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Abstract

Implicit graph representations are immutable data structures for restricted classes of
graphs such as planar graphs. A graph class has an implicit representation if the vertices
of every graph in this class can be assigned short labels such that the adjacency of two
vertices can be decided by an algorithm which gets the two labels of these vertices as input.
A representation of a graph in that class is then given by the set of labels of its vertices. The
algorithm which determines adjacency is only allowed to depend on the graph class. Such
representations are attractive because they are space-efficient and in many cases also allow
for constant-time edge queries. Therefore they outperform less specialized representations
such as adjacency matrices or lists and are even optimal in an asymptotic sense.

In the first part of this thesis we investigate the limitations of such representations when
constraining the complexity of an algorithm which decodes adjacency. First, we prove that
imposing such computational constraints does indeed affect what graph classes have an
implicit representation. Then we observe that the adjacency structure of almost all graph
classes that are known to have an implicit representation can be described by formulas of
first-order logic. The quantifier-free fragment of this logic can be characterized in terms of
RAMs: a graph class can be expressed by a quantifier-free formula if and only if it has an
implicit representation where edges can be queried in constant-time on a RAM without
division. We provide two reduction notions for graph classes which reveal that trees and
interval graphs are representative for certain fragments of this logic. We conclude this part
by providing a big picture of the newly introduced classes and point out viable research
directions.

In the second part we consider the tractability of algorithmic problems on graph classes
with implicit representations. Intuitively, if a graph class has an implicit representation
with very low complexity then it should have a simple adjacency structure. Therefore
it seems plausible to expect certain algorithmic problems to be tractable on such graph
classes. We consider how realistic it is to expect an algorithmic meta-theorem of the
form “if a graph class X has an implicit representation with complexity Y then problem
Z is tractable on X”. Our considerations quickly reveal that even for the most humble
choices of Y and various Z this is either impossible or leads to the frontiers of algorithmic
research. We show that the complexity classes of graph classes introduced in the previous
chapter can be interpreted as graph parameters and therefore can be considered within the
framework of parameterized complexity. We embark on a case study where Z is the graph
isomorphism problem and Y is the quantifier-free, four-variable fragment of first order
logic with only the order predicate on the universe. This leads to a problem that has been
studied independently and resisted classification for over two decades: the isomorphism
problem for circular-arc (CA) graphs. We examine how a certain method, which we call
flip trick, can be applied to this problem. We show that for a broad class of CA graphs the
isomorphism problem reduces to the representation problem and as a consequence can be
solved in polynomial-time.

Keywords: adjacency labeling schemes, descriptive complexity of graph properties, re-
ductions for graph classes, CA graph isomorphism, pointer numbers
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Zusammenfassung

Implizite Graphrepräsentationen sind statische Datenstrukturen für beschränkte Graphk-
lassen wie zum Beispiel planare Graphen. Eine Graphklasse hat eine implizite Repräsenta-
tion, falls die Knoten jedes Graphen dieser Klasse mit kurzen Labels beschriftet werden
können, sodass die Adjazenz zweier Knoten von einem Algorithmus entschieden wer-
den kann, welcher die zwei Labels der Knoten als Eingabe erhält. Eine Repräsentation
eines Graphen aus dieser Klasse besteht aus der Menge der Labels seiner Knoten. Der
Algorithmus, welcher die Adjazenz entscheidet, darf nur von der Graphklasse abhängen.
Solche Repräsentationen sind attraktiv, da sie speichereffizient sind und oftmals auch
Kantenabfragen in konstanter Zeit zulassen. Deshalb übertreffen sie weniger spezialisierte
Repräsentationen wie Adjazenzmatrizen oder -listen und sind sogar asymptotisch optimal.

Im ersten Teil dieser Arbeit untersuchen wir, welche Auswirkungen das Einschränken
der Komplexität von Algorithmen, welche die Adjazenz decodieren, auf die Menge von
Graphklassen, die eine implizite Repräsentation haben, hat. Es stellt sich heraus, dass
die Menge der Graphklassen mit so einer Repräsentation tatsächlich von der gewählten
Komplexität abhängt. Anschließend beobachten wir, dass die Adjazenzstruktur von
fast allen Graphklassen, von denen man weiß, dass sie eine implizite Repräsentation
haben, in Prädikatenlogik erster Stufe ausgedrückt werden kann. Das quantorenfreie
Fragment dieser Logik kann wie folgt charaktersiert werden: eine Graphklasse kann
genau dann durch eine quantorenfreie Formel erster Stufe ausgedrückt werden, wenn sie
eine implizite Repräsentation hat, in der Kantenabfragen in konstanter Zeit auf einer RAM
ohne Division durchgeführt werden können. Wir führen zwei Reduktionsbegriffe für
Graphklassen ein, welche es uns ermöglichen zu zeigen, dass Bäume und Intervalgraphen
für bestimmte Fragmente dieser Logik repräsentativ sind. Im letzten Teil fassen wir unsere
Ergebnisse zusammen und stellen die verschiedenen, neu eingeführten Klassen und deren
Beziehungen in einem Schaubild dar.

Im zweiten Teil beschäftigen wir uns mit der Komplexität algorithmischer Probleme
auf Klassen von Graphen mit impliziten Repräsentationen. Intuitiv gesehen sollte eine
Graphklasse mit einer impliziten Repräsentation von geringer Komplexität eine ebenso
simple Adjazenzstruktur haben. Daher erscheint es plausibel zu erwarten, dass bestimmte
algorithmische Probleme effizient auf solchen Graphklassen lösbar sind. Wir untersuchen
die Frage, ob sich ein algorithmisches Metatheorem der Form „wenn eine Graphklasse
X eine implizite Repräsentation mit Komplexität Y hat, dann ist Problem Z effizient auf
X lösbar“ beweisen lässt. Es stellt sich schnell heraus, dass selbst für die bescheidenste
Wahl von Y und verschiedene Z dies entweder unmöglich ist oder uns an die Grenzen
der Forschung in der Algorithmik führt. Daher führen wir eine Fallstudie durch, wobei Z
das Graphenisomorphieproblem ist und Y ein spezielles Fragment der Prädikatenlogik.
Dies führt uns zum Isomorphieproblem für Kreisbogengraphen, welches seit mehr als
zwei Jahrzenten trotz beachtlicher Anstrengungen nicht klassifiziert werden konnte. Wir
schauen uns an, wie eine bestimmte Methode (Flip Trick) auf dieses Problem angewandt
werden kann. Es stellt sich heraus, dass für eine große Klasse von Kreisbogengraphen
das Isomorphieproblem auf das Repräsentationsproblem reduzierbar ist und somit in
Polynomialzeit gelöst werden kann.
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Chapter 1

Introduction

Finding efficient representations for various kinds of data is among the most fundamental
tasks in computer science. Depending on the type of data and its intended purpose there
are various constraints that have to be taken into consideration. The simplest scenario is
that of archiving data. In this case the main concern is to use as few bits as possible to store
the data, which can be achieved by a compression scheme. A drawback of compression
schemes is that every time a computation needs to be performed on the data it has to be
decompressed beforehand. While this is a reasonable limitation in the context of an archive
it might not be if one expects to regularly perform computations on the data. To find a more
suitable representation in that case it has to be specified what kind of operations need to be
performed on the data. Then the goal is to find a representation which does not consume
much space and where these operations can be performed quickly. A representation that
realizes these requirements for a certain type of data and a prescribed set of operations is
called a data structure.

An important type of data are relational structures. In this thesis we focus on graphs,
which are a ubiquitous special case of relational structures. The data structures that we are
interested in are only equipped with one operation: determine whether two given vertices
are adjacent. We call this operation an edge query. If one wants to store arbitrary graphs
then adjacency matrices are optimal in the following sense. First, querying an edge can
be performed in constant-time in the RAM model. Secondly, adjacency matrices require
n2 bits to represent a graph on n vertices. This is asymptotically optimal because there
are at least 2cn2

graphs on n vertices for sufficiently large n and some c > 0. But, what if
one only wants to represent a certain class of graphs such as interval graphs? An interval
graph is a graph where every vertex can be assigned to a closed interval on the real line
such that two vertices are adjacent if and only if their corresponding intervals intersect.
It can be shown that there are at most 2O(n log n) interval graphs on n vertices. Therefore
an adjacency matrix is space-inefficient for such graphs. An optimal representation for
interval graphs can be obtained as follows. For a given interval graph with n vertices
consider its interval model, i.e. the set of n intervals that are associated with the vertices.
Enumerate the endpoints of the intervals from left to right and label each vertex with
the two endpoints of its interval. See Figure 1.1 for an example. Observe that the set of
labels of the vertices are a representation of the graph because the interval model can be
reconstructed from it. Moreover, to see whether two vertices are adjacent it suffices to
inspect only their labels. A label requires log(4n2) ≤ 4 log n bits and therefore an interval
graph on n vertices can be stored using at most 4n log n bits, which is asymptotically
optimal. The idea behind this representation for interval graphs can be generalized as
follows.

Let C be a graph class that has 2Θ(n f (n)) graphs on n vertices for some function f ∈ o(n);
if f is not sublinear in n then adjacency matrices are already optimal. We want to find a
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FIGURE 1.1: Interval model and the resulting labeling of the interval graph

decision algorithm A called label decoder algorithm and a constant c ∈ N called label
length such that the following holds. For every graph G in C with n vertices there exists a
function ` which maps the vertices of G to binary strings of length c f (n) such that for all
vertices u 6= v of G it holds that u and v are adjacent iff A accepts the input (`(u), `(v)).
The tuple (A, c) is called an implicit representation (or labeling scheme) for C and ` is
called a labeling of G. Observe that the runtime of the label decoder A is the time required
to perform an edge query. Due to the length of the labels (c f (n)) such a representation
is asymptotically space-optimal. In this thesis we restrict ourselves to the case where
f (n) = log n and call graph classes with at most 2O(n log n) graphs on n vertices small. A
lot of natural graph classes are small as we shall see.

The concept of implicit representations has been introduced in [Mul88] and [KNR92].
Arguably the most basic research question in this field is what graph classes admit an
implicit representation. While quite a lot graph classes are known to have an implicit
representation there is an absence of negative results. More precisely, for any graph class
that satisfies a weak uniformity condition (which is implied by being hereditary) there
has been no proof that this graph class does not have an implicit representation, even
when assuming strong computational constraints on the label decoder algorithm. Stated
differently, so far it was not known whether the computational aspect even matters with
respect to what graph classes have an implicit representation. We demonstrate that there
is indeed a complexity hierarchy for implicit representations. However, the graph classes
used to demonstrate these separations are far removed from any natural graph class, which
is unsatisfactory. Therefore we consider what algorithmic resources have been employed
to show that graph classes have implicit representations. We observe that for many graph
classes their simplest implicit representation is essentially a slight variation of the one
used for interval graphs. This is formalized by the statement that interval graphs are
complete for a class called GFO(<). This class contains almost all graph classes that are
currently known to have an implicit representation. The first-order logic formalism that
underlies the definition of GFO(<) supplies us with many other interesting sets of graph
classes with implicit representations. A particularly notable one is GFOqf. The class GFOqf
contains GFO(<) and can be alternatively described as the set of graph classes that have an
implicit representation with a constant-time label decoder algorithm. Therefore we deem
it to be a particularly interesting task to find a small and hereditary graph class that is not
in GFOqf. Three prominent examples of small and hereditary graph classes not known to
have implicit representations can be located in a generalization of GFOqf named PBS(N).
Informally, PBS(N) is the class that one obtains from GFOqf when allowing arbitrarily
long vertex labels. We introduce these and other complexity classes of labeling schemes as
a way to study the limitations of implicit representations. Our considerations suggest that
classically studied complexity classes such as P or even AC0 are not suitable in that regard.

Another important problem in the context of implicit representations is to find a
representation for a given graph. Consider an implicit representation (A, c) where A is the
label decoder algorithm and c the label length. Let G be a graph on n vertices. We call a
function ` which maps the vertices of G to strings of length c log n a representation of G
with respect to (A, c) if for all pairs of vertices u 6= v in G it holds that they are adjacent
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iff A accepts the input (`(u), `(v)). The representation problem for (A, c) is to find a
representation of G with respect to (A, c) under the promise that it exists. The canonical
representation problem for (A, c) has the additional requirement that whenever two graphs
G, H are isomorphic then the images of their computed representations must coincide.
For certain geometrical intersection graph classes such as interval graphs their implicit
representation directly corresponds to their geometrical representation. As a consequence,
certain choices for A and c lead to problems that haven been studied independently such
as the (canonical) representation problem for interval graphs. Circular-arc (CA) graphs
are a generalization of interval graphs where the vertices are mapped to arcs on the unit
circle instead of intervals on the real line. Even though the descriptive complexity of their
implicit representations are very similar, the tractability of the canonical representation
problem for CA graphs remains an open question whereas the one for interval graphs is
known to be solvable in logspace [Kö+11]. Intrigued by this discrepancy, we investigate a
certain approach to finding canonical representation for CA graphs in Chapter 4.

Publications

The results of Chapter 3 and the beginning of Chapter 4 are based on the conference article
[Cha16b] and its journal version [Cha17a], which has not been published yet. A novel
contribution in this thesis is the characterization of the class GFOqf in terms of constant-
time RAMs. The remainder of the thesis which deals with the canonical representation
problem for circular-arc graphs is based on the conference article [Cha16a] and its journal
version [Cha17b]. The content presented in Section 4.7 is novel as well and has not been
published previously.
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Chapter 2

Preliminaries

2.1 General Notation and Terminology

Let N = {1, 2, . . . } be the set of natural numbers and N0 is N ∪ {0}. For n ∈ N let
[n] = {1, 2, . . . , n} and let [n]0 = [n] ∪ {0}. We say two sets A, B overlap, in symbols
A G B, if A ∩ B, A \ B and B \ A are non-empty. When we say log n we mean dlog2 ne.
Let exp(n) = 2n and let exp0(n) = n and expi(n) = exp(expi−1(n)) for all i ≥ 1. For a
function f we write Im( f ) and dom( f ) to denote its image and domain, respectively. Let
A be a family of sets over some ground set U, i.e. A ⊆ P(U). The set A is called Helly if for
all subsets A′ of A it holds that the overall intersection of A′ is non-empty (∩x∈A′x 6= ∅)
whenever the pairwise intersection of A′ is non-empty (for all x, y ∈ A′ it holds that
x ∩ y 6= ∅). Let f be a k2-ary Boolean function and let A = (ai,j)i,j∈[k] be a (k× k)-matrix
over {0, 1} for some k ∈ N. We write f (A) to mean f (a1,1, a1,2, . . . , a1,k, a2,1, . . . , ak,k),
i.e. plugging in the values of A going from left to right and top to bottom. For two
graphs G, H we write G ∼= H to denote that they are isomorphic and G ⊆ H to mean
that G is an induced subgraph of H. For a graph G and a subset of its vertices V′ we
write G[V′] to mean the subgraph of G which is induced by V′. We write G to denote
the edge-complement of a graph G. The graph Kn denotes the complete graph on n
vertices for n ∈N. We speak of G as unlabeled graph to emphasize that we talk about the
isomorphism class of G rather than a specific adjacency matrix of G. A graph class is a set
of finite and unlabeled graphs, i.e. it is closed under isomorphism. For a graph class C and
n ∈N we write Cn to denote the set of all graphs in C with n vertices. Similarly, we write
C≤n to denote all graphs in C with at most n vertices. For a set of graph classes A we write
[A]⊆ to denote its closure under subsets, i.e. {C ⊆ D | D ∈ A}.

2.2 Complexity Theory

We use the term complexity class informally to mean a countable set of languages with
computational restrictions. Unless specified otherwise we consider languages over the
binary alphabet {0, 1}. Let ALL denote the set of all languages. Let R denote the set of
decidable languages. For a function t : N → N let TIME(t) denote the set of languages
that can be decided by a deterministic Turing machine in time t. For a set of functions
T where every t ∈ T has signature N → N let TIME(T) = ∪t∈TTIME(t). Let P be the
set of languages that can be decided in polynomial time, i.e. P = TIME(nO(1)). NP is the
set of languages that can be decided in polynomial time by a non-deterministic Turing
machine. PSPACE is the set of languages that can be decided in polynomial space by a
deterministic Turing machine. The class kEXP is defined as TIME(expk(nO(1))) for k ≥ 0.
This means 0EXP = P. If k = 1 we simply write EXP. For a language L let NPL denote the
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set of languages that can be decided by a non-deterministic Turing machine in polynomial
time with an oracle for L; this means the Turing machine can decide oracle queries of the
form ‘x ∈ L?’ in constant-time (the length of x must be polynomially bounded in terms of
the input length). For a set of languages A let NPA be ∪L∈ANP

L. The complexity class ΣP
k is

inductively defined as ΣP
1 = NP and ΣP

k+1 = NPΣP
k for k ≥ 1. The polynomial hierarchy PH

is ∪k∈NΣP
k .

A logspace transducer is a deterministic Turing machine M with a read-only input tape,
a work tape and a write-only output tape. The work tape is only allowed to use at most
O(log n) cells where n denotes the input length. To write onto the output tape M has a
designated state called output state with the following semantic. If M enters the output
state then the symbol in the current cell of the work tape is written to the current cell of the
output tape and the head on the output tape is moved one cell to the right. Other than that,
M cannot write or move the head on the output tape. This means as soon as something is
written to the output tape it cannot be modified afterwards. Let Σ and Γ be the input and
work alphabet of M respectively. Then M computes a function fM : Σ∗ → Γ∗. We say a
(partial) function f is computed by a logspace transducer M if f (x) = fM(x) whenever f (x)
is defined. We call f logspace-computable if there exists a logspace transducer M which
computes f . The class of logspace-computable functions is closed under composition. Let
f be a function which maps words over some alphabet to words over some other alphabet.
We say that the length of f is polynomially bounded if | f (x)| is polynomially bounded by
|x|. Only functions whose length is polynomially bounded can be logspace-computable
since the runtime of a logspace transducer is polynomially bounded. A language is in
logspace if its characteristic function is logspace-computable. Given two functions f and
g we say f is logspace-reducible to g if it can be shown that f is logspace-computable
under the premise that g is logspace-computable. Intuitively, this means that a logspace
transducer which computes g can be used as a subroutine when constructing a logspace
transducer for f . Even though it is in general not possible to write g(x) for some word
x to the work tape because it might be too long, it suffices to compute single bits of g(x)
‘on the fly’ as they are needed. Analogously, given three functions f , g, h we say f is
logspace-reducible to g and h if f can be shown to be logspace-computable under the
premise that g and h are logspace-computable. For two functions f and g we say that they
are logspace-equivalent if f is logspace-reducible to g and vice versa. We remark that this is
a more general definition than what is usually termed logspace reduction. However, since
we only use logspace reductions as a tool to design logspace algorithms in a structured
manner the level of detail of this definition suffices.

In the following we briefly define Boolean circuits and the two complexity classes AC0

and TC0 (we consider the logspace-uniform variant of these classes here). We consider
a (Boolean) circuit C with n input bits x1, . . . , xn to be a directed acyclic graph (DAG)
where all vertices with in-degree zero are called input gates and are labeled with x1, . . . , xn
and the other vertices are labeled with conjunction ‘∧’, disjunction ‘∨’ and negation ‘¬’.
Additionally, C has a single designated output gate which allows us to naturally interpret
C as an n-ary Boolean function fC (this natural interpretation requires that every negation
has in-degree one). For~a ∈ {0, 1}n we say C(~a) is the value fC(~a) computed by C on input
~a. The size of a circuit C is the number of non-input gates and the depth of C is the length
of a longest directed path in the underlying DAG of C. We say a family of circuits (Cn)n∈N

where Cn has n input gates decides a language L ⊆ {0, 1}∗ if x ∈ L iff Cn(x) = 1 for all
x ∈ {0, 1}n and n ∈ N. We say a family of circuits (Cn)n∈N is a family of AC0-circuits if
there exist c, d ∈N such that the size of Cn is at most nc and the depth of Cn is at most d
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for all n ∈N (polynomial size and constant depth). Suppose that besides ‘∧’, ‘∨’ and ‘¬’
we allow non-input gates to be labeled with ‘MAJ’ which has the following interpretation.
If a vertex/gate z is labeled with ‘MAJ’ and has in-neighbors y1, . . . , yk then z outputs one
iff the majority of y1, . . . , yk outputs one. We say a family of circuits is a family of TC0-
circuits if it satisfies the same condition as a family of AC0-circuits but can additionally use
majority gates. Unlike a Turing machine a family of circuits is an infinite object. In order to
guarantee that such a family has a finite description a so-called uniformity condition must
be imposed. A family of circuits (Cn)n∈N is logspace-uniform if there exists a logspace
transducer M such that on input n in unary it outputs a reasonable representation of Cn.
Let AC0 (TC0) be the set of languages that can be decided by a logspace-uniform family of
AC0-circuits (TC0-circuits). It holds that TC0 is a subset of logspace.

Let P denote a predicate such as being polynomial-time computable and let L and L′ be
languages over the alphabets Σ and ∆, respectively. We say L is P many-one reducible to
L′ if there exists a P function f : Σ∗ → ∆∗ such that x ∈ L iff f (x) ∈ L′ for all x ∈ Σ∗. The
complexity class AC0 can be lifted to a class of functional problems by allowing circuits to
have more than one output gate. This allows us to talk about AC0 many-one reducibility.

2.3 First-Order Logic

Let N be the structure that has N0 as universe equipped with the order relation ‘<’ and
addition ‘+’ and multiplication ‘×’ as functions. For n ≥ 1 let Nn be the structure that has
[n]0 = {0, 1, . . . , n} as universe, the order relation ‘<’ and addition as well as multiplication
defined as:

+(x, y) =

{
x + y , if x + y ≤ n
0 , if x + y > n

, ×(x, y) =

{
xy , if xy ≤ n
0 , if xy > n

For σ ⊆ {<,+,×} let FOk(σ) be the set of first-order formulas with Boolean connectives
¬,∨,∧, quantifiers ∃, ∀ and k free variables using only equality and the relation and
function symbols from σ. If σ = {<,+,×} we simply write FOk and if σ = ∅ we
write FOk(=). A formula is called an atom if it contains no Boolean connectives and
no quantifiers. For a formula ϕ with a atoms let us call the a-ary Boolean function that
results from replacing every atom in ϕ by a proposition underlying Boolean function of
ϕ. Let Vars(ϕ) be the set of free variables in ϕ. Given ϕ ∈ FOk(σ), Vars(ϕ) = (x1, . . . , xk)
and an assignment a1, . . . , ak ∈ [n]0 we write Nn, (a1, . . . , ak) |= ϕ if the interpretation
Nn, (a1, . . . , ak) satisfies ϕ under the semantics of first-order logic.

Let ϕ be a formula in FOk. We define the bounded model checking problem for
ϕ as follows. On input a1, . . . , ak, n ∈ N with ai ∈ [n]0 for i ∈ [k] decide whether
Nn, (a1, . . . , ak) |= ϕ. We assume that the input is encoded in binary.

2.4 Graph Theory

We consider an undirected graph to be a special case of a directed graph with symmetric
edge relation. For the first part of this work we say graph to mean a directed graph, unless
specified otherwise. Starting from Section 4.2 we say graph to mean an undirected graph.
Most of the time this should be clear from the context, i.e. when we write {u, v} as opposed
to (u, v) for an edge then this implies that we are looking at an undirected graph. At certain
points there might be more than one sensible interpretation. For example, suppose there
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are two sets of graph classes A and B with A ⊆ B and A only contains undirected graph
classes whereas B also contains directed graph classes. It trivially follows that A ( B.
However, the more interesting question is whether B also contains an undirected graph
class which is not in A. If we do not know this we shall not consider A to be a proper
subset of B. We write G to denote the set of all graphs or the set of all undirected graphs,
depending on the context.

2.4.1 Neighborhoods

For a directed graph G and a vertex u let Nin(u) and Nout(u) denote the in- and out-
neighbors of u in G. The following definitions are meant w.r.t. an undirected graph G.
For a vertex v of G we define its open neighborhood N(v) as the set of vertices which are
adjacent to v and its closed neighborhood N[v] = N(v)∪{v}. A vertex v is called universal
if N[v] = V(G). A vertex is called isolated if it has no neighbors. We will use two different
notions of twins. In Chapter 3 we call a pair of vertices twins if N(u) \ {v} = N(v) \ {u}.
In Chapter 4 we call a pair of vertices twins if N[u] = N[v]. The latter notion is more
restrictive in the sense that every equivalence class must be a clique whereas in the former
case it can either be a clique or an independent set. A graph G is twin-free if for every pair
of distinct vertices it holds that they are not twins. A twin class is an equivalence class
of the twin relation. For two subsets of vertices S, S′ with S′ ⊆ S we define the exclusive
neighborhood NS(S′) as all vertices v ∈ V(G) \ S such that v is adjacent to all vertices in
S′ and to none in S \ S′.

2.4.2 Isomorphism and Invariance

We call a bijective function τ which maps the vertices of a graph G to some set V′ a
relabeling of G and τ(G) denotes the graph obtained after relabeling the vertices of G
according to τ. Let G and H be two graphs and let X ⊆ V(G) and Y ⊆ V(H). We say X
and Y are in the same orbit, in symbols X ∼orb Y, if there exists an isomorphism π from G
to H such that π(X) = Y. Let f be a function which maps a graph along with a subset of
its vertex set to a binary string, i.e. f (G, X) ∈ {0, 1}∗ and X ⊆ V(G). We call f an invariant
for a graph class C if f (G, X) = f (H, Y) whenever X ∼orb Y and G, H ∈ C. Let us call a
function f which maps a graph G to a set of subsets of its vertices, i.e. f (G) ⊆ P(V(G)),
a vertex set selector. For example, the function that maps a graph to the set of its cliques
is a vertex set selector. The characteristic function χ f of a vertex set selector f is defined
as χ f (G, X) = 1 ⇔ X ∈ f (G). We say a vertex set selector f is invariant for a graph
class C if its characteristic function χ f is an invariant for C. We call f globally invariant if
χ f is an invariant for all graphs. Intuitively, a vertex set selector f is invariant for C if a
graph G ∈ C can be arbitrarily relabeled and f still returns the ‘same’ vertex sets as before
w.r.t. ∼orb.

2.4.3 Graph Classes, Graph Parameters and Graph Class Properties

Graph Class Properties. Let C be a graph class. C is small if |Cn| ∈ nO(n) = 2O(n log n) (in
the literature this is also called factorial speed of growth). C is tiny if there exists a c < 1

2
such that |Cn| ≤ ncn for all sufficiently large n. C is hereditary if it is closed under taking
induced subgraphs, i.e. if G is in C then every induced subgraph of G must be in C. We
write [C]⊆ to denote the hereditary closure of C, i.e. [C]⊆ is the set of graphs that occur as
induced subgraph of some graph in C. C is sparse if there exists a c ∈N such that every
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graph in Cn has at most cn edges for all n ∈ N. C is uniformly sparse if it is a subset of
a hereditary and sparse graph class. Stated differently, C is uniformly sparse iff it is in
[Sparse∩Hereditary]⊆. For example, planar graphs are uniformly sparse. C is inflatable if
for every graph G in C with n vertices there exists a graph H in C with m vertices which
contains G as induced subgraph for all n < m ∈N. Every graph class that is closed under
adding isolated vertices is inflatable. C is self-universal if for every finite subset X of C
there exists a graph G in C which contains every graph in X as induced subgraph. Every
graph class that is closed under disjoint union is self-universal.

Fact 2.1. C is hereditary and self-universal iff there exists a (possibly infinite) graph G such that a
graph H is in C iff H is an induced subgraph of G.

Proof. If C is finite this equivalence is trivial. Suppose that C is infinite. If C is hereditary
and self-universal we can build G inductively as follows. Let G1 be the single vertex graph.
Let Gi+1 be a graph in C which contains all graphs with at most i + 1 vertices in C and
Gi for all i ≥ 1. It can be assumed that Gi has vertex set [ni] where ni = |V(Gi)| and that
the identity function on [ni] witnesses that Gi is an induced subgraph of Gi+1 for all i ≥ 1.
Then G has vertex set N and E(G) = ∪i∈NE(Gi). It is not difficult to see that H is in C iff
H is an induced subgraph of G. The other direction is trivial.

It follows that every infinite, hereditary, self-universal graph class C is inflatable. An
undirected graph H is called a minor of an undirected graph G if H can be obtained from
G by deleting vertices and edges, and contracting edges (merging two adjacent vertices
into one vertex which inherits the neighbors of the two old vertices). C is minor-closed
if every graph that occurs as minor of some graph in C is in C as well. For a graph G we
call a graph class where G does not occur as minor G-minor free. For a graph class C let
MF(C) denote the set of graph classes that are G-minor free for some G in C. Unlike the
previous properties being minor-closed only applies to undirected graph classes.

Geometrical Intersection Graph Classes. Let F be a family of sets over some ground set.
For a finite multisubset X of F (X can contain the same element more than once) the
intersection graph G(X) of X has X as vertex set and two vertices u, v ∈ X are adjacent
iff u and v have non-empty intersection. The set of graphs G(X) where X is a finite
multisubset of F is called intersection graph class of F . Similarly, the set of graphs G(X)
where X is a finite subset of F is called unique intersection graph class of F . A graph class
C is called (unique) intersection graph class if there exists a family of sets F such that C
is the (unique) intersection graph class of F . Due to the symmetry of intersection only
undirected graph classes can be intersection graph classes. An undirected graph class is a
unique intersection graph class iff it is hereditary and self-universal due to Fact 2.1.

Interval graphs are the (unique) intersection graph class of intervals on the real line.
Circular-arc (CA) graphs are the intersection graph class of arcs on the unit circle. They
are a generalization of interval graphs. k-interval graphs are the intersection graph class of
the union of k intervals on the real line for k ∈ N. The minimal k ∈ N such that a given
graph G is a k-interval graph is called the interval number of G. The boxicity of a graph G
is the minimal k ∈N such that it can be described as intersection graph of k-dimensional
axis-aligned boxes. A graph has boxicity 1 iff it is an interval graph. A disk graph is the
intersection graph of disks in the plane. A graph is a k-ball graph if it is the intersection
graph of k-dimensional balls embedded in Rk. Disk graphs are 2-ball graphs. A graph is
a kd-line segment graph if it is the intersection graph of line segments embedded in Rk.
We call 2d-line segment graphs just line segment graphs. A chord of a circle C is a line
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segment whose endpoints lie on C. A graph is a circle graph if it is the intersection graph
of chords of a circle. Clearly, circle graphs are a subset of line segment graphs.

For a family of sets F let P be a predicate on finite subsets of F . Let us call the set of
graphs G(X) where X is a finite (multi)subset of F and X satisfies P the P-intersection
graph class of F . Commonly considered choices for P include being proper (there are no
two elements x, y in X such that x ⊆ y), being unit (every element of X has unit size; this
requires F to have some size measure) and being Helly (see Section 2.1 for the definition).
For example, proper interval graphs are the proper-intersection graph class of intervals on
the real line (no interval is contained in another one). This should make it clear what we
mean by, for instance, unit disk graphs or Helly CA graphs.

Other Graph Classes and Parameters. A graph parameter λ is a function which maps
graphs to natural numbers. We say a graph class C is bounded by λ if there exists a c ∈N

such that λ(G) ≤ c for all G ∈ C. For example, planar graphs have bounded chromatic
number. We sometimes view a graph parameter λ as the set of graph classes C(λ) which
are bounded by it. We say two parameters λ and µ are equivalent if they bound the same
set of graph classes, i.e. C(λ) = C(µ).

A graph G is called a k-dot product graph if each vertex u of G can be assigned k
real numbers u1, . . . , uk such that two vertices u, v of G are adjacent iff the dot product of
(u1, . . . , uk) and (v1, . . . , vk) is at least one (Σk

i=1ui · vi ≥ 1) for k ∈ N [Fid+98]. The least
k ∈N such that a given graph G is a k-dot product graph is called dot product dimension
of G. The twin index of an undirected graph G is its number of twin classes (here by twin
we mean N(u) \ {v} = N(v) \ {u}). The intersection number of a graph G is the least
k ∈N such that there exists a family of sets F over a ground set U with k elements with
|F | = |V(G)| and G is isomorphic to the intersection graph of F . The degeneracy of a
graph G is the least k ∈ N such that every induced subgraph of G contains a vertex of
degree at most k. For example, every forest has degeneracy 1 because it either has a leaf
or every vertex is isolated. The arboricity of a graph G is the least k ∈N such that there
are k forests F1, . . . , Fk with the same vertex set as G such that E(G) = ∪i∈[k]E(Fi). The
thickness of a graph G is the least k ∈N such that there are k planar graphs H1, . . . , Hk with
the same vertex set as G such that E(G) = ∪i∈[k]E(Hi). It is well-known that arboricity,
thickness and degeneracy are equivalent; they bound exactly the set of uniformly sparse
graph classes. We remark that we will also talk about the parameters tree-width and
clique-width. Since we do not require their definition in our proofs we omit them.

2.4.4 CA Models, Representations and Matrices

An arc is a connected and closed set of points on the (unit) circle. A CA model is a set of
arcs A = {A1, . . . , An}. Let p 6= p′ be two points on the circle. Then the arc A specified
by [p, p′] is given by the part of the circle that is traversed when starting from p going in

2

3 4

5

1 G
ρ(i) = Ai

A5

A4A3

A2

A1

ρ(G)

FIGURE 2.1: A CA graph and a representation of it
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clockwise direction until p′ is reached. We say that p is the left and p′ the right endpoint of
A and write l(·), r(·) to denote the left and right endpoint of an arc in general. If A = [p, p′]
then the arc obtained by swapping the endpoints A = [p′, p] covers exactly the opposite
part of the circle plus the endpoints. We say A is obtained by flipping A. In our context, we
are only interested in the intersection structure of a CA model and thus only the relative
position of the endpoints to each other matter. All endpoints can w.l.o.g. be assumed to
be pairwise different and no arc covers the full circle. Under these assumptions, a CA
model A with n arcs can be described as a unique string as follows. Pick an arbitrary arc
A ∈ A and relabel the arcs with 1, . . . , n in order of appearance of their left endpoints
when traversing the circle clockwise starting from the left endpoint of A. Then write down
the endpoints in order of appearance when traversing the circle clockwise starting from the
left endpoint of A. Do this for every arc and pick the lexicographically smallest resulting
string as representation for A. For example, the smallest such string for the CA model in
Figure 2.1 would result from choosing A1: (l(1), r(1), l(2), r(5), l(3), r(2), . . . ). Let str(A)
denote this smallest string representation. For a CA model A let Ar be the CA model
obtained after reversing the order of its endpoints. Observe that reversing the endpoints
does not affect the intersection structure of a CA model. Therefore we consider two CA
models A and B to be equal if str(A) = str(B) or str(Ar) = str(B).

Let G be a graph and ρ = (A, f ) consists of a CA model A and a bijective mapping
f from the vertices of G to the arcs in A. Then ρ is called a CA representation of G if
for all u 6= v ∈ V(G) it holds that {u, v} ∈ E(G) ⇔ f (u) ∩ f (v) 6= ∅. We write ρ(x)
to mean the arc f (x) corresponding to the vertex x, ρ(G) for the CA model A and for
a subset V′ ⊆ V(G) let ρ[V′] = {ρ(v) | v ∈ V′}. A graph is a CA graph if it has a CA
representation.

We say a CA modelA has a hole if there exists a point on the circle which isn’t contained
by any arc in A. Every such CA model can be understood as interval model (a set of
intervals on the real line) by straightening the arcs. Conversely, every interval model can
be seen as CA model by bending the intervals. Therefore a graph is an interval graph iff it
admits a CA representation with a hole.

A family of sets F over some ground set is called Helly if for all subsets F ′ of F such
that all elements in F ′ intersect pairwise it holds that ∩A∈F ′A is non-empty. A CA graph
G is called Helly (HCA graph) if it has a CA representation ρ with a Helly CA model
ρ(G). This is the case iff for all inclusion-maximal cliques C in G it holds that the overall
intersection of C in ρ is non-empty, i.e.

⋂
v∈C ρ(v) 6= ∅. Every interval model has the Helly

property and therefore every interval graph is a Helly CA graph.
The intersection type of two circular arcs A and B can be one of the following five types:

• di: A and B are disjoint — A ∩ B = ∅

• cs: A contains B — B ⊂ A

• cd: A is contained by B — A ⊂ B

• cc: A and B jointly cover the circle (circle cover) — A G B and A ∪ B = whole circle

• ov: A and B overlap — A G B and A ∪ B 6= whole circle

Using these types we can associate a matrix with every CA model. An intersection
matrix is a square matrix with entries {cc, cd, cs, di, ov}. Given a CA model A we define
its intersection matrix µA such that (µA)A,B ∈ {cc, cd, cs, di, ov} reflects the intersection
type of the arcs A 6= B ∈ A. An intersection matrix µ is called a CA (interval) matrix if it is
the intersection matrix of some CA model (with a hole). See Figure 2.2 for an example of a
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A

a b

c

d

µA a b c d
a - cs ov cc

b cd - di di

c ov di - ov

d cc di ov -

FIGURE 2.2: A CA model A and its intersection matrix µA

CA model and the CA matrix which it induces. Given an intersection matrix µ and two
distinct vertices u, v of µ we sometimes write u α v instead of µu,v = α if µ is clear from
the context. Also, we will talk about an intersection matrix µ as if it were a graph and call
its indices vertices. We consider two vertices u, v of µ to be adjacent if they do not have
a di-entry in µ. For a vertex u of an intersection matrix µ and α ∈ {cc, cd, cs, di, ov} we
write Nα(u) to denote the set of vertices v of µ such that µu,v = α ; we also call a vertex in
Nα(v) an α-neighbor of v.

2.5 Labeling Schemes

We use the terms implicit representation and labeling scheme interchangeably.

Definition 2.2. A labeling scheme is a tuple S = (F, c) where F ⊆ {0, 1}∗ × {0, 1}∗ is called
label decoder and c ∈ N is the label length. A graph G on n vertices is in the class of graphs
spanned by S, denoted by G ∈ gr(S), if there exists a labeling ` : V(G)→ {0, 1}c log n such that
for all u 6= v ∈ V(G):

(u, v) ∈ E(G)⇔ (`(u), `(v)) ∈ F

We say a graph class C is represented by (or has) a labeling scheme S if C ⊆ gr(S).

The labeling scheme for interval graphs that we have seen in the introduction can
be formalized as follows. We define the label decoder FIntv such that (x1x2, y1y2) is in
FIntv iff neither x2 is (lexicographically) smaller than y1 nor y2 is smaller than x1 for all
x1, x2, y1, y2 ∈ {0, 1}m and m ∈ N. If x1, x2, y1, y2 are interpreted as natural numbers
and we assume that x1 ≤ x2 and y1 ≤ y2 then the label decoder says that neither of the
two intervals [x1, x2], [y1, y2] ends before the other one starts; this means that they must
intersect. The label length in this case is c = 4 because two numbers from [2n] can be
encoded using 4 log n bits for n ≥ 2. The labeling scheme (FIntv, 4) represents interval
graphs.

Labeling schemes are intimately connected to polynomial universal graphs. A graph
class C has polynomial universal graphs if there exists a family of graphs (Gn)n∈N such
that every graph in C with n vertices occurs as induced subgraph in Gn for all n ∈ N

and |V(Gn)| is polynomially bounded in n. A graph class has a labeling scheme iff it
has polynomial universal graphs. If a graph class C has a labeling scheme (F, c) then it
has polynomial universal graphs (Gn)n∈N where Gn has vertex set {0, 1}c log n and the
edges are determined by the label decoder F. Conversely, if C has polynomial universal
graphs (Gn)n∈N with |V(Gn)| ≤ nc for some c ∈ N then this can be used to construct
the following labeling scheme S = (F, c + 1) for C. The label decoder F is defined as
follows. It holds that (x1x2, y1y2) ∈ F iff (x1, y1) ∈ E(Gn) where bin(n) = x2 for all
x1, y1 ∈ {0, 1}cm and x2, y2 ∈ {0, 1}m for all m ∈N. It remains to argue that S represents
C. Given a graph H ∈ C with n vertices we know that it is an induced subgraph of Gn
which is witnessed by some injective function π : V(H)→ V(Gn). Since |V(Gn)| ≤ nc we
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can assume w.l.o.g. that V(Gn) is a subset of {0, 1}c log n. The labeling which assigns each
vertex u of H the label π(u)bin(n) shows that H is in gr(S). The number of vertices is part
of the label because it ensures that for all n 6= m ∈N the graphs Gn and Gm are encoded
in disjoint subsets of the label decoder F.

Definition 2.3. A language L ⊆ {0, 1}∗ induces the following label decoder FL. For all x, y ∈
{0, 1}∗ it holds that (x, y) ∈ FL iff xy ∈ L and |x| = |y|. For a set of languages A we say that a
graph class C is in GA if there exists a language L ∈ A and c ∈N such that C is represented by the
labeling scheme (FL, c).

We say a labeling scheme S = (F, c) is in GA if there exists a language L in A such that
F = FL.

For every set of languages A the set of graph classes GA is trivially closed under subsets.
Also, if A is closed under complement then GA is closed under edge-complement. A
graph class has an implicit representation iff it is in GALL (no computational complexity
constraint).

It is not difficult to see that there is a language L in AC0 such that FL = FIntv and
therefore interval graphs are in GAC0. It is also an easy exercise to show that forests, circle
graphs and all graph classes with bounded interval number, arboricity or boxicity are in
GAC0.
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Chapter 3

A Complexity Theory for Implicit
Representations

The concept of labeling schemes, or implicit representations, was introduced in [Mul88],
and independently in [KNR92]. In this chapter we shall deal with the question of what
graph classes admit such a representation when subjected to computational constraints.
For many graph classes it has been established that they possess an implicit representation.
To the best of our knowledge, if a graph class is known to have a labeling scheme then this
is due to one of the following four reasons1. (I) The graph class is uniformly sparse. Every
such graph class has a quite simple labeling scheme, which we introduce in Section 3.2.
Graph classes which fall into this category include all proper minor-closed graph classes
such as planar graphs or the ones with bounded tree-width. (II) The graph class is an
intersection graph class and its intersection model can be directly translated into a labeling
scheme. Examples in this category include k-interval graphs, circle graphs and permutation
graphs. (III) The graph class has a tree-based decomposition which can be encoded in a
labeling scheme. An example of this are graph classes with bounded clique-width as we
shall see in Section 3.2. The last reason is trivial but important to be aware of. (IV) The
graph class is a subset of a graph class which falls into one of the previous three categories.

If one asks what graph classes do not have a labeling scheme then nothing but the
following observation has been known so far, which is based on the fact that non-small
graph classes cannot have a labeling scheme2.

Fact 3.1. Let C be a graph class. For k ∈N let [C]k⊆ denote the set of graphs with n vertices which
occur as induced subgraph of some graph in C with at most nk vertices for all n ∈ N. If C is in
GALL then [C]k⊆ is in GALL for all k ∈N.

Proof. Assume that C is in GALL via the polynomial universal graphs (Gn)n∈N. This means
that there exists a d ∈ N such that |V(Gn)| ≤ nd holds for all n ∈ N. Let k ∈ N. It
holds that [C]k⊆ has polynomial universal graphs (Hn)n∈N where Hn is the disjoint union

of Gn, . . . , Gnk . Observe that |V(Hn)| = |V(Gn)| + · · · + |V(Gnk)| ≤ ∑nk

i=n id which is
polynomially bounded in n due to Faulhaber’s formula.

The classes [C]k⊆ can be seen as polynomially bounded closure under induced sub-
graphs. If it can be shown for some k ∈ N that Ck is not small then this implies that C is

1Any statement which tries to summarize the current state of knowledge, or what is unknown, runs into danger of
being incorrect simply because the author is not aware of every relevant result. In the following we omit phrases such
as ‘to the best of our knowledge’ since we trust the reader to recognize that kind of statement and mentally add this
qualifier.

2The concept of labeling schemes can be generalized to graph classes of all sizes. However, here we shall restrict
ourselves to small graph classes since they already provide us with a rich playground.
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not in GALL. For example, consider the set of graphs C which have not more edges than
vertices. Every graph G with n vertices occurs as induced subgraph of some graph of C
with at most n2 vertices because G can have at most n2 edges. Stated differently, the set of
all graphs is a subset of [C]2⊆ and thus C cannot be in GALL. This is a rather dull reason
which only tells us that certain graph classes are non-small classes in disguise. To exclude
such disguised graph classes one can consider only hereditary graph classes C because
in that case C = [C]⊆ = ∪k∈N[C]k⊆. In the following we sometimes say natural instead of
hereditary because most graph classes of interest are hereditary, or their hereditary closure
is considered to be natural. Kannan, Naor and Rudich asked whether every small and
hereditary graph class has a labeling scheme with a polynomial-time computable label
decoder [KNR92]. This was restated as conjecture by Spinrad [Spi03, p. 19]:

Conjecture 3.2 (Implicit Graph Conjecture). Every small and hereditary graph class is in GP.

We remark that it is not even known whether every small and hereditary graph class is
in GALL, which is a purely graph-theoretical question. Therefore a proof of this conjecture
would at least require major improvements of our understanding of the set of small and
hereditary graph classes. Disproving this conjecture would require us to comprehend the
power of polynomial-time computable label decoders. However, until now the impact of
computational constraints on labeling schemes has been uncharted territory. For example,
it was not even known whether GAC0 is a strict subset of GALL. In Section 3.1 we show that
there is a strict complexity hierarchy starting from exponential time label decoders and
thus we minimize the gap of knowledge to the question of whether GAC0 = GEXP. We
are not even aware of a graph class that could serve as a candidate to separate these two
classes. Stated differently, all natural graph classes which are known to have a labeling
scheme so far can be found in GAC0.

We think that there currently is no realistic route to resolving the implicit graph con-
jecture. However, we believe that the broader question which underlies this conjecture
deserves attention. Namely, how does the computational complexity of label decoders
affect what natural graph classes can be represented? In the following, we aim to develop
formal concepts (classes and reductions) that allow for a meaningful study of this question.

3.1 Hierarchy of Labeling Schemes

When labeling schemes were first introduced by Muller in [Mul88] the label decoder
was required to be computable. Clearly, this is a reasonable restriction since otherwise
it would be impossible to query edges in a labeling scheme with an undecidable label
decoder. Taking this consideration a step further, in order for a labeling scheme to be
practical querying an edge should be a quick operation, i.e. at least sublinear with respect
to the number of vertices. Kannan et al acknowledged this by stating in their definition
of an implicit representation that the label decoder must be computable in polynomial
time [KNR92]. As a consequence querying an edge in such a labeling scheme takes only
polylogarithmic time.

Observe that there can be different labeling schemes that represent the same graph class
(just as there are different Turing machines deciding the same language). Therefore one
might ask whether every graph class that is represented by some labeling scheme with an
undecidable label decoder can also be represented by a labeling scheme with a decidable
label decoder. Similarly, can every labeling scheme with a decidable label decoder be
replaced by one that has a polynomial-time decidable label decoder? The latter question
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is equivalent to asking whether Muller’s definition coincides with that of Kannan et al.
Spinrad remarked that it is not known whether these definitions are equivalent and no
difference could be observed on the graph classes considered so far [Spi03, p. 22]. In our

terminology the former question can be phrased as GALL ?
= GR and the latter as GR ?

= GP.
We resolve these two questions by proving an analogue of the time hierarchy from classical
complexity which shows that all of these three classes are distinct.

We say a function t : N→N is time-constructible if there exists a Turing machine that
halts after exactly t(n) steps for every input of length n and all n ∈N.

Theorem 3.3. For every time-constructible function t : N → N it holds that GTIME(t(n)) (
GTIME(exp2(n) · t(n)).

A less general variant of this theorem was proved independently by Rotbart and
Simonsen using Kolmogorov complexity [Rot16, p. 64].

Note that separations in the classical context do not necessarily extend to this setting,
i.e. given two sets of languages A ( A′ it must not be the case that GA ( GA′. Therefore
the previous theorem does not directly follow from the original time hierarchy theorem.

Corollary 3.4. GEXP ( G2EXP ( · · · ( GR ( GALL.

Proof. We explain why GEXP ( G2EXP follows from Theorem 3.3. The same argument
shows that GkEXP ( G(k + 1)EXP for all k ≥ 1. Recall that EXP equals the infinite union
of TIME(exp(nc)) over all c ∈ N and therefore Theorem 3.3 cannot be applied directly.
However, EXP ⊆ TIME(exp(1.5n)) and GTIME(exp(1.5n)) ( G2EXP does follow from
Theorem 3.3 and therefore GEXP ( G2EXP holds. As a consequence GkEXP is a strict
subset of GR for every k ≥ 0. That GR is a strict susbet of GALL follows from the fact that
its diagonalization graph class CR is not in GR (see Lemma 3.8) and every diagonalization
graph class has a labeling scheme and therefore lies in GALL (see Definition 3.9 and the
subsequent paragraph).

The basic idea behind the proof of Theorem 3.3 is the following diagonalization argu-
ment. Let A = {F1, F2, . . . } be a set of label decoders. Then a labeling scheme in GA can be
seen as pair of natural numbers, one for the label decoder and one for the label length. Let
τ : N→N2 be a surjective function and Sτ(x) = (Fy, z) with τ(x) = (y, z). It follows that
for every labeling scheme S in GA there exists an x ∈N such that S = Sτ(x). The following
graph class cannot be in GA:

G ∈ CA ⇔ G is the smallest graph on n vertices s.t. G /∈ gr(Sτ(n))

where smallest is meant w.r.t. some order such as the lexicographical one. Note that the
order must be for unlabeled graphs. However, an order for labeled graphs can be easily
adapted to unlabeled ones. Assume CA is in GA via the labeling scheme S. There exists an
n ∈N such that S = Sτ(n) and it follows that CA contains a graph on n vertices that cannot
be in S per definition, contradiction. Then it remains to show that CA is in the class that we
wish to separate from GA.

For the remainder of this section we formalize this idea in three steps. First, we state the
requirements for a pairing function τ and show that such a function exists. We continue
by arguing that the diagonalization graph class CA is not contained GA. In the last step
we construct a label decoder for CTIME(t(n)) and show that it can be computed in time
exp2(n) · t(n).
Definition 3.5. A surjective function τ : N→N2 is an admissible pairing if all of the following
holds:
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1. |τ−1(y, z)| is infinite for all y, z ∈N

2. y, z ≤ log x for all x ≥ 1 and τ(x) = (y, z)

3. τ(x) is undefined if x is not a power of two

4. τ is computable in polynomial time given its input in unary.

Note, that a graph on n vertices has labels of the same length as a graph on m vertices
whenever log n = log m (rounded up). The third condition prevents this from happening,
i.e. for all G 6= H ∈ CA it holds that their vertices are assigned labels of different length.

Lemma 3.6. There exists an admissible pairing function.

Proof. Consider the function τ(x) = (y, z) iff x = exp(2y · 3z · 5w) for some w ≥ 0. The
first condition of Definition 3.5 holds because for every w ∈ N there exists an x with
τ(x) = (y, z). For the second condition assume that there exists an x ≥ 1 and τ(x) = (y, z)
such that y > log x. This cannot be the case because then x < 2y which contradicts
log x = 2y3z5w. The same applies to z. The third condition is obvious. For the fourth
condition observe that on input 1x it suffices to consider y, z, w between 0 and log(log x)
such that log x = 2y3z5w.

Definition 3.7. Let A = {L1, L2, . . . } be a countable set of languages, ≺ an order on unlabeled
graphs and τ an admissible pairing. For n ∈ N and τ(n) = (y, z) let Sτ(n) be (FLy , z). The
diagonalization graph class of A is defined as:

CA =
⋃

n∈dom(τ)

{
G ∈ Gn

∣∣∣G is the smallest graph w.r.t. ≺ not in gr(Sτ(n))
}

where Gn denotes the set of all graphs on n vertices.

When we consider the diagonalization graph class of a set of languages we assume the
lexicographical order for ≺ and the function given in the proof of Lemma 3.6 for τ.

Lemma 3.8. For every countable set of languages A it holds that CA /∈ GA.

Proof. As argued in the paragraph after Theorem 3.3 it holds that for any labeling scheme
S in GA there exists a graph G that is in CA but not in gr(S) and thus this lemma holds.
If the labeling scheme S is in GA then there exists an n ∈ N such that S = Sτ(n) where
Sτ(n) = (Fy, z), τ(n) = (y, z) and A = {F1, F2, . . . }. Therefore there must be a graph G on n
vertices in CA which is not in gr(S). Observe that this argument is not quite correct. It only
works if gr(S) does not contain all graphs on n vertices, otherwise such a graph G does
not exist. However, due to the fact that |τ−1(y, z)| is infinite it follows that there exists an
arbitrarily large n ∈N such that S = Sτ(n). And since gr(S) is small it follows that it does
not contain all graphs on n vertices for sufficiently large n.

To show that CA is in some class GB we need to define a labeling scheme SA = (FA, 1)
that represents CA and consider the complexity of computing its label decoder.

Definition 3.9. Let C be a graph class such that |Cn| = 0 whenever n is not a power of two and
|Cn| ≤ 1 whenever n is a power of two. For G ∈ C let G0 denote the lexicographically smallest
labeled graph with G0

∼= G and V(G0) = {0, 1}m. We define the label decoder FC as follows. For
every m ∈N such that there exists G ∈ C on 2m vertices and for all x, y ∈ {0, 1}m let

(x, y) ∈ FC ⇔ (x, y) ∈ E(G0)
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Observe that the diagonalization graph class CA of some set of languages A satisfies
the prerequisite of the previous definition and the labeling scheme (FCA , 1) represents CA.
Instead of FCA we simply write FA for the label decoder.

Up to this point the exact correspondence between y ∈N and the label decoder Fy was
not important since we only required the set of label decoders A to be countable. To show
that the label decoder FTIME(t(n)) can be computed in time exp2(n) · t(n) it is important
that the label decoder Fy for a given y ∈N can be effectively computed.

Lemma 3.10. For every time-constructible t : N→N there exists a mapping f : N→ ALL such
that Im( f ) = TIME(t(n)). Additionally, on input x ∈N in unary and w ∈ {0, 1}∗ the question
w ∈ f (x) can be decided in time nO(1) · t(|w|) with n = |w|+ x.

Proof. Let p : N → N2 be a surjective function such that y, z ≤ x for all x in the domain
of p and given x in unary p(x) can be computed in polynomial time. For example,
p(x) = (y, z) ⇔ x = 2y3z. Then the desired mapping f : N → ALL can be constructed
from p as follows. If p(x) = (y, z) then f (x) is the language that is decided by the Turing
machine My when running at most z · t(|w|) steps on input w. If p(x) is undefined then
f (x) shall be the empty language. Clearly, Im( f ) = TIME(t(n)) because a language L is
in TIME(t(n)) iff there exists a Turing machine M and a c ∈ N such that M decides L
and runs in time c · t(|w|). For the second part we construct a universal Turing machine
with the required time bound. On input x ∈ N in unary and w ∈ {0, 1}∗ it computes
p(x) = (y, z). If p(x) is undefined it rejects (this corresponds to recognizing the empty
language). Otherwise, it simulates My on input word w for z · t(|w|) steps. Due to the fact
that t is time-constructible it is possible to run a counter during the simulation of My in
order to not exceed the z · t(|w|) steps. The input length is n := x + |w|. The simulation
can be run in time nO(1) · z · t(|w|). Since z ≤ x ≤ n the desired time bound follows.

Lemma 3.11. For every time-constructible function t : N → N it holds that the label decoder
FTIME(t(n)) can be computed in TIME(exp2(n) · t(n)).

Proof. On input xy with x, y ∈ {0, 1}m and m ≥ 1 compute τ(2m) = (y, z). If it is undefined
then reject. Otherwise there is a labeling scheme Sτ(2m) = (Fy, z) and we need to compute
the smallest graph G0 on 2m vertices such that G0 /∈ gr(Sτ(2m)). If G0 exists we assume that
its vertex set is {0, 1}m and accept iff (x, y) ∈ E(G0). If it does not exist then reject.

The graph G0 can be computed as follows. Iterate over all labeled graphs H with 2m

vertices in order and over all functions ` : V(H) → {0, 1}zm. Check if H ∈ gr(Sτ(2m)) by
checking for every pair of vertices u 6= v ∈ V(H) if (u, v) ∈ E(H)⇔ (`(u), `(v)) ∈ Fy. If
this condition fails for all labelings ` then G0 = H. To query the label decoder Fy we apply
the previous Lemma 3.10.

Let us consider the time requirement w.r.t. m. To compute τ(2m) we write down 2m in
unary and compute τ in polynomial time w.r.t. 2m which is in the order 2O(m). To compute
G0 there are four nested loops. The first one goes over all labeled graphs on 2m vertices
which is bounded by exp(exp(m)2) = exp2(2m). The second loop considers all possible
labelings ` of which there can be at most exp(zm)exp(m) = exp(exp(m)zm) ≤ exp2(zm2).
It holds that y, z ≤ log(2m) = m due to the second condition of Definition 3.5 and therefore
exp2(zm2) ≤ exp2(m3). The other two loops go over all vertices of H of which there are
2m. Due to Lemma 3.10 the time required to compute (`(u), `(v)) ∈ Fy is yO(1) · t(2m) =

mO(1) · t(2m). In total this means the algorithm runs in timeO(exp2(mO(1)) · t(2m)) which
is the required time bound since the input length is 2m.
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Lemma 3.8 states that CTIME(t(n)) /∈ GTIME(t(n)) and from Lemma 3.11 it follows that
CTIME(t(n)) ∈ GTIME(exp2(n) · t(n)) therefore proving Theorem 3.3. Notice, this argument
fails to separate GP from GEXP because the runtime to compute the label decoder FP is at
least double exponential due to the first two loops mentioned in the proof of Lemma 3.11.
Also, we remark that if the closure under induced subgraphs of the diagonalization graph
class of P is small then the implicit graph conjecture is false.

3.2 Expressiveness of Primitive Labeling Schemes

To understand the limitations of labeling schemes it is reasonable to start with very simple
ones first and then gradually increase the complexity. In this section we present two such
simple families of labeling schemes and explain how they relate to other well-known
sets of graph classes. Interestingly, these two families of labeling schemes can be seen as
generalizations of uniformly sparse graph classes and graph classes with bounded degree.
Therefore they are already able to represent many graph classes that are of theoretical
and practical importance. For this section we assume all graphs and graph classes to be
undirected. This also means that for sets of graph classes such as GAC0 we only consider
its restriction to undirected graph classes.

In [Spi03, p. 20] Spinrad describes a labeling scheme for every sparse and hereditary
graph class. A graph class C is sparse and hereditary iff it has bounded degeneracy.
Therefore there exists a constant c such that every graph G ∈ C has a vertex with degree at
most c. The following labeling scheme represents C. Given a graph G from C assign each
vertex a unique identifier 1, . . . , n. Choose a vertex v in G with at most c neighbors. Store
the identifier of v along with the identifiers of its c neighbors in the label of v. Delete the
vertex v from G and repeat this process. Since C is hereditary it follows that G without
v also has a vertex of degree at most c. Two vertices u, v with labels u0, u1, . . . , uc and
v0, v1, . . . , vc are adjacent iff u0 ∈ {v1, . . . , vc} or v0 ∈ {u1, . . . , uc}. For every c ∈ N this
construction yields a labeling scheme Sc. Let us call the smallest number c such that a
graph can be represented by Sc its or-pointer number. This can be further generalized and
leads to the following four graph parameters.

Definition 3.12 (Pointer Numbers). The (bijective) and/or-pointer number of a graph G with
n vertices is the least k ∈ N such that there exist a (bijective) function `id : V(G) → [n] and
a function ` : V(G) → [n]k for which it holds that {u, v} ∈ E(G) iff `id(u) ∈ `(v) and/or
`id(v) ∈ `(u) for all u 6= v ∈ V(G).

The bijectiveness constraint can be understood as restriction on the possible labelings
that are allowed, i.e. the id of each vertex must be unique. In the bijective case the function
`id : V(G) → [n] becomes obsolete and the function ` can be understood as a mapping
from V(G) to V(G)k. Notice how this constraint is satisfied in the case of the labeling
described in the previous paragraph.

Fact 3.13. The bijective or-pointer number and degeneracy are equivalent.

Proof. “⇒”: Let G have bijective or-pointer number at most k. It holds that G has degener-
acy at most 2k. Every induced subgraph of G has bijective or-pointer number at most k.
Additionally, every graph with bijective or-pointer number at most k can have at most kn
edges which implies that such a graph must have a vertex with degree at most 2k.

“⇐”: Let G have degeneracy at most k. Then G has bijective or-pointer number at most
k due to the labeling described in the first paragraph of this subsection.
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Fact 3.14. The bijective and-pointer number of a graph equals its maximum degree.

Fact 3.15. Planar graphs have unbounded and-pointer number.

Proof. Consider the graph Gk shown in Figure 3.1. We show that for every l ∈ N there
exists a k ∈ N such that the and-pointer number of Gk is larger than l. For a given l
let k = l2 + 1. For the sake of contradiction, assume that Gk has and-pointer number l
via (`id, `). This means `(·) has at most l elements. For two vertices u, v let us say that
they are equivalent if `id(u) = `id(v). Since x is adjacent to xi it holds that `id(xi) ∈ `(x)
for all i ∈ [k]. Therefore {x1, . . . , xk} consists of at most l equivalence classes. The same
holds for {y1, . . . , yk}. Due to the pigeonhole principle it follows that there are r := d k

l e
vertices a1, . . . , ar ∈ {x1, . . . , xk} that are equivalent. For ai let bi denote the vertex in
{y1, . . . , yk} that is adjacent to ai. For all i 6= j ∈ [r] it holds that bi and bj are not equivalent,
otherwise Gk would contain K2,2. This implies that {y1, . . . , yk}must consist of at least r
different equivalence classes. However, {y1, . . . , yk} consists of at most l different classes
and r = d k

l e = d
l2+1

l e = l + 1. Therefore the and-pointer number of Gk must be larger
than l.

We remark that every forest has and-pointer number at most two. See Figure 3.2 for an
example of how to label a tree; the number left of the bar is the id of the vertex.

In comparison, it seems not quite as simple to prove that a small graph class has
unbounded or-pointer number. The following observation might be helpful in that regard.
Consider a graph G with a k-or-pointer representation (`id, `). Let c denote the number
of unique ids, i.e. the cardinality of the image of `id. There exists an induced subgraph
of G with c vertices which has bijective or-pointer number at most k and therefore this
subgraph can have at most kc edges. Informally, if a graph has many edges then in any k-
or-pointer representation of this graph there cannot be many unique ids. As a consequence
the structure of such a graph is quite constrained. Therefore we suspect that the edge-
complement of some sparse graph class such as planar graphs has unbounded or-pointer
number.

In Figure 3.3 we give an overview of the relation of GAC0 and the pointer numbers to
other sets of graph classes defined in terms of graph class properties and graph parameters.
A graph parameter in this figure is interpreted as the set of graph classes that are bounded
by it. For example, a well-known result by Robertson and Seymour states that a graph
class C has bounded tree-width iff there exists a planar graph G such that no graph in C
has G as minor, i.e. C ∈ MF(Planar). The remainder of this section explains the relations
of the classes shown in Figure 3.3 going from top to bottom.

x

x1

x2

...

xk
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FIGURE 3.1: Planar graphs Gk
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GP

GAC0

[Small∩Hereditary]⊆

GAC0 ∩ [Small∩Hereditary]⊆

Or-Pointer Number And-Pointer NumberClique-Width

[Sparse∩Hereditary]⊆
Degeneracy

Bij. Or-Pointer No.

[Sparse∩Minor-Closed]⊆
MF(G)

MF(Planar)
Tree-Width

Max. Degree
Bij. And-Pointer No.

[Tiny∩Hereditary]⊆
Twin Index

Intersection Number

FIGURE 3.3: Various sets of graph classes and their relation to labeling schemes

The question of whether [Small ∩Hereditary]⊆ is a subset of GP is equivalent to the
implicit graph conjecture. Therefore it is also unknown whether [Small∩Hereditary]⊆ is
a subset of GAC0 since this would imply the implicit graph conjecture. However, it can be
shown that the converse does not hold, i.e. GAC0 is not a subset of [Small∩Hereditary]⊆.
From a graph-theoretical point of view being hereditary is the weakest form of uniformity
condition that can be imposed on a graph class in order for it to have some meaningful
structure. Therefore there probably is no elegant graph-theoretical characterization of
GAC0. This arbitrariness might also be one of the reasons why it is so difficult to analyze
GAC0 and its supersets.

Theorem 3.16. GAC0 6⊆ [Small∩Hereditary]⊆.

Proof. For a graph class C let [C]⊆ denote its closure under induced subgraphs. Observe
that if a graph class C is in [Small∩Hereditary]⊆ then [C]⊆ is in [Small∩Hereditary]⊆ as
well. To prove the above statement we show that (I) GR 6⊆ [Small∩Hereditary]⊆ and (II)
for every graph class C ∈ GR there exists a graph class D in GAC0 with [C]⊆ ⊆ [D]⊆.

For (I) we construct a labeling scheme S = (F, 1) where F is computable and [gr(S)]⊆
is the class of all graphs. Let f : N→ G be a computable function such that:

1. the image of f equals the set of all graphs G

2. |V( f (n))| ≤ n for all n ∈N

3. if n is not a power of two then f (n) is the graph with a single vertex
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For n ≥ 2 let Gn be the lexicographically smallest labeled graph that is isomorphic to f (n)
and V(Gn) ⊆ {0, 1}log n. We define the label decoder F as

(x, y) ∈ F ⇔ (x, y) ∈ E(G2m)

for all x, y ∈ {0, 1}m and m ∈N. For every graph G with at least two vertices there exists
an m ∈N such that G is isomorphic to f (2m) and therefore G occurs as induced subgraph
of the graph with 2m vertices in gr(S).

We show that (II) holds due to a padding argument. Given a labeling scheme S = (F, c)
in GR and a function p : N→N we define the labeling scheme Sp = (Fp, c) as

(x, y) ∈ F ⇔ (xx′, yy′) ∈ Fp

for all m ∈N, x, y ∈ {0, 1}cm, x′, y′ ∈ {0, 1}cp(m). To see that [gr(S)]⊆ ⊆ [gr(Sp)]⊆ consider
a graph G that is in gr(S) via a labeling ` : V(G) → {0, 1}c log n. We show that there is a
graph G0 in gr(Sp) on n0 = 2log n+p(log n) vertices such that G is an induced subgraph of G0.
Let us assume that V(G) ⊆ V(G0). The partial labeling `′ : V(G0)→ {0, 1}c(log n+p(log n))

with `′(u) = `(u)0cp(log n) for all u ∈ V(G) shows that G is an induced subgraph of G0. It
remains to argue that for every computable label decoder F there exists a padding function
p such that Fp is computable by a family of logspace-uniform AC0-circuits. Let t : N→N

be the runtime of a Turing machine which computes F. The idea is to choose p sufficiently
large in terms of t such that the logspace transducer which computes the circuit family can
precompute the satisfying assignments for the circuit and then compile them into a DNF.
Notice that membership in Fp only depends on a small part of the input bits and therefore
the DNF is only polynomial w.r.t. the input size and thus can be directly encoded into the
circuit.

The or- and and-pointer numbers are hereditary because deleting vertices does not
increase them. Also, the labeling schemes behind these numbers can be computed in GAC0

and therefore the pointer numbers are contained in the intersection of these two classes.
The and-pointer number is strictly contained in the intersection because planar graphs
have unbounded and-pointer number but bounded or-pointer number.

Fact 3.17 ([Spi03, p. 165 f.]). Every graph class with bounded clique-width is in GAC0.

Proof. A subset of vertices S of a graph G is called a k-module if it can be partitioned
into k parts S1, . . . , Sk such that Si is a module in G[(V \ S) ∪ Si], i.e. the vertices in Si are
indistinguishable to vertices of V \ S, for k ∈N. A k-module S of G is called balanced if
S contains at least one third and at most two thirds of the vertices of G. Spinrad asserts
that every graph with clique-width k has a balanced k-module. Therefore given a graph G
with clique-width k one can construct a binary tree T(G) by recursively finding a balanced
k-module S and putting the vertices of S in the left node and the vertices of V(G) \ S in the
right node. The root node contains every vertex of G. Since every child node in T(G) only
has at most two thirds of the vertices of its parent node it follows that the tree has depth
O(log n). Spinrad constructs the following labeling scheme by using this tree. Given a
graph G with clique width k a vertex v of G is labeled as follows. There is a path in T(G)
from the root node to the leaf node which contains v. Let this path be x1, . . . , xc where x1
is the root node and xc is the leaf. For each 1 ≤ i < c the following information is stored
in the label of v. For xi let Si be the balanced k-module stored in the left child node of xi
which can be partitioned into Si

1, . . . , Si
k. The first bit of v for the i-th level denotes whether
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v is in the left child of xi. If v is in the left child of xi then this means v is in the balanced
k-module Si and one also stores the index j such that v ∈ Si

j for 1 ≤ j ≤ k. If v is in the
right child of xi then one stores the subset of X of {1, . . . , k} such that v is adjacent to the
modules Si

j for all j ∈ X. Each level only requires a constant number of bits. To check
whether two vertices u, v of G are adjacent one has to find the first level of T(G) such that
u and v are placed in different nodes. Assume that u is in the left subtree and v in the right
one. Then u and v are adjacent iff the index j of the part of the balanced k-module that u
is contained in is part of the subset X of v for this level. It is not difficult to construct a
constant-depth circuit which computes this label decoder.

Every uniformly sparse graph class has bounded degeneracy and thus bounded or-
pointer number due to Fact 3.13. Since the family of complete graphs has bounded
or-pointer number but is not (uniformly) sparse this inclusion is strict.

Fact 3.18. Every graph class with bounded twin index has bounded or- and and-pointer number.

Proof. Let C be a graph class with bounded twin index k. This means a graph G in C has
at most k twin classes V1, . . . , Vk. The following labeling of the vertices in G shows that
G has or- and and-pointer number at most k. Given a vertex v in G let its id be the index
of the twin class, i.e. `id(v) = i such that v ∈ Vi. Then let `(v) be the subset of [k] such
that j ∈ `(v) iff the twin class Vj is adjacent to the twin class of v or j = `id(v) and Vj is a
clique.

The class of square grid graphs has unbounded twin index but bounded degree. There-
fore the twin index is strictly contained in the pointer numbers.

Fact 3.19. A graph class is in [Tiny∩Hereditary]⊆ iff it has bounded twin index.

Proof. “⇒”: This direction is proved in [SZ94].
“⇐”: Let C be the set of graphs with twin index at most k for a k ∈ N. Clearly, C is

hereditary. It remains to show that C is tiny. Recall that a graph class C is tiny if there
exists a c < 1

2 such that |Cn| ≤ ncn for all sufficiently large n. A graph G on n vertices
in C with twin index 1 ≤ i ≤ k is determined by the following choices. Choose an
unordered partition of n into i parts p1, p2, . . . , pi ∈ [n], which means p1 + · · ·+ pi = n
and p1 ≤ p2 ≤ · · · ≤ pi. Let Pn,i denote the number of such partitions. This partition tells
us that the first p1 vertices of G are a twin class, the next p2 vertices of G are a twin class and
so on. For every twin class one has to choose whether it is a clique or an independent set (2i

possibilities). It remains to choose how the i twin classes interact (|Gi| ≤ 2i2 possibilities).

k

∑
i=1

2i2+i · Pn,i ≤
k

∑
i=1

2i2+i · 2n ≤ k · 2k2+k · 2n ≤ k · 2n+k2 ≤ 2
1
3 n log n = n

1
3 n

These inequalities are meant to hold for fixed k and sufficiently large n. The first inequality
holds due to the fact that the partition number Pn = ∑n

i=1 Pn,i is in O(2n), which follows
from the asymptotic formula for Pn by Hardy and Ramanujan.

To see that the intersection number is bounded by the twin index observe that a graph
with intersection number k can have at most 2k different twin classes because the twin
class of a vertex is determined by a subset of k elements. To see that this inclusion is strict
consider the class of complete bipartite graphs which have twin index two but unbounded
intersection number.
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FIGURE 3.4: Axis-aligned rectangle intersection graph as conjunction of two interval
graphs

3.3 Reductions Between Graph Classes

The concept of reduction is vital to complexity theory as it enables one to formally compare
the complexity of problems as opposed to just treating each problem separately. In our
context we want to say a graph class C reduces to a graph classD if the adjacency of graphs
in C can be expressed in terms of adjacency of graphs in D. It should satisfy the following
closure property: if D has a labeling scheme and C is reducible to D then C has a labeling
scheme as well. This closure should also hold when the complexity of label decoders is
restricted, i.e. if D is in GP and C reduces to D then C is in GP. Such a reduction notion
makes it possible to compare graph classes for which no labeling schemes are known to see
whether there might be a common obstacle to designing a labeling scheme. We introduce
two kinds of reduction that satisfy this closure property. Before we formally define and
examine them let us first explain the intuition behind them.

For the first reduction type, called algebraic reduction, the idea is to express the adja-
cency of a graph G on vertex set V in terms of graphs H1, . . . , Hk which also have vertex set
V and a k-ary Boolean function f . Two vertices u, v in G are adjacent iff f (x1, . . . , xk) = 1
where xi denotes whether u and v are adjacent in Hi. For example, every axis-aligned
rectangle intersection graph can be expressed as the conjunction of two interval graphs
as shown in Figure 3.4, i.e. two boxes intersect iff both of their corresponding intervals
intersect. Therefore we say axis-aligned rectangle intersection graphs reduce to interval
graphs. We call this type of reduction algebraic because it is build upon an interpretation
of Boolean functions as functions on graph classes. The resulting algebra on graph classes
inherits some of the properties of its Boolean ancestor. For instance, the negation of a
graph class C equals its edge-complement co-C in this interpretation. Thus negating a
graph class twice is an involution, i.e. ¬¬C = C. Additionally, this algebra gives a unifying
terminology for concepts such as arboricity, thickness and boxicity. We remark that a
similar but in a sense less general notion called locally bounded coverings of graphs has
been used in [LMZ12] and [Atm+15]. They say a set of graphs H1, . . . , Hk is a covering of a
graph G if V(G) = ∪k

i=1V(Hi) and E(G) = ∪k
i=1E(Hi). If we assume that V(Hi) = V(G)

then in our terminology G is the disjunction of H1, . . . , Hk. They also use this as a tool to
prove the existence of implicit representations [Atm+15, Lem. 4].

The second kind of reduction is called subgraph reduction. While it is technically more
tedious to define than the algebraic variant, the underlying intuition is just as simple.
Instead of expressing the adjacency of a graph G using a sequence of graphs as before, we
do this in terms of a single, larger graph H. Informally, every vertex of G is assigned to
a constant-sized subgraph of H and two vertices u, v of G are adjacent if their combined
(labeled) subgraph in H satisfies some condition. To illustrate this let us consider how the
adjacency of k-interval graphs can be expressed in terms of interval graphs in this sense.
Let G be a k-interval graph with n vertices. This means there exists an interval model
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M(G) of G with kn intervals. Let H be the interval graph with kn vertices that is induced
by the intervals of M(G). Then assign each vertex u of G the k vertices u1, . . . , uk in H that
correspond to its k intervals. Two vertices u, v in G are adjacent iff there exist i, j ∈ [k]
such that ui and vj are adjacent in H. It is not clear whether k-interval graphs can also be
reduced to interval graphs in the algebraic sense. We show that algebraic reductions are a
special case of subgraph reductions under certain circumstances.

An important application of reductions is to demonstrate that certain problems are
representative (complete) for certain complexity classes. The notion of completeness is also
applicable to our setting and it is natural to ask what a complete graph class for GP looks
like. We show that no hereditary graph class can be complete for GAC0 or any superset
thereof with respect to algebraic or subgraph reductions. In fact, it might very well be
the case that there do not even exist complete graph classes for GP and GAC0 at all. On
the upside, in the next section we introduce classes of labeling schemes defined in terms
of first-order logic for which completeness results under both types of reductions can be
shown.

3.3.1 Algebraic Reductions

Definition 3.20. Let f be a k-ary Boolean function and H1, . . . , Hk are graphs with the same
vertex set V and k ≥ 0. We define f (H1, . . . , Hk) to be the graph with vertex set V and an edge
(u, v) iff f (x1, . . . , xk) = 1 where xi = J(u, v) ∈ E(Hi)K for all u 6= v ∈ V.

The constant Boolean functions 0 and 1 define the empty and complete graph, respec-
tively. The negation of a graph is its edge-complement.

Definition 3.21. Let f be a k-ary Boolean function and C1, . . . , Ck are graph classes and k ≥ 0.
We define f (C1, . . . , Ck) to be the graph class that contains every graph G such that there exist
(H1, . . . , Hk) ∈ C1 × · · · × Ck with G = f (H1, . . . , Hk) assuming that G and H1, . . . , Hk all
have the same vertex set.

Under the graph class interpretation the constant Boolean functions 0 and 1 define the
class of empty and complete graphs, respectively. The negation of a graph class C is the
edge-complement co-C. A graph G has arboricity at most k iff G ∈ ∨k

i=1 Forest. Similarly,
G has thickness at most k iff G ∈ ∨k

i=1 Planar and boxicity at most k iff G ∈ ∧k
i=1 Interval.

Suppose you are given two Boolean formulas F1, F2 with k variables. Due to the previous
definition we can naturally interpret Fi as a function fi which maps k graph classes to a
graph class (each subformula of Fi evaluates to a graph class). The following statement
shows that F1 and F2 are logically equivalent iff f1 = f2.

Lemma 3.22 (Compositional Equivalence). Given Boolean functions f , g, h1, . . . , hl where
f , h1, . . . , hl have arity k and g has arity l such that f (~x) = g(h1(~x), . . . , hl(~x)) for all~x ∈ {0, 1}k.
Then for all sequences of graph classes ~C = (C1, . . . , Ck) it holds that

f (~C) = g(h1(~C), . . . , hl(~C))

Proof. We show that for all sequences of graphs ~H = (H1, . . . , Hk) it holds that f (~H) =

g(h1(~H), . . . , hl(~H)). From that it directly follows that f (~C) = g(h1(~C), . . . , hl(~C)). Let
G f = f (~H) and Gg = g(h1(~H), . . . , hl(~H)). It holds that

(u, v) ∈ E(G f )⇔ f (~x) = 1⇔ g(h1(~x), . . . , hl(~x)) = 1⇔ (u, v) ∈ E(Gg)
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with ~x = (x1, . . . , xk) and xi = J(u, v) ∈ E(Hi)K for i ∈ [k].

Given a Boolean function f of arbitrary arity it is trivial to construct a unary Boolean
function g such that f (x, . . . , x) = g(x) for all x ∈ {0, 1}. This is not possible under the
graph class interpretation. For instance, Forest ∨ Forest 6= f (Forest) for any of the four
unary Boolean functions f . Therefore disjunction is not idempotent and one can show
that neither is conjunction. However, this algebra does inherit some of the properties
of its Boolean ancestor. For instance, disjunction and conjunction are associative and
commutative, negation is an involution and De Morgan’s laws apply. More generally,
all laws of Boolean algebra where every variable occurs at most once on each side apply
to this algebra as well. Boolean algebra is a special case of this algebra on graph classes
if one restricts the universe to the class of complete graphs {Kn | n ∈N} and the edge-
complement of it.

Definition 3.23 (Algebraic Reduction). Let F be a set of Boolean functions and C,D are graph
classes. We say C ≤F D if C ⊆ f (D, . . . ,D) for some f ∈ F. We write [D]F to denote the set of
graph classes reducible to D w.r.t. ≤F.

In order for ≤F to be reflexive and transitive the following additional requirement has
to be made. A set of Boolean functions is a Boolean clone if it is closed under composition
and contains all projection functions πi

k(x1, . . . , xk) = xi for 1 ≤ i ≤ k and k ∈ N.
For a set of Boolean functions F let us write [F]clone to denote the closure of F and all
projections functions under composition. Alternatively, one can think of [F]clone as all
Boolean functions that can be expressed by Boolean formulas which use functions from F
as connectives. For example, [¬,∧]clone is the set of all Boolean functions BF.

Lemma 3.24. If F is a Boolean clone then ≤F is reflexive and transitive.

Proof. Reflexivity directly follows from the identity function which is a projection function
and therefore contained in F. For transitivity let C ≤F D via a k-ary f ∈ F and D ≤F E
via an l-ary g ∈ F. We show that C ≤F E via the kl-ary Boolean function h(~x1, . . . , ~xk) =
f (g(~x1), . . . , g(~xk)) where ~xi denotes a sequence of l variables. Since h is the composition of
f and g it follows that h is in F. Consider a graph G in C. There are graphs H1, . . . , Hk ∈ D
such that G = f (H1, . . . , Hk). Since Hi ∈ D there are graphs Ii

1, . . . , Ii
l ∈ E such that

Hi = g(Ii
1, . . . , Ii

l ) for all i ∈ [k]. Therefore G = h(~I1, . . . , ~Ik) = f (g(~I1), . . . , g(~Ik)) with
~Ii = (Ii

1, . . . , Ii
l ) for i ∈ [k].

We say a set of graph classes A is closed under a k-ary Boolean function f if for all
C1, . . . , Ck ∈ A it holds that f (C1, . . . , Ck) ∈ A. We say A is closed under ≤F for a set of
Boolean functions F if C ≤F D and D ∈ A implies C ∈ A.

Lemma 3.25. Let F be a Boolean clone and let B be a set of Boolean functions with F = [B]clone. If
a set of graph classes A is closed under subsets and f for every f ∈ B then A is closed under ≤F.

Proof. Let A be closed under subsets and every Boolean function in B. We need to argue
that A is closed under f for every f ∈ F. From that and the closure under subsets it
follows that A is closed under ≤F.

Observe that if A is closed under some Boolean functions then it is also closed under
the composition of these functions for the following reason. Let f , g, h1, . . . , hl be Boolean
functions where f , h1, . . . , hl have arity k and g has arity l and f is the composition of
g with h1, . . . , hl. Let A be closed under g and h1, . . . , hl. Given ~D ∈ Ak it holds that
f (~D) = g(h1(~D), . . . , hl(~D)) due to the compositional equivalence from Lemma 3.22.
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Since A is closed under hi it follows that Di := hi(~D) is in A for all i ∈ [l]. Therefore
g(D1, . . . ,Dl) is in A as well and hence A is closed under f . Since every function in F can
be expressed as composition of functions from B and projections and A is closed under
every function from B and projections it follows that it is closed under every function from
F.

If A is closed under union then the implication in Lemma 3.25 becomes an equivalence.

Corollary 3.26. A set of graph classes is closed under ≤BF if it is closed under subsets, negation
and conjunction. Moreover, for a set of graph classes A that is closed under union it holds that A

is closed under ≤BF iff it is closed under subsets, negation and conjunction.

Lemma 3.27. The classes GAC0,GL,GP,GEXP,GR and GALL are closed under ≤BF.

Proof. If a set of languages A is closed under complement then GA is closed under nega-
tion. To see that the above mentioned classes are closed under conjunction, consider the
following construction. Given two labeling schemes S1 = (F1, c1) and S2 = (F2, c2) let the
labeling scheme S3 = (F3, c1 + c2) with (x1x2, y1y2) ∈ F3 ⇔ (x1, y1) ∈ F1 ∧ (x2, y2) ∈ F2

and |xi|
|x| =

|yi|
|y| =

ci
c for i ∈ [2]. It holds that gr(S1) ∧ gr(S2) ⊆ gr(S3) and it is simple to see

that this construction works for all of the above complexity classes.

Lemma 3.28. The class [Small∩Hereditary]⊆ is closed under ≤BF.

Proof. If a graph class is small and hereditary then so is its edge-complement and therefore
we have closure under negation. It remains to show that this set of graph classes is closed
under conjunction. Let C,D be small and hereditary graph classes. A graph in C ∧ D is
determined by choosing a graph in C and D and therefore |(C ∧D)n| ≤ |Cn| · |Dn| ∈ nO(n)
since C and D are small. Given a graph G ∈ C ∧D. Let G = H1 ∧ H2 with H1 ∈ C, H2 ∈ D.
It holds that G[V′] = H1[V′] ∧ H2[V′] for all vertex subsets V′ of G. Since C and D are
hereditary it follows that every induced subgraph of G is in C ∧ D.

Let us say a graph class C is ≤BF-complete for a set of graph classes A if C is in A

and D ≤BF C for every D ∈ A. Alternatively, one can also say C is complete for A if
[C]≤BF = A. Observe that a directed graph class is not ≤BF-reducible to an undirected one.
Since classes such as GP and GAC0 contain directed graph classes it trivially follows that no
undirected graph class can be complete for them. If we assume that only undirected graph
classes can be small and hereditary then it trivially holds that GAC0 and its supersets do
not have a ≤BF-complete small and hereditary graph class. To make this more interesting
we can either drop this assumption or we can restrict GAC0 to undirected graph classes.
Irregardless of the choice, the following statement holds.

Fact 3.29. There exists no small, hereditary graph class that is ≤BF-complete for GAC0, or a
superset thereof.

Proof. Assume there exists a small, hereditary graph class C that is complete for GAC0 with
respect to ≤BF. Since C is in [Small ∩Hereditary]⊆ and [Small ∩Hereditary]⊆ is closed
under ≤BF it follows that every class reducible to C must be in [Small∩Hereditary]⊆ and
thus GAC0 ⊆ [Small∩Hereditary]⊆. This contradicts Theorem 3.16.

We conclude this subsection by showing that every uniformly sparse graph class is≤BF-
reducible to interval graphs. A graph class is uniformly sparse iff it has bounded arboricity.
Stated differently, C is uniformly sparse iff there exists a k ∈N such that C ⊆ ∨k

i=1 Forest.
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FIGURE 3.5: Schematic of an (H, f )-representation of a graph G with labeling `

It holds that every forest has boxicity at most 2, i.e. Forest ⊆ Interval∧ Interval. Therefore
if C is uniformly sparse then there exists a k ∈N such that C ⊆ ∨k

i=1(Interval∧ Interval).
Notice that this reduction does not require negation and therefore is a≤M-reduction where
M denotes the monotone clone [∧,∨]clone.

3.3.2 Subgraph Reductions

Given k ≥ 0, a k2-ary Boolean function f and a (k× k)-matrix A over {0, 1}. We write
f (A) to denote the value of f when plugging in the entries of A from left to right and top
to bottom. We say f is diagonal if the value of f only depends on the k entries on the main
diagonal of A. Given k, l ≥ 1, a k2-ary Boolean function f and an l2-ary Boolean function g.
We define the composition of f with g to be the (kl)2-ary Boolean function

( f ◦ g)

B1,1 . . . B1,k
... . . . ...

Bk,1 . . . Bk,k

 = f

g(B1,1) . . . g(B1,k)
... . . . ...

g(Bk,1) . . . g(Bk,k)


where Bi,j is a (l × l)-matrix for i, j ∈ [k].

Definition 3.30. Given graphs G, H, k ∈N and a k2-ary Boolean function f . We say G has an
(H, f )-representation if there exists an ` : V(G)→ V(H)k such that for all u 6= v ∈ V(G)

(u, v) ∈ E(G)⇔ f (A`
uv) = 1

with A`
uv = (J(`(u)i, `(v)j) ∈ E(H)K)i,j∈[k].

Definition 3.31 (Subgraph Reduction). Given graph classes C,D. We say C ≤sg D if there
exist c, k ∈N and a k2-ary Boolean function f such that for all n ∈N and G ∈ Cn there exists an
H ∈ Dnc such that G has an (H, f )-representation. We say C ≤diag

sg D if this holds for a diagonal
f . We write [C]sg to denote the set of graph classes ≤sg-reducible to C.

In the case of intersection graph classes the subgraph reduction can be simplified.
Given two families of sets X and Y let CX and CY denote the intersection graph classes that
they induce. It holds that CY ≤sg CX if there exists a k ∈ N, a k2-ary Boolean function f
and a labeling ` : Y → Xk such that for all u 6= v ∈ Y it holds that u∩ v 6= ∅⇔ f (A`

uv) = 1
with A`

u,v = (J`(u)i ∩ `(v)j 6= ∅K)i,j∈[k]. For instance, let X be the set of intervals on the
real line and Y =

{
∪k

i=1xi | x1, . . . , xk ∈ X
}

for some k ∈ N. This means CX is the set of
interval graphs and CY is the set of k-interval graphs. To reduce CY to CX we can choose
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the labeling `(y) = (x1, . . . , xk) with y ∈ Y and x1, . . . , xk ∈ X such that y = ∪k
i=1xi and f

is the Boolean function that returns one if at least one of its arguments is one.
Let C,D be two graph classes such that C ≤sg D via c, k ∈ N and a k2-ary Boolean

function f . In the definition of subgraph reductions it is required that every graph on n
vertices in C must have an (H, f )-representation for a graph H ∈ D on exactly nc vertices.
The following lemma shows that if D satisfies some fairly weak conditions then this size
restriction becomes obsolete.

We call a graph class C inflatable if for every graph G on n vertices in C and all m > n
there exists a graph on m vertices in C which contains G as induced subgraph.

Lemma 3.32. Let D be a hereditary and inflatable graph class. It holds for all graph classes C that
C ≤sg D iff there exists a k ∈ N and a k2-Boolean function f such that every graph in C has an
(H, f )-representation for some H ∈ D.
Proof. The direction “⇒” is clear. For the other direction consider a graph class C and let
f be a k2-ary Boolean function such that every graph in C has an (H, f )-representation
for some H ∈ D. We show that C ≤sg D via c = k, k and f . Let G be a graph in C
with n vertices. We show that there exists a graph H′′ on nk vertices in D such that G
has an (H′′, f )-representation. There exists a graph H in D such that G has an (H, f )-
representation via a labeling ` : V(G) → V(H)k. Let V′ be the set of vertices of H that
occur in the image of `. Let H′ be the induced subgraph of H on V′. It holds that H′
has at most kn vertices and G has an (H′, f )-representation via `. Since D is hereditary
it holds that H′ is in it. Let H′′ be a graph with nk vertices in D which contains H′ as
induced subgraph. Since D is inflatable such a graph must exist. It follows that G has an
(H′′, f )-representation via `.

Lemma 3.33. ≤sg and ≤diag
sg are reflexive and transitive.

Proof. For reflexivity it suffices to show that C ≤diag
sg C. This holds because every G ∈ C

has a (G, f )-representation with f (x) = x (c = k = 1) and f is diagonal.
For transitivity assume that C ≤sg D via c, k ∈N and a k2-ary Boolean function f and

D ≤sg E via d, l ∈N and an l2-ary Boolean function g. We show that C ≤sg E via cd, kl and
the (kl)2-ary Boolean function f ◦ g. Given G ∈ Cn we need to show that there exists an
I ∈ Encd such that G has an (I, f ◦ g)-representation. Since G ∈ Cn there exist an H ∈ Dnc

such that G has an (H, f )-representation via a labeling ` : V(G) → V(H)k. Also, there
exists an I ∈ Encd such that H has an (I, g)-representation via a labeling `′ : V(H)→ V(I)l .
Then it can be verified that G has an (I, f ◦ g)-representation due to the following labeling
`′′ : V(G) → V(I)kl. For u ∈ V(G) let `(u) = (u1, . . . , uk) and let `′(ui) = (ui,1, . . . , ui,l)
for i ∈ [k]. We define `′′(u) as (u1,1, . . . , u1,l, u2,1, . . . , u2,l, . . . , uk,1, . . . , uk,l). The same
argument shows that ≤diag

sg is transitive because the composition of two diagonal Boolean
functions yields a diagonal Boolean function.

Lemma 3.34. The class GAC0 is closed under ≤sg.

Proof. Let C ≤sg D and let D ∈ GAC0. We need to show that C ∈ GAC0. Let D ∈ GAC0 via
the labeling scheme S = (F, c) and C ≤sg D via d, k ∈N and a k2-ary Boolean function f .
Then we claim that the labeling scheme S′ = (F′, cdk) with

(x1 . . . xk, y1 . . . yk) ∈ F′ ⇔ f

J(x1, y1) ∈ FK J(x1, y2) ∈ FK . . .
... . . .

J(xk, y1) ∈ FK J(xk, yk) ∈ FK

 = 1



3.3. Reductions Between Graph Classes 31

for all xi, yi ∈ {0, 1}cdm with m ∈ N and i ∈ [k] represents C and F′ can be computed
in AC0 since F can be computed in AC0. We show how to label a given G ∈ Cn. Since
C ≤sg D there exist an H ∈ Dnd such that G has an (H, f )-representation via the labeling
`G : V(G)→ V(H)k. Since D is represented by S there also exists a labeling `H : V(H)→
{0, 1}c log nd

such that H is represented by S via `H. Then a vertex u of G can be labeled
with `H(u1) . . . `H(uk) where ui is the i-th component of `G(u).

Corollary 3.35. The classes GL,GP,GEXP,GR and GALL are closed under ≤sg.

Proof. Observe that for all these complexity classes the same argument as the one given
for GAC0 in Lemma 3.34 works.

Lemma 3.36. Let C,D be graph classes and D is in [Small ∩Hereditary]⊆. If C ≤sg D holds
then C is small.

Proof. Let C ≤sg D via c, k ∈ N and a k2-ary Boolean function f and D is small and
hereditary. A graph G with n vertices in C is determined by a graph H with nc vertices
in D and a labeling ` : V(G) → V(H)k. Observe that the adjacency relation of G only
depends on an induced subgraph H′ of H with at most kn vertices (every vertex of H that
occurs in the image of `). Since D is small and hereditary the number of options for H′ is
limited by

kn

∑
i=1
|Di| ≤

kn

∑
i=1

iO(i) ≤ kn · knO(kn) ≤ nO(n)

The number of different labelings ` : V(G)→ V(H′)k is limited by (kn)kn ≤ nO(n). There-
fore C is small.

Lemma 3.37. The class [Small∩Hereditary]⊆ is closed under ≤sg.

Proof. Let C,D be graph classes such that C ≤sg D via c, k ∈ N and a k2-ary Boolean
function f and D is in [Small∩Hereditary]⊆. For the sake of contradiction let us assume
that C is not a subset of a small and hereditary graph class. Let C ′ be the closure of C
under induced subgraphs. The class C ′ cannot be small since this would imply that C
is in [Small ∩Hereditary]⊆. We argue that there exists a finite graph class E such that
C ′ \ E ≤sg D via c, k and f . From the previous lemma it follows that C ′ \ E is small. Since E
is only finite it follows that C ′ is also small, which is a contradiction. Let n0 be the smallest
number such that kn0 ≤ nc

0 and E is the class of all graphs with at most n0 vertices. Let
G′ ∈ C ′ \ E with n′ vertices. We need to show that there exists a graph H′ ∈ D on (n′)c

vertices such that G′ has an (H′, f )-representation. There exists a G ∈ C on n vertices
such that G′ is an induced subgraph of G and an H ∈ Dnc such that G has an (H, f )-
representation via a labeling ` : V(G)→ V(H)k. Therefore G′ has an (H, f )-representation
via the labeling `′ : V(G′)→ V(H)k defined as the restriction of ` to vertices from G′. Since
G′ is an induced subgraph of G it holds that n′ ≤ n and therefore (n′)c ≤ nc. Additionally,
since G /∈ E it holds that kn′ ≤ (n′)c. To construct the desired graph H′ ∈ D with (n′)c

vertices such that G′ has an (H′, f )-representation one can delete vertices from H until
only (n′)c vertices remain but every vertex in the image of `′ is still in H′.

Corollary 3.38. There exists no small, hereditary graph class that is complete for GAC0 (or a
superset thereof) with respect to ≤sg.
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Proof. GAC0 is no subset of [Small ∩Hereditary]⊆ due to Theorem 3.16. If a small and
hereditary graph class is complete for GAC0 w.r.t. ≤sg then this would imply that GAC0 is a
subset of [Small∩Hereditary]⊆ since [Small∩Hereditary]⊆ is closed under ≤sg.

We call a graph class C self-universal if for every finite subset of C there exists a graph
in C that contains every graph of that finite subset as induced subgraph. For instance,
every graph class that is closed under disjoint union is self-universal.

Lemma 3.39. Let D be a self-universal and inflatable graph class. Then it holds that C ≤BF D
implies C ≤diag

sg D for all graph classes C.

Proof. Since C ≤BF D there exists a k-ary Boolean function f for some k ∈ N such that
C ⊆ f (D, . . . ,D). Let f ′ be defined as the k2-ary diagonal Boolean function f ′(A) =

f (A1,1, . . . , Ak,k). To show that C ≤diag
sg D we argue that for all n ∈ N every graph

G ∈ Cn has an (H, f ′)-representation for some H ∈ Dnk . It holds that G = f (H1, . . . , Hk)
for some H1, . . . , Hk ∈ Dn and G, H1, . . . , Hk all have the same vertex set V. Since D is
self-universal and inflatable there exists a graph H ∈ Dnk which contains H1, . . . , Hk as
induced subgraphs. Let πi : V → V(H) be the witness that shows that Hi is an induced
subgraph of H for i ∈ [k]. Then G has an (H, f )-representation via the labeling `(u) =
(π1(u), . . . , πk(u)).

Fact 3.40. For every intersection graph class D it holds that C ≤BF D iff C ≤diag
sg D for all graph

classes C.

Proof. “⇒”: Every intersection graph class is self-universal and inflatable. Therefore this
direction follows from the previous lemma.

“⇐”: Let C ≤diag
sg D via c, k ∈ N and a k2-ary diagonal Boolean function f . Let g

be the k-ary Boolean function which underlies f , i.e. f (A) = g(A1,1, . . . , Ak,k). We claim
that C ≤BF D via g. This means for every G ∈ C we need to show that there exist
H1, . . . , Hk ∈ D on vertex set V(G) such that G = g(H1, . . . , Hk). Given G ∈ Cn there exist
an H ∈ Dnc and a labeling ` : V(G)→ V(H)k such that (u, v) ∈ E(G) iff g(x1, . . . , xk) = 1
with xi := J(`(u)i, `(v)i) ∈ E(H)K. Since D is an intersection graph class we can assume
without loss of generality that no vertex of H occurs more than once in the image of `
(otherwise we could just clone that vertex). Let Hi be the induced subgraph of H that has
{`(u)i | u ∈ V(G)} as vertex set. Since D is hereditary it follows that Hi is in D for all
i ∈ [k].

3.4 Logical Labeling Schemes

Consider the labeling scheme for interval graphs that we have seen in the introduction. A
vertex of an interval graph is labeled with two numbers which represent the endpoints of
its interval. The label decoder for this labeling scheme can be expressed as FO formula
ϕ(x1, x2, y1, y2) , ¬(x2 < y1 ∨ y2 < x1). Given two vertices u, v with labels u1, u2, v1, v2 ∈
N and u1 < u2, v1 < v2 it holds that [u1, u2] and [v1, v2] intersect iff ϕ(u1, u2, v1, v2) holds.
Since ϕ only describes the label decoder we need to specify the label length in order to
extend this to a (logical) labeling scheme (ϕ, c). First, observe that a binary string of length
ck log n can be interpreted as k numbers from [nc]. k describes the number of variables per
vertex and therefore is exactly half the number of free variables of ϕ (in this case k = 2).
For an interval graph with n vertices it suffices to pick numbers from [2n] ⊆ [n2] which
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means c = 2. Therefore (ϕ, c) is a logical labeling scheme for interval graphs. Labeling
schemes for the pointer numbers and many intersection graph classes can be expressed as
logical labeling schemes. The only graph classes with a labeling scheme for which we do
not know whether they also admit a logical labeling scheme are those that have bounded
clique-width. Our motivation for introducing logical labeling schemes is that they strike a
balance between expressiveness and being amenable to analysis, which does not seem to
apply to GP or even GAC0.

Quantifier-free logical labeling schemes are well-behaved from a graph-theoretical point
of view in the sense that graph classes which can be expressed by such labeling schemes
must be a subset of a small and hereditary graph class. This immediately separates them
from classes such as GAC0. We call the set of graph classes with a quantifier-free logical
labeling scheme GFOqf. The class GFOqf can be characterized in terms of constant-time
RAMs and in terms of what we call polynomial-Boolean systems. Most candidates for
the implicit graph conjecture such as line segment graphs or k-dot product graphs (small
and hereditary graph classes not known to have a labeling scheme) can be described by
polynomial-Boolean systems. A particularly interesting observation is that if GFOqf has
a hereditary ≤BF-complete graph class then all graph classes that can be described by a
polynomial-Boolean system are also in GFOqf and therefore would cease to be candidates
for the implicit graph conjecture. Additionally, we show that algebraic reductions are
intimately related to quantifier-free logical labeling schemes and give examples of complete
graph classes for certain fragments.

3.4.1 Definition and Basic Properties

Definition 3.41. A (quantifier-free, atomic) logical labeling scheme is a tuple S = (ϕ, c) with
a (quantifier-free, atomic) formula ϕ ∈ FO2k and c, k ∈ N. A graph G is in gr(S) if there
exists a labeling ` : V(G) → [nc]k0 such that (u, v) ∈ E(G) ⇔ Nnc , (`(u), `(v)) |= ϕ for all
u 6= v ∈ V(G).

Definition 3.42. Let σ ⊆ {<,+,×}. A graph class C is in GFO(σ) if there exists a logical
labeling scheme (ϕ, c) with ϕ ∈ FO2k(σ) and c, k ∈ N such that C ⊆ gr(ϕ, c). Let GFOqf(σ)
denote the quantifier-free analogue.

We say a logical labeling scheme S = (ϕ, c) is in GFO(qf)(σ) if ϕ is a (quantifier-free)
formula in FO(σ).

Lemma 3.43. Let σ ⊆ {<,+,×} and let A be a complexity class that is closed under AC0 many-
one reductions. If the bounded model checking problem for every (quantifier-free) formula in FO(σ)
can be decided in A then GFO(qf)(σ) ⊆ GA.

Proof. We show that the above statement holds for σ = {<,+,×} and formulas with
quantifiers. From this the result for all restricted classes of formulas follows.

Let us assume that the bounded model checking problem for every formula in FO
can be decided in A. Consider a logical labeling scheme S = (ϕ, c) with 2k variables.
Let G be a graph that is in gr(S) via a labeling ` : V(G) → [nc]k0. We can translate the
labeling ` into a binary encoded one `′ : V(G) → {0, 1}kc′ log n where c′ = c + 1 and a
block of c′ log n bits represents a number in [nc]0. For all u 6= v ∈ V(G) it holds that
(u, v) ∈ E(G) ⇔ Nnc , (`(u), `(v)) |= ϕ ⇔ (`′(u), `′(v), bin(nc)) is a positive instance of
the bounded model checking problem for ϕ. This almost gives us a labeling scheme which
shows that gr(S) is in GA. The problem, however, is that bin(nc) is not part of the labeling
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and the formal definition of GA does not allow us to use any input but the labels. To solve
this we append bin(nc) to the labeling. Consider a labeling `′′ : V(G)→ {0, 1}(k+1)c′ log n

such that `′′(u) = `′(u)bin(nc). The last c′ log n bits of `′′(u) encode nc. Now, the following
labeling scheme S′ = (F, (k + 1)c′) shows that gr(S) is in GA. The label decoder is defined
as (x1 . . . xk+1, y1 . . . yk+1) ∈ F iff (x1, . . . , xk, y1, . . . , yk, xk+1) is a positive instance of the
bounded model checking problem for ϕ for all xi, yi ∈ {0, 1}c′m, i ∈ [k + 1] and m ∈ N.
The label decoder F can be decided in A since it is closed under AC0 many-one reductions
and thus we can transform the input of the label decoder into an instance of the bounded
model checking problem.

Theorem 3.44. GFOqf(<,+) ( GAC0, GFOqf ( GTC0 and GFO ⊆ GPH.

Proof. Due to the previous lemma we can prove these inclusions by showing that the
bounded model checking problem for formulas in FOqf(<,+), FOqf and FO can be solved
in AC0, TC0 and PH, respectively. First, let us explain why the bounded model checking
problem for formulas in FOqf can be solved in TC0. The naive approach to model-check
a quantifier-free formula ϕ is as follows: evaluate the terms of ϕ (expressions involving
addition and multiplication of the free variables (the input)), then evaluate the atomic
formulas which means comparing numbers and finally compute the underlying Boolean
function of ϕ. Since the order relation, addition and multiplication can be computed
in TC0 (see [Vol99]) and ϕ is fixed this naive approach can be realized by a family of
TC0-circuits (for addition and multiplication one has to additionally handle the overflow
condition). Since order and addition can be computed in AC0 it follows that the bounded
model checking problem for formulas in FOqf(<,+) is in AC0. In the case of formulas with
quantifiers we can use the non-determinism of PH to evaluate them. Observe that the
number of bits that need to be guessed are only linear w.r.t. the input size. Therefore we
can conclude that GFOqf(<,+) ⊆ GAC0, GFOqf ⊆ GTC0 and GFO ⊆ GPH. The strictness of
the first two inclusions is a consequence of the fact that GAC0 6⊆ [Small∩Hereditary]⊆ (see
Theorem 3.16) and GFOqf ⊆ [Small∩Hereditary]⊆ which is proved later (see Theorem 3.72
and Corollary 3.77).

Lemma 3.45. GFO(σ) and GFOqf(σ) are closed under ≤BF for all σ ⊆ {<,+,×}.

Proof. Let C ≤BF D via a k-ary Boolean function f and D is in GFO(qf)(σ) via a logical
labeling scheme S = (ϕ, c) with 2l variables. We construct a logical labeling scheme
S′ = (ψ, c) with 2kl variables which shows that C is in GFO(qf)(σ). Let ψ have variables
xi,j, yi,j for i ∈ [k] and j ∈ [l] and let us write ~xi for xi,1, . . . , xi,l. Let ψ(~x1, . . . , ~xk, ~y1, . . . , ~yk)
be defined as f (ϕ(~x1, ~y1), . . . , ϕ(~xk, ~yk)). We claim that C ⊆ gr(S′). Consider a graph
G ∈ C with vertex set V. There exist k graphs H1, . . . , Hk ∈ D with vertex set V such
that G = f (H1, . . . , Hk). Since Hi is in D it is also in gr(S) via a labeling `i : V → [nc]l0 for
i ∈ [k]. Consider the labeling ` : V → [nc]kl

0 with `(u) = (`1(u), . . . , `k(u)) for all u ∈ V. It
is easy to verify that G is in gr(S′) via `.

Lemma 3.46. GFO(σ) and GFOqf(σ) are closed under ≤sg for all σ ⊆ {<,+,×}.

Proof. Let C ≤sg D via c, k ∈ N and a k2-ary Boolean function f and D is in GFO(qf)(σ)

via the labeling scheme S = (ϕ, d) and ϕ has 2l variables. Let ψ be a formula with 2kl
variables ~x1, . . . ,~xk,~y1, . . . ,~yk where ~xi and ~yi are sequences of l variables. We define ψ
as f (A) where A is a (k × k)-matrix with Aij = ϕ(~xi,~yj) for i, j ∈ [k]. We claim that



3.4. Logical Labeling Schemes 35

C ⊆ gr(ψ, cd). Given a graph G ∈ C on n vertices there exists a graph H ∈ D on nc

vertices such that G has an (H, f )-representation via a labeling `G : V(G)→ V(H)k. Also,
H ∈ gr(S) via a labeling `H : V(H)→ [ncd]

l
0. Let ` : V(G)→ [ncd]

kl
0 be defined as follows.

Given u ∈ V(G) let `G(u) = (u1, . . . , uk) and `H(ui) = (ui,1, . . . , ui,l) for i ∈ [k]. We define
`(u) as (u1,1, . . . , u1,l, u2,1, . . . , u2,l, . . . , uk,1, . . . , uk,l). It can be verified that G is in gr(ψ, cd)
via the labeling `. No new atoms or quantifiers are introduced in ψ compared to ϕ and
thus it remains in the same class of formulas.

In a logical labeling scheme S = (ϕ, c) the label length c determines the size of the
universe (Nnc) which is used to interpret ϕ for graphs on n vertices. For quantifier-free
formulas the universe size only affects at what point the overflow condition of addition
and multiplication applies. Since ϕ is known a priori one can always choose c sufficiently
large in order to ensure that no overflow occurs for all labelings of a predetermined
size. Is it possible to exploit the overflow condition to express a graph class that would
not be expressible without it? We show that for certain fragments this is not the case.
Moreover, for these fragments the formula can be assumed to be always interpreted over
N irregardless of the number of vertices of the graph.

Definition 3.47. Given a logical labeling scheme S = (ϕ, c). A graph G is in gr∞(S) if there
exists a labeling ` : V(G) → [nc]k0 such that (u, v) ∈ E(G) ⇔ N , (`(u), `(v)) |= ϕ for all
u 6= v ∈ V(G).

Lemma 3.48. Let σ = ∅, or σ ⊆ {<,+,×} and ‘<’ is in σ. A graph class C is in GFOqf(σ) iff
there exists a logical labeling scheme S in GFOqf(σ) such that C ⊆ gr∞(S).

Proof. In the case that σ = ∅ it is easy to check that for every logical labeling scheme S in
GFOqf(=) it holds that gr(S) = gr∞(S) and thus the above claim holds. Therefore let us
consider the case where ‘<’ is in σ.

“⇒”: Let C be a graph class that is in GFOqf(σ) via a logical labeling scheme S = (ϕ, c),
i.e. C ⊆ gr(S). We construct a logical labeling scheme S′ = (ψ, c) such that C ⊆ gr∞(S′)
and S′ is in GFOqf(σ). We assume w.l.o.g. that we have access to the constants c0 = 0 and
c1 = nc in ψ. The constants can be realized by adding two variables to each vertex which
are promised to contain the value of the constants for the considered labelings. We build ψ
from ϕ such that the overflow checks are incorporated into the propositional part of ψ. To
do this we replace each atomic subformula A of ϕ by a guarded one A′. We demonstrate
how to do this based on the following example. Let A(x1, x2, y1, y2) be the atomic formula
×(+(x1, y2), x2) < +(x2, y1). We convert A into A′ by checking whether an overflow
occurs at each subterm bottom-up. Let a→ b denote propositional implication which is
shorthand for ¬a ∨ b. Then A′ is the following formula (order of operation is implied by
indentation and reading a propositional formula of the form ϕ → α ∧ ¬ϕ → β as “if ϕ
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then α else β”).

c1 < +(x1, y2)→
c1 < ×(c0, x2)→

c1 < +(x2, y1)→
c0 < c0

∧ ¬c1 < +(x2, y1)→
c0 < +(x1, y1)

∧ ¬c1 < ×(c0, x2)→
c1 < +(x2, y1)→

× (c0, x2) < c0

∧ ¬c1 < +(x2, y1)→
× (c0, x2) < +(x2, y1)

∧ ¬c1 < +(x1, y2)→
c1 < ×(+(x1, y2), x2)→

...

The correctness of this transformation follows from showing that Nnc ,~a |= A iff N ,~a |= A′

for all~a ∈ [nc]40.
“⇐”: Let C be a graph class and S = (ϕ, c) is a logical labeling scheme in GFOqf(σ)

such that C ⊆ gr∞(S). The maximal value that results from evaluating any term in ϕ
must be polynomially bounded, i.e. there exists a d ∈ N such that the largest value
produced while evaluating ϕ for a graph with n vertices does not exceed ncd. Therefore
gr∞(ϕ, c) ⊆ gr(ϕ, cd) and C ∈ GFOqf(σ).

Fact 3.49. Let σ = ∅, or σ ⊆ {<,+,×} and ‘<’ is in σ. GFO(σ) and GFOqf(σ) are closed under
union.

Proof. First, we argue why showing closure under union for GFO(qf)(σ) reduces to proving
that (?) for every labeling scheme S = (ϕ, c) in GFO(qf)(σ) there exists a labeling scheme
S′ = (ϕ′, c + 1) with gr(S) ⊆ gr(S′). Let C,D be in GFO(qf)(σ) via labeling schemes
S1 = (ϕ1, c1) and S2 = (ϕ2, c2). Due to (?) we can assume w.l.o.g. that c1 = c2 = c. Let 2ki
be the number of free variables of ϕi for i ∈ [2]. Furthermore, we assume w.l.o.g. that gr(S1)

and gr(S2) contain all empty graphs Kn on n vertices. Let S = (ψ, c) with ψ(~x1, ~x2, ~y1, ~y2) ,
ϕ1(~x1, ~y1) ∨ ϕ2(~x2, ~y2) where ~xi,~yi are sequences of ki variables for i ∈ [2]. It holds that S
is in GFOqf(σ). To see that C ∪ D ⊆ gr(S) holds consider a graph G on n vertices in C. We
can combine a labeling which shows that G is in gr(S1) with a labeling that shows that
Kn is in gr(S2) to get a labeling which shows that G is in gr(S) because G ∨ Kn = G. The
correctness relies on the fact that the labeling schemes S, S1, S2 are all interpreted over the
same universe Nnc for all graphs with n vertices and n ∈N.

Next, let us explain why (?) holds. If σ = ∅ then (?) obviously holds for GFOqf(=).
Since GFOqf(=) = GFO(=) as we shall see later (Fact 3.53) this also applies to GFO(=).
Therefore we consider the case where ‘<’ is in σ. Let S = (ϕ, c) be a labeling scheme
with 2k variables in GFO(qf)(σ). We assume that ϕ is in prenex normal form and it has
q ≥ 0 quantified variables, i.e. ϕ(~x) , Q1z1 . . . Qqzqψ(~x,~z) with Qi ∈ {∀, ∃} for i ∈ [q]
and ~z = (z1, . . . , zq) and ψ is a quantifier-free formula. Let ψ′ be the formula that is
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obtained from ψ by incorporating the overflow checks into the propositional part (the same
construction that is used in the proof of Lemma 3.48). Let ϕ′(~x) be a FO formula which is
equivalent to (Q1z1 ≤ c1) . . . (Qqzq ≤ c1) : ψ(~x,~z) where c1 is a constant representing the
value nc. It holds that gr(S) ⊆ gr(ϕ′, c + 1).

Lemma 3.50. Let σ ⊆ {<,+,×}. Every graph class in GFO(qf)(σ) can be represented by a
logical labeling scheme S = (ϕ, c) in GFO(qf)(σ) such that every free variable of ϕ occurs in at
most one atom of ϕ.

Proof. Let C be in GFO(qf)(σ) via a logical labeling scheme S = (ϕ, c). Suppose ϕ has
free variables x1, . . . , xk, y1, . . . , yk and atoms A1, . . . , Aa. Let ψ be a formula with 2ak free
variables xi,j, yi,j with i ∈ [k], j ∈ [a] defined as follows. The formula ψ is obtained by
renaming every variable xi and yi that occurs in the atom Aj of ϕ to xi,j and yi,j for all
i ∈ [k], j ∈ [a]. To show that gr(ϕ, c) ⊆ gr(ψ, c) consider a graph G which is in gr(ϕ, c)
via a labeling ` : V(G) → [nc]k0. The following labeling `′ : V(G) → [nc]ak

0 shows that
G is in gr(ψ, c). Given a vertex u ∈ V(G) let `(u) = (u1, . . . , uk). We define `′(u) as
(u1, . . . , u1︸ ︷︷ ︸

a times

, . . . , uk, . . . , uk︸ ︷︷ ︸
a times

).

Theorem 3.51 (Algebraic Interpretation). Let σ = ∅, or σ ⊆ {<,+,×} and ‘<’ is in σ. A
graph class C is in GFOqf(σ) iff there exist an a ∈ N, atomic labeling schemes S1, . . . , Sa in
GFOqf(σ) and an a-ary Boolean function f such that C ⊆ f (gr∞(S1), . . . , gr∞(Sa)).

Proof. “⇒”: Let C be in GFOqf(σ). Due to Lemma 3.48 there exists a a logical labeling
scheme S = (ϕ, c) in GFOqf(σ) such that C ⊆ gr∞(S). Let A1, . . . , Aa be the atoms of ϕ
and f is the underlying a-ary Boolean function of ϕ. Let ϕ have 2ak variables xi,j, yi,j
with i ∈ [a] and j ∈ [k]. Furthermore, let the set of variables used in Ai be a subset of{

xi,j, yi,j | j ∈ [k]
}

for i ∈ [a]. This means that the variables that occur in Ai and Aj are
disjoint for all i 6= j ∈ [a], which can be assumed w.l.o.g. due to the previous lemma.
We claim that C ⊆ f (gr∞(A1, c), . . . , gr∞(Aa, c)). For a graph G ∈ C there exist labelings
`i : V(G)→ [nc]k0 for each i ∈ [a] such that

(u, v) ∈ E(G)⇔ f (x1, . . . , xa) = 1 with xi := JN , (`i(u), `i(v)) |= AiK

for all u 6= v ∈ V(G). Let Hi be the graph with the same vertex set as G and there is an
edge (u, v) ∈ E(Hi) iffN , (`i(u), `i(v)) |= Ai for all i ∈ [a]. It holds that G = f (H1, . . . , Ha)
and Hi ∈ gr∞(Ai, c) via `i.

“⇐”: Since GFOqf(σ) is closed under union (Fact 3.49) it holds that D =
a⋃

i=1
gr∞(Si)

is in GFOqf(σ). Additionally, C ≤BF D via the a-ary Boolean function f because C ⊆
f (D, . . . ,D). It follows that C is in GFOqf(σ) due to closure under ≤BF.

Theorem 3.52. GFOqf(<) = GFOqf(<,+) = GFOqf(<,×).

Proof. To prove that GFOqf(<, α) is a subset of GFOqf(<) for α ∈ {+,×} we argue
that it suffices to show that for every atomic labeling scheme S in GFOqf(<, α) it holds
that gr∞(S) ∈ GFOqf(<). Given a graph class C ∈ GFOqf(<, α), there exist atomic
labeling schemes S1, . . . , Sa in GFOqf(<, α) and an a-ary Boolean function f such that
C ⊆ f (gr∞(S1), . . . , gr∞(Sa)) because of Theorem 3.51. By assumption it holds that
gr∞(S1), . . . , gr∞(Sa) are in GFOqf(<) and therefore D =

⋃k
i=1 gr∞(Si) is in GFOqf(<)
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due to closure under union. Then C ≤BF D via f and due to closure under ≤BF it follows
that C ∈ GFOqf(<).

Let S = (ϕ, c) be an atomic labeling scheme in GFOqf(<, α). We argue that gr∞(S)
is in GFOqf(<). Using gr∞(S) instead of gr(S) allows us to assume that addition and
multiplication are associative. Let ϕ have variables x1, . . . , xk, y1, . . . , yk. The idea is
to rearrange the (in)equation such that the variables x1, . . . , xk are on one side of the
(in)equation and y1, . . . , yk are on the other side. This allows us to precompute the required
values in the labeling of the new labeling scheme which does not use α. Let us show how
this works in detail when α is ‘+’ and ϕ uses ‘<’. In that case ϕ is a linear inequation and
can be written as

k

∑
i=1

aixi + biyi <
k

∑
i=1

cixi + diyi

for certain ai, bi, ci, di ∈N0 for i ∈ [k]. This can be rewritten as:

k

∑
i=1

(ai − ci)xi︸ ︷︷ ︸
ln(x1,...,xk)

<
k

∑
i=1

(di − bi)yi︸ ︷︷ ︸
rn(y1,...,yk)

For n ∈N let ln, rn be the functions induced by the left-hand and right-hand expression
with signature ln, rn : [nc]k0 → R. Let En be the union of the image of ln and the image of rn.
Let En = {e1, . . . , ezn} for some zn ∈N and ei < ej for all i < j with i, j ∈ [zn]. It holds for
all n ∈N,~a,~b ∈ [nc]k0 and ei = ln(~a), ej = rn(~b) that

N , (~a,~b) |= ϕ⇔ ln(~a) < rn(~b)⇔ ei < ej ⇔ i < j

We claim that for the labeling scheme S′ = (ψ, c′) where ψ(x1, x2, y1, y2) is x1 < y2 and
c′ ∈ N is chosen sufficiently large, it holds that gr∞(S) ⊆ gr∞(S′). Consider a graph G
on n vertices that is in gr∞(S) via a labeling ` : V(G) → [nc]k0. We construct a labeling

`′ : V(G) → [nc′ ]
2
0 which shows that G is in gr∞(S′). For u ∈ V(G) let `′(u) = (i, j) with

ei = ln(`(u)) and ej = rn(`(v)). For all u 6= v ∈ V(G) it holds that

(u, v) ∈ E(G)⇔ N , (`(u), `(v)) |= ϕ

⇔ ln(`(u)) < rn(`(v))
⇔ `′(u)1 < `′(v)2

⇔ N , (`′(u), `′(v)) |= ψ

Fact 3.53. GFOqf(=) = GFO(=).

Proof. Let C be in GFO(=) via a labeling scheme S = (ϕ, c) with 2k variables, i.e. C ⊆ gr(S).
Observe thatNn,~a |= ϕ iffN ,~a |= ϕ for all n > r and~a ∈ [n]2k

0 where r denotes the number
of free and quantified variables in ϕ. This means C>r ⊆ gr∞(S). Let ψ be a quantifier-free
formula in FO2k(=) such that N ,~a |= ϕ iff N ,~a |= ψ for all~a ∈ N2k

0 . The existence of ψ
can be proved by quantifier elimination. It follows that C>r ⊆ gr∞(ψ, c) and therefore
C>r ∈ GFOqf(=). Since GFOqf(=) is closed under union and every finite graph class is in
GFOqf(=) it follows that C is in GFOqf(=).
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Fact 3.54. GFOqf(<) = GFO(<).

Proof. Observe that FO(<) has no quantifier-elimination in the sense that there is no
quantifier-free formula in FO(<) which is equivalent to ∃z x < z∧ z < y where x, y are free
variables. Instead, we show that (?) for every formula ϕ in FOk(<) there exists a quantifier-
free formula ψ in FOk(<,+) such that ϕ and ψ are equivalent w.r.t. Nn for all n ∈ N.
It immediately follows that GFO(<) ⊆ GFOqf(<,+). Since GFOqf(<) = GFOqf(<,+)
(Theorem 3.52) it holds that GFO(<) = GFOqf(<).

Now, let us argue why (?) holds. For every formula in FO(<) it can be assumed
w.l.o.g. that it contains no negation since ¬x = y is equivalent to x < y∨ y < x and ¬x < y
is equivalent to x = y ∨ y < x. To prove that every formula in FO(<) has a quantifier-free
equivalent in FO(<,+) it suffices to show that every formula ϕ of the form ∃z C where C
is a conjunction of atoms from FO(<) has a quantifier-free equivalent ψ in FO(<,+) (see
[Smo91, p. 310]). We assume that ψ can use the constants c0, c1, cm which represent 0, 1 and
the maximal value in the universe, respectively. If C is unsatisfiable then a quantifier-free
equivalent of ϕ is the negation of a tautology. Therefore we assume that C is satisfiable.
The conjunctive clause C can be seen as a directed acyclic graph DC. The equality atoms in
C induce a partition of the variables in C; let the vertex set of DC be that partition. For two
vertices U, V in DC there is an edge (U, V) if there exist variables x ∈ U, y ∈ V such that
x < y is a literal in C. Let Z be the vertex of DC which contains the quantified variable z.
Assume that Z contains another variable x 6= z. In that case a quantifier-free equivalent
ψ of ϕ can be obtained by renaming every occurrence of z in C to x and removing the
quantifier. If Z contains only z we can proceed as follows. We assume that z occurs in
at least one literal of C since otherwise it could be trivially removed. This implies that
Z is not an isolated vertex in DC. If Z has in-degree zero then z can be replaced by the
constant c0. Similarly, if Z has out-degree zero then z can be replaced by the constant cm. If
Z has neither in-degree nor out-degree zero then ψ can be constructed from ϕ as follows.
For all in-neighbors X of Z, out-neighbors Y of Z and variables x ∈ X, y ∈ Y append
‘∧ x + c1 < y ∧ x 6= cm’ to ψ. Then remove the quantifier and every atom containing z
from ψ. The atom x + c1 < y ensures that the difference between x and y is at least two,
which was previously expressed by saying that there exists a value z between x and y. A
problem occurs when x + c1 evaluates to zero because x is assigned the maximal value of
the universe due to the overflow condition. To prevent this we add the atom x 6= cm. More
formally, it can be checked that Nn,~a |= ϕ iff Nn,~a |= ψ for all n ∈N.

We remark that quantifier-free labeling schemes in GFO(<) are solely determined by
their formula in the following sense. Given such a formula ϕ with 2k variables it holds
that gr(ϕ, k) = ∪i∈Ngr(ϕ, i) ([Cha16b, Lem. 20]).

3.4.2 Complete Graph Classes

Corollary 3.55. Let σ = ∅, or σ ⊆ {<,+,×} and ‘<’ is in σ. A graph class D is ≤BF-complete
for GFOqf(σ) iff D is in GFOqf(σ) and gr∞(S) ≤BF D holds for all atomic labeling schemes S in
GFOqf(σ).

Proof. “⇒”: If D is ≤BF-complete for GFOqf(σ) then every graph class in GFOqf(σ) is ≤BF-
reducible to D. From Lemma 3.48 it follows that gr∞(S) is in GFOqf(σ) for every atomic
labeling scheme S in GFOqf(σ).

“⇐”: Suppose that gr∞(S) ≤BF D holds for all atomic labeling schemes S in GFOqf(σ).
From Theorem 3.51 it follows that if a graph class C is in GFOqf(σ) then there exist atomic
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labeling schemes S1, . . . , Sa and an a-ary Boolean function f in GFOqf(σ) such that C ⊆
f (gr∞(S1), . . . , gr∞(Sa)). There exist Boolean functions g1, . . . , ga such that gr∞(Si) ⊆
gi(D, . . . ,D) for all i ∈ [a]. Therefore C ⊆ f (g1(D, . . . ,D), . . . , ga(D, . . . ,D)) and thus
C ≤BF D.

Definition 3.56. A directed graph G is dichotomic if for all u, v ∈ V(G) and α ∈ {in, out} it
holds that Nα(u) ∩ Nα(v) = ∅ or Nα(u) = Nα(v).

Observe that every directed forest is dichotomic. Every vertex in a forest has in-degree
at most one and therefore Nin(u) = Nin(v) or Nin(u) ∩ Nin(v) = ∅ for all u 6= v ∈ V(G).
Additionally, the out-neighborhoods of every distinct pair of vertices are disjoint because
every node has a unique parent.

Lemma 3.57. There exists an atomic labeling scheme S in GFO(=) such that gr(S) is exactly the
class of dichotomic graphs.

Proof. Let S = (ϕ, 1) with ϕ(x1, x2, y1, y2) , x1 = y2.
First, we argue that every dichotomic graph is in gr(S). Given a dichotomic graph G

with n vertices. Let ∼ be the equivalence relation on V(G) such that u ∼ v if u and v have
identical out-neighborhoods. Let V1, . . . , Vk be the equivalence classes of ∼. We write V′i to
denote the out-neighbors of the vertices in Vi for i ∈ [k]. Let V′0 be the set of vertices which
have in-degree zero. It holds that V′0, V′1, . . . , V′k is a partition of V(G) (with possibly some
empty sets) since G is dichotomic. The following labeling ` : V(G)→ [n]20 shows that G is
in gr(S). For u ∈ V(G) let `(u) = (u1, u2) with u1, u2 ∈ [k]0 such that u ∈ Vu1 and u ∈ V′u2

.
Since k ≤ n this is a valid labeling.

For the other direction let G be a graph that is in gr(S) via the labeling ` : V(G)→ [n]20.
Consider two vertices u, v of G. Let `(u) = (u1, u2) and `(v) = (v1, v2). If u1 = v1 then they
have identical out-neighborhoods. If u1 6= v1 then they have disjoint out-neighborhoods.
The same applies to the in-neighborhoods and u2, v2. Therefore G is dichotomic.

Theorem 3.58. Dichotomic graphs are ≤BF-complete for GFO(=).

Proof. From the previous lemma it follows that dichotomic graphs are in GFO(=). For the
hardness we have to argue that for every atomic labeling scheme S in GFO(=) it holds that
gr∞(S) is ≤BF-reducible to dichotomic graphs (see Corollary 3.55). Let S = (ϕ, c) be an
atomic labeling scheme in GFO(=) with 2k variables x1, . . . , xk, y1, . . . , yk for some c, k ∈N.
The formula ϕ must be one of the following:

1. xa = xb for some a, b ∈ [k]

2. ya = yb for some a, b ∈ [k]

3. xa = yb for some a, b ∈ [k]

It is simple to check that every graph in gr(S) is dichotomic for the first two cases. It
remains to deal with the third case. Given a graph G that is in gr(S) via a labeling
` : V(G) → [nc]k0. We construct a labeling `′ : V(G) → [n]20 such that (u, v) ∈ E(G) iff
`′(u)1 = `′(v)2 for all u 6= v ∈ V(G). A graph is dichotomic iff it has such a labeling `′

(see the proof of Lemma 3.57). Let V(G) = {v1, . . . , vn} and `(vi) = (v1
i , . . . , vk

i ) for i ∈ [n].
Observe that only the a-th and b-th component of the labeling ` are relevant because
the other components are never considered. For a set Z ⊆ N and z ∈ Z let ord(z, Z)
denote the number of elements smaller than z in Z plus one, e.g. ord(0, {0, 3, 4}) = 1. Let
A = {va

1, . . . , va
n}. Given i ∈ [n] we define `′(vi) as (ord(va

i , A), v′i) with v′i = 0 if vb
i is not



3.4. Logical Labeling Schemes 41

in A and v′i = ord(vb
i , A) otherwise. Correctness follows from the fact that va

i = vb
j iff

`′(vi)1 = `′(vj)2 for all i, j ∈ [n] and that only numbers between 0 and n are used.

Corollary 3.59. Dichotomic graphs are ≤sg-complete for GFO(=).

Proof. Lemma 3.39 states that for every self-universal and inflatable graph class D it holds
that C ≤BF D implies C ≤sg D. Since dichotomic graphs are closed under disjoint union
and the graph with a single vertex is dichotomic it follows that this class is self-universal
and inflatable. As a consequence dichotomic graphs are ≤sg-complete for GFO(=).

Theorem 3.60. Path graphs are ≤sg-complete for GFO(=).

Proof. Dichotomic graphs are ≤sg-reducible to path graphs via c = 3, k = 4 and f (A) =
a1,4 ∧ a2,3 for A = (ai,j)i,j∈[4]. For n ∈N let Pn be the undirected path graph with n vertices.
We assume that Pn has vertex set {0, . . . , n − 1} and two vertices are adjacent if their
absolute difference is one. We need to show that every dichotomic graph G on n vertices
has a (Pn3 , f )-representation via some labeling ` : V(G)→ [n3− 1]40. Since G is dichotomic
there exists a labeling `′ : V(G) → [n]20 such that (u, v) ∈ E(G) iff `′(u)1 = `′(v)2 for
all u 6= v ∈ V(G) (see proof of Lemma 3.57). For u ∈ V(G) let `′(u) = (u1, u2); we
define `(u) as (2u1, 2u1 + 1, 2u2, 2u2 + 1). Notice that the maximal value in ` is 2n + 1
which is smaller than n3 − 1 for all n ≥ 2. For two vertices u 6= v ∈ V(G) with `′(u) =
(u1, u2), `′(v) = (v1, v2) it holds that (u, v) ∈ E(G) iff u1 = v2 iff f (A`

uv) = 1. Therefore G
has a (Pn3 , f )-representation via `.

Definition 3.61. A directed graph G is a linear neighborhood graph if for all u 6= v ∈ V(G) and
α ∈ {in, out} it holds that Nα(u) ⊆ Nα(v) or Nα(v) ⊆ Nα(u).

Lemma 3.62. There exists an atomic labeling scheme S in GFO(<) such that gr(S) is exactly the
class of linear neighborhood graphs.

Proof. Let S = (ϕ, 1) with ϕ(x1, x2, y1, y2) , x1 < y2.
First, we show that every linear neighborhood graph is in gr(S). Given a linear

neighborhood graph G with n vertices. Let ∼ be the equivalence relation on V(G) such
that u ∼ v if u and v have identical in-neighborhoods. Let V0 be the set of vertices
with in-degree zero. Let V1, . . . , Vk be the equivalence classes of ∼ except V0 such that
Nin(Vi) ⊆ Nin(Vj) for all 1 ≤ i < j ≤ k. Observe that V0, . . . , Vk is a partition of V(G).
The following labeling ` : V(G) → [n]20 shows that G is in gr(S). For u ∈ V(G) let
`(u) = (u1, u2) with u ∈ Vu2 and u1 is the minimal value such that u ∈ Nin(Vu1+1)
(u1 = k if this minimum does not exist) for u1, u2 ∈ {0, . . . , k}. To see that this is correct
let us consider an edge (u, v) ∈ E(G) and `(u) = (u1, u2), `(v) = (v1, v2). It holds that
u ∈ Nin(v) = Nin(Vv2). Since u ∈ Nin(Vv2) it follows that u1 + 1 ≤ v2 and thus u1 < v2.
Next, consider a non-edge (u, v) /∈ E(G). It holds that u /∈ Nin(v) = Nin(Vv2). Therefore
u1 + 1 ≥ v2 and thus u1 6< v2.

For the other direction let G be a graph that is in gr(S) via a labeling ` : V(G)→ [n]20.
We argue that G is a linear neighborhood graph. Given two vertices u 6= v ∈ V(G)
and `(u) = (u1, u2), `(v) = (v1, v2). If u1 ≤ v1 then Nout(v) ⊆ Nout(u). If u1 ≥ v1
then Nout(u) ⊆ Nout(v). The same holds for u2, v2 and the in-neighborhoods of u and v.
Therefore G is a linear neighborhood graph.

Theorem 3.63. Linear neighborhood graphs are ≤BF-complete for GFO(<).
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Proof. Membership follows from the previous lemma. For the hardness we have to show
for every atomic labeling scheme S = (ϕ, c) in GFO(<) that gr(S) is ≤BF-reducible to
linear neighborhood graphs. If ϕ uses equality then it can be rewritten using order because
x = y iff ¬(x < y ∨ y < x). Therefore we assume that ϕ uses order. Let ϕ have variables
x1, x2, y1, y2. Using more than two variables per vertex is useless as we have seen in the
proof of Theorem 3.58. If ϕ is xi < xj (or yi < yj) for i, j ∈ [2] then it is trivial to see that
gr(S) is a subset of linear neighborhood graphs. We assume w.l.o.g. that ϕ is x1 < y2.
We show that gr(ϕ, c) ⊆ gr(ϕ, 1) for all c ∈ N. Since gr(ϕ, 1) are linear neighborhood
graphs this concludes the hardness. Let G be a graph with n vertices that is in gr(ϕ, c) via a
labeling ` : V(G)→ [nc]20. We argue that there is a labeling `′ : V(G)→ [n]20, which shows
that G is in gr(ϕ, 1). Let V(G) = {v1, . . . , vn} and `(vi) = (v1

i , v2
i ) for i ∈ [n]. Observe

that only the relative order of the labels is relevant. Therefore the labels v2
1, . . . , v2

n can be
mapped to new labels v̄2

1, . . . , v̄2
n ⊆ {1, . . . , n} such that order is preserved, i.e. v2

i < v2
j

iff v̄2
i < v̄2

j for all i, j ∈ [n]. Similarly, the labels v1
1, . . . , v1

n can be mapped to new labels
v̄1

1, . . . , v̄1
n ⊆ {0, 1, . . . , n} such that v1

i < v2
j iff v̄1

i < v̄2
j for all i, j ∈ [n].

Corollary 3.64. Linear neighborhood graphs are ≤sg-complete for GFO(<).

Proof. Same argument as in the proof of Corollary 3.59.

Theorem 3.65. The transitive closure of directed paths is ≤sg-complete for GFO(<).

Proof. Let Dn denote the transitive closure of the directed path on n vertices. Let us assume
that Dn has {0, . . . , n− 1} as vertex set and (u, v) ∈ E(Dn) if u < v. It is clear from the
definition that this graph class is in GFO(<).

We show that linear neighborhood graphs are≤sg-reducible to this class via c = 2, k = 2
and f (A) = a1,2 for A = (ai,j)i,j∈[2]. Let G be a linear neighborhood graph with n vertices.
Then there exists a labeling ` : V(G) → [n]20 such that (u, v) ∈ E(G) iff `(u)1 < `(v)2. It
holds that G has a (Dn2 , f )-representation via the same labeling `.

Theorem 3.66. Interval graphs are ≤sg-complete for GFO(<).

Proof. The transitive closure of directed paths is ≤sg-reducible to interval graphs via c = 2,
k = 2, f (A) = a2,1 ∧ ¬a1,2 for A = (ai,j)i,j∈[2]. We show that for all n ∈ N there exists an
interval graph H on n2 vertices such that Dn has an (H, f )-representation. Let I denote
the set of intervals on the real line. The following function ` : V(Dn)→ I2 is a labeling for
Dn. For u ∈ V(Dn) = [n− 1]0 let `(u) = ([0, u], [u, u]). The image of ` defines an interval
graph H′ with 2n ≤ n2 vertices. Let H be an interval graph with n2 vertices which contains
H′ as induced subgraph. For two vertices u 6= v ∈ V(Dn) it holds that

(u, v) ∈ E(Dn)⇔ u < v⇔ [u, u] ∩ [0, v] 6= ∅ ∧ [0, u] ∩ [v, v] = ∅⇔ f (A`
uv) = 1

and therefore Dn has an (H, f )-representation via `.

3.4.3 Polynomial-Boolean Systems

In the beginning, we defined a labeling scheme independently of a model of computation.
The label decoder was just a binary relation over words. In the case of logical labeling
schemes we neglected this separation by identifying label decoders with logical formulas. It
would have been more hygienic to say that a logical formula ϕ with 2k variables computes
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(or represents) a label decoder Fϕ ⊆ N2k
0 . However, a subtle difference between logical

labeling schemes and classical ones is that the label length c in a logical labeling scheme
also influences how the formula is interpreted whereas in classical labeling schemes the
label length does not affect how a Turing machine which computes the label decoder is
executed. In the case of quantifier-free logical labeling schemes this dependence can be
removed as we have shown in Lemma 3.48. In this section we consider a generalization of
GFOqf where the restriction on the label length is dropped. Observe that a quantifier-free
logical labeling scheme can be seen as a Boolean combination of polynomial inequations.
We formalize this by what we call polynomial-Boolean systems. We consider a polynomial
to be an expression over a set of variables that only involves addition and multiplication.
We also consider the constant zero to be a polynomial.

Definition 3.67. A polynomial-Boolean system (PBS) with k variables is a tuple R =
((p1, . . . , pl), f ) where p1, . . . , pl are polynomials with k variables and f is an l2-ary Boolean
function and k, l ∈ N. Given X ∈ {N0, Q, R} the PBS R induces a k-ary relation FX

R over X

which is defined as

(a1, . . . , ak) ∈ FX
R ⇔ f (x1,1, . . . , xl,l) = 1 with xi,j = Jpi(a1, . . . , ak) < pj(a1, . . . , ak)K

for all a1, . . . , ak ∈ X and i, j ∈ [l].

Definition 3.68. Let X ∈ {N0, Q, R}. For k ∈ N and a relation F ⊆ X2k let gr(F) be the
following set of graphs. A graph G is in gr(F) if there exists a labeling ` : V(G)→ Xk such that
(u, v) ∈ E(G)⇔ (`(u), `(v)) ∈ F for all u 6= v ∈ V(G). A graph class C is in PBS(X) if there
exists a PBS R such that C ⊆ gr(FX

R ).

Spinrad briefly mentions what appears to be a non-uniform variant of PBS(R), which
he calls Warren representable [Spi03, p. 55].

Fact 3.69. The class of kd-line segment graphs, k-ball graphs and k-dot product graphs are in
PBS(Q) for all k ∈N.

Proof. It is intuitively clear from the definitions of these graph classes that they lie in
PBS(R). For example, in a line segment graph each vertex can be assigned four real
numbers which represent the two endpoints of the line segment of that vertex. It remains
to verify that a Boolean combination of the results of polynomial inequations suffices to
determine whether two line segments intersect. To see that these graph classes are in
PBS(Q) we make the following observation. If a graph class C is in PBS(R) via a PBS
R and for every graph G in C there exists a rational labeling ` of G that shows that G is
in gr(FR

R ) then C is in PBS(Q) via R. For k-dot product graphs it is shown in [Fid+98,
Proposition 3] that rational labelings suffice. For kd-line segment graphs and k-ball graphs
a perturbation argument shows that rational coordinates suffice as well.

For k ≥ 2 it is unknown whether the graph classes mentioned in the previous fact even
have a labeling scheme.

Lemma 3.70. Let X ∈ {N0, Q, R}. PBS(X) is closed under ≤BF and ≤sg.

Proof. For ≤BF it suffices to check that PBS(X) is closed under susbets, negation and
conjunction and then apply Corollary 3.26. For ≤sg consider the following argument.
Let C ≤sg D via c, k ∈ N and a k2-ary Boolean function f . Let D ∈ PBS(X) via a PBS
R = ((p1, . . . , pl), g) with 2m variables and l, m ∈ N. To avoid technical clutter we just
outline what a PBS R′ must look like such that C ⊆ gr(FX

R′) (and thus C ∈ PBS(X)). For a
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graph G ∈ C with n vertices there exists a graph H ∈ D with nc vertices such that G has an
(H, f )-representation via a labeling `G : V(G)→ V(H)k. Since D ∈ PBS(X) it follows that
H is in gr(FX

R ) via a labeling `H : V(H)→ Xm. By combining `G and `H we get a labeling
` : V(G)→ Xkm. Intuitively, the labeling ` provides us with all the information required to
determine adjacency in G. More specifically, one can construct a PBS R′ with 2km variables
from R and f such that G ∈ gr(FX

R′) via `.

Theorem 3.71. PBS(N0) = PBS(Q).

Proof. It is clear that PBS(N0) ⊆ PBS(Q). Let Q+ = {n ∈ Q | n ≥ 0}. For the other
direction we show that PBS(Q) ⊆ PBS(Q+) and PBS(Q+) ⊆ PBS(N0).

Let C ∈ PBS(Q) via a PBS R = ((p1, . . . , pl), f ) with 2k variables. We outline a PBS R′
such that C is in PBS(Q+) via R′. This construction relies on the following observation.
Given a ∈ Q let |a| denote its absolute value and sign(a) equals −1 if a is negative and
1 otherwise. For n ∈ N and a vector ~a ∈ Qn let |~a| = (|a1|, . . . , |an|) and sign(~a) =
(sign(a1), . . . , sign(an)). For all polynomial functions p, q : Qn → Q and sign patterns
~s ∈ {−1, 1}n there exist polynomial functions p′, q′ : Qn

+ → Q+ such that for all~a ∈ Qn

with sign(~a) =~s it holds that p(~a) < q(~a) iff p′(|~a|) < q′(|~a|). For example, consider the
polynomials p(x, y, z) = x2y3z + y and q(x, y, z) = z and the sign pattern (−1, 1,−1) for
(x, y, z). If we only consider inputs with this sign pattern then it holds that p(x, y, z) <
q(x, y, z) iff |y|+ |z|︸ ︷︷ ︸

p′

< |x|2|y|3|z|︸ ︷︷ ︸
q′

. For each variable in R we have two variables in R′.

The first one is used to store the absolute value of the original variable and the second
one encodes the sign. Let G be a graph that is in gr(FQ

R ) via a labeling ` : V(G) → Qk.
Then we derive a labeling `′ : V(G) → Q2k

+ from ` as follows. Given u ∈ V(G) let
`(u) = (u1, . . . , uk). We set `′(u) = (|u1|, u′1, . . . , |uk|, u′k) where u′i = |ui| if ui is negative
and any other non-negative value if ui is positive. This allows us to infer the sign pattern
and absolute values of the original labeling ` from `′. The PBS R′ is constructed such that
G ∈ gr(FQ+

R′ ) via `′. Suppose we are given two vertices u 6= v ∈ V(G). Then the adjacency
of u and v depends on the results of pi(`(u), `(v)) < pj(`(u), `(v)) for i, j ∈ [l]. We emulate
the inequation pi(`(u), `(v)) < pj(`(u), `(v)) in R′ by p′(|`(u)|, |`(v)|) < q′(|`(u)|, |`(v)|)
where p′ and q′ depend on pi, pj and the sign pattern of `(u), `(v). Stated differently, for
every pair i, j ∈ [l] and every sign pattern s ∈ {−1, 1}2k there is a pair of polynomials in
R′ and additionally R′ has the 2k identity polynomials to decode the signs.

To see that PBS(Q+) ⊆ PBS(N0) it suffices to make the following observation. Given
two polynomial functions p, q : Qk

+ → Q+ there exist two polynomial functions p′, q′ : N2k
0 →

N0 such that for all~a = ( a1
b1

, . . . , ak
bk
) ∈ Qk

+ it holds that p(~a) < q(~a) iff p′(a1, b1, . . . , ak, bk) <

q′(a1, b1, . . . , ak, bk). The functions p′ and q′ can be obtained from the inequation p < q by
multiplication with the denominators. Using this observation a PBS R with 2k variables
can be translated into a PBS R′ with 4k variables such that gr(FQ+

R ) ⊆ gr(FN0
R′ ).

Theorem 3.72. PBS(R) ⊆ [Small∩Hereditary]⊆.

Proof. Let R = ((p1, . . . , pl), f ) be a PBS with 2k variables. We show that gr(FR
R ) is small

and hereditary. From that it follows that PBS(R) is a subset of [Small∩Hereditary]⊆. Let
G be a graph that is in gr(FR

R ) via a labeling ` : V(G) → Rk. An induced subgraph of G
on vertex set V′ ⊆ V(G) is in gr(FR

R ) via the labeling ` restricted to V′. Thus gr(FR
R ) is

hereditary.
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It remains to argue that gr(FR
R ) is small. We do so by applying Warren’s theorem [Spi03,

p. 55], which can be stated as follows. Let E = (E1, . . . , Em) be a sequence of polynomial
inequations over variables x1, . . . , xn. More specifically, the inequations are assumed to
be of the form p(x1, . . . , xn) < q(x1, . . . , xn) where p, q are polynomials. Also, let d denote
the maximum degree that occurs in any of these inequations. The sequence E can be
understood as a function from Rn to {0, 1}m in the following sense. Given ~a ∈ Rn let
E(~a) = (e1, . . . , em) with ei = 1 iff the inequation Ei(~a) holds. An element of the image of
E is called a sign pattern. Warren’s theorem states that the cardinality of the image of E (or

equivalently, the number of sign patterns of E ) is at most
(

cdm
n

)n
where c is some constant.

We show that the number of graphs on n vertices in gr(FR
R ) is bounded by the number

of sign patterns of a certain sequence of equations ER,n. Consider a graph G on n vertices
that is in gr(FR

R ) via a labeling ` : V(G) → Rk. The presence of the edge (u, v) in G
is determined by the result of l2 polynomial inequations. Therefore G is determined
by the result of a sequence of l2n2 polynomial inequations. These inequations use kn
variables xi

u with u ∈ V(G) and i ∈ [k]. Let d denote the maximum degree over the
polynomials p1, . . . , pl. This means ER,n has kn variables, l2n2 equations and maximum
degree d. Thus a graph on n vertices in gr(FR

R ) is determined by a sign pattern of ER,n. As

a consequence there are at most
(

cdl2n2

kn

)kn
∈ nO(n) graphs on n vertices in gr(FR

R ) (c, d, k, l
are constants).

Definition 3.73. Let c, k ∈ N and F ⊆ N2k
0 . We say a graph G is in gr(F, c) if there exists a

labeling ` : V(G) → [nc]k0 such that (u, v) ∈ E(G) ⇔ (`(u), `(v)) ∈ F for all u 6= v ∈ V(G).
We say a graph class C is in BoundedPBS(N0) if there exists a PBS R and c ∈ N such that
C ⊆ gr(FN0

R , c).

Definition 3.74. For m ∈ N let Qm =
{ sa

b | a, b ∈ [m], s ∈ {−1, 0, 1}
}

. Let F ⊆ Q2k and
c, k ∈N. We say a graph G is in gr(F, c) if there exists a labeling ` : V(G)→ (Qnc)k such that
(u, v) ∈ E(G)⇔ (`(u), `(v)) ∈ F for all u 6= v ∈ V(G). A graph class C is in BoundedPBS(Q)

if there exists a PBS R and c ∈N such that C ⊆ gr(FQ
R , c).

Theorem 3.75. BoundedPBS(N0) = BoundedPBS(Q).

Proof. Let C be in BoundedPBS(Q) via a PBS R and c ∈N. This means C ⊆ gr(FQ
R , c). First,

we construct a PBS R′ such that gr(FQ
R , c) ⊆ gr(FQ+

R′ , c). This is the same construction that
is described in the proof of Theorem 3.71. One has to additionally check that the restriction
on the labeling is not violated. More precisely, if a graph G on n vertices is in gr(FQ

R , c)
via a labeling ` : V(G)→ Qnc then the labeling `′ which is derived from ` to show that G
is in gr(FQ+

R′ , c) must have the codomain (Q+)nc =
{ a

b | a, b ∈ [nc]
}
∪ {0} (analogously).

In the second step we construct a PBS R′′ such that gr(FQ+

R′ , c) ⊆ gr(FN0
R′′ , c). The same

construction as in the proof of Theorem 3.71 can be applied. The restriction on the labeling
is not violated by this construction either.

Theorem 3.76. GFOqf = BoundedPBS(N0).

Proof. “⊆”: Let C be a graph class in GFOqf. From Lemma 3.48 it follows that there exists
a logical labeling scheme S = (ϕ, c) in GFOqf such that C ⊆ gr∞(S). This means the
interpretation of each term in ϕ is identical to a polynomial function over N0. Therefore S
directly translates to a PBS R over N0 where the polynomial functions are given by the
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terms of ϕ and the Boolean function of R is given by the Boolean function underlying ϕ. It
is easy to check that gr∞(S) ⊆ gr(FR, c) and thus C ∈ BoundedPBS(N0).

“⊇”: Let C be a graph class that is in BoundedPBS(N0) via a PBS R with 2k variables and
c, k ∈N. The PBS R can be translated into a quantifier-free formula ϕ with 2k variables in
a straightforward fashion. For a sufficiently large c′ ∈N it holds that gr(FN0

R , c) is a subset
of gr(ϕ, c′) and thus C ∈ GFOqf. An adequate choice of c′ in terms of c and the maximum
degree over all polynomials in R ensures that the interpretation of (ϕ, c′) coincides with
that of R for all labelings whose codomain is [nc]k0 by preventing overflows.

Corollary 3.77. GFOqf = BoundedPBS(N0) = BoundedPBS(Q) ⊆ PBS(N0) = PBS(Q) ⊆
PBS(R) ⊆ [Small∩Hereditary]⊆.

Next, we show that if GFO(<) can be separated from PBS(N0) then this separation
can be amplified to GFO(<) 6= GFOqf. To prove this we show that if GFOqf has a complete
graph class w.r.t ≤BF which is hereditary then PBS(N0) collapses to GFOqf. A similar
statement holds w.r.t. ≤sg-reductions.

Let us say a set of graph classes A is closed under hereditary closure if for all C in
A it holds that its hereditary closure [C]⊆ is in A. If a set of graph classes A is closed
under hereditary closure and subsets then a graph class C is in A iff [C]⊆ is in A. As a
consequence it suffices to consider only hereditary graph classes when studying sets of
graph classes that are closed under hereditary closure.

Theorem 3.78. If GFOqf is closed under hereditary closure then GFOqf = PBS(N0).

Proof. Assume that GFOqf is closed under hereditary closure. We show that PBS(N0) ⊆
BoundedPBS(N0). Let C be a graph class that is in PBS(N0) via a PBS R with 2k variables,
i.e. C ⊆ gr(FN0

R ). It holds that D := gr(FN0
R , 1) is in PBS(N0). We claim that every graph

in C occurs as induced subgraph of some graph in D and therefore C ⊆ [D]⊆. Since
BoundedPBS(N0) = GFOqf is closed under hereditary closure by assumption it follows
that [D]⊆ (and thus C) is in GFOqf. Let G be a graph with n vertices that is in C. There exists
a labeling ` : V(G)→Nk

0 such that G is in gr(FN0
R ) via `. Let z ∈N0 be the maximal value

that occurs in the image of `. Let H be some graph with z + n vertices and V(G) ⊆ V(H).
The labeling ` is a partial labeling of H which shows that G is an induced subgraph of H.
If one extends the labeling ` such that `(u) = (0, . . . , 0) for all u ∈ V(H) \V(G) then this
shows that H is in gr(FN0

R , 1) = D.

Lemma 3.79. Let A be a set of graph classes closed under ≤BF. If there exists a hereditary graph
class that is ≤BF-complete for A then A is closed under hereditary closure.

Proof. Let C be a hereditary graph class that is ≤BF-complete for A. Let D be a graph
class in A. Since C is complete for A there exists a k-ary Boolean function f such that
D ⊆ f (C, . . . , C). We show that every graph which occurs as induced subgraph of some
graph in D is also in f (C, . . . , C), i.e. [D]⊆ ⊆ f (C, . . . , C). Let G be a graph in D and let G′
be an induced subgraph of G on vertex set V′ ⊆ V(G). There exist graphs H1, . . . , Hk ∈ C
on vertex set V(G) such that G = f (H1, . . . , Hk). It follows that G′ = f (H′1, . . . , H′k) where
H′i is the induced subgraph of Hi on vertex set V′ for i ∈ [k]. Since C is hereditary it
contains H′1, . . . , H′k and thus G′ ∈ f (C, . . . , C). Therefore [D]⊆ ⊆ f (C, . . . , C). Stated
differently, [D]⊆ is ≤BF-reducible to C via f and thus must be in A.

Lemma 3.80. Let A be a set of graph classes closed under ≤sg. If there exists a hereditary and
inflatable graph class that is ≤sg-complete for A then A is closed under hereditary closure.
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Proof. Let C be a hereditary and inflatable graph class that is ≤sg-complete for A. We
argue that if a graph class D is ≤sg-reducible to C then [D]⊆ is also ≤sg-reducible to C.
From that the above statement follows. Due to Lemma 3.32 it holds that D is ≤sg-reducible
to C iff there exist a k ∈N and a k2-ary Boolean function f such that for all graphs G in D
there exists a graph H in C such that G has an (H, f )-representation. Observe that if G has
an (H, f )-representation then every induced subgraph of G has an (H, f )-representation
as well. Therefore [D]⊆ is ≤sg-reducible to C via f .

Corollary 3.81. If GFOqf has a ≤BF-complete graph class that is hereditary then GFOqf =
PBS(N0). If GFOqf has an≤sg-complete graph class that is hereditary and inflatable then GFOqf =
PBS(N0).

Since GFO(<) has a hereditary graph class which is ≤BF-complete, namely linear
neighborhood graphs, it follows that GFO(<) must be a strict subset of GFOqf unless
GFO(<) = PBS(N0).

We conclude this subsection by making two remarks about what a labeling scheme
for line segment graphs must look like if it exists. From Fact 3.69 we know that line
segment graphs are in PBS(N0). The PBS R that shows this does exactly encode the
geometrical representation of this graph class. It suffices to use natural numbers to encode
the endpoints of the line segments, but how large do these numbers have to be? More
specifically, given a line segment graph with n vertices what is the minimal number of bits
w.r.t. n required to encode the endpoints, over all possible representations. If a logarithmic
number of bits O(log n) would suffice then there exists a c ∈ N such that gr(FN0

R , c)
contains all line segment graphs and thus this class is in GFOqf. In [MM13] it was proved
that at least an exponential number of bits is required and therefore such a c does not
exist. Similarly, encoding the geometrical representation of disk graphs and k-dot product
graphs also requires at least an exponential number of bits [MM13; KM12].

The previous consideration essentially says that the geometrical representation of
line segment graphs does not provide us with a labeling scheme due to the label length
restriction. Nonetheless, there still can be a labeling scheme S which represents line
segment graphs. In fact, it is even conceivable that gr(S) is exactly the set of line segment
graphs. We explain, however, that under a certain complexity-theoretic assumption this is
impossible because gr(S) must contain much more than just line segment graphs. Consider
the following computational problem: given a PBS R as input (the Boolean function is
given by a propositional formula), decide whether FR

R is non-empty. This is called the
decision problem for the existential theory of the reals ETR and is known to be in PSPACE
[Can88] and NP-hard. Since many interesting problems can be reduced to it and it seems
to not coincide with machine-based complexity classes, it has been awarded the status of a
complexity class. The eponymous complexity class is defined as the closure of ETR under
polynomial-time many-one reductions. Observe that the recognition problem for line
segment graphs lies in ETR. In fact, this problem is complete for it [KM94]. Therefore if we
assume that NP 6= ETR then for every labeling scheme S in GP that represents line segment
graphs the recognition problem for line segment graphs on gr(S) is not in NP. This follows
from the observation that the recognition problem for gr(S) is in NP. Therefore recognizing
line segment graphs reduces to recognizing them on graphs from gr(S).

3.4.4 Constant-Time RAMs

We show that GFOqf also admits a characterization which is interesting from a practical
point of view. A graph class is in GFOqf iff it has a labeling scheme whose label decoder
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can be computed in constant-time on a RAM with addition, subtraction and multiplication.
Additionally, we show that adding division (and possibly some simple bitwise-operations)
does not increase the set of graph classes that can be expressed beyond GTC0.

A RAM has an unlimited number of registers r0, r1, r2, . . . and each register can hold a
non-negative integer. The register r0 is called accumulator and is used to store the result
of arithmetic operations. The RAM is equipped with the four arithmetic instructions
addition ‘r0 ← ri + rj’, subtraction ‘r0 ← ri − rj’, multiplication ‘r0 ← ri × rj’ and division
‘r0 ← ri/rj’. In the case of subtraction if ri < rj then r0 is assigned the value 0. In the case
of division r0 contains b ri

rj
c if rj 6= 0 and 0 otherwise. Additionally, it has a conditional

jump instruction ‘JZ c’ where c refers to a line in the program. If the accumulator contains
zero then the program continues execution from line c, otherwise the jump instruction
is skipped. We call such an instruction a backwards jump if c refers to a line that occurs
before that instruction. Furthermore, the RAM is capable of indirect addressing. It has a
store operation r[ri]← r0 where it stores the contents of the accumulator in the register rri
and a load operation r0 ← r[ri] where it stores the contents of rri in the accumulator. We
call a sequence of such instructions a RAM program. A RAM program P has a prescribed
number of inputs k. Let x1, . . . , xk ∈N0 be an input of P. Before P is executed every register
ri is initialized with the value xi for i ∈ [k] and every other register is initialized with the
value 0. We say two RAM programs with the same number of inputs are equivalent if for
every input the accumulator of the RAM holds the same value after the execution of either
of these programs.

In the case of RAM programs that run in constant-time backwards jumps and indirect
addressing operations are syntactic sugar.

Lemma 3.82. For every RAM program that runs in constant time there exists an equivalent RAM
program that neither uses backwards jumps nor indirect addressing.

Proof. Let P be a RAM program that runs at most t steps on every input for a constant t ∈N.
A backward jump in P can be seen as a loop that repeats at most t times. Additionally,
before the end of each iteration it checks if the accumulator is not zero and in that case
breaks meaning that further iterations of the loop are aborted. By unrolling this loop and
replacing the conditional break by a jump-if-not-zero the backward jump can be removed.

The indirect addressing operations can be replaced by mimicking an associative array
as follows. Assume P has d ≤ t indirect store operations. Let skey

i , sval
i for i ∈ [d] be 2d

‘fresh’ registers in the sense that none of them is directly addressed in P. Let us say an si

is uninitialized if skey
i = 0. For an indirect store r[rc] ← r0 we do the following. Let x be

the value of rc at that point. If x equals the index of a register that is directly addressed
in P then execute rx ← r0. Otherwise, if there exists an i ∈ [d] such that skey

i = x then

execute sval
i ← r0. If no such i exists take the first uninitialized sj and execute skey

i ← rc

and sval
i ← r0. For an indirect load r0 ← r[rc] we proceed similarly. Let x be the value of rc

at that point. If x equals the index of a register that is directly addressed in P then execute
r0 ← rx. If x equals the value of some skey

i then execute r0 ← sval
i and else do r0 ← 0. For

correctness observe that our associative array can never run out of space, i.e. there will
always exist an uninitialized si if we need one and at no point will two different entries of
our array have the same key, i.e. skey

i 6= skey
j for all i 6= j ∈ [d]. Also, the case distinctions

can be realized by using only forward jumps.
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1: P1
2: JZ 8
3: P2
4: JZ 7
5: P3
6: JZ 8
7: P4
8: P5

qP1 (~x) = 0

qP1 P5 (~x) = 0

~x ∈ F~x /∈ F

0 1

qP1 P2 (~x) = 0

qP1 P2 P4 P5 (~x) = 0

~x ∈ F~x /∈ F

0 1

qP1 P2 P3 (~x) = 0

qP1 P2 P3 P5 (~x) = 0

~x ∈ F~x /∈ F

0 1

qP1 P2 P3 P4 P5 (~x) = 0

~x ∈ F~x /∈ F

0 1

0 1

0 1

0 1

FIGURE 3.6: Converting a RAM program into a polynomial-Boolean system

Similar to a polynomial-Boolean system a RAM program P with k inputs can be
interpreted to compute a relation FP ⊆Nk

0 such that ~x ∈ FP iff the accumulator does not
contain the value 0 after executing the program P on input ~x.

Theorem 3.83. Given k ∈N and F ⊆Nk
0. It holds that F can be computed by a RAM program

without division in constant-time iff F is representable by a polynomial-Boolean system.

Proof. “⇒”: Let P be a RAM program with k inputs that does not use division, jumps or
indirect addressing. It is not difficult to see that the value of the accumulator after executing
P can be expressed as composition of addition, multiplication and cut-off subtraction using
the input values and the constant zero. Let qP denote the polynomial with k variables that
corresponds to this composition when replacing cut-off subtraction by the regular one. For
two RAM programs P1, P2 let qP1P2 be the polynomial for the program that executes P1 and
then P2.

Given a division-free RAM program P with k inputs which runs in constant time we
show how to convert it into a polynomial-Boolean system which represents the same
relation F over Nk that P computes. Due to Lemma 3.82 we can assume w.l.o.g. that P
contains no backwards jumps or indirect addressing. For a subtraction ‘x0 ← xi − xj’ let
us call ‘if xi > xj then x0 ← xi − xj else x0 ← 0’ its guarded version. The semantics of
this guarded version can be expressed in a polynomial-Boolean system. Replace every
subtraction in P by its guarded version. Observe that the first jump operation in P depends
on the value of the accumulator at that point. Let P1 be the jump-free program that occurs
before that jump. Then the required value is given by the polynomial qP1 . Then the first
jump is taken iff the equation qP1 = 0 holds. Assume that this first jump is taken and the
portion of P that is executed after this jump and before the second jump is P2. Then the
second jump is taken iff qP1P2 = 0. Similarly, one can consider what happens if the first
jump is not taken and construct a binary decision diagram in that fashion. An example
of this given in Figure 3.6 where ~x denotes the input. The subprograms P1, . . . , P5 do not
contain jump instructions. An induction over the depth of the binary decision diagram
shows that this works correctly.

“⇐”: This is straightforward. To evaluate the polynomials it suffices to use addition and
multiplication. Then a binary decision diagram of the Boolean function can be expressed
in terms of conditional jumps.
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Corollary 3.84. A graph class C is in GFOqf iff it has a labeling scheme with a label decoder that
can be computed in constant-time on a RAM without division.

Proof. Due to Theorem 3.76 it holds that C is in GFOqf iff there exist c, k ∈N and a relation
F ⊆Nk

0 such that C ⊆ gr(F, c) and F can be represented by a polynomial-Boolean system.
From Theorem 3.83 it follows that F can be represented by polynomial-Boolean system iff
it can be computed by a RAM program without division in constant-time.

The division operation allows one to compute relations on a RAM in constant-time
which cannot be represented by a polynomial-Boolean system. Therefore there could be a
graph class which is not in GFOqf but has a labeling scheme with a label decoder that can
be computed in constant-time on a RAM.

Fact 3.85. The divisibility relation can be computed by a RAM program in constant-time but it
cannot be represented by a polynomial-Boolean system.

Proof. It holds that y divides x iff b x−1
y c < b

x
yc for x ≥ y > 0. Therefore the divisibility

relation can be computed by a RAM program that runs in constant time. To prove that
this relation cannot be represented by a polynomial-Boolean system it suffices to show
that even numbers cannot be represented by such a system. Every univariate polynomial
is eventually monotone, i.e. after a certain point it will either never decrease or never
increase. Therefore for every unary relation F ⊆N0 representable by a polynomial system
either F or its complement is finite. Since there are infinitely many even and odd numbers
these two sets cannot be represented by a polynomial-Boolean system.

Theorem 3.86. Every graph class that has a labeling scheme with a label decoder that can be
computed in constant-time on a RAM lies in GTC0.

Proof. For some k ∈N let us say a relation F ⊆Nk
0 is computable in TC0 if there exists a

family of TC0-circuits (Cn)n∈N with the following property. The circuit Cn has kn input
bits with k blocks x1, . . . , xk that each consists of n bits. The circuit Cn accepts the input
(x1, . . . , xk) iff (x1, . . . , xk) ∈ F where xi is interpreted as a non-negative integer encoded
in binary. It suffices to argue that every relation that can be computed on a RAM in
constant-time is computable in TC0 as well. This can be shown in the same way that we
converted a RAM program into a polynomial-Boolean system in the proof of Theorem 3.83.
This works because all four arithmetic operations and comparing numbers (<) can be
performed in TC0 (for division see [Hes01], for multiplication see [Vol99]).

3.5 Summary and Open Questions

In Figure 3.7 an overview of all the sets of graph classes that we have seen is given. We
use this figure to summarize our results and point out interesting questions.

In the beginning we defined labeling schemes in terms of languages. This allowed
us to restrict the complexity of labeling schemes in terms of classical complexity classes.
For P and R the corresponding classes of labeling schemes GP and GR coincide with the
definitions of labeling schemes that were given in [KNR92] and [Mul88], respectively. In
Section 3.1 we established that GP is a proper subset of GR. This means that restricting
the computational complexity of labeling schemes does indeed affect what set of graph
classes can be represented. Moreover, there is a strict hierarchy of labeling schemes which
somewhat resembles the situation known from classical complexity. The diagonalization



3.5. Summary and Open Questions 51

Sparse
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GR

...
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...
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Intersection Number
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[Small∩Hereditary∩ Self-Universal]⊆

[Small∩Hereditary]⊆

FIGURE 3.7: Landscape of small graph classes
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argument used to prove this has a brute force aspect which requires double exponential
time and therefore fails to separate classes below G2EXP. For example, it is not clear
whether GP is a proper subset of GEXP even though classical complexity would suggest so.
The graph classes used to show these separations are far removed from any natural graph
class and as a consequence we do not learn anything about the complexity requirements
of hereditary graph classes. It seems that not much else can be said about the classes
between GAC0 and GALL, which is supported by the fact that GAC0 is not a subset of
[Small∩Hereditary]⊆ (Theorem 3.16).

Interestingly though, every hereditary graph class with a labeling scheme that we are
aware of is also in GAC0. Motivated by this observation, we introduced logical labeling
schemes which capture the algorithmic resources required to express many graph classes
quite well. For example, interval graphs are complete for the fragment GFO(<) and trees
are complete for the fragment GFO(=) w.r.t. ≤sg-reductions. Every hereditary graph class
with a labeling scheme which is mentioned in this thesis is also in GFO(<). The only
exception for which we do not know whether this holds are graph classes with bounded
clique-width. Such graph classes are in [Small∩Hereditary∩ Self-Universal]⊆. Can they
also be represented by a polynomial-Boolean system?

When studying the limitations of labeling schemes we deem GFOqf to be an important
class for the following reasons. First, it is fairly robust and admits different characteriza-
tions in terms of polynomial-Boolean systems (Corollary 3.77) and constant-time RAMs
(Corollary 3.84). Especially the RAM characterization is interesting from a practical per-
spective. Disproving that a graph class can be represented by a quantifier-free logical
labeling scheme shows that it either has no constant-time labeling scheme or such a scheme
requires division. Secondly, unlike GAC0 and its supersets this class is well-behaved in the
sense that it is a subset of [Small ∩Hereditary]⊆. Stated differently, there are no wildly
non-uniform graph classes in GFOqf. This is one of the reasons why we believe that lower
bounds against this class can be achieved. Therefore we suggest the following variant of
the implicit graph conjecture:

Conjecture 3.87 (Weak3 Implicit Graph Conjecture). Every small and hereditary graph class is
in GFOqf, i.e. GFOqf = [Small∩Hereditary]⊆.

Candidates for this conjecture obviously include the ones for the implicit graph conjec-
ture such as k-ball graphs, kd-line segment graphs and k-dot product graphs for k ≥ 2. Cu-
riously, all of these graph classes contain interval graphs as a subset. In [Fid+98, Thm. 21] it
is shown that interval graphs are 2-dot product graphs. Therefore the ≤sg-closures of these
graph classes contain GFO(<). Since PBS(N) is closed under ≤sg-reductions and contains
these graph classes (Fact 3.69) their ≤sg-closures are subsets of PBS(N). Additionally,
graphs with bounded clique-width are candidates for the weak implicit graph conjecture.

A question related to the weak implicit graph conjecture is whether GFOqf has a com-
plete graph class. While it is not difficult to find complete graph classes for GFO(<) and
GFO(=) using the algebraic interpretation of quantifier-free logical labeling schemes (Theo-
rem 3.51), it is not clear what a complete graph class for GFOqf looks like or whether it even
exists. In this regard we have shown that GFOqf cannot have a ≤BF-complete hereditary
graph class unless GFOqf = PBS(N), and a similar statement for ≤sg-reductions (Corol-
lary 3.81). The question of whether GFOqf and PBS(N) coincide can be understood as the
question of whether the restriction on the label length in quantifier-free labeling schemes
is significant. For instance, in the case of GFOqf(<) this restriction can be dropped without

3We consider the strength of a conjecture to be its ability to resist refutation.
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changing the class, i.e. vertices can be labeled with arbitrarily large numbers. If GFOqf can
be separated from PBS(N) this does not only refute the weak implicit graph conjecture
but also directly implies that GFO(<) is strictly included in GFOqf (see the paragraph after
Corollary 3.81). We conjecture that all of the three inclusions from GFO(=) to PBS(N) are
strict. As a side question we wonder whether GFO is included in [Small∩Hereditary]⊆,
and if so how does it relate to polynomial-Boolean systems? This inclusion would also
imply that GFO is a strict subset of GPH.

What are simple to verify criterions that allow us to conclude that a graph class C is in
GFOqf without needing to find a labeling scheme? For the classes GFO(=) and GFO(<)
it holds that they contain a graph class C iff they contain the hereditary closure of C. For
what finite sets of graphs X is the hereditary graph class defined by having X as forbidden
induced subgraphs in GFO(<) or GFO(=)?

The aim of structural graph theory is to find characteristics that are shared by certain
sets of graph classes. For instance, the graph minor theorem does this for minor-closed
graph classes by proving that every such class can be characterized by a finite set of
forbidden minors. The class [Tiny∩Hereditary]⊆ is exactly the set of graph classes with
bounded twin index (see Fact 3.19). Similarly, the class [Sparse ∩Hereditary]⊆ can be
characterized as the set of graph classes with bounded arboricity. Due to the simplicity
of the parameters twin index and arboricity these are nice characterizations in the sense
that they enhance our understanding of these sets of graph classes. What would be a
nice characterization of [Small∩Hereditary]⊆? Notice that this class is substantially richer
than the others and therefore the complexity of such a nice characterization should be
expected to match this richness. The two reduction notions that we introduced seem to
be adequate candidates for such a characterization. Does [Small ∩Hereditary]⊆ have a
complete graph class with respect to ≤BF- or ≤sg-reductions? Assume that C is such a
complete graph class. This would mean that the adjacency structure of all other graph
classes in [Small∩Hereditary]⊆ is just a Boolean combination of the adjacency of graphs in
C. The fact that forests are complete for [Sparse∩Hereditary]⊆ with respect to monotone
algebraic reductions ≤M (see the last paragraph of Subsection 3.3.1) serves as an example
that algebraic reductions are indeed able to characterize a set of graph classes which is
defined in terms of graph-theoretical properties. The following question is just a curiosity
that pertains to this previous example. Let us say two graph classes are M-equivalent if they
can be ≤M-reduced to each other. Furthermore, we say two graph classes are eventually
M-equivalent if there exists an n ∈ N such that the restrictions of these graph classes
to graphs with at least n vertices are M-equivalent. Does the eventually M-equivalence
relation have finite index on sparse and hereditary graph classes?

It seems interesting and worthwhile to further investigate the properties of these reduc-
tion notions. An immediate question in that regard is whether there are two undirected
graph classes C,D such that C is ≤sg-reducible to D but not ≤BF-reducible. For example,
k-interval graphs are ≤sg-reducible to interval graphs but it is not clear whether they
are also ≤BF-reducible for k ≥ 2. Also, are forests and interval graphs ≤BF-complete for
GFO(=) and GFO(<) when restricted to undirected graph classes, respectively? Or is
it the case that GFO(=) and GFO(<) restricted to undirected graph classes do not have
≤BF-complete graph classes? Another interesting task is to find two candidates for the
implicit graph conjecture which can be reduced to each other. This would show that there
must be a common obstacle to designing a labeling scheme for them.

Last but not least, there remain two open questions concerning the pointer numbers.
Does every graph class with bounded and-pointer number also have bounded or-pointer
number or are these two parameters incomparable? And, is there an undirected graph class
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in GFO(=) with unbounded or-pointer number (see the second paragraph after Fact 3.15)?
In the next chapter we consider algorithmic questions regarding these two parameters.
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Chapter 4

Algorithmic Properties of Graph Classes
with Implicit Representations

We have seen that almost all graph classes known to have an implicit representation can
be located in GFO(<). This includes algorithmically well-studied graph classes such as
interval graphs and uniformly sparse graph classes. Due to the low descriptive complexity
of GFO(<) it seems reasonable to suspect that the adjacency structure of graph classes from
this class cannot be very complicated. This begs the question whether certain algorithmic
problems might be tractable on every graph class in GFO(<). The same can be asked
of other classes such as GAC0 or GFO(=). In the first section we show how this can
be naturally interpreted as a question in parameterized complexity. We then use this
interpretation in conjunction with lower and upper bounds from the literature to identify
interesting algorithmic questions.

After looking at various algorithmic problems in the first section we focus on the graph
isomorphism problem. This is one of the few natural problems which is neither known to
be in P nor to be NP-complete. A research direction that has seen substantial progress in
recent years is the study of the isomorphism problem for restricted graph classes. Naturally,
we ask ourselves how graph classes with implicit representations fit into this picture. The
isomorphism problem for graphs of degeneracy at most two is already as hard as the
general graph isomorphism problem. In Figure 4.1 a reduction is shown which maps a
graph G with n vertices to a graph G′ with n + n2 vertices of degeneracy at most two such
that the isomorphism class is preserved. To obtain G′ from G copy the vertices of G and
then connect n new vertices to each old vertex in G′. Then for every edge {u, v} in G pick
two vertices u′, v′ in G′ such that u′ is only adjacent to u and v′ only to v and connect u′
and v′. Since GFO(=) already contains this graph class there is no point in considering
it without further restrictions. A natural restriction is to bound the number of variables
per vertex. Three variables per vertex in GFO(=) already suffice to express graphs with
degeneracy at most two and therefore this is an infeasible fragment. For graph classes
that can be expressed with one variable per vertex in GFO(<) it is trivial to devise an
isomorphism test that works in logspace. What about graph classes that can be expressed
with two variables in GFO(<)? Unlike the previous case this fragment already contains a
couple of interesting graph classes such as forests and interval graphs. It is known that for

FIGURE 4.1: Example of the reduction for GI-hardness of 2-degenerate graphs
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both classes isomorphism can be decided in logspace [Lin92; Kö+11]. A curious case is
that of circular-arc (CA) graphs. While this graph class resides in the same fragment it is
not even known whether isomorphism for this class can be decided in polynomial-time.
The main part of this chapter is dedicated to investigating how this problem can be solved.

4.1 Parameterized Complexity of Sets of Graph Classes

A parameter κ in parameterized complexity is a total function which maps words over
some alphabet Σ to natural numbers, i.e. κ : Σ∗ →N. A parameterized problem is a tuple
(L, κ) where L is a language and κ is a parameter, both over the same alphabet. This
formalization of parameterized problems is used in the introductory textbook [FG06]1. A
graph parameter is a total function mapping unlabeled graphs to natural numbers and
therefore can be regarded as special case of a parameter. For a parameter κ and c ∈N let
κc denote the set of words w with κ(w) ≤ c. For example, tree-widthc is the set of graphs
with tree-width at most c.

To compare two parameters κ, τ over the same alphabet the following notion of bound-
edness is used: κ is upper bounded by τ, in symbols κ 4 τ, if there exists a function
f : N → N such that κ(w) ≤ f (τ(w)) holds for all words w. If κ 4 τ holds then (L, τ)
is fpt-reducible to (L, κ) for every language L. The precise definition of fpt-reducibility
is not relevant for us here; it can be found in [FG06]. It suffices to know that it can be
seen as an analogon of polynomial-time many-one reducibility in classical complexity.
Intuitively, designing a good algorithm for a problem using τ as parameter is not harder
than doing this for κ. If κ 4 τ and τ 4 κ holds we say that κ and τ are equivalent. From the
previous implication it follows that (L, κ) and (L, τ) are fpt-equivalent for all languages
L whenever κ and τ are equivalent. As a consequence, it does not make a difference
whether κ or τ is considered when assessing the complexity of a parameterized problem
and thus it is more accurate to define a parameterized problem as a tuple (L, K) where
K denotes an equivalence class of parameters. In that sense parameterized complexity
is no more about parameters than graph theory is about adjacency matrices. However,
while it is self-evident that adjacency matrices represent graphs it is not so obvious what
is represented by parameters. A different notion of boundedness helps to answer this
question. Let us say a language L is bounded by a parameter κ if there exists a c ∈N such
that L ⊆ κc. Let us write K(κ) to denote the set of languages that are bounded by κ. We
say κ is a subset of τ, in symbols κ ⊆ τ, if K(κ) ⊆ K(τ). Stated differently, every language
that is bounded by κ is bounded by τ as well. For example, the maximum degree is a
subset of the clique number but not vice versa. In fact, the ‘⊆’-relation is just the inverse
relation of ‘4’.

Fact 4.1. Let κ, τ be parameters over the same alphabet. It holds that κ 4 τ iff τ ⊆ κ.

Proof. “⇒”: Let f : N → N be a monotone function such that κ(w) ≤ f (τ(w)) for all
words w. We show inductively that for every i ∈ N it holds that τi ⊆ κ f (i). For the base
case i = 1 it holds that w ∈ τ1 iff τ(w) = 1. It follows that κ(w) ≤ f (1) and therefore
w ∈ κ f (1). For the inductive step i→ i + 1 it must be the case that w is either in τi+1 \ τi or
in τi. If w is in τi then by induction hypothesis it holds that w ∈ κ f (i). Since f is monotone it
follows that w ∈ κ f (i+1) as well. For the other case it holds that τ(w) = i + 1 and therefore
κ(w) ≤ f (i + 1) which means w ∈ κ f (i+1).

1They make the additional requirement that a parameter must be polynomial-time computable, which we shall ignore
here.
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“⇐”: Since τ ⊆ κ there exists a function f : N → N such that τi ⊆ κ f (i) for all i ∈ N.
We show that κ(w) ≤ f (τ(w)) for all words w. Let τ(w) = k for some k ∈ N. Then it
holds that w ∈ τk and therefore w ∈ κ f (k) as well. This means κ(w) ≤ f (k) = f (τ(w)).

Corollary 4.2. Two parameters are equivalent iff they bound the same set of languages.

Therefore the answer to the previous question is that a parameter represents a set
of languages. However, not every set of languages can be interpreted as a parameter.
We are only interested in sets of languages that can be represented by a parameter. To
distinguish between such sets of languages and parameters let us call the former ones
parameterizations.

Definition 4.3. A set of languages K over an alphabet Σ is a parameterization if there exists a
parameter κ over Σ such that K = K(κ).

Theorem 4.4. A set of languages K over Σ is a parameterization iff the following holds:

1. K is closed under union

2. K contains {w} for every word w over Σ

3. there exists a countable subset K′ of K such that the closure of K′ under subsets equals K

Proof. “⇒”: Let K be a parameterization over Σ. This means there exists a parameter κ
over Σ such that K = K(κ). Clearly, K(κ) is closed under subsets. Let L, L′ be languages
over Σ which are both bounded by κ. This means L ⊆ κi and L′ ⊆ κj for some i, j ∈N. We
assume w.l.o.g. that i ≤ j and therefore L ∪ L′ ⊆ κj. Therefore K(κ) is closed under union.
Since κ is total it follows that {w} is in K(κ) for every word w. The countable subset K′ of
K(κ) such that the closure of K′ under subsets equals K(κ) is given by {κ1, κ2, . . . }.

“⇐”: Let K be a set of languages over Σ which satisfies the above three conditions.
Observe that the third condition implies that K is closed under subsets. We construct a
parameter κ over Σ such that K = K(κ). Let K′ = {L1, L2, . . . } be the countable subset
of K whose closure under subsets equals K. Let L′c =

⋃c
i=1 Li. It holds that L′c is in K for

every c ∈N because K is closed under union. Then κ(w) being defined as the least k such
that w ∈ L′k yields the required parameter.

Therefore it is more accurate to understand a parameterized problem as a tuple (L, K)
where L is a language and K is a parameterization, both over the same alphabet. This
alternative view on parameterized problems leads to an interesting different perspective
on parameterized complexity which, however, we do not address here. The important
observation in our context is the following. If we have a set of graph classes A which
satisfies the conditions of Theorem 4.4 then asking about the parameterized complexity of
some problem parameterized by A is a well-defined question. We show how Theorem 4.4
can be applied to classes such as GP.

Lemma 4.5. For every countable set of languages A that contains all finite languages and for which
GA is closed under union it holds that GA is a parameterization.

Proof. We show that GA satisfies the three conditions of Theorem 4.4. GA is closed under
union by assumption. Furthermore, every singleton graph class lies in GA. This can be
shown by using a look-up table of finite size as label decoder. More precisely, for a graph
G on n vertices a language L that contains only words of length 2 log n can be constructed
such that {G} ⊆ gr(FL, 1). Since A contains all finite languages it contains L as well. The
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GAC0

Clique-Width

6
6

6

GI in XP [Pon91; GS15]
HC is W[1]-hard [Fom+10]

GFO(<) IS, DS are W[1]-hard [Fel+09a]

GFO(=)

Tree-WidthGI in FPT [Lok+17]

[Sparse ∩Minor-Closed]⊆

6

GI in XP [Gro17]
HC is NP-hard [GJT76]

[Sparse ∩ Hereditary]⊆

6

Clique, IS, DS in FPT
[ELS10; Dab+11; AG07]

GI is GI-hard

Max. Degree

6

GI in XP [Luk82]
HC is NP-hard [GJT76]

Or-Pointer Number

6

And-Pointer Number

6

6

[Tiny ∩ Hereditary]⊆

6
6

FIGURE 4.2: Parameterized complexity of graph classes with implicit representations

countable subset of GA such that its closure under subsets equals GA is given by the set of
graph classes gr(S) for every labeling scheme S in GA. That this set is countable follows
from the fact that there are only countably many labeling schemes S in GA since A is
countable.

Corollary 4.6. GAC0,GL,GP,GNP,GEXP and GR are parameterizations.

It is also not difficult to show that logical classes such as GFO(=), GFO(<) and GFOqf
are parameterizations. An interesting example of a set of graph classes which is no
parameterization is the class GALL. It can be shown that there exists no countable subset
of GALL whose closure under subsets equals GALL by a diagonalization argument.

For readers not familiar with parameterized complexity we give a rough description of
the complexity classes mentioned in Figure 4.2. A parameterized problem (L, K) is in FPT
(fixed-parameter tractable) if there exists a c ∈N such that for all K ∈ K it holds that L can
be decided in TIME(nc) if one only considers inputs from K. The multiplicative constant
hidden in the big-oh can depend on K. A parameterized problem (L, K) is in XP if for all
K ∈ K it holds that L is in P if one only considers inputs from K. In contrast to FPT the
degree of the polynomial that bounds the runtime is not fixed but can depend on K. The
classes FPT and XP are regarded as the analogon of P and EXP in the parameterized world.
If a parameterized problem is W[1]-hard then this can be seen as evidence that it is not in
FPT.

In Figure 4.2 we assess the parameterized complexity of graph isomorphism (GI),
Hamiltonian cycle (HC), clique, independent set (IS) and dominating set (DS) for structural
parameterizations below GAC0. The last three problems are additionally parameterized by
the solution size which is part of the input. Let us give a brief explanation of this figure.
The problems IS and DS are W[1]-hard for GFO(<) because in [Fel+09b] these problem are
shown to be already W[1]-hard for unit 2-interval graphs which are contained in GFO(<).
The statement that GI is GI-hard for sparse and hereditary graph classes means that there
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is a sparse and hereditary graph class for which GI is GI-hard; e.g. the class of graphs
with degeneracy at most two as we have shown in the introduction of this chapter. An
analogous interpretation is meant for the NP-hardness results of HC. It is interesting to
note that in [GJT76] a stronger result is proven than what is shown in this figure: HC
is already NP-hard on planar graphs with degree at most three. This implies that even
when parameterizing by proper minor-closed graph classes with bounded degree it is
hopeless to find XP-algorithms for HC. On the positive side, we found no results that
indicate that clique is not in FPT on GFO(<) and DS or IS are not in FPT on GFO(=). Is the
clique problem in FPT on GFO(<)? Are IS and DS in FPT on GFO(=)? Is GI in XP when
parameterized by the and-pointer number? Instead of GFO(=) and GFO(<) one can also
consider [Forest]BF and [Interval]BF as parameterizations for which it might be easier to
find efficient algorithms. If unit 2-interval graphs are in [Interval]BF then IS and DS are
W[1]-hard on [Interval]BF [Fel+09a].

4.2 The Isomorphism Problem for CA Graphs

Being a generalization of interval graphs—the archetype of geometrical intersection
graphs—CA graphs are quite prominent as well and have been known for decades. Since
then structural properties and algorithmic problems for this class have been thoroughly
investigated with [Gav74] and [Tuc70] being two of the earliest works in this regard. In
particular, finding characterizations of CA graphs and constructing a CA representation for
a given CA graph have received a great deal of attention. Remarkably, finding a forbidden
induced subgraph characterization of CA graphs is still an open problem. See [LS09] for
a survey on this line of research and [CGS17] for one of the most recent results in that
direction. It should also be mentioned that CA graphs are of practical relevance with
applications arising in disciplines such as genetics and operations research. An explanation
of the connection between genetics and interval graphs in layman’s terms can be found in
[WG86]. For a specialized account on this connection emphasizing circularity see [Sta67].
An example of how CA graphs can be used to model the problem of phasing traffic lights
is given in [Gol04].

In the following we consider the canonical representation problem for CA graphs.
The representation problem for CA graphs is as follows. Given a CA graph G as input
we want to output a CA representation ρG of G. The canonical variant of this prob-
lem imposes the additional requirement that for every pair of isomorphic CA graphs
G and H their representations ρG and ρH should have identical underlying sets of arcs,
i.e. {ρG(v) | v ∈ V(G)} = {ρH(v) | v ∈ V(H)}. Notice that solving the representation
problem for CA graphs implies solving the recognition problem for CA graphs, i.e. the
question given a graph G is it a CA graph. Likewise, solving the canonical representa-
tion problem for CA graphs implies solving the isomorphism problem for CA graphs,
i.e. deciding whether two given CA graphs are isomorphic.

Observe that every CA graph is a 2-interval graph because given a set of arcs one
can cut the circle at some point and straighten the arcs. It is interesting to note that the
isomorphism problem for interval graphs is logspace-complete [Kö+11] while the one for
2-interval graphs is already GI-complete (because every line graph is a 2-interval graph)
and CA graphs lie inbetween these two classes.

While a polynomial-time algorithm for deciding isomorphism of interval graphs is
known since 1976 due to Booth and Lueker this question still remains open for CA graphs.
There have been two claimed polynomial-time algorithms for deciding isomorphism
of CA graphs in [Wu83] and [Hsu95] which were shown to be incorrect in [Esc98] and
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[Cur+13] respectively. For interval graphs even a linear-time algorithm for isomorphism is
known [LB79]. A more recent result is that canonical interval representations for interval
graphs can be computed in logspace and that this is optimal in the sense that recognition
and deciding isomorphism for interval graphs is logspace-complete [Kö+11]. These two
hardness results also carry over to the class of CA graphs. Furthermore, the isomorphism
problem for proper CA graphs [KKV16] and Helly CA graphs [KKV13] have been shown
to be decidable in logspace. It is also shown how to obtain canonical representations for
these subclasses in logspace.

In the following sections we explain how the method used in [KKV13] to obtain canoni-
cal representations for Helly CA graphs can be adapted to CA graphs in general. Following
this approach, canonical representations for CA graphs can be found by computing certain
subsets of vertices called flip sets in an isomorphism-invariant manner. We introduce the
class of uniform CA graphs for which this method yields canonical representations in
polynomial-time. We then aim to isolate the instances of CA graphs which are difficult
to handle with this method. We try to capture these hard instances by what we call re-
stricted CA matrices and show that the canonical representation problem for CA graphs
is logspace-reducible to that of restricted CA matrices. During this isolation process we
find a subset of uniform CA graphs, namely ∆-uniform CA graphs, for which canonical
representations can be computed in logspace. The ∆-uniform CA graphs contain Helly CA
graphs and every CA graph without an induced 4-cycle. This generalizes the canonization
result for Helly CA graphs given in [KKV13].

4.3 Normalized Representations

When trying to construct a CA representation for a CA graph G it is clear that whenever
two vertices are non-adjacent their corresponding arcs must be disjoint in every CA
representation of G. For two adjacent vertices the intersection type of their corresponding
arcs might depend on the particular CA representation of G that one considers. Hsu has
shown that this ambiguity can be removed as follows [Hsu95].

We adopt the notation of [KKV13].

Definition 4.7. For a graph G we define its neighborhood matrix λG which is an intersection
matrix as

(λG)u,v =



di , if {u, v} /∈ E(G)

cd , if N[u] ( N[v]
cs , if N[v] ( N[u]
cc , if N[u] G N[v] and N[u] ∪ N[v] = V(G)

and ∀w ∈ N[u] \ N[v] : N[w] ⊂ N[u]
and ∀w ∈ N[v] \ N[u] : N[w] ⊂ N[v]

ov , otherwise

for all u 6= v ∈ V(G).

Let µ be an intersection matrix with vertex set V and let ρ = (A, f ) where A is a CA
model and f is a bijective mapping from V to A. We say ρ is a CA representation of µ if f
is an isomorphism from µ to the intersection matrix µA of A. We denote the set of such CA
representations for µ withN (µ). The representation problem for CA matrices is to compute
a CA representation for a given CA matrix µ. The canonical representation problem for CA
matrices is defined analogously to the canonical representation problem for CA graphs.
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We say ρ is a normalized CA representation for a graph G if ρ is a CA representation for the
neighborhood matrix λG of G. An example of a normalized representation can be seen in
Figure 4.3; every non-labeled edge corresponds to an ov-entry in the neighborhood matrix.
Let us denote the set of all normalized CA representations for G with N (G) = N (λG).

Lemma 4.8 (Corollary 2.3. [Hsu95]). Every twin-free CA graph G without a universal vertex
has a normalized CA representation, that is N (G) 6= ∅.

Lemma 4.9. The canonical representation problem for CA graphs is logspace-reducible to the
canonical representation problem for vertex-colored twin-free CA graphs without a universal
vertex.

Proof. For a graph G let G0 denote the induced subgraph of G that is obtained by removing
all universal vertices from G and only taking one vertex from each twin-class and deleting
the rest. Let c0 be a coloring of G0 which assigns each vertex the cardinality of its twin class
in G. It holds that (G0, c0) and the number of universal vertices in G suffice to reconstruct
G. Let G be a CA graph. Compute the graph (G0, c0). Since (G0, c0) is twin-free and
without universal vertices we can compute a canonical representation ρ0 for it. For a vertex
v of G let v0 denote the twin of v that occurs in G0. A canonical representation of G is given
by v 7→ ρ0(v0) for every non-universal vertex v of G and every universal vertex of G is
represented by an arc which covers the whole circle.

Therefore for our purposes it suffices to consider only twin-free graphs without univer-
sal vertices and a vertex-coloring.

From this point on we assume every graph to be twin-free and without a universal
vertex unless explicitly stated otherwise. As a consequence we view CA graphs as a subset
of CA matrices in the sense that the neighborhood matrix of every CA graph is a CA
matrix.

McConnell [McC03] observed that the operation of flipping arcs in CA models has a
counterpart in intersection matrices. He called this counterpart operation algebraic flips.
Note that for two arcs A, B with intersection type α ∈ {cc, cd, cs, di, ov} the intersection
type of A and B is solely determined by α. More precisely, the intersection type of A and B
is Z10(α) where Z10 is the function defined in Table 4.1. Similarly, the intersection type of
A and B is given by Z01(α). Using the functions Zij we can define the operation of flipping
a set of vertices in an intersection matrix.

Definition 4.10. Let µ be an intersection matrix with vertex set V and X ⊆ V. We define the
intersection matrix µ(X) obtained after flipping the vertices X in µ as

µ
(X)
u,v = Zij(µu,v) with i = 1 iff u ∈ X and j = 1 iff v ∈ X

for all u 6= v ∈ V.

cccd/cs cd/cs1 2

3

4

5 6 1 25 6

4

3

FIGURE 4.3: A CA graph and a normalized representation thereof
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Since flipping the same set of arcs twice is an involution it follows that (µ(X))(X) = µ.

Definition 4.11. Let V be a set of vertices, let A be a set of arcs and let ρ be a function that maps
V to A. Then ρ(X) : V → A for X ⊆ V is defined as follows:

ρ(X)(v) =

{
ρ(v) , if v ∈ X
ρ(v) , if v /∈ X

Notice that flipping vertices in an intersection matrix is equivalent to flipping arcs in
a CA representation in the following sense. Given an intersection matrix λ and a subset
of its vertices X. It holds that ρ ∈ N (λ) ⇔ ρ(X) ∈ N (λ(X)). Also, it is not difficult to
observe that flipping is an isomorphism-invariant operation in the sense that flipping sets
of vertices which are in the same orbit lead to isomorphic intersection matrices.

4.4 Flip Trick

In this section we generalize the idea used by Köbler, Kuhnert and Verbitsky in [KKV13]
to compute canonical representations for Helly CA graphs. They showed that finding
canonical representations for Helly CA graphs can be reduced to finding canonical repre-
sentations for vertex-colored interval matrices. We show that the idea behind this reduction
also works for CA matrices in general. Recall that CA graphs can be seen as special case
of CA matrices since the neighborhood matrix of every CA graph is a CA matrix. The
converse does not hold, i.e. there exist CA matrices which are not expressible as the neigh-
borhood matrix of a CA graph (for instance any CA matrix with only two vertices that are
not disjoint). The key result here, which is used in the subsequent sections, is that finding
canonical representations for CA matrices is logspace-reducible to the task of computing
what we call an invariant flip set function.

McConnell showed in [McC03] that CA representations for CA graphs can be computed
as follows. Given a CA graph G with neighborhood matrix λ one can compute a set of
vertices X of G such that λ(X) is an interval matrix. We call such a set X a flip set. Then
by computing an interval representation ρ for λ(X) and flipping back the arcs X in ρ one
obtains a CA representation for λ and therefore for G as well [McC03]. We essentially use
the same argument to obtain canonical CA representations.

Definition 4.12. Let λ be a CA matrix. A subset of vertices X of λ is called a flip set if there exists
a representation ρ ∈ N (λ) and a point x on the circle such that v ∈ X iff ρ(v) contains the point
x.

TABLE 4.1: Algebraic flip functions Zxy : {cc, cd, cs, di, ov} → {cc, cd, cs, di, ov}

Zxy(α) cc cd cs di ov

Z00 cc cd cs di ov

Z01 cs di cc cd ov

Z10 cd cc di cs ov

Z11 di cs cd cc ov
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The concept of flip sets has already been implicitly defined and used in both [McC03]
and [KKV13]. They observed that λ(X) is an interval matrix whenever X is a flip set of a CA
matrix λ. In fact, the other direction holds as well leading to the following characterization.

Lemma 4.13. Let λ be a CA matrix and X is a subset of vertices of λ. It holds that X is a flip set
iff λ(X) is an interval matrix.

Proof. “⇒”: Let X be a flip set of λ. Let ρ ∈ N (λ) be a witnessing representation of the
fact that X is a flip set, i.e. there exists a point x on the circle such that every arc ρ(v)
with v ∈ X contains x and every arc ρ(v) with v /∈ X does not contain x. Consider the
representation ρ(X) ∈ N (λ(X)). It holds that no arc ρ(X)(v) with v ∈ V(λ) contains the
point x which implies that there is a hole in ρ(X) and thus λ(X) is an interval matrix.

“⇐”: Let X be a subset of vertices of λ such that λ(X) is an interval matrix. We argue
that X must be a flip set. Let ρ ∈ N (λ(X)) be a CA representation of λ(X) containing a
hole at point x on the circle. Such a representation must exist since λ(X) is an interval
matrix. This means the arc ρ(v) does not contain the point x for every vertex v ∈ V(λ).

Consider the representation ρ(X) ∈ N ((λ(X))
(X)

) = N (λ). Then it can be checked that
ρ(X)(v) contains the point x iff v is in X and therefore X is a flip set with respect to λ.

We already mentioned that the canonical representation problem for vertex-colored
interval matrices can be solved in logspace due to [KKV13]. However, since the theorem
that we reference just states this result for uncolored interval matrices we shortly explain
how to modify the proof to incorporate the coloring, which is a straightforward task for
anyone familiar with the proof.

Theorem 4.14 ([KKV13, Thm. 5.5]). The canonical representation problem for vertex-colored
interval matrices can be solved in logspace.

Proof. In Theorem 5.5 of [KKV13] it is stated that a canonical interval representation for
an interval matrix can be found in logspace. To prove this they convert the input interval
matrix λ into a colored tree T(λ) called ∆ tree which is a complete invariant for interval
matrices. The leafs of this tree correspond to the vertices of λ. By appending the color of a
vertex from our vertex-colored interval matrix λ to the existing color of its corresponding
leave node in the colored ∆ tree T(λ) one obtains a complete invariant for vertex-colored
interval matrices. Then by applying the same argument given in the proof of Theorem 5.5
one can also compute a canonical representation for a vertex-colored interval matrix using
this slightly modified colored ∆ tree.

A consequence of Lemma 4.13 and Theorem 4.14 is that flip sets can be recognized in
logspace. Given an intersection matrix λ and a subset of vertices X of λ it suffices to check
whether λ(X) is an interval matrix by trying to compute an interval representation.

Definition 4.15. Let C be a class of CA matrices and f is a vertex set selector. The function f is
called an invariant flip set function for C if the following conditions hold:

1. For every λ ∈ C there exists an X ∈ f (λ) such that X is a flip set of λ

2. f is invariant for C

Recall that f is globally invariant if f is invariant for all intersection matrices.
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Theorem 4.16. Let C be a class of CA matrices. The canonical representation problem for vertex-
colored C is logspace-reducible to the problem of computing an invariant flip set function for C.

Proof. Let f be an invariant flip set function for C. Given a vertex-colored CA matrix
(λ, c) with λ ∈ C a canonical representation can be computed as follows. For every
flip set X ∈ f (λ) we associate it with the colored interval matrix IX = (λ(X), cX) where
cX(v) = (c(v), red) if v is in X and (c(v), blue) if v is not in X for all v ∈ V(λ). For a
colored interval matrix I let ρ̂I denote a canonical representation of I. Such a canonical
representation can be computed in logspace due to Theorem 4.14. Let X̂ denote a flip set
in f (λ) such that the interval model of ρ̂IX̂

is lexicographically minimal, i.e. for all flip sets
X in f (λ) it holds that the model of ρ̂IX is not smaller than the model of ρ̂IX̂

. Let ρ̂ denote
the CA representation that is obtained after flipping the red arcs in ρ̂IX̂

. Since these are
the arcs that were flipped to convert λ into IX it holds that ρ̂ is a representation of λ. To
see that this leads to a canonical representation consider two isomorphic vertex-colored
CA matrices (λ, c) and (µ, d) with λ, µ ∈ C and V(λ) and V(µ) are disjoint. Let Iλ be
the set of colored interval matrices IX for all flip sets X ∈ f (λ), and the set Iµ is defined
analogously. LetMλ be the set of interval models M such that there exists an I ∈ Iλ and
M is the model underlying the canonical representation ρ̂I of I. The setMµ is defined
analogously. Since f is invariant it follows that for every I ∈ Iλ there exists an I′ ∈ Iµ

such that I and I′ are isomorphic, and vice versa. Since the models inMλ andMµ only
depend on the isomorphism type of the matrices in Iλ and Iµ it follows thatMλ =Mµ.
The CA models which underlie the canonical representations of λ and µ are both derived
from the smallest element inMλ =Mµ and thus are identical.

Suppose that there is a partition of the set of CA graphs into two classes C and D such
that you can efficiently compute invariant flip set functions for both classes. One might be
misled into thinking that this implies canonical representations for all CA graphs can be
found efficiently. However, this is not the case unless the class C (or D) can be efficiently
recognized, or one of the two invariant flip set functions is globally invariant.

Lemma 4.17. Let C and D be classes of CA matrices. The canonical representation problem
for C ∪ D is logspace-reducible to the canonical representation problem for C and the problem of
computing a globally invariant flip set function for D.

Proof. Let f be a globally invariant flip set function for D. Let D′ be the set of CA matrices
λ such that f (λ) contains a flip set. Clearly, D is a subset of D′. It holds that f (λ) contains
a flip set iff λ ∈ D′. Since f is globally invariant it follows that f is an invariant flip set
function for D′. To obtain a canonical representation for a matrix λ ∈ C ∪D first compute
f (λ). If f (λ) contains a flip set it holds that λ ∈ D′ and therefore the output of f can be
used to find a canonical representation for λ. If f (λ) contains no flip set it must be the case
that λ ∈ C and therefore the canonization algorithm for C can be applied.

We conclude this section by restating the invariant flip set function that was used in
[KKV13] to compute canonical representations for Helly CA graphs and explain why it is
correct:

fHCA(G) =
{

N[u] ∩ N[v] | u, v ∈ V(G)
}

In a Helly CA graph G every inclusion-maximal clique C of G is a flip set. To see why
this holds let ρ be a representation of G with the Helly property. Since C is a clique this
means every pair of arcs ρ(u) and ρ(v) with u, v ∈ C intersects. By the Helly property
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it follows that the overall intersection
⋂

v∈C ρ(v) is non-empty. This means there exists a
point x on the circle such that every arc ρ(v) with v ∈ C contains x. Assume there exists a
vertex w ∈ V(G) \ C such that ρ(w) contains x. This means w must be adjacent to every
vertex in C, which contradicts that C is inclusion-maximal. Hence C is a flip set.

In [KKV13, Thm. 3.2] it is shown that every Helly CA graph contains at least one
inclusion-maximal clique which can be expressed as the common neighborhood of two
vertices. Therefore fHCA(G) returns at least one flip set for every Helly CA graph G. Also,
it is trivial to see that fHCA is globally invariant.

4.5 Uniform CA Graphs

We define the class of uniform CA graphs for which computing a particular invariant
flip set function reduces to computing a representation. As a consequence, canonical
representations for this class of CA graphs can be computed in polynomial-time. This
is an interesting class for two reasons. First, it seems to capture the instances where it is
easy to apply the flip trick. Secondly, its complement (within the CA graphs) is a rather
exotic class of CA graphs with a quite particular structure. While the initial definition of
uniformity makes it apparent why it suffices to find an arbitrary representation in order to
obtain a canonical one, it is rather impractical when trying to understand what constitutes
a uniform CA graph. We provide a more pleasant characterization of uniform CA graphs
in terms of how certain triangles in a CA graph can be represented. This alternative
characterization also reveals that every Helly CA graph is uniform. Additionally, we show
that the canonical representation problem for uniform CA graphs is logspace-equivalent
to what we call the non-Helly triangle representability problem. This problem is: given a
CA graph G and a set T of three pairwise overlapping vertices as input, does there exist a
representation ρ of G such that T covers the whole circle in ρ?

The following kind of flip set will lead us to uniform CA graphs when trying to compute
canonical representations. Given a CA matrix λ recall that X is a flip set of λ if there exists
a representation ρ ∈ N (λ) and a point x on the circle such that x ∈ ρ(v) iff v ∈ X for all
vertices v of λ. We impose the additional restriction that x is not allowed to be an arbitrary
point on the circle but instead has to be one of the endpoints in ρ.

Definition 4.18. Let λ be a CA matrix and u ∈ V(λ). A flip set X of λ is a u-flip set if there
exists a representation ρ ∈ N (λ) and an endpoint x of ρ(u) such that v ∈ X iff ρ(v) contains the
point x.

Clearly, every CA graph has a u-flip set for every vertex u. On the other hand, there
are CA graphs that have flip sets which are not u-flip sets for any vertex u. For example,
consider the cycle graph with n ≥ 4 vertices. Every flip set that consists of exactly one
vertex is not a u-flip set for any vertex u of the cycle graph.

X1 X2

u

FIGURE 4.4: Exemplary u-flip
sets X1 and X2

u

a

b c

d
Pu = {{a, b}, {c, d}}

FIGURE 4.5: Example of a u-
overlap partition Pu
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Consider the following task: given a CA graph G and a vertex u, find a u-flip set of
G. Clearly, no vertex v which is disjoint from u or contained by u belongs to X since in
every representation the arc of v does not contain any of the two endpoints of the arc of u.
Similarly, if a vertex v contains u or forms a circle cover with u then in every representation
the arc of v contains both endpoints of u and therefore must be included in X. See Figure
4.4 for a schematic overview.

It remains to decide for the set of vertices Nov(u) that overlap with u whether they
should be included in X. A vertex v which overlaps with u contains exactly one of the
endpoints of u in any representation. Let x, y be two vertices that overlap with u. We say x
and y overlap from the same side with u in ρ if ρ(x) and ρ(y) contain the same endpoint
of ρ(u). Evidently, this is an equivalence relation with respect to v and ρ which partitions
Nov(u) into two parts, namely the part which contains the left endpoint and the one which
contains the right endpoint. If X is a u-flip set then X ∩ Nov(u) must be an equivalence
class of the ‘overlap from the same side with u in ρ’-relation for some ρ ∈ N (G).

Definition 4.19. For a CA matrix λ and a vertex u of λ we say a partition Y of Nov(u) into
two parts is a u-ov-partition if there exists a representation ρ ∈ N (λ) such that two vertices
x, y ∈ Nov(u) are in the same part of Y iff ρ(x) and ρ(y) overlap from the same side with ρ(u).
We say ov-partition to mean an u-ov-partition for an arbitrary u ∈ V(λ).

In general, for a vertex u of a CA graph G there can be multiple u-ov-partitions. In fact,
there are instances with exponentially many u-ov-partitions with respect to |Nov(u)|. A
trivial way of obtaining at least one u-ov-partition for every vertex u of a CA graph G is
to compute an arbitrary representation ρ ∈ N (G). But the ov-partitions obtained by this
method are not invariant and thus do not yield canonical representations. However, if
one considers CA graphs where there is only one u-ov-partition for every vertex u then an
arbitrary representation suffices.

Definition 4.20 (Uniform CA Graphs). A CA graph G is uniform if for every vertex u in G
there exists exactly one u-ov-partition. This partition is denoted by Pu = {Pu,1, Pu,2}.

Lemma 4.21. The following mapping is an invariant flip set function for uniform CA graphs. Let
G be a uniform CA graph.

Funiform(G) =
⋃

u∈V(G)
i∈{1,2}

{
{u} ∪ Ncd(u) ∪ Ncc(u) ∪ Pu,i

}

Proof. Let G be a uniform CA graph and X is in Funiform(G) with X = {u} ∪ Ncd(u) ∪
Ncc(u) ∪ Pu,i for some u ∈ V(G) and i ∈ {1, 2}. It follows from Figure 4.4 and the
definition of ov-partitions that X is a u-flip set. The invariance of Funiform(G) follows
from the fact that the intersection type of two vertices as well as the property of being an
ov-partition is independent of the vertex labels.

We remark that the function Funiform is undefined for non-uniform CA graphs since the
sets Pu,1 and Pu,2 are not well-defined in that context.

Theorem 4.22. Canonical representations for uniform CA graphs can be computed in polynomial-
time.

Proof. Let G be a uniform CA graph. Compute a normalized representation ρ of G
and extract the u-ov-partition for each vertex u from ρ. Then compute Funiform(G) from
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Lemma 4.21 to obtain a canonical CA representation for G. Since CA representations can
be computed in polynomial-time (see for instance [McC03]) it follows that this procedure
also works in polynomial-time.

Considering that our definition of uniform CA graphs arose from the desire to compute
invariant u-flip sets one might expect that these graphs are only a small special case of CA
graphs. Surprisingly, quite the opposite is the case as we will see. We give an alternative
definition of uniform CA graphs which gives a better intuition as to why many CA graphs
are uniform.

Definition 4.23. Let λ be a CA matrix. An ov-triangle T of λ is a set of three vertices that
overlap pairwise, i.e. for all u 6= v in T it holds that u ov v. An ov-triangle T is representable as
non-Helly triangle (interval triangle) if there exists a representation ρ ∈ N (λ) such that the set of
arcs {ρ(x) | x ∈ T} does (not) cover the whole circle. Let TNHT(λ) and TIT(λ) denote the sets of
ov-triangles representable as non-Helly triangles and interval triangles respectively.

This definition also applies to CA graphs via their neighborhood matrix, i.e. TIT(G) =
TIT(λ) and TNHT(G) = TNHT(λ) where λ is the neighborhood matrix of G. See Figure 4.6
for an example where the vertices u, x, z are represented as non-Helly triangle on the left
and interval triangle on the right.

Recall that a set of arcs which intersect pairwise but have overall empty intersection
is called non-Helly. Since three pairwise overlapping arcs that cover the whole circle
have overall empty intersection we call such a set a non-Helly triangle. In fact, one
can verify that this is the only non-Helly arrangement of three arcs. A complete list of
inclusion-minimal non-Helly CA models can be found in [Joe+11, Corrollary 3.1].

Theorem 4.24. A CA graph G is uniform iff TIT(G) ∩ TNHT(G) = ∅.

Proof. “⇒”: Assume there exists a uniform CA graph G with TIT(G) ∩ TNHT(G) 6= ∅.
Let T be an ov-triangle in TIT(G) ∩ TNHT(G) and T = {x, y, z}. This means there exist
two representations ρI , ρN ∈ N (G) such that T is represented as interval triangle in ρI
and as non-Helly triangle in ρN. We assume w.l.o.g. that ρI(y) ⊂ ρI(x) ∪ ρI(z), i.e. y is
placed in-between x and z in ρI . This means y and z must be in the same part of the
unique x-ov-partition Px. However, y and z do not contain the same endpoint of x in the
representation ρN, which contradicts that G is uniform.

“⇐”: Assume there exists a CA graph G with TIT(G) ∩ TNHT(G) = ∅ that is not uni-
form. This means there exist a vertex u, two vertices x, y ∈ Nov(u) and two representations
ρ, ρ′ ∈ N (G) such that x and y overlap from the same side with u in ρ but not in ρ′. This
implies that x and y must overlap and therefore T = {u, x, y} is an ov-triangle. Notice
that T must be represented as interval triangle in ρ because x and y both contain the same
endpoint of u. It holds that T is represented as interval triangle in ρ′ as well since otherwise
T ∈ TIT(G) ∩ TNHT(G). Also, we assume w.l.o.g. that ρ(y) ⊂ ρ(x) ∪ ρ(u). Since u and y
overlap it holds that N[u] \ N[y] 6= ∅. Due to ρ′ it follows that N[u] \ N[y] ⊆ N[u] ∩ N[x].
For a vertex z ∈ N[u] \ N[y] to intersect with both u and x it is necessary that z overlaps

ρ

z

y
ux

z
x

u
y

ρ′

FIGURE 4.6: “⇐”-direction in the proof of Theorem 4.24
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with u and x due to the representation ρ. It follows that {u, x, z} is represented as non-
Helly triangle in ρ. On the other hand, {u, x, z}must be represented as interval triangle
in ρ′ and therefore TIT(G) ∩ TNHT(G) 6= ∅, contradiction. See Figure 4.6 for a schematic
overview of ρ and ρ′.

Observe that if an ov-triangle T of G is representable as non-Helly triangle then this
implies that T must have certain structural properties in G. For example, every vertex of
G must be adjacent to at least one of the vertices in T since T covers the whole circle in
some representation. Similarly, if T is representable as interval triangle this also implies
some structural properties. For instance, there must be an x ∈ T such that every vertex
that is adjacent to x must also be adjacent to at least one other vertex in T. If an ov-triangle
is representable as both non-Helly triangle and interval triangle then it must satisfy all of
these structural properties at once. As a consequence such an ov-triangle must have a very
particular structure which extends to the whole graph as we will see in the next section.

A CA graph is Helly if it has a Helly CA representation. In [Joe+11, Theorem 4.1]
it is shown that every ‘stable’ representation of a Helly CA graph is Helly. Since every
normalized representation has the ‘stable’ property it follows that a CA graph is Helly iff
every normalized representation of it is Helly. If a CA graph G is Helly this implies that
TNHT(G) is empty, and therefore every Helly CA graph is uniform.

A natural question to consider is the computational complexity of deciding whether an
ov-triangle is representable as non-Helly triangle or interval triangle. Given a CA graph G
and an ov-triangle T of G let us call the problem of deciding whether T is in TNHT(G) the
non-Helly triangle representability problem. Analogously, deciding whether T is in TIT(G)
is called the interval triangle representability problem. In the case of uniform CA graphs
these two problems are complementary, i.e. an ov-triangle T is in TNHT(G) iff T is not in
TIT(G). In the following, we show that solving either of these two problems for uniform
CA graphs is logspace-equivalent to computing a canonical representation for uniform CA
graphs.

Definition 4.25. Let G be a CA graph and T = {u, v, w} is an ov-triangle of G. We say v is
amidst u and w if one of the following conditions holds:

1. NT(u) and NT(w) are non-empty

2. there exists a z ∈ NT(u, w) such that {u, w, z} ∈ TNHT(G)

Lemma 4.26. Let G be a uniform CA graph and T = {u, v, w} is an ov-triangle of G with
T /∈ TNHT(G). Then the following statements are equivalent:

1. v is amidst u and w

2. ∃ρ ∈ N (G) : ρ(v) ⊂ ρ(u) ∪ ρ(w)

3. ∀ρ ∈ N (G) : ρ(v) ⊂ ρ(u) ∪ ρ(w)

Proof. “2⇒ 1”: Let ρ be in N (G) such that ρ(v) ⊂ ρ(u) ∪ ρ(w) and assume that v is not
amidst u, w. Since v overlaps with u and w it holds that N[u] \ N[v] and N[w] \ N[v]
are non-empty. Because NT(u) = NT(w) = ∅ it must hold that NT(u, w) 6= ∅. Let
z ∈ NT(u, w). For z to intersect with u and w in ρ it must hold that {u, w, z} is represented
as non-Helly triangle in ρ. This contradicts the assumption that v is not amidst u, w.

“1⇒ 3”: Let v be amidst u and w and assume that there exists a ρ ∈ N (G) such that
ρ(v) 6⊂ ρ(u) ∪ ρ(w). Since T /∈ TNHT(G) and G is uniform it follows by Theorem 4.24
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that T must be represented as interval triangle in every representation, which includes
ρ. We assume w.l.o.g. that ρ(w) ⊂ ρ(u) ∪ ρ(v). From that it follows that NT(w) is empty
and therefore there must be a z ∈ NT(u, w) such that {u, w, z} is a non-Helly triangle in ρ,
which is impossible.

“3⇒ 2”: clear.

Definition 4.27. Let G be a CA graph and u ∈ V(G). Let the binary relation ∼u on Nov(u) be
defined such that x ∼u y holds if one of the following holds:

1. x = y

2. x cd y or x cs y

3. x ov y, {u, x, y} /∈ TNHT(G) and u is not amidst x and y

Lemma 4.28. For every uniform CA graph G and u ∈ V(G) it holds that the partition induced
by ∼u equals the unique u-ov-partition Pu. Stated differently, x ∼u y iff x and y are in the same
part of Pu.

Proof. “⇒”: Let x ∼u y and assume for the sake of contradiction that x and y are not in
the same part of the u-ov-partition. This means there exists a representation ρ ∈ N (G)
such that ρ(x) and ρ(y) contain different endpoints of ρ(u). This is only possible if x and y
overlap. Since {u, x, y} /∈ TNHT(G) this means {u, x, y} must be represented as interval
triangle in ρ. In order for ρ(x) and ρ(y) to contain different endpoints of ρ(u) it must
hold that ρ(u) ⊂ ρ(x) ∪ ρ(y), which implies that u is amidst x and y by Lemma 4.26. This
contradicts x ∼u y.

“⇐”: Let x and y be in the same part of the u-ov-partition and assume that x ∼u y does
not hold. This implies that x and y must overlap and therefore {u, x, y} form an ov-triangle.
For x ∼u y to not hold it must be either the case that {u, x, y} is only representable as
non-Helly triangle or u is amidst x and y. In both cases this contradicts x and y being in
the same part of the u-ov-partition.

Theorem 4.29. The representation, canonical representation, non-Helly triangle representability
and interval triangle representability problem for uniform CA graphs are logspace-equivalent.

Proof. The non-Helly triangle representability and interval triangle representability prob-
lem for uniform CA graphs are logspace-equivalent because they are complementary
in the sense that an ov-triangle is representable as non-Helly triangle iff it is not repre-
sentable as interval triangle. This follows from the fact that an ov-triangle can only be
either represented as non-Helly triangle or interval triangle and these two possibilities
are mutually exclusive in the case of uniform CA graphs. As a consequence these two
problems are trivially reducible to the representation problem for uniform CA graphs.
Given a uniform CA graph G, an ov-triangle T of G and a representation ρ ∈ N (G) it
holds that T ∈ TNHT(G) iff T /∈ TIT(G) iff T is represented as non-Helly triangle in ρ.

The representation problem is obviously reducible to the canonical representation
problem. Therefore it remains to show that the canonical representation problem for
uniform CA graphs is reducible to the non-Helly triangle representability problem. To
obtain a canonical representation for a uniform CA graph we can use the invariant flip
set function given in Lemma 4.21. To compute this function we need to figure out the
unique ov-partitions for each vertex. By Lemma 4.28 this can be done by computing the
equivalence relation ∼u for each vertex u. It can be verified that this relation is computable
in logspace using queries of the form T ∈ TNHT(G).
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The isomorphism problem for CA graphs can be reduced to the one for non-uniform CA
graphs in polynomial-time due to Theorem 4.22. However, a reduction from the canonical
representation problem for CA graphs to the one for non-uniform CA graphs does not
immediately follow from Theorem 4.22 unless uniform CA graphs can be recognized in
polynomial-time. An alternative approach to construct such a reduction is to solve the
non-Helly triangle representability problem for uniform CA graphs with an additional
requirement.

Definition 4.30. The globally invariant non-Helly triangle representability problem for uniform
CA graphs is defined as follows. Let A be an algorithm that correctly decides the non-Helly triangle
representability problem for uniform CA graphs. Let fA be the function computed by A, i.e. for
a graph G and an ov-triangle T of G it holds that fA(G, T) = 1 iff A accepts (G, T). We say A
decides the globally invariant non-Helly triangle representability problem for uniform CA graphs if
fA is an invariant for all graphs. Stated differently, the output of A must be independent of the
vertex labels.

Lemma 4.31. The canonical representation problem for CA graphs is logspace-reducible to the
globally invariant non-Helly triangle representability problem for uniform CA graphs and the
canonical representation problem for vertex-colored non-uniform CA graphs.

Proof. Suppose we are given an algorithm A which solves the globally invariant non-Helly
triangle representability problem for uniform CA graphs. We argue that A can be used to
compute a globally invariant flip set function for uniform CA graphs. From Lemma 4.17 it
then follows that the canonical representation problem for CA graphs reduces to that for
vertex-colored non-uniform CA graphs.

Given a CA graph G let ∆(G, A) be the set of ov-triangles T of G such that A accepts
(G, T). If G is a uniform CA graph then ∆(G, A) = TNHT(G). Consider Definition 4.25 and
4.27 and suppose that each occurrence of TNHT(G) is replaced by ∆(G, A). Let us call the
new relation ∼A

u . Clearly, in the case of uniform CA graphs ∼u and ∼A
u coincide. Next,

consider the following variant of Funiform:

FA
uniform(G) =

⋃
u∈V(G)

X∈(Nov(u)/∼A
u )

{
{u} ∪ Ncd(u) ∪ Ncc(u) ∪ X

}

where (Nov(u)/ ∼A
u ) denotes the equivalence classes of∼A

u . If∼A
u is not an equivalence re-

lation let (Nov(u)/ ∼A
u ) = ∅. If G is a uniform CA graph then it follows from Lemma 4.28

that Funiform(G) = FA
uniform(G). Therefore FA

uniform is an invariant flip set function for uni-
form CA graphs. Additionally, it can be verified that FA

uniform is globally invariant due to
the fact that the answer of A is independent of the vertex labels. Also, the function FA

uniform
can be computed in logspace using queries of the form T ∈ ∆(G, A). Observe that ∆(G, A)
only provides n3 bits of information with n = |V(G)| and therefore can be computed ‘in a
single query’ by a functional oracle which outputs the n3 bits of information.

4.6 Non-Uniform CA Graphs and Restricted CA Matrices

In the first part of this section we examine the structure of non-uniform CA graphs. Every
such graph must have two ov-triangles which have exactly one vertex in common and both
are representable as interval triangle and as non-Helly triangle. This pair of ov-triangles
enforces a particular structure in non-uniform CA graphs. In the second part we introduce
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restricted CA matrices, which try to partly capture this structure. Roughly speaking,
restricted CA matrices can be seen as a generalization of the neighborhood matrices of non-
uniform CA graphs. We pay the price of considering this more general class of structures
in order to provide a logspace reduction from the canonical representation problem for
CA graphs to that of restricted CA matrices.

Definition 4.32. Given a CA graph G, an induced 4-cycle C = (u, w, w′, u′) of G and v ∈ V(G) \
C. We say (C, v) is a non-uniformity witness of G if {u, v, w}, {u′, v, w′} ∈ TIT(G) ∩ TNHT(G).
We also simply call (C, v) a witness of G.

Theorem 4.33. A CA graph G is non-uniform iff G has a non-uniformity witness.

Proof. “⇒”: Let G be a non-uniform CA graph. Due to Theorem 4.24 there exists an
ov-triangle T of G with T ∈ TIT(G) ∩ TNHT(G). Let T = {u, v, w} and ρI ∈ N (G) such
that v is in-between u and w, i.e. ρI(v) ⊂ ρI(u) ∪ ρI(w). First, we show that there exists an
induced 4-cycle C = (u, w, w′, u′) in G.

From the non-Helly triangle representation of T it follows that N[u] ∪ N[v] ∪ N[w] =
V(G). Since v is in-between u and w this means N[u] ∪ N[w] = V(G). It holds that u and
w overlap. Therefore one of the conditions in the definition of the neighborhood matrix for
u and w to form a circle cover must be violated. Let us assume w.l.o.g. that the violated
condition is that there exists a u′ ∈ N[u] \ N[w] such that N[u′] 6⊆ N[u]. This means u′
must overlap with u and there exists a w′ ∈ N[u′] \ N[u]. Since w′ /∈ N[u] it follows
from N[u] ∪ N[w] = V(G) that w′ ∈ N[w] and because w is disjoint from u′, and because
w′ intersects with both u′ and w it follows that w′ overlaps with u′ and w. Therefore
C = (u, w, w′, u′) is an induced 4-cycle in G.

It remains to show that {u′, v, w′} is an ov-triangle and that it is in both TIT(G) and
TNHT(G). Consider the representation ρI from before. Assume for the sake of contradiction
that v does not overlap with u′. Then due to ρI it must be the case that u′ is disjoint from v
and thus u′ ∈ NT(u). However, due to fact that T is representable as non-Helly triangle
this would imply that u′ is contained by u, which is not the case. Therefore u′ overlaps
with v as the other intersections types are out of question. For the same reason w′ overlaps
with v and hence T′ = {u′, v, w′} is an ov-triangle. Now, it can be verified that in every
representation of G where T is a non-Helly triangle it follows that T′ must be an interval
triangle and vice versa. This concludes that T′ is in TIT(G) ∩ TNHT(G).

“⇐”: Follows directly from Theorem 4.24.

In Figure 4.7 five non-uniform CA graphs and one uniform CA graph (X4) are given
by their CA models. We explain how to verify this claim. First, we have to check that
every CA model is normalized. This means the graphs which are induced by these models
must be twin-free and without a universal vertex. Additionally, the intersection types
of the arcs must match the intersection types in the induced graph (or more precisely
its neighborhood matrix). A quick way to determine whether two overlapping arcs also
overlap in the graph is to check if they jointly occur in an induced n-cycle for some n ≥ 4.

To see that the first five CA graphs are non-uniform we have to find an ov-triangle that
is representable as both interval and non-Helly triangle. In the case of 3K2 this ov-triangle
can be {u, v, w}. In the given representation {u, v, w} is represented as interval triangle.
Observe that v and v′ are in the same orbit and therefore the labels v and v′ can be swapped
in the representation. After swapping v and v′ the ov-triangle {u, v, w} is represented as
non-Helly triangle. For the graph X0 we can also choose the ov-triangle {u, v, w}. In this
case there is an automorphism which swaps u with u′ and w with w′ and has the other
vertices as fix-points. After changing the labels in the representation according to this



72 Chapter 4. Algorithmic Properties of Graph Classes with Implicit Representations

u

w′

w

u′

v

v′

3K2

u

w′

w

u′

v

x X0 X1 X2

X3 X4

FIGURE 4.7: Examples of non-uniform CA graphs and one uniform CA graph X4

automorphism it holds that {u, v, w} is represented as non-Helly triangle. We remark that
3K2 and X0 are minimal in the sense that no induced subgraph of them is a non-uniform
CA graph. Next, let us consider the graphs X1 to X3. Observe that the black arcs in each of
these graphs form an induced 3K2 subgraph. We assume that the black arcs are labeled
with u, u′, v, v′, w, w′ in the same way that the representation of 3K2 is labeled. It holds that
v and v′ are in the same orbit in all of these four graphs because they have the same open
neighborhood. Therefore {u, v, w} is representable as both interval and non-Helly triangle
due to the same argument that we made for 3K2.

To show that X4 is uniform we argue that it has a unique normalized representation,
i.e. |N (X4)| = 1. Observe that this graph has a unique CA model. Additionally, it has no
non-trivial automorphism (it is rigid). Therefore X4 has a unique CA representation.

Fact 4.34. Every non-uniform CA graph contains 3K2 or X0 as induced subgraph.

Proof. Let G be a non-uniform CA graph. Due to Theorem 4.33 there exists a witness
(C, v) of G with C = (u, w, w′, u′). Since G does not contain a universal vertex it holds that
V(G) \ N[v] is non-empty. Due to the fact that {u, v, w} and {u′, v, w′} can be represented
as interval triangles it follows that NC(C \ {x}) ⊆ N[v] for all x ∈ C. Therefore V(G) \
N[v] ⊆ NC(C) ∪ NC(u, u′) ∪ NC(w, w′). Suppose there is a v′ ∈ NC(C) \ N[v]. Then
the vertices of C along with v and v′ form an induced 3K2-subgraph of G. Assume
that this is not the case, i.e. NC(C) ⊆ N[v]. Since u and v overlap it must hold that
N[u] \ N[v] 6= ∅. The only vertices that can be adjacent to N[u] but not to N[v] must be
in NC(u, u′) since NC(C) ⊆ N[v]. Therefore there exists a vertex x ∈ NC(u, u′) that is not
adjacent to v. For the same reason there must be a vertex y ∈ NC(w, w′) not adjacent to
v because N[w] \ N[v] 6= ∅. The vertices of C along with v, x and y form an induced
X0-subgraph.

Definition 4.35 (Restricted CA Matrix). Let λ be a CA matrix. We say λ is a restricted CA
matrix if it contains an induced 4-cycle C = (u, w, w′, u′) called witness cycle such that:

1. NC(u, w), NC(u′, w′) and NC(x) are empty for every x ∈ C

2. For all x ∈ NC(C) it holds that x overlaps with all vertices in C
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1 2 3 4 5 6 7
u cs ov cs ov di di di di ov ov ov cs ov ov di di ov

w di di di di cs ov cs ov di di ov ov ov cs ov ov ov

w′ di di di di cs cs ov ov ov ov di di ov ov ov cs ov

u′ cs cs ov ov di di di di ov cs ov ov di di ov ov ov

TABLE 4.2: Intersection types of restricted CA matrices with witness cycle (u, w, w′, u)

Observe that the intersection matrix of every CA model that is shown in Figure 4.7 is a
restricted CA matrix.

Fact 4.36. Given an intersection matrix λ, vertices x, y1, . . . , yk of λ and intersection types
α1, . . . , αk, we say x is an (α1, . . . , αk)-neighbor of (y1, . . . , yk) if λx,yi = αi for all i ∈ [k]. A CA
matrix λ is restricted iff λ contains an induced 4-cycle C = (u, w, w′, u′) such that for all vertices
x ∈ V(λ) \ C there exists a column α in Table 4.2 such that x is a α-neighbor of C.

Proof. We use the numbers in the table headline to refer to the different columns. For exam-
ple, 2.3 refers to the third column from left in the second part of the table: (di, cs, ov, di).

“⇒”: Let λ be a restricted CA matrix with witness cycle C = (u, w, w′, u′). We need to
show for every x ∈ V(λ) \C there exists a column α in Table 4.2 such that x is a α-neighbor
of C. Due to the definition of restricted CA matrices it must hold that x is in (exactly) one
of the following seven sets: NC(C), NC(u, u′), NC(w, w′) or NC(C \ {z}) for a z ∈ C. If x is
in NC(C) then x overlaps with every vertex of C by definition. This corresponds to the last
column 7.1 of the table. If x ∈ NC(u, u′) then x is disjoint from w and w′. In that case x is
an α-neighbor of C where α must be one of the four columns in part one of the table. For
the same reason if x ∈ NC(w, w′) then it is an α-neighbor of C where α corresponds to one
of the two columns in the second part of the table. If x is in NC(C \ {w}) then x is disjoint
from w and x overlaps with both u and w′. The intersection type between x and u′ can be
one of the following: x overlaps with u or x is contained by u or x contains u. The first
two cases are covered by the third part of the table. However, if x contains u then there
exists no corresponding column in the table since it does not have any cd-entries. This
can be resolved by using the following observation: if x is in NC(C \ {w}) and contains
u′ then (u, w, w′, x) is a witness cycle of λ as well. As a consequence we can assume
without loss of generality that a witness cycle C of λ can be chosen such that there exists
no x ∈ NC(C \ {w}) which contains u′. The same argument applies to the remaining three
cases x ∈ NC(C \ {z}) with z ∈ {u, u′, w′}.

“⇐”: clear.

In the remainder of this section we prove that the canonical representation problem
for CA graphs is logspace-reducible to the canonical representation problem for vertex-
colored restricted CA matrices. The proof outline looks as follows. First, we define a subset
of uniform CA graphs, namely ∆-uniform CA graphs, for which the globally invariant
non-Helly triangle representability problem can be solved in logspace. Therefore the
canonical representation problem for CA graphs is logspace-reducible to that of CA graphs
which are not ∆-uniform. This reduction follows from a slightly modified version of
Lemma 4.31. Then we show that the neighborhood matrix of a non-∆-uniform CA graph
can be converted into a vertex-colored restricted CA matrix by flipping ‘long’ arcs. By
coloring the flipped arcs the isomorphism type is preserved.

Definition 4.37. For a graph G we define ∆G as the following set of ov-triangles (see Defini-
tion 4.23). An ov-triangle T of G is in ∆G if there exist three pairwise different vertices u, v, w in
T such that the following holds:
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1. N[u] ∪ N[v] ∪ N[w] = V(G)

2. For all z ∈ T it holds that if a vertex x ∈ NT(z) then x cd z

3. If there exist u′, w′ such that (u, w, w′, u′) is an induced 4-cycle and v overlaps with u′ and
w′ then N[v] ⊆ N[u′] ∪ N[w′]

Definition 4.38. A CA graph G is ∆-uniform if ∆G ∩ TIT(G) = ∅.

Let us explain the intuition behind these two definitions. The set ∆G approximates
TNHT(G). More precisely, whenever an ov-triangle T = {u, v, w} is in TNHT(G) this implies
that T satisfies certain constraints such as for example N[u] ∪ N[v] ∪ N[w] = V(G). The
set ∆G consists of three such constraints. Therefore if an ov-triangle is representable as
non-Helly triangle it must also be in ∆G, i.e. TNHT(G) ⊆ ∆G. The ∆-uniform CA graphs
can be alternatively seen as the subset of uniform CA graphs where the constraints of ∆G
suffice to characterize TNHT(G), i.e. ∆G = TNHT(G).

Lemma 4.39. For every graph G it holds that TNHT(G) ⊆ ∆G. If G is a ∆-uniform CA graph
then TNHT(G) = ∆G.

Proof. For the first claim consider a graph G. If G is not a CA graph then TNHT(G) = ∅.
Therefore we can assume that G is a CA graph. Given an ov-triangle T ∈ TNHT(G) we
show that it must be in ∆G. Let ρ ∈ N (G) be a representation such that T = {u, v, w} is
represented as non-Helly triangle in it. Since ρ(u) ∪ ρ(v) ∪ ρ(w) covers the whole circle
it follows that N[u] ∪ N[v] ∪ N[w] = V(G), which is the first condition of Definition 4.37.
To see that the second condition holds we consider a vertex x ∈ NT(u) without loss of
generality. Since x is not adjacent to v and w it holds that ρ(x) ⊆ C \ (ρ(v) ∪ ρ(w)) where
C denotes the whole circle. Since C \ (ρ(v) ∪ ρ(w)) ⊂ ρ(u) it follows that ρ(x) ⊂ ρ(u).
Due to the fact that ρ is a normalized representation this implies that x is contained by
u. To see that the third condition of ∆G holds let u′, w′ be vertices such that (u, w, w′, u′)
is an induced 4-cycle of G. Since T is represented as non-Helly triangle in ρ it must
hold that {u′, v, w′} is an interval triangle in ρ with ρ(v) ⊂ ρ(u′) ∪ ρ(w′) and therefore
N[v] ⊆ N[u′] ∪ N[w′].

For the second claim let G be a ∆-uniform CA graph. From the previous claim we know
that TNHT(G) ⊆ ∆G. Since every ov-triangle must be in TNHT(G) ∪ TIT(G) it follows that
∆G ⊆ TNHT(G) ∪ TIT(G). The definition of ∆-uniform requires ∆G ∩ TIT(G) = ∅ and thus
∆G ⊆ TNHT(G).

Fact 4.40. ∆-uniform CA graphs are a strict subset of uniform CA graphs.

Proof. Assume there exists a ∆-uniform CA graph G which is not uniform. This means
there exists an ov-triangle T ∈ TNHT(G) ∩ TIT(G). Due to the previous lemma it holds that
TNHT(G) ⊆ ∆G. This implies that T ∈ ∆G ∩ TIT(G) which contradicts that G is ∆-uniform.
Therefore every ∆-uniform CA graph is uniform.

An example of a uniform CA graph that is not ∆-uniform is the graph X4 in Figure 4.7.
In the third paragraph after Theorem 4.33 we argued that X4 is a uniform CA graph
because it has a unique normalized representation. Assume that the black arcs of X4 are
labeled with u, u′, v, v′, w, w′ in the same way that the representation of 3K2 is labeled in
Figure 4.7. To see that X4 is not ∆-uniform it suffices to check that the ov-triangle {u, v, w}
is in ∆X4 and represented as interval triangle.

Corollary 4.41. The globally invariant non-Helly triangle representability problem for ∆-uniform
CA graphs can be solved in logspace.
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Proof. Given a CA graph G and an ov-triangle T output yes iff T ∈ ∆G. This is correct
because in the case of a ∆-uniform CA graph G it holds that ∆G = TNHT(G) (Lemma 4.39).
Clearly, ∆G is computable in logspace and an invariant.

Lemma 4.42. Let G be a CA graph that is not ∆-uniform. Then there exists an induced 4-cycle
C = (u, w, w′, u′) such that N[u]∪ N[w] = N[u′]∪ N[w′] = V(G) and a vertex v that overlaps
with every vertex in C.

Proof. The argument is essentially the same as the one made for the “⇒”-direction in
the proof of Theorem 4.33. The difference is that instead of the stronger assumption that
T ∈ TNHT(G) we only require that T ∈ ∆G.

Since G is not ∆-uniform there exists an ov-triangle T = {u, v, w} of G such that T ∈ ∆G
and there is a representation ρ ∈ N (G) such that T is represented as interval triangle in ρ.
Furthermore, let us assume w.l.o.g. that ρ(v) ⊂ ρ(u) ∪ ρ(w). Since T ∈ ∆G it holds that
N[u] ∪ N[v] ∪ N[w] = V(G). Due to the interval representation of T in ρ it follows that
N[u] ∪ N[w] = V(G). Since u and w do not form a circle cover it must hold that there
exists a vertex u′ ∈ N[u] \ N[w] such that N[u′] \ N[u] is non-empty. If u′ is disjoint from
v it follows that u′ must be contained by u from the second condition in Definition 4.37 of
∆G. This cannot be the case and therefore u′ ∈ NT(u, v). For u′ to have a neighbor which
is not adjacent to u it must hold that ρ(u′) 6⊆ ρ(u). Therefore u′ overlaps with u and v.
Let w′ ∈ N[u′] \ N[u]. If w′ ∈ NT(w) then w′ would be contained by w due to the second
condition of ∆G. Again, this cannot be the case and therefore w′ ∈ NT(v, w). From the
representation ρ it follows that w must overlap with u′, v and w. Then C = (u, w, w′, u′) is
an induced 4-cycle of G such that v overlaps with every vertex of C. It remains to show that
N[u′]∪N[w′] = V(G). Due to the third condition of ∆G it holds that N[v] ⊆ N[u′]∪N[w′].
Additionally, it holds that ρ(u) \ ρ(v) ⊂ ρ(u′) and ρ(w) \ ρ(v) ⊂ ρ(w′). As a consequence
N[u′] ∪ N[w′] = V(G).

Corollary 4.43. Canonical representations for CA graphs without induced 4-cycle can be computed
in logspace.

Proof. By Lemma 4.42 the class of CA graphs without induced 4-cycle is a subset of ∆-
uniform CA graphs and due to Corollary 4.41 and Theorem 4.29 a canonical representation
for such graphs can be computed in logspace.

Corollary 4.44. Helly CA graphs are a strict subset of ∆-uniform CA graphs.

Proof. Assume G is a Helly CA graph which is not ∆-uniform. Then due to Lemma 4.42
there exists an induced 4-cycle C and a vertex v not in C which overlaps with every vertex
in C. In any normalized representation of G it must hold that v forms a non-Helly triangle
with two vertices from C. This contradicts that G is Helly. The graph is a ∆-uniform
CA graph which is not Helly.

Theorem 4.45. The canonical representation problem for CA graphs is logspace-reducible to the
canonical representation problem for vertex-colored restricted CA matrices.

Proof. For brevity let Z denote the set of all CA graphs which are not ∆-uniform. Since
the globally invariant non-Helly triangle representability problem for ∆-uniform CA
graphs can be solved in logspace (see Corollary 4.41) it follows from a modified version of
Lemma 4.31 that the canonical representation problem for CA graphs is logspace-reducible
to the canonical representation problem for vertex-colored Z . To see this replace ‘uniform’
with ‘∆-uniform’ and ‘non-uniform’ with ‘non-∆-uniform’ in the statement (and proof) of
Lemma 4.31.
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For a CA graph G let us say a subset of vertices X of G is an R-flip set if λ
(X)
G is a

restricted CA matrix. To find canonical representations for Z we construct an invariant
vertex set selector f such that f (G) contains at least one R-flip set for every G ∈ Z . Then
to obtain a canonical representation for G ∈ Z let X̂ denote the R-flip set in f (G) such

that canon(λ(X̂)
G , cX̂) is lexicographically minimal with cX being the coloring which assigns

every vertex v ∈ X the color red and the other vertices are blue. Let ρ be a canonical

normalized representation for (λ(X̂)
G , cX̂). Then ρ(X̂) is a canonical representation for G.

Notice, that ρ(X̂) can be computed in logspace by computing canonical representations for
vertex-colored restricted CA matrices. The correctness of this approach follows from the
same argument made in the proof of Theorem 4.16 in the flip trick section. The analogy is
straightforward. The R-flip sets in this context correspond to flip sets and the invariant
vertex set selector f takes the place of the invariant flip set function. Given a CA graph G
and X ⊆ V(G) it can be easily checked in logspace whether λ

(X)
G is a restricted CA matrix.

For a CA graph G let C(G) denote the set of all ordered induced 4-cycles in G. Now, we
claim that the following logspace-computable function f is an invariant vertex set selector
with the desired property:

f (G) =
⋃

C∈C(G)

{
{x ∈ V(G) \ C | ∃y ∈ C : x cs y}

}
It is not difficult to check that f is invariant. It remains to argue why f (G) contains at least
one R-flip set for every G ∈ Z . Let G ∈ Z and C = (u, w, w′, u′) is an induced 4-cycle
in G such that N[u] ∪ N[w] = N[u′] ∪ N[w′] = V(G). The existence of such an induced
4-cycle is guaranteed by Lemma 4.42. Observe that if there exists a u1 ∈ NC(u, w, u′) with
u1 cs u then C1 = (u1, w, w′, u′) also satisfies the previous condition N[u1] ∪ N[w] = V(G).
Therefore we can assume that there exists no z ∈ C and z1 ∈ NC(N[z] ∩ C) such that
z1 cs z. From N[u] ∪ N[w] = N[u′] ∪ N[w′] = V(G) it immediately follows that NC(u, w),
NC(u′, w′) and NC(x) are empty for every x ∈ C.

We prove that λ(X) is a restricted CA matrix with witness cycle C where λ is the
neighborhood matrix of G and X = {x ∈ V(G) \ C | ∃y ∈ C : x cs y}. Note that X ∈ f (G)

via C. To reference the neighborhoods of G (which are the same as the ones of λ) or λ(X)

we write NG and Nλ(X)
to distinguish between them. First, we show that Nλ(X)

C (u, w) = ∅.
Assume the opposite, i.e. there exists x ∈ Nλ(X)

C (u, w). If x was not flipped, i.e. x /∈ X,
then it also holds that x ∈ NG

C (u, w), which contradicts that NG
C (u, w) is empty. If x

was flipped, i.e. x ∈ X, then it must be the case that x contains u′ and w′ in λ. This
means NG[u′] ∪ NG[w′] ⊆ NG[x] which implies that x is a universal vertex in G since
NG[u′] ∪ NG[w′] = V(G), contradiction. For the same reason it holds that Nλ(X)

C (u′, w′)
and Nλ(X)

C (z) are empty for all z ∈ C. It remains to show that for all x ∈ Nλ(X)

C (C) it holds

that x overlaps with all vertices of C in λ(X). Notice that λ
(X)
x,z ∈ {ov, cs, cc} for every

z ∈ C. Otherwise x would not be in NC(C). We consider the following two cases: in
the first one we assume that x contains one vertex of C in λ(X) and in the second one we
assume that x forms a circle cover with one vertex of C in λ(X). We prove that neither of
these cases can occur and therefore x must overlap with all vertices of C in λ(X). For the
first case assume that w.l.o.g. x contains u in λ(X) and intersects with the other vertices
of C in λ(X). If x ∈ X then it was flipped. It follows that x was disjoint from u in λ
and therefore x ∈ NG

C (w, w′, u′). Since x ∈ X it also must hold that x contains at least
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one of the vertices w, w′, u′ in G. It follows that x contains w′ since it cannot contain the
other two in λ. However, this contradicts our choice of C which says that there exists no
w′1 ∈ NG

C (w, w′, u′) such that w′1 contains w′ in λ. If x /∈ X then it must hold that x already
contained u in λ. But then x should be in X, contradiction. For the second case assume x
forms a circle cover with u in λ(X). If x forms a circle cover with u then this implies that
x contains w′ in λ(X) and therefore this reduces to the first case. We conclude that both
conditions of Definition 4.35 are satisfied and hence λ(X) is a restricted CA matrix.

4.7 Flip Sets for Restricted CA Matrices

In this section we consider how to find an invariant flip set function for restricted CA
matrices. From the previous section we know that this suffices to solve the canonical
representation problem for CA graphs. In the first subsection we show that there is a
subset of vertices in restricted CA matrices which makes it difficult to find flip sets and
which cannot be avoided. In fact, this subset is the only obstacle. We prove that it suffices
to only consider this subset of vertices in order to find flip sets in a restricted CA matrix.
In the second subsection we analyze the structure of this particular subset and formulate
two conjectures which, if true, show how an invariant flip set function for restricted CA
matrices can be computed.

4.7.1 Partial Flip Sets

We consider the following refined notion of u-flip set called (u, w)-flip set which is defined
in terms of two overlapping vertices u and w. In a restricted CA matrix one can always
find two overlapping vertices due to the existence of a witness cycle.

Definition 4.46. Given a CA matrix λ and two vertices u, w of λ with u ov w. We say the
w-endpoint of u in a representation ρ ∈ N (λ) is the endpoint of ρ(u) which is contained in ρ(w).
A flip set X of λ is a (u, w)-flip set if there exists a representation ρ ∈ N (λ) such that x ∈ X iff
ρ(x) contains the w-endpoint of u in ρ for all x ∈ V(λ).

We say that x (instead of ρ(x)) contains the w-endpoint of u in ρ as it is clear from
the context. Observe that (u, w)-flip sets can be equivalently defined as u-flip sets which
contain w.

Now, our goal for a given a restricted CA matrix λ with witness cycle C = (u, w, w′, u′)
is to compute invariant (u, w)-flip sets (to be exact, we will compute (u1, w)-flip sets where
u1 is a vertex similar to u). As we shall see for many vertices of λ it is clear whether they
belong to a (u, w)-flip set or not. The only set of vertices that poses an obstacle is NC(C).
Therefore we are interested in computing the following kind of subsets of NC(C).

Definition 4.47 (C-partial flip set). Let λ be a restricted CA matrix with witness cycle C =
(u, w, w′, u′). We call a subset Z of NC(C) a C-partial flip set if there exists a subset Y of
V(λ) \ NC(C) such that Y ∪ Z is a (u, w)-flip set.

Recall that a vertex x ∈ NC(C) overlaps with every vertex from C. In a normalized
representation of λ there are four choices how x can be placed with respect to C. The
following definition and Figure 4.8 describe these four choices.

Definition 4.48 (Type). Let λ be a restricted CA matrix with witness cycle C = (u, w, w′, u′).
Given x ∈ NC(C) and ρ ∈ N (λ) we define typeC(x, ρ) as {y, z} with y, z ∈ C such that
ρ(x) ⊂ ρ(y) ∪ ρ(z). Additionally, we define typeC(x) as

⋃
ρ∈N (λ)

{
typeC(x, ρ)

}
. If C is clear

from the context we omit the subscript.
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Lemma 4.49. Given a restricted CA matrix λ with witness cycle C = (u, w, w′, u′). Let Z be a
subset of NC(C). Then the following statements are equivalent:

1. Z is a C-partial flip set

2. There exists a representation ρ ∈ N (λ) such that z ∈ Z iff ρ(z) contains the w-endpoint of
u in ρ for all z ∈ NC(C)

3. There exists a representation ρ ∈ N (λ) such that z ∈ Z iff w ∈ type(z, ρ) for all z ∈ NC(C)

Proof. Observe that for every x ∈ NC(C) and ρ ∈ N (λ) it holds that x contains the w-
endpoint of u iff w ∈ type(x, ρ). From this it follows that the second and third statement
are equivalent. It is also easy to see that the first implies the second statement. To see
that the second statement implies the first consider a representation ρ ∈ N (λ) such that
z ∈ Z iff ρ(z) contains the w-endpoint of u in ρ for all z ∈ NC(C). Let Y contain all vertices
x ∈ V(λ) \ NC(C) such that ρ(x) contains the w-endpoint of u in ρ. Clearly, Y ∪ Z is a
(u, w)-flip set and therefore Z is a C-partial flip set.

Definition 4.50. Let f be a vertex set selector for restricted CA matrices. We call f a partial flip
set function for restricted CA matrices if for every restricted CA matrix λ there exists a witness
cycle C of λ such that f (λ) contains a C-partial flip set. We call f an invariant partial flip set
function if it is invariant for restricted CA matrices.

Theorem 4.51. The (canonical) representation problem for CA graphs is logspace-reducible to the
problem of computing an (invariant) partial flip set function for restricted CA matrices.

Proof. Due to Theorem 4.45 and Theorem 4.16 it suffices to compute an invariant flip
set function for restricted CA matrices in logspace. Let f be an invariant partial flip set
function for restricted CA matrices. Then we claim that the following vertex set selector
is an invariant flip set function for restricted CA matrices. Let C4(λ) denote the set of all
ordered induced 4-cycles of λ.

F(λ) =
⋃

x,y∈V(λ),
C=(u,w,w′,u′)∈C4(λ),

Z∈ f (λ)

{
Z ∪ {x} ∪

(
〈N[x] ∩ N[y]〉 \ 〈NC(C) ∪U〉

)}

where U is shorthand for NC(C \ {w′}) ∪ {u}.
Clearly, if f can be computed in logspace then this also holds for F. The fact that F is

invariant follows from f and the different neighborhoods used in F being invariant and
the set of induced 4-cycles C4(λ) being a vertex set invariant as well.
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type(a, ρ) = {u, w}
type(b, ρ) = {u, u′}
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RCA matrix
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It remains to prove that F(λ) contains at least one flip set for every restricted CA matrix
λ. Let Z ∈ f (λ) be a C-partial flip set of λ with witness cycle C = (u, w, w′, u′). We
assume w.l.o.g. that there exists no u0 ∈ U such that u0 cs u (otherwise we could consider
C0 = (u0, w, w′, u′) as witness cycle instead and Z is a C0-partial flip set). Additionally, let
ρ ∈ N (λ) be a representation such that x ∈ Z iff w ∈ type(x, ρ) for all x ∈ NC(C). The
existence of such a representation follows from Lemma 4.49. Let u1 ∈ U denote the vertex
such that ρ(u2) ∩ ρ(w) ⊆ ρ(u1) ∩ ρ(w) for all u2 ∈ U. Informally, u1 is the ‘rightmost’
vertex of U in ρ. We show that the set

X = Z ∪ {u1} ∪
(
〈N[u1] ∩ N[w]〉 \ 〈NC(C) ∪U〉

)
with X ∈ F(λ) is a (u1, w)-flip set of λ. This follows from the following two claims:

1. For all x ∈ NC(C) it holds that ρ(x) contains the w-endpoint of u1 iff w ∈ type(x, ρ)

2. For all x ∈ V(λ) \ NC(C) with x 6= u1 it holds that ρ(x) contains the w-endpoint of
u1 iff x ∈ (N[u1] ∩ N[w]) \U)

Consider the first claim. If u1 = u then this follows from Lemma 4.49. Therefore let us
assume that u1 6= u. Consider a vertex x ∈ NC(C). Note that the w-endpoint of u1 in ρ
is contained in A = ρ(w) \ (ρ(u) ∪ ρ(w′)). If w ∈ type(x, ρ) then A ⊆ ρ(x) and therefore
ρ(x) contains the w-endpoint of u1 in ρ. If w /∈ type(x, ρ) then ρ(x) ∩ A = ∅ and therefore
ρ(x) does not contain the w-endpoint of u1 in ρ.

For the second claim let us first define the following sets which are similar to U:

• W = NC(C \ {u′}) ∪ {w},

• U′ = NC(C \ {w}) ∪ {u′},

• W ′ = NC(C \ {u}) ∪ {w′},

• UU′ = NC(u, u′),

• WW ′ = NC(w, w′)

It holds that these sets together with U and NC(C) partition V(λ). Then the set (N[u1]∩
N[w]) \U in the second claim is identical to (W ∪W ′ ∪WW ′) ∩ N[u1] when restricted
to vertices from V(λ) \ NC(C). We have chosen C such that either u1 = u or u1 ov u
must hold and therefore the other endpoint of u1 (not its w-endpoint) is contained in
ρ(u) ∩ ρ(u′). If x ∈ W ∪W ′ ∪WW ′ and adjacent to u1 then it must overlap with u1.
Since ρ(x) ∩ (ρ(u) ∩ ρ(u′)) = ∅ it holds that ρ(x) cannot contain the other endpoint
of u1 in ρ. Therefore ρ(x) contains the w-endpoint of u1. If x /∈ W ∪W ′ ∪WW ′ then
x ∈ U ∪U′ ∪UU′. If x ∈ U′ ∪UU′ then x is disjoint from w and therefore ρ(x) does not
contain the w-endpoint of u1. If x ∈ U and x 6= u1 then ρ(x) ∩ ρ(w) ⊂ ρ(u1) ∩ ρ(w) since
we have chosen u1 to satisfy this. Therefore x does not contain the w-endpoint of u1 in this
case as well.

4.7.2 Structure of Partial Flip Sets

Consider a restricted CA matrix λ with witness cycle C and let Z be the set of all C-
partial flip sets. What can be said about the structure of Z? A simple observation, for
example, is that if two vertices x, y ∈ NC(C) are disjoint or form a circle cover then
type(x, ρ) ∪ type(y, ρ) = C for all ρ ∈ N(λ). This implies that x ∈ Z iff y /∈ Z for all
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FIGURE 4.10: Mutual dependence relation

Z ∈ Z . Analogously, if x contains or is contained by y then x ∈ Z iff y ∈ Z for all
Z ∈ Z . This means there are subsets of vertices X of NC(C) for which there exists a unique
partition into two parts X0 and X1 such that Z ∈ Z implies Xi ⊆ Z and X j ∩ Z = ∅ for
some (i, j) ∈ {(0, 1), (1, 0)}. Informally, one has to make only one binary decision for the
set X when trying to construct a partial flip set. The following definition describes these
sets in terms of two equivalence relations ∼sibl and ∼md.

Definition 4.52. Let λ be a restricted CA matrix with witness cycle C. For two vertices x, y ∈
NC(C) we say they are siblings, in symbols x ∼sibl y, if for all C-partial flip sets Z it holds that
x ∈ Z iff y ∈ Z. Similarly, we say x and y are anti-siblings if for all C-partial flip sets Z it holds
that x ∈ Z iff y /∈ Z. We say x and y are mutually dependent, in symbols x ∼md y, if x and y are
siblings or anti-siblings.

The observation of the previous paragraph can be strengthened as follows. For an
intersection matrix µ let Gov(µ) denote the graph which has the same vertex set as µ and
two vertices are adjacent iff they overlap in µ. Let λ be a restricted CA matrix with witness
cycle C. Let λ′ be the submatrix of λ which is induced by NC(C). If two vertices occur in
the same connected component of the edge-complement of Gov(λ′) then they are mutually
dependent. The contra-position of this statement tells us that x 6∼md y implies x ov y for all
x, y ∈ NC(C). The other direction of this implication does not hold, see λ1 in Figure 4.10 for
a counter-example. The red and blue arc are disjoint in the edge-complement of Gov(λ′1)
but it holds that they are siblings.

Lemma 4.53. Let λ be a restricted CA matrix with witness cycle C. Every equivalence class
X ⊆ NC(C) of the mutual dependence relation is partitioned by at most two distinct equivalence
classes of the sibling relation.

Proof. Consider a y ∈ X and the corresponding equivalence class Y = {x ∈ NC(C) | x ∼sibl y}
of y w.r.t. the sibling relation. Since x ∼sibl y implies x ∼md y it follows that Y ⊆ X. If
Y = X then the statement holds. Otherwise, let z ∈ X \Y and Z = {x ∈ NC(C) | x ∼sibl z}.
It holds that Z ⊆ X and clearly Y and Z are disjoint because they are distinct equiva-
lence classes. We claim that X = Y ∪ Z. Assume this is not the case. Then there exists
a w ∈ X \ (Y ∪ Z) such that w 6∼sibl y and w 6∼sibl z. Since w ∼md y this means for all
C-partial flip sets V that y ∈ V iff w /∈ V. Since y 6∼sibl z holds this also means that for all
C-partial flip sets V that y ∈ V iff z /∈ V. From that it follows that w ∈ V iff z ∈ V for all
C-partial flip sets V which contradicts that w and z are not siblings.
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Definition 4.54. Let λ be a restricted CA matrix with witness cycle C. We define the two subsets
Γ0

C and Γ1
C of NC(C) as follows:

• x ∈ Γ0
C iff for all C-partial flip sets Z it holds that x /∈ Z

• x ∈ Γ1
C iff for all C-partial flip sets Z it holds that x ∈ Z

If C is clear from the context we omit the subscript.

Observe that Γ0 and Γ1 are equivalence classes of the sibling relation (or empty) and
Γ0 ∪ Γ1 is an equivalence class of the mutual dependence relation (or the empty set). From
Lemma 4.49 it follows that these two sets can be alternatively characterized as:

Γ1 =
{

x ∈ NC(C) | type(x) ⊆ {{u, w}, {w, w′}
}

Γ0 =
{

x ∈ NC(C) | type(x) ⊆ {{{u′, w′}, {u, u′}
}

Consider λ2 in Figure 4.10. The vertex x is in Γ1 because x must be present in every
C-partial flip set (x contains the w-endpoint of u in every representation). Since y is disjoint
from x it follows that y ∈ Γ0.

We conjecture that the sibling and mutual dependence relation contain enough infor-
mation to characterize the set of C-partial flip sets.

Conjecture 4.55. Let λ be a restricted CA matrix with witness cycle C. Let X1, . . . , Xk be the
equivalence classes of the mutual dependence relation but Γ0 ∪ Γ1. Additionally, let X0

i 6= X1
i be

equivalence classes of the sibling relation or empty such that Xi = X0
i ∪ X1

i for all i ∈ [k]. For all
X ⊆ NC(C) it holds that

X is a C-partial flip set⇔ ∃w ∈ {0, 1}k : Γ1 ∪
k⋃

i=1

Xwi
i

It is clear that the “⇒”-direction of this statement holds. Observe that to disprove this
conjecture it would already suffice to find a restricted CA matrix λ with witness cycle C
such that its number of C-partial flip sets is not a power of two. If this conjecture does not
hold this implies that there are some other kind of dependencies among the equivalence
classes of the mutual dependence relation which further restrict the set of C-partial flip
sets.

Fact 4.56. If Conjecture 4.55 holds then the representation problem for CA graphs is logspace-
reducible to computing the sibling and mutual dependence relation.

Proof. By Theorem 4.51 it suffices to compute a partial flip set function for restricted
CA matrices in order to solve the representation problem for CA graphs. Assume that
Conjecture 4.55 holds. Then a C-partial flip set can be computed by guessing which
equivalence class of the sibling relation is Γ0

C and which is Γ1
C. Let X1, . . . , Xk be the

equivalence classes of the mutual dependence relation such that Xi 6= Γ0
C ∪ Γ1

C for all i ∈ [k].
Let X0

i 6= X1
i be chosen as in the statement of Conjecture 4.55. Then Γ1

C ∪ X1
1 ∪ · · · ∪ X1

k is a
C-partial flip set which can be computed using the relations ∼sibl and ∼md.
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Conjecture 4.57. Let λ be a restricted CA matrix with witness cycle C. Let X be an equivalence
class of the mutual dependence relation and let X0 6= X1 be equivalence classes of ∼sibl or empty
such that X = X0 ∪ X1. Let λX denote the induced submatrix of λ on the vertex set

(
V(λ) \

NC(C)
)
∪ X. It holds that X0 and X1 are in the same orbit w.r.t. λ iff X0 and X1 are in the same

orbit w.r.t. λX.

Fact 4.58. If Conjecture 4.55 and 4.57 hold then the canonical representation problem for CA
graphs is logspace-reducible to computing the sibling and mutual dependence relation.

Proof. Let λ be a restricted CA matrix with witness cycle C. We argue how a single
invariant C-partial flip set for λ can be computed under the assumption that the two
previous conjectures hold. We proceed as in the proof of Fact 4.56. However, instead
of Γ1

C ∪ X1
1 ∪ · · · ∪ X1

k (which is not guaranteed to be an invariant choice) we choose the
C-partial flip set as follows. For each i ∈ [k] we compute a canonical labeling τi of λXi

(λXi is defined as in the statement of Conjecture 4.57). We say X0
i is smaller than X1

i if the
lexicographically smallest vertex in τi(X0

i ) is smaller than that in τi(X1
i ). For each i ∈ [k]

let wi 6= wi ∈ {0, 1} be such that Xwi
i is smaller than Xwi

i . Then Γ1
C ∪ Xw1

1 ∪ · · · ∪ Xwk
k is an

invariant C-partial flip set.

4.8 Summary and Outlook

Complexity classes such as GP can be understood as graph parameters and therefore
can be used to parameterize algorithmic problems (Corollary 4.6). However, already
GFO(=) seems to be a prohibitively complex parameterization when trying to find positive
algorithmic results. The or-pointer number seems to be the most suitable candidate for
algorithmic considerations since it is a simple generalization of uniformly sparse graph
classes for which positive algorithmic results exist. In the non-parameterized context a
fragment of GFO(<) has led us to consider the isomorphism problem for CA graphs.

We showed that the canonical representation problem for uniform CA graphs is
logspace-equivalent to the non-Helly triangle representability problem and to the repre-
sentation problem (Theorem 4.29). Since representations for CA graphs can be computed
in polynomial-time [McC03] it follows that canonical representations for uniform CA
graphs can be computed in polynomial-time. We then gave a partial characterization of
uniform CA graphs in terms of what conditions an ov-triangle must satisfy in order to be
representable as non-Helly triangle, see Definition 4.37. We called the resulting subset of
uniform CA graphs ∆-uniform. An interesting problem is to extend the definition of ∆G
such that ∆-uniform CA graphs coincide with uniform CA graphs. If the newly defined
set ∆G remains logspace-computable and invariant this would imply that the canonical
representation problem for CA graphs is logspace-reducible to the one for non-uniform
CA graphs.

It is not known whether CA graphs can be recognized in logspace. If a (not necessarily
canonical) flip set can be computed in logspace then a CA representation for CA graphs
can be computed in logspace as well.

Finally, we reduced the canonical representation problem for CA graphs to that for
restricted CA matrices (Theorem 4.51). These matrices capture some of the essential
features of non-uniform CA graphs. We showed that finding flip sets for RCA matrices
boils down to considering how vertices from NC(C) can be represented. The most relevant
open problem is whether Conjecture 4.55 and 4.57 hold and, if so, how to compute the
sibling and mutual dependence relations. Alternatively, one can also try to solve the
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isomorphism problem for non-uniform CA graphs using a different method than the flip
trick. In that case it seems reasonable to further explore the structure of this class.
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