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Abstract

To simulate the impacts of within-storm rainfall variabilities on fast hy-

drological processes, long precipitation time series with high temporal reso-

lution are required. Due to limited availability of observed data such time

series are typically obtained from stochastic models. However, most existing

rainfall models are limited in their ability to conserve rainfall event statis-

tics which are relevant for hydrological processes. Poisson rectangular pulse

models are widely applied to generate long time series of alternating pre-

cipitation events durations and mean intensities as well as interstorm period

durations. Multiplicative microcanonical random cascade (MRC) models are

used to disaggregate precipitation time series from coarse to fine temporal
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resolution.

To overcome the inconsistencies between the temporal structure of the

Poisson rectangular pulse model and the MRC model, we developed a new

coupling approach by introducing two modifications to the MRC model.

These modifications comprise (a) a modified cascade model (”constrained

cascade”) which preserves the event durations generated by the Poisson rect-

angular model by constraining the first and last interval of a precipitation

event to contain precipitation and (b) continuous sigmoid functions of the

multiplicative weights to consider the scale-dependency in the disaggregation

of precipitation events of different durations.

The constrained cascade model was evaluated in its ability to disaggre-

gate observed precipitation events in comparison to existing MRC models.

For that, we used a 20-year record of hourly precipitation at six stations

across Germany. The constrained cascade model showed a pronounced bet-

ter agreement with the observed data in terms of both the temporal pattern

of the precipitation time series (e.g. the dry and wet spell durations and au-

tocorrelations) and event characteristics (e.g. intra-event intermittency and

intensity fluctuation within events). The constrained cascade model also

slightly outperformed the other MRC models with respect to the intensity-

frequency relationship.

To assess the performance of the coupled Poisson rectangular pulse and

constrained cascade model, precipitation events were stochastically gener-

ated by the Poisson rectangular pulse model and then disaggregated by the
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constrained cascade model. We found that the coupled model performs sat-

isfactorily in terms of the temporal pattern of the precipitation time series,

event characteristics and the intensity-frequency relationship.

Keywords: rainfall generator, disaggregation, precipitation event,

autocorrelation, within-event variability, intra-event intermittency

1. Introduction1

Precipitation is highly variable at different temporal scales, e.g. annual,2

seasonal, and also within storms (Berndtsson and Niemczynowicz, 1988; Em-3

manuel et al., 2012; Samuel and Sivapalan, 2008) with different statistic prop-4

erties at each scale (Molini et al., 2010). Generally, precipitation time series5

can be described as sequences of precipitation events, characterized by their6

duration and intensities, which are separated by dry periods of varying du-7

rations (Bonta and Rao, 1988). Within-storm variability manifests itself by8

intensity fluctuations as well as intra-event intermittency (precipitation-free9

phases within events).10

Precipitation event characteristics and within-storm precipitation vari-11

ability are of high importance for fast hydrological processes such as in-12

terception, stemflow, surface runoff, preferential flow, erosion, and solute13

dissipation from surface soils (e.g. Dunkerley, 2014, 2012; Van Stan et al.,14

2016; McGrath et al., 2008; Nel et al., 2016; Wiekenkamp et al., 2016; Hear-15

man and Hinz, 2007). They are in turn also influencing flood generation in16

small catchments and in the urban context (Berne et al., 2004; Singh, 1997;17
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Jothityangkoon and Sivapalan, 2001; Schilling, 1991) as well as water quality18

(Adyel et al., 2017; Borris et al., 2014; Weyhenmeyer et al., 2004). Further-19

more, ecological processes are triggered by precipitation variability in short20

timescales (Huxman et al., 2004). The transformation between atmospheric21

input and hydrological and ecohydrological response is strongly non-linear22

whereby single extreme events may be of higher importance than gradual23

changes over a long time (Parmesan et al., 2000).24

The influence of sub-daily rainfall on hydrological and ecohydrological25

processes can be investigated in Monte Carlo simulations in which multiple26

realisations or long time series of sub-daily precipitation are used as inputs27

to process-based models (e.g. Ding et al., 2016; McGrath et al., 2010, 2008)28

. Multiple realisations of precipitation time series are required to assess the29

role of multi-scale rainfall variability on the exceedance probability of hy-30

drological threshold processes such as preferential flow and surface runoff31

(e.g. Struthers et al., 2007; Mandapaka et al., 2009). The results of these32

Monte Carlo simulations can furthermore be integrated in probabilistic frame-33

works for decision-making purposes (e.g. Hipsey et al., 2003). To obtain34

multiple realisations or long time series of sub-daily precipitation , stochastic35

modelling approaches have been widely employed to disaggregate observed36

precipitation time series to higher temporal resolution (e.g. Olsson, 1998)37

or to generate high temporal resolution time series directly (e.g. Haberlandt38

et al., 2008) . Among other approaches (e.g. Koutsoyiannis et al., 2003;39

Kossieris et al., 2016; Lombardo et al., 2017; Gyasi-Agyei, 2011), multiplica-40
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tive microcanonical random cascade (MRC) models have been developed and41

applied to disaggregate observed precipitation from defined coarser to higher42

temporal resolution (e.g. monthly to daily, daily to hourly and sub-hourly)43

by several authors (e.g. Licznar et al., 2011a; Thober et al., 2014; Förster44

et al., 2016; Müller and Haberlandt, 2015). Stochastic precipitation models45

need to preserve the statistical properties of precipitation consistently across46

timescales (Lombardo et al., 2012; Paschalis et al., 2014). Therefore, it is47

necessary to take into account the temporal scaling behaviour of precipita-48

tion which can be described using multifractal concepts (e.g. Schertzer and49

Lovejoy, 1987; Veneziano and Langousis, 2010). The scaling behaviour itself50

varies in space and time (e.g. Molnar and Burlando, 2008; Langousis and51

Veneziano, 2007). The description of temporal scaling furthermore depends52

on whether continuous time series or intrastorm data are used (Veneziano and53

Lepore, 2012). For reviews on this topic the reader is referred to Veneziano54

et al. (2006) and Schertzer and Lovejoy (2011).55

As the scaling behaviour of precipitation varies between temporal scales,56

consistency across timescales is aspired by coupling stochastic models for57

coarser timescales with those for finer timescales (e.g. Koutsoyiannis, 2001;58

Fatichi et al., 2011; Paschalis et al., 2014; Kossieris et al., 2016).59

The temporal resolution of precipitation time series required depends on60

the process of interest. Urban hydrology, in particular overland flow typi-61

cally requires time steps of less than 6 minutes (Berne et al., 2004). Hourly62

resolution may be sufficient for modelling flood events at the catchment scale63
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(Ding et al., 2016). In fact, Sikorska and Seibert (2018) investigated the ade-64

quate temporal resolution of rainfall for discharge modeling and showed that65

hourly precipitation resolution may be used for catchment areas as small as66

16 km2. To be applied in ecohydrological applications, precipitation mod-67

els especially need to preserve statistical precipitation properties relevant68

for hydrological and landsurface processes. Due to the non-linearity in the69

rainfall-runoff transformation, the intensity-frequency relationship of precip-70

itation is of general importance for hydrological, ecological, and landsurface71

processes (e.g. Kusumastuti et al., 2007; Fiener et al., 2013; Knapp et al.,72

2002). The temporal pattern of precipitation time series plays a major role73

for many hydrological and biogeochemical processes, e.g. the dry spell dura-74

tion influences nutrient accumulation and exports (Adyel et al., 2017). The75

temporal structure quantified by the autocorrelation in precipitation time76

series is relevant for wet and dry cycles. Intra-event intermittency is relevant77

for landsurface processes (Dunkerley, 2015; Von Ruette et al., 2014). Inten-78

sity fluctuations within events influence the partitioning between infiltration79

and surface runoff (Dunkerley, 2012) whereby higher intensities at a later80

time in the event result in a higher peak discharge (Doľsak et al., 2016).81

As pointed out by Dunkerley (2008), the conservation of event charac-82

teristics is crucial for an adequate simulation of various (eco-)hydrological83

processes. One option towards a better representation of these character-84

istics is to obtain sub-daily precipitation time series from generated events85

rather than from generated daily values. This can be realised by generating86
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alternating sequences of dry periods and precipitation events by the Poisson87

rectangular pulse models (e.g. Rodriguez-Iturbe et al., 1987; Bonta and Rao,88

1988; Bonta, 2004) and disaggregating these events to higher temporal res-89

olution by MRC models (e.g. Menabde and Sivapalan, 2000). Additionally90

it is necessary to overcome the tendency of MRC models to underestimate91

the temporal autocorrelation for small lag times reported by various studies92

(e.g. Paschalis et al., 2014; Müller, 2016; Pui et al., 2012).93

However, coupling Poisson rectangular pulse models and MRC models94

is not straightforward as the temporal structures between these models are95

inconsistent. Firstly, MRC models which are developed to downscale from a96

fixed coarser to fine temporal resolution (e.g. daily to hourly) would not con-97

serve the precipitation events generated by the Poisson model but tend to98

underestimate the event durations. Furthermore, the timescale-dependent99

probabilities of the multiplicative weights used in the MRC model can be100

parameterised by aggregation for multiples of the observed time step only.101

Menabde and Sivapalan (2000) approached these issues by applying a mod-102

ified MRC model, which does not allow for precipitation-free phases within103

events, and thus conserves event durations at the cost of not capturing intra-104

event intermittency.105

We present a new coupling approach of the Poisson rectangular pulse106

model and the MRC model for the stochastic generation of precipitation107

events and disaggregation to continuous equidistant high-frequency precipi-108

tation time series. In this approach, the MRC model is conditioned in such a109
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way that the first and the last interval of each precipitation event are forced110

to contain precipitation. This model, henceforth referred to as constrained111

cascade model, allows to both conserve event durations and consider intra-112

event intermittency. Furthermore, the time-scale dependent probabilities of113

the multiplicative weights for 1/0, 0/1 or x/(1-x)-splitting are described by114

sigmoid functions to obtain values for time steps other than multiples of the115

time step of the observed data. A comparison between different cascade ap-116

proaches to disaggregate observed precipitation events is presented at the117

example of six precipitation stations across Germany. Finally, the general118

performance of the coupled Poisson and cascade model is evaluated with119

respect to the intensity-frequency relationship, the temporal pattern of the120

entire time series, and event characteristics.121

2. Methods122

2.1. Poisson rectangular pulse model123

2.1.1. Model description124

The concept of the Poisson rectangular pulse model is based on the as-125

sumption that alternating sequences of precipitation events and interstorm126

periods can be described by a Poisson process, i.e. interstorm period du-127

rations between independent precipitation events are assumed to be expo-128

nentially distributed whereas precipitation events are considered to be of129

zero duration (Bonta and Rao, 1988). In reality, precipitation events have130

a finite duration longer than zero. Therefore, Restrepo-Posada and Ea-131

8



gleson (1982) proposed to separate precipitation records into statistically-132

independent events based on a threshold for the minimum duration of precipitation-133

free phases between two events. This threshold is called minimum dry period134

duration, dd,min, (Bonta, 2004), critical duration (Bonta and Rao, 1988), or135

minimum inter-event time (Medina-Cobo et al., 2016). Based on the min-136

imum dry period duration, continuous precipitation time series can be dis-137

cretized into sequences of statistically-independent precipitation events and138

alternating dry periods. This allows determining event durations de, mean139

event intensities ie, and dry period durations dd. The Poisson rectangular140

pulse model generates dry period durations from exponential distributions141

which are shifted by the minimum dry period duration. Event durations142

are generated from exponential distributions. To consider the negative cor-143

relation between event durations and mean event intensities, Robinson and144

Sivapalan (1997) developed an approach whereby storm duration classes are145

derived from the observed event durations and gamma distributions are fitted146

to the mean event intensities of the respective storm duration class.147

2.1.2. Model parameterisation148

To parameterise the Poisson rectangular pulse model, we firstly deter-149

mined the minimum dry period duration dd,min from precipitation records150

using the approach described by Restrepo-Posada and Eagleson (1982). At151

first, the frequencies of the lengths of consecutive dry phases in the continu-152

ous time series have been recorded in a histogram, whereby the bin width of153
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the histogram corresponds to the temporal resolution of the input data. If154

the coefficient of variation of the lengths of consecutive dry phases contained155

in the histogram is higher than one (i.e. the coefficient of variation of an156

exponential distribution), the smallest bin of the histogram is being omitted.157

This procedure is repeated subsequently until the coefficient of variation is158

smaller than one so that according to Restrepo-Posada and Eagleson (1982) a159

Poisson process can be assumed. We then discretized the observed time series160

into events and recorded the dry period durations dd between the events, the161

event durations de, and the mean event intensities ie. We fitted shifted expo-162

nential distributions for the dry period durations, exponential distributions163

for the event durations, and gamma distributions of the mean intensities for164

four event duration classes. The model parameters were not specified for165

individual seasons as they did not exhibit pronounced seasonality for the166

stations selected.167

2.2. Constrained microcanonical multiplicative cascade model to disaggregate168

events169

2.2.1. Model description170

To disaggregate the precipitation events generated by the Poisson model171

into continuous precipitation time series of high temporal resolution, we de-172

veloped a modified MRC model with a branching number of two based on the173

MRC model by Olsson (1998). In the first level of disaggregation, the total174

event volume is apportioned to the first and the second halves (boxes) of the175
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event duration. Each of these boxes is then furthermore branched into two176

parts. Branching with no precipitation in the first box and all precipitation177

being apportioned to the second box is called 0/1-splitting, branching with178

all precipitation being apportioned to the first box is called 1/0-splitting and179

branching with a fraction of the precipitation apportioned to the first box and180

the remainder to the second box is referred to as x/(1-x)-splitting. Branch-181

ing is realised through randomly assigned multiplicative weights W1 and W2182

with timescale-dependent probabilities P(0/1), P(1/0) and P(x/(1-x).183

W1,W2 =


0 and 1 with probability P(0/1)

1 and 0 with probability P(1/0)

x and (1− x) with probability P (x/(1− x)); 0 < x < 1.

To conserve event durations we modified the cascade model by Olsson184

(1998) so that the branching of the box at the beginning of the event is185

constrained to 1/0-splitting or x/(1-x)-splitting, whereas the branching of186

the box at the end of the event is constrained to 0/1-splitting or x/(1-x)-187

splitting. Position classes (starting, enclosed, ending and isolated box) as188

well as volume classes (below / above mean precipitation of the respective189

position class) are taken into account similarly to the approach by Olsson190

(1998). Following the approach by Menabde and Sivapalan (2000), we ap-191

plied breakdown coefficients to consider the timescale-dependence on the192

multiplicative weights in case of x/(1-x)-splitting. The probability density193
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functions of the breakdown coefficients were approximated by symmetrical194

beta distributions for each level of aggregation. The temporal scaling of the195

parameter a of these beta distributions is implemented by196

a(t) = a0 × t−H (1)

Whereby a(t) is the timescale-dependent parameter of the beta distribu-197

tion and a0 and H are constants estimated from the data. The timescale-198

dependent probabilities of the multiplicative weights for 0/1, 1/0, and x/(1-x)199

splitting are estimated by successive aggregation of the observed precipita-200

tion data for discrete temporal resolutions (input resolution times two to201

the power of number of aggregations). The Poisson model results in highly202

variable event durations which mostly do not correspond to the temporal203

resolutions for which the cascade model is parameterised through aggrega-204

tion. Therefore, to obtain parameters for the disaggregation of the events205

generated by the Poisson model, continuous functions of the probabilities of206

the multiplicative weights are required. These functions need to maintain207

P (0/1) + P (1/0) + P (x/(1 − x)) = 1 for all timescales, i.e. also timescales208

smaller and coarser than the input resolution times two to the power of the209

highest number of aggregations used in the parameterisation. Thus, they210

need to have asymptotes for both t → 0 and t → ∞. Thus, we calculated211

the timescale-dependent probabilities of the multiplicative weights P (t) by212
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sigmoid functions of the form213

P (t) = P∞ +
P0 − P∞

[1 + (s× t)n]1−
1
n

. (2)

With P0 and P∞ as the probabilities of the multiplicative weights for t →214

0 and t → ∞, and s and n as shape parameters of the sigmoid function.215

Using the MRC model for the disaggregation of events of different duration216

will result in very different final time steps. However, equidistant time steps217

are required for comparisons with observed data. Therefore, the disaggrega-218

tion is performed until the temporal resolution of the cascade is higher than219

the specified output resolution. Thereafter, the time step is harmonized by220

merging the time series to the specified output resolution assuming a uni-221

form transformation. The amount of precipitation of the first time step at222

the coarser resolution is determined as the sum of the volume of the first time223

step at higher resolution plus the proportion of the volume of the second time224

step at higher resolution for the fraction of time which the second time step225

at higher resolution intersects the first time step at coarser resolution and so226

on.227

2.2.2. Model parameterisation228

The MRC models was parameterised by successively aggregating the ob-229

served precipitation time series to coarser temporal resolutions; five levels of230

aggregation were used (resulting in the coarsest time step of 32 hours). The231

model parameters are not specified for individual seasons as they did not ex-232
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hibit pronounced seasonality for the stations selected, which has been shown233

in cascade model applications for Germany and also Brazil, Great Britain234

and Sweden (e.g. Müller, 2016; Güntner et al., 2001; Olsson, 1998).235

2.3. Comparison with other cascade models for disaggregating events236

To evaluate the constrained cascade model regarding its performance of237

disaggregating precipitation events, we compared it to the cascade models238

developed by Olsson (1998), henceforth referred to as C1, and by Menabde239

and Sivapalan (2000), henceforth C2. The principle of these cascade models240

is illustrated in Fig. 1 at the example of a precipitation event of 16 h duration241

and 42 mm depth (mean event intensity = 2.625 mm/h). Designed for dis-242

aggregating daily precipitation, the cascade by Olsson (1998) (C1) allows for243

1/0, 0/1 and x/(1-x) splitting in every box. The cascade model by Menabde244

and Sivapalan (2000) (C2), designed for disaggregating precipitation events,245

conserves event durations by applying x/(1-x) splitting exclusively. The con-246

strained cascade model (C3) conserves event durations and also allows for247

dry intervals within precipitation events. The model comparison is con-248

ducted based on observed precipitation events, which have been determined249

from the observed precipitation time series based on the on the minimum250

dry period duration dd,min as estimated for the respective station. We then251

disaggregated these events using the three cascade models.252
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Figure 1: Disaggregation of a 16 h precipitation event of 42 mm depth using different
cascade approaches (simplified schematics, adapted from Olsson (1998) and Müller and
Haberlandt (2018)). a) Cascade model by Olsson (1998) (C1), b) Cascade model by
Menabde and Sivapalan (2000) (C2), c) Constrained cascade developed in this study (C3).

2.4. Evaluation strategy253

The coupled Poisson and cascade model is evaluated regarding its ability254

to generate high-frequency precipitation time series with similar statistical255

characteristics as the observed data. As the coupled model is developed to256

generate precipitation time series as input for hydrological models, we chose257

evaluation criteria which are relevant for hydrological processes. As pointed258

out by Stedinger and Taylor (1982) the credibility of a stochastic model is259

enhanced if it reproduces statistics that are not used in the model param-260

eterisation. Thus, the evaluation of the coupled Poisson and MRC model261

requires criteria which can be determined from both observed and generated262

data and which are independent from assumptions of the models. To that263

end, we computed criteria which describe the intensity-frequency relationship264

and the temporal pattern of the entire time series. The intensity-frequency265

relationship was evaluated in terms of fractions of intervals within certain in-266
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tensity ranges and statistical characteristics of the intensities of wet intervals267

(mean value, median, standard deviation and skewness). To compare tem-268

poral patterns of the entire time series, we assessed the dry spell duration,269

wet spell duration and autocorrelation. The autocorrelation, which describes270

the temporal structure of the data, was evaluated by Spearman’s rank au-271

tocorrelation as precipitation intensities are not normally distributed. For272

comparability with the literature, we also computed Pearson’s autocorrela-273

tion. Both have been computed using the acf function implemented in R (R274

Core Team, 2016) applied to the ranks of the data and the data, respectively.275

Furthermore, we compared event characteristics, namely the intra-event276

intermittency and the intensity fluctuation within events, which depend on277

the Poisson model’s assumptions on independent precipitation events. The278

intra-event intermittency was computed as the dry ratio within precipitation279

events similar to the definition by Molini et al. (2001). The intensity fluc-280

tuation within events was described in terms of event profiles as suggested281

by Acreman (1990). For a standardized comparison of events of variable282

duration, we computed the fraction of precipitation in quarters of the event283

duration for events with durations of multiples of four hours only.284

The criteria against which the model is evaluated include standard statis-285

tics commonly used to assess the performance of stochastic precipitation286

models (e.g. mean intensity, standard deviation of the intensity and auto-287

correlation) (e.g. Pui et al., 2012; Onof and Wheater, 1993).288

The criteria used for model evaluation are described in Tab. 1. All criteria289
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have been calculated at hourly time step which is the highest resolution of290

the observed data.291

The general performance of the coupled model was furthermore evaluated292

with respect to return periods of hourly and daily precipitation intensities.293

Similar to the method described in Müller and Haberlandt (2018) we chose294

the highest 40 values of each observed time series and each realisation, re-295

spectively, and determined the return periods T of these values according to296

the plotting positions using equation 3 as documented in DWA-A 531 (2012):297

T =
L + 0.2

k − 0.4
× M

L
(3)

with T as the return period, L as the sample size (in our case: 40), M as298

the number of years of the observed record (in our case: 20), and k as the299

running index of the sample values from highest to lowest. We compared300

precipitation intensities for return periods of 0.5, 1, 2, 5.6 and 12.6 years for301

both hourly and daily extreme precipitation values.302

3. Data303

We used a twenty-year record (1996-2015) of hourly precipitation data at304

six stations across Germany: Cottbus, Köln-Bonn, Lindenberg, Meiningen,305

München-Flughafen and Rostock-Warnemünde (Tab. 2). Cottbus, Linden-306

berg, Meiningen and München-Flughafen are characterised by humid conti-307

nental climate (more precisely Köppen-Geiger classification Dfb) according308
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to Peel et al. (2007). Rostock-Warnemünde lies at the transition between309

oceanic climate and humid continental climate (Köppen-Geiger classification310

Cfb - Dfb) and Köln is characterised by oceanic climate (Köppen-Geiger clas-311

sification Cfb). All collecting funnels have a surface area of 200 cm2. The312

data have been collated by the German Weather Service (Deutscher Wetter-313

dienst, DWD) and have been available to the authors with a resolution of314

0.1 mm and a temporal resolution of one hour.315

4. Results316

4.1. Model parameterisation317

4.1.1. Poisson rectangular pulse model318

The minimum dry period duration dd,min which is a prerequisite to param-319

eterise the Poisson model ranges between 14 h (München-Flughafen) and 22 h320

(Rostock-Warnemünde) as shown in Tab. 3. The mean dry period duration321

dd,mean varies between 63 h (Köln-Bonn) and 75 h (Rostock-Warnemünde),322

the mean event duration de,mean varies between 17 h (München-Flughafen)323

and 24 h (Rostock-Warnemünde). The mean event intensities ie,mean amount324

to approximately 0.50 mm/h with highest values for München-Flughafen325

(0.55 mm/h) and lowest values for Meiningen and Rostock-Warnemünde326

(0.44 mm/h).327

4.1.2. Constrained cascade model328

The timescale-dependent probabilities of the multiplicative weights P (t)329

are shown in Fig. 2 for the position and volume class enclosed below of the330
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station Lindenberg. The sigmoid functions fitted through those points, which331

are necessary for disaggregating events of different durations, are shown as332

lines. Figure A.1 illustrates these sigmoid functions for all stations for the333

enclosed position class. The probabilities of the multiplicative weights of334

x/(1-x)-splitting are generally highest and decrease with timescale. They are335

higher in case of the volume class above than in the volume class below. The336

probabilities of the multiplicative weights of 0/1 and 1/0-splitting are more337

or less similar. These relationships also depend on the respective volume and338

position classes as summarized in Tab. 4. All stations show small differences339

between the respective P∞ values and similar patterns in their temporal340

scaling.341

The parameter a of the symmetrical beta distribution in case of the x/(1-342

x)-splitting generally decreases with coarser timescale. In case of the enclosed343

position class, the parameter a is higher than 1 for temporal resolutions of less344

than 8 hours (3 aggregations of hourly data), i.e. the multiplicative weights345

can be described by a unimodal beta distribution. For coarser temporal346

resolutions the parameter a is smaller than 1, so that the beta distribution is347

”U-shaped” bimodal. The scale-dependence of a is significant in case of the348

starting below, enclosed above, enclosed below, ending above, ending below349

and isolated below position and volume class (Tab. 5). All stations show350

relatively similar patterns with highest values for a for the class isolated351

below and low values for a for isolated above, starting above and ending352

above. The values of the parameter H describing the scale-dependence of the353
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Figure 2: Timescale dependent probabilities of the multiplicative weights P (t) (position
and volume class enclosed below of the station Lindenberg). Points show the probabilities
of the multiplicative weights determined by aggregating the data, lines show the fitted
sigmoid functions.

parameter a are very similar between the different stations of the respective354

position and volume class when significant relationships exist.355

4.2. Evaluation of disaggregation approaches356

To compare the different disaggregation approaches, the precipitation357

time series at the respective stations have been divided into events using358

the minimum dry period duration dd,min estimated for each station. Based359

on these discretized observed events 60 realisations each of hourly time series360

have been generated using the cascade models developed by Olsson (1998)361

(C1), by Menabde and Sivapalan (2000) (C2), and by the constrained cascade362

presented in this paper (C3). The evaluation criteria are shown in Tab. 6 for363

the Lindenberg weather station and furthermore tabulated for all stations in364
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the appendix (Tab. A.1 - A.5).365

4.2.1. Intensity-frequency relationships (entire time series)366

The observed precipitation data are characterised by a dry ratio of about367

90 %, a fraction of intervals >0 mm/h and ≤0.1 mm/h between 2.5 % (Lin-368

denberg, Rostock-Warnemünde) and 3.2 % (Meiningen), and a fraction of369

intervals >0.1 mm/h and ≤ 10 mm/h between 6.5 % (Lindenberg) and370

8.6 % (Köln-Bonn) Tab. 6,Tab. A.1). Intensities higher than 10 mm/h371

occur in 0.02 % (Lindenberg, Meiningen) to 0.04 % (Köln-Bonn, München)372

of the intervals. The mean intensity of wet intervals ranges from 0.66 mm/h373

(Meiningen) to 0.80 mm/h (München-Flughafen) with standard deviations of374

about 1.3 mm/h, skewness between 6 and 10 and median of 0.3 mm/h (Cot-375

tbus, Lindenberg, Meiningen) or 0.4 mm/h (Köln-Bonn, München-Flughafen,376

Rostock-Warnemünde) (all stations in Tab. A.2).377

Cascade model C1 results in an about 5 % higher dry ratio and 50 % less378

intervals in the range between >0 mm/h and ≤0.1 mm/h than the observed379

data for all stations, overall the relative error for the fraction of intervals ≤0.1380

mm/h amounts to approximately 3 %. The fraction of intervals >0.1 mm/h381

and ≤ 10 mm/h is underestimated by about 30 %, whereas the fraction of382

intervals >10 mm/h is overestimated by about 150 %. The intensities of wet383

intervals generated by cascade model C1 are on average 60 % higher than384

those of the observations, their standard deviation shows a relative error of385

70 %, their skewness shows a relative error of -15 % and their median is386
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approximately 40 % higher than that of the observed data.387

Cascade model C2 generates dry ratios which are approximately 15 %388

too low for all stations, whereas the fraction of intervals >0 mm/h and ≤0.1389

mm/h is 350 % too high compared with the observed data, yet the total390

fraction of intervals ≤0.1 mm/h is in good agreement with the observation391

(relative error of -3 %). The fraction of intervals >0.1 mm/h and ≤ 10 mm/h392

is overestimated by about 40 %, whereas the fraction of intervals >10 mm/h393

is underestimated by about 50 %. The intensities of wet intervals generated394

by cascade model C2 are on average 50 % too low and show a 40 % too low395

standard deviation, an 8% too high skewness and an 80 % too low median396

compared with the observations.397

Cascade model C3 preserves the dry ratio well (relative error of less than398

1 % for all stations), but overestimates the fraction of intervals between >0399

mm/h and ≤0.1 mm/h by about 20 %, all in all the fraction of intervals400

≤0.1 mm/h is in good agreement with the observations (relative error of401

less than 1 %). The fraction of intervals >0.1 mm/h and ≤ 10 mm/h is on402

average underestimated by 2 %, whereas the fraction of intervals >10 mm/h403

is overestimated by about 20 %. The intensities of wet intervals generated by404

cascade model C3 is on average 5% too low, and show an approximately 10 %405

too high standard deviation, except for the station Rostock-Warnemünde a406

too low skewness and 20 % too low median in comparison to the observed407

data.408
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4.2.2. Temporal pattern (entire time series)409

The observed time series are characterised by mean dry spell durations of410

21.3 h (Köln-Bonn) to 27.6 h (Lindenberg), the dry spell durations exhibit a411

standard deviation of approximately 50 h and a skewness between 4.3 h and412

4.9 h (all stations in the appendix Tab. A.3). The mean wet spell durations413

range from 2.6 h (Rostock-Warnemünde) to 3.0 h (München-Flughafen), their414

standard deviations is between 2.6 h and 3.5 h and their skewness between415

3.1 and 3.9.416

Cascade model C1 results in twice as long mean dry spell durations than417

the observations, its standard deviation is overestimated by approximately418

40 % and its skewness is underestimated by 40 % (averages for all stations).419

The model generates approximately 1 h or 30 % longer mean wet spell du-420

rations, the standard deviation of the wet spell duration is well preserved421

with a relative error ranging between -9 % and 15 % and the skewness is422

underestimated by about 30 %.423

Cascade model C2 generates mean dry spell durations which are almost424

three times as long as the observations on average for all stations, both their425

standard deviation and skewness are overestimated by approximately 40 %.426

The wet spell durations generated by C2 are between 5 and 9 times longer427

than the observed wet spell durations and show a standard deviation which428

is 700 % higher and a skewness which is 30 % lower compared to the observed429

wet spell durations.430

Cascade model C3 overestimates the mean dry spell durations by about431
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20 % and their standard deviation by 10 %, the skewness is underestimated432

by 10 % for all stations. The mean wet spell durations generated by this433

model are about 1 h or 30 % longer than those of the observed data, their434

standard deviation is well represented with a relative error of less than be-435

tween -5 % and 10 % and similar to the other cascade models the skewness436

is underestimated by 30 %.437

Spearman’s autocorrelation of the observed hourly precipitation time se-438

ries is 0.60 to 0.65 for a lag time of 1 h, 0.34 to 0.42 for a lag time of 3439

h, 0.19 to 0.28 for a lag time of 6 h and 0.12 to 0.20 for a lag time of 9 h440

(Tab. A.4). The lowest values occur at Rostock-Warnemünde and the high-441

est at München-Flughafen. They strictly decline in relation to these lag times442

(Fig. 3). Pearson’s autocorrelation of the observed hourly precipitation time443

series is 0.35 to 0.41 for a lag time of 1 h, 0.12 to 0.15 for a lag time of 3 h,444

0.06 to 0.09 for a lag time of 6 h and 0.04 to 0.06 for a lag time of 9 h with445

less consistencies between the stations than for Spearman’s autocorrelation.446

Cascade model C1 shows a slight overestimation of the Spearman’s rank447

autocorrelation for lag 1 h by about 15 % and an underestimation for lag448

6 h and beyond (e.g. relative error for lag 6 h on average -5 % and relative449

error for lag 9 h -20 %, for all stations see the appendix A.4). Pearson’s450

autocorrelation is preserved well for a lag time of 1 h (deviation between451

data and cascade model C1 results of less than 5 %), but underestimated for452

longer lag times (relative errors of around -20 % for a lag time of 3 h and453

-50 % for a lag time of 6 h and 9 h).454
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Cascade model C2 generally results in higher autocorrelations than the455

data (overestimation of Spearman’s rank autocorrelation by about 50 % for456

a lag time of one hour, 120 % for a lag time of 3 h, 190 % for a lag time of 6 h457

and 240 % for a lag time of 9 h, overestimation of Pearson’s autocorrelation458

by approximately 50 % for a lag time of one hour, 80 % for a lag time of 3 h,459

90 % for a lag time of 6 h and about 100 % for a lag time of 9 h).460

Cascade model C3 preserves the autocorrelation in the data well with a461

slight overestimation of both Spearman’s rank autocorrelation and Pearson’s462

autocorrelation for a lag time of 1 h by about 10 % and smaller relative463

errors for lag times up to 9 h. For longer lag times the differences between464

individual realisations are pronounced and cascade model C3 underestimates465

the autocorrelations in the data.466

The influence of the temporal sequence of dry and wet intervals on the467

autocorrelation function is shown by Spearman’s rank autocorrelation and468

Pearson’s autocorrelation for binarized time series (all values > 0 mm have469

been set to 1 mm) in Fig 4. It is evident that the autocorrelation of the470

binarised time series differs only slightly from the Spearman’s rank autocor-471

relation for time series of continuous precipitation depth shown in Fig 3.472

4.2.3. Event characteristics473

The intra-event intermittency of the observed data can be described by474

a event dry ratio with a mean value between 29 % (München-Flughafen)475

and 39 % (Rostock-Warnemünde), a standard deviation of approximately476
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29.4 %, a skewness ranging from -0.1 (Meiningen, Rostock-Warnemünde) to477

0.3 (München-Flughafen) and a median of approximately 36 % (Tab. A.5).478

To visualise intensity fluctuation within events, the partitioning of the total479

precipitation depths to quarters of the event duration is displayed in Fig. 5480

for Lindenberg and summarized in Tab. A.6 for all stations. As visible from481

the figure, the intensity fluctuations within events are very variable. On482

average, however, the partitioning to the respective quarters of the events is483

very similar for all stations, around 34 % of the precipitation occurs within484

the first quarter of the event, 20 % in the second quarter, 19 % in the third485

quarter and 20 % in the fourth quarter.486

Cascade model C1 overestimates the mean dry ratio within events by487

about 50 % and shows a 5 % higher standard deviation of the dry ratio within488

events as well as a skewness around -0.5 for all stations. The median of the489

dry ratio within events is 60 % higher than in the observed data. Cascade490

model C1 tends to distribute precipitation to the center of the event, so491

that the proportion of precipitation falling in the first and fourth quarter are492

underestimated by 30 % and 20 % respectively, whereas precipitation in the493

second and third quarter are overestimated by around 30 % each.494

Cascade model C2 results in an event dry ratio of less than 1 %, under-495

estimates the standard deviation of the event dry ratio by 80 %, results in496

a skewness of 11 and a median event dry ratio of 0 % for all stations. The497

model distributes the total event depth evenly to all the quarters within the498

event, so that the precipitation depth in the first and fourth quarter is 25 %499
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and 14 % lower, respectively, whereas the precipitation depth in the second500

and third quarter is on average 25 % and 29 % higher, respectively, than in501

the observations.502

Cascade model C3 shows an underestimation of dry intervals within503

events by around 15 % on average and of their standard deviation by about504

7 % averaged over all stations. The model generates a skewness of the event505

dry ratio of around 0.3. The median of the event dry ratio is underestimated506

by about 30 %. Cascade model C3 mimics the partitioning of the observed507

data with higher precipitation depth in the first and fourth quarter than in508

the second and third, however precipitation in the first quarter is underesti-509

mated by 10 %, whereas the relative errors for the other quarters are smaller510

than ± 5 %.511

4.3. General performance of the coupled Poisson and constrained cascade512

model513

The general model performance was evaluated by comparing statistics of514

observed precipitation time series with those of precipitation events generated515

by the Poisson rectangular pulse model and disaggregated by the constrained516

cascade model (C3). The results of the model evaluation are summarized in517

Tab. 7 at the example of the Lindenberg weather station and for all stations518

in the appendix in Tab. A.7 - Tab. A.14.519

Additional to the criteria mentioned in Tab. 1 we compared the Poisson520

model parameters obtained from the observed data (Tab. 3) with those of the521
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Figure 3: Autocorrelation of observed data and disaggregated events for the station Lin-
denberg. Upper row: Spearman’s rank autocorrelation. a) Cascade Model C1, b) Cascade
Model C2, c) Cascade Model C3. Lower row: Pearson’s autocorrelation. d) Cascade
Model C1, e) Cascade Model C2, f) Cascade Model C3

Figure 4: Autocorrelation of binarised observed data and disaggregated events for the
station Lindenberg. a) Cascade Model C1, b) Cascade Model C2, c) Cascade Model
C3 (Spearman’s rank autocorrelation is equal to Pearson’s autocorrelation for binarized
values).
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Figure 5: Partitioning of the total event depths to quarters of the event duration for the
station Lindenberg: a) first quarter, b) second quarter, c) third quarter, d) fourth quarter
for the Data, and the cascade models C1, C2 and C3. Boxplots include all events of all
realisations, cross symbols represent mean values. To calculate this metric for precipitation
events with durations of multiples of four, 396 out of the 1975 events in Lindenberg have
been considered.

generated events (Tab. A.7). The mean dry period durations of the generated522

events correspond to those of the observations, the model shows a slight523

overestimation by about 1 h (1 %). The simulated mean event durations are524

approximately 1 h longer than the observations for most stations which is525

roughly a difference of 6 %, in case of the station Lindenberg the mean event526

durations are underestimated by 2.6 h (15 %). The mean event intensities527

are underestimated by about 0.15 mm/h (25 %) for all stations. The number528

of events generated by the Poisson model is in good agreement with the529

observations with a relative error of less than 1 % (Tab. A.8).530

4.3.1. Intensity-frequency relationships (entire time series)531

The dry ratio which is approximately 90 % in the observed data on av-532

erage of all stations is slightly underestimated by the coupled Poisson and533

cascade model by 3 % on average (Tab. A.9). While the observed data534

contain about 2.7 % intervals with intensities between >0 mm/h and ≤0.1535
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mm/h, the coupled Poisson and cascade model generates around 5 % intervals536

in that range (relative error: 90 %). Altogether, the number of intervals ≤0.1537

mm/h is in good agreement between observations and the coupled model -538

the relative error is less than 1 % for all stations with a slight overestimation539

in case of Lindenberg and München-Flughafen and underestimation for the540

other stations. The fraction of intervals >0.1 mm/h and ≤ 10 mm/h is well541

represented by the model with a mean relative error between -3 % and 5 %.542

The model tends to overestimate the fraction of intervals with intensities543

more than 10 mm/h by approximately 20 % averaged over all stations. The544

mean intensities of wet intervals generated by the coupled Poisson and cas-545

cade model are averaged over all stations around 0.13 mm/h or 17 % lower546

than those of the observed data (Tab. A.10). Their standard deviations547

show a relative error of approximately 2 % and the skewness generated by548

the model is on average around 12 % lower than that of the data. The model549

underestimates the median intensity of wet intervals by around 50 %.550

The return periods of extreme hourly values are shown in Tab. A.11. The551

precipitation intensity with a return period of 0.5 years ranges between 9.9552

mm/h (Meiningen) and 12.7 mm/h (Köln-Bonn), this value is reproduced553

by the coupled model with an average relative error of 5 % whereby it is554

overestimated for all stations except for München-Flughafen. The observed555

data show precipitation intensities with a return period of 1.0 year between556

13.5 mm/h (Meiningen) and 18.1 mm/h (München-Flughafen), based on the557

medians of 60 realisations the model shows relative errors of less than ±558

30



10 % (averaged over all stations: -2 %). Observed precipitation intensities559

with a return period of 2.0 years are between 15.8 mm/h(Meiningen) and560

24.4 mm/h (München-Flughafen), the model reproduces these values with561

a relative error of on average -5 %. Precipitation intensities with a return562

period of 5.6 years and 12.6 years tend to be overestimated by the model by563

on average 5 % with stronger deviations for individual stations. Table A.12564

shows the return period of daily extreme values.565

Daily precipitation intensities with a return period of 0.5 years range from566

20.9 mm/d to 30.0 mm/d, these values are generally overestimated by the567

coupled model by on average 20 %. The model results furthermore show a568

slightly too high daily precipitation with return period of 1 year and 2 years569

for all stations (average 15 %). In terms of daily precipitation intensities570

with a return period of 5.6 years and 12.6 the model shows both positive571

and negative deviations from the observed data depending on the station.572

On average precipitation intensities with a return period of 5.6 years are573

overestimated by 7 % and precipitation intensities with a return period of 12.6574

years are underestimated by 6 %. Here, the very high observed precipitation575

intensity at Rostock-Warnemünde has to be noted.576

4.3.2. Temporal pattern (entire time series)577

The coupled Poisson and cascade model produces about 20 % longer mean578

dry spell durations (length of consecutive dry intervals) than the observed579

data, their standard deviation is well reflected by the model with a relative580

31



error of approximately -8 % and their skewness is underestimated by about581

40 % (Tab. A.13). On average, the model results in about 50 % longer582

mean wet spell durations (length of consecutive wet intervals), their standard583

deviations are around 15 % too high and their skewness around 40 % too low584

compared to the observed data.585

Both Spearman’s rank autocorrelation and Pearson’s autocorrelation are586

relatively well reproduced by the coupled Poisson and cascade model up to587

a lag time of 8 h as shown for the station Lindenberg in Fig. 6 and for all588

stations in Tab. A.14. Averaged over all stations, Spearman’s rank autocor-589

relation is overestimated by 20 % for a lag time of 1 h, 17 % for a lag time590

of 3 h and 4 h, and 8 % for a lag time of 9 hours. Pearsons’s autocorrelation591

is slightly overestimated by about 12 % for these lag times. For longer lag592

times, the autocorrelation is underestimated in case of the stations Cottbus,593

Lindenberg, Meiningen and München-Flughafen and overestimated for the594

other stations (not shown here).595

5. Discussion596

5.1. Model parameterisation597

The coupled Poisson and constrained cascade model is able to capture598

location-specific precipitation characteristics in terms of dry periods, pre-599

cipitation events, and within-event variability as all model parameters are600

directly estimated from the data. A critical aspect is the ambiguity in the def-601

inition of independent precipitation events (Acreman, 1990; Molina-Sanchis602
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Figure 6: Autocorrelation of observed data and of the coupled Poisson and cascade model
for the station Lindenberg. a) Spearman’s rank autocorrelation. b) Pearson’s autocorre-
lation.
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et al., 2016; Langousis and Veneziano, 2007). Different approaches to esti-603

mate the minimum time between independent precipitation events result in604

values ranging from few minutes to days (e.g. Restrepo-Posada and Eagleson,605

1982; Schilling, 1984; Heneker et al., 2001; Medina-Cobo et al., 2016; Djallel606

Dilmi et al., 2017). Therefore, the influence of the minimum dry period on607

the model performance requires further testing especially when considering608

sub-hourly precipitation data. The choice of the minimum dry period dura-609

tion might depend on the requirements on generated precipitation time series610

for the application of interest.611

We found pronounced scale dependence for the cascade model, both the612

probabilities of the multiplicative weights and the parameter H which ex-613

presses the scale dependence of the parameter a used in the symmetrical614

beta distribution of the weights in the x/(1-x)-splitting. The probabilities of615

(0/1)-splitting of all stations increase with scale (level of aggregation from616

fine to coarse resolution) in case of the enclosed and ending position classes,617

whereas the probabilities of (1/0)-splitting increase for the enclosed and start-618

ing position classes. Increasing probabilities of (0/1)-splitting for the ending619

position class and for (1/0)-splitting for the starting class have also been620

shown by Olsson (1998) for Swedish stations for timescales up to 34 hours and621

by McIntyre et al. (2016) for timescales up to one day. However, both Olsson622

(1998) and Güntner et al. (2001) showed scale invariance for the probabilities623

of multiplicative weights for the enclosed position class for Swedish, British624

and Brazilian stations for timescales between 1 hour and 32 hours. The625
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parameterisation of the cascade model is very similar between the different626

stations as expressed by the probabilities of the multiplicative weights (P∞627

for t =∞ and direction of change with scale) for 0/1-splitting, 1/0-splitting628

and x/(1-x)-splitting. The probabilities of the multiplicative weights at P∞629

furthermore approximately lie in the ranges derived by Güntner et al. (2001)630

and Müller (2016) for Brazilian, British and German stations for resolutions631

between 1-32 hours for the respective position and volume classes. The sig-632

moid functions allow considering the temporal scaling of the probabilities633

of multiplicative weights for different event durations. However, these func-634

tions do not ensure that the sum of the probabilities for P(0/1), P(1/0) and635

P(x/(1-x) is always 1.0, but slight deviations may occur for some disaggre-636

gation time steps.637

We found that the parameter a which describes the multiplicative weights638

in case of the x/(1-x)-splitting decreases with timescale, which is consistent639

with other studies (e.g. Licznar et al., 2011a; Molnar and Burlando, 2005;640

Rupp et al., 2009). Licznar et al. (2011a) noted that values of the parameter641

H which expresses the scale dependence of the parameter a range between642

0.45 and 0.55 for various studies considering different timescale ranges and643

climate types (e.g. 0.454 (Licznar et al., 2011a), 0.455 (Molnar and Burlando,644

2005), 0.47 (Menabde and Sivapalan, 2000), 0.478 (Rupp et al., 2009), 0.531645

(Paulson and Baxter, 2007)). These studies did not specify the parameter646

H for individual position and volume classes and thus the parameters H are647

not directly comparable to the values obtained in our study, in which both648
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position and volume classes are considered for the temporal scaling of the pa-649

rameter a. However, it has to be noted that we found H parameters ranging650

between 0.4 and 0.5 in case of the enclosed above, ending below and isolated651

below position and volume classes (all stations) and for four stations also in652

case of the enclosed below class. A similarity of disaggregation parameters653

across climatic regions has also been found by Heneker et al. (2001) for the654

Australian stations Brisbane, Melbourne and Sydney. This implies a gen-655

eral scaling behavior of precipitation and indicates that the cascade model656

parameters can be regionalised for the disaggregation of precipitation. How-657

ever, it has to be noted that Molnar and Burlando (2008) found both regional658

and seasonal differences in scaling behavior due to orographic influence and659

snowfall which would have to be considered in regionalisation approaches.660

In agreement with findings from cascade model applications for Germany,661

Brazil, Great Britain and Sweden (e.g. Müller, 2016; Güntner et al., 2001;662

Olsson, 1998) seasonality did not influence the model parameterisation of the663

stations selected. For applications of the coupled Poisson and constrained664

cascade model to regions with higher seasonal influence, the seasonal depen-665

dence of the model parameters needs to be considered as shown by Hipsey666

et al. (2003) for the Poisson model and by Molnar and Burlando (2008) for the667

MCR model. Similarly, if the model parameters exhibit decadal variations668

as reported by McIntyre et al. (2016) for Brisbane, these can be included.669

Maintaining diurnal patterns in the stochastic generation of precipitation670

time series would, however, require a modification of the model structure of671
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the Poisson model with explicit consideration of time of day and a daytime672

specific parameterisation of the cascade model.673

5.2. Evaluation of disaggregation approaches674

The constrained MRC model developed in this study to disaggregate pre-675

cipitation events combines aspects of the MRC models proposed by Olsson676

(1998) and Menabde and Sivapalan (2000) and was thus able to overcome677

inconsistencies in the temporal structure of the Poisson and MRC models.678

Differences between the time series generated by the MRC models are most679

pronounced in terms of event characteristics and consequently in terms of680

the temporal pattern of the entire time series.681

Cascade model C1 has been developed by Olsson (1998) to disaggregate682

daily precipitation and thus is not aimed at conserving precipitation events.683

The model tends to allocate precipitation to the centre of the event as 0/1-,684

1/0- and x/(1-x)-splitting are allowed irrespective of the position of an in-685

terval within an event. Thus, when applied to disaggregate precipitation686

events this model generally underestimates event durations and accordingly687

overestimates the dry ratio both within events and in the entire time series.688

On the other hand, dry spell durations are overestimated when two consec-689

utive events are shortened by this cascade model. The autocorrelation is690

underestimated by this cascade model as noticed in many studies where it691

is employed to disaggregate daily precipitation (Güntner et al., 2001; Müller692

and Haberlandt, 2018; Förster et al., 2016; Paschalis et al., 2014). This can693
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be explained by the sequence of dry and wet intervals as visible from the694

autocorrelation for binarized timeseries.695

Cascade model C2 developed by Menabde and Sivapalan (2000), which696

conserves precipitation events by accounting for x/(1-x)-splitting only, does697

not reproduce intra-event intermittency. However, intermittency is an impor-698

tant characteristic of precipitation events as the observed data show a mean699

event dry ratio of around 30 % which increases with event duration. For nu-700

merical reasons a small fraction of dry intervals within events (less than 1 %)701

is obtained when very small intensities below the smallest positive double of702

the machine (usually about 5e-324) are estimated from the x/(1-x)-splitting.703

Hence, the dry spell durations are equal to the dry period durations and the704

wet spell durations are equal to the event durations. Due to lacking intra-705

event intermittency, the dry ratio in the entire time series is underestimated706

by 15 %, while the model generates around 10 % intervals of precipitation707

intensity <0.1 mm/h. This cascade model tends to distribute precipitation708

almost uniformly among the intervals of the event. The autocorrelation in709

the precipitation time series generated by this model is higher than that of710

the observed data as all intervals within the event are considered as wet and711

as the autocorrelation is dominated by the sequence of dry and wet intervals.712

Spearman’s rank autocorrelation does not differ for the realisations as these713

are based on the same events as event durations are strictly conserved by714

this model.715

The constrained cascade model, C3, developed in this study combines the716
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characteristics of the cascade models C1 developed by Olsson (1998) which717

allows for intra-event intermittency by allowing (0/1)-, (1/0) and x/(1-x)-718

splitting, and C2 by Menabde and Sivapalan (2000) which preserves event719

durations by allowing x/(1-x)-splitting only. This is realized by constraining720

the branching of the first interval of a precipitation event to (1/0) and x/(1-721

x)-splitting and the branching of the last interval of a precipitation event to722

(0/1) and x/(1-x)-splitting at each level of disaggregation. That way, the con-723

strained cascade is able to better reproduce both intra-event intermittency724

and within-storm intensity fluctuations compared to the cascade models C1725

and C2. Accordingly, also the constrained cascade model mimics the tempo-726

ral pattern of the entire time observed time series. The autocorrelation as an727

integrative metric of the temporal pattern of the precipitation time series is728

conserved by the constrained cascade model up to approximately 6 h which729

corresponds to typical wet spell durations, i.e. the sum of the mean wet spell730

duration and the standard duration of the wet spell duration.731

The time series generated by the three cascade models furthermore differ732

with respect to intensity-frequency relationships. The cascade models C2 and733

C3 result in many intervals with very low intensities ≤ 0.1 mm/h (on average:734

C2: 54 % of all wet intervals, C3: 31 % of all wet intervals compared to 26735

% in the observations). An overestimation of the number of precipitation736

intervals with very small intensities is common to MRC models as shown by737

Molnar and Burlando (2005), Müller and Haberlandt (2018) and Garbrecht738

et al. (2017). As the dry ratio of C3 is in good agreement with the observed739
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data, this model also shows a comparably good performance in terms of740

the intensities of wet intervals (mean, standard deviation, skewness) and the741

ratio of intensities between >0.1 mm/h and ≤ 10 mm/h.742

The three cascade models used are very consistent in terms of the gener-743

ated temporal pattern, the different realisations in terms of the criteria used744

to characterize the temporal pattern of the entire time series (not shown745

here).746

5.3. General performance of the coupled Poisson and cascade model747

To assess the general performance of the coupled model in the absence748

of a standard for evaluating stochastic precipitation models we followed the749

categorization by Garbrecht et al. (2017). That means absolute values of750

relative errors between 0 to 20 % are classified as ‘adequate or good’. Ac-751

cordingly, the coupled poisson and MRC model performs adequately in terms752

of the Poisson model parameters obtained from the generated events (mean753

dry period duration, mean event duration), except for the mean event inten-754

sities which are underestimated by 25 % due to the high number of intervals755

with very low intensities. In terms of intensity-frequency relationships of the756

entire time series, the dry ratio, the total fraction of intervals ≤ 0.1 mm/h757

(including both dry intervals and intervals with very low intensities), the758

fraction of intervals ≥ 0.1 mm/h and ≤ 10 mm/h, and the fraction of inter-759

vals ≥ 10 mm/h are reproduced adequately. Compared to the disaggregation760

of observed events the coupled model further overestimates the number of761
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intervals with very low intensities >0 mm/h and ≤ 0.1 mm/h (on average:762

40 % of wet intervals compared to 31 % when disaggregating events using763

cascade model C3 and around 26 % in the observations). The generation of764

mean event intensities from Gamma distributions for storm duration classes765

results in a pronounced number of long events with low mean event inten-766

sities. When these events are disaggregated to hourly precipitation, this is767

propagated by the cascade model so that many intervals with very low inten-768

sities ≤ 0.1 mm/h are obtained. Due to the measurement accuracy, intervals769

< 0.1 mm/h can not be observed by conventional tipping bucket rain gauges.770

As shown from radar measurements by Peters and Christensen (2002) such771

small precipitation intensities do occur in reality. The measurement accu-772

racy of 0.1 mm/h in turn affects the parameterisation of the coupled model,773

according to Licznar et al. (2011b) this is especially the case for the beta774

distributions used in the x/(1-x)-splitting. The model performance of the775

intensities of wet intervals is adequate in terms of mean, standard deviation776

and skewness. The median intensity of wet intervals is underestimated due777

to the high proportion of very low intensities. While moderate precipitation778

intensities in both hourly and daily resolution are generally well reproduced779

by the coupled Poisson and constrained cascade model, the model tends to780

overestimate heavy precipitation at the hourly timescale. One reason might781

be that the relatively short precipitation records (20 years), which were used782

for the model parameterisation, do not include enough heavy precipitation783

intervals. This has been reported by Furrer and Katz (2008) as a general784
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problem of parametric weather generators. Furthermore, as pointed out by785

Ramesh et al. (2017), most stochastic precipitation models are having diffi-786

culties in reproducing extreme values at high temporal resolutions. One of787

the reasons is that relatively few intervals with high intensities are included788

in precipitation records (Garbrecht et al., 2017). As daily precipitation in-789

tensities are not considered in the model parameterisation, the model does790

not perform better at daily than at hourly scale.791

The coupled model overcomes the limitation of MRC models in terms of792

an underestimation of temporal autocorrelation for small lag times, which793

occurs in various studies (e.g. Paschalis et al., 2014; Müller and Haberlandt,794

2018). The representation of dry spell durations by the coupled model is795

adequate, whereas too long wet spell durations are generated.796

Overall, the coupled Poisson and constrained MRC model preserves the797

temporal pattern of precipitation both in terms of consecutive precipitation798

events and dry periods as well as within-storm patterns and furthermore799

daily values. Thus it fulfills the requirements set by Lombardo et al. (2012)800

and Paschalis et al. (2014) that generated precipitation time series should801

preserve the statistics of observations both at fine and coarse resolution. The802

shortcoming of the Poisson and multiplicative random cascade models of not803

being able to perform robust simulation across temporal scales as expressed804

by Paschalis et al. (2014) has been overcome by the coupled Poisson and805

constrained cascade model. This corresponds to the results by Paschalis et al.806

(2014) who showed that a good performance of rainfall models at multiple807
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scales requires multiple approaches as they found a better performance for808

coupled Poisson and cascade as well as coupled Markov chain and cascade809

models compared to the individual models respectively.810

6. Summary and Outlook811

A coupling approach between Poisson rectangular pulse and MRC models812

has been developed which overcomes the inconsistency between the temporal813

structures in these models. This has been realized by (a) a modified cascade814

approach (”constrained cascade”) which conserves event durations, and (b)815

continuous functions of the multiplicative weights to consider the timescale-816

dependency in the disaggregation of events with different durations. The817

constrained cascade model combines elements of the cascade models by Ols-818

son (1998) and Menabde and Sivapalan (2000). The advantage of the coupled819

Poisson rectangular pulse and constrained cascade model is the more realistic820

representation of the temporal pattern of precipitation time series (dry and821

wet spell durations, autocorrelation), intra-event intermittency and within-822

storm variability compared to applying the cascade models by Olsson (1998)823

and Menabde and Sivapalan (2000) to event-based precipitation.824

Even though autocorrelation is not explicitly considered in the model pa-825

rameterisation, it is mimicked well in timescales which correspond to typical826

wet spell durations. An additional improvement of the autocorrelation for827

longer time spans might be achieved by applying a resampling algorithm (e.g.828

simulated annealing, Bárdossy (1998)) to swap the events generated by the829
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Poisson model or by the application of a dyadic cascade model approach (e.g.830

Lombardo et al., 2012). The model does not explicitly consider influences831

of precipitation event durations and mean event intensities on their disag-832

gregation. However, as shown by Veneziano and Lepore (2012) within-storm833

scaling differs from scaling behaviour of the entire precipitation record. Ex-834

plicitly including within-storm scaling in the parameterisation of the MRC835

model might further improve the representation of the temporal pattern of836

the precipitation time series.837

Precipitation intensities are well reproduced in terms of moderate intensi-838

ties at both the hourly timescale and the daily timescale. The overestimation839

of the fraction of small intensities below the data accuracy of 0.1 mm could840

be eliminated by post-processing of the model results. A better representa-841

tion of heavy precipitation could be realised by using alternative distribution842

functions to generate mean event intensities and to disaggregate precipitation843

within events. In terms of mean event intensities more heavy-tailed distri-844

bution functions (such as the Levy-stable distribution used by Menabde and845

Sivapalan (2000)) or hybrid distribution functions as found advantageous by846

Furrer and Katz (2008) for daily precipitation might need to be explored.847

More realistic hourly intensities might be achieved by describing the cascade848

weights for x/(1-x)-splitting by a combined distribution such as the 3N-B849

distribution (composite of three separate normal distributions and one beta850

distribution) as shown by Licznar et al. (2011b) and Licznar et al. (2015).851

Our coupled Poisson and constrained cascade model represents a method-852

44



ological advancement towards a more realistic representation of temporal pat-853

terns in stochastic precipitation models. The model presented here can be854

used to generate synthetic time series as inputs for Monte Carlo simulations855

of processes for which an hourly resolution is sufficient, e.g. for hydrological856

processes at the catchment scale (e.g. Sikorska and Seibert, 2018). Further857

development will focus on better representing precipitation intensities at high858

temporal resolution to assess statistical properties of fast hydrological pro-859

cesses which are significantly influenced by within-storm variability.860
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Doľsak, D., Bezak, N., Šraj, M., 2016. Temporal characteristics of rainfall898

events under three climate types in Slovenia. Journal of Hydrology 541,899

1395–1405.900

Dunkerley, D., 2008. Rain event properties in nature and in rainfall sim-901

ulation experiments: A comparative review with recommendations for902

increasingly systematic study and reporting. Hydrological Processes 22,903

4415–4435.904

Dunkerley, D., 2012. Effects of rainfall intensity fluctuations on infiltration905

and runoff: Rainfall simulation on dryland soils, Fowlers Gap, Australia.906

Hydrological Processes 26, 2211–2224.907

Dunkerley, D., 2014. Stemflow on the woody parts of plants: Dependence on908

rainfall intensity and event profile from laboratory simulations. Hydrolog-909

ical Processes 28, 5469–5482.910

Dunkerley, D., 2015. Intra-event intermittency of rainfall: an analysis of the911

metrics of rain and no-rain periods. Hydrological Processes 29, 3294–3305.912

47



DWA-A 531, 2012. Starkregen in Abhängigkeit von Wiederkehrzeit und913

Dauer. Technical Report. Arbeitsblatt der DWA, Hennef.914

Emmanuel, I., Andrieu, H., Leblois, E., Flahaut, B., 2012. Temporal and915

spatial variability of rainfall at the urban hydrological scale. Journal of916

Hydrology 430-431, 162–172.917

Fatichi, S., Ivanov, V.Y., Caporali, E., 2011. Simulation of future climate918

scenarios with a weather generator. Advances in Water Resources 34, 448–919

467.920

Fiener, P., Neuhaus, P., Botschek, J., 2013. Long-term trends in rainfall921

erosivity-analysis of high resolution precipitation time series (1937-2007)922

from Western Germany. Agricultural and Forest Meteorology 171-172,923

115–123.924

Förster, K., Hanzer, F., Winter, B., Marke, T., Strasser, U., 2016. An925

open-source MEteoroLOgical observation time series DISaggregation Tool926

(MELODIST v0.1.1). Geoscientific Model Development 9, 2315–2333.927

Furrer, E.M., Katz, R.W., 2008. Improving the simulation of extreme precip-928

itation events by stochastic weather generators. Water Resources Research929

44, 1–13.930

Garbrecht, J.D., Gyawali, R., Malone, R.W., Zhang, J.C., 2017. Cascade931

Rainfall Disaggregation Application in U . S . Central Plains. Environment932

and Natural Resources Research 7, 30–43.933

48
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Figure A.1: Timescale dependent probabilities of the multiplicative weights at the example
of the enclosed position class. Upper row: volume class above. a) Cottbus, b) Köln-Bonn,
c) Lindenberg, d) Meiningen, e) München-Flughafen, f) Rostock-Warnemünde. Lower
row: volume class below. g) Cottbus, h) Köln-Bonn, i) Lindenberg, j) Meiningen, k)
München-Flughafen, l) Rostock-Warnemünde

Appendix A. Results overview for all stations1128

List of changes
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Table 1: Criteria for model evaluation
Criterion Description

Intensity-frequency relationship (entire time series)
Dry ratio (%) Number of intervals with intensity = 0 mm/h in

the time series versus total number of intervals in
the time series * 100 %

Fraction of intervals >0 mm/h and
≤0.1 mm/h (%)

Number of intervals with intensity >0 mm/h and
≤0.1 mm/h in the time series versus total number
of intervals in the time series * 100 %

Fraction of intervals >0.1 mm/h and
≤10 mm/h (%)

Number of intervals with intensity >0.1 mm/h and
≤10 mm/h in the time series versus total number
of intervals in the time series * 100 %

Fraction of intervals >10 mm/h (%) Number of intervals with intensity >10 mm/h in
the time series versus total number of intervals in
the time series * 100 %

Intensity of wet intervals (mm/h) Intensity of all intervals with intensity >0 mm/h
in the time series

Temporal pattern (entire time series)
Dry spell duration (h) Length of consecutive intervals with intensity

= 0 mm/h
Wet spell duration (h) Length of consecutive intervals with intensity

> 0 mm/h
Autocorrelation () Autocorrelation function of the precipitation

depths
Event characteristics

Event dry ratio (%) Number of intervals with intensity = 0 mm/h in
the event versus event duration * 100 %

Fraction of precipitation in quarters
of the event (%)

Precipitation depth in each quarter of the event
versus total event depth * 100 % (calculated for
event durations of multiples of four)
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Table 2: Details on the precipitation stations and climatic variables for 1996-2015

Name Altitude
(m)

Mean annual
precipitation
(mm)

Mean annual
temperature
(◦C)

Instrumentation

Cottbus 69 563 9.9 NG 200 (1996 - 2008),
OTT PLUVIO (2008 - 2015)

Köln-Bonn 92 814 10.6 NG 200 (1996 - 2004),
Joss-Tognini (2004 - 2008),
OTT PLUVIO (2008 - 2015)

Lindenberg 98 558 9.6 NG 200 (1996 - 2008),
OTT PLUVIO (2008 - 2015)

Meiningen 450 661 8.3 NG 200 (1996 - 2008),
OTT PLUVIO (2008 - 2015)

München-
Flughafen

446 758 9.1 NG 200 (1996 - 2002),
OTT PLUVIO (2002 - 2015)

Rostock-
Warnemünde

4 624 9.7 NG 200 (1996 - 2008),
OTT PLUVIO (2008 - 2015)

Table 3: Minimum dry period duration dd,min and parameters of the Poisson rectangular
pulse model: mean of the dry period durations dd,mean, mean event duration de,mean,
mean event intensity ie,mean

Station dd,min (h) dd,mean (h) de,mean (h) ie,mean

(mm/h)
Cottbus 17.8 71.1 18.5 0.47
Köln-Bonn 16.7 62.9 21.4 0.48
Lindenberg 17.4 71.4 17.3 0.50
Meiningen 16.5 66.8 21.6 0.43
München-Flughafen 14.0 65.4 16.7 0.55
Rostock-Warnemünde 21.6 74.7 23.6 0.44
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Table 4: Ranges of the probabilities of the multiplicative weights P∞ for t =∞ based on
all stations and indication of change with scale (level of aggregation from fine to coarse
scale): increase (↗), decrease (↘), no change or not consistent between stations(→).

Position and volume class 0/1-splitting 1/0-splitting x/(1-x)-splitting
starting above 0.21-0.34 (→) 0.08-0.12 (↗) 0.55-0.68 (↘)
starting below 0.49-0.58 (↘) 0.18-0.23 (↗) 0.21-0.32 (→)
enclosed above 0.09-0.15 (↗) 0.06-0.15 (↗) 0.72-0.82 (↘)
enclosed below 0.27-0.33 (↗) 0.28-0.31 (↗) 0.37-0.44 (↘)
ending above 0.07-0.14 (↗) 0.25-0.34 (→) 0.58-0.66 (↘)
ending below 0.18-0.22 (↗) 0.51-0.57 (↘) 0.22-0.29 (→)
isolated above 0.20-0.34 (→) 0.18-0.30 (→) 0.45-0.54 (→)
isolated below 0.32-0.44 (→) 0.37-0.46 (→) 0.15-0.22 (→)
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Table 5: Parameters a0 and H describing the scale dependence of the parameter a used in
the x/(1-x)-splitting and number of values for aggregation to 32 h (n32h) for the stations
Cottbus (Cb), Köln-Bonn (Kö), Lindenberg (Li), Meiningen (Me), München-Flughafen
(Mü) and Rostock-Warnemünde (Ro). Significance level of the relationships according to
the t-test: p ≤ 0.001 ***, p ≤ 0.01 **, p ≤ 0.05 *

Position and
volume class

Parameter Cb Kö Li Me Mü Ro

starting above
a0 1.3 1.1 1.2 1.2 0.9 1.2
H 0.2 *** 0.2 0.2 * 0.1 0.02 0.2 **
n32h 114 139 114 122 116 135

starting below
a0 2.8 2.4 2.8 2.4 2.6 2.5
H 0.3 * 0.3 ** 0.3 ** 0.3 * 0.4 * 0.3 **
n32h 94 143 115 115 132 114

enclosed above
a0 2.8 2.9 3.3 2.7 3.8 2.9
H 0.4 * 0.4 ** 0.5 *** 0.4 ** 0.5 *** 0.4 **
n32h 322 489 294 437 327 329

enclosed below
a0 3.3 2.7 2.9 3.3 3.2 2.6
H 0.4 ** 0.4 ** 0.3 * 0.4 ** 0.4 0.3 **
n32h 333 447 301 448 346 341

ending above
a0 1.0 0.9 1.0 1.0 1.0 1.0
H 0.2 * 0.1 ** 0.2 0.2 ** 0.1 0.2 *
n32h 124 130 122 121 118 126

ending below
a0 3.4 2.9 3.3 3.5 3.4 3.4
H 0.4 ** 0.3 ** 0.4 ** 0.3 *** 0.4 ** 0.4 **
n32h 109 105 108 123 104 124

isolated above
a0 0.8 0.6 1.0 1.0 1.0 1.0
H 0.1 -0.2 0.2 * 0.1 0.1 *** 0.1
n32h 52 35 50 41 50 49

isolated below
a0 4.9 3.5 4.3 4.7 5.1 3.9
H 0.5 ** 0.4 ** 0.4 ** 0.5 * 0.5 ** 0.4
n32h 48 27 50 45 51 37
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Table 6: Evaluation of the different cascade approaches at the example of the Lindenberg
weather station
Criterion Data C1 C2 C3

Intensity-frequency relationship (entire time series)
Dry ratio (%) 91.0 94.4 80.5 90.5
Fraction of intervals >0 mm/h and ≤0.1 mm/h (%) 2.5 1.2 10.7 3.1
Fraction of intervals >0.1 mm/h and ≤10 mm/h
(%)

6.5 4.4 8.8 6.3

Fraction of intervals >10 mm/h (%) 0.02 0.06 0.01 0.03
Mean intensity of wet intervals (mm/h) 0.70 1.12 0.32 0.67
Standard deviation of the intensity of wet intervals
(mm/h)

1.24 2.21 0.80 1.38

Skewness of the intensity of wet intervals 8.87 7.05 9.19 8.27
Median intensity of wet intervals (mm/h) 0.30 0.46 0.08 0.24

Temporal pattern (entire time series)
Mean dry spell duration (h) 27.6 56.6 71.4 33.1
Standard deviation of the dry spell duration (h) 52.8 65.9 72.6 56.6
Skewness of the dry spell duration 4.3 2.9 3.0 3.9
Mean wet spell duration (h) 2.7 3.3 17.3 3.4
Standard deviation of the wet spell duration (h) 2.8 2.8 21.2 2.8
Skewness of the wet spell duration (h) 3.3 2.2 2.1 2.3
Spearman’s rank autocorrelation, lag 1 h 0.61 0.69 0.92 0.69
Spearman’s rank autocorrelation, lag 3 h 0.36 0.37 0.80 0.39
Spearman’s rank autocorrelation, lag 6 h 0.22 0.20 0.66 0.24
Spearman’s rank autocorrelation, lag 9 h 0.16 0.11 0.54 0.16
Pearson’s autocorrelation, lag 1 h 0.35 0.35 0.55 0.38
Pearson’s autocorrelation, lag 3 h 0.12 0.10 0.25 0.14
Pearson’s autocorrelation, lag 6 h 0.06 0.03 0.14 0.07
Pearson’s autocorrelation, lag 9 h 0.04 0.01 0.08 0.04

Event characteristics
Mean event dry ratio (%) 31.9 49.1 0.5 27.1
Standard deviation of the event dry ratio (%) 29.7 31.8 5.6 27.7
Skewness of the event dry ratio 0.2 -0.5 11.3 0.5
Median of the event dry ratio (%) 33.3 56.1 0.0 22.2
Partitioning 1st quarter (%) 34.7 22.5 25.2 30.5
Partitioning 2nd quarter (%) 20.5 27.9 24.7 19.8
Partitioning 3rd quarter (%) 18.3 27.7 25.1 19.7
Partitioning 4th quarter (%) 26.6 21.9 25.1 30.0
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Table 7: Evaluation of the general model performance of the coupled Poisson and cascade
model at the example of the Lindenberg weather station

Criterion Data Coupled
Model

Poisson Model Parameters
dd,mean (h) 71.4 70.7
de,mean (h) 17.3 14.7
ie,mean (h) 0.50 0.39

Poisson Model Result
Mean number of events 1975 1968

Intensity-frequency relationship (entire time series)
Dry ratio (%) 91.0 88.8
Fraction of intervals >0 mm/h and ≤0.1 mm/h (%) 2.5 4.8
Fraction of intervals >0.1 mm/h and ≤10 mm/h (%) 6.5 6.4
Fraction of intervals >10 mm/h (%) 0.02 0.03
Mean intensity of wet intervals (mm/h) 0.70 0.57
Standard deviation of the intensity of wet intervals (mm/h) 1.24 1.23
Skewness of the intensity of wet intervals 8.87 6.70
Median intensity of wet intervals (mm/h) 0.30 0.16

Temporal pattern (entire time series)
Mean dry spell duration (h) 27.6 32.3
Standard deviation of the dry spell duration (h) 52.8 47.4
Skewness of the dry spell duration 4.3 2.6
Mean wet spell duration (h) 2.7 4.0
Standard deviation of the wet spell duration (h) 2.8 3.1
Skewness of the wet spell duration (h) 3.3 2.1
Spearman’s rank autocorrelation, lag 1 h 0.61 0.73
Spearman’s rank autocorrelation, lag 3 h 0.36 0.41
Spearman’s rank autocorrelation, lag 6 h 0.22 0.24
Spearman’s rank autocorrelation, lag 9 h 0.16 0.15
Pearson’s autocorrelation, lag 1 h 0.35 0.32
Pearson’s autocorrelation, lag 3 h 0.12 0.14
Pearson’s autocorrelation, lag 6 h 0.06 0.06
Pearson’s autocorrelation, lag 9 h 0.04 0.03
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Table A.1: Intensity-frequency relationships (entire time series): fraction of intervals
within certain intensity ranges of the data and the different cascade models

Criterion Station Data C1 C2 C3

Dry ratio (%)

Cottbus 90.7 94.2 79.3 90.1
Köln-Bonn 88.4 92.5 74.5 87.6
Lindenberg 91.0 94.4 80.5 90.5
Meiningen 88.7 93.3 75.6 88.5
München-Flughafen 89.2 93.4 79.7 89.1
Rostock-Warnemünde 90.7 93.7 76.1 89.9

Fraction of intervals
>0 mm/h and ≤ 0.1
mm/h (%)

Cottbus 2.6 1.2 11.5 3.1
Köln-Bonn 2.9 1.4 12.8 3.6
Lindenberg 2.5 1.2 10.7 3.1
Meiningen 3.2 1.4 13.6 3.7
München-Flughafen 2.6 1.3 9.8 3.3
Rostock-Warnemünde 2.5 1.4 14.0 3.3

Fraction of intervals
>0.1 mm/h and ≤ 10
mm/h (%)

Cottbus 6.6 4.5 9.1 6.5
Köln-Bonn 8.6 6.0 12.6 8.7
Lindenberg 6.5 4.4 8.8 6.3
Meiningen 7.9 5.1 10.7 7.6
München-Flughafen 8.0 5.2 10.5 7.6
Rostock-Warnemünde 6.8 4.9 9.9 6.8

Fraction of intervals
>10 mm/h (%)

Cottbus 0.03 0.06 0.02 0.03
Köln-Bonn 0.04 0.09 0.02 0.04
Lindenberg 0.02 0.06 0.01 0.03
Meiningen 0.02 0.07 0.01 0.03
München-Flughafen 0.04 0.10 0.03 0.05
Rostock-Warnemünde 0.03 0.06 0.01 0.04
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Table A.2: Intensity-frequency relationships (entire time series): intensity of wet intervals
of the data and the different cascade models
Criterion Station Data C1 C2 C3

Mean intensity of wet
intervals (mm/h)

Cottbus 0.69 1.11 0.31 0.65
Köln-Bonn 0.79 1.22 0.36 0.74
Lindenberg 0.70 1.12 0.32 0.67
Meiningen 0.66 1.11 0.30 0.65
München-Flughafen 0.80 1.30 0.42 0.78
Rostock-Warnemünde 0.76 1.11 0.29 0.70

Standard deviation of
the intensity of wet
intervals (mm/h)

Cottbus 1.28 2.20 0.79 1.36
Köln-Bonn 1.37 2.27 0.81 1.41
Lindenberg 1.24 2.21 0.80 1.38
Meiningen 1.16 2.12 0.73 1.29
München-Flughafen 1.44 2.50 0.97 1.54
Rostock-Warnemünde 1.29 2.19 0.75 1.45

Skewness of the
intensity of wet
intervals

Cottbus 9.00 7.45 10.50 8.64
Köln-Bonn 7.80 6.83 7.67 7.45
Lindenberg 8.87 7.05 9.19 8.27
Meiningen 10.20 6.24 9.05 7.40
München-Flughafen 8.32 6.28 7.58 7.00
Rostock-Warnemünde 6.0 8.26 9.13 9.53

Median intensity of
wet intervals (mm/h)

Cottbus 0.30 0.44 0.08 0.24
Köln-Bonn 0.40 0.52 0.10 0.30
Lindenberg 0.30 0.46 0.08 0.24
Meiningen 0.30 0.45 0.07 0.25
München-Flughafen 0.40 0.53 0.11 0.29
Rostock-Warnemünde 0.40 0.46 0.06 0.26
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Table A.3: Temporal pattern (entire time series): dry and wet spell durations of the data
and the different cascade models
Criterion Station Data C1 C2 C3

Mean dry spell
duration (h)

Cottbus 26.6 56.4 71.1 32.2
Köln-Bonn 21.3 47.2 62.8 26.2
Lindenberg 27.6 56.6 71.4 33.1
Meiningen 21.8 51.4 66.8 28.1
München-Flughafen 25.0 51.7 65.3 30.5
Rostock-Warnemünde 25.7 53.5 74.7 30.9

Standard deviation of
the dry spell duration
(h)

Cottbus 51.7 70.0 72.2 55.9
Köln-Bonn 43.2 61.5 63.8 47.1
Lindenberg 52.8 65.9 72.6 56.6
Meiningen 44.9 64.7 66.5 49.8
München-Flughafen 48.1 63.5 65.4 51.9
Rostock-Warnemünde 50.8 70.3 74.1 54.9

Skewness of the dry
spell duration

Cottbus 4.4 2.9 3.0 4.1
Köln-Bonn 4.9 3.0 3.1 4.4
Lindenberg 4.3 2.9 3.0 3.9
Meiningen 4.5 2.6 2.7 3.9
München-Flughafen 4.3 2.8 3.0 3.9
Rostock-Warnemünde 4.7 2.9 3.0 4.2

Mean wet spell
duration (h)

Cottbus 2.7 3.5 18.5 3.5
Köln-Bonn 2.7 3.8 21.4 4.0
Lindenberg 2.7 3.3 17.3 3.4
Meiningen 2.7 3.7 21.6 3.6
München-Flughafen 3.0 3.6 16.7 3.7
Rostock-Warnemünde 2.6 3.6 23.6 3.5

Standard deviation of
the wet spell duration
(h)

Cottbus 2.9 2.9 23.1 3.0
Köln-Bonn 2.9 3.2 26.6 3.1
Lindenberg 2.8 2.8 21.2 2.8
Meiningen 2.9 3.1 27.1 3.1
München-Flughafen 3.5 3.2 20.0 3.3
Rostock-Warnemünde 2.6 3.0 29.2 2.9

Skewness of the wet
spell duration (h)

Cottbus 3.8 2.3 2.4 2.3
Köln-Bonn 3.1 2.1 3.0 3.0
Lindenberg 3.3 2.2 2.1 2.3
Meiningen 3.3 2.1 2.5 2.3
München-Flughafen 3.9 2.3 2.3 2.3
Rostock-Warnemünde 3.4 2.2 2.3 2.2

68



Table A.4: Temporal pattern (entire time series): autocorrelation functions of the data
and the different cascade models
Lag time
(h)

Station
Spearman Pearson

Data C1 C2 C3 Data C1 C2 C3

1

Cottbus 0.61 0.69 0.92 0.68 0.38 0.40 0.53 0.42
Köln-Bonn 0.61 0.72 0.93 0.70 0.36 0.37 0.60 0.42
Lindenberg 0.61 0.69 0.92 0.69 0.35 0.35 0.55 0.38
Meiningen 0.61 0.72 0.93 0.70 0.39 0.42 0.56 0.42
München-Flughafen 0.65 0.71 0.92 0.70 0.36 0.37 0.54 0.42
Rostock-Warnemünde 0.60 0.71 0.94 0.68 0.41 0.42 0.57 0.45

3

Cottbus 0.37 0.38 0.81 0.39 0.13 0.10 0.22 0.14
Köln-Bonn 0.37 0.41 0.81 0.40 0.14 0.10 0.26 0.14
Lindenberg 0.36 0.37 0.80 0.39 0.12 0.10 0.25 0.14
Meiningen 0.39 0.41 0.82 0.42 0.14 0.11 0.24 0.14
München-Flughafen 0.42 0.41 0.79 0.43 0.15 0.11 0.27 0.16
Rostock-Warnemünde 0.34 0.40 0.84 0.38 0.14 0.11 0.25 0.14

6

Cottbus 0.23 0.21 0.67 0.22 0.06 0.03 0.14 0.07
Köln-Bonn 0.22 0.24 0.67 0.24 0.07 0.04 0.15 0.06
Lindenberg 0.22 0.20 0.66 0.24 0.06 0.03 0.14 0.07
Meiningen 0.25 0.23 0.68 0.26 0.06 0.03 0.13 0.07
München-Flughafen 0.28 0.22 0.64 0.28 0.08 0.04 0.13 0.08
Rostock-Warnemünde 0.19 0.23 0.70 0.22 0.09 0.05 0.13 0.07

9

Cottbus 0.16 0.12 0.55 0.14 0.04 0.02 0.08 0.03
Köln-Bonn 0.15 0.15 0.55 0.16 0.04 0.03 0.10 0.05
Lindenberg 0.16 0.11 0.54 0.16 0.04 0.01 0.08 0.04
Meiningen 0.18 0.14 0.57 0.17 0.04 0.02 0.09 0.04
München-Flughafen 0.20 0.13 0.51 0.18 0.06 0.02 0.08 0.05
Rostock-Warnemünde 0.12 0.15 0.60 0.15 0.04 0.03 0.09 0.06
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Table A.5: Event characteristics: event dry ratio of the data and the different cascade
models
Criterion Station Data C1 C2 C3

Mean event dry ratio
(%)

Cottbus 32.9 49.8 0.5 27.8
Köln-Bonn 34.7 51.3 0.6 29.6
Lindenberg 31.9 49.1 0.5 27.1
Meiningen 34.9 51.8 0.6 29.9
München-Flughafen 29.3 48.1 0.5 25.1
Rostock-Warnemünde 38.8 53.5 0.6 33.1

Standard deviation of
the event dry ratio (%)

Cottbus 30.3 31.8 5.7 27.9
Köln-Bonn 29.0 30.3 5.8 26.8
Lindenberg 29.7 31.8 5.6 27.7
Meiningen 28.6 31.3 5.8 27.5
München-Flughafen 27.8 30.9 5.2 25.7
Rostock-Warnemünde 31.0 30.7 6.3 28.9

Skewness of the event
dry ratio

Cottbus 0.2 -0.5 11.2 0.4
Köln-Bonn 0.0 -0.5 10.7 0.3
Lindenberg 0.2 -0.5 11.3 0.5
Meiningen -0.1 -0.6 10.6 0.3
München-Flughafen 0.3 -0.4 11.5 0.5
Rostock-Warnemünde -0.1 -0.7 10.4 0.1

Median of the event dry
ratio (%)

Cottbus 33.3 57.1 0.0 24.0
Köln-Bonn 37.9 58.9 0.0 28.6
Lindenberg 33.3 56.1 0.0 22.2
Meiningen 39.8 60.0 0.0 28.6
München-Flughafen 27.5 53.3 0.0 20.0
Rostock-Warnemünde 44.4 62.1 0.0 33.3
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Table A.6: Event characteristics: precipitation partitioning within events of the data and
the different cascade models
Station Quarter Data C1 C2 C3

Cottbus (%)
(based on 368 events)

1 34.6 22.9 25.2 30.2
2 20.5 28.2 25.0 19.5
3 19.0 27.5 24.8 20.3
4 25.9 21.5 25.0 30.0

Köln-Bonn (%)
(based on 418 events)

1 34.5 19.7 25.3 29.7
2 21.8 26.4 25.0 20.0
3 18.9 29.3 25.0 20.3
4 35.2 24.6 24.7 30.0

Lindenberg (%)
(based on 396 events)

1 34.7 22.5 25.2 30.5
2 20.5 27.9 24.7 19.8
3 18.3 27.7 25.1 19.7
4 26.6 21.9 25.1 30.0

Meiningen (%)
(based on 408 events)

1 31.8 23.5 24.9 30.0
2 20.5 28.0 25.0 19.8
3 19.3 27.1 25.1 20.0
4 28.3 21.5 25.0 30.1

München-Flughafen (%)
(based on 419 events)

1 33.5 21.8 24.8 29.9
2 18.9 28.3 25.2 19.9
3 20.3 27.9 25.0 20.2
4 27.2 21.9 25.0 30.0

Rostock-Warnemünde (%)
(based on 378 events)

1 31.9 23.2 25.2 30.3
2 18.2 28.4 25.5 19.7
3 19.9 27.0 24.8 19.6
4 29.9 21.4 24.5 30.4
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Table A.7: Parameters of the Poisson rectangular pulse model recalculated from generated
time series: Mean of the dry period durations dd,mean, mean event duration de,mean, mean
event intensity ie,mean

Station dd,mean (h) de,mean (h) ie,mean (mm/h)
Cottbus 70.3 19.6 0.33
Köln-Bonn 62.1 22.4 0.36
Lindenberg 70.7 14.7 0.39
Meiningen 66.1 22.6 0.32
München-Flughafen 64.6 17.6 0.41
Rostock-Warnemünde 73.9 24.6 0.34

Table A.8: Number of events in the observed data and generated events (average of 60
realisations)

Station Data Coupled Model
Cottbus 1956 1950
Köln-Bonn 2079 2073
Lindenberg 1975 1968
Meiningen 1976 1975
München-Flughafen 2136 2132
Rostock-Warnemünde 1776 1779
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Table A.9: Intensity-frequency relationships (entire time series): fraction of intervals
within certain intensity ranges of the data and the coupled Poisson and cascade model

Criterion Station Data Coupled Model

Dry ratio (%)

Cottbus 90.7 88.1
Köln-Bonn 88.4 85.5
Lindenberg 91.0 88.8
Meiningen 88.7 86.2
München-Flughafen 89.3 87.0
Rostock-Warnemünde 90.7 88.0

Fraction of intervals
>0 mm/h and ≤ 0.1
mm/h (%)

Cottbus 2.6 5.1
Köln-Bonn 2.9 5.5
Lindenberg 2.5 4.8
Meiningen 3.3 5.6
München-Flughafen 2.6 5.1
Rostock-Warnemünde 2.5 4.9

Fraction of intervals
>0.1 mm/h and ≤ 10
mm/h (%)

Cottbus 6.6 6.8
Köln-Bonn 8.6 9.0
Lindenberg 6.5 6.4
Meiningen 7.9 8.1
München-Flughafen 8.0 7.8
Rostock-Warnemünde 6.8 7.0

Fraction of intervals
>10 mm/h (%)

Cottbus 0.03 0.03
Köln-Bonn 0.04 0.05
Lindenberg 0.02 0.03
Meiningen 0.02 0.03
München-Flughafen 0.04 0.05
Rostock-Warnemünde 0.03 0.03
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Table A.10: Intensity-frequency relationships (entire time series): intensities of wet inter-
vals of the data and the coupled Poisson and cascade model

Criterion Station Data Coupled Model

Mean intensity of wet
intervals (mm/h)

Cottbus 0.69 0.56
Köln-Bonn 0.79 0.66
Lindenberg 0.70 0.57
Meiningen 0.66 0.57
München-Flughafen 0.80 0.69
Rostock-Warnemünde 0.76 0.60

Standard deviation of
the intensity of wet
intervals (mm/h)

Cottbus 1.28 1.25
Köln-Bonn 1.37 1.39
Lindenberg 1.24 1.23
Meiningen 1.16 1.22
München-Flughafen 1.44 1.49
Rostock-Warnemünde 1.29 1.29

Skewness of the
intensity of wet
intervals

Cottbus 9.00 7.33
Köln-Bonn 7.80 7.30
Lindenberg 8.87 6.70
Meiningen 10.20 7.52
München-Flughafen 8.32 7.32
Rostock-Warnemünde 6.0 7.08

Median intensity of
wet intervals (mm/h)

Cottbus 0.30 0.15
Köln-Bonn 0.40 0.20
Lindenberg 0.30 0.16
Meiningen 0.30 0.17
München-Flughafen 0.40 0.19
Rostock-Warnemünde 0.40 0.17

74



Table A.11: Intensity-frequency relationships (entire time series): hourly extreme precipi-
tation values based on the observations and median values of 60 realisations of the coupled
model
Return period (a) Station Data Coupled Model

0.5

Cottbus 10.6 11.1
Köln-Bonn 12.7 13.2
Lindenberg 10.3 10.6
Meiningen 9.9 11.6
München-Flughafen 13.6 13.4
Rostock-Warnemünde 11.1 11.6

1.0

Cottbus 13.7 14.1
Köln-Bonn 17.4 16.1
Lindenberg 14.3 13.4
Meiningen 13.5 14.4
München-Flughafen 18.1 17.0
Rostock-Warnemünde 14.4 14.5

2.0

Cottbus 18.7 17.4
Köln-Bonn 22.5 20.1
Lindenberg 18.9 16.4
Meiningen 15.8 17.9
München-Flughafen 24.4 20.6
Rostock-Warnemünde 16.9 17.6

5.6

Cottbus 22.9 23.2
Köln-Bonn 24.4 25.5
Lindenberg 22.8 20.6
Meiningen 20.4 23.5
München-Flughafen 29.2 26.3
Rostock-Warnemünde 19.0 23.4

12.6

Cottbus 27.0 27.1
Köln-Bonn 27.0 30.8
Lindenberg 31.1 24.0
Meiningen 28.4 27.3
München-Flughafen 32.2 32.9
Rostock-Warnemünde 21.4 28.2
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Table A.12: Intensity-frequency relationships (entire time series): daily extreme precipi-
tation values based on the observation and median values of 60 realisations of the coupled
model
Return period (a) Station Data Coupled Model

0.5

Cottbus 20.9 26.0
Köln-Bonn 25.3 31.8
Lindenberg 22.2 24.3
Meiningen 22.0 26.8
München-Flughafen 30.0 33.6
Rostock-Warnemünde 22.2 26.5

1

Cottbus 30.8 32.1
Köln-Bonn 31.7 38.7
Lindenberg 29.1 29.5
Meiningen 26.0 32.4
München-Flughafen 34.0 41.4
Rostock-Warnemünde 28.5 32.6

2

Cottbus 35.7 38.0
Köln-Bonn 38.4 46.1
Lindenberg 34.2 35.0
Meiningen 30.7 38.5
München-Flughafen 42.1 48.5
Rostock-Warnemünde 32.4 38.5

5.6

Cottbus 52.7 46.2
Köln-Bonn 47.6 57.1
Lindenberg 41.6 42.9
Meiningen 41.8 48.0
München-Flughafen 52.2 60.3
Rostock-Warnemünde 44.8 46.0

12.6

Cottbus 59.7 53.5
Köln-Bonn 68.1 66.4
Lindenberg 49.3 48.3
Meiningen 55.9 54.4
München-Flughafen 55.9 68.3
Rostock-Warnemünde 92.2 53.8
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Table A.13: Temporal pattern (entire time series): dry and wet spell durations of the data
and the coupled Poisson and cascade model

Criterion Station Data Coupled Model

Mean dry spell duration
(h)

Cottbus 26.6 31.5
Köln-Bonn 21.3 25.8
Lindenberg 27.6 32.3
Meiningen 21.8 27.5
München-Flughafen 25.0 30.6
Rostock-Warnemünde 25.7 30.3

Standard deviation of
the dry spell duration
(h)

Cottbus 51.7 46.7
Köln-Bonn 43.2 39.3
Lindenberg 52.8 47.4
Meiningen 44.9 42.5
München-Flughafen 48.1 45.1
Rostock-Warnemünde 50.8 45.8

Skewness of the dry
spell duration

Cottbus 4.4 2.6
Köln-Bonn 4.9 2.7
Lindenberg 4.3 2.6
Meiningen 4.5 2.8
München-Flughafen 4.3 2.6
Rostock-Warnemünde 4.7 2.7

Mean wet spell duration
(h)

Cottbus 2.7 4.3
Köln-Bonn 2.7 4.4
Lindenberg 2.7 4.0
Meiningen 2.7 4.3
München-Flughafen 3.0 4.6
Rostock-Warnemünde 2.6 4.1

Standard deviation of
the wet spell duration
(h)

Cottbus 2.9 3.3
Köln-Bonn 2.9 3.4
Lindenberg 2.8 3.1
Meiningen 2.9 3.5
München-Flughafen 3.5 3.6
Rostock-Warnemünde 2.6 3.1

Skewness of the wet
spell duration (h)

Cottbus 3.8 2.1
Köln-Bonn 3.1 2.1
Lindenberg 3.3 2.1
Meiningen 3.3 2.1
München-Flughafen 3.9 2.1
Rostock-Warnemünde 3.4 2.1
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Table A.14: Temporal pattern (entire time series): autocorrelation functions of the data
and the coupled Poisson and cascade model

Lag
time (h)

Station
Spearman Pearson

Data Model Data Model

1

Cottbus 0.61 0.75 0.38 0.42
Köln-Bonn 0.61 0.74 0.36 0.44
Lindenberg 0.61 0.73 0.35 0.32
Meiningen 0.61 0.74 0.39 0.44
München-Flughafen 0.65 0.75 0.36 0.47
Rostock-Warnemünde 0.60 0.73 0.41 0.46

3

Cottbus 0.37 0.44 0.13 0.16
Köln-Bonn 0.37 0.44 0.14 0.16
Lindenberg 0.36 0.41 0.12 0.14
Meiningen 0.39 0.46 0.14 0.14
München-Flughafen 0.42 0.46 0.15 0.18
Rostock-Warnemünde 0.34 0.43 0.14 0.15

6

Cottbus 0.23 0.27 0.06 0.08
Köln-Bonn 0.22 0.27 0.07 0.09
Lindenberg 0.22 0.24 0.06 0.06
Meiningen 0.25 0.29 0.06 0.08
München-Flughafen 0.28 0.29 0.08 0.09
Rostock-Warnemünde 0.19 0.26 0.09 0.07

9

Cottbus 0.16 0.18 0.04 0.05
Köln-Bonn 0.15 0.18 0.04 0.06
Lindenberg 0.16 0.15 0.04 0.03
Meiningen 0.18 0.19 0.04 0.06
München-Flughafen 0.20 0.19 0.06 0.05
Rostock-Warnemünde 0.12 0.16 0.04 0.04
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