
Parameterized Complexity of
Decision Problems in Non-Classical

Logics

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation von
Dipl.-Math. Irena Schindler

geboren am 05.07.1984 in Alma-Ata

2017

Referent: Heribert Vollmer, Leibniz Universität Hannover
Korreferent: Till Tantau, Universität zu Lübeck
Tag der Promotion: 07.06.2018

iii

Für Valentina und Waldemar

ACKNOWLEGMENTS

First of all I would like express my sincere gratitude to my supervisor Heribert Vollmer not
only for the accommodating support but also for manifold conversations on a intellectual
and personal level, which I will keep in remembrance. Furthermore I would like to thank
Arne Meier for his support, encouragement, motivation and also for the joint research.
For the outstanding patience during the proof reading of this thesis, as well as for the
numerous scientific discussions and collaborative research, I would like to thank my
colleagues Martin Lück, Anselm Haak and Maurice Chandoo.
Also I would like to thank my husband Andreas Schindler for the aid and support during
my doctoral studies, as well as for the care of the children during my research trips.
My sincere thanks go to my father-in-law Alexander Schindler and also my parents
Valentina and Waldemar Lange, who have always supported me in all situations, not only
mentally but also physically with the care of the children. Without this help I would not
have been able to write this thesis.

Zuerst möchte ich meinem Doktorvater Heribert Vollmer tiefe Dankbarkeit aussprechen,
nicht nur für die hilfsbereite Unterstützung während der Promotion, sondern auch für die
mannigfache Gespräche auf intellektueller und persönlicher Ebene, an die ich mich gern
erinnern werde. Weiter möchte ich meinem Betreuer Arne Meier für die Unterstützung,
Ermutigung, Motivation und nicht zuletzt für die gemeinsame Forschung herzlichen Dank
aussprechen.
Für die herausragende Geduld bei dem mehrfachen Korrekturlesen dieser Arbeit, sowie
für die zahlreichen fachlichen Diskussionen und der gemeinsamen Forschung danke ich
meinen Kollegen Martin Lück, Anselm Haak und Maurice Chandoo.
Meinem Ehemann Andreas Schindler danke ich für den Beistand und die Unterstützung
während der gesamten Promotionszeit, sowie für die Betreuung der Kinder während der
Forschungsreisen.
Mein größter Dank gilt meinem Schwiegervater Alexander Schindler, sowie meinen Eltern
Waldemar und Valentina Lange, die mich stets in jeder Lage, nicht nur mental, sondern
auch physisch bei der Betreuung der Kinder Unterstützt haben. Ohne dieser Hilfe, währe
es mir nicht möglich gewesen diese Arbeit anzufertigen.

“Not everything that can be counted counts, and not everything that counts can be
counted.”

Albert Einstein

CONTENTS

1 Introduction 1
1.1 Parameterized Complexity . 1
1.2 Temporal Logics . 2
1.3 Default Logic . 2
1.4 Publications . 3

2 Preliminaries 5
2.1 First Order and Second Order Logic . 6
2.2 Temporal Logics . 9
2.3 Parameterized Complexity . 11

2.3.1 The W-Hierarchy . 12
2.3.2 Tree-Decomposition . 13
2.3.3 The Theorem of Courcelle . 14

2.4 Post’s Lattice . 15
2.5 Default Logic . 18

3 Parametrization in Default Logic 21
3.1 Default Logic and Bounded Treewidth . 21

3.1.1 Graph Representations of Default Theories 23
3.1.2 The Idea of Dynamic Programming for DL 25
3.1.3 Computing Stable Default Sets . 26

3.2 Solving Default Logic using Backdoors . 41
3.2.1 The Implication Problem . 46
3.2.2 Backdoor Set Evaluation in Default Logic 48
3.2.3 Backdoor Set Detection in Default Logic 51

xi

Contents

4 Parametrization in Temporal Logics 55
4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth 55

4.1.1 Structural Representations of Formulae 55
4.1.2 Fixed-Paremeter Tractable Fragments 57

4.1.2.1 Courcelle’s Theorem with Infinite Signature 57
4.1.2.2 Design of MSO-Temporal Formulae 59

4.1.3 Fixed-Parameter Intractable Fragments 65
4.1.3.1 Parametrization by Temporal Depth and Treewidth . . . 66
4.1.3.2 Parametrization only by Temporal Depth or Treewidth . 80

4.1.4 Parameterized Complexity of Satisfiability in Post’s Lattice 82
4.2 Backdoors for Linear Temporal Logic . 85

4.2.1 Backdoor Set Detection in LTL . 87
4.2.2 Evaluation of a Backdoor Set in LTL 90

5 Conclusion 103

Bibliography 105

List of Figures 110

Index 111

Lebenslauf 117

xii

ZUSAMMENFASSUNG

Parametrisierte Komplexität ist ein Teilgebiet der klassischen Komplexitätstheorie und
wurde von Downey und Fellows [DF99] im Jahre 1999 erstmals vorgestellt. Sie un-
tersuchten die strukturellen Eigenschaften eines gegebenen Problems und schränkten
die Eingabe durch einen Parameter ein. In dieser Arbeit befassen wir uns mit der
parametrisierten Komplexität unterschiedlicher Probleme in der Default-Logik sowie in
temporalen Logiken.
Im ersten Abschnitt von Kapitel 3 stellen wir einen dynamischen Algorithmus vor, welcher
in fpt-Zeit entscheidet, ob eine gegebene Default-Theorie eine stabile Erweiterung besitzt.
Darüber hinaus enumeriert dieser alle generierenden Default-Regeln, die zur stabilen
Erweiterung führen, mit einer Vorberechnungszeit, die linear mit der Größe der gegebenen
Theorie und dreifach exponentiell mit der Baumweite wächst, gefolgt von linearem Delay
für die Ausgabe der Lösungen.
Im zweiten Abschnitt von Kapitel 3 führen wir das Konzept der Backdoors aus der klas-
sischen Aussagenlogik in die Default-Logik ein. Dabei untersuchen wir die Komplexität
zweier Probleme. Das erste Problem ist das Finden eines Backdoors für eine vorgegebene
Formel-Zielklasse, wie etwa HORN, KROM, POSITIVE-UNIT und MONOTONE. Das
zweite Problem evaluiert eine gegebene Formel anhand eines vorgegebenen Backdoors.
Im vierten Kapitel beschäftigen wir uns mit unterschiedlichen temporalen Logiken. Im
ersten Abschnitt stellen wir unterschiedliche ”Graphen-ähnliche” Strukturen vor, um eine
Formel zu repräsentieren. Anschließend definieren wir die zugehörigen Begriffe wie Pfad-
und Baumweite. Wir geben eine verallgemeinerte Version des Satzes von Courcelle an die
für unbeschränkte Signaturen gilt. Außerdem beschäftigen wir uns mit den Booleschen
Operatorfragmenten im Sinne von Post’s Lattice.
Im letzten Abschnitt führen wir den Begriff Backdoor in das ”globally” Fragment der
linearen temporalen Logik ein. Auch in diesem Abschnitt betrachten wir die beiden in
diesem Zusammenhang oben genannten Probleme: das Finden eines Backdoors und die
anschließende Evaluation der vorgegebenen Formel mit einem gegebenen Backdoor für
Formel-Zielklassen HORN und KROM.

Schlagwörter: Prarametrisierte Komplexität, Default Logik, Temporale Logik, Backdoor,
Post’s Lattice, Baum- und Pfadweite, temporale Tiefe xiii

ABSTRACT

Parameterized complexity is a branch of a computational complexity. The pioneers of
this new and promising research field are Downey and Fellows [DF99]. They suggest
to examine the structural properties of a given problem and restrict the instance by a
parameter. In this thesis we investigate the parameterized complexity of various problems
in default logic and in temporal logics.
In the first section of Chapter 3 we introduce a dynamic programming algorithm which
decides whether a given default theory has a consistent stable extension in fpt-time and
enumerates all generating defaults that lead to a stable extension with a pre-computation
step that is linear in the input theory and triple exponential in the tree-width followed
by a linear delay to output solutions.
In the second part of this chapter we lift the notion of backdoors to the field of default
logics. We consider two problems, first we are interested to detect a backdoor and
then to evaluate it for the target formulae classes HORN, KROM, POSITIVE-UNITand
MONOTONE.
In Chapter 4, we investigate the parameterized complexity of problems in various tem-
poral logics. In the first section we introduce several graph-like structures for formula
representation and the corresponding notion of tree-width and path-width. To obtain
the fixed parameter tractability of different fragments, we generalize the prominent
Courcelle’s Theorem to work for infinite signatures. In this section, we also consider
Boolean operator fragments in the sense of Post’s lattice.
In the second part of Chapter 4 we introduce the notion of backdoors for the glob-
ally fragment of linear temporal logic. Again, our problems of interest are to detect
a backdoor and to evaluate it, this time, for the target formulae classes HORN and KROM.

Keywords: Parameterized complexity, default logic, temporal logic, backdoor, Post’s
Lattice, tree- and pathwidth, temporal depth

xv

CHAPTER 1

INTRODUCTION

1.1 Parameterized Complexity

In classical complexity theory problems are investigated and evaluated with respect to
the time and space needed to solve them. Doing so the structural properties are neglected
and a problem may appears more difficult than it actually is. In contrast to classical
complexity theory, in parameterized complexity we take a closer look at the structural
properties and try to find an appropriate parametrization on them [FG06]. One of the
main complexity classes in parameterized complexity is FPT, which denotes the fixed
parameter tractability. On a high level of abstraction this means that all problems which
do not have an algorithm with polynomial runtime or space respectively, finally obtain a
polynomial behaviour by parameterizing the instance by some key property, such that all
non-polynomial parts in the runtime or space depend on a parameter only.

Parameterized complexity theory has received much attention over the last two decades
and has become increasingly important, as it has many applications in various fields of
research such as automated verification, artificial intelligence, and computational biology
to discover and to count the number of motifs in protein-protein interaction networks
[AN08], to mention just a few.

Many general algorithmic techniques were developed for solving parameterized problems
efficiently. Among these techniques are the following: The method of bounded search
trees where the search space is bounded by a function of the parameter. Kernelization
is a technique for the design of efficient algorithms. The idea of kernelization is to
reduce the size of the input via certain rules and to obtain in this way a smaller instance,
the so-called kernel. Color coding is a technique to design randomized fpt-algorithms.

1

Chapter 1 Introduction

Another approach to achieve a tractable algorithm is dynamic programming on the tree-
decompositions. Here, the problem is solved in several small steps with bounded search
space. Usually, this search space is restricted to the bags of a tree-decomposition.

Tree-decompositions are used in many algorithmic techniques in parameterized complex-
ity. This approach was originally suggested by Rudolf Halin in 1976 [Hal76] and was
subsequently developed further by Neil Robertson and Paul Seymor in 1984 [RN84], who
are more prominent in the literature. The tree-decomposition of a graph or arbitrary
relational structure is not unique. The concept of tree-decomposition came primarily
from the context of graph minor theory [FG06] and offers a very strong parameter,
the treewidth. This parameter has applications in many varied fields ([RN84],[KS93],
[Sch94][FMR08]). The parameter treewidth measures the similarity of a relational struc-
ture to a tree: Smaller treewidth mans that the structure more closely resembles a tree.
The treewidth of an acyclic graph is 1. A fundamental and important tool in this context
is Courcelle’s Theorem [CE12], which is applicable to problems definable in monadic
second order (MSO) logic. It allows to solve MSO-definable problems that are known to
be NP-hard, efficiently (all non polynomial parts depend on fixed parameter) [FG06].

1.2 Temporal Logics

Priors research laid a groundwork for temporal logics, as he published his book “Time
and Modality” in 1957 [Pri57], where he introduced two modal operators “sometime in
the future” F and “sometime in the past” P. It has received much attention and many
remarkable publications followed. Kripke was concerned with the semantic clarification
of modal logic [Kri63]. Pnueli took a step forward and formalized verification in linear
temporal logic (LT L) [Pnu77] and followed by computational tree logic (CTL) almost
equivalent formalism to computational tree logic was published by [AC81] and [AH85].
Nowadays, temporal logic has found an increasing number of application world-wide in
the area of program verification and to express specifications of a program. Especially,
the application of CTL enjoys a vast popularity since its model checking problem is
polynomial time solvable, e.g. in artificial intelligence [CR14] or program verification
[KP05]. By contrast, the satisfiability problem is EXPTIME-complete in CTL [FL79b]
and even double-EXPTIME-complete for full branching time logic CTL‹ [VS85]. A
possible approach to handle the intractable behaviour in temporal logics is the application
of parametrization, viz. to examine restrictions of the problem with the aid of operators,
Boolean connectives or bounded temporal depth.

1.3 Default Logic

To express a problem in propositional logic a complete description of the problem is
required. Incomplete information cannot be expressed directly. In 1980, Raymond Reiter

2

1.4 Publications

[Rei80] reported a new and convenient procedure to make conjectures in the case of
incomplete information possible. Default logic is tentative in nature. It follows the
approach of closed world assumption, which states: “Everything that we do not know to
be true is assumed to be false”. Default logic is one of the most prominent approaches to
non-monotonic reasoning where we can make tentative conclusions that can be retracted
based on further evidence. Default logic contains an initial set of facts, the so-called
knowledge base, and extends propositional logic by rules of default assumption, the
so-called default rules. Roughly speaking, such default rule enunciate “in the absence of
contrary information, assume . . . ”.
Default logic is a major area of interest within the fields of medical diagnosis [Kon01],
legal reasoning[Pra93] and has a pivotal role in artificial intelligence [Rei87].

1.4 Publications

In the first section of Chapter 3, we establish a dynamic programming algorithm for
default logic to decide whether a given default theory has a consistent stable extension
(Ext) and to enumerate all sets of generating defaults (EnumSE) that lead to a stable
extension. The algorithm runs in linear time in the input theory and triple exponential
time in the treewidth to answer the (Ext) problem. To solve the (EnumSE) problem,
the algorithm runs with a pre-computation step that is linear in the input theory and
triple exponential in the treewidth followed by a linear delay to output the solutions.
This section is based on [FHS17]. But in this thesis, we improved the worst-case runtime
of the algorithm from fourfold exponential in the size of the input to triple exponential.
This algorithm is not published yet.

In the second part of Chapter 3 we examine backdoors in default logic. The related
problems are backdoor detection (Detect) as well as backdoor evaluation (Eval) for
various kinds of target classes. Both problems are parameterized by the size of a backdoor
set. We show that backdoor detection is fixed-parameter tractable for all considered
target classes HORN, KROM, POSITIVE-UNIT, MONOTONE and backdoor evaluation is
either fixed-parameter tractable, in para-∆p

2 , or is para-NP-complete, depending on
the target class. This section is based on [FMS16]. For the case of backdoor evaluation
problem with target class HORN, only membership in para-NP was shown. As a new
result, we show para-NP-hardness establishing para-NP-completness.

In Chapter 4, we consider the parameterized complexity of problems in temporal logics.
In the first section, we examine various temporal logics, full branching time logic (CTL‹)
and subsets of it, computation tree logic (CTL) and linear temporal logic (LT L). We
will discuss several graph-like structures for formula representation and introduce the
corresponding terms of treewidth and path-width. We also present a generalisation of
Courcelle’s Theorem for infinite signatures. Our classification shows a dichotomy between
Wr1s-hard and fixed-parameter tractable operator fragments. By exploring Boolean

3

Chapter 1 Introduction

operator fragments in the sense of Post’s lattice we obtain the same complexity results as
in classical computational complexity, if a set of available Boolean functions can express
the function “negation of implication”. In the reverse case we show the containment in
FPT for almost all other clones. This section is based on [LMS17].

In the second section, we lift the notion of backdoors to the field of linear temporal logic for
the globally fragment. Again, the problems of interest are backdoor detection (Detect)
as well as backdoor evaluation (Eval). Here, we consider target classes HORN and
KROM. We classify the operator fragments of globally-operators past, future and always
and combinations of them. It turned out that the backdoor detection is fixed-parameter
tractable, whereas backdoor evaluation is more challenging. For KROM formulae it is
para-NP-complete and for HORN is it either in FPT or para-NP-complete, depending
on the considered operator fragment. This section is based on [MOSS16].

4

CHAPTER 2

PRELIMINARIES

A literal l is a propositional variable or the negation of a variable and a clause c is a finite
set of of literals. A conjunctive normal form (CNF) formula is a finite set of clauses of
the form ϕ “

Ź

i

Ž

jp qxij , where xij is the j-th variable in the i-th clause. Additionally
we want to define an truth-assignment ϑ : X Ñ t0, 1u for a set of variables X. For
x P X we set ϑp xq “ 1 ´ ϑpxq and denote by ApXq the set of all truth-assignments
ϑ : X Ñ t0, 1u. Furthermore, we will need from technical consideration the concept of
the truth assignment reduct of a CNF formula ϕ with respect to ϑ P ApXq, this is the
CNF formula ϕϑ obtained from ϕ by removing all clauses c that contains a literal l with
ϑplq “ 1 first. Afterwards, we remove all occurrences ϑplq “ 0 from remaining clauses
c P ϕϑ. A formula ϕ is satisfied by ϑ if ϕϑ “ H, and ϕ is satisfiable if it is satisfied by
some ϑ. Let ϕ1 and ϕ2 be some CNF formulae and X “ varpϕ1q Y varpϕ2q. By ϕ1 (ϕ2
we denote for all assignments ϑ P ApXq that satisfy ϕ1 satisfy ϕ2 also. We define the
deductive closure of a formula ϕ as Thpϕq :“ tϕ1 P CNF | ϕ (ϕ1u . In this thesis, we will
consider several decision problems such as

Problem: Sat
Input: Propositional formula ϕ
Question: Is the formula ϕ satisfiable?

Problem: Taut
Input: Propositional formula ϕ
Question: Is the formula ϕ satisfied by all possible assignments?

5

Chapter 2 Preliminaries

2.1 First Order and Second Order Logic

First Order Logic (FO) is applied for assigning certain properties for (not necessarily
logical) variables by means of universal quantifier @ and existential quantifier D and
represents in this way a symbolized reasoning. The aim of this section is to get familiar
with some basic terms in this field and to learn the syntax and afterwards the semantics of
first and second order logic receptively. We will follow the notion of Immerman [Imm99].

Definition 2.1: Alphabet of FO

The alphabet for first order logic ΣFO consists of

(1.) a set of variables VFO “ tx1, x2, x3, . . . xnu

(2.) a set of constants CFO “ tc1, c2, c3, . . . cmu

(3.) a set of functions FFO “ tf
a1
1 , fa2

2 , fa3
3 , . . . fa`` u,

with the arity ai of the function fi,

(4.) a set relations RFO “ tR
a1
1 , R

a2
2 , R

a3
3 , . . . R

ak
k u,

with the arity ai of relation Raii ,
(5.) a set of connectives t ,^,_u
(6.) a set of quantifiers t@, Du
(7.) a set of brackets tp, qu

To formulate the syntax of FO we require the notion of term:

Definition 2.2: Term

We define a set of terms TFO inductively as follows:

(1.) CFO Ď TFO
(2.) VFO Ď TFO
(3.) if f P FFO and t1, . . . , tn P T , then fpt1, . . . , tnq P TFO, with n “ aritypfq

And no other strings are terms.

A syntax restricts the set of possible symbols for expressions in first-order logics.

Definition 2.3: Syntax of FO

We define a set of formulae of first order logic FO inductively as follows

(1.) Rn P RFO and t1, . . . , tn P TFO, then Rpt1, . . . , tnq P FO,
(2.) if ϕ P FO, then p ϕq P FO,
(3.) if ϕ, ϑ P FO, then ϕ ˝ ϑ P FO for each ˝ P t^,_u and finally

6

2.1 First Order and Second Order Logic

(4.) if x P VFO and ϕ P FO, then p@ϕpxqq P FO and pDϕpxqq P FO.

No other strings are elements of FO.

To interpret the symbols given in the syntax of FO, we need to explain the semantics,
but first we require the following definition.

Definition 2.4: Vocabularies and Structures

By vocabulary we indentify a tuple of relation symbols Ri of arity ai, constant symbols
ci, and function symbols fi of arity ki.

τ :“ xRa1
1 , . . . , R

ak
k , c1, . . . , cs, f

k1
1 , . . . , fktt y

A structure with vocabulary τ is defined to be a tuple

A :“ x|A|, RA
1 , . . . , R

A
k , c

A
1 , . . . , c

A
s , f

A
1 , . . . , f

A
t y.

We call the non empty set |A| a universe.

Vocabularies are collections of symbols, these are interpreted by the structure. Finally,
we are able to construe the semantics of first order.

Definition 2.5: Semantics of FO, [FG06]

For each first-order formula ϕpx1, . . . , xkq of vocabulary τ and each structure A we
define a relation ϕpAq Ď Ak inductively as follows:

• If ϕpx1, . . . , xkq “ Rpxi1 , . . . , xirq with i1 . . . , ir P rks, then

ϕpAq :“ tpa1, . . . , akq P Ak | pai1 , . . . , airq P RAu.

Equalities are treated similarly.

• If ϕpx1, . . . , xkq “ ψpxi1 , . . . , xilq ^ χpxj1 , . . . , xjmq
with i1, . . . , il, j1, . . . , jm P rks then

ϕpAq :“ tpa1, . . . , akq P Ak | pai1 , . . . , ailq P ψpAq and paj1 , . . . , ajmq P χpAqu.

The other connectives are treated similarly.

• If ϕpx1, . . . , xkq “ Dxk`1ψpxi1 , . . . , xilq with i1, . . . , il P rk ` 1s then

ϕpAq :“ tpa1, . . . , akq P Ak | there exists an ak`1 P A s.t. pai1 , . . . , ailq P ψpAqu.

Universal quantifiers are treated similarly.

7

Chapter 2 Preliminaries

Here we use the definition of [HDE95]. Second order logic (SO) is an extension of first
order logic. It enables to quantify over subsets and relations of the universe |A| of the
structure A. Is augments the symbols of FO the alphabet containing for each n ě 1,
countably many n-ary relation (or predicate) variables V n

1 , V
n

2 , To denote relation
variables we use big latin letters. A second order formula of vocabulary τ is the set
generated by the rules for first-order formula extended by:

• If X is n-ary and t1, . . . , tn are terms then Xt1, . . . , tn is a formula.

• If ϕ is a formula and X is a relation variable then DXϕ is a formula.

The free occurrence of a variable or of a relation variable in a second-order formula is
defined in the straightforward way and the notion of satisfaction is extended canonically.
Then, given ϕ “ ϕpx1, . . . , xn, Y1, . . . , Ykq with free (individual and relation) variables
among x1, . . . , xn, Y1, . . . , Yk, a τ -structure A, elements a1, . . . , an P A and relations
R1, . . . Rk over A of arity corresponding to Y1, . . . , Yk, respectively,

A (ϕra1, . . . , an, R1, . . . , Rks

means that a1, . . . , an together with R1, . . . , Rk satisfy ϕ in A.

Monadic second order logic (MSO) is in some sense the intermediate level between FO
and SO logic. Here, we are able to quantify over unary relations only. MSO is crucial for
the application of Courcelle’s Theorem. A variety of the graph problems can be expressed
in monadic second order logic, like the classical problem of the three-colorability of a
graph.

Example 2.1. Let a vocabulary τ “ pV G, EGq be given, with V as the set of vertices
and E as the set of edges of the instance graph G. Now, we want to describe the
tree-colorability problem in terms of MSO

3-Color :“DCblueDCredDCgreen (2.1)

@v1@v2

ˆ

`

Cbluepv1q _ Credpv1q _ Cgreenpv1q
˘

(2.2)

^

´

`

Cbluepv1q ^ Credpv1q
˘

^
`

Cbluepv1q ^ Cgreenpv1q
˘

(2.3)

^
`

Credpv1q ^ Cgreenpv1q
˘

¯

(2.4)

^ Epv1, v2q Ñ
´

`

Cbluepv1q ^ Cbluepv2q
˘

(2.5)

^
`

Credpv1q ^ Credpv2q
˘

^
`

Cgreenpv1q ^ Cgreenpv2q
˘

¯

˙

(2.6)

In the first line (2.1) we demand tree varied colours, namely Cblue, Cred, Cgreen. In the
following tree columns (2.2)–(2.4) we determine the vertex v1 to be monochrome. And
the two adjacent vertices v1, v2 do not have the same color (2.5)–(2.6).

8

2.2 Temporal Logics

2.2 Temporal Logics

Temporal logics deal with time-bounded statements, like “I am always freezing in winter”,
“I am eventually freezing in autumn”, or “I will be freezing until I drink a hot beverage”. In
this way, temporal logics enhance the common propositional logic by temporal operators
next X, globally G, future F, until U and release R together with two path quantifiers
exists E and all A. The syntax of temporal formula ϕ is defined through the following
Backus Naur form:

ϕ ::“ p | ϕ | ϕ^ ϕ | PTϕ | P rϕUϕs | P rϕRϕs,

where T P tX,G,Fu and P P tE,Au.

Definition 2.6: Kripke Structure, [Kri63]

Let Φ denote a finite set of propositions. A Kripke structure is a triple

K “ pW,R, %q,

with a finite set of worlds W , a successor relation R : W Ñ W and an evaluation
function % : W Ñ 2Φ labelling sets of propositions to words.
A path π in a Kripke structure, is a infinite sequence of worlds w0, w1, w2, . . . , with
wiRwi`1 for every i P N. Additionally, πpiq represents the i-th world wi in a path π
and Πpwq denotes the set of all paths beginning at world w.

Definition 2.7: Semantics for a Temporal Formula

LetK “ pW,R, %q a Kripke structure, a world w PW , temporal formulae ϕ,ϕ1, . . . , ϕn,
an path π, a proposition p P Φ and a Boolean formula f be given. The truth value
of a temporal formula according to the Kripke structure is defined as follows:

K, w (p ô p P %pwq,

K, w (fpϕ1, ϕ2, . . . , ϕnq ô there is a propositional assignment ϑ (f and
for 1 ď i ď n : ϑpiq “ 1 ô K, w (ϕi,

K, w (Aϕ ô for all π P Πpwq it holds K, π (ϕ,

K, w (Eϕ ô there exists a π P Πpwq such that K,π (ϕ,

K, π (p ô p P %pπp0qq,

9

Chapter 2 Preliminaries

K, π (fpϕ1, ϕ2, . . . , ϕnq ô there is a propositional assignment ϑ (f and
for 1 ď i ď n : ϑpiq “ 1 ô K, π (ϕi,

K, π (Aϕ ô K, πp0q (Aϕ,
K, π (Eϕ ô K, πp0q (Eϕ,
K, π (Xϕ ô K, πp1q (ϕ,

K, π (Fϕ ô there exists an i ě 0 such that K, πpiq (ϕ,

K, π (Gϕ ô for all i ě 0 : K, πpiq (ϕ,

K, π (ϕUψ ô D i ě 0@ j ă i : K, πpjq (ϕ and K, πpiq (ψ,

K, π (ϕRψ ô @ i ě 0 D j ă i : K, πpjq (ϕ or K, πpiq (ψ.

Now, we lift the satisfiability problem to temporal logics and define:

Problem: CTL-Sat
Input: Temporal formula ϕ P CTL
Question: Does there exist a Kripke structure K, a sequence wiRwi`1 of worlds

wi with i P N, and a world wn such that K, wn (ϕ holds?

An analogous problem definition is given for a given temporal formula ϕ P CTL‹. Addi-
tionally we define:

Problem: LTL-Sat
Input: Temporal formula ϕ P LT L
Question: Does there exist a Kripke structure K, a sequence wiRwi`1 of worlds

wi with i P N, and a path π such that K, π (ϕ holds?

For investigating the structural properties of temporal logics, we require the notion of
temporal depth.

Definition 2.8: Temporal Depth

The temporal depth of a formula ϕ, denoted by tdpϕq is inductively defined as follows:

tdppq :“ 0, tdpfpϕ1, . . . , ϕnqq :“ max ttdpϕ1q, . . . , tdpϕnq, 0u ,
tdpPϕq :“ tdpϕq, tdpϕUψq :“ max ttdpϕq, tdpψqu ` 1,
tdpTϕq :“ tdpϕq ` 1, tdpϕRψq :“ max ttdpϕq, tdpψqu ` 1,

where p is a propositional symbol, f is Boolean function, P P tA,Eu and T P tX,F,Gu.

10

2.3 Parameterized Complexity

2.3 Parameterized Complexity

Decision problems in classical complexity theory are expressed as languages over finite
alphabets. In the next sections, we follow the notion of Flum and Grohe for the
parameterized complexity theory and start with some central definitions [FG06].

Definition 2.9: Parametrization

Let Σ be a finite alphabet.

(1.) A parametrization of Σ˚ is a polynomial time computable mapping κ : Σ˚ Ñ N.

(2.) A parameterized problem over an alphabet Σ is a tuple pQ, κq consisting of a
set of strings Q Ď Σ˚ and a parametrization κ of Σ˚.

Definition 2.10: κ-Bounded Function

Let κ be a parametrization. We say a function f : Σ˚ Ñ Σ˚ is κ-bounded, if there is
a computable function h, s.t. for all x P Σ˚ holds |fpxq| ď hpκpxqq.

Another key term in the context of parameterized complexity is fixed parameter tractability,
roughly speaking it represents a complexity class with problems, which are computable
in polynomial time and all non-polynomial parts depend on a parameter.

Definition 2.11: FPT

Let Σ be a finite alphabet and κ : Σ˚ Ñ N be a parametrization.

(1.) An Algorithm A with a instance alphabet Σ is an fpt-Algorithm with respect to
κ if there exists a computable function f : NÑ N and a polynomial p P Ně0rXs
such that for every x P Σ˚, A on input x runs in

fpκpxqq ¨ pp|x|q

worst-case time.

(2.) A parameterized problem pQ, κq is fixed-parameter tractable if there is an
fpt-Algorithm with respect to κ that decides Q.

(3.) FPT denotes the class of all fixed-parameter tractable problems.

A further helpful tool for proving problems to be fixed-parameter tractable is the notion
of a slice. The concept of slice is crucial for the generalization of Courcelles Theorem for
infinite signutures, what we will see in Chapter 4.

11

Chapter 2 Preliminaries

Definition 2.12: Slice, [FG06]

Let pQ, κq be a parameterized problem and ` P N. The `th slice of pQ, κq is the
classical problem

pQ, κq` :“ tx P Q | κpxq “ `u.

Theorem 2.2 ([FG06]).
Let C be a complexity class in tNP,PSPACE,EXPTIMEu. Let pQ, κq be a parame-
terized problem, Q Ĺ Σ˚, Q ‰ H. Then pQ, κq is para-C-hard if and only if a union of
finitely many slices of pQ, κq is C-hard.

2.3.1 The W-Hierarchy

Parameterized complexity theory pertains to classical computational complexity theory.
The complexity of problems is determined by an effort and subsequently classified to
the corresponding complexity classes. We assume the familiarity with the concept of
multitape Turing machines.

Definition 2.13: WrPs

Let Σ be an alphabet and κ : Σ˚ Ñ N be a parametrization.

(1.) A nondeterministic Turing machine M with the input Σ is defined as κ-
restricted if there exist computable functions f1 : N Ñ N, f2 : N Ñ N and a
polynomial p P Ně0rXs such that on every run with the input x P Σ˚ the
machine M performs at most f1pκpxqq ¨ pp|x|q steps, and at most f2pκpxqq ¨
logp|x|q of them being nondeterministic.

(2.) WrPs is the class of all parameterized problems pQ, κq that can be decided by
a κ-restricted nondeterministic Turing machine M .

Definition 2.14: para-NP

A parameterized problem pQ, κq over alphabet Σ is in para-NP, if there is a com-
putable function f : N Ñ N, a polynomial p P Ně0rXs, and a not deterministic
algorithm that, given x P Σ˚, decides if x P Q in at most fpκpxqq ¨ pp|x|q steps.

12

2.3 Parameterized Complexity

FPT
“

para-P

Wr1s

Wr2s

...

WrPspara-NP XP

Figure 2.1: Parameterized complexity classes

Definition 2.15: XP

A parameterized problem pQ, κq over alphabet Σ is in XP, if there is a computable
function f : NÑ N, and an algorithm that, given x P Σ˚, decides if x P Q in at most
|x|fpκpxqq ` fpκpxqq steps.

Proposition 2.3 (The Relation among the Classes). [FG06]

FPT Ď WrPs Ď XPX para-NP.

2.3.2 Tree-Decomposition

Tree-decomposition provide one of the most significant parameter tree-width, which
attaches great importance in the theoretical considerations. Such as in Theorem of Cour-
celle. With an appropriate parameter we are able to solve efficient, some in computational
complexity theory as NP-hard classified problems.

Definition 2.16: Tree-Decomposition

A tree-decomposition of a graph G “ pV,Eq is a pair T “ pT, χq, with a rooted tree
T “ pN,F, nq and a function χ : N Ñ 2V that maps to each node t P T a set of
vertices such that:

(1.) For every vertex v P V there is a node t P N with v P χptq.

(2.) For every edge e P E there is a node t P N with e Ď χptq.

13

Chapter 2 Preliminaries

(3.) For any three nodes t1, t2, t3 P N holds, if t2 lies on the unique path from t1 to
t3, then χpt1q X χpt3q Ď χpx2q.

The width of the decomposition T “ pT, χq is the number

max t|χptq| ´ 1 | t P T u .

The tree-width twpGq of the graph G is the minimum width over all possible tree-
decompositions of G.

The decision problem of a graph G, that needs to decide whether G has a given tree-width
k P N is NP-complete. Bodlaender and Koster have shown that for arbitrary but fixed k
a tree-decomposition of a Graph G of a width that equals its tree-width is computable in
time 2Opκ3q ¨ |V | [BK08].

Based on Bodlaender’s Theorem we know that the parameterized decision problem
Tree-Width is fixed-parameter tractable.

Problem: Tree-Width
Input: A graph G

Parameter: κ P N
Question: Decide whether twpGq “ κ.

2.3.3 The Theorem of Courcelle

Founded on the Theorem of Bodlaender, Courcelle has published in 1990 a theorem
[Cou90], which has found increasing application and is one of the central and one of the
most cited theorems in the field of parameterized complexity theory. In the following we
directly deal with the extended version of Courcelle’s Theorem, which was introduce by
M. Elberfeld, A. Jacoby and T. Tantau [EJT10], where they investigated additionally
the space requirements.

Theorem 2.4 (Courcelle 1990; Elberfeld, Jakoby and Tantau 2010).
Let pQ, κq be a MSO-definable parameterized problem, and Ax be a structure associated
with an instance x. Further let the treewidth of the structure Ax be bounded by the
parameter κ P N, twpAxq “ κ. Then pQ, κq is solvable in time

O
`

fpκq ¨ |x|
˘

and in space
Oplogpfpκqq ` log |x|q.

14

2.4 Post’s Lattice

2.4 Post’s Lattice

Emil Post investigated arbitrary restrictions of Boolean connectives in a formula and
published in 1941 a lattice demonstrating the inclusion relations among all existing sets
of Boolean functions [Pos41], so-called Post’s lattice, which is illustrated in Figure 2.2.
His work yielded a number of promising new avenues of research in various types of logics,
like non-monotonic logics [BMTV10, CMVT12], temporal logics [MMTV09, BMM`11],
modal logic [HSS10], hybrid logics [MMS`10], circuits [BCG`12], description logics
[MS13], or constraints [BBC`10]. But the first step was done by Lewis in 1979 [Lew79],
he proved the NP-completeness for SatpBq iff Û is an element of the smallest clone of
the base B which is defined as follows :

Definition 2.17: Clone and Base

Let B be a finite set of Boolean functions. A superset B1 Ě B containing all projects
and is closed under arbitrary compositions of functions from B1 is called clone.
We denote by rBs the smallest clone of the set B and we call the set B its base.

We summarize all Boolean clones in Table 2.1, where a Boolean function is:

• c-reproducing if fpc, . . . , cq “ c,

• monotone if for a1 ď b1, . . . , an ď bn follows fpa1, . . . , anq ď fpb1, . . . , bnq,

• c-seperating if there is an i P t1, . . . , nu with fpa1, . . . , anq “ 1 implies ai “ c,

• c-separating of degree n if all A Ď f´1pcq with |A| “ n are c-separating,

• self-dual if f ” dualpfq, with dualpfqpx1, . . . , xnq “ fp x1, . . . , xnq, an finally

• linear or affine if fpx1, . . . , xnq ” x1 ‘ ¨ ¨ ¨ ‘ xn ‘ c.

Further we have we have a identity function id, defined as fpxq “ x and a threshold
function Tn`1

n :“
Žn
i“0px0^¨ ¨ ¨^xi´1^xi`1 ¨ ¨ ¨^xnq, where n of n`1 bits are necessarily

set to “true”.

15

Chapter 2 Preliminaries

Formula Class Definition Base
BF All Boolean functions tx^ y, xu
R0 tf | f is K-reproducingu tx^ y, x‘ yu
R1 tf | f is J-reproducingu tx_ y, xØ yu
R2 R0 X R1 t_, x^ py Ø zqu
M tf | f is monotoneu tx_ y, x^ y,K,Ju
M0 MX R0 tx_ y, x^ y,Ku
M1 MX R1 tx_ y, x^ y,Ju
M2 MX R2 tx_ y, x^ yu
S0 tf | f is K-separatingu txÑ yu
S1 tf | f is J-separatingu txÛ yu
Sn

0 tf | f is K-separating of degree nu

xÑ y,dualpTn`1
n q

(

Sn
1 tf | f is J-separating of degree nu

xÛ y, Tn`1
n

(

S00 S0 X R2 XM tx_ py ^ zqu
Sn

00 Sn
0 X R2 XM

x_ py ^ zq,dualpTn`1
n q

(

S01 S0 XM tx_ py ^ zq,Ju
Sn

01 Sn
0 XM

dualpTn`1
n q,J

(

S02 S0 X R2 tx_ py Û zqu
Sn

02 Sn
0 X R2

x_ py Û zq,dualpTn`1
n q

(

S10 S1 X R2 XM tx^ py _ zqu
Sn

10 Sn
1 X R2 XM

x^ py _ zq, Tn`1
n

(

S11 S1 XM tx^ py _ zq,Ku
Sn

11 Sn
1 XM

Tn`1
n ,K

(

S12 S1 X R2 tx^ py Ñ zqu
Sn

12 Sn
1 X R2

x^ py Ñ zq, Tn`1
n

(

D tf | f is self-dualu tpxÛ yq _ pxÛ zq _ py Û zqu
D1 DX R2 tpxÛ yq _ pxÛ zq _ py Û zqu
D2 DXM tpxÛ yq _ pxÛ zq _ py Û zqu
L tf | f is linearu tx‘ y,Ju
L0 LX R0 tx‘ yu
L1 LX R1 txØ yu
L2 LX R2 tx‘ y ‘ zu
L3 LX D tx‘ y ‘ z ‘Ju
V tf | f is a disjunction or constantu tx_ y,K,Ju
V0 M0 X V tx_ y,Ku
V1 M1 X V tx_ y,Ju
V2 M2 X V tx_ yu
E tf | f is a conjunction or constantu tx^ y,K,Ju
E0 M0 X E tx^ y,Ku
E1 M1 X E tx^ y,Ju
E2 M2 X E tx^ yu
N tf | f depends on at most one variableu t x,K,Ju
N2 L3 X N t xu
I tf | f is a projection or a constantu tid,K,Ju
I0 R0 X I tid,Ku
I1 R1 X I tid,Ju
I2 R2 X I tidu

Table 2.1: A list of all Boolean clones with definitions and bases.

16

2.4 Post’s Lattice

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 2.2: Post’s lattice.

17

Chapter 2 Preliminaries

2.5 Default Logic

In this thesis we follow the notion for default logic pDLq of Reiter [Rei80]. A default rule δ
is a triple P:J

C , where a formula P is so-called prerequisite, a formula J is the justification
and a formula C is the conclusion of a default rule δ. A default theory TDL “ xW,Dy is
a tuple containing the knowledge base W , which is a set of propositional CNF formulae
and D a set of default rules. The aim in DL is to find stable extension:

Problem: Stable Extension Existence Ext
Input: Default theory TDL “ xW,Dy

Question: Does a stable extension for TDL exist?

A fundamental principal for investigation of the existence of stable extension Reiter
[Rei80] has formulated as follows:

Definition 2.18: Fixed Point Semantics

Let TDL “ xW,Dy be a default theory and E be a set of formulae. Then ΓpEq is the
smallest set of formulae such that:

(1.) W Ď ΓpEq,

(2.) ΓpEq “ ThpΓpEqq,

(3.) for each P:J
C P D with P P ΓpEq and J R E, we have C P ΓpEq.

E is a stable extension of TDL “ xW,Dy, if E “ ΓpEq. An extension is inconsistent
if it contains K, otherwise it is called consistent.

The stage construction is an alternativ way to determine the existence of stable extension,
which was also formulated by Reiter.

Lemma 2.5 (Stage Construction, [Rei80]). Let TDL “ xW,Dy be a default theory and
E be a set of formulae. Then we define E0 :“W and

Ei`1 :“ ThpEiq Y
"

C
ˇ

ˇ

ˇ

ˇ

P : J
C P D,P P Ei and J R E

*

.

E is a stable extension of TDL “ xW,Dy if and only if

E “
ď

iPN
Ei.

In addition we define the set of generating defaults

G “

"

P : J
C P D

ˇ

ˇ

ˇ

ˇ

P P E and J R E
*

18

2.5 Default Logic

If E is a stable extension of TDL “ xW,Dy, then E “ ThpW Y C pδq | δ P Gq.

Example 2.6. Stable Extension I
Let a default theory be given with a knowledge base W1 :“ tx1u and a set of default
rules D1 :“ tδ1 “

x1:x2
x2

, δ2 “
x1: x2
x1^x4

, u. Now we need to examine the existence of a
stable extension. In δ1 prerequisite is fulfilled with ThpW q and the justification is not
violated, as we cannot infer x2 from ThpW q. Consequently, we conclude x2 and obtain
E1 “ ThpWYx2q. In the next step, we examine the default rule δ2. Here, the prerequisite
is fulfilled again but we can infer x2 from E1, in consequence the justification is violated.
Overall holds W1 does not have any stable extension.

Example 2.7. Stable Extension II
Now let TDL “ xW,Dy be given as W “ H and D :“ tδ1 “

J:x2
x1

, δ2 “
J: x1
 x2

u, this default
theory has two stable extensions E1 “ Thpx1q and E2 “ Thp x2q.

We call SE a set of all stable extensions of a default theory TDL “ xW,Dy.

19

CHAPTER 3

PARAMETRIZATION IN DEFAULT LOGIC

In this chapter we will be concerned with parametrizations in default logic. It is divided
into two sections. In the first part we investigate the existence of stable extensions via
a dynamic programming algorithm. In the second part we proceed with the study of
so-called backdoors in default logic.

3.1 Default Logic and Bounded Treewidth

In this section, we present a dynamic programming algorithm which examines the existence
of a stable extension in Reiter’s propositional default logic. It runs in linear time in the
input theory and triple exponential time in the treewidth. Additionally we enumerate
all generating defaults with a pre-computation step that needs linear time in the input
theory and triple exponential time in the treewidth followed by a linear delay to output
the solutions. We represent default theories by their semi-primal graph with bounded
treewidth of its tree-decomposition. Let αpδq denote the prerequisite P of the default
rule δ, analogously let βpδq denote the justification J and γpδq denote the conclusion C
of the default rule δ. For a default theory TDL “ xW,Dy with consistent knowledge base
W , we are able to transform every formula in W into a default rule. This can be done in
linear time by utilising so-called normal default rules. For all wi P W we insert a rule
J:wi
wi

, where i P N and 1 ď i ď |W |. Finally we get T 1DL “ xH, D Y t
J:w1
w1

; ¨ ¨ ¨ ; J:w|W |
w|W |

uy.
In the following, we assume that any default theory has an empty knowledge base, unless
stated otherwise. Such a default theory TDL “ xH, Dy is also denoted simply by D.

For the examination of the existence of a stable extension we formulate an alternative
characterisation of stable extension beyond fixed point semantics, which is inspired by
Reiter’s stage construction [Rei80].

21

Chapter 3 Parametrization in Default Logic

Definition 3.1

Let D be a default theory and S Ď D. Further, let EpSq :“ tγpδq | δ P Su. We call
a default δ P D

• p-satisfiable in S, if EpSq Y αpδq is satisfiable

• j-satisfiable in S, if EpSq Y βpδq is unsatisfiable

• c-satisfiable in S, if δ P S.

The set S is a satisfying default set, if each default δ P D is p-satisfiable in S, or
j-satisfiable in S, or c-satisfiable in S.
The set S is a stable default set, if

(1.) S is a satisfying default set and

(2.) there is no S1 where S1 Ĺ S such that for each default δ it holds that δ is
p-satisfiable in S1, or j-satisfiable in S, or c-satisfiable in S1

We refer to the set of all stable default sets of D by SDpDq.

In the next lemma we show that we can use stable default sets to obtain stable extensions
of a default theory.

Lemma 3.1.
Let D be a default theory. Then,

SEpDq “
ď

SPSDpDq
Thpt γpδq | δ P Suq.

In particular, S P SDpDq is the set of generating defaults of extension Thpt γpδq | δ P Suq.

Proof. Let a default theory D be given. For the forward direction let E P SEpDq and ob-
serve that E“ThpEq. Next we construct a set S :“tδ P D |γpδqPE,αpδqPE, βpδqREu
from E. For a sake of contradiction assume that S is not a stable default set. Consequently,
S is either not subset-minimal, or it dissatisfies at least one default, which immediately
leads to a contradiction since E is a stable extension. If S is not subset-minimal, there
is a smaller set S1 Ĺ S, which is a satisfying default set. Observe that there is at least
one δ P SzS1 where γpδq R Thpt γpδ1q | δ1 P S1uq, since otherwise S1 can not be a satisfying
default set due to Thpt γpδq | δ P Suq “ Thpt γpδ1q | δ1 P S1uq and S1 Ĺ S, which results in
at least one default in SzS1 that is dissatisfied by construction of S, c.f. Definition 3.1(1.).
As a result, there is a smaller extension E1 Ĺ E, where E1 :“ Thpt γpδ1q | δ1 P S1uq, which
contradicts, once again, that E is a stable extension.
For the reverse direction let S be any stable default set. We define E :“ Thptγpδq | δ P Suq.
Assume towards a contradiction that E is not stable. Obviously, by construction of E,
ΓpEq :“ E satisfies the requirements of stable extension. It remains to show, that there

22

3.1 Default Logic and Bounded Treewidth

is no smaller Γ1pEq Ĺ ΓpEq which also satisfies the three conditions of stable extension.
Assume towards a contradiction, that such a set Γ1pEq with Γ1pEq “ ThpΓ1pEqq exists.
Then there is at least one default δ P D, such that γpδq P ΓpEqzΓ1pEq. As a result, by
construction of E, S can not be a stable default set, which contradicts the assumption.

For our dynamic programming algorithm we need a slightly modified form of tree-
decomposition. The so-called nice tree-decompositions have convenient properties that
are useful for the bottom-up approach of our algorithm.

Definition 3.2: Nice Tree-Decomposition

Let a tree-decomposition T “ pT, χq be given with a tree T “ pN, ¨, ¨q. Then for a
node t P N its type typeptq is specified as:

leaf : if t has no children
join : if t has two children nodes t1 and t2,

where t1 ‰ t2 and χptq “ χpt1q “ χpt2q

int : if t has a single child t1 with χpt1qĎχptq and |χptq|“|χpt1q|`1
rem : if t has a single child t1 with χptqĎχpt1q and |χpt1q|“|χptq|`1

If every node t P N has at most two children, is of a typeptq P tleaf, int, rem, joinu
and the bags χ of the leaf nodes as well as the root are empty, then we call T “ pT, χq
nice.

Note that we are able to compute from a given tree-decomposition a nice tree-decomposition
in linear time, without increasing the width.

3.1.1 Graph Representations of Default Theories

For the investigation of a given default theory via a dynamic programming algorithm, we
require an appropriate graph representation.

Definition 3.3: Semi-Primal Graph of a Default Theory

For a default theory D the semi-primal graph SpDq is a graph, where the vertices
are variables from VarpDq and defaults δ of D.
The edges E of SpDq are

• pa, δq if variable a P Varpδq, for each δ P D

• pa1, a2q if either a1, a2 P Varpαpδqq, or a1, a2 P Varpβpδqq, or a1, a2 P Varpγpδqq.

23

Chapter 3 Parametrization in Default Logic

Note that the formulae αpδq, βpδq or γpδq for a default δ may be J or K. This can be
transformed to x_ x or x^ x for a fresh variable x.
In our dynamic programming algorithm for default logic we need to remember when we
can evaluate a formula (prerequisite, justification, or conclusion) for a default, i.e., we
have a default and all the variables of the formula in a bag. To that end, we introduce
labels of nodes. Since we work along the tree-decomposition and want a unique point
where to evaluate, we restrict a label to the first occurrence of a bag containing all
appropriate parts of the default when working along the tree-decomposition TD.

Definition 3.4: Labeled Tree-Decomposition

A labeled tree-decomposition (LTD) T of a default theory D is a tuple T “ pT, χ, ωq
where pT, χq is a TD of SpDq and ω : N Ñ 2ptα,β,γuˆDq is a mapping where for any
pf, δq in tα, β, γu ˆD it holds that

(1.) if pf, δq P ωptq, then tδu Y fpδq Ď χptq and

(2.) if tδu Y fpδq Ď χptq and there is no descendent t1 of t such that pf, δq P ωpt1q,
then pf, δq P ωptq.

For our purpose we require the properties of both nice and labeled TDs and combine
these in the following definition.

Definition 3.5: Pretty LTD

For a node t P N that has exactly one child t1 where χptq “ χpt1q and ωptq ‰ H, we
say that typeptq is label.
Further, we call the LTD pretty if:

(1.) every node t P N has at most two children

(2.) typeptq P tleaf, join, int, label, remu for all nodes t P N

(3.) bags of leaf nodes and the root are empty

(4.) and ωptq “ H for typeptq ‰ label.

Observe that we are able to construct a pretty LTD in linear time, without increasing
the width from a nice TD. This can be done by traversing the TD and constructing
the labels and duplicating nodes t where ωptq ‰ H. Unless mentioned otherwise, in the
following we will use pretty LTDs.

Example 3.2. Let the default theory D be given as

D “

B"

δ1 “
J : x2
x1

, δ2 “
J : x2
x1 _ x2

*F

24

3.1 Default Logic and Bounded Treewidth

δ1 δ2

x1

x2

Figure 3.1: Semi-Primal Graph SpDq of
Example 3.2

x1, x2

t1

x1, x2, δ1t2 x1, x2, δ2 t3

Figure 3.2: tree-decomposition of a
Graph SpDq of Exam-
ple 3.2

Figure 3.1 exemplifies a semi-primal graph of this default theory with its TD.

3.1.2 The Idea of Dynamic Programming for DL

We now sketch the methodology of our DP algorithm on tree-decompositions. The
fundament of our algorithm is shown in Algorithm 1. The algorithm DP traverses the

Algorithm 1: Dynamic Programming Algorithm DPpT q for DL on TD T ,
cf. [FHMW17].

In: Pretty LTD T “ pT, χ, ωq T “ pN, ¨, nq of the semi-primal graph SpDq,
Out: A table for each node t P T stored in a mapping Tables[t]

1 for iterate t in post-order(T,n) do
2 Child-Tabs :“ tTables[t1] | t1 is a child of t in T u

Tables[t] Ð SPRIMpt, χptq, ωptq, Dt,Child-Tabsq
3 return Tables[¨];

given LTD T “ pT, χ, ωq in post-order and runs at each node t P T the algorithm SPRIM.
The core algorithm SPRIM computes a new table τt according to the tables of the children
of t. The evaluation of SPRIM is restricted to the bag-defaults, i.e. Dt :“ D X χptq, and
exhibits only a “ local view”. Roughly speaking, we garner in each table τt information
that is required for the local decision. For this, only information concerning variables
that belong to bag χptq. Additionally, we require the notion of default theory below t,
which is denoted by Dďt :“ tδ | δ P Dt1 , t

1 P post-orderpT, tqu and default theory strictly
below t denoted by Dăt :“ DďtzDt. For the root n of T , it holds Dďn “ Dăn “ D.
Before we talk about SPRIM in detail we have to talk about a notion for sequences
of results of a computation. The algorithm SPRIM garners tuples in a table τt results
from a computation that depends on “originating tuples” that are stored in the τs of
the child nodes. To describe properties of these tuples or properties of parts of these
tuples we need a similar notion “the default theory below t” for parts of tuples. Ignoring

25

Chapter 3 Parametrization in Default Logic

this detail, assume for now that our tuples in tables are only tuples of sets. Then,
we garner recursively in pre-order along the induced subtree T 1 of T rooted at t a
sequence s of originating tuples pu,u1, . . . ,umq. If the set T occurs in position i of
tuple u, our notion Tďtpsq takes the union over all sets T, T1, . . . , Tm at position i in the
tuples u1, . . . ,um. Since a node of type rem will typically result in multiple originating
tuples, we have multiple sequences s1, . . . , sm of originating tuples in general. This
results in a family T ďt :“ tTďtpsq | s P ts1, . . . , smuu of such sets. However, when
stating properties we are usually only interested in the fact that each S P T ďt satisfies
the property. Therefore, we refer to Tďt as any arbitrary S P T ďt. Additionally, let
Tăt :“ TďtzT . The definition trivially extends to nested tuples and families of sets. For
detailed information we refer the reader to so-called extension pointers [BCHW16].

3.1.3 Computing Stable Default Sets

In this section we solve the problems Ext and EnumSE which enumerates all stable
extensions via a dynamic programming algorithm. Our algorithm is inspired by the
previous work of J. Fichte et al. [FHMW17] about answer set programming, but
substantial adjustments are required due to more complex semantics in default logic. Let
the default theory D be a given with the corresponding pretty LTD T “ pT, χ, ωq of the
semi-primal graph SpDq.
Our table algorithm follows Definition 3.1 and is split into two parts:

(1.) finding satisfying default sets of D and

(2.) evidence of the subset minimality of these satisfying default sets.

On an abstract level, the SPRIM algorithm follows the approach of “divide and conquer”.
We restrict the search space to the bags of a given LTD and compute the default theory
D in parts. since the SPRIM algorithm’s vision is limited to the current bag, we are
only able to compute the sets of satisfying defaults in parts. Nevertheless we vouch for,
if the “visible” part Z of satisfying defaults set for any node t P T there is no smaller set
of satisfying defaults, then Z can be augmented to a stable default set of Dďt.
In general it is not sufficient to consider only Z. We require some auxiliary information
to decide the satisfiability of defaults. Additionally, we warrant to prove that Z witnesses
a satisfying default set Zďt. Although each δ P Zďt is vacuously c-satisfiable, we need to
ensure that each default δ P DzZďt is also p-satisfiable or j-satisfiable. For this, we need
a set M of (partial) assignments of Zďt.
On that score, we garner in table τt tuples that are of the form xZ,M,P, Cy, com-
prising Z Ď Dt and M Ď 2X for X “ χptq X VarpDq. The first three components
Z,M,P are responsible for finding sets of satisfying default sets of D. The last posi-
tion C is itself a set of tuples xρ,AC,BCy and can be seen as a counter-witness part,
which is responsible for an evidence for the subset minimality of the satisfying default sets.

26

3.1 Default Logic and Bounded Treewidth

Now we add more details in into the tuples. We call Z the witness set, since Z witnesses
the existence of a satisfying default set Zďt for a sub-theory S. Each element M in the
set M of witness models witnesses the existence of a model of Fďt :“

Ź

δPZďt γpδq. For
our assumed witness set Z, we require a set P of witness proofs. The set P consists of
tuples of the form xσ,A,By, where σ : Dt Ñ tp, j, cu and A,B Ď 2X for X “ χptqXatpDq.
The function σ, which we call state function, maps each default δ P Dt to a decision
state v P tp, j, cu representing the case where δ is v-satisfiable. The set A, which we
call the required p-assignments, contains an assignment A P 2X for each default δ that
is claimed to be p-satisfiable. More formally, there is an assignment A P A for each
default δ P σ´1ppq YDăt where σďtpδq “ p such that there is an assignment Aďt that
satisfies Fďt ^ αpδq.
The set B, which we call the refuting j-assignments, contains an assignment B P 2X for
certain defaults. Intuitively, for each B P B there is a default δ in the current bag χptq
or was in a bag below t such that there is an assignment Bďt where the justification is
not fulfilled. More formally, there is a B P B if there is an assignment Bďt that satisfies
Fďt ^ βpδq for some default δ P σ´1pjq YDăt where σďtpδq “ j.
In the end, if Z proves the existence of a satisfying default set Zďt of theory Dăt, then
there is at least one tuple x¨, ¨,By P P with B “ H. Consequently, we require that B “ H
in order to guarantee that each default δ P Dăt is j-satisfiable where σďtpδq “ j. To
conclude, if table τn for (empty) root n contains u “ xZ, ¨,P, Cy and P contains x¨, ¨,Hy,
then Zďt is a satisfying default set of the default theory D.
The purpose of C is to invalidate the subset-minimality of Zďt. This will be covered later,
as it works similar to the witness-part.

In lieu of this we finally present our SPRIM algorithm and discuss the main cases of it.
SPRIM uses the following abbreviations:

27

Chapter 3 Parametrization in Default Logic

Algorithm 2: Table algorithm SPRIMpt, χt, ωt, Dt,Child-Tabsq.
In: Bag χt, label mapping ωt, bag-theory Dt, and child tables Child-Tabs of t.
Out: Table τt.

1 if typeptq “ leaf then τt Ð
 @

H, tHu, txH,H,Hyu, H
D(

;
2 else if typeptq “ int, δ P Dt is the introduced default, and τ 1 P Child-Tabs then
3 τt Ð {

@

Z`δ ,M, subδ,tcupPq, subδ,tp,j,cupCq Y subδ,tp,jupP,Mqy,
@

Z,M, subδ,tp,jupPq, subδ,tp,jupCqy
ˇ

ˇ xZ,M,P, Cy P τ 1
(

4 else if typeptq “ label, tpγ, δqu “ ωt is the label of t, δ P Dt, and τ 1 P Child-Tabs
then

5 τt Ð
 @

Z,ModMpγpδqq,PConδpPq, CWdpCqy | xZ,M,P, Cy P τ 1, δ P Zu Y
txZ,M,P, Cy | xZ,M,P, Cy P τ 1, δ R Zu

6 else if typeptq “ label, tpα, δqu “ ωt is the label of t, δ P Dt, and τ 1 P Child-Tabs
then

7 τt Ð txZ, M,PPreδpP,Mq, CPreδpCqy
ˇ

ˇ xZ,M,P, Cy P τ 1
(

8 else if typeptq “ label, tpβ, δqu “ ωt is the label of t, δ P Dt, and τ 1 P Child-Tabs
then

9 τt Ð
 @

Z, M,PJustδpP,Mq, PJustδpC,Mqy
ˇ

ˇ xZ,M,P, Cy P τ 1
(

10 else if typeptq “ int, a P χt is the introduced variable, and τ 1 P Child-Tabs then
11 τt Ð

 @

Z,MYM]
a ,AGuessapPq, AGuessapCqy

ˇ

ˇ xZ,M,P, Cy P τ 1
(

12 else if typeptq “ rem, δ R Dt is the removed default, and τ 1 P Child-Tabs then
13 τt Ð

 @

Z´δ ,M, SProjδpPq, SProjδpCq
D ˇ

ˇ xZ,M,P, Cy P τ 1
(

14 else if typeptq “ rem, a R χt is the removed variable, and τ 1 P Child-Tabs then
15 τt Ð

 @

Z,M„
a ,AProjapPq, AProjapCq

D ˇ

ˇ xZ,M,P, Cy P τ 1
(

16 else if typeptq “ join and τ 1, τ2 P Child-Tabs with τ 1 ‰ τ2 then
17 τt Ð

 @

Z,M1 XM2,P 1’̂M1,M2P2, pC1’̂M1,M2C2q Y pP 1’̂M1,M2C2q Y
pC1’̂M1,M2P2qy

ˇ

ˇ xZ,M1,P 1, C1y P τ 1, xZ,M2,P2, C2y P τ2
(

18 return τt

SMO :“ tS | S P S,mo P Su
S´e :“ Szteu

S„e :“ tS´e | S P Su
H?
e :“ tHu

S?
e :“

ď

SPS,S1PpSzSq?e

tS1 Y tS`e u, S
1 Y tSuu

cpyδpP, πq :“ txσ,A,By | xσ,A,By P P, σpδq ‰ πu

subδ,SpP,Mq :“ txσ`δ ÞÑπ,A,M
`
mo Y By | xσ,A,By P P, π P Su

subδ,SpPq :“ subδ,SpP,Hq
PConδpPq :“ txσ,A,ModBpγpδqqy | xσ,A,By P P, σpδq “ c,

A “ ModApγpδqqu

CWδpCq :“ PConδpCq Y txρ,AC,BCMO YModBCpγpδqqy

| xρ,AC,BCy P C, ρpδq ‰ cu

PPreδpP,Mq :“ cpyδpP, pq Y txσ,AYA1,By | xσ,A,By P P,28

3.1 Default Logic and Bounded Treewidth

σpδq “ p,A1 P ModMYB„mop αpδqqu

CPreδpCq :“ PPreδpC,Hq
PJustδpP,Mq :“ cpyδpP, jq Y txσ,A,B Y rModMpβpδqqs

„
moqy

| xσ,A,By P P, σpδq “ ju

AGuessapPq :“ txσ,A1,B Y B]a y | A1 P A?
a, xσ,A,By P Pu

SProjδpPq :“ txσztδ ÞÑ p, δ ÞÑ j, δ ÞÑ cu,A,By | xσ,A,By P Pu
AProjapPq :“ txσ,A„a ,B„a y | xσ,A,By P Pu
M1 ’M2 :“ tM 1 YM2 |M 1 PM1,M2 PM2,M 1 X rχts

`
mo “

M2 X rχts
`
mou

B1 ’M1,M2 B2 :“ rB1 ’ pB2 YM2qs Y rpB1 YM1q ’ B2s
P 1’̂M1,M2P2 :“ txσ,AR,B1 ’M1,M2 B2y | xσ,A1,B1y P P 1,

xσ,A2,B2y P P2,AR “ A1’pA2 YM2 Y rB2s„moq,

A1 YA2 Ď ARu Y txσ,RA,B1 ’M1,M2 B2y
| xσ,A1,B1y P P 1, xσ,A2,B2y P P2,
RA “ A2’pA1 YM1 Y rB1s„moq,A

1 YA2 Ď ARu

As mentioned before, we first discuss the methodology of SPRIM for computing satisfying
defaults set. For this purpose the first tree tuple positions, highlighted as red and green,
are responsible. Let t P T , u1 “ xZ,M,P, ¨y a tuple in table τt1 for a child node t1 of t
and xσ,A,By a tuple in P . We describe informally how we transform u1 into one or more
tuples for the table τt.

The first case type(t)“ int (line 2-4) introduces a default δ P Dt. Doing so, the algorithm
guesses whether δ is p-satisfiable, j-satisfiable, or c-satisfiable. For this purpose, subδ,SpPq
adds potential proofs to P where the satisfiability state of δ is within S. The following
three cases (line 4-9) cover the nodes of the type label in the following way: If pγ, δq is
the label and σpδq “ c, each M P M has to be model of γpδq. PCondpPq only keeps
tuples in P where each A P A is a model of γpδq.
Line 6-7 cover the case where pα, δq is the label and σpδq “ p. PPredpP,Mq enforces
that each A P A within P is a model of αpδq.
In line 8, pβ, δq is the label and σpδq “ j. PJustdpP,Mq adds assignments of M to B
that are also models of βpδq.

Next, we turn to the case where a variable a is introduced. Roughly speaking the
algorithm guesses the assignment of the variable. In line 10, we augment the existing
witness set M Y tau for each M PM. AGuessapPq works analogously to M for B and
computes all potential combinations of every A P A, where a is either set to true or to
false.

The penultimate cases in line 12-15 are for nodes of type rem, which remove a default δ

29

Chapter 3 Parametrization in Default Logic

from Z. Additionally, since δ is not considered anymore, SProjδpPq removes δ from the
domain of the mapping σ.
In line 14, we remove a variable a from each M PM. Further, AProjapPq removes a
variable a from each A P A as well as from each B P B.

The last case is for a node of type join. Here we have to evaluate two child nodes
t1 and t2 with corresponding tables τ 1 and τ2 and corresponding tuples u1 P τ 1 and
u2 P τ2, respectively. Intuitively, tuples u1 and u2 represent intermediate results of
two different branches in T , which we have to join i.e., to combine (with respect to the
witness extension, witness states and witness models) to obtain the main result. The
join operation ’ can be seen as a combination of inner and outer joins used in database
theory [AHV95]. Note that e.g. for an assignment B P B to appear within the witness
proof P of τt, it suffices that B is a corresponding witness model of one of the tuples u1

or u2.

Next we clarify the notion via the following example.

Example 3.3 (Computing Stable Default Sets).
Let D be a given default theory

`

δ1 “ p
J: x2
 x1

q, δ2 “ p
J:x2
x1_x2

q
˘

with the corresponding
pretty LTD of the semi-primal graph SpDq, see Figure ??. The SPRIM algorithm traverses
the pretty LTD in post-order and computes the tables τ1, . . . , τ18 in the following way.
Here, we will only explain selected cases to avoid repetitions.
We call for presentation that each tuple in a table τt is defined by a number, i.e., the
i-th tuple corresponds to ut.i “ xZt.i,Mt.i,Pt.i, Ct.iy. The numbering naturally extends
to sets in witness proofs and counter-witnesses. For the moment we ignore the counter
witness part C.
The type of t1 is leaf. Therefore, table τ1 contains empty sets only, i.e.
τ1 “ t xH, tHu, txH,H,Hyu, ¨yu.

The next node introduces a variable x2 (typept2q “ int). We evaluate table τ2 us-
ing table τ1 by txσ1.1,M2.1,A1.1yu, where M2.1 contains M1.1.k and M1.1.k Y tx2u
for each M1.1.k (k ď 1) in τ1. This corresponds to a guess on x2 and we obtain
τ2 “ txH, tH, x2u , txH,H,Hyu, ¨yu.

Node t3 introduces a default δ2. This corresponds to a guess on δ2. Consequently, we
obtain two tuples, namely u3.1.k (1 ď k ď 2) where δ2 is guessed to be p-satisfiable or
j-satisfiable. From this, we obtain P3.1.1 “ txtδ2 ÞÑ pu,H,Hyu and P3.1.2 “ txtδ2 ÞÑ
ju,H,Hyu (cf. P3.1.k and line 3 of SPRIM). In the second tuple u3.2 δ, is guessed to be
c-satisfiable. This leads to Z3.2 “ tδ2u and P3.2 “ txtδ2 ÞÑ cu,H,Hyu.

The next node introduces a label pβ, δ2q and modifies P4.1.2, where δ2 is guessed to be
j-satisfiable. In particular, it chooses among M candidates which might contradict that
δ2 is j-satisfiable. This yields B4.1.2 “ t tx2uu.

In table τ5, we handle the case of δ2 being p-satisfiable. In this case since αpδ2q “ J, we
do not find any model of K. In consequence, there is no corresponding successor of P4.1.1
in τ5, i.e., in τ5 it turns out that δ2 can not be p-satisfiable.

30

3.1 Default Logic and Bounded Treewidth

Table τ6 introduces the variable x1 in the same vein as x2 was introduced in table τ2.

Table τ7 is concerned with the conclusion γpδ2q of a default. It updates every assignment
occurring in the table, such that the models satisfy γpδ1q if δ2 is c-satisfiable.

In table τ8 we remove the default δ2 with the corresponding mapping and in τ9 we
eliminate the variable x1.

The remaining cases of the left branch of the tree work similarly. In the end, join node t18
just combines witnesses agreeing on their content.
We already see that the given default theory has no stable extension, as the root node
does not have a tuple of the form xH, tHu, x¨, ¨,Hy, ¨y with P ‰ H. Since the tuple P
witnesses the existence of extension.

Assume that the root node in Example 3.3 contains a tuple which witnesses the existence
of extension. In this case we require to witness the subset-minimality of this extension
via the counter-witness part C. We now consider the remaining part of the tuple u1 “
xZ,M,P, Cy, the counter-witness part C which is colored blue in SPRIM. The evaluation
of C is similar to the witness proofs P . The counter-witness tuple xρ,AC,BCy P C consist
of a state function ρ : Dďt ÞÑ tp, j, cu, required p-assignments AC Ď 2X and refuting
j- assignments BC Ď 2pXYtmouq for X “ Varďt X χptq. In contrast to the refuting j-
assignments in B, BC may in addition contain an assignment B P BC with a marker mo.
The marker indicates that Bďt is actually not refuting, but only a model of γpδq for
each default below t that is c-satisfiable, i.e.,

Ź

δPDďt,ρďtpδq“c
γpδq. In other words, those

assignments setting mo to true are the counter-witness assignments that do not refute
c-assignments (comparable to witness assignments in M).

The existence of a certain counter-witness tuple for a witness in a table τt establishes
that the corresponding witness can not be extended to a stable default set of Dďt. In
particular, there exists a stable extension for D if the table τn for root n contains a
tuple of the form xH, tHu,P, Cy, where P ‰ H and contains tuples of the form x¨, ¨,Hy.
Moreover, for each xρ,AC,BCy P C there isH P BC indicating a true refuting j-assignment
for the empty root n. Intuitively, this establishes that there is no actual counter-witness,
which contradicts that the corresponding satisfying default set Zďt is subset-minimal
and hence indeed a stable default set.

A main difference of the counter-witness part to the witness part is that we require a
special function CWdpCq to establish that a default δ is j-satisfiable, which is defined
with respect to a fixed set S, c.f. Case (2.) of Definition 3.1. CWdpCq adds additional
potential proofs involving counter-witnesses and mo models, where ρpδq ‰ c but σpδq “ c.

In the remainder of this section we pursue the proofs of the correctness and completeness
of Algorithm DP. Our strategy for the proof of correctness is to provide evidence that
a tuple for node t ensures the existence of a model for the subtheory Dďt. We need to
consider each node type separatly. Afterwards we will prove the completeness of the DP

31

Chapter 3 Parametrization in Default Logic

H t1

tx2u t2

tx2, δ2u t3

pβ, δ2q : tx2, δ2u t4

pα, δ2q : tx2, δ2u t5

x1, x2, δ2 t6

pγ, δ2q : tx1, x2, δ2u t7

tx1, x2u t8

tx2u t9

tx2ut18

tx2ut17

H

root

tx1, x2ut16

pγ, δ1q : tx1, x2, δ1ut15

pβ, δ1q : tx2, δ1ut14

pαδ1q : tx2, δ1ut13

tx2, δ1ut12

tx2ut11

Ht10

xZr.i,Mr.i,Pr.i, Cr.iy τroot

xH, tHu, xH,H,Hyu,Hy

xH, tHu, txH,H,Hyu, t
xH,H, tHuyuy

xZ9.i,M9.i,P9.i, C9.iy τ9

xH, t2tx2uu,
xH,H, ttx2uuyu,Hy

xH, t2tx2uzHu, txH,H,Hyu, t

xH,H, r2tx2us]mo Y ttx2uuyuy

xZ8.i,M8.i,P8.i, C8.iy τ8

xH, t2tx1,x2uu,
xH,H, ttx2u, tx1, x2uuyu,Hy

xH, t2tx1,x2uzHu, txH,H,Hyu, t

xH,H, r2tx1,x2us]mo Y ttx2u, tx1, x2uuyuy

xZ7.i,M7.i,P7.i, C7.iy τ7

xH, t2tx1,x2uu,
xtδ2 ÞÑ ju,H, ttx2u, tx1, x2uuyu,Hy

xtδ2u, t2tx1,x2uzHu, txtδ2 ÞÑ cu,H,Hyu, t

xtδ2 ÞÑ ju,H, r2tx1,x2us]mo Y ttx2u, tx1, x2uuyuy

xZ5.i,M5.i,P5.i, C5.iy τ5

xH, t2tx2uu,
xtδ2 ÞÑ ju,H, ttx2uuyu,Hy

xtδ2u, t2x2u, txtδ2 ÞÑ cu,H,Hyu, t

xtδ2 ÞÑ ju,H, r2tx2us]mo Y ttx2uuyuy

xZ4.i,M4.i,P4.i, C4.iy τ4

xH, t2tx2uu, txtδ2 ÞÑ pu,H,Hy,
xtδ2 ÞÑ ju,H, ttx2uuyu,Hy

xtδ2u, t2tx2uu, txtδ2 ÞÑ cu,H,Hyu, t

xtδ2 ÞÑ pu,H, r2tx2us]moy,

xtδ2 ÞÑ ju,H, r2tx2us]mo Y ttx2uuyuy

xZ3.i,M3.i,P3.i, C3.iy τ3

xH, t2tx2uu, txtδ2 ÞÑ pu,H,Hy,
xtδ2 ÞÑ ju,H,Hyu,Hy

xtδ2u, t2tx2uu, txtδ2 ÞÑ cu,H,Hyu, t

xtδ2 ÞÑ pu,H, r2tx2us]moy

xtδ2 ÞÑ ju,H, r2tx2us]moyuy

xZ1.i,M1.i,P1.i, C1.iy τ1

xH, tHu, txH,H,Hyu,Hy

xZ2.i,M2.i,P2.i, C2.iy τ2

xH, t2tx2uu, txH,H,Hyu,Hy

Figure 3.3: Pretty LTD of the SpDq in Example 3.3

algorithm by showing that we get all possible sets of generating defaults when traversing
the given tree-decomposition bottom-up. For this, the following additional notion is
helpful.

32

3.1 Default Logic and Bounded Treewidth

Definition 3.6: Variables Below t and Bag-Default Parts

Let pT, χ, ωq be a pretty labeled TD of the semi-primal graph SpDq of a given default
theory D. The set Varďt :“ t v | v P VarpDq X χpt1q, t1 P post-orderpT, tqu is called
variables below t.

Further, we define the bag-default parts for f P tα, β, γu (prerequisite, justification,
or conclusion) ft :“ t fpδq | pf, δq P ωptqu.
We naturally extend the definition of the bag-default parts to the respective default
parts below t (analogously to our definitions for default theory below t), i.e., we also
use αďt, βďt, and γďt.

To clarify the previous notion, we give the following example.

Example 3.4.
Consider Fig. 3.3. Observe that we have introduced all variables of D already in t6.
Therefore, Varďt6 “ VarpDq holds. Further, βďt9 “ tβpδ2qu and γďt18 “ tγpδ1q, γpδ2qu.

Additionally, we abbreviate the mapping Γt : 2γpDtq Ñ 2γďt by ΓtrEs :“ E X γďt.

For the argumentation in the correctness proof we require some auxiliary notion.

Definition 3.7: Partial Extension under E for t

Let D be a default theory, T “ pT, χ, ωq be an LTD of the semi-primal graph SpDq
of D, where T “ pN, ¨, ¨q, and t P N be a node. Further, let H Ĺ B Ď 2VarďtYtmou,
A Ď 2B„mo , σ : Dďt Ñ tp, j, cu, E Ě γpZq, where Z :“ σ´1pcq. The tuple pσ,A,Bq is
a partial extension under E for t if the following conditions hold:

(1.) Z is a set of satisfying defaults of Dătzrtδ P Dăt | σpδq “ j, DB P B : B (

ΓtrEs ^ βpδqus,

(2.) A is a set such that:

(1.) |A| ď |σ´1ppq| ´ 1

(2.) Dδ P Dďt : σpδq “ p, αpδq P αďt, A (ΓtrγpZqs ^ αpδq for every A P A

(3.) DA P A : A (ΓtrγpZqs ^ αpδq ðù σpδq “ p for every δ P Dďt
such that αpδq P αďt

(3.) B is the largest set such that:

(1.) B (ΓtrγpZqs for every B P B

33

Chapter 3 Parametrization in Default Logic

(2.) Dδ P Dďt : σpδq “ j, βpδq P βďt, B (ΓtrEs^βpδq for every B P B where
mo R B

Definition 3.8: Partial Solution for t

Let D be a default theory, T “ pT, χ, ωq where T “ pN, ¨, nq be an LTD of SpDq,
and t P N be a node. A partial solution for t is a tuple pZ,M,P, Cq where Z Ď Dďt,
and P is the largest set of tuples such that each pσ,A,Bq P P is a partial extension
under γpZq with BMO “ H and Z “ σ´1pcq. Moreover, C is the largest set of
tuples such that for each pρ,AC,BCq P C, we have that pρ,AC,BCq is a partial
extension under γpZq with ρ´1pcq Ĺ σ´1pcq. Finally, M Ď 2Varďt is the largest set
with M (ΓtrγpZqs for each M PM.

We present now the link between partial extension and partial solution in the proceed
lemma. It depicts that a partial solution is a sin qua non for a partial extension.

Lemma 3.5.
Let D be a default theory, T “ pT, χ, ωq be an LTD of the semi-primal graph SpDq,
where T “ p¨, ¨, nq, and χpnq “ H. Then, there exists a stable default set Z 1 for D if
and only if there exists a partial solution u “ pZ 1,M,P, Cq for root n with at least one
tuple xσ,A,By P P where B “ H and C is of the following form: For each pρ,AC,BCq P C,
BCMO ‰ BC.

Proof. Given a stable default set Z 1 of D we construct u “ pZ 1,M,P, Cq where we
generate every potential σ : D Ñ tp, j, cu such that σpδq “ c for δ P Z 1 as follows.
For δ P DzZ 1, we are allowed to set σpδq :“ p if γpZ 1q^ αpδq is satisfiable and σpδq :“ j
if γpZ 1q ^ βpδq is unsatisfiable. For each of this functions σ, we require xσ,A,Hy P P,
where A Ď 2VarpDq is the smallest set with |A| ď |σ´1pαq| ´ 1 such that for all δ P σ´1pαq
there is at least one A P A with A (γpZ 1q ^ αpδq.

Moreover, we define set M :“ Mod2VarpDqp
Ź

δPZ1 γpδqq, in order for u to be a par-
tial solution for n (see Definition 3.8). We construct C, consisting of partial solu-
tions pρ,AC,BCq where we use every potential state function ρ with ρ´1pcq Ĺ σ´1pcq.
For this, let Z :“ ρ´1pcq. For the defaults δ with ρpδq ‰ c, i.e., defaults δ that are
p-satisfiable or j-satisfiable, we also set their state ρpδq to α or β, respectively (analogous
to above). Finally, we define set

BC :“ rMod2VarpDqp
ľ

δPZ

γpδqq
]

mo

Y r
ď

δ:ρpδq“j
Mod2VarpDqpr

ľ

δPZ1

γpδqs ^ βpδqqs,

and AC Ď 2VarpDq as the smallest set such that |AC| ď |ρ´1ppq| ´ 1 and for all δ P ρ´1ppq,
there is at least one AC P AC with AC (γpZq ^ αpδq according to Definition 3.7.

For the reverse direction, Definitions 3.7 and 3.8 guarantee that Z 1 is a stable extension
if there exists such a partial solution u. In consequence, the lemma holds.

34

3.1 Default Logic and Bounded Treewidth

Next, we require the notion of local partial solutions corresponding to the tuples obtained
in Algorithm 2.

Definition 3.9: Local Partial Solution Part

Let D be a default theory, T “ pT, χ, ωq an LTD of the semi-primal graph SpDq,
where T “ pN, ¨, nq, and t P N be a node. A tuple pσ,A,Bq is a local partial solution
part of partial solution pσ̂, Â, B̂q for t if

(1.) σ “ σ̂ X pχptq ˆ tp, j, cuq,

(2.) A “ Ât, and

(3.) B “ B̂t, where St :“ tS X pχptq Y tmouq | S P Su.

Definition 3.10: Local Partial Solution

Let D be a default theory, T “ pT, χ, ωq an LTD of the semi-primal graph SpDq,
where T “ pN, ¨, nq, and t P N be a node. A tuple u “ xZ,M,P, Cy is a local partial
solution for t if there exists a partial solution û “ pẐ,M̂, P̂, Ĉq for t such that the
following conditions hold:

(1.) Z “ Ẑ X 2Dt ,

(2.) M “ M̂t,

(3.) P is the smallest set containing local partial solution part pσ,A,Bq for each pσ̂, Â, B̂q P
P̂, and

(4.) C is the smallest set with local partial solution part pρ,AC,BCq P C for
each pρ̂, ÂC, B̂Cq P Ĉ.

We denote by ût the local partial solution u for t given partial solution û.

In the following we show, that it suffices to store local partial solution instead of partial
solutions for a node t P N .

Lemma 3.6.
Let D be a default theory, T “ pT, χ, ωq an LTD of SpDq, where T “ pN, ¨, nq, and
χpnq “ H. Then, there exists a stable default set set for D if and only if there exists
a local partial solution of the form xH, tHu,P, Cy for the root n P N with at least one
tuple of the form xσ,A,Hy P P. Moreover, for each xρ,AC,BCy in C, BCMO ‰ BC.

Proof. According to Definition 3.10, every partial solution for the root n is an extension
of the local partial solution u for the root n P N , with a bag χpnq “ H. In combination
with Lemma 3.5, we obtain that the lemma is true.

35

Chapter 3 Parametrization in Default Logic

For simplicity of notation we continue to write Vart for variables occurring in the bag
χptq, i.e., Vart :“ χptqzDt.

Building on the previous results we are able to prove the soundness and correctness of
the SPRIM algorithm.

Proposition 3.7 (Soundness).
Let D be a default theory, T “ pT, χ, ωq an LTD of the semi-primal graph SpDq, where
T “ pN, ¨, ¨q, and t P N a node. Given a local partial solution u1 of child table τ 1 (or
local partial solution u1 of table τ 1 and local partial solution u2 of table τ2), each tuple
u of table τt constructed using table algorithm SPRIM is also a local partial solution.

Proof. Let u1 be a local partial solution for t1 P N and u a tuple for node t P N such
that u was derived from u1 using table algorithm SPRIM. Hence, node t1 is the only
child of t and t is either removal or introduce node.

Assume that t is a removal node and δ P Dt1zDt for some default δ. Observe that for
u “ xZ,M,P, Cy and u1 “ xZ 1,M,P 1, C1y, sets A and B are equal, i.e., x¨,A,By P P ðñ
x¨,A,By P P 1 and x¨,A,By P C ðñ x¨,A,By P C1. Since u1 is a local partial solution,
there exists a partial solution û1 of t1, satisfying the conditions of Definition 3.10. Then,
û1 is also a partial solution for node t, since it satisfies all conditions of Definitions 3.7
and 3.8. Finally, note that u “ pû1qt since the projection of û1 to the bag χptq is u itself.
In consequence, the tuple u is a local partial solution.

For a P Vart1zVart as well as for introduce nodes, we can analogously check the proposition.

Next, assume that t is a join node. Therefore, let u1 and u2 be local partial solutions for
t1, t2 P N , respectively, and u be a tuple for node t P N such that u can be derived using
both u1 and u2 in accordance with the SPRIM algorithm. Since u1 and u2 are local partial
solutions, there exists partial solution û1 “ pẐ 1,M̂1, P̂ 1, Ĉ1q for node t1 and partial solution
û2 “ pẐ2,M̂2, P̂2, Ĉ2q for node t2. Using these two partial solutions, we can construct û “
pẐ 1 Y Ẑ2,M̂1 ’ M̂2, P̂ 1 ’̂M̂1,M̂2 P̂2, pĈ1 ’̂M̂1,M̂2 Ĉ2q Y pP̂ 1 ’̂M̂1,M̂2 Ĉ2q Y pĈ1 ’̂M̂1,M̂2 P̂2qq
where for ’ p¨, ¨q and ’̂p¨, ¨q we refer to Algorithm 2. Then, we check all conditions of
Definitions 3.7 and 3.8 in order to verify that û is a partial solution for t. Moreover, the
projection ût of û to the bag χptq is exactly u by construction and hence, u “ ût is a
local partial solution.

Since one can provide similar arguments for each node type, we established soundness in
terms of the statement of the proposition.

Proposition 3.8 (Completeness).
Let D be a default theory, T “ pT, χ, ωq where T “ pN, ¨, ¨q be an LTD of SpDq and
t P N be a node. Given a local partial solution u of table τt, either t is a leaf node, or
there exists a local partial solution u1 of child table τ 1 (or local partial solution u1 of
table τ 1 and local partial solution u2 of table τ2) such that u can be constructed by u1

(or u1 and u2, respectively) and using table algorithm SPRIM.

36

3.1 Default Logic and Bounded Treewidth

Proof. Let t P N be a removal node and δ P Dt1zDt with child node t1 P N . We show that
there exists a tuple u1 in table τt1 for node t1 such that u can be constructed using u1

by SPRIM (Listing 2). Since u is a local partial solution, there exists a partial solution
û “ pẐ,M̂, P̂, Ĉq for node t, satisfying the conditions of Definition 3.10. It is easy to see
that û is also a partial solution for t1 and we define u1 :“ ût

1 , which is the projection
of û onto the bag of t1. Apparently, the tuple u1 is a local partial solution for node t1
according to Definition 3.10. Then, u can be derived using SPRIM algorithm and u1.
By similar arguments, we establish the proposition for a P Vart1zVart and the remaining
node types. Hence, the propositions holds.

Finally we are in the situation to prove that the algorithm DP decides the Ext problem.

Theorem 3.9.
Given a default theory D, the algorithm DP correctly solves Ext.

Proof. We first show soundness. Let T “ pT, χ, ωq be the given LTD, where T “

pN, ¨, nq. By Lemma 3.6 we know that there is a stable default set if and only if there
exists a local partial solution for the root n. Note that the tuple is by construction
of the form xH, tHu,P, Cy, where P ‰ H can contain a combination of the following
tuples xH,H,Hy, xH, tHu,Hy. For each xρ,AC,BCy P C, we have BCMO ‰ BC. In total,
this results in 16 possible tuples, since C Ď 2C can contain any combination (4 many)
of C, where C “ txH,H, tH, tmouuy, xH, tHu, tH, tmouuyu.

We proceed by induction starting from the leaf nodes in order to end up with such a tuple
at the root node n. In fact, the tuple xH, tHu, txH,H,Hyu,Hy is trivially a partial
solution for (empty) leaf nodes by Definitions 3.7 and 3.8 and also a local partial solution
of xH, tHu, txH,H,Hyu,Hy by Definition 3.10. We already established the induction
step in Proposition 3.7. Consequently, when we reach the root n, when traversing the
TD in post-order by Algorithm DP , we obtain only valid tuples inbetween and a tuple of
the form discussed above in the table of the root n witnesses an answer set.

Next, we establish completeness by induction starting from the root n. Let therefore,
Ẑ be an arbitrary stable default set of D. By Lemma 3.6, we know that for the root n
there exists a local partial solution of the discussed form xH, tHu,P, Cy for some partial
solution xẐ,M̂, P̂, Ĉy. We already established the induction step in Proposition 3.8.
Therefore, we obtain some (corresponding) tuples for every node t. Finally, stopping at
the leaves n. In consequence, we have shown both soundness and completeness resulting
in the fact that Theorem 3.9 is true.

Proposition 3.10 (Completeness for Enumeration).
Let D be a default theory, T “ pT, χ, ωq where T “ pN, ¨, ¨q be an LTD of SpDq and t P N
be a node. Given a partial solution û and the corresponding local partial solution u “ ût

for table τt, either t is a leaf node, or there exists a local partial solution u1 of child
table τ 1 (or local partial solution u1 of table τ 1 and local partial solution u2 of table

37

Chapter 3 Parametrization in Default Logic

Algorithm 3: Algorithm NGDăpT ,Sq for computing the next stable default set
of S.

In: TD T “ pT, ¨, ¨q with T “ pN, ¨, nq, solution tuples S, total ordering ă of
orig¨p¨q.

Out: The next solution tuples of S using ă.
1 Tables[¨] Ð DPpT q
2 for iterate t in post-order(T,n) do
3 Child-Tabs :“ tTables[t1] | t1 is a child of t in T u;
4 t̂ :“ parent of t
5 Srts Ð direct successor s1 ą Srts in origt̂pSrt̂sq
6 if Srts defined then
7 for iterate t1 in Child-Tabs do
8 for iterate t2 in pre-order(T,t’) do
9 t̂2 :“ parent of t2

10 Srt2s Ð ă-smallest element in origt̂2pSrt̂2sq
11 return S;
12 return undefined;

τ2) such that u can be constructed by u1 (or u1 and u2, respectively) and using table
algorithm SPRIM.

Proof. The correctness proof requires to extend the previous results to establish a one-to-
one correspondence when traversing the tree of the TD and such that we can reconstruct
each solution as well as we do not get duplicates. According to the proof for completeness
in Proposition 3.8, the result follows.

We require the following three auxiliary results to prove that the algorithm DP can
be used as a preprocessing step to construct tables from which we can correctly solve
the problem EnumSE. More precisely, this is solved by first running Algorithm DP,
constructing the ă-smallest solution S, and then running Algorithm NGDăpT ,Sq on
the resulting tables of Algorithm DP until NGDăpT ,Sq returns “undefined”.

The next observation states that we are able to compute one unique partial solution,
which is a consequence of Definition 3.8.

Observation 3.11.
Let D be a default theory, T “ pT, χ, ωq where T “ pN, ¨, ¨q be an LTD of SpDq and
t P N be a node. Then, for each partial solution u “ xZ,M,P, Cy for t, M,P and C are
functional dependent from Z, i.e., for any partial solution u1 “ xZ,M1,P 1, C1y for t, we
have u “ u1.

Proof. The claim immediately follows from Definition 3.8.

38

3.1 Default Logic and Bounded Treewidth

Lemma 3.12.
Let D be a default theory, T “ pT, χ, ωq with T “ pN, ¨, ¨q be an LTD of SpDq, and Z
be a stable default set. Then, there is a unique set of tuples S, containing exactly one
tuple per node t P N containing only local partial solutions of the unique partial solution
for Z.

Proof. By Observation 3.11, given Z, we can construct one unique partial solution û “
xZ,M,P, Cy for n. We then define the set S by S :“

Ť

tPNtû
tu. Assume that there is a

different set S1 ‰ S containing also exactly one tuple per node t P N . Then there is at
least one node t P N , for which the corresponding tuples u P S,u1 P S1 differ (u ‰ u1),
since û is unique and the computation ût is defined in a deterministic, functional way
(see Definition 3.10). Consequently, either ût ‰ u or ût ‰ u1, leading to the claim.

Proposition 3.13.
Let D be a default theory, T “ pT, χ, ωq with T “ pN, ¨, ¨q be an LTD of SpDq, and Z
be a stable default set. Moreover, let S be the unique set of tuples, containing exactly
one tuple per node t P N and containing only local partial solutions of the unique
partial solution for Z. Given S, and tables of Algorithm SPRIM, one can compute in
time Op||D||q a stable default set Z 1 with Z 1 ‰ Z, assuming one can get for a specific
tuple u for node t its corresponding ă-ordered predecessor tuple set origtpuq of tuples
in the child node(s) of t in constant time.

Proof. Note that with Z, it is easy to determine, which element of S belongs to which
node t in T . Consequently, we can construct a mapping S : N Ñ S. With S, we can
easily apply algorithm NGD, which is given in Algorithm 3, in order to construct a
different solution S 1 in a systematic way with linear time delay, since T is pretty.

Finally we prove next, that using resulting tables of DP, the algorithm NGD solves the
problem EnumSE correctly.

Theorem 3.14.
Given a default theory D, the combination of Algorithms DP and NGD correctly solves
EnumSE.

Proof. Let LTD T “ pT, χ, ωq with T “ pN,nq for graph SpDq be given. Then we run
our algorithm DP and get tables for each TD node. In order to enumerate all the stable
default sets, we investigate each of these tuple, which lead to a valid stable default set (cf.
proof of Theorem 3.9). For each of these tuples (if exist), we construct a first solution S,
if exist, (as done in Lines 7 to 10 of Listing 3, for the root n) using origtp¨q, and total
order ă. Thereby, we keep track of which tuple in S belongs to which node, resulting in
the mapping S (see proof of Proposition 3.13). Note that origtp¨q and ă can easily be
provided by remembering for each tuple an ordered set of predecessor tuple sets during

39

Chapter 3 Parametrization in Default Logic

construction (using table algorithm SPRIM). Now, we call algorithm NGDăpT ,Sq
multiple times, by outputting and passing the result again as argument, until the return
value is undefined, enumerating solutions in a systematic way. Using correctness results
by Theorem 3.9, and completeness result for enumeration by Proposition 3.10, we obtain
only valid solution sets, which directly represent stable default sets and, in particular, we
do not miss a single one. Observe, that by Lemma 3.12 we do not get duplicates.

In the last part of this section we investigate the runtime upper bounds. For this issue, we
compute first the worst-case space requirements in tables for the nodes of our algorithm.

Proposition 3.15.
Given a default theory D, an LTD T “ pT, χ, ωq with T “ pN, ¨, ¨q of the semi-primal
graph SpDq, and a node t P N . Then, there are at most 2k`1 ¨ 22k`1

¨ 22¨p3k`1¨22k`2
q

tuples in τt using algorithm DP, where k :“ twSpDq the treewidth of the semi-primal
graph SpDq.

Proof. Let D be the given default theory, T “ pT, χ, ωq an LTD of the semi-primal
graph SpDq, where T “ pN, ¨, ¨q, and t P N a node of the TD. Then, by definition of a
decomposition of the semi-primal graph for each node t P N , we have |χptq| ´ 1 ď k. In
consequence, we can have at most 2k`1 many witness defaults and 22k`1 many witnesses
models. Each set P may contain a set of witness proof tuples of the form xσ,A,By, with
at most 3k`1 many witness state σ mappings, 22k`1 many backfire witness models B,
and 22k`1 many required witnesses model sets. In the end, we need to distinguish
2k`1 ¨ 22k`1

¨ 2p3k`1¨22k`2
q different witnesses of a tuple in the table τt for node t. For

each witness, we can have at most 2p3k`1¨22k`2
q many counter-witnesses per witness

default, witness models, and required witness model sets. Therefore, there are at most
2k`1 ¨ 22k`1

¨ 22¨p3k`1¨22k`2
q tuples in table τt for node t. In consequence, we established

the proposition.

Theorem 3.16.
Given a default theory D, the algorithm DP and runs in time Op222k`4

¨ ||SpDq||q, where
k :“ twSpDq is the treewidth of the semi-primal graph SpDq.

Proof. Let D be a default theory, SpDq “ pV, ¨q its semi-primal graph, and k be the
treewidth of SpDq. Then, we can compute in time 2Opk3q ¨ |V | an LTD of width at
most k [?]. We take such a TD and compute in linear time a nice TD [?]. Let T “
pT, χ, δq be such a pretty LTD with T “ pN, ¨, ¨q. Since the number of nodes in N
is linear in the graph size and since for every node t P N the table τt is bounded
by 2k`1 ¨ 22k`1

¨ 22¨p3k`1¨22k`2
q according to Proposition 3.15, we obtain a running time

of Op222k`4
¨ ||SpDq||q. Consequently, the theorem applies.

40

3.2 Solving Default Logic using Backdoors

3.2 Solving Default Logic using Backdoors

The purpose of this section is to examine Reiter’s propositional default logic and its
decision problems, but with the new approach of so-called strong backdoors. The
utilisation of backdoors is already recognized as a helpful tool in propositional logic .
We will depict the approach for default logic to transform a given CNF formula ϕ of the
complexity class C by the application of backdoors to a formula in a fragment in a lower
complexity class C1.

Definition 3.11: Strong Backdoors in Propositional Logic, [WGS03]

Let F be a a class of formulae. A strong F-backdoor is a set BV Ď Varpϕq of variables
of a formula ϕ s.t. for all assignments ϑ P ApV q we obtain ϕrϑs P F.

In this way, given a CNF formula we are interested to modify it to a more restrictive
formula class, providing a lower complexity. We summarize the most common classes of
formulae in the Table 3.1.

Formula Classes Clause Constraints Clause Form
CNF No restrains t``1 , . . . , `

`
n , `

´
1 , . . . , `

´
mu

HORN At most one positive literal t``1 , `
´
1 , . . . , `

´
n u, t`

´
1 , . . . , `

´
mu

KROM Binary clauses t``1 , `
`
2 u, t`

`
1 , `

´
2 u, t`

´
1 , `

´
2 u

MONOTONE Positive literals only t``1 , . . . , `
`
n u

POSITIVE-UNIT Positive unit clauses only t``1 u

Table 3.1: Formulae Classes with positive ``i and negative literals `´i , where n,m P Ně0

To illustrate the idea of backdoors, let us to examine following example:

Example 3.17 (Backdoors in Propositional Logic).
Let the formula ϕCNF “ px1 _ x2 _ x3q ^ px3 _ x4 _ x5q ^ p x1 _ x5q be given. The
question now is: “Does a KROM-strong backdoor exist?” We see at once that the answer
is “yes”. Choosing BV “ tx3u yields:

ϕrx3 “ 0s “ px1 _ x2q ^ px4 _ x5q ^ p x1 _ x5q

ϕrx3 “ 1s “ p x1 _ x5q

In consequence of choosing BV “ tx3u, we obtain for all assignments of ϕrx3s P KROM.

The most exciting results for the complexity of the stable extension problem, with regard
to restricted classes of formulae, are conflated in the following proposition.

Proposition 3.18.
(1.) ExtpCNFq is ΣP

2 -complete [Got92].

41

Chapter 3 Parametrization in Default Logic

(2.) ExtpHORNq is NP-complete [Sti90b, Sti90a].

(3.) ExtpPOSITIVE-UNITq P P [BTV12].

Their work has yielded a number of promising new avenues of research for default logic in
combination with backdoors. The challenge now is to adapt backdoors to default logic.

While elements of backdoors in common propositional satisfiability are propositional
variables and consequently can only have truth values of a variable “true” and “false”,
this does not hold for backdoors on default logic. Here we require a trinity of values of a
formula ϕ concerning to an extension E of the default theory TDL “ xW,Dy, namely:

(1.) ϕ is included in the stable extension E,

(2.) ϕ is included in the stable extension E,

(3.) neither ϕ nor ϕ is included in the stable extension E.

Now we want to illustrate this fact with a simple example.

Example 3.19. Let a default theory be given as TDL “ xH, t
J:x2
x3
uy. A stable extension

of the TDL is E “ Thpx3q. In consequence, neither x2 nor x2 is a part of the stable
extension.

Due to the complex semantics of default logic it is not possible to transfer the required
trinity directly from the satisfiability settings of propositional logic to DL. For this reason
we need to take a detour by starting with some auxiliary definitions.

Definition 3.12: Extended Literal and Reducts

An extended literal is a literal or fresh variable xν . The negation of a literal `, in
symbols „`, is defined as x in case ` “ x is a variable, resp. as x in case ` “ x.
Given a formula ϕ and an extended literal `, the reduct ρ`pϕq is obtained from ϕ as
follows:

(1.) If ` is a literal, then all clauses containing ` are deleted and additionally the
literal „` is deleted from all clauses.

(2.) If ` is xν , then we delete all occurrences of literals x, x from all clauses.

Let TDL “ xW,Dy be a default theory and ` an extended literal, then

ρ`pW,Dq :“
ˆ

ρ`pW q,

"

ρ`pPq : ρxpJ q
ρ`pC q ^ yi

| δi “
P : J

C P D

*˙

,

with a fresh proposition yi according to default δi and ρ`pW q :“
Ť

ωPW ρ`pωq.

Next we lift the notion of extended literals and reducts to the sets of assignments. In
this way we obtain so-called trivalent assignment sets.

42

3.2 Solving Default Logic using Backdoors

Definition 3.13: Trivalent Assignment Sets

Let X be a set of variables, we denote the Trivalent assignment sets by

TpXq :“

ta1, . . . , a|X|u | x P X and ai P tx, x, xνu
(

.

In comparison with the common assignment set A, the trivalent assignment set is extended
by the variable xν which has a “do not care” character. For X 1 P TpXq we proceed for
the reduct ρX 1pW,Dq analogously to Definition 3.12. It is noteworthy that the order of
application of reducts is irrelevant. Additionally, we show in the following proposition,
that the implication of formulae is invariant under extending conjuncts of new variables
to the premise.

Proposition 3.20.
Let two formulae ϕ,ψ P CNF be given and let y be a fresh variable with yRVarpϕqYVarpψq.
Then it holds ϕ (ψ if and only if ϕ^ y (ψ.

Furthermore, in the following lemma we point out the invariance of CNF formulae without
tautological clauses under the application of so-called “deletion reducts” ρxν p¨q.

Lemma 3.21.
Let two formulae ϕ,ψ P CNF, without including tautological clauses be given. If ϕ (ψ,
then ρxν pϕq (ρxν pψq, for all variables x P Varpϕq Y Varpψq.

Proof. Suppose the assertion of our lemma is false, viz. ρxν pϕq * ρxν pψq. Then we
could find an assignment ϑ : Varpρxν pϕqq Y Varpρxν pψqq Ñ t0, 1u with ϑ (ρxν pϕq but
ϑ * ρxν pψq. Since ϑ (ρxν pϕq yields, according to Proposition 3.20, that every arbitrary
extension of the assignment ϑ satisfies ϕ, and as a consequence, also any extension of
the form txu Y Varpρxν pϕqq Y Varpρxν pψqq, which will be denoted by ϑx. Consequently,
from ϕ (ψ follows ϑx (ψ, for any extension ϑx. Therefore the satisfiability of ψ is
independent of setting x, in this way ϑx (ρxν pψq remains valid, as ψ does not contain
tautological clauses. Since x R Varpρxν pψqq holds, yields the assignment ϑ (ρxν pψq, this
contradicts our assumption of ρxν pϕq * ρxν pψq and the proof is complete.

Now we follow the next step and prove the invariance of CNF formulae under the
application of reducts over the assignment set A.

Lemma 3.22.
Let two formulae ϕ,ψ P CNF and X Ď Varpϕq Y Varpψq be given. If ϕ (ψ, then
ρX 1pϕq (ρX 1pψq holds for every set X 1 P ApXq.

Proof. Let the formulae ϕ,ψ P CNF and X Ď Varpϕq Y Varpψq be given and assume
that ϕ (ψ holds. Let X 1 P ApXq be fixed. In the next step we examine every
assignment ω„X 1 : VarpρX 1pϕqq Y VarpρX 1pψqq Ñ t0, 1u. Note that ω„X 1 is defined on the

43

Chapter 3 Parametrization in Default Logic

set tVarpϕq Y VarpψquzX 1.
Now we abbreviate the assignment ω, defined by ωpxq “ 1 if x P X 1 and ωpxq “ 0 if
 x P X 1 to ω ä X 1. In this way ω ä X 1 agrees with ω on the variables in X 1.
Accordingly, since ϕ (ψ, it follows by assumption ω ä X 1 (ϕ^ ψ. By induction we
obtain ω ä X 1 (ψ if and only if ω (ρX 1pψq, and ω ä X 1 (ϕ if and only if ω (ρX 1pϕq.
As a consequence the following correlation arises:

ω (ρX 1pϕq ô ω ä X 1 (ϕñ ω ä X 1 (ψ ô ω (ρX 1pψq,

which completes the proof.

Based on Lemma 3.21 and 3.22 we are finally in the position to formulate CNF formulae
on trivalent assignment set T. We say a formula is tautological-free, if it does not contain
tautological clauses.

Corollary 3.23.
Let two tautological-free formulae ϕ,ψ P CNF be given. Furthermore let X Ď VarpEq Y
Varpψq be a set of variables. For every set X 1 P TpXq it holds ρX 1pϕq (ρX 1pψq if ϕ (ψ.

For the examination of stable extensions in combination with strong backdoors it is
crucial to prove that we preserve any stable extension by application of strong backdoors.
For this issue we require further notion.

We denote by y-conclpD,Eq the set of conclusions of default rules δi, such that yi is
implied by all formulae in E:

y-conclpD,Eq :“ tC pδiq | 1 ď i ď n, δi P D,E (yiu,

with the default rule set D “ tδ1, . . . , δnu and a set of formulae E. Additionally, we
extend the set of stable extension SEpTDLq of the default theory TDL “ xW,Dy by the set
X in following terms:

SEpxW,Dy, Xq :“
ď

Y PTpXq
tThpW Y y-conclpD,Eqq | E P SEpρY pW,Dqqu .

Finally we are able to prove that we do not lose any stable extension due to the application
of strong backdoors.

Lemma 3.24.
Let TDL “ xW,Dy be a CNF default theory with tautological-free formulae and X be a
subset of VarpW,Dq. Then SEpTDLq Ď SEpTDL, Xq.

Proof. Let the default theory TDL “ xW,Dy be given as stated, with X Ď VarpW,Dq and
a stable extension E of TDL.
Assume contrary to our claim that there exists a stable extensionE P SEpTDLqzSEpTDL, Xq.

44

3.2 Solving Default Logic using Backdoors

We mean by G the set of all generating defaults of E obtained from the stage construc-
tion. Now assume w.l.o.g. G :“ tδ1, . . . , δku and fix the order of applying defaults. In
consequence we obtain E “ ThpW Y tC pδq | δ P Guq. In this way W (Ppδ1q holds, as
δ1 P G.
Now we obtain a set Y P TpXq agreeing with the set E applying on literals of VarpW,Dq,
to be more precise x P Y if E (x for x P VarpW,Dq and x P Y if E (x and xν P Y
otherwise.
According to Corollary 3.23:

ľ

wPW

ρY pwq (ρY pPpδ1qq.

Moreover, we get
ľ

wPW

ρY pwq ^
ľ

1ďjďi
ρY pC pδjqq (ρY pPpδi`1qq,

for i ă k.
Additionally, by Definition 3.12 of ρY pW,Dq, both the reducts of the knowledge base W ,
as well as the derived conclusions imply the yis. From this we obtain

ľ

wPW

ρY pwq ^
ľ

1ďiďk
ρY pC pδiqq (

ľ

1ďiďk
yi.

Since neither E (Ppδq holds for some default δ P DzG, nor E Y tC pδq | δ P Gu (δ1 is
true for some default δ1 P DzG, it follows E is consistent.
As Y agrees with E on the implied variables of VarpW,Dq, we conclude that no additional
default rule δ is induced by the reduct of the knowledge base ρY pW q or by ρY pWYtC pδq |
δ P DzGuq.
Moreover, assume E (β for some β P

Ť

δPG J pδq, then by Corrollary 3.23 this would
also imply that ρY pEq (ρY pJ q, so it is legitimate to conclude that no justification is
violated. Now assume

E1 “ Th pρY pW q Y tρY pC pδqq | δ P Guq

is a stable extension according to the reduct ρY pW,Dq. But, the set of conclusions of
generating defaults G is tied in with y-conclpD,E1q, ergo we obtain

E “ThpW Y tC pδq | δ P Guq
E “ThpW Y y-conclpD,E1qq P SEpxW,Dy, Xq,

contrary to our initial assumption E R SEpTDL, Xq, consequently the proof is complete.

Since we have proven the legitimacy of our concept of backdoors for default logic, we

45

Chapter 3 Parametrization in Default Logic

want to give a formal definition. Let us emphasise here that the set SEpTDL, Xq is a set
of stable extensions candidates. We assume for the rest of the chapter, that the formulae
are tautological-free.

Definition 3.14: Strong Backdoors for Default Logic

Let a CNF default theory TDL “ xW,Dy, as well as B Ď Var pW,Dq a set of variables
of TDL and a class of formulae F be given. We call B as strong F-backdoor, where for
each Y P TpBq the reduct ρY pW,Dq is a F-default theory.

We conclude this subsection with an example, which illustrates the terms defined in this
part.

Example 3.25. Let TDL :“
!

tx1u, t
x1:x3

x2^px3_x1q
u

)

be given.
It is obvious that TDL has a stable extension, namely E :“ Thpx1, x2 ^ px3 _ x1qq .
With the backdoor B “ tx1u we obtain the following reduct of the default theory TDL:
ρx1pW,Dq “ xtJu, t

J:x3
y1
uy and in this way

SEpρx1pW,Dqq “ tThpy1qu,

SEpρ x1pW,Dqq “ H,

SEpρx1ν pW,Dqq “ H.

Accordingly, y-conclpD,Thpy1qq “ tx2 ^ px3 _ x1qu, yields Thptx2 ^ px3 _ x1qu Y tx1uq
which is equivalent to the stable extension E of TDL.

3.2.1 The Implication Problem

Before we can investigate the backdoor evaluation problem in default logic, we require
some auxiliary results of a subproblem of default logic, namely the implication problem
of specific formula classes F P tHORN,KROMu.

Problem: ImppFq
Input: A set Φ of F-formulae and a formula ϕ P F
Question: Does Φ (ϕ?

We built upon the important work of Beyersdorff et al. [BTV12], where the authors
investigated all Boolean fragments of the implication problem ImppFq, classifing the
computational complexity according to Post’s lattice. The formulae in the previous work
were restricted to use only some Boolean functions like “^”, “_” and “ ”. In contrast,
for HORN and KROM, the Boolean connectives “^”, “_” and “ ” are all allowed, but
can only be used in a certain way.

46

3.2 Solving Default Logic using Backdoors

Lemma 3.26.
The implication problem for KROM-formulae ImppKROMq is in P.

Proof. Let a KROM-formulae set Φ and a formula ϕ P KROM be given. Suppose w.l.o.g.

ľ

ψPΦ
ϕ “

m
ľ

i“1
Ci, and

ϕ “
n
ľ

i“1
C 1i.

In this way it follows:

xΦ, ϕy P ImppKROMq ô
˜

m
ľ

i“1
Ci,

n
ľ

i“1
C 1i

¸

P ImppKROMq (3.1)

ô

˜

m
ľ

i“1
Ci

¸

Ñ

˜

n
ľ

i“1
C 1i

¸

P Taut (3.2)

ô

n
ľ

i“1

˜

m
ľ

j“1
Cj Ñ C 1i

¸

P Taut (3.3)

ô @ i P rns

˜

m
ľ

j“1
Cj Ñ C 1i

¸

P Taut (3.4)

ô D i P rns

˜

m
ľ

j“1
Cj Ñ C 1i

¸

R Taut (3.5)

The line (3.1) is the definition of the implication problem Imp. In the next line (3.2) we
make use of “Ñ” the implication function. In line (3.3) we transform the equivalence via
ψ1 Ñ pψ2 ^ ψ3q P Taut ô pψ1 Ñ ψ2q ^ pψ1 Ñ ψ3q P Taut. Afterwards we separate the
Taut-problem (3.4). And finally the line (3.5) is a double negated statement of line (3.4)
it says there does not exist pψ1 ^ ψ2q P Taut ô ψ1 P Taut nor ψ2 P Taut. Now we are
in the position to examine the n problems of line (3.5) separately for each i P rns by

˜

m
ľ

i“1
Ci Ñ p`_ `1q

¸

R Taut ô
˜

m
ľ

i“1
Ci

¸

rϑ0s P SatpKROMq,

with the assignment ϑ0, that sets both literals ` and `1 to zero, viz. ϑ0p`q “ 0 and
ϑ0p`

1q “ 0. Now it only remains to note that if ` ”„ `1 then the implication on the left
hand side of the equivalence is always tautological, which completes the proof.

In the same vein it is possible to show the membership of the implication problem for
HORN-formulae in P. This complexity result was proved in 1990 by Stillman [Sti90a].

47

Chapter 3 Parametrization in Default Logic

With Lemma 3.26 we are in the position to examine the backdoor evaluation problem in
default logic.

3.2.2 Backdoor Set Evaluation in Default Logic

In this section we determine the complexity of the evaluating strong backdoors for
the existing stable extension problem into certain fragments, namely either the HORN,
KROM, MONOTONE or POSITIVE-UNIT-fragment.

Problem: EvalExtpCNF Ñ Fq

Input: A CNF-default theory TDL “ xW,Dy, a strong F-backdoor B where,
B Ď VarpW q Y VarpDq.

Parameter: κ “ |B|

Question: Does a stable extension for the CNF-default theory TDL “ xW,Dy
exist?

By Lemma 3.24 we obtain candidates for stable extensions. In this way we require
further examination to verify those candidates. This leads to some kind of “extension
checking problem”, we abbreviate it with EC. To be more precise, given a default
theory TDL “ xW,Dy and a finite set of formulae Φ, we are interested in whether
ThpΦq P SEpTDLq holds.

The complexity of EC was initially investigated by Rosati in 1999, [Ros99]. He proved
EC is ΘP

2 “ ∆P
2 rlogs-complete, i.e., complete for the class of problems decidable in

polynomial deterministic time with logarithmically many queries to an NP oracle. For
detailed information about the complexity class ΘP

2 we refer the reader to the work of
Eiter and Gottlob [EG97].

Modifying the algorithm of Rosati [Ros99, Figure 1] to our notion yields the containment
in ∆P

2 , see Algorithm 4.

Algorithm 4: Extension checking algorithm [Ros99, Theorem 4]
Input: Set E of formulae and a default theory TDL “ xW,Dy
Output: True if E is a stable extension of TDL, and False otherwise

1 D1 :“ H
2 forall P:J

C P D do
3 if E * J then D1 :“ D1 Y tP:

C u
4 E1 :“W
5 while E1 did change in the last iteration do
6 forall P:

C P D1 do
7 if E1 (P then E1 :“ E1 ^ C
8 if E (E1 and E1 (E then return true else return false

48

3.2 Solving Default Logic using Backdoors

Proposition 3.27 ([Ros99, Figure 1, Theorem 4]).
The problem EC is in ∆p

2 .

We explain the result in comparison with the extension existence problem. For the
Ext-problem we require first to apply the stage construction. In this way we have a
non-deterministic guess of generating defaults (with ordering) for the stage construction
and afterwards we need to answer a quadratic number of implication questions. In
consequence the problem is in NPNP. In case of EC-problem, we merely need to check
the given formulae set and omit the non-deterministic guess of the stage construction. In
doing so we obtain a membership in PNP, which is also known as ∆p

2 .

In the following we transfer the complexity result of the upper bound from Σp
2 to para-NP

via using a strong HORN-backdoor on a CNF-default theory with the size of the backdoor
as parameter.

Theorem 3.28.
The problem EvalExtpCNF Ñ HORNq is in para-NP.

Proof. Let the CNF-default theory TDL “ xW,Dy and a HORN-backdoor set B be given.
First we need to compute the reducts of a given HORN-backdoor on the CNF-default
theory according to the Trivalent assignment set TpXq, to transform the CNF-default
theory to a HORN-default theory. Subsequently, we need to guess non-deterministically
the set of generating defaults G and by this the candidates for stable extensions, for
all of the |TpXq| “ 3|B| reducts. Ensuing we verify the candidates for stable extension
W ^

Ź

gPG g via Algorithm 4. We know from Stillman [Sti90a], that the implication
problem for HORN-formulae is tractable. Accordingly the verification of the given
stable extension candidates is tractable as well. Since we have verified that E, is a
stable extension of the reduced default theory ρY pTDLq, it is obligatory to compute the
according set E1 of stable extensions for the initial CNF-TDL default theory. This is done
by computing E (yi, for 1 ď i ď |D|. Finally we need to confirm the validity of E1 via
Algorithm 4. By Lemma 3.26 we know that the implication problem parameterized on
the size of a backdoor is fixed-parameter tractable. As the length of formulae is bounded
by the input size and the parameter is κ “ |B|, yields fixed parameter tractability for
this computation. Overall we obtain a para-NP algorithm and the theorem applies.

Algorithm 5: Generic algorithm for EvalExtpFÑ F1q

Input: F-default theory TDL “ xW,Dy, backdoor B Ď VarpW,Dq
1 for Y P TpXq do
2 construct set of generating defaults G for F1 default theory ρY pTDLq
3 if E :“

Ź

wPρY pW q
w ^

Ź

P:J
C PG C is extension for ρY pTDLq then

4 E1 :“
Ź

wPW ω ^
Ź

cPy-conclpD,E1q c if E1 is extension for TDL then
return true

5 return false

49

Chapter 3 Parametrization in Default Logic

We recap the proof steps with a generic algorithm in pseudocode, see Algorithm 5.

The same conclusion can be drawn for the EvalExt problem from CNF to KROM
formulae.

Theorem 3.29.
The problem EvalExtpCNF Ñ KROMq is in para-NP.

Proof. Let the CNF-default theory TDL “ xW,Dy be given. We know from Lemma 3.26
that ImppKROMq P P. The rest of the proof can be handled the same way as in
Theorem 3.28 by constructing a para-NP algorithm.

Theorem 3.30.
The problem EvalExtpCNF Ñ MONOTONEq is in para-∆p

2 .

Proof. Let the CNF-default theory TDL “ xW,Dy be given. The next preliminary
consideration is crucial for a sine qua non of the justification due to the stage construction,
viz. J R ThpW Y Eq. Observe that the formulae class MONOTONE allows positive
literals only, in this way the negation of a formula ϕ is not monotone, unless ϕ P tJ,Ku.
In the case of ϕ R tJ,Ku we remove the corresponding justification, as it could not be
inferred anyway. On the other hand, in case of ϕ P tJ,Ku, we obtain that ϕ is always
applicable in an inconsistent way only. Consequently, this case discrimination is done
in polynomial time. Now bear in mind that if any stable extension exists, then it is a
unique stable extension, due to the reasoning above. Accordingly we have to compute
quadratically many implication questions and as ImppMONOTONEq P coNP, it follows
that the construction of the set of generation defaults G, and also the extension is done
in para-∆p

2 . The verification of an extension from Algorithm 5, line 4 can be used, as we
construct a para-∆p

2 algorithm, completing the proof.

Theorem 3.31.
The problem EvalExtpCNF Ñ POSITIVE-UNITq is in FPT.

Proof. Let the CNF-default theory TDL “ xW,Dy and a POSITIVE-UNIT backdoor B be
given. Assume Algorithm 4 runs in polynomial time, for the given default theory TDL
and the backdoor B, as described in the theorem. For this reason we can apply similar
arguments as in Theorem 3.28 and as the backdoor size is bounded by κ we obtain
precisely the assertion of the theorem. Consequently, it remains to show Algorithm 4
runs in polynomial time. The authors Beyersdorff et al. [BMTV09] investigated the
implication problem for POSITIVE-UNIT formulae using AND-gates only. They proved
that this implication problem is in the circuit complexity class AC0, corresponding to
constant-depth, unbounded fan-in, polynomial-size circuits with AND-gates.[Vol99]. In

50

3.2 Solving Default Logic using Backdoors

this way we can adapt this result to the implication query of Algorithm 4, and achieve a
polynomial time running algorithm, and the theorem applies.

We proceed to show for that general extension existence problem for KROM formulae,
without using backdoors is NP-complete.

Theorem 3.32.
The ExtpKROMq-problem is NP-complete.

Proof. Let the KROM-default theory TDL “ xW,Dy be given. As we already know from
Lemma 3.26, the implication problem for KROM-formulae is in P. In combination
with the result of Rosati, [Ros99] we obtain that the extension checking problem of
KROM-default theories is in P as well. For the proof of membership in NP observe that
Algorithm 4 guesses the set of generating defaults G Ď D and afterwards verifies whether
W ^

Ź

P:J
C PG C is a valid extension of a given KROM-TDL. This is done in NP.

The default theory constructed by Beyersdorff et al. [BTV12, Lemma 5.6] uses KROM-
formulae only. With the reduction from 3 Sat, which is known to be NP-complete, we
obtain the desired lower bound and consequently the assertion of the theorem.

3.2.3 Backdoor Set Detection in Default Logic

The aim of this section is to examine the problem of detection of backdoors of size |B| ď κ
for a given CNF-default theory.

Problem: BdDetectionpCNF Ñ Fq

Input: A CNF-default theory TDL “ xW,Dy

Parameter: κ P Ně0
Question: Does TDL have a strong F-backdoor B of a size |B| ď κ ?

From [DF13] and [Sch81] we can assume for clause-induced target classes F, that we can
utilise a decision algorithm for BdDetectionpCNF Ñ Fq to determine a backdoor B
using self-reduction. Therefore we can formulate the following lemma.

Lemma 3.33.
BdDetectionpCNF Ñ Fq P FPT, yields that computing of a strong F-backdoor B with
|B| ď κ is fixed-parameter tractable.

Proof. We perform the proof via induction on κ. Let the conditions of the lemma be
fulfilled. We start with the basis κ “ 0, i.e. we need a backdoor of a size |B| “ 0. Here
we immediately see that the statement holds. Now for the inductive step let κ ą 0. We
proceed to verify for all v P VarpW Y Dq according to the trivalent assignment T for

51

Chapter 3 Parametrization in Default Logic

the given TDL and the parameter κ, whether ρvpW,Dq, ρ vpW,Dq and ρvν pW,Dq have
a strong F-backdoor B of size |B| ď κ ´ 1. If the default theory TDL has no strong
F-backdoor B of size |B| ď κ´ 1 for all v P VarpW YDq, then we can conclude that there
is no F-backdoor B of size |B| “ κ. On the other hand, if we have found a F-backdoor B
of size |B| ď κ´1 for some v P VarpWYDq, then by induction hypothesis we can compute
ρvpW,Dq, ρ vpW,Dq and ρvν pW,Dq and |B| Y v is the desired strong F-backdoor of the
default theory TDL “ xW,Dy. This finishes the proof.

Now we want to demostrate how to find a strong F-backdoor B for
F P tHORN,KROM,MONOTONE,POSITIVE-UNITu in fpt-time.

Theorem 3.34.
Let F P tHORN,KROM,MONOTONE,POSITIVE-UNITu, then BdDetectionpCNF Ñ
Fq is fixed-parameter tractable.

Proof. Let the conditions of the theorem be fulfilled. Let us denote by F the set
W Y tPpδq, J pδq,C pδq | δ P Du. For the construction of a strong F-backdoor it is suffi-
cient to consider the case Y “ txν | x P Xu, as each class of
F P tHORN,KROM,MONOTONE,POSITIVE-UNITu is clause-induced and ρZpϕq Ď
ρY pϕq holds for any Z P TpXq. From now on we make the assumption Y “ txν | x P Xu
and start with the case BdDetectionpCNF Ñ MONOTONEq:
A monotone formula ϕ contains positive literals only. Therefore it is straightforward to
take all negative literals of the formula ϕ P F to the strong backdoor B, to obtain the
desired MONOTONE backdoor set. This is possible in linear time.
For the remaining cases HORN,KROM, and POSITIVE-UNIT we tie up on the construc-
tions inspired by [SS09] for the propositional logic and adapt it to default logic.

For HORN let GHORN
TDL

pV,Eq denote a graph with a set of variables V “ VarpF q as nodes.
The nodes v1 and v2 with v1 ‰ v2 are connected by an edge iff v1 and v2 occur in a same
clause tv1, v2u Ď VarpCq, for C P ϕ and ϕ P F .
For POSITIVE-UNIT let GPU

TDL
pV,Eq denote a graph with a set of variables V “ VarpF q.

The variables v1 and v2 with v1 ‰ v2 are connected by an edge iff the literals `v1 and
`v2 occur in a same clause C, where `v1 “ tv1, v1u and `v2 “ tv2, v2u for C P ϕ and
ϕ P F .
And finally for the formulae class KROM let HKROM

TDL
pV,Eq denote a hypergraph with a

set of variables V “ VarpF q as vertices. The variables v1, v2 and v2, with v1 ‰ v2 ‰ v3 are
connected by a hyperedge if v1, v2 and v3 occur in the same clause tv1, v2, v3u Ď VarpCq,
for C P ϕ and ϕ P F .
Accordingly, we represent the given default theory by an appropriate graph and claim
that set B Ď VarpF q is the desired strong F-backdoor of TDL, if and only if B represents
a λ-hitting set, with λ P t2, 3u, of the appropriate graph representation of the default
theory TDL. In doing so λ is depending on the corresponding formulae class, λ “ 2 for
the formulae classes HORN und POSITIVE-UNIT and λ “ 3 for KROM.

52

3.2 Solving Default Logic using Backdoors

For the case λ “ 2 we introduce the vertex cover problem of the graphs GHORN
TDL

pV,Eq

and GPU
TDL
pV,Eq. The graph GHORN

TDL
pV,Eq, or GPU

TDL
pV,Eq respectively, has a vertex cover

S Ď V , if for every edge v1v2 P E we have tv1, v2u X S ‰ H. We know from [CKX10a]
that we can find such vertex cover set of a size |S| ď κ, if exists, in time Op1.2738κ`κ ¨nq.
For KROM we introduce the 3-hitting set problem of the hyper graph HKROM

TDL
pV,Eq, with

|E| ď 3. The hyper graph HKROM
TDL

pV,Eq has a 3-hitting set S Ď V , if for every hyperedge
we have SX e ‰ H. By [Fer10] we can find such a 3-hitting set of a size |S| ď κ, if exists,
in time Op2.179κ ` n3q.

For the correctness proof we demonstrate the straightforward direction first. For this let
B be a λ-hitting set of an appropriate graph representation, as discussed above. Let C be
a clause in ρY pϕq for ϕ P F . For the sake of contradiction, assume that the clause C be
C R HORN or C R POSITIVE-UNIT or C R KROM, in correspondence to λ. Consequently,
there is a set S Ď C and an edge S of the appropriate graph with S XX “ H, which
contradicts the assumption of B being a λ-hitting set of appropriate graph representation.
Now let B Ď VarpF q be a strong F-backdoor of TDL “ xW,Dy. We consider an edge
v1v2 P E (or v1v2v3 P E) of the appropriate graph. The graphs GHORN

TDL
pV,Eq, GPU

TDL
pV,Eq

and HKROM
TDL

pV,Eq have per design a corresponding clause C P ϕ, for ϕ P F and v1, v2 P C
(or tv1, v2, v3u Ď C for KROM). Since we construct the reduct ρY pϕq of ϕ by removing all
occurrences of literals x and x from clauses in ϕ and each clause contains at most one
positive literal in case of HORN, exactly one positive literal in case of POSITIVE-UNIT
or two literals in case of KROM, we establish tv1, v2u XX “ H (or tv1, v2, v3u XX “ H,
respectively). This yields that B is a λ-hitting set and the theorem applies.

By combining Theorem 3.34 with Theorem 3.28 and Theorems 3.29 and 3.30 we are
finally able to enhance the results by the premise of a given strong backdoor.

Corollary 3.35.
Let a CNF-default theory TDL “ xW,Dy be given, further let F “ tHORN,KROMu, then

EvalExtpCNF Ñ Fq P para-NP

EvalExtpCNF Ñ MONOTONEq P para-∆p
2

EvalExtpCNF Ñ POSITIVE-UNITq P FPT

Theorem 3.36.
The problem EvalExtpCNF Ñ HORNq is para-NP-complete.

Proof. By Corollary 3.35 we know that the upper bound of EvalExtpCNF Ñ HORNq
is para-NP. To show the lower bound we make use of a reduction from ExtpHORNq,
which is known from Stillman to be NP-complete [Sti90a]. Therefore let the reduction
function f be given as

f : pExtpHORNq, |B| “ 0q Ñ EvalExtpHORN Ñ HORN, |B| “ 0q.

53

Chapter 3 Parametrization in Default Logic

Formulae Class F EvalExtpCNF Ñ Fq BdDetectionpCNF Ñ Fq

HORN para-NP-complete in FPT
KROM in para-NP in FPT
MONOTONE in para-∆p

2 in FPT
POSITIVE-UNIT in FPT in FPT

Table 3.2: Computational Complexity Results for EvalExtpCNF Ñ Fq
and BdDetectionpCNF Ñ Fq

Now it holds there exists a stable extension of a given HORN default theory if and only
if there exists a stable extension for EvalExtpHORN Ñ HORN, |B| “ 0q. Obviously the
function f is computable in polynomial time and the theorem applies.

We summerize our results of this section in Table 3.2.

54

CHAPTER 4

PARAMETRIZATION IN TEMPORAL LOGICS

4.1 Temporal Logics on Syntax graph Representations with
Bounded Treewidth

Here we want to classify full branching time tree logic (CTL‹) and its fragments com-
putational tree logic (CTL) and linear temporal logic (LT L) in terms of parameterized
complexity of the satisfiability problem. Therefore we will introduce two graph-like
representations of formulae, namely syntax circuit and syntax tree. To show the fixed-
parameter tractability results we will generalize the prominent theorem of Courcelle
to work on infinite vocabularies. For the parametrization we will use temporal depth
and treewidth or path-width. We will see a dichotomy between Wr1s-hard and fixed-
parameter tractable operator fragments. At the end of this section we will investigate
Boolean operator fragments according to the Post’s lattice.

4.1.1 Structural Representations of Formulae

By SFpϕq we mean the set of all subformulae of ϕ including ϕ itself.

Definition 4.1: Syntax Circuit

Let B denote a finite set of Boolean functions and T denote a set of temporal
operators. The syntax circuit of a formula ϕ is denoted by Cϕ is defined as the
structure (SFpϕq, τCϕ), with the set of subformulae of ϕ and the vocabulary

τ :“

repr1
O,bodyn`1

O | O P T, arpOq “ n
(

Yt repr1
f , bodyn`1

f | f P B, arpfq “ nuYtvar1u,

55

Chapter 4 Parametrization in Temporal Logics

where the relations of τ are interpreted as follows:

var1pxq ô x represents a variable,
repr1

Opxq ô x represents a formula Opψ1, . . . , ψnq

for some n and O P T ,
bodyn`1

O px, y1, . . . , ynq ô x represents the formula Opψ1, . . . , ψnq, with
ψ1, . . . , ψn are represented by y1, . . . , yn

and O P T is a temporal operator of arity n,
repr1

f pxq ô x represents a formula fpψ1, . . . , ψnq

for some n and f P B,
bodyn`1

f px, y1, . . . , ynq ô x represents the formula fpψ1, . . . , ψnq where
ψ1, . . . , ψn are represented by y1, . . . , yn and
f P B is a Boolean function of arity n.

For simplicity of notion we want to formulate some specific properties of syntax circuits
in the following way:

• y is the i-th argument of x:
body2

R,ipx, yq :“ Dy1 . . . DyarpRqbodyarpRq`1
R px, y1, . . . , ynq ^ yi “ y

• y is some argument of x:
child2px, yq :“

Ž

RPTYB

Ž

1ďiďarpRq body2
R,ipx, yq

• x is the root of the structure:
repr1pxq :“ @y child2px, yq

To take a concrete example, we present in Figure 4.1 a illustration of a CTL‹ formula
ϕ “ AGpx1UpEXx2qq ^ px2RpAFpx3qqq as a syntax circuit Cϕ.

Similar to the syntax circuit Cϕ, we define a syntax tree Sϕ, but in lieu of a set of subfor-
mulae SFpϕq we will use a set of ordered subformulae SFOpϕq to generate individuals.
In contrast to subformulae we make the multiple occurrences of a same non-atomic
subformula identifiable, by marking each symbol O P T YB as O1,O2,O3,

As no subformula occurs multiple times in ϕ from Figure 4.1, in this case it holds that
Sϕ “ Cϕ.

Definition 4.2: Formula Treewidth and Formula Pathwidth

For a temporal formula ϕ, we say the circuit treewidth denoted by twCpϕq is the
treewidth of the syntax circuit of formula ϕ and the syntax treewidth denoted by
twSpϕq is the treewidth of the syntax tree of ϕ.

56

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

AGpx1UpEXx2qq ^ px2RpAFpx3qqqrepr^

AGpx1UpEXx2qq reprAG x2RpAFpx3qq reprR

x1UpEXx2q reprU AFpx3q reprAF

x1 var EXx2 reprEX x1 var

x2 var

body_,1
body

_,2

body
AG

bodyR,2
bo

dyU,
1 bodyU

,2

body
A

F

body
EX

bo
dyR,

1

Figure 4.1: Example syntactical circuit Cϕ as relational structure.

The path-width of the appropriate graph representation of the temporal formula ϕ is
defined analogously.

In the next section we want to examine the parameterized satisfiability problem.

4.1.2 Fixed-Paremeter Tractable Fragments

In this section we want to prove that the satisfiability of CTL-formulae with an appro-
priate parametrization is fixed-parameter tractable. For this use the well-known result:
Courcelle’s Theorem [CE12, Thm. 6.3 (1)]. To apply the theorem, we need to formulate
the satisfiability of CTL-formulae in MSO. Unfortunately we require a family of MSO
formulae, which depend on the instance. For this reason we want to present a generalized
version of Courcelle’s Theorem for infinite sized signature under appropriate constraints
and offer in this way new approaches for research.

4.1.2.1 Courcelle’s Theorem with Infinite Signature

The initial version of the theorem states, that every MSO-definable decision problem
pQ, κq parameterized by the treewidth κ “ twpAxq over some relational structure Ax,
with an instance x P Q, is fixed-parameter tractable. This theorem is restricted to
finite signatures. The next theorem outline how to deploy Courcelle’s Theorem even for
infinite structures, when the problem is formulated over an infinite but uniform family of
MSO-formulae pϕnqnPN.
Consider, for describing the set of all structures A resulting to the appropriate family
of MSO-formulae pϕnqnPN expect a infinitely sized signature τ . Every subset A Ă A of
structures corresponding to each ϕi have a finite signature.

57

Chapter 4 Parametrization in Temporal Logics

Σ˚

...

ϕ1

ϕ2

ϕ3

pQ, κq

pQ, κq1

pQ, κ
q2

pQ, κq3

Courcelle’s
Theorem

Figure 4.2: Infinite application of Courcelle’s Theorem to each slice pQ, κqiPN, viz.
pQ, κqi :“ tx P Σ˚|x P Q and κpxq “ iu.

Theorem 4.1.
Let pQ, κq be a parameterized problem such that instances x P Σ˚ can be efficiently
transformed to relational structures Ax over a (possibly infinite) signature τ and twpAxq is
κ-bounded. If there exists a uniform MSO-formula family pϕnqnPN and an fpt-computable,
κ-bounded function f such that for all x P Σ˚ it holds x P Qô Ax (ϕ|fpxq| then pQ, κq
is fixed-parameter tractable.

Proof. Let the conditions of the theorem be fulfilled. We prove the theorem by presenting
an algorithm A , which runs in fpt-time and decides the parameterized problem pQ, κq
correctly. For a given instance x P Q˚ we compute the size i :“ |fpxq| in FPT. As the
family of MSO-formulae pϕnqnPN is uniform and with a κ- bounded function f we compute
ϕi in time gpiq “ gpfpxqq ď gphpκpxqqq, consequently in FPT where g is recursive and
non-decreasing function. In the next step, we can solve the model checking problem
instance pAx, ϕiq in time f 1ptwpAxq, |ϕi|q ¨ |Ax| with respect to Courcelle’s Theorem,
where f 1 is a recursive function. For this reason we can conclude A P FPT, as both the
treewidth tw and |ϕi| are κ-bounded.

Figure 4.2 illustrates the main idea of Theorem 4.1.

Praveen [Pra13] utilised a kind of a special case of Theorem 4.1, while he used a P-uniform
MSO-family to show the fixed parameter tractability of ML-SAT parameterized by
modal depth and path-width. He formulated each modal formula ϕ as an MSO-formula,
whose length is linear in the modal depth of ϕ.

58

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

4.1.2.2 Design of MSO-Temporal Formulae

A classical model in temporal logic requires one world where the formula is true. It is quite
challenging to built an MSO-temporal formula with the approach of the classical models.
For this reason we will use the prominent procedure, which is used for computation of
upper-bounds for model size, so-called quasi-models. The intuition of quasi-models is
roughly speaking, that it transforms the statement “it holds” in “it is labeled”. As we
will see later, the inductive conditions of the quasi-labels reproduce exactly the semantics
of truth for CTL‹. In consequence, we do not need to discourse about the truth of a
subformula.

For the definition of the subformula we require first the definition of closure related to the
Ladner-Fischer closure denoted by clpϕq which was designed for propositional dynamic
logic [FL79a]. It is crucial to know that clpϕq is not necessarily a subset of CTL‹pB, T q
and consequently we do not care about wether P B.

Definition 4.3: Closure

Let B be a finite set of Boolean functions and T a set of temporal operators. Let ϕ
be a CTL‹pB, T q formula. Then define „ψ :“ ξ if ψ “ ξ for some ξ, and „ψ :“ ψ
otherwise. Further define A :“ E, E :“ A, F :“ G, G :“ F, U :“ R, R :“ U, and
X :“ X. Set P :“ tA,Eu. Now the closure clpϕq of ϕ is the smallest set with the
following properties:

• ϕ P clpϕq.

• If O P T Y P , Oψ P clpϕq, then O„ψ,ψ P clpϕq.

• If O P T , ψOξ P clpϕq, then „ψO„ξ, ψ, ξ P clpϕq.

• If fpψ1, . . . , ψnq P clpϕq, f P C, then ψ1, . . . , ψn P clpϕq.

• ψ P clpϕq iff „ψ P clpϕq.

Finally we are in the position to define quasi-models.

Definition 4.4: Quasi-Models

Let ϕ P CTL‹pB, tA,E,Xuq. A quasi-model of ϕ is a tuple K “ pW,R,L, LA, LEq
where pW,Rq is a Kripke frame and L,LG : W Ñ 2clpϕq for G P tA,Eu are extended
labelling functions with the following quasi-label conditions:

(1.) If Lpwq (LGpwq,resp.) contains fpψ1, . . . , ψnq, resp. „fpψ1, . . . , ψnq for some
n-ary f P B, then there is a Boolean assignment ϑ s.t. ϑ (f , resp., ϑ * f
and f.a. 1 ď i ď n holds ϑpiq “ 1 Ñ ψi P Lpwq (resp., in LGpwq) and
ϑpiq “ 0 Ñ „ψi P Lpwq (resp., in LGpwq).

59

Chapter 4 Parametrization in Temporal Logics

(2.) If ψ P LGpwq is a state formula, then ψ P Lpwq.

(3.) If ψ, ξ P Lpwq (LGpwq), then ψ ‰ ξ.

(4.) If Xψ P LGpwq, then X„ψ P LGpwq.

(5.) If Eψ P Lpwq (Aψ P Lpwq,resp.), then ψ P LEpwq (ψ P LApwq,resp.).

(6.) If Xψ P LApwq (resp., in LEpwq), then for every (resp., some) successor w1 of w
it is ψ P LApw

1q (resp., in LEpw
1q).

(7.) ϕ P Lpwq for some w PW .

LApwq is the universal quasi-label of a world w and LEpwq the existential quasi-label.
The numbers (1.) to (5.) are the local quasi-label conditions. L is the local quasi-label
which contains only state formulae.

To show the coherence of a temporal formula and a quasi-model, we first need to define
the notion of depth in quasi-models.

Definition 4.5: Depth of a Quasi-Model

Let K “ pW,R,L, LA, LEq be a quasi-model, with w0 P W . Then the pK,w0q is a
rooted quasi-model with a root w0. We call the maximal distance of a world from
the root w0 the depth of a quasi-model.

We say that a quasi-model is tree-like, if its root has no predecessor, every other node
has exactly one predecessor and a leaf is a node with itself as the only successor.

The next lemma describes the correspondence of a temporal formula and tree-like model.

Lemma 4.2.
Let ϕ P CTL‹pB, tA,E,Xuq for a finite set B of Boolean functions. Then ϕ is satisfiable
if and only if it has a serial tree-like quasi-model of depth tdpϕq.

Proof. The lemma can be proven similar to the approach of Blackburn et al. [BdV01].
They showed for the tree model property of a modal logic, that every model can be
successively unwinded to an infinite tree. The approach for the transformation is described
below.
As we mentioned before the inductive conditions for quasi-labels replicate the semantics
of truth for CTL‹. To be more concrete, the label set LApwq corresponds to the formulae
that should hold in all paths π starting at w, and the label set LEpwq corresponds to the
formulae that have to hold in at least one path starting at w.
If such a formula starts with a path-operator P P tA,Eu, it is a state formula and
consequently contained in Lpwq. Then it is also contained in the proper set LA, resp.,
LE, but has to fullfil no further (truth-)conditions. If a formula starts with X, then it
is inherited to one or more successors of w, and its type P P tA,Eu does not change.

60

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

p1

p2

p3

...
...

...
...

...
...

...
...

...
...

...
...

p2 p3 p1 p2 p3 p2 p3 p2 p3 p1 p2 p3

p2 p3 p1 p2 p3

p2 p3

p1

Figure 4.3: Transformation of a model to a treelike quasi-model

This property holds for Boolean functions as well. They are parsed without changing
its type. Finally, for the satisfiability of ϕ the existence of some quasi label containing
ϕ is required. It can be proven by induction over the nesting of X, that in minimal
quasi-models the sets Lpwq, LApwq, and LEpwq of worlds w of depth tdpϕq can only
contain X-free formulae and therefore the successors can be replaced by a self-loop. The
transformation from a quasi-model to a model and vice versa is straightforward: If the
labels LA and LE are removed and from L all labeled formulae except propositions are
dropped, then we obtain a model from a quasi-model. The other way around, to enrich a
model K to a quasi-model, set LGpwq :“ t ψ | ψ P clpϕq and K,w (Gψ u for G P tA,Eu
and Lpwq :“ t ψ | ψ P clpϕq and K,w (ψ u.

Figure 4.3 illustrates the transformation of a model to a tree-like quasi-model.

Finally under the application of quasi-models, we want to express the satisfiability of
CTL‹-formula in MSO, which is crucial for the application of Courcelle’s Theorem, and
consequently to show fixed parameter tractability.

Lemma 4.3.
Let B be a finite set of Boolean functions. There is a computable function fB : n Ñ
θn, where n P N and θn is an MSO-formula, s.t. the following holds: For all ϕ P

CTL‹pB, tA,E,Xuq with tdpϕq ď n, ϕ is satisfiable iff Sϕ (θn iff Cϕ (θn.

Proof. Let f P B, k “ arpfq. In the following we will construct MSO-formulae with
constant depth, which simulate the conditions of local quasi-models according to Defi-
nition 4.4. The monadic relations are L,L Ď SFpϕq. They represent the formulae that
must be verified, resp., falsified in the current world. The set L can be interpreted as the
set of -prefixed formulae of L.

θf pL,Lq :“ @x@y1 . . .@yk bodyf px, y1, . . . , ykq Ñ
´

Lpxq Ñ
ł

α(f

ľ

1ďiďk,
αpiq“1

Lpyiq ^
ľ

1ďiďk,
αpiq“0

Lpyiq
¯

61

Chapter 4 Parametrization in Temporal Logics

^

´

Lpxq Ñ
ł

α*f

ľ

1ďiďk,
αpiq“1

Lpyiq ^
ľ

1ďiďk,
αpiq“0

Lpyiq
¯

θlocalpL,Lq :“
ľ

fPB

θf pL,Lq ^ @xp Lpxq _ Lpxqq

The next formulae state that there is some Lpwq such that all state formulae in LA,
resp., LE are also in L, and that formulae in L with leading path quantifiers are also in
the correct set of path formulae. Note that technically all formulae from LA Y LE are
placed in L, not only state formulae, since we cannot easily detect state formulae in the
structure. But except being consistent in the Boolean sense this does not impose further
constraints as X-preceded formulae are ignored here. In the following formula it holds
that O P tA,E,Xu.

θinherit OpL,L
1q :“ @x@y L1pxq ^ bodyOpx, yq Ñ Lpyq

θstatepLA, LA, LE , LEq :“ DLDL θlocalpL,Lq

^@xppLApxq _ LEpxqq Ñ Lpxqq

^@xppLApxq _ LEpxqq Ñ Lpxqq

^θinherit ApL,LAq ^ θinherit EpL,LEq

^θinherit EpL,LAq ^ θinherit ApL,LEq

The last formula propagates the sets LA and LE correctly to the successors of the current
world. It ensures the existence of at least one successor at all, and also of one successor
for every E-formula that must be witnessed by some path. We provide an inductive
definition of this formula beginning with the base case:

θ0
pathpLA, LA, LE , LEq :“ θlocalpLA, LAq ^ θlocalpLE , LEq ^

θstatepLA, LA, LE , LEq

and the inductive case for the formula is defined as

θnpathpLA,LA, LE , LEq :“ θ0
pathpLA, LA, LE , LEq

^ DL1A DL
1

A DL
1
E DL

1

E

´

θinherit XpLA, L
1
Aq ^ θinherit XpLA, L

1

Aq ^

θn´1
pathpLA, LA, LE , LEq

¯

62

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

^ @x@y

ˆ

LEpxq ^ bodyXpx, yq Ñ

DL1A DL
1

A DL
1
E DL

1

E

´

θinherit XpLA, L
1
Aq ^ L

1
Epyq

^ θinherit XpLA, L
1

Aq

^ θn´1
pathpLA, LA, LE , LEq

¯

˙

^ @x@y

ˆ

LEpxq ^ bodyXpx, yq Ñ

DL1A DL
1

A DL
1
E DL

1

E

´

θinherit XpLA, L
1
Aq ^ L

1

Epyq

^ θinherit XpLA, L
1

Aq

^ θn´1
pathpLA, LA, LE , LEq

¯

˙

.

Finally let

θn :“ DLA DLA, DLE , DLE Dx reprpxq ^ LApxq ^ θnpathpLA, LA, LE , LEq.

Overall, it holds for all formulae ϕ P CTL‹pB, tA,E,Xuq with tdpϕq ď n that ϕ has a
tree-like quasi-model of depth n iff Sϕ (θn iff Cϕ (θn, and the lemma applies.

Finally we progressed to the main core of this section, as we are now able to show the fixed
parameter tractability for satisfiability of CTL‹-formulae with T Ď A,E,X parameterized
by temporal-depth and treewidth, or path width respectively.

Theorem 4.4.
LetB be a finite set of Boolean functions, T Ď tA,E,Xu. Then the problem CTL‹-SatpB, T q
parameterized by td` κ is fixed-parameter tractable if κ P ttwC , twS ,pwC ,pwSu.

Proof. Korach and Solel showed in 1993 that pw “ Oplogn ¨ twpGqq for some graph G
[KS93]. For this reason it suffices to consider only treewidth as parameter in combination
with temporal depth td. Building on Theorem 4.1 for infinite signatures, we define
an fpt-computable and κ-bounded function f as follows: f : ϕ Ñ 1tdpϕq and with a
combination of the uniform MSO-formula θn of Lemma 4.3 , we finally obtain the desires
properties of Theorem 4.1. Consequently, a given formula ϕ P CTL‹pB, T q is satisfiable,
if and only if Sϕ (θ|fpϕq| if and only if Cϕ (θ|fpϕq|, and Cϕ can also be computed in
fpt-time which is precisely the assertion of the theorem.

Since CTL and LT L are fragments of CTL‹, the variations of Theorem 4.4 for ϕ P
CTLpB, T q and ϕ P LT LpB, T q, can be proven straightforward by reduction from
CTL-SatpB, T q and LTL-SatpB, T q, respectively, to CTL‹-SatpB, T q.

63

Chapter 4 Parametrization in Temporal Logics

Corollary 4.5.
LetB be a finite set of Boolean functions. The problems CTL-SatpB, T q, LTL-SatpB, T 1q
parameterized by td` κ are fixed-parameter tractable if κ P ttwC , twS ,pwC ,pwSu and
T Ď tAXu, T 1 Ď tXu.

Now we want to show the fixed parameter tractability for LT L-formulae parameterized
only by twS or pwS .

Theorem 4.6.
Let B be a finite set of Boolean functions. For T Ď tXu, the problem LTL-SatpB, T q is
in FPT when parameterized by twS or pwS .

Proof. The main idea of the proof is to give a reduction

pLTL-SatpB,Xq, κq ďfpt pSatpBq, κq,

by putting the X-operators inside the brackets and consequently collecting them at the
leaf nodes of S and to show that the treewidth or path-width respectively, does not
increase to much.
Due to the path semantics of LTL, follows X distributes over arbitrary Boolean functions.
To be more concrete, Xfpϕ1, . . . , ϕnq ” fpXϕ1, . . . ,Xϕnq holds for f P B, ϕ1, . . . , ϕn P
LT L. Consequently, we can transform every LT L formula containing only X-operators
to an equivalent Boolean combination β of X-preceded variables:

ϕ ” βpXn1q1, . . . ,Xnmqmq, Xni :“ X . . .X
loomoon

ni times

with propositional variables qi and ni ě 0. Note that inconsistent literals can only occur
inside the same world and therefore at the same nesting depth of X. For this reason
the above formula ϕ is satisfiable if and only if it is satisfiable as a purely propositional
formula where each expression Xniqi is interpreted as an atomic proposition. This is
illustrated in the following example:

ϕ “ Xpa1 _ Xpa5 ^ a2qq _ Xpa3 ^ Xpa1 ^ a2qq

” p Xa1
loomoon

p1

_ XXa5
loomoon

p2

^ XXa2
loomoon

p3

q _ p Xa3
loomoon

p4

^ XXa1
loomoon

p5

^ XXa2
loomoon

p3

q

” pp1 _ p2 ^ p3q _ pp4 ^ p5 ^ p3q.

For an fpt-reduction to pSatpBq, κq with κ P ttwS ,pwSu. We know from Lemma 4.3 the
formulae are MSO-definable. In the next step we need to show, that the parameter does
not increase too much when we distribute the temporal X-operator over the Boolean
functions as shown in the example above. Consider the substructure in the syntax
tree S with nodes tX, f, ϕ1, . . . , ϕnu and edges tpf,X1q, pf, ϕ1q, . . . , pf, ϕnqu is locally

64

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

replaced after distributing of X by a substructure with nodes tf,X1, . . . ,Xn, ϕ1, . . . , ϕnu
and edges tpf,X1q, pX1, ϕ1q, . . . , pf,Xnq, pXn, ϕnqu. Consequently, we have to adapt the
resulting substructure to the tree-, resp. path-decomposition. We append to each
bag B containing X or f the additional node set tX, f,X1, . . . ,Xnu, with a constant
n “ arpfq depending on f P B only. This approach ensures that the edges to former
parents of X which are now parents of f are covered, and that the edges to former
children of f which are now children of X1, . . . ,Xn are covered. The edges inside the
new substructure are covered as well. If the path-, resp., treewidth previously was k,
then every bag B contained at most k ` 1 nodes representing some f or X. Overall
the new width of the bag is at most pk ` 1q ¨ pc` 2q, where c is the maximum arity of
some f P B. Now pSatpBq, twSq P FPT and pSatpBq,pwSq P FPT hold as a special
case of CTL‹ with td “ 0 according to Theorem 4.4. Hence the above reduction yields
pLTL-SatpB, tXuq, κq P FPT for κ P tpwS , twSu.

Note that the proof of Theorem 4.6 does not work for circuit representation C as the
resulting treewidth twC and path-width pwC cannot be bounded during the transformation.
To provide a better understanding of what we mean, we illustrate it in Figure 4.4.
Let p1, . . . , pn be parents of a node f with a stack of i-X operators between f and
p1, . . . , pn. The circuit contains n nodes of X, viz. X1, . . . ,Xn P C, connected by an edge,
as subformulae are reused. Now suppose that the whole formula with a root ψ is formed
by p1, . . . , pn, as illustrated on the left side of Figure 4.4. Function f has arguments
a1, . . . , an. We use the sequence of bags B1, . . . , Bn with Bi :“ tψ, pi, pi´1,Xi,Xi´1, f, aiu.
In consequence, we obtain a bounded path-width as well as bounded treewidth. In the
next step we have to distribute X over f . By distributing X the resulting circuit has to
contain one root ψ but also has to contain n copies fi of f , where each fi has n arguments
a1, . . . , an and additionally a stack of i X-operators between fi and the arguments. Each
fi has one parent node pi connected with the root ψ. Now assume as a worst case
scenario for each pair pi, jq with 1 ď i, j ď n the node fi has a disjoint path to each aj ,
always passing i X nodes. Obtain a minor of the circuit by merging each node aj with
the stack of n X-operators above it to a node Aj . Then for each pi, jq as above we have
an edge pfi, Ajq. Therefore, the circuit contains Kn,n the pn, nq-biclique, as a minor and
consequently has treewidth—and hence path-width—at least n.
In the next section we examine, inter alia, exactly this case of syntax circuit and we show
the Wr1s-hardness by using the idea from the example for a reduction. The framework
of the temporal X operator does not work when we consider fragments which do not have
models bounded by the temporal depth of a formula.

4.1.3 Fixed-Parameter Intractable Fragments

Here we will prove Wr1s-hardness for fragments of CTL‹ which do not have models
bounded by temporal depth of a formula. In the first part of this section we will use two
parameters, namely temporal depth and treewidth. In the second part of the section we

65

Chapter 4 Parametrization in Temporal Logics

ψ
pn

. . .

p2
p1

X

X
f

a1 . . . an

Ñ

ψ

p1 p2 . . . pn

f1 f2 . . . fn

. . .
a1
X X

X
an

X X
X

Figure 4.4: From constant path-width to unbounded treewidth by distributing X

will explore the computational complexity of the satisfiability problem in CTL‹ using
only one of the parameters temporal depth and treewidth.

4.1.3.1 Parametrization by Temporal Depth and Treewidth

We take up the previous work of Praveen, where he examines the problem of partitioned
weighted satisfiability in transitive modal logic to prove intractability.

The parameterized problem of partitioned weighted satisfiability in short p-PW-Sat, has
as instance a propositional CNF-formula ϕ over variables q1, . . . , qn, where the variables
partitioned into disjoint sets Q1, . . . , Qk. With rks we abbreviate the set t1, . . . , ku. Each
partition Qi has an assigned capacity Ci P N. The parameter is the sum of primal
path-width of ϕ and the number of partitions. An assignment ϑ is called saturated for
an instance I “ pϕ, k P N, pQiqiPrks, pCiqiPrks, κq if in every partition Qi there are exactly
Ci variables set to true by ϑ.

Problem: p-PW-Sat
Input: Propositional CNF ϕ, pQiqiPrks, pCiqiPrks, k P N
Parameter: κ :“ pw˚pϕq ` k
Question: Has ϕ a satisfying saturated assignment?

The idea of Praveen to show intractability of modal satisfiability in transitive frames
was to formulate the problem PW-Sat in modal logic. He constructed a formula which
enforces the existence of a chain of worlds w0 Ñ w1 Ñ ¨ ¨ ¨ Ñ wn. Each world wi with
i ě 1 has to assign to each qi variables either to “true” or to “false”. At the end in
the world wn it is required to verify the number of variables assigned to “true” in each
partition, which has to corresponds to the respective capacity. A great care needs to
be payed to constructing such formula relating to parameterized reduction to keep the
path-width low.
We will cover the different CTL fragments in two steps: First the reduction from saturated

66

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

satisfiability is presented in detail for general CTL. The transition from modal logic to
temporal logic that is required in this step is not hard. In the second step the result is
transferred to the fragments of CTL.

Lemma 4.7.
CTL-SatpT q is Wr1s-hard for T Ď tAX,AGu when parameterized by κ :“ td` f , where
f P ttwC , twS ,pwC , pwSu.

Proof. We prove Wr1s-hardness by giving a reduction showing CTL-SatpT q ďfpt
p-PW-Sat. The reduction function transforms the instance I “ pϕ, k P N, pQiqiPrks, pCiqiPrks, κq
of p-PW-Sat to a CTL formula ψpIq. We will construct the formula ψpIq corresponding
to the properties of the instance of p -PW-Sat.

ψrformulas :“ ϕ

The formula ψrformulas forces ϕ to be true in the starting world w0, ϕ to be true to
guarantee its satisfiability.

ψrdepths :“ AG
n
ľ

i“0
rpdi ^ di`1q Ñ AXpdi`1 ^ di`2qs

The formula ψrdepths forces the desired chain w0 Ñ w1 Ñ ¨ ¨ ¨ Ñ wn of worlds in the
model via labelling of a variables encoding the depth d0, d1,

ψrfixed-Qs :“ AG
n
ľ

i“1
rqi Ø AXqis

Q “ tq1, . . . , qnu denotes the set of variables that are labeled in the starting world w0.
The formula ψrfixed-Qs forces the variables of Q also be labeled in the successive worlds
to ensure a valid saturation of Q.

ψrsignals :“ AG
n
ľ

i“1

“

pdi ^ di`1q Ñ
`

qi Ø JÒpi

˘‰

As the name suggests, the formula ψrsignals indicates that the partition number of
qi, denoted by ppiq P rks has increased. For this issue we introduce new propositional
variables JÒpi .

ψrcounts :“ AG
n
ľ

i“1

|Qp|
ľ

j“0

“`

JÒp Ñ
`

Jjp Ø AXJj`1
p

˘˘

^
`

 JÒp Ñ
`

Jjp Ø AXJjp
˘˘‰

67

Chapter 4 Parametrization in Temporal Logics

The formula ψrcounts forces whenever an increment signal for partition p is encountered,
to increment the counter from j to the next integer j ` 1. To count the total amount of
labeled variables per partition we required several variables named Jjp here.

ψrmonotones :“ AG

»

–

n
ľ

i“1
pdi Ñ di´1q ^

k
ľ

p“1

|Qp|`1
ľ

j“1

`

Jjp Ñ Jj´1
p

˘

fi

fl

The formula ψrmonotones ensures the consistent counting of all the used variables.

ψrinits :“ d0 ^ d1 ^
k
ľ

p“1

“

 JÒp ^ J
1
p

‰

^ AG
k
ľ

p“1
J0
p

The formula ψrinits forces the counter to be 0 in the initial world.

ψrtargets :“ AG
k
ľ

p“1

“

dn`1 Ñ
`

JCpp ^ JCp`1
p

˘‰

Finally, the formula ψrtargets ensures that the number of positive variables per partition
corresponds to the capacity.
Now we have to prove the correctness of the reduction. For this, suppose
`

ϕ, k, pQiqiPrks, pCiqiPrks
˘

P p -PW-Sat. To show this we have to design a valid model
for ψpIq. We start in the world w0. So ϕ is satisfied if the number of saturated variables
in Q corresponds to the capacity. For this reason we label Q in w0. Consequently, ϕ is
satisfied in w0.
Next we construct the successor worlds w1, . . . , wn`1, with a self-loop on wn`1. Then we la-
bel a maximum amount of variables in those world to satisfy formulae ψrdepths, ψrfixed-Qs,
ψrinits, as this is always possible.
Moreover we label the variables JÒppiq corresponding to ψrsignals, doing so we obtain
exactly Cppiq occurrences of JÒppiq, as Q is chosen saturated. For this reason the formula
ψrcounts allows for every partition p that its counter is incremented exactly Cp times.
This construction does not violate the ψrmonotones condition and allows to satisfy
ψrtargets in the world wn`1.
By this construction the formula ψrmonotones is fulfilled and additionally we satisfy
ψrtargets at the world wn`1. Consequently, the constructed model is correct.
Now the other way around let M be a model of ψpIq. This model M has to contain
a tree of worlds which fulfil the conditions ψrinits, ψrdepths and ψrfixed-Qs. This tree
of worlds can be transformed to a path w0, . . . , wn`1 by deleting needless labels and
afterwards identifying worlds at the same depth, which have consistent labels only due
to the A-operators. As ψrtargets and ψrmonotones have to hold in all worlds including
wn`1 (which has dn`1 labeled), on the path w0, . . . , wn`1 the JÒp signal is labeled exactly
Cp times for every partition p. But ψrsignals allows this if and only if the corresponding
variable qi is set to one in the world wi. This proves the existence of a saturated assign-

68

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

ment ϑ for ϕ. Additionally, ϑ is also a satisfying assignment for ϕ since w0 was labeled
consistent with ψrformulas.

In the next step we have to prove the following claim.

Claim 4.8.
tdpψpIqq ` κpψpIqq is bounded by pw˚pϕq ` k.

Proof of claim.
Note that, we obtain a constant temporal depth from the reduction. Now we have to
focus on the proof of bounded pwS and bounded pwC , as tw ď pw holds. We abbreviate
the syntax tree Sψpiq of ψpiq by S. Further, let P be an optimal path decomposition
of the primal graph of ϕ. In the following we need to show how to extend the optimal
path decomposition to a path decomposition of S, denoted by P 1. For P we require a
special structured property, the so-called one-step addition property. It says that the bag
Bi in P introduces exactly one new variable q, viz. Bi “ Bi´1 Y tqu and BizBi´1 “ tqu.
To achieve this property we split bags which introduces multiple variables into multiple
bags and remove bags which do not introduce variables. Additionally, we rename bags
Bi and variables qi, such that the bags are ordered according to their indices and bag Bi
introduces variable qi. This can be done in linear time. Consequently, we can assume the
one-step addition property. This property was also used by Praveen [Pra13].
By augmenting a bag B with x we mean inserting a copy B1 of B between B and its
successor bag and placing the additional element x there. It holds that |B1| “ |B| ` 1.
Augmenting a bag does preserve the one-step addition property in the sense that there
always is a “leftmost” bag introducing a variable qi. Now we pursue the following seven
steps to construct P 1:

(1.) First we increase every bag size by the number of partitions k by adding the variable
JÒp to every bag for 1 ď p ď k.

(2.) In the formula ψrformulas :“ ϕ, ϕ is in CNF. By construction, the primal graph of
ϕ contains for each clause of ϕ a clique of the variables appearing in that clause.
Consequently, P has to contain a bag B covering all those variables. Now consider
a clause of size m of the following form: pppp`1 _ `2q _ `3q ¨ ¨ ¨ q _ `mq, where every
literal `i is a variable q or its negation q. Let B be the bag containing the variables
of this clause. We augment B with _-nodes as follows (we illustrate this procedure
in Figure 4.5):

• copy the bag B m-times

• add the j-th _-node to the j-th and pj ` 1q-th copy of B. This results in the
bag containing an _-node including a connected component

• refer to the outmost _-operators as the primary _-nodes.

69

Chapter 4 Parametrization in Temporal Logics

. . .

a a a a
a a a

_
_

_

_
_

_

^

^

ď 4

Figure 4.5: Bag augmentation

We proceed in similar vein with the ^-nodes, then select two adjacent primary
_-clauses in the path decomposition and add ^-node to all bags that connect them.

From [FG06, Corollary 11.28] we know, that an optimal path decomposition can be
computed in fpt-time. Consequently the structure S can be constructed in a way
that allows the argumentation above a priori, and the placement of parentheses in
ψpIq can always be chosen to associate literals in ascending order of variables in
P; and to associate clauses in ascending order of primary _-nodes. Then in the
structure the edge linking these primary _-nodes and their common conjunction is
covered and every bag receives at most two additional _-nodes and at most two
additional ^-nodes.

(3.) Now we add the variables di´1, di, di`1, di`2 for 1 ď i ď n and their negation
to the bag B that introduces qi as well as the nodes representing pdi ^ di`1q,
pdi`1^ di`2q and pdi Ñ diq. Consequently, due to the one step addition property
concerning qi’s, every included node induces a connected component. Therefore we
increase every bag by a constant number of items. To cover each conjunct of the
ψrdepths formula we need to add the necessary AX-nodes and Ñ-nodes to every
bag, which also results in a constant number of additional items. To cover the
ψrdepths completely it remains to cover its

Ź

-node. Here we proceed like before
and add at most two items and its AG-node to every bag.

(4.) Here we cover the formula ψrfixed-Qs. Therefore we need to add the AX-node and
the Ø-node for the i-th conjunct to the bag that introduces qi and increase the
size of the bag by at most two items. We proceed in similar vein with

Ź

and AG
as before.

(5.) For the formula ψrsignals we augment the bag introducing qi by the nodes Ø, Ñ
and pdi ^ di`1q. As the JÒppiq variables are already added in every bag we do not
need to add them here. We proceed adding the nodes

Ź

and AG as before.

(6.) We augment the last bag by the remaining formulae. W.l.o.g. suppose this bag
contains the variable dn`1. Let the maximal capacity be denoted by C. We proceed
for every 1 ď j ď C in the following way: We attach one bag that is a copy of

70

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

B, but additionally the j-th attached bag further contains Jjp,Jj`1
p and Jj´1

p for
every partition p. This increases every bag size by 3k. Since dn`1 also is in these
bags, the nodes representing subformulae of ψrcounts, ψrmonotones, ψrinits and
ψrtargets containing Jjp’s can be added. Each increases the bag size by a constant
number of items. Note that ψrtargets actually requires these nodes to be added
after the last bag so the bags containing dn`1 are connected.

(7.) For the last step note that the remaining subformulae of ψpIq are either

• conjunctions of size C over variables Jjp’s, which are already covered by the
bags introduced in the antecedent stage or

• conjunctions of size k and connectives of constant depth.

We obtain ψpIq by connecting all remaining subformulae together, by adding them
to every bag.

This “seven-step” construction yields a path decomposition of the structure Sϕ with
κ-bounded width. The way we handle the signal variables JÒp is the key factor for keeping
the path-width low in this construction, as they are the only “link” between the variables
qi and the partition weight counters.
If P 1 should also be a path-decomposition of CψpIq, then identical subformulae of ψpIq
actually have to induce connected subpaths in P 1—not only propositions—according to
the definition of a path-decomposition. Obviously for every bag B that contains a formula
ξ, the formulae ξ and AXξ can be added to B. The only other subformulae that occur
multiple times in ψpIq are the pdi ^ di`1q for i P rns, but for any i the respective node
can be added to any bag which contains di or di`1. Then the occurrences of pdi^ di`1q
are connected in P 1, as the occurrences of di as well as di`1 are each connected and they
are overlapping. Consequently the path-width is bounded by k also, which is precisely
the assertion of the claim.

3

Since we have shown the correctness of the reduction and that the there is a bound for
the parameter in terms of the old parameter, we obtain the assertion of the lemma.

Next we want to prove Wr1s-hardness of the CTL-Sat problem with operators AX and
AF.

Lemma 4.9.
CTL-SatpT q is Wr1s-hard for tAX,AFu Ď T when parameterized by td ` κ and κ P
ttwS , pwS , twC , pwCu.

Proof. We use the formulae constructed in the proof of Lemma 4.7 with some ancillary
considerations. In this formulae the AG-operator appears at td “ 0 and in conjunctions
only. Consequently we achieve a formula ϕF “ ψ ^ AGχ with a propositional formulae

71

Chapter 4 Parametrization in Temporal Logics

ψ and χ P CTLptAXuq. Now consider the conjunction of the AG-operators. Since
AGpαq ^ AGpβq ” AGpα ^ βq, we are able to transform the formula ϕF into a formula
containing only one AG-operator. We can then substitute AG by EG, which can be use
since AF “ EG and AGpαq Ñ EGpαq holds trivially. The reverse direction holds for
models with just one path. Since only one path (the chain w0 Ñ ¨ ¨ ¨ Ñ wn) is required
for the reduction from PW-Sat this suffices. Therefore we remove all paths where EGpαq
does not hold and obtain a model where AGpαq holds.

Note, we are able to use this substituting step, when we have one AG-operator only
appearing at td “ 0.

Lemma 4.10.
CTL-SatpT q is Wr1s-hard for AG P T or AR P T when parameterized by td ` κ and
κ P ttwS ,pwS , twC ,pwCu.

Proof. Here we do not have the X-operator. Consequently, we require more challenging
consideration to prove the correctness of the reduction for several reasons, which we
will explain below. Additionally note that AGpαq ô ArKRαs holds, so it suffices to
consider AG-operator only. Note that both operators G and F are stutter-invariant, viz.
this operators cannot differentiate between a path π and another path π1, where π1 is
constructed from π by duplicating arbitrary words on the path.
The first problem due to the absence of the X-operator is, that even if we are able to force
a chain of worlds w0 Ñ ¨ ¨ ¨ Ñ wn to appear, we can not prevent duplicates of the worlds.
Consequently we are incapable of verifying the value of a counter exactly. Claiming a
minimum value is not an option, as the reduction would not be correct in that case. The
second problem is, due to the possibility of duplicated worlds, we also have an arbitrary
number of occurrences of variables. in that case we would count one variable several times
and get a satisfiable CTL-formula even if ϕ does not have a saturated assignment. To
circumvent this problem we demand upper bounds for both the number of variables set to
true and the number of variables set to false in a partition. Another problem is, that we
are not able to force the counter to increase in the next world instead of the current, due
to the reflection property of G and F. Therefore we label the depth properties together
with their “parities”, which requires two new variables and consequently increases the
path width by at most two.
We now explain the desired reduction, emphasizing the differences to the construction in
the proof of Lemma 4.7.

ψrdepths1 :“ AG
n
ľ

i“0
rpdi ^ di`1q Ñ EFpdi`1 ^ di`2qs

Here we replace the AX operator by AG ” EF. We need to mention that we are not able
to reach all paths starting at w0, which form the desired chain of worlds w0 Ñ ¨ ¨ ¨ Ñ wn.
Nevertheless, the branch of the model that satisfies one of the EF formulae again has to
branch correctly at least once for the next depth level because of the nesting inside an

72

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

AG operator. Consequently, at least one path starting in w0 contains the correct labels.
Due to the duplicated worlds, an arbitrary number of states now can share the same
depth, but eventually the depth indicator has to increase in a satisfying model due to
the semantics of EF. Therefore, there is at least one path reachable from w0 which has
the desired form. In order to address the problem of irreflexivity, we enforce some kind
of alternation in terms of variables. We require two new variables to label the parity of
world, namely m0 for parity 0 and m1 for parity 1.

ψralternations :“ AG
n´1
ľ

i“0

“

pdi ^ di`1q Ñ pmimod 2 ^ m1´pimod 2qq
‰

We adapt the formula ψrfixed-Qs1 by using AG operators only.

ψrfixed-Qs1 :“
n
ľ

i“1
rpqi Ñ AGqiq ^ p qi Ñ AG qiqs

In the next formula ψrsignals2 we have to deal with the problem with of duplicates of
worlds with the same depth proposition labeled. It is not possible to count the signal
with the former concept, as we cannot force that the labeled counter propositions may
not change in the next world. To preserve the correctness of the reduction we require a
second type of counters for variables set to zero, KÒp. We introduce the following formulae
to guarantee the correctness of the new counter.

ψrsignals2 :“ AG
n
ľ

i“1

”

pdi ^ di`1q Ñ
´

 qi Ø K
Ò

ppiq

¯ı

ψrinits2 :“
k
ľ

p“1

“

 KÒp ^ K
1
p

‰

^ AG
k
ľ

p“1
K0
p

ψrmonotones2 :“ AG
k
ľ

p“1

|Qp|`1
ľ

j“1

`

Kjp Ñ Kj´1
p

˘

Next we verify whether the assignment for variables in partition p sets the correct number
of variables to true and false with respect to the capacity Cp, viz. at most Cp variables
have been set to true and at most |Qp| ´ Cp variables have been set to false.

ψrtargets :“ AG
k
ľ

p“1

„

 JCp`1
p ^ K|Qp|´Cp`1

p



In the last step we split the one counter in two counters, namely one for counting variables

73

Chapter 4 Parametrization in Temporal Logics

set to true and the second counting the variables set to false.

ψrcounts1 :“ AG
k
ľ

p“1

|Qp|
ľ

j“0

1
ľ

i“0

”

`

JÒp ^J
j
p ^mi

˘

Ñ AG
`

m1´i Ñ AGJj`1
p

˘

ı

ψrcounts2 :“ AG
k
ľ

p“1

|Qp|
ľ

j“0

1
ľ

i“0

”

`

KÒp ^K
j
p ^mi

˘

Ñ AG
`

m1´i Ñ AGKj`1
p

˘

ı

We obtain that if a depth proposition di has a signal variable JÒp or KÒp labeled, then the
corresponding counter value increases during the next parity change of i. In consequence,
if a partition p has weight k, then on this path there are at least k parity changes with
the proposition JÒp labeled, and at least |Qp| ´ k parity changes with the proposition
KÒp labeled. This yields that the counter Jjp has value j ě k and the counter Kjp has a
value j ě |Qp| ´ k in world wn`1. This contradicts ψrtargets unless j is exactly k, resp.
|Qp| ´ k and the partition is saturated.

The path-widths pwS and pwC increase only by a constant when considering the changes of
the two formulae ψrdepths1 and ψrfixed-Qs1. The formula ψralternations can be handled
by augmenting the bags which introduce di. To add the new counting and target formulae
the same procedure as in Lemma 4.9 can be applied: Treat every variable of the type KÒp,
Kjp like its JÒp or Jjp counterpart to preserve the κ-boundedness.

Using the proof of Lemma 4.10 it is straightforward to proof Wr1s-hardness of CTL-SatpAUq.

Lemma 4.11.
CTL-SatpT q parameterized by td`κ is Wr1s-hard if AU P T and κ P ttwS , pwS , twC ,pwCu.

Proof. The operator AGpαq can be easily substituted by ApαUdn`2q. Consequently, we
need to introduce a new depth proposition dn`2, which has to hold after dn`1. This
substitution can always be applied, as long as AG does not occur in negated form. Since
it occurs negated in the formula ψrdepths, we have to adjust it in the following way:

ψrdepths1 :“
n
ľ

i“0
A
”

pdi ^ di`1q Ñ
`

mi mod 2 ^ m1´pi mod 2q

^ A r dn`2Updi`1 ^ di`2qs
˘

Udn`2

ı

.

74

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

The upcoming Wr1s-hardness result for CTL-SatpAFq works for circuit formula repre-
sentation only.

Lemma 4.12.
CTL-SatpT q parameterized by td` κ is Wr1s-hard if AF P T and κ P ttwC ,pwCu.

Proof. Unfortunately, using the operator AF and its negation EG we are not able to count
the worlds on a path, but only its “frontiers of reachability” about which the operators AF
and EG can reason. In the following we will use the notion of [Eme90] for a quasi-model
K. For a formula AFβ labeled in a world w, write DAGrw, βs for the finite Directed
Acyclic Graph (in short dag) that starts at w and contains all worlds reachable from w
up to the first occurrence of the formula β in a quasi-label. Such a finite dag always has
to exist due to the semantics of AF. Furthermore the dag is not only contained in K, but
embedded in K, which means that every path through K that leads out of the dag has
to go through its leaves. The leaves of DAGrw, βs are so-called frontier worlds and its
non-leaves (including w if w is not already a leaf) are called interior worlds. Next we
will construct a formula which witnesses the reduction. The formula we will construct is
satisfiable iff I P p -PW-Sat. Consequently, there have to be dags in the sense of above
which are “nested” in each other.
The key idea now is that every dag increments a counter value depending on the counter
values of the dags reachable from its frontier, hence the total number of such dags is
propagated to the root of the model.
Next, we will label a formula α in the frontier nodes of every such dag. By precomputation
we can exclude any instance of p -PW-Sat where for some p it is Cp “ 0 or Cp “ |Qp|,
so both variables set to true and variables set to false have to occur at least once in every
partition.

α :“
n
ľ

j“0

k
ľ

p“1
pJÒp ^ AFp JÒp ^ AFJjpq Ñ Jj`1

p q

^ pKÒp ^ AFp KÒp ^ AFKjpq Ñ Kj`1
p q

^ pJÒp Ñ J1
pq ^ pK

Ò
p Ñ K1

pq

The formula α states for all partitions p, the counter for the variables set to true
increments by one (with the counter value value Jj`1

p), if α is enclosed by a frontier
with JÒp, which is itself enclosed by a frontier JÒp. We also want to count the variables
set to zero. This can be done analogously: Simply substitute J by K in argumentation.
Due to the reflexive future in CTL, it is crucial to have the condition JÒp , resp. KÒp.
Additionally, the counter should not jump to the maximum value at the first occurrences
of JÒp, resp. KÒp. Furthermore, we have to initialise the respective counter to the value

75

Chapter 4 Parametrization in Temporal Logics

one.

βdi :“
”

qi Ñ AF
´

J
Ò

ppiq ^ di ^ EGp ei´1q ^ α
¯ı

^

”

 qi Ñ AF
´

K
Ò

ppiq ^ di ^ EGp ei´1q ^ α
¯ı

We force with the formulae βdi the existence of nested dags. Their frontier worlds have
slightly different labels depending on wether qi or qi was chosen for the saturated,
satisfying assignment.

βei :“ AF
˜

ei ^ EGp diq ^
k
ľ

p“1
 JÒp ^ K

Ò
p

¸

The formulae βei target to enforce additional dags between the βdi -dags which are a kind
of “graps”. These gaps are required for α to work in an irreflexive way, as only alternation
of variables can be distinguished by the stutter-invariant operators AF and EG. Finally,
let

ψpIq :“ ϕ^
n
ľ

i“1

´

βdi ^ β
e
i

¯

^ EG
k
ľ

p“1
 JCppq`1

p ^ K|Qp|´Cppq`1
p

This formula ensures the existence of aforementioned dags and a correct saturated as-
signment according to I. Consequently, ψpIq is satisfiable if and only if I P p -PW-Sat.

For the sake of clarity, we will split the proof in several claims. First, let pK,w0q be a
quasi-model of ψpIq. For abbreviation let DAGris stand for DAGrw0, β

1
is, where β1 is

the AF-proceeded formula implied by βdi depending on qi. Additionally, we abbreviate
DAGrw0, β

2
i s with DAG1ris, where βei “ AFβ2i .

Claim 4.13.
DAGris is contained in the interior worlds of DAG1ris, and DAG1ris is contained in the
interior worlds of DAGri` 1s.

Proof of claim.
We need only to consider that DAGris is contained in DAG1ris. The two dags cannot
have common frontier worlds, as otherwise those worlds would have both di and di
labeled. The same argumentation applies to DAG1ris and DAGri` 1s via the proposition
ei.
Let w be a frontier world of DAG1ris. Then β2i P Lpwq which implies EG di P Lpwq.
Further let π P Πpwq be the path that satisfies G di. Every path π1 P Πpw0q which runs
through w has to visit a “shallower” world w1 with β1i P Lpw

1q before w: Otherwise the

76

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

path

pw0 “ π1r0s, π1r1s, . . . , w “ πr0s, πr1s, . . .q

would be a path starting in w0 but not fulfilling Fβ1i. Consequently pK,w0q would not be
a quasi-model. This implies that on every path to a frontier node of DAG1ris there occurs
a frontier node of DAGris. In the same vein we can prove the assertion for DAGri` 1s
and DAG1ris.

3

Claim 4.14.
If ψpIq has a quasi-model pK,w0q, then I P p-PW-SAT.

Proof of claim.
For clarity we illustrate our proof argumentation in Figure 4.6.

w0 ¨ ¨ ¨ ¨ ¨ ¨

d1
e1 d2

e2
di

ei

JÒp,J
4
p

KÒp,K
1
p

JÒp,J
3
p

Figure 4.6: Example: EG J3
p is false in w0, Qp has weight ą 2.

By Claim 4.13 we know that K contains 2n nested dags, such that their frontier worlds
have labeled the corresponding subformulas of βd1 , βe1, βd2 , βe2, . . . , βdn, βen exactly in this
order. The formula α expresses that the frontier of each βdi should, under the condition
that it has JÒp labeled, do the following: If Jjp is labeled in some reachable, but different
frontier, i.e., the counter for partition p was at j, then label Jj`1

p , i.e., set the counter to
j ` 1. Same argumentation applies to Kjp.
We initialise the counting with J1

p and K1
p if JÒp, resp., KÒp holds. Choosing a non-saturated

assignment for ϕ contradicts the last part of ψpIq. Consequently we obtain a satisfying
and saturated assignment for ϕ from Lpw0q.
It is a simple matter to construct a model of ψpIq from a satisfying and saturated
assignment of formula ϕ. A chain of length 2n` 1 satisfies the requirements for a model
of ψpIq and consequently it has a constant temporal depth.

3

77

Chapter 4 Parametrization in Temporal Logics

Next we have to show that the path-width is bounded. First we consider the subformula
α. We can easily split it into a path-decomposition of width Opkq and length n. The
path-decomposition of the residual subformulae can simply be appended to the path-
decomposition of α, as α has only Opkq subformulae in common with the other formulae,
including α itself. Now we need to show that the remaining subformulae βdi , βei and
ψpIq also have a path-decomposition of bounded width. Starting from a decomposition
of the primal graph of ϕ, the other formulae can be placed by bag augmentation as
in Lemma 4.9, again leading to a total syntax circuit path-width of Opk ` pw˚pϕqq.
Consequently, the lemma applies.

Pay attention, in the sense described above the subformula α has an unbounded path-
width according to the syntax tree representation. Therefore, Lemma 4.12 only refers to
the treewidth for the circuit representation.

We now turn to the satisfiability of linear temporal logic without the X-operator.

Lemma 4.15.
If X R T , then LTL-SatpT q is Wr1s-hard when parameterized by td ` κ where κ P
ttwS ,pwS , twC ,pwCu.

Proof. We prove Wr1s-hardness for the parameterized LTL-SatpT q problem in a similar
vein as Lemma 4.10. For this approach we have to adapt the formulae from the proof
of Lemma 4.10 to LTL. The formula ψpIq P LT LpGq is a conjunction of the following
subformulae.

ψrformulas :“ ϕ

ψrdepths :“ G
n´1
ľ

i“0

“

pdi ^ di`1q Ñ pmi mod 2 ^ m1´pi mod 2q

^ G pdi`1 ^ di`2qq
‰

ψrfixed-Qs :“
n
ľ

i“1
rpqi Ñ Gqiq ^ p qi Ñ G qiqs

ψrsignals :“ G
n
ľ

i“1

„

pdi ^ di`1q Ñ

ˆ

´

qi Ø J
Ò

ppiq

¯

^

´

 qi Ø K
Ò

ppiq

¯

˙

ψrcounts :“ G
k
ľ

p“1

|Qp|
ľ

j“0

1
ľ

i“0

„

`

JÒp ^J
j
p ^mi

˘

Ñ G
`

m1´i Ñ GJj`1
p

˘



^

„

`

KÒp ^K
j
p ^mi

˘

Ñ G
`

m1´i Ñ GKj`1
p

˘



78

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

H

AXAF AG
AU AR

AX,AF AF,AG AX,AG
AX,AF,AG

AX,AU AX,ARAG,AU AF,AR

AX,AF,AR

Wr1s-hard FPT

(a) CTL-SatpT q

H
X

F
F,X

U
U,X

Wr1s-hard FPT

(b) LTL-SatpT q

Figure 4.7: Parameterized complexity of the satisfiability problem of CTL and LTL,
parameterized by circuit path-width or treewidth, and temporal depth.

ψrmonotones :“ G
«

n
ľ

i“1
pdi Ñ di´1q ^

k
ľ

p“1

|Qp|`1
ľ

j“1

“`

Jjp Ñ Jj´1
p

˘

^
`

Kjp Ñ Kj´1
p

˘‰

ff

ψrtargets :“ G
k
ľ

p“1

„

dn`1 Ñ

ˆ

JCp ^ JCp`1

^ K|Qp|´Cpp ^ K|Qp|´Cp`1
p

˙

ψrinits :“ d0 ^ d1 ^ G
k
ľ

p“1

“

J0
p ^K

0
p

‰

In Lemma 4.7 we have shown that the path-width of ψpIq is bounded. The path-width
remains bounded when replacing G by F, U, or R in the given formulae for the other cases.
In Lemma 4.10 we have shown the correctness by the argumentation that there is at
least one path with correct counting of variables in the respective partitions. Obviously,
the given LTL formula is such a path formula, which ensures the same behaviour on a
single path.

We summarize the results in Figure 4.7. In the next section we want to examine the
satisfiability problem in temporal logics parameterized by either temporal depth or
treewidth.

79

Chapter 4 Parametrization in Temporal Logics

4.1.3.2 Parametrization only by Temporal Depth or Treewidth

In this section we will see, that even if we have the next operator, we are not able to
obtain fixed parameter tractability for the satisfiability problem in temporal logics if we
do not have both parameters temporal depth and treewidth.
First we consider the parametrization by temporal depth only, and establish the following
results.

Theorem 4.16.
When parameterized by temporal depth, CTL-SatpT q is para-NP-complete for T “ H,
para-PSPACE-complete if T “ tAGu, or tAFu Ď T Ď tAF,AXu, and para-EXPTIME-
complete if T contains AR, AU, tAG,AFu, or tAG,AXu.

Proof. [LM15] have shown for all fragments except the fragment tAXu the classical
hardness results. Applying those results in combination with Theorem 2.2 yields the
assertion of the lemma.

Theorem 4.17.
When parameterized by temporal depth, LTL-SatpT q is para-NP-complete if T Ď tXu
and T Ď tFu and para-PSPACE-complete otherwise.

Proof. [DS02] have shown that LTL-SatpT q is PSPACE-complete for T Ď tFu or NP-
complete if T Ď tXu. Again we apply Theorem 2.2 to the results of [DS02] establishing
the assertion of the lemma.

We turn to the examination of the second case, where we use path-width, or treewidth
as the only parameter. We will use the reduction from p -PW-Sat again. Nested AX-
operators will compensate for missing temporal depth. At this juncture, we again want
to underline that the choice of representing structure leads to different results in terms
of computational complexity when we use AX, resp. X. The satisfiability problem for
those fragments is easier if we use the circuit representation.

Lemma 4.18.
CTL-SatptAXuq and LTL-SatptXuq are Wr1s-hard when parameterized by twC or pwC .

Proof. For the proof we modify the formulae trom the proof of Lemma 4.7 as follows:
we substitute AGα in each formula by

Źn
j“0 AXjα, where the AXj is the j-fold nesting

of AX operators. In the next step we need to show that the path-width of the syntax
circuit does not increase too much. We illustrate the idea in Figure 4.8.

We delete the node AG in the syntax circuit and introduce 2n new vertices, v1, . . . , vn, u0, . . . ,
un´1 instead, where each vi represents an AX and each ui represents a binary ^. u0 has
as parents every parent of AGα, and each ui with 1 ď i ă n ´ 1 has as a child vi and
ui`1. u0 has α and u1 as its children, while un´1 has vn´1 and vn. Furthermore v0 has
α as only child, and each vi with i ą 0 has vi´1 as child.

80

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

α

AG

u0

α

u1 u2

v1 v2 v3

^

^ ^

^
^

^

AXAXAX

Ñ

Figure 4.8: Circuit transformation from AG to nested AX for n “ 3.

To see that the path-width of the resulting syntax circuit structure is still low, proceed
as follows: As seen in Figure 4.8, the 2n vertices have a path-decomposition of width
four and length n. Append this decomposition to P to obtain P 1, where P is an optimal
path-decomposition of the formula before AG is replaced. To avoid the connectedness
condition of path-decompositions being violated in P 1, add u0 and α to each bag of P 1.
The resulting path-width is still low as only constantly many AG operators have to be
replaced in Lemma 4.7.

For LTL-SatptXuq, proceed exactly like for the CTL case but replace AX by X. As the
branching semantics of CTL is not required in the reduction, and in fact AX occurs only
positively, the reduction stays correct.

To show the computational complexity of CTL-SatptAXuq parameterized by twS , we
first require one interim result about complexity of modal logic. Therefore we define
KD-ML1-Sat as the set of modal formulae ϕ that have at most one propositional variable
and are satisfied by a serial Kripke structure.

Lemma 4.19 ([Hal95]).
KD-ML1-Sat is PSPACE-complete.

Lemma 4.20.
CTL-SatptAXuq parameterized by twS is para-PSPACE-complete.

Proof. The idea of the proof is a reduction from KD-ML1-Sat. The reduction function
reduce the number of propositional variables by replacing them by so-called primitive-
proposition-like (pp-like) formulae. These formulae are “sufficiently independent” from
each other, consequently they can be used as an immediate replacement for propositional
variables occurring in a model formula. The PSPACE-hardness proof can easily be
modified for serial Kripke frames corresponding to the family ϕ1, ϕ2, . . . of pp-like
formulae used by Halpern stays pp-like in such frames.
Now we need to show that the treewidth does not increase too much.
Note that a syntax tree with only one proposition has treewidth at most two. Consequently

81

Chapter 4 Parametrization in Temporal Logics

the problem CTL-SatptAXuq is PSPACE-hard. As KD-ML-Sat which is equivalent
to CTL-SatptAXuq is in PSPACE, the completeness follows.

4.1.4 Parameterized Complexity of Satisfiability in Post’s Lattice

Here we want to examine the temporal satisfiability problem restricted to Boolean
fragments in Post’s lattice with the parametrization over temporal depth in combination
with treewidth or path-width respectively. We get a dichotomy similar to the one in
propositional logic. Except for two open cases we get a complete classification: The
temporal satisfiability problem is equivalent to the unrestricted case and therefore Wr1s-
hard as soon as the basis B is a superclone of S1, otherwise the temporal satisfiability
problem is fixed-parameter tractable. The cases that remains open are the clones
L “ r‘,Js and L0 “ r‘s.

Lemma 4.21.
Let κ P ttwS , pwS , twC , pwCu, T be a set of CTL-operators, T 1 be a set of LTL-operators,
and B be a finite set of Boolean functions. If S1 Ď rBs, then

CTL-Satpt^,_, u , T, κ` tdq ďfpt CTL-SatpB, T, κ` tdq,
LTL-Satpt^,_, u , T 1, κ` tdq ďfpt LTL-SatpB, T 1, κ` tdq.

Proof. The idea of the proof is a reduction similar to one from [MMTV09] and the
additional consideration that BF “ rt^,_, us “ rS1 Y tJus “ rB Y tJus. We know that
E0 Ď S1 and therefore ^ P rBs. Now we need to simulate J in all Boolean functions.
Therefore we will use the concept from propositional logic which is known by the name
“Lewis knack” [Lew79]. Using Lewis knack we need to add to every subformula α P SFpϕq
of a given formula ϕ a new variable t, to be more concrete α ^ t. In the next step we
substitute J by t. This substitution is legitimate, as t has to hold in every relevant world
of a model of ϕ. We add ^t to a subformulae, which start with a temporal operator.
To be more precise we transform each Opαq P SFpϕq to Opα^ tq, for O P T , or O P T 1
respectively. As a result we obtain about twice as many subformulae in the transformed
formula ϕ1. Using the base B, we represent α^ t as some fixed function

fpα, . . . , α
looomooon

c times

, t, . . . , t
loomoon

c1 times

q,

where f is a function composed of symbols of B and c, c1 are constants depending on
the base B. In general c, c1 ą 1 as a short representation of ^ in the base B does not
necessarily exists. The blowup factor of the formula ϕ1 is ctd and therefore exponential
in general, but only FPT with parameter td, viz. |ϕ1| “ |ϕ| ¨ ctd. The size of ϕ is also a
bound for the runtime of the reduction within a polynomial factor. An illustration of the
transformation is shown in the Figure 4.9.

82

4.1 Temporal Logics on Syntax graph Representations with Bounded Treewidth

ψ

Cϕ / Sϕ

O
f

ψ t

Cϕ1

O

f

ψ ψ ψ t

Sϕ1

O

Ñ

Figure 4.9: Transformation of the syntax tree and syntax circuit for c “ 3.

It remains to prove that the the parameter κ ` td does not increase too much. It is
obvious that td does not change, as we do not add temporal operators to the subformulae.
For the parameter path-width and treewidth assume the case where we represent ϕ1 as a
syntax tree Sϕ1 . For each α^ t, α P SFpϕq we obtain a subformula

fpα, . . . , α
looomooon

c times

, t, . . . , t
loomoon

c1 times

q.

Let F be the set of nodes of the local substructure which represents f . We construct
an optimal tree-decomposition or path-decomposition of Sϕ1 in the following way: For
each bag B and every node u P B in the substructure representing ^ we require only
constantly many more variables. Formally, define the new bag as B1 :“ B Y ttu Y
tu | u P F for some F simulating some ^ in Bu. As the size of F is a constant δ and
depends only on B, we have |B1 | ď δ ¨ |B| ` 1. Consequently, the reduction is bounded in
the parameter. The case of the syntax circuit representation is proven analogously and
consequently the proof is complete.

Now we are in the position to summarize our results in the following theorem.

Theorem 4.22.
LetB be a finite set of Boolean functions s.t. rBs R tL, L0u. Then for κ P ttwS ,pwS , twC ,pwCu
the problems CTL-SatpBq, LTL-SatpBq and CTL‹-SatpBq parameterized by κ` td
are

(1.) Wr1s-hard if S1 Ď rBs,

(2.) in FPT otherwise.

Proof. With the combination of Lemma 4.7 and Theorem 4.15 we obtain the intractability
for the case S1 Ď rBs. The fixed-parameter tractable cases directly follow from the

83

Chapter 4 Parametrization in Temporal Logics

Problem Q Parameter κ
CTL-Satp¨q td tw / pw td` tw / td` pw
AX para-NP-h.4.16 (v.i.)b FPT4.5

AF para-PSPACE-c.4.16 Wr1s-h.4.12 Wr1s-h.4.12,a

AF,AX para-PSPACE-c.4.16 Wr1s-h.4.9,c Wr1s-h.4.9
AG para-PSPACE-c.4.16 Wr1s-h.4.10 Wr1s-h.4.10

other para-EXPTIME-c.4.16 Wr1s-h.4.7,4.4,4.11 Wr1s-h.4.7,4.4,4.11

LTL-Satp¨q td tw / pw td` tw / td` pw
X para-NP-c.4.17 (v.i.)δ FPT4.5

F para-NP-c.4.17 Wr1s-h.4.15 Wr1s-h.4.15

other para-PSPACE-c.4.17 Wr1s-h.4.15 Wr1s-h.4.15

CTL‹-Satp¨q td tw / pw td` tw / td` pw
A,X para-NP-h.4.17 (v.i.)b FPT4.4

other para-EXPTIME-h.4.16 Wr1s-h.4.15 Wr1s-h.4.15

a: Only for C, open for S.
b: para-PSPACE-c. for twS

4.20, Wr1s-h. for twC and pwC
4.18, open for pwS .

c: para-PSPACE-c. for twS [LM15].
δ: FPT for twS and pwS

4.6, Wr1s-h. for twC and pwC
4.18.

Table 4.1: Classification of parameterized Temporal Logic

classification of the non-parameterized version by Meier et al.: They showed that for
rBs R tL, L0u and S1 Ď rBs the problem is in P.

Finally we want to summarize all result of this section in Table 4.1. Numbers in the
exponent refer to the corresponding lemma, theorem, or corollary in this section. Unless
stated otherwise the notion tw, resp., pw indicates both syntax circuits and trees.

84

4.2 Backdoors for Linear Temporal Logic

4.2 Backdoors for Linear Temporal Logic

In this section, investigate the approach of Backdoors in linear temporal logic. In contrast
to propositional logic we need to ensure that, whenever a propositional variable is in
the backdoor set, then also all of its temporal literals are required to be in the backdoor
set as well. Consequently, we need to consider assignments that are consistent between
propositional variables and their temporal literals. Whereas in the propositional logic all
of the assignments have to be considered. We will introduce the already known problems
of backdoor detection and backdoor evaluation into the fragments of HORN and KROM
formulae. Moreover, we classify the operator fragments of globally-operators for future
2F , past 2P and always 2̊, as well as their combinations. As a parametrization we use
the backdoor size. Let PROP be a finite set of propositions. First we want to recap the
syntax of the globally fragment of LTL:

ϕ ::“ K | J | p | ϕ | ϕ^ ϕ | ϕ_ ϕ | 2P ϕ | 2F ϕ | 2̊ϕ,

where p P PROP. By 2P ϕ we mean “ϕ holds in every point in the past”, 2F ϕ we mean
“ϕ holds in every point in the future”, and 2̊ϕ states for “ϕ holds always”. In the following,
we will use abbreviations α Ñ β for α _ β and α Ø β for pα ^ βq _ pα ^ βq. In this
section, we interpret LT L formulae over the structure pZ,ăq, which can be interpreted
as a flow of time. For detail information on this approach, we refer to Gabbay et al.
[GHR94]. It should be noted that all our results will also apply unchanged if the formulae
are evaluated over the set of natural numbers instead of the set of all integers. In the
next step we define the semantics for those temporal formulae.

Definition 4.6: Temporal Semantics

Let PROP be a finite set of propositions. A temporal interpretation M “ pZ,ă, V q
is a mapping from propositions to moments of time, viz. V : PROP Ñ PpZq. The
satisfaction relation (is then defined as follows, where n P Z, ϕ,ψ P LT L:

M, n (J always,
M, n (K never,
M, n (p iff n P V ppq,
M, n (ϕ iff M, n * ϕ
M, n (ϕ_ ψ iff M, n (ϕ or M, n (ψ
M, n (ϕ^ ψ iff M, n (ϕ and M, n (ψ
M, n (2F ϕ iff for all k ą n it holds M, k (ϕ
M, n (2P ϕ iff for all k ă n it holds M, k (ϕ
M, n (2̊ϕ iff for all k P Z it holds M, k (ϕ

We say that ϕ is satisfiable if there is a temporal interpretationM such thatM, 0 (ϕ.

85

Chapter 4 Parametrization in Temporal Logics

Then M is also referred to as a (temporal) model (of ϕq. Sometimes we also directly
write Mppq instead of explicitly defining V .

Every LTL formula which is evalueted over the frame pZ,ăq has a satisfiability-equivalent
formula in the separated normal form, SNF in short [FDP01]. We follow the notion
of SNF formulae by Artale et al. [AKRZ13] and directly restrict them to the relevant
globally fragment:

λ ::“ K | p | 2F λ | 2P λ | 2̊ λ, (4.1)
ϕ ::“ λ | λ | ϕ^ ϕ | 2̊p λ1 _ ¨ ¨ ¨ _ λn _ λn`1 _ ¨ ¨ ¨λn`mq, (4.2)

where λ is called a temporal literal and ϕ is said to be in clausal normal form.

Let us remark that the operator 2F is often denoted as G in literature. But in contrast
to the LT L-expression Gϕ, for 2F ϕ it is not required that ϕ holds in the current world.
We differentiate fragments of LT L by adding superscripts and subscripts as follows. If
O Ď t2F,2P, 2̊u is an operator subset then LT LO is the fragment of LT L consisting of
formulae that are allowed to only use temporal operators from O for temporal literals.
We also consider restrictions of the clausal normal form in (4.2):

2̊p λ1 _ ¨ ¨ ¨ _ λn _ λn`1 _ ¨ ¨ ¨λn`mq.

If α P tCNF,HORN,KROMu then LT Lα is the set of formulae obeying the normal form
α.

Next, we show that from certain LT L formulae we can efficiently construct SNF formulae
while preserving their satisfiability, avoiding deep nesting of temporal operators.

Lemma 4.23 ([AKRZ13, Lemma 2]).
Let L P tLT L2F,2P

α ,LT L2̊
αu be a formula class for α P tCNF,HORN,KROMu. For

any formula ϕ P L, one can construct in log-space an satisfiability-equivalent L-formula
Ψ^2̊ Φ, where Ψ is a conjunction of propositional variables from Φ, and Φ is a conjunction
of clauses of the form (2) containing only 2F,2P for LT L2F,2P

α , and only 2̊ for LT L2̊
α,

in which the temporal operators are not nested.

From now on we consider formulae in the normal form Ψ^ 2̊ Φ only. Using this normal
form, we are in the position to give a formal definition of backdoors in LTL, but first we
require the notion of consistent assignment.

Definition 4.7: Consistent Assignment

Let O be a set of operators. An assignment ϑ : VarpϕqYtOx | x P Varpϕq ^O P Ou Ñ
t0, 1u is consistent if for every x P Varpϕq it holds that if ϑp2̊ xq “ 1, then also

86

4.2 Backdoors for Linear Temporal Logic

ϑp2Pxq “ ϑp2Fxq “ ϑpxq “ 1.

Based on this, we define strong backdoors for LTL in the following way:

Definition 4.8: Backdoors in LTL

Let C be a class of CNF-formulae, O be a set of operators, and ϕ be an LT LO
CNF

formula. A set X Ď Varpϕq is a (strong) C-backdoor if for every consistent assignment
ϑ : X Y tOx | x P X,O P Ou Ñ t0, 1u it holds that ϕrθs is in C.

Here, ϕrθs is called reduct analogously to the propositional approach on CNF-formulae,
i.e., we delete all clauses with at least one satisfied literal and delete all falsified literals.
Therefore, empty clauses may arise, which we substitute by false. Moreover, an empty
formula is replaced by the constant true. As already discussed in the previous section
of default logic, we first need to find a small backdoor set and subsequent evaluate this
backdoor set on a given LTL-formula. Therefore we define the following two problems:

Problem: DetectOpCq - Backdoor detection to LTLO

Input: LTLO
CNF formula ϕ

Parameter: κ “ k, with k P N
Task: Find a strong C-backdoor of a size ď k if one exists.

Problem: EvalOpCq - Backdoor evaluation to LTLO

Input: LTLO
CNF formula ϕ, strong pC,Oq-backdoor set X

Parameter: κ “ |X|

Question: Is ϕ satisfiable?

4.2.1 Backdoor Set Detection in LTL

In this section we study the problem of finding a strong C-backdoor set of a size at most
k and show the fixed-parameter tractability of this problem for C P tHORN,KROMu. It
is only meaningful to search for backdoors with a target class that has polynomial time
solvable satisfiability problem. Artale et al. [AKRZ13] have shown that satisfiability
for LT L2̊

HORN and LT L2̊
KROM is solvable in polynomial time. To detect a backdoor set

in LT L2̊
C we use a similar approach as [GS12] for the detection of strong backdoors for

propositional CNF formulae.

With the next observation we show that only consistent assignments are potential
backdoor candidates.

87

Chapter 4 Parametrization in Temporal Logics

Observation 4.24.
Let ϕ :“ Ψ^ 2̊ Φ be an LT L2P ,2F ,2̊ formula. Then any clause C of Φ containing 2̊ x
and (at least) one of 2Px, 2Fx or x for some variable x P Varpϕq is tautological and
consequently can be removed from ϕ without changing the satisfiability of ϕ.

The correctness of the observation is straightforward, as if one of 2P x,2F x, x does not
hold then 2̊ x is true. This observation is crucial for the backdoor detection algorithm.
Recall, that tautological clauses from the observation above are those clauses which are
satisfied by every consistent assignment. Consequently, once these clauses are removed
from the formula, it holds that for every clause C of ϕ there is a consistent assignment ϑ
such that C is not satisfied by ϑ.
Next we show how to detect a strong backdoor of size at most k to obtain a HORN
formula. The main idea for the proof is to give a reduction to the parameterized problem
VertexCover, which is defined as follows:

Problem: VertexCover
Input: Undirected graph G “ pV,Eq

Parameter: κ “ k, with k P N
Question: Does a vertex cover C Ď V pGq with |C| ď k exists s.t. C X e ‰ H

for every e P EpGq.

Theorem 4.25.
For every O Ď t2̊,2P ,2F u, DetectOpHORNq is fixed-parameter tractable.

Proof. Let O Ď t2̊,2P ,2F u. The core concept of the proof is to construct an undirected
graph G “ pV,Eq for a given an LT LO - formula ϕ “ Ψ^ 2̊ Φ s.t. the given formula ϕ
has a strong HORN-backdoor set X with |X| ď k if and only if the constructed graph G
has a vertex cover C with |C| ď k.
We know due to Chen et al.[CKX10b] that the VertexCover problem parameterized by
the solution size is fixed-parameter tractable and can be solved in time Op1.2738k`k ¨nq,
where k “ |C| is the size of the vertex cover and n “ |V | is the number of vertices of the
input graph G.
Now we proceed with the construction of the desired graph G. It has as vertices the
variables of ϕ, i.e., V “ Varpϕq, and two vertices v1 and v2 are connected by an edge if and
only if there is a clause that contains at least two literals from tv1, v2uYtOv1, Ov2 | O P Ou.
Note that in the case v1 “ v2 the graph G contains a self-loop.

Claim 4.26. A set X Ď Varpϕq is a strong HORN-backdoor if and only if X is a vertex
cover of G.

To show the forward direction of the claim, let X Ď Varpϕq be a strong HORN-backdoor
set of ϕ. We claim that X is also a vertex cover of G. Suppose for the sake of contra-
diction that X is not a vertex cover of G, i.e., there is an edge tx, yu P EpGq such that
X X tx, yu “ H. As tx, yu P EpGq, we obtain that there is a clause C in Φ that contains

88

4.2 Backdoors for Linear Temporal Logic

at least two literals from tx, yu Y tOx,Oy | O P Ou. Moreover, by Observation 4.24
there is a consistent assignment θ : X Y tOx | x P X ^ O P Ou Ñ t0, 1u that falsifies
all literals of C over the variables in X. Consequently, ϕrθs contains a sub-clause of C
that still contains at least two literals from tx, yu Y tOx,Oy | O P Ou. For this reason,
ϕrθs R HORN, contradicting our assumption that X is a strong HORN-backdoor set of ϕ.
Now we prove the reverse direction. Therefore let X Ď V pGq be a vertex cover of
G. We claim that X is also a strong HORN-backdoor of ϕ. Suppose for the sake
of contradiction that this is not the case. Then there is an (consistent) assignment
θ : X Y tOx | x P X ^ O P Ou Ñ t0, 1u and a clause C in ϕrθs containing two positive
literals, say, over variables x and y. We obtain that C contains at least two positive
literals from tx, yu Y tOx,Oy | O P Ou and consequently G contains the edge tx, yu,
contradicting our assumption that X is a vertex cover of G. 3

This concludes the proof.

To show the fixed-parameter tractability of DetectOpKROMq we will reduce it to the
problem 3HittingSet, which is defined as follows:

Problem: 3HittingSet
Input: A universe U , a family F of subsets of U
Question: Does a hitting set S Ď U with |S| ď 3 exist s.t. S X F ‰ H for

every F P F .

Theorem 4.27.
For every O Ď t2̊,2P ,2F u, DetectOpKROMq is fixed-parameter tractable.

Proof. Let O Ď t2̊,2P ,2F u.
The main idea of this proof is to construct a family F of subsets of a size 3 of a universe
U s.t. ϕ has a strong KROM-backdoor set X with |X| ď k if and only if F has a hitting
set S with |S| ď k.
We know due to Abu-Khzam[Abu10] that the 3HittingSet-problem parameterized by
the solution size is fixed-parameter tractable.
Now we proceed with the construction of the family F . Therefore let U “ Varpϕq and F
contains the set VarpCq for every set C of exactly three literals contained in some clause
of Φ.

Claim 4.28. A set X Ď Varpϕq is a strong KROM-backdoor if and only if X is a hitting
set of F .

Proof of claim. For the direction from left to right, letX Ď Varpϕq be a strong KROM-back-
door set of ϕ. Now suppose for the sake of contradiction that there is a set F P F such that
X X F “ H. It follows from the construction of F that Φ contains a clause C containing

89

Chapter 4 Parametrization in Temporal Logics

at least three literals over the variables in F . Moreover, because of Observation 4.24
there is a consistent assignment θ : X Y tOx | x P X ^O P Ou Ñ t0, 1u that falsifies all
literals of C over the variables in X. Consequently, ϕrθs contains a sub-clause of C that
still contains at least three literals over the variables in F . As a result, ϕrθs R KROM,
contradicting our assumption that X is a strong KROM-backdoor set of ϕ.
Next we prove the direction from right to left. Therefore, let X Ď U be a hitting
set of F and suppose for a sake of contradiction that there is a consistent assignment
θ : X Y tOx | x P X ^O P Ou Ñ t0, 1u and a clause C in ϕrθs containing at least three
literals. Let C 1 be a set of at exactly three literals from C. It follows from the construction
of F that F contains the set VarpC 1q, however, VarpC 1q X X “ H, contradicting our
assumption that X is a hitting set of G. 3

In this section we have proved that a strong backdoor set to the formula classes HORN and
KROM can be found in FPT time, independently of the considered temporal operators.
We continue with the investigation of the backdoor evaluation problem.

4.2.2 Evaluation of a Backdoor Set in LTL

From the previous section we know the backdoor set detection is possible in FPT time.
In this section we will examine how efficiently we can use the detected backdoor set to
answer the satisfiability question for a given LT L2̊ formula.
We will see that the evaluation problem for LT L2̊-HORN formulae is in FPT, whereas
for LT L2̊-KROM formulae it is para-NP-complete with backdoor size as parameter.
Before we can prove these results we require to depict some properties for of such
formulae.

LetM “ pZ,ă, V q be a temporal interpretation. We call VarpMq the set of propositions,
in the following referred to as variables, for which V is defined. For a set of variables
X Ď VarpMq, we write M|X for the projection of M onto X, which is defined as the
temporal interpretation M|X “ pZ,ă, V|Xq, where V|X is only defined for the variables
in X, viz. V|Xpxq “ V pxq for every x P X.

For an integer z, ApM, zq denotes the assignment ϑ : VarpMq Ñ t0, 1u holding at world
z inM, i.e. ϑpvq “ 1 if and only if z PMpvq for every v P VarpMq. Moreover, for a set of
worlds Z Ď Z we denote by ApM, Zq the set of all assignments occurring in some world
in Z of M, i.e. ApM, Zq :“ tApM, zq | z P Zu. We also write ApMq for ApM,Zq. For
an assignment ϑ : X Ñ t0, 1u, WpM, ϑq denotes the set of all worlds z P Z of M such
that ApM, zq is equal to ϑ on all variables in X.

Let ϕ :“ Ψ ^ 2̊ Φ P LT L2̊
CNF. We write CNFpΦq for the propositional CNF formula

obtained from Φ after replacing each occurrence of 2̊ x in Φ with a fresh propositional
variable with the same name. For a set of variables V and a set of assignments A of the
variables in V , we denote by GpA, V q : t 2̊ v | v P V u Ñ t0, 1u the assignment defined

90

4.2 Backdoors for Linear Temporal Logic

by setting GpA, V qp2̊ vq “ 1 if and only if αpvq “ 1 for every α P A. Moreover, if
ϑ : V Ñ t0, 1u is an assignment of the variables in V , GpA, V, ϑq denotes the assignment
defined by setting GpA, V, ϑqpvq “ ϑpvq and GpA, V, ϑqp2̊ vq “ GpA, V qp2̊ vq for every
v P V . For a set A of assignments over V and an assignment ϑ : V 1 Ñ t0, 1u with V 1 Ď V ,
we call Apϑq the set of all assignments α P A such that αpvq “ ϑpvq for every v P V 1.

For a set A of assignments over some variables V and a subset V 1 Ď V , we write A|V 1 for
the projection of A onto V 1, which is defined as the set of assignments α P A restricted
to the variables in V 1.

With the next lemma we show how to translate a temporal formula into separated
satisfiability checks for propositional formulae.

Lemma 4.29.
Let ϕ :“ Ψ ^ 2̊ Φ P LT L2̊. Then, ϕ is satisfiable if and only if there is a set A of
assignments of the variables in ϕ and an assignment α0 P A such that α0 satisfies Ψ
and for every assignment α P A it holds that GpA,Varpϕq, αq satisfies the propositional
formula CNFpΦq.

Proof. First we prove the forward direction and assume that ϕ :“ Ψ^ 2̊ Φ is satisfiable.
Furthermore letM be a corresponding temporal interpretation witnessing the satisfiability
of ϕ. Then we set A :“ ApMq and α0 :“ ApM, 0q, which satisfies the conditions of the
lemma.
For the reverse direction, let A :“

α0, . . . , α|A|
(

be a set of assignments satisfying the
statement of the lemma. Then we claim thatM “ pZ,ă, V q is a temporal interpretation
which satisfies the formula ϕ. Let Ză0 be a set of all integers smaller then 0 and let ZąA
be a set of all integers greater then |A|. Then for every variable v P Varpϕq, the setMpvq
contains the set t z | αzpvq “ 1 ^ 0 ď z ď |A|u. In addition, if α0pvq “ 1, Mpvq then
also contains the set Ză0 and if α|A|pvq “ 1, then Mpvq also contains the set ZąA. It is
obvious that M, 0 (ϕ holds, which completes the proof.

Using this lemma we can prove the following statement.

Lemma 4.30.
Let ϕ :“ Ψ^ 2̊ Φ P LT L2̊ and X Ď Varpϕq. Then ϕ is satisfiable if and only if there is a
set Θ of assignments of the variables in X, an assignment ϑ0 P Θ, a set A of assignments
of the variables in Varpϕq, and an assignment α0 P A satisfying following conditions:

C1) the set Θ is equal to A|X ,

C2) the assignment ϑ0 is equal to α0|X ,

C3) A and α0 satisfy the conditions stated in Lemma 4.29, and

C4) |Apϑq| ď |VarpϕqzX| ` 1 for every ϑ P Θ.

91

Chapter 4 Parametrization in Temporal Logics

Proof. First we show the forward direction. Therefore we assume that ϕ is satisfiable.
Due to Lemma 4.29 we know that there is a set A of assignments of Varpϕq and and an
assignment α0 P A that satisfies the conditions of Lemma 4.29. Now we set Θ to be equal
to the assignment set A restricted to X and ϑ0 to be equal to α0|X. Consequently, we
satisfy the conditions C1q to C3q. In the next step, we show that there is a subset A1 of
A, that satisfies all conditions C1q to C4q of the lemma. Towards showing this consider
any subset A1 of A that satisfies the following three conditions:

(1.) α0 P A1

(2.) for every ϑ P Θ it holds that A1pϑq ‰ H, and

(3.) for every variable v of ϕ and every b P t0, 1u it holds that there is an assignment
α P A with αpvq “ i if and only if there is an assignment α1 P A1 with α1pvq “ i

Observe that conditions (1.) and (2.) ensure that A1 satisfies conditions C1) and C2) and
condition (3) ensures C3). Consequently, any subset A1 of A satisfying (1.) - (3.) satisfies
also the conditions C1) to C3) of the lemma. Now we need to show that such subset
A1 also satisfies the last condition C4) of the lemma. Therefore let A10 be a subset of A
containing α0 as well as one arbitrary assignment α P Apϑq for every ϑ P Θ. Thereby
A10 satisfies the conditions (1.) - (3.) for every variable v P X. Note that, if there is a
variable v of ϕ such that the condition (3.) is violated by A10, then it suffices to add
at most one additional assignment to A10 in order to satisfy the condition (3.) for the
variable v. To ensure this third condition for every variable v P VarpϕqzX we add to A10
at most |VarpϕqzX| assignments and obtain a subset A1 which satisfies the conditions of
the lemma.
The reverse direction follows immediately from Lemma 4.29, due to the existence of the
set of assignments A and the assignment α0 satisfying condition C3 imply the satisfiability
of ϕ.

Roughly speaking, this lemma says that it suffices to consider only a set of assignments
A of size linear in the number of variables, instead of exponential size, to decide the
satisfiability of an LT L2̊ formula.
Finally we are in the position to prove the tractability of the evaluation problem of strong
HORN-backdoor sets.

Theorem 4.31.
The evaluation problem Eval2̊pHORNq is in FPT.

Proof. Let ϕ :“ Ψ^ 2̊ Φ P LT L2̊ and let X Ď Varpϕq be a strong HORN-backdoor of ϕ.
The general idea is to construct for every set of assignments Θ of the backdoor variables
and for ϑ0 P Θ a propositional HORN formula FΘ,ϑ0 . Thereby FΘ,ϑ0 is satisfiable if and
only if there is a set of assignments A of the variables in Varpϕq and an assignment α0 P A
satisfying the conditions of Lemma 4.30. According to this Lemma 4.30 it holds that ϕ
is satisfiable if and only if there is such a set Θ of assignments and a assignment ϑ0 P Θ

92

4.2 Backdoors for Linear Temporal Logic

for which FΘ,ϑ0 is satisfiable.
Note that there are at most 22|X| such sets of assignments Θ and 2|X| assignments ϑ0,
where for each of these sets the formula FΘ,ϑ0 is a HORN-formula. Consequently, we can
verify whether there are Θ and ϑ0 where FΘ,ϑ0 is satisfied, and therefore to verify the
satisfiability of the formula ϕ, in Op22|X| ¨ 2|X| ¨ |FΘ,ϑ0 |q time.
To obtain the tractability of Eval2̊pHORNq, we prove that the length of the formula
FΘ,ϑ0 is bounded, which implies that the length of ϕ is bounded as well.
Now we construct for a fixed set of assignments Θ and a fixed assignment ϑ0 P Θ the
formula FΘ,ϑ0 and prove that it meets the conditions of Lemma 4.30.
Let R :“ VarpϕqzX and r :“ |R|`1. For a propositional formula F , a subset V Ď VarpF q,
an integer i and a label s, we call copypF, V, i, sq the propositional formula obtained
from F after replacing each occurrence of a variable v P V with a new variable vis. We
require the following auxiliary formulae.
For every ϑ P Θzϑ0, let F ϑΘ,ϑ0

be the formula:
ľ

1ďiďr
copypCNFpΦrGpΘ, X, ϑqsq, R, i, ϑq.

Moreover, let F ϑ0
Θ,ϑ0

be the formula:

copypΨrϑ0s ^CNFpΦrGpΘ, X, ϑ0qsq, R, 1, ϑ0q^
ľ

2ďiďr
copypCNFpΦrGpΘ, X, ϑ0qsq, R, i, ϑ0q.

Note that the formula F ϑΘ,ϑ0
is a HORN-formula for every ϑ P Θ, as X is a strong

HORN-backdoor set and the formula Ψ consists of unit clauses only.
In addition we require the propositional formula Fconst, which ensures the consistency
between the propositional variables 2̊ x and the variables in txiϑ | ϑ P Θ^ 1 ď i ď ru for
every x P VarpϕqzX. The formula Fconst consists of the following clauses:

• For every ϑ P Θ, i with 1 ď i ď r, and v P R, the clause 2̊ v Ñ viϑ “ 2̊ v_ viϑ and

• for every v P R the clause

 2̊ v Ñ
ł

ϑPΘ^1ďiďr
 viϑ “ 2̊ v _

ł

ϑPΘ^1ďiďr
 viϑ.

Due to the form of these clauses, Fconst is a HORN formula.
Finally, the formula FΘ,ϑ0 is defined as:

FΘ,ϑ0 :“
ľ

ϑPΘ
F ϑΘ,ϑ0 ^ Fconst.

93

Chapter 4 Parametrization in Temporal Logics

Note that FΘ,ϑ0 is HORN and the length of FΘ,ϑ0 is at most

|FΘ,ϑ0 | ď
ÿ

ϑPΘ
|F ϑΘ,ϑ0 | ` |Fconst|

ď 2|X|p|VarpϕqzX| ` 1qp|Φ| ` |Ψ|q ` 2 ¨ 2|X| ¨ p|VarpϕqzX| ` 1q2

and consequently bounded by a function of |X| times a polynomial in the input size.
Now it remains to prove that FΘ,ϑ is satisfiable if and only if there is a set A of
assignments of the variables in Varpϕq and an assignment α0 P A satisfying the conditions
of Lemma 4.30. Observe that for every ϑ P Θ, each of the r copies of the formula
CNFpΦrGpΘ, X, ϑqsq represent one of the at most r assignments in Apϑq, the formula
F ϑ0

Θ,ϑ0
ensures that the assignment chosen for α0 satisfies Ψ and the formula Fconst

ensures that the “global assignments” represented by the propositional variables 2̊ x
are consistent with the set of local assignments in A represented by the variables in
txiϑ | ϑ P Θ ^ 1 ď i ď ru for every x P VarpϕqzX. As a consequence, we obtain the
tractability of Eval2̊pHORNq.

With the last result we have shown the tractability for the backdoor set evaluation
problem of HORN-formulae. HORN-formulae are characterized by containing only one
positive literal in each clause, where the clause size is not limited. Surprisingly, the
backdoor set evaluation problem for KROM-formulae, which clause size is limited to two
literals, is more intricate.

Theorem 4.32.
Eval2̊pKROMq is paraNP-complete.

Proof. Artale et al. [AKRZ13, Table 1] proved the NP membership of the satisfiability
of LT L2̊

CNF. Consequently Eval2̊pKROMq P paraNP.
For the hardness result we give a polynomial time reduction from the NP-hard problem
3Col to Eval2̊pKROMq for a backdoor set X, with |X| “ 2. In 3Col we ask whether a
given input graph G “ pV,Eq has a coloring f : V pGq Ñ t1, 2, 3u of its vertices such that
fpvq ‰ fpuq for every edge tu, vu of G. Given such a graph G “ pV,Eq, we will construct
an LT L2̊

CNF formula ϕ :“ Ψ^ 2̊ Φ, which has a strong KROM-backdoor B of size two,
such that the graph G has a 3-coloring if and only if ϕ is satisfiable.
We assume for the remainder of the proof that there exists an arbitrary but fixed ordering
of the vertices V pGq “ tv1, . . . , vnu. Further for the construction we assume w.l.o.g. that
any undirected edge e “ tvi, vju P E follows this ordering, i.e., i ă j. The formula ϕ
contains the following variables:

(V1) The variables b1 and b2. These variables make up the backdoor set B, i.e., B :“
tb1, b2u.

(V2) For every i with 1 ď i ď n, the variable vi.

94

4.2 Backdoors for Linear Temporal Logic

(V3) For every e “ tvi, vju P EpGq with 1 ď i, j ď n the variables eb1b2
vivj , e

b̄1b2
vivj , and eb1b̄2

vivj .

We set Ψ to be the empty formula and the formula Φ contains the following clauses:

(C1) For every i with 1 ď i ď n, the clause 2̊ vi. Informally, this clause ensures that
vi has to be false at least at one world, which will later be used to assign a color to
the vertex vi of G. Observe that the clause is KROM.

(C2) For every e “ tvi, vju P EpGq with 1 ď i, j ď n, the clauses vi _ 2̊ eb1b2
vivj _ b1 _ b2,

vi _ 2̊ eb̄1b2
vivj _ b1 _ b2, and vi _ 2̊ eb1b̄2

vivj _ b1 _ b2 as well as the clauses vj _
 2̊ eb1b2

vivj _ b1_ b2, vj _ 2̊ eb̄1b2
vivj _ b1_ b2, and vj _ 2̊ eb1b̄2

vivj _ b1_ b2. Observe
that all of these clauses are KROM after deleting the variables in B.

(C3) The clause b1 _ b2. Informally, this clause excludes the color represented by
setting b1 and b2 to true. Observe that the clause is KROM.

It follows from the definition of ϕ that ϕrϑs P LT L2̊
KROM for every assignment ϑ of the

variables in B. As a consequence, B is a strong KROM-backdoor of size two of ϕ as
required. Moreover, since ϕ can be constructed in polynomial time, it only remains to
show that G has a 3-coloring if and only if ϕ is satisfiable.
We start with the forward direction. Therefore we assume that G has a 3-coloring and
let f : V pGq Ñ t1, 2, 3u be such a 3-coloring for G. We will show that ϕ is satisfiable by
constructing a temporal interpretation M such that M (ϕ. M is defined as follows:

• For every i with 1 ď i ď n, we set Mpviq “ Zztfpviqu.

• We set Mpb1q “ t2u and Mpb2q “ t3u.

• For every e “ tvi, vju P EpGq:

– if fpviq “ 1 set Mpeb1b2
vivj q “ Z, else set Mpeb1b2

vivj q “ H.

– if fpviq “ 2 set Mpeb̄1b2
vivj q “ Z, else set Mpeb̄1b2

vivj q “ H.

– if fpviq “ 3 set Mpeb1b̄2
vivj q “ Z, else set Mpeb1b̄2

vivj q “ H.

Next we prove that M (ϕ. Therefore we consider the different types of clauses given in
(C1)–(C3).

• The clauses in (C1) hold because M, fpviq * vi for every i with 1 ď i ď n.

• For every e “ tvi, vju P EpGq, we have to show that the clauses given in (C2)
are satisfied for every world. Because f is a 3-coloring of G, we obtain that
fpviq ‰ fpvjq. W.l.o.g. fpviq “ 1 and fpvjq “ 2. We first consider the clauses
given in (C2) containing vi. Because Mpviq “ Zzt1u, it only remains to consider
the world 1. In this world b1 and b2 are false. It follows that all clauses containing
either b1 or b2 are satisfied in this world. As a reason for this, it only remains
to consider clauses of the form vi_ 2̊ eb1b2

vivj _ b1_ b2. But these are satisfied because
fpviq “ 1 implies that Mpeb1b2

vivj q “ Z.

95

Chapter 4 Parametrization in Temporal Logics

Consider now the clauses given in (C2) that contain vj . Using the same argumen-
tation as used above for vi, we obtain that we only need to consider world 2 and
moreover we only need to consider clauses of the form vj _ 2̊ eb̄1b2

vivj _ b1 _ b2.
Because fpviq “ 1, we obtain that Mpeb̄1b2

vivj q “ H, which implies that these clauses
are also satisfied.

• The clause b1 _ b2 is trivially satisfied, because there is no world in which b1
and b2 hold simultaneously.

Now we prove the reverse direction. Therefore we assume that ϕ is satisfiable and let
M be a temporal interpretation witnessing this. First note that because of the clauses
added by C1, it holds that Mpviq ‰ Z for every i with 1 ď i ď n. Let w : V pGq Ñ Z be
defined such that for every i with 1 ď i ď n, wpviq is an arbitrary world in ZzMpviq. We
define f : V pGq Ñ t1, 2, 3u by setting:

• fpviq “ 1 if M, wpviq * b1 _ b2,

• fpviq “ 2 if M, wpviq * b1 _ b2, and

• fpviq “ 3 if M, wpviq * b1 _ b2.

Note that because of the clause added by (C3), f assigns exactly one color to every vertex
vi of G. We claim that f is a 3-coloring of G. To show this it suffices to show that for
every e “ tvi, vju P EpGq, it holds that fpviq ‰ fpvjq. Assume for a contradiction that
this is not the case, i.e., there is an edge e “ tvi, vju P EpGq such that fpviq “ fpvjq.
W.l.o.g. fpviq “ fpvjq “ 1. Consider the clause vi_ 2̊ eb1b2

vivj _ b1_ b2 (which was added by
C2). Then, because of the definition of w and f , we obtain that M, wpviq * vi _ b1 _ b2.
It follows that M, wpviq (2̊ eb1b2

vivj . Consider now the clause vj _ 2̊ eb1b2
vivj _ b1 _ b2

(which was added by C2). Then, again because of the choice of w and f , we obtain
that M, wpvjq * vj _ b1 _ b2. As a consequence, M, wpvjq (2̊ eb1b2

vivj contradicting
M, wpviq (2̊ eb1b2

vivj .
We have shown the membership in paraNP, as well as the paraNP-hardness by giving
an polytime-reduction from the NP-hard problem 3Col. Consequently, the proof is
complete.

Figure 4.10 illustrates a temporal interpretation M for a simple graph
G “ ptv1, v2, v3u, ttv1, v2u, tv1, v3u, tv2, v3uuq with a coloring fpviq “ i for 1 ď i ď 3. The
temporal interpretation M is described in the table, with M (ϕ. Each row of the table
corresponds to a world indicated by the first column of the table. Accordingly the first
row corresponds to the first green-colored world. Additionally each column represents
the assignments of a variable as indicated in the first row. The assignment “–” has a “do
not care”- meaning, in other words the assignment does not influence whether M (ϕ.

For the remainder of the section we want to consider the more flexible fragment where we
are able to talk about the past as well as about the future. We will show how to encode
NP-complete problems into the HORN-fragment and obtain a paraNP lower bound.

96

4.2 Backdoors for Linear Temporal Logic

G : M :

v1

1

v2

2

v3

3

b1 b2 v1 v2 v3 eb1b2
v1v2 eb̄1b2

v1v2 eb1b̄2
v1v2 eb1b2

v1v3 eb̄1b2
v1v3 eb1b̄2

v1v3 eb1b2
v2v3 eb̄1b2

v2v3 eb1b̄2
v2v3

1 0 0 0 1 1 1 0 – 1 – 0 – 1 0
2 1 0 1 0 1 1 0 – 1 – 0 – 1 0
3 0 1 1 1 0 1 0 – 1 – 0 – 1 0

Figure 4.10: Temporal interpretation M for a given graph G, where M (ϕ

Theorem 4.33.
Eval2F ,2P pHORNq is paraNP-complete.

Proof. As in Theorem 4.32, the membership of Eval2F ,2P pHORNq in paraNP follows
from the work of Artale et al., where the authors show the satisfiability problem of
LTL2F ,2P pHORNq is in NP, [AKRZ13, Table 1].
To prove the paraNP-hardness we construct again, as in Theorem 4.32 a polynomial
time reduction 3Col ďfpt Eval2F ,2P pHORNq, but this time for a backdoor size four.
And again, we construct an LTL2F ,2P

CNF -formula ϕ :“ Ψ^ 2̊ Φ, which has a strong HORN-
backdoor set B of size four, such that the graph G has a 3-coloring if and only if ϕ is
satisfiable. We assume V pGq “ tv1, . . . , vnu and EpGq “ te1, . . . , emu, and the formula
ϕ contains the following variables:

(V1) The backdoor set contains the variables B :“ tc1, c2, c3, p
1
nu

(V2) For the initial world we have a variable s

(V3) For every i with 1 ď i ď n, three variables v1
i , v

2
i , v

3
i

(V4) For every i with 1 ď i ď n the variable pi

We set Ψ to be the formula s and the formula Φ contains the following clauses:

(C1) The clauses c1 _ c2 _ c3, c1 _ c2 _ c3, c1 _ c2 _ c3, c1 _ c2 _ c3, and
 c1 _ c2 _ c3. These clauses force that exactly one of the variables c1, c2, c3 is
true in every world. Observe that the clause c1 _ c2 _ c3 is not HORN, note that,
all of its variables are contained in the backdoor set B.

(C2) For every i and c with 1 ď i ď n and 1 ď c ď 3, the clauses vci Ñ 2F v
c
i “ v

c
i_2F v

c
i

and vci Ñ 2P v
c
i “ v

c
i _2P v

c
i . These clauses force that the variable vci either holds

in every world or in no world for every i and c as above. Observe that both of these
clauses are HORN.

(C3) Informally, the following set of clauses ensures together that for every i with
1 ď i ď n, it holds that pi is true in every world apart from the i-th world (where
pi is false). Here, the first world is assumed to be the starting world.

97

Chapter 4 Parametrization in Temporal Logics

(C3.1) The clauses sÑ p1 “ s_ p1, sÑ 2F p1 “ s_2F p1, and sÑ 2P p1 “
 s_2P p1. Informally, these ensure that p1 is only false in the starting world
(and otherwise true).

(C3.2) The clause pi ^ 2F pi Ñ 2F pi`1 “ pi _ 2F pi _ 2F pi`1 for every i with
1 ď i ă n. Informally, these clauses (together with the clauses from C3.1)
ensure that for every i with 2 ď i ď n, it holds that pi is true in every world
after the i-th world.

(C3.3) The clause pi Ñ 2F pi`1 “ pi _ 2F pi`1 for every i with 1 ď i ă n.
Roughly, these clauses (together with the clauses from (C3.1) and (C3.2)
ensure that for every i with 2 ď i ď n, it holds that pi is false at the i-th
world. Observe that the clauses from (C3.1) to (C3.3) already ensure that
 pi^2F pi holds if and only if we are at the i-th world of the model for every
i with 1 ď i ď n.

(C3.4) The clauses pn ^2F pn Ñ p1n “ pn _ 2F pn _ p
1
n and pn ^2F pn Ð p1n “

 pn^2F pn_ p
1
n “ p pn_ p

1
nq ^ p2F pn_ p

1
nq. Informally, these clauses

(together with the clauses from (C3.1) to (C3.3) ensure that p1n only holds in
the n-th world of the model. Observe that all these clauses are HORN after
removing the backdoor set variable p1n.

(C3.5) The clause p1n Ñ 2P pn “ p
1
n _2P pn. Informally, this clause (together with

the clauses from (C3.1) to (C3.4) ensures that pn is only false in the n-th
world of the model.

(C3.6) The clause pi ^ 2P pi Ñ 2P pi´1 “ pi _ 2P pi _ 2P pi´1 for every i with
2 ď i ď n. Informally, these clauses (together with the clauses from (C3.1) to
(C3.5) ensure that pi is true before the i-th world for every i with 2 ď i ă n.

Note that all of the described clauses above are HORN or become HORN after
removing all variables from backdoor set B. Note furthermore that all the above
clauses ensure that 2P pi ^2F pi holds if and only if we are at the i-th world of the
model for every i with 1 ď i ď n.

(C4) For every i and j with 1 ď i ď n and 1 ď j ď 3 the clauses 2F pi^2P pi^v
j
i Ñ cj “

 2F pi_ 2P pi_ v
j
i _cj and 2F pi^2P pi^cj Ñ vji “ 2F pi_ 2P pi_ cj_v

j
i .

Informally, these clauses ensure that in the i-th world for every 1 ď i ď n, the
variables c1, c2, c3 are a copy of the variables v1

i , v2
i , v3

i . Observe that all of these
clauses are also HORN.

(C5) For every edge e “ tvi, vju P EpGq and every c with 1 ď c ď 3, the clause vci _ vcj .
Informally, these clauses ensure that the 3-partition (of the vertices of G) given by
the (global) values of the variables v1

1, v2
1, v3

1, . . . , v1
n, v2

n, v3
n is a valid 3-coloring

for G. Observe that all of these clauses are HORN.

98

4.2 Backdoors for Linear Temporal Logic

From the definition of the formula ϕ follows, ϕrϑs P LTL2F ,2P pHORNq for every assign-
ment ϑ of variables in backdoor set B. Therefore holds that B is a strong HORN backdoor
set B of the formula ϕ. Observe that the formula ϕ is constructible in polynomial time,
consequently it remains to show that ϕ is satisfiable if and only if the graph G has a
3-coloring.
First we prove that ϕ is satisfiable if the graph G has a 3-coloring. We define the coloring
function f as f : V pGq Ñ t1, 2, 3u. To show the satisfiability of ϕ via a construction of a
temporal interpretation M, such that M (ϕ.
The constructed temporal interpretation M has the following properties:

• We set Mpcjq “ ti | fpviq “ ju, for every j with 1 ď j ď 3

• We set Mpp1nq “ tnu

• For every i and c with 1 ď i ď n and 1 ď c ď 3, we setMpvci q “ Z if c “ fpviq and
otherwise we set Mpvci q “ H.

• For every i with 1 ď i ď n, we set Mppiq “ Zztiu.

Now we assume ϕ is satisfiable in a valid temporal interpretation M. We prove the
reverse direction by showing the following claims for M:

(M1) For every a P Z exactly one of M, a (c1, M, a (c2, and M, a (c3 holds.

(M2) For every i, c, a, and a1 with 1 ď i ď n, 1 ď c ď 3, and a, a1 P Z, it holds that
M, a (vci if and only if M, a1 (vci .

(M3) For every i with 1 ď i ď n and every a P Z, it holds that M, a (pi if and only if
a ‰ i.

(M4) For every i and j with 1 ď i ď n and 1 ď j ď 3, it holds that M, i (cj if and only
if M, i (vji .

Next we prove the claims (M1) to (M4) for M.
(M1) follows since the clauses which enforces that exactly one of the variables c1, c2, c3 is
true in every world (C1).
(M2) follows due to (C2). Let i, c, a, and a1 be given as in the statement of (M2). Now
assume for contradiction M, a (vci but M, a1 * vci . Consequently, a ‰ a1. If a ă a1,
then we obtain a contradiction because of the clause vci Ñ 2F v

c
i and if on the other hand

a1 ă a, we obtain a contradiction to the clause vci Ñ 2P v
c
i .

To prove (M3), we divide it into several auxiliary claims:

(M3.1) For every a P Z it holds that M, a (p1 if and only if a ‰ 1 (here we assume that 1
is the initial world)

(M3.2) For every i and a with 1 ď i ď n, a P Z, and a ą i, it holds that M, a (pi

(M3.3) For every i with 1 ď i ď n, it holds that M, i * pi

(M3.4) For every a P Z, it holds that M, a (p1n if and only if a “ n

99

Chapter 4 Parametrization in Temporal Logics

(M3.5) For every a P Z, it holds that M, a * pn if and only if a “ n

(M3.1) holds for the following reasons:
We know by definition that the initial world s are in Ψ and by the clause of (C3.1),
namely s Ñ p1 follows M, 1 * p1. In addition, due to the clauses s Ñ 2F p1 and
sÑ 2P p1, follows for every M, a (p1 for every a ‰ 1.
Next we prove (M3.2) by induction on i. The induction basis i “ 1 holds because of
(C3.1). For the inductive step we assume that the claim holds for pi´1. The induction
hypothesis yields M, i (pi´1 ^2F pi´1. Now due to the clause pi´1 ^2F pi´1 Ñ 2F pi,
given in (C3.2), we obtain that M, i (2F pi.
Also (M3.3) we show via induction on i. The induction basis i “ 1 holds because of
(C3.1). For the inductive step we assume that the claim holds for pi´1. Due to the
induction hypothesis, follows M, pi´ 1q * pi´1. In addition we know from (M3.2) that
M, i (2F pi and by (C3.3) ϕ contains the clause pi´1 Ñ 2F pi. We obtain due to
M, i (2F pi, that M, pi´ 1q (2F pi can only holds if M, i * pi.
To show (M3.4) observe that due to (M3.2) and (M3.3) we have M, a (pn ^ 2F pn
if and only if a “ n. Finally the (C3.4) clause pn ^ 2F pn Ø p1n provides the desired
statement of (M3.4).
To prove the last claim (M3.5) observe that (M3.5) holds for every a P Z with n ď a, since
(M3.2) and (M3.3) hold. Additionally, due to (M3.4) we have M, n (p1i. In combination
with the clause (C3.5) p1n Ñ 2ppn, it holdsM, a (pn for every a ă n. Finally we obtain
M, a * pn if and only if a “ n.
Next we combine the auxiliary claims to prove the statement of (M3) as follows:
M, a (pi holds due to (M3.2) and (M3.3) for every i ď a. From (M3.5) we obtain that
M, a (pi holds for i “ n. In the final step we prove (M3) via induction on i starting
from i “ n. From the induction hypothesis we obtain M, i` 1 (pi`1 ^2P pi` 1. Then
in combination with the clause (C3.6) pi`1^2P pi`1 Ñ 2P pn, we obtainM, i`1 (2P pi
and therefore M, a (pi if and only if a ‰ i.
It remains to prove the last claim (M4). ObserveM, i (2F pi^2P pi holds due to (M3).
Now suppose for contradiction that there are i and j, such that either M, i (cj but
M, i * vji or M, i * cj but M, i (vji . In the case of M, i (cj but M, i * vji consider
the clause (C4) 2F pi^2P pi^cj Ñ vji . AsM, i (2F pi^2P pi, we obtain thatM, i (vji
which contradicts the assumption. Now for the M, i * cj but M, i (vji case, consider
the clause 2F pi^2P pi^ v

j
i Ñ cj , which was added by (C4). SinceM, i (2F pi^2P pi,

we obtain that M, i (cj ; again a contradiction.
M, a (vci holds for every 1 ď i ď n and a P Z with exactly one of the three color
1 ď c ď 3, because of the claims (M1) and (M4). Additionally the choice of the color c is
independent of a, due to (M2). Accordingly, the coloring f that assigns the unique color
c to every vertex vi such that M, a (vci forms a partition of the vertex set of G. We
claim that f is also a valid 3-coloring of G. Assume for the sake of contradiction that,
there is an edge tvi, vju P EpGq such that c “ fpviq “ fpvjq. Observe the clause (C5)
 vci _ v

c
j . Due to the definition of f , we obtain thatM, a * vci _ v

c
j for every a P Z,

a contradiction to our assumption that M (ϕ. This concludes the proof.

100

4.2 Backdoors for Linear Temporal Logic

In [AKRZ13, Theorem 5] the authors show the satisfiability of LTLOKROM for O P t2P ,2F u

is NP-hard. From this we conclude the NP-completeness already holds for backdoor
sets of size zero.

Corollary 4.34.
Let O P t2P ,2F u. Then EvalOpKROMq is paraNP-complete.

101

CHAPTER 5

CONCLUSION

In this thesis we examine the parameterized complexity of default logic as well as temporal
logics. First we introduced a dynamic programming algorithm, that decides whether a
given default theory has a stable extension, and runs in linear time. It can be also used
to enumerate all stable default sets with a pre-computation that is linear and followed
by linear delay to output the solutions. The algorithm operates on tree-decompositions
with bounded width of the semi-primal graph of a given default theory. Despite already
known linear time results for the stable extension existence problem, we are able to
improve the runtime that is triple exponential instead of at least quintuply exponential
in the treewidth. We think that our algorithm can be modified to work on the tree-
decomposition of the incidence graph. Therefore we require to handle the cases where
the prerequisite, justification and conclusion do not appear in one bag. Consequently, we
need some auxiliary states, as in concept of answer set programming [FHMW17]. An
interesting task for further research is whether and how we can improve the runtime of
the algorithm.
We also introduced the concept of strong backdoors for default logic and examine the
problems of backdoor detection and backdoor evaluation, both parametrized by the
size of the backdoor set. We have shown, starting from the initial CNF-class, the back-
door evaluation problem is fixed-parameter tractable for all considering target classes
HORN, KROM, MONOTONE and POSITIVE-UNIT. Contrary, the evaluation problem
is more challenging. It turned out that it is in para-NP for the target class KROM
and para-NP-complete for the target class HORN. Further we have a upper bound
para-∆p

2 for the target class MONOTONE while it is fixed-parameter tractable for
POSITIVE-UNIT. A consequent step will be the investigation of the remaining lower
bounds. It would be also interesting to examine the remaining Schaefer classes, like dual-
HORN, 1-and 0-valid [Sch78] as well as renameable-HORN and QHORN [BCH90, BHS94].

103

Chapter 5 Conclusion

In the second part of the thesis we established an almost complete classification of
all possible operator fragments of the temporal satisfiability problem parameterized by
temporal depth and different notions of treewidth or path-width respectively. Additionally,
we give an almost complete classification with respect to the Boolean fragments in Post’s
lattice. We adapted the concept of [Pra13] and show that the FPT-result holds for
all three considered temporal logics (CTL‹, CTL‹ and LT L), when we restrict it to the
temporal operator next. By adding only one additional operator the parameterized
satisfiability problem become Wr1s-hard. We present two new formula representations as
relational structures, the syntax tree and syntax circuit. It turns out that the most parts
of the results do not distinguish between the representation forms. Only the tAFu case
remains open for the syntax trees. If we forgo the parameter temporal depth, the cases
tAXu or tA,Xu remains open. It is not clear whether these fragments are fixed-parameter
tractable with the support of syntax tree parameterized by path-width. We have prove the
Wr1s-hardness for those fragments for both, syntax tree and syntax circuit, parameterized
by treewidth. Surprisingly, the satisfiability problem in LT L restricted to only X operator
on syntax trees parameterized by treewidth is fixed-parameter tractable, but on syntax
circuits parameterized by path-width it is Wr1s-hard.
Further we present a generalisation of Courcelle’s Theorem to work on infinite signatures
for parameterized problems expressed by a uniform family of MSO-formulae. Further
interesting research is to investigate other parameters beyond the common measures of
path-width or treewidth and temporal depth.
In the last part of this thesis we bring together the concepts of strong backdoors and the
causal fragment of linear temporal logic. We have proved the fixed parameter tractability
for the backdoor detection problem for any considered operators 2̊,2P ,2F for both
fragments HORN and KROM. In contrast to the evaluation of backdoors is only for the
target class HORN restricted to the 2̊-operator fixed-parameter tractable. The backdoor
evaluation problem becomes para-NP-complete if we allow both operators 2P and 2F .
For the target class KROM the evaluation problem is para-NP-complete independently
of the chosen operators. Merely the case for the target class HORN of the backdoor
evaluation problem restricted to either 2P or 2F remains open and poses a possible
research task.

104

BIBLIOGRAPHY

[Abu10] F. N. Abu-Khzam, A kernelization algorithm for d-hitting set, Journal of
Computer and System Sciences 76 (2010), no. 7, 524–531.

[AC81] E. A. Emerson and E. M. Clarke, Design and synthesis of synchronisation
skeletons using branching time temporal logic, Logic of Programs, Lecture
Notes in Computer Science, vol. 131, Springer Verlag, 1981, pp. 52–71.

[AH85] E. A. Emerson and J. Y. Halpern, Decision procedures and expressiveness
in the temporal logic of branching time, Journal of Computer and System
Sciences 30 (1985), no. 1, 1–24.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases: The logical
level, 1st ed., Boston, MA, USA, 1995.

[AKRZ13] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev, The com-
plexity of clausal fragments of LTL, arXiv:1306.5088 (2013).

[AN08] Hajirasouliha I. Hormozdiari F. Sahinalp SC. Alon N., Dao P, Biomolecular
network motif counting and discovery by color coding, Bioinformatics, 2008.

[BBC`10] M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor, and H. Vollmer,
The complexity of problems for quantified constraints, Theory Computing
Systems 47 (2010), 454–490.

[BCG`12] E. Böhler, N. Creignou, M. Galota, S. Reith, H. Schnoor, and H. Vollmer,
Complexity classifications for different equivalence and audit problems for
Boolean circuits, Logical Methods in Computer Science 8 (2012), no. 3:27,
1–25.

[BCH90] E. Boros, Y. Crama, and P.L. Hammer, Polynomial-time inference of all
valid implications for horn and related formulae, no. 1-4, 21–32.

105

Bibliography

[BCHW16] Bernhard Bliem, Günther Charwat, Markus Hecher, and Stefan Woltran,
D-FLATˆ2: Subset minimization in dynamic programming on tree decompo-
sitions made easy, 27–34.

[BdV01] P. Blackburn, M. de Rijke, and Y. Venema, Modal logic, Cambridge University
Press, New York, NY, USA, 2001.

[BHS94] E. Boros, P. L. Hammer, and X. Sun, Recognition of q-Horn formulae in
linear time, no. 1, 1–13.

[BK08] H. Bodlaender and A. M. C. A. Koster, Combinatorial optimization on
graphs of bounded treewidth, no. 3, 255–269.

[BMM`11] O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and
H. Vollmer, Model Checking CTL is almost always inherently sequential,
Logical Methods in Computer Science 7 (2011), no. 2.

[BMTV09] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer, The Complexity of
Propositional Implication, no. 18, 1071–1077.

[BMTV10] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer, The Complexity of
Reasoning for Fragments of Default Logic, Journal of Logic and Computation
(2010).

[BTV12] A. Beyersdorff, O.and Meier, M. Thomas, and H. Vollmer, The complexity of
reasoning for fragments of default logic, Journal of Logic and Computation
22 (2012), no. 3, 587–604.

[CE12] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order
logic, a language theoretic approach, Cambridge University Press, 2012.

[CKX10a] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover,
no. 40–42, 3736–3756.

[CKX10b] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover,
Theoretical Computer Science 411 (2010), no. 40–42, 3736–3756.

[CMVT12] N. Creignou, A. Meier, H. Vollmer, and M. Thomas, The Complexity of
Reasoning for Fragments of Autoepistemic Logic, ACM Transactions on
Computational Logic 13 (2012), no. 2, 1–22.

[Cou90] Bruno Courcelle, The monadic second-order logic of graphs. i. recognizable
sets of finite graphs, Inf. Comput. 85 (1990), no. 1, 12–75.

[CR14] M. Carrillo and D. A. Rosenblueth, {CTL} update of kripke models through
protections, Artificial Intelligence 211 (2014), 51 – 74.

[DF99] R. G. Downey and M. R. Fellows, Parameterized complexity, New York, NY,
USA, 1999.

[DF13] R. Downey and M. Fellows, Fundamentals of parameterized complexity, 2013.

106

Bibliography

[DS02] S. Demri and P. Schnoebelen, The Complexity of Propositional Linear Tem-
poral Logics in Simple Cases, Information and Computation 174 (2002),
no. 1, 84–103 (en).

[EG97] T. Eiter and G. Gottlob, The complexity class ΘP
2 : Recent results and

applications in AI and modal logic, Proceedings of the 11th International
Symposium on Fundamentals of Computation Theory (FCT’97) (Kraków,
Poland) (Bogdan S. Chlebus and Ludwik Czaja, eds.), vol. 1279, September
1997, pp. 1–18.

[EJT10] M. Elberfeld, A. Jakoby, and T. Tantau, Logspace versions of the theorems of
bodlaender and courcelle, Proceedings of the 51th Annual IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society, 2010.

[Eme90] E. Allen Emerson, Temporal and modal logic, Handbook of theoretical
computer science (vol. B): formal models and semantics (Jan van Leeuwen,
ed.), MIT Press, Cambridge, MA, USA, 1990, pp. 995–1072.

[FDP01] M. Fisher, C. Dixon, and M. Peim, Clausal temporal resolution, ACM
Transactions on Computational Logic 2 (2001), no. 1, 12–56.

[Fer10] Henning Fernau, A top-down approach to search-trees: Improved algorithmics
for 3-hitting set, no. 1, 97–118.

[FG06] J. Flum and M. Grohe, Parameterized complexity theory, vol. XIV, Berlin,
2006.

[FHMW17] J. K. Fichte, M. Hecher, M. Morak, and S. Woltran, Answer set solving with
bounded treewidth revisited, Proceedings of the 14th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’17) (Espoo,
Finland) (Marcello Balduccini and Tomi Janhunen, eds.), vol. 10377, July
2017.

[FHS17] J. K. Fichte, M. Hecher, and I. Schindler, Default Logic and Bounded
Treewidth, CoRR arXiv:1706.09393 (2017).

[FL79a] M. J. Fischer and R. E. Ladner, Propositional dynamic logic of regular
programs, Journal of Computer and System Sciences 18 (1979), no. 2, 194 –
211.

[FL79b] M. J. Fischer and R. E. Ladner, Propositional modal logic of programs,
Journal of Computer and System Sciences 18 (1979), 194–211.

[FMR08] E. Fischer, J. A. Makowsky, and E. V. Ravve, Counting truth assignments
of formulas of bounded tree-width or clique-width, no. 4.

[FMS16] J. K. Fichte, A. Meier, and I. Schindler, Strong backdoors for default logic,
Proceedings of the 19th International Conference on Theory and Applications
of Satisfiability Testing (SAT’16), 2016.

107

Bibliography

[GHR94] D. M. Gabbay, I. Hodkinsion, and M. Reynolds, Temporal logic: mathematical
foundations and computational aspects, vol. 1, Oxford University Press, Inc.
New York, USA, 1994.

[Got92] Georg Gottlob, Complexity results for nonmonotonic logics, no. 3, 397–425.

[GS12] S. Gaspers and S. Szeider, Backdoors to satisfaction, The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows
on the Occasion of His 60th Birthday, LNCS, vol. 7370, Springer, 2012,
pp. 287–317.

[Hal76] Rudolf Halin, S-functions for graphs, Journal of Geometry 8 (1976), no. 1,
171–186.

[Hal95] Joseph Y. Halpern, The effect of bounding the number of primitive proposi-
tions and the depth of nesting on the complexity of modal logics, Artif. Intell.
75 (1995), no. 2, 361–372.

[HDE95] J. Flum H.-D. Ebbinghaus, Finite model theory, Springer Monographs in
Mathematics, vol. 2, Springer Berlin Heidelberg, 1995.

[HSS10] E. Hemaspaandra, H. Schnorr, and I. Schnoor, Generalized modal satisfiabil-
ity, Journal of Computer and System Sciences 76 (2010), 561–578.

[Imm99] Neil Immerman, Descriptive complexity, Springer, 1999.

[Kon01] Igor Kononenko, Machine learning for medical diagnosis: history, state of
the art and perspective, Artificial Intelligence in Medicine 23 (2001), no. 1,
89 – 109.

[KP05] Y. Kesten and A. Pnueli, A compositional approach to ctl* verification,
Theoretical Computer Science 331 (2005), no. 2, 397 – 428, Formal Methods
for Components and Objects.

[Kri63] S. Kripke, Semantical considerations on modal logic, Acta Philosophica
Fennica, vol. 16, 1963, pp. 84–94.

[KS93] E. Korach and N. Solel, Tree-width, path-widt, and cutwidth, Discrete Applied
Mathematics 43 (1993), no. 1, 97–101.

[Lew79] H. Lewis, Satisfiability problems for propositional calculi, Mathematical
Systems Theory 13 (1979), 45–53.

[LM15] M. Lück and A. Meier, LTL fragments are hard for standard parameterisa-
tions, CoRR abs/1504.06187 (2015).

[LMS17] M. Lück, A. Meier, and I. Schindler, Parametrised complexity of satisfiability
in temporal logic, ACM Trans. Comput. Log. 18 (2017), no. 1, 1:1–1:32.

108

Bibliography

[MMS`10] A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and F. Weiss,
The Complexity of Satisfiability for Fragments of Hybrid Logic – Part I,
Journal of Applied Logic 8 (2010), no. 4, 409–421.

[MMTV09] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer, The complexity
of satisfiability for fragments of CTL and CTL‹, International Journal of
Foundations of Computer Science 20 (2009), no. 5, 901–918.

[MOSS16] A. Meier, S. Ordyniak, R. Sridharan, and I. Schindler, Backdoors for linear
temporal logic, 11th International Symposium on Parameterized and Exact
Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, LIPIcs,
vol. 63, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 23:1–
23:17.

[MS13] A. Meier and T. Schneider, Generalized satisfiability for the description logic
ALC, Theoretical Computer Science 505 (2013), no. 0, 55 – 73, Theory and
Applications of Models of Computation 2011.

[Pnu77] A. Pnueli, The temporal logic of programs, Proc. 18th Symposium on Founda-
tions of Computer Science, IEEE Computer Society Press, 1977, pp. 46–57.

[Pos41] E. Post, The two-valued iterative systems of mathematical logic, Annals of
Mathematical Studies 5 (1941), 1–122.

[Pra93] Henry Prakken, A logical framework for modelling legal argument, Proceed-
ings of the 4th International Conference on Artificial Intelligence and Law
(New York, NY, USA), ICAIL ’93, ACM, 1993, pp. 1–9.

[Pra13] M. Praveen, Does treewidth help in modal satisfiability?, ACM Transactions
on Computational Logic 14 (2013), no. 3, 18:1–18:32.

[Pri57] A. N. Prior, Time and modality, Clarendon Press, Oxford, 1957.

[Rei80] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980),
81–132.

[Rei87] Raymond Reiter, A theory of diagnosis from first principles, Artificial Intel-
ligence 32 (1987), no. 1, 57 – 95.

[RN84] Seymour P. D. Robertson N., Graph minors. iii. planar tree-width, Journal
of Combinatorial Theory, Series B 36 (1984), no. 1, 49–64.

[Ros99] Riccardo Rosati, Model checking for nonmonotonic logics: Algorithms and
complexity, Proceedings of the 16th International Joint Conference on Artifi-
cial Intelligence (ICJAI’99) (Stockholm, Sweden) (Thomas Dean, ed.), July
1999.

109

Bibliography

[Sch78] Thomas J. Schaefer, The complexity of satisfiability problems, Proceedings
of the 10th Annual ACM Symposium on Theory of Computing (STOC’78)
(San Diego, CA, USA) (Richard J. Lipton, Walter A. Burkhard, Walter J.
Savitch, Emily P. Friedman, and Alfred V. Aho, eds.), 1978, pp. 216–226.

[Sch81] C. P. Schnorr, On self-transformable combinatorial problems, Mathematical
Programming at Oberwolfach (H. König, B. Korte, and K. Ritter, eds.),
vol. 14, 1981, pp. 225–243.

[Sch94] Petra Scheffler, A practical linear time algorithm for disjoint paths in graphs
with bounded tree width, Fachbereich Mathematik - Report 396 (1994).

[SS09] M. Samer and S. Szeider, Fixed-parameter tractability, Handbook of Satis-
fiability (Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
eds.), 2009, pp. 425–454.

[Sti90a] Jonathan P. Stillman, It’s not my default: The complexity of membership
problems in restricted propositional default logics, Proceedings of the 8th
National conference on Artificial Intelligence (AAAI’90) (Boston, MA, USA)
(Thomas Dietterich and William Swartout, eds.), vol. 1, July 1990, pp. 571–
578.

[Sti90b] , The Complexity of Horn Theories with Normal Unary Defaults,
Proceedings of the 8th Canadian Artificial Intelligence Conference (AI’90),
1990.

[Vol99] Heribert Vollmer, Introduction to circuit complexity, Springer Verlag, 1999.

[VS85] M. Y. Vardi and L. Stockmeyer, Improved upper and lower bounds for modal
logics of programs, STOC ’85: Proceedings of the seventeenth annual ACM
symposium on Theory of computing (New York, NY, USA), ACM, 1985,
pp. 240–251.

[WGS03] R. Williams, C. Gomes, and B. Selman, Backdoors to typical case complexity,
Proceedings of the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI’03) (Acapulco, Mexico) (Georg Gottlob and Toby Walsh, eds.),
August 2003, pp. 1173–1178.

110

LIST OF FIGURES

2.1 Parameterized complexity classes . 13
2.2 Post’s lattice. 17

3.1 Semi-Primal Graph SpDq of Example 3.2 25
3.2 tree-decomposition of a Graph SpDq of Example 3.2 25
3.3 Pretty LTD of the SpDq in Example 3.3 32

4.1 Example syntactical circuit Cϕ as relational structure. 57
4.2 Infinite application of Courcelle’s Theorem to each slice pQ, κqiPN, viz.

pQ, κqi :“ tx P Σ˚|x P Q and κpxq “ iu. 58
4.3 Transformation of a model to a treelike quasi-model 61
4.4 From constant path-width to unbounded treewidth by distributing X . . . 66
4.5 Bag augmentation . 70
4.6 Example: EG J3

p is false in w0, Qp has weight ą 2. 77
4.7 Parameterized complexity of the satisfiability problem of CTL and LTL,

parameterized by circuit path-width or treewidth, and temporal depth. . . 79
4.8 Circuit transformation from AG to nested AX for n “ 3. 81
4.9 Transformation of the syntax tree and syntax circuit for c “ 3. 83
4.10 Temporal interpretation M for a given graph G, where M (ϕ 97

111

INDEX

Assignment
ϑ, 5

Backdoors in PL, 41
Base, 15

Clause
c, 5

Clone, 15
CNF, 41
Conjunctive Normal Form

CNF, 5
Consistent Assignment, 86

Default Logic, 18
Algorithm
DPpT q, 25
EvalExt, 49
NGDăpT ,Sq, 38
SPRIM, 27

Backdoors in DL, 46
Bag-Default Parts, 33
Conclusion

C , 18
Default Rule
δ, 18

Default Theory
TDL “ xW,Dy, 18

DL, 18
Extended Literal, 42

Fixed Point Semantics, 18
Justification

J , 18
Local Partial Solution, 35

Local Partial Solution Part, 35
Partial Extension, 33
Partial Solution, 34
Prerequisite

P, 18
Problem

BdDetection, 51
EvalExt, 48

Reduct, 42
Semi-Primal Graph
SpDq, 23

Stable Extension, 18
c-satisfiable, 22
j-satisfiable, 22
p-satisfiable, 22

Stage Construction, 18
Trivalent Assignment Sets, 43
Variables Below t, 33

First Order Logic
Alphabet

ΣFO, 6
Alphabet, 6
Semantics, 7
Syntax, 6
Term, 6

113

Index

TFO, 6
Fixed Parameter Tractability

FPT, 11
fpt-algorithm, 11

Graph Representations
Semi-Primal Graph
SpDq, 23

Syntax Circuit
Cϕ, 55

Syntax Tree
Sϕ, 56

HORN, 41

Kripke Structure, 9
K, 9

KROM, 41

Literal
l, 5

Monadic Second Order Logic, 8
MSO, 8
SO, 8

MONOTONE, 41

Parameter
Temporal Depth

td, 10
Parameterized Complexity, 11

κ-Bounded Function, 11
Fixed Parameter Tractability

FPT, 11
Parameterized Problem, 11
Parametrization, 11
Slice, 12
Tree-Decomposition
T “ pT, χq, 13

W[P]-Hierarchy, 12
para-NP, 12
XP, 13

POSITIVE-UNIT, 41
Post’s Lattice, 15

Base, 15

Clone, 15
Problem

BdDetection, 51
CTL-Sat, 10
EvalExt, 48
3HittingSet, 89
Imp, 46
LTL-Sat, 10
Tree-Width, 14
Sat, 5
Taut, 5
VertexCover, 88

Set of all Truth-Assignments
Ap¨q, 5

Slice, 12
Structures, 7

Temporal Logics, 9
Backdoors, 87

Consistent Assignment, 86
Closure, 59
Depth of a Quasi-Model, 60
Detect, 87
Eval, 87
Formula Pathwidth, 56
Formula Treewidth, 56
Quasi-Models, 59
Semantics, 9, 85
Temporal Depth, 10

Temporal Satisfiability
CTL-Sat, 10
LTL-Sat, 10

Theory
Thp), 5

Tree-Decomposition
Labeled Tree-Decomposition, 24
Nice Tree-Decomposition, 23
Pretty Tree-Decomposition, 24
T “ pT, χq, 13

Vocabularies, 7

W[P]-Hierarchy
W rPs, 12

114

LEBENSLAUF

Persönliche Daten

Name Irena Schindler

Geburtsdaten 05.07.1984 in Alma-Ata

Familienstand Verheiratet, zwei Kinder

Schulbildung

1995 – 1996 Grundschule Vinhorst

1996 – 1998 Orientierungsstufe Ahlem

1998 – 2005 Bismarckschule Hannover

Hochschulbildung

2005 – 2006 Studium der Wirtschaftswissenschaften,
Leibniz Universität Hannover

2006 – 2013 Studium der Mathematik mit Studienrichtung Informatik,
Leibniz Universität Hannover

10.2013 – 12.2017 Wissenschaftliche Mitarbeiterin am Institut für
Theoretische Informatik an der Leibniz Universität Hannover

117

	Introduction
	Parameterized Complexity
	Temporal Logics
	Default Logic
	Publications

	Preliminaries
	First Order and Second Order Logic
	Temporal Logics
	Parameterized Complexity
	The W-Hierarchy
	Tree-Decomposition
	The Theorem of Courcelle

	Post's Lattice
	Default Logic

	Parametrization in Default Logic
	Default Logic and Bounded Treewidth
	Graph Representations of Default Theories
	The Idea of Dynamic Programming for DL
	Computing Stable Default Sets

	Solving Default Logic using Backdoors
	The Implication Problem
	Backdoor Set Evaluation in Default Logic
	Backdoor Set Detection in Default Logic

	Parametrization in Temporal Logics
	Temporal Logics on Syntax graph Representations with Bounded Treewidth
	Structural Representations of Formulae
	Fixed-Paremeter Tractable Fragments
	Courcelle's Theorem with Infinite Signature
	Design of MSO-Temporal Formulae

	Fixed-Parameter Intractable Fragments
	Parametrization by Temporal Depth and Treewidth
	Parametrization only by Temporal Depth or Treewidth

	Parameterized Complexity of Satisfiability in Post's Lattice

	Backdoors for Linear Temporal Logic
	Backdoor Set Detection in LTL
	Evaluation of a Backdoor Set in LTL

	Conclusion
	Bibliography
	List of Figures
	Index
	Lebenslauf

