, the first order terms are the dominant coupling terms between the translational
and rotational motions on the one hand and the deformational motions on the other hand.

In the previous section 5.8.1 it has already been derived for the matrix x̃B :

xB = S2(φ)c⇒ x̃B = S2(φ) c̃ S2(φ)
T (5.8.234)

As derived in the section 5.5 it is valid for the shape functions:

WI(xB) = WI(c,φ) = S2(φ)UI(c,φ)⇒ W̃I(xB) = S2(φ) ŨI(c,φ)S2(φ)
T (5.8.235)

By inserting this into the integrands of (5.8.232) and applying the relation:

S2(φ)
T S2(φ) = I (5.8.236)

it is obtained:

x̃B WI(xB) = S2(φ) c̃ S2(φ)
T S2(φ)UI(c,φ) = S2(φ) c̃ UI(c,φ) (5.8.237)

x̃B W̃I(xB) = S2(φ) c̃ S2(φ)
T S2(φ) ŨI(c,φ) S2(φ)

T = S2(φ) c̃ ŨI(c,φ) S2(−φ) (5.8.238)

W̃I(xB) x̃B = S2(φ) ŨI(c,φ) S2(φ)
T S2(φ) c̃ S2(φ)

T = S2(φ) ŨI(c,φ) c̃ S2(−φ) (5.8.239)

First, the terms, which contain only one rotation matrix, shall be considered. For the corresponding
particles of an n-tuple the eigenmode UI is given by:

UI(c,φj) = UI(c,φ0)ζ
kI j (5.8.240)

The matrix S2(φj) is formulated in the following way:

S2(φj) =
1

∑
b=−1

S2,b eibφj =
1

∑
b=−1

S2,b eibφ0 eib(φj−φ0) =
1

∑
b=−1

S2,b eibφ0 ζ
b j (5.8.241)

Based on this, it can be formulated:

W(xB
j ) = S2(φj)UI(c,φj)

=

(
1

∑
b=−1

S2,b eibφ0 ζ
b j

)
UI(c,φ0)ζ

kI j =
1

∑
b=−1

S2,b UI(c,φ0)eibφ0 ζ
(kI+b) j (5.8.242)

x̃B
j W̃I(xB

j ) = S2(φj) c̃ UI(c,φj)

=

(
1

∑
b=−1

S2,b eibφ0 ζ
b j

)
c̃ UI(c,φ0)ζ

kI j =
1

∑
b=−1

S2,b c̃ UI(c,φ0)eibφ0 ζ
(kI+b) j (5.8.243)
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The summation over the corresponding particles leads to:

n−1

∑
j=1

W(xB
j ) =

1

∑
b=−1

(
S2,b UI(c,φ0)eibφ0

(
n−1

∑
j=0

ζ
(kI+b) j

))
(5.8.244)

n−1

∑
j=1

x̃B
j W̃I(xB

j ) =
1

∑
b=−1

(
S2,b c̃ UI(c,φ0)eibφ0

(
n−1

∑
j=0

ζ
(kI+b) j

))
(5.8.245)

Again, the following rule for the geometric series is applied:

n−1

∑
j=0

ζ
p j =

{
n for p

n ∈ Z
0 for p

n /∈ Z
(5.8.246)

As derived in the section 3.1.2 it is valid for the periodicity kI:

−n
2
+

1
2
≤ kmin ≤ kI ≤ kmax ≤

n
2
⇒−1

2
+

1
2n
≤ kI

n
≤ 1

2
(5.8.247)

This range is now combined with the range of b
n according to (5.8.223). Furthermore, because of

n ∈ N the number n is positive so that also the fraction 1
2n is positive. Thereby, it is obtained:

−1
2
+

1
2n
≤ kI

n
≤ 1

2
∧−1

2
<

b
n
<

1
2
⇒−1 <−1+

1
2n

<
kI +b

n
< 1 (5.8.248)

The sum over j doesn’t vanish if the fraction kI+b
n is an integer. Therefore, it is valid:

−1 <
kI +b

n
< 1∧ kI +b

n
∈ Z⇒ kI +b

n
= 0⇒ kI +b = 0⇒ kI =−b (5.8.249)

Because of b ∈ {−1,0,1} it follows that the sums (5.8.244) and (5.8.245) do not vanish for
kI ∈ {−1,0,1}. Conversely, this means that the following integrals∫

B
WI(xB)dm,

∫
B
x̃B WI(xB)dm (5.8.250)

always vanish for kI /∈ {−1,0,1}.
For the integrands, which contain two rotation matrices, it is valid:

x̃B
j W̃I(xB

j ) = S2(φj) c̃ ŨI(c,φj) S2(−φj)

=

(
1

∑
b=−1

S2,b eibφ0 ζ
b j

)
c̃ ŨI(c,φ0)ζ

kI j

(
1

∑
c=−1

S2,c e−icφ0 ζ
−b j

)

=
1

∑
b=−1

1

∑
c=−1

S2,b c̃ ŨI(c,φ0)S2,c ei(b−c)φ0 ζ
(kI+b−c) j (5.8.251)

W̃I(xB
j ) x̃B

j =
1

∑
b=−1

1

∑
c=−1

S2,b ŨI(c,φ0) c̃ S2,c ei(b−c)φ0 ζ
(kI+b−c) j (5.8.252)

The summation over the corresponding particles leads to:

n−1

∑
j=0

x̃B
j W̃I(xB

j ) =
1

∑
b=−1

1

∑
c=−1

(
S2,b c̃ ŨI(c,φ0)S2,c ei(b−c)φ0

(
n−1

∑
j=0

ζ
(kI+b−c) j

))
(5.8.253)

n−1

∑
j=0

W̃I(xB
j ) x̃B

j =
1

∑
b=−1

1

∑
c=−1

(
S2,b ŨI(c,φ0) c̃ S2,c ei(b−c)φ0

(
n−1

∑
j=0

ζ
(kI+b−c) j

))
(5.8.254)
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Also here, the rule (5.8.246) is applied for the evaluation. For the range of kI+b−c
n it is obtained:

−n
2
+

1
2
≤ kI ≤

n
2
∧−1≤ b≤ 1∧−1≤−c≤ 1⇒−1

2
− 3

2n
≤ kI +b− c

n
≤ 1

2
+

2
n

(5.8.255)

Here, the two segment numbers n = 3 and n = 4 turn out to be special cases, which shall not be
discussed here. For n > 4 it is valid:

n > 4⇒ 1
n
<

1
4
⇒ 2

n
<

1
2
⇒ 1

2
+

2
n
< 1 (5.8.256)

n > 4⇒ 1
n
<

1
4
⇒− 3

2n
>−3

8
⇒−1

2
− 3

2n
>−7

8
>−1 (5.8.257)

Based on this, it can be determined for the fraction kI+b−c
n :

−1 <−1
2
− 3

2n
≤ kI +b− c

n
≤ 1

2
+

2
n
< 1∧ kI +b− c

n
∈ Z

⇒ kI +b− c
n

= 0⇒ kI +b− c = 0⇒ kI = c−b (5.8.258)

For the difference c−b it is valid:

b ∈ {−1,0,1}∧ c ∈ {−1,0,1}⇒ c−b ∈ {−2,−1,0,1,2} (5.8.259)

From this it follows that for shape functions having the periodicity kI /∈ {−2,−1,0,1,2} the fol-
lowing integrals ∫

B
x̃B W̃I(xB)dm,

∫
B

(
x̃B W̃I(xB)+W̃I(xB) x̃B

)
dm (5.8.260)

generally vanish.

In total it can be concluded that the first order terms, which are dominant for the coupling between
the rigid body motions and the relative motions, can only be different from zero for shape functions
having the periodicity kI ∈ {−2,−1,0,1,2}; conversely, this means that for shape functions having
the periodicity |kI|> 2 the coupling to the rigid body motions is relatively weak.

5.8.3 Terms of second order

For terms of second order, the integrand contains a product of two shape functions Wν(xB) and
WI(xB). Due to the greater range of the periodicities kI the complete evaluation requires a consid-
erable effort. However, regarding the relative motions, some dominant terms shall be considered
here. As it can be seen from (5.8.197) several terms contain the angular velocity ωI

IB , which can
be split up into the absolute angular velocity ωI

IA of the sliding frame A and the relative angular
velocity ωA

AB between the sliding frame A and the body-fixed frame B:

ω
I
IB = ω

I
IA +SIA

ω
A
AB ⇒ ω

B
IB = SBI

ω
I
IB = SBI

ω
A
AB +ω

B
AB (5.8.261)

Using the unit vector e2, which points in the direction of the 2-axis, the relative angular velocity
ωB

AB can be formulated in the following way:

ω
B
AB = χ̇e2 (5.8.262)
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Since the vector ωB
AB contains the large angular velocity χ̇ of the overturning motion, its absolute

value can be considered to be greater than the one of the angular velocity ωI
IA of the sliding frame,

i.e.
∣∣ωB

AB
∣∣= |χ̇| � ∣∣ωI

IA
∣∣. Therefore, the terms, which contain the angular velocity ωB

AB shall
be considered here. Another important term is the integral containing the acceleration ẅB . The
integrands of these terms can be reformulated in the following way:

ω
A
AB

T SAB W̃ν(xB) W̃I(xB) SBA
ω

A
AB = ω

B
AB

T
S2(φ) Ũν(c,φ)S2(φ)

T S2(φ) ŨI(c,φ)S2(φ)
T
ω

B
AB

= χ
2 e2

T S2(φ) Ũν(c,φ) ŨI(c,φ)S2(−φ)e2 (5.8.263)

Wν(xB)
T

W̃I(xB) SBA
ω

A
AB = Uν(c,φ)T S2(φ)

T S2(φ) ŨI(c,φ)S2(φ)
T
ω

B
AB

= Uν(c,φ)T ŨI(c,φ) S2(−φ)e2 χ̇ (5.8.264)

Wν(xB)
T

WI(xB) = Uν(c,φ)T S2(φ)
T S2(φ)UI(c,φ) = Uν(c,φ)T UI(c,φ) (5.8.265)

If the rotation matrix Si(β) describes a rotation around the i-axis, the unit vector ei, which points
into the direction of this axis, is not affected by the rotation, i.e. it is valid:

Si(β)ei = ei (5.8.266)

Therefore, it is valid:

ω
A
AB

T SAB W̃ν(xB) W̃I(xB) SBA
ω

A
AB = χ

2 e2
T S2(φ) Ũν(c,φ) ŨI(c,φ)S2(−φ)e2

= χ
2 e2

T Ũν(c,φ) ŨI(c,φ)e2 (5.8.267)

Wν(xB)
T

W̃I(xB) SBA
ω

A
AB = Uν(c,φ)T ŨI(c,φ) S2(−φ)e2 χ̇

= Uν(c,φ)T ŨI(c,φ) e2 χ̇ (5.8.268)

Thereby, the rotation matrices S2(φ) are eliminated. For the corresponding particles of the n-tuple
it is obtained:

ω
A
AB

T SAB W̃ν(xB
j ) W̃I(xB

j ) SBA
ω

A
AB = χ

2 e2
T Ũν(c,φj) ŨI(c,φj)e2

= χ
2 e2

T Ũν(c,φ0)ζ
kν j ŨI(c,φ0)ζ

kI j e2

= χ
2 e2

T Ũν(c,φ0) ŨI(c,φ0)e2 ζ
(kν+kI) j (5.8.269)

Wν(xB
j )

T
W̃I(xB

j ) SBA
ω

A
AB = Uν(c,φj)

T ŨI(c,φj) e2 χ̇

= Uν(c,φ0)
T

ζ
kν j ŨI(c,φ)ζ

kν j e2 χ̇

= Uν(c,φ0)
T ŨI(c,φ)e2 χ̇ζ

(kν+kI) j (5.8.270)

Wν(xB
j )

T
WI(xB

j ) = Uν(c,φj)
T UI(c,φj) = Uν(c,φ0)

T
ζ

kν j UI(c,φ0)ζ
kI j

= Uν(c,φ0)
T UI(c,φ0)ζ

(kν+kI) j (5.8.271)

In all three cases, the sum of the powers ζ(kν+kI) j has to be evaluated. For the periodicities kν and
kI it is valid:

−n
2
+

1
2
≤ kν ≤

n
2
∧−n

2
+

1
2
≤ kI ≤

n
2
⇒−1+

1
2n
≤ kν + kI

n
≤ 1 (5.8.272)

By combining this with the condition that the fraction kν+kI
n is an integer it is obtained:

−1+
1

2n
≤ kν + kI

n
≤ 1∧ kν + kI

n
∈ Z⇒ kν + kI

n
∈ {0,1} (5.8.273)
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The case kν+kI
n = 1 only occurs for kν = kI =

n
2 . For all other periodicities it is valid:

kν + kI

n
= 0⇒ kν + kI = 0⇒ kν =−kI (5.8.274)

This result indicates that the terms (5.8.269), (5.8.270) and (5.8.271) can only be different from
zero for kν =−kI , i.e. if the periodicities kν and kI of both shape functions Wν and WI only differ
by the sign. This corresponds to the result, which has been derived in the section 3.2. The reason
for this decoupling also with respect to the centrifugal terms (5.8.269) and the gyroscopic terms
(5.8.270) the angular velocity ωB

AB = χ̇e2 does not depend on the azimuth φ, but is equal for all
particles so that the basic property of the cyclic system that all segments are equal is maintained.

5.9 External forces

Generally, the wheelset of a railway vehicle can be subjected to four kinds of external forces:

1. Wheel-rail contact forces: The wheel-rail contact forces act on the running surfaces of the
wheels. They are the only forces between the wheelset and the track and thereby also the
only ones acting between the vehicle and the track. In regular operation, the wheel-rail forces
act permanently; at least, they have to support the vehicle’s weight. they vanish only in the
case that the solid contact between the wheel and the rail is lost, e.g. due to wheel lift or
derailment.

2. Bearing forces: The bearing forces act between the wheelset’s journals and the bearing; via
the bearing and the primary suspension the wheelset is connected to the rest of the vehicle,
i.e. either to a bogie frame or directly to the carbody, if the vehicle has a single-stage sus-
pension. Also in this case, a force acts permanently since the bearings have to transmit the
weight of the rest of the vehicle, in particular the carbody.

3. Braking forces: The braking force acts between the wheelset and the braking device, which is
either connected to the bogie frame or to the carbody. The location on the wheelset depends
on the type of construction of the brake. If the wheelset is equipped with disc brakes, the
braking force acts on the intended surface of the discs; if it is equipped with tread brakes, the
force acts on the running surfaces of the wheels. Of course, the braking forces act only, when
the brake is activated. In the present work, the running with released brakes is investigated
so that no braking forces are taken into account. However, the demonstrated methodology
can also be applied for these forces.

4. Driving forces: Driving forces only occur if the wheelset is connected to a propulsion system.
Also here, the exact location, where the driving force acts, depends on the construction, e.g.
a gear wheel or a hollow driving shaft, also known as a quill. In the present case, a non-driven
wheelset is considered so no driving forces have to be taken into account.

In the following sections, the terms describing the impact of the wheel-rail contact forces and of
the bearing forces on the wheelset will be developed.
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5.9.1 Wheel-rail contact forces

Actually, the wheel-rail contact is a small area, in which distributed stresses are acting. However,
this area is rather small compared to the main dimensions of the wheelset so that in the present
consideration of the wheelset as a body the wheel-rail contact forces are described by a discrete
force fI

WRI and a discrete moment mI
WRI , which are acting at the point PI . For the sake of brevity,

only the force will be considered in the following.

Generally, the virtual power δ′PF of an external discrete force fI acting on a flexible body at the
point F is described by the scalar product of the force and the virtual velocity δ′vI

OF of the body at
this point.

δ
′PI = fI ·δ′vI

OF (5.9.275)

If the floating frame of reference formulation (FFRF) is used and the body-fixed frame B is chosen
as the reference frame, then the virtual velocity at the point F is given by:

δ
′vI
OF = δ

′vI
OR+δ

′
ω̃

I
IB SIB

(
xB
F +wB(xB

F )
)
+SIB

δ
′ẇB(xB

F ) (5.9.276)

Usually, the deformation field wB(xB) is described by a modal synthesis, in which N shape func-
tions WB

I (x
B) are scaled by modal coordinates qI and superposed.

wB(xB) =
NB

∑
I=1

WB
I (x

B)qI(t)⇒ δ
′ẇB(xB

I ) =
NB

∑
I=1

WB
I (x

B)δ
′q̇I (5.9.277)

In order to explore the problem of modelling a rolling wheel as a flexible body, the simplified case
of a cylindrical wheel rolling on a plane ground shall be considered. In Figure 5.9.8, this case
where the contact force f acts at the point F is illustrated.

Figure 5.9.8: Rolling wheel and contact force; left: observation in the inertia frame I ; right: ob-
servation in the body-fixed frame B .

It is evident that the contact moves around the wheel’s circumference so that the vector xB
F , which

describes the current position of the contact point in the body-fixed frame B , is not constant,
but a function of the circumferential angle φ, i.e. xB

F = xB
F (φ). Based on this and by using the

formulations (5.9.276) and (5.9.277) the required virtual velocity δ′vI
OF at the contact point F,

which is required for the virtual power of the force fI is obtained to:

δ
′vI
OF = δ

′vI
OR+δ

′
ω̃

I
IBSIB

(
xB
F (φ)+

NB

∑
I=1

WB
I

(
xB
F (φ)

)
qI

)
+SIB

NB

∑
I=1

WB
I

(
xB
F (φ)

)
δ
′q̇I (5.9.278)
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Here, the main problem of describing a rolling wheel as a flexible body becomes visible. Since
the angle φ doesn’t have a constant value, the shape functions WB

I (x
B) have to be provided as

continuous functions of the angle φ, i.e. WB
I
(
xB
F (φ)

)
= WB

I (φ), and not just for one single point.
For the sake of clarity, Figure 5.9.8 shows only a rotation of the wheel around 180 degrees; actually,
due to the rolling of the wheel the contact moves around the full circumference of the wheel. Since
the angles φ = φ0 and φ = φ0 +2π denote the same point on the circumference, it is obvious to
describe the shape functions WB

I as a Fourier series:

xB
F (φ) = xB

F (φ+2π)⇒WB
I

(
xB
F (φ)

)
= WB

I (φ) = WB
I (φ+2π) =

∞

∑
K=−∞

WB
I,K eiK φ (5.9.279)

It should also be noted that the shape functions for a flexible body are usually calculated by a
finite element (FE) model. Due to the discretization used by the FE method, the deformations are
calculated for discrete points; between these points local interpolation functions are applied. This
method of evaluating the shape functions WB

i (φ) for the current value of φ appears rather laborious,
since the current interpolation interval has to be determined due to the local interpolation functions.
Therefore, a description of the shape functions WB

i (φ) as continuous functions of φ seems to be
useful. As already mentioned, in an FE model the displacements are known for the nodes, i.e. for
discrete points. If the values of the function f (φ) are given for N equidistant points2 indicated by
φ = φj = φ0 +

2π

n j, 0≤ j ≤ N−1, then the values f (φj) can be expressed by the following discrete
Fourier series as it has been derived in the section 3.1.2:

Kmin ≤ K ≤ Kmax = Kmin +N−1, ζ
K j = ei 2π

N K j

cK =
1
N

(
n−1

∑
j=0

f (φj)ζ
−K j

)
⇒ f (φj) =

Kmax

∑
K=Kmin

cK ζ
K j (5.9.280)

The formulation for a scalar function f (φ) can easily be extended to a vector. In the case of the
wheel the circle, on which the force moves, is defined by the cylindrical coordinates r and y so that
the points for the following vector xB

j have to be evaluated:

xB
j =

 cosφj 0 sinφj
0 1 0

−sinφj 0 cosφj


︸ ︷︷ ︸

S2(φj)

0
y
r


︸︷︷︸
c(r,y)

= xB(c,φj) (5.9.281)

Since the vector c contains the cylindrical coordinates r and y, it will be used as an argument in
the following considerations for the sake of brevity instead of indicating the coordinates r and y
separatey. Based on this, the following vectors WB

I,K are obtained from the given values for the
shape function WB

I (x
B
j ):

WB
I,K(c)eiK φ0 =

1
N

(
N−1

∑
j=0

WB
I (x

B
j )ζ

−K j

)
⇔WB

I,K(r,y) =
e−iK φ0

N

(
N−1

∑
j=0

WB
I (x

B
j )ζ

−K j

)
(5.9.282)

2Since here the general case of a discrete Fourier series is considered, the number N is introduced in order to avoid
confusion with the number n which in this chapter denotes the number of segments of a cyclic system. For the same
reason, the upcase letter K is used for the periodicity here.
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The correction factor e−iK φ0 which takes into account the initial angle φ0 is introduced in order
to enable a simpler formulation of the resulting Fourier series. By using the relation between the
power ζk j and the angle φj it can be formulated:

eiK φ0 ζ
K j = eiK φ0 ei 2π

n K j = eiK(φ0+
2π

n j) = eiK φj

⇒WB
I (c,φj) = WB

I (x
B
j ) =

Kmax

∑
K=Kmin

WB
I,K(c)eiK φ0 ζ

K j =
Kmax

∑
K=Kmin

WB
I,K(c)eiK φj (5.9.283)

For the discrete values φj = φ0 +
2π

n j the discrete Fourier series (5.9.283) produces the given values
WB

i (r,y,φj). By extending the range of φ from the n discrete values φ = φj to the entire set of real
numbers, i.e. to φ ∈ R, the expression according to (5.9.283) can be used as an interpolation:

WB
I (c,φ) =

Kmax

∑
K=Kmin

WB
I,K(c)eiK φ, WB

I,K =
e−iK φ0

N

(
N−1

∑
j=0

WB
I (c,φj)ζ

−K j

)
(5.9.284)

Since the Fourier series according to (5.9.284) is an interpolation, it contains only a finite number
of terms in contrast to the exact formulation according to (5.9.279).

It can be assumed that in the sliding frame A the angle θF where the force acts is constant. Based
on the relation between the azimuths φ and θ it is valid:

θ = χ+φ⇒ φ = θ−χ⇒ φF(t) = θF−χ(t) (5.9.285)

For the sake of clarity, the dependency on the time t is indicated explicitly here. Based on Thereby,
the required displacement vector is obtained to:

wB(xB
F ) = wB(c,φF) =

NB

∑
I=1

(
Kmax

∑
K=Kmin

WB
I,K(c)eiK φF(t)

)
qI(t) =

NB

∑
I=1

(
Kmax

∑
K=Kmin

WB
I,K(c)eiK(θF−χ(t))

)
qI(t)

(5.9.286)
It should be noted out that for the kinematics of the point F the displacement field is evaluated
for the current coordinates of F which are indicated by c and φF. The point F is not a material
point, i.e. due the rotation around the increasing angle χ a different particle is located at the point
F at any time. If the current velocity ẇB(xB

F ) at the point F is of interest, then the velocity field
has to be determined first and after this the coordinates of F have to be inserted into the velocity
field. In other words, the dependency of φF on the time t which represents the permanent change of
particles located at F must not be taken into account for the differentiation. Thereby, it is obtained
for the velocity ẇB(xB

F ) and for the virtual velocity δ′ẇB(xB
F ):

ẇB(xB
F ) = ẇB(c,φF) =

NB

∑
I=1

(
Kmax

∑
K=Kmin

WB
I,K(c)eiK(θF−χ(t))

)
q̇I(t) (5.9.287)

δ
′ẇB(xB

F ) = δ
′ẇB(c,φF) =

NB

∑
I=1

(
Kmax

∑
K=Kmin

WB
I,K(c)eiK(θF−χ(t))

)
δ
′q̇I (5.9.288)

Up to here, the Fourier series has been used for providing a formulation for the moving load based
on continuous functions. Based on this, the special case of a cyclic structure shall be considered in
the following. In this context it is useful to formulate the shape functions WB

I which are valid for
cartesian coordinates in an alternative way which uses cylindrical coordinates:

WB
I (c,φ) = S2(φ)UI(c,φ) (5.9.289)
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In order to apply the transformation, which has been derived in the section 5.3, the shape function
UI(c,φ) have to fulfill the following condition:

φj = φ0 +
2π

n
j : UB

I (c,φj) = UB
I (c,φ0)eikI (φj−φ0) = UB

I (c,φ0)ζ
ikI j (5.9.290)

As discussed in the section 3.1.2, the evaluation of the function eiKφ for discrete values φj can be
carried out by using the formulation K = k+mn whereby the basic periodicity kmin ≤ k ≤ kmax is
used:

eiK φj = eiK(φ0+
2π

n j) = eiK φ0 ei(k+mn) 2π

n j = eiK φ0 ei 2π

n k j︸ ︷︷ ︸
ζk j

e2πim j︸ ︷︷ ︸
1

(5.9.291)

Based on this, the continuous shape function UB
I (r,y,φ) for a cyclic structure can be formulated in

the following way:

UB
I (c,φ) =

∞

∑
m=−∞

UI,m(c)ei(k+mn)φ (5.9.292)

Using the relation (5.9.291) it is obtained for UB
I (c,φj):

UB
I (c,φj) =

∞

∑
m=−∞

UI,m(c)ei(kI+mn)φj =
∞

∑
m=−∞

UI,m(c)eikI φ0 ζ
kI j =

(
∞

∑
m=−∞

UI,m(c)eikI φ0

)
︸ ︷︷ ︸

UB
I (c,φ0)

ζ
kI j

(5.9.293)
Thereby, it is shown that the formulation (5.9.292) fulfils the condition (5.9.290).

By using the shape functions, which fulfill the condition (5.9.290), the displacement u(c,φ) is
obtained to:

u(c,φ) =
NB

∑
I=1

UB
I (c,φ)qB

I =
NB

∑
I=1

(
∞

∑
m=−∞

UI,m(c)ei(kI+mn)φ

)
qB

I (5.9.294)

The evaluation of the displacement field for the angle φF leads to:

u(c,φF) =
NB

∑
I=1

(
∞

∑
m=−∞

UI,m(c)ei(kI+mn)φF

)
qB

I =
NB

∑
I=1

(
∞

∑
m=−∞

UI,m(c)ei(kI+mn)(θF−χ)

)
qB

I

=
NB

∑
I=1

(
∞

∑
m=−∞

UI,m(c)ei(kI+mn)(θF−χ)

)
qB

I

=
NB

∑
I=1

(
∞

∑
m=−∞

UI,m(c)ei(kI+mn)θF e−imnχ

)
e−ikI χ qB

I︸ ︷︷ ︸
qA

I

(5.9.295)

Thereby, the displacement is expressed by using the transformed modal coordinates qA
I which

have been introduced in the section 5.3. The only remaining terms, in which the large overturning
angle χ is contained, are the functions e−imnχ. For m = 0, the term e−imnχ is equal to 1 and
thereby constant. Since the overturning angle of the wheel increases monotonously over time, the
terms e−imnχ oscillate with strongly increasing frequency for growing absolute values of m and
with the number of segments n. If n goes tends to infinity, then the cyclic structure becomes an
axisymmetric structure; in this case, the shape functions are given by:

n→ ∞ : UI(c,φ) = UI(c)eikIφ (5.9.296)
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In the case of a wheelset, the wheel rim is a relatively massive axisymmetric part. Therefore, the
solution according to (5.9.296) can be considered as a good approximation of its deformations so
that the terms for m 6= 0 can be neglected. In this case it is valid:

u(cWR,φF)≈
NB

∑
I=1

UI,0(cWR)eikI φF qB
I =

NB

∑
I=1

UI,0(cWR)eikI(θF−χ) qB
I =

NB

∑
I=1

UI,0(cWR)eikI θF︸ ︷︷ ︸
UI(cWR,θF)

e−ikI χ qB
I︸ ︷︷ ︸

qA
I

(5.9.297)
By using this approximation, the angle χ is eliminated completely. For the formulation in the
sliding frame A it is valid:

wA(cWR,θF) = SAB wB(cWR,φF) = S2(χ)S2(φF)︸ ︷︷ ︸
S2(χ+φF)

(
NB

∑
I=1

UI(cWR,θF)qA
I

)

=
NB

∑
I=1

S2(θF)UI(cWR,θF)qA
I =

NB

∑
I=1

WB
I (cWR,θF)qA

I (5.9.298)

5.9.2 Bearing forces

A bearing encloses the shaft, to which it is mounted. Furthermore, the diameter of the bearing is
relatively small compared to the entire wheelset. Therefore, it is reasonable to define the virtual
velocity for the bearing force by the medium value of the deformations over the circumference:

δ
′vI
BI
=

1
2π

2π∫
0

δ
′vI
OPI

dφ =
1

2π

2π∫
0

(
δ
′vI
OR+δ

′vI
RPI

)
dφ = δ

′vI
OR

1
2π

2π∫
0

dφ

︸ ︷︷ ︸
1

+
1

2π

2π∫
0

δ
′vI
RPI

dφ (5.9.299)

The evaluation of the remaining term can be reduced to the consideration of the n-tuple for the
inertia terms. In the section 5.7 it has been determined:

n−1

∑
j=0

δ
′vI
RPj

=
kmax+1

∑
K=kmin−1

(
δ
′vI

A ,K eiK (χ+φ0)

(
n−1

∑
j=0

ζ
K j

))
= nδ

′vI
A ,0 ei·0·(χ+φ0)︸ ︷︷ ︸

1

= nδ
′vI

A ,0 (5.9.300)

For the vectors δ′vI
A ,K it is valid:

rI
A ,K = SIA rI

A ,K ⇒ vI
A ,K = ω̃

I
IA SIA rA

A ,K +SIA ṙA
A ,K ⇒ δ

′vI
A ,K = δ

′
ω̃

I
IA SIA rA

A ,K +SIA
δ
′ṙA

A ,K
(5.9.301)

For kmin +1≤ K ≤ kmax−1, which includes the case K = 0, the vector rA
A ,K is defined in the

following way:
rA

A ,K = S2,−1 pA
K+1 +S2,0 pA

K +S2,1 pA
K−1 (5.9.302)

Setting K = 0 and inserting the result into (5.9.301) leads to:

δ
′vI

A ,0 = δ
′
ω̃

I
IA SIA rA

A ,0 +SIA
δ
′ṙA

A ,0

= δ
′
ω̃

I
IA SIA

(
S2,−1 pA

1 +S2,0 pA
0 +S2,1 pA

−1

)
+SIA

(
S2,−1 δ

′ṗA
1 +S2,0 δ

′ṗA
0 +S2,1 δ

′ṗA
−1

)
(5.9.303)

From this, it becomes evident that the medium value of the displacement over the circumference
can only be different from zero for motions having the periodicities k =−1, k = 0 or k = 1.
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Modelling of the track

The track model, which will be developed in this section, has to fulfill the following requirements:

1. The track model must be suitable for calculating non-periodic solutions.

2. The track model must be able to describe the running of the vehicle at high speed during a
longer time interval.

3. The track model must describe the vertical and the lateral dynamics of the track.

In order to fulfill the requirement 1 the track model has to be a time-domain model. From this it
follows that the track model also has to be finite, since an infinite track model can only be handled
in the frequency domain.

If the track model is finite, then the requirement 2 can only be fulfilled by a moving track model.
Once again an example may underline this: If the vehicle is running at a speed of v0 = 270 km/h,
which is not uncommon in real operation of high-speed railways, then it covers a distance of 75 m
in one second. In order to study phenomena like the hunting motion, a simulation time of several
seconds is required to make sure that transient motions have nearly completely died out. For a time
interval of 10 s a track length of at least 750 m is required for an inertially fixed track model.

6.1 Structure of the track model

The basis for the track model, which will be presented in this section, is the model developed by
Ripke [58]. Regarding the classifications, which have been discussed in section 2.3, this model
is a structural model, which consists of the components “rails”, “sleepers”, “pads” and “under-
ground” so that it reproduces the actual structure of a real track. Furthermore, the model can be
classified as a two-layer model, i.e. the motions of the rails and of the sleepers are independent re-
garding the kinematics; the motions of the ballast and the underground, however, are not described
by degrees of freedom.

The modelling of the four components, which have already been mentioned, shall be briefly dis-
cussed. The rail are modelled as flexible body by using finite elements. For the vertical bending,
Ripke uses the Timoshenko beam theory; furthermore, longitudinal vibrations are taken into ac-
count by modelling the rail as a rod. With respect to the lateral bending and to the torsion, the
cross section of the rail is resolved; here, the head and the foot of the rail are modelled by beams,
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which can also perform torsional motions. The web connecting the head and the foot of the rail is
modelled as a plate. Thereby, also deformations of the cross section can be described.

The rails are supported by discrete pads and sleepers. In his work, Ripke models the sleepers as
rigid bodies, which can perform three translations and three rotations. The pads, which connect the
rails to the sleepers, are modelled by discrete compact force elements, i.e. the fastening between a
rail and a sleeper is modelled by a single force element, which describes forces and moments acting
between the rail and the sleeper; the moments take clamping effect due to the spatial dimension of
the actual pad into account. The force elements representing the pads have linear characteristics for
the forces and moments. In a similar way, the underground is also modelled by a linear compact
force element; each sleeper is connected by such a force element to the rigid ground.

The complete track model is linear; therefore, a modal decomposition is possible. Ripke exploits
several symmetries of the model to split it up into independent partial models. The model is
symmetric with respect to the vertical longitudinal plane; thereby, it can be split into a symmetric
and antimetric part. Furthermore, the cant angle of the rail, i.e. its inclination towards the middle
of the track, is neglected; as a result, the symmetric model is split into one part describing vertical
bending and longitudinal motions and another part describing lateral bending and torsion.

In his model, Ripke uses equal boundary conditions at the rails’ ends so that the track model
forms a ring. Thereby, the behaviour of an infinite track model, which is determined by the radi-
ation of waves and the lack of reflection at the ends, can be approximated by a finite model with
a sufficient length. The ring model enables the simulation of the system’s behaviour over a longer
time interval, e.g. to make sure that transient effects die out. Since the ring model has no ends,
where a wave reflection would occur, the results are valid for the complete length. Furthermore,
Ripke considers the track as a cyclic structure, which consists of n identical segments. Each seg-
ment represents one sleeper bay. Thus, the relation between the length `T of the track model, the
number n of the sleeper bays, and the sleeper spacing ∆sS is given by:

`T = n ·∆sS⇔ ∆sS =
`T
n

(6.1.1)

Together with the aforementioned exploitation of the symmetries, this provides a drastic reduction
of the computational effort.

The track model, which will be developed in the present chapter, is based on the model by Ripke.
However, it is enhanced in three aspects:

• The rails are modelled by a semi-analytic finite element model using volume elements. By
using an exponential function for the distribution of the deformations along the rail’s length,
the three dimensional problem is reduced to a two dimensional one, which is solved by
discretizing the cross section. In his work, Ripke points out that especially the thickness of
the plate representing the rail web has to be chosen very carefully. The rail model, which
will be presented here, is a three dimensional volume model, which requires only a very
slight simplification of the original geometry of the rail; thereby, the problem of choosing an
appropriate simplified geometry is circumvented.

• Each pad, which connects a rail and a sleeper, is modelled by discrete force elements, which
are distributed across the rail seat, where the rail is supported by the sleeper. Regarding the
consistency of the model, this modelling appears to be more appropriate to the refined finite
element model of the rail than a single compact element

• The rail cant is taken into account. As a result, some possibilities to split up the model into
decoupled subsystems are lost. However, regarding the available computational power, this
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Figure 6.1.1: Overview of the track model

doesn’t pose a problem. Ripke mentions that his model focuses on the vertical dynamics.
However, in the present work, also the lateral dynamics will be investigated. Thereby, the
consideration of the rail cant appears to be appropriate.

In Figure 6.1.1 three segments of the track model are displayed.

6.2 Modelling of the rail

The rail is modelled as a flexible body. Usually, the motions of a flexible body are described using
the floating frame of reference formulation. The current position of a particle located at the point
P is expressed in the following way:

rI
OP = rI

OR+SI R R rR R

RP = rI
OR+SI R R

[
xR R +wR R(xRR, t)

]
(6.2.2)

Here, the vector xRR indicates the reference position of the considered particle; the displacement is
expressed by the deformation field wR (xR , t).

In the present case of the track model, all motions are considered to be small. Therefore, deforma-
tional motions are in the same order of magnitude as motions of the complete body. The absolute
position of the reference point RR is assumed to be constant. The spatial orientation of the refer-
ence frame R R is assumed to be constant, too; with respect to the inertia frame I , the frame R R is
inclined at the cant angle φR around the 1-axis, which is considered to be the longitudinal axis of
the rail. As a result, the motion of a particle of the rail is described in the following way:

rI
OPR

= rI
ORR

+SI R RrR R

PRPR
= rI

ORR
+S1(φR) [xR+wR(xR, t)] (6.2.3)

Since the position vector rI
ORR

of the reference point, the reference position vector xR of the particle
and the cant angle φR are constant, it is valid for the velocity:

d
dt

rI
ORR

= 0,
d
dt

xR = 0,
d
dt

S1(φR) = 0⇒ vI
OPR

= S1(φR) ẇR(xR, t) (6.2.4)
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The deformation field wR(xR, t) is described by a modal synthesis; here, shape functions wRI(xR),
which depend on the reference position xR of the considered particle, are scaled by time-dependent
modal coordinates qRI(t) and superposed:

wR(xR, t) = ∑
I

wRI(xR)qRI(t) (6.2.5)

In order to gain the required shape functions wRI(xR), a structural dynamics model of the rail is
needed. Here, a model is used, which is based on a semi-analytic solution of Navier’s equation;
these equations, which describe the behaviour of a three-dimensional linear elastic continuum, are
given by:

∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 +

1
1−2ν

∂

∂x

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2U
∂t2 = 0 (6.2.6)

∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 +

1
1−2ν

∂

∂y

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2V
∂t2 = 0 (6.2.7)

∂2W
∂x2 +

∂2W
∂y2 +

∂2W
∂z2 +

1
1−2ν

∂

∂z

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)
− ρ

G
∂2W
∂t2 = 0 (6.2.8)

Here, G, ν and ρ denote the shear modulus, Poisson’s ratio and the density of the material, respec-
tively. By using the following semi-analytic solution:

w = wk(x,y,z, t) =

Uk(y,z)
Vk(y,z)
Wk(y,z)


︸ ︷︷ ︸

ŵk(y,z)

eik κxeiωkt = ŵk(y,z)eik κx︸ ︷︷ ︸
wk(x,y,z)

eiωkt , κ =
2π

`
, k ∈ Z (6.2.9)

the equations (6.2.6), (6.2.7) and (6.2.8) are reduced to the following expressions:

0 =−k2
κ

2Uk +
∂2Uk

∂y2 +
∂2Uk

∂z2 +
ik κ

1−2ν

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Uk ωk

2 (6.2.10)

0 =−k2
κ

2Vk +
∂2Vk

∂y2 +
∂2Vk

∂z2 +
1

1−2ν

∂

∂y

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Vk ωk

2 (6.2.11)

0 =−k2
κ

2Wk +
∂2Wk

∂y2 +
∂2Wk

∂z2 +
1

1−2ν

∂

∂z

(
ik κUk +

∂Vk

∂y
+

∂Wk

∂z

)
+

ρ

G
Wk ωk

2 (6.2.12)

As it can be seen from (6.2.9), the functions Uk(y,z), Vk(y,z) and Wk(y,z) depend on the cross-
sectional coordinates y and z, so that the original three-dimensional field problem has been reduced
to a two-dimensional one.

In order to solve the problem, a finite prism element, which is based on the solution (6.2.9), is used.
This is a quadrilateral element, which uses a bilinear interpolation. The derivation of the element
can be found in chapter 4. In Figure 6.2.2, the discretization of the cross section by quadrilateral
finite elements is shown. For each element, the displacement field w(x,y,z, t) and the strain field
ε(x,y,z, t) are formulated in the following way:

w(x,y,z, t) = ∑
K

N̂(y,z)eiK 2π

` x we
K, ε(x,y,z, t) = ∑

K
B̂K(y,z)eiK 2π

` x we
K (6.2.13)
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Figure 6.2.2: Discretization of the rail’s cross section by quadrilateral finite elements

Here, the vector we
K contains the nodal displacements. Based on this, the following inertia terms

and stiffness terms for one prism element are derived:∫
V e

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV

= ∑
L

δwe
L

T
(∫

AC

B̂L(y,z)
T DB̂−L(y,z)dydz `we

−L +
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz ` ẅe
−L

)
= ∑

K
δwe
−K

T
(∫

AC

B̂−K(y,z)
T DB̂K(y,z)dydz `we

K +
∫

AC

N̂(y,z)
T

ρ N̂(y,z)dydz ` ẅe
K

)
= ∑

K
δwe
−K

T (Ke
K `we

K +Me ` ẅe
K) (6.2.14)

Here, the matrices Ke
K and Me are the element stiffness matrices and the element mass matrices,

respectively; since the mass matrix Me is independent from the periodicity K, no index K is re-
quired. Due to the orthogonality of the functions eiK 2π

` x and eiL 2π

` x for K 6= L the inertia terms and
the stiffness terms are decoupled for each periodicity K.

Based on the terms for the prism elements, the inertia and stiffness terms for the rail can be formu-
lated in the following way:∫

VR

(
δε̃(x)T D ε̃(x)+ δw̃(x)T

ρ ¨̃w(x)
)

dV = ∑
K

δwFE|−K
T (`MFE ẅFE|K(t)+ `KFE|K wFE|K(t)

)
(6.2.15)
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By applying the solution:
wFE|K(t) = WR|K,I eiωK,It (6.2.16)

the homogeneous equation of motion can be reduced to the following algebraic eigenvector prob-
lem:

`
(
−MFEωK,I

2 +KFE|K
)

WR|K,I = 0, WR|K,I 6= 0 (6.2.17)

As it will be discussed later, the eigenfrequencies ωK,I
2π

of the rail have to be calculated for a very
high number of periodicities. In order to get an impression, the results for two wavelengths will
be discussed. In Figure 6.2.3 the eigenmodes associated with the eight lowest eigenfrequencies for
the wavelength λ = 3.6 m are shown. For a better visibility, the eigenmodes are displayed for a
part having the length of 1.8 m, i.e. a half wave is shown. Since the rail profile has a maximum
width of 150 mm and a height of 172 mm, the condition for a slender beam is fulfilled, i.e. the
length of the beam is at least ten times its maximum dimension of the cross section.

The four lowest eigenfrequencies are associated with the deformations of a one-dimensional con-
tinuum, i.e. the lateral bending (64 Hz), the vertical bending (152 Hz), the torsion (232 Hz) and
the longitudinal expansion and compression (1442 Hz). The eigenmodes associated with the fifth
eigenfrequency (1448 Hz) and the sixth eigenfrequency (4192 Hz) show distinct deformations of
the cross section; an inclination of the rail head is clearly visible. For the seventh eigenfrequency
(5246 Hz) and the eighth eigenfrequency (5442 Hz) bending motions of the rail foot occur.

In Figure 6.2.4 the eigenmodes associated with the eight lowest eigenfrequencies for the wave-
length λ = 1.2 m are shown. This wavelength is two times the sleeper spacingso that these modes
are important for the so-called pinned-pinned mode of the track; for the pinned-pinned mode the
wave nodes are located above the sleepers so that vibrations of the rail are relatively weakly
damped. Again, the eigenmodes are displayed for a part having the length of 1.8 m so that in
this case one and a half full waves are shown.

The two lowest eigenfrequencies are associated with the lateral bending (508 Hz) and the torsion
(848 Hz). A closer look to the eigenmode of the lateral bending reveals an inclination of the
profile, i.e. the separation of lateral translation for the bending on the one hand and the rotation for
the torsion on the other hand is lost. Apparently, the “classical theories” for the one-dimensional
continuum reach the limits of their validity, when the wavelength approaches the dimension of
the cross section. The third eigenfrequency (1069 Hz) is associated with the vertical bending
of the rail. For the fourth eigenfrequency (1911 Hz) a distinct deformation of the cross section
occurs. This eigenfrequency is considerably lower then the fifth eigenfrequency (4288 Hz), which
is associated with the longitudinal expansion and compression of the rail.

6.3 Modelling of the sleeper

In the present model the sleeper is modelled as a rigid body, which is supported by a visco-elastic
layer representing the underground. All motions of the sleeper are considered to be small so that
both the kinematics and the equations of motion can be linearized.

The rails are supported by equidistant sleepers, to which they are connected by force elements
representing the rail pads. However, since all sleepers are considered to be equal, one single sleeper
will be considered; for the sake of brevity, the indices which identify the individual sleepers of the
track will be introduced later. In the following sections, the kinematics and the inertia of a single
sleeper and the forces of the visco-elastic layer supporting it will be derived.
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Figure 6.2.3: Rail modes for the wavelength λ = 3.6 m

6.3.1 Kinematics of the sleeper

The sleeper has the six degrees of freedom of a rigid body. The three translations are the longitu-
dinal displacement xS(t), the lateral displacement yS(t) and the vertical displacement zS(t); these
translations describe the displacement of the sleeper’s reference point R from its reference position
which is defined by the longitudinal distance XS0 and the vertical distance ZS0. The three rotations
are the roll angle ϕS(t), the pitch angle ϑS(t) and the yaw angle ψS(t). For the sake of brevity,
the dependency of xS, yS, zS, ϕS, ϑS and ψSon the time t will not always be indicated explicitly.
By using the three angles as cardan angeles the rotation of the body-fixed frame S of the sleeper,
which is used as the reference frame, with respect to the inertial frame I is described. In total, the



206 Chapter 6. Modelling of the track

508 Hz 848 Hz

1069 Hz 1911 Hz

4288 Hz 4515 Hz

5403 Hz 6784 Hz

Figure 6.2.4: Rail modes for the wavelength λ = 1.2 m

current position of a point P, which is indicated by the sleeper’s body-fixed coordinates x, y and z,
is formulated in the following way:

rI
OP = rI

OR+SIS xS =

XS0 + xS
yS

ZS0 + zS

+S1(ϕS)S2(ϑS)S3(ψS)

x
y
z


=

 XS0 + xS+ cosϑS (cosψSx− sinψSy)+ sinϑSz
yS+ cosϕS (sinψSx+ cosψSy)− sinϕS (−sinϑS (cosψSx− sinψSy)+ cosϑSz)

ZS0 + zS+ sinϕS (sinψSx+ cosψSy)+ cosϕS (−sinϑS (cosψSx− sinψSy)+ cosϑSz)


(6.3.18)
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As mentioned before, it is assumed that the motions of the sleeper are small; for a small angle φ

the following approximation can be used:

φ� 1⇒ sinφ≈ φ, cosφ≈ 1 (6.3.19)

By applying this to the vector rI
OP according to (6.3.18) it is obtained:

rI
OP ≈

 XS0 + xS+ x−ψS y+ϑS z
yS+ψS x+ y−ϕS (−ϑS (x−ψS y)+ z)

ZS0 + zS+ϕS (ψS x+ y)−ϑS (x−ψS y)+ z


≈

 XS0 + xS+ x−ψS y+ϑS z
yS+(ψS+ϕSϑS)x+(1−ϕSϑSψS)y−ϕS z
ZS0 + zS+(ϕSψS−ϑS)x+(ϕS+ϑSψS)y+ z

 (6.3.20)

Neglecting small terms and regrouping the terms leads to:

rI
OP ≈

XS0 + x
y

ZS0 + z


︸ ︷︷ ︸

rI
OP0

+

xS(t)−ψS(t)y+ϑS(t)z
yS(t)+ψS(t)x−ϕS z(t)
zS(t)−ϑS(t)x+ϕS(t)y


︸ ︷︷ ︸

wI
P

= rI
OP0

+

1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0


︸ ︷︷ ︸

CI
S(xS )


xS(t)
yS(t)
zS(t)
ϕS(t)
ϑS(t)
ψS(t)


︸ ︷︷ ︸

qS(t)
(6.3.21)

This linearized formulation of the kinematics will be used for the points at which the sleeper is
connected to other elements.

6.3.2 Inertia terms for the sleeper

In the appendix C, the following inertia terms for a rigid body B in the formulation for the body-
fixed frame B have been derived:∫

B
δ
′vI
OP

T aI
OPdm = δ

′vI
OR

T
[

mB aI
OR+SIB

(
˙̃ωB

IB + ω̃
B
IB ω̃

B
IB

)∫
B

xB
RPdm

]
+ δ
′
ω

B
IB

T
[∫

B
x̃B
RPdm SBI aI

OR+JB
B,(R)ω̇

B
IB + ω̃

B
IBJB

B,(R)ω
B
IB

]
(6.3.22)

Here, mB is the mass of the body. The matrix JB
B,(R) denotes the inertia tensor with respect to the

reference point R described in the body-fixed frame B . If the centre of gravity CB is used as the
reference point R, then it is valid:∫

B
xB
CBP

dm = 0 (6.3.23)

⇒
∫
B

δ
′vI
OP

T aI
OPdm = δ

′vI
OCB

T
mB aI

OCB
+ δ

′
ω

B
IB

T [
JB
B,(CB)

ω̇
B
IB + ω̃

B
IBJB

B,(CB)
ω

B
IB

]
(6.3.24)

In this case, the coupling terms between the translational and the rotational motions vanish. As a
result, the inertia terms can be written as:∫

B
δ
′vI
OP

T aI
OPdm = δ

′vI
OCB

T
mB aI

OCB
+ δ

′
ω

B
IB

T [
JB
B,(CB)

ω̇
B
IB + ω̃

B
IBJB

B,(CB)
ω

B
IB

]
(6.3.25)
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For the sleeper, the rotation matrix SIS between the inertial frame I and the body-fixed frame S of
the sleeper has been formulated in the previous section 6.3.1:

SIS = S1(ϕS)S2(ϑS)S3(φRS) (6.3.26)

From this, the following angular velocity ωI
IS is obtained:

ω̃
I
IS = ṠIS SIS T⇒ ω

I
IS =

 ϕ̇S+ ψ̇S sinϑS

ϑ̇S cosϕS− ψ̇S cosϑS sinϕS

ψ̇S cosϑS cosϕS+ ϑ̇S sinϕS

 (6.3.27)

The transformation into the body-fixed frame S leads to:

ω
S
IS = SSI

ω
I
IS = SIS T

ω
I
IS =

 ϕ̇S cosϑS cosψS+ ϑ̇S sinψS

−ϕ̇S cosϑS sinψS+ ϑ̇S cosψS

ψ̇S+ ϕ̇S sinϑS

 (6.3.28)

The angular acceleration ω̇
S
IS is obtained to:

ω̇
S
IS =

 (
ϕ̈S cosϑS− ϕ̇S ϑ̇S sinϑS+ ϑ̇S ψ̇S

)
cosψS+

(
ϑ̈S− ϕ̇S ψ̇S cosϑS

)
sinψS

−
(
ϕ̈S cosϑS− ϕ̇S ϑ̇S sinϑS+ ϑ̇S ψ̇S

)
sinψS+

(
ϑ̈S− ϕ̇S ψ̇S cosϑS

)
cosψS

ψ̈S+ ϕ̈S sinϑS+ ϕ̇S ϑ̇S cosϑS

 (6.3.29)

Applying the approximation for small angles

φ� 1⇒ sinφ≈ φ, cosφ≈ 1 (6.3.30)

and neglecting small terms leads to:

ω
S
IS ≈

 ϕ̇S+ ϑ̇SψS

−ϕ̇SψS+ ϑ̇S

ψ̇S+ ϕ̇SϑS

≈
 ϕ̇S

ϑ̇S

ψ̇S

 (6.3.31)

ω̇
S
IS ≈

 ϕ̈S− ϕ̇S ϑ̇SϑS+ ϑ̇S ψ̇S+
(
ϑ̈S− ϕ̇S ψ̇S

)
ψS

−
(
ϕ̈S− ϕ̇S ϑ̇SϑS+ ϑ̇S ψ̇S

)
ψS+ ϑ̈S− ϕ̇S ψ̇S

ψ̈S+ ϕ̈SϑS+ ϕ̇S ϑ̇S

≈
 ϕ̈S

ϑ̈S

ψ̈S

 (6.3.32)

These terms are now inserted into the inertia terms according to (6.3.22); by again neglecting small
terms, the following linearized inertia terms for the sleeper are obtained:∫

S
δ
′vI
OP

T aI
OPdm = δ

′vI
OCS

T
mS aI

OCS
+ δ

′
ω

S
IS

T
(

JS
S ω̇

S
IS + ω̃

S
IS JBS

S ω
S
IS

)
≈ δ

′vI
OCS

T
mS aI

OCS
+ δ

′
ω

S
IS

TJS
S ω̇

S
IS

≈

δ′ẋS
δ′ẏS
δ′żS

T

mS

 ẍS
ÿS
z̈S

+
δ′ϕ̇S

δ′ϑ̇S

δ′ψ̇S

T Ixx,S 0 0
0 Iyy,S 0
0 0 Izz,S

 ϕ̈S

ϑ̈S

ψ̈S



≈


δ′ẋS
δ′ẏS
δ′żS
δ′ϕ̇S

δ′ϑ̇S

δ′ψ̇S



T

︸ ︷︷ ︸
δ′q̇S T


mS 0 0 0 0 0
0 mS 0 0 0 0
0 0 mS 0 0 0
0 0 0 Ixx,S 0 0
0 0 0 0 Iyy,S 0
0 0 0 0 0 Izz,S


︸ ︷︷ ︸

MS


ẍS
ÿS
z̈S
ϕ̈S

ϑ̈S

ψ̈S


︸ ︷︷ ︸

q̈S

(6.3.33)
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6.3.3 Modelling of the underground

The underground is modelled as a viscoelastic layer which is located between the rigid ground
and the bottom face AS of the sleeper. The bottom face AS is a rectangle having the length LS in
the direction of y and the width WS in the direction of x; its vertical distance below the sleeper’s
reference point is indicated by the constant value zU. Thereby, the vector xS

U describing the bottom
face in the body-fixed frame S is given by:

xS
U =

 x
y
zU

 , −LS

2
≤ y≤ LS

2
, −WS

2
≤ x≤ WS

2
(6.3.34)

The local stress of the visco-elastic layer consists of an elastic part and a viscous part. The elastic
part is obtained by multiplying the local displacement wI

S(x
S
U ) with the stiffness matrix K̄U. For

the viscous part, the local displacement velocity ẇI
S(x

S
U ) is multiplied with the damping matrix D̄U.

By multiplying the local stress with an infinitesimal area having the edge lengths dx and dy the
following infinitesimal force df is obtained:

dfI
U =

 c̄x 0 0
0 c̄y 0
0 0 c̄z


︸ ︷︷ ︸

K̄U

wI
S(x

S
U ) dx dy+

 b̄x 0 0
0 b̄y 0
0 0 b̄z


︸ ︷︷ ︸

D̄U

ẇI
S(x

S
U ) dx dy (6.3.35)

The layer is assumed to be homogeneous so that the matrices K̄U and D̄U are constant.

The complete virtual power δ′PU for the viscoelastic layer is obtained by integrating the scalar
product of the local virtual velocity δ′ẇI

S(x
S
U ) and the infinitesimal force dfI

U over the area AS of the
bottom face:

δ
′PU =

∫
AS

δ
′ẇI

S(x
S
U )

T
dfI

U (6.3.36)

Inserting the relation for the linearized kinematics developed in the section 6.3.1

wI
S(x

S
U ) = CI

S(x
S
U )qS⇒ ẇI

S(x
S
U ) = CI

S(x
S
U ) q̇S⇒ δ

′ẇI
S(x

S
U ) = CI

S(x
S
U )δ

′q̇S (6.3.37)

leads to:

δ
′PU =

∫
AS

δ
′q̇S

T CI
S(x

S
U )

T
(

K̄UCI
S(x

S
U )qS+ D̄UCI

S(x
S
U ) q̇S

)
dx dy

= δ
′q̇S

T
∫

AS

CI
S(x

S
U )

T K̄U CI
S(x

S
U ) dx dy︸ ︷︷ ︸

KU

qS+δ
′q̇S

T
∫

AS

CI
S(x

S
U )

T D̄U CI
S(x

S
U ) dx dy︸ ︷︷ ︸

DU

q̇S (6.3.38)

For the matrix CI
S(x

S
U ) it is valid:

CI
S(x

S
U ) =

1 0 0 0 zU −y
0 1 0 −zU 0 x
0 0 1 y −x 0

 (6.3.39)
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By inserting the matrices CI
S(x

S
U ) and K̄U and integrating the product over the area AS according to

(6.3.34) it is obtained for the stiffness matrix KU:

KU =
∫

AS

CI
S(x

S
U )

T K̄U CI
S(x

S
U ) dx dy

=

LS/2∫
−LS/2

WS/2∫
−WS/2


c̄x 0 0 0 c̄x zU −c̄x y
0 c̄y 0 −c̄y zU 0 c̄y x
0 0 c̄z c̄z y −c̄z x 0
0 −c̄y zU c̄z y c̄y zU2 + c̄z y2 −c̄z xy −c̄y xzU

c̄x zU 0 −c̄z x −c̄z xy c̄x zU2 + c̄z x2 −c̄x yzU
−c̄x y c̄y x 0 −c̄y xzU −c̄x yzU c̄x y2 + c̄y x2

dx dy

=WSLS



c̄x 0 0 0 c̄x zU 0
0 c̄y 0 −c̄y zU 0 0
0 0 c̄z 0 0 0
0 −c̄y zU 0 zU2c̄y +

1
12 c̄z LS

2 0 0
c̄x zU 0 0 0 c̄x zU2 + 1

12 c̄zWS
2 0

0 0 0 0 0 1
12 c̄x LS

2 + 1
12 c̄yWS

2


(6.3.40)

By defining the following stiffnesses:

cUx = c̄xWSLS, cUy = c̄yWSLS, cUz = c̄zWSLS (6.3.41)

the resulting stiffness matrix KU for the layer representing the underground is formulated in the
following way:

KU =



cUx 0 0 0 cUx zU 0
0 cUy 0 −cUy zU 0 0
0 0 cUz 0 0 0
0 −cUy zU 0 zU2cUy +

1
12 cUz LS

2 0 0
cUx zU 0 0 0 cUx zU2 + 1

12 cUzWS
2 0

0 0 0 0 0 1
12 cUx LS

2 + 1
12 cUyWS

2


(6.3.42)

From (6.3.38) it can be seen that the structure of the damping matrix DU is analogous to the one
of the stiffness matrix KU so that the matrix DU can be derived from the matrix KU by simply
replacing the matrix K̄U with the matrix D̄U. From the comparison of the matrices K̄U and D̄U as
indicated in (6.3.35) it follows that replacing the matrix K̄U with the matrix D̄U means to substitute
the stiffnesses c̄x, c̄y and c̄z by the damping coefficients b̄x, b̄y and b̄z. By defining the following
damping cofficients:

bUx = b̄xWSLS, bUy = b̄yWSLS, bUz = b̄zWSLS (6.3.43)

the damping matrix DU for the visco-elastic layer can be expressed in the following way:

DU =



bUx 0 0 0 bUx zU 0
0 bUy 0 −bUy zU 0 0
0 0 bUz 0 0 0
0 −bUy zU 0 zU2bUy +

1
12 bUz LS

2 0 0
bUx zU 0 0 0 bUx zU2 + 1

12 bUzWS
2 0

0 0 0 0 0 1
12 bUx LS

2 + 1
12 bUyWS

2


(6.3.44)
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Figure 6.3.5: Position of the rail seats (grey) on the sleeper; MPr: centre of the right rail seat; MPl:
centre of the left rail seat; RS: reference point of the sleeper

6.3.4 Rail seat

The rail seat is a plane on the top of the sleeper; here, the sleeper is connected to the rail via the
pad. The railseat is inclined with the rail cant φR. In Figure 6.3.5, the location of the two rail seats
on a sleeper is shown. As displayed in Figure 6.3.6, a point PI is indicated by the local coordinates
xI and yI relative to the centre M of the rail seat.

By using the centre MPr of the right rail seat, the relative position of a point PSI at the rail seat with
respect to the reference point RS is described in the following way:

xS
I ≡ rS

RSPSI
= rS

RSMPr
+ rS

MSPSI
=

 0
YM
ZM


︸ ︷︷ ︸

rS
RSMS

+

1 0 0
0 cosφR −sinφR

0 sinφR cosφR


︸ ︷︷ ︸

S1(φR)

xI
yI
0


︸ ︷︷ ︸
rS
MSPSI

=

 xI
YM+ yI cosφR

ZM+ yI sinφR


(6.3.45)

In section 6.3, the following linearized formulation for the displacement wI
P of a point P belonging

to the sleeper S has been developed:

xS =

x
y
z

⇒ wI
P(x

S ) =

1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0


︸ ︷︷ ︸

CI
S(xS )


xS(t)
yS(t)
zS(t)
ϕS(t)
ϑS(t)
ψS(t)


︸ ︷︷ ︸

qS(t)

(6.3.46)

The expression (6.3.46) describes the displacement in the inertial frame I . In order to determine
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xI

yI
PI

M

Figure 6.3.6: Overview of the rail seat and the rail foot; M: centre of the rail seat; PI: considered
point defined by local coordinates xI and yI
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the kinematics of the pad, the displacement has to be transformed into the rail frame R ; since the
rail is inclined by the constant angle φR around its 1-axis, it is valid:

SRI = SRI−1
= S1(φR)

−1 = S1(−φR) (6.3.47)

Thereby, the displacement wSPI of the point PI , which is required for the kinematics of the pad, is
obtained to:

wSPI ≡ wR
P (xS

I ) = SRI wI
P(x

S
I ) = S1(−φR)CI

S(x
S
I )︸ ︷︷ ︸

CSPI

qS(t) = CSPI qS(t) (6.3.48)

Here, the matrix CSPI establishes a relation between the displacement of the sleeper at the rail seat
and the generalized motion coordinates of the sleeper. This matrix is given by:

CSPI =

1 0 0
0 cosφR sinφR

0 −sinφR cosφR


︸ ︷︷ ︸

S1(−φR)

1 0 0 0 ZM+ yI sinφR −YM− yI cosφR

0 1 0 −ZM− yI sinφR 0 x
0 0 1 YM+ yI cosφR −x 0


︸ ︷︷ ︸

CI
S(x

S
I )

=

1 0 0 0 ZM+ yI sinφR −YM− yI cosφR

0 cosφR sinφR −ZM cosφR+YM sinφR −xI sinφR xI cosφR

0 −sinφR cosφR YM cosφR+ZM sinφR+ yI −xI cosφR −xI sinφR


(6.3.49)

The kinematics for the left rail seat is obtained in an analogous way. As it can be seen from
Figure 6.3.5, the signs of the lateral distance YM and of the rail cant φR have to be changed.

6.4 The track as a cyclic structure

The track consists of prismatic rails supported by sleepers, which have identical properties and
equidistant positions; thereby, the track can be partitioned into equal segments, as shown in Fig-
ure 6.4.7. As the figure shows, each segment contains one sleeper, i.e. it is clear, to which segment

Figure 6.4.7: Cyclic track structure

a certain sleeper belongs. In contrast to this, the rails are continuous elements; therefore, the rails
have to be divided into sections so that one section of each rail belongs to a uniquely defined
segment.
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In the previous sections 6.2 and 6.3 the terms for the individual components have been derived. In
this section, these formulations will be adapted to the description of cyclic systems developed in
the chapter 3.

6.4.1 Rails

The rail is considered as a prismatic structure; therefore, its displacement field can be formulated
as a continuous Fourier series:

wR
R (x,y,z, t) =

∞

∑
K=−∞

wR
R|K(y,z, t)eiK κx, κ =

2π

`
(6.4.50)

In the section 6.2, it has been shown that each term wR
R|K(y,z, t)eiK κx is a semi-analytic solution of

Navier’s equation for a prismatic structure. Furthermore, it can be shown based on the considera-
tions given in the section 3.1.1 that for K 6=−L the functions eiK κx and eiK κx are orthogonal:

`∫
0

eiK κx eiLκx dx =
`∫

0

ei(K+L)κx dx =
ei(K+L)κx

i(K +L)κ

∣∣∣∣∣
`

0

=
ei(K+L)κ`− e0

i(K +L)κ
=

1︷ ︸︸ ︷
e2πi(K+L)−1
i(K +L)κ

= 0

(6.4.51)
By using the prismatic finite element described in the section 4.2, a separate problem is formulated
for each periodicity K:

∫
R

δ
′ṙT r̈ dm+

∫
R

δ
′
ε̇

T
σ dV =

∞

∑
K=−∞

δ
′ẇFE|K

H (
`MFE ẅFE|K + `KFE|K wFE|K

)
, wFE|K =


we

1,K
we

2,K
...

we
N,K


(6.4.52)

Here, the vectors we
j,K denote the nodal displacements for the j-th node.

It should be pointed out that by applying the semi-analytic solution (6.4.50) the entire cyclic struc-
ture is already transformed into a formulation of a cyclic system, which has in this case an infinite
number of segments. This solution has to be adapted to the finite number of segments given by the
discrete support by the sleepers. As mentioned before, the rail is partitioned into sections whereby
each section belongs to a segment. Also here, the consideration using an n-tuple of corresponding
particles can be applied. In this case the reference coordinates are given by:

xR
j = xR (xj,y,z) =

x0 + j ·∆s
y
z

 (6.4.53)

The values for the coordinates y and z are equal for each particle. The displacement of the rail for
the j-th corresponding particle is formulated in the following way:

w( j)
R ≡ wR (xj,y,z) =

∞

∑
K=−∞

wR
R|K(y,z)eiK κ(x0+ j·∆sS) (6.4.54)

Practically, this means that the continuous Fourier series has to be evaluated at discrete equidistant
points. As described in the section 3.1.2, the periodicity K is expressed as K = k+mn, whereby
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kmin ≤ k ≤ kmax is the periodicity for the cyclic system. For the powers it is valid:

κ=
2π

n ·∆s
⇒ κ · j ·∆s=

2π

n ·∆s
j ·∆s=

2π

n
j⇒ eiK·κ· j·∆s = ei(k+mn) 2π

n j = ei 2π

n k j︸ ︷︷ ︸
ζk j

e2πim j︸ ︷︷ ︸
1

= ζ
k j (6.4.55)

Thereby, the displacement for the corresponding points of the rail can be formulated in the follow-
ing way:

w( j)
R =

∞

∑
K=−∞

wR|K(y,z)eiK κ(x0+ j·∆sS) =
∞

∑
K=−∞

wR|K(y,z)eiK κx0 eiK·κ· j·∆s

=
kmax

∑
k=kmin

(
∞

∑
m=−∞

wR|k+mn(y,z)ei(k+mn)κx0

)
︸ ︷︷ ︸

wR
R,k(x0,y,z)

ζ
k j =

kmax

∑
k=kmin

wR
R,k(x0,y,z)ζ

k j (6.4.56)

Here, each vector wR|k+mn(y,z)ei(k+mn)κx0 is described by a modal synthesis of the following
form:

wR|k+mn(y,z) =
NR

∑
I=1

WR|k+mn,I(y,z)qR|k+mn,I (6.4.57)

Here, WR|k+mn,I(y,z) are the eigenmodes of the finite element model of the rail according to
(6.2.17).

6.4.2 Sleepers

As described in section the kinematics of the sleeper is described by the vector qS(t) which contains
the degrees of freedom of the sleeper. By applying the formulation of the kinematics as a discrete
Fourier series the vector q( j)

S (t) which describes the motions of the j-th sleeper is expressed in the
following way:

q( j)
S (t) =

kmax

∑
k=kmin

qS|k(t)ζ
k j (6.4.58)

Based on this, the inertia terms for the sleeper and the inertia and damping terms of the under-
ground can be formulated since these terms are governed only by the motions of the sleeper. By
inserting the Fourier series for the displacement vector q( j)

S , for the velocity vector q̇( j)
S and for the

acceleration vector q̈( j)
S it is obtained:

n−1

∑
j=0

δ
′q̇( j)
S

T(
MS q̈( j)

S +DU q̇( j)
S +KUq( j)

S

)
=

n−1

∑
j=0

(
kmax

∑
k=kmin

δ
′q̇S|k

H
ζ
−k j

)(
kmax

∑
l=kmin

(
MS q̈S|l +DU q̇S|l +KUqS|l

)
ζ

l j

)

=
n−1

∑
j=0

kmax

∑
k=kmin

kmax

∑
l=kmin

δ
′q̇S|k

H (MS q̈S|l +DU q̇S|l +KUqS|l
)

ζ
(−k+l) j

=
kmax

∑
k=kmin

kmax

∑
l=kmin

(
δ
′q̇S|k

H (MS q̈S|l +DU q̇S|l +KUqS|l
)(n−1

∑
j=0

ζ
(−k+l) j

))
(6.4.59)
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The expression is evaluated based on the relation (3.1.70), which has been developed in the sec-
tion 3.1.2:

kmin ≤ k ≤ kmax ∧ kmin ≤ l ≤ kmax :
n−1

∑
j=0

ζ
(−k+l) j =

{
0 for k 6= l

n for k = l
(6.4.60)

Thereby, the following result is obtained:

n−1

∑
j=0

δ
′q̇( j)
S

T(
MS q̈( j)

S +DU q̇( j)
S +KUq( j)

S

)
=

kmax

∑
k=kmin

nδ
′q̇S|k

H (MS q̈S|l +DU q̇S|l +KUqS|l
)

(6.4.61)

It can clearly be seen that the terms for different periodicities k are decoupled. In the present case
the

6.4.3 Modelling of the pads

In a real track, pads, which consist of a comparatively soft material like polymers, are located
in the fastening system between the rail foot and the rail seat of the sleeper; they enable relative
motions between the rails and the sleepers to reduce dynamic forces. In the present track model,
the a pad is modelled by distributed discrete linear visco-elastic elements. These elements are
acting between the rail seat of the sleeper and the bottom surface of the rail. Due to the refined rail
model, modeling the pad by distributed elements appear to be more appropriate then modeling it
by just one compact force element.

In order to determine the forces acting between the rail and the sleeper the kinematics of the points
between the discrete visco-elastic elements representing the pads act. Here, the points PI at the n
pads form an n-tuple of corresponding points. The pad acts at the bottom surface of the rail. This
surface is a horizontal plane, which is defined by zR = zRP. Based on the discrete Fourier series
(6.4.56), the displacement of the rail for the j-th pad is given by:

w( j)
RPI ≡ wR ( j ·∆sS+ xI,yI,zRP) =

∞

∑
K=−∞

wR|K(yI,zRP)eiK κ( j·∆sS+xI)

=
kmax

∑
k=kmin

(
∞

∑
m=−∞

wR|k+mn(yI,zRP)ei(k+mn)κxI

)
︸ ︷︷ ︸

wRPI,k

ζ
k j =

kmax

∑
k=kmin

wRPI,k ζ
k j (6.4.62)

In the section 6.3.4 the kinematics of the sleeper at the railseat has been considered. As a result it
has been obtained:

wSPI ≡ wR
P (xS

I ) = SRI wI
P(x

S
I ) = S1(−φR)CI

S(x
S
I )︸ ︷︷ ︸

CSPI

qS(t) = CSPI qS(t) (6.4.63)

By inserting the discrete Fourier series according to (6.4.58) the displacement at the j-th pad is
formulated in the following way:

w( j)
SPI = CSPI q( j)

S (t) =
kmax

∑
k=kmin

CSPI qS|k(t)ζ
k j (6.4.64)
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Based on this, the relative motion between the two points is given by:

w( j)
PI = w( j)

SPI−w
( j)
RPI =

kmax

∑
k=kmin

(
CSPI qS|k−wRPI,k

)
ζ

k j =
kmax

∑
k=kmin

wPI|k ζ
k j (6.4.65)

As already mentioned, the pads is modelled by distributed linear visco-elastic force elements. The
force acting at the I-th point in the j-th pad is given by:

f( j)
PI = KPI w( j)

PI +DPI ẇ( j)
PI (6.4.66)

Here, the matrices of the force element are given by:

KPI =

cPx 0 0
0 cPy 0
0 0 cPz

 , DPI =

bPx 0 0
0 bPy 0
0 0 bPz

 (6.4.67)

The virtual power of the force element is determined to:

δ
′P( j)
PI = δ

′ẇ( j)
PI

T
f( j)
PI = δ

′ẇ( j)
PI

T
KPI w( j)

PI + δ
′ẇ( j)

PI
T

DPI ẇ( j)
PI (6.4.68)

For the n-tuple of the corresponding force elements it is obtained:

PPI =
n−1

∑
j=0

δ
′P( j)
PI =

n−1

∑
j=0

(
δ
′ẇ( j)

PI
T

KPI w( j)
PI + δ

′ẇ( j)
PI

T
DPI ẇ( j)

PI

)
(6.4.69)

Also here, it is assumed that the virtual deformation velocity δ′ẇ( j)
PI is a real vector so that the trans-

pose is equal to the Hermitian transpose. By applying the transformation derived in the section 3.2
it is obtained:

δ
′PPI =

n−1

∑
j=0

(
δ
′ẇ( j)

PI
H

KPI w( j)
PI + δ

′ẇ( j)
PI

H
DPI ẇ( j)

PI

)
= n

kmax

∑
k=kmin

δ
′ẇPI|k

H (KPI wPI|k +DPI ẇPI|k
)

(6.4.70)
Since the pad is resolved into distributed visco-elastic elements, the virtual power δ′PPI has to be
summed up over all individual elements.

6.4.4 Equations of motion

Based on the models for the individual components, which have been shown in the previous sec-
tions, the homogenuous equation of motion for the track model can now be formulated in the
following way:

0 = n

MR 0 0
0 MR 0
0 0 MS

q̈Rr|[k]
q̈Rl|[k]
q̈S|k

+n

 DP|RR,[k] 0 DP|RSr,[k]
0 DP|RR,[k] DP|RSl,[k]

DP|RSr,[k]
T DP|RSl,[k]

T DP|Sr +DP|Sl +DU

q̇Rr|[k]
q̇Rl|[k]
q̇S|[k]


+n

KR,[k]+KP|RR,[k] 0 KP|RSr,[k]
0 KR,[k]+KP|RR,[k] KP|RSl,[k]

KP|RSr,[k]
T KP|RSl,[k]

T KP|Sr +KP|Sl +KU

qRr|[k]
qRl|k
qS|[k]

 (6.4.71)
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Here, the vector qS|k describes the motion of the sleeper as introduced in (6.4.58). The matrices
MS, DU and KU denote the inertia of the sleeper and the damping and the stiffness of the under-
ground; as it can be seen from (6.4.61) the matrices are equal for each periodicity k.

The vectors qRr|k and qRl|k contain the modal coordinates for the right and for the left rail, respec-
tively. Each vector qRi|k, i = r, l is composed of subvectors in the following way:

qRi|[k] =



...
qRi|k−2n
qRi|k−n
qRi|k
qRi|k+n
qRi|k+2n

...


(6.4.72)

Each subvector qRr|K contains the modal coordinates for the shape functions of the rail having
the periodicity K = k+mn. The matrices MR and KR|[k] contain the modal masses and the modal
stiffnesses of the rail; as it has been derived in the section 4.2, the mass matrix of the prism elements
does not depend on the periodicity K so no index is required. As it can be seen from (6.2.17), the
equation contains the factor `, whereby it is valid for the track length `= n ·∆s; thereby, the number
of segments n can be factored out. The matrices DP... and KP... represent the forces of the pads.
The displacements at the rail foot, where the pads act, depend on the shape functions and thereby
on the periodicity K.

For each basic periodicity k shape functions having the periodicities K = k+mn are used for the
rails. Although the shape functions for the rails are decoupled for different periodicities K 6= L, an
interaction occurs due to the coupling by the discrete support. Thereby, for each eigenvector of the
entire track the deformation field wTof the rails contains several periodicities:

wTI(x,y,z) =
mI,max

∑
m=mI,min

wTI,m(y,z)eikI+mnκx (6.4.73)

6.5 Influence of the length of the track model

The length `T of the track is related to the number of sleepers nSl, whereas one sleeper bay has a
length of ∆s = 0.6 m. The track length can be varied in a particularly simple way if powers of 2
are used for the number of sleepers. In the present case the following numbers n are used:

• n = 16⇒ `T = n ·∆s = 9.6 m

• n = 32⇒ `T = n ·∆s = 19.2 m

• n = 64⇒ `T = n ·∆s = 38.4 m

• n = 128⇒ `T = n ·∆s = 76.8 m

In Fig.6.5.8 und Fig.6.5.9 the frequency response functions for a symmetric excitation by vertical
forces above one sleeper and in the middle of a sleeper bay, respectively, are displayed.



Chapter 6. Modelling of the track 219

0 500 1000 1500 2000 2500
10

−11

10
−10

10
−9

10
−8

f [Hz]

w
/F

3 [m
/N

]

 

 
16 sleeper bays
32 sleeper bays
64 sleeper bays
128 sleeper bays

Figure 6.5.8: Frequency response of the track model for a symmetric excitation by vertical forces
above one sleeper
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Figure 6.5.9: Frequency response of the track model for a symmetric excitation by vertical forces
in the middle of a sleeper bay

The curves for n = 32 and n = 64 are hardly visible, since both curves are lying under the curve for
n = 128; in other words, the curves for n = 32, n = 64, and n = 128 are nearly equal. In contrast to
this, the curve for n = 16 shows distinct deviations from the aforementioned curves. The strongest
deviation occurs at the peak at approx. 1100 Hz for the excitation in the middle of the sleeper
bay shown in Fig.6.5.9; further deviations can be seen in the frequency range between 700 Hz and
3000 Hz. The yellow and the green curve representing the result for n = 32 and n = 64 are nearly
completely covered by the blue line indicating the result for n = 128. This means that doubling
the number of sleepers from n = 32 to n = 64 and again to n = 128 hardly causes any change of
the curve so that a number of n = 32 seems to be sufficient.

For a better overview on the dynamic behaviour the frequency response functions obtained for the
two different positions of the excitation forces are compared in Fig.6.5.10; for both calculation the
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track model possessing n = 128 sleeper bays is used. Below 200 Hz the position of the excitation

0 500 1000 1500 2000 2500
10

−11

10
−10

10
−9

10
−8

f [Hz]

w
/F

3 [m
/N

]

 

 
excitation above one sleeper
excitation in the middle of a sleeper bay

Figure 6.5.10: Frequency response of the track model for a symmetric excitation by vertical forces
above one sleeper and in the middle of a sleeper bay; n = 128 sleeper bays

forces hardly affects the frequency response. In contrast to this, strong differences can be seen
especially in the range around 1100 Hz: For the excitation above the sleeper a minimum occurs,
while the excitation in the middle of the sleeper bay leads to a maximum.

The frequency responses for an antimetric excitation by lateral forces are displayed in Fig.6.5.11
and Fig.6.5.12; also here, the two cases of an excitation above one sleeper and in the middle of a
sleeper bay are considered.

Below 140 Hz the curves are nearly lying above each other so that the deviations between the
curves are very small. However, above this frequency strong differences between the curves occur.
In the range between 140 Hz and 1500 Hz the red curve obtained for n = 16 shows a series of
distinct peaks; these peaks have a nearly equidistant distribution over the frequency. If the number
of sleeper bays is doubled to n = 32 the peaks become smaller, while new peaks occur in the
middle between the peaks for n = 16, i.e. at the location of the minima. By further doubling the
number of sleeper bays to n = 64 and n = 128, this effect again occurs so that the curves become
smoother with an increasing number of sleeper bays n.

This behaviour can be explained with the finiteness of the structure. For an infinite structure
the waves are propagating along the structure without being reflected, since the structure has no
boundaries causing a reflection; this effect is also known as “geometric damping.” In contrast to
this, for a finite structure standing waves or stationary waves occur; these standing waves cause the
maxima. Nevertheless the waves become weaker while propagating through the track because of
the damping. In order to approximate the behaviour of an infinite structure by using a finite one,
the finite structure has to be long enough so that the waves returning to the point of observation of
the finite structure have been weakened enough to neglect their influence.

In Fig.6.5.13 the frequency response functions obtained for n = 128 sleeper bays and for the two
different positions of the excitation forces are compared in order to investigate the influence of
the position. Also in this case, the position of the excitation force has hardly an influence on the
frequency response for low frequencies, here below 200 Hz. Moreover, also here a force acting in
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Figure 6.5.11: Frequency response of the track model for an antimetric excitation by lateral forces
above one sleeper
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Figure 6.5.12: Frequency response of the track model for a symmetric excitation by lateral forces
in the middle of a sleeper bay

the middle of a sleeper bay causes an excitation of a pinned-pinned mode; this leads to the peak at
500 Hz of the curve for the excitation in the middle of the sleeper bay.

By comparing the results obtained for vertical and lateral excitation, it turns out that the frequency
response for lateral excitation is more sensitive to the number of sleeper bays than the one for
vertical excitation: For the vertical excitation the curve for n = 16 sleepers has a slightly wavy
shape resulting from the finiteness of the structure; this “waviness” already vanishes nearly com-
pletely for n = 32 sleeper bays. The curves for n = 64, n = 64, and n = 128 hardly differ from
each other. Thus, for this excitation a track model having n = 32 can be considered as a quite good
approximation for an infinite track model; in other words, in this case the convergence behaviour
is good. For a lateral excitation, however, the convergence behaviour is worse. Even for n = 64
sleeper bays a wavy shape of the frequency response can be seen above 400 Hz. Only for n = 128
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Figure 6.5.13: Frequency response of the track model for an antimetric excitation by lateral forces
above one sleeper and in the middle of a sleeper bay; n = 128 sleeper bays

a nearly smooth curve is obtained for the frequency response is obtained up to approx. 800 Hz;
above this frequency, the curve again becomes wavy and shows peaks resulting from the finiteness
of the structure.

Apparently, the lateral motions of the rail head are distinctly less damped than the vertical motions.
Regarding vertical motions the cross section of the rail is very stiff so that for vertical motions of the
rail head also vertical motions of the rail foot occur. Thereby, the pads and for low frequencies also
the underground layer are compressed and stretched; this causes a considerable damping, since the
pads and the underground layer are the damping components of the track. For lateral excitations
the cross section of the rail can perform a combination of lateral translations and rotations around
the rail’s longitudinal axis. If the resulting instant centre of rotation is located near the rail foot,
the rail pads are only slightly deformed so that only a weak damping occurs. Furthermore, the web
of the rail is comparatively thin so that relative rotations between the rail head and the rail foot can
be expected. Thereby, the motions of the rail foot are lower so that the damping effect of the pads
connected to the rail foot is weaker.



Chapter 7

Modelling of the wheel-rail contact

In reality the wheel-rail contact is a limited area, in which normal and tangential stresses act be-
tween the surfaces of the wheel and the rail. The area of the wheel-rail contact is usually a few
square centimeters large, i.e. it is quite small compared to the main dimensions of the wheelset and
the rail. The wheel-rail contact is moving around the wheel due to the wheel’s overturning motion
and along the rail due to the running of the vehicle. Furthermore, the wheel-rail contact is moving
laterally on the running surfaces of wheel and rail due to the contact geometry.

The stresses acting in the wheel-rail contact are related to the deformations of wheel and rail in
the contact zone. It is, however, sensible and advantageous to treat the “local deformations” in
the contact zone separately from the “global deformations” of the structural dynamics, because
for these two problems different aspects are important. Simply spoken, it could be said that the
analysis of the structural flexibility and dynamics considers the entire structure, whereas small
changes of the geometry hardly affect the result, e.g. the eigenfrequency of the structure, while the
contact mechanics is focused on a small region of the structure, where a highly precise description
of the geometry is required.

An example may illustrate the impact of local deviations of the geometry on the results: In the
standard EN 13674-1 the rail profiles 60E1 and 60E2 are defined. The only difference between
these two profiles is the profile of the rail head. The standard also contains the area A, the mass
per length ρA and the moments of inertia Ixx and Iyy for the cross section. According to the Euler-
Bernoulli beam theory, the first bending eigenfrequency for a beam, which is supported at both
ends as shown in Fig.7.0.1, is given by:

f =
π

2

√
E I

ρAL4 (7.0.1)

L

Figure 7.0.1: Supported beam; dashed lines: First bending eigenmode

The Euler-Bernoulli beam theory is valid for slender beams, i.e. the length of the beam is at least
ten times the dimension of the cross section. Both profiles have a height of 170 mm and a width of
150 mm. Therefore, the length is set to L = 2 m in the following example. For Young’s modulus

223
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E of steel the value E = 210 MPa is used. In Tab. 7.0.1 the geometries of the two profiles and the
bending eigenfrequencies of a rail having one of the two profiles are listed.

Profile 60E1 60E2
Cross sectional area A 76.70 mm2 76.48 mm2

Mass per length ρA 60.21 kg/m 60.03 kg/m
Moment of inertia Ixx 3038.3 cm4 3021.5 cm4

fxx =
π

2

√
E Ixx

ρAL4 127.8352268 Hz 127.6722937 Hz

Moment of inertia Iyy 512.3 cm4 510.5 cm4

fyy =
π

2

√
E Iyy

ρAL4 52.49251697 Hz 52.47872013 Hz

Table 7.0.1: Comparison of the geometry and the structural dynamics for a rail having the profiles
60E1 or 60E2 according to EN 13674-1; L = 2 m; E = 210 MPa

Using the mean value as the reference value the relative differences between the corresponding

frequencies are
2 | fxx,60E1− fxx,60E2|

fxx,60E1+ fxx,60E2
= 0.001275 and

2 | fyy,60E1− fyy,60E2|
fyy,60E1+ fyy,60E2

= 0.000263. Here, it becomes
evident that the impact of the difference between the two geometries on the structural dynamics is
negligible. It can therefore be expected that, if all other parameters like the mass of the sleepers or
the stiffnesses of the pads are unchanged, the dynamical behaviour of a track is nearly the same,
if rails of the type 60E1 or of the type 60E2 are used. It can also be expected that the structural
eigenfrequencies of a wheelset hardly change if a different profile is applied on the wheels.

The impact on the contact, however, is strong. In Fig.7.0.2 the pressure distribution is shown for
the centred position of a wheelset.

Figure 7.0.2: Pressure distribution in the wheel-rail contact for the centred position of the
wheelset; left: rail profile 60E1; right: rail profile 60E2. Wheel profile: S1002;
cant 1:40
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The different shapes of the profiles cause a different pressure distribution; the results will be dis-
cussed in detail in section 8.1. Nevertheless, the comparison of the results for the structural dy-
namics on the one hand and for the contact mechanics on the other hand shows that a separate
treatment of these two problems is sensible.

In this chapter, a wheel-rail contact model will be developed. The analysis of the contact geometry
is mainly based on the work by Netter [48]; the basics for the contact mechanics and for the
formulation of the contact problem follows the fundamental book by Kalker [26].

7.1 Kinematics

In the reference frame R , the deformation is expressed by a field wR (xR , t). If the reference
position of the marker is indicated by the vector xR

M, then the absolute position of the marker is
given by

rI
OM = rI

OR+SI R
(

xR
M+wR (xR

M, t)
)

(7.1.2)

Therefore, the determination of the kinematics for the translational motion of the marker doesn’t
pose a problem. For the rotational motions, however, the determination of the kinematics is less
evident, in particular for a three-dimensional continuum, while for some other modelling concepts
like beams angles describing rotations are used.

One possibility to determine a rotation for a three-dimensional continuum is based on the consid-
eration of the deformation gradient. The following consideration is a very brief comprehension of
the formulation given by Schiehlen and Eberhardt. The gradient F is given by:

xR =

x
y
z

 , wR =

 u(x,y,z)
v(x,y,z)
w(x,y,z)

 , F =

1+ ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x 1+ ∂v

∂y
∂v
∂z

∂w
∂x

∂w
∂y 1+ ∂w

∂z

 (7.1.3)

The deformation gradient can be expressed as a product of a rotation tensor S and a stretch tensor.
Here, two formulations are possible:

F = SU = VS (7.1.4)

Here, the rotation tensor S is an orthogonal matrix, i.e. ST = S−1, while the stretch tensors U and
V are symmetric matrices, i.e. U = UT and V = VT. For small deformations the rotation tensor
S can be approximated by the sum of the identity matrix I and the skew-symmetric part of the
deformation gradient F:

S≈ I+
1
2
(
F−FT)=


1 1

2

(
∂u
∂y −

∂v
∂x

)
1
2

(
∂u
∂z −

∂w
∂x

)
1
2

(
∂v
∂x −

∂u
∂y

)
1 1

2

(
∂v
∂z −

∂w
∂y

)
1
2

(
∂w
∂x −

∂u
∂z

)
1
2

(
∂w
∂y −

∂v
∂z

)
1

=

 1 −γ β

γ 1 −α

−β α 1

 (7.1.5)

For the tensor of the angular velocity W it is valid:

W = ṠST (7.1.6)

By using the approximation according to (7.1.5) it is obtained for small deformations:

ṠST≈

 0 −γ̇ β̇

γ̇ 0 −α̇

−β̇ α̇ 0

 1 γ −β

−γ 1 α

β −α 1

=
 0 −γ̇ β̇

γ̇ 0 −α̇

−β̇ α̇ 0

+
 γ̇ γ+ β̇β −β̇α −γ̇α

−α̇β γ̇ γ+ α̇α −γ̇β

−α̇ γ −β̇ γ β̇β+ α̇α


(7.1.7)
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By assuming that the angles are small, i.e. α� 1, β� 1 and γ� 1, the coefficients of the second
matrix are much less than those of the first one and can therefore be neglected. Thereby, the tensor
W of the angular velocity is approximated in the following way:

W = ṠST ≈

 0 −γ̇ β̇

γ̇ 0 −α̇

−β̇ α̇ 0

 (7.1.8)

The rotation tensor is described by a skew-symmetric matrix of the order 3×3. Here, the multi-
plication of W with a vector r can alternatively formulated as the vector product of a vector ω and
x.  0 −γ̇ β̇

γ̇ 0 −α̇

−β̇ α̇ 0


︸ ︷︷ ︸

W

X
Y
Z


︸ ︷︷ ︸

r

=

 −γ̇Y + β̇Z
γ̇X− α̇Z
−β̇X + α̇Y

=

α̇

β̇

γ̇


︸ ︷︷ ︸

ω

×

X
Y
Z


︸ ︷︷ ︸

r

(7.1.9)

In the present case of the wheel-rail contact, however, the determination of the rotation angles α,
β and γ by according to (7.1.5) can lead to results, which do not adequately describe the kine-
matics of the flexible structure. In order to illustrate this problem, a rather simple example of a
rectangular bar shall be considered; similar to the rail, this bar can be seen as a prismatic shape.
In this example, the bar performs a shear deformation in its longitudinal direction; for the sake of
simplicity, it is assumed that the distribution of the longitudinal displacement u only depends on
the lateral coordinate y. In Figure 7.1.3, the bar is shown in its deformed and its undeformed state;
furthermore, the bar’s cross section is indicated.

Figure 7.1.3: Rectangular bar; left: undeformed reference state; right: shear deformation; hatched
area: cross section of the bar determined as the intersection with the dark grey plain.

Using the body-fixed frame B of the bar as the reference frame, it is obtained for the reference
position xB and for the deformation wB :

xB =

x
y
z

 , wB =

u(y)
0
0

 (7.1.10)

The displacements v and w in the lateral and the vertical directions and thereby also their derivatives
are zero. According to (7.1.5), it is obtained for the rotation angles:

α =
1
2

(
∂w
∂y
− ∂v

∂z

)
= 0, β =

1
2

(
∂u
∂z
− ∂w

∂x

)
= 0, γ =

1
2

(
∂v
∂x
− ∂u

∂y

)
=−1

2
∂u
∂y

=−uy (7.1.11)
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Here, the variable uy denoting the partial derivative of u with respect to y is introduced for the sake
of brevity. The result indicates a rotation around the vertical axis occurs. However, as it can be
seen from Figure 7.1.3, the shape of the bar’s cross section, which is indicated as the intersection
with a transversal plain, and thereby the shape of its surface remain unchanged. Therefore, with
respect to the analysis of the wheel-rail contact geometry, the determination of the rotation based
on the deformation gradient leads to an incorrect input. Therefore, an alternative approach, which
produces a more adequate result, will be presented in the following sections.

The angular velocities can be derived directly from the angles according to (7.1.11); thereby, it is
obtained for the vector ω:

α̇ = 0, β̇ = 0, γ̇ =−1
2

∂2u
∂y∂t

=−1
2

u̇y⇒ ω =−1
2

u̇y

0
0
1

 (7.1.12)

In contrast to the angular displacement, this result is plausible; in the deformed state of the bar
displayed in Figure 7.1.3 the shear deformation, which can be interpreted as a superposition of a
rotation and the actual deformation, is clearly visible. Apparently, for the wheel-rail contact, which
shall be coupled to a flexible body, the kinematics shows some inconsistencies in the sense that the
angular velocity is not necessarily the derivative of the angular position. Also this aspect will be
taken into account in the following considerations.

7.1.1 Rotation of the surface

Since the wheel-rail contact acts at the surfaces of the wheel and the rail, it is obvious to determine
the rotational motions of the markers from the orientation of the surfaces of these two bodies. The
main problem to be solved is to determine a rotation matrix SR S , which describes the rotation
between the reference frame R and the surface frame S .

In the reference frame R the surface of the body is described by the vector xR
S . Since a surface is

a two-dimensional structure, its points can be indicated by two independent parameters ξ and η:

xR
S = xR

S (ξ,η) (7.1.13)

The deformation is given as a field depending on the reference position, i.e. wR (xR ). Therefore,
the position of a point S belonging to the surface can be formulated as a function depending on the
two parameters ξ and η of the surface:

rR
S = xR

S (ξ,η)+wR
(

xR
S (ξ,η)

)
= rR

S (ξ,η) (7.1.14)

The orientation of the surface is determined based on the tangential vectors tξ and tη, which are

obtained as the partial derivatives of the position vector rR
S with respect to the two parameters ξ

and η:

tR
ξ
=

∂rR
S

∂ξ
, tR

η =
∂rR

S

∂η
(7.1.15)

The tangential vectors tR
ξ

and tR
η span a tangential plain to the surface. Therefore, all vectors yR

T
lying in this plain can be described by a linear combination of the two tangential vectors:

yR
T = cξ tR

ξ
+ cη tR

η , cξ 6= 0∨ cη 6= 0⇒ yR
T 6= 0 (7.1.16)
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Although it is assumed that the tangential vectors tR
ξ

and tR
η are linearly independent, they are not

necessarily orthogonal. The scalar factors cξ and cη can be chosen arbitrarily; however, it has to

be ensured that the tangential vector yR
T is not equal to the zero vector.

For vectors of the three-dimensional space the cross product is a very convenient way to generate
orthogonal vectors; it is valid:

c = a×b ⇒ a · c = 0∧b · c = 0 (7.1.17)

This characteristic property will be applied several times in the following considerations. Based
on this, the normal vector nR , which is orthogonal to the surface, can be determined by:

nR = tR
ξ
× tR

η ⇒ nR · tR
ξ
= 0∧nR · tR

η = 0 (7.1.18)

nR = tR
ξ
× tR

η ⇒ nR · tR
ξ
= 0∧nR · tR

η = 0 (7.1.19)

Therefore, the normal vector nR is also orthogonal to all linear combinations of the tangential
vectors tR

ξ
and tR

η :

nR ·yR
T = nR · (cξ tR

ξ
+ cη tR

η ) = nR · cξ tR
ξ
+nR · cη tR

η = cξ nR · tR
ξ︸ ︷︷ ︸

0

+cη nR · tR
η︸ ︷︷ ︸

0

= 0 (7.1.20)

The three vectors tR
ξ

, tR
η and nR are obtained from the geometric analysis of the surface in its

current state so they are considered to be the given input for the determination of the wanted
rotation matrix SR S .

Generally, the orientation of a frame in the three-dimensional space can be described by its three
basis vectors. In the frame itself, the vectors are the canonical basis vectors. Therefore, it is valid
for the surface frame S :

eS
S1 =

1
0
0

 , eS
S2 =

0
1
0

 , eS
S3 =

0
0
1

 (7.1.21)

For each vector eS
S I the I-th coordinate has the value 1, while the two other coordinates are zero;

thereby, it is evident that the vectors eS
S1, eS

S2 and eS
S3 are unit vectors. By applying the transfor-

mation matrix SR S the vectors are transformed from the surface frame S into the reference frame
R :

eR
S1 = SR S eS

S1 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

1
0
0

=

s11
s21
s31

 (7.1.22)

eR
S2 = SR S eS

S2 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

0
1
0

=

s12
s22
s32

 (7.1.23)

eR
S3 = SR S eS

S3 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

0
0
1

=

s13
s23
s33

 (7.1.24)
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Thereby, the rotation matrix SR S can be expressed by arranging the transformed vectors eR
S1, eR

S2

and eR
S3 as the columns of the matrix:

SR S =
[

eR
S1 eR

S2 eR
S3

]
(7.1.25)

The conditions for the column vectors eR
S1, eR

S2 and eR
S3 follow from the properties of the rotation

matrix SR S . In the appendix D these properties are derived in detail for a rotation matrix RN ,
while here only the essential properties and relations, which are required for developing the wanted
rotation matrix SR S are presented. The rotation matrix RN can be formulated in two ways, namely
by its column vectors e1, e2 and e3 and as a product of N elementary rotation matrices:

RN =
[
e1 e2 e3

]
=

N

∏
k=1

SIk(φk), Ik = 1,2,3 (7.1.26)

In the appendix D, two characteristic properties for the rotation matrix RN are shown:

1. The rotation matrix RN is an orthogonal matrix, i.e. its transpose is equal to its inverse:

RN
T = RN

−1 (7.1.27)

2. The determinant of the rotation matrix RN is equal to 1:

detRN = 1 (7.1.28)

From this, it can be derived for the column vectors e1, e2 and e3 of the rotation matrix RN :

1. The column vectors e1, e2 and e3 are orthogonal unit vectors:

ek
T el = ek · el =

{
1 for k = l
0 for k 6= l ⇒ |ek|=

√
ek · ek = 1 (7.1.29)

2. The following relations between the column vectors e1, e2 and e3 are valid:

e1 = e2× e3, e2 = e3× e1, e3 = e1× e2 (7.1.30)

Alternatively, these relations can be formulated in the following way:

ej = ek× el, 〈 j,k, l〉 ∈ {〈1,2,3〉 ,〈2,3,1〉 ,〈3,1,2〉} (7.1.31)

Based on these conditions, the column vectors eR
S1, eR

S2 and eR
S3 of the wanted rotation matrix

SR S can be determined based on the tangential vector yR
T and the normal vector nR according to

(7.1.16) and (7.1.19), respectively, which can again be determined from the tangential vectors tR
ξ

and tR
η .

The column vectors eR
S1, eR

S2 and eR
S3 are unit vectors; from a given vector yR

i 6= 0 a unit vector eR
i ,

which has the same orientation as yR
i , is obtained by normalizing yR

i , i.e. multiplying it with the

reciprocal value of the norm
∣∣∣yR

i

∣∣∣:
yR

i 6= 0⇒ eR
i =

1∣∣∣yR
i

∣∣∣yR
i =

yR
i∣∣∣yR
i

∣∣∣ (7.1.32)

Based on this, the three column vectors are obtained by the following steps:
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1. One vector eR
S I is obtained by normalizing the normal vector nR :

yR
I = cN nR = cN tR

ξ
× tR

η , eR
S I =

yR
I∣∣∣yR
I

∣∣∣ (7.1.33)

Since the vector product is not commutative, the chosen sequence tR
ξ
× tR

η has an influence

on the orientation of the normal vector nR . Since in principle this choice is arbitrary, an
additional scalar factor cN is introduced; by choosing cN =−1, the orientation of the vector
yR

I can be changed into the opposite direction.

2. Another vector eR
SJ is obtained by normalizing a linear combination yR

T of the tangential

vectors tR
ξ

and tR
η ; due to (7.1.19) and (7.1.20) it is ensured that the vectors yR

I and yR
J and

thereby also the unit vectors eR
S I and eR

SJ are orthogonal.

yR
J = yR

T = cξ tR
ξ
+ cη tR

η , eR
SJ =

yR
J∣∣∣yR
J

∣∣∣ (7.1.34)

3. The third vector eR
SK is obtained from the cross product of the vectors eR

S I and eR
SJ; this

ensures that eR
SK is orthogonal to both eR

S I and eR
SJ according to (7.1.17). Depending on how

the indices I and J are chosen, the corresponding triple 〈 j,k, l〉 has to be selected from the
following ones, as derived in section D.3:

eR
S j = eR

Sk× eR
S l, 〈 j,k, l〉 ∈ {〈1,2,3〉 ,〈2,3,1〉 ,〈3,1,2〉} (7.1.35)

It should be noted that the vectors eR
S i, i = 1,2,3, which form the rotation matrix SR S , are not

uniquely defined. It is evident that the vectors yR
I and yR

J , to which the normal vector nR and
yR

T are assigned, can in principle be selected arbitrarily. Furthermore, the scalar factors cξ and cη,

which determine the orientation of the tangential vector yR
T can be chosen arbitrarily as long as the

vector yR
T is not equal to the zero vector. This second aspect shall be discussed later.

The method derived up to here shall now be applied to a practical example, which is based on
the case discussed before in section 7.1. In this case, the top surface of the rectangular bar shall
be considered. Here, it is obvious to use the coordinates x and y as parameters of this surface so
that the tangential vectors tB

x and tB
y have to be determined. The geometrical analysis leads to the

following result:

rB = xB +wB =

x+u(y)
y
z

⇒ tB
x =

∂rB

∂x
=

1
0
0

 , tB
y =

∂rB

∂y
=

 ∂u
∂y
1
0

=

uy
1
0

 , uy =
∂u
∂y

(7.1.36)
Here, the expression uy denoting the partial derivative of the longitudinal displacement u(x,y) with
respect to the lateral coordinate is introduced for the sake of brevity. For the normal vector nB it is
obtained:

nB = tB
x × tB

y =

1
0
0

×
uy

1
0

=

0
0
1

 (7.1.37)
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Thereby, the “geometric vectors” are known and will be considered to be given for the determi-
nation of the matrix SBS , which describes the rotation between the body-fixed frame B and the
surface frame S . The expression “geometric vectors”, which is used here and in the following,
shall indicate that these vectors are obtained from the geometrical analysis.

Since in the present case the normal vector nB is pointing in the direction of the 3-axis of the
body-fixed frame B , it is reasonable to assign it to the vector yB

3 , i.e. setting the scalar factor used
in (7.1.33) to cN = 1; thereby, it is obtained for the vector eB

S3:

yB
3 = nB =

0
0
1

⇒ eR
S3 =

nR∣∣nR
∣∣ =

0
0
1

 (7.1.38)

For the determination of the two other vectors eB
S1 and eB

S2 there are two rather obvious possibil-
ities. One possibility is to assign the tangential vector tB

x , i.e. the derivative with respect to the
longitudinal coordinate x, to the vector yB

1 ; regarding (7.1.34) the scalar factors are set to xx = 1
and cy = 0. Since the vector eB

S2 is determined as the cross product of the vectors eB
S1 and eB

S3,

according to (7.1.35) the triple 〈 j,k, l〉= 〈2,3,1〉 has to be used for the product eR
S j = eR

Sk× eR
S l . In

total, it is obtained:

yB
1 = tB

x =

1
0
0

⇒ eR
S1 =

tB
x∣∣tB
x
∣∣ =

1
0
0

⇒ eR
S2 = eR

S3× eR
S1 =

0
0
1

×
1

0
0

=

0
1
0

 (7.1.39)

⇒ SBS =
[
eB

S1 eB
S2 eB

S3

]
=

1 0 0
0 1 0
0 0 1

 (7.1.40)

A second rather obvious possibility is to assign the tangential vector tB
y , i.e. the derivative with

respect to the lateral coordinate y, to the vector yB
2 ; in this case, the scalar factors are set to xx = 0

and cy = 1 for (7.1.34). For the determination of the vector eB
S1 the triple 〈 j,k, l〉= 〈1,2,3〉 has to

be chosen. This leads to:

yB
2 = tB

y =

uy
1
0

⇒ eR
S2 =

tB
y∣∣tB
y
∣∣ = 1√

1+uy2

uy
1
0

 (7.1.41)

⇒ eR
S1 = eR

S2× eR
S3 =

1√
1+uy2

uy
1
0

×
0

0
1

=
1√

1+uy2

 1
−uy

0

 (7.1.42)

⇒ SBS =
[
eB

S1 eB
S2 eB

S3

]
=


1√

1+uy2

uy√
1+uy2

0

− uy√
1+uy2

1√
1+uy2

0

0 0 1

 (7.1.43)

By comparing this result with the three elementary rotation matrices for the three-dimensional
space, it becomes clear that the matrix SBS according to (7.1.43) describes a rotation around the
3-axis, i.e. around the vertical axis:

S3 =

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

⇒ sinγ =
−uy√
1+uy2

, cosγ =
1√

1+uy2
(7.1.44)
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It is evident that the resulting matrix SBS depends on the choice of the vectors. By assigning
the tangential vector tB

x to the vector yB
1 the matrix SBS is equal to the identity matrix, i.e. the

matrix SBS is not influenced by the longitudinal shear deformation of the bar. Apparently, this is
the correct description of the scenario shown in Figure 7.1.3, where the bar’s cross section in fact
remains unchanged. If, however, the tangential vector tB is assigned to the vector yB

2 , then the
matrix SBS describes a rotation around the 3-axis, which is evidently wrong regarding the cross
section. The different results for the matrix SBS are a consequence of the fact that due to the shear
deformation of the bar the angle between the two geometric tangential vectors tB

x and tB
y varies.

This becomes evident by comparing the vectors tB
x and tB

y determined in (7.1.36): While the vector
tB
x is constant, the vector tB

y changes its direction depending on uy. For the basis vectors of the
surface frame, however, it is assumed that they are always orthogonal.

The bar, which is chosen here as an example, and the rail, to which this formulation will finally be
applied, can also be interpreted as an extrusion of a cross section along a path curve. Since the path
curve can be considered as a description of the local orientation of the structure, it is reasonable
to use this direction as a reference and therefore to choose the tangential vector, which has to be
selected, in such a way that it points into the direction of the path curve.

7.1.2 Angular velocity of the surface

If the rotation of a frame K relative to the frame J is described by the matrix SJ K , then the angular
velocity of K relative to J is determined by:

ω̃
J
JK = ṠJK SJK T

(7.1.45)

The relation between the vector ω
J
JK and the tilde matrix ω̃

J
JK is given by:

ω
J
JK =

ω1
ω2
ω3

⇔ ω̃
J
JK =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (7.1.46)

In appendix D.4 the rotation matrix SJK has been formulated as a rotation matrix RN , which is
described by its column vectors; for this case, the corresponding angular velocity has been derived.
Here, only the result shall be presented. The tilde matrix ω̃

J
JK is obtained to:

SJK = RN =
[
e1 e2 e3

]
⇒ ω̃

J
JK = ṘN RN

T = RN

 0 −e2 · ė1 e1 · ė3
e2 · ė1 0 −e3 · ė2
−e1 · ė3 e3 · ė2 0

RN
T (7.1.47)

From this, the following formulation of the angular velocity as a vector ω
J
JK can be derived:

ω
J
JK = RN

 ė2 · e3
ė3 · e1
ė1 · e2

= (ė2 · e3)e1 +(ė3 · e1)e2 +(ė1 · e2)e3 (7.1.48)

Applying this to the rotation of the surface frame S relative to the reference frame R leads to:

ω
R
R S =

(
ėR

S2 · e
R
S3

)
eR

S1 +
(

ėR
S3 · e

R
S1

)
eR

S2 +
(

ėR
S1 · e

R
S2

)
eR

S3 (7.1.49)
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It can be seen that the formulation of the vector ω
R
R S contains the vectors ėR

S1, ėR
S2 and ėR

S3, i.e.
the derivatives of all three basis vectors. In the methodology developed in section 7.1.1, however,
the matrix SR S is determined by normalizing the vectors cN nR and cξ tR

ξ
+ cη tR

η and assigning

them to two column vectors eR
S I and eR

SJ , while the third vector eR
SK is determined by applying the

following relation for the correct index triple 〈 j,k, l〉:

eR
S j = eR

Sk× eR
S l, 〈 j,k, l〉 ∈ {〈1,2,3〉 ,〈2,3,1〉 ,〈3,1,2〉} (7.1.50)

Therefore, the goal of the following transformation is to express the angular velocity only by the
two chosen vectors; this also shows, how the choice of the two vectors influences the obtained
angular velocity. To this end, it is useful to formulate the vector ω

R
R S given by (7.1.49) in a

generalized way similar to (7.1.50). This generalized formulation is given by:

ω
R
R S =

(
ėR

S j · e
R
Sk

)
eR

S l +
(

ėR
Sk · e

R
S l

)
eR

S j +
(

ėR
S l · e

R
S j

)
eR

Sk, 〈 j,k, l〉 ∈ {〈1,2,3〉 ,〈2,3,1〉 ,〈3,1,2〉}
(7.1.51)

The evaluation of this formulation leads to:

〈 j,k, l〉= 〈1,2,3〉 : ω
R
R S =

(
ėR

S1 · e
R
S2

)
eR

S3 +
(

ėR
S2 · e

R
S3

)
eR

S1 +
(

ėR
S3 · e

R
S1

)
eR

S2 (7.1.52)

〈 j,k, l〉= 〈2,3,1〉 : ω
R
R S =

(
ėR

S2 · e
R
S3

)
eR

S1 +
(

ėR
S3 · e

R
S1

)
eR

S2 +
(

ėR
S1 · e

R
S2

)
eR

S3 (7.1.53)

〈 j,k, l〉= 〈3,1,2〉 : ω
R
R S =

(
ėR

S3 · e
R
S1

)
eR

S2 +
(

ėR
S1 · e

R
S2

)
eR

S3 +
(

ėR
S2 · e

R
S3

)
eR

S1 (7.1.54)

Since the addition is commutative, it is shown that for all three index triples 〈 j,k, l〉 the generalized
formulation according to (7.1.51) leads to the same result, which is equal to (7.1.49).

For the following considerations, a relation between the column vectors and their derivatives is re-
quired. According to (7.1.29), the column vectors of a rotation matrix are orthogonal unit vectors;
therefore, it is valid for the present case:

eR
Sk

T
eR

S l = eR
Sk · e

R
S l =

{
1 for k = l
0 for k 6= l ⇒

∣∣∣eR
Sk

∣∣∣=√eR
Sk · e

R
Sk = 1 (7.1.55)

Differentiating the relation (7.1.55) for k 6= l and subsequently applying the commutativity of the
scalar product leads to:

0 = eR
Sk ·e

R
S l⇒ 0 =

d
dt

(
eR

Sk · e
R
S l

)
= ėR

Sk ·e
R
S l +eR

Sk · ė
R
S l⇒−ėR

Sk ·e
R
S l = eR

Sk · ė
R
S l = ėR

S l ·e
R
Sk (7.1.56)

By adapting this result to j 6= l:
−ėR

S j · e
R
S l = ėR

S l · e
R
S j (7.1.57)

and inserting this relation and by applying the vector triple product:

a× (b× c) = (a · c)b− (a ·b)c (7.1.58)

the sum of the first and the third term of (7.1.51) can be reformulated in the following way:(
ėR

S j · e
R
Sk

)
eR

S l +
(

ėR
S l · e

R
S j

)
eR

Sk =
(

ėR
S j · e

R
Sk

)
eR

S l−
(

ėR
S j · e

R
S l

)
eR

Sk = ėR
S j×

(
eR

S l× eR
Sk

)
(7.1.59)
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Applying the anticommutativity of the cross product and the relation (7.1.50) leads to:(
ėR

S j · e
R
Sk

)
eR

S l +
(

ėR
S l · e

R
S j

)
eR

Sk = ėR
S j×

(
eR

S l× eR
Sk

)
=−

(
−eR

Sk× eR
S l

)
× ėR

S j

=
(

eR
Sk× eR

S l

)
︸ ︷︷ ︸

eR
S j

×ėR
S j = eR

S j× ėR
S j (7.1.60)

Apparently, the sum of the first and the third term of the angular velocity ω
R
R S can be expressed by

just one column vector and its derivative. As a result, it is obtained:

ω
R
R S =

(
ėR

S j · e
R
Sk

)
eR

S l +
(

ėR
Sk · e

R
S l

)
eR

S j +
(

ėR
S l · e

R
S j

)
eR

Sk = eR
S j× ėR

S j +
(

ėR
Sk · e

R
S l

)
eR

S j (7.1.61)

In order to complete the formulation, either the vector ėR
Sk or the vector eR

S l has to be eliminated.

Here, the consideration of the products eR
Sk× eR

S j and eR
S l× eR

S j is useful; by inserting the relation
(7.1.50) between the column vectors, applying the vector triple product and taking advantage of
the fact that the column vectors are orthogonal unit vectors it is obtained:

eR
Sk× eR

S j = eR
Sk×

(
eR

Sk× eR
S l

)
=
(

eR
Sk · e

R
S l

)
︸ ︷︷ ︸

0

eR
Sk−

(
eR

Sk · e
R
Sk

)
︸ ︷︷ ︸

1

eR
S l =−eR

S l (7.1.62)

eR
S l× eR

S j = eR
S l×

(
eR

Sk× eR
S l

)
=
(

eR
S l · e

R
S l

)
︸ ︷︷ ︸

1

eR
Sk−

(
eR

S l · e
R
Sk

)
︸ ︷︷ ︸

0

eR
S l = eR

Sk (7.1.63)

Furthermore, the commutativity of the scalar triple product, which is proven in appendix A.5.2, is
required:

a · (b× c) = b · (c×a) = c · (a×b) (7.1.64)

The product ėR
Sk · e

R
S l can now be reformulated by subsequently applying the relation (7.1.62), the

anticommutativity of the cross product and the commutativity of the scalar triple product according
to (7.1.64). This leads to:

ėR
Sk · e

R
S l = ėR

Sk ·
(
−eR

Sk× eR
S j

)
= ėR

Sk ·
(

eR
S j× eR

Sk

)
= eR

S j ·
(

eR
Sk× ėR

Sk

)
(7.1.65)

Alternatively, the product can be reformulated by subsequently applying the relation (7.1.56), the
relation (7.1.63), the commutativity of the triple scalar product according to (7.1.64) and the anti-
commutativity of the vector product; this results in:

ėR
Sk · e

R
S l =−ėR

S l · e
R
Sk =−ėR

S l ·
(

eR
S l× eR

S j

)
= eR

S j ·
(
−ėR

S l× eR
S l

)
= eR

S j ·
(

eR
S l× ėR

S l

)
(7.1.66)

In total, two formulations for the angular velocity are obtained, which use only two of the three
column vectors:

ω
R
R S = eR

S j× ėR
S j +

(
ėR

Sk · e
R
S l

)
eR

S j = eR
S j× ėR

S j +
(

eR
S j ·
[
eR

Sk× ėR
Sk

])
eR

S j (7.1.67)

= eR
S j× ėR

S j +
(

eR
S j ·
[
eR

S l× ėR
S l

])
eR

S j (7.1.68)

It should be pointed out that both formulations (7.1.67) and (7.1.67) are valid for all index triples
〈 j,k, l〉 given by:

〈 j,k, l〉 ∈ {〈1,2,3〉 ,〈2,3,1〉 ,〈3,1,2〉} (7.1.69)
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Therefore, the index j can have the values j = 1, j = 2 and j = 3 so that each of the vectors eR
S1, eR

S2

and eR
S3 can be used as the vector eR

S j. Furthermore, it can be seen that both formulations (7.1.67)
and (7.1.67) have an analogous structure, i.e. the formulation (7.1.67) can be transformed into the
formulation (7.1.67) by simply replacing the vector eR

Sk by the vector eR
S l . This means that for the

second term of the angular velocity any vector eR
Sk or eR

S l except the already chosen vector eR
S j can

be used. For the present case this means that for the angular velocity the normalized normal vector
cN nR can be assigned to the vector eR

S j and any normalized tangential vector cξtR
ξ
+ cηtR

η can be

assigned to the vector eR
Sk or eR

S l; however, the actual indices of the axes, to which the vectors are

assigned, do not matter. By defining the normal unit vector eR
N and the tangential unit vector eR

T

yR
N = cN nR ⇒ eR

N =
yR

N∣∣∣yR
N

∣∣∣ , yR
T = cξtR

ξ
+ cηtR

η ⇒ eR
T =

yR
T∣∣∣yR
T

∣∣∣ (7.1.70)

the angular velocity at the surface can be formulated in the following way:

ω
R
R S = eR

N × ėR
N +

(
eR

N ·
[
eR

T × ėR
T

])
eR

N (7.1.71)

The angular velocity ω
R
R S contains two products of the structure eR

I × ėR
I ; therefore, this prod-

uct will be analyzed in the following considerations. For a unit vector eI , which is obtained by
normalizing the vector yI 6= 0, it is valid:

|yI|=
√

yI ·yI = (yI ·yI)
1
2 ⇒ eI =

1
|yI|

yI =
1

√yI ·yI
yI = (yI ·yI)

− 1
2 yI (7.1.72)

Using this formulation, the derivative ėI of the unit vector eI is obtained to:

ėI =
deI

dt
=

d
dt

(
(yI ·yI)

− 1
2 yI

)
=

d
dt

(
(yI ·yI)

− 1
2

)
yI +(yI ·yI)

− 1
2

dyI

dt

=−1
2
(yI ·yI)

− 3
2 (ẏI ·yI +yI · ẏI)yI +(yI ·yI)

− 1
2 ẏI (7.1.73)

Based on this result, the cross product eI× ėI can be evaluated; in this context it should be noted
that the cross product of two equal vectors is the zero vector, i.e. r× r = 0.

eI× ėI = (yI ·yI)
− 1

2 yI×
(
−1

2
(yI ·yI)

− 3
2 (ẏI ·yI +yI · ẏI)yI +(yI ·yI)

− 1
2 ẏI

)
=−1

2
(yI ·yI)

−2 (ẏI ·yI +yI · ẏI)yI×yI︸ ︷︷ ︸
0

+(yI ·yI)
−1 yI× ẏI =

yI× ẏI

yI ·yI
(7.1.74)

Based on this, the first term of (7.1.71) can be evaluated; it is valid:

eR
N × ėR

N =
yR

N × ẏR
N

yR
N ·y

R
n

=

(
cN nR )× (cN ṅR )(
cN nR

)
·
(
cN nR

) =
cN

2 nR × ṅR

cN2 nR ·nR =
nR × ṅR

nR ·nR (7.1.75)

It turns out that the factor cN , which has been introduced in order to change the orientation of the
normal vector nR is eliminated so it does not matter whether the normal vector is determined by
nR = tR

ξ
× tR

η or by nR = tR
η × tR

ξ
. Thereby, the first term eR

N × ėR
N of the angular velocity ω

R
R S is

uniquely defined.
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By applying the relation (7.1.74) and the definition of the unit vector it is obtained for the second
term of (7.1.71):

(
eR

N ·
[
eR

T × ėR
T

])
eR

N =

 yR
N√

yR
N ·y

R
N

·
yR

T × ẏR
T

yR
T ·y

R
T

 yR
N√

yR
N ·y

R
N

=
yR

N ·
[
yR

T × ẏR
T

]
(

yR
N ·y

R
N

)(
yR

T ·y
R
T

)yR
N

(7.1.76)
Inserting the relation yR

N = cN nR according to (7.1.70) leads to:

(
eR

N ·
[
eR

T × ėR
T

])
eR

N =
yR

N ·
[
yR

T × ẏR
T

]
(

yR
N ·y

R
N

)(
yR

T ·y
R
T

)yR
N =

cN nR ·
[
yR

T × ẏR
T

]
(
cN nR · cN nR

)(
yR

T ·y
R
T

)cN nR

=
cN

2 nR ·
(

yR
T × ẏR

T

)
cN2

(
nR ·nR

)(
yR

T ·y
R
T

)nR =
nR ·

(
yR

T × ẏR
T

)
(
nR ·nR

)(
yR

T ·y
R
T

)nR (7.1.77)

Also here, the scalar factor cN for the normal vector is eliminated. In total, it is obtained for the
angular velocity at the surface:

ω
R
R S = eR

N × ėR
N +

(
eR

N ·
[
eR

T × ėR
T

])
eR

N =
nR × ṅR

nR ·nR +
nR ·

(
yR

T × ẏR
T

)
(
nR ·nR

)(
yR

T ·y
R
T

)nR (7.1.78)

Also for the angular velocity, the case of the rectangular bar shall be considered as a example;
again, the body-fixed frame B is used as the reference frame R . For the vectors tB

x , tB
y , nB and

their derivatives it is valid:

tB
x =

1
0
0

⇒ ṫB
x = 0, tB

y =

uy
1
0

⇒ ṫB
y =

 u̇y
0
0

 , nB =

0
0
1

⇒ ṅB = 0⇒ nB× ṅB = 0 (7.1.79)

In the present case, the normal vector nB and the tangential vector tB
x are constant; thereby, their

derivatives ṅB and ṫB
x are zero vectors. Because of ṅ = 0, the first term of the angular velocity

according to (7.1.78) vanishes. According to (7.1.70) each linear combination of the “geometric”
tangential vectors tR

ξ
and tR

η can be used as the tangential vector yR
T . As done in the previous

section 7.1.1 two obvious possibilities shall be considered. One possibility is to use the vector tB
x

as the tangential vector yB
T . Since the vector tB

x is constant, its derivative ṫB
x is equal to the zero

vector so that the entire angular velocity is zero:

yB
T = tB

x ⇒ ẏB
T = ṫB

x = 0⇒ yB
T × ẏB

T = 0⇒ ω
B
BS ,x = 0 (7.1.80)

Another obvious possibility is to use the vector tB
y as the tangential vector yB

T . In this case, it is
obtained for the numerator of the fraction contained in (7.1.78):

yB
T = tB

y ⇒ nB ·
(

yB
T × ẏB

T

)
= nB ·

(
tB
y × ṫB

y

)
= nB ·

uy
1
0

×
 u̇y

0
0

=

0
0
1

 ·
 0

0
−u̇y

=−u̇y

(7.1.81)
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Finally, it is obtained for the angular velocity:

nB ·nB = 1, tB
y · tB

y = 1+uy
2⇒ ω

B
BS ,y =

nB × ṅB

nB ·nB︸ ︷︷ ︸
0

+
nB ·

(
tB
y × ṫB

y
)(

nB ·nB
)(

tB
y · tB

y
)nB =

−u̇y

1+uy2

0
0
1


(7.1.82)

The tangential vector tB
y changes its direction due to the deformation of the bar so that a rotation

is obtained.

Due to the shear deformation the angle between the tangential vectors tB
x and tB

y is not constant, or
in other words, both tangential vectors are rotating with different angular velocities. For the rota-
tion of a frame consisting of several vectors it is required that the vectors maintain their orientation
relative to each other. Therefore, it is reasonable to use the medium value of the two results; in the
present case this leads to:

ω
B
BS =

1
2

(
ω

B
BS ,x +ω

B
BS ,y

)
=

1
2
−u̇y

1+uy2

0
0
1

 (7.1.83)

By using the approximative method based on the deformation gradient, which has been shown in
the section 7.1, the following result has been obtained according to (7.1.12):

ω =−1
2

u̇y

0
0
1

 (7.1.84)

By assuming that the deformations are very small, it is valid uy� 1; from this it follows
1+uy

2 ≈ 1 so that the two results (7.1.83) and (7.1.84) are nearly equal.

Based on this, it is reasonable to determine the second term of (7.1.78) as a medium value of the
terms, which are obtained for setting the tangential vector yR

T equal to one of the “geometric”
tangential vectors tB

ξ
and tB

η . This leads to:

yR
T = tR

ξ
⇒ ω

R
R S =

nR × ṅR

nR ·nR +
nR ·

(
tR
ξ
× ṫR

ξ

)
(
nR ·nR

)(
tR
ξ
· tR

ξ

)nR (7.1.85)

yR
T = tR

η ⇒ ω
R
R S =

nR × ṅR

nR ·nR +
nR ·

(
tR
η × ṫR

η

)
(
nR ·nR

)(
tR
η · t

R
η

)nR (7.1.86)

⇒ ω
R
R S =

nR × ṅR

nR ·nR +
1
2

nR ·
(

tR
ξ
× ṫR

ξ

)
(

tR
ξ
· tR

ξ

) +
nR ·

(
tR
η × ṫR

η

)
(

tR
η · t

R
η

)
 nR

nR ·nR (7.1.87)

Thereby, a formulation for the angular velocity at the surface on the flexible body is obtained.
Once again, it should be pointed out that this formulation is ultimately based on the tangential
vectors tR

ξ
and tR

η and their derivatives ṫR
ξ

and ṫR
η . The normal vector nR is determined by the

vector product of the tangential vectors, whereby the sequence of the vectors, which affects the
sign of the product, is not prescribed, but has to be used consistently. This means that one of the
formulations nR = tR

ξ
× tR

η or nR = tR
η × tR

ξ
has to be selected and the selected formulation has

to be used consistently.
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7.1.3 Application to the rail

The methods, which have been developed in the previous sections 7.1.1 and 7.1.2, shall now be
applied to the flexible bodies representing the rail in order to determine the kinematics of the
frame MRi. In this context it should be noticed that the frame MRi is not necessarily identical
to the surface frame S which has been considered in the previous sections. Therefore, a further
rotation matrix SSMRi is introduced so that the rotation between the reference frame R of the rail
and the frame MRi is formulated in the following way:

SR M Ri = SR S SSMRi (7.1.88)

The matrix SSMRi only expresses the different orientations of the surface and the marker so that it
is constant. Therefore, it has to be calculated only once and it can be determined by considering
the reference state which is usually the undeformed state of the flexible body; the matrices for this
state will be denoted by the index 0. In this case, the matrix SR M Ri

0 is given; e.g. by the frame in
which the profile function is defined. Then, the matrix SSMRi is obtained to:

SR M Ri
0 = SR S

0 SSMRi ⇒ SSMRi = SR S
0
−1

SR M Ri
0 = SR S

0
T

SR M Ri
0 (7.1.89)

Since the matrix SSMRi is constant, its derivative vanishes, i.e. SSMRi = 0, so that it has no influence
on the angular velocity of the frame. Therefore, it is valid:

ω̃
R
R MRi

= ṠR MRi SR MRi
T
= ṠR S SSMRi SSMRi

T︸ ︷︷ ︸
I

SR S T
= ṠR S SR S T

= ω̃
R
R S ⇒ ω̃

R
R MRi

= ω̃
R
R S

(7.1.90)
Now, the rotation matrix SR S and the angular velocity ω

R
R S shall be determined. As described

in the previous sections 7.1.1 and 7.1.2, the surface, for which the rotation shall be determined,
has to be described by two parameters. In the case of the running surface of the rail, it is obvious
to use the longitudinal coordinate x as one parameter; the choice of the second parameter will be
discussed later.

The wheel-rail contact moves along the track due to the forward motion of the vehicle; thereby, the
coordinate xWRi indicating the current position of the i-th wheel-rail contact grows with the time.
Therefore, the displacement wMR

for the marker MR, which is located in the running surface at the
rail head, has to be provided as a function of x. If the track is modelled as a cyclic structure, the use
of a Fourier series is obvious and advantageous. For a straight track, the reference position of the
marker is given by the coordinates 〈x,yMR

,zMR
〉, whereby the yMR

and zMR
are constant. Thereby,

the trajectory, on which the marker MR moves, is given by:

rR
RMR

=

 x
yMR

zMR

+wR (x,yMR
,zMR

, t) =

 x
yMR

zMR

+ ∞

∑
K=−∞

wR
K (yMR

,zMR
, t)eiK κx (7.1.91)

The exponential function, from which the sine and the cosine function are derived, is a smooth
function, which can be differentiated without problems; in the present case, this is useful for the
determination of the tangential vector tR

x , which is obtained as the partial derivative of rR
RMR

with
respect to the longitudinal coordinate x.

tR
x (x) =

∂

∂x
rR
RMR

=

1
0
0


︸︷︷︸

tR
0x

+
∞

∑
K=−∞

wR
K (yMR

,zMR
, t) iK κeiK κx (7.1.92)
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The tangential vector required for the analysis is obtained by for the current position xWRi of the
i-th contact, i.e. tR

x = tR
x (xWRi).

For the determination of the second tangential vector tR
η , the modelling of the rail has to be con-

sidered. As described in the section 6.2, the cross section of the rail is discretized using finite
elements. In the present case, bilinear elements, which have a shape of a quadrilateral, are used.
For the analysis of the structural dynamics, this approximation is adequate and suitable; for the
description of the local geometry, which is required here, it can be problematic, because the dis-
cretization by the bilinear elements generates vertices or corners, while the surfaces of the wheel
and the rail are smooth. Also, the interpolation based on the local shape functions doesn’t seem
very helpful here, since at the borders between the elements including the nodes discontinuities of
the derivatives can occur, in particular for linear elements.

A possibility to approximate the partial derivative in the lateral direction is the use of an interpola-
tion curve. This interpolation curve will be determined by the centred node S0, which is identical
to the marker MR, and its two neighbouring nodes S−1 and S1, which are also lying at the surface
of the rail. This is shown in Figure 7.1.4.

Figure 7.1.4: Interpolation nodes S−1, S0 and S1 for the discretized cross section of the rail; red:
interpolation curve.

The curve is described by a parameter η so that for the parameter ηi the point Ki is described. If
the vector rB

RSi
describes the position of the i-th surface node, then it is valid:

r(η−1) = rB
RS−1

, r(η0) = rB
RS0

, r(η1) = rB
RS1

(7.1.93)

The continuous function r(η) can be formulated using Lagrangian polynomials ` j(η).

rR
RS(η) = rR

RS−1
`−1(η)+ rR

RS0
`0(η)+ rB

RS1
`1(η), `i(ηk) =

{
1 for i = k
0 for i 6= k (7.1.94)

The Lagrangian polynomials are continuous smooth functions; therefore, they can be differenti-
ated, which leads to the following approximation for the tangential vector tη:

tR
η =

∂

∂η
rB
RS(η) = rR

RS−1
`′−1(η)+ rR

RS0
`′0(η)+ rR

RS1
`′1(η), `

′
i =

d`i(η)

dη
(7.1.95)

The values ηi for the parameter η at the given points can be chosen nearly arbitrarily as long as the
sequence of the values represents the sequence of the points, through which the curve passes. In
the present case, it is obvious to set the value ηi equal to its index i, i.e. ηi = i.
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The construction of the Lagrangian polynomials is fully derived in the appendix A.4; here, only
the result shall be presented. For the three given arguments η−1 =−1, η0 = 0 and η1 = 1 the
following polynomials `i(η) are determined:

`−1(η) =
1
2

η
2− 1

2
η, `0(η) =−η

2 +η, `1(η) =
1
2

η
2 +

1
2

η (7.1.96)

The derivatives `′i(η) are obtained to:

`′−1(η) = η− 1
2
, `′0(η) =−2η+1, `′1(η) = η+

1
2

(7.1.97)

Based on this, the tangential vector tB
η to the curve at the point S0 is obtained to:

tR
η (η = 0) = rR

RS−1
`′−1(η = 0)+ rR

RS0
`′0(η = 0)+ rR

RS1
`′1(η = 0) =

1
2

(
rR
RS1
− rR

RS−1

)
(7.1.98)

The result indicates that based on this approximation the tangential vector tB is half the vector,
which describes distance from the point S−1 to the point S1. Thereby, the tangential vector tB

η ,
which is required for the determination of the rotation of the surface, is determined solely based on
the positions of discrete points so this approximation can be applied to the finite element models
representing the wheelset and the rail.

The kinematics is treated in the same way as for the marker MR. Regarding the cross section, the
coordinates for the nodes SI are given by the constant values 〈ySI ,zSI〉, I = 1,−1; inserting these
coordinates into (7.1.91) leads to:

rR
RSI

=

 x
ySI

zSI

+wR (x,ySI ,zSI , t) =

 x
ySI

zSI

+ ∞

∑
K=−∞

wR
K (ySI ,zSI , t)eiK κx (7.1.99)

By inserting this into (7.1.98) the tangential vector tR
η (x) at the node S0 ≡MR is obtained:

tR
η (x) =

1
2

(
rR
RS1
− rR

RS−1

)
=

1
2

 x
yS1

zS1

+wR (x,yS1,zS1, t)−

 x
yS−1

zS−1

−wR (x,yS−1,zS−1, t)


=

1
2

 0
yS1− yS−1

zS1− zS−1


︸ ︷︷ ︸

tR
0η

+
∞

∑
K=−∞

1
2

(
wR

K (yS1 ,zS1, t)−wR
K (yS−1,zS−1, t)

)
︸ ︷︷ ︸

tR
η|K

eiK κx (7.1.100)

Also here, the tangential vector, which is required for the determination of the rotation at the
surface, is obtained for the current position xWRi of the i-th wheel-rail contact, i.e. tR

η = tR
η (xWRi).

The motions of the track model, which includes the rail, are described by a modal synthesis. Here,
the deformation field of the rail is described by a superposition of shape functions wTI(x,y,z),
whereby each shape function is formulated as a continuous Fourier series.

wR
R (x,y,z, t) = ∑

I
wR
TI(x,y,z)qTI(t) = ∑

I

(
KI,max

∑
K=KI,min

wR
TI,K(y,z)eiK κx

)
qTI(t) (7.1.101)
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The position of the marker MRi is defined by the values yMR
and zMR

of the cross-sectional coor-
dinates and the value xWRi indicating the current position of the i-th wheel-rail contact. Using the
modal synthesis, this displacement is obtained to:

wR
R (xWRi,yMR

,zMR
, t) = ∑

I

(
KI,max

∑
K=KI,min

wR
TI,K(yMR

,zMR
)eiK κxWRi

)
qTI(t) (7.1.102)

The tangential vector tR
x,i with respect to the longitudinal coordinate x is obtained by inserting the

modal synthesis (7.1.101) into the formulation (7.1.92) and setting x = xWRi; this leads to:

tR
x,i =

1
0
0

+∑
I

(
KI,max

∑
K=KI,min

wR
TI,K(yMR

,zMR
) iK κeiK κxWRi

)
qTI(t) (7.1.103)

In a similar way, the tangential vector tR
η with respect to the transverse coordinate η is obtained

based on the formulation (7.1.100).

tR
η,i =

1
2

 0
yS1− yS−1

zS1− zS−1

+∑
I

(
KI,max

∑
K=KI,min

1
2

(
wR
TI,K(yS1,zS1)−wR

TI,K(yS−1 ,zS−1)
)

eiK κxWRi

)
qTI(t)

(7.1.104)
By using the following definitions:

wR
TI,K(yMR

,zMR
) = wMR|I,K,

1
2

(
wR
TI,K(yS1,zS1)−wR

TI,K(yS−1,zS−1)
)
= tη|I,k (7.1.105)

it can be written:

wR
R (xWRi,yMR

,zMR
, t) = ∑

I

(
KI,max

∑
K=KI,min

wMR|I,K eiK κxWRi

)
qTI(t) (7.1.106)

tR
x,i = tR

0x +∑
I

(
KI,max

∑
K=KI,min

wMR|I,K iK κeiK κxWRi

)
qTI(t), tR

0x =

1
0
0

 (7.1.107)

tR
η,i = tR

0η
+∑

I

(
KI,max

∑
K=KI,min

tη|I,K eiK κxWRi

)
qTI(t), tR

0η
=

1
2

 0
yS1− yS−1

zS1− zS−1

 (7.1.108)

Based on the “geometrical” tangential vectors tR
x,i and tR

η,i the rotation matrix which describes the
angular position of the frame MRi can now be determined. First, the vector product of the constant
parts tR

0x and tR
0η

of the tangential vectors shall be considered:

tR
0x× tR

0η
=

1
0
0

× 1
2

 0
yS1− yS−1

zS1− zS−1

=
1
2

 0
−(zS1− zS−1)

yS1− yS−1

 (7.1.109)

If the surface points S−1 and S1 are selected in such a way that it is valid
yS1 > yS−1 ⇔ yS1− yS−1 > 0, then the third coordinate of the product is positive, i.e. a part of
the product points in the positive direction of the 3-axis. Therefore, it is reasonable to define the
normal vector nR

i in the following way:

nR
i = tR

x,i× tR
η,i (7.1.110)
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Based on the method developed in the section 7.1.1, the rotation matrix SR S between the reference
frame R and the surface frame S for the marker MRi is now formulated in the following way
using the vectors tR

x,i and tR
x,i which have been determined according to (7.1.107) and (7.1.108),

respectively:

y3 = nR
i = tR

x,i× tR
η,i⇒ eR

S3 =
nR

i∣∣∣nR
i

∣∣∣ , y1 = tR
x,i⇒ eR

S1 =
tR
x,i∣∣∣tR
x,i

∣∣∣ , eR
S2 = eR

S3× eR
S1 (7.1.111)

⇒ SR S =
[

eR
S1 eR

S2 eR
S3

]
(7.1.112)

Thereby, the rotation matrix between the body-fixed frame R of the rail and the surface frame S
is obtained. It should, however, be noticed that the surface frame S is not necessarily identical to
the frame MRi of the marker; therefore, a correction by a constant matrix SSMRi may be necessary.
In the case of the rail, the frame MRi, in which the profile function is defined, has the same orien-
tation as the body-fixed frame R for the undeformed state. By using the index 0 for the matrices
describing the undeformed state it is valid:

I = SR M Ri
0 = SR S

0 SSMRi ⇒ SSMRi = SR S
0
−1

= SR S
0

T
(7.1.113)

The matrix SR S
0 is determined in an analogous way as the matrix SR S ; here, however, only the

constant parts tR
0x and tR

0η
of the tangential vectors are used:

y30 = nR
0 = tR

0x× tR
0η
⇒ eR

S30 =
nR

0∣∣∣nR
0

∣∣∣ , y10 = tR
0x⇒ eR

S10 =
tR
0x∣∣∣tR
0x

∣∣∣ , eR
S20 = eR

S30× eR
S10 (7.1.114)

⇒ SR S
0 =

[
eR

S10 eR
S20 eR

S30

]
(7.1.115)

Since the vectors tR
0x and tR

0η
are constant, the matrix SR S

0 has to be determined only once. Finally,

the rotation matrix SR MRi is obtained to:

SR MRi = SR S SSMRi = SR S SR S
0

T
(7.1.116)

In the section 7.1.2 the following expression for the angular velocity at the surface of a flexible
body has been derived:

ω
R
R S =

nR × ṅR

nR ·nR +
1
2

nR ·
(

tR
ξ
× ṫR

ξ

)
tR
ξ
· tR

ξ

+
nR ·

(
tR
η × ṫR

η

)
tR
η · t

R
η

 nR

nR ·nR (7.1.117)

As shown in (7.1.90), the matrix SR MRi has no influence on the angular velocity ω
R
R MRi

because it
is constant. By using the tangential vectors with respect to the coordinates x and η, it is valid:

ω
R
R MRi

= ω
R
R S =

nR × ṅR

nR ·nR +
1
2

nR ·
(

tR
x × ṫR

x

)
tR
x · tR

x
+

nR ·
(

tR
η × ṫR

η

)
tR
η · t

R
η

 nR

nR ·nR (7.1.118)

The expression is relatively complex. In the present case of the rail the deformations are relatively
small so that it can be assumed that the difference between the current tangential vectors tR

x and
tR
η on the one hand and the tangential vectors tR

0x and tR
0η

on the other hand is very small:∣∣∣tR
x − tR

0x

∣∣∣� ∣∣∣tR
0x

∣∣∣⇒ tR
x ≈ tR

0x,
∣∣∣tR

η − tR
0η

∣∣∣� ∣∣∣tR
0η

∣∣∣⇒ tR
η ≈ tR

0η
(7.1.119)
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From this it follows for the normal vector:

nR = tR
x × tR

η ≈ tR
0x× tR

0η
= nR

0 (7.1.120)

For the derivative ṅR of the normal vector it is valid:

nR = tR
x × tR

η ⇒ ṅR = ṫR
x × tR

η + tR
x × ṫR

η ≈ ṫR
x × tR

0η
+ tR

0x× ṫR
η (7.1.121)

Thereby, the expression for the angular velocity can be simplified in the following way:

ω
R
R MRi

≈
nR

0 ×
(

ṫR
x × tR

0η
+ tR

0x× ṫR
η

)
nR

0 ·n
R
0

+
1
2

nR
0 ·
(

tR
0x× ṫR

x

)
tR
0x · t

R
0x

+
nR

0 ·
(

tR
0η
× ṫR

η

)
tR
0η
· tR

0η

 nR
0

nR
0 ·n

R
0

(7.1.122)
The vectors ṫR

x and tR
η are derived from (7.1.107) and (7.1.108), respectively; it is obtained:

ṫR
x,i = ∑

I

(
KI,max

∑
K=KI,min

wMR|I,K iK κeiK κxWRi

)
q̇TI(t) = ∑

I

(
KI,max

∑
K=KI,min

tx|I,K eiK κxWRi

)
q̇TI(t) (7.1.123)

ṫR
η,i = ∑

I

(
KI,max

∑
K=KI,min

tη|I,K eiK κxWRi

)
q̇TI(t) (7.1.124)

Here, the following abbreviation has been introduced for a better overview:

tx|I,K = wMR|I,K iK κ (7.1.125)

Based on this, the terms for the angular velocity can be formulated by a modal synthesis:

nR
0 ×

(
ṫR
x × tR

0η
+ tR

0x× ṫR
η

)
nR

0 ·n
R
0

= ∑
I

 KI,max

∑
K=KI,min

nR
0 ×

(
tx|I,K× tR

0η
+ tR

0x× tη|I,K

)
nR

0 ·n
R
0

eiK κxWRi

 q̇I(t)

(7.1.126)
nR

0 ·
(

tR
0x× ṫR

x

)
tR
0x · t

R
0x

nR
0

nR
0 ·n

R
0

= ∑
I

 KI,max

∑
K=KI,min

nR
0 ·
(

tR
0x× tx|I,K

)
tR
0x · t

R
0x

nR
0

nR
0 ·n

R
0

eiK κxWRi

 q̇I(t) (7.1.127)

nR
0 ·
(

tR
0η
× ṫR

η

)
tR
0η
· tR

0η

nR
0

nR
0 ·n

R
0

= ∑
I

 KI,max

∑
K=KI,min

nR
0 ·
(

tR
0η
× tη|I,K

)
tR
0η
· tR

0η

nR
0

nR
0 ·n

R
0

eiK κxWRi

 q̇I(t) (7.1.128)

By definining:

ΩI,K =
nR

0 ×
(

tx|I,K× tR
0η

+ tR
0x× tη|I,K

)
nR

0 ·n
R
0

+
1
2

nR
0 ·
(

tR
0x× tx|I,K

)
tR
0x · t

R
0x

+
nR

0 ·
(

tR
0η
× tη|I,K

)
tR
0η
· tR

0η

 nR
0

nR
0 ·n

R
0

(7.1.129)
it can finally be formulated:

ω
R
R S ≈∑

I

(
KI,max

∑
K=KI,min

ΩI,K eiK κxWRi

)
q̇I(t) (7.1.130)

It should be noted that due to the approximation tR
x ≈ tR

0x and tR
η ≈ tR

0η
the vectors ΩI,K are constant

so that the expression (7.1.129) has to be evaluated only once at the beginning of the calculation.
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7.1.4 Application to the wheel

The rotation of the marker frame MWi, which is attached to the surface of the wheel, is determined
in a similar way as for the frame MRi. Also here, the rotation matrix SBM Wi is expressed by
multiplying the matrix SBS , which describes the rotation of the surface frame S relative to the
body-fixed frame B , and the constant matrix SSMWi expressing the different orientations of the
surface and the marker.

SBM Wi = SBS SSMWi (7.1.131)

Also for the wheel, the matrix SSMWi is determined from the given matrix SBM Wi
0 and the matrix

SBS
0 which are both valid for the reference state, i.e. the undeformed state:

SBM Wi
0 = SBS

0 SSMWi ⇒ SSMWi = SBS
0
−1

SBM Wi
0 = SBS

0
T

SBM Wi
0 (7.1.132)

While kinematics of the rail was described by cartesian coordinates 〈x,y,z〉, for the wheel the
description using cylindrical coordinates 〈r,y,φ〉 is more suitable. In the body-fixed frame B the
reference position xB

MWi
of the marker MWi is lying on a circle defined by the constant values rMWi > 0

and yMWi .

xB
MWi

=

xMWi

yMWi

zMWi

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

 0
yMWi

rMWi


︸ ︷︷ ︸

cMWi

=

 rMWi sinφ

yMWi

rMWi cosφ

= xB(cMWi,φ) (7.1.133)

As introduced in the section 5.1.2, the vector cMWi is indicated for the sake of brevity instead of
indicating the coordinates rMWi and yMWi separately. – The trajectory of the marker MWi is given by:

rB
RMWi

= xB(cMWi,φ)+wB(cMWi,φ, t) =

 rMWi sinφ

yMWi

rMWi cosφ

+ ∞

∑
K=−∞

wB
K(cMWi, t)eiK φ (7.1.134)

The tangential vector tB
φ

with respect to the angle φ is obtained to:

tB
φ (φ) =

∂

∂φ
rB
RMWi

=

 rMWi cosφ

0
−rMWi sinφ


︸ ︷︷ ︸

tR
0φ

+
∞

∑
K=−∞

wB
K(cMWi, t) iK eiK φ (7.1.135)

The constant part tR
0φ

can be formulated in the following way:

tR
0φ

=

 rMWi cosφ

0
−rMWi sinφ

= rMWi

 cosφ

0
−sinφ

= rMWi

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

1
0
0


︸︷︷︸

e1

(7.1.136)

Also here, the cross section of the wheel is discretized by finite elements; therefore, the tangential
vector with respect to the lateral coordinate is determined in an analogous way as for the rail. Also
here, three nodes S−1, S0 and S1 which are located at the surface are chosen; in Figure 7.1.5 the
position of the nodes is displayed.
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Figure 7.1.5: Interpolation nodes S−1, S0 and S1 for the discretized cross section of the wheel;
red: interpolation curve.

For the node SI the current relative position is obtained to:

rB
RSI

=

 rSI sinφ

ySI

rSI cosφ

+wB(rSI ,ySI ,φ, t) =

 rSI sinφ

ySI

rSI cosφ

+ ∞

∑
K=−∞

wB
K(rSI ,ySI , t)eiK φ (7.1.137)

If the curve connecting the three nodes is described by Lagrangian interpolation polynomials, then
the tangential vector to the curve at the central node S0 is obtained as half the vector describing the
distance between the outer nodes S−1 and S1; this has been shown in the previous section 7.1.3. In
the present case for the wheel it is obtained for the tangential vector tB

η with respect to the lateral
coordinate η:

tB
η (φ) =

1
2

(
rB
RS1
− rB

RS−1

)
=

1
2

 rS1 sinφ

yS1

rS1 cosφ

+wB(yS1,rS1 ,φ, t)−

 rS−1 sinφ

yS−1

rS−1 cosφ

−wB(yS−1,rS−1,φ, t)


=

1
2

(rS1− rS−1

)
sinφ

yS1− yS−1(
rS1− rS−1

)
cosφ


︸ ︷︷ ︸

tB
0η

+
∞

∑
K=−∞

1
2

(
wB

K(rS1,yS1 , t)−wB
K(rS−1,yS−1, t)

)
︸ ︷︷ ︸

tB
η|K

eiK κx (7.1.138)

For the sake of brevity the following abbreviations shall be introduced:

rS1− rS−1 = ∆rS, yS1− yS−1 = ∆yS⇒ tB
0η =

1
2

(rS1− rS−1

)
sinφ

yS1− yS−1(
rS1− rS−1

)
cosφ

=
1
2

∆rS sinφ

∆yS
∆rS cosφ

 (7.1.139)

Furthermore, the tangential vector tB
0η

cam be formulated in the following way:

tB
0η =

1
2

(
xB(cS1,φ)−xB(cS−1,φ)

)
=

1
2
(
S2(φ)cS1−S2(φ)cS−1

)
=

1
2

S2(φ)
(
cS1− cS−1

)
(7.1.140)

The deformation field of the flexible wheelset is described by a modal synthesis. As described
in the section 5.9.1, it is reasonable to formulate the distribution of the deformations over the
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circumference of a circle defined by c = c(r,y) as a continuous Fourier series. Thereby, it is valid:

wB(c,φ, t) = ∑
I

WB
I (c,φ)qB

I (t) = ∑
I

(
KI,max

∑
K=KI,min

WB
I,K(c)eiK φ

)
qB

I (t) (7.1.141)

Based on this, the tangential vector tB
φ

with respect to the azimuth φ is obtained to:

tB
φ =

 rMWi cosφ

0
−rMWi sinφ

+∑
I

(
KI,max

∑
K=KI,min

WB
I,K(cMWi) iK eiK φ

)
qB

I (t) (7.1.142)

The tangential vector tB
η with respect to the lateral coordinate η is obtained to:

tB
η =

1
2

S2(φ)
(
cS1− cS−1

)︸ ︷︷ ︸
tB
0η

+∑
I

(
KI,max

∑
K=KI,min

1
2

(
WB

I,K(cS1)−WB
I,K(cS−1)

)
eiK φ

)
qB

I (t) (7.1.143)

The normal vector is determined by the cross product of the tangential vectors. In order to find the
suitable sequence, the following cross product of the vectors tB

0φ
and tB

0η
is considered:

tB
0φ× tB

0η =

 rMWi cosφ

0
−rMWi sinφ

× 1
2

∆rS sinφ

∆yS
∆rS cosφ

=
1
2

 ∆yS rMWi sinφ

∆rS rMWi

(
−sin2

φ− cos2 φ
)

∆yS rMWi cosφ


=

1
2

∆yS rMWi sinφ

−∆rS rMWi

∆yS rMWi cosφ

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

rMWi

2

 0
−∆rS
∆yS


︸ ︷︷ ︸

c0n

(7.1.144)

According to (7.1.133) the radius rMWi is positive. If the nodes S−1 and S1 are chosen in such a way
that it is valid yS1 < yS−1 , i.e. the node S−1 is lying left of the node S1, then the third coordinate of
the vector c0n is positive as it is the case for the vector cMWi according to (7.1.133), i.e. both vectors
cMWi and c0n are pointing outwards. Therefore, the chosen sequence in the vector product tB

0φ
× tB

0η

which describes the normal vector to the undeformed surface is reasonable.

Based on the tangential vectors which are calculated according to (7.1.142) and (7.1.143) the
rotation matrix SBS can now be determined based on the mathod developed in the section 7.1.1.
Here, the trajectory curve, for which the azimuth φ is the parameter, is the path curve; therefore,
the tangential vector tB

φ
is assigned to the vector y1:

y3 = nB
i = tB

φ,i× tB
η,i⇒ eB

S3 =
nB

i∣∣nB
i

∣∣ , y1 = tB
φ,i⇒ eB

S1 =
tB
x,i∣∣∣tB
x,i

∣∣∣ , eB
S2 = eB

S3× eB
S1 (7.1.145)

⇒ SBS =
[
eB

S1 eB
S2 eB

S3

]
(7.1.146)

In an analogous way, the matrix SBS
0 is determined. For the absolute values of the vector

nB
0 = tB

0φ
× tB

0η
it is valid:

nB
0 = tB

0φ× tB
0η =

rMWi

2
S2(φ)c0n⇒ nB

0
T

nB
0 =

rMWi
2

4
c0n

T S2(φ)
T S2(φ)︸ ︷︷ ︸
I

c0n

⇒
∣∣∣nB

0

∣∣∣=√nB
0

T nB
0 =

rMWi

2

√
c0nT c0n =

rMWi

2
|c0n|=

rMWi

2

√
∆yS2 +∆rS2(7.1.147)
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Thereby, it is obtained for the vector eB
S30:

eB
S30 =

nB
0∣∣nB
0

∣∣ = S2(φ)
c0n

|c0n|
= S2(φ)

1√
∆yS2 +∆rS2

 0
−∆rS
∆yS


︸ ︷︷ ︸

eS3

=
1√

∆yS2 +∆rS2

∆yS sinφ

−∆rS
∆yS cosφ


(7.1.148)

Since the radius rMWi is positive, i.e. rMWi > 0, and since it is valid sin2
φ+ cos2 φ = 1, the vector

eB
S10 is easily obtained from normalizing the vector tB

φ0:

tR
0φ

= rMWi

 cosφ

0
−sinφ

= rMWi S2(φ)

1
0
0


︸︷︷︸

e1

⇒ eB
S10 =

tR
0φ∣∣∣tR
0φ

∣∣∣ =
 cosφ

0
−sinφ

= S2(φ)e1 (7.1.149)

The third vector eB
S20 is determined in the following way:

eB
S20 =

1√
∆yS2 +∆rS2

∆yS sinφ

−∆rS
∆yS cosφ


︸ ︷︷ ︸

eB
S30

×

 cosφ

0
−sinφ


︸ ︷︷ ︸

eB
S10

=
1√

∆yS2 +∆rS2

 ∆rS sinφ

∆yS sin2
φ+∆yS cos2 φ

∆rS cosφ



=
1√

∆yS2 +∆rS2

∆rS sinφ

∆yS
∆rS cosφ

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

1√
∆yS2 +∆rS2

 0
∆yS
∆rS


︸ ︷︷ ︸

eS2

(7.1.150)

In total, the matrix SBS
0 is obtained to:

SBS
0 =

[
eB

S10 eB
S20 eB

S30

]
=
[
S2(φ)e1 S2(φ)eS2 S2(φ)eS3

]
= S2(φ)

[
e1 eS2 eS3

]
(7.1.151)

If in the reference state the 2-axis of the frame MWi is parallel to the 2-axis of the wheelset, then it
is valid for the matrix SBM Wi

0 :
SBM Wi

0 = SBS
0 SSMWi = S2(φ) (7.1.152)

From this it follows for the matrix SSMWi:

SSMWi = SBS
0
−1

SBM Wi
0 = SBS

0
T

S2(φ) =

 e1
T

eS2
T

eS3
T

S2(φ)
T S2(φ)︸ ︷︷ ︸
I

⇒ SSMWi =

 e1
T

eS2
T

eS3
T

 (7.1.153)

Thereby, the matrix SSMWi is known so that the rotation matrix between the body-fixed frame B
and the frame MWi can be calculated:

SBMWi = SBS SSMWi (7.1.154)

Also here, the angular velocity is determined based on the following expression derived in the
section 7.1.2:

ω
R
R S =

nR × ṅR

nR ·nR +
1
2

nR ·
(

tR
ξ
× ṫR

ξ

)
tR
ξ
· tR

ξ

+
nR ·

(
tR
η × ṫR

η

)
tR
η · t

R
η

 nR

nR ·nR (7.1.155)
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Similar to the case of the rail, the constant matrix SSMWi has no influence on the angular velocity.
Therefore, it is valid for the angular velocity ωB

BMWi
:

ω
B
BMWi

= ω
B
BS =

nB × ṅB

nB ·nB +
1
2

nB ·
(

tB
φ
× ṫB

φ

)
tB
φ
· tB

φ

+
nB ·

(
tB
η × ṫB

η

)
tB
η · tB

η

 nB

nB ·nB (7.1.156)

Also here, the angular velocity shall be simplified:

ω
B
BMWi

≈
nB

0 × ṅB

nB
0 ·nB

0
+

1
2

nB
0 ·
(

tB
φ0× ṫB

φ

)
tB
φ0 · tB

φ0
+

nB
0 ·
(

tB
η0× ṫB

η

)
tB
η0 · tB

η0

 nB
0

nB
0 ·nB

0
(7.1.157)

Thereby, it is set for the normal vector nB :

nB = tB
φ × tR

η ≈ tB
0φ× tB

0η = nB
0 (7.1.158)

The derivative ṅR of the normal vector is approximated in the following way:

nB = tB
φ × tB

η ⇒ ṅB = ṫB
φ × tB

η + tR
x × ṫB

η ≈ ṫB
x × tB

0η + tR
0φ
× ṫB

η (7.1.159)

The vectors ṫB
φ

and ṫB
η are derived from (7.1.142) and (7.1.143), respectively; it is obtained:

ṫR
φ,i = ∑

I

(
KI,max

∑
K=KI,min

wMR|I,K iK eiK φWRi

)
q̇B

I (t) = ∑
I

(
KI,max

∑
K=KI,min

tφ|I,K eiK φWRi

)
q̇B

I (t) (7.1.160)

ṫR
η,i = ∑

I

(
KI,max

∑
K=KI,min

tη|I,K eiK φWRi

)
q̇B

I (t) (7.1.161)

Here, the following abbreviation has been introduced for a better overview:

tφ|I,K = wMR|I,K iK (7.1.162)

Based on this, the terms for the angular velocity can be formulated by a modal synthesis:

nB
0 ×
(

ṫB
φ
× tB

0η
+ tB

0φ
× ṫB

η

)
nB

0 ·nB
0

= ∑
I

 KI,max

∑
K=KI,min

nB
0 ×
(

tB
φ|I,K× tB

0η
+ tB

0φ
× tB

η|I,K

)
nB

0 ·nB
0

eiK φWRi

 q̇B
I (t)

(7.1.163)
nB

0 ·
(

tB
0φ
× ṫB

φ

)
tB
0φ
· tB

0φ

nB
0

nB
0 ·nB

0
= ∑
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 KI,max

∑
K=KI,min

nB
0 ·
(

tB
0φ
× tB

φ|I,K

)
tB
0φ
· tB

0φ

nB
0

nB
0 ·nB

0
eiK φWRi

 q̇B
I (t) (7.1.164)

nB
0 ·
(

tB
0η
× ṫB

η

)
tB
0η
· tB

0η

nB
0

nB
0 ·nB

0
= ∑

I

 KI,max

∑
K=KI,min

nB
0 ·
(

tB
0η
× tη|I,K

)
tB
0η
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0η

nB
0

nB
0 ·nB

0
eiK φWRi

 q̇B
I (t) (7.1.165)

Similar to the rail, the following modal coefficients are defined:

Ω
B
I,K =

nB
0 ×
(

tB
φ|I,K× tB

0η
+ tB

0φ
× tB

η|I,K

)
nB

0 ·nB
0

+
1
2

nB
0 ·
(

tB
0φ
× tB

φ|I,K

)
tB
0φ
· tB

0φ

+
nB

0 ·
(

tB
0η
× tB

η|I,K

)
tB
0η
· tB

0η

 nB
0

nB
0 ·nB

0

(7.1.166)
Based on this, it can finally be formulated:

ω
B
BMWi

≈∑
I

(
KI,max

∑
K=KI,min

Ω
B
I,K eiK φWRi

)
q̇B

I (t) (7.1.167)
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7.2 Geometry and kinematics of the contact

Based on the relative kinematics of the coupling points KW and KR the contact zone itself and
the kinematics inside this zone are determined. As already mentioned the surfaces of the wheel
contact body and of the rail contact body are assumed to be rotational symmetric and prismatic,
respectively. The following considerations are based on the work of Netter [48].

The rail surface is assumed to be the lateral surface of a prism. The axis of extrusion is the 1-
axis, while the 2- and the 3-axis form the cross section. If the rail profile is defined by the profile
function zR = zR(yR) depending on the lateral coordinate yR, then the rail surface is described by:

rR
KRPR
≡ xR(ξ,yR) =

 ξ

yR
zR(yR)

 (7.2.168)

The wheel surface is considered as a rotational symmetric surface. Using the nominal radius r0
and the profile function zW = zW(yW) the surface can be described by:

rW
MWPW

=

 [r0 + zW(yW)]sinθ

yW
[r0 + zW(yW)]cosθ

=

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


︸ ︷︷ ︸

S2(θ)

 0
yW
rW


︸ ︷︷ ︸
pW(yW)

, rW = r0 + zW(yW) (7.2.169)

Here, the vector pW = pW(yW), which contains the profile function for the wheel, is introduced. It is
furthermore assumed that the radius rW is strictly positive, i.e.:

rW = r0 + zW(yW)> 0 (7.2.170)

In the following considerations the dependency of the vertical profile coordinates zW and zR on the
lateral profile coordinates yW and yR, respectively, are not mentioned explicitly for a better overview.

The surface of the wheel contact body is described for the centre point MW of the wheel. For the
taper circle, the lateral coordinate is yW = 0 and the radius is equal to the nominal rolling radius.
The coupling point KW is located on the taper circle. Therefore, is it valid:

rW
KWPW

= rW
KWMW

+ rW
MWPW

=

 0
0
−r0

+S2(θ)pW(yW) (7.2.171)

Therefore, the resulting vector between the rail coupling point KR and the centre point of the wheel
MW is expressed in the rail profile frame in the following way:

rR
KRMW

= rR
KRKW

+SR W rW
KWMW

=

∆XRW

∆YRW
∆ZRW

 (7.2.172)

The relative displacement and the relative rotation are described by the vector rR
KRKW

and the matrix
SR W , respectively, which belong to the kinematical input of the contact model. Since the vector
rW
KWMW

is constant, the relative displacement rR
KRMW

is calculated directly without iteration.

Since the rail surface is considered as a prism with its extrusion oriented in the direction of the
1-axis of the rail frame, it is obvious to project the wheel surface into the 2,3-plain of the rail frame



250 Chapter 7. Modelling of the wheel-rail contact

R . In a first step, the description of the wheel surface in the frame R is required. The rotation
matrix SR W used for the transformation is composed of three rotations around the 1-, the 2- and
the 3-axis. Since the extrusion of the prism is oriented in the direction of the 1-axis of the rail
profile frame R , it is advantageous to choose the rotation around the 1-axis with the angle α as
the first rotation in the sequence. The wheel surface is a rotational symmetric surface with the
2-axis as the axis of symmetry. Therefore it is obvious to choose the rotation around the 2-axis
with the angle β as the last rotation in the sequence. The remaining rotation around the 3-axis with
the angle γ is therefore the second rotation. In total, the rotation matrix SR W is composed in the
following way:

SR W = S1(α)S3(γ)S2(β)

=

 cosγcosβ −sinγ cosγsinβ

cosαsinγcosβ+ sinαsinβ cosαcosγ cosαsinγsinβ− sinαcosβ

sinαsinγcosβ− cosαsinβ sinαcosγ sinαsinγsinβ+ cosαcosβ

(7.2.173)

As already mentioned, the matrix SR W is given by the kinematics used as the input. By comparing
the given matrix SR W

SR W =

sR W
11 sR W

12 sR W
13

sR W
21 sR W

22 sR W
23

sR W
31 sR W

32 sR W
33

 (7.2.174)

to the formulation according to (7.2.173), the trigonometric functions of the angles α, β and γ can
be determined in the following way:

sR W
22 = cosαcosγ, sR W

32 = sinαcosγ

⇒
sR W

32

sR W
22

=
sinαcosγ

cosαcosγ
= tanα⇒ cosα =

1√
1+ tan2 α

, sinα =
sinα√

1+ tan2 α
(7.2.175)

sR W
11 = cosγcosβ, sR W

13 = cosγsinβ

⇒
sR W

13

sR W
13

=
cosγsinβ

cosγcosβ
= tanβ⇒ cosβ =

1√
1+ tan2 β

, sinβ =
sinβ√

1+ tan2 β
(7.2.176)

sR W
12 =−sinγ⇒ cosγ =

√
1− sin2

γ, tanγ =
sinγ√

1− sin2
γ

(7.2.177)

Thereby, the expressions sinα, cosα, sinβ, cosβ, sinγ and cosγ, which are required for the follow-
ing considerations, are known.

Using the relative vector rR
KRMW

describing the relative translation between the reference point of
the rail and the centre of the wheel, the description of the wheel surface in the rail profile frame R
is obtained by:

rR
KRPW

= rR
KRMW

+SR W rW
MWPW

= rR
KRMW

+S1(α)S3(γ)S2(β)rR
MWPW

(7.2.178)

The evaluation of the product of the matrices S1(α) and S3(γ) gives:

S1(α)S3(γ) =

1 0 0
0 cosα −sinα

0 sinα cosα

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

=

 cosγ −sinγ 0
cosαsinγ cosαcosγ −sinα

sinαsinγ sinαcosγ cosα


(7.2.179)
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The transformation of the wheel surface vector into the rail frame R leads to:

rR
MWPW

= SR W rR
MWPW

= S1(α)S3(γ) S2(β)S2(θ)︸ ︷︷ ︸
S2(β+θ)

pW(yW)

=

 cosγ −sinγ 0
cosαsinγ cosαcosγ −sinα

sinαsinγ sinαcosγ cosα

 rW sin(β+θ)
yW

rW cos(β+θ)

 (7.2.180)

7.2.1 Determination of the wheel envelope

The projection of the wheel surface into the 2,3-plane of the rail frame R is done by the enve-
lope of the wheel. To determine of the wheel the normal vector of the wheel surface is required.
This normal vector calculated by a cross product of the tangential vectors of the surface, which
are obtained as the derivatives of the wheel surface vector with respect to the two parameters of
the surface. These two parameters are the circumferential angle θ and the lateral coordinate yW.
Thereby, for the tangential vectors it is obtained:

∂rW
MWPW

∂θ
=

 rW cosθ

0
−rW sinθ

 ,
∂rW

MWPW

∂yW
=

 r′W sinθ

1
r′W cosθ

=

 z′W sinθ

1
z′W cosθ

 (7.2.181)

Here, the following relation is used:

r′W =
drW
dyW

=
d

dyW
[r0 + zW(yW)] =

dr0

dyW︸︷︷︸
0

+
dzW(yW)

dyW︸ ︷︷ ︸
z′W

= z′W (7.2.182)

As already mentioned, the normal vector nR is obtained from the cross product of the tangential
vectors:

nW
W =

∂rW
MWPW

∂θ
×

∂rW
MWPW

∂yW
=

 rW cosθ

0
−rW sinθ

×
 z′W sinθ

1
z′W cosθ

=

 rW sinθ

−rW z′W sin2
θ− rW z′W cos2 θ

rW cosθ


=

 rW sinθ

−rWz′W
rW cosθ

= S2(θ)

 0
−z′W

1

rW (7.2.183)

The transformation of the normal vector into the rail profile frame R gives:

nR
W = SR W nW

W = S1(α)S3(γ) S2(β)S2(θ)︸ ︷︷ ︸
S2(β+θ)

 0
−z′W

1

rW

=

 cosγ −sinγ 0
cosαsinγ cosαcosγ −sinα

sinαsinγ sinαcosγ cosα

 sin(β+θ)
−z′W

cos(β+θ)

rW (7.2.184)

If a point of the wheel surface belongs to the wheel envelope, the normal vector nR
W,E = nR

W (yR,θE)
at this point lies in the 2,3-plane of the rail profile frame R . Therefore, it must be possible to
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express the vector nR
W,E in the following way:

nR
W,E = S1(ΦE)

0
0
`

=

1 0 0
0 cosΦE −sinΦE
0 sinΦE cosΦE

0
0
`

=

 0
−`sinΦE
`cosΦE

 (7.2.185)

For the sake of brevity, the angle ε will be used in the following considerations; this angle is defined
in the following way:

ε = β+θE (7.2.186)

Thereby, the normal vector nR
W,E can be written as:

nR
W,E = nR

W (yR,θE) = S1(α)S3(γ)S2(β+θE)

 0
−z′W

1

rW = S1(α)S3(γ)S2(ε)

 0
−z′W

1

rW (7.2.187)

By applying this condition to the normal vector it is obtained:

nR
W,E =

 0
−`sinΦE
`cosΦE

=

 cosγsinε+ sinγz′W
cosαsinγsinε− cosαcosγz′W− sinαcosε

sinαsinγsinε− sinαcosγz′W+ cosαcosε

rW (7.2.188)

From the comparison of the first components of the vectors, the condition for the angle θE can
be found. Since the wheel radius rW is assumed to be strictly positive according to (7.2.170), it is
valid:

rW > 0,
[
cosγsinε+ sinγz′W

]
rW = 0⇒ cosγsinε =−sinγz′W⇒ sinε =− tanγz′W (7.2.189)

Thereby, the envelope can be described in the rail profile frame R in the following form:

rR
KRPWE

= rR
KRMW

+

 cosγ −sinγ 0
cosαsinγ cosαcosγ −sinα

sinαsinγ sinαcosγ cosα

 rW sinε

yW
rW cosε

 (7.2.190)

sinε =− tanγz′W, cosε =

√
1− (tanγz′W)

2

Since the terms sinε and cosε depend on z′W = z′W(yW) and thereby on the profile coordinate yW, the
envelope itself depends only on yW, i.e. on only one parameter. – By comparing the second and the
third components for the two descriptions of the normal vector nR

W,E, the inclination angle ΦE of
the wheel envelope can be determined:

−`sinΦE =
[
cosαsinγsinε− cosαcosγz′W− sinαcosε

]
rW

`cosΦE =
[
sinαsinγsinε− sinαcosγz′W+ cosαcosε

]
rW

⇒ tanΦE = − [cosαsinγsinε− cosαcosγz′W− sinαcosε]rW
[sinαsinγsinε− sinαcosγz′W+ cosαcosε]rW

= − sinγsinε− cosγz′W− tanαcosε

tanα [sinγ sinε− cosγz′W]+ cosε
(7.2.191)

By using the condition (7.2.189) the following expression can be simplified:

sinγsinε− cosγz′W =−sinγ tanγz′W− cosγz′W =−
(

sin2
γ

cosγ
+

cos2 γ

cosγ

)
z′W =−

z′W
cosγ

(7.2.192)
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Inserting this relation gives the following expression for the inclination angle of the wheel enve-
lope:

tanΦE =− sinγsinε− cosγz′W− tanαcosε

tanα [sinγ sinε− cosγz′W]+ cosε
=−
− z′W

cosγ
− tanαcosε

− tanα
z′W

cosγ
+ cosε

=
z′W+ tanαcosγcosε

− tanαz′W+ cosγcosε

(7.2.193)

7.2.2 Determination of the interpenetration

To determine the contact area, the intersection of the undeformed surfaces of wheel and rail is
considered. The condition for the intersection can be formulated as:

rR
KRPR

= rR
KRPW ξ

yR
zR

 =

∆XRW

∆YRW
∆ZRW

+
 cosγ −sinγ 0

cosαsinγ cosαcosγ −sinα

sinαsinγ sinαcosγ cosα

 rW sin(β+θ)
yW

rW cos(β+θ)

 (7.2.194)

As already mentioned, the intersection is considered in the 2,3-plain of the rail profile system R .
Here, the envelope of the wheel is used; this curve is obtained for θ+β = ε. The first step is to
determine the intersection points Pl and Pr between the wheel envelope and the rail profile. The
conditions for the intersection in the 2,3-plain are formulated as:

yR = ∆YRW+ cosαsinγrW sinε+ cosαcosγyW− sinαrW cosε (7.2.195)
zR = ∆ZRW+ sinαsinγrW sinε+ sinαcosγyW+ cosαrW cosε (7.2.196)

Usually, the profiles of wheel and rail are given by the functions zW = zW(yW) and zR = zR(yR),
respectively. Based on this formulation, the problem can be solved by defining an error function
f (yW). For a given value yW this function is calculated in the following steps:

1. Evaluate the wheel profile function: rW = r0 + zW(yW), z′W = z′W(yW)

2. Determine the trigonometric terms depending on the angle ε:

(a) sinε =− tanγz′W

(b) cosε =

√
1− (tanγz′W)

2

3. Set y∗R = ∆YRW+ cosαsinγrW sinε+ cosαcosγyW− sinαrW cosε

4. Evaluate the rail profile function: z∗R = zR(y∗R)

5. Set f (yW) = ∆ZRW+ sinαsinγrW sinε+ sinαcosγyW+ cosαrW cosε− z∗R

Thereby, the problem can be reduced to the solution of the equation f (yW) = 0, i.e. to the solution
of only one non-linear equation depending on one variable yW. A suitable algorithm is the regula
falsi or methods derived from it like the Illinois algorithm. As a result a set of solutions yW,i is
obtained:

f (yW,i) = 0 (7.2.197)
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The values yWl and yWr for the left and the right point Pl and Pr are obtained as the minimum and
the maximum value of the set of solutions, respectively. As a result of the calculation of the error
function f (yR) also the other coordinates at the left and the right intersection points are available.

yWl = min
i
(yW,i) ⇒ zWl = zW(yWl), z′Wl = z′W(yWl), sinεl =− tanγz′Wl, cosεl =

√
1−
(
tanγz′Wl

)2

yRl = ∆YRW+ cosαcosγyWl +[cosα sinγ sinεl− sinα cosεl] (r0 + zWl) ,

zRl = zR(yRl), ξl = ∆XRW+ cosγ sinεl (r0 + zWl)− sinγyWl (7.2.198)

yWr = max
i
(yW,i) ⇒ zWr = zW(yWr), z′Wr = z′W(yWr), sinεr =− tanγz′Wr, cosεr =

√
1− (tanγz′Wr)

2

yRr = ∆YRW+ cosα cosγyWr +[cosα sinγ sinεr− sinα cosεr] (r0 + zWr) ,

zRr = zR(yRr), ξr = ∆XRW+ cosγsinεr (r0 + zWr)− sinγyWr (7.2.199)

The secant connecting the two intersection points Pl and Pr is used to define the contact frame C .
Here, the secant is used as the 2-axis, while the 1-axis coincides with the 1-axis of the 1-axis of
the rail profile frame R . Thereby, the transformation matrix SR C is given by:

tanΦC =
zRr− zRl

yRr− yRl
⇒ sinΦC =

tanΦC√
1+ tan2 ΦC

, cosΦC =
1√

1+ tan2 ΦC
(7.2.200)

⇒ SR C = S1(ΦC) =

1 0 0
0 cosΦC −sinΦC
0 sinΦC cosΦC

 (7.2.201)

An overview on the intersection points Pl and Pr, the secant and the contact frame is given in
Fig.7.2.6

The interpenetration of the surfaces of wheel and rail are now determined in the contact frame C .
The left intersection point Pl is defined as the reference point. The relative position of the points
PW and PR lying on the surfaces of the wheel and the rail, respectively, can be described by the
following vectors:

rC
PlPW

=

 x
y

ζW(x,y)

 , rC
PlPR

=

 x
y

ζR(x,y)

 (7.2.202)

The interpenetration field δ(x,y) is now defined in the following way:

rC
PRPW

= rC
PlPW
− rC

PlPR
=
[

0 0 δ(x,y)
]T

=
[

0 0 ζW(x,y)−ζR(x,y)
]T (7.2.203)

According to (7.2.168) the rail surface is described by the following vector:

rR
KRPR
≡ xR(ξ,yR) =

 ξ

yR
zR(yR)

 (7.2.204)

The transformation of this vector into the contact frame C gives:

rC
KRPR

= SCR rR
KRPR

= S1(−ΦC)xR(ξ,yR) (7.2.205)

The left intersection point Pl is defined by ξ = ξl and yR = yRl . In the contact frame C , the distance
between the point Pl and a point PR, which lies on the surface of the rail, is obtained by:

rC
PlPR

= rC
KRPR
− rC

KRPl
= S1(−ΦC)xR(ξ,yR)−S1(−ΦC)xR(ξl,yRl)

= S1(−ΦC) [xR(ξ,yR)−xR(ξl,yRl)] =

1 0 0
0 cosΦC sinΦC
0 −sinΦC cosΦC

 ξ−ξl
yR− yRl
zR− zRl

(7.2.206)
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P
l

P
rP

l

Figure 7.2.6: Left (Pl) and right (Pr) intersection points of the wheel envelope (blue) and the rail
profile (red) and the resulting contact frame C (orange)

For the point PRi, which is defined by the coordinates xC = xi and yC = yi it is therefore valid:

rC
PlPRi

=

 xi
yi
ζRi

=

1 0 0
0 cosΦC sinΦC
0 −sinΦC cosΦC

 ξi−ξl
yRi− yRl

zR(yRi)− zRl

 (7.2.207)

For the given values xi und yi the variables ξi, yRi und zRi = zR(yRi) have to be determined by solving
the following equations, which are obtained from the first and the second coordinate of the vector
equation (7.2.207):

0 = ξi−ξl− xi (7.2.208)
0 = cosΦC (yRi− yRl)+ sinΦC (zR(yRi)− zRl)− yi = fR(yRi) (7.2.209)

While the value ξi can be calculated directly, the value yRi is determined by solving a single non-
linear equation, which can be done with the Newton method. Based on the values yRi and zRi the
vertical distance ζR(xi,yi) for the rail surface is obtained:

ζR(xi,yi) =−sinΦC (yRi− yRl)+ cosΦC (zR(yRi)− zRl) (7.2.210)

The position of a point PW on the wheel surface is given by:

rR
KRPW

= rR
KRMW

+ rR
MWPW

(θ,yW) = rR
KRMW

+S1(α)S3(γ)S2(β+θ)pW(yW) (7.2.211)

The transformation into the contact frame C gives:

rC
KRPW

= SCR rR
KRPW

= S1(−ΦC)
[
rR
KRMW

+ rR
MWPW

(θ,yW)
]

(7.2.212)
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Using the formulation of the wheel surface, the left intersection point Pl is defined by θEl +β = εl
and yW = yWl . Thereby the distance between the points PW and Pl is given by:

rC
PlPW

= rC
KRPW
− rC

KRPl

= S1(−ΦC)
[
rR
KRMW

+ rR
MWPW

(θ,yW)
]
−S1(−ΦC)

[
rR
KRMW

+ rR
MWPW

(θEl,yWl)
]

= S1(−ΦC)
[
rR
MWPW

(θ,yW)− rR
MWPW

(θEl,yWl)
]

= S1(−ΦC) [S1(α)S3(γ)S2(β+θ)pW(yW)−S1(α)S3(γ)S2(β+θEl)pW(yWl)]

= S1(−ΦC)S1(α)︸ ︷︷ ︸
S1(α−ΦC)

S3(γ) [S2(β+θ)pW(yW)−S2(εl)pW(yWl)] (7.2.213)

From this it follows:

rC
PlPW

= rC
KRPW
− rC

KRPl
= S1(α−ΦC)S3(γ) [S2(β+θ)pW(yW)−S2(εl)pW(yWl)]

=

 cosγ −sinγ 0
cos(α−ΦC)sinγ cos(α−ΦC)cosγ −sin(α−ΦC)
sin(α−ΦC)sinγ sin(α−ΦC)cosγ cos(α−ΦC)

 rW sin(β+θ)− rWl sinεl
yW− yWl

rW cos(β+θ)− rWl cosεl


(7.2.214)

For the point PWi it is valid:

rC
PlPWi

= S1(α−ΦC)S3(γ) [S2(β+θi)pW(yWi)−S2(εl)pW(yWl)] =

 xi
yi
ζWi

 (7.2.215)

Using the relation (7.2.214), it can be formulated: xi
yi
ζWi

=

 cosγ −sinγ 0
cos(α−ΦC)sinγ cos(α−ΦC)cosγ −sin(α−ΦC)
sin(α−ΦC)sinγ sin(α−ΦC)cosγ cos(α−ΦC)

 rWi sin(β+θi)− rWl sinεl
yWi− yWl

rWi cos(β+θi)− rWl cosεl


(7.2.216)

The first and the second components give the conditions for the coordinates yWi and θi of the point.
The angle θi only appears in the functions sin(β+θi) and cos(β+θi). For the sake of brevity, it is
defined:

si = sin(β+θi)⇒ cos(β+θi) =

√
1− sin2(β+θi) =

√
1− si2 (7.2.217)

The radius rWi is defined by:
rWi = r0 + zW(yWi) (7.2.218)

By using these definitions, the two conditions for the coordinates yWi and θi can be formulated in
the following way:

0 = cosγ [(r0 + zW(yWi))si− rWl sinεl]− sinγ [yWi− yWl]− xi

= fW(yWi,si) (7.2.219)
0 = cos(α−ΦC)sinγ [(r0 + zW(yWi))si− rWl sinεl]+ cos(α−ΦC)cosγ [yWi− yWl]

−sin(α−ΦC)
[
(r0 + zW(yWi))

√
1− si2− rWl cosεl

]
− yi

= gW(yWi,si) (7.2.220)
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As a result, a system of two nonlinear equations is obtained:

fW(yWi,si) =

[
fW(yWi,si)
gW(yWi,si)

]
= 0 (7.2.221)

This system can be solved e.g. by Newton’s method. Solving these equations gives the values yWi
and θi. By inserting the solutions yWi and θi into the third equation, the required vertical distance
ζWi is determined:

ζW(xi,yi) = sin(α−ΦC)sinγ [(r0 + zW(yWi))si− rWl sinεl]+ sin(α−ΦC)cosγ [yWi− yWl]

+cos(α−ΦC)
[
(r0 + zW(yWi))

√
1− si2− rWl cosεl

]
(7.2.222)

Finally, the interpenetration is obtained as the difference of the vertical distances:

δ(xi,yi) = ζW(xi,yi)−ζR(xi,yi) (7.2.223)

7.3 Contact mechanics

To analyze the contact problem a relation between the deformations ui and the tensions σi is re-
quired. As already mentioned the wheel and the rail are considered as half-spaces consisting of
linear elastic material. Under this assumption this relation is given by the equations of Boussinesq
and Cerruti, given e.g. in the fundamental book by Kalker [26]. The tensions are the tangential
stresses τ1(x,y) and τ2(x,y) acting in longitudinal and lateral direction, respectively, and the pres-
sure p(x,y) acting in vertical direction. As a result of the stresses, deformations u1, u2 and w in
longitudinal, lateral and vertical direction, respectively, occur. The stresses are described by fields,
i.e. τ1 = τ1(x,y), τ2 = τ2(x,y) and p = p(x,y).u1(X ,Y )

u2(X ,Y )
w(X ,Y )


︸ ︷︷ ︸

u(X ,Y )

=
∫

A

H11(X− x,Y − y) H12(X− x,Y − y) H13(X− x,Y − y)
H12(X− x,Y − y) H22(X− x,Y − y) H23(X− x,Y − y)
H13(X− x,Y − y) H23(X− x,Y − y) H33(X− x,Y − y)


︸ ︷︷ ︸

H(X−x,Y−y)

τ1(x,y)
τ2(x,y)
p(x,y)


︸ ︷︷ ︸

σ(x,y)

dA

(7.3.224)
The matrix H(X−x,Y −y) contains the influence functions HIK(X−x,Y −y), which are given by:

H11(X− x,Y − y) =
1

πG

[
1−ν

[(X− x)2 +(Y − y)2]
1/2 +

ν(X− x)2

[(X− x)2 +(Y − y)2]
3/2

]
(7.3.225)

H12(X− x,Y − y) = H21(X− x,Y − y) =
ν

πG
(X− x)(Y − y)

[(X− x)2 +(Y − y)2]
3/2 (7.3.226)

H13(X− x,Y − y) =−H31(X− x,Y − y) =
K

πG
(X− x)

[(X− x)2 +(Y − y)2]
(7.3.227)

H22(X− x,Y − y) =
1

πG

[
1−ν

[(X− x)2 +(Y − y)2]
1/2 +

ν(Y − y)2

[(X− x)2 +(Y − y)2]
3/2

]
(7.3.228)

H23(X− x,Y − y) =−H32(X− x,Y − y) =
K

πG
(Y − y)

[(X− x)2 +(Y − y)2]
(7.3.229)

H33(X− x,Y − y) =
1

πG
1−ν

[(X− x)2 +(Y − y)2]
1/2 (7.3.230)
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Here, the coefficients G, ν and K are the combined material parameters. If Gi and νi are the shear
modulus and Poisson’s ratio for the material of the body i, then the combined material parameters
are obtained by:

1
G

=
1
2

(
1

G1
+

1
G2

)
,

ν

G
=

1
2

(
ν1

G1
+

ν2

G2

)
,

K
G

=
1
4

(
1−2ν1

G1
− 1−2ν2

G2

)
(7.3.231)

For the contact model, which is developed here, it is assumed that both the wheel and the rail
consist of steel so that the shear modulus Gi and Poisson’s ratio νi is equal for both bodies. From
this it follows:

G1 = G2, ν1 = ν2⇒
1

G1
=

1
G2

=
1
G
,

ν1

G1
=

ν2

G2
=

ν

G
,

K
G

= 0 (7.3.232)

The difference parameter K vanishes; as a result, the functions H13(X− x,Y − y) and
H23(X− x,Y − y) vanish so that the normal contact problem on the one hand and the tangential
contact problem on the other hand are decoupled from each other:u1(X ,Y )

u2(X ,Y )
w(X ,Y )

=
∫

A

H11(X− x,Y − y) H12(X− x,Y − y) 0
H12(X− x,Y − y) H22(X− x,Y − y) 0

0 0 H33(X− x,Y − y)

τ1(x,y)
τ2(x,y)
p(x,y)

dA

(7.3.233)

7.4 Discretization of the contact problem

To discretise the problem a grid having the grid constant ∆a is defined. Using the offsets xO and
yO and the integers x̄i and yi, the i-th gridpoint has the following coordinates in the contact frame
C :

rC
P0Pi

=

xi
yi
0

=

xO + x̄i∆a
yO + ȳi∆a

0

 , x̄i, ȳi ∈ Z (7.4.234)

At these gridpoints the deformations and the tensions are considered:

u(xi,yi) =

u1(xi,yi)
u2(xi,yi)
w(xi,yi)

=

u1,i
u2,i
wi

= ui, σ(xi,yi) =

τ1(xi,yi)
τ2(xi,yi)
p(xi,yi)

=

τ1,i
τ2,i
pi

= σi (7.4.235)

Regarding the deformations the values at the gridpoints ui = u(xi,yi) are sufficient. However, as
it will turn out, for the stresses a field σ(x,y) describing the stress distribution on the surface is
required. This field can be formulated by superposing local functions fk(x,y), which are scaled
with the tensions σk = σ(xk,yk) at the k-th gridpoint:τ1(x,y)

τ2(x,y)
p(x,y)

= σ(x,y) = ∑
k

fk(x,y)σk = ∑
k

fk(x,y)

τ1,k
τ2,k
pk

 (7.4.236)

For this formulation the function fk must have the value 1 at the k-th gridpoint and it must vanish
at all other gridpoints, i.e. for i 6= k. Thus it is valid:

fk(xi,yi) =

{
1 for i = k
0 for i 6= k ⇒ σ(xk,yk) = ∑

i,i6=k
σi fi(xk,yk)︸ ︷︷ ︸

0

+σk fk(xk,yk)︸ ︷︷ ︸
1

= σk (7.4.237)
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In the present case a linear distribution of the tensions between two gridpoints is used. Therefore,
a local bilinear function of the following form is used for fk(x,y):

fk =

{ (
1− |x−xk|

∆a

)(
1− |y−yk|

∆a

)
for |x− xk| ≤ ∆a∧|y− yk| ≤ ∆a

0 for |x− xk|> ∆a∨|y− yk|> ∆a
(7.4.238)

Since the grid constant ∆a is strictly positive, i.e. ∆a > 0, it is valid:

|x− xk| ≤ ∆a⇒ |x− xk|
∆a

≤ 1⇒−|x− xk|
∆a

≥−1⇒ 1− |x− xk|
∆a

≥ 0 (7.4.239)

|y− yk| ≤ ∆a⇒ |y− yk|
∆a

≤ 1⇒−|y− yk|
∆a

≥−1⇒ 1− |y− yk|
∆a

≥ 0 (7.4.240)

⇒ fk(x,y) =
(

1− |x− xk|
∆a

)
︸ ︷︷ ︸

≥0

(
1− |y− yk|

∆a

)
︸ ︷︷ ︸

≥0

≥ 0 for |x− xk| ≤ ∆a∧|y− yk| ≤ ∆a(7.4.241)

From this it follows that the function fk(x,y) is non-negative for the following domain Dk:

Dk =
{
(x,y) ∈ R2| |x− xk| ≤ ∆a, |y− yk| ≤ ∆a

}
(7.4.242)

The conditions for x and y can be reformulated in the following way:

x− xk ≥ 0⇔ x≥ xk : |x− xk|= x− xk ≤ ∆a⇒ xk ≤ x≤ xk +∆a
x− xk < 0⇔ x < xk : |x− xk|=−(x− xk) =−x+ xk ≤ ∆a⇒ xk−∆a≤ x < xk

⇒ xk−∆a≤ x≤ xk +∆a (7.4.243)
y− yk ≥ 0⇔ y≥ yk : |y− yk|= y− yk ≤ ∆a⇒ yk ≤ y≤ yk +∆a
y− yk < 0⇔ y < yk : |y− yk|=−(y− yk) =−y+ yk ≤ ∆a⇒ yk−∆a≤ y < yk

⇒ yk−∆a≤ y≤ yk +∆a (7.4.244)
⇒ Dk =

{
(x,y) ∈ R2|xk−∆a≤ x≤ xk +∆a,yk−∆a≤ y≤ yk +∆a

}
(7.4.245)

This domain is a square having the edge length 2∆a and the centre 〈xk,yk〉. In Fig.7.4.7 the function
fk(x,y) is displayed. According to (7.4.238) the chosen function fk(x,y) vanishes at the borders of

Da

xkyk

DaDa

Da

Figure 7.4.7: Local bilinear interpolation function fk(x,y)
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the domain Dk:

x = xk−∆a⇔ x− xk =−∆a⇒ 1− |x− xk|
∆a

= 1− |−∆a|
∆a

= 0 ⇒ fk(xk−∆a,y) = 0(7.4.246)

x = xk +∆a⇔ x− xk = ∆a⇒ 1− |x− xk|
∆a

= 1− |∆a|
∆a

= 0 ⇒ fk(xk +∆a,y) = 0(7.4.247)

y = yk−∆a⇔ y− yk =−∆a⇒ 1− |y− yk|
∆a

= 1− |−∆a|
∆a

= 0 ⇒ fk(x,yk−∆a) = 0(7.4.248)

y = yk +∆a⇔ y− yk = ∆a⇒ 1− |y− yk|
∆a

= 1− |∆a|
∆a

= 0 ⇒ fk(x,yk +∆a) = 0(7.4.249)

The gridpoints, which are adjacent to the k-th gridpoint, are lying on these borders; all other
gridpoints are located outside the domain Dk, i.e. they are located in the complement A\Dk of the
domain Dk in A. For the k-th gridpoint being the centre of the domain Dk it is valid:

fk(xk,yk) =

(
1− |xk− xk|

∆a

)
︸ ︷︷ ︸

1

(
1− |yk− yk|

∆a

)
︸ ︷︷ ︸

1

= 1 (7.4.250)

Thereby, the chosen function according to (7.4.238) vanishes for all gridpoints except the k-th one
so that it fulfills the aforementioned conditions fk(xi,yi) = 0 for i 6= k and fk(xk,yk) = 1, which are
required by the discretization according to (7.4.237).

In section 7.3 the following relation between the displacement u and the tension σ has been pre-
sented:

u(X ,Y ) =
∫

A
H(X− x,Y − y)σ(x,y)dA (7.4.251)

Here, the matrix H(X − x,Y − y) contains the influence functions HIK(X − x,Y − y). By inserting
the discretized distribution of the tensions according to (7.4.237) into (7.4.251) and factoring out
the vectors σk from the integral the deformation ui at the i-th gridpoint is obtained to:

ui = u(xi,yi) =
∫

A
H(xi− x,yi− y)σ(x,y)dA =

∫
A

H(xi− x,yi− y) ∑
k

fk(x,y)σk dA

= ∑
k

∫
A

H(xi− x,yi− y) fk(x,y)dA︸ ︷︷ ︸
Hi|k

σk = ∑
k

Hi|k σk (7.4.252)

For the wheel-rail contact it is assumed that the wheel and the rail consist of the same material so
that the shear modulus G and Poisson’s ratio ν are equal for both bodies. In this case, it is valid:

H(X− x,Y − y) =

H11(X− x,Y − y) H12(X− x,Y − y) 0
H12(X− x,Y − y) H22(X− x,Y − y) 0

0 0 H33(X− x,Y − y)

 (7.4.253)

Thus, the normal contact problem on the one hand and the tangential contact problem on the
other hand are decoupled from each other. As a result, the complete system of linear equations
according to (7.4.252) can be split up into two independent systems. The system of equations,
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which describes the normal contact problem, can be written as:


...

wi−1
wi

wi+1
...

=



. . . ...
...

...
. . . H [33]

i−1|k−1 H [33]
i−1|k H [33]

i−1|k+1 . . .

. . . H [33]
i|k−1 H [33]

i|k H [33]
i|k+1 . . .

. . . H [33]
i+1|k−1 H [33]

i+1|k H [33]
i+1|k+1 . . .

...
...

... . . .




...

pk−1
pk

pk+1
...

 (7.4.254)

The system of linear equations, which describes the discretized tangential contact problem, can be
formulated in the following way:



...
u1,i−1
u2,i−1
u1,i
u2,i

u1,i+1
u2,i+1

...


=



. . . ...
...

...
...

...
...

. . . H [11]
i−1|k−1 H [12]

i−1|k−1 H [11]
i−1|k H [12]

i−1|k H [11]
i−1|k+1 H [12]

i−1|k+1 . . .

. . . H [12]
i−1|k−1 H [22]

i−1|k−1 H [12]
i−1|k H [22]

i−1|k H [12]
i−1|k+1 H [22]

i−1|k+1 . . .

. . . H [11]
i|k−1 H [12]

i|k−1 H [11]
i|k H [12]

i|k H [11]
i|k+1 H [12]

i|k+1 . . .

. . . H [12]
i|k−1 H [22]

i|k−1 H [12]
i|k H [22]

i|k H [12]
i|k+1 H [22]

i|k+1 . . .

. . . H [11]
i+1|k−1 H [12]

i+1|k−1 H [11]
i+1|k H [12]

i+1|k H [11]
i+1|k+1 H [12]

i+1|k+1 . . .

. . . H [12]
i+1|k−1 H [22]

i+1|k−1 H [12]
i+1|k H [22]

i+1|k H [12]
i+1|k+1 H [22]

i+1|k+1 . . .
...

...
...

...
...

... . . .





...
τ1,k−1
τ2,k−1
τ1,k
τ2,k

τ1,k+1
τ2,k+1

...


(7.4.255)

In order to formulate the two systems of linear equations, the coefficients H [IK]
i|k are required. As

discussed before, the function fk(x,y) generally vanishes outside the domain Dk, i.e. it vanishes
in the complement A\Dk of the domain Dk in A. Since the integrand for the coefficients H [IK]

i|k
contains the function fk(x,y) as a factor, it vanishes in the complement A\Dk, too. Therefore, it is
valid:

H [IK]
i|k =

∫
A

HIK(xi− x,yi− y) fk(x,y)dA

=
∫

Dk

HIK(xi− x,yi− y) fk(x,y)dA+
∫

A\Dk

HIK(xi− x,yi− y)

=0︷ ︸︸ ︷
fk(x,y) dA︸ ︷︷ ︸

=0

(7.4.256)

Thus, the integration has to be carried out for the domain Dk only. By inserting the influence
functions H11, H12, H22 and H33 according to (7.3.225), (7.3.226), (7.3.228) and (7.3.230) into the
remaining integral of (7.4.256), the integrals, from which the coefficients H [IK]

i|k are obtained, are
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formulated:

H [11]
i|k =

∫
Dk

[
1−ν

πG
1

[(xi− x)2 +(yi− y)2]
1/2 +

ν

πG
(xi− x)2

[(xi− x)2 +(yi− y)2]
3/2

]
fk(x,y)dA (7.4.257)

H [12]
i|k =

∫
Dk

ν

πG
(xi− x)(yi− y)

[(xi− x)2 +(yi− y)2]
3/2 fk(x,y)dA (7.4.258)

H [22]
i|k =

∫
Dk

[
1−ν

πG
1

[(xi− x)2 +(yi− y)2]
1/2 +

ν

πG
(yi− y)2

[(xi− x)2 +(yi− y)2]
3/2

]
fk(x,y)dA (7.4.259)

H [33]
i|k =

∫
Dk

1−ν

πG
1

[(xi− x)2 +(yi− y)2]
1/2 fk(x,y)dA (7.4.260)

After splitting up the integrals and factoring out the terms containing the constant material param-
eters G and ν the required compliance coefficients H [11]

i|k , H [12]
i|k , H [22]

i|k and H [33]
i|k can be formulated

as linear combinations of four integrals h[11]
i|k , h[12]

i|k , h[22]
i|k and h[33]

i|k :

h[11]
i|k =

∫
Dk

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA, h[12]

i|k =
∫

Dk

(xi− x)(yi− y) fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA, (7.4.261)

h[22]
i|k =

∫
Dk

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA, h[33]

i|k =
∫

Dk

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA (7.4.262)

H [11]
i|k =

1−ν

πG
h[33]

i|k +
ν

πG
h[11]

i|k , H [12]
i|k =

ν

πG
h[12]

i|k (7.4.263)

H [22]
i|k =

1−ν

πG
h[33]

i|k +
ν

πG
h[22]

i|k , H [33]
i|k =

1−ν

πG
h[33]

i|k (7.4.264)

It is advantageous to formulate the integrals for local coordinates ξ and ηThe origin of the lo-
cal coordinates is the point Pi, where the deformations u1,i, u2,i and wi have to be determined.
Furthermore, the coordinates are normalized by the grid constant ∆a:

x = xi +ξ∆a, y = yi +η∆a (7.4.265)

Using the normalized distances x̄i|k and ȳi|k it can be formulated:

x− xk = xi− xk +ξ∆a = x̄i|k ∆a+ξ∆a = ∆a
(
ξ− x̄k|i

)
⇒ x− xk

∆a
= ξ− x̄k|i (7.4.266)

y− yk = yi− yk +η∆a = ȳi|k ∆a+η∆a = ∆a
(
η− ȳk|i

)
⇒ y− yk

∆a
= η− ȳk|i (7.4.267)

Thereby, the shape function fk can be reformulated to:

fk =

(
1−
∣∣∣∣x− xk

∆a

∣∣∣∣)(1−
∣∣∣∣y− yk

∆a

∣∣∣∣)=
(
1−
∣∣ξ− x̄k|i

∣∣)(1− ∣∣η− ȳk|i
∣∣)= fk|i(ξ,η) (7.4.268)

The intervals for the domain are adapted in the following way:

xk−∆a≤ x≤ xk +∆a ⇒ −∆a≤ x− xk ≤ ∆a

⇒ −1≤ x− xk

∆a
= ξ− x̄k|i ≤ 1 ⇒ x̄k|i−1≤ ξ≤ x̄k|i +1 (7.4.269)

yk−∆a≤ y≤ yk +∆a ⇒ −∆a≤ y− yk ≤ ∆a

⇒ −1≤ y− yk

∆a
= η− ȳk|i ≤ 1 ⇒ ȳk|i−1≤ η≤ ȳk|i +1 (7.4.270)
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Thereby, the domain Dk is formulated using the coordinates ξ and η:

Dk =
{
(ξ,η) ∈ R2∣∣ x̄k|i−1≤ ξ≤ x̄k|i +1, ȳk|i−1≤ η≤ ȳk|i +1

}
(7.4.271)

For the infinitesimal area element dA it is valid:

dA = dxdy =
∂x
∂ξ

dξ · ∂y
∂η

dη = ∆a2 dξ dη (7.4.272)

In order to adapt the influence functions to the new coordinates, it is determined:

x = xi +∆aξ ⇒ xi− x =−∆aξ ⇒ (xi− x)2 = ξ
2

∆a2 (7.4.273)

y = yi +∆aη ⇒ yi− y =−∆aη ⇒ (yi− y)2 = η
2

∆a2 (7.4.274)

⇒
[
(xi− x)2 +(yi− y)2]1/2

=
[
ξ

2
∆a2 +η

2
∆a2]1/2

=
[
ξ

2 +η
2]1/2

∆a (7.4.275)

Thereby, the integrals h[11]
i|k , h[12]

i|k , h[22]
i|k and h[33]

i|k are reformulated in the following way:

h[11]
i|k =

∫
Dk

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

ȳk|i+1∫
ȳk|i−1

x̄k|i+1∫
x̄k|i−1

ξ2 fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη (7.4.276)

h[12]
i|k =

∫
Dk

(xi− x)(yi− y) fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

ȳk|i+1∫
ȳk|i−1

x̄k|i+1∫
x̄k|i−1

ξη fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη (7.4.277)

h[22]
i|k =

∫
Dk

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

ȳk|i+1∫
ȳk|i−1

x̄k|i+1∫
x̄k|i−1

η2 fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη (7.4.278)

h[33]
i|k =

∫
Dk

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA =

ȳk|i+1∫
ȳk|i−1

x̄k|i+1∫
x̄k|i−1

fk|i(ξ,η)

[ξ2 +η2]
1/2 ∆adξ dη (7.4.279)

It will turn out later that the coefficients H [11]
i|i , H [12]

i|i , H [22]
i|i are of special interest; therefore, they

will be considered here. Since the normalized distances x̄i|i = 0 and ȳi|i = 0 vanish, it is valid for
the integrals:

fi|i(ξ,η) =
(
1−
∣∣ξ− x̄i|i

∣∣)(1− ∣∣η− ȳi|i
∣∣)= (1−|ξ|)(1−|η|) (7.4.280)

h[11]
i|i =

ȳi|i+1∫
ȳi|i−1

x̄i|i+1∫
x̄i|i−1

ξ2 fi|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

1∫
−1

1∫
−1

ξ2 (1−|ξ|)(1−|η|)
[ξ2 +η2]

3/2 ∆adξ dη (7.4.281)

h[12]
i|i =

ȳi|i+1∫
ȳi|i−1

x̄i|i+1∫
x̄i|i−1

ξη fi|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

1∫
−1

1∫
−1

ξη (1−|ξ|)(1−|η|)
[ξ2 +η2]

3/2 ∆adξ dη (7.4.282)

h[22]
i|i =

ȳi|i+1∫
ȳi|i−1

x̄i|i+1∫
x̄i|i−1

η2 fi|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

1∫
−1

1∫
−1

η2 (1−|ξ|)(1−|η|)
[ξ2 +η2]

3/2 ∆adξ dη (7.4.283)

h[33]
i|i =

ȳi|i+1∫
ȳi|i−1

x̄i|i+1∫
x̄i|i−1

fi|i(ξ,η)

[ξ2 +η2]
1/2 ∆adξ dη =

1∫
−1

1∫
−1

(1−|ξ|)(1−|η|)
[ξ2 +η2]

1/2 ∆adξ dη (7.4.284)
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It can be seen that the integrands of h[11]
i|i and h[22]

i|i can be converted into each other by interchanging
the arguments ξ and η. Furthermore, both integrations over ξ and η have to be carried out over the
same interval [−1,1]. Thereby, the two integrals are equal:

h[11]
i|i = h[22]

i|i (7.4.285)

From this it follows that the coefficients H [11]
i|i and H [22]

i|i are equal:

H [11]
i|i =

1−ν

πG
h[33]

i|i +
ν

πG
h[11]

i|i =
1−ν

πG
h[33]

i|i +
ν

πG
h[22]

i|i = H [22]
i|i (7.4.286)

The integrand g12(ξ,η) of the integral h[12]
i|i is an odd function with respect to both variables ξ and

η:

g12(−ξ,η) =
(−ξ)η (1−|−ξ|)(1−|η|)

[(−ξ)2 +η2]
3/2 =−ξη (1−|ξ|)(1−|η|)

[ξ2 +η2]
3/2 =−g12(ξ,η) (7.4.287)

g12(ξ,−η) =
ξ(−η) (1−|ξ|)(1−|−η|)

[ξ2 +(−η)2]
3/2 =−ξη (1−|ξ|)(1−|η|)

[ξ2 +η2]
3/2 =−g12(ξ,η) (7.4.288)

The interval [−1,1], over which both integrations for ξ and η have to be carried out, is a symmetric
interval. The integral of an odd function f (−x) =− f (x) over a symmetric interval [−b,b] always
vanishes. Therefore, it is valid:

f (−x) =− f (x) ⇒
b∫
−b

f (x)dx= 0 ⇒ h[12]
i|i =

1∫
−1

1∫
−1

ξη (1−|ξ|)(1−|η|)
[ξ2 +η2]

3/2 ∆adξ dη= 0 (7.4.289)

Therefore, the coefficient H [12]
i|i = 0 vanishes.

The complete evaluation of the integrals is a bit laborious. Therefore, the full evaluation is con-
tained in the Appendix E, while here only the most important steps and the solution are presented.
These steps can be described briefly in the following way:

1. The shape function fk|i(ξ,η) is reformulated and the domain Dk is split up into four subdo-
mains Dk,n.

2. The local cartesian coordinates ξ and η are replaced by local normalized polar coordinates.

3. The integration over the subdomains Dk,n is carried out by superposing integrals over trian-
gular domains, which can be solved analytically.

The shape function fk|i(ξ,η) contains absolute values; therefore, the integrals have to be evaluated
piecewise. To this end, the domain Dk is split up into four subdomains Dk,1, Dk,2, Dk,3 and Dk,4
and the shape function is reformulated in the following way:

fk|i(ξ,η) =
(
1−
∣∣ξ− x̄k|i

∣∣)(1− ∣∣η− ȳk|i
∣∣)= (1− cξ

[
ξ− x̄k|i

])(
1− cη

[
η− ȳk|i

])
(7.4.290)

The subdomains Dk,n are chosen in such a way that the coefficients cX and cY are constant within
each subdomain. In total it is valid:
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x̄k|i−1≤ ξ≤ x̄k|i x̄k|i ≤ ξ≤ x̄k|i +1

ȳk|i ≤ η≤ ȳk|i +1 Subdomain Dk,2
cξ =−1, cη = 1

Subdomain Dk,1
cξ = 1, cη = 1

ȳk|i−1≤ η≤ ȳk|i
Subdomain Dk,3

cξ =−1, cη =−1
Subdomain Dk,4
cξ = 1, cη =−1

The integrals over the complete domain Dk are obtained by summing up the integrals over the
subdomains Dk,n. Based on this, the integrals h[11]

i|k , h[12]
i|k , h[22]

i|k and h[33]
i|k are obtained in the following

way:

h[11]
i|k =

4

∑
n=1

∫∫
Dk,n

ξ2 fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

4

∑
n=1

h[11]
i|k,n (7.4.291)

h[12]
i|k =

4

∑
n=1

∫∫
Dk,n

ξη fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

4

∑
n=1

h[12]
i|k,n (7.4.292)

h[22]
i|k =

4

∑
n=1

∫∫
Dk,n

η2 fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

4

∑
n=1

h[22]
i|k,n (7.4.293)

h[33]
i|k =

4

∑
n=1

∫∫
Dk,n

fk|i(ξ,η)

[ξ2 +η2]
1/2 ∆adξ dη =

4

∑
n=1

h[33]
i|k,n (7.4.294)

For further evaluation, the local cartesian coordinates ξ and η are expressed by the polar coordi-
nates r and φ in the following way:

ξ = r cosφ, η = r sinφ, r ≥ 0 (7.4.295)

An overview on the coordinates x and y of the contact frame C , the local cartesian coordinates ξ

and η, the local polar coordinates r and φ and the subdomains Dk,1, Dk,2, Dk,3 and Dk,4 is given
in Fig.7.4.8. Using the new polar coordinates, the terms contained in the integrands of h[IK]

i|k,n are
reformulated:

ξ
2 = r2 cos2

φ, η
2 = r2 sinφ ⇒

[
ξ

2 +η
2]1/2

=
[
r2 cos2

φ+ r2 sinφ
]1/2

= r (7.4.296)

For the infinitesimal area element it is valid:

dξ dη = r dr dφ (7.4.297)

The shape function fk|i is expressed in the following way:

fk|i(ξ,η) =
(
1− cξ

[
ξ− x̄k|i

])(
1− cη

[
η− ȳk|i

])
=
(
1− cξ

[
r cosφ− x̄k|i

])(
1− cη

[
r sinφ− ȳk|i

])
=
(
1+ cξ x̄k|i

)(
1+ cη ȳk|i

)
− cξ

(
1+ cη ȳk|i

)
r cosφ

−cη

(
1+ cξ x̄k|i

)
r sinφ+ cξ cη r2 sinφcosφ

= fk|i,0 + fk|i,1r cosφ+ fk|i,2r sinφ+ f12r2 sinφcosφ = fk|i(r,φ) (7.4.298)
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f
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Figure 7.4.8: Global coordinates x and y, local cartesian coordinates ξ and η, local polar coordi-
nates r and φ and subdomains Dk,1, Dk,2, Dk,3 and Dk,4 for the function fk.

Thereby, the four integrands can be formulated in the following way:

ξ2 fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

r2 cos2 φ fk|i(r,φ)
r3 ∆ar dr dφ = ∆a fk|i(r,φ)cos2

φ dr dφ (7.4.299)

ξη fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

r cosφr sinφ fk|i(r,φ)
r3 ∆ar dr dφ = ∆a fk|i(r,φ)cosφsinφ dr dφ

(7.4.300)
η2 fk|i(ξ,η)

[ξ2 +η2]
3/2 ∆adξ dη =

r2 sin2
φ fk|i(r,φ)
r3 ∆ar dr dφ = ∆a fk|i(r,φ)sin2

φ dr dφ (7.4.301)

fk|i(ξ,η)

[ξ2 +η2]
1/2 ∆adξ dη =

fk|i(r,φ)
r

∆ar dr dφ = ∆a fk|i(r,φ) dr dφ (7.4.302)

Here, the big advantage of the polar coordinates becomes visible: The denominator has been
eliminated so that for the reformulated integrands no singularities occur. Furthermore, it should be
noted that in the reformulated integrands the shape function fk(r,φ) is the only term depending on
the radial coordinate r. In the following, the following generalized integral will be considered:

h[IK]
ik =

∫∫
Dk,n

∆a fk(r,φ)sinM
φ cosN

φdr dφ, M,N ∈ {0,1,2} (7.4.303)

If a function g(r,φ), which is defined for polar coordinates as the arguments, shall be integrated
over a two-dimensional domain, the simplest case is the case of a domain DAB, which is limited by
two rays defined by the angles φA and φB and a curve defined by R(φ) as displayed in Figure 7.4.9.
Then, the integral of the function g(r,φ) over the domain DAB is determined by the following
expression: ∫∫

DAB

g(r,φ) dA =

φB∫
φA

R(φ)∫
0

g(r,φ)r dr dφ (7.4.304)
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R( )f

fA

f

x

h

fB

DAB

Figure 7.4.9: Domain DAB described in polar coordinates

The limits of the subdomains Dk,n given by a constant value either for x or for y; thereby, each
subdomain Dk,n is a rectangle, whereas the edges are parallel to the axes of the global coordinates
x and y and also the axes of the local cartesian coordinates ξ and η.

Now, a rectangular domain D is considered. Its corners are given by the points P1, P2, P3 and
P4 and its edges are parallel to the ξ-axis or the η-axis, as it is the case for the subdomains Dk,n.
The edges P1P2 and P3P4 are the horizontal edges defined by the constant values ηA and ηB,
respectively. The edges P2P3 and P4P1 are the vertical edges; they are defined by the constant
values ξA and ξB, respectively. The integral over the rectangular domain D can now be expressed
by superposing integrals over triangular domains TAB. Here, the three corners of the triangle TAB
are given by the origin of the coordinates and the edge PAPB of the rectangle. Using a generalized
formulation for the integrands (7.4.299), (7.4.300), (7.4.301) and (7.4.302) the integral for the
triangular domain TAB is expressed in the following way:

FM,N(PA→ PB) =
∫∫

TAB

∆a fi|k(r,φ)sinM
φ cosN

φdr dφ

=

φB∫
φA

RAB(φ)∫
0

∆a fi|k(r,φ)sinM
φ cosN

φdr dφ, M,N ∈ {0,1,2} (7.4.305)

It is important to note that the integral FM,N(PA→ PB) is counted positively if the end angle φB is
greater than the start angle φA. In the reverse , i.e. if the end angle φB is greater than the start angle
φA, the integral FM,N(PA→ PB) is counted negatively. Altogether, the principle to determine the
integral over the rectangular domain D by superposing the integrals over the triangular domains
T12, T23, T34 and T41 is illustrated in Figure 7.4.10.

Because of φ3 > φ2 and φ4 > φ3, the integrals FM,N(P2→ P3) and FM,N(P3→ P4) over the tri-
angular domains T23 and T34, respectively, are counted positively. In contrast to this, the integrals
FM,N(P1→ P2) and FM,N(P4→ P1) over the triangular domains T12 and T41 are counted negatively
because of φ2 < φ1 and φ4 < φ1. Thereby, the FM,N(P1→ P2) and FM,N(P4→ P1) partially cancel
the integrals FM,N(P2→ P3) and FM,N(P3→ P4) out. As a result, the integral FM,N(D) over the
rectangular subdomain D having the corners P1, P2, P3 and P4 is obtained to:

FM,N(D) = FM,N(P1→ P2)+FM,N(P2→ P3)+FM,N(P3→ P4)+FM,N(P4→ P1) (7.4.306)
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Figure 7.4.10: Description of the rectangular domain D by superposing triangular domains TAB.

Since the edges of the rectangular domain are either horizontal or vertical and therefore defined
either by a constant value ξC = const. or a constant value ηC = const., the radius functions RAB(φ)
can be derived directly from the relation between the local cartesian coordinates ξ and η and the
polar coordinates r and φ:

ξ = r cosφ, η = r sinφ (7.4.307)

From this it follows for the radius functions:

P1P2 : η = ηA⇒ R12(φ)sinφ = ηA⇒ R12(φ) =
ηA

sinφ
(7.4.308)

P2P3 : ξ = ξB⇒ R23(φ)cosφ = ξB⇒ R23(φ) =
ξB

cosφ
(7.4.309)

P3P4 : η = ηB⇒ R34(φ)sinφ = ηB⇒ R34(φ) =
ηB

sinφ
(7.4.310)

P4P1 : ξ = ξA⇒ R41(φ)cosφ = ξA⇒ R41(φ) =
ξA

cosφ
(7.4.311)

Using these functions, all integrals required for the compliance coefficients H [IK]
ik can be expressed
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by linear combinations of the following integrals:

φJ∫
φI

cosφdφ = sinφ|φJ
φI
,

φJ∫
φI

1
cosφ

dφ = ln
(

1+ sinφ

cosφ

)∣∣∣∣φJ

φI

,

φJ∫
φI

sinφ

cos2 φ
dφ =

1
cosφ

∣∣∣∣φJ

φI

φJ∫
φI

sinφdφ = −cosφ|φJ
φI
,

φJ∫
φI

1
sinφ

dφ = ln
(

1− cosφ

sinφ

)∣∣∣∣φJ

φI

,

φJ∫
φI

cosφ

sin2
φ

dφ = − 1
sinφ

∣∣∣∣φJ

φI

(7.4.312)

As already mentioned, a detailed derivation of the expressions, which are necessary to determine
the compliance coefficients H [IK]

i|k , is given in the Appendix E. Here, it shall just be pointed out that
for the bilinear shape function fk(x,y) the compliance coefficients can be determined analytically.

7.5 Normal contact

In section 7.4, a discretized formulation for the contact problem has been developed based on the
equations of Boussinesq and Cerruti. For the case that both bodies being in contact have the same
material parameters, it has been shown that the normal contact problem and the tangential contact
problem are decoupled from each other. Therefore, they can be solved separately, which means
an important reduction of the computational effort. The relation between the normal deformations
wi = w(xi,yi) and the pressures pk = p(xk,yk) is given by the following system of linear equations:


...

wi−1
wi

wi+1
...

=



. . . ...
...

...
. . . H [33]

i−1|k−1 H [33]
i−1|k H [33]

i−1|k+1 . . .

. . . H [33]
i|k−1 H [33]

i|k H [33]
i|k+1 . . .

. . . H [33]
i+1|k−1 H [33]

i+1|k H [33]
i+1|k+1 . . .

...
...

... . . .




...

pk−1
pk

pk+1
...

 (7.5.313)

The condition, which has been fulfilled by the solution of the normal contact problem, can be
formulated in a very descriptive way. If two bodies are pressed against each other, then their is
a geometrical interpenetration δ of their undeformed surfaces. Of course, in reality, the bodies
cannot interpenetrate each other, but the geometrical interpenetration δ is compensated by the
deformation w of the bodies. The wanted solution of the normal contact problem is a distribution
of the pressure p, which causes a deformation w compensating the geometrical interpenetration
δ. However, the normal contact can only transmit compression stresses, but no tensile stresses.
Furthermore, the pressure p vanishes at those points, where no actual contact occurs, i.e. where
the normal deformation w is greater than the interpenetration δ. Based on these considerations, the
condition for the normal contact problem can be formulated. Here, C is the domain describing the
actual contact area so that the complement A\C describes the region outside the contact area. Then
it is valid:

(x,y) ∈C : δ(x,y)−w(x,y) = 0∧ p(x,y)> 0 (7.5.314)
(x,y) ∈ A\C : δ(x,y)−w(x,y)< 0∧ p(x,y) = 0 (7.5.315)
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For the sake of simplicity, the pressure p(x,y) is defined in such a way that it is non-negative,
although compression stresses are usually indicated by a negative sign.

In section 7.4 it has been discussed:

p(x,y) = ∑
k

pk fk(x,y), fk(x,y)≥ 0, H33(X− x,Y − y) =
1−ν

πG
1[

(X− x)2 +(Y − y)2
]1/2 > 0

⇒ H [33]
i|k =

∫∫
A

H33(xi− x,yi− y) fk(x,y) dA > 0 (7.5.316)

The interpenetration δi = δ(xi,yi) is determined in the following way:

1. Determine the normal distance ζRi for the given values xi and yi:

rC
PRiPl

= S1(−ΦC)
[
rR
R (ξi,yRi)− rR

R (ξl,yRl)
]
=
[
xi yi ζRi

]T (7.5.317)

2. Determine the normal distance ζWi for the given values xi and yi:

rC
PWiPl

= S1(α−ΦC)S3(γ) [S2(Θi)pW(yWi)−S2(εl)pW(yWl)] =
[
xi yi ζWi

]T (7.5.318)

3. Set δi = ζWi−ζRi.

7.5.1 Solving algorithm

As derived before, the discretized normal contact problem based on the equations of Boussinesq
and Cerrutti is formulated as a system of linear equations; the most generalized formulation of
such a system is given by:

Ax = b (7.5.319)

Generally, there are two basic strategies to determine the solution vector x of a system of linear
equations direct calculation and iterative calculation. These two strategies and their advantages
and disadvantages will be considered and briefly discussed in the following.

The basic idea of the direct calculation is to transform the system of linear equations in such
a way that all but one of the unknown elements of the wanted vector x are eliminated from the
equations. This transformation is done by a finite number of steps depending on the order N of the
system. As a result, the exact solution vector x is obtained. A well-known method is to decompose
the matrix A into a product of a lower left matrix L and an upper right matrix U:

A = LU, L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
... . . . ...

lN1 lN2 lN3 . . . lNN

 , U =


u11 u12 u13 . . . u1N
0 u22 u23 . . . u2N
0 0 u33 . . . u3N
...

...
... . . . ...

0 0 0 . . . uNN

 . (7.5.320)

Because of the structure of the matrices this decomposition is called LU decomposition. There
are different possibilities for the decomposition of the matrix A. If the matrix A is symmetric
and positive definite, the Cholesky decomposition can be used. Here, the upper right matrix U is
set equal to the transposed lower left matrix L, i.e. U = LT, so that the matrix A is decomposed
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in the way A = LLT. If the matrix A is non-symmetric and not positive definite, a general LU
decomposition is used, whereas the diagonal elements lii are set equal to 1. – Now, an intermediate
vector y is introduced in the following way:

Ux = y⇒ Ax = LUx = Ly = b (7.5.321)

The intermediate vector y and the solution vector x are now determined using a recursive calcula-
tion scheme:

Ly = b : l11 y1 = b1⇒ y1 =
b1

l11
,

l21 y1 + l22 y2 = b2⇒ y2 =
b2− l21 y1

l22
,

l31 y1 + l32 y2 + l33 y3 = b3⇒ y3 =
b3− l31 y1− l32 y2

l33
, . . . (7.5.322)

Ux = y : uNN xN = yN ⇒ xN =
yN

uNN
,

uN−1|N−1 xN−1 +uN−1|N xN = yN−1⇒ xN−1 =
yN−1−uN−1|N xN

uN−1|N−1
,

uN−2|N−2 xN−2 +uN−2|N−1 xN−1 +uN−2|N xN = yN−2

⇒ xN−2 =
yN−2−uN−2|N−1 xN−1−uN−2|N xN

uN−2|N−2
, . . . (7.5.323)

Regarding the implementation as a computer code, with growing order N the number of the re-
quired floating point operations asymptotically approaches 2N3/3 for the LU decomposition and
2N2 for the recursive determination of the vectors y and x, see e.g. [60]. This means that for a
sufficiently high order N the main part of the computational effort is required by the LU decompo-
sition.

The advantage of the direct calculation is that it determines the exact solution after a certain number
of steps. For an implementation as a computer code a subsequent iterative improvement of the
solution is often useful in order to minimize numerical errors; nevertheless, the basic process of
the direct calculation doesn’t use any iteration. This also means that no initial approximation of the
solution is necessary to start the direct calculation. The main disadvantage of the direct calculation
is that for any changes of the matrix A the LU decomposition has to be carried out again.

For the iterative calculation, a system of equations given by

g(x) = 0 (7.5.324)

is transformed into the following form:

x = f(x)⇒ x(n+1) = f(x(n)) (7.5.325)

Starting with an initial approximation x(0), a sequence of the approximations x(n) converging to-
wards the wanted solution x is obtained.

A very instructive way to obtain the iteration scheme for a system of linear equations can be derived
by resolving the k-th equation of the system to the k-th component xk of the wanted solution vector
x.

N

∑
i=1

ak|i xi = bk⇒ xk =
1

ak|k

[
bk−

k−1

∑
i=1

ak|i xi−
N

∑
i=k+1

ak|i xi

]
(7.5.326)
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Here, a property, which will be important with respect to the solution of the normal contact prob-
lem, becomes visible: The coefficients ai|k of the matrix A remain unchanged; in contrast to the
LU decomposition used for the direct calculation no new matrix coefficients are calculated.

The simplest iteration scheme based on the reformulated equation (7.5.326) is the Jacobi iteration.
Here, the components x(n+1)

k of the new approximation vector x(n+1) are obtained from the existing
approximation vector x(n) in the following way:

x(n+1)
k =

1
ak|k

[
bk−

k−1

∑
i=1

ak|i x(n)i −
N

∑
i=k+1

ak|i x(n)i

]
(7.5.327)

The Jacobi iteration is characterized by the fact that the new approximation x(n+1)
k is calculated

from the existing approximation x(n)i only.

If the new approximations x(n+1)
k are calculated sequentially, i.e. starting with k = 1, then the new

approximations x(n+1)
i , i < k are already available, when the component x(n+1)

k is calculated. Thus

the iteration method (7.5.327) can be improved by using the available new approximations x(n+1)
i

for the calculation of x(n+1)
k . This leads to the following iteration scheme, which is known as the

Gauss-Seidel iteration.

x(n+1)
k =

1
ak|k

[
bk−

k−1

∑
i=1

ak|i x(n+1)
i −

N

∑
i=k+1

ak|i x(n)i

]
(7.5.328)

The Gauss-Seidel iteration method shows a better convergence than the Jacobi iteration method.

The convergence of the Gauss-Seidel iteration can be improved by introducing a relaxation. Here,
the new approximation x(n+1)

k is obtained by adding a correction ∆x(n+1)
k to the existing approxi-

mation x(n)k :

x(n+1)
k = x(n)k +∆x(n+1)

k =
1

ak|k

[
bk−

k−1

∑
i=1

ak|i x(n+1)
i −

N

∑
i=k+1

ak|i x(n)i

]
(7.5.329)

The correction ∆x(n+1)
k is obtained by:

∆x(n+1)
k =

1
ak|k

[
bk−

k−1

∑
i=1

ak|i x(n+1)
i −ak|k x(n)k −

N

∑
i=k+1

ak|i x(n)i

]

=
1

ak|k

[
bk−

k−1

∑
i=1

ak|i x(n+1)
i −

N

∑
i=k

ak|i x(n)i

]
(7.5.330)

Now a relaxation factor ω is introduced so that the new approximation is obtained to:

x(n+1)
k = x(n)k +ω∆x(n+1)

k = x(n)k +
ω

ak|k

[
bk−

k−1

∑
i=1

ak|i x(n+1)
i −

N

∑
i=k

ak|i x(n)i

]
(7.5.331)

The iteration scheme (7.5.331) is known as the successive over-relaxation method or SOR method.
The Gauss-Seidel method can be seen as a special case of the SOR method for ω = 1. – The
numerical effort required for an iterative method depends on several factors. First, it depends on the
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initial approximation x(0); if x(0) is closer to the exact solution x, fewer iteration steps and therefore
a lesser numerical effort are required. Second, it depends on the filling of the matrix A; as the
iterative schemes (7.5.327), (7.5.328), and (7.5.331) show, fewer multiplications ak|i xi and fewer
additions are necessary, if more coefficients ak|i of the matrix vanish so that the multiplications
with these coefficients can be skipped. Thereby, iterative methods are especially well suited for
sparse matrices.

To compare the applicability of these two basic strategies on the normal contact problem, it should
be pointed out what the solution of the problem consists in. The normal contact problem is formu-
lated in the following way:

H33 p = w,
wi−δi = 0∧ pi > 0 inside the contact area
wi−δi > 0∧ pi = 0 outside the contact area (7.5.332)

The wanted solution of the normal contact problem is the vector p, more precise: its non-vanishing
components pi > 0. At these grid points 〈xi,yi〉 the normal deformation wi compensates the inter-
penetration δi of the undeformed surfaces; this characterizes the actual contact area. The condition
wi−δi > 0 describes a separation of the deformed surfaces; at the gridpoints 〈xi,yi〉, where this
condition is fulfilled, the pressure vanishes, i.e. pi = 0. It should be emphasized that for the
wanted solution of the contact problem only the condition wi−δi > 0⇔ wi > δi is important, but
not the exact value of the deformation wi.

In this context it turns out that the direct calculation method is less suited for the solution of the
normal contact problem: The direct calculation method solves a system of equations in its literal
sense, i.e. to obtain the vector p the vector w on the right hand side has to be fully known. This
means that for the points 〈xi,yi〉 outside the actual contact area the deformations wi > δi have to
be determined in such a way that the pressure pi vanishes; this requires additional computational
effort. Of course, the system of equations could be reformulated for the potential contact points
by skipping the equations for the grid points 〈xi,yi〉, which are currently regarded to be outside
the contact area. However, if the system of equations is changed, the LU decomposition has to be
carried out again, which requires a considerable computational effort.

Compared to this, an iterative calculation method is far better suited to take the additional condi-
tions into account: To determine the new approximation p(n+1)

k it is assumed that contact occurs.
Therefore, the normal deformation wk is set equal to the interpenetration δk. Then the SOR method
gives the following expression for the initial value p̃(n+1)

k of new approximation:

p̃(n+1)
k = p(n)k +

ω

H [33]
k|k

[
δk−

k−1

∑
i=1

H [33]
k|i p(n+1)

i −
N

∑
i=k

H [33]
k|i p(n)i

]
(7.5.333)

According to the additional condition given in (7.5.332) the pressure pk is either positive or zero,
but it cannot be negative. If (7.5.333) gives a non-negative initial value p̃(n+1)

k , this value is taken

for the new approximation p(n+1)
k ; otherwise, p(n+1)

k is simply set to zero:

p(n+1)
k =

{
p̃(n+1)

k for p̃(n+1)
k ≥ 0

0 for p̃(n+1)
k < 0

(7.5.334)

The additional computational effort for the check and the correction according to (7.5.334) is very
low. Therefore, an iterative calculation method is chosen for the solution of the normal contact
problem.
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It should however be kept in mind that because of H [33]
i|k > 0 the matrix H33 is completely filled.

This is highly disadvantageous regarding the computational effort for an iterative calculation
method. Therefore two additional measures to reduce the solution effort of the normal contact
problem will be presented in the following.

Generally, the sequence of the equations forming a system of linear equations has no influence on
the solution and can therefore be changed. Regarding this fact it is obvious to change the sequence,
in which the equations are treated, in such a way that the equations having a high defect are treated
first, while those equations, which are nearly fulfilled, are treated later. This, however, requires
that the defect of each equation is known. For the present case the defect is simply the required
correction ∆p(n+1)

k . In the iteration scheme (7.5.333) the k− 1 corrected values p(n+1)
i , i < k− 1

and the N− k+ 1 uncorrected values p(n)i , i ≥ k are used. These values form the current vector
p(m):

p(m) =
[

p(n+1)
1 . . . p(n+1)

k−1 p(n)k . . . p(n)N

]T
(7.5.335)

For a given distribution p(m) of the pressure distribution the related normal deformation w(m) is
obtained by:

H33 p(m) = w(m)⇒ w(m)
k =

N

∑
i=1

H [33]
k|i p(m)

i =
k−1

∑
i=1

H [33]
k|i p(n+1)

i +
N

∑
i=k

H [33]
k|i p(n)i (7.5.336)

Here, the vector w(m) describes the current normal deformation obtained for the current pressure
vector p(m). Using the current deformation w(m)

k at the k-th gridpoint the expression (7.5.333)

yielding the initial value p̃(n+1)
k can be reformulated to:

p̃(m+1)
k = p(m)

k +
ω

H [33]
k|k

[
δk−

k−1

∑
i=1

H [33]
k|i p(n+1)

i −
N

∑
i=k

H [33]
k|i p(n)i

]

= p(m)
k +

ω

H [33]
k|k

[
δk−

N

∑
i=1

H [33]
k|i p(m)

i

]
= p(m)

k +
ω

H [33]
k|k

[
δk−w(m)

k

]
(7.5.337)

The corrected value for the new approximation is obtained in a way analogous to (7.5.334):

p̄(m+1)
k =

{
p̃(m)

k for p̃(m)
k ≥ 0

0 for p̃(m)
k < 0

(7.5.338)

The defect ∆p(m+1)
k is now determined as the difference between the current value p(m)

k and the

corrected value p(m+1)
k :

∆p(m+1)
k = p̄(m+1)

k − p(m)
k (7.5.339)

The correction is now performed the K-th gridpoint, at which the largest absolute value of the
defect occurs. As a result, the elements of the new current vector p(m+1) are:

p(m+1)
k =

{
p̄(m+1)

K for k = K
p(m)

k for k 6= K
(7.5.340)
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Using the definition of the defect (7.5.339) the new approximation vector p(m+1) can also be ex-
pressed in the following way:

p(m+1) =
[
. . . p(m)

K−1 p̄(m+1)
K p(m)

K−1 . . .
]T

=
[
. . . p(m)

K−1 p(m)
K p(m)

K−1 . . .
]T

+
[
. . . 0 ∆p(m+1)

K 0 . . .
]T

= p(m)+∆p(m+1) (7.5.341)

Based on this description it is obtained for the new current deformation w(m+1):

w(m+1) = H33 p(m+1) = H33 p(m)+H33 ∆p(m+1) = w(m)+H33 ∆p(m+1) (7.5.342)

The only non-vanishing element of the vector ∆p(m+1) is the K-th component ∆p(m+1)
K . Thus, the

update of the deformation is easily obtained by:

w(m+1)
i = w(m)

i +H [33]
i|k ∆p(m+1)

K (7.5.343)

Based on these considerations a modified solving algorithm can be formulated. For an initial guess
p(0) the related normal deformation w(0) = H33 p(0) is calculated. A single iteration cycle consists
of the following steps:

1. Determine the corrected values p̄(m+1)
k for the pressure distribution:

p̃(m+1)
k = p(m)

k +
ω

H [33]
k|k

[
δk−w(m)

k

]
, p̄(m+1)

k =

{
p̃(m)

k for p̃(m)
k ≥ 0

0 for p̃(m)
k < 0

(7.5.344)

2. Calculate the defect for each gridpoint and determine the K-th gridpoint, at which the largest
absolute defect occurs:

∆p(m+1)
k = p̄(m+1)

k − p(m)
k ,

∣∣∣∆p(m+1)
K

∣∣∣= max
k

∣∣∣∆p(m+1)
k

∣∣∣ (7.5.345)

3. Set the new approximation value p(m+1)
K at the K-th gridpoint equal to the corrected value

p̄(m+1)
K , leave all other values p(m)

k , k 6= K unchanged and update the current deformation:

p(m+1)
k =

{
p̄(m+1)

K for k = K
p(m)

k for k 6= K
, w(m+1)

k = w(m)
k +H [33]

k|k ∆p(m+1)
K (7.5.346)

By performing the actual correction only at the K-th gridpoint, where the highest absolute defect
currently occurs, the number of iteration steps and thereby the computational effort are distinctly
reduced. The presented algorithm was found in a heuristic way. Therefore, no mathematical proof
for the convergence can be given here. However, in all cases, which were treated in the context of
this work, the algorithm has never failed.

It is evident that the computational effort depends on the order N of the system of linear equations.
Thus a further measure to reduce the computational effort is to reduce the order of the system.
In the case of the normal contact problem the order of the complete problem is the number of
the gridpoints, where a positive interpenetration δi > 0 has been determined. A reduction of the
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system’s order can be achieved if a subset of potential contact points is chosen so that the iterative
solution only has to be carried out for this subset.

According to the formulation of the normal contact problem for points 〈xi,yi〉 located outside the
actual contact area two conditions have to be fulfilled: The pressure pi vanishes and the deforma-
tion wi is greater than the interpenetration δi:

pi = 0∧wi−δi > 0 (7.5.347)

By inverting this condition all points
〈
x j,y j

〉
, where the pressure p j doesn’t vanish or the defor-

mation w j is lesser than or equal to the interpenetration δ j, are considered as potential contact
points:

p j > 0∨w j−δ j ≤ 0 (7.5.348)

The case of p j < 0 cannnot occur due to (7.5.334).

During the progress of the iteration described by the steps (7.5.344), (7.5.345), and (7.5.346) nu-
merical errors will accumulate in the deformation vector w(m). Such errors can be expected due to
the decreasing magnitude of the defect ∆p(m)

K used for the correction. The magnitude of the defects
has to decrease; otherwise, the iteration doesn’t converge. It is therefore sensible to recalculate the
deformation vector w after a certain number of iteration cycles to eliminate the accumulated nu-
merical errors. After this recalculation the condition (7.5.348) is checked for all gridpoints and the
subset is formed from those gridpoints

〈
x j,y j

〉
, where this condition is fulfilled. The following

niter iteration cycles are only carried out for the subset. After the niter iteration cycles the deforma-
tion vector w is recalculated for the original set including all gridpoints 〈xi,yi〉, at which a positive
interpenetration δi > 0 occurs. This also ensures that no potential contact points, which may turn
out to be actual contact points, are overlooked and left out.

In total the solution algorithm consists of an outer loop for the selection of the potential contact
points and an inner loop for the correction of the pressure at the potential contact points. The
algorithm starts with the current pressure p(m) and the related deformation w(m) = H33 p(m) for all
gridpoints 〈xi,yi〉 with δi > 0. Then the following steps are carried out:

1. Select a subset of all potential contact points
〈
x j,y j

〉
fulfilling the following condition:

p(m)
j > 0∨w(m)

j −δ j ≤ 0 (7.5.349)

2. Perform niter cycles of the following iteration steps for the subset of the potential contact
points

〈
x j,y j

〉
:

(a) Determine the corrected values p̄(m+1)
j for the pressure distribution:

p̃(m+1)
j = p(m)

j +
ω

H [33]
j| j

[
δ j−w(m)

j

]
, p̄(m+1)

j =

{
p̃(m)

j for p̃(m)
j ≥ 0

0 for p̃(m)
j < 0

(7.5.350)

(b) Calculate the defect for each gridpoint of the subset and determine the J-th gridpoint,
at which the largest absolute defect occurs:

∆p(m+1)
j = p̄(m+1)

j − p(m)
j ,

∣∣∣∆p(m+1)
J

∣∣∣= max
j

∣∣∣∆p(m+1)
j

∣∣∣ (7.5.351)
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(c) Set the new approximation value p(m+1)
J at the J-th gridpoint equal to the corrected

value p̄(m+1)
J , leave all other values p(m)

j , j 6= J unchanged and update the current
deformation:

p(m+1)
j =

{
p̄(m+1)

J for j = J
p(m)

j for j 6= J
, w(m+1)

j = w(m)
j +H [33]

j| j ∆p(m+1)
J (7.5.352)

3. Recalculate the deformation w(m+niter) for all gridpoints 〈xi,yi〉:

w(m+niter) = H33 p(m+niter) (7.5.353)

The additional effort required by the recalculation is lesser than it may seem. The numerical
efficiency can be improved if the subset of those gridpoints 〈xk,yk〉, where the pressure doesn’t
vanish, i.e. p(m+niter)

k > 0, is used for the recalculation. The number Np of these gridpoints is always
lower than the total number N of gridpoints in the interpenetration area. Then the recalculation of
the deformation w(m+niter)

i at the i-th gridpoint uses the following procedure:

w(m+niter)
i =

Np

∑
K=1

H [33]
i|K p(m+niter)

K (7.5.354)

Furthermore the reduced numerical effort for the inner loop due to the smaller subset of the poten-
tial contact points outweighs the additional effort for the recalculation.

7.6 Tangential contact

For the tangential contact problem, the relative velocities of wheel and rail in the contact area
have to be considered. In the following considerations, the indices I = 1 and I = 2 will be used
to denote kinematics and stresses in the direction of the 1-axis and the 2-axis, respectively, of the
contact frame C . Since only the contact frame C is considered in the following, the superscript C

indicating this frame will be skipped.

The velocity vWI of the wheel in the contact is expressed by superposing the velocity VRI of the
rigid body motion and the deformation velocity u̇WI:

vWI(x,y) =VWI(x,y)+ u̇WI(x,y), I = 1,2 (7.6.355)

In an analogous way, the velocity vR,I for the rail in the contact area is described:

vRI(x,y) =VRI(x,y)+ u̇RI(x,y), I = 1,2 (7.6.356)

The relative velocity between wheel and rail in the contact is obtained to:

vI(x,y) = vR(x,y)− vW(x,y)
= [VRI(x,y)+ u̇RI(x,y)]− [VWI(x,y)+ u̇WI(x,y)]
= [VRI(x,y)−VWI(x,y)]+ [u̇RI(x,y)− u̇WI(x,y)]
= VI(x,y)+ u̇I(x,y), I = 1,2 (7.6.357)

Thereby, the relative velocity VI of the rigid body motion and the resulting deformation
uI are defined. The deformation velocity can be approximated based on the deformation
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u∗I (x,y) = uI(x,y, t−∆t) at an earlier time t−∆t and the wanted deformation uI(x,y) = uI(x,y, t)
at the current time t:

uI(x,y) = uI(x,y, t), u∗I (x,y) = uI(x,y, t−∆t)⇒ u̇I = u̇I(x,y)≈
uI(x,y)−u∗I (x,y)

∆t
(7.6.358)

Using this approximation, the current relative velocity vI(x,y) = vI(x,y, t) can be formulated in the
following way:

vI(x,y) =VI(x,y)+ u̇I(x,y) =VI(x,y)+
uI(x,y)−u∗I (x,y)

∆t
, I = 1,2 (7.6.359)

For the further considerations, the deformation u∗I (x,y) at an earlier time will generally consid-
ered to be known so that the solution of the tangential contact problem are the current tangential
deformations uI(x,y) = uI(x,y, t) and the current tangential stresses τI(x,y) = τI(x,y, t). Further-
more, a condition formulated for uI(x,y), u̇I(x,y) or τI(x,y) will be considered to be valid for both
coordinate directions, i.e. for I = 1 and for I = 2, if it is not explicitly stated otherwise.

Regarding the tangential contact, there are two possible states for a point denoted by the coordi-
nates x and y; these two states are adhesion and sliding. In this context, the resulting tangential
stress τ(x,y) transmitted at this point is an important value; this value is defined by:

τ(x,y) =
√

τ1(x,y)
2 + τ2(x,y)

2 ≥ 0 (7.6.360)

The absolute value τ(x,y) cannot exceed the maximum transmittable tangential stress τmax(x,y) at
the considered point, which is determined by the local normal pressure p(x,y) and the local friction
coefficient µ(x,y):

τ(x,y)≤ τmax(x,y) = µ(x,y) p(x,y) (7.6.361)

In the present case, it has been assumed that both bodies, which are in contact, consist of materials
having the same material parameters G and ν. In this case, the normal contact problem is decoupled
from the tangential contact problem so that the normal contact problem, as shown in section 7.3.
Therefore, the normal contact problem is solved first so that the distribution of the normal pressure
p(x,y) is known at the beginning of solving the tangential contact problem.

Now, the conditions can be formulated for the two states of adhesion and sliding.

• In the case of adhesion, the relative velocity vanishes, i.e. both components vI(x,y) vanish.
The resulting tangential stress is less or equal to the maximum transmittable stress:

vI(x,y) =VI(x,y)+
uI(x,y)−u∗I (x,y)

∆t
= 0 (7.6.362)

τ(x,y) =
√

τ1(x,y)
2 + τ2(x,y)

2 ≤ τmax(x,y) (7.6.363)

The condition (7.6.362) can be reformulated to:

uI(x,y) = u∗I (x,y)−VI(x,y)∆t (7.6.364)

• In the case of adhesion, there is a relative velocity, i.e. at least one component of the relative
velocity vI(x,y) does not vanish. The transmitted tangential stress acts in the opposite direc-
tion to the relative velocity and its absolute value, i.e. the resulting tangential stress, is equal
to the maximum transmittable stress.

τI(x,y) =−C · vI(x,y), C > 0 (7.6.365)

τ(x,y) =
√

τ1(x,y)
2 + τ2(x,y)

2 = τmax(x,y) (7.6.366)
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The constant C contained in the condition (7.6.365) is eliminated in the following way:

τ1(x,y) =−C · v1(x,y) ⇒ τ1(x,y)v2(x,y) =−C · v1(x,y)v2(x,y) (7.6.367)
τ2(x,y) =−C · v2(x,y) ⇒ τ2(x,y)v1(x,y) =−C · v1(x,y)v2(x,y) (7.6.368)

⇒ τ1(x,y)v2(x,y)− τ2(x,y)v1(x,y) = 0 (7.6.369)

Inserting the expression for the relative velocity according to (7.6.359) leads to:

0 = τ1(x,y)
[
V2(x,y)+

u2(x,y)−u∗2(x,y)
∆t

]
− τ2(x,y)

[
V1(x,y)+

u1(x,y)−u∗1(x,y)
∆t

]
⇒ 0 = τ1(x,y) [V2(x,y)∆t +u2(x,y)−u∗2(x,y)]

−τ2(x,y) [V1(x,y)∆t +u1(x,y)−u∗1(x,y)] (7.6.370)

These conditions are now applied to the discretized tangential contact problem. The deformations
and the tangential stresses at the i-th gridpoint, which are considered as the wanted solution for the
current state, have already been defined in the context of the discretization shown in section 7.4:

u1,i = u1(xi,yi, t), u2,i = u2(xi,yi, t), τ1,i = τ1(xi,yi, t), τ2,i = τ2(xi,yi, t) (7.6.371)

In an analogous way, the previous deformation and the rigid body velocity are defined:

u∗1,i = u1(xi,yi, t−∆t), u∗2,i = u2(xi,yi, t−∆t), V1,i =V1(xi,yi, t), V2,i =V2(xi,yi, t) (7.6.372)

For the sake of simplicity it is assumed that the friction coefficient µ is constant for the complete
contact and that it is equal for adhesion and sliding. Then it is valid:

τmax,i = τmax(xi,yi) = µ p(xi,yi) = µ pi (7.6.373)

Using these definitions, the conditions for the two states can be formulated:

Adhesion: u1,i = u∗1,i−V1,i ∆t, u2,i = u∗2,i−V2,i ∆t,
√

τ1,i2 + τ2,i2 ≤ τmax,i (7.6.374)

Sliding: 0 = τ1,i
[
V2,i ∆t +u2,i−u∗2,i

]
− τ2,i

[
V1,i ∆t +u1,i−u∗1,i

]
,
√

τ1,i2 + τ2,i2 = τmax,i

(7.6.375)

7.6.1 Solving algorithm

Similar to the normal contact problem discussed in section 7.5, the tangential contact problem
is formulated as a system of linear equations and nonlinear conditions. In this case, the nonlin-
ear condition is given by the fact that the resulting tangential stress cannot exceed the maximum
transmittable stress.

In section 7.5.1, several methods for the solution of a system of linear equations have been con-
sidered and discussed. For the solution of a system of linear equations with nonlinear conditions,
an iterative calculation is more efficient than a direct calculation, since the nonlinear conditions
can be taken into account easier by an iteration. One of the methods presented in section 7.5.1 is
the Gauss-Seidel algorithm. This algorithm generates a sequence of approximations x(n)k , which
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converges towards the exact solutions xk. A new approximation x(n+1)
k is obtained in the following

way:

x(n+1)
k = x(n)k +∆x(n+1)

k , ∆x(n+1)
k =

1
ak|k

[
bk−

k−1

∑
i=1

ak|i x(n+1)
i −

N

∑
i=k

ak|i x(n)i

]
(7.6.376)

Here, ∆x(n+1)
k is a correction. Since the new values x(n+1)

k are generated subsequently starting with

k = 1, the values x(n+1)
i for i < k are already available at the time, when ∆x(n+1)

k and x(n+1)
k are

determined.

Based on the Gauss-Seidel method, the solving algorithm for the tangential contact problem will
be developed. However, some modifications are necessary. At the tangential contact problem,
there is a nonlinear condition contains both tangential stresses τ1,k and τ2,k at the k-th grid point.
Therefore, the two new approximations τ

(n+1)
1,k and τ

(n+1)
2,k have to be determined simultaneously,

since the check of the conditions for the states of adhesion and sliding only makes sense, if it is
carried out for new approximations for both stresses.

The relation between the tangential deformations uI,i and the tangential stresses τI,i, which is based
on the contact mechanics, is given by the following system of linear equations, which has been
derived in section 7.4:

u1,i =
n

∑
j=1

H [11]
i j τ1, j +

n

∑
j=1

H [12]
i j τ2, j (7.6.377)

u2,i =
n

∑
j=1

H [12]
i j τ1, j +

n

∑
j=1

H [22]
i j τ2, j (7.6.378)

For the determination of the new approximations τ
(n+1)
1,k and τ

(n+1)
2,k at the k-th gridpoint the new

values τ
(n+1)
1,i and τ

(n+1)
2,i for i < k and the old values τ

(n)
1,i and τ

(n)
2,i for i ≤ k are available. In the

first step for the correction the current deformations u(n)1,k and u(n)2,k are determined according to .
Furthermore, it has been determined in section 7.4:

H [11]
k|k = H [22]

k|k = H0, H [12]
k|k = 0 (7.6.379)

Thereby, the current deformations u(n)1,k and u(n)2,k are obtained to:

u(n)1,k =
k−1

∑
i=1

(
H [11]

k|i τ
(n+1)
1,i +H [12]

k|i τ
(n+1)
2,i

)
+H0 τ

(n)
1,k +

N

∑
i=k+1

(
H [11]

k|i τ
(n)
1,i +H [12]

k|i τ
(n)
2,i

)
(7.6.380)

u(n)2,k =
k−1

∑
i=1

(
H [12]

k|i τ
(n+1)
1,i +H [22]

k|i τ
(n+1)
2,i

)
+H0 τ

(n)
2,k +

N

∑
i=k+1

(
H [12]

k|i τ
(n)
1,i +H [22]

k|i τ
(n)
2,i

)
(7.6.381)

Because of H [12]
k|k = 0 the stress τ1,k has no impact on the deformation u2,k, while the deformation

u1,k is independent of τ2,k. – After the correction, the new values τ
(n+1)
k and τ

(n+1)
k are available.

Thereby, the new deformations u(n+1)
I,k are calculated in the following way:

u(n+1)
1,k =

k−1

∑
i=1

(
H [11]

k|i τ
(n+1)
1,i +H [12]

k|i τ
(n+1)
2,i

)
+H0 τ

(n+1)
1,k +

N

∑
i=k+1

(
H [11]

k|i τ
(n)
1,i +H [12]

k|i τ
(n)
2,i

)
(7.6.382)

u(n+1)
2,k =

k−1

∑
i=1

(
H [12]

k|i τ
(n+1)
1,i +H [22]

k|i τ
(n+1)
2,i

)
+H0 τ

(n+1)
2,k +

N

∑
i=k+1

(
H [12]

k|i τ
(n)
1,i +H [22]

k|i τ
(n)
2,i

)
(7.6.383)
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Thereby, the differences between the new and the old values for the deformations are:

u(n+1)
1,k −u(n)1,k = H0 τ

(n+1)
1,k −H0 τ

(n)
1,k ⇒ u(n+1)

1,k = u(n)1,k +H0 τ
(n+1)
1,k −H0 τ

(n)
1,k (7.6.384)

u(n+1)
2,k −u(n)2,k = H0 τ

(n+1)
2,k −H0 τ

(n)
2,k ⇒ u(n+1)

2,k = u(n)2,k +H0 τ
(n+1)
2,k −H0 τ

(n)
2,k (7.6.385)

As mentioned before, there are two possible states for each point at the tangential contact. If the
state of adhesion is assumed, then the values for the deformations u1,k and u2,k can be determined
by: (7.6.374):

uA1,k = u∗1,k−V1,k ∆t, uA2,k = u∗2,k−V2,k ∆t (7.6.386)

The superscript A indicates the state of adhesion. By setting the new deformations u(n+1)
I,k equal to

the assumed deformations uAI,k the conditions for the corresponding stresses τAI,k are formulated:

u∗1,k−V1,k ∆t−u(n)1,k = H0 τ
A
1,k−H0 τ

(n)
1,k ⇒ τ

A
1,k = τ

(n)
1,k +

u∗1,k−V1,k ∆t−u(n)1,k

H0
(7.6.387)

u∗2,k−V2,k ∆t−u(n)2,k = H0 τ
A
2,k−H0 τ

(n)
2,k ⇒ τ

A
2,k = τ

(n)
2,k +

u∗2,k−V2,k ∆t−u(n)2,k

H0
(7.6.388)

The new values τA1,k and τA2,k have been determined by assuming the state of adhesion. Therefore,
it has to be checked whether the new values fulfill the second condition for the state of adhesion
according to (7.6.363). If the resulting stress for τA1,k and τA2,k does not exceed the maximum
transmittable stress τmax,k at the considered point, then the assumption of adhesion was correct and
the values τA1,k and τA2,k are the new approximations τ

(n+1)
1,k and τ

(n+1)
2,k .√

τA1,k
2
+ τA2,k

2 ≤ τmax,k ⇒ τ
(n+1)
1,k = τ

A
1,k ∧ τ

(n+1)
2,k = τ

A
2,k (7.6.389)

If the resulting stress exceeds the maximum transmittable stress, i.e.√
τA1,k

2
+ τA2,k

2
> τmax,k (7.6.390)

then the assumption of adhesion was wrong, so that actually sliding occurs. In this case, the new
approximations τ

(n+1)
1,k and τ

(n+1)
2,k for the tangential stresses and the corresponding deformations

u(n+1)
1,k and u(n+1)

2,k have to fulfill the condition according to (7.6.370):

0 = τ
(n+1)
1,k

[
V2,k ∆t +u(n+1)

2,k −u∗2,k
]
− τ

(n+1)
2,k

[
V1,k ∆t +u(n+1)

1,k −u∗1,k
]

(7.6.391)

In order to eliminate the deformations u(n+1)
I,k the relations (7.6.384) and (7.6.385) are used. As a

result it is obtained:

0 = τ
(n+1)
1,k

[
V2,k ∆t +u(n)2,k +H0 τ

(n+1)
2,k −H0 τ

(n)
2,k−u∗2,k

]
−τ

(n+1)
2,k

[
V1,k ∆t +u(n)1,k +H0 τ

(n+1)
1,k −H0 τ

(n)
1,k−u∗1,k

]
= τ

(n+1)
1,k

[
V2,k ∆t +u(n)2,k−H0 τ

(n)
2,k−u∗2,k

]
− τ

(n+1)
2,k

[
V1,k ∆t +u(n)1,k−H0 τ

(n)
1,k−u∗1,k

]
(7.6.392)

Dividing the equation by H0 leads to:

0 = τ
(n+1)
1,k

V2,k ∆t +u(n)2,k−u∗2,k
H0

− τ
(n)
2,k

− τ
(n+1)
2,k

V1,k ∆t +u(n)1,k−u∗1,k
H0

− τ
(n)
1,k

 (7.6.393)
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By comparing this to the adhesion stresses according to (7.6.387) and (7.6.388)

τ
A
1,k = τ

(n)
1,k +

u∗1,k−V1,k ∆t−u(n)1,k

H0
, τ

A
2,k = τ

(n)
2,k +

u∗2,k−V2,k ∆t−u(n)2,k

H0
(7.6.394)

it is obtained:
0 =−τ

(n+1)
1,k τ

A
2,k + τ

(n+1)
2,k τ

A
1,k (7.6.395)

According to (7.6.375), in the case of sliding the resulting stress is equal to the maximum trans-
mittable stress, i.e.: √

τ
(n+1)
1,k

2
+ τ

(n+1)
2,k

2
= τmax,k (7.6.396)

The solutions τ
(n+1)
I,k can be found by scaling the adhesion stresses in the following way:

τ
(n+1)
1,k =

τmax,k√
τ
(n+1)
1,k

2
+ τ

(n+1)
2,k

2
τ
A
1,k, τ

(n+1)
2,k =

τmax,k√
τ
(n+1)
1,k

2
+ τ

(n+1)
2,k

2
τ
A
2,k (7.6.397)

By inserting this into the equation (7.6.395) it is shown that the solutions according to (7.6.397) in
fact fulfil the condition:

−τ
(n+1)
1,k τ

A
2,k + τ

(n+1)
2,k τ

A
1,k =−

τmax,k√
τ
(n+1)
1,k

2
+ τ

(n+1)
2,k

2
τ
A
1,kτ

A
2,k +

τmax,k√
τ
(n+1)
1,k

2
+ τ

(n+1)
2,k

2
τ
A
2,kτ

A
1,k = 0

(7.6.398)
In the present case stationary rolling is assumed, i.e. the state of the rolling contact hardly changes
compared to the time, which is required for a particle to move through the contact area. Mathemati-
cally spoken, this means that the given velocities V1,i and V2,i are constant during the determination
of the solution. Since the 1-axis of the contact frame C is pointing in the direction of the running of
the vehicle, the particles are moving through the contact area in negative direction with the velocity
equal to the negative running speed v0. If the time interval ∆t is chosen in the following way:

∆t =
∆a
v0

(7.6.399)

then the previous deformations u∗1(x,y) and u∗2(x,y) are equal to the current deformations
u1(x+∆a,y) and u2(x+∆a,y), since at the earlier time the particle, which is currently located
at 〈x,y〉 had been located at the point 〈x− v0 (−∆t) = x+∆a,y〉 at the earlier time. If it is set

u∗1(x,y) = u1(x+∆a,y), u∗2(x,y) = u2(x+∆a,y) (7.6.400)

then the gridpoints have to be numbered in such a way that the following condition is fulfilled:

xi = xi−1−∆a ⇔ xi +∆a = xi−1 (7.6.401)

Thereby, the motion of the particle through the contact area is “tracked”, while the stresses τ1,i and
τ2,i are successively determined with rising i. In total, the correction step for the k-th gridpoint can
be formulated in the following way:

1. Determine the current deformations u(n)1,k and u(n)2,k by using the available new values τ
(n+1)
I,i

for i < k and the old values τ
(n)
I,i for i≥ k.
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2. Calculate the stresses τAI,k for the assumed state of adhesion:

τ
A
I,k = τ

(n)
I,k +

u(n+1)
I,k−1 −VI,k ∆t−u(n)I,k

H0
(7.6.402)

Here, u(n+1)
I,k−1 is the corrected deformation from the previous gridpoint with xk−1 = xk +∆a.

3. Compare the resulting stress of τA1,k and τA2,k. If the condition
√

τA1,k
2
+ τA2,k

2 ≤ τmax,k is

fulfilled, set τ
(n+1)
I,k = τAI,k

4. If the condition is not fulfilled, then scale the stresses τAI,k with τmax,k:

τ
(n+1)
I,k =

τmax,k√
τA1,k

2
+ τA2,k

2
τ
A
I,k (7.6.403)

5. Determine the corrected deformations u(n+1)
I,k , which are required as the earlier deformations

at the next gridpoint k+1:

u(n+1)
I,k = u(n)I,k +H0

(
τ
(n+1)
I,k − τ

(n)
I,k

)
(7.6.404)

This iteration over all gridpoints is repeated until the differences
∣∣∣τ(n+1)

I,k − τ
(n)
I,k

∣∣∣ are small enough
to fulfil the required accuracy of the calculation.



Chapter 8

Simulation results

Based on the models and methods derived and discussed in the previous chapters, a coupled
vehicle-track model is developed. This model represents a passenger coach running on a straight
track. In the Figure 8.0.1 the bodies of which the model consists are displayed. The data for the

Carbody

Bolsters
Bogie frames

Wheelsets

Rails

Sleepers

Figure 8.0.1: Bodies of the vehicle-track system. Flexible bodies are displayed in dark colour.

vehicle and for the track are taken from the works by Diepen [11]; and by Ripke [58], respectively.

As described in section 2.2.1, the wheelset has two basic attractors: the centred running and the
limit cycle hunting. These two scenarios will be investigated in this section. Although the limit
cycle hunting is usually avoided in regular operation by a proper mechanical design of the vehi-
cle, this scenario is chosen for two reasons: The nonlinear critical speed vcrit,nonlin, at which the
limit cycle hunting starts, is an important characteristic of the vehicle. Moreover, during hunting
the wheel-rail contact covers a wide range of the profiles of wheel and rail. Irregularities of the
wheelsets and the rails like track disturbances, worn profiles, or unbalances are generally neglected
in these investigations.

A important question in the context of simulating the running behaviour of a railway vehicle is
how strong the obtained results are affected by influence factors: On the one hand, such influences
can result from the model itself, i.e. the scope of the model (i.e. does the model describe a
single running gear, a complete vehicle, or a train consisting of several vehicles interacting with
each other?), physical effects, which are taken into account or neglected, the modelling of single

284
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components like the wheel-rail contact or coupling elements like springs and dampers. On the other
hand, parameters can have an impact on the results: Some parameters can vary for different regular
operation conditions; a typical case is the track geometry covering the track gauge, the rail profiles
and the inclination or cant of the rails, which all can affect the conicity and thereby the running
behaviour. Other parameters are quite uncertain; a typical example is the friction coefficient in the
wheel-rail contact, which depends on environmental conditions like moisture and on the roughness
of the running surfaces. The influences of the modelling and of the parameters cannot always
separated from each other: In certain scenarios defined by a set of parameters physical effects or
characteristics of the models used for certain components may have an important influence, while
these influences are weaker under other conditions.

In the following considerations the influences of three parameters will be investigated and com-
pared:

1. The structural flexibilities of the wheelsets and the rails, since this is an important property
of the modelling.

2. The friction coefficient, since this is an uncertain parameter.

3. The conicity, since this can vary for operating the vehicle on different networks.

The consideration of the structural flexibilities is a property of the model. In contrast to this, the
friction coefficient and the conicity are parameters. The conicity is a defined parameter, i.e. it
depends on the chosen profiles of wheel and rail and on the track geometry. In contrast to this, the
friction coefficient is an uncertain parameter.

To investigate the influence of the structural dynamics of the wheelsets and the track, different
model configurations are used. The wheelset can be modelled either as a rigid or as a flexible
body. For the track, using inertially fixed rails can lead to numerical problems in the solution
of the equations of motion. Therefore, a very simple substitution model for the track is used for
comparisons. This model will be referred as “rigid rails” in the following; it is displayed in Figure
8.0.2. The model consists of a rigid body carrying both rail profiles. The rigid body can perform

Figure 8.0.2: Simple substitution model for the track (“rigid rails”)

lateral and vertical translations and small roll motions, i.e. rotations around the longitudinal axis
of the track. The body is connected to the environment by linear springs and dampers. The values
for the parameters are taken from the work by Netter [48]. Each wheelset is supported by such a
model, which moves along the trajectory together with the wheelset. Thereby, there are four basic
model configurations, which will be considered:

• Rigid wheelsets / rigid rails: RR

• Flexible wheelsets / rigid rails: FR

• Rigid wheelsets / flexible rails: RF
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• Flexible wheelsets / flexible rails: FF

In order to keep the denotation of the used models short, the configurations will be referenced by
the abbreviations given above, which are written in italics. The system behaviour will be investi-
gated for three different wheel-rail geometries:

• wheel profile S1002, rail profile 60E1, rail cant tanΦR = 1:40, track gauge 1435 mm:
S1002 / 60E1 / 1:40

• wheel profile S1002, rail profile 60E1, rail cant tanΦR = 1:20, track gauge 1435 mm:
S1002 / 60E1 / 1:20

• wheel profile S1002, rail profile 60E2, rail cant tanΦR = 1:40, track gauge 1435 mm:
S1002 / 60E2 / 1:40

The mathematical description of the wheel profile S1002 is taken from the paper by Nefzger [47].
Also here, the used profile geometry will be referenced by the abbreviations written in italics.

8.1 Centred running

The scenario of centred running on a straight track without disturbances can be regarded as the
reference state. The distribution of the pressure and the tangential stress were determined for the
three contact geometries using the model configurations RR and FF. The following results for the
scenario of centred running were all obtained for constant running speed of v0 = 200 km/ and a
friction coefficient of µ = 0.4.

First, the scenario of centred running is investigated for the profile geometry S1002 / 60E1 / 1:40
is used. In Fig. 8.1.3 the wheel-rail geometry, the pressure distribution and the tangential stress
distribution obtained for the models RR and FF are displayed.

For both model configurations RR and FF the contact area has a distinctly non-elliptic shape,
because it covers the point of yR = -10.228 mm. At this point, the curvature radius of the rail
profile 60E1 changes from 80 mm to 300 mm; thereby, the condition of a constant curvature as
required for the Hertzian theory, which assumes an elliptical shape of the contact area, is not
fulfilled. The vectors describing the tangential stresses form a concentric distribution around the
centre of rotation, which is located near the middle of the trailing edge of the contact area. Due
to the conical shape of the wheel’s tread, the running surface isn’t parallel to the vector of the
angular velocity, which describes the overturning of the wheelset. As a result, the angular velocity
has a component, which is orthogonal to the contact area. This leads to a relative angular velocity
between wheel and rail and thereby to a spin creepage. This spin creepage causes the observed
circular pattern of the tangential stresses in the contact area.

The comparison of the results shows a considerable influence of the structural flexibilities on the
contact area. For the configuration RR two distinct pressure maxima occur, the left one showing
792 MPa, the right one showing 619 MPa. For the configuration FF the left maximum drastically
shrinks to 314 MPa, while the right one increases to 725 MPa. Nevertheless, the contact geometries
displayed in Fig. 8.1.3 are nearly identical; a difference is hardly visible. This underlines the
sensitivity of the profile combination S1002 / 60E1 / 1:40 to changes of the relative kinematics.
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Rigid wheelsets / rigid rails (model RR) Flexible wheelsets / flexible rails (model FF)

Wheel-rail geometry

Distribution of pressure

Distribution of tangential stress

Wheel-rail geometry

Distribution of pressure

Distribution of tangential stress

Figure 8.1.3: Influence of the structural flexibilities of wheelsets and rails on the wheel-rail geom-
etry and on the distribution of pressure and tangential stresses for centred running;
v0 = 200 km/h; rail profile 60E1; cant 1:40; µ = 0.4.

In the model FF the wheelsets and the rails are both modelled as flexible bodies. Thus, the question
arises whether the flexibility of the wheelsets or of the rails is mainly responsible for the observed
changes of the distributions of the stresses. Therefore, the scenario of centred running was also in-
vestigated for the configurations FR and RF. The wheel-rail geometry and the pressure distribution
are displayed in Fig. 8.1.4.

The results obtained for the configurations RR and RF hardly differ from each other, while also the
differences between the results for FR and FF are very small. This shows that the change of the
pressure distribution is mainly caused by the flexibility of the wheelsets. An explanation for this
behaviour can be derived from the scheme shown in Fig. 8.1.5.

Due to the vertical forces, which act on the wheelset at the bearings and at the wheel-rail contacts,
a bending deformation of the wheelset axle occurs. Thereby, a camber angle of the wheels occurs,
which is related to the inclination of the wheel rims.
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Rigid wheelsets, rigid rails (RR) Flexible wheelsets, rigid rails (FR)

Rigid wheelsets, flexible rails (RF) Flexible wheelsets, flexible rails (FF)

Figure 8.1.4: Influence of the structural flexibilities of wheelsets and rails on the wheel-rail geom-
etry and on the pressure distribution for centred running; v0 = 200 km/h; rail profile
60E1; cant 1:40; µ = 0.4.

Next, the scenario of centred running is investigated for the profile geometry S1002 / 60E1 / 1:20.
The results obtained for the models RR and FF are displayed in Fig. 8.1.6.

By comparing these results with those obtained for the profile geometry S1002 / 60E1 / 1:40 dis-
played in Fig. 8.1.3, a drastic change of the contact due to the modified cant can be seen. The
comparison of the wheel-rail contact geometry shows that the contact zone is shifted outwards.
The shape of the contact area also changes strongly: For the profile geometry S1002 / 60E1 / 1:20
the contact area is about 13 mm long and 6 mm wide; the pressure distribution shows one maxi-
mum. In contrast to this, for the profile geometry S1002 / 60E1 / 1:40 the contact area has a length
of 4 mm and a width of 18 mm; two maxima of the pressure distribution occur. Regarding the
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Figure 8.1.5: Bending of the wheelset due to the vertical forces acting at the bearings (FB) and in
the wheel-rail contacts (FWR).

shape of the contact area it can be concluded that for the profile geometry S1002 / 60E1 / 1:20
the contact area is longer and narrower while it is shorter and wider for the profile geometry
S1002 / 60E1 / 1:40.

For the profile geometry S1002 / 60E1 / 1:20 the contact zone covers the point of yS = 10.228 mm
on the rail head. Here, also an abrupt change of the profile’s curvature from a radius of 300 mm to
a radius of 80 mm occurs. Because of this discontinuity the contact area is again non-elliptic; this
can be seen from the superposition of the distributions of pressure and tangential stresses shown in
the lowest diagrams of Fig. 8.1.6.

From Fig. 8.1.6 it can be seen that the difference between the results obtained for the two models
RR and FF is quite small; the distributions of the pressure and the tangential stresses are nearly the
same. In the scenario of centred running, the distribution of the stresses obtained for the profile
geometry S1002 / 60E1 / 1:20 is apparently less sensitive to changes of the relative kinematics
between the rail head and the wheel rim.
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Rigid wheelsets / rigid rails (model RR) Flexible wheelsets / flexible rails (model FF)

Wheel-rail geometry

Distribution of pressure

Distribution of tangential stress

Wheel-rail geometry

Distribution of pressure

Distribution of tangential stress

Figure 8.1.6: Influence of the structural flexibilities of wheelsets and rails on the wheel-rail geom-
etry and on the pressure distribution for centred running; v0 = 200 km/h; rail profile
60E1; cant 1:20; µ = 0.4.

In the third case, for which the scenario of centred running is investigated, the profile geometry
S1002 / 60E2 / 1:40 is used. The results are displayed in Fig. 8.1.7.

The results show that for the profile geometry profile geometry S1002 / 60E2 / 1:40, a nearly
elliptical contact area occurs. This contact area is located between yR = -11.889 mm and
yR = 11.889 mm. In this area, the rail profile 60E2 has a constant curvature with the radius
200 mm. Deviations from the perfectly elliptical shape are caused by changes of the curvature
of the wheel profile. Here, however, no discontinuities of the curvature occur, as it was the case
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Wheel profile S1002 / rail profile 60E1 Wheel profile S1002 / rail profile 60E2

Wheel-rail geometry

Distribution of pressure

Distribution of tangential stress

Wheel-rail geometry

Distribution of pressure

Distribution of tangential stress

Figure 8.1.7: Influence of the structural flexibilities of wheelsets and rails on the wheel-rail geom-
etry and on the distribution of pressure and tangential stresses for centred running;
v0 = 200 km/h; rail profile 60E2; cant 1:40; µ = 0.4.

for the profile geometries S1002 / 60E1 / 1:40 and S1002 / 60E1 / 1:20. – The results obtained for
the two model variants RR and FF hardly shows any visible differences. This indicates that for the
profile geometry S1002 / 60E2 / 1:40 the structural flexibilities of wheelsets and rails have a very
weak influence on the contact.

For the profile geometry S1002 / 60E1 / 1:40 the stress distribution in the contact area for the cen-
tred running is quite sensitive to changes of the kinematics caused by the structural deformations;
in contrast to this, for the profile geometries S1002 / 60E1 / 1:20 and S1002 / 60E2 / 1:40 the im-
pact of the structural flexibilities is very weak. Here, the question arises, why this sensitivity not
always occurs. In order to answer this question, the results obtained for the three different profile
geometries are compared directly In Fig. 8.1.8. Regarding the comparison, it should be noted that
for the pressure distribution indicated by the red curve always the same scaling is used.
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Rigid wheelsets / rigid rails (model RR) Flexible wheelsets / flexible rails (model FF)

S1002 / 60E1 / 1:40 S1002 / 60E1 / 1:40

S1002 / 60E1 / 1:20 S1002 / 60E1 / 1:20

S1002 / 60E2 / 1:40 S1002 / 60E2 / 1:40

Figure 8.1.8: Influence of the structural flexibilities of wheelsets and rails on the wheel-rail geom-
etry and on the distribution of pressure and tangential stresses for centred running;
v0 = 200 km/h; µ = 0.4.

The comparison shows that for the profile geometry S1002 / 60E1 / 1:40 a relatively wide contact
area occurs, while for both profile geometries S1002 / 60E1 / 1:20 and S1002 / 60E2 / 1:40 the
contact area is distinctly narrower. Apparently, for a wider contact area the pressure distribution is
more sensitive to changes of the relative kinematics than for a narrower one.

As a result from the investigation of the centred running it can be concluded:

1. Structural deformations of wheelset and rail can have an impact on the pressure distribution
in the contact.

2. The flexibility of the wheelset has a far stronger impact than the one of the rail.

3. If the contact area is wider, which depends on the profile geometry, the impact of the struc-
tural flexibilities on the pressure distribution is stronger.
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8.2 Hunting behaviour

The hunting is a characteristic motion of a railway vehicle. As discussed in section 2.2.1 the
hunting motion is inherent in the traditional guiding mehcanism of the railway vehicle, which
uses wheelsets. In the section 2.2.1 it has been described that a permanent hunting occurs if the
vehicle is running faster than the nonlinear critical speed vcrit,nonlin. Usually, this motion should be
avoided, since the lateral wheel-rail forces can cause severe damages to the track. In real life, a
railway vehicle is excited by irregularities of the track. Therefore, it is difficult to decide, whether
vibrations of the vehicle really result from a limit cycle oscillation or whether they are excited
by irregularities. Therefore, the running stability is evaluated according to EN 14363. Here, the
root mean square (rms) value ΣYrms of the guidance forces ΣY of one wheelset is evaluated for a
distance of ∆s = 100 m:

ΣYrms =

√√√√√ 1
∆s

s0+∆s∫
s0

(ΣY )2ds (8.2.1)

Since the value ΣYrms is calculated by integrating the square (ΣY )2, it cannot be negative. The
standard EN 14363 defines a limit for the lateral forces, which is also known as Prud’homme’s
limit:

ΣYmax,lim = k1

(
10 kN+

2Q0

3

)
(8.2.2)

The factor k1 is set k1 = 1.0 for locomotives, multiple units, and passenger coaches and k1 = 0.85
for freight cars. Therefore, the value k1 = 1.0 is chosen in the present case. The static wheel load
is indicated by Q0; thereby, 2Q0 is the static axle load. For vehicles equipped with bogies the
criterion for running stability is given by

ΣYrms,lim =
ΣYmax,lim

2
(8.2.3)

In the present case, the static axle load 2Q0 is calculated by:

2Q0 =

[
mWs+2mWB+

1
2

mBf+
1
4

mCb

]
g (8.2.4)

Here, mWs, mWB, mBf, and mCb denote the mass of one wheelset, the mass of one wheelset bearing,
the mass of one bogie frame, and the mass of the carbody, respectively. Using the values by Diepen
[11] results in a static axle load of 2Q0 = 100 kN. Thereby, the limit for the rms value ΣYrms of the
lateral forces is:

ΣYrms,lim =
ΣYmax,lim

2
=

1
2

k1

(
10 kN+

2Q0

3

)
= 21.667 kN (8.2.5)

Furthermore, as already mentioned, it is highly important to avoid damages to the track. Here, the
track shift criterion is applied, which is based on a sliding mean value of the guidance forces ΣY
over a length of ∆s = 2 m:

ΣY2m =
1

∆s

s0+∆s∫
s0

ΣY ds (8.2.6)

It should be noted that the resulting force ΣY can change its sign depending on the direction, in
which the current lateral wheel-rail forces act. Therefore, in contrast to the root mean square value
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ΣYrms the sliding mean value ΣY2m can be negative so that for the evaluation its absolute value
will be used. To avoid damage to the track, the absolute value |ΣY2m| must not exceed the limit
ΣYmax,lim. Using the limit calculated above, the track shift criterion is given in the present case by:

|ΣY2m| ≤ ΣYmax,lim = k1

(
10 kN+

2Q0

3

)
= 43.333 kN (8.2.7)

Since the absolute value |ΣY2m| must not exceed the force limit ΣYmax,lim, the maximum values
|ΣY2m|max obtained from the evaluation are the relevant ones.

In the following investigations, three critical running speeds are determined:

• Nonlinear critical speed vcrit,nonlin: the lowest running speed, for which a permanent hunting
occurs.

• Instability speed vrms,lim: the running speed, at which the limit value ΣYrms,lim is exceeded
by the root mean square value ΣYrms for at least one wheelset.

• Track shift speed v2m,lim: the running speed, at which the limit value ΣYmax,lim is exceeded
by the maximum absolute value |ΣY2m|max of the sliding mean value ΣY2m for at least one
wheelset.

For the sake of brevity, the expressions “instability speed” and “track shift limit speed” will be
used.

8.2.1 Influence of the flexibilities on the hunting

To study the hunting motion, the lateral displacement yWsi of the wheelset’s centre is considered.
The phase portrait gives a very good impression of the vibration behaviour: For a monofrequent
sinusoidal motion the resulting curve of the phase portrait is an ellipse. Therefore, the more the
curve’s shape deviates from an ellipse, the stronger the influence of higher frequent parts is.

The following results were calculated for the profile geometry S1002 / 60E1 / 1:40; for this profile
geometry, a comparatively high conicity occurs. The friction coefficient was set to µ = 0.4.

In Figure8.2.9 the phase portraits for the lateral motion yWs1 of the front wheelset of the front bogie
are displayed for the four model variants RR, FR, RF, and FF. The diagrams contain only curves
describing a permanent oscillation; if the motion decreases and dies out over time, the resulting
curve is not displayed. With growing running speed v0 the curves become larger; this can be
explained qualitatively on the base of Klingel’s equation: In section 2.2.1, it has been shown that
the lateral acceleration ÿWs grows with the square of the running speed v0

2.

yWs = ŷWs sin
(

2π

λ
x+β

)
, x = x = v0t⇒ ÿWs =−

(
2π

λ
v0

)2

ŷWs sin
(

2π

λ
v0t +β

)
(8.2.8)

As a result, also the lateral forces guiding the wheelset increase with growing running speed.
Since the magnitude of the curves grows with increasing running speed, colours are only used for
the curves obtained for v0 = 250 km/h (blue), v0 = 300 km/h (green), v0 = 350 km/h (yellow), and
v0 = 400 km/h (red) for the sake of a better overview.

For the model RR the lateral motions are the smallest. The curves show distinct sharp bends or
“kinks” at yWs1 ≈±6.5 mm. These sharp bends result from the flange contact: When the flange



Chapter 8. Simulation results 295

Rigid wheelsets / rigid rails (RR) Flexible wheelsets / rigid rails (FR)

Rigid wheelsets / flexible rails (RF) Flexible wheelsets / flexible rails (FF)

Figure 8.2.9: Lateral motion yWs1 for the front wheelset of the front bogie for different model
variants. Wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

touches the rail’s corner, a very high lateral force occurs. This force decelerates the wheelset
leading to a strong drop of the lateral velocity ẏWs1. The maximum lateral displacement yWs1,max
increases only slightly with growing running speed v0, since the rigid rails are limiting the lateral
displacement relatively strictly, after the lateral clearance between the wheel flange and the railhead
has been exhausted. In the track model “rigid rails” the track below each wheelset is modelled by
a single rigid track body having a comparatively high inertia; therefore, the track body performs
only comparatively small lateral motions. Since for v0 < 290 km/h no permanent hunting motions
occur, no curves for this range of the running speed are contained in this diagram.

In the model FR the structural flexibility of the wheelsets is taken into account. For this model
the curves show larger lateral displacements. Furthermore the curves are smoother: While the
“kinks” are still visible for the innermost curve referring to v0 = 270 km/h, they become weaker
with increasing running speed and finally vanish nearly completely. This can be explained in
the following way: As already mentioned for the model RR, large lateral forces occur when the
root and the flange of the wheel touch the rail’s corner. These forces cause a lateral deformation
of the wheelset; thereby, the lateral displacement of the wheelset’s centre becomes larger. As it
was derived from Klingel’s equation in (8.2.8), the wheelset’s lateral acceleration ÿWs grows with
increasing running speed v0. Thereby, also the lateral forces guiding the wheelset grow with the
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running speed. If the lateral forces become larger, also larger deformations of the wheelsets and
thereby also a larger lateral displacement of the wheelset’s centre can be expected. In fact, the
diagram shows that the maximum displacement increases stronger with growing running speed;
this will be discussed later. Furthermore, the wheelset is softer than the comparatively stiff wheel-
rail contact. Thereby, the impact of the wheel flange hitting the railhead is cushioned by the
structural flexibility of the wheelset; as a result, the “kinks” due to the flange contact observed in
the diagram for the model RR is smoothened. For the model FR permanent oscillations occur also
at v0 = 270 km/h and v0 = 280 km/h; this indicates that the critial speed vcrit,nonlin is lower when
the structural flexibility of the wheelsets is taken into account.

A similar effect can be seen for the model RF, which takes the flexibility of the rails into account.
Also here, the maximum lateral displacement increases and the “kinks” due to the flange contact
vanish. Due to their structural flexibility the rails are also softer than the wheel-rail contact. Fur-
thermore, the rails are connected to the sleepers by the pads and the mass of the rails is lower than
the mass of the rigid body used in the “rigid rail” model. Thereby, also lateral deformations caused
by the lateral wheel-rail forces occur; furthermore, the impact due to the flange contact is cush-
ioned. Also here, permanent hunting motions occur already at v0 = 270 km/h, i.e. also here the
nonlinear critical speed vcrit,nonlin is reduced by the structural flexibilities. However, a comparison
of the diagrams for the models RF and FR shows that the amplitudes obtained for the model RF
are slightly lower than those obtained for the model FR. Apparently, the structural flexibility of the
wheelsets has a stronger influence on the running behaviour than the one of the rails. Nevertheless,
the influence of the rail’s structural flexibility is not negligible.

The results obtained for the model FF show the largest lateral motions of the wheelset. Here, the
lateral deformations of the wheelsets and the rails are added; this explains the large lateral displace-
ments of the wheelset’s centre. A permanent hunting motion occurs already for v0 = 250 km/h;
compared to the results obtained with the model FR this indicates that taking the flexibility of the
rails into account leads to a further reduction of the nonlinear critical speed vcrit,nonlin.

The phase portraits for the lateral motion yWs2 of the rear wheelset of the front bogie are displayed
in figure 8.2.10. For the rear wheelset the “kink” due to the flange contact is less distinct than for
the front wheelset; nevertheless it appears at yWs2 ≈ ±6.5 mm for the model RR. The increase of
the amplitudes due to the deformations can be observed also here: The smallest amplitudes occur
for the model RR; the amplitudes obtained for the model FR are slightly higher than those obtained
for the model RF; the largest amplitudes occur for the model FF.

The impact of the structural flexibilities on the contact itself is illustrated by Figure 8.2.11. In
this figure the pressure distribution on the rail head is displayed for the left contact of wheelset
1; thereby, the “trace” of the wheel-rail contact is visible. The results were calculated for the
models RR and FF using the running speeds v0 = 260 kmh, v0 = 300 km/h, v0 = 340 kmh, and
v0 = 380 km/h. As mentioned before, no permanent hunting is obtained for the model variant RR
at v0 = 260 km/h; thus, the figure for this combination is missing.

It can clearly be seen that for low running speeds the wheel-rail contact moves between the rail
head and the rail corner. At v0 = 380 km/h for the model FF a flange contact is visible: the contact
zone at the rail corner shows a distinct intermission.

A good overview on the system’s behaviour is obtained from a bifurcation diagram. In the case in-
vestigated here the maximum lateral displacement of the wheelset depending on the running speed
is considered. The results, which are presented in the following, are obtained from the calculations
using the four aforementioned modelling variants RR, FR, RF and FF. A further modelling variant
uses the track model including flexible rails, but for the wheelset only eigenmodes for k = 0 and
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Rigid wheelsets / rigid rails (RR) Flexible wheelsets / rigid rails (FR)

Rigid wheelsets / flexible rails (RF) Flexible wheelsets / flexible rails (FF)

Figure 8.2.10: Lateral motion yWs2 for the rear wheelset of the front bogie for different model
variants. Wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

k = 1 are taken into account. Eigenmodes for k = 0 are rotational symmetric and include torsional
and umbrella modes, while eigenmodes for k = 1 include bending modes. For k ≥ 2 the deforma-
tions are limited to the wheels; these modes are neglected in this modelling configuration. This
variant will be referenced by fF.

In Figure 8.2.12 the maximum lateral displacement of the wheelsets 1 and 2, respectively, versus
the running speed is shown for the described different model variants. Figure 8.2.13 displays
the hunting frequency for the different model variants. The nonlinear critical speed vcrit,nonlin, as
introduced in section 8.2, for the different model variants are listed in Table 8.2.1.

vcrit,nonlin ∆vcrit,nonlin

Rigid wheelsets, rigid rails (RR), reference 289 km/h
Flexible wheelsets, rigid rails (FR) 264 km/h 25 km/h
Rigid wheelsets, flexible rails (RF) 269 km/h 20 km/h
Flexible wheelsets, flexible rails (FF) 250 km/h 39 km/h

Table 8.2.1: Critical running speeds for different model variants; wheel profile S1002; rail profile
60E1; cant 1:40; µ = 0.4.
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Rigid wheelsets / rigid rails Flexible wheelsets / flexible rails
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Figure 8.2.11: Pressure distribution on the rail head for the left contact of wheelset 1. Wheel
profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

Generally, the diagrams show that the lateral amplitudes and the frequency increase with the run-
ning speed v0. The frequency is located in the range between 4.5 Hz and 8 Hz. For the curves it
can be concluded:

• Model RR (black curves): The permanent hunting starts at v0 = 289 km/h; since this mod-
elling is a widely used standard, the resulting critical speed will be considered as the refer-
ence value. The maximum lateral amplitudes of the wheelsets at the beginning of the hunting
are yWs1,max = 6.9 mm and yWs2,max = 6.9 mm. The gradient of the curve is comparatively
low, i.e. the lateral motions increase only slightly with growing speed.
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Figure 8.2.12: Maximum lateral displacement for the wheelsets of the front bogie for different
model variants; above: front wheelset yWs1,max; below: rear wheelset yWs2,max;
wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

Figure 8.2.13: Hunting frequency for different model variants; wheel profile S1002; rail profile
60E1; cant 1:40; µ = 0.4.

• Model RF (blue curves): The permanent hunting starts at v0 = 269 km/h; this indicates that
the flexibility of the rails causes a drop of the nonlinear critical speed of 20 km/h. The curves
start with an amplitude of yWs1,max = 6.9 mm and yWs2,max = 6.9 mm, i.e. nearly the same
values than for the model RR. However, between v0 = 276 km/h and v0 = 278 km/h a sharp
increase of the amplitudes occurs. Similar to the curves for the model FR also these curves
show a larger lateral displacement and a higher gradient than those for the configuration RR.
This can also be explained by the lateral forces, which increase with the running speed and
thereby lead a higher lateral displacement. However, for the configuration RF the increase
of the amplitudes is lower than for the configuration FR: The values for yWs1,max and yWs2,max
are only about 1 mm up to 2.5 mm higher than for the standard configuration RR. Also the
critical speed drops only by 16 km/h down to vcrit,nonlin = 276 km/h. The hunting frequency
increases slightly compared to the standard configuration. In total, the structural flexibility
of the rails has a weaker influence than the one of the wheelsets. Nevertheless, the influence
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is visible.

• Model FR (red curves): For the model FR, the curves already start at vcrit,nonlin = 268 km/h,
which indicates that the structural dynamics of the wheelsets causes a drop of the critical
speed vcrit,nonlin of 24 km/h. The amplitudes are about 3 mm up to 4 mm higher than those
for the model RR; furthermore, the curves show a higher gradient of the amplitude; this
can be explained in the following way: With growing running speed the frequency of the
hunting increases, as the diagram in Figure 8.2.13 confirms. This also means an increase of
the lateral acceleration leading to higher lateral wheel-rail forces. The higher lateral forces
cause larger deformations of the flexible wheelset and thereby a larger lateral displacement
of the wheelset’s centre, where the lateral displacement yWs is observed.

• Model FF (magenta curves): For this model variant the curves show the largest lateral dis-
placements and the highest gradient. Regarding the motion of the wheelset’s centre the
structural flexibilities of the wheelsets and of the rails can be considered as two springs
arranged serially; this means that the deformations of both springs are added and that the
resulting stiffness is lower than the one of the softest spring.

• Model fF (green curves): The results obtained for this model differ little from those obtained
for the model FF: The amplitudes for the model FF are approximately 0.5 mm higher; the
critical speed is 4 km/h lower. This indicates that the bending, umbrella and torsional modes
of the wheelset have a dominant influence, while the influence of the modes for k ≥ 2, which
describe deformations of the wheels only, is distinctly weaker.

Furthermore, the resulting lateral forces are evaluated according to the standard EN 14363. In
Figure 8.2.14 the root mean square values ΣYrms of the resulting lateral forces, which are calculated
according to equation (8.2.1), versus the running speed v0 are displayed.

For all four model variants, the forces at the wheelsets 1 and 3, which are the leading wheelsets,
hardly differ from each other; also for the wheelsets 2 and 4, which are the trailing wheelsets,
nearly the same values are obtained. Generally, the forces at the trailing wheelsets 2 and 4 are
higher than those at the leading wheelsets 1 and 3.

For the evaluation with respect to the instability criterion, the maximum value ΣYrms,max(v0) at
the running speed v0 is relevant. If ΣYrms,i(v0) is the value at the i-th wheelset, then the value
ΣYrms,max(v0) is defined by:

ΣYrms,max(v0) = max
i

(ΣYrms,i(v0)) , i = 1,2,3,4 (8.2.9)

In Figure 8.2.15 the maximum values ΣYrms,max(v0) versus the running speed v0, which are ob-
tained for the four model variants, are shown. The running speeds vlim,rms, at which the limit
Σrms,lim is reached, are listed in Table 8.2.2; furthermore, in this table, the limit speed vlim,rms is
compared to the nonlinear critical speed vcrit,nonlin for each model.

The diagrams shown in Figure 8.2.15 and the values listed in Table 8.2.2 show that for the models
RR, FR, and RF the limit value of ΣYrms,lim = 25 kN is exceeded very soon after the permanent
hunting has started, i.e. the difference between the critical speed vcrit,nonlin and the limit speed
vlim,rms is comparatively small: 3 km/h for the model FF and 4 km/h for the models RR and RF.
Only the model FF shows a higher difference of 11 km/h between the nonlinear critical speed and
the limit speed according to the instability criterion. It should be pointed out that the difference be-
tween the limit speeds vlim,rms obtained for the two configurations using flexible wheelsets is quite
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Figure 8.2.14: Root mean square values ΣYrms of the resulting lateral forces for different model
variants; wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

vlim,rms ∆vlim,rms vcrit,nonlin vlim,rms− vcrit,nonlin

Model RR, reference 295 km/h 289 km/h 6 km/h
Model FR 275 km/h 20 km/h 264 km/h 9 km/h
Model RF 279 km/h 16 km/h 269 km/h 10 km/h
Model FF 269 km/h 26 km/h 250 km/h 19 km/h

Table 8.2.2: Limit speeds according to the instability criterion (EN 14363) for the different model
variants; wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.
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Figure 8.2.15: Maximum root mean square values ΣYrms,max of the resulting lateral forces ΣY for
different model variants; wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

small: The limit speeds are vlim,rms = 266 km/h for the configuration FF and vlim,rms = 271 km/h
for the model FR. Also this underlines that the structural flexibility of the wheelset has a stronger
influence on the running behaviour than the one of the rails.

In an analogous way, the values of the resulting lateral force ΣY are evaluated with respect to the
track shift criterion; here, the maximum absolute sliding mean value |ΣY2m|max. In Figure 8.2.16,
the maximum absolute sliding mean value |ΣY2m|max for the four models RR, FR, RF and FF are
shown as functions of the running speed v0 and compared to the force limit ΣYmax,lim; the values
for the speed vlim,2m, at which the force limit is exceeded

Figure 8.2.16: Maximum absolute sliding mean values |ΣYrms|max of the resulting lateral forces
ΣY for different model variants; wheel profile S1002; rail profile 60E1; cant 1:40;
µ = 0.4.

vlim,2m ∆vlim,2m vcrit,nonlin vlim,2m− vcrit,nonlin

Model RR, reference 318 km/h 289 km/h 29 km/h
Model FR 293 km/h 25 km/h 264 km/h 19 km/h
Model RF 298 km/h 20 km/h 269 km/h 19 km/h
Model FF 289 km/h 29 km/h 250 km/h 39 km/h

Table 8.2.3: Limit speeds according to the track shift criterion (EN 14363) for the different model
variants; wheel profile S1002; rail profile 60E1; cant 1:40; µ = 0.4.

Generally it can be concluded:

• The structural flexibility of the wheelsets has a stronger influence on the running behaviour
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than the one of the rails: It causes a larger increase of the lateral amplitudes and a higher
drop of the nonlinear critical speed.

• The influence of the structural flexibilities on the hunting frequency is quite weak: The
flexibility of the rails causes a slight increase of the frequency, while the flexibility of the
wheelset leads to slightly lower frequencies.

8.2.2 Influence of the friction

The friction characteristics occurring in the wheel-rail contact are one of the most uncertain pa-
rameters for a railway vehicle. The friction depends e.g. on the roughness of the surfaces as well
as on the presence of media like water or dirt. Nevertheless, the characteristics is important for
the behaviour of the railway vehicle: The tangential forces, which are responsible for the vehicle’s
guidance, are transmitted in the wheel-rail contact by friction. As explained in 7, the actual contact
area is split into a zone of adhesion and a zone of sliding, if the contact transmits tangential forces,
i.e. the limit between sticking and sliding is actually reached locally. Therefore, the influence of
the friction is investigated here, also to give an impression, how large the influence of this uncertain
parameter is compared to the influence of the structural flexibilities.

For the model versions RR and FF the calculations were carried out using the following four values
of the friction coefficient:

• µ = 0.40

• µ = 0.35

• µ = 0.30

• µ = 0.25

For the calculations the rail profile 60E1 with an inclination of 1:40 was used. In Fig.8.2.17 and
Fig.8.2.18 the phase portraits for the lateral motions yWs1 and yWs2 of the two wheelsets of the front
bogie are displayed. As already done in section 8.2.1, colours are only used for the curves obtained
for v0 = 250 km/h (blue), v0 = 300 km/h (green), v0 = 350 km/h (yellow), and v0 = 400 km/h (red)
for the sake of a better overview.

The comparison of the curves shows that the friction coefficient hardly affects the qualitative shape
of the curves. Nevertheless, especially the results obtained for the flexible model FF show that a
higher friction coefficient leads to larger lateral displacements of the wheelsets.

In Figures 8.2.19 and 8.2.20 the maximum lateral displacements of the wheelsets 1 and 2, respec-
tively, for the different values of the friction coefficients are displayed. It should be pointed out that
the limits of the vertical axis have been adapted so that the curves can be distinguished better from
each other. The nonlinear critical speed vcrit,nonlin obtained for the different model configurations
and friction coefficients are listed in Table 8.2.4.

The diagram for the model RR shows that with higher friction coefficients the critical speed drops
from vcrit,nonlin = 317 km/h for µ = 0.25 down to vcrit,nonlin = 292 km/h for µ = 0.4. For the model
FF, which takes the flexibilities of the wheelsets and the rails into account, also a drop of the critical
speed occurs from vcrit,nonlin = 282 km/h for µ = 0.25 down to vcrit,nonlin = 255 km/h for µ = 0.4.
For the model RR, the lateral amplitudes are hardly changed. In contrast to this, the results obtained
for the model FF show that distinctly larger amplitudes occur if the value of the friction coefficient
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µ Wheelset 2 Wheelset 1
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Figure 8.2.17: Phase portraits for the lateral motions of the leading bogie’s wheelsets for different
friction coefficients µ; rigid wheelsets / rigid rails; rail profile 60E1; cant 1:40
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Figure 8.2.18: Phase portraits for the lateral motions of the leading bogie’s wheelsets for different
friction coefficients µ; flexible wheelsets / flexible rails; rail profile 60E1; cant 1:40



306 Chapter 8. Simulation results

Figure 8.2.19: Maximum lateral displacement yWs1,max for the wheelset 1; above: model RR, be-
low: model FF; wheel profile S1002; rail profile 60E1; cant 1:40.

Figure 8.2.20: Maximum lateral displacement yWs2,max for the wheelset 2; above: model RR, be-
low: model FF; wheel profile S1002; rail profile 60E1; cant 1:40.

is higher. Apparently, for the model taking the structural flexibilities into account the amplitudes
are more sensitive to the friction coefficient than for the model using rigid wheelsets and a rigid
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µ = 0.25 µ = 0.30 µ = 0.35 µ = 0.40 ∆vcrit,nonlin

RR 333 km/h 307 km/h 295 km/h 289 km/h 44 km/h
FF 282 km/h 268 km/h 256 km/h 250 km/h 27 km/h

∆vcrit,nonlin 35 km/h 39 km/h 39 km/h 39 km/h

Table 8.2.4: Nonlinear critical speeds vcrit,nonlin for different model versions and different values
for the friction coefficient µ

track.

Table 8.2.4 shows that the variation of the friction coefficient from µ = 0.25 to µ = 0.4 reduces the
nonlinear critical speed vcrit,nonlin by about 25 km/h; the reduction of the critical speed is nearly
the same for both model configurations. Taking the structural flexibilities into account leads to a
reduction of the nonlinear critical speed vcrit,nonlin by about 35 km/h for all investigated values of
the friction coefficient. From this it can be concluded that the impact of the structural flexibilities
on the nonlinear critical speed is about 30% higher than the one of varying the friction coefficient;
therefore, the influence of the structural flexibilities is not negligible.

Figure 8.2.21 shows the hunting frequency versus the running speed for the two model configura-
tions and for the four values of the friction coefficient. It can be seen that the friction coefficient

Figure 8.2.21: Hunting frequency; above: model RR, below: model FF; wheel profile S1002; rail
profile 60E1; cant 1:40.

has a distinct impact on the hunting frequency for both configurations: The hunting frequency in-
creases for higher values of the friction coefficient. This effect can be explained by the following
consideration: For the hunting motion of the wheelset the tangential forces, which are transmitted
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by friction, are essential, since they are guiding the wheelset; this also becomes clear from the lin-
earized equations of motion shown in the section 2.2.1. It is obvious that a higher frequency of the
motion means a higher acceleration for the same amplitude. To achieve such a higher acceleration
higher forces are required. The friction coefficient µ is limiting the transmittable tangential forces.
A lower friction coefficient leads to lower tangential forces and thereby to a lower frequency of the
hunting oscillation.

Furthermore, the resulting lateral forces are evaluated according to the standard EN 14363. First,
the root mean square value ΣYrms is considered. It turns out that higher values generally occur at the
trailing wheelsets, as already seen for the results discussed in section 8.2.1, higher values generally
occur at the trailing wheelsets. The maximum values ΣYrms,max(v0) versus the running speed v0
are displayed in Figure 8.2.22. Furthermore, the instability speeds vlim,rms, at which the maximum
value ΣYrms,max reaches the force limit, are listed in Table 8.2.5 for the two model versions and the
four values of the friction coefficient.

Figure 8.2.22: Maximum root mean square values ΣYrms,max of the resulting lateral forces ΣY for
the model FF and different friction coefficients; wheel profile S1002; rail profile
60E1; cant 1:40.

;

µ = 0.25 µ = 0.30 µ = 0.35 µ = 0.40 ∆vlim,rms

RR 351 km/h 323 km/h 306 km/h 295 km/h 56 km/h
FF 340 km/h 306 km/h 283 km/h 269 km/h 71 km/h

∆vlim,rms 11 km/h 17 km/h 23 km/h 26 km/h

Table 8.2.5: Instability speeds vlim,rms for different model versions and different values for the
friction coefficient µ

The diagrams contained in the Figures 8.2.22 show that for lower friction coefficients the curves
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start at lower values of ΣYrms. Thereby, the difference ∆v = vlim,rms− vcrit,nonlin between the non-
linear critical speed vcrit,nonlin, at which the permanent hunting starts, and the instability speed
vlim,rms, at which the force limit is exceeded, is larger for a lower friction coefficient µ: For µ = 0.4
the difference is ∆v = 4 km/h for the model RR and ∆v = 11 km/h for the model FF. If the friction
coefficient is reduced to µ = 0.25, the differences increase to ∆v = 25 km/h for the model RR and
∆v = 38 km/h for the model FF.

In Figure 8.2.23 the maximum absolute values |ΣY2m|max versus the running speed v0 are displayed.
The running speeds at which the force limit is exceeded are listed in Table 8.2.6

Figure 8.2.23: Maximum track shift forces |ΣY2m|max of the resulting lateral forces at the
wheelset 2; above: model FF; below: model RR; wheel profile S1002; rail pro-
file 60E1; cant 1:40.

µ = 0.25 µ = 0.30 µ = 0.35 µ = 0.40 ∆v2m,lim

RR 360 km/h 344 km/h 329 km/h 318 km/h 42 km/h
FF 359 km/h 331 km/h 306 km/h 289 km/h 70 km/h

∆v2m,lim 1 km/h 13 km/h 23 km/h 31 km/h

Table 8.2.6: Track shift limit speeds v2m,lim for different model versions and different values for
the friction coefficient µ

The results are rather similar to those obtained for ΣYrms. With an increasing value of the friction
coefficient µ, the difference between the nonlinear critical speed vcrit,nonlin and the speed v2m,lim, at
which the force limit is exceeded grows; furthermore, the model FF is distinctly more sensitive to
changes of µ than the model RR.

In total it can be concluded:

• The friction coefficient µ has a distinct impact on the running behaviour: a higher friction
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coefficient leads to a lower nonlinear critical speed vcrit,nonlin and to a higher hunting fre-
quency. Since the hunting motion is excited by the tangential forces, which are limited by
the friction coefficient, a higher friction coefficient causes a stronger excitation.

• For the model FF the lateral amplitudes of the wheelsets are more sensitive to the friction
coefficient: For a higher friction coefficient larger amplitudes occur if the structural flexi-
bilities are taken into account, while for the model using rigid wheelsets and rigid rails the
amplitudes are hardly affected. If the excitation is stronger and thereby also the frequency is
higher, also higher lateral forces occur when the wheel flange hits the rail head; these higher
forces cause larger deformations of the wheelsets and the rails.

• For all four values of the friction coefficient µ the nonlinear critical speed vcrit,nonlin is about
35 km/h lower if the structural flexibilities of wheelsets and rails are taken into account. If
the friction coefficient is increased from µ = 0.25 to µ = 0.4, the critical speed drops by about
25 km/h for the rigid model as well as for the fully flexible model. Thereby, the reduction of
the nonlinear critical speed by taking the structural flexibilities into account is about 30 %
higher than the reduction by the increase of the friction coefficient.

• The limit speeds obtained from the instability criterion and from the track shift criterion are
strongly affected by the friction coefficient. For the model RR the limit speeds obtained for
µ = 0.25 and µ = 0.4 differ by about 45 km/h

8.2.3 Influence of the conicity

As discussed in section 2.2.1 the conicity has a strong impact on the running behaviour of the
wheelset. The solution of Klingel’s equation considered in section 2.2.1

yWs(x) = ŷcos
(

2π

λ
x+β

)
, λ = 2π

√
a0 r0

tanδ0
(8.2.10)

shows that a higher conicity tanδ0 leads to a shorter wavelength λ. By assuming a constant running
speed, i.e. x = v0t, it can be seen that the frequency f of the hunting motion is lower the lower the
conicity is:

x= v0t⇒ cos
(

2π

λ
x+β

)
= cos

(
2π

λ
v0t +β

)
= cos(2π f t+β)⇒ f =

v0

λ
= v0

√
tanδ0

a0 r0
(8.2.11)

By setting x = v0t the lateral acceleration is obtained to:

yWs(t) = ŷcos
(

2π

λ
v0t +β

)
⇒ ÿWs(t) =−

(
2π

λ
v0

)2

ŷ︸ ︷︷ ︸
ˆ̈yWs

cos
(

2π

λ
v0t +β

)
(8.2.12)

By inserting the expression for the wavelength λ, the amplitude of the lateral acceleration ˆ̈yWS can
be formulated in the following way:

ˆ̈yWs =
tanδ0

a0 r0
v0

2ŷ (8.2.13)

Although Klingel’s equation is a comparatively rough approximation, it nevertheless shows that
for a lower conicity a lower hunting frequency and a lower lateral acceleration of the wheelset can
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be expected. This basic consideration will be used for the interpretation of the results presented in
this section.

The conicity is determined by the geometry of the profiles of wheel and rail, i.e. the shape of the
profiles, but also their relative position. Usually, the rails are not installed vertically on the sleepers,
but are slightly inclined towards the middle of the track. On different railway networks different
cants are used: An inclination of 1 : 40=̂1.432 deg is used in Germany, Austria and Switzerland,
while an inclination of 1 : 20=̂2.862 deg is used in the UK, France, Italy and Norway. Generally,
a higher inclination angle leads to a lower conicity.

In this section, results from calculations using the profile geometry S1002 / 60E1 / 1:20 are pre-
sented. In order to investigate the influence of the conicity on the running behaviour, these results
are compared with those obtained for the profile geometry S1002 / 60E1 / 1:40, which have been
discussed in the previous sections. The results presented and discussed in the following consider-
ations are all obtained for a friction coefficient of µ = 0.4.

First, the general impact of the profile geometry on the system behaviour is investigated. Here, the
model FF is used. For a direct comparison, a running speed of v0 = 255 km/h was chosen, since
for this speed periodic motions were obtained for both profile geometries. In Fig.8.2.24 the phase
portraits for the lateral motions yWsi of all four wheelsets are displayed.

Wheelset 2 Wheelset 1

Wheelset 4 Wheelset 3

Figure 8.2.24: Lateral motion yWsi of the wheelsets for different cants. Red: cant 1:20; blue: cant
1:40. v0 = 255 km/h; model FF; wheel profile S1002; rail profile 60E1; µ = 0.4.
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Generally, for both profile geometries, the maximum lateral displacements of the wheelset are in
the same range of magnitude; for the profile geometry S1002 / 60E1 / 1:40 slightly higher displace-
ments occur than for S1002 / 60E1 / 1:20. However, the lateral velocity of the wheelsets is gen-
erally distinctly higher for the profile geometry S1002 / 60E1 / 1:40 than for S1002 / 60E1 / 1:20.
This indicates that for the profile geometry S1002 / 60E1 / 1:40 the frequency of the motion is
higher. Moreover, it can be seen that for the profile geometry S1002 / 60E1 / 1:40 the curves de-
scribing the motions of the wheelsets 1 and 3 hardly differ from each other. The same applies to
the curves for the wheelsets 2 and 4; also here, for the blue curves obtained for S1002 / 60E1 / 1:40
a difference is hardly visible. In contrast to this, the curves for all four wheelsets obtained for the
profile geometry S1002 / 60E1 / 1:20 differ from each other; although these differences are not
tremendous, they are nevertheless clearly visible. The wheelsets 1 and 3 are the front wheelsets of
the two bogies, while the wheelsets 2 and 4 are the rear wheelsets of each bogie; for the vehicle,
on which the present model is based, both bogies are identical. The fact that for the wheelsets 1
and 3 and for the wheelsets 2 and 4, respectively, nearly the same curves are obtained, if the profile
geometry S1002 / 60E1 / 1:40 is used, suggests that the bogies hardly interact with each other; the
coupling by the carbody is apparently very weak. In contrast to this, the differences, which are ob-
served for the curves for all four wheelsets in the case of the profile geometry S1002 / 60E1 / 1:20,
indicate an interaction between the two bogies. For a more detailed investigation, the phase por-
traits of the lateral motion yCb and the yaw motion ψCb are displayed in Fig. 8.2.25.

Figure 8.2.25: Lateral motion yCb (left) and yaw motion ψCb of the carbody for different cants.
Red: cant 1:20; blue: cant 1:40. v0 = 255 km/h; model FF; wheel profile S1002;
rail profile 60E1; µ = 0.4.

It can clearly be seen that for the profile geometry S1002 / 60E1 / 1:20 the carbody performs
larger motions than for S1002 / 60E1 / 1:40; for the yaw motion the difference of the magni-
tude is particularly great. This indicates that for the profile geometry S1002 / 60E1 / 1:20 there
is in fact a coupling of the two bogies by the carbody, while for S1002 / 60E1 / 1:40 the in-
teraction of the bogies via the carbody is comparatively weak. The results suggest that for the
profile geometry S1002 / 60E1 / 1:20 a carbody instability occurs, while for the profile geometry
S1002 / 60E1 / 1:20 a bogie instability is observed.

In Fig.8.2.26 the distribution of the pressure on the railhead for the left contact of wheelset 1 is
displayed. The change of the contact geometry due to the changed rail cant is clearly visible.
For the profile geometry S1002 / 60E1 / 1:20 the contact zone hardly changes its lateral position
on the rail head. If the wheelset is close to its maximum lateral displacement, a second isolated
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Figure 8.2.26: Distribution of the pressure on the rail head for wheelset 1; left: cant 1:40; right:
cant 1:20

contact area appears. In contrast to this, for the profile geometry S1002 / 60E1 / 1:40 the contact
area moves across the profile between the middle of the tread and the rail corner. Furthermore,
it can be seen that for the profile geometry S1002 / 60E1 / 1:40 a shorter wavelength occurs than
for S1002 / 60E1 / 1:20. A shorter wavelength indicates a higher conicity and leads to a higher
hunting frequency at the same speed. The higher frequency, which occurs for the profile geometry
S1002 / 60E1 / 1:40, explains, why the diagrams contained in Fig. 8.2.24 show a higher lateral
velocity ẏWsi of the wheelset’s centre for S1002 / 60E1 / 1:40 than for S1002 / 60E1 / 1:20.

Figure 8.2.27 shows the frequency f of the hunting motion versus the running speed v0. The dia-
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Figure 8.2.27: Hunting frequency. Model FF, rail profile 60E1, µ = 0.4.

gram clearly shows that for the profile geometry S1002 / 60E1 / 1:40 the frequency of the hunting
motion and the slope indicating the increase of the frequency f with growing running speed v0
are both distinctly higher than for the profile geometry S1002 / 60E1 / 1:20. For the profile ge-
ometry S1002 / 60E1 / 1:20 permanent hunting occurs in the range of the running speed between
v0 = 190 km/h and v0 = 261 km/h; outside this speed interval no permanent hunting motions are
observed. In this speed interval the hunting frequency grows from f = 0.997 Hz at v0 = 190 km/h
up to f = 1.257 Hz at v0 = 261 km/h. As discussed in section 8.2.1, for the profile geometry
S1002 / 60E1 / 1:20 the permanent hunting starts at v0 = 250 km/h. The frequency increases from
f = 4.338 Hz at v0 = 250 km/h up to f = 5.730 Hz at v0 = 300 km/h.

In Figure 8.2.28 and Figure 8.2.29 the maximum lateral displacement yCb,max and the maximum
yaw angle ψCb,max of the carbody versus the running speed v0 are displayed. The curves obtained
for the profile geometry S1002 / 60E1 / 1:20 show a distinct peak at v0 = 205 km/h for the lateral
and the yaw motion and a further one at v0 = 195 km/h for the yaw motion; these peaks indicate
resonances of the carbody.
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Figure 8.2.28: Maximum lateral displacement of the carbody. Model FF, rail profile 60E1,
µ = 0.4.
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Figure 8.2.29: Maximum yaw angle of the carbody. Model FF, rail profile 60E1, µ = 0.4.

In Fig. 8.2.30 the maximum lateral displacement of the wheelsets 1 and 2 versus the running speed
v0 for the two profile geometries S1002 / 60E1 / 1:20 and S1002 / 60E1 / 1:40 are displayed. It
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Figure 8.2.30: Maximum lateral displacement of the wheelsets 1 and 2. Model FF, rail profile
60E1, µ = 0.4.

can clearly be seen that for the profile geometry S1002 / 60E1 / 1:20 the maximum lateral dis-
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placements yWs,max hardly change with varying running speed; the curves are nearly horizontal. In
contrast to this the maximum lateral displacements yWs,max distinctly grow with the running speed
for the profile geometry S1002 / 60E1 / 1:20.

Next, the influence of the structural flexibilities is investigated for the lower conicity. Calculations
were carried out for the models RR and FF using a rail cant of 1:20. The phase portraits of the
lateral motions of the wheelsets 1 and 2 are shown in Fig.8.2.31 and Fig.8.2.32.

v0
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Wheelset 2 Wheelset 1
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Figure 8.2.31: Phase portraits for the lateral motions yWs1 for the front wheelset and yWs2 for the
rear wheelset of the front bogie for different model variants. Black curve: model
RR, magenta curve: model FF; wheel profile S1002; rail profile 60E1; cant 1:20;
µ = 0.4.



316 Chapter 8. Simulation results

v0
[km/h]

Wheelset 2 Wheelset 1

230

240

250

260

Figure 8.2.32: Phase portraits for the lateral motions yWs1 for the front wheelset and yWs2 for the
rear wheelset of the front bogie for different model variants. Black curve: model
RR, magenta curve: model FF; wheel profile S1002; rail profile 60E1; cant 1:20;
µ = 0.4.

The diagrams show that the differences between the results obtained for the models RR and FF
are comparatively small. For the model FF the maximum lateral displacement is approximately
0.7 mm higher than for the model RR. Furthermore, the “kinks” resulting from the flange contact
do not only appear for the model RR, but also for the model FF. In the region before reaching the
maximum displacement the inclination of the curves for the model FF with respect to the vertical
axis is slightly higher than for the model RR. As already discussed, the lateral acceleration and
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therefore also the lateral forces are lower for a lower conicity. Since the lateral forces are lower,
also the structural deformations caused by these forces are smaller. Therefore, the influence of the
structural flexibilities is smaller in the case of a low conicity than for a high conicity as obtained
for a rail cant of 1:40.

In Figure 8.2.33 the maximum lateral displacements yWs1,max and yWs2,max of the wheelsets of the
front bogie versus the running speed v0 are displayed. Here, it can clearly be seen that the curves

Figure 8.2.33: Maximum lateral displacement for the wheelsets of the front bogie for different
model variants; above: front wheelset yWs1,max; below: rear wheelset yWs2,max;
wheel profile S1002; rail profile 60E1; cant 1/40; µ = 0.4.

are nearly horizontal; this indicates that the influence of the running speed v0 on the maximum
lateral displacement is comparatively weak. Also, the diagrams show that maximum lateral dis-
placement of the wheelsets is approx. 0.7 mm higher if the structural flexibilities of the wheelsets
and the rails are taken into account; as mentioned before, the influence of the structural flexibilities
is quite weak in this case. However, the diagrams show that the nonlinear critical speed vcrit,nonlin
drops from vcrit,nonlin = 214 km/h down to vcrit,nonlin = 190 km/h, if the structural flexibilities are
taken into account.

In Fig.8.2.34 the pressure distributions at the left contact of the wheelset 1 are compared for the
rigid model RR and for the flexible model FF. The differences between the two distributions are
very small; this too indicates that in this case the impact of the structural deformations on the
contact is very weak.



318 Chapter 8. Simulation results

Figure 8.2.34: Distribution of the pressure on the rail head for wheelset 1; left: model RR; right:
model FF; v0 = 220 km/h; cant 1:20; µ = 0.4

8.3 Conclusion

In this chapter, the impact of the structural flexibilities of the wheelsets and the rails on the running
behaviour has been investigated. Furthermore, this impact has been compared to the ones of a
varying friction coefficient and of different profile geometries.

Regarding the centred running on an undisturbed tangent track, the results show that the structural
flexibilities can have a considerable impact on the wheel-rail contact. This impact is particularly
strong for a wide contact area, as it is obtained for the profile geometry S1002 / 60E1 / 1:40: the
shape of the contact area and the stress distribution in the contact are distinctly changed if the
structural flexibilities are taken into account. For the profile geometries S1002 / 60E1 / 1:20 and
S1002 / 60E2 / 1:40, the contact area is narrower; in this case, the influence of the structural flexi-
bilities is weak. A further investigation for the profile geometry S1002 / 60E1 / 1:40 shows that the
changes are mainly caused by the flexibility of the wheelset. The way, how the contact area’s shape
and the stress distribution are changed, suggest that these changes are caused by an inclination of
the wheel rim due to the bending of the wheelset’s axle. This bending is caused by the vertical
forces acting at the wheel-rail contacts and at the journals due to the weight of the carbody and the
bogie frame. As a result, a kind of camber angle of the wheel occurs.

The structural flexibilities of the wheelsets and the rails also have an impact on the hunting motion.
Generally, the flexibilities lead to larger lateral motions of the wheelsets and to a lower nonlinear
critical speed, i.e. the permanent hunting already starts at a lower running speed if the structural
flexibilities are taken into account. However, the strength of the impact depends on other factors
like the profile geometry and the friction coefficient in the wheel-rail contact. Generally, the impact
of the structural flexibilities is the stronger for a higher conicity and for a higher friction coefficient.
This shall be shortly discussed:

• From Klingel’s equation it is known that a higher conicity leads to a shorter wavelength and
thereby to a higher hunting frequency at the same running speed. From this, it follows that
for a higher conicity also the lateral acceleration of the wheelset is higher. A higher lateral
acceleration suggests that also the lateral wheel-rail forces, which guide the wheelset, are
higher.

• Regarding the friction coefficient, it is evident that for a higher friction coefficient higher tan-
gential forces can be transmitted in the wheel-rail contact. Furthermore, the self-excitation of
the wheelset above the critical speed results from the characteristics of the tangential forces
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acting in the wheel-rail contact. From this, it can be deduced that a higher friction coefficient
causes a stronger self-excitation of the wheelset and thereby also higher lateral forces.

It can be concluded that a higher conicity and a higher friction both cause higher lateral forces. It
is evident that higher forces acting on a flexible structure usually larger deformations. This finally
explains why the structural flexibilities have a stronger impact, if the conicity and the friction
coefficient are higher.

For the combination of the wheel profile S1002 and the rail profile 60E1 with a cant of
1:40, which has a comparatively high conicity, and for a friction coefficient of µ = 0.4, the
structural flexibilities cause an increase of the wheelset’s maximum lateral displacement from
yWs,max ≈ 7 mm up to yWs,max ≈ 10 mm...11 mm and a reduction of the nonlinear critical speed
from vcrit,nonlin = 289 km/h down to vcrit,nonlin = 250 km/h. These changes are in an order of mag-
nitude that cannot be neglected. Further investigations, in which the flexibilities of the wheelsets
and of the rails are taken into account separately, show that the flexibility of the wheelsets has a
stronger impact; nevertheless, the impact of the flexibility of the rails is not negligible.
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Conclusion and outlook

In the present work, a refined and enhanced vehicle-track model has been developed. Compared
to the “conventional modelling”, which can be done by many commercially available simulation
programs, the presented model has mainly three extensions.

The first extension is the modelling of the wheelsets as flexible bodies. A special characteristics
of the wheelsets from the mechanical point of view is that they are performing large rotations. At
higher speeds the angular velocity generates gyroscopic effects so that this motion cannot be ne-
glected. However, from the mathematical point of view, this large rotation is described by trigono-
metric functions, so that there are strong nonlinearities. In the present work a formulation is de-
veloped which takes advantage from the rotational symmetry of the wheelset. In this formulation,
the wheelset is described in a sliding frame, which performs all motions except the large overturn-
ing motion. The rotational symmetric body is considered as a cyclic structure, which consists of
n circularly arranged identical segments. The generalization of the cyclic structure is an n-tuple
of identical particles, which has also been used to determine the characteristic properties of the
equations of motion of a cyclic structure. The application of this description is not restricted to
wheelsets, but also suitable for other rotating components.

The second extension is the modelling of the track as a flexible structure. This provides a more re-
alistic modelling then the widely used substitution models used in multibody simulation programs.
The rails are modelled by a semi-analytical finite element model which takes advantage from the
prismatic shape of the rails. The rails are supported by discrete sleepers via pads which are mod-
elled by distributed visco-elastic elements. Also, the rail cant is taken into account. Together with
the refined structural model of the rail this provides a high accuracy of the modelling. Although the
valid frequency range of the track model is not exploited in this work, the refined modelling never-
theless provides a precise description of the motions of the rail head. This is especially important
regarding the lateral dynamics, where the contact geometry can be very sensitive with respect to
the relative kinematics between the rail head and the wheel rim.

The third extension is an extended model for the wheel-rail contact. This model is based on the
consideration of the wheel and the rail as halfspaces. The discretized contact problem is solved
iteratively, i.e. the model contains an actual solution of the equations describing the contact me-
chanics, not just an estimation of the contact area or the stress distribution. The integration of such
a model into a multibody simulation requires a fast solving algorithm; this algorithm is based on
the Gauss-Seidel method, but uses several modifications in order to accelerate the solution.

With this enhanced and refined vehicle-track model, two scenarios are investigated. Here, the new
model is compared to the “conventional modelling”, where the wheelsets are considered as rigid

320
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bodies and a simple substitution model consisting of masses, springs and dampers is used for the
track. For the centred running on an undisturbed track it turns out that for some profile geometries
the structural deformations have a considerable impact on the stress distribution in the contact.
This impact is especially strong when the contact area is quite wide. Comparisons with different
model configurations show that the bending of the wheelset has a strong impact on the contact.
The second scenario is the permanent hunting of the vehicle. The results show that the structural
flexibilities of the wheelsets and the track can have a strong impact on the running behaviour. If
the flexibilities are taken into account, then the lateral displacement of the wheelset grows and the
critical speed, i.e. the lowest running speed, at which the permanent hunting starts, is reduced.
The influence of the structural flexibilities of the wheelsets and the track on the running behaviour
is stronger if the lateral forces are higher. Such high lateral forces occur especially for a high
conicity, which leads to a high hunting frequency and thereby high lateral accelerations, and for
a high friction coefficient in the wheel rail contact. With lower friction coefficients and lower
conicity the impact of the structural flexibilities decreases.

Although it has not been investigated in this work, the model also provides a simultaneous cal-
culation of the wear occurring in the contact due to the refined modelling of the key components
of vehicle-track interaction. Usually, the wear is determined in a post-processing of a multibody
simulation. Here, models with different detailing and accuracy are used, which can cause problems
regarding the adaptation. In the new model, the contact problem is numerically solved during the
simulation providing a quite precise determination of the stress distribution in the contact, which
is required for the determination of wear. The investigation of wear is an important topic, since
this is relevant for the economics of the entire system “railway” consisting of the rolling stock
and the infrastructure. Therefore, the new model may lay a new base and new possibilities for the
investigation and optimization of the entire system “railway”
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Appendix A

Mathematical basics

A.1 Summation

A sum of elements Xk is given by:

kmax

∑
k=kmin

Xk = Xkmin +Xkmin+1 + . . .+Xkmax−1 +Xkmax, k,kmin,kmax ∈ Z, kmin ≤ k ≤ kmax (A.1.1)

Here, k is the summation index; its range is limited by the lower bound kmin and the upper bound
kmax. In some cases it is useful to adapt the summation index. A frequently used adaptation is
the shifting of the summation index; Here, a new summation index l is introduced, for which it is
valid:

l = k+ c⇔ k = l− c, c, l ∈ Z (A.1.2)

The range of the new summation index l is determined in the following way:

kmin ≤ k = l− c≤ kmax⇒ kmin + c≤ l ≤ kmax + c (A.1.3)

Based on (A.1.2) and (A.1.3)
kmax

∑
k=kmin

Xk =
kmax+c

∑
l=kmin+c

Xl−c (A.1.4)

Another possible adaptation is to change the sign of the summation index; here, the following
substitution is used:

l =−k, kmin ≤ k ≤ kmax⇒−kmin ≥−k = l ≥−kmax⇒−kmax ≤ l ≤−kmin (A.1.5)

Generally, the upper bound has to be greater or equal the lower bound. Since the addition is a
commutative operation, the sequence of the summands does not affect the result. Thereby, it can
be formulated:

kmax

∑
k=kmin

Xk =
−kmin

∑
l=−kmax

X−l (A.1.6)

Furthermore, a sum can be split up in the following way:

kmin ≤ k0 ≤ kmax−1⇒
kmax

∑
k=kmin

Xk =
k0

∑
k=kmin

Xk +
kmax

∑
k=k0+1

Xk (A.1.7)
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If the lower bound kmin and the upper bound kmax only differ by the sign, i.e.:

kmax =−kmin = k̂ > 0 (A.1.8)

then the sum can be reformulated by splitting it up into two partial sums and a single summand,
applying the substitutions l =−k and l = k to the first and the second partial sum and merging the
two partial sums. Thereby, it is obtained:

k̂

∑
k=−k̂

Xk =
−1

∑
k=−k̂

Xk +X0 +
k̂

∑
k=1

Xk =
k̂

∑
l=1

X−l +X0 +
k̂

∑
l=1

X−l = X0 +
k̂

∑
l=1

(Xl +X−l) (A.1.9)

This transformation of the sum is particularly useful if there is a special relation between the
summands Xl and X−l , e.g. Xl = X−l or Xl =−X−l .

A.2 Complex numbers

A complex number z ∈ C can be expressed in the following way:

z = a+ ib = ℜz+ iℑz, a,b ∈ R, a = ℜz, b = ℑz, i2 =−1 (A.2.10)

Here, a is the real part of z, b is the imaginary part of z, and i is the imaginary unit. For each
complex number z, the geometric sum of the real part and the imaginary part is defined as its
absolute value |z|:

|z|=
√

ℜz2 +ℑz2, |z| ∈ R (A.2.11)

The addition and the subtraction of two complex numbers z1 and z2 are given by:

z1 + z2 = ℜz1 + iℑz1︸ ︷︷ ︸
z1

+ℜz2 + iℑz2︸ ︷︷ ︸
z2

= ℜz1 +ℜz2︸ ︷︷ ︸
ℜ(z1+z2)

+i(ℑz1 +ℑz2)︸ ︷︷ ︸
ℑ(z1+z2)

(A.2.12)

z1− z2 = ℜz1 + iℑz1︸ ︷︷ ︸
z1

−(ℜz2 + iℑz2)︸ ︷︷ ︸
z2

= ℜz1−ℜz2︸ ︷︷ ︸
ℜ(z1−z2)

+i(ℑz1−ℑz2)︸ ︷︷ ︸
ℑ(z1−z2)

(A.2.13)

It can be seen that the real parts and the imaginary parts can be added and subtracted separately.

ℜ(z1 + z2) = ℜz1 +ℜz2, ℑ(z1 + z2) = ℑz1 +ℑz2 (A.2.14)
ℜ(z1− z2) = ℜz1−ℜz2, ℑ(z1− z2) = ℑz1−ℑz2 (A.2.15)

By applying the relation i2 =−1 the product of two complex numbers z1 and z2 is obtained to:

z1 z2 = (ℜz1 + iℑz1)︸ ︷︷ ︸
z1

(ℜz2 + iℑz2)︸ ︷︷ ︸
z2

= ℜz1 ℜz2 + iℜz1 ℑz2 + iℑz1 ℜz2 + i2 ℑz1 ℑz2

= ℜz1 ℜz2−ℑz1 ℑz2︸ ︷︷ ︸
ℜ(z1 z2)

+i(ℜz1 ℑz2 +ℑz1 ℜz2)︸ ︷︷ ︸
ℑ(z1 z2)

(A.2.16)

The complex conjugate z of a complex number z is obtained by changing the sign of the imaginary
part:

z = ℜz+ iℑz⇒ z = ℜz− iℑz (A.2.17)
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From this it follows for the sum and the difference and the product of a complex number z and its
conjugate complex z:

z+ z = ℜz+ iℑz︸ ︷︷ ︸
z

+ℜz− iℑz︸ ︷︷ ︸
z

= 2ℜz (A.2.18)

z− z = ℜz+ iℑz︸ ︷︷ ︸
z

−(ℜz− iℑz)︸ ︷︷ ︸
z

= 2iℑz (A.2.19)

The product of z and z is obtained to:

zz = (ℜz+ iℑz)︸ ︷︷ ︸
z

(ℜz− iℑz)︸ ︷︷ ︸
z

= ℜz2− i2ℑz2 = ℜz2 +ℑz2⇒
√

zz = |z| (A.2.20)

For the sum and the difference of two complex conjugates z1 and z2 it is valid:

z1 + z2 = ℜz1− iℑz1︸ ︷︷ ︸
z1

+ℜz2− iℑz2︸ ︷︷ ︸
z2

= ℜz1 +ℜz2︸ ︷︷ ︸
ℜ(z1+z2)

−i(ℑz1 +ℑz2)︸ ︷︷ ︸
ℑ(z1+z2)

= z1 + z2 (A.2.21)

z1− z2 = ℜz1− iℑz1︸ ︷︷ ︸
z1

−(ℜz2− iℑz2)︸ ︷︷ ︸
z2

= ℜz1−ℜz2︸ ︷︷ ︸
ℜ(z1−z2)

−i(ℑz1−ℑz2)︸ ︷︷ ︸
ℑ(z1−z2)

= z1− z2 (A.2.22)

The evaluation of the product leads to:

z1 z2 = (ℜz1− iℑz1)︸ ︷︷ ︸
z1

(ℜz2− iℑz2)︸ ︷︷ ︸
z2

= ℜz1 ℜz2− iℜz1 ℑz2− iℑz1 ℜz2 + i2 ℑz1 ℑz2

= ℜz1 ℜz2−ℑz1 ℑz2︸ ︷︷ ︸
ℜ(z1 z2)

−i(ℜz1 ℑz2 +ℑz1 ℜz2)︸ ︷︷ ︸
ℑ(z1 z2)

= z1 z2 (A.2.23)

It turns out the addition, the subtraction and the multiplication on the one hand and the conjugation
on the other hand can be carried out independently, i.e. the sum, the difference and the product
of two complex conjugates are equal to the complex conjugates of the sum, the difference and the
product, respectively. By combining the relations it is obtained:

z1 z2 + z3 z4 = z1 z2 + z3 z4 = z1 z2 + z3 z4 (A.2.24)
z1 z2− z3 z4 = z1 z2− z3 z4 = z1 z2− z3 z4 (A.2.25)

A.3 Exponential function for complex exponents

For the exponential function it is valid:

z ∈ C : ez = eℜz+iℑz = eℜz eiℑz (A.3.26)

The function eiℑz, which has an imaginary exponent, is evaluated by applying Euler’s relation:

φ ∈ R : eiφ = cosφ+ i sinφ⇒ℜeiφ = cosφ, ℑeiφ = sinφ (A.3.27)

By applying the symmetry properties of the sine function and of the cosine function it is obtained:

e−iφ = cos(−φ)+ i sin(−φ) = cosφ− i sinφ = ℜeiφ− iℑeiφ = eiφ⇒ e−iφ = eiφ (A.3.28)
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Based on this, the functions cosφ and sinφ can be expressed in the following way:

eiφ + e−iφ = cosφ+ i sinφ+ cosφ− i sinφ = 2cosφ ⇒ cosφ =
eiφ + e−iφ

2
(A.3.29)

eiφ− e−iφ = cosφ+ i sinφ− (cosφ− i sinφ) = 2isinφ⇒ sinφ =
eiφ− e−iφ

2i
(A.3.30)

By applying the relation:

i2 =−1⇒ 1 =−i2⇒ i−1 =−i2 · i−1 =−i (A.3.31)

the expression (A.3.30) can be reformulated in the following way:

sinφ =
eiφ− e−iφ

2i
= i

e−iφ− eiφ

2
(A.3.32)

For the sine function and for the cosine function it is valid:

m ∈ Z : sin(2πm) = 0, cos(2πm) = 1 (A.3.33)

The cosine function cosφ assumes the value 1 if and only if φ is an integer multiple of 2π. From
this, it follows:

m ∈ Z⇔ e2πm i = cos(2πm)︸ ︷︷ ︸
1

+i sin(2πm)︸ ︷︷ ︸
0

= 1 (A.3.34)

It should be pointed out that the deduction can be made in both directions: If m is an integer,
then the expression e2πm i is equal to 1. Conversely, it can be deduced from e2πm i = 1 that m is an
integer.

A.4 Polynomial interpolation

If a function f (ξ) is given for discrete arguments ξ i, an interpolation is used to determine the
functions for other arguments ξ 6= ξ i than the given ones. One method for this purpose is the
interpolation using Lagrangian polynomials `k(ξ). Here, the function f (ξ) is described in the
following way:

f (ξ) =
N

∑
i=1

f (ξ i)`i(ξ) (A.4.35)

It should be noted that the indexing is arbitrary, i.e. the range of i does not necessarily have to start
at i = 1. The interpolation polynomials are chosen in such a way that it is valid:

`i(ξk) =

{
1 for i = k
0 for i 6= k (A.4.36)

If the arguments ξ1,ξ2, . . . ,ξ i−1,ξ i,ξ i+1, . . . ,ξn−1,ξn are given, then the polynomial `i(x), which
fulfills the criterion (A.4.36) is constructed in the following way:

`i(x) =
ξ−ξ1

ξ i−ξ1
· ξ−ξ2

ξ i−ξ2
· . . . · ξ−ξ i−1

ξ i−ξ i−1
· ξ−ξ i+1

ξ i−ξ i+1
· . . . · ξ−ξn−1

ξ i−ξn−1
· ξ−ξn

ξ i−ξn
(A.4.37)
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For ξ = ξk, k 6= i, the linear factor ξ−ξk vanishes, so that the fraction ξ−ξk
ξ i−ξk

and thereby the
complete product are zero. For ξ = ξ i the numerator and the denominator for each fraction are
equal, so that each fraction and thereby the complete product is equal to 1.

The interpolation is also helpful for the approximation of the derivative f ′(ξ), since the poly-
nomials `i(ξ) are continuous functions and can therefore be differentiated. Based on (A.4), the
derivative f ′(ξ) is obtained to:

f ′(ξ) =
d f (ξ)

dξ
=

N

∑
i=1

f (ξ i)`
′
i(ξ) (A.4.38)

The interpolation can also be applied to vectors in order to describe an interpolation curve between
discrete points within space. Here, the variable ξ is used as a curve parameter and the scalar values
f (ξ i) are replaced by the vectors ri, which indicate the position of the i-th point within space.
Thereby, the curve is described by:

r(ξ) =
N

∑
i=1

ri `i(ξ) (A.4.39)

In this case, it is reasonable to use “simple” values for the parameter ξ like e.g. ξ = i; in this
case, however, the sequence of the given points is important. For instance, a spatial curve shall be
described, which successively passes through three points P−1, P0 and P1 described by the three
vectors r−1, r0 and r1. By using the arguments ξi = i the polynomials `i(ξ) are obtained to:

`−1(ξ) =
ξ−ξ0

ξ−1−ξ0

ξ−ξ1

ξ−1−ξ1
=

ξ−0
−1−0

ξ−1
−1−1

=
1
2

ξ(ξ−1) =
1
2

ξ
2− 1

2
ξ (A.4.40)

`0(ξ) =
ξ−ξ−1

ξ0−ξ−1

ξ−ξ1

ξ0−ξ1
=

ξ− (−1)
0− (−1)

ξ−1
0−1

=−(ξ+1)(ξ−1) =−ξ
2 +1 (A.4.41)

`1(ξ) =
ξ−ξ−1

ξ1−ξ−1

ξ−ξ0

ξ1−ξ0
=

ξ− (−1)
1− (−1)

ξ−0
1−0

=
1
2
(ξ+1)ξ =

1
2

ξ
2 +

1
2

ξ (A.4.42)

The tangential vector t is determined by deriving the vector function r(ξ), which describes the
curve, with respect to the curve parameter ξ. For the derivatives `′i(ξ) of the polynomials it is
obtained:

`−1(ξ) =
1
2

ξ
2− 1

2
ξ⇒ `′−1(ξ) = ξ− 1

2
(A.4.43)

`0(ξ) =−ξ
2 +1⇒ `′0(ξ) =−2ξ (A.4.44)

`1(ξ) =
1
2

ξ
2 +

1
2

ξ⇒ `′1(ξ) = ξ+
1
2

(A.4.45)

In total, the curve and the tangential vector are described by the following formulations:

r(ξ) =
1
2
(
ξ

2−ξ
)

r−1 +
(
−ξ

2 +1
)

r0 +
1
2
(
ξ

2 +ξ
)

r1 (A.4.46)

t(ξ) = r ′(ξ) =
(

ξ− 1
2

)
r−1−2ξr0 +

(
ξ+

1
2

)
r1 (A.4.47)

For the tangential vector at the point P0 it is obtained:

t(ξ = 0) =−1
2

r−1 +
1
2

r1 =
1
2
(r1− r−1) (A.4.48)



Appendix A. Mathematical basics 333

A.5 Matrices and vectors

Matrices and vectors are a very useful notation for many mathematical problems.

In the following sections, some important relations, which are used in this work, shall be developed
and considered.

A.5.1 Vector product

The vector product or cross product is defined only for vectors of the three dimensional space. The
vector product of the two vectors a ∈ R3 and b ∈ R3 is given by:

a×b =

a1
a2
a3

×
b1

b2
b3

=

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1

 (A.5.49)

By changing the sequence of the vectors it is obtained:

b×a =

b1
b2
b3

×
a1

a2
a3

=

b2a3−b3a2
b3a1−b1a3
b1a2−b2a1

=−

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1

=−a×b (A.5.50)

From this, it follows:

b×a =−a×b⇒ a×a =−a×a⇒ 2a×a = 0⇒ a×a = 0 (A.5.51)

The norm of the vector product is obtained to:

(a×b) · (a×b) = (a2b3−a3b2)
2 +(a3b1−a1b3)

2 +(a1b2−a2b1)
2 (A.5.52)

|a×b|=
√

(a×b) · (a×b) = (a2b3−a3b2)
2 +(a3b1−a1b3)

2 +(a1b2−a2b1)
2 (A.5.53)

The three summands can be evaluated according to the following scheme

(aibk−akbi)
2 = ai

2bk
2−2aibkakbi +ak

2bi
2 = ai

2bk
2 +ak

2bi
2−aibiakbk−akbkaibi (A.5.54)

Based on this scheme it is obtained:

(a×b) · (a×b) = (a2b3−a3b2)
2 +(a3b1−a1b3)

2 +(a1b2−a2b1)
2

= a2
2b3

2 +a3
2b2

2−a2b2a3b3−a3b3a2b2

+a3
2b1

2 +a1
2b3

2−a3b3a1b1−a1b1a3b3

+a1
2b2

2 +a2
2b1

2−a1b1a2b2−a2b2a1b1

= a1
2 (b2

2 +b3
2)−a1b1 (a2b2 +a3b3)

+a2
2 (b1

2 +b3
2)−a2b2 (a1b1 +a3b3)

+a3
2 (b1

2 +b2
2)−a3b3 (a1b1 +a2b2) (A.5.55)

For further evaluation terms of the following structure are added:

0 = (aibi)
2− (aibi)

2 = ai
2bi

2− (aibi)
2 (A.5.56)
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Using this leads to:

(a×b) · (a×b) = a1
2 (b2

2 +b3
2)+a1

2b1
2− (a1b1)

2−a1b1 (a2b2 +a3b3)

+a2
2 (b1

2 +b3
2)+a2

2b2
2− (a2b2)

2−a2b2 (a1b1 +a3b3)

+a3
2 (b1

2 +b2
2)+a3

2b3
2− (a3b3)

2−a3b3 (a1b1 +a2b2)

= a1
2 (b1

2 +b2
2 +b3

2)−a1b1 (a1b1 +a2b2 +a3b3)

+a2
2 (b1

2 +b2
2 +b3

2)−a2b2 (a1b1 +a2b2 +a3b3)

+a3
2 (b1

2 +b2
2 +b3

2)−a3b3 (a1b1 +a2b2 +a3b3)

=
(
a1

2 +a2
2 +a3

2)(b1
2 +b2

2 +b3
2)

−(a1b1 +a2b2 +a3b3)(a1b1 +a2b2 +a3b3)

= |a|2|b|2− (a ·b)2 (A.5.57)

In total, it is valid for the norm:

|a×b|=
√

(a×b) · (a×b) =
√
|a|2|b|2− (a ·b)2 (A.5.58)

A.5.2 Scalar triple product

The scalar triple product is defined for vectors of the three-dimensional space. For the three vectors
a ∈ R3, b ∈ R3 and c ∈ R3 the scalar triple product can be formulated in the following way:

a · (b× c) =

a1
a2
a3

 ·
b1

b2
b3

×
c1

c2
c3

=

a1
a2
a3

 ·
b2c3−b3c2

b3c1−b1c3
b1c2−b2c1


= a1 (b2c3−b3c2)+a2 (b3c1−b1c3)+a3 (b1c2−b2c1)

= a1b2c3 +a2b3c1 +a3b1c2−a3b2c1−a2b1c3−a1b3c2 (A.5.59)

An alternative method to evaluate the scalar triple product is to compute the determinant of the
matrix composed of the three column vectors a, b and c by using the rule of Sarrus:

det
[
a b c

]
= det

a1 b1 c1
a2 b2 c2
a3 b3 c3


= a1b2c3 +b1a2c3 + c1a2b3−a3b2c1−b3c2a1− c3a2b1

= a1b2c3 +a2b1c3 +a2b3c1−a3b2c1−a2b1c3−a1b3c2 (A.5.60)

A cyclic permutation of the vectors leads to the following result:

b · (c×a) =

b1
b2
b3

 ·
c1

c2
c3

×
a1

a2
a3

=

b1
b2
b3

 ·
c2a3− c3a2

c3a1− c1a3
c1a2− c2a1


= (c2a3− c3a2)b1 +(c3a1− c1a3)b2 +(c1a2− c2a1)b3

= a1b2c3 +a2b3c1 +a3b1c2−a3b2c1−a2b1c3−a1b3c2 (A.5.61)

c · (a×b) =

c1
c2
c3

 ·
a1

a2
a3

×
b1

b2
b3

=

c1
c2
c3

 ·
a2b3−a3b2

a3b1−a1b3
a1b2−a2b1


= c1 (a2b3−a3b2)+ c2 (a3b1−a1b3)+ c3 (a1b2−a2b1)

= a1b2c3 +a2b3c1 +a3b1c2−a3b2c1−a2b1c3−a1b3c2 (A.5.62)
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Therefore, it is valid:
a · (b× c) = b · (c×a) = c · (a×b) (A.5.63)

If two vectors of the scalar triple product are equal, then the product vanishes:

(a×b) ·a = (a×a)︸ ︷︷ ︸
0

·b = 0 (A.5.64)

A.5.3 Vector triple product

The vector triple product is based on the vector product so that it can only be applied to three-
dimensional vectors. The vector triple product x of the vectors a ∈ R3, b ∈ R3 and c ∈ R3 is given
by:

x = a× (b× c) (A.5.65)

The evaluation of the product leads to:

x =

a1
a2
a3

×
b1

b2
b3

×
c1

c2
c3

=

a1
a2
a3

×
b2 c3−b3 c2

b3 c1−b1 c3
b1 c2−b2 c1


=

a2 (b1 c2−b2 c1)−a3 (b3 c1−b1 c3)
a3 (b2 c3−b3 c2)−a1 (b1 c2−b2 c1)
a1 (b3 c1−b1 c3)−a2 (b2 c3−b3 c2)

 (A.5.66)

By factoring out bi and ci in the i-th component it is obtained:

x =

a2 (b1 c2−b2 c1)−a3 (b3 c1−b1 c3)
a3 (b2 c3−b3 c2)−a1 (b1 c2−b2 c1)
a1 (b3 c1−b1 c3)−a2 (b2 c3−b3 c2)

=

a2 b1 c2−a2 b2 c1−a3 b3 c1 +a3 b1 c3
a3 b2 c3−a3 b3 c2−a1 b1 c2 +a1 b2 c1
a1 b3 c1−a1 b1 c3−a2 b2 c3 +a2 b3 c2


=

b1 (a2 c2 +a3 c3)− c1 (a2 b2 +a3 b3)
b2 (a1 c1 +a3 c3)− c2 (a1 b1 +a3 b3)
b3 (a1 c1 +a2 c2)− c3 (a1 b1 +a2 b2)

 (A.5.67)

Adding aibici− aibici = 0 to the i-th component of the vector and again factoring out bi and ci
leads to:

x =

b1 (a2 c2 +a3 c3)+a1 b1 c1−a1 b1 c1− c1 (a2 b2 +a3 b3)
b2 (a1 c1 +a3 c3)+a2 b2 c2−a2 b2 c2− c2 (a1 b1 +a3 b3)
b3 (a1 c1 +a2 c2)+a3 b3 c3−a3 b3 c3− c3 (a1 b1 +a2 b2)


=

b1 (a1 c1 +a2 c2 +a3 c3)− c1 (a1 b1 +a2 b2 +a3 b3)
b2 (a1 c1 +a2 c2 +a3 c3)− c2 (a1 b1 +a2 b2 +a3 b3)
b3 (a1 c1 +a2 c2 +a3 c3)− c3 (a1 b1 +a2 b2 +a3 b3)

 (A.5.68)

The terms contained in the brackets can be interpreted as the scalar products a · c and a · b. By
splitting the vector into two separate vectors and factoring out these terms, it is obtained:

x =

b1 (a1 c1 +a2 c2 +a3 c3)− c1 (a1 b1 +a2 b2 +a3 b3)
b2 (a1 c1 +a2 c2 +a3 c3)− c2 (a1 b1 +a2 b2 +a3 b3)
b3 (a1 c1 +a2 c2 +a3 c3)− c3 (a1 b1 +a2 b2 +a3 b3)


=

b1
b2
b3

(a1 c1 +a2 c2 +a3 c3)−

c1
c2
c3

(a1 b1 +a2 b2 +a3 b3)

= b(a · c)− c(a ·b) (A.5.69)
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In total, the vector triple product can be expressed in the following way:

a× (b× c) = b(a · c)− c(a ·b) (A.5.70)

A.6 Evaluation of geometric series

A geometric series sn is given in the following way:

sn =
n−1

∑
j=0

q j, j ∈ N0, n ∈ N, q ∈ C, q 6= 0 (A.6.71)

The case q = 0 is excluded because the expression 00 is not defined. The case q = 1 can be evalu-
ated immediately; since the sum consists of n summands, it is valid:

j ∈ N0 : q = 1⇒ q j = 1 j = 1⇒ sn =
n−1

∑
j=0

q j =
n−1

∑
j=0

1 = n (A.6.72)

For the case q 6= 0∧q 6= 1 the expression sn+1 has to be considered. This expression can be for-
mulated in the following way:

sn+1 =
n

∑
j=0

q j =
n−1

∑
j=0

q j +qn = sn +qn (A.6.73)

Alternatively, the sum sn can be split up in a different way; after this, the shift J = j−1 is applied
for the summation index. This leads to:

sn+1 =
n

∑
j=0

q j = q0 +
n

∑
j=1

q j = q0 +q
n

∑
j=1

q j−1 = 1+q
n−1

∑
J=0

qJ = 1+qsn (A.6.74)

By setting the two expressions for sn+1 equal it is obtained for sn:

sn+1 = 1+qsn = sn +qn⇒ 1−qn = sn−qsn = sn (1−q)⇒ sn =
1−qn

1−q
(A.6.75)

In total it is valid:
n−1

∑
j=0

q j =

{
n for q = 1

1−qn

1−q for q 6= 1∧q∧0 (A.6.76)

Based on this, the sum of the powers ζp j, p ∈ Z, of a root of unity can be evaluated. It is valid:

n−1

∑
j=0

ζ
p j =

n−1

∑
j=0

(ζp) j⇒ q = ζ
p =

(
e

2π

n i
)p

= e2π
p
n i = cos

(
2π

p
n

)
+ i sin

(
2π

p
n

)
(A.6.77)

For an exponential function ez having a complex argument z ∈ C it is valid:

z ∈ C : ez = eℜz+iℑz = eℜz eiℑz = eℜz (cos(ℑz)+ i sin(ℑz)) (A.6.78)

First, the case q = ζp = 1 shall be considered. For the sine function and for the cosine function it
is valid:

m ∈ Z : cos(2πm) = 1, sin(2πm) = 0 (A.6.79)
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From this, it follows:

p
n
∈ Z⇒ q = ζ

p = cos
(

2π
p
n

)
+ i sin

(
2π

p
n

)
= 1 (A.6.80)

Since p is an integer, the power ζpn can be evaluated based on (A.6.79); this leads to:

p ∈ Z : ζ
pn =

(
e

2π

n i
)pn

= e2π p i = cos(2π p)+ i sin(2π p) = 1 (A.6.81)

Using this relation, it is obtained for q = ζp 6= 1:

q = ζ
p 6= 1 :

1− (ζp)n

1−ζp =
1−ζpn

1−ζp =
1−1
1−ζp = 0 (A.6.82)

In total, the evaluation of the sum of ζp j over 0≤ j ≤ n−1 can be formulated in the following
way:

n−1

∑
j=0

ζ
p j =

n−1

∑
j=0

e2π
p
n i j =

{
n for p

n ∈ Z
0 for p

n /∈ Z (A.6.83)
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Description of a continuum in cylindrical
coordinates

In order to describe the structural deformations of a axisymmetric structure, it is obvious to use
cylindrical coordinates. In the present case, the 2-axis of the structure is chosen as the axis of sym-
metry. Thereby, the coordinate y is used as the axial coordinate and thereby remains unchanged,
while the cartesian coordinates y and z are replaced by the polar coordinates r and φ in the follow-
ing way:

x = r sinφ, z = r cosφ (B.0.1)

Furthermore, also the description of the displacement is adapted to the cylindrical coordinates so
that the displacement is expressed by the radial displacement R in the direction of r, the tangential
displacement T in the circumferential direction described by φ and the axial displacement V in the
direction of y. For the relation between the displacements U , V and W in the direction of cartesian
coordinates on the one hand and the displacements R, T and V in the direction of the cylindrical
coordinates on the other hand it is valid:

U = T cosφ+Rsinφ, W = Rcosφ−T sinφ⇒

U
V
W


︸ ︷︷ ︸

w

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

T
V
R


︸ ︷︷ ︸

u

(B.0.2)

In the following sections, the description of an axisymmetric flexible structure using cylindrical
coordinates will be developed.

B.1 Derivatives

Let f be a function depending on n variables yi. Furthermore, the variables yi are considered as
functions of the n variables x j.

f = f (y1, . . . ,yn), yi = yi(x1, . . . ,xn) (B.1.3)

Then, the derivative for the function f with respect to x j is obtained by applying the chain rule:

∂ f
∂x j

=
n

∑
i=1

∂ f
∂yi

∂yi

∂x j
=

∂ f
∂y1

∂y1

∂x j
+ . . .+

∂ f
∂yn

∂yn

∂x j
=
[

∂y1
∂x j

. . . ∂yn
∂x j

]
︸ ︷︷ ︸

J


∂ f
∂y1
...

∂ f
∂yn

 (B.1.4)

338
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By arranging the derivatives ∂ f
∂x j

in a vector and the row vectors containing the derivatives ∂yi
∂x j

in a
matrix, it is obtained: 

∂ f
∂x1...
∂ f
∂xn

=


∂y1
∂x1

. . . ∂yn
∂x1...
...

∂y1
∂xn

. . . ∂yn
∂xn




∂ f
∂y1
...

∂ f
∂yn

 (B.1.5)

Here, the matrix J is the Jacobian containing the derivatives ∂yi
∂x j

.

In the present case, the relation between the cartesian coordinates x and z on the one hand and the
polar coordinates r and φ on the other hand is given by:

x = r sinφ, z = r cosφ (B.1.6)

The coordinate y remains unchanged. Based on (B.1.5), the relation between the derivatives is
formulated in the following way:

∂ f
∂φ

∂ f
∂y
∂ f
∂r

=


∂x
∂φ

∂y
∂φ

∂z
∂φ

∂x
∂y

∂y
∂y

∂z
∂y

∂x
∂r

∂y
∂r

∂z
∂r


︸ ︷︷ ︸

J


∂ f
∂x
∂ f
∂y
∂ f
∂z

=

r cosφ 0 −r sinφ

0 1 0
sinφ 0 cosφ




∂ f
∂x
∂ f
∂y
∂ f
∂z

 (B.1.7)

In this case, the Jacobian J can be formulated as a product of a diagonal matrix and an elementary
rotation matrix:

J =

r cosφ 0 −r sinφ

0 1 0
sinφ 0 cosφ

=

 r 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

diag(r,1,1)

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ


︸ ︷︷ ︸

S2(−φ)

(B.1.8)

Generally, the inverse of a diagonal matrix is a diagonal matrix, where the diagonal elements have
the reciprocal values of the elements of the original matrix:

diag(d1,d2, . . . ,dn−1,dn)
−1 = diag

(
1
d1

,
1
d2

, . . . ,
1

dn−1
,

1
dn

)
(B.1.9)

The inverse of an elementary rotation matrix can be obtained by changing the sign of the rotation
angle:

SI(ϕ)
−1 = SI(−ϕ) (B.1.10)

Generally, it is valid for the inverse of a matrix product:

A = BC⇒ A−1 = C−1 B−1

A A−1 = B C C−1︸ ︷︷ ︸
I

B−1 = B B−1 = I (B.1.11)

Thereby, the inverse J−1 of the Jacobian J is obtained to:

J−1 = [diag(r,1,1)S2(−φ)]−1 = S2(−φ)−1 diag(r,1,1)−1

= S2(φ)diag
(

1
r
,1,1

)
=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

 1
r 0 0
0 1 0
0 0 1

 (B.1.12)
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Inserting this leads to:
∂ f
∂φ

∂ f
∂y
∂ f
∂r

= J


∂ f
∂x
∂ f
∂y
∂ f
∂z

 ⇒


∂ f
∂x
∂ f
∂y
∂ f
∂z

= J−1


∂ f
∂φ

∂ f
∂y
∂ f
∂r

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

 1
r 0 0
0 1 0
0 0 1




∂ f
∂φ

∂ f
∂y
∂ f
∂r



=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)


1
r

∂ f
∂φ

∂ f
∂y
∂ f
∂r

 (B.1.13)

From this, the following relations between the derivatives with respect to the cartesian coordinates
x and z on the one hand and those with respect to the polar coordinates r and φ on the other hand
are obtained:

∂ f
∂x

=
1
r

∂ f
∂φ

cosφ+
∂ f
∂r

sinφ,
∂ f
∂z

=−1
r

∂ f
∂φ

sinφ+
∂ f
∂r

cosφ (B.1.14)

Based on these relataions, the second partial derivatives with respect to x and z can be determined
by recursion. This leads to:

∂2 f
∂x2 =

∂

∂x

(
∂ f
∂x

)
=

1
r

∂

∂φ

(
1
r

∂ f
∂φ

cosφ− ∂ f
∂r

sinφ

)
cosφ− ∂

∂r

(
1
r

∂ f
∂φ

cosφ− ∂ f
∂r

sinφ

)
sinφ

=
1
r

(
1
r

∂2 f
∂φ2 cosφ− 1

r
∂ f
∂φ

sinφ− ∂2 f
∂r ∂φ

sinφ− ∂ f
∂r

cosφ

)
cosφ

−
(
− 1

r2
∂ f
∂φ

cosφ+
1
r

∂2 f
∂φ∂r

cosφ− ∂2 f
∂r2 sinφ

)
sinφ

=
1
r2

∂2 f
∂φ2 cos2

φ− 2
r

∂2 f
∂φ∂r

sinφ cosφ− 1
r

∂ f
∂r

cos2
φ+

∂2 f
∂r2 sin2

φ (B.1.15)

∂2 f
∂z2 =

∂

∂z

(
∂ f
∂z

)
=

1
r

∂

∂φ

(
1
r

∂ f
∂φ

sinφ+
∂ f
∂r

cosφ

)
sinφ+

∂

∂r

(
1
r

∂ f
∂φ

sinφ+
∂ f
∂r

cosφ

)
cosφ

=
1
r

(
1
r

∂2 f
∂φ2 sinφ+

1
r

∂ f
∂φ

cosφ+
∂2 f

∂r ∂φ
cosφ− ∂ f

∂r
sinφ

)
sinφ

+

(
− 1

r2
∂ f
∂φ

sinφ+
1
r

∂2 f
∂φ∂r

sinφ+
∂2 f
∂r2 cosφ

)
cosφ

=
1
r2

∂2 f
∂φ2 sin2

φ+
2
r

∂2 f
∂r ∂φ

sinφ cosφ− 1
r

∂ f
∂r

sin2
φ+

∂2 f
∂r2 cos2

φ (B.1.16)

From this, it follows:

∂2 f
∂x2 +

∂2 f
∂z2 =

1
r2

∂2 f
∂φ2 cos2

φ− 2
r

∂2 f
∂φ∂r

sinφ cosφ− 1
r

∂ f
∂r

cos2
φ+

∂2 f
∂r2 sin2

φ

+
1
r2

∂2 f
∂φ2 sin2

φ+
2
r

∂2 f
∂r ∂φ

sinφ cosφ− 1
r

∂ f
∂r

sin2
φ+

∂2 f
∂r2 cos2

φ

=
1
r2

∂2 f
∂φ2 (cos2

φ+ sin2
φ)− 1

r
∂ f
∂r

(cos2
φ+ sin2

φ)+
∂2 f
∂r2 (sin2

φ+ cos2
φ)

=
1
r2

∂2 f
∂φ2 −

1
r

∂ f
∂r

+
∂2 f
∂r2 (B.1.17)
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Thereby, the Laplace operator for the cylindrical coordinates is obtained to:

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 =

1
r2

∂2 f
∂φ2 +

∂2 f
∂y2 +

∂2 f
∂r2 −

1
r

∂ f
∂r

(B.1.18)

B.2 Strains

In section B.1 the following relation between the derivatives of a function f with respect to cylin-
drical coordinates on the one hand and those with respect to cartesian coordinates on the other
hand has been derived:

∂ f
∂φ

∂ f
∂y
∂ f
∂r

=

r cosφ 0 −r sinφ

0 1 0
sinφ 0 cosφ




∂ f
∂x
∂ f
∂y
∂ f
∂z

=

 r 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

diag(r,1,1)

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ


︸ ︷︷ ︸

S2(−φ)


∂ f
∂x
∂ f
∂y
∂ f
∂z

 (B.2.19)

The transposition of this relation leads to:

[
∂ f
∂φ

∂ f
∂y

∂ f
∂r

]
=
[

∂ f
∂x

∂ f
∂y

∂ f
∂z

] cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(−φ)T=S2(φ)

 r 0 0
0 1 0
0 0 1

 (B.2.20)

Inserting the displacements U , V and W in the directions of cartesian coordinates into the trans-
posed relation and arranging the row vectors to a matrix gives the following result:

∂U
∂φ

∂U
∂y

∂U
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂W
∂φ

∂W
∂y

∂W
∂r

=


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z


︸ ︷︷ ︸

Fw

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

 r 0 0
0 1 0
0 0 1

= Fw S2(φ)

 r 0 0
0 1 0
0 0 1


(B.2.21)

Here, the matrix Fw denotes the displacement gradient for the description using cartesian coordi-
nates, as given e.g. by Schiehlen and Eberhard [64], [63]. The index w corresponds to the vector
w, which describes the displacements in the directions of cartesian coordinates.

The left-hand side of (B.2.21) can also be formulated in an alternative way. Here, the relation
between the vectors w and u describing the displacements in cartesian and cylindrical coordinates,
respectively, is used: U

V
W


︸ ︷︷ ︸

w

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

T
V
R


︸ ︷︷ ︸

u

(B.2.22)

The derivatives of the displacement vector w with respect to the cylindrical coordinates φ, y and r
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are obtained to:

∂w
∂φ

=
∂

∂φ
(S2(φ)u) =

∂S2

∂φ
(φ)u+S2(φ)

∂u
∂φ

= S2(φ)S2(−φ)︸ ︷︷ ︸
I

∂S2(φ)

∂φ
u+S2(φ)

∂u
∂φ

= S2(φ)

[
S2(−φ)

∂S2(φ)

∂φ
u+

∂u
∂φ

]
(B.2.23)

∂w
∂y

=
∂

∂y
(S2(φ)u) = S2(φ)

∂u
∂y

(B.2.24)

∂w
∂r

=
∂

∂r
(S2(φ)u) = S2(φ)

∂u
∂r

(B.2.25)

Here, the result of the derivative (B.2.23) is modified in order to factor the matrix S2(φ) out. The
evaluation of the matrix product contained in (B.2.23) gives:

S2(φ) =

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

 , ∂S2(φ)

∂φ
=

−sinφ 0 cosφ

0 0 0
−cosφ 0 −sinφ


S2(−φ)

∂S2(φ)

∂φ
=

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

−sinφ 0 cosφ

0 0 0
−cosφ 0 −sinφ


=

−cosφsinφ+ sinφcosφ 0 cos2 φ+ sin2
φ

0 0 0
−sin2

φ− cos2 φ 0 sinφcosφ− cosφsinφ

=

 0 0 1
0 0 0
−1 0 0


(B.2.26)

The evaluation of the derivatives of the vector w with respect to the cylindrical coordinates leads
to the following expressions:

∂w
∂φ

=


∂U
∂φ

∂V
∂φ

∂W
∂φ

= S2(φ)


 0 0 1

0 0 0
−1 0 0

T
V
R

+


∂T
∂φ

∂V
∂φ

∂R
∂φ


= S2(φ)


∂T
∂φ

+R
∂V
∂φ

∂R
∂φ
−T

 (B.2.27)

∂w
∂y

=


∂U
∂y
∂V
∂y
∂W
∂y

= S2(φ)


∂T
∂y
∂V
∂y
∂R
∂y

 (B.2.28)

∂w
∂r

=

 ∂U
∂r
∂V
∂r
∂W
∂r

= S2(φ)

 ∂T
∂r
∂V
∂r
∂R
∂r

 (B.2.29)

By arranging the three column vectors in a matrix it is obtained:
∂U
∂φ

∂U
∂y

∂U
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂W
∂φ

∂W
∂y

∂W
∂r

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)


∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r

= S2(φ)


∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r


(B.2.30)
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The equations (B.2.21) and (B.2.30) have the same left-hand sides so that their right-hand sides
can be set equal. This leads to: cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)


∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r

=


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z


 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

 r 0 0
0 1 0
0 0 1


(B.2.31)

By using a left multiplication of the relation (B.2.31) with S2(−φ) the rotation matrix S2(φ) is
eliminated on the left-hand side:

S2(φ)


∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r

=


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z

S2(φ)

 r 0 0
0 1 0
0 0 1



⇒ S2(−φ)S2(φ)︸ ︷︷ ︸
I


∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r

= S2(−φ)


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z

S2(φ)

 r 0 0
0 1 0
0 0 1

 (B.2.32)

Next, the relation (B.2.32) is transformed by a right multiplication with the inverse diagonal matrix.
Thereby, the coordinate r is eliminated on the right-hand side of the relation:

∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r

= S2(−φ)


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z

S2(φ)

 r 0 0
0 1 0
0 0 1



⇒


∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r


 1

r 0 0
0 1 0
0 0 1

= S2(−φ)


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z

S2(φ)

 r 0 0
0 1 0
0 0 1

 1
r 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

I
(B.2.33)

Finally, the following relation between the derivatives for cylindrical coordinates on the one hand
and for cartesian coordinates on the other hand can be formulated:

∂T
∂φ

+R ∂T
∂y

∂T
∂r

∂V
∂φ

∂V
∂y

∂V
∂r

∂R
∂φ
−T ∂R

∂y
∂R
∂r


 1

r 0 0
0 1 0
0 0 1

=


1
r

∂T
∂φ

+ R
r

∂T
∂y

∂T
∂r

1
r

∂V
∂φ

∂V
∂y

∂V
∂r

1
r

∂R
∂φ
− T

r
∂R
∂y

∂R
∂r


︸ ︷︷ ︸

Fu

= S2(−φ)


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z


︸ ︷︷ ︸

Fw

S2(φ)

(B.2.34)
Here, Fu is the displacement gradient for cylindrical coordinates; its index u corresponds to the
vector u describing the displacements in the direction of cylindrical coordinates. The relation can
be easily resolved for the gradient Fw by a left multiplication with S2(φ) and a right multiplication
with S2(−φ). As a result, it is obtained:

Fu = S2(−φ)Fw S2(φ)⇒ S2(φ)Fu S2(−φ) = S2(φ)S2(−φ)︸ ︷︷ ︸
I

Fw S2(φ)S2 (−φ)︸ ︷︷ ︸
I

= Fw (B.2.35)
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The transposition of the expressions (B.2.35) and (B.2.34) gives:

Fw = S2(φ)Fu S2(−φ) ⇒ Fw
T = S2(−φ)T Fu

T S2(φ)
T = S2(φ) Fu

T S2(−φ) (B.2.36)

Fu = S2(−φ)Fw S2(φ) ⇒ Fu
T = S2(φ)

T Fw
T S2(−φ)T = S2(−φ) Fw

T S2(φ) (B.2.37)

By adding the deformation tensor and the transposed deformation tensor, the symmetric strain
tensor G is obtained. Based on the relations (B.2.36) and (B.2.37) it is valid:

Gw = Fw + Fw
T = S2(φ)Fu S2(−φ)+S2(φ) Fu

T S2(−φ)

= S2(φ)
(
Fu + Fu

T)︸ ︷︷ ︸
Gu

S2(−φ) = S2(φ)Gu S2(−φ) (B.2.38)

Gu = Fu + Fu
T = S2(−φ)Fw S2(φ)+S2(−φ) Fw

T S2(φ)

= S2(−φ)
(
Fw + Fw

T)︸ ︷︷ ︸
Gw

S2(φ) = S2(−φ)Gw S2(φ) (B.2.39)

From the deformation tensors Fw and Fu, the elements of the strain tensors Gw and Gu are deter-
mined. It is valid:

Fw =


∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

∂W
∂x

∂W
∂y

∂W
∂z

 ⇒ Gw =

 2∂U
∂x

∂U
∂y + ∂V

∂x
∂U
∂z +

∂W
∂x

∂U
∂y + ∂V

∂x 2∂V
∂y

∂V
∂z +

∂W
∂y

∂U
∂z +

∂W
∂x

∂V
∂z +

∂W
∂y 2∂W

∂z

 (B.2.40)

Fu =


1
r

∂T
∂φ

+ R
r

∂T
∂y

∂T
∂r

1
r

∂V
∂φ

∂V
∂y

∂V
∂r

1
r

∂R
∂φ
− T

r
∂R
∂y

∂R
∂r

 ⇒ Gu =


2
r

∂T
∂φ

+ 2R
r

1
r

∂V
∂φ

+ ∂T
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r

1
r

∂V
∂φ

+ ∂T
∂y 2∂V

∂y
∂V
∂r +

∂R
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r

∂V
∂r +

∂R
∂y 2∂R

∂r

 (B.2.41)

In order to determine the relations between the strains for the formulation in the cartesian coordi-
nates on the one hand and in cylindrical coordinates on the other hand, the relations (B.2.38) and
(B.2.39) are used. It is valid:

Gw = S2(φ)Gu S2(−φ) (B.2.42)
Gu = S2(−φ)Gw S2(φ) (B.2.43)
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The evaluation is carried out using the following generalized scheme. For the product
S2(φ)AS2(−φ) of the rotation matrix S2(φ), a symmetric matrix A = AT and the inverse rotation
matrix S2(−φ) it is valid:

S2(φ)AS2(−φ) =

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ

a11 a12 a13
a12 a22 a23
a13 a23 a33

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ


=

0 0 0
0 a22 0
0 0 0

+
 0 a12 0

a12 0 a23
0 a23 0

cosφ+

 0 a23 0
a23 0 −a12
0 −a12 0

sinφ

+

a11 0 a13
0 0 0

a13 0 a33

cos2
φ+

 a33 0 −a13
0 0 0
−a13 0 a11

sin2
φ

+

 2a13 0 a33−a11
0 0 0

a33−a11 0 −2a13

sinφcosφ (B.2.44)

Using this scheme, the relations between the strains for cartesian coordinates and those for cylin-
drical coordinates can be now be determined. From the comparison of the elements of the matrices
it is obtained: 2∂U

∂x
∂U
∂y + ∂V

∂x
∂U
∂z +

∂W
∂x

∂U
∂y + ∂V

∂x 2∂V
∂y

∂V
∂z +

∂W
∂y

∂U
∂z +

∂W
∂x

∂V
∂z +

∂W
∂y 2∂W

∂z



= S2(φ)


2
r

∂T
∂φ

+ 2R
r

1
r

∂V
∂φ

+ ∂T
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r

1
r

∂V
∂φ

+ ∂T
∂y 2∂V

∂y
∂V
∂r +

∂R
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r

∂V
∂r +

∂R
∂y 2∂R

∂r

S2(−φ)

2
∂U
∂x

=
2
r

[
∂T
∂φ

+R
]

cos2
φ+2

∂R
∂r

sin2
φ+2

(
1
r

∂R
∂φ
− T

r
+

∂T
∂r

)
sinφcosφ

⇒ ∂U
∂x

=
1
r

[
∂T
∂φ

+R
]

cos2
φ+

∂R
∂r

sin2
φ+

(
1
r

∂R
∂φ
− T

r
+

∂T
∂r

)
sinφcosφ (B.2.45)

2
∂W
∂z

=
2
r

[
∂T
∂φ

+R
]

sin2
φ+2

∂R
∂r

cos2
φ−2

(
1
r

∂R
∂φ
− T

r
+

∂T
∂r

)
sinφcosφ

⇒ ∂W
∂z

=
1
r

[
∂T
∂φ

+R
]

sin2
φ+

∂R
∂r

cos2
φ−
(

1
r

∂R
∂φ
− T

r
+

∂T
∂r

)
sinφcosφ (B.2.46)

∂U
∂y

+
∂V
∂x

=

(
1
r

∂V
∂φ

+
∂T
∂y

)
cosφ+

(
∂V
∂r

+
∂R
∂y

)
sinφ (B.2.47)

∂V
∂z

+
∂W
∂y

=

(
∂V
∂r

+
∂R
∂y

)
cosφ−

(
1
r

∂V
∂φ

+
∂T
∂y

)
sinφ (B.2.48)

∂U
∂z

+
∂W
∂x

=

(
1
r

∂R
∂φ
− T

r
+

∂T
∂r

)(
cos2

φ− sin2
φ
)
+2
(

∂R
∂r
− 1

r
∂T
∂φ
− R

r

)
sinφcosφ

(B.2.49)
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The product S2(−φ)AS2(φ) can be derived from (B.2.44) by changing the sign of the angle φ.
This leads to:

S2(−φ)AS2(φ) =

0 0 0
0 a22 0
0 0 0

+
 0 a12 0

a12 0 a23
0 a23 0

cos(−φ)+

 0 a23 0
a23 0 −a12
0 −a12 0

sin(−φ)

+

a11 0 a13
0 0 0

a13 0 a33

cos2(−φ)+

 a33 0 −a13
0 0 0
−a13 0 a11

sin2(−φ)

+

 2a13 0 a33−a11
0 0 0

a33−a11 0 −2a13

sin(−φ)cos(−φ)

=

0 0 0
0 a22 0
0 0 0

+
 0 a12 0

a12 0 a23
0 a23 0

cosφ+

 0 −a23 0
−a23 0 a12

0 a12 0

sinφ

+

a11 0 a13
0 0 0

a13 0 a33

cos2
φ+

 a33 0 −a13
0 0 0
−a13 0 a11

sin2
φ

+

 −2a13 0 a11−a33
0 0 0

a11−a33 0 2a13

sinφcosφ (B.2.50)

Also here, the relation between the strains for cylindrical coordinates and those for cartesian coor-
dinates are determined by using the scheme and comparing the single elements of the matrices.

2
r

∂T
∂φ

+ 2R
r

1
r

∂V
∂φ

+ ∂T
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r

1
r

∂V
∂φ

+ ∂T
∂y 2∂V

∂y
∂V
∂r +

∂R
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r

∂V
∂r +

∂R
∂y 2∂R

∂r



= S2(−φ)

 2∂U
∂x

∂U
∂y + ∂V

∂x
∂U
∂z +

∂W
∂x

∂U
∂y + ∂V

∂x 2∂V
∂y

∂V
∂z +

∂W
∂y

∂U
∂z +

∂W
∂x

∂V
∂z +

∂W
∂y 2∂W

∂z
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∂z
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(
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+
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∂x

)
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1
r

∂V
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+
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∂y

=

(
∂U
∂y

+
∂V
∂x

)
cosφ−

(
∂V
∂z

+
∂W
∂y

)
sinφ (B.2.54)

∂V
∂r

+
∂R
∂y

=

(
∂V
∂z

+
∂W
∂y

)
cosφ+

(
∂U
∂y

+
∂V
∂x

)
sinφ (B.2.55)

1
r
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r
+

∂T
∂r
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(
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+
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∂x

)(
cos2

φ− sin2
φ
)
+2
(

∂U
∂x
− ∂W

∂z

)
sinφcosφ (B.2.56)
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Thereby, the relations between the strains for the formulations using cartesian coordinates on the
one hand and using cylindrical coordinates on the other hand are known.

B.3 Virtual work

For a three-dimensional linear elastic material the relations between the stresses and the strains can
be expressed by the following relation, which is based1 on the equations given e.g. by Zienkiewicz
and Taylor [84] or by Schiehlen and Eberhard [64], [63].


σx
σy
σz
τxy
τyz
τzx


︸ ︷︷ ︸

σ

=
G

1−2ν


2(1−ν) 2ν 2ν 0 0 0

2ν 2(1−ν) 2ν 0 0 0
2ν 2ν 2(1−ν) 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν


︸ ︷︷ ︸

D



∂U
∂x
∂V
∂y
∂W
∂z

∂U
∂y + ∂V

∂x
∂V
∂z +

∂W
∂y

∂W
∂x + ∂U

∂z


︸ ︷︷ ︸

ε

(B.3.57)
In detail, the stresses can be formulated in the following way; here, the expressions for the stresses
σx, σy and σz are reformulated.

σx =
G

1−2ν

[
2(1−ν)

∂U
∂x

+2ν
∂V
∂y

+2ν
∂W
∂z

]
=

2G
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[
(1−2ν)

∂U
∂x

+ν
∂U
∂x

+ν
∂V
∂y

+ν
∂W
∂z

]
= 2G

[
∂U
∂x

+
ν

1−2ν

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)]
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σy =
G
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[
2ν

∂U
∂x
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∂V
∂y
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∂W
∂z

]
=
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[
ν
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+(1−2ν)
∂V
∂y

+ν
∂V
∂y

+ν
∂W
∂z

]
= 2G

[
∂V
∂y

+
ν

1−2ν

(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)]
(B.3.59)

σz =
G

1−2ν

[
2ν

∂U
∂x

+2ν
∂V
∂y

+2(1−ν)
∂W
∂z

]
=

2G
1−2ν

[
ν

∂U
∂x

+ν
∂V
∂y

+(1−2ν)
∂W
∂z

+ν
∂W
∂z

]
= 2G

[
∂W
∂z

+
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(
∂U
∂x

+
∂V
∂y

+
∂W
∂z

)]
(B.3.60)

τxy = G
[

∂U
∂y

+
∂V
∂x

]
(B.3.61)

τyz = G
[

∂V
∂z

+
∂W
∂y

]
(B.3.62)

τzx = G
[

∂W
∂x

+
∂U
∂z

]
(B.3.63)

1In many books like [84], [64] or [63], the relation between the stresses and the strains is formulated using Young’s
modulus E. In the present work, the shear modulus G is used for the sake of a more compact formulation. The relation
between E and G is given by E = 2G(1+ν).
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The integrand for the virtual work of the stresses is given by:

δε
T

σ =
[

∂δU
∂x

∂δV
∂y

∂δW
∂z

∂δU
∂y + ∂δV

∂x
∂δV
∂z + ∂δW

∂y
∂δW

∂x + ∂δU
∂z

]


σx
σy
σz
τxy
τyz
τzx


=

∂δU
∂x

σx +
∂δV
∂y

σy +
∂δW

∂z
σz

+

[
∂δU
∂y

+
∂δV
∂x

]
τxy +

[
∂δV
∂z

+
∂δW

∂y

]
τyz +

[
∂δW

∂x
+

∂δU
∂z

]
τzx (B.3.64)

The formulas (B.3.57), (B.3.58), (B.3.59), (B.3.60), (B.3.61), (B.3.62), (B.3.63) and (B.3.64) use
the cartesian coordinates x, y and z and the displacements U , V and W in the directions of the
cartesian coordinates. In the following considerations, the corresponding expressions for cylindri-
cal coordinates will be derived.

In the first step, the virtual strains, i.e. the derivatives of the virtual displacements δU , δV and
δW with respect to x, y and z, will be replaced. The basis are the following relations between the
formulations for the strains using cartesian coordinates on the one hand and cylindrical coordinates
on the other hand have been derived, which have been derived in section B.2:

∂U
∂x

=

[
1
r

∂T
∂φ

+
R
r

]
cos2

φ+
∂R
∂r

sin2
φ+

[
1
r

∂R
∂φ
− T

r
+

∂T
∂r

]
sinφcosφ (B.3.65)

∂W
∂z

=

[
1
r

∂T
∂φ

+
R
r

]
sin2

φ+
∂R
∂r

cos2
φ−
[

1
r

∂R
∂φ
− T

r
+

∂T
∂r

]
sinφcosφ (B.3.66)

∂U
∂y

+
∂V
∂x

=

[
1
r

∂V
∂φ

+
∂T
∂y

]
cosφ+

[
∂V
∂r

+
∂R
∂y

]
sinφ (B.3.67)

∂V
∂z

+
∂W
∂y

=

[
∂V
∂r

+
∂R
∂y

]
cosφ−

[
1
r

∂V
∂φ

+
∂T
∂y

]
sinφ (B.3.68)

∂U
∂z

+
∂W
∂x

=

[
1
r

∂R
∂φ
− T

r
+

∂T
∂r

][
cos2

φ− sin2
φ
]
+2
[

∂R
∂r
− 1

r
∂T
∂φ
− R

r

]
sinφcosφ

(B.3.69)

For a better overview, it is advantageous to treat the terms in certain groups. The first group con-
tains derivatives of the displacement V with respect to x and z and derivatives of the displacements
U and W with respect to y. Here, the relations (B.3.67) and (B.3.68) are used. By collecting the
terms with respect to the derivatives of δT , δV and δR, it is obtained:[

∂δU
∂y

+
∂δV
∂x

]
τxy +

[
∂δV
∂z

+
∂δW

∂y

]
τyz

=

([
1
r

∂δV
∂φ

+
∂δT
∂y

]
cosφ+

[
∂δV
∂r

+
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∂y

]
sinφ

)
τxy
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([
∂δV
∂r

+
∂δR
∂y

]
cosφ−

[
1
r

∂δV
∂φ

+
∂δT
∂y

]
sinφ

)
τyz

=

[
1
r

∂δV
∂φ

+
∂δT
∂y

]
[τxy cosφ− τyz sinφ]+

[
∂δV
∂r

+
∂δR
∂y

]
[τxy sinφ+ τyz cosφ] (B.3.70)



Appendix B. Description of a continuum in cylindrical coordinates 349

In the second group, derivatives of the displacements U and W with respect to x and z are contained.
Applying the relations (B.3.65), (B.3.66) and (B.3.69) leads to:

∂δU
∂x

σx +
∂δW

∂z
σz +

[
∂δW

∂x
+

∂δU
∂z

]
τzx
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1
r
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δR
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∂δR
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∂r

]
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r
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∂φ

+
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r

]
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∂δR
∂r

cos2
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1
r

∂δR
∂φ
− δT

r
+

∂δT
∂r

]
sinφcosφ

)
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+
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1
r

∂δR
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− δT

r
+

∂δT
∂r
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φ− sin2
φ
]
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[

∂δR
∂r
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r
∂δT
∂φ
− δR
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]
sinφcosφ

)
τzx

=

[
1
r

∂δT
∂φ

+
δR
r

][
σx cos2

φ+σz sin2−2τzx sinφcosφ
]

+
∂δR
∂r

[
σx sin2

φ+σz cos2+2τzx sinφcosφ
]

+

[
1
r

∂δR
∂φ
− δT

r
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∂δT
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][
(σx−σz)sinφcosφ+ τzx

(
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φ− sin2
φ
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(B.3.71)

The third group contains only the derivative of δV with respect to y. In the first step, this group
remains unchanged.

In the second step, the terms containing the stresses will be evaluated using the following relations,
which have been derived in section B.2:

1
r

∂T
∂φ

+
R
r
=

∂U
∂x

cos2
φ+

∂W
∂z

sin2
φ−
(

∂U
∂z

+
∂W
∂x

)
sinφcosφ (B.3.72)

∂R
∂r

=
∂U
∂x

sin2
φ+

∂W
∂z

cos2
φ+

(
∂U
∂z

+
∂W
∂x

)
sinφcosφ (B.3.73)

1
r

∂V
∂φ

+
∂T
∂y

=

(
∂U
∂y

+
∂V
∂x

)
cosφ−

(
∂V
∂z

+
∂W
∂y

)
sinφ (B.3.74)

∂V
∂r

+
∂R
∂y

=

(
∂V
∂z

+
∂W
∂y

)
cosφ+

(
∂U
∂y

+
∂V
∂x

)
sinφ (B.3.75)

1
r

∂R
∂φ
− T

r
+

∂T
∂r

=

(
∂U
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+
∂W
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)(
cos2

φ− sin2
φ
)
+2
(

∂U
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− ∂W

∂z

)
sinφcosφ (B.3.76)

From (B.3.72) and (B.3.73) it follows:
1
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∂φ
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R
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=
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φ+
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+
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)
=

∂U
∂x

+
∂W
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(B.3.77)

In order to evaluate the aforementioned third group of terms, the expression (B.3.59)for σy is used.
Applying the relation (B.3.77) leads to:

∂δV
∂y

σy =
∂δV
∂y

2G
[

∂V
∂y

+
ν

1−2ν

(
∂U
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+
∂V
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+
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∂y

+
ν
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(
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r

∂T
∂φ

+
R
r
+

∂R
∂r

+
∂V
∂y

)]
(B.3.78)
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Next, the first group of terms is considered. Here, the expressions (B.3.61) and (B.3.62) are in-
serted into the terms contained in (B.3.70) and the relations (B.3.74) and (B.3.75) are applied. This
gives the following results:

τxy cosφ− τyz sinφ = G
(

∂U
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+
∂V
∂x

)
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(
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+
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]
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τxy sinφ+ τyz cosφ = G
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Inserting these expressions into the integrand of the virtual work leads to:[
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]
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The terms of (B.3.71) contain the stresses σx, σz and τzx. By inserting the expressions (B.3.58),
(B.3.60) and (B.3.63) and applying the relations (B.3.72), (B.3.73) and (B.3.76), it is obtained:
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Inserting these relations into the second group (B.3.71) gives:
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Now, the complete integrand for the virtual work of the stresses can be formulated for cylindrical
coordinates. It is obtained:
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∂V
∂y

+
∂R
∂r

)]
+
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1
r

∂δV
∂φ

+
∂δT
∂y

]
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[

1
r

∂V
∂φ

+
∂T
∂y

]
+

[
∂δV
∂r

+
∂δR
∂y

]
G
[

∂V
∂r

+
∂R
∂y

]
+

[
1
r

∂δR
∂φ
− δT

r
+

∂δT
∂r

]
G
[
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∂R
∂φ
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r
+

∂T
∂r

]
(B.3.86)



352 Appendix B. Description of a continuum in cylindrical coordinates

Using vectors, the result can be formulated in the following way:

δε
T

σ =



1
r

∂δT
∂φ

+ δR
r

∂δV
∂y

∂δR
∂r

1
r

∂δV
∂φ

+ ∂δT
∂y

∂δV
∂r + ∂δR

∂y
1
r

∂δR
∂φ
− δT

r + ∂δT
∂r



T

︸ ︷︷ ︸
δεcyl

T



2G
[

1
r

∂T
∂φ

+ R
r +

ν

1−2ν

(
1
r

∂T
∂φ

+ R
r +

∂V
∂y +

∂R
∂r

)]
2G
[
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∂y +

ν
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(
1
r

∂T
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r +

∂V
∂y +

∂R
∂r

)]
2G
[

∂R
∂r +

ν

1−2ν

(
1
r

∂T
∂φ

+ R
r +

∂V
∂y +

∂R
∂r

)]
G
[

1
r

∂V
∂φ

+ ∂T
∂y

]
G
[

∂V
∂r +

∂R
∂y

]
G
[

1
r

∂R
∂φ
− T

r +
∂T
∂r

]


︸ ︷︷ ︸

σcyl

= δεcyl
T

σcyl

(B.3.87)
The relation between the stress vector σcyl for cylindrical coordinates and the strain vector εcyl is
given by the following equation:

σt
σy
σr
τty
τyr
τrt


︸ ︷︷ ︸

σcyl

=
G

1−2ν


2(1−ν) 2ν 2ν 0 0 0

2ν 2(1−ν) 2ν 0 0 0
2ν 2ν 2(1−ν) 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν


︸ ︷︷ ︸

D



1
r

∂T
∂φ

+ R
r

∂V
∂y
∂R
∂r

1
r

∂V
∂φ

+ ∂T
∂y

∂V
∂r +

∂R
∂y

1
r

∂R
∂φ
− T

r +
∂T
∂r


︸ ︷︷ ︸

εcyl

(B.3.88)
In this formulation, the elasticity matrix D is the same as for cartesian coordinates; this reflects the
isotropy of the material, i.e. the material properties are the same for all orientations of coordinates.

B.4 Navier’s equation

An isotropic linear elastic three-dimensional continuum is described by the following equation,
which is e.g. given by Lifshitz and Landau [39]:

ρ ẅ =
E

2(1+ν)
∆w+

E
2(1+ν)(1−2ν)

graddivw⇒ ∆w+
1

1−2ν
graddivw− ρ

G
ẅ = 0 (B.4.89)

Here, the displacement w is formulated for the directions of the cartesian coordinates x, y z:

w =

U(x,y,z, t)
V (x,y,z, t)
W (x,y,z, t)

 (B.4.90)

In this section, the equation will be formulated for cylindrical coordinates and for displacements
in the direction of cylindrical coordinates. As already shown in section B.2, the relation between
the displacements for the two different orientations is given by:U

V
W


︸ ︷︷ ︸

w

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ


︸ ︷︷ ︸

S2(φ)

T
V
R


︸ ︷︷ ︸

u

(B.4.91)
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From this relation, it can be derived immediately:

w = S2(φ)u⇒ ẅ = S2(φ) ü (B.4.92)

In section B.1, the Laplace operator ∆ has been derived for cylindrical coordinates r, φ, and y,
which have the following relation to the cartesian coordinates:

x = r sinφ, z = r cosφ (B.4.93)

For this relation, the Laplace operator for a function f is given by:

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 =

1
r2

∂2 f
∂φ2 +

∂2 f
∂y2 +

∂2 f
∂r2 −

1
r

∂ f
∂r

(B.4.94)

Applying the Laplace operator to the displacement vector w and applying the relation between the
displacements w and u according to (B.4.91) gives the following result:

∆w =
1
r2

∂2w
∂φ2 +

∂2w
∂y2 +

∂2w
∂r2 −

1
r

∂w
∂r

=
1
r2

∂2

∂φ2 (S2(φ)u)+
∂2

∂y2 (S2(φ)u)+
∂2

∂r2 (S2(φ)u)− 1
r

∂

∂r
(S2(φ)u)

=
1
r2

∂2

∂φ2 (S2(φ)u)+S2(φ)
∂2u
∂y2 +S2(φ)

∂2u
∂r2 −S2(φ)

1
r

∂u
∂r

(B.4.95)

For the second partial derivative with respect to the azimuth φ it is valid:

∂2

∂φ2 (S2(φ)u) =
∂

∂φ

(
∂

∂φ
(S2(φ)u)

)
=

∂

∂φ

(
∂S2(φ)

∂φ
u+S2(φ)

∂u
∂φ

)
=

∂2S2(φ)

∂φ2 u+
S2(φ)

∂φ

∂u
∂φ

+
S2(φ)

∂φ

∂u
∂φ

+S2(φ)
∂2u
∂φ2

=
∂2S2(φ)

∂φ2 u+2
S2(φ)

∂φ

∂u
∂φ

+S2(φ)
∂2u
∂φ2 (B.4.96)

The expression for ∆w according to (B.4.95) shows, that all terms except the second partial deriva-
tive with respect to φ contain the rotation matrix S2(φ) as the first factor. The acceleration ẅ
contains the matrix S2(φ) as the first factor, too, as it can be seen from (B.4.92). Therefore, the
expression (B.4.96) is reformulated using the relation:

S2(φ)S2(−φ) = I (B.4.97)

By changing the sign of the rotation angle, the inverse of the rotation matrix is obtained. Based on
this, it can be formulated:

∂2

∂φ2 (S2(φ)u) =
∂2S2(φ)

∂φ2 u+2
S2(φ)

∂φ

∂u
∂φ

+S2(φ)
∂2u
∂φ2

= S2(φ)S2(−φ)︸ ︷︷ ︸
I

∂2S2(φ)

∂φ2 u+2S2(φ)S2(−φ)︸ ︷︷ ︸
I

S2(φ)

∂φ

∂u
∂φ

+S2(φ)
∂2u
∂φ2

= S2(φ)

(
S2(−φ)

∂2S2(φ)

∂φ2 u+2S2(−φ)
S2(φ)

∂φ

∂u
∂φ

+
∂2u
∂φ2

)
(B.4.98)
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As a result, the rotation matrix S2(φ) can now be factored out. Inserting this into (B.4.95) leads to:

∆w =
1
r2

∂2

∂φ2 (S2(φ)u)+S2(φ)
∂2u
∂y2 +S2(φ)

∂2u
∂r2 −S2(φ)

1
r

∂u
∂r

=
1
r2 S2(φ)

(
S2(−φ)

∂2S2(φ)

∂φ2 u+2S2(−φ)
S2(φ)

∂φ

∂u
∂φ

+
∂2u
∂φ2

)
+S2(φ)

∂2u
∂y2 +S2(φ)

∂2u
∂r2 −S2(φ)

1
r

∂u
∂r

= S2(φ)

(
1
r2 S2(−φ)

∂2S2(φ)

∂φ2 u+
2
r2 S2(−φ)

S2(φ)

∂φ

∂u
∂φ

+
1
r2

∂2u
∂φ2 +

∂2u
∂y2 +

∂2u
∂r2 −

1
r

∂u
∂r

)
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For the rotation matrix S2(φ) and its derivatives it is valid:

S2(φ) =

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

 (B.4.100)

S2(φ)

∂φ
=

−sinφ 0 cosφ

0 1 0
−cosφ 0 −sinφ

 (B.4.101)

∂2S2(φ)

∂φ2 =

−cosφ 0 sinφ

0 0 0
−sinφ 0 −cosφ

 (B.4.102)

From this, it follows for the product of the inverse S2(−φ) and the derivatives:

S2(−φ)
∂S2(φ)

∂φ
=

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

−sinφ 0 cosφ

0 1 0
−cosφ 0 −sinφ


=

−cosφsinφ+ sinφcosφ 0 cos2 φ+ sin2
φ

0 0 0
−sin2

φ− cos2 φ 0 cosφsinφ− sinφcosφ

=

 0 0 1
0 0 0
−1 0 0


(B.4.103)

S2(−φ)
∂2S2(φ)

∂φ2 =

cosφ 0 −sinφ

0 1 0
sinφ 0 cosφ

−cosφ 0 −sinφ

0 0 0
sinφ 0 −cosφ


=

 −cos2 φ− sin2
φ 0 −cosφsinφ+ sinφcosφ

0 0 0
−sinφcosφ+ cosφsinφ 0 −sin2

φ− cos2 φ

=

−1 0 0
0 0 0
0 0 −1


(B.4.104)

Thereby, the expression ∆w can be formulated in the following way:

∆w = S2(φ)

(
1
r2 S2(−φ)

∂2S2(φ)

∂φ2 u+
2
r2 S2(−φ)

S2(φ)

∂φ

∂u
∂φ

+
1
r2

∂2u
∂φ2 +

∂2u
∂y2 +

∂2u
∂r2 −

1
r

∂u
∂r

)

= S2(φ)

 1
r2

−1 0 0
0 0 0
0 0 −1

u+
2
r2

 0 0 1
0 0 0
−1 0 0

 ∂u
∂φ

+
1
r2

∂2u
∂φ2 +

∂2u
∂y2 +

∂2u
∂r2 −

1
r

∂u
∂r
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The gradient is directly obtained from the following relation between the derivatives with respect
to the cartesian coordinates x, y and z on the one hand and those with respect to the cylindrical
coordinates r, φ and y on the other hand, which has been derived in section B.1 :

grad f =


∂ f
∂x
∂ f
∂y
∂ f
∂z

=

 cosφ 0 sinφ

0 1 0
−sinφ 0 cosφ




1
r

∂ f
∂φ

∂ f
∂y
∂ f
∂r

= S2(φ)


1
r

∂ f
∂φ

∂ f
∂y
∂ f
∂r
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From this, it follows for the derivatives with respect to x and z:

∂ f
∂x

=
1
r

∂ f
∂φ

cosφ+
∂ f
∂r

sinφ,
∂ f
∂z

=−1
r

∂ f
∂φ

sinφ+
∂ f
∂r

cosφ (B.4.107)

Based on this relation and on the following relations according to (B.4.91)

U = T cosφ+Rsinφ, W = Rcosφ−T sinφ (B.4.108)

it is obtained for the derivatives ∂U
∂x and ∂W

∂z :

∂U
∂x

=
1
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∂φ
(T cosφ+Rsinφ)cosφ+
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(T cosφ+Rsinφ)sinφ
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∂φ
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∂R
∂φ

sinφ+Rcosφ
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r
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∂r
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sin2
φ (B.4.109)

∂W
∂z

= −1
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∂φ
(Rcosφ−T sinφ)sinφ+
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This leads to the following expression for the divergence divw of the displacement:

divw =
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Now, the terms can be inserted into Navier’s equation, as given in (B.4.89). This leads to:

0 = ∆w+
1

1−2ν
graddivw− ρ

G
ẅ

= S2(φ)

 1
r2

−1 0 0
0 0 0
0 0 −1

u+
2
r2

 0 0 1
0 0 0
−1 0 0

 ∂u
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+
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∂2u
∂φ2 +

∂2u
∂y2 +

∂2u
∂r2 −

1
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∂u
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+
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1−2ν
S2(φ)
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∂

∂r
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∂T
∂φ

+
R
r
+

∂R
∂r

+
∂V
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)
− ρ

G
S2(φ) ü (B.4.112)

It can be seen that the rotation matrix S2(φ) is the first non-scalar factor in all terms. By multiplying
the equation with the inverse S2(φ)

−1 = S2(−φ) it is obtained:
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∂2u
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∂2u
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+
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G
ü (B.4.113)

Based on this, the equations for the three components can be formulated. It is obtained:
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Appendix C

Derivation of the kinematics and the inertial
terms for a flexible body

C.1 Kinematics:Floating frame of reference formulation

The motion of a point P relative to the origin O of the inertial frame I is considered. The frame P
representing the orientation of the particle is attached to the point P. By using a floating frame of
reference R , which has the origin R, the absolute position of the point P can be described in the
following way:

rI
OP = rI

OR+SIR rR
RP (C.1.1)

Here, the vector rI
OR describes the position of the floating frame’s origin R relative to the inertial

frame’s origin O; this vector is expressed in the coordinates of the inertial frame I . The vector rR
RP

describes the position of the point P relative to the point R, formulated in the coordinates of the
floating frame R . The matrix SIR ist the rotation matrix, which transforms the floating frame R
into the inertial frame I . The rotation matrix SIP between the inertial frame I and the frame P is
obtained by:

SIP = SIR SR P (C.1.2)

The velocity and the acceleration are obtained from the first and the second derivative of the posi-
tion vector with respect to the time t:

vI
OP =

drI
OP

dt
= vI

OR+ ṠIR rR
RP+SIR ṙR

RP (C.1.3)

aI
OP =

d2rI
OP

dt2 = aI
OR+ S̈IR rR

RP+2 ṠIR ṙR
RP+SIR r̈R

RP (C.1.4)

Here, vI
OR and aI

OR denote the absolute velocity and the absolute acceleration, respectively, of the
point R with respect to the origin O; also these vectors are expressed in the inertial frame I . The
derivative ṠIR of the rotation matrix can be replaced in the following way:

ṠIR = ω̃
I
IR SIR (C.1.5)

The vector ωI
IR denotes the angular velocity of the frame R relative to I expressed in the inertial

frame I . By using the tilde operator the cross product or vector product can be expressed by the
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multiplication of a matrix and a vector. Thereby, the relation between ωI
IR and ω̃

I
IR is given by:

ω̃
I
IR SIR rR

RP = ω
I
IR ×

(
SIR rR

RP

)
, ω

I
IR =

 ω1
ω2
ω3

⇒ ω̃
I
IR =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (C.1.6)

By using a recursion, the second derivative of the rotation matrix can be formulated as:

S̈IR =
d
dt
(ω̃I

IR SIR ) = ˙̃ωI
IR SIR + ω̃

I
IR ṠIR = ˙̃ωI

IR SIR + ω̃
I
IR ω̃

I
IR SIR (C.1.7)

Thereby, the absolute velocity and the absolute acceleration of the point P can be written in the
following way:

vI
OP = vI

OR+ ṠIR rR
RP+SIR ṙR

RP

= vI
OR+ ω̃

I
IR SIR rR

RP+SIR ṙR
RP (C.1.8)

aI
OP = aI

OR+ S̈IR rR
RP+2 ṠIR ṙR

RP+SIR r̈R
RP

= aI
OR+

˙̃ωI
IR SIR rR

RP+ ω̃
I
IR ω̃

I
IR SIR rR

RP+2 ω̃
I
IR SIR ṙR

RP+SIR r̈R
RP (C.1.9)

For some considerations it is advantageous to describe the angular velocity in the reference frame
R . It is valid:

ω
R
IR = SRI

ω
I
IR ⇔ ω

I
IR = SIR

ω
R
IR (C.1.10)

The tilde matrix is transformed in the following way:

ω̃
R
IR = SRI

ω̃
I
IR SIR ⇒ SIR

ω̃
R
IR = ω̃

I
IR SIR (C.1.11)

The angular acceleration ω̇I
IR is the derivative of the angular velocity ω̃I

IR with respect to the time
t. This leads to:

ω
I
IR = SIR

ω
R
IR

⇒ ω̇
I
IR = ṠIR

ω
R
IR +SIR

ω̇
R
IR = ω̃

I
IR SIR

ω
R
IR +SIR

ω̇
R
IR = ω̃

I
IR ω

I
IR +SIR

ω̇
R
IR

= ω
I
IR ×ω

I
IR︸ ︷︷ ︸

≡0

+SIR
ω̇

R
IR = SIR

ω̇
R
IR (C.1.12)

The transformation of the tilde matrix of the angular acceleration is done in an analogous way to
(C.1.11). Thereby it is valid for the angular acceleration:

˙̃ωR
IR = SRI ˙̃ωI

IR SIR ⇒ SIR ˙̃ωR
IR = ˙̃ωI

IR SIR (C.1.13)

If the angular velocity and the angular acceleration are described in the reference frame R , the
rotation matrix SIR can be factored out, which provides a very compact formulation:

vI
OP = vI

OR+ ω̃
I
IR SIR rR

RP+SIR ṙR
RP

= vI
OR+SIR

ω̃
R
IR rR

RP+SIR ṙR
RP

= vI
OR+SIR

[
ω̃

R
IR rR

RP+ ṙR
RP

]
(C.1.14)

aI
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IR SIR rR
RP+ ω̃

I
IR ω̃

I
IR SIR rR

RP+2 ω̃
I
IR SIR ṙR

RP+SIR r̈R
RP
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OR+SIR ˙̃ωR

IR rR
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R
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R
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R
IR ω̃

R
IR rR

RP+2 ω̃
R
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RP+ r̈R
RP

]
(C.1.15)
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For the principle of virtual power, the virtual velocity δ′vI
OP is required. Here, the following

rearrangement of the velocity using the commutative rule of the vector product is advantageous:

ũv = u×v =−v×u =−ṽu
⇒ vI

OP = vI
OR+SIR

[
ω̃

R
IR rR

RP+ ṙR
RP

]
= vI

OR+SIR
[
−r̃R

RPω
R
IR + ṙR

RP

]
(C.1.16)

The virtual velocity is now obtained by:

δ
′vI
OP = δ

′vI
OR+SIR

[
−r̃R

RPδ
′
ω

R
IR +δ

′ṙR
RP

]
(C.1.17)

The transposition of the vector of the virtual velocity leads to:

δ
′vI
OP

T
= δ

′vI
OR

T
+
[
−r̃R

RPδ
′
ω

R
IR +δ

′ṙR
RP

]T
SIR T

= δ
′vI
OR

T
+

[
− δ
′
ω

R
IR

T
r̃R
RP

T
+ δ

′ṙR
RP

T
]

SRI

= δ
′vI
OR

T
+

[
δ
′
ω

R
IR

T
r̃R
RP+ δ

′ṙR
RP

T
]

SRI (C.1.18)

This expression for the virtual velocity can be split up: The vectors δ′vI
OR

T and δ′ωR
IR

T
denote

translational and rotational motions, respectively. Relative motions including deformations contain

the vector δ′ṙR
RP

T
.

The angular velocity of the frame P relative to the inertial frame I is obtained by:

ω̃
I
IP = ṠIP SPI =

(
ṠIR SRP +SIR ṠRP

)
SPR SRI

= ṠIR SRP SPR︸ ︷︷ ︸
I

SRI +SIR ṠRP SPR SRI = ṠIR SRI +SIR ṠRP SPR SRI

= ω̃
I
IR +SIR

ω̃
R
RP SRI

⇒ ω
I
IP = ω

I
IR +SIR

ω
R
RP (C.1.19)

Thereby, the virtual angular velocity can be formulated as:

δ
′
ω

I
IP = δ

′
ω

I
IR +SIR

δ
′
ω

R
RP (C.1.20)

C.2 Description of the relative kinematics

In section C.1 the kinematics for a particle located at the point P has been developed based on the
floating frame of reference formulation. In this formulation, the vector rR

RP describes the relative
position of the point P with respect to the reference point R in the reference frame R . For a flexible
body, this position vector consists of two parts, the reference position xR and the displacement wR .
In total it is valid:

rR
RP = xR +wR (xR , t) (C.2.21)

The vector wR describes a time-dependent displacement field. The vector xR describes the ref-
erence position of the particle in the reference frame R ; usually, it describes a constant position.
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However, this doesn’t necessary mean that the vector is constant with respect to the motion of the
particle. If the body-fixed frame B is chosen as the reference frame, then the vector xB can be
considered as the material coordinates of a particle. In this case, the vector xB is constant so that
its derivative with respect to time vanishes. Thereby, it is valid:

rB
RP = xB +wB(xB , t)⇒ ṙB

RP = ẇB(xB , t)⇒ r̈B
RP = ẅB(xB , t) (C.2.22)

This formulation is the base for the Lagrangian approach; in this formulation, the motion of a
certain particle through the space is observed, i.e. all the time the same particle indicated by xB

is considered. However, if another frame then the body-fixed frame B is chosen as the reference
frame R , then the vector xR describes a certain position within space, at which a particle is cur-
rently located. Since in this approach a particle is observed, which is currently moving through the
point P indicated by the reference position xR , the observed particle is permanently changing, i.e.
for each time t another particle is observed. In this case, the coordinates given by the vector xR

are local coordinates. This is the basic principle for the Eulerian approach and for the Arbitrary
Lagrangian-Eulerian approach or ALE approach. In this case it is valid for the derivatives:

rR
RP = xR +wR (xR , t)⇒ ṙR

RP =
∂wR (xR , t)

∂t
+

∂wR (xR , t)
∂xR

∂xR

∂t
(C.2.23)

The following considerations will be focused on the formulation in the body-fixed frame B , i.e. on
the Lagrangian approach.

Generally, a flexible body consists of an infinite number of infinitesimal mass particles; it is a con-
tinuum. Such a continuum possesses an infinite number of degrees of freedom (DoF). For practical
applications, a discretization is required in order to describe the deformation field wB(xB , t) at least
in an approximative way. For this purpose, a modal synthesis is used very often. In this approach,
the displacement wB(xB , t) of a particle is described by a superposition of shape functions wB

i (x),
which are scaled by the time-dependent modal coordinates qi(t). Thereby it is valid:

rB
RP = xB +wB(xB , t) = xB +

N

∑
i=1

wB
i (x

B)qi(t) (C.2.24)

In this description, the modal coordinates qi(t) are the degrees of freedom. Of course, the number
N of the associated shape functions and modal coordinates is finite. The choice of the shape
functions and the number N depend on the type of the structure, on the loads acting on it and on
the frequency range, which is of interest. By choosing suitable shape functions and a sufficient
number N, a very accurate description of the deformation of the flexible body can be obtained.

From (C.2.24) the expressions for the relative velocity, the virtual relative velocity and the relative
acceleration can be derived:

ṙB
RP =

N

∑
i=1

wB
i (x

B) q̇i(t), δ
′ṙB
RP =

N

∑
i=1

wB
i (x

B)δ
′q̇i, r̈B

RP =
N

∑
i=1

wB
i (x

B) q̈i(t) (C.2.25)

For the sake of brevity and for a better overview the arguments xB for the shape functions
wB

i = wB
i (x

B) and t for the modal coordinates qi = qi(t) and their derivatives will usually not
be indicated explicitly in the following considerations.

C.3 Inertia terms

The integrand for the inertia terms is the scalar product of the absolute virtual velocity and the ab-
solute acceleration of one particle. In section C.1 the following expressions for the virtual velocity
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and for the acceleration have been derived:

δ
′vI
OP

T
= δ

′vI
OR

T
+

[
δ
′
ω

R
IR

T
r̃R
RP+ δ

′ṙR
RP

T
]

SRI︸ ︷︷ ︸
δ′vI

RP
T

(C.3.26)

aI
OP = aI

OR+SIR
[

˙̃ωR
IR rR

RP+ ω̃
R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

]
︸ ︷︷ ︸

aI
RP

(C.3.27)

The evaluation of the scalar product gives:

δ
′vI
OP

T aI
OP =

(
δ
′vI
OR

T
+ δ

′vI
RP

T
)(

aI
OR+aI

RP

)
= δ

′vI
OR

T (aI
OR+aI

RP

)
+ δ

′vI
RP

T aI
OR+ δ

′vI
RP

T aI
RP

= δ
′vI
OR

T
(

aI
OR+SIR

[
˙̃ωR

IR rR
RP+ ω̃

R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
+

[
δ
′
ω

R
IR

T
r̃R
RP+ δ

′ṙR
RP

T
]

SRI aI
OR

+

[
δ
′
ω

R
IR

T
r̃R
RP+ δ

′ṙR
RP

T
]

SRI SIR︸ ︷︷ ︸
I

[
˙̃ωR

IR rR
RP+ ω̃

R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

]
(C.3.28)

By sorting the terms with respect to the virtual velocities the integrands for the terms belonging to
the different kinds of motions are obtained:

δ
′vI
OP

T aI
OP = δ

′vI
OR

T
(

aI
OR+SIR

[
˙̃ωR

IR rR
RP+ ω̃

R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
+

[
δ
′
ω

R
IR

T
r̃R
RP+ δ

′ṙR
RP

T
]

SRI aI
OR

+

[
δ
′
ω

R
IR

T
r̃R
RP+ δ

′ṙR
RP

T
][

˙̃ωR
IR rR

RP+ ω̃
R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

]
= δ

′vI
OR

T
(

aI
OR+SIR

[
˙̃ωR

IR rR
RP+ ω̃

R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
︸ ︷︷ ︸

Translational motions

+ δ
′
ω

R
IR

T
r̃R
RP

(
SIR aI

OR+
[

˙̃ωR
IR rR

RP+ ω̃
R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
︸ ︷︷ ︸

Rotational motions

+ δ
′ṙR
RP

T(
SIR aI

OR+
[

˙̃ωR
IR rR

RP+ ω̃
R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
︸ ︷︷ ︸

Relative motions

(C.3.29)

The terms belonging to the different kinds of motions will be considered separately in the following
sections. For all three kinds, the terms will first be developed for an arbitrary reference frame R .
Based on the result, the formulation, which uses the body-fixed frame B as the reference frame,
will be derived. Here, the position vector rB

RP is split into the constant reference position vector xB

and the displacement vector wB = wB(xB , t):

rB
RP = xB +wB(xB , t),

dxB

dt
= 0⇒ ṙB

RP = ẇB(xB , t)⇒ r̈B
RP = ẅB(xB , t) (C.3.30)
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C.3.1 Translational motions

The scalar product of the virtual velocity δ′vI
OR of the reference point R and the acceleration aI

OP
can be written as:

δ
′vI
OR

T aI
OP = δ

′vI
OR

T
(

aI
OR+SIR

[
˙̃ωR

IR rR
RP+ ω̃

R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
= δ

′vI
OR

T
(

aI
OR+SIR

[(
˙̃ωR

IR + ω̃
R
IR ω̃

R
IR

)
rR
RP+2 ω̃

R
IR ṙR

RP+ r̈R
RP

])
(C.3.31)

By splitting the integrand into summands and factoring out the constant vectors δ′vI
OR

T, aI
OR, ω̃

R
IR

and ˙̃ωR
IR and the matrix SIR from the integrals the inertial terms for translational motions can be

written as:∫
B

δ
′vI
OR

T aI
OPdm

=
∫
B

δ
′vI
OR

T
(

aI
OR+SIR

[(
˙̃ωR

IR + ω̃
R
IR ω̃

R
IR

)
rR
RP+2 ω̃

R
IR ṙR

RP+ r̈R
RP

])
dm

= δ
′vI
OR

T
[∫

B
dmaI

OR+SIR
(

˙̃ωR
IR + ω̃

R
IR ω̃

R
IR

)∫
B
rR
RPdm+2SIR

ω̃
R
IR

∫
B
ṙR
RPdm+SIR

∫
B
r̈R
RPdm

]
(C.3.32)

The integral over all infinitesimal masses of the body B is the total mass mB of the body:∫
B

dm = mB (C.3.33)

Thereby the inertia terms for the translational motions are formulated in the following way:∫
B

δ
′vI
OR

T aI
OPdm

= δ
′vI
OR

T
[

mB aI
OR+SIR

(
˙̃ωR

IR + ω̃
R
IR ω̃

R
IR

)∫
B
rR
RP dm+2SIR

ω̃
R
IR

∫
B
ṙR
RP dm+SIR

∫
B
r̈R
RP dm

]
(C.3.34)

Using the body-fixed frame B and formulating the relative kinematics according to (C.3.30) leads
to:∫

B
δ
′vI
OR

T aI
OPdm

= δ
′vI
OR

T
[

mB aI
OR+SIB

(
˙̃ωB

IB + ω̃
B
IB ω̃

B
IB

)∫
B
rB
RPdm+2SIB

ω̃
B
IB

∫
B
ṙB
RPdm+SIB

∫
B
r̈B
RPdm

]
= δ

′vI
OR

T
[

mB aI
OR+SIB

(
˙̃ωB

IB + ω̃
B
IB ω̃

B
IB

)(∫
B
xB dm+

∫
B
wB dm

)
+2SIB

ω̃
B
IB

∫
B
ẇB dm+SIB

∫
B
ẅB dm

]
(C.3.35)

For the special case of a rigid body, the displacement vector wB and its derivatives wB and wB

vanish:
rB
RP = xB ,wB = 0⇒ ṙB

RP = ẇB = 0⇒ r̈B
RP = ẅB = 0 (C.3.36)

Using the body-fixed frame B as the reference frame the inertial terms for the translational motions
according to (C.3.35) can be simplified to:∫

B
δ
′vI
OR

T aI
OPdm = δ

′vI
OR

T
[

mB aI
OR+SIB

(
˙̃ωB

IB + ω̃
B
IB ω̃

B
IB

)∫
B

xBdm
]

(C.3.37)
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C.3.2 Rotational motions

To formulate the inertial terms for the rotational motions and for the other motions, a reformulation
of the acceleration is advantageous so that the constant vectors ω

R
IR and ω̇

R
IR can be factored out

from the integrals. Here, the commutation rule for the vector product

ũv = u×v =−v×u =−ṽu (C.3.38)

is applied on the second and the fourth summand of the acceleration:

δ
′
ω

R
IR

T
r̃R
RPSRI aI

OP

= δ
′
ω

R
IR

T
r̃R
RP

(
SRI aI

OR+
[

˙̃ωR
IR rR

RP+ ω̃
R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

])
= δ

′
ω

R
IR

T
r̃R
RP

(
SRI aI

OR+
[
−r̃R

RPω̇
R
IR + ω̃

R
IR ω̃

R
IR rR

RP−2 ˙̃rR
RPω

R
IR + r̈R

RP

])
= δ

′
ω

R
IR

T(
r̃R
RPSRI aI

OR− r̃R
RPr̃R

RPω̇
R
IR + r̃R

RPω̃
R
IR ω̃

R
IR rR

RP−2 r̃R
RP

˙̃rR
RPω

R
IR + r̃R

RPr̈R
RP

)
(C.3.39)

The third summand contained in the bracket has the structure ũṽṽu. Using the cross product this
expression can be written as:

ũṽṽu = u× (v× (v×u)) (C.3.40)

By using the vector triple product:

~a× (~b×~c) = (~a ·~c)~b− (~a ·~b)~c (C.3.41)

which is derived in appendix A.5.3, it is obtained for (C.3.40):

~u× [~v× (~v×~u)] =~u× [(~v ·~u)~v− (~v ·~v)~u] = (~v ·~u)~u×~v− (~v ·~v)~u×~u︸︷︷︸
~0

= (~v ·~u)~u×~v (C.3.42)

Now,~u and~v are commuted. While the scalar product is commutative, the vector product changes
the sign, if the factors are commuted. Thereby, it is obtained:

~v× [~u× (~u×~v)] = (~u ·~v)~v×~u =−(~v ·~u)~u×~v =−~u× [~v× (~v×~u)] (C.3.43)

Therefore, it is valid:
ũṽṽu =−ṽũũv (C.3.44)

The integrand can now be rewritten to:

δ
′
ω

R
IR

T
r̃R
RPSRI aI

OP

= δ
′
ω

R
IR

T(
r̃R
RPSRI aI

OR− r̃R
RPr̃R

RPω̇
R
IR + r̃R

RPω̃
R
IR ω̃

R
IR rR

RP−2 r̃R
RP

˙̃rR
RPω

R
IR + r̃R

RPr̈R
RP

)
= δ

′
ω

R
IR

T(
r̃R
RPSRI aI

OR− r̃R
RP r̃R

RP ω̇
R
IR − ω̃

R
IR r̃R

RP r̃R
RPω

R
IR −2 r̃R

RP
˙̃rR
RPω

R
IR + r̃R

RP r̈R
RP

)
(C.3.45)



364 Appendix C. Derivation of the kinematics and the inertial terms for a flexible body

By splitting the integral into several summands and factoring out the vectors aI
OR, δ′ωR

IR
T
, ω

R
IR

and ω̇
R
IR the following expression is obtained for the inertial terms for the rotational motions:

∫
B

δ
′
ω

R
IR

T
r̃R
RPSRI aI

OP dm

=
∫
B

δ
′
ω

R
IR

T(
r̃R
RPSRI aI

OR− r̃R
RPr̃R

RPω̇
R
IR + r̃R

RPω̃
R
IR ω̃

R
IR rR

RP−2 r̃R
RP

˙̃rR
RPω

R
IR + r̃R

RPr̈R
RP

)
dm

= δ
′
ω

R
IR

T
(∫

B
r̃R
RPdm SRI aI

OR−
∫
B
r̃R
RPr̃R

RPdm ω̇
R
IR − ω̃

R
IR

∫
B
r̃R
RPr̃R

RPdm ω
R
IR

−2
∫
B

r̃R
RP

˙̃rR
RPdm ω

R
IR +

∫
B

r̃R
RP r̈R

RPdm
)

(C.3.46)

The inertial tensor of the body with respect to the point R expressed in the frame R is defined by:

JR
B,(R) =−

∫
B

r̃R
RPr̃R

RPdm (C.3.47)

Using this definition, the inertial terms for the rotational motions can be written as:

∫
B

δ
′
ω

R
IR

T
r̃R
RPSRI aI

OPdm = δ
′
ω

R
IR

T
[∫

B
r̃R
RPdm SRI aI

OR+JR
B,(R) ω̇

R
IR + ω̃

R
IR JR

B,(R)ω
R
IR

−2
∫
B

r̃R
RP

˙̃rR
RPdm ω

R
IR +

∫
B

r̃R
RP r̈R

RPdm
]

(C.3.48)

If the body-fixed frame B is used as the reference frame, the inertia terms for the rotational motions
are given by:

∫
B

δ
′
ω

B
IB

T
r̃B
RPSBI aI

OP dm

= δ
′
ω

B
IB

T
(∫

B
r̃B
RP dm SBI aI

OR−
∫
B
r̃B
RP r̃B

RP dm ω̇
B
IB − ω̃

B
IB

∫
B
r̃B
RP r̃B

RP dm ω
B
IB

−2
∫
B

r̃B
RP

˙̃rB
RPdm ω

B
IB +

∫
B

r̃B
RP r̈B

RPdm
)

(C.3.49)

Splitting the position vector into the reference position xB and the displacement wB and sorting
the resulting terms depending on how many times the displacement vector wB or its derivatives is
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contained as a factor leads to:∫
B

δ
′
ω

B
IB

T
r̃B
RPSBI aI

OP dm

= δ
′
ω

B
IB

T
(∫

B

[
x̃B + w̃B

]
dm SBI aI
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∫
B
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]
dm ω̇

B
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−ω̃
B
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∫
B
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x̃B + w̃B
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dm ω

B
IB
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B

[
x̃B + w̃B
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˙̃wB dm ω

B
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∫
B

[
x̃B + w̃B

]
ẅB dm

)
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B
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x̃B w̃B + w̃B x̃B

)
dm ω̇

B
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−ω̃
B
IB

∫
B

(
x̃B w̃B + w̃B x̃B
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B
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x̃B ˙̃wB dm ω

B
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x̃B ẅB dm

)
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B
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−
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w̃B w̃B dm ω̇

B
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B
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B
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−2
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w̃B ˙̃wB dm ω

B
IB +

∫
B
w̃B ẅB dm

)
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The terms in the first bracket contain only the reference position vector xB . These terms describe
the characteristics of the undeformed body, i.e. the position of its centre of gravity and its inertia
tensor; since these terms don’t contain the displacement vector wB , they will be referenced as
zeroth order terms. The second and the third bracket contain the first and the second order terms,
respectively. The first order terms are products, in which the vector wB or one of its derivatives are
contained one time. In the second order terms, the wB or one of its derivatives are contained two
times, while the reference position vector does not appear at all in these terms.

Also here, the inertia terms for a rigid body are obtained by setting the displacement vector wB

and its derivatives equal to zero according to (C.3.36). Thereby the inertial terms for the rotational
motions of a rigid body can be written as:∫

B
δ
′
ω

B
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T
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OP dm
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T
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∫
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)
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T
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B
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B
IB JB
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B
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)
(C.3.51)

Combining this result with (C.3.37) leads to the complete inertia terms for a rigid body, which are
given by:∫

B
δ
′vI
OP

T aI
OP dm =

∫
B

δ
′vI
OR

T aI
OP dm+

∫
B

δ
′
ω

B
IB

T
r̃B
RPSBI aI

OP dm

= δ
′vI
OR

T
(

mB aI
OR+SIB

(
˙̃ωB

IB + ω̃
B
IB ω̃

B
IB

)∫
B

xBdm
)

+ δ
′
ω

B
IB

T
(∫

B
x̃B dm SBI aI

OR−JB
B,(R) ω̇

B
IB − ω̃

B
IB JB

B,(R)ω
B
IB

)
(C.3.52)
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C.3.3 Relative motions

In order to evaluate the inertia terms for the relative motions, the integrand is again reformulated
by using the commutativity of the cross product and resolving the bracket:

δ
′ṙR
RP

T
SRI aI

OP = δ
′ṙR
RP

T(
SRI aI

OR+
˙̃ωR

IR rR
RP+ ω̃

R
IR ω̃

R
IR rR

RP+2 ω̃
R
IR ṙR

RP+ r̈R
RP

)
= δ

′ṙR
RP

T(
SRI aI

OR− r̃R
RPω̇

R
IR − ω̃

R
IR r̃R

RPω
R
IR −2 ˙̃rR

RPω
R
IR + r̈R

RP

)
= δ

′ṙR
RP

T
SRI aI

OR− δ
′ṙR
RP

T
r̃R
RPω̇

R
IR − δ

′ṙR
RP

T
ω̃

R
IR r̃R

RPω
R
IR

−2 δ
′ṙR
RP

T ˙̃rR
RPω

R
IR + δ

′ṙR
RP

T
r̈R
RP (C.3.53)

From the commutative rule of the cross product it can be deduced:

ũv =−ṽu⇒ (ũv)T = (−ṽu)T⇒ vTũT =−uTṽT⇒ vT(−ũ) =−uT(−ṽ)⇒ vTũ =−uTṽ
(C.3.54)

Applying this relation to the third term of the integrand leads to:

δ
′ṙR
RP

T
SRI aI

OP = δ
′ṙR
RP

T
SRI aI

OR− δ
′ṙR
RP

T
r̃R
RPω̇

R
IR − δ

′ṙR
RP

T
ω̃

R
IR r̃R

RPω
R
IR

−2 δ
′ṙR
RP

T ˙̃rR
RPω

R
IR + δ

′ṙR
RP

T
r̈R
RP

= δ
′ṙR
RP

T
SRI aI

OR− δ
′ṙR
RP

T
r̃R
RPω̇

R
IR + ω

R
IR

T
δ
′˙̃rR
RPr̃R

RPω
R
IR

−2 δ
′ṙR
RP

T ˙̃rR
RPω

R
IR + δ

′ṙR
RP

T
r̈R
RP (C.3.55)

By splitting the integrand and factoring out the vectors and matrices, which describe the kinematics
of the reference point R, from the integrals it is obtained for the inertia terms for the relative
motions:∫

B
δ
′ṙR
RP

T
SRI aI

OPdm =
∫
B

[
δ
′ṙR
RP

T
SRI aI

OR− δ
′ṙR
RP

T
r̃R
RPω̇

R
IR + ω

R
IR

T
δ
′˙̃rR
RPr̃R

RPω
R
IR

−2 δ
′ṙR
RP

T ˙̃rR
RPω

R
IR + δ

′ṙR
RP

T
r̈R
RP

]
=

∫
B

δ
′ṙR
RP

T
dm SRI aI

OR−
∫
B

δ
′ṙR
RP

T
r̃R
RPdm ω̇

R
IR

+ ω
R
IR

T
∫
B

δ
′ ˙̃rR
RPr̃R

RPdm ω
R
IR

−2
∫
B

δ
′ṙR
RP

T ˙̃rR
RPdm ω

R
IR +

∫
B

δ
′ṙR
RP

T
r̈R
RPdm (C.3.56)

If the body-fixed frame B is used as the reference frame, the inertia terms for the relative motions
are written as:∫

B
δ
′ṙB
RP

T
SBI aI

OPdm =
∫
B

δ
′ṙB
RP

T
dm SBI aI

OR−
∫
B

δ
′ṙB
RP

T
r̃B
RPdm ω̇

B
IB

+ ω
B
IB

T
∫
B

δ
′ ˙̃rB
RPr̃B

RPdm ω
B
IB

−2
∫
B

δ
′ṙB
RP

T ˙̃rB
RPdm ω

B
IB +

∫
B

δ
′ṙB
RP

T
r̈B
RPdm (C.3.57)
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Splitting the vector rB
RP into the reference position xB and the deformation wB leads to:∫

B
δ
′ṙB
RP

T
SBI aI

OPdm

=
∫
B

δ
′ẇB T

SBI aI
OP dm

=
∫
B

δ
′ẇB T

dm SBI aI
OR−

∫
B

δ
′ẇB T [

x̃B + w̃B
]

dm ω̇
B
IB

+ ω
B
IB

T
∫
B

δ
′ ˙̃wB

[
x̃B + w̃B

]
dm ω

B
IB

−2
∫
B

δ
′ẇB T ˙̃wB

RPdm ω
B
IB +

∫
B

δ
′ẇB T

ẅB
RPdm

=
∫
B

δ
′ẇB T

dm SBI aI
OR−

∫
B

δ
′ẇB T

x̃B dm ω̇
B
IB + ω

B
IB

T
∫
B

δ
′ ˙̃wB x̃B dm ω

B
IB

−
∫
B
δ
′ẇB T

w̃B dm ω̇
B
IB + ω

B
IB

T
∫
B
δ
′ ˙̃wB w̃B dm ω

B
IB

−2
∫
B

δ
′ẇB T ˙̃wB dm ω

B
IB +

∫
B

δ
′ẇB T

ẅB dm (C.3.58)



Appendix D

Rotation matrices

Rotation matrices play an important role in the formulation of kinematics. The rotation matrix SJK

describes the transformation from the frame K into the frame J . Thereby, the relation between the
description rJ of a vector in the frame J and its description rK in the frame K is given by:

rJ = SJK rK (D.0.1)

The differentiation of this relation with respect to the time t leads to:

ṙJ = ṠJK rK +SJK ṙK (D.0.2)

As it will be shown in this appendix, the angular velocity of the frame K relative to the frame J
can be determined based on the derivative ṠJK .

Also, in this work the relations (D.0.1) and (D.0.2) are used very often; in this context, several
properties of rotation matrices are frequently exploited. Therefore, these properties shall be con-
sidered in this appendix. Since in the present work spatial kinematics is considered, the following
considerations will focus on the three-dimensional space.

A general rotation matrix like the aforementioned matrix SJK can be expressed as a product of
elementary rotation matrices. An elementary rotation matrix SI(φ) describes a single rotation with
the angle φ around one of the axes of the cartesian coordinates denoted by I.

D.1 Elementary rotation matrices

For the three-dimensional space there are three elementary rotation matrices:

S1(α) =

1 0 0
0 cosα −sinα

0 sinα cosα

 , S2(β) =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 , S3(γ) =

cosγ −sinγ 0
sinγ cosγ 0

0 0 1


(D.1.3)

The diagonal elements of each rotation matrix are either 1 or equal to the cosine function of the
rotation angle, while all non-diagonal elements are either 0 or equal to the sine function of the
rotation angle. Therefore, it is valid:

sin(φ = 0) = 0, cos(φ = 0) = 1⇒ SI(φ = 0) =

1 0 0
0 1 0
0 0 1

= I, I = 1,2,3 (D.1.4)

368
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By applying the symmetry properties of the trigonometric functions:

sin(−φ) =−sinφ, cos(−φ) = cosφ (D.1.5)

it can be derived:

S1(−α) =

1 0 0
0 cos(−α) −sin(−α)
0 sin(−α) cos(−α)

=

1 0 0
0 cosα sinα

0 −sinα cosα

= S1(α)
T (D.1.6)

S2(−β) =

 cos(−β) 0 sin(−β)
0 1 0

−sin(−β) 0 cos(−β)

=

cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

= S2(β)
T (D.1.7)

S3(−γ) =

cos(−γ) −sin(−γ) 0
sin(−γ) cos(−γ) 0

0 0 1

=

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

= S3(γ)
T (D.1.8)

In total it is valid for a rotation matrix describing a rotation around the axis I with the angle φ:

SI(−φ) = SI(φ)
T, I = 1,2,3 (D.1.9)

Using the theorems for the trigonometric functions:

sin(φi +φk) = sinφi cosφk + cosφi sinφk, cos(φi +φk) = cosφi cosφk− sinφi sinφk (D.1.10)

it can be shown for the products of two elementary rotation matrices for the same axis:

S1(αi)S1(αk) =

1 0 0
0 cosαi −sinαi
0 sinαi cosαi

1 0 0
0 cosαk −sinαk
0 sinαk cosαk


=

1 0 0
0 cosαi cosαk− sinαi sinαk −cosαi sinαk− sinαi cosαk
0 sinαi cosαk + cosαi sinαk −sinαi sinαk + cosαi cosαk


=

1 0 0
0 cos(αi +αk) −sin(αi +αk)
0 sin(αi +αk) cos(αi +αk)

= S1(αi +αk) (D.1.11)

S2(βi)S2(βk) =

 cosβi 0 sinβi
0 1 0

−sinβi 0 cosβi

 cosβk 0 sinβk
0 1 0

−sinβk 0 cosβk


=

cosβi cosβk− sinβi sinβk 0 −cosβi sinβk− sinβi cosβk
0 1 0

sinβi cosβk + cosβi sinβk 0 −sinβi sinβk + cosβi cosβk


=

 cos(βi +βk) 0 sin(βi +βk)
0 1 0

−sin(βi +βk) 0 cos(βi +βk)

= S2(βi +βk) (D.1.12)
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S3(γi)S3(γk) =

cosγi −sinγi 0
sinγi cosγi 0

0 0 1

cosγk −sinγk 0
sinγk cosγk 0

0 0 1


=

cosγi cosγk− sinγi sinγk −cosγi sinγk− sinγi cosγk 0
sinγi cosγk + cosγi sinγk −sinγi sinγk + cosγi cosγk 0

0 0 1


=

cos(γi + γk) −sin(γi + γk) 0
sin(γi + γk) cos(γi + γk) 0

0 0 1

= S3(γi + γk) (D.1.13)

In total it is valid for two subsequent rotations around the same axis indicated by I with the angles
φi and φk:

SI(φi)SI(φk) = SI(φi +φk), I = 1,2,3 (D.1.14)

Based on the relations (D.1.4), (D.1.9) and (D.1.14) it can be derived:

SI(φ)SI(φ)
T = SI(φ)SI(−φ) = SI(φ−φ) = SI(0) = I (D.1.15)

From this it follows:

SI(φ)SI(φ)
T = I = SI(φ)SI(φ)

−1⇒ SI(φ)
T = SI(φ)

−1 (D.1.16)

The result shows that the transpose SI(φ)
T of aa elementary rotation matrix SI(φ) is equal to its

inverse SI(φ)
−1; thereby, an elementary rotation matrix SI(φ) is an orthogonal matrix.

The determinant of an elementary rotation matrix for the three-dimensional space can be deter-
mined based on the rule by Sarrus:

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

= a11a22a33 +a12a23a31 +a13a21a32−a31a22a13−a32a23a11−a33a21a12

(D.1.17)
Based on this it is obtained:

det S1(α) = det

1 0 0
0 cosα −sinα

0 sinα cosα

= cos2
α− (−sin2

α) = cos2
α+ sin2

α = 1 (D.1.18)

det S2(β) = det

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

= cos2
β− (−sin2

β) = cos2
β+ sin2

β = 1 (D.1.19)

det S3(γ) = det

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

= cos2
γ− (−sin2

γ) = cos2
γ+ sin2

γ = 1 (D.1.20)

For further considerations, the following properties of an elementary rotation matrix can be con-
cluded:

• An elementary rotation matrix SI(φ) is an orthogonal matrix, i.e. its transpose is equal to its
inverse.

SI(φ)
T = SI(φ)

−1⇒ SI(φ) SI(φ)
T = SI(φ) SI(φ)

−1 = I (D.1.21)
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• The determinant of an elementary rotation matrix SI(φ) is equal to 1.

det SI(φ) = 1 (D.1.22)

• Two elementary rotation matrices, which describe two subsequent rotations with the angles
φi and φk around the same axis I, can be merged into one elementary rotation matrix:

SI(φi) SI(φk) = SI(φi +φk) (D.1.23)

D.2 Composed rotation matrices

A general rotation matrix RN can be formulated as the product of N elementary rotation matrices:

RN =
N

∏
k=1

SIk(φk), Ik = 1,2,3 (D.2.24)

For the following considerations, the following recursive formulation of RN is used:

R0 = I, Rk = Rk−1 SIk(φk) (D.2.25)

According to Strang [71], the determinant of a product of two matrices is equal to the product of
the determinants for each single matrix:

det(AB) = det A det B (D.2.26)

In the section D.1 it has been shown that for each elementary rotation matrix the determinant is
equal to 1. Therefore, it is valid:

det Rk = det(Rk−1 SIk(φk)) = det Rk−1 det SIk(φk)︸ ︷︷ ︸
1

⇒ det Rk = det Rk−1 (D.2.27)

As discussed in the section D.1, the identity matrix I can be considered as a special case of an
elementary rotation matrix SI(φ) for φ = 0. Thereby, also the determinant det R0 of the initial
matrix R0 is equal to 1 so that it is valid:

1 = det R0 = det R1 = . . .= det RN−1 = det RN (D.2.28)

Thereby, it is shown that for the product RN of elementary rotation matrices the determinant is
equal to 1.

For an orthogonal matrix Q, the transposed QT is equal to the inverse Q−1; thereby, it is valid:

QT = Q−1⇒QQT = QQ−1 = I (D.2.29)

In the section D.1 it has been shown that an elementary rotation matrix SI(φ) is always an orthog-
onal matrix. By applying this to the recursive formulation (D.2.25) it is obtained:

Rk Rk
T = Rk−1 SIk(φk)(Rk−1 SIk(φk))

T = Rk−1 SIk(φk)SIk(φk)
T︸ ︷︷ ︸

I

Rk−1
T⇒ Rk Rk

T = Rk−1 Rk−1
T

(D.2.30)
Therefore, it is valid for the matrix RN :

RN RN
T = RN−1 RN−1

T = . . .= R1 R1
T = R0 R0

T = IIT = I (D.2.31)

From this, it follows:
RN RN

T = I = RN RN
−1⇒ RN

T = RN
−1 (D.2.32)

Thereby, it has been shown that the matrix RN , which is a product of N elementary rotation matri-
ces, is an orthogonal matrix, too.



372 Appendix D. Rotation matrices

D.3 Formulation by column vectors

In the previous section D.2 the properties of a rotation matrix RN , which is described as a product
of N elementary rotation matrices Si(φi), have been discussed. Based on the facts that each ele-
mentary rotation matrix Si(φi) is an orthogonal matrix and that its determinant is equal two one
it has been derived that also the product RN is an orthogonal matrix and its determinant detRN is
equal to 1.

The formulation of a rotation matrix RN as a product of elementary rotation matrices is particularly
useful if the individual elementary rotations are given by their rotation axis and their rotation angle.
Alternatively, the matrix RN can be formulated by its column vectors. Since RN is a rotation matrix
for the three-dimensional space, its order is 3×3 so that the formulation by column vectors ek is
given by:

RN =
[
e1 e2 e3

]
(D.3.33)

The formulation using the column vectors e1, e2 and e3 can be useful if a rotation matrix shall
be determined for given vectors. In the following considerations, the conditions for the column
vectors shall be derived and discussed.

If RN is an orthogonal matrix, then its transpose RN
T is equal to its inverse RN

−1. Thereby, it is
valid:

RN
T = RN

−1⇒ RN
T RN = RN

−1 RN = I (D.3.34)

By using the formulation according to (D.3.33) is it obtained:

RN
T RN =

e1
T

e2
T

e3
T

[e1 e2 e3
]
=

e1
T e1 e1

T e2 e1
T e3

e2
T e1 e2

T e2 e2
T e3

e3
T e1 e3

T e2 e3
T e3

=

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

I

(D.3.35)

By comparing the elements of the product RN
T RN and of the identity matrix I the following

relation can be formulated:

ST S = I ⇒ ek
T el = ek · el =

{
1 for k = l
0 for k 6= l ⇒ |ek|=

√
ek · ek = 1 (D.3.36)

The relation (D.3.36) indicates that the column vectors e1, e2 and e3 of the rotation matrix S
are orthogonal unit vectors. – It should be noted that here and in the further considerations the
following two notations of the scalar product are used synonymously:

aT b = a ·b (D.3.37)

The second property of the rotation matrix RN which has been derived in section D.3 is that the
determinant detRN is equal to 1. In order to evaluate this property with respect to the column
vectors ek, the determinant of a generalized 3×3-matrix X, which is composed of the three column
vectors a, b and c, shall be considered first:

a =

a1
a2
a3

 , b =

b1
b2
b3

 , c =

c1
c2
c3

 , X =
[
a b c

]
=

a1 b1 c1
a2 b2 c2
a3 b3 c3

 (D.3.38)

By applying the rule of Sarrus the determinant of the matrix X is obtained to:

detX = det

a1 b1 c1
a2 b2 c2
a3 b3 c3

= a1 b2 c3 +b1 c2 a3 + c1 a2 b3−a3 b2 c1−b3 c2 a1− c3 a2 b1 (D.3.39)
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For a 3×3-matrix the determinant can also be obtained from the triple scalar product of the column
vectors:

detX = det
[
a b c

]
= a · (b× c) =

a1
a2
a3

 ·
b1

b2
b3

×
c1

c2
c3

=

a1
a2
a3

 ·
b2 c3−b3 c2

b3 c1−b1 c3
b1 c2−b2 c1


= a1 (b2 c3−b3 c2)+a2 (b3 c1−b1 c3)+a3 (b1 c2−b2 c1)

= a1 b2 c3−b3 c2 a1 + c1 a2 b3− c3 a2 b1 +b1 c2 a3−a3 b2 c1 (D.3.40)

The triple scalar product remains unaffected if the vectors a, b and c are cyclically permuted:

a · (b× c) = b · (c×a) = c · (a×b) (D.3.41)

Based on the relations (D.3.40) and (D.3.41) a second relation between the column vectors ek can
be formulated:

1 = detRN = det
[
e1 e2 e3

]
= e1 · (e2× e3) = e2 · (e3× e1) = e3 · (e1× e2) (D.3.42)

For the following considerations it is advantageous to use a more generalized formulation of the
condition (D.3.42); here, the triple 〈 j,k, l〉 of the indices is chosen in such a way that one of the
three scalar triple products given in (D.3.41) is obtained:

1 = ej · (ek× el) , 〈 j,k, l〉 ∈ {〈1,2,3〉 ,〈2,3,1〉 ,〈3,1,2〉} (D.3.43)

The two conditions (D.3.36) and (D.3.43) can be combined by considering the norms of the vectors
in the context of the scalar product and of the vector product. As derived in the section A.5.1 the
norm |a×b| of the vector product can be formulated in the following way:

|a×b|=
√
(a×b) · (a×b) =

√
|a|2|b|2− (a ·b)2 (D.3.44)

According to (D.3.36), the vectors e1, e2 and e3 are orthogonal unit vectors. Therefore, it is valid
for k 6= l:

|ek|2︸︷︷︸
1

|el|2︸︷︷︸
1

−(ek · el)
2︸ ︷︷ ︸

0

= 1⇒ |ek× el|=
√
|ek|2|el|2− (ek · el)

2 = 1 (D.3.45)

The result of (D.3.45) shows that the cross product of two orthogonal unit vectors is a unit vector,
too. The scalar product of two vectors a and b of the three-dimensional, which include the angle
φ, which include the angle φ, can be interpreted in the following way:

a ·b = |a| |b|cosφ (D.3.46)

By applying the relation (D.3.46) to the triple scalar product (D.3.43) and evaluating the norms
based on (D.3.36) and (D.3.45), it is obtained:

1 = ej · (ek× el) =
∣∣ej
∣∣︸︷︷︸

1

|ek× el|︸ ︷︷ ︸
1

cosφ⇒ cosφ = 1⇒ φ = 0 (D.3.47)

The result indicates that the angle φ included between the vector ej and the cross product ek× el
is zero so that the vectors ej and ek× el have the same direction. Furthermore, the norm of both
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vectors ej and ek× el is equal to 1. If two vectors have the same direction and the same norm, they
are equal so that it is valid:

ej = ek× el (D.3.48)

By applying this relation to the three triples 〈 j,k, l〉 indicated in (D.3.43), it is obtained:

e1 = e2× e3 (D.3.49)
e2 = e3× e1 (D.3.50)
e3 = e1× e2 (D.3.51)

D.4 Angular velocity

As indicated in (D.0.1), the relation between the two descriptions rJ and rK of the same vector in
the frames J and K is expressed by the rotation matrix SJK :

rJ = SJK rK (D.4.52)

Differentiating the equation with respect to the time leads to:

ṙJ = ṠJK rK +SJK ṙK (D.4.53)

As derived in the previous section D.2 a rotation matrix is an orthogonal matrix so that it is valid:

SJK T
= SJK −1⇒ SJK T SJK = SJK −1 SJK = I (D.4.54)

Based on this property, the first term on the right hand side of (D.4.53) can be reformulated in the
following way:

ṠJK rK = ṠJK SJK T SJK︸ ︷︷ ︸
I

rK = ṠJK SJK T︸ ︷︷ ︸
ω̃

J
JK

SJK rK︸ ︷︷ ︸
rJ

= ω̃
J
JK rJ (D.4.55)

The product ṠJK SJK T can be interpreted as the angular velocity ω̃
J
JK , which describes the rotation

of the frame K relative to the frame J ; therefore, this product shall be evaluated in the following.
It will turn out that in this context the formulation using column vectors is rather useful. Therefore
and for the sake of brevity and of a better overview, the matrix SJK will be expressed as a composed
rotation matrix RN , which is described by its column vectors ek:

SJK = RN =
[
e1 e2 e3

]
(D.4.56)

In order to evaluate the angular velocity ω̃
J
JK , the product ṘN RN

T is considered. It is valid:

ω̃
J
JK = ṘN RN

T =
[
ė1 ė2 ė3

]e1
T

e2
T

e3
T

 (D.4.57)

The formulation according to (D.4.57) requires the evaluation of dyadic products ėk el
T, which is

rather inconvenient. From the orthogonality of the rotation matrix RN it can be derived:

RN
T = RN

−1⇒ RN RN
T = RN RN

−1 = I (D.4.58)
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Using this relation the product ṘN RN
T is reformulated in the following way:

ṘN RN
T = RN RN

T︸ ︷︷ ︸
I

ṘN RN
T = RN

e1
T

e2
T

e3
T

[ ė1 ė2 ė3
]

RN
T = RN

e1
T ė1 e1

T ė2 e1
T ė3

e2
T ė1 e2

T ė2 e2
T ė3

e3
T ė1 e3

T ė2 e3
T ė3


︸ ︷︷ ︸

RN
T ṘN

RN
T

(D.4.59)
As derived in section (D.3) it is valid for the column vectors e1, e2 and e3:

ek
T el = ek · el =

{
1 for k = l
0 for k 6= l (D.4.60)

For k 6= l the differentiation of the scalar product ek · el and the application of the commutativity of
the scalar product leads to:

ek · el = 0 ⇒ 0 =
d
dt

(ek · el) = ėk · el + ek · ėl ⇒ ek · ėl =−ėk · el =−el · ėk (D.4.61)

For k = l it is obtained:

ek · ek = 1 ⇒ 0 =
d
dt

(ek · ek) = ėk · ek + ek · ėk = 2ek · ėk ⇒ ek · ėk = 0 (D.4.62)

Thereby, it is valid for the product ṘN RN
T:

ṘN RN
T = RN

e1 · ė1 e1 · ė2 e1 · ė3
e2 · ė1 e2 · ė2 e2 · ė3
e3 · ė1 e3 · ė2 e3 · ė3


︸ ︷︷ ︸

RN
T ṘN

RN
T = RN

 0 −e2 · ė1 e1 · ė3
e2 · ė1 0 −e3 · ė2
−e1 · ė3 e3 · ė2 0


︸ ︷︷ ︸

RN
T ṘN

RN
T (D.4.63)

It is evident that the product RN
T ṘN is a skew-symmetric matrix:

RN
T ṘN =−

(
RN

T ṘN
)T

(D.4.64)

From this it follows that also the product ṘN RN
T is skew-symmetric:

(
ṘN RN

T)T
=
(
RN
(
RN

T ṘN
)

RN
T)T

= RN
T T (RN

T ṘN
)T RN

T =−RN
(
RN

T ṘN
)

RN
T

(D.4.65)
The skew-symmetric matrix RN

T ṘN can be interpreted as a tilde matrix. The tilde matrix x̃ is
derived from the vector y in the following way, which provides a formulation of the cross product
using a matrix multiplication:

x×y =

x1
x2
x3


︸ ︷︷ ︸

a

×

y1
y2
y3


︸ ︷︷ ︸

b

=

x2 y3− x3 y2
x3 y1− x1 y3
x1 y2− x2 y1

=

 0 −x3 x2
x3 0 −x1
−x2 x1 0


︸ ︷︷ ︸

x̃

y1
y2
y3


︸ ︷︷ ︸

y

= x̃y (D.4.66)
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In order to interpret the result (D.4.59), the expression RN w̃ RN
T v shall be considered; here, the

skew-symmetric product RN
T ṘN is replaced by the generalized tilde matrix w̃. It is obtained:

RN w̃ RN
T v =

[
e1 e2 e3

] 0 −w3 w2
w3 0 −w1
−w2 w3 0

e1
T

e2
T

e3
T

v

=
[
e1 e2 e3

] 0 −w3 w2
w3 0 −w1
−w2 w1 0

e1
Tv

e2
Tv

e3
Tv

=
[
e1 e2 e3

]−w3 e2
Tv+w2 e3

Tv
w3 e1

Tv−w1 e3
Tv

−w2 e1
Tv+w1 e2

Tv


= (w2 e3 ·v−w3 e2 ·v)e1 +(w3 e1 ·v−w1 e3 ·v)e2 +(w1 e2 ·v−w2 e1 ·v)e3

= w1 [(v · e2)e3− (v · e3)e2]+w2 [(v · e3)e1− (v · e1)e3]+w3 [(v · e1)e2− (v · e2)e1]

(D.4.67)

The content of the brackets can be reformulated by using the triple vector product:

a× (b× c) = (a · c)b− (a ·b)c (D.4.68)

Applying this relation and the anticommutativity of the cross product

a×b =−b×a (D.4.69)

leads to:

RN w̃ RN
T v = w1 [(v · e2)e3− (v · e3)e2]+w2 [(v · e3)e1− (v · e1)e3]+w3 [(v · e1)e2− (v · e2)e1]

= w1 v× (e3× e2)+w2 v× (e1× e3)+w3 v× (e2× e1)

=−w1 (e3× e2)×v−w2 (e1× e3)×v−w3 (e2× e1)×v
= w1 (e2× e3)×v+w2 (e3× e1)×v+w3 (e1× e2)×v (D.4.70)

In section D.3 the following relations between the column vectors e1, e2 and e3 has been derived:

e1 = e2× e3, e2 = e3× e1, e3 = e1× e2 (D.4.71)

Based on this, it is finally obtained:

RN w̃ RN
T v = w1 (e2× e3)×v+w2 (e3× e1)×v+w3 (e1× e2)×v

= w1 e1×v+w2 e2×v+w3 e3×v (D.4.72)

The evaluation of cross product of the product RN w and the vector v leads to:

(RN w)×v =

[e1 e2 e3
]w1

w2
w3

×v = (w1 e1 +w2 e2 +w3 e3)×v

= w1 e1×v+w2 e2×v+w3 e3×v = RN w̃ RN
T v (D.4.73)

From this it follows that the matrix RN w̃ RN
T is the tilde matrix of the vector RN w. By setting

w̃ = RN
T ṘN the corresponding vector w is determined:

w̃ = RN
T ṘN =

 0 −e2 · ė1 e1 · ė3
e2 · ė1 0 −e3 · ė2
−e1 · ė3 e3 · ė2 0

⇒ w =

e3 · ė2
e1 · ė3
e2 · ė1

 (D.4.74)
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Thereby, the tilde matrix ω̃
J
JK of the angular velocity of the frame K relative to the frame J can

be formulated using the column vectors of the rotation matrix SR S = RN :

ω̃
J
JK = ṘN RN

T = RN

 0 −e2 · ė1 e1 · ė3
e2 · ė1 0 −e3 · ė2
−e1 · ė3 e3 · ė2 0


︸ ︷︷ ︸

w̃

RN
T (D.4.75)

Based on the relation (D.4.73) the vector of the angular velocity ω
J
JK is finally obtained:

ω
J
JK = RN

e3 · ė2
e1 · ė3
e2 · ė1


︸ ︷︷ ︸

w

= (e3 · ė2)e1 +(e1 · ė3)e2 +(e2 · ė1)e3 (D.4.76)



Appendix E

Compliance coefficients

In section 7.4, the following expressions were determined for the compliance coefficients:

H [IK]
ik =

∫
A

HIK(xi− x,yi− y) fk(x,y)dA (E.0.1)

In this chapter, the integral will be evaluated.

The local shape function fk(x,y) is given by:

fk =

{ (
1− |x−xk|

∆a

)(
1− |y−yk|

∆a

)
for |x− xk| ≤ ∆a∧|y− yk| ≤ ∆a

0 for |x− xk|> ∆a∨|y− yk|> ∆a
(E.0.2)

Here, ∆a> 0 is the grid constant; it is a strictly positive number. From the definition of the function
fk(x,y) according to (E.0.2) it is derived:

|x− xk| ≤ ∆a⇒ |x− xk|
∆a

≤ 1⇒−|x− xk|
∆a

≥−1⇒ 1− |x− xk|
∆a

≥ 0 (E.0.3)

|y− yk| ≤ ∆a⇒ |y− yk|
∆a

≤ 1⇒−|y− yk|
∆a

≥−1⇒ 1− |y− yk|
∆a

≥ 0 (E.0.4)

⇒ fk(x,y) =
(

1− |x− xk|
∆a

)
︸ ︷︷ ︸

≥0

(
1− |y− yk|

∆a

)
︸ ︷︷ ︸

≥0

≥ 0 for |x− xk| ≤ ∆a∧|y− yk| ≤ ∆a (E.0.5)

From this it follows that the function fk(x,y) is non-negative for the following domain Dk:

Dk =
{
(x,y) ∈ R2| |x− xk| ≤ ∆a, |y− yk| ≤ ∆a

}
(E.0.6)

By reformulating the conditions for x and y it is obtained:

x− xk ≥ 0⇔ x≥ xk : |x− xk|= x− xk ≤ ∆a⇒ xk ≤ x≤ xk +∆a
x− xk < 0⇔ x < xk : |x− xk|=−(x− xk) =−x+ xk ≤ ∆a⇒ xk−∆a≤ x < xk

⇒ xk−∆a≤ x≤ xk +∆a (E.0.7)
y− yk ≥ 0⇔ y≥ yk : |y− yk|= y− yk ≤ ∆a⇒ yk ≤ y≤ yk +∆a
y− yk < 0⇔ y < yk : |y− yk|=−(y− yk) =−y+ yk ≤ ∆a⇒ yk−∆a≤ y < yk

⇒ yk−∆a≤ y≤ yk +∆a (E.0.8)
⇒ Dk =

{
(x,y) ∈ R2|xk−∆a≤ x≤ xk +∆a,yk−∆a≤ y≤ yk +∆a

}
(E.0.9)

378
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Outside the domain Dk, i.e. in the complement A\Dk of the domain Dk in A, the function fk(x,y)
vanishes. Therefore, it is valid:

H [IK]
i|k =

∫
A

HIK(xi− x,yi− y) fk(x,y)dA

=
∫

Dk

HIK(xi− x,yi− y) fk(x,y)dA+
∫

A\Dk

HIK(xi− x,yi− y)

=0︷ ︸︸ ︷
fk(x,y) dA︸ ︷︷ ︸

=0

(E.0.10)

In order to obtain the integral over the complete surface A, it is sufficient to carry out the integration
just for the domain Dk.

Since the function fk(x,y) contains the absolute values |x− xk| and |y− yk|, the integrals have to
be evaluated piecewise. To this end, the coefficients cx and cy, which are piecewise constant, are
introduced. Using these coefficients, the absolute values are reformulated in the following way:

|x− xk|= cx (x− xk) (E.0.11)
x− xk ≥ 0⇔ x≥ xk : |x− xk|= x− xk⇒ cx = 1 (E.0.12)
x− xk < 0⇔ x < xk : |x− xk|=−(x− xk)⇒ cx =−1 (E.0.13)

|y− yk|= cy (y− yk) (E.0.14)
y− yk ≥ 0⇔ y≥ yk : |y− yk|= x− xk⇒ cy = 1 (E.0.15)
y− yk < 0⇔ y < yk : |y− yk|=−(y− yk)⇒ cy =−1 (E.0.16)

The domain Dk according to (E.0.7), in which the function fk doesn’t vanish, is divided into four
subdomains Dk,1, Dk,2, Dk,3 and Dk,4. Within each subdomain, the coefficients cx and cy are
constant. It should be noted that for x = xk⇔ x− xk = 0 the value cx can be chosen arbitrarily;
in an analogous way, an arbitrary value for cy can be used for y = yk⇔ y− yk = 0. Thus, the
subdomains can be defined in such a way that the limits x = xk and y = yk belong to both adjacent
subdomains. Thereby, cx and cy are not functions of x and y in the strict sense. However, this
definition spares the discussion using limits of the functions. In total, it is valid:

xk−∆a≤ x≤ xk xk ≤ x≤ xk +∆a

yk ≤ y≤ yk +∆a
Subdomain Dk,2
cx =−1, cy = 1

Subdomain Dk,1
cx = 1, cy = 1

yk−∆a≤ y≤ yk
Subdomain Dk,3

cx =−1, cy =−1
Subdomain Dk,4
cx = 1, cy =−1

Based on this consideration, the function fk is reformulated in the following way:

xk−∆a≤ x≤ xk +∆a∧ yk−∆a≤ y≤ yk +∆a :

fk =

(
1− |x− xk|

∆a

)(
1− |y− yk|

∆a

)
=

(
1− cx (x− xk)

∆a

)(
1−

cy (y− yk)

∆a

)
(E.0.17)

Since the function fk(x,y) vanishes outside the four subdomains Dk,1, Dk,2, Dk,3 and Dk,4, the
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integrals over the surface A can be expressed in the following way:

H [IK]
ik =

∫
A

HIK(xi− x,yi− y) fk(x,y)dA

=
∫

Dk

HIK(xi− x,yi− y) fk(x,y)dA

=
4

∑
n=1

∫
Dk,n

HIK(xi− x,yi− y) fk(x,y)dA (E.0.18)

The influence functions HIK(xi− x,yi− y) are given by:

H11(xi− x,yi− y) =
1

πG

[
1−ν

[(xi− x)2 +(yi− y)2]
1/2 +

ν(xi− x)2

[(xi− x)2 +(yi− y)2]
3/2

]
(E.0.19)

H22(xi− x,yi− y) =
1

πG

[
1−ν

[(xi− x)2 +(yi− y)2]
1/2 +

ν(yi− y)2

[(xi− x)2 +(yi− y)2]
3/2

]
(E.0.20)

H33(xi− x,yi− y) =
1

πG
1−ν

[(xi− x)2 +(yi− y)2]
1/2 (E.0.21)

H12(xi− x,yi− y) =
ν

πG
(xi− x)(yi− y)

[(xi− x)2 +(yi− y)2]
3/2 (E.0.22)

Inserting the influence functions into the integrals and splitting the integrals leads to:

H [33]
ik =

∫
A

H33(xi− x,yi− y) fk(x,y)dA =
∫

A

1
πG

1−ν

[(xi− x)2 +(yi− y)2]
1/2 fk(x,y)dA

=
4

∑
n=1

1−ν

πG

∫
Dk,n

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA =

4

∑
n=1

1−ν

πG
h[33]

ik,n (E.0.23)

H [11]
ik =

∫
A

H11(xi− x,yi− y) fk(x,y)dA

=
∫

A

1
πG

[
1−ν

[(xi− x)2 +(yi− y)2]
1/2 +

ν(xi− x)2

[(xi− x)2 +(yi− y)2]
3/2

]
fk(x,y)dA

=
4

∑
n=1

[
1−ν

πG

∫
Dk,n

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA+

ν

πG

∫
Dk,n

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA

]

=
4

∑
n=1

[
1−ν

πG
h[33]

ik,n +
ν

πG
h[11]

ik,n

]
(E.0.24)

H [22]
ik =

∫
A

H22(xi− x,yi− y) fk(x,y)dA

=
∫

A

1
πG

[
1−ν

[(xi− x)2 +(yi− y)2]
1/2 +

ν(yi− y)2

[(xi− x)2 +(yi− y)2]
3/2

]
fk(x,y)dA

=
4

∑
n=1

[
1−ν

πG

∫
Dk,n

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA+

ν

πG

∫
Dk,n

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA

]

=
4

∑
n=1

[
1−ν

πG
h[33]

ik,n +
ν

πG
h[22]

ik,n

]
(E.0.25)
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H [12]
ik =

∫
A

H12(xi− x,yi− y) fk(x,y)dA =
∫

A

ν

πG
(xi− x)(yi− y)

[(xi− x)2 +(yi− y)2]
3/2 fk(x,y)dA

=
4

∑
n=1

ν

πG

∫
Dk,n

(xi− x)(yi− y) fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

4

∑
n=1

ν

πG
h[12]

ik,n (E.0.26)

In total the coefficients H [IK]
ik contain the following four basic integrals:

h[33]
ik,n =

∫
Dk,n

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA (E.0.27)

h[11]
ik,n =

∫
Dk,n

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA (E.0.28)

h[22]
ik,n =

∫
Dk,n

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA (E.0.29)

h[12]
ik,n =

∫
Dk,n

(xi− x)(yi− y) fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA (E.0.30)

It can be seen that for x = xi∧ y = yi a singularity occurs; this requires a special treatment of the
integrals. – For the integrals h[11]

ik,n and h[22]
ik,n it is valid:

h[11]
ik,n +h[22]

ik,n =
∫

Dk,n

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA+

∫
Dk,n

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA

=
∫

Dk,n

[
(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 +

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2

]
dA

=
∫

Dk,n

(xi− x)2 fk(x,y)+(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA

=
∫

Dk,n

[
(xi− x)2 +(yi− y)2] fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA

=
∫

Dk,n

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA = h[33]

ik,n (E.0.31)

It will turn out that in some cases the evaluation of the integral h[11]
ik,n is simpler, while in other

cases the evaluation of the integral h[22]
ik,n requires less effort. Therefore, the integral, for which the

evaluation is simpler, is determined and the other integral is obtained by using the relation between
h[11]

ik,n and h[22]
ik,n

In the following sections the coefficients will be determined.

E.1 Local coordinates

In the first step the global cartesian coordinates x and y are expressed by the normalized local
cartesian coordinates ξ and η. The origin of the local coordinates is the point 〈xi,yi〉, for which the
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deformation ui = u(xi,yi) is determined. Furthermore the coordinates are normalized with the grid
constant ∆a > 0. Thereby, the original coordinates x and y are formulated in the following way:

x = xi +ξ∆a⇒ x− xi = ξ∆a (E.1.32)
y = yi +η∆a⇒ y− yi = η∆a (E.1.33)

In the second step, the local cartesian coordinates ξ and η are expressed by the polar coordinates r
and φ in the following way:

ξ = r cosφ, η = r sinφ, r ≥ 0 (E.1.34)

In total it is valid:

x = xi +ξ∆a = xi +∆ar cosφ⇒ x− xi = ∆ar cosφ (E.1.35)
y = yi +η∆a = yi +∆ar sinφ⇒ y− yi = ∆ar sinφ (E.1.36)

From the relation between the local cartesian coordinates ξ and η on the one hand and the polar
coordinates r and φ on the other hand it can be derived:

ξ = r cosφ, η = r sinφ

⇒ ξ
2 +η

2 = r2 cos2
φ+ r2 sin2

φ = r2 (cos2
φ+ sin2

φ)︸ ︷︷ ︸
1

= r2⇒ r =
√

ξ2 +η2 (E.1.37)

⇒ cosφ =
ξ

r
=

ξ√
ξ2 +η2

, sinφ =
η

r
=

η√
ξ2 +η2

(E.1.38)

Based on this, the following term contained in the influence functions is reformulated in the fol-
lowing way:(

[xi− x]2 +[yi− y]2
)1/2

=

√
[−ξ∆a]2 +[−η∆a]2 =

√
ξ2∆a2 +η2∆a2 = ∆a

√
ξ2 +η2 = ∆ar

(E.1.39)
The terms x− xk and y− yk, which are contained in the shape function fk, expressed in the follow-
ing way:

xi = xO + x̄i ∆a, xk = xO + x̄k ∆a, x̄i, x̄k ∈ Z
⇒ xi− xk = xO + x̄i ∆a− xO− x̄k ∆a = (x̄i− x̄k)∆a = x̄ik ∆a, x̄ik = x̄i− x̄k ∈ Z

x− xk = x− xi + xi− xk = ∆ar cosφ+∆a
xi− xk

∆a
= ∆a (r cosφ+ x̄ik) (E.1.40)

yi = yO + ȳi ∆a, yk = yO + ȳk ∆a, ȳi, ȳk ∈ Z
⇒ yi− yk = yO + ȳi ∆a− yO− ȳk ∆a = (ȳi− ȳk)∆a = ȳik ∆a, ȳik = ȳi− ȳk ∈ Z

y− yk = y− yi + yi− yk = ∆ar sinφ+∆a
yi− yk

∆a
= ∆a (r sinφ+ ȳik) (E.1.41)

Using these relations, the shape function fk is formulated in the following way:

fk(x,y) =
(

1− cX
x− xk

∆a

)(
1− cY

y− yk

∆a

)
= (1− cX [r cosφ+ x̄ik]) (1− cY [r sinφ+ ȳik])

= (1− cX r cosφ− cX x̄ik)(1− cY r sinφ− cY ȳik)

= (1− cX x̄ik)(1− cY ȳik)︸ ︷︷ ︸
fk,0

+cX (cY ȳik−1)︸ ︷︷ ︸
fk,1

r cosφ

+(cX x̄ik−1)cY︸ ︷︷ ︸
fk,2

r sinφ+ cX cY︸︷︷︸
fk,12

r2 cosφ sinφ

= fk,0 + fk,1r cosφ+ fk,2r sinφ+ fk,12r2 cosφ sinφ (E.1.42)
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From this it follows:

dx
dξ

= ∆a⇒ dx = dξ∆a,
dy
dη

= ∆a⇒ dy = dη∆a⇒ dA = dxdy = ∆a2dξdη (E.1.43)

The influence functions H11, H22, H12, and H33 contain differences xi−x and yi−y and squares of
these differences. It is valid

x− xi = ξ∆a⇔ xi− x =−ξ∆a (E.1.44)
y− yi = η∆a⇔ yi− y =−η∆a (E.1.45)

As derived in the previous section, the local bilinear function fk, which is used for the description
of the discretized stress field, is formulated in the following way:

xk−∆a≤ x≤ xk +∆a∧ yk−∆a≤ y≤ yk +∆a :

fk =

(
1− cx (x− xk)

∆a

)(
1−

cy (y− yk)

∆a

)
(E.1.46)

Using the local coordinates it is valid:

x− xk

∆a
=

xi +ξ∆a− xk

∆a
= ξ− xk− xi

∆a
= ξ− x̄k ∆a− x̄i ∆a

∆a
= ξ− (x̄k− x̄i) = ξ− x̄ki (E.1.47)

y− yk

∆a
=

yi +η∆a− yk

∆a
= η− yk− yi

∆a
= η− ȳk ∆a− ȳi ∆a

∆a
= η− (ȳk− ȳi) = η− ȳki (E.1.48)

Here the normalized distances x̄ki = x̄k− x̄k, x̄ki ∈ Z and ȳki = ȳk− ȳk, ȳki ∈ Z are used. For the
further considerations the function is reformulated in the following way:

fk =

(
1− cx (x− xk)

∆a

)(
1−

cy (y− yk)

∆a

)
= [1− cx (ξ− x̄ki)] [1− cy (η− ȳki)]

= [1+ cx x̄ki− cx ξ] [1+ cy ȳki− cy η]

= (1+ cx x̄ki)(1+ cy ȳki)︸ ︷︷ ︸
fk,0

−cx (1+ cy ȳki)︸ ︷︷ ︸
− fk,1

ξ− (1+ cx x̄ki) cy︸ ︷︷ ︸
− fk,2

η+ cx cy︸︷︷︸
fk,12

ξη

= fk,0 + fk,1 ξ+ fk,2 η+ fk,12 ξη (E.1.49)

In the second step the local cartesian coordinates ξ and η are replaced by polar coordinates in the
following way:

ξ = r cosφ, η = r sinφ, r ≥ 0 (E.1.50)

Thereby, the distances xi− x and yi− y are expressed in the following way:

xi− x =−ξ∆a =−∆ar cosφ (E.1.51)
yi− y =−η∆a =−∆ar sinφ (E.1.52)

Since the grid constant ∆a > 0 is strictly positive and the radius r ≥ 0 is non-negative, it is valid:(
[xi− x]2 +[yi− y]2

)1/2
=

(
(−∆ar cosφ)2 +(−∆ar sinφ)2

)1/2

=
(
∆a2r2 cos2

φ+∆a2r2 sin2
φ
)1/2

=
(
cos2

φ+ sin2
φ
)1/2

∆ar = ∆ar (E.1.53)
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By inserting the polar coordinates into the terms contained in the influence functions it is obtained:

1

[(xi− x)2 +(yi− y)2]
1/2 =

1
∆ar

(E.1.54)

(xi− x)2

[(xi− x)2 +(yi− y)2]
3/2 =

(−∆ar cosφ)2

(∆ar)3 =
∆a2 r2 cos2 φ

∆a3 r3
=

cos2 φ

r ∆a
(E.1.55)

(yi− y)2

[(xi− x)2 +(yi− y)2]
3/2 =

(−∆ar sinφ)2

(∆ar)3 =
∆a2 r2 sin2

φ

∆a3 r3
=

sin2
φ

r ∆a
(E.1.56)

(xi− x)(yi− y)

[(xi− x)2 +(yi− y)2]
3/2 =

(−∆ar cosφ)(−∆ar sinφ)

(∆ar)3 =
∆a2 r2 cosφ sinφ

∆a3 r3
=

cosφ sinφ

r ∆a

(E.1.57)

For the infinitesimal area element it is valid:

dA = dx dx = ∆a2dξ dη = ∆a2r dr dφ (E.1.58)

The function fk is expressed in the following way:

fk(x,y) =

(
1− cx (x− xk)

∆a

)(
1−

cy (y− yk)

∆a

)
= (1+ cx x̄ki)(1+ cy ȳki)︸ ︷︷ ︸

fk,0

−cx (1+ cy ȳki)︸ ︷︷ ︸
− fk,1

ξ− (1+ cx x̄ki) cy︸ ︷︷ ︸
− fk,2

η+ cx cy︸︷︷︸
fk,12

ξη

= fk,0 + fk,1 ξ+ fk,2 η+ fk,12 ξη

= fk,0 + fk,1 r cosφ+ fk,2 r sinφ+ fk,12 r2 sinφ cosφ

= fk(r,φ) (E.1.59)

Altogether it is valid for the integrands of the compliance coefficients:

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA =

1
r ∆a

fk(r,φ)∆a2r dr dφ = fk(r,φ)∆adr dφ (E.1.60)

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

cos2 φ

r ∆a
fk(r,φ)∆a2r dr dφ = cos2

φ fk(r,φ)∆adr dφ (E.1.61)

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

sin2
φ

r ∆a
fk(r,φ)∆a2r dr dφ = sin2

φ fk(r,φ)∆adr dφ (E.1.62)

(xi− x)(yi− y) fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA =

cosφ sinφ

r ∆a
fk(r,φ)∆a2r dr dφ = cosφ sinφ fk(r,φ)∆adr dφ

(E.1.63)

Thereby, the denominator is eliminated so that no singularities occur; this is the main advantage of
the formulation using polar coordinates. The resulting integrands can be expressed by the follow-
ing generalized formulation:

h[IK]
ik,n =

∫
Dk,n

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ (E.1.64)
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E.2 Integration over the polar coordinates

As derived in the equations (E.0.23), (E.0.24), (E.0.25) and (E.0.26) the compliance coefficients
can be formulated in the following way:

H [11]
ik =

∫
A

H11(xi− x,yi− y) fk(x,y)dA =
4

∑
n=1

[
1−ν

πG
h[33]

ik,n +
ν

πG
h[11]

ik,n

]
(E.2.65)

H [22]
ik =

∫
A

H22(xi− x,yi− y) fk(x,y)dA =
4

∑
n=1

[
1−ν

πG
h[33]

ik,n +
ν

πG
h[22]

ik,n

]
(E.2.66)

H33,ik =
∫

A
H33(xi− x,yi− y) fk(x,y)dA =

4

∑
n=1

1−ν

πG
h[33]

ik,n (E.2.67)

H12,ik =
∫

A
H12(xi− x,yi− y) fk(x,y)dA =

4

∑
n=1

ν

πG
h[12]

ik,n (E.2.68)

The four integrals h[IK]
ik,n are defined by:

h[33]
ik,n =

∫
Dk,n

fk(x,y)

[(xi− x)2 +(yi− y)2]
1/2 dA (E.2.69)

h[11]
ik,n =

∫
Dk,n

(xi− x)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA (E.2.70)

h[22]
ik,n =

∫
Dk,n

(yi− y)2 fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA (E.2.71)

h[12]
ik,n =

∫
Dk,n

(xi− x)(yi− y) fk(x,y)

[(xi− x)2 +(yi− y)2]
3/2 dA (E.2.72)

In section refAppendixCompliance:LocalCoordinates, the integrands of the integrals h[IK]
ik,n have

been formulated for polar coordinates. The advantage is that for the formulation using polar coor-
dinates the integrands have no singularities. However, the subdomains Dk,n, over which the integra-
tion has to be carried out, have a rectangular shape, whereas the edges of the rectangle are parallel
to the x-axis or to the y-axis. With respect to polar coordinates, the integration over a domain
having such a shape is, however, more difficult. For the following considerations it is assumed
that the four corners of the rectangle are given by the four points P1 = 〈ξa,ηa〉, P2 = 〈ξb,ηa〉,
P3 = 〈ξb,ηb〉, P4 = 〈ξa,ηb〉.
If a function g(r,φ) has to be integrated over an area, the integration is most simple for an area
ABC, which is limited by two rays defined by the angles φB and φC and a curve defined by R(φ). It
is valid: ∫

ABC

g(r,φ) dA =

φC∫
φB

RBC(φ)∫
0

g(r,φ)r dr dφ (E.2.73)

The integral of the function g(r,φ) over the rectangular area D can now be obtained by summing
up the integrals of the function g(r,φ) over the triangular areas TBC; in this case, the triangular area
TBC is limited by the rays defined by φB and φC and the edge of the rectangle connecting the corners
PB and PC. Thereby, the three corners of the triangle TBC are given by the two points PB and PC
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and the origin of the coordinates. Then, the integral over a triangular domain TBC is formulated in
the following way:

G(PB→ PC) =
∫

TBC

g(r cosφ,r sinφ)r dr dφ =

φC∫
φB

RBC(φ)∫
0

g(r cosφ,r sinφ)r dr dφ (E.2.74)

Here, φB and φC indicate the start angle and the end angle, respectively. The coordinates ξBC and
ηBC of a point P, which is located on the line connecting the points PB and PC, are expressed by:

ξBC = RBC(φ) cosφ, ηBC = RBC(φ) sinφ (E.2.75)

Thereby, the radius function RBC(φ) is defined. The sign of the integral depends on the relation
between the angles φB and φC: If the end angle is greater than the start angle, i.e. φC > φB, then
the integral is counted positively; if the end angle is less than the start angle, i.e. φC < φB, then it
is counted negatively. Since the rectangular domain D has four edges, the integral over the domain
D is expressed by the four integrals over the triangular domains T12, T23, T34, T41.∫

D
g(ξ,η) dξ dη =

∫
T12

g(r cosφ,r sinφ)r dr dφ+
∫

T23

g(r cosφ,r sinφ)r dr dφ

+
∫

T34

g(r cosφ,r sinφ)r dr dφ+
∫

T41

g(r cosφ,r sinφ)r dr dφ (E.2.76)

An overview is given in Figure E.2.1. Here, the four edges of the rectangle and the radius functions
RBC(φ) are described in the following way:

Lower edge : P1 = 〈ξA,ηA〉 → P2 = 〈ξB,ηA〉 , R12(φ) =
ηA

sinφ
(E.2.77)

Right edge : P2 = 〈ξB,ηA〉 → P3 = 〈ξB,ηB〉 , R23(φ) =
ξB

cosφ
(E.2.78)

Upper edge : P3 = 〈ξB,ηB〉 → P4 = 〈ξA,ηB〉 , R34(φ) =
ηB

sinφ
(E.2.79)

Left edge : P4 = 〈ξA,ηB〉 → P1 = 〈ξA,ηA〉 , R41(φ) =
ξB

cosφ
(E.2.80)

By applying this integration on the integral h[IK]
ik,n defined in (E.1.64) it is obtained:

h[IK]
ik,n =

∫
Dk,n

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ

=
∫

T12

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ︸ ︷︷ ︸
h[IK]

ik,n (P1→P2)

+
∫

T23

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ︸ ︷︷ ︸
h[IK]

ik,n (P2→P3)

+
∫

T34

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ︸ ︷︷ ︸
h[IK]

ik,n (P3→P4)

+
∫

T41

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ︸ ︷︷ ︸
h[IK]

ik,n (P4→P1)

(E.2.81)
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Figure E.2.1: Description of the rectangular domain D by superposing triangular domains TAB.

For the integral over the triangular domain TBC it is valid:

h[IK]
ik,n (PB→ PC) =

∫
TBC

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ

=

φC∫
φB

RBC(φ)∫
0

cosM
φ sinN

φ fk(r,φ) ∆a dr dφ

= ∆a

φC∫
φB

 RBC(φ)∫
0

fk(r,φ) dr

cosM
φ sinN

φ dφ (E.2.82)

Since the trigonometric functions cosM φ and sinN
φ do not depend on the radial coordinate r, they

are factored out from the inner integral over r. The only term of the integrand, which depends
on r, is the shape function fk(r,φ). Using the formulation for fk(r,φ) according to (E.1.59), it is



388 Appendix E. Compliance coefficients

obtained for the inner integral:

R(φ)∫
0

fk(r,φ)dr =

R(φ)∫
0

[
fk,0 + fk,1 r cosφ+ fk,2 r sinφ+ fk,12 r2 sinφ cosφ

]
dr

= fk,0

R(φ)∫
0

dr+ fk,1 cosφ

R(φ)∫
0

r dr+ fk,2 sinφ

R(φ)∫
0

r dr+ fk,12 cosφsinφ

R(φ)∫
0

r2 dr

= fk,0 r|R(φ)0 + fk,1 cosφ
r2

2

∣∣∣∣R(φ)
0

+ fk,2 sinφ
r2

2

∣∣∣∣R(φ)
0

+ fk,12 cosφsinφ
r3

3

∣∣∣∣R(φ)
0

= fk,0 R(φ)+
1
2

fk,1 cosφ R(φ)2 +
1
2

fk,2 sinφ R(φ)2 +
1
3

fk,12 cosφsinφ R(φ)3

(E.2.83)

E.2.1 Integration for constant ξ

For the integration along ξ = const. it is valid for the radius R(φ):

ξ = R(φ)cosφ⇒ R(φ) =
ξ

cosφ
(E.2.84)

Inserting this into the result of the inner integral leads to:

R(φ)∫
0

fk(r,φ)dr = fk,0 R(φ)+
1
2

fk,1 cosφ R(φ)2 +
1
2

fk,2 sinφ R(φ)2 +
1
3

fk,12 cosφsinφ R(φ)3

= fk,0
ξ

cosφ
+

1
2

fk,1 cosφ
ξ

2

cos2 φ
+

1
2

fk,2 sinφ
ξ

2

cos2 φ
+

1
3

fk,12 cosφsinφ
ξ

3

cos3 φ

= fk,0
ξ

cosφ
+

1
2

fk,1
ξ

2

cosφ
+

1
2

fk,2 sinφ
ξ

2

cos2 φ
+

1
3

fk,12 sinφ
ξ

3

cos2 φ

=

(
fk,0 +

1
2

fk,1 ξ

)
ξ

1
cosφ

+

(
1
2

fk,2 +
1
3

fk,12 ξ

)
ξ

2 sinφ

cos2 φ

= Fk,ξ,1 ξ
1

cosφ
+Fk,ξ,2 ξ

2 sinφ

cos2 φ
(E.2.85)

For the coefficients Fk,ξ,1 and Fk,ξ,2 it is valid:

Fk,ξ,1 = fk,0 +
1
2

fk,1 ξ =
1
2
[
2 fk,0 + fk,1 ξ

]
=

1
2
[2 (1+ cx x̄ki)(1+ cy ȳki)− cx (1+ cy ȳki) ξ]

=
1
2
[2 (1+ cx x̄ki)− cx ξ] (1+ cy ȳki) (E.2.86)

Fk,ξ,2 =
1
2

fk,2 +
1
3

fk,12 ξ =
1
6
[
3 fk,2 +2 fk,12 ξ

]
=

1
6
[−3 (1+ cx x̄ki) cy +2cx cy ξ]

=
1
6
[−3 (1+ cx x̄ki)+2cx ξ] cy (E.2.87)

Based on this the integrals over the azimuth φ are formulated. Since the factors Fk,ξ,1 and Fk,ξ,2

and the coordinate ξ are constant, they are factored out from the integrals. For the integrals h[33]
ik,n,
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h[11]
ik,n and h[22]

ik,n along a vertical edge indicated by ξ it is obtained:

h[33]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr dφ = ∆a

φJ∫
φI

[
Fk,ξ,1 ξ

1
cosφ

+Fk,ξ,2 ξ
2 sinφ

cos2 φ

]
dφ

= ∆a

Fk,ξ,1

φJ∫
φI

1
cosφ

dφ+Fk,ξ,2 ξ

φJ∫
φI

sinφ

cos2 φ
dφ

ξ (E.2.88)

h[11]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr cos2
φdφ = ∆a

φJ∫
φI

[
Fk,ξ,1 ξ

1
cosφ

+Fk,ξ,2 ξ
2 sinφ

cos2 φ

]
cos2

φdφ

= ∆a

Fk,ξ,1

φJ∫
φI

cosφdφ+Fk,ξ,2 ξ

φJ∫
φI

sinφdφ

ξ (E.2.89)

h[22]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr sin2
φdφ = ∆a

φJ∫
φI

[
Fk,ξ,1 ξ

1
cosφ

+Fk,ξ,2 ξ
2 sinφ

cos2 φ

]
sin2

φdφ

= ∆a

Fk,ξ,1

φJ∫
φI

sin2
φ

cosφ
dφ+Fk,ξ,2 ξ

φJ∫
φI

sin3
φ

cos2 φ
dφ

ξ (E.2.90)

It is evident that the evaluation of the integral h[22]
ik,n(ξ,ηI → ηJ) requires a higher effort than the

evaluation of the integrals h[11]
ik,n(ξ,ηI→ ηJ) and h[33]

ik,n(ξ,ηI→ ηJ). Therefore, this integral is deter-
mined by:

h[22]
ik,n(ξ,ηI → ηJ) = h[33]

ik,n(ξ,ηI → ηJ)−h[11]
ik,n(ξ,ηI → ηJ) (E.2.91)

By using the relation:
φJ∫

φI

sin2
φ

cosφ
dφ =

φJ∫
φI

1− cos2 φ

cosφ
dφ =

φJ∫
φI

1
cosφ

dφ−
φJ∫

φI

cosφ dφ (E.2.92)

it is obtained for the integral h[12]
ik,n:

h[12]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr cosφ sinφdφ

= ∆a

φJ∫
φI

[
Fk,ξ,1 ξ

1
cosφ

+Fk,ξ,1 ξ
2 sinφ

cos2 φ

]
cosφ sinφdφ

= ∆a

Fk,ξ,1

φJ∫
φI

sinφ dφ+Fk,ξ,2 ξ

φJ∫
φI

sin2
φ

cosφ
dφ

ξ

= ∆a

Fk,ξ,1

φJ∫
φI

sinφdφ+Fk,ξ,2 ξ

 φJ∫
φI

1
cosφ

dφ−
φJ∫

φI

cosφdφ

ξ (E.2.93)
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E.2.2 Integration for constant η

For the integration along η = const. it is valid for the radius R(φ):

η = R(φ)sinφ⇒ R(φ) =
η

sinφ
(E.2.94)

Inserting this into the result of the inner integral over the radius r leads to:

R(φ)∫
0

fk(r,φ)dr = fk,0 R(φ)+
1
2

fk,1 cosφ R(φ)2 +
1
2

fk,2 sinφ R(φ)2 +
1
3

fk,12 cosφ sinφ R(φ)3

= fk,0
η

sinφ
+

1
2

fk,1 cosφ
η2

sin2
φ
+

1
2

fk,2 sinφ
η2

sin2
φ
+

1
3

fk,12 cosφ sinφ
η3

sin3
φ

= fk,0
η

sinφ
+

1
2

fk,1 cosφ
η2

sin2
φ
+

1
2

fk,2
η2

sinφ
+

1
3

fk,12 cosφ
η3

sin2
φ

=

(
fk,0 +

1
2

fk,2 η

)
η

1
sinφ

+

(
1
2

fk,1 +
1
3

fk,12 η

)
η

2 cosφ

sin2
φ

= Fk,η,1 η
1

sinφ
+Fk,η,2 η

2 cosφ

sin2
φ

(E.2.95)

The constant coefficients Fk,η,1 and Fk,η,2 are obtained to:

Fk,η,1 = fk,0 +
1
2

fk,2 η =
1
2
[
2 fk,0 + fk,2 η

]
=

1
2
[2 (1+ cx x̄ki)(1+ cy ȳki)− (1+ cx x̄ki) cy η]

=
1
2
(1+ cx x̄ki) [2 (1+ cy ȳki)− cy η] (E.2.96)

Fk,η,2 =
1
2

fk,1 +
1
3

fk,12 η =
1
6
[
3 fk,1 +2 fk,12 η

]
=

1
6
[−3cx (1+ cy ȳki)+2cx cy η]

=
1
6

cx [−3 (1+ cy ȳki)+2cy η] (E.2.97)
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Based on this the integrals h[33]
ik,n, h[11]

ik,n, h[22]
ik,n and h[12]

ik,n are formulated:

h[33]
ik,n(ξI → ξJ,η) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr dφ = ∆a

φJ∫
φI

[
Fk,η,1 η

1
sinφ

+Fk,η,2 η
2 cosφ

sin2
φ

]
dφ

= ∆a

Fk,η,1

φJ∫
φI

1
sinφ

dφ+Fk,η,2 η

φJ∫
φI

cosφ

sin2
φ

dφ

η (E.2.98)

h[11]
ik,n(ξI → ξJ,η) =

φJ∫
φI

R(φ)∫
0

fk dr cos2
φ dφ = ∆a

φJ∫
φI

[
Fk,η,1 η

1
sinφ

+Fk,η,2 η
2 cosφ

sin2
φ

]
cos2

φ dφ

= ∆a

Fk,η,1 η

φJ∫
φI

cos2 φ

sinφ
dφ+Fk,η,2 η

2
φJ∫

φI

cos3 φ

sin2 dφ

 (E.2.99)

h[22]
ik,n(ξI → ξJ,η) =

φJ∫
φI

R(φ)∫
0

fk dr sin2
φ dφ = ∆a

φJ∫
φI

[
Fk,η,1 η

1
sinφ

+Fk,η,2 η
2 cosφ

sin2
φ

]
sin2

φ dφ

= ∆a

Fk,η,1

φJ∫
φI

sinφ dφ+Fk,η,2 η

φJ∫
φI

cosφ dφ

η (E.2.100)

In this case the evaluation of the integral h[11]
ik,n(ξI → ξJ,η) is more complicated then those of the

integrals h[33]
ik,n(ξI → ξJ,η) and h[22]

ik,n(ξI → ξJ,η) so that the integral h[11]
ik,n(ξI → ξJ,η) is determined

by:
h[11]

ik,n(ξ,ηI → ηJ) = h[33]
ik,n(ξ,ηI → ηJ)−h[22]

ik,n(ξ,ηI → ηJ) (E.2.101)

For the determination of the integral h[12]
ik,n(ξI → ξJ,η) the following relation is used:

φJ∫
φI

cos2 φ

sinφ
dφ =

φJ∫
φI

1− sin2
φ

sinφ
dφ =

φJ∫
φI

1
sinφ

dφ−
φJ∫

φI

sinφ dφ

Thereby, it is obtained

h[12]
ik,n(ξI → ξJ,η) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr cosφ sinφ dφ

= ∆a

φJ∫
φI

[
Fk,η,1 η

1
sinφ

+Fk,η,2 η
2 cosφ

sin2
φ

]
cosφ sinφ dφ

= ∆a

Fk,η,1

φJ∫
φI

cosφ dφ+Fk,η,2 η

φJ∫
φI

cos2 φ

sinφ
dφ

η

= ∆a

Fk,η,1

φJ∫
φI

cosφ dφ+Fk,η,2 η

 φJ∫
φI

1
sinφ

dφ−
φJ∫

φI

sinφ dφ

η (E.2.102)



392 Appendix E. Compliance coefficients

E.2.3 Evaluation of the integrals

In sections E.2.1 and E.2.2, it has been shown that the integrals can be formulated as linear com-
binations of the following integrals:

φJ∫
φI

sinφ dφ,

φJ∫
φI

cosφ dφ,

φJ∫
φI

1
sinφ

dφ,

φJ∫
φI

1
cosφ

dφ,

φJ∫
φI

sinφ

cos2 φ
dφ,

φJ∫
φI

cosφ

sin2
φ

dφ (E.2.103)

The solution of these integrals is given by:∫
sin(αx)dx =− 1

α
cos(αx) (E.2.104)∫

cos(αx)dx =
1
α

sin(αx) (E.2.105)∫ 1
sin(αx)

dx =
∫

csc(αx)dx =
1
α

ln(csc(αx)− cot(αx))

=
1
α

ln
(

1
sin(αx)

− cos(αx)
sin(αx)

)
=

1
α

ln
(

1− cos(αx)
sin(αx)

)
(E.2.106)∫ 1

cos(αx)
dx =

∫
sec(αx)dx =

1
α

ln(sec(αx)+ tan(αx))

=
1
α

ln
(

1
cos(αx)

+
sin(αx)
cos(αx)

)
=

1
α

ln
(

1+ sin(αx)
cos(αx)

)
(E.2.107)∫ sin(αx)

cos2(αx)
dx =

1
αcos(αx)

(E.2.108)∫ cos(αx)
sin2(αx)

dx =− 1
αsin(αx)

(E.2.109)

It can be seen that the solutions of the integrals can be formulated in such a way that the variable
x, for which the integration is carried out, only appears as the argument of the functions sin(αx)
and cos(αx).

In the present case, the parameter α is set to α = 1 and the integration variable x is replaced by the
angle φ. From the relation between the local cartesian coordinates ξ and η on the one hand and the
local polar coordinates r and φ on the other hand, as it has been introduced in (E.1.34), it can be
derived:

ξ = r cosφ, η = r sinφ⇒ ξ
2 +η

2 = r2 cos2
φ+ r2 sin2

φ = r2(cos2
φ+ sin2

φ) = r2

⇒ ξ = r cosφ⇒ cosφ =
ξ

r
=

ξ√
ξ2 +η2

, η = r sinφ⇒ sinφ =
η

r
=

η√
ξ2 +η2

(E.2.110)

From this it follows:

1− cosφ

sinφ
=

1− ξ

r
η

r
=

r−ξ

η
,

1+ sinφ

cosφ
=

1+ η

r
ξ

r

=
r+η

ξ
(E.2.111)

It can be seen that the angles φI and φJ don’t have to be determined at all. Instead of this, the
terms containing the trigonometric functions can be expressed in a comparatively simple way us-

ing the values ξI , ηI , ξJ and ηJ of the cartesian coordinates and the radii rI =

√
ξI

2 +ηI2 and



Appendix E. Compliance coefficients 393

rJ =

√
ξJ

2 +ηJ2. In total, the solutions for the six basic integrals can be formulated in the follow-
ing way:

φJ∫
φI

sinφ dφ = −cosφ|φJ
φI
=−(cosφJ− cosφI) =−

(
ξJ

rJ
− ξI

rI

)
(E.2.112)

φJ∫
φI

cosφ dφ = sinφ|φJ
φI
= sinφJ− sinφI =

ηJ

rJ
− ηI

rI
(E.2.113)

φJ∫
φI

1
sinφ

dφ = ln
(

1− cosφ

sinφ

)∣∣∣∣φJ

φI

= ln
(

1− cosφJ

sinφJ

)
− ln

(
1− cosφI

sinφI

)

= ln
(

rJ−ξJ

ηJ

)
− ln

(
rI−ξI

ηI

)
= ln

(
rJ−ξJ

ηJ

ηI

rI−ξI

)
= ln

(
rJ−ξJ

rI−ξI

ηI

ηJ

)
(E.2.114)

φJ∫
φI

1
cosφ

dφ = ln
(

1+ sinφ

cosφ

)∣∣∣∣φJ

φI

= ln
(

1+ sinφJ

cosφJ

)
− ln

(
1+ sinφI

cosφI

)

= ln
(

rJ +ηJ

ξJ

)
− ln

(
rI +ηI

ξI

)
= ln

(
rJ +ηJ

ξJ

ξI

rI +ηI

)
= ln

(
rJ +ηJ

rI +ηI

ξI

ξJ

)
(E.2.115)

φJ∫
φI

sinφ

cos2 φ
dφ =

1
cosφ

∣∣∣∣φJ

φI

=
1

cosφJ
− 1

cosφI
=

rJ

ξJ
− rI

ξI
(E.2.116)

φJ∫
φI

cosφ

sin2
φ

dφ = − 1
sinφ

∣∣∣∣φJ

φI

=−
(

1
sinφJ

− 1
sinφI

)
=−

(
rJ

ηJ
− rI

ηI

)
(E.2.117)
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For ξ = const. it is valid:

ξI = ξJ = ξ

φJ∫
φI

sinφ dφ =−
(

ξJ

rJ
− ξI

rI

)
=−

(
ξ

rJ
− ξ

rI

)
=−ξ

(
1
rJ
− 1

rI

)
(E.2.118)

φJ∫
φI

1
cosφ

dφ = ln
(

rJ +ηJ

rI +ηI

ξI

ξJ

)
= ln

(
rJ +ηJ

rI +ηI

ξ

ξ

)
= ln

(
rJ +ηJ

rI +ηI

)
(E.2.119)

φJ∫
φI

sinφ

cos2 φ
dφ =

rJ

ξJ
− rI

ξI
=

rJ

ξ
− rI

ξ
=

rJ− rI

ξ
(E.2.120)

Based on this, the integrals are obtained to:

h[33]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr dφ = ∆a

Fk,ξ,1

φJ∫
φI

1
cosφ

dφ+Fk,ξ,2 ξ

φJ∫
φI

sinφ

cos2 φ
dφ

ξ

= ∆a
[

Fξ,1 ln
(

rJ +ηJ

rI +ηI

)
+Fk,ξ,2 ξ

rJ− rI

ξ

]
ξ

= ∆a
[

Fξ,1 ln
(

rJ +ηJ

rI +ηI

)
+Fξ,2 (rJ− rI)

]
ξ (E.2.121)

h[11]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr cos2
φdφ = ∆a

Fξ,1

φJ∫
φI

cosφdφ+Fξ,2 ξ

φJ∫
φI

sinφdφ

ξ

= ∆a
[

Fξ,1

(
ηJ

rJ
− ηI

rI

)
−Fξ,2 ξ

2
(

1
rJ
− 1

rI

)]
ξ (E.2.122)

h[12]
ik,n(ξ,ηI → ηJ) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr cosφ sinφdφ

= ∆a

Fk,ξ,1

φJ∫
φI

sinφdφ+Fk,ξ,2 ξ

 φJ∫
φI

1
cosφ

dφ−
φJ∫

φI

cosφdφ

ξ

= ∆a
[
−Fk,ξ,1 ξ

(
1
rJ
− 1

rI

)
+Fk,ξ,2 ξ

(
ln
(

rJ +ηJ

rI +ηI

)
−
(

ηJ

rJ
− ηI

rI

))]
ξ

= ∆a
[
−Fk,ξ,1

(
1
rJ
− 1

rI

)
+Fk,ξ,2

(
ln
(

rJ +ηJ

rI +ηI

)
−
(

ηJ

rJ
− ηI

rI

))]
ξ

2

(E.2.123)
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For η = const. it is valid:

ηI = ηJ = η

φJ∫
φI

cosφ dφ =
ηJ

rJ
− ηI

rI
=

η

rJ
− η

rI
= η

(
1
rJ
− 1

rI

)
(E.2.124)

φJ∫
φI

1
sinφ

dφ = ln
(

rJ−ξJ

rI−ξI

ηI

ηJ

)
= ln

(
rJ−ξJ

rI−ξI

η

η

)
= ln

(
rJ−ξJ

rI−ξI

)
(E.2.125)

φJ∫
φI

cosφ

sin2
φ

dφ =−
(

rJ

ηJ
− rI

ηI

)
=−

(
rJ

η
− rI

η

)
=−rJ− rI

η
(E.2.126)

Inserting this into the integrals, which have been determined in section E.2.2, gives the following
results:

h[33]
ik,n(ξI → ξJ,η) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr dφ = ∆a

Fk,η,1

φJ∫
φI

1
sinφ

dφ+Fk,η,2 η

φJ∫
φI

cosφ

sin2
φ

dφ

η

= ∆a
[

Fk,η,1 ln
(

rJ−ξJ

rI−ξI

)
−Fk,η,2 η

rJ− rI

η

]
η

= ∆a
[

Fk,η,1 ln
(

rJ−ξJ

rI−ξI

)
−Fk,η,2 (rJ− rI)

]
η (E.2.127)

h[22]
ik,n(ξI → ξJ,η) =

φJ∫
φI

R(φ)∫
0

fk dr sin2
φ dφ = ∆a

Fk,η,1

φJ∫
φI

sinφ dφ+Fk,η,2 η

φJ∫
φI

cosφ dφ

η

= ∆a
[
−Fk,η,1

(
ξJ

rJ
− ξI

rI

)
+Fk,η,2 η

2
(

1
rJ
− 1

rI

)]
η (E.2.128)

h[12]
ik,n(ξI → ξJ,η) = ∆a

φJ∫
φI

R(φ)∫
0

fk dr cosφ sinφ dφ

= ∆a

Fk,η,1

φJ∫
φI

cosφ dφ+Fk,η,2 η

 φJ∫
φI

1
sinφ

dφ−
φJ∫

φI

sinφ dφ

η

= ∆a
[

Fk,η,1 η

(
1
rJ
− 1

rI

)
+Fk,η,2 η

(
ln
(

rJ−ξJ

rI−ξI

)
+

(
ξJ

rJ
− ξI

rI

))]
η

= ∆a
[

Fk,η,1

(
1
rJ
− 1

rI

)
+Fk,η,2

(
ln
(

rJ−ξJ

rI−ξI

)
+

(
ξJ

rJ
− ξI

rI

))]
η

2

(E.2.129)
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