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”It doesn’t matter how beautiful your theory is. It doesn’t matter

how smart you are. If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman, 1918 - 1988





Abstract

In conjunction with increasing computational power, numerical models gained im-

portance in virtually all engineering sciences during the last decades. Sophisticated

modeling approaches are employed to simulate the physical behavior of the inves-

tigated structures for many practical problems. However, many of these models

do not match with data measured in real-world structures to a certain degree.

These inaccuracies are often caused by parameters needed for sophisticated mod-

eling being imprecise, determined using engineering judgment or even completely

unknown. Structural systems are a particular case with many unknown parame-

ters due to varying environmental conditions, approximated loads and imprecise

knowledge of boundary conditions.

This thesis aims to modify parameterized numerical models of structural systems

automatically to increase conformity between simulation results and measured

data. This process is known as model updating from the relevant literature. The

deviation between numerical results and measured data is minimized using opti-

mization methods via modifications of parameters of the numerical model.

A further aim is to apply the same methodology to damage localization. If a model

building a good representation of measurement data is found using a first model

updating step, the methodology is applied again after a damage event to localize

these damages. This technique is useful in structural systems, where assemblies

may be inaccessible, and ongoing visual inspections are likely to be costly.

Different metrics formulated in both frequency and time domain are investigated

for their application in model updating within this text. A new scheme for the

automated adjustment of numerical models is presented, enabling a comprehen-

sive view of methods and techniques needed to perform iterative model updating.

The aim is to minimize the outcome of these metrics, which results in nonlinear

optimization problems providing several local minima. A new two-step algorithm

employing state-of-the-art optimization methods is introduced to minimize the

metrics, constituting a possible implementation of the scheme. The two steps

consist of the global optimization method Simulated Quenching and the local Se-

quential Quadratic Programming. The need for a global algorithm is demonstrated

using the concept of convexity and practical examples. Both methods can handle

constraints to keep parameters within a specific user-defined range. Since the al-
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gorithm is a random procedure, it is started multiple times. A method to employ

the objective function value to distinguish correct from wrong solutions is demon-

strated.

The distinctive metrics and their performance for updating different structures

are investigated using a study on a simulated wind turbine in operation, a model

of a three-story frame, a real scaled 34m wind turbine rotor blade and a scaled

prestressed concrete tower. Although the examples focus quite heavily on assem-

blies from wind turbines, all concepts and methods introduced in this thesis are

designed to be applied to general structural systems. A transfer of the methods

to other physical processes is conceivable, although these applications may require

different sensor settings.

The classical approach to deviation quantification between model and measure-

ment, using eigenfrequencies and mode shapes, performs good for most examples,

but it has the drawbacks that the consideration of nonlinearities in the numerical

model is not straightforward and it is not as sensitive to structural changes such

as damage. Transient analyses are needed to account for nonlinearities, yielding

time series that can be compared directly to measured data. Advantages and

disadvantages of metrics for various structures are discussed in detail.

Keywords: Model Updating, Structural Health Monitoring, Damage Localization,

Global Optimization, Local Optimization



Zusammenfassung

Durch die gestiegene Leistung moderner Rechensysteme hat die Bedeutung nu-

merischer Modelle in nahezu allen Ingenieurwissenschaften in den vergangenen

Jahrzehnten an Bedeutung gewonnen. Immer detailliertere numerische Modelle

verlangen jedoch auch nach mehr und genaueren Eingangsgrößen. Diese sind

häufig nur ungenau bekannt, durch Erfahrungswerte belegt oder gar gänzlich un-

bekannt. Die fehlende Kenntnis der Parameter ist eine mögliche Ursache für die

häufig auftretenden Diskrepanzen zwischen Simulationsergebnissen und an realen

Strukturen aufgezeichneten Messdaten. Ingenieurbauwerke stellen eines der klas-

sischen Beispiele mit vielen Unbekannten dar, verursacht durch variierende Umge-

bungsbedingungen, approximierte Lasten oder unbekannte Lagerungsbedinungen.

Übergeordnetes Ziel dieser Arbeit ist es, die Abweichungen zwischen Simulation-

sergebnissen und Messdaten durch die automatisierte Änderung von Parametern

des Simulationsmodells zu verringern. Diese Methodik ist in der einschlägigen

Literatur als Model Updating bekannt. Die Abweichungen zwischen Modell und

Messung werden mit Hilfe von Optimierungsmethoden durch Variation von Mod-

ellparametern minimiert.

Ein weiteres Ziel ist es, die gleiche Methodik auf das Problem der Schadenslokali-

sation anzuwenden. Wenn ein Modell, welches die Messdaten mit ausreichender

Genauigkeit widerspiegelt, gefunden wurde, kann die gleiche Vorgehensweise nach

einem Schaden erneut angewendet werden, um diesen zu lokalisieren. Dies ist

insbesondere bei Ingenieurbauwerken von hohem Interesse, bei denen fortlaufende

visuelle Inspektionen hohe Betriebskosten verursachen. Häufig sind strukturelle

Bauteile zudem nur sehr schlecht oder gar nicht zugänglich und können nur durch

globale Verfahren inspiziert werden.

Die Quantifizierung der Abweichung zwischen Simulationsergebnissen und Mess-

daten ist essentiell für ein erfolgreiches Model Updating. Hierfür werden in diesem

Text verschiedene Metriken im Zeit- und Frequenzbereich hinsichtlich ihres Ein-

satzes für Model Updating vorgestellt und anhand mehrerer Beispiele untersucht.

Ein neues Schema wird eingeführt, welches alle wesentlichen Methoden, die für

Model Updating benötigt werden, gruppiert und in ein Ablaufschema integriert.

Ein neuer Zweischrittalgorithmus wird eingeführt um die Metriken zu minimieren.

Dieser stellt eine mögliche Realisierung des Schemas dar und besteht aus einer
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Kombination der globalen Optimierungsmethode Simulated Quenching und dem

lokalen sequentiellen quadratischen Programmieren. Indizien für den Bedarf eines

globalen Optimierungsalgorithmus werden vorgestellt. Beide Optimierungsmeth-

oden beinhalten die Möglichkeit, Nebenbedingungen zu berücksichtigen. Diese

werden benötigt, um die Parameter innerhalb eines bestimmten Bereiches zu re-

stringieren. Es wird gezeigt, wie der Zielfunktionswert für eine Unterscheidung

von falschen und korrekten Lösungen genutzt werden kann.

Die verschiedenen Metriken und ihre Möglichkeit zum Einsatz in der Anpassung

von Modellen wird mit Hilfe verschiedener Strukturen untersucht. Diese beinhalten

eine (numerische) Windenergieanlage im Betrieb, ein Modell eines Dreigeschoss-

rahmens, ein 34m langes Rotorblatt einer Windenergieanlage und einen skalierten

vorgespannten Turm aus Beton. Obwohl die hier vorgestellten Anwendungsfälle

Strukturen aus dem Bereich Windenergie in den Vordergrund stellen, sind alle

vorgestellten Konzepte und Methoden auf allgemeine strukturdynamische Systeme

übertragbar. Auch die Übertragung auf andere physikalische Prozesse ist denkbar.

Der klassische Ansatz zum Vergleich von Modellergebnissen und Messdaten, Eigen-

frequenzen und Eigenvektoren, liefert gute Ergebnisse für die meisten Strukturen.

Dieser Ansatz hat jedoch den Nachteil, dass Nichtlinearitäten im Modell nicht ohne

Weiteres berücksichtigt werden können. Transiente Analysen sind erforderlich, um

diese numerisch eingehend zu untersuchen. Die so erzeugten Zeitreihen können di-

rekt mit Messdaten verglichen werden. Vor- und Nachteile verschiedener Metriken

für verschiedene Anwendungsszenarien werden detailliert betrachtet.

Schlagworte: Model Updating, Structural Health Monitoring, Schadenslokalisa-

tion, Globale Optimierung, Lokale Optimierung
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1. Introduction

1.1. Motivation

Numerical models are key technologies in many engineering applications. They

assist the executive engineers in design decisions and comprise more accurate rep-

resentations of physical systems than calculations by hand can do. The better

representations aid designers especially in complex systems, resulting in better

designs and advanced product development. Furthermore, these models allow a

deeper understanding of the underlying physics and cost savings during develop-

ment processes through virtual prototyping.

However, numerical models usually return results that differ from those measured

in real structures. Considering these discrepancies as errors caused by uncertain-

ties in both measurement and simulation allows a classification. According to [85],

uncertainties in computer models can be categorized into six classes: Parameter

uncertainty is the first category, regarded as one of the most important uncer-

tainties [55]. It encloses uncertain inputs to the computer code, such as unknown

parameters of the model. Examples of parameter uncertainties in structural dy-

namics are given in Figure 1.1. Model inadequacy contains the inability of mod-

els to reflect the real physical behavior, even if all input parameters are known,

caused by lack of knowledge of the underlying physics of the investigated problem.

Residual variability describes the variability of processes that may be inherently

unpredictable and stochastic and therefore hard to predict. Parametric variability

is present, if parameters cannot be expressed deterministically, adding additional

uncertainty to the model. The observation error includes all errors obtained during

observations or measurements of an investigated structure. Also, all errors caused

by interpretation and post-processing of measurement data are included. The last

class is code uncertainty, containing all possible errors concerning implementations

of computer code used to solve numerical models.

The improvement of a numerical model using incomplete and possibly imprecise

measurement data is the central goal in model updating [55]. It is a technique fo-

cusing on parameter uncertainty and parametric variability, leaving all remaining

uncertainties untouched. Hence, the executive engineers are responsible for taking
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1. Introduction

care of these uncertainties. Code uncertainties can be regarded as relatively small,

especially if commercial tools with a broad user community are used. Residual

variabilities are hard to predict. Their handling is cumbersome, especially regard-

ing iterative environments such as model updating. Thus, these uncertainties are

omitted within this context. When comparing measurement data and results from

numerical models, the measurements are assumed to be ’the truth’ [102], reduc-

ing the observation error to zero. This results in the need for highest attention

during the realization and execution of measurement campaigns or experiments.

Furthermore, post-processing of the measurement data must be done attentively

in order not to produce wrong measurement results. Model inadequacy is another

uncertainty being heavily influenced by the engineers. If a model is not able to

mirror the physical behavior of the investigated system or if wrong initial parame-

ters are chosen, no model updating algorithm can estimate parameters that fit the

responses of the model to measured data.

Soil-structure
interaction [71]

Node
stiffnesses [37]

Transitions between
sub-assemblies [124]

Manufacturing
uncertainty [138]

Wind
loads [61]

Wave
loads [145]

Figure 1.1.: Parameter uncertainties in structural models by the example of an offshore
wind turbine
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1.2. State of the art

Because of its potential to reduce the important parametric uncertainties, model

updating is of high interest in numerical modeling. Due to their size and com-

plexity, structural systems immanently contain many unknowns that cannot be

determined directly. Accurate models of these large structures are important to

correctly estimate the fatigue behavior of sensitive infrastructure such as bridges,

skyscrapers or offshore structures, among others.

If a model displaying a good representation of the measured data is identified us-

ing model updating techniques, the same methodology can be applied throughout

the lifespan of this structure in monitoring systems that examine the structural

state. Operation and maintenance of these big systems cause severe costs for the

operators throughout the service life of these constructions. Visual inspections of

the structures are time-consuming, costly and sometimes dangerous for the service

staff. Monitoring systems can replace the human supervision by automated online

systems using different sensors placed among the structure. Furthermore, due to

real-time monitoring instead of fixed maintenance intervals, damages are supposed

to be identified at an early stage, reducing repair costs. Model updating can de-

liver an important input to such a monitoring system to localize damages within

the investigated structures.

The following sections give an overview on both the general and the structural

health monitoring application of model updating and introduce state of the art

ideas and technologies in a literature review.

1.2. State of the art

Originating from the application in space structures in the early and mid 1980s [13],

model updating techniques are being investigated during the last decades [119,120].

Beginning in the early 1990s, the methods were increasingly applied to other struc-

tural systems such as civil engineering [160] and aerospace structures [112]. Avail-

able methods can be categorized by direct and indirect methods, the former being

evolved before the latter due to lacking computational power in that period [118].

Direct methods try to solve the model updating problem using an analytical ap-

proach, e.g., solving an equation system with the system matrices incorporated

directly in the formulation. The first application of a direct method is described

in [12]. Direct methods are missing flexibility, having the disadvantage that the un-

derlying models cannot be parameterized [55]. Every entity of a model is variable

instead, and there is no control over the magnitude of the entities. A simultane-

ous updating of mass and stiffness matrices is not possible using these approaches.

Furthermore, positive definiteness of matrices is not guaranteed, and interpretation

of results may be impossible since the numerical models must be reduced to the

3



1. Introduction

dimension of measured systems. This leads to possible unphysical solutions during

the updating process. Increasing computational power allowed the application of

iterative methods for model updating, resolving some of the major drawbacks of

direct methods.

1.2.1. Model updating fundamentals

There are two different branches of model updating known in the literature. These

are known as deterministic and probabilistic model updating. In deterministic

model updating, a minimization problem is solved using advanced optimization

methods, whereas probabilistic model updating is mostly based on Bayesian prob-

ability formulations1. This section explains both branches and the basic ideas.

This fundamental classification is followed by the ingredients needed for determin-

istic model updating: the processing of measurement data, methods to compare

measurement and simulation data and the optimization algorithms needed to mini-

mize the objective function formulated using a certain comparison metric [53]. The

section is closed by an overview of applications to different structural systems.

Deterministic model updating

Increasing computational power allows implementing iterative methods, resolving

the missing flexibility of direct methods. These iterative methods are classified by

the data basis being employed for the application [55], modal, frequency and time

domain data, with modal data being the ’classical’ approach to model updating.

Modal properties inherit the advantage that their computation is typically done

without loads acting on the structure. Therefore, this often complex estimation

usually simulated by complex numerical tools can be omitted. Besides, damping

plays a minor role in low damped systems and may be neglected if only modal

properties are considered [111]. The sensitivity of all modal parameters to struc-

tural changes is proven in [101].

Because measured data and results from numerical models are compared in model

updating, the measured data must be preprocessed accordingly. The extraction

of modal properties using operational modal analysis methods is a particular ac-

tive research area with ongoing research efforts [23]. Results of modal analyses

are commonly ordered by the magnitude of their eigenvalues. A distinct alloca-

tion of measured and simulated eigenmodes is achieved using the modal assurance

criterion [3]. The modal assurance criterion provides information on the orthogo-

1In the end, this also results in the need to solve an optimization problem
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nality of eigenvectors. A value of 1 indicates linear dependency, whereas a value

of 0 indicates independence of vectors. Because uncertainties are present in every

measurement, a value > 0.8 is accepted as a good correlation of two considered

eigenvectors [95]. It may be used as an indicator of damages [149]. In model up-

dating, the modal assurance criterion is often employed to correlate eigenmodes

from measurement and simulation. In addition to the assignment of eigenmodes,

eigenvectors may be differently scaled and out of phase. This is resolved using the

modal scale factor [39], leaving orthogonality properties unaffected.

Due to space and cost limitations, eigenvectors identified from measured data have

a lower dimension than eigenvectors from numerical models since only a certain

number of sensors can be placed on the structure. The easiest way to deal with

this is to define nodes of the numerical model at the same location of sensors

installed on the structure and reduce the simulated eigenvectors to these nodes.

In addition to this rather simple approach, two ways to modify the vectors are

known [10]. Firstly, an expansion of the measured eigenvectors to the dimension

of the simulation model and secondly, a reduction of the simulated eigenvectors to

the dimension of the measured vectors. For the expansion of identified eigenvec-

tors both vector space enhancement methods and minimization methods that use

system matrices are known from the literature. The latter are classified to be more

robust, but numerically more costly in [8]. Several methods for the reduction of

simulated eigenvectors are known. [11] concludes that the system equivalent reduc-

tion expansion process is suitable in model updating applications because modal

properties are nearly unbiased with this procedure [83].

After preprocessing of measurement data and model expansion or reduction is

done, an objective function is formulated. This objective function is a metric,

quantifying the deviation between numerical model and measured data [122]. It

may be formulated using modal quantities such as eigenfrequencies or mode shapes,

frequency domain or time domain data. The associated numerical model is param-

eterized, an important step with high influence on the results of the optimization

that needs engineering judgment [55]. Any algorithm will only be able to estimate

correct parameters if the correct parameters are selected to be treated as variable

by the optimization algorithm [56]. In case a constrained optimization algorithm

is chosen, constraints may be defined that ensure the parameters or combinations

of them to stay within the defined bounds [92].
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Probabilistic model updating

Another approach to parameter identification in numerical models is to use prob-

abilistic methods that do not return deterministic values for the parameters but

statistic parameters. These Bayesian approaches [16], which are based on Bayes’

theorem [14], modify probability density functions of model parameters consider-

ing both the information contained in the data and uncertainties resulting from

inaccurate measurements and model predictions [154] (which can also be identi-

fied as modeling error) instead of updating the parameters directly. In addition

to all information needed for deterministic model updating, these methods require

probability distributions for the parameters that may be hard to estimate [100] or

described by simplified statistical models that do not represent the real probabili-

ties of parameters. The probability density function is received from measurement

results and depicts the probability of the model parameters without referring to

any observed information than the measured data, which may be influenced by

various effects. This is problematic because one correct prior2 probability den-

sity function does not exist, and the decision on it is subjective. However, the

prior probability density function influences the results significantly, because the

optimum parameters are determined using these statistical meta-models. Further-

more, these functions are conventionally assumed to be uncorrelated zero-mean

Gaussian distributions, having the advantage of improved computational times

but being inaccurate in most application examples [155]. The estimation of the

parameters can be based on the least-squares approach [33], where the estimator

is developed using posterior probability density functions. The parameters with

the least variance are assumed to inherit the highest probability [111]. Again, the

estimated and the measured parameters are assumed to be independent. In [51]

the least-squares approach is expanded with particular weighting matrices and

no assumption of independence to the minimum variance approach, which is a

more realistic approach accounting for cross-correlation. The posterior probability

density function is the product of the prior probability density function and the

likelihood function [33], which is identical to the prior probability function for a

fixed observed data set [155]. Other common estimator techniques are the Monte

Carlo algorithm [106] and its further developments, e.g. Markov Chain Monte

Carlo [4] and Transitional Markov Chain Monte Carlo [116], the Laplace method

of asymptotic approximation [16], the Kalman filter [7], the Gibbs sampler [17]

and the Kriging predictor [87].

Probabilistic model updating is applied to a broad spectrum of structures, in-

2The term prior is used in Bayesian statistics and expresses the beliefs of a user before
evidence is taken into account.
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cluding bridges [17] and multi-story structures [30], but applications to real-scale

structures are rarely seen in the literature. In [113] it is concluded, that both de-

terministic and probabilistic approaches perform well for parameter identification.

Both methods strongly depend on engineering judgment, while the probabilistic

approach needs even more input to estimate the probability distribution. This

statement is confirmed by [133]. Therefore, the approaches and methods discussed

within this thesis address the deterministic approach of model updating.

Feature extraction from measurement data

Preprocessing of measurement data is essential for model updating. In this the-

sis, preprocessing includes all steps needed to adapt measured data to be able

to evaluate the metrics chosen for comparison of measured and simulated data.

Special methods are employed if the metric is formulated in the modal domain.

The response of a dynamic system that can be described by its modal properties

is a result of the excitation and its mechanical properties [60]. The excitation is

often complex and unknown in civil engineering structures [144, 166], resulting in

the need for output-only methods that do not require the system input to extract

features from measurement data.

Modal properties are regarded as the ’classical approach’ to model updating. The

methods used for extraction of modal parameters are classified in frequency and

time domain methods. Due to the high number of methods in this area [98, 121],

only the basic ideas are introduced here. The most basic approach is to transfer

a measured signal to the frequency domain using Fourier transform and visually

pick the characteristic peaks of the frequency signal. This method is referred to

as basic frequency domain method or ’peak-picking’ [40]. Peaks in the frequency

signal can be interpreted as eigenfrequencies of the structure. The main disadvan-

tage of the method is the user dependency caused by the manual picking of peaks.

A method closely related to the peak-picking method is the frequency domain de-

composition. This method uses the singular value decomposition to construct a

series of single degree of freedom systems, each correlating with an eigenmode of

the structure [24]. In addition to the eigenfrequencies, mode shapes are additional

results of this method. Damping is estimated using the enhanced frequency do-

main decomposition [75].

Autoregressive models are time domain methods for the extraction of modal prop-

erties. Originating from financial mathematics [21], these methods were later ap-

plied to structural dynamics [22,139]. Vector autoregressive models allow process-

ing all measured time series at the same time [66]. Stochastic Subspace Identifica-

tion is another class of time domain methods [129]. It is based on the state-space
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formulation of a fictitious system [69] being constructed using eigensystem realiza-

tion algorithm to be able to reproduce the measured responses [82]. White noise is

applied to this system to excite all eigenmodes of the system simultaneously. The

eigenmodes of the structure are obtained via modal transformation of the system

equations, often containing many more modes than the real structure has. Hence,

powerful methods are needed to distinguish real eigenmodes from mathematical

ones [68]. If model updating is performed based on data in frequency or time

domain, the signals are processed using standard methods known from system

identification and structural dynamics.

Comparison of measurement data and numerical model

After data cleansing and preprocessing are implemented, the data extracted from

measurements and results from numerical models are compared to quantify the

deviation between measurement and model [123]. Eigenfrequencies are the most

basic property to compare measurement data and numerical model [55], having the

advantage that both the simulation as well as their identification from measure-

ment data is quite easy. On the other hand, eigenfrequencies are not very sensitive

to changes in the structural dynamics [42]. Hence, many authors try to incorporate

the eigenvectors to model updating. There are numerous techniques to compare

eigenvectors. The basic ones are a comparison of the vectors using the modal as-

surance criterion [3], curvatures of eigenvectors [130], modal strain energies [97]

and direct comparison approaches [146]. Eigenfrequencies are employed to update

numerical models in [66], whereas [77] uses eigenvectors. A hybrid implementation

is investigated in [111]. Because eigenfrequencies can often be measured more pre-

cisely, they are usually weighted higher in objective functions [96]. [130] uses the

curvatures of eigenvectors to update numerical models, whereas [101] investigates

damping terms for model updating.

Quite recently, authors started to use frequency response functions as a basis for

model-to-measurement comparison [59, 152, 156]. Others use the poles identified

from transmissibility functions for model updating [158] or other, more general

approaches formulated in frequency domain [92]. However, the use of modal prop-

erties for model updating purposes is still an area of active research [127, 159].

The comparison of model and measurement in the time domain is not used very

often. Usually these data are compared employing the l2-norm [58, 76, 146]. A

direct comparison of time series enables to include nonlinearities and contains all

physical effects such as damping. However, the approach has the major draw-

back that more sophisticated modeling approaches that include all physical effects

that influence the dynamic behavior is necessary. Additional modeling of loads is
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necessary in particular. This modeling is often non-trivial in structural systems.

Optimization algorithms

Sophisticated optimization algorithms are needed to minimize the objective func-

tion being formulated using the metrics mentioned in the previous section. Opti-

mization problems are hard to solve if they provide the attributes [9]

• high number of dimensions

• many local minima

• strongly nonlinear

• low smoothness levels

• noise

• discreteness of optimization parameters.

Problems arising in model updating applications inherit all points except discrete-

ness [52]. Obviously, the shape of the objective function is directly influenced

by the choice of metrics. Especially the smoothness level, which is fundamental

for many optimization methods, may be raised by skilled choices of comparison

metrics. A global optimization algorithm is needed to account for the fact that

the arising problems provide many local minima. Global optimization algorithms

are classified into deterministic and heuristic algorithms. Deterministic algorithms

are suited better for problems having a low number of dimensions [169]. There-

fore, heuristic methods are favored when it comes to bigger problems. Many of

these methods are inspired by processes arising in nature and can be applied to

many different problems. Thus, these algorithms are often referred to as meta-

heuristics [6]. The most famous metaheuristics imitate the behavior of a swarm of

birds, namely the Particle Swarm Optimization algorithm [84], or the evolutionary

process of a population, namely Genetic Algorithms [107]. Both are applied in

model updating [20, 74]. especially Genetic Algorithms are used in various model

updating approaches, for both general model updating [131] and damage detec-

tion [73,104,136].

Simulated Annealing is another metaheuristic algorithm, based on the Metropo-

lis algorithm that uses Boltzmann-statistics to simulate a thermodynamic system,

resulting in a Markov-Chain-Monte-Carlo procedure [114]. Simulated Annealing

implements the soft annealing of metals known from metallurgy. The crystal struc-

ture of metals is dissolved if they are heated above a certain temperature, enabling

the removal of defects in the material. Residual stresses in the material can be cir-

cumvented by soft annealing of the metal, allowing the particles to arrange in the
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crystal lattice in a state of minimal energy. Simulated Annealing tries to imitate

this manner. At a certain temperature, particles can be either in the crystal lattice

or the liquid phase. The probability of being in one of the phases is dependent on

the Boltzmann-probability which is controlled by the temperature.

Transferred to optimization, this means that better solutions are always accepted

whereas worse solutions are accepted depending on the Boltzmann-probability.

Solutions are generated randomly, and the associated objective function value is

interpreted as their energy. The slowly decreased surrounding temperature is rep-

resented by a decreasing probability to accept worse solutions. On the one hand,

this allows leaving local minima, on the other hand approaching towards an opti-

mum is secured in the final phase. The algorithm was applied to many different

problems, especially in the chip-industry for an optimal arrangement of chip com-

ponents [141] and the solution of the famous traveling-salesman-problem [38].

The method has some specific advantages compared to other metaheuristics. It

is relatively easy to implement and is transferable to many optimization problems

with small effort [86]. The consideration of arbitrary constraints is easy (see Sec-

tion 2.3.1). It can be proven that Simulated Annealing always converges towards

the global solution3 [64, 140]. Furthermore, Simulated Annealing is suitable for

parallelization [175]. The authors of [86] conclude that solutions can be approxi-

mated relatively fast with Simulated Annealing, whereas high effort is needed to

converge towards the exact global optimum.

Simulated Quenching is an enhancement of Simulated Annealing attempting to

reach a faster Annealing time leading to lower computational times [164]. The

main disadvantage of this enhanced method is lower security to converge towards

the global optimum. Thus, Simulated Quenching can be seen as a compromise

between reliability of finding the correct solution and computational efficiency.

Quantum Annealing is another enhancement of Simulated Annealing, character-

ized by allowing quantum jumps known from quantum dynamics between local

optima [46], avoiding to take the long way over a local maximum to reach the next

minimum. These methods are regarded to be applicable to quantum computers.

The slow convergence of metaheuristic procedures towards an optimum can be

circumvented by aborting the algorithm at a certain point and starting a local

optimization algorithm instead. Most metaheuristics require input values that de-

fine how long an algorithm is running before being started. These values must

be chosen depending on the problem. The local algorithm is then started after

the termination of the metaheuristic. This local algorithm must be nonlinear and

able to handle constraints to prevent the parameters from being outside feasible

3An infinite starting temperature is needed to guarantee to find the global optimum for
arbitrary objective functions, which would cause infinite computing times.
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regions.

Optimization methods that use derivatives are known to converge a lot faster [48].

Several local optimization algorithms have been employed for model updating since

the early research initiatives in this area, often without a previous global optimizer

and even more often unconstrained. In [110], an optimal gradient method is used

for model updating, whereas Newton-Raphson algorithms are used in [72] and [66].

Quadratic Programming is employed for model updating in [78]. A least squares

approach is investigated in [152], enhanced to nonlinear least squares in [159] and

newton least squares in [127]. In [162], [161] and [9] local minimization methods

are coupled in order to approximate a global optimum.

Newton-methods are the biggest class of algorithms using information of both the

first and second derivatives. If the Hessian of the objective function cannot be

determined analytically, this matrix can be approximated using finite differences.

This numerically expensive evaluation is often circumvented using an approximated

Hessian, resulting in the subclass of Quasi-Newton methods. The BFGS-method is

a well documented and approved method to approximate the Hessian iteratively4.

Sequential Quadratic Programming methods are regarded as the most successful

and effective Quasi-Newton class of methods for the solution of local, constrained,

nonlinear optimization problems [18]. These methods approximate a complex op-

timization problem by a series of quadratic programming problems and solve the

problem iteratively. There are many variants, the most renowned implementations

are given in [62] and [126]. Sequential Quadratic Programming methods are char-

acterized by specifically high stability even for badly scaled problems with little

computing time. They need fewer evaluations of the objective function than most

other Quasi-Newton methods [48], which is of high interest in model updating

where every evaluation of the objective function includes a solution of the finite

element model. Sequential Quadratic Programming is used for model updating

in [79] and [146].

Model updating in structural systems

Besides space, aircraft and mechanical engineering structures, civil engineering

structures are one of the classical fields of application for model updating tech-

niques [36]. Multi-story buildings provide an example widely used for model updat-

ing. These frame structures can often be modeled by simple spring-mass-damper

systems. Therefore, frame structures have become one of the most studied exam-

4BFGS is named after its inventors R. Broyden [26], C. G. Fletcher [47], D. Goldfarb [63],
and F. Shanno [153], who developed and published the method nearly simultaneously in
1970.
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ples for the investigation of dynamic structural systems. Model updating to such a

frame structure is applied in [25], where, besides other examples, a one-story frame

is successfully updated using sensitivity methods. The authors of [2] investigate the

application of regularization methods for model updating using a frame structure,

whereas modal properties are used to update a reinforced concrete frame in [41].

In [94], a numerical model of a seven-story frame is investigated and updated using

measurements from an experimental structure. Models of more general buildings

are updated in [49] and [50], including a historic tower and a university building.

Bridges are another classical application for model updating in structural systems

with a lot of active research. The authors of [162] investigate model updating for

a highway bridge using several, coupled local minimization runs to account for the

problem having several minima. In [44], a short-span railway bridge is updated

using train-load induced displacement measurements employing the Nelder-Mead

Simplex method for updating, whereas the Gauss-Newton method is used to up-

date a model of a 47m long three-span steel-bridge excited by a shaker in [59].

A Bayesian framework is employed in [115] including a series of linear optimiza-

tion problems to update a numerical model of a truss-bridge with 118m spans. A

59.5m long cable-stayed pedestrian bridge is updated based on modal properties

in [151], employing particle swarm optimization in combination with a sequential

niche technique [15] for optimization.

A relatively new field for model updating is wind energy, which gains importance

due to the increasing need for renewable energies. A model of a wind turbine is

updated in [74], aiming at service life estimation of the wind turbine. The authors

use modal properties and genetic algorithms to update the model. A section of a

wind turbine blade is updated in [99] based on modal properties using response

surfaces, whereas model updating for horizontal axis wind turbines using a prob-

ability framework is investigated in [165]. Simulated Annealing is applied to a

numerical model of a wind turbine in [148], whereas Simulated Quenching is used

in [147].

1.2.2. Structural health monitoring

Monitoring systems for structures are subdivided in condition monitoring and

structural health monitoring systems. Condition monitoring is regarded as a spe-

cialized area of structural health monitoring focusing on electrical systems and

(rotating) machinery such as gears and bearings, whereas structural health mon-

itoring addresses the investigation of a structure through parameters indicative

of the state of the structure [5], focusing on the load bearing assemblies. Both

condition monitoring and structural health monitoring may be applied to different
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1.2. State of the art

assemblies of the same structure5 [67]. The following section gives an overview

of structural health monitoring, the basic concepts and the application of model

updating for structural health monitoring in civil structures.

Fundamentals of structural health monitoring

Structural Health Monitoring systems consist out of two components: sensing

equipment and algorithms for analysis and interpretation of measurement data [31].

The number, sort, and positions of sensors are affected by the available measure-

ment equipment as well as the algorithms. According to Rytter [142], the different

approaches for data analysis can be grouped into four levels:

Level I: Damage detection

Level II: Damage localization

Level III: Damage quantification

Level IV: Prediction of the remaining service life

The first level, damage detection comprises methods aimed to detect whether dam-

age is present in a structure or not. Damage localization moves on to the next

level, giving information on the location of damages, which is of high interest in

big structures with areas that may not be checked visually. The following level

tries to estimate the severity of the damage. Based on this information, level IV

aims to predict the influence of the damage on the serviceability of the structure,

often especially regarding fatigue behavior. A higher level leads to higher com-

plexity of the underlying analysis. Also, each level should be managed before the

next level is concerned [171]. Some authors introduce an additional level ’damage

type’ between II and III [57, 171]. Others propose a fifth level for active, self-

healing structures [28]. The underlying principle is an active structure that reacts

on damages using piezo-elements to avoid expansion. This stage is restricted to

small construction elements such as screws and boltings [132].

The ’fundamental axioms of structural health monitoring’ introduced by Worden

et al. [172] provide general principles that are well accepted among the structural

health monitoring society. These are

Axiom 1: All materials have inherent flaws or defects.

Axiom 2: The assessment of damage requires a comparison between two system

states.

5E.g., consider a wind turbine. Here, condition monitoring is employed to monitor the
gearbox, the bearings and the electrical system which are usually installed in the nacelle,
whereas structural health monitoring focuses on the rotor blades and the support structure
below the nacelle.
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Axiom 3: Identifying the existence and location of damage can be done in an un-

supervised learning mode, but identifying the type of damage present

and the damage severity can only be done in a supervised learning

mode.

Axiom 4a: Sensors cannot measure damage. Feature extraction through signal

processing and statistical classification is necessary to convert sensor

data into damage information.

Axiom 4b: Without intelligent feature extraction, the more sensitive a measure-

ment is to damage, the more sensitive it is to changing operational

and environmental conditions.

Axiom 5: The length- and time-scales associated with damage initiation and

evolution dictate the required properties of the structural health mon-

itoring sensing system.

Axiom 6: There is a trade-off between the sensitivity to damage of an algorithm

and its noise rejection capability.

Axiom 7: The size of damage that can be detected from changes in system dy-

namics is inversely proportional to the frequency range of excitation.

Besides the vibration-based methods contemplated here, there is a big num-

ber of different methods for structural health monitoring of civil structures [31].

Vibration-based methods provide the essential advantage that the sensors used

to measure vibration data are well established, leading to highly reliable sensors

to measure structural dynamics. The reliability of sensors is of high importance,

especially for long-term structural health monitoring systems (see Axiom 5). Fur-

thermore, the dynamic behavior of a structure may be measured with a relatively

low number of sensors which is important due to the size of structural systems. It

is well accepted that any damage causes a local stiffness decrease and an increase

of the damping [1,65,128]. If big enough, any local decrease of stiffness influences

the dynamic global response of a structure. Hence, monitoring the ’dynamic fin-

gerprint’ of a structure has the advantage, that sensors must not necessarily be

close to the damage location [57], but a comparison of undamaged and damaged

system state is needed (see Axiom 2). Axioms 4a and b aim at the core of this

thesis: algorithms are needed to interpret measured data because sensors cannot

measure damage directly. In this thesis, a good initial guess (a numerical model

representing the structure) is adjusted to represent measured data. This process

can be interpreted as the ’learning phase’, whereas damage localization using model

updating, as intended here, is the testing phase. The algorithms presented in this

thesis provide a method to convert sensor data to damage information. Because
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Figure 1.2.: Three-tier damage detection framework: After the training phase, incom-
ing test data is analyzed using a combination of machine learning, con-
dition parameter, and hypothesis testing methods to estimate the current
state of the structure [70].

damage localization is level II monitoring, level I must be accomplished first.

Recently, a three-tier structural health monitoring scheme for wind turbines was

proposed in [70], facing level I structural health monitoring. The scheme uses both

environmental and operational conditions and vibration based measurement data.

A practical implementation is given in [69]. This framework (see Figure 1.2) is

designated to implement and compare arbitrary combinations of methods for each

of the three tiers. Every reference-based structural health monitoring system in-

cludes a comparison of initial and new data sets, resulting in an initial training

phase of the procedure. Data selection is included as a first informal step, affect-

ing the overall performance of the structural health monitoring system. To assess

the damage state of a structure, data normalization and clustering of data sets to

groups with similar environmental and operational conditions by machine learn-

ing represents the first tier. Subsequently, the extraction of condition parameters

follows as a basis of decision and finally, a decision is made based on statistical

hypothesis tests. An application of the scheme is given in [163]. If this three-tier

scheme encounters potentially unhealthy data, damage localization is the logical

next step.

Model updating for damage localization

If the response of a dynamic system alters due to damage, a numerical model

may be adjusted to reproduce the new system response. The location where an

algorithm changes stiffnesses in the numerical model may then be interpreted as

15



1. Introduction

the damage location. According to [102], the general approach can be partitioned

via six steps:

1. Formulation of a numerical model of the examined structure

2. Measurement and processing of dynamic time series

3. Adjusting the numerical model to reproduce the measured data best possible

4. After damage event: repeat step 2

5. Re-adjust the numerical model to reproduce the measurements taken in step

4

6. Interpretation of changed model parameters as a damage indicator

Many studies focus on model updating for structural health monitoring, but of-

ten the investigated systems are purely numerical studies, neglecting the influence

of measurement noise (see, for instance, [29,88,174]). Furthermore, modal proper-

ties vary with different environmental and operational conditions [68]. These stud-

ies can be seen as a proof of concept, but not as a validation of the methodology.

This is also one of the central statements of Figure 1.3 [10], with measurement

data being one of the three essential columns for model-based structural health

monitoring.
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Figure 1.3.: Three columns of model-based structural health monitoring [10]

Different studies focused on model updating for damage localization in structural

systems: In [167] damage quantification is performed using model updating tech-

niques applied to simple reinforced concrete beams. The authors of [110] and [90]

successfully aim to use model updating for damage localization in frame struc-

tures. Model updating for damage identification in lattice structures is used in [32],

whereas damage quantification at an offshore jacket-structure is performed in [109].
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In many cases, the damage is modeled using variable stiffnesses of elements, which

is the simplest way to model the postulated stiffness decrease. The spot with a

decreased stiffness is interpreted as the damage location [111]. Depending on the

complexity of the model it may be extensive to model every single element with

variable stiffness. This can be overcome by the use of damage functions [161].

This approach modifies the stiffnesses of several elements using functions instead

of treating every element individually. The factors of these functions are used as

optimization parameters, drastically reducing the number of parameters needed.

Besides, this approach leads to well-conditioned system matrices which has advan-

tages during the solution of the models.

1.3. Goals and objectives

Model updating is a widely used technique, and plenty of research effort has been

put into the field of updating structural systems to achieve a higher concordance

between numerical models and measurement data. However, what is missing is

a strategy that can deal with the globality of the optimization problems in a

numerically efficient way. Every evaluation of the objective function causes a

time-consuming numerical analysis, resulting in long computational times usually

needed to solve the optimization problem using state-of-the-art global optimiza-

tion algorithms. If local algorithms are applied solely, computational times are

low, but there is no guarantee that the global optimum is found. Thus, the main

objective of this thesis is to develop, implement and analyze an advanced model

updating strategy with special emphasis on large structural systems. Also, an

approach for the interpretation of results is given. A general framework shall be

developed, illustrating all essential steps that may be used for model updating,

enabling a more general view on the methodology and a deeper understanding of

model updating approaches. The algorithm presented in this thesis comprises a

possible implementation of this scheme.

Though modal properties are known to be relatively insensitive to structural

changes such as damages, they are still state-of-the-art with ongoing research fo-

cusing on metrics in the modal domain. Besides, the use of metrics in modal

domain restricts the application to linear problems. Therefore, other metrics in

both frequency and time domain are investigated, and their capability for use in

model updating applications is compared to modal approaches with special em-

phasis on their capabilities to include and detect nonlinearities.

The structured evaluation and interpretation of the model updating results is an-

other important topic that is covered in this thesis, focusing on the randomness of

results generated using metaheuristic optimization methods by introducing ways
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to assort the solutions statistically and by their optimal objective function value.

Many examples used in the literature lack applications of the methods to real

measurement data, though the effects of measurement noise and experimental tech-

niques play a substantial role. It is the authors believe that a practical application

is of the highest importance to prove the functionality of model updating meth-

ods due to the difficulties that arise in real measurements only. Thus, different

experimental structures are analyzed within this thesis to prove the investigated

concepts in near-practice applications. The measurement data are analyzed and

interpreted employing used practice techniques, showing methodologies to evalu-

ate large scale experiments in structural dynamics. The algorithms presented are

applied both to general model updating as well as damage localization, since all

models are damaged during the experiments. Hence, the examples demonstrate

both the functionality as well as limitations of the approach. Furthermore, recom-

mendations for the design of experiments in future applications are given.

The central innovations in this thesis are:

• a new numerically efficient two-step optimization algorithm able to deal

with all challenges arising in applications for model updating, especially the

globality of optimization problems and constraints on the parameters

• the introduction of model to measurement comparison techniques that are

new in model updating applications

• a general scheme for model updating, allowing a comprehensive overview of

all methods and technologies needed to perform iterative model updating in

structural dynamics

• suggestions on the choice of metrics for specific problems.

Further novelties are:

• the application of new metrics to both general model updating as well as

model updating for damage localization

• the application of these metrics to nonlinear problems

• a new probabilistic interpretation approach for results of abbreviated meta-

heuristic procedures

• new investigations on the capability of beam models for representation of

local damages

• new approaches for the interpretation of results obtained from model updat-

ing analyses.

This thesis is intended to contribute to the model updating community in several

ways: Firstly, to give an up-to-date overview of the literature and state-of-the-

art techniques for updating structural systems to measurement data. Secondly, to
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present a new, numerically efficient algorithm for model updating and demonstrate

the application to different, partially nonlinear structural systems and to damage

localization. Finally, to give advice and ideas on the choice of metrics for model to

measurement comparison and discuss advantages and disadvantages of the different

approaches for future applications. In the structural health monitoring context of

model updating, damage quantification (Level III structural health monitoring

according to Rytter’s scale) is beyond the scope of this thesis.

1.4. Structure of the thesis

Model updating techniques are a result of the constantly growing need for more

reliable models. The key task of this thesis is to develop a strategy for model

updating in often complex structural systems. Based on the introduction and the

state-of-the-art given within this chapter, the theoretical foundation for this thesis

is outlined in chapter 2, including a general introduction to structural dynamics,

various methods to compare measurement data and numerical model and a deep

description of the optimization algorithms used throughout this thesis.

A general strategy for model updating is introduced in chapter 3, followed by two

examples that verify the methodology on a theoretical basis. The first example is

a numerically tested, simulated cantilever beam that is investigated using virtual

damage. Damage is located using the model updating approach described in the

previous section. The second example is the application to a virtual offshore wind

turbine based on a monopile foundation.

The methods are applied parameter to parameter identification with real measured

data in chapter 4, using two examples. The first example is a small scale model

of a three-story building structure that was tested at the Los Alamos National

Laboratory. The localization and quantification of ice accretion on a real scale

34m long rotor blade is the second example.

The concept is utilized for damage localization in chapter 5, using three examples.

A sensitivity analysis on the damage localization capabilities of the strategy is

demonstrated in the first example, a scaled model of an offshore tripile-structure.

The 34m rotor blade of chapter 4 is driven to fatigue damage during the ex-

periments. Thus, the damage is located using the model updating strategy. In

addition, a scaled prestressed concrete tower is damaged by saw cuts and loosened

screws at the basement clamping. Both damages are located in this section.

Chapter 6 closes the work, summarizing the major findings of this thesis and dis-

cussing open questions to provide a basis for future research.
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Within this chapter, the theoretical background needed for the application of model

updating as done in the following chapters is given. Starting with a general in-

troduction to numerical modeling in dynamic analyses, metrics that quantify the

deviation between numerical models and measurement data in different domains

are introduced afterward. The metrics are utilized to formulate optimization prob-

lems and methods used to solve these problems are introduced. These methods

aim to minimize the deviation of numerical and measured results subject to con-

straints via alterations of parameters of numerical models, yielding the parameters

that result in a minimum deviation between model and measurement as their final

result.

2.1. Basics of computational structural dynamics

2.1.1. Numerical representation of dynamic systems

Mathematical descriptions of physical processes are essential in all engineering sci-

ences. These mathematical models support a deep understanding of the physical

behavior and allow predicting characteristics and performance of the studied sys-

tem. Model updating in structural dynamics includes the adjustment of model

parameters to match measured data. The dynamic response of a linear mechan-

ical system with P degrees of freedom is described by the second order ordinary

differential equation

Mü(t) +Cu̇(t) +Ku(t) = f(t), (2.1)

where K,C and M ∈ RP×P stand for the stiffness, damping and mass matrices,

respectively. f ,u, u̇ and ü ∈ RP×1 represent the vector of forces acting on the sys-

tem, the displacement, the velocity and the acceleration vector. The stiffness and

mass matrices are usually assembled from local element-matrices that are formu-

lated individually for each element connecting several degrees of freedom1, whereas

1In addition to local finite elements other concepts exist that formulate the global matrices
directly
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the determination of the energy dissipating damping terms is not as straightfor-

ward. Damping is a result of several physical processes working simultaneously.

For instance, it is material, amplitude, and frequency-dependent. It can be caused

by friction within the structure and friction with the surrounding medium. That

is why the so-called Rayleigh damping

C = c1M + c2K (2.2)

is often employed due to missing information on the exact damping behavior [40],

reducing the unknown damping parameters to two parameters α and β. However,

this formulation may be too simple for complex applications. If measurements are

available and modal damping ratios are identified, these can be utilized to estimate

the damping matrix [117] by computing

Cn = 1 [2ζ1ω1M1 · · · 2ζiωiMi]
T , (2.3)

where 1 is the identity matrix and ζi, ωi and Mi represent the i-th identified

damping ratio, eigenfrequency and mass. The damping matrix used in (2.1) is

then obtained using

C = Φ−TCnΦ−1, (2.4)

with Φ denoting the matrix of column-wise eigenvectors.

The undamped eigenfrequencies and eigenvectors are needed for this approach.

These are computed by solving the eigenvalue problem(
K − ω2

iM
)
φi = 0. (2.5)

The solution of equation (2.5) is referred to as modal analysis of the system. The

resulting eigenfrequencies and mode shapes may be used to compare simulation

results and measured data. Another approach is to compare the measured signals

directly without a previous identification of the eigenfrequencies and mode shapes.

The transient solution of the system is needed for this approach. The transient

solution of the system (2.1) can be calculated using the implicit time integration

algorithm proposed by Newmark [134]. Starting with given initial conditions for

u0 and u̇0, the displacement at the next iterate uk+1 is computed solving the

linear equation system

K̂uk+1 = f̂k+1, (2.6)

with the effective stiffness K̂ being

K̂ = K +
1

β∆t2
M +

γ

β∆t
C. (2.7)
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Here, the Newmark constants γ = 0.5 and β = 0.16̄ are used for the linear accel-

eration method and ∆t denotes the time increment. The effective force f̂k+1 at

time tk+1 is defined by

f̂k+1 = fk+1 +M

(
1

β∆t2
uk +

1

β∆t
u̇k + (

1

2β
− 1)ük

)
+C

(
γ

β∆t
uk + (

γ

β
− 1)u̇k + (

γ

2β
− 1)∆tük

)
.

(2.8)

With the displacement vector of the next iterate known from equation (2.6), the

velocity and acceleration at the next iterate are computed using

u̇k+1 = u̇k + (1− γ)∆tük + γ∆tük+1 (2.9)

and

ük+1 =
1

β∆t2
(uk+1 − uk)− 1

β∆t
u̇k − (

1

2β
− 1)ük. (2.10)

Equations (2.9) and (2.10) are called the prediction formulae.

Another representation of the system results from a transformation of the equation

system (2.1) to state space. This representation is a more systematic approach that

models the system by input, output and state variables. Originating from controls

engineering, this formulation is useful in many system identification tasks such as

the stochastic subspace identification due to its applicability to nonlinear systems

and multiple input multiple output systems. The state-space formulation transfers

the N second order differential equations of (2.1) to a system with 2N first order

differential equations. The state-space representation of equation (2.1),

ẋ(t) = Acx(t) +Bcf(t) (2.11a)

y(t) = Ccx(t), (2.11b)

is obtained by multiplication of (2.1) with M−1 and rearranging, using the defi-

nitions

x(t) =

[
u(t)

u̇(t)

]
,Ac =

[
0 1

−M−1K −M−1C

]
,Bc(t) =

[
0

M−1

]
. (2.12)

Cc denotes the output matrix of the system, Ac is the system matrix and Bc

represents the input matrix. The subscript c denotes the formulation in continu-

ous time2, whereas measurement data are in discrete time. To account for this,

2This formulation is continuous in time, but spatially discrete.
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equation (2.11) can be transferred to discrete time using yk = y(k∆t)

xk = Ak
dx0 +Bdfk (2.13a)

yk = CAk
dx0, (2.13b)

where Ad = eAc∆t and Bd =
∫∆t

0
eAcτdτBc.

2.1.2. Data pre- and post-processing

Metrics are essential to determine how well a numerical model represents measured

data. A metric is a nonnegative mathematical function that describes the ’distance’

between two sets as a number. These sets may be eigenfrequencies, mode shapes,

time series or other quantities derived from those. In order to compare measured

data with simulation results, the data need to be preprocessed depending on the

metric used for comparison. These preprocessing steps depend on the metric and

the underlying physical simulation needed for model updating.

Cross-correlation is a measure of how much a signal looks like another when one

of the signals is shifted by d data points.

vm ? vs =

∑
i

(
vim −Mm

)
·
(
vi−ds −Ms

)√(∑
i v
i
s −Ms

)2√(∑
i v

(i−d)
m −Mm

)2
, (2.14)

withM being an operator for the expectation value of a signal and n = 0, 1, ..., N−
1. N represents the total number of data points within the time series v and ? is

an operator for cross-correlation of two time series. Subindices m and s denote the

measured and simulated response, respectively. The formulation given in equation

(2.14) includes a numerically costly evaluation of the sliding dot product. The

convolution theorem, stating that the convolution of two signals in time domain

is equivalent to pointwise multiplication in frequency domain, is utilized. This

establishes a more effective way to compute the cross-correlation [21], resulting in

vm ? vs = F−1(F(vm)TF(v̄s)), (2.15)

where F(•) is the Fourier transform operator and •̄ symbolizes the conjugate

complex of a signal •. This method results in reductions of computational times

up to factor 15 [93]. The index of the maximum value of vm ? vs is interpreted

as the phase shift between these two signals. If a signal is correlated with itself

(e.g., vm ? vm), cross-correlation becomes the autocorrelation of the signal, which

is often used to emphasize periodicities of signals.
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In addition to the determination of periodicities in a signal, autocorrelation in

combination with the Fourier transform is used to determine the Power Spectral

Density saa of this time series,

saa (ω) = F(va ? va). (2.16)

The Power Spectral Density contains the energy of the signal as a function of fre-

quency. It is often used to validate results from system identification [67] and can

also be formulated across two signals (sab) using cross-correlation.

Filters are techniques that are used in signal analysis to restrict the frequency

bandwidth of a signal to a certain range [43]. This is especially useful to elimi-

nate measurement noise or high-frequency responses from simulated time series.

Filters, that suppress high-frequency content of a given signal while passing lower

frequencies are called low-pass filters. Butterworth filters are one of the most basic

and useful methods that are often used in filter design [43]. The basic frequency

response function for analog Butterworth filters is

|H(jω)| = 1√
1 +

(
ω
ωc

)2n
, (2.17)

where ωc denotes the cutoff frequency and n denotes the filter order. A higher

filter order ensures a steep truncation of the signal after passing ωc. The filter is

applied using

vf = Hv, (2.18)

with v being an unfiltered signal and subscript f denoting the filtered signal.

If results generated by numerical models and measured data shall be compared

using modal properties, these have to be identified from measured time series first.

Operational modal analysis techniques are used in case the input excitation force

is unknown, which is often the case in civil engineering structures. The excitation,

e.g., by wind, waves or traffic loads, is complex and their modeling is not easy.

Due to their size, it may be difficult to excite these structures with hammers or

shakers, inducing enough energy above the level of ambient excitations. Hence,

methods that do not require the input to identify eigenmodes of the structure

are preferred. These methods are also referred to as output-only modal analy-

sis [135]. The Stochastic Subspace Identification is such an operational modal

analysis method. The method addresses the identification of a stochastic state-

space model from output-only data. A detailed description of the method is given
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in [67]. The model is assumed to be excited by white noise only. Thus, the time-

discrete state-space system equations (see equation (2.11)) reduce to

xk+1 = Adxk +wk (2.19a)

yk = Cdxk + vk, (2.19b)

with wk and vk being zero mean white process and measurement noise terms. If

the (measured) input to the system contains some dominant frequency signals (e.g.,

eigenfrequencies of a vibrating system) in addition to white noise, these frequencies

will appear as additional poles of the system matrix Ad [173]. Robust numerical

techniques are used for stochastic subspace identification: QR-factorization is used

to reduce the data, and singular value decomposition is used to reject the noise.

Stochastic subspace identification methods usually result in many mathematical

eigenmodes that have to be separated from the physical eigenmodes afterward.

Both stability diagrams and modal validation parameters are employed for this

purpose [67].

2.2. Metrics for comparison of numerical models

and measured data

In order to compare numerical models and measurement data, sophisticated error

metrics are needed. These metrics quantify the error of the model as a distance

between measured data and simulation results. If these metrics are used for dam-

age localization, special attention must be paid to their sensitivity to damages.

Especially in damage detection, the metrics presented here are usually referred to

as condition parameters or damage features. Due to the use of these quantities as

metrics for the deviation between numerical model and measured data, as intended

here, the term error metrics is regarded to be more suitable in this context. The

aim is minimizing the error metric ρ, depending on a set of selected parameters

θ ∈ Rn×1. In model updating, these parameters manipulate properties of the

model, for instance stiffnesses, masses or loads. The scalar value of ρ can be mod-

ified via alterations of the parameters of the numerical model. In mathematical

terms, this leads to an optimization problem of the form

min
θ

ρ(θ) (2.20a)

subject to c ≥ 0, (2.20b)
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2.2. Metrics for comparison of numerical models and measured data

meaning that the objective function, equation (2.20a) shall be minimized by vari-

ations of the parameter vector θ, while satisfying the constraint equations (equa-

tion (2.20b)) simultaneously. All parameters are restricted to vary within a certain

range. For instance, physical feasibility demands many parameters to always re-

main positive. Furthermore, parameter values must often be restricted to remain

within predefined boundaries. Therefore, the optimization problem is solved sub-

ject to a set of constraints.

The following section introduces metrics needed for model to measurement compar-

ison in different domains, each providing individual advantages and disadvantages

(see Table 3.1).

2.2.1. Error metrics in modal domain

The comparison of modal properties3 can be considered as the ’classical approach’

[10] to model-measurement comparison. Modal properties provide an easy possibil-

ity to perform model updating, because only information regarding the structural

data is needed to solve the model and get a result that is comparable to measure-

ment data. The most basic approach is to compare eigenfrequencies ω ∈ RH×1

with H being the number of considered eigenmodes. Usually, these are the lowest

eigenfrequencies. They can be compared using the n-th norm of the deviations

ρω(θ) =

∥∥∥∥ωm − ωs(θ)

ωm

∥∥∥∥
n

, (2.21)

with the subindices m denoting measured and s denoting simulated quantities,

respectively. Obviously, the properties of the simulation model depend on the set

of parameters θ. The denominator is used to normalize the differences.

Another technique is to formulate a metric based on mode shapes. Since being

able to reconstruct the mode shapes causes additional complication in the measure-

ment set up, this approach is not investigated as often as the eigenfrequency-based

residuals. As a mode shape comparison measure

ρφ(θ) =
∑
i∈Y

1

2

(
φim − φis(θ)

)T (
φim − φis(θ)

)
φim

T
φim

, φ ∈ RK×1 (2.22)

is used. Y denotes the set of eigenvectors considered for the comparison of model to

measurement and K represents the number of considered nodes, e.g., the number

of sensors. (2.22) expresses the deviation of simulated and measured eigenvectors

3Eigenfrequencies and mode shapes are regarded as modal properties. Sometimes, modal
damping is added to this set.
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as the length of the difference vector of both. This length is squared for practical

reasons and normalized by the denominator. ρω and ρφ may be summed up in

order to include as much information as possible to the optimization algorithm

using the linear combination

ρω+φ (θ) = αωρ
ω (θ) + αφρ

φ (θ) , (2.23)

with αω and αφ denoting weighting factors. Throughout this thesis, these are set

to 1.0. Both measured and simulated eigenvectors have to be normalized prior to

evaluation of equation (2.22). This normalization is done using the biggest entry

in all vectors

φ =
1

max(φ)
φ. (2.24)

In addition, phase balance of the vectors must be ensured. This is achieved com-

paring the length of the difference vector
∥∥φim − φis∥∥2

and
∥∥φim + φis

∥∥
2
. If the

last expression results in a smaller value than the first, the simulated eigenvector is

multiplied by −1, otherwise the vectors are in phase. This is only valid for similar

vectors and has to be checked prior to the application.

With changing parameters, the order of eigenmodes is subject to change. Thus,

mode shape tracking is needed in order to compare only associated mode shapes

and frequencies. The Modal Assurance Criterion is a measure for the similarity

between two mode shapes [3].

MAC(φm,φs(θ)) =

(
φTmφs(θ)

φTmφm · φs(θ)Tφs(θ)

)
∈ [0, 1] (2.25)

The Modal Assurance Criterion returns a value of 1, if two vectors φm and φs
are linearly dependent and 0, if they are not. A modal assurance criterion value

greater than 0.8 is supposed to indicate good conformity of two vectors [111]. If the

measured mode shapes are in the same order as the numerical, the MAC-matrix

computed using equation (2.25) has values close to 1 on its diagonal and close

to 0 elsewhere. If this is not the case, the assignment of eigenmodes is changed

according to the off-diagonal terms in the matrix.

2.2.2. Error metrics in frequency domain

For the definition of error metrics in frequency domain, the power spectral density

of a signal is used. Power spectral density describes the energy of a signal over

frequency (see equation 2.16). In practical applications, the power spectral density

is often estimated using Welch’s method [170]. A metric defined by power spectral
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density is defined by

ρs =
∑
j∈Z

∥∥∥sjm − sjs(θ)
∥∥∥

2
, (2.26)

where sm and ss denote the measured and simulated power spectral density, re-

spectively. Here, Z is the set of signals considered for the evaluation of the metric.

Normalization of sm and ss may help reducing the influence of magnitudes of

forces, yet it causes a loss of information.

A new frequency domain metric employs transmissibility functions [35] to define a

measure for comparison between numerical model and measurement data. Ewins

defines transmissibility as ’a quantity which is commonly used in vibration engi-

neering practice to indicate the relative vibration level between two points’ [40].

State-of-the-art techniques in vibration engineering often make use of the frequency

response function, which is basically a measured quantity divided by the input sig-

nal (i.e., a force). In contrast to this definition, a transmissibility function τ is a

measured quantity divided by a measured reference quantity [34],

τ ij(ω) =
xi(ω)

xj(ω)
. (2.27)

In this equation, xi(ω) and xj(ω) denote the spectral signals recorded in channels

i and j, respectively, depending on the frequency ω. The recorded spectral signals

are be obtained using

xi(ω) = Hik(ω) · fk(ω), (2.28)

with Hik(ω) denoting the transfer function between measurement point i and a

force fk(ω) applied at point k. Inserting equation (2.28) in equation (2.27) yields

τ ij,k(ω) =
Hik(ω) · fk(ω)

Hjk(ω) · fk(ω)
=
Hik(ω)

Hjk(ω)
. (2.29)

Equation (2.29) proves that τ ij,k(ω) is solely influenced by the location of loads

acting on the structure and independent from their amplitude or phase. A practical

way to define the transmissibility functions without knowing the transfer functions

explicitly is

τ ij(ω) =
sij(ω)

sii(ω)
. (2.30)
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These transmissibility functions are computed for both simulation and measure-

ment data and used for comparison of model to measurement. The actual com-

parison for several measurement channels is then done using

ρτ (θ) =
∑
p∈X

∥∥τ ijm,p − τ ijs,p(θ)
∥∥

2∥∥τ ijm,p∥∥2

, (2.31)

where X denotes the set of all reasonable combinations of measurement channels.

2.2.3. Error metrics in time domain

Time series provide another source of information that can be employed for the

comparison between numerical model and measured data. Many authors utilize

the l2-norm

ρl2(θ) = ‖vm − vs(θ)‖2 (2.32)

to define an objective function for optimization (as in [76]), where vm ∈ RD×1

denotes any signal recorded in a real structure and vs is the corresponding signal

from a simulation, depending on the parameters θ. D represents the number of

data points within this signal. Before the direct comparison of signals is performed,

the signals have to be adjusted to provide the same sampling frequency. This is

done using downsampling4 of vs or vm, respectively. In addition, filtering of the

measured signals (see equation (2.18)) may be beneficial. These signals may be

any quantity that is measurable, typically acceleration or strain time series. If

signals from more than one channel are compared, the function is extended to

ρl2(θ) =
∑
j∈Z

∥∥∥vjm − vjs(θ)
∥∥∥

2
, (2.33)

with Z being the set of considered time series. Due to the fact that initial condi-

tions may be unknown, the signals may be out of phase, leading to time series in-

comparable using equation (2.33). This is circumvented using the cross-correlation

(see equation 2.15) [168]. Prior to the computation of the actual deviation of the

time series using equation (2.33), the simulated time series is shifted according to

the results of the cross-correlation.

The Mahalanobis distance is another error measure that may be employed to

quantify the difference between time series. [58] successfully employ a metric as a

weighted vector norm to identify damages in plate structures. The main difference

is the formulation of the weighting matrix, which is done using the covariance

4Downsampling is the term for a reduction of the sampling rate of a signal. E.g., only every
n-th sample of a signal is kept
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matrix in the Mahalanobis distance. In the Mahalanobis distance, the error ei
between simulated and measured time series is defined using

|µi(θ)| =

√√√√ l∑
j=1

(
vijm − vijs (θ)

)T
W
(
vijm − vijs (θ)

)
, (2.34)

where l denotes the number of sensor channels, W is the weighting matrix. W is

defined by the covariance matrix, which is a quantification of direction and extent

of dependence of the signals. A metric ρµ, quantifying the difference of all channels,

is then formulated employing the l2-norm on the vector µ

ρµ(θ) =

∥∥∥∥∥
l∑

j=1

(
vijm − vijs (θ)

)T
W
(
vijm − vijs (θ)

)∥∥∥∥∥
2

. (2.35)

An advantage of the Mahalanobis Norm over the Euclidean Norm are the dimen-

sionless distance values, which account for more consistent comparisons. Further-

more, the difference between simulated and measured response is weighted by the

existing correlations. Variables with high variance and highly correlated variables

are given less weight.

2.3. Optimization algorithms for model updating

The aim of finite element model updating is to minimize the deviation ρ between

measured and simulated results. This is done by solving the general optimiza-

tion problem (2.20). The objective function formulated in the previous sections

is minimized subject to constraints. These constraints can be formulated in ar-

bitrary form. The constraints that are used in most constrained model updating

applications are the so called boxed constraints

li ≤ θi ≤ ui ∀i ∈ [1...n], (2.36)

ensuring that the parameters remain within a certain range around the initial con-

figuration. In addition to these constraints, summarizing constraints may include

further information to the optimization problem. These constraints are introduced

in subsequent chapters and formulated individually per problem.
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2.3.1. Simulated Annealing and Simulated Quenching

The central idea of Simulated Annealing is to transfer the annealing process in

metallurgy to an optimization problem. In metallurgy, the controlled cooling of a

metal grants the particles enough time to build stable crystal lattices with few de-

fects. At a certain state of the annealing process, particles can be in the lattice or

leave it with a certain probability, dependent on the actual temperature. The Sim-

ulated Annealing method is used for the exploration of the search domain defined

by the optimization problem (2.20). Simulated Annealing is a metaheuristic op-

timization method that can approximate solutions of large optimization problems

with many local minima [89]. In contrast to other global optimization algorithms,

convergence to the correct optimum can be proven [64]. However, this can only be

done for certain theoretical conditions, causing endless computational times.

The annealing process means transferred to optimization that better solutions are

always accepted, whereas worse solutions are accepted with a certain probability.

A solution is regarded to be better if the associated objective function value is

smaller than in the previous solution. In Simulated Annealing, a slowly decreased

temperature is interpreted as a decrease of the probability to accept worse solu-

tions. Simulated Annealing has widely been used in the chip industry to find the

optimal arrangement of microchips components [141] or solving the famous trav-

eling salesman problem [38].

In the Simulated Annealing algorithm, the next parameters are created using a

random neighbor of the actual variables, see Figure 2.1. Since the new parameters

are independent of the current, consideration of constraints is simple. A random

vector is added to the actual parameter vector θk. It is then checked if the new

solution fulfills all constraints. Otherwise, a new solution is created randomly.

Other, more advanced methods for finding a valid neighbor may be applied, but

for model updating, this approach yields satisfying results. If the actual solution

is better than the previous (δ < 0), it is accepted. If it is worse, its acceptance

depends on the actual temperature T and the size of the descent δ (see the purple

diamond in Figure 2.1). This is the most important step of Simulated Anneal-

ing, since it allows the algorithm to leave local minima. At the same time, this

decision is slowing down convergence of the method, because at low temperatures

many solutions are rejected after the numerically costly evaluation of the objective

function. According to [141], the initial parameters are chosen to T0 = 500 and

N = 50, meaning an initial temperature of 500 and 50 repetitions at each temper-

ature step. The main disadvantage of Simulated Annealing is that it is known to

require long time periods to reach the exact optimum [164].

An exponential cooling scheme can be used instead of a linear in order to accel-

32



2.3. Optimization algorithms for model updating

erate the algorithm (see Figure 2.2). Using this approach, the next temperature

Tk+1 is obtained using Tk+1 = T0 ·e((C−1)k) with an appropriately chosen value for

the annealing constant C. Sometimes, this procedure is referred to as Simulated

Quenching [164]. Due to the fact that an exponential curve never reaches zero,

an additional restriction has to be defined as a stop criterion for the algorithm,

whereas the linear approach usually is stopped when it reaches zero. Simulated

Quenching is a procedure based on randomness. Therefore, it can never be guar-

anteed that the algorithm approximates the correct solution. The algorithm is

started several times for this reason. The results are then compared using the final

objective function.

2.3.2. Sequential Quadratic Programming

Because Simulated Quenching approximates solutions that may be remote to the

actual solution, a local optimization algorithm is started from the solution gener-

ated by Simulated Quenching. For solving the local, constrained, C2-continuous

nonlinear optimization problem, or, more commonly, nonlinear program

min
θ

ρ(θ) (2.37a)

subject to ci(θ)=0 ∀ i ∈ E (2.37b)

ci(θ)≥0 ∀ i ∈ I (2.37c)

Sequential Quadratic Programming is employed. E represents the indices of equality-

and I the indices of inequality constraints. Sequential Quadratic Programming

methods are a class of iterative methods that combine the basic ideas of optimiz-

ing an unconstrained function using Newton’s method with Lagrange’s method for

constraint consideration. They are known to need fewer evaluations of the objec-

tive function than most other local optimization algorithms. At the same time,

they reveal high numerical stability, even for badly scaled problems [126]. This is

why they are especially useful in model updating, where the evaluation of the ob-

jective function is numerically expensive regarding computational time. The basic

idea of Sequential Quadratic Programming methods is to construct a quadratic

optimization subproblem around an actual iteration point θk. The solution of

this subproblem can be used as an iteration step (defining the new iterate θk+1)

towards the solution (2.37). The Lagrangian of (2.37) is

L(θ,λ) = ρ(θ)−
∑
i∈E∪I

λici(θ). (2.38)
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start

generate θj , random
neighbor of θi

constraint
violated

δ = ρ(θi) − ρ(θj)

δ < 0

Rnd [0, 1]

< e−δ/T
θi = θj

n = n+ 1

n=N

Anneal

T > Tendstop

Select T0 Select N

Select θ0 n = 0

Select Tend

no

noyes

yes

yes

no

yes

yes

no

no

Figure 2.1.: Flow Chart of the Simulated Quenching Algorithm. The most important
step of the algorithm is indicated by the purple diamond. This decision
generally allows to leave local minima, whereas the probability to accept
worse solutions decreases with a falling temperature T .
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Figure 2.2.: Comparison of linear (Simulated Annealing) and exponential (Simulated
Quenching) cooling schemes.

The first order optimality conditions for constrained optimization5 postulate

∇θL(θ∗,λ∗) =0 (2.39a)

ci(θ
∗) =0 ∀i ∈ E (2.39b)

ci(θ
∗) ≥0 ∀i ∈ I (2.39c)

λ∗i ≥0 ∀i ∈ I (2.39d)

λ∗i ci(θ
∗) =0 ∀i ∈ E ∪ I, (2.39e)

with ∇θL(θ,λ) = ∇ρ(θ)− λ∇c(θ). Solving the nonlinear equation system (2.39)

leads to the optimum of (2.37). Because there are no analytical methods to do so

directly, this is done iteratively using Newton’s method known from unconstrained

optimization [48]. Using this method, the Newton-step towards the solution is

defined as [
θk+1

λk+1

]
=

[
θk
λk

]
+

[
pθk
pλk

]
. (2.40)

In accordance with Newton’s method, the step size pk is obtained from the solution

of

∇2
θθL(θk,λk)pk = −∇θL(θk,λk), (2.41)

while fulfilling the remaining first order optimality conditions (equations (2.39c)

to (2.39e)) simultaneously.

5These conditions are known as the Karush-Kuhn-Tucker- or KKT-conditions [91].
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Definition of the quadratic optimization subproblem

An optimization problem of the form

min
p

1

2
pTQp+ cTp+ d (2.42a)

subject to aTi p− bi = 0 ∀i ∈ E (2.42b)

aTi p− bi ≥ 0 ∀i ∈ I (2.42c)

is called Quadratic Program. It consists of a quadratic objective function with

linear equality and inequality constraints with Q ∈ Rn×n being the matrix holding

the quadratic terms, c,p,ai ∈ Rn×1 containing the linear terms of the objective

function, the solution vector and the linear constraint vectors.

The nonlinear program (2.37) can be approximated using Taylor’s expansion at

θk. For the definition of the objective function of the quadratic program the

expansion is used up to the second order terms. The constraint equations ((2.37b)

and (2.37c)) are approximated using the first order terms only. The resulting

sub-problem has the form

min
p

1

2
pT∇2

θθLk p+∇rTk p+ rk (2.43a)

subject to ∇ci(θk)Tp+ ci(θk) = 0 ∀ i ∈ E (2.43b)

∇ci(θk)Tp+ ci(θk) ≥ 0 ∀ i ∈ I, (2.43c)

where rk is the objective function (2.37a) evaluated at the k-th iteration. In gen-

eral, the ∇- operator contains all partial derivatives, in this case the objective

function is derived with respect to the optimization variables. The solution of

(2.43) is equivalent to the solution of (2.41), while fulfilling the remaining first

order optimality conditions (equations (2.39c) to (2.39e)) simultaneously [105].

Comparison of (2.43) and (2.42) reveals that (2.43) is a quadratic program. There-

fore, this resulting subproblem can be solved using the according quadratic pro-

gramming algorithms. The solution vector p of (2.43) is the Newton-step towards

the solution of (2.37) that is used in equation (2.40).

Solution of the quadratic optimization subproblem using active set

methods

Both active-set and interior-point methods are reliable methods for solving the gen-

eral quadratic program (2.42). For small optimization problems (dim(p) < 10000),

as it is the usual case in model updating, especially active-set strategies reveal their

potential, whereas interior-point algorithms have advantages at big optimization
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problems [48]. Therefore, an active-set method is used for the solution of (2.43).

The idea of active-set methods is to use only those inequality constraints of I that

are active at a current iterate and treat them as equality constraints. Thus, prob-

lem (2.42) can be reduced to a quadratic program with solely equality constraints

at every iteration. Optimization problems holding no inequality constraints can

be solved easily via the solution of equation systems (see equation (2.45)), whereas

problems having inequality constraints must be challenged using additional effort

by conversion of the problem holding both equality and inequality constraints to a

system with only equality constraints. The set of all equality constraints and the

inequality constraints active at the current iteration is called active set A(p).

At the beginning of the solution process it is unknown which constraints belong

to A(p∗) of the optimal solution p∗. Therefore, this optimal active set has to be

found, which is done iteratively. Initially, an arbitrary working set W0 containing

all equality constraints and some of the inequality constraints is defined. W0 can

even be chosen as ∅, if no equality constraints are present. Using the definitions

q = pk+1 − pk, gk = Qpk + c,

the objective function (2.42a) can be rearranged to

h(pk + q) =
1

2
qTQq + gTk q + ρk,

where ρk = 1
2
pTkQpk+pTk c is independent of q. Therefore, ρk can be dropped from

the objective function without altering the solution. The resulting subproblem at

the k-th6 iteration is

min
q

1

2
qTQq + gTk q (2.44a)

subject to aTi q = 0 i ∈ Wk. (2.44b)

All inequality constraints inWk are treated as equality constraints. Therefore, the

problem does not contain inequalities. Using the first order necessary optimality

conditions for constrained optimization (equations 2.39), problem (2.44) can be

solved using the equation system[
Q AT

A 0

][
−t
λ∗

]
=

[
gk +Qp

0

]
, (2.45)

6Note that this iteration counter k is not the same as in the Sequential Quadratic Program-
ming iteration, it is restarted at every quadratic subproblem.
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where the optimal solution q∗ of the subproblem (2.44) is found using q∗ =

q + t. The so called KKT-matrix

[
Q AT

A 0

]
is always nonsingular in Sequen-

tial Quadratic Programming as long as the matrix Q is nonsingular which is en-

sured using appropriate methods to approximate Q and if the lines and columns

of A are linearly independent. Thus, this equation system is solved using LU-

decomposition. In case the number of constraints inW is smaller than the number

of optimization variables, the null-space approach is used7. This approach does

not postulate nonsingularity of the KKT-matrix and is numerically more efficient

since no inversion or factorization of the full equation system is needed [126].

Any step along q decreases the objective function of the quadratic subproblem

(2.43). In addition to a decrease of the objective function, the algorithm has to

ensure that none of the constraints are violated by the step. If a step pk+1 = pk+qk
is feasible, it is done. Otherwise, the step length is restricted via

pk+1 = pk + αk qk. (2.46)

αk is chosen to be the maximum value in [0, 1] that satisfies all constraints such that

none of the so-called blocking constraints is violated. The blocking constraints are

then added to the working setWk+1, making the algorithm introduced here a line-

search method. Line search methods determine a search direction first and then a

seek to minimize the problem along this direction. Other constraints are dropped

from the working set, and a new iteration towards the solution of the quadratic

problem (2.42) is started. The contrary class to line-search, trust-region methods,

are not introduced here in detail. The basic idea of trust-region methods is to

presume the quadratic approximation to be sufficiently accurate only in a defined

region and set this region as the maximum step length, adding a supplemental

constraint to the optimization problem. It is still unclear which approach results

in faster convergence speeds [48]. One of the most advanced Sequential Quadratic

Programming algorithms uses a line-search implementation [62], whereas others

use trust-region approaches [27].

Sequential Quadratic Programing iteration

When the subproblem (2.43) is solved, the next iterate is computed using equation

(2.40). In order to construct the quadratic subproblem, the objective function

ρk+1, the Jacobian ∇ρk+1 and the Hessian ∇2
θθLk+1 have to be evaluated at the

7Several methods exist to identify the null-space of the KKT-matrix. A common way is to
employ the QR-decomposition of Q.
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new iterate θk+1. First order derivatives are approximated using finite differences

∂ρ

∂θi
=
ρ(θ + h)− ρ(θ − h)

2h
(2.47)

with h = hei and a small value h, where ei is the unit vector. A central difference

approximation is chosen here. This has been found to perform better in model

updating algorithms than forward differences [146]. Therefore, the use of cen-

tral differences is worth the additional numerical effort in comparison to forward

or backward differences. Being numerically extensive, finite differences should be

avoided if possible. For instance, analytical derivatives may be employed as it is

the case when modal properties are employed (see equation (2.52)).

Due to the fact that an approximation of second order derivatives using finite

differences, including at least n × n evaluations of the objective function, is nu-

merically costly in model updating and positive definiteness of the Hessian can not

be guaranteed, other methods are considered to find this matrix. In the BFGS-

method8, the Hessian is approximated using quasi-Newton formula, making use of

curvature information being generated during the process of iteration. The major

drawback of this approach is the loss of quadratic convergence. An extension to

this method are the damped BFGS- formula [126]. The BFGS-update starts with

a given, symmetric and positive definite matrixQk. For the update, the definitions

sk = θk+1 − θk (2.48a)

yk = ∇θL(θk+1, λk+1)−∇θL(θk, λk) (2.48b)

rk = αkyk + (1− αk)Qksk, (2.48c)

with αk = 1 if sTk yk ≥ 0.2sTkQksk and αk = (0.8sTkQksk)/(sTkQksk−sTk yk), else,

are needed. The BFGS-update of the matrix Qk+1 is then determined using

Qk+1 = Qk −
Qksks

T
kQk

sTkQksk
+
rkr

T
k

sTk rk
(2.49)

The included damping term αk ensures validity of the curvature condition and

subsequently positive definiteness of the approximated Hessian9. A valid initial

8Named by R. Broyden [26], C. G. Fletcher [47], D. Goldfarb [63] and D. F. Shanno [153],
who developed and published simmilar variations of the method independently in 1970.

9This is important when solving the resulting quadratic sub-program(2.42), since finding
the solution of positive definite equation systems is easier to find than in semidefinite of
indefinite systems.
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guess for the Hessian is the unity matrix.

In case the objective function is formulated in modal domain, the Jacobian

∇ρk+1 of the objective function may be computed using Nelson’s method for

derivatives of eigenvalues and eigenvectors [125] making use of the structure of

the eigensystem. This method was later expanded by Friswell [52] to higher order

derivatives. The derivative of the undamped eigensystem

[K − λiM ]φi = 0, i = 1, ..., n (2.50)

with respect to the set of design parameters θ yields

[K − λiM ]
∂φi
∂θk

+

[
∂K

∂θk
− λi

∂M

∂θk

]
φi −

∂λi
∂θk

Mφi = 0. (2.51)

Multiplication of the eigenvector, using (2.50) and assuming mass normalized

eigenvectors, the derivative of the eigenvalues with respect to the design parameters

yields
∂λi
∂θk

= φTi

[
∂K

∂θk
− λi

∂M

∂θk

]
φi (2.52)

Insertion of the eigenvalue derivative in (2.51) yields the derivatives of the eigen-

vectors.

The big M method for quadratic optimization problems

During the solution of optimization problems using Sequential Quadratic Pro-

gramming, infeasible constraint sets appear on a regular basis. This is due to

linearization of the constraints of the original problem for formulation of quadratic

subproblems. If two constraints ρ ≤ 1 and ρ2 ≥ 0 are linearized at ρk = 3,

the linearization inequalities constraints of the subproblem are 3 + p ≤ 1 and

9 + 6p ≥ 0, which are inconsistent [126]. Furthermore, an initial point satisfying

all constraints is unknown when starting the iteration for solving the quadratic

subproblem. These difficulties may be faced using the big M -method, which was

originally designed for linear optimization problems. In contrast to many other

methods, the big M -method is a single-phase method that solves the optimization

problem directly without an additional phase needed to find an initial solution, as

it is done in many methods derived from the famous two-phase simplex algorithm

for linear optimization [126].

The basic idea of the big M -method is to allow a violation η of the constraints

and to penalize η with a big value M that is added to the objective function.
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2.3. Optimization algorithms for model updating

A linear penalization of the maximum constraint penalization is the classical ap-

proach for this method [48], being referred to as an exact penalty method using the

l∞ norm10. Following this approach, the basic quadratic program (see equation

(2.42)) is expanded to

min
p,η

1

2
pTQp+ cTp+ d + ηM

subject to aTi p− bi ≤ η ∀i ∈ E
−(aTi p− bi) ≤ η ∀i ∈ E (2.53)

bi − aTi p ≤ η ∀i ∈ I
0 ≤ η.

Setting y = [p η]T , the objective function of (2.53) is reformulated to

min
y

1

2
yT
[
Q 0

0 0

]
y + [cT M ]y + d. (2.54)

Being in standard format, this optimization problem can be solved using state of

the art solvers for quadratic optimization problems. A problem that arises with the

linear penalization of constraint violation is that the expanded matrix holding the

quadratic terms becomes singular. This is avoided with a quadratic penalization

of the maximum constraint violation. The objective function (2.54) then becomes

min
y

1

2
yT
[
Q 0

0 1

]
y + [cT M ]y + d, (2.55)

resulting in an optimization problem in standard-format that holds a nonsingular

matrix for the quadratic terms. It can be shown that the solution y∗ converges to

the solution of the original problem, p∗, with η = 0 for large values of M11 [48]. If

there are infeasible constraints, the violation of all these constraints is as small as

possible, yet still this solution can be taken as a Newton-step towards the solution

of the initial problem (2.37) [126].

10Other penalization methods employing the l1 or l2-norm are also existent, but these intro-
duce an additional variable for every constraint, possibly resulting in bigger optimization
problems than with the l∞-norm.

11M = 104 has proven to be big enough in typical model updating applications.
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2. Theoretical Background

Merit function

Merit functions provide an essential addition to Sequential Quadratic Program-

ming algorithms to ensure a global convergence of line-search algorithms. Another

approach to ensure global convergence, filter methods [126], is not considered here.

The merit function ensures that every iteration step decreases the objective func-

tion value ’sufficiently’. A special class of Merit functions can be seen as the

extension of the Armijo-condition to constrained optimization problems [48]. For

unconstrained optimization problems, the Armijo-condition is

ρ(θk + αkpk) ≤ ρ(xk) + ηαk∇ρTk pk, (2.56)

with η ∈ (0, 1). This condition ensures that a reduction in ρ is proportional to both

the step length αk and the directional derivative ∇ρTk pk. For expanding equation

(2.56) to the constrained case, a function that penalizes all constraint violations

using

φ1(θ, µ) = ρ(θ) + µ
∑
i∈E

|c(θ)|+ µ
∑
i∈I

[ci(θ)]− (2.57)

is introduced first, with µ being a parameter chosen sufficiently large to penalize

constraint violations. [ci(θ)]− is an operator for violations of inequality constraints,

being zero, if ci(θ) > 0 and −ci(θ), otherwise. This is a l1-penalization of con-

straint violations. Joining equations (2.56) and (2.57) results in

φ1(θk + αkpk, µk) ≤ φ1(θk, µk) + ηαkD(φ1(θk, µk),pk). (2.58)

Here, D(φ1(θk, µk),pk) denotes the directional derivative of φ1 in the direction

pk. Any step pk fulfilling this inequality is accepted, otherwise αk is reduced

iteratively. Assumptions for the choice of µ and η are given in [62] and [126].

2.3.3. Adaptive combination of Simulated Quenching and
Sequential Quadratic Programming

The solutions approximated by the Simulated Quenching algorithm are usually not

located exactly at the local optimum. Hence, Sequential Quadratic Programming is

executed after running Simulated Quenching, starting with the solution generated

by Simulated Quenching. If Model Updating is used for damage localization, it is

often assumed that damage is present at a single spot in the structure. This spot

is roughly estimated by Simulated Quenching, using the stiffnesses of the elements

as optimization parameters. Subsequently, Sequential Quadratic Programming is

started adaptively and the optimization problem is solved again with a reduced set
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2.3. Optimization algorithms for model updating

of parameters. Adaptively means here that the entry with the lowest stiffness pa-

rameter is interpreted as the possibly damaged area. The stiffness of this element

and the neighbored elements are considered as variable, whereas the remaining

elements are treated as non-variable elements (see Figure 2.3). This results in only

three variable element stiffnesses. Therefore, a Jacobian of the objective function

is computable fast. In doing so, a window is opened that is supposed to contain

the actual damaged area. At the same time, the number of optimization variables

is decreased, greatly reducing the effort for solving the problem. For the variable

elements, the stiffness resulting from Simulated Quenching is used, whereas the

stiffness parameters of the non-variable elements are set back to the initial values

of 1.0. This strategy may easily be adopted to higher dimensions, e.g., two or three

dimensional elements, but these are not considered within this thesis.

Simulated Quenching is a heuristic optimization procedure, meaning that ran-

domness is always present in the solutions generated by the algorithm. If the

global algorithm approximates a local instead of the global optimum, the local

algorithm is stuck in this local optimum and will converge to the ’wrong’ solution.

The combination of Simulated Quenching and Sequential Quadratic Programming

is started multiple times to allow statistical evaluation of the results generated

by the algorithm. In this context, Simulated Quenching can be regarded as a

technique to create a deliberate initial parameter vector for the local algorithm.
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Result of
global algorithm

Start of
local algorithm

Indicated
damage location

Stiffness variable

Stiffness fixed

Figure 2.3.: Adaptive reduction of the parameter set for damage localization. Only the
sections neighbored to the indicated area are set variable during the local
optimization run.
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3. Effective Application of Model

Updating

A general perspective on the methods and techniques needed to perform model

updating effectively is introduced in this chapter. Subsequently, two sections fo-

cus on important questions that often arise in applications of model updating.

These sections comprise the possible globality of the optimization problems and

the choice of metrics used for comparison of simulation results and measurement

data. The general effectiveness and the evaluation of results of the proposed algo-

rithm are demonstrated using theoretical examples of a tubular cantilever beam

model and a numerical model of a real scale offshore wind turbine. The latter

is used to prove the performance in an environment with more complex load and

control requirements. Both models are damaged virtually, and the model updating

approach is used to locate these damages. Since damage localization can be re-

garded as a special case of model updating, this approach proves both the general

capability for parameter identification and the effectiveness of damage localization

simultaneously.

3.1. General considerations on model updating

This section focuses on general questions that may arise when model updating is

to be applied. The topics discussed here are- to the best knowledge of the author-

unanswered in the literature. Firstly, a general overview of model updating and

the methods needed is given, focusing on updating itself as well as all preliminary

steps needed to initialize the updating problem. Subsequently, the need for global

optimization methods to solve model updating problems is proven using a straight-

forward example of a simple harmonic oscillator. Even in recent literature, many

authors still use local optimization methods to solve the problems, although it is

known that the problems provide several local minima. The section aims to deliver

a contribution to this finding. The third section introduces background knowledge

on the choice of metrics used to compare simulation results and measured data

and lists all items that influence the decision.
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Figure 3.1.: Workflow for iterative deterministic model updating. The initiation phase
consists of two steps: the application of data processing methods and nu-
merical modeling. Both steps are influenced by the metrics chosen. The
model updating phase is characterized by choice of metrics and optimiza-
tion methods that modify parameters of a numerical model. In case a
sequential algorithm is used, the result of the optimization algorithm may
be used to modify the parameter set and start a new optimization run.

3.1.1. Comprehensive workflow for model updating

Any model updating method starts with unprocessed measurement data and design

data of the investigated structure (see Figure 3.1). Different methods or combina-

tions of those may be used for processing the raw measurement data. The selection

of data processing methods such as data cleansing, filtering, and outlier analysis

is an important step, making the results of measurement and simulation compara-

ble. If, for instance, the objective function employed to compare numerical model

and measured data is formulated in modal domain, the associated methods used

to identify modal parameters from measurement data are also part of the data

preprocessing. Thus, it is obvious that the choice of data processing methods is

influenced by the metrics applied to update a model.

Based on the design data, a numerical model is built. This step is strongly

influenced by the executive engineer and the assumptions made during model-

ing. Different methods may be used depending on the application, covering all

state-of-the-art techniques to build numerical models in structural dynamics. Fur-

thermore, the modeling techniques are influenced by the metrics intended to use.

For instance, modeling the loads acting on the structure is necessary if the metric is

defined in the time domain, whereas this often complex modeling can be skipped
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3.1. General considerations on model updating

in the modal domain. Another important step in numerical modeling is an ap-

propriate parameterization of the model that covers all inaccuracies of the model.

Again, engineering judgment is important in this step. Any model that is not able

to represent the underlying physics of measured data to a certain accuracy level is

useless in model updating.

After the essential preparation steps, data processing, numerical modeling, and

parameterization, are completed, updating of the numerical model is started. Dif-

ferent metrics or combinations of those come into account, each having different

advantages and disadvantages (see Section 3.1.3). These metrics are utilized to

quantify the deviation between numerical model and measured data. The compu-

tation of steps towards the optimum can be entered with this information, which

is the core of the optimization algorithm used for model updating. Depending

on the algorithm, this computation may be affected by predefined constraints.

Since many parameters that modify physical properties of the model must remain

within a certain range, constraints are necessary to maintain physical feasibility of

the model or restrict parameters to remain within a reasonable range. Performing

the computed step results in updated parameters which are used to update the

numerical model. In iterative environments, this loop is repeated multiple times

until a convergence criterion is fulfilled and the iteration is aborted, if this criterion

is reached. The metrics may be reutilized to classify the results of the optimum

parameters in case several solutions are created by the algorithm. Afterwards,

updating may be started again, using a different optimization algorithm or a mod-

ified parameter set for computation of iteration steps. If an adaptive strategy is

implemented (as in Section 2.3.3), the results are interpreted automatically, and

the parameterization of the numerical model is adjusted accordingly. The com-

putation of steps mentioned in Figure 3.1 should involve a global optimization

algorithm, although many authors still use local algorithms for model updating.

Hence, the next section focuses on the globality of optimization problems used in

model updating.

3.1.2. On the globality of the optimization problem

Though it is known that problems arising in model updating are nonlinear and

provide several local minima [54, 102, 162], authors still employ local algorithms

for model updating, even in current publications [44,49,79,108,110,127,156,159].

This section aims to prove the need for global algorithms for model updating using

the mathematical concept of convexity. If the objective function of an optimization

problem is convex, then any local solution is a global solution. The feasible set

described by the constraints must also be convex if constraints are added to this
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a

b

Figure 3.2.: Convex(left) and non-convex(right) sets.

optimization problem [48]. Otherwise, convexity is lost, even for a convex objective

function. Both features can not be guaranteed in model updating. The term convex

can be applied to both sets and functions. An arbitrary set S ∈ Rn is convex if

any line connecting two points a and b in S lies entirely inside S. If not so, the

set is regarded to be non-convex. Transferred to functions, this can be expressed

using

f(αa+ (1− α)b)− αf(a)− (1− α)f(b) ≤ 0 ∀ α ∈ [0, 1], (3.1)

where f is any function to be tested for convexity.

Assume a simple harmonic oscillator where both the mass m and the stiffness k

are unknown. The eigenfrequency of this system is determined by ωs =
√

k
m

.

A measured eigenfrequency is determined to ωm = 1.5Hz and the model shall

be adjusted via variations of k and m. The metric ρω is applied to compare

measurement and simulation results, hence

ρω =
1.5−

√
k
m

1.5
. (3.2)

Suppose two parameter combinations a and b, with a = (k m) = (3 2) and

b = (2.5 4). For evaluation of equation (3.1), α is chosen to 0.2. Evalua-

tion of (3.1) using these arbitrarily chosen values yields ρω(αa + (1 − α)b) =

0.4335, f(a) = 0.1835 and f(b) = 0.4733. Evaluation of equation (3.1) yields

ρω(αa + (1 − α)b) − αρω(a) − (1 − α)ρω(b) = 0.0184 > 0, which proves the non-

convexity of the objective function.

A visualization of the objective function (3.2) under variations of m and k is drawn

in Figure 3.3. The illustrated straight red line breaks through the surface multiple

times, proving the non-convexity of the function optically. Other objective func-

tions introduced in chapter 2 reveal a similar behavior.

With this proof of non-convexity of the model updating optimization problem,
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3.1. General considerations on model updating

Figure 3.3.: Non-convex shape of ρω used as objective function at simple harmonic
oscillator system.

it is obvious that a global optimization method is needed to guarantee to find

the global optimum, since the problem may exhibit more than a single optimum.

Global optimization methods often provide a slow convergence towards the ex-

act optimum. Afterwards, a local optimization method may be used to converge

towards the exact optimum. The choice of metrics used for comparison of mea-

surement and simulation data influences the convexity of the function. Hence,

the subsequent section gives information on the choice of metrics employed for

updating a numerical model.

3.1.3. On the choice of error metrics for model updating

The choice of metrics is essential for successful model updating. Any metric must

reliably be able to identify differences between model and measurement data. In

case model updating is employed for damage localization, the metrics should pro-

vide sensitivity to the occurring damage. In applications in structural dynamics,

metrics may be defined based on modal or transient simulations, each providing

different advantages and disadvantages (see Table 3.1).

In addition to the sensitivity to changes in the system, the objective function must

supply a certain level of continuity, depending on the optimization algorithm that
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3. Effective Application of Model Updating

is employed in order to solve the problem. For instance, if an algorithm employs

the Hessian1, the function must provide C2-steadiness at least.

The numerical effort needed to quantify the deviation between numerical model

and measured data is essential. There are quite advanced techniques to com-

pare measurement data and models, such as the dynamic time warping algorithm

known from speech recognition [137]. Since every optimization run consists of sev-

eral thousand evaluations of the objective function, the computational cost needed

for its evaluation should be kept in mind, although in most cases the solution of the

numerical model consumes the major part of the time needed for a single iteration.

The choice of metrics influences the signal processing methods used to process the

raw measurement data, as stated in Section 3.1.1. In case eigenvectors are used

for model updating, additional methods with manifold underlying mathematics

may be needed to identify these from measurement data such as the stochastic

subspace identification. If time series are compared, advanced filtering methods

may be beneficial to filter both results from the numerical model and measured

data. The quality and effect of signal processing are often heavily influenced by the

experience and qualification of the engineer assigned to model updating. If these

methods have to be implemented for model updating, the implementation effort

becomes another important argument that may influence decisions on metrics.

The choice of metrics is essential and yet will always be influenced by the engineer,

available soft- and hardware and especially by the investigated problems. To il-

lustrate this choice, the next section introduces the main ideas of model updating

using a theoretical example.

3.2. Plausibility test of damage localization using

a simulated cantilever beam

Any damage is supposed to alter the physical properties of a structure, including

the stiffness [42]. On the other hand, most model updating applications use beam

models to localize damages, which is a strong simplification of the real physical

behavior. With the beam representation being a formulation to capture global

structural behavior, the local effect of damage induced stiffness reduction can only

be considered inaccurately. Hence, this section aims to verify the hypothesis that

beam elements may be used for localization of local structural changes employing

the example of a cantilever system.

1The Sequential Quadratic Programming method used as a local algorithm throughout this
thesis employs the Hessian matrix.
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Table 3.1.: Advantages and disadvantages of different analysis types for comparison of
measurement data and numerical models in structural dynamics. Transient
signals may be compared either in time or frequency domain

Analysis Domain Numerical Modeling Measurement data

Modal

+Fast solution procedures +averaging of measurements
+damping may be neglected -mode shape tracking needed
+analytical solutions possible -system identification needed
-linear time invariant models -subset of measured information

Transient

Freq.
+nonlinear signature +averaging may be possible
+no phase balancing needed -amplitudes load dependent

Time

+fully nonlinear models +full measured information
-damping formulation needed -load measurements needed
-phase balancing needed -advanced signal processing needed
-slow solution procedures -nontrivial choice of metrics
-load modeling needed

Therefore, a model consisting partially of linear four-node shell and linear two-

node Bernoulli-beam elements is simulated (see Figure 3.4). The shell section is

modeled using 72 elements in the circumferential direction and 60 elements along

its length L. The cantilever has tubular cross-sectional properties with a diameter

of 200mm and a wall thickness of 1.5mm. It is 4000mm long and assumed to

be made of steel (E = 2.1 · 1011 N
mm2 , µ = 0.3, ρ = 7850 kg

m3 ). An impulse load

with a magnitude of 105N is applied to the free end of the structure. This load

is released after 0.05s. A total time of 0.5s is simulated with a time increment of

0.001s. Certain shell elements are deleted to simulate the effect of a local crack

in the material, located L/2 from the clamping. Elements are deleted in a single

row to simulate a local stiffness decrease. Three different damage severities are

simulated, with two, four and six elements being deleted radially2. The transition

from sections modeled by beam and shell elements is implemented using a flexible

contact surface approach. By this approach, the flexibility of the tube is included

in the transition while warping effects are not considered.

In a second model, the shell section is also modeled by beam elements to validate

the methodology, using the same boundary conditions, loads and cross-sectional

properties. Six beam elements are used to represent the dynamic behavior of the

structure. These are numbered consecutively from 1 to 6, starting at the clamping.

2Since 72 elements are used in the circumferential direction, this yields an angular defect of
10◦, 20◦ and 30◦
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Figure 3.4.: Simulated cantilever beam, modeled partially using shell elements and
beam elements, with the beam section providing the same geometrical
properties as the shell section. The structure is clamped at the left-hand
side. Damage is simulated gradually at L/2 in the shell segment with
∆α = 10◦, 20◦, 30◦. D=200mm, L=2000mm, t=1.5mm.

Hence, the damage is located in element number 2. This simplified model is then

updated to reproduce the response of the more complex, damaged shell model.

Damping and gravitation are neglected in both models.

The structural response is evaluated and compared using the accelerations at

2/3L, L, 4/3L, 5/3L, and 2L, representing locations of five assumed accelerometers

(MP1 - MP5 in Figure 3.4) recording with a frequency of 1000Hz. Figure 3.5

illustrates time series from both the shell model with ∆α = 0 and the beam model

at MP3. The plot reveals that high-frequency amplitudes of the beam model

are bigger than those of the shell model, whereas low-frequency contents agree

well. This is assumed to be caused by activation of the Poisson effect in the

shell elements, which expends a part of the total energy induced to the system by

F (t). Since beam theory is a rather abstract representation, the Poisson effect is

not considered in beam theory, and the entire energy is released in translational

vibrations. Due to the amplitude difference, a direct comparison of time series

using the time-domain metric ρl2 is regarded to be arguable, although it could be

circumvented using filters. Therefore, the signals are transferred to the frequency

domain using power spectral density and ρs is employed to quantify the difference

between shell and beam models throughout this section. Comparison of normalized

power spectral densities from both models is drawn in Figure 3.6. The impression

that high-frequency contents of the signals differ more is confirmed by this plot,

though peaks at high frequencies are smaller than the low-frequency content by
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Figure 3.5.: Comparison of time series computed using beam and shell representations
of cantilever beam, evaluated at MP3 without damage (∆α = 0).

Table 3.2.: Comparison of eigenfrequencies of the shell model in Hertz for different
damage severities. Eigenfrequencies of perpendicular bending mode shapes
in damaged configurations differ due to the damage representation (Fig-
ure 3.4) (b=bending shape, t=torsional shape)

∆α = 0◦ ∆α = 10◦ ∆α = 20◦ ∆α = 30◦

1st b 11.819 11.810/11.819 11.792/11.819 11.763/11.819
2nd b 72.908 72.910/72.911 72.911/72.912 72.906/72.911
3rd b 196.63 196.57/196.68 196.38/196.72 196.08/196.76
4th t 200.91 200.80 200.65 200.45
5th t 324.45 324.33 324.08 323.69
6th b 370.75 370.62/370.80 370.32/370.85 369.82/370.89

three powers of ten.

The eigenfrequencies of the shell model are listed in Table 3.2 for different damage

severities. Due to the relatively small damage, the eigenfrequencies alter only up

to a few percent. The eigenfrequencies with mode shapes in the direction of the

damage drop, whereas some frequencies in perpendicular direction raise somewhat

(see Table 3.2). A visual check of the mode shapes reveals that these do not change

significantly with the damage.

The beam model is parameterized using six parameters ( θ ∈ R6×1). Each

parameter modifies the stiffness of a single beam element. These parameters are

then adjusted to match the responses of the damaged shell model using the two-

step model updating algorithm introduced in chapter 2. Since element number two
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Figure 3.6.: Comparison of normalized power spectral density computed using beam
and shell representations of cantilever beam, evaluated at MP3 without
damage (∆α = 0).

of the beam model covers the area where elements are deleted in the shell model,

the stiffness parameter θ2 should be reduced by the model updating algorithm,

indicating the damage to be in the section covered by this element.

The optimization problem being solved to localize the damage is

min
θ

ρs(θ) (3.3a)

subject to θi ≥ 0.9 ∀ i ∈ [1..6] (3.3b)

θi ≤ 1.01 ∀ i ∈ [1..6] (3.3c)

6∑
i=1

(1− θi) ≤ 0.1, (3.3d)

meaning that the objective function (equation (3.3a)) shall be minimized while

fulfilling the constraints (equations (3.3b)-(3.3d)) simultaneously. The constraint

equations (3.3b) and (3.3c) are box-constraints that restrict all parameters to re-

main within a certain range. This is useful to ensure physical feasibility of the

parameters3 and to keep the values within a realistic range. Again, engineering

judgment is needed to define this range. All parameters are enforced to be greater

than 0.9, meaning a maximum stiffness decrease of 10%. A small increase is allowed

for numerical reasons for all parameters. Constraint equation (3.3d) is introduced

in [148]. It is added assuming that damage is present at a single spot only. The

3For instance, a numerical model would fail if a mass becomes negative.
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Table 3.3.: Minimal objective function values and corresponding stiffness parameters
from ten Simulated Quenching runs using ρs at the cantilever model with
∆α = 10◦. The objective function value at the initiation of the optimiza-
tion is normalized to one, all other objective function values are adjusted
accordingly. Minimum values are highlighted in gray.

SQ run Objective element number
number Function Value 1 2 3 4 5 6

1 0.597 1.008 0.953 1.009 1.004 0.993 0.983

2 0.636 1.010 0.936 1.006 1.000 0.996 0.995

3 0.627 1.009 0.968 1.000 1.005 1.000 0.947

4 0.579 1.009 0.948 1.008 1.006 0.996 0.988

5 0.588 1.008 0.941 1.006 1.004 1.002 0.982

6 0.579 1.009 0.942 1.01 1.006 0.992 1.004

7 0.607 1.008 0.942 0.999 1.006 1.005 0.98

8 0.649 1.004 0.942 1.001 1.008 1.009 0.993

9 0.58 1.008 0.957 1.004 1.010 0.996 0.973

10 0.614 1.005 0.931 0.998 1.009 1.003 0.989

M 0.606 1.008 0.946 1.004 1.006 0.999 0.983
σ 0.024 0.002 0.01 0.004 0.003 0.005 0.015

summation ensures that a parameter can reach values close to the maximum stiff-

ness reduction allowed (10%) only if all other parameters are close to the initial

value 1.0.

Figure 3.7 illustrates the evaluated objective function normalized to the initial

objective function value throughout a single Simulated Quenching run to solve

problem (3.3). The plot exposes the ability of the algorithm to leave local minima.

It also reveals that the final solution must not necessarily be the solution with

the smallest objective function value. This can only be guaranteed for an infinite

starting temperature [64]. Hence, the solution with the smallest objective function

value is taken as the optimum solution of a Simulated Quenching run instead of

the final one. Results of ten Simulated Quenching runs to solve problem (3.3)

for the case ∆α = 10◦ are illustrated in Table 3.3. This table lists the normalized

objective function values and the according parameter vectors for the optimum

solution of each run. All runs are started from the initial solution (all parameters
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Figure 3.7.: Objective function values of a single Simulated Quenching run to solve
problem (3.3), normalized with respect to the initial value.
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Figure 3.8.: Objective function values of a single Sequential Quadratic Programming
run to solve problem (3.3), normalized with respect to the initial value.
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3.2. Plausibility test of damage localization using a simulated cantilever beam

Table 3.4.: Minimal objective function values and corresponding stiffness parameters
from ten Sequential Quadratic Programming runs using ρs at the cantilever
model with ∆α = 10◦, starting with the results from Table 3.3. The
objective function value at the initiation of the optimization is normalized
to one, all other objective function values are adjusted accordingly.

SQP run Objective element number
number Function Value 1 2 3 4 5 6

1 0.493 1.01 0.913 1.01 1.0 1.0 1.0

2 0.443 1.01 0.93 1.007 1.0 1.0 1.0

3 0.601 1.0 1.0 1.0 1.0 0.992 0.907

4 0.438 1.01 0.943 1.0 1.0 1.0 1.01

5 0.419 1.01 0.929 1.01 1.0 1.0 1.0

6 0.417 1.01 0.932 1.01 1.0 1.0 1.0

7 0.417 1.01 0.932 1.01 1.0 1.0 1.0

8 0.521 1.009 0.914 1.008 1.0 1.0 1.0

9 0.498 1.01 0.914 1.009 1.0 1.0 1.0

10 0.511 1.009 0.914 1.008 1.0 1.0 1.0

set to 1.0). The different solutions are caused by the randomness of the Simu-

lated Quenching algorithm. From a probabilistic point of view, finding the correct

solution can not be guaranteed using 10 runs, but the experience of the various

examples presented in this thesis reveals that 10 runs are enough to find the correct

solution. If the correct solution can not be found using ten runs, it will most likely

not be found using more runs. Furthermore, expected values and standard devia-

tions are given for each parameter and the objective function values in Table 3.3.

The objective function value may be used to distinguish wrong from correct so-

lutions. In this case, all parameters modify element stiffnesses. Hence, a small

parameter entry indicates a reduced stiffness in this area and thus the estimated

damaged area. A clear tendency towards element two being the damaged area

is visible in these results since it has the lowest stiffness value in nine runs. An-

other optimum seems to be located at element six by looking at run number three.

Furthermore, the expectation value of parameter two is the lowest of all six pa-

rameters.

Following the adaptive strategy introduced in chapter 2.3.3, Sequential Quadratic

Programming is started, taking the parameters from Table 3.3 as start vectors.

All parameters being outside of the adaptive window are reset to 1.0. Figure 3.8

illustrates the convergence of a single Sequential Quadratic Programming run.
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3. Effective Application of Model Updating

The normalized objective function value is reduced by 30% in this run. The

distinct quadratic convergence of the method is lost due to the damped BFGS-

approximation of the Hessian. Especially in the first step, the convergence is slow

due to erroneous choices of the Hessian. The convergence speeds up after few it-

erations because the approximation gains precision.

Resulting parameters from ten runs are illustrated in Table 3.4. Sequential Quadratic

Programming reduces the objective function values further which confirms the

statement that solutions are approximated by the Simulated Quenching methods

whereas the Sequential Quadratic Programming method converges towards the

real optimum. The final objective function value is used to distinguish correct

from wrong solutions. Run number three is assumed to be a wrong solution since

its final objective function value is 30% higher than the values of the correct so-

lutions. This difference is only visible after running the local algorithm, proving

the usefulness of its application, compare Tables 3.3 and 3.4. Damage localization

is successful in all investigated scenarios and element 2 is reliably identified as

the damaged area. Parameter two is lower for increased damages (see Table 3.5).

Effects of damages can only be considered in an inaccurate manner because the

length of the crack is small (local scale) in comparison to the length of each beam

element (global scale). Only the bending stiffness of complete beam elements may

be changed using this approach. Furthermore, increasing ∆α has a big influence

on the geometrical moment of inertia in the beginning (see Figure 3.9(a) and Ap-

pendix A.2) and its influence is decreasing nonlinearly with growing values for

∆α due to the nonlinear nature of the geometrical moment of inertia. Hence, the

rather global representation of damages and the nonlinear, rather local effect of

damage prevents quantification of damages.

In addition to damage severity, results are also influenced by the location of

damage within the shell (see Figure 3.9). If the damage location is rotated by

alpha = 45◦ around the center of the tubular section in the cross sectional plane4,

the according stiffness parameter gets a higher value (see column ∆α = 10◦, 45◦

in Table 3.5) due to the smaller influence of the stiffness reduction in the direction

contemplated for the evaluation of ρs. In this study, only the signals in x-direction

are utilized for the evaluation of the metric. The practical way to deal with this

would be to simply use both x- and y-direction for the evaluation of the objective

function. Comparison with the analytical stiffness reductions reveals that small

damages are overestimated whereas bigger damages are underestimated. This ob-

servation confirms Rytter’s assumption [142] that additional and often more com-

4A rotation of 45◦ is the most disadvantageous configuration. A rotation of 90◦ would
imply to use the perpendicular direction for the evaluation. Most accelerometers used in
structural systems support this by allowing to record signals from three spatial directions.
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3.3. Application to a simulated real scale offshore wind turbine
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Figure 3.9.: Influence of damage location on measured signal at the tubular beam.
Assuming excitation in x-direction, only the measured signal in x-direction
is influenced by the damage in case (a), whereas both x- and y-directions
are influenced in case (b). However, the signal solely in x-direction is less
influenced in case (b).

Table 3.5.: Averaged stiffness parameters of the damaged area after model updating
for different damage severities and according analytical stiffnesses.

Damage scenario ∆α = 30◦ ∆α = 20◦ ∆α = 10◦ ∆α = 10◦,α = 45◦

Analytical remaining stiffness 0.837 0.890 0.945 0.972
Stiffness parameter 2 0.911 0.920 0.926 0.931

plex methods are needed to enter a higher level of structural health monitoring.

3.3. Application to a simulated real scale offshore

wind turbine

The OC3-Phase I wind turbine [81] is chosen as an example to demonstrate the

functionality of the algorithm using a purely numerical study employing a model

with more complex, transient loads and control algorithms. While these are fully

controlled in the previous example, the loading conditions are much more complex

in this example. Loading conditions are simulated by an artificial wind field. Re-

sulting loads are generated by the simulation code. Geometric properties of this

5-MW wind turbine are given in Table 3.6. This section is aimed to demonstrate

the capability of the algorithm to be functional in a more complex environment

such as a wind turbine in operation, including aerodynamic loads, complex damp-

ing and coupled dynamic characteristics. All results presented in this section are
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3. Effective Application of Model Updating

published in [147]. The investigated structure is made of steel. Hence, Young’s

modulus of 210GPa and a shear modulus of 80.8GPa are assumed. Following [81],

the density is increased to 8500 kg
m3 to account for paint, bolts, welds, and flanges,

which are not considered in the tower data. The tower and monopile are mod-

eled using thirteen linear two-node Timoshenko beam elements, three modeling

the monopile and ten modeling the tower. Although being quite coarse, the mesh

is found to be sufficiently fine employing a convergence analysis. The structure is

clamped at the ground. The rotor-nacelle assembly is modeled as a single mass

point. Validity of this assumption for substructure dynamics is proven in [157].

Simulated damage is induced using a stiffness reduction of 10% in the area of the

grouted joint, a component that is known to be quite prone to damage. The ele-

ments are numbered consecutively from one to thirteen, beginning from the ground

(see Figure 3.10). Hence, element number four, the tower base element, has a re-

duced stiffness. The resulting differences in the natural frequencies are illustrated

in Table 3.7.

Since the comparison of model and measurement using a modal approach is re-

garded as the ’classical approach’, these frequencies and the corresponding mode

shapes are recorded and treated as measured quantities subsequently. Only the

first three eigenmodes are considered in this study, which are known to be identi-

fied on a regular basis in real offshore environments [68]. Four sensors are assumed

for this study at a height of 10m, 31m, 59m and 87.6m above mean sea level. As a

consequence, the mode shapes are known at these four nodes. ρω+φ (see equation

(2.23)) is used as objective function to account for both eigenfrequencies and mode

shapes, resulting in the optimization problem

min
θ

ρω+φ(θ) (3.4a)

subject to θi ≥ 0.75 ∀ i ∈ [1..n] (3.4b)

θi ≤ 1.01 ∀ i ∈ [1..n] (3.4c)∑
i

(1− θi) ≤ 0.25. (3.4d)

Each optimization parameter in θ ∈ Rn×1 controls Young’s and shear modulus of

one element. The validity of this simplified damage representation is demonstrated

in the previous section. The individually allowed stiffness reduction is restricted

to 25 percent (3.4b), for numerical reasons a small increase of one percent is al-

lowed (3.4c). Without this increase, finding a new random solution starting from

1.0 would be numerically hard in the way implemented in the algorithm. It is as-

sumed that only one element is damaged, hence an additional constraint is defined
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3.3. Application to a simulated real scale offshore wind turbine

Table 3.6.: Geometric properties of the OC3 monopile model.

Rotor-Nacelle-Assembly mass 350t
Nacelle height 87.6m
Tower length 77.6m
Tower base diameter 6m
Tower base wall thickness 0.027m
Tower top diameter 3.87m
Tower top wall thickness 0.019m
Monopile length 30m
Monopile diameter 6m
Monopile wall thickness 0.06m

Figure 3.10.: Element numbering of the simulated monopile model. Damage is simu-
lated by a decreased stiffness (10%) of the element marked in black.

Table 3.7.: Comparison of damaged and undamaged eigenfrequencies at the monopile
model resulting from a stiffness reduction of 10% in element four (see
Figure 3.10).

undamaged damaged Deviation in %

1st 0.30469 0.30265 0.67
2nd 2.2293 2.2285 0.04
3rd 6.2556 6.2180 0.60
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Table 3.8.: Resulting minimal objective function values and corresponding stiffness parameters from ten Simulated Quenching
runs using ρω+φ at the monopile model. The objective function value at the initiation of the optimization is
normalized to one. All other objective function values are adjusted accordingly. Minimum values are highlighted
in gray.
SQ run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.748 0.992 1.001 0.997 0.955 1.009 0.975 1.003 0.982 0.981 1.006 0.979 1.009 1.005

2 0.919 0.993 0.993 0.993 0.993 0.999 1.008 0.997 0.989 1.005 0.997 0.990 1.004 0.993

3 0.888 0.988 0.997 0.993 0.978 0.923 0.979 0.984 1.009 0.997 0.987 0.995 0.977 0.960

4 0.770 0.995 1.004 0.9691 0.9698 1.001 0.982 0.987 1.004 0.989 0.987 1.009 0.995 0.975

5 0.817 0.982 1.000 1.007 0.974 0.98 1.000 0.998 0.990 0.975 0.989 0.988 1.006 0.997

6 0.776 0.977 1.002 0.975 0.986 0.964 1.002 1.009 0.988 1.002 0.987 1.001 1.006 1.001

7 0.887 1.002 0.999 1.008 0.967 0.992 1.008 0.979 1.004 0.99 0.987 0.985 0.994 0.986

8 0.777 0.977 0.996 1.006 0.956 0.982 0.990 1.000 0.999 1.004 0.994 0.995 0.977 0.999

9 0.919 1.000 0.992 0.985 0.993 1.007 0.992 1.004 0.984 0.997 0.996 1.001 0.996 1.000

10 0.880 0.999 1.006 0.989 0.957 0.938 0.989 0.994 0.998 0.982 1.001 0.986 0.949 0.995
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Table 3.9.: Resulting minimal objective function values and corresponding stiffness parameters from ten Sequential Quadratic
Programming runs, using ρω+φ at the monopile model, starting adaptively with the results from Table 3.8. The
lower section of the Table contains the runs with a shifted window. In the last row, the Sequential Quadratic
Programming algorithm is started with the same window, with all parameters set back to 1.0 initially.

SQP run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.00074 1.0 1.0 0.997 0.910 0.992 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 0.19452 1.0 1.0 1.0 1.0 1.0 1.0 0.969 1.010 0.99138 1.0 1.0 1.0 1.0

3 0.00454 1.0 1.0 1.0 0.919 0.907 0.971 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 0.00811 1.0 0.993 0.945 0.929 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 0.00093 1.0 1.0 0.976 0.913 0.975 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6 0.00048 1.0 1.0 1.0 0.906 0.950 1.010 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7 0.00051 1.0 1.0 0.982 0.909 0.982 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

8 0.00048 1.0 1.0 0.987 0.909 0.966 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

9 0.21446 1.0 1.0 1.0 1.0 1.0 1.0 1.004 0.984 0.997 1.0 1.0 1.0 1.0

10 0.00245 1.0 1.0 1.0 0.914 0.929 0.980 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 0.00431 1.0 1.0 0.982 0.919 0.962 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 0.00031 1.0 1.0 1.010 0.893 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6 0.00489 1.0 1.0 0.947 0.931 0.950 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 0.00253 1.0 1.0 0.972 0.921 0.923 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

starting from 1.0 0.00007 1.0 1.0 0.999 0.902 0.983 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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3. Effective Application of Model Updating

ensuring that only a single parameter can be close to the maximum estimated

stiffness reduction (3.4d).

Beginning with the undamaged configuration, Simulated Quenching is started to

solve the optimization problem (3.4). According to [64], the initial temperature

T0 is chosen to 500 and N to 50. Based on expert knowledge, the annealing factor

C and the final temperature Tend are chosen to 0.95 and 0.5, respectively5. The

resulting parameter vectors with the lowest corresponding objective function value

of ten Simulated Quenching runs, all starting with the initial parameter vector,

are shown in Table 3.8. Simulated Quenching finds two local minima, one located

around the correct solution (element four) and one at element eight. Although in

a similar range, the objective function values are smaller for the solutions being

closer to the correct location. This can be taken as the first indication of element

four being the correct damage location.

Subsequently, the optimization problem (3.4) is modified according to section

2.3.3 and Sequential Quadratic Programming is started with a reduced set of pa-

rameters. The modification contains the assumption that the minimum parameter

is the possibly damaged area and only this parameter and the direct neighbors are

treated as variable. For the variable elements, the stiffness resulting from Sim-

ulated Quenching is used, whereas the stiffness parameters of the non variable

elements are set back to the initial value 1.0. The resulting objective function val-

ues are displayed in Figure 3.11 and the parameter vectors are drawn in Table 3.9.

Figure 3.11 reveals the two solutions that are far away from the actual solution

(run number two and nine) as wrong solutions. After running Sequential Quadratic

Programming, the objective function values of right and wrong solutions are in a

different range. If Simulated Quenching estimates the correct solution (runs num-

ber one, five, seven and eight), only the correct value is decreased (see Table 3.9),

the other values remain close to 1.0. Even the stiffness reduction is estimated with

an accuracy of 1.5% (see Table 3.9, element number 4) in these cases. Although

this may be seen as a hint towards damage quantification, please note that a beam

model is updated to reproduce the response of the same beam model with reduced

stiffness in this example. Hence, there are no modeling errors in this theoretical

study. Nevertheless, this analysis is useful to demonstrate the strength of the ap-

proach. All solutions that point in the neighborhood of the correct solution (runs

number three, four, six and ten) reveal that two stiffness parameters are decreased

simultaneously, pointing to the damaged area. Based on these results, the adap-

tive window (compare section 2.3.3) can be moved towards the direction with low

stiffnesses, and a new Sequential Quadratic Programming run can be started. The

5These values have been found to perform well in the applications presented within this
thesis. Therefore, this set up is employed in all examples presented throughout the thesis.
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3.3. Application to a simulated real scale offshore wind turbine
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Figure 3.11.: Final objective function values after running ten Simulated Quenching
runs and Sequential Quadratic Programming adaptively, using ρω+φ as
objective function.

results of this optimization with a shifted window are shown in the lower section

of Table 3.9. The most distinctive result is achieved, if the original stiffnesses (see

Table 3.9, line ’starting from 1.0’) are used as a start vector of the new Sequential

Quadratic Programming iteration with a shifted window instead of the values gen-

erated using the adaptive Sequential Quadratic Programming approach with the

original parameter window.

For comparison of the ’classical approach’ using modal properties and a metric

using a direct comparison of time series, the aero-servo-hydro-elastic computer-

aided engineering tool FAST [80] is used to simulate transient dynamics of the

wind turbine. The model has the same geometric properties, as described in the

previous section (see Figure 3.12). Furthermore, the consideration of aerodynamic

loads requires a more sophisticated model of the rotor and the wind turbine control

which is given by the software. Hence, the rotor is modeled as described in [81].

A steady wind field with a velocity of 12m
s

is simulated, the controller given in

FAST is employed and periodic waves with a significant height of 6m are modeled

to account for hydrodynamic loads. Following the preceding section, the tower and

monopile are built out of thirteen beam elements, and the stiffness of the tower base

element is reduced by ten percent. Again, four measurement sensors are assumed

to be placed in the previously described locations. The acceleration signals at these

locations are used to evaluate the objective function. The difference of the tower

top acceleration signal of the damaged and undamaged system state is illustrated

in Figure 3.13, revealing slight differences between the two signals graphically.
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3. Effective Application of Model Updating

30m

77.6m

D=6m

D=6m

D=3.87m

Figure 3.12.: Overview on geometric properties of the NREL 5MW wind turbine.

Figure 3.13.: Comparison of the monopiles damaged and undamaged tower top accel-
eration time series in wind direction, filtered with a Butterworth filter.
The initial 30 seconds are skipped due to the transient procedure in this
phase.
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Table 3.10.: Resulting minimal objective function values and corresponding stiffness parameters from eight Simulated
Quenching runs using ρl2 at the monopile model. Minimum values are highlighted in gray.

SQ run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0091 0.995 0.989 0.998 1.005 0.986 0.999 0.995 1.009 0.996 1.001 0.999 0.995 0.991

2 0.0624 1.008 1.007 0.983 0.996 1.003 1.00 0.989 0.995 0.985 0.999 0.980 0.992 1.004

3 0.0786 0.989 0.9866 1.001 0.998 0.991 0.993 1.009 0.990 0.9862 0.995 1.001 1.008 0.993

4 0.0143 0.997 0.984 1.004 0.982 0.982 1.005 1.005 1.002 0.991 0.992 1.008 1.002 0.994

5 0.0948 0.992 0.993 1.007 1.006 1.001 0.991 0.986 0.996 0.996 0.995 0.993 0.997 1.003

6 0.0053 0.990 1.000 0.989 0.981 0.986 0.995 1.00254 0.999 0.994 0.995 1.000 0.998 1.002

7 0.0196 0.991 0.991 0.999 1.007 1.001 0.998 0.994 0.9981 0.964 1.006 0.989 1.000 0.987

8 0.0085 0.998 0.984 0.978 0.984 1.002 1.002 0.999 0.989 0.996 1.003 0.993 1.004 0.999
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Table 3.11.: Resulting minimal objective function values and corresponding stiffness parameters from eight Sequential
Quadratic Programming runs using ρl2 at the monopile model, starting adaptively with the results from Ta-
ble 3.10.
SQP run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1.4510·10-5 1.0 1.0 1.0 0.967 0.981 0.992 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 0.0001266 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.932 0.957 1.01 1.0

3 7.8210·10-5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.959 0.969 0.981 1.0 1.0 1.0

4 0.4202·10-5 1.0 1.0 0.981 0.968 0.994 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 7.6039·10-5 1.0 1.0 1.0 1.0 1.0 0.963 1.007 0.970 1.0 1.0 1.0 1.0 1.0

6 2.5513·10-5 1.0 1.0 0.981 0.972 0.981 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7 8.9429·10-5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.994 0.938 0.9781 1.0 1.0 1.0

8 3.7350·10-5 1.0 0.994 0.985 0.9534 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Figure 3.14.: Final objective function values after running eight Simulated Quenching
runs and Sequential Quadratic Programming adaptively using ρl2 at the
monopile model.

For damage localization, ρl2 is used as an objective function and the constraints

(3.4b)-(3.4d) from the modal-based example are reused. The results of eight Simu-

lated Quenching runs are illustrated in Table 3.10. In 50 percent of the Simulated

Quenching runs, the solution points to the damaged area, whereas the remaining

four solutions point to areas located at a higher position in the tower. Based on

these results, Sequential Quadratic Programming is started adaptively. Table 3.11

provides an overview of the results of the Sequential Quadratic Programming al-

gorithm. In case Simulated Quenching points to the correct location (runs number

four and six), Sequential Quadratic Programming decreases the correct stiffness

parameter, but the decrease is not as distinct as in the modal-based example. If

the solutions generated by Simulated Quenching point close to the correct solu-

tion (run number one and eight), the solutions generated by Sequential Quadratic

Programming point to the correct solution. The final objective function values

of the damage localization using time series are compared in Figure 3.14. This

diagram can easily be used to distinguish correct from wrong solutions, the objec-

tive function values of the correct solutions (run number one, four, six and eight)

are up to 50% smaller than the objective function values of the wrong solutions.

The difference between correct and wrong solutions is not as distinctive as in the

modal-based example, but different enough to draw a clear decision. This example

proves that damage localization is possible with both modal properties and time
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3. Effective Application of Model Updating

series employed as the objective function. Since many error sources are excluded

in updating model-to-model, the objective function values are close to zero.

3.4. Conclusion

This chapter starts with general thoughts on model updating. Firstly, a global view

of iterative model updating is given, and a comprehensive overview on all methods

and equipment needed to effectively update numerical models to measured data

using iterative optimization algorithms in structural dynamics is introduced. A

second section focuses on the globality of optimization problems arising in model

updating, proving that the objective functions are non-convex and hence a global

optimization algorithm is needed to solve the problems accurately. Thirdly, advan-

tages and disadvantages of different metrics used to compare measurement data

and results of numerical models are given.

In the following sections, the adaptive two-step model updating algorithm intro-

duced in chapter 2 is utilized to two theoretical examples: a simulated cantilever

beam with a more realistic damage representation than usually used in model up-

dating and a simulated offshore wind turbine. The simulated cantilever beam is

partially modeled by shell elements. Several shell elements are deleted to simulate

a crack in the material more realistically than with beam elements. This damage

is then successfully located using a beam representation of the structure, verifying

this often used simplification for damage localization. The second example is a

simulated offshore wind turbine on a monopile foundation that is damaged in the

area of the grouted joint, an assembly that is known to be quite prone to damage.

This example demonstrates the functionality in more complex environments with

complex loads and controls acting on the structure. Damage is simulated using a

stiffness decrease of 10%.

Damage localization is successful in both examples. Furthermore, the optimization

problems in both examples reveal to have at least two local minima, approving the

need for a global optimization algorithm for model updating. The final objective

function value is used to distinguish correct from wrong solutions. A metric defined

in the frequency domain is employed to update the cantilever, whereas metrics in

modal and time domain are compared using the example of a simulated offshore

wind turbine. Though damage localization is in focus here, the effectiveness of

the algorithm for parameter adjustments is proven simultaneously, since a stiffness

decrease is also a modified parameter that has to be identified and adjusted by the

algorithm. The cantilever model proves that even the rather global beam represen-

tation can capture the local effects of damages. While the damage representation

fits perfectly to the reference data in the wind turbine example, this is not the case
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in the cantilever beam example. This correlation is visible in the final objective

function values. Note that these are normalized. The value is close to zero in

the wind turbine example, whereas this is not the case in the cantilever example.

This emphasizes the high importance of accurate numerical modeling for effective

model updating.

Although being successful in the wind turbine example, damage quantification is

not feasible due to the simplified modeling of damages using decreased stiffnesses

of beam models. In the wind turbine, a beam model is updated to reproduce a

beam model. Hence, modeling errors are excluded in this case. A workaround to-

wards damage quantification would be to use more accurate damage models after

the exact damage location is known, placing the more exact damage representa-

tion in areas identified using the approach presented here. Afterward, the model

updating algorithm may be restarted to adjust the more complex damage models

to quantify damages, but damage quantification is beyond the scope of this thesis.

Within this chapter, all examples comprise only simulated data, eliminating some

of the effects and issues that arise if real measured data are used for model updat-

ing. Hence, the application to real measurement data is demonstrated in the next

chapter.
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This chapter presents the application of the approach for parameter identifica-

tion in two practical examples. The result of these studies is an estimated set of

parameters that adjust the given model to represent the measured data as good

as possible, indicating which parameter causes a potential structural change. The

first example is a scaled model of a three-story building structure with four degrees

of freedom, whereas, in the second example, ice masses accreting on a real scaled

wind turbine rotor blade are quantified.

4.1. Model Updating at a three-story building

structure

This section proves the functionality of the model updating algorithm at a model of

a three-story frame that was installed and tested at the engineering institute of Los

Alamos National Laboratories [45]. Measured and constructional data is stored in

a database that is publicly available1. Different metrics for model-measurement

comparison introduced in chapter 2 are applied, and their performance for parame-

ter identification is compared with special emphasis on artificial nonlinearities that

may be added to the frame setup.

4.1.1. Experimental set up of the frame structure

The three-story frame (see Figure 4.1) is constructed using four aluminum plates

(30.5 · 30.5 · 2.5cm) that are connected using four aluminum columns (17.7 · 2.5

· 0.6cm) for each floor. Each plate represents a floor. The columns are arranged

to be bent about their weak axis. An additional aluminum column (15.0 · 2.5 ·
2.5cm) that hits a bumper fixed at the second floor (see Figure 4.1(b)) can be

1For download visit http://www.lanl.gov/projects/national-security-education-center/
engineering/ei-software-download/thanks.php
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(a) Overview on the experimental set up (b) Top view and detail of artificial non-
linearity source

Figure 4.1.: Experimental set up of the three-story building structure.

mounted under the top floor to be able to include artificial nonlinearities. The

position of the bumper is adjustable to increase the impact of the nonlinearity.

Additional masses can be mounted at the base and the first floor. The structure

is excited using an electrodynamic shaker that provides lateral displacements of

the base plate along its centerline. The base plate is mounted on rails to enable a

simple excitation of the structure, allowing rigid body motions. It is modified using

additional masses, stiffness reductions, contact-nonlinearities and a combination of

contact and additional mass. The test program is depicted in Table 4.1. State 1

represents the baseline system, states 2 and 3 have an additional mass attached to

one single floor, states 4 to 9 provide stiffness reductions of different columns of the

structure, states 10 to 14 have the additional nonlinearity activated whereas states

15 to 17 provide combinations of nonlinearity and additional masses, respectively.

The measurement signals are recorded with a sampling frequency of 322.58Hz

on all four floors. The system is excited using a shaker attached to the base

floor with a band-limited random excitation within a range of 20 − 150Hz with

a level of 2.6V root mean square. The lower frequency boundary is chosen in

order not to excite the rigid body eigenmodes that are present below 20Hz [45].

These excitation boundaries are clearly visible in the power spectral density of the

uppermost accelerometer (see Figure 4.4). An exemplary time series for the force

that was applied in one run in baseline condition is illustrated in Figure 4.2.
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Table 4.1.: Overview on structural states investigated in the three-story frame by Los
Alamos National Laboratories.

Label State Cond. Description

State 1 Undamaged Baseline condition

State 2 Undamaged Mass=1.2kg at the base
State 3 Undamaged Mass=1.2kg at the first floor

State 4 Undamaged 87.5% stiffness reduction in column 1BDa

State 5 Undamaged 87.5% stiffness reduction in column 1ADaand 1BDa

State 6 Undamaged 87.5% stiffness reduction in column 2BDa

State 7 Undamaged 87.5% stiffness reduction in column 2ADaand 2BDa

State 8 Undamaged 87.5% stiffness reduction in column 3BDa

State 9 Undamaged 87.5% stiffness reduction in column 3ADaand 3BDa

State 10 Damaged Gap=0.20mm
State 11 Damaged Gap=0.15mm
State 12 Damaged Gap=0.13mm
State 13 Damaged Gap=0.10mm
State 14 Damaged Gap=0.05mm

State 15 Damaged Gap=0.20mm and Mass=1.2kg at the base
State 16 Damaged Gap=0.20mm and Mass=1.2kg at the first floor
State 17 Damaged Gap=0.10mm and Mass=1.2kg at the first floor

a XYZ = the column on floor X at the intersection of axis Y and Z (see Fig-
ure 4.1(b)) is modified
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Figure 4.2.: Example force time series applied to baseline condition (band-limited ran-
dom excitation within 20-150 Hz).

4.1.2. Numerical model of the three-story frame

Vibrations in y- and z-direction are very small due to the missing excitation in this

direction and the design which avoids these motions by means of geometric and

inertial decoupling. As only a single accelerometer is attached centered in the exci-

tation direction, these accelerometers are insensitive to torsional vibrations of the

structure. Compared to the bending-deflection of the columns, their deformation is

negligible for the numerical model. These assumptions result in a one-dimensional

shear-frame model with four degrees of freedom (u0-u3) and a lumped mass at

each node (see Figure 4.5). The according mass and stiffness matrices (M and K)

are written as

M =


m0 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m3

 , K =


k0 + k1 −k1 0 0

−k1 k1 + k2 −k2 0

0 −k2 k2 + k3 −k3

0 0 −k3 k3

 .
(4.1)

The base stiffness (k0) can be neglected because of the low stiffness of the gliders

on the rails. The stiffnesses of the beams connecting the floors (k1 to k3) are

modeled using four clamped-clamped beams, summing up to a single stiffness

ki = 4 · 12EiIi
l3i

, (4.2)

where E represents Young’s Modulus (65GPa), I is the geometrical moment of

inertia and l is the free length of the columns (17.7cm− 2.5cm). The masses vary

76



4.1. Model Updating at a three-story building structure

0 5 10 15 20 25
−2

−1

0

1

2

Time in s

A
cc
el
er
at
io
n
in

m
s-
2 Simulated

Measured

Figure 4.3.: Comparison of measured and simulated baseline condition acceleration at
the top floor as a response to the force illustrated in Figure 4.2.
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Figure 4.4.: Averaged power spectral density of the uppermost accelerometer of the
frame structure in baseline condition.
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Figure 4.5.: Numerical model of the three-story frame.

Table 4.2.: Masses of components used for building the frame structure.

Component Mass in kg

Floor (mflr) 0.305·0.305·0.025·2710=6.30
Column (mcol) 0.025·0.006·0.177·2710=0.072

Column Screw Block (mcsb) 0.04
Bumper (mb) 0.2

Suspended Column (msc) 0.025·0.025·0.15·2710=0.254

for each floor due to the nonlinearity sources installed (see Table 4.2), resulting in

m0 = mflr + 4 · 0.5 ·mcol + 4 ·mcsb (4.3)

m1 = mflr + 4 ·mcol + 4 ·mcsb (4.4)

m2 = mflr + 4 ·mcol + 4 ·mcsb +mb (4.5)

m3 = mflr + 4 · 0.5 ·mcol + 4 ·mcsb +msc. (4.6)

Modal properties are identified from the measured data using enhanced frequency

domain decomposition. The results for the baseline condition are illustrated and

compared to the results of the numerical model in Table 4.3 and Figure 4.6. The

first eigenmode is a rigid body mode. Therefore, it is not considered further in

the evaluation of the objective function. The results reveal numerical model and

measured structure (see Figure 4.3) to be in good agreement, the maximum devi-

ation of eigenfrequencies accounts to 2.5% and the minimum value of the modal

assurance criterion is 0.98.
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Table 4.3.: Comparison of measured and simulated eigenfrequencies of the three-story
frame. In addition, damping ratios identified from the measurements are
given.

Eigenmode ωm in Hz ωs in Hz Deviation in % ζm in %

2 30.40 29.65 -2.47 5.65
3 54.08 54.60 +0,96 3.18
4 70.87 71.15 +0,40 1.39

(a) 2nd Mode Shape,
MAC=0.980

(b) 3rd Mode Shape,
MAC=0.998

(c) 4th Mode Shape,
MAC=0.997

Figure 4.6.: Comparison of measured (blue, dashed) and simulated (red) mode shapes
of the frame structure and according modal assurance criterion values.

79



4. Concept Validation for Parameter Identification

According to [117], the damping matrix can be obtained employing the modal

damping ratios identified from the measured data using

Cn =


2ζ1ω1M1 0 0 0

0 2ζ2ω2M2 0 0

0 0 2ζ3ω3M3 0

0 0 0 2ζ4ω4M4

 , (4.7)

where ζi, ωi and Mi represent the i-th modal damping ratio, natural frequency and

modal mass, respectively. The damping matrix used in a finite element analysis is

then obtained using equation (2.4)

C = Φ−TCnΦ−1, (4.8)

with Φ being the matrix of undamped eigenvectors, resulting in the set of equations

of motion of the system

Mü(t) +Cu̇(t) +Mu(t) = f(t), (4.9)

where f(t) denotes the vector of forces acting on each node of the system. Besides

the force of the shaker acting on node 0, which is recorded by the measurement

system (see Figure 4.2), all input forces are zero.

The gap nonlinearity (states #10-17) is modeled using an additional stiffness being

added to the stiffness of the uppermost story, k3. With the bumper being quite

stiff, this additional stiffness is chosen to 8 · 105 N
m

using an initial convergence

analysis. The gap-nonlinearity is activated, if the inequality

u3(ti)− u2(ti) ≥ g (4.10)

is fulfilled at time step ti, with g denoting the gap width. In case this equation is

activated during the actual time step, this time step is repeated with the additional

stiffness.

4.1.3. Updating the numerical model of the frame structure

As illustrated in Table 4.1, an additional mass of 1.2kg is added to the first floor

in state 3, raising m1 by 19%. Due to its big effect on the structural dynamics and

the nonlinearity not being activated, this state is investigated here, using the basic

objective functions that are introduced in section 2.2, namely ρω+φ, ρs and ρl2 . In

case the nonlinearity is activated, the concept of modal analysis is no longer valid.

Hence, ρω+φ is not used in these states. All masses and stiffnesses are treated
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as variable, resulting in an optimization problem containing seven variables. The

variation of the variables is restricted using boxed constraints with a lower value

of 0.7 and an upper boundary of 1.3.

Parameter identification based on modal data

For parameter identification using modal properties, both eigenfrequencies and

mode shapes are considered (equation (2.23)). Although there is very good agree-

ment between numerical model and eigenmodes identified from the measurement

(see Table 4.3 and Figure 4.6), the model is adjusted to the measured eigenmodes

of baseline condition first to ensure maximum compatibility of numerical model

and measured data. Furthermore, this plot reveals the low stiffness of the gliders

on the rails, since the mode shapes affirm free-free boundary conditions. Baseline

condition contains nine measurement sets, the modal parameters are averaged over

these sets.

The constraints of the optimization problem are chosen quite broad in order to

let the optimization solver do its work, just ensuring solvability of the numerical

model2. Combining the constraints with the metric results in the optimization

problem

min
θ

ρω+φ(θ) (4.11a)

subject to θ ≥0.4 ∀ i ∈ [1...n] (4.11b)

θ ≤1.6 ∀ i ∈ [1...n] (4.11c)

to be solved. Results of ten runs of the algorithm to solve the problem are listed

in Table 4.4. Being a random search algorithm, Simulated Quenching returns

different solutions. Comparison of the parameters reveals that small changes in

the parameters strongly influence the objective function values. Although mea-

sured and simulated eigenmodes are very close, the objective function value of ten

runs is still reduced by a mean of 14%. The boundary conditions (eqns. (4.11b)

and (4.11c)) are not activated in any run. The mean values of the parameters

are close to one with a maximum deviation of 5.6 percent. Computing the ob-

jective function value using the mean values of the optimum solutions from ten

Simulated Quenching runs returns a normalized objective function value of 0.699,

returning the best solution in this example. This is not always the case, but recom-

mended. Starting Sequential Quadratic Programming using optimum vectors as a

2In case the parameter values differ in several powers of ten, the matrices become close to
singularity. This is prevented using the parameter bounds given here
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Table 4.4.: Normalized minimal objective function values and according parameters for
ten Simulated Quenching runs, using ρω+φ to identify parameters of base-
line condition. The last two lines reveal the mean and standard deviation
of the values listed in the respective column.

SQ run Objective mass number stiffness number
number Function Value 0 1 2 3 1 2 3

1 0.921 0.992 0.983 0.999 1.018 0.999 1.000 1.006

2 0.699 0.918 0.969 1.043 1.032 0.95 1.052 1.018

3 0.878 1.006 0.997 0.999 1.261 0.962 1.191 1.082

4 0.836 0.946 1.004 0.984 1.025 0.985 1.011 1.028

5 0.813 0.938 1.017 1.016 1.021 0.994 1.033 1.008

6 0.886 0.941 0.999 0.999 0.976 0.992 1.086 1.002

7 0.864 0.955 0.99 0.981 0.998 0.962 0.996 0.985

8 0.828 1.046 0.979 0.992 1.118 1.032 1.051 1.081

9 0.986 0.999 0.996 1.000 1.018 1.009 0.99 1.008

10 0.877 0.919 0.934 1.006 1.095 0.986 0.872 1.136

M 0.859 0.966 0.987 1.002 1.056 0.987 1.028 1.036
σ 0.075 0.040 0.022 0.017 0.079 0.023 0.077 0.046

starting point results in a minimal objective function value of ρω+φ(θ∗) = 0.303

with θ∗ = [0.911, 1.104, 1.105, 1.102, 0.986, 0.753, 1.08]T . With this set of parame-

ters, the eigenfrequencies become 29.89Hz, 54.19Hz and 70.87Hz. The according

Modal Assurance Criterion values are 0.991, 0.999 and 0.996. The mode shapes of

the second and third eigenmodes are represented more accurately by the model,

whereas it performs somewhat worse for the fourth eigenmode. Being the optimum

parameter set with the smallest according objective function value and the starting

configuration for subsequent analyses, the values of θ∗ are set to 1.0. Note that

this analysis aims to identify the parameters that build the best representation

of the measured eigenfrequencies and mode shapes, not to estimate parameters

correctly. Otherwise, a stiffness decrease of 24.7% of stiffness number 2 can not

be explained by physical means. Nevertheless, the identification of other states

investigated in the experiment is attempted with this parameter set.

Having found the optimum parameter set for baseline condition, the algorithm

is applied to state 3. The according results of this run are listed in Table 4.5.

An increase of the mass decreases the eigenfrequencies of the structure, whereas

stiffnesses must be decreased to obtain reduced eigenfrequencies. Hence, typically

all masses and stiffnesses are modified by the algorithm, leading to a representa-

tion with all parameters being changed slightly. The parameter with the highest
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Table 4.5.: Normalized minimal objective function values and according parameters for
ten Simulated Quenching runs, using ρω+φ to identify parameters of state
3.

SQ run Objective mass number stiffness number
number Function Value 0 1 2 3 1 2 3

1 0.478 0.945 1.239 1.009 1.092 1.067 1.035 0.85

2 0.519 1.014 1.078 0.986 1.033 0.985 0.839 0.935

3 0.303 0.911 1.104 1.105 1.102 0.986 0.753 1.08

4 0.809 0.989 1.012 1.05 0.984 0.999 0.946 1.032

5 0.857 0.885 1.262 1.074 0.823 0.848 1.254 0.804

6 0.909 1.002 0.994 1.001 1.008 1.007 0.996 0.997

7 0.806 0.999 1.032 0.957 1.015 1.034 1.002 0.982

8 0.305 0.918 1.297 1.293 1.21 0.913 0.992 0.982

9 0.351 0.761 1.237 0.992 1.134 0.838 0.7 0.801

10 0.641 0.948 1.075 1.058 1.064 1.055 0.997 1.1

M 0.598 0.937 1.133 1.052 1.047 0.973 0.951 0.956
σ 0.023 0.072 0.108 0.091 0.098 0.077 0.149 0.102

deviation is regarded as the parameter that is changed in the experiment. The

focus is on identification here, not on quantification. Since the effect of changing

parameters other than the parameter modified in the experiment has a positive

influence on the objective function value, the real parameter change is underes-

timated. This can be seen in the mean parameter values: Except for m0, all

masses are increased and all stiffness parameters are decreased. A closer look at

the parameters reveals that the objective function is low (say, below 0.5 in runs

number 1,3,8 and 9), if the mass m1 is high. Furthermore, the mean value of m1

reveals the biggest deviation from 1.0, indicating this parameter to be the place

with an additional mass. Starting Sequential Quadratic Programming from this

point results in a final objective function value of 0.167 with a parameter vector of

θ∗ = [0.991, 1.170, 1.076, 0.960, 0.955, 1.015, 0.952]T , with m1 = 1.17 being fairly

close to the real mass increase (18%). Looking at runs 3 and 9 in Table 4.7, the

impression that stiffness number 2 is the parameter to be changed might appear,

but the parameter has minor influence on the objective function value (compare

runs 1 and 8) and its mean value is 0.951. This disproves the impression.
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Figure 4.7.: Final objective function values after running the model updating algorithm
using ρs for state 3.

Parameter identification based on frequency domain data

For updating the model based on frequency domain data, the steps from the pre-

vious section are repeated using the metric ρs (see equation (2.26)) for comparison

of model and measurement with the same constraints as in (4.11). The results

for adjusting the model to baseline condition are listed in Table 4.6. In contrast

to the previous section, no averaging is done, because it does not yield significant

improvements in this example. Within this analysis, a single optimization run con-

sisting of running Simulated Quenching and Sequential Quadratic Programming is

performed for each of the nine measurement sets available in the database for state

3, resulting in nine runs. The vector with the lowest objective function value (run

number 6) is chosen as the baseline condition, and the masses and stiffnesses of the

model are adjusted accordingly for the following analyses. Again, the differences

from the initial model are quite high (mass 1 is reduced by 13%), but this analysis

focuses on finding a model that represents the spectral density as good as possible.

Subsequently, the model previously being updated to baseline condition is up-

dated to state 3. The results of this analysis are illustrated in Table 4.7. For

state number 3, 10 data sets are available in the LANL database, resulting in ten

optimization runs. The final objective function values are similar to the objective

function value of baseline condition, indicating that the change in the system is

detected and the model is adjusted accordingly. The remaining objective function

value of 10% of the initial value is caused by measurement imperfections and mod-
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Table 4.6.: Normalized minimal objective function values and according parameters for
ten Simulated Quenching and subsequent Sequential Quadratic Program-
ming runs, using ρs to identify baseline condition.

Run Objective mass number stiffness number
number Function Value 0 1 2 3 1 2 3

1 0.621 0.946 1.193 0.662 1.701 1.003 0.886 1.259

2 0.635 1.102 1.438 0.562 0.562 1.452 0.562 1.6

3 0.134 0.932 0.973 0.957 0.94 1.045 1.191 0.993

4 0.129 0.875 0.895 0.968 1.05 0.956 1.134 1.075

5 0.139 0.861 0.841 0.882 0.897 0.905 1.046 0.966

6 0.11 0.869 0.871 0.924 0.98 0.943 1.087 1.023

7 0.366 0.927 0.835 0.625 1.472 1.071 0.857 0.671

8 0.237 0.939 1.067 1.011 1.527 1.16 1.251 1.17

9 0.127 0.874 0.873 0.941 1.038 0.936 1.097 1.062

M 0.278 0.98 0.999 0.837 1.13 1.052 1.012 1.091
σ 0.202 0.221 0.192 0.161 0.342 0.16 0.2 0.236

eling errors. Again, the total mass is raised, and the total stiffness is decreased.

Being the biggest change, the increase in mass number 1 is successfully detected,

with a mean mass increase of 14% being close to the additional mass mounted in

the experiment. Being almost twice as big, the final objective function values as

illustrated in Figure 4.7 reveal the solution of run number 3 as a wrong solution.

Obviously, there is another local optimum here. In run number 3, the wrong mass

number 0 is raised by 16% instead of mass number 1, which is raised by only 3%.

The remaining entries of the parameter vector are similar to the other runs.

Parameter identification based on time domain data

The steps from the previous sections are repeated with ρl2 to account for an ob-

jective function formulated in time domain. The results from updating towards

baseline condition are given in Table 4.8. While the use of ρω+φ and ρs returns

quite similar results, the results generated by ρl2 are different. The mean base

mass is raised by a mean of 72%, while the other masses are reduced and the mean

base stiffness is also raised distinctively. The standard deviations of the parame-

ters vary from 0.15 to 0.46 which is about ten times higher than in the previous

examples, making the results and the uniqueness of the solution doubtful. This

may be caused by the relatively high loads acting on the structure. These induce

vibrations dominated by the loads whereas the vibration behavior of the system
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Table 4.7.: Normalized minimal objective function values and according parameters for
ten Simulated Quenching and subsequent Sequential Quadratic Program-
ming runs, using ρs to identify state 3.

Run Objective mass number stiffness number
number Function Value 0 1 2 3 1 2 3

1 0.106 1.131 1.201 0.875 0.819 1.078 0.928 0.841

2 0.103 0.997 1.133 0.973 0.93 0.952 0.949 0.984

3 0.197 1.161 1.031 0.988 0.836 1.005 0.887 0.958

4 0.11 0.998 1.142 1.017 1.009 0.945 0.973 1.05

5 0.106 1.001 1.149 0.982 0.944 0.964 0.961 0.991

6 0.11 0.99 1.144 1.006 0.96 0.948 0.969 1.022

7 0.106 0.983 1.137 1.003 0.995 0.942 0.963 1.032

8 0.101 0.999 1.155 0.995 0.997 0.965 0.964 1.022

9 0.104 1.005 1.162 0.997 0.947 0.967 0.972 1.004

10 0.099 0.997 1.143 0.981 0.941 0.961 0.954 0.992

M 0.114 1.026 1.14 0.982 0.938 0.973 0.952 0.99
σ 0.028 0.061 0.041 0.038 0.061 0.039 0.025 0.056

plays a subordinated role. Hence, the measured vibration signals contain mostly

induced vibrations. Comparing power spectral densities or eigenfrequencies and

mode shapes focuses more on the dynamics of the system itself instead of the

overall dynamics as the direct comparison of time series does.

Application to other system states

The previous sections discuss results of updating the numerical model to match

state number 3 in detail. This section aims to give a comprehensive overview on

the results of updating the model with the aim of parameter identification for all

system states described in Table 4.1. Therefore, results of updating the model us-

ing three different metrics considered in this section are gathered in Figure 4.8 for

comparison. If the parameter to be changed cannot be identified from the results,

the solution is regarded to be wrong. If the correct parameter is changed the most,

it is regarded as the correct parameter. An additional status is introduced for cor-

rect parameters that are within ±10% of the change introduced in the experiment.

Since it is not possible to consider the nonlinearity in a modal analysis directly,

no parameter identification and hence no model updating is done in states 10 to

17 for ρω+φ. In case the model is linear (states 1 to 9), the identification based on

this metric delivers best results. The correct parameter is identified within ±10%
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4.1. Model Updating at a three-story building structure

Table 4.8.: Normalized minimal objective function values and according parameters for
ten Simulated Quenching and subsequent Sequential Quadratic Program-
ming runs, using ρl2 to identify baseline condition.

Run Objective mass number stiffness number
number Function Value 0 1 2 3 1 2 3

1 0.768 1.635 0.94 0.768 1.199 0.869 0.45 0.501

2 0.761 1.553 0.899 0.484 1.537 1.351 0.748 0.481

3 0.756 1.933 0.958 0.961 1.145 1.042 0.519 1.354

4 0.815 1.913 0.406 0.762 0.909 1.507 1.287 1.459

5 0.758 1.835 1.199 0.401 0.908 1.564 0.665 0.512

6 0.796 1.821 0.426 0.743 0.576 1.099 1.015 1.318

7 0.746 1.773 1.125 1.331 1.522 1.143 0.406 1.024

8 0.741 1.597 1.238 0.655 0.523 1.25 0.572 1.849

9 0.767 1.494 1.249 1.352 0.448 1.093 0.821 0.962

M 0.768 1.728 0.938 0.829 0.974 1.213 0.72 1.051
σ 0.022 0.153 0.305 0.315 0.386 0.213 0.27 0.459

ρω+φ ρs ρl2
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Figure 4.8.: Overview on the success of different metrics for model updating at the
frame structure.
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4. Concept Validation for Parameter Identification

in all states except state 7. In this state, the parameter deviation is 10.5% and

hence only slightly outside the 10%-window considered a good identification. In

case ρl2 is used, parameter identification works to a certain degree. Although mass

0 is estimated to be more than 70% bigger than it should be in baseline condition,

only the parameter that needs to be changed is identified in most examples. With

smaller gaps or combinations of added masses and smaller gaps, the parameters are

not estimated correctly, or results become non-unique. Best results are achieved,

if ρs is employed for parameter identification. Model updating using this metric

yields correct parameter estimations for most of the linear cases. The algorithm

successfully identifies the correct elements as long as the gap is wide and hence

the influence of the nonlinearity is small. The algorithm fails to identify correct

parameters with growing influence of nonlinearities (state 13, 14 and 17). This is

assumed to be caused by imprecise modeling of the nonlinearity. An improvement

of the approach used in this analysis3 (see equation (4.10)) would be to use a more

advanced modeling approach for the contact of the nonlinearity. This is expected

to improve the functionality of using ρl2 , too.

4.2. Ice accretion at a full-scale rotor blade

This section demonstrates the functionality of the model updating methodology

at the example of a full-scale structure, using a 34.2m long rotor blade that is

tested in a rotor blade test rig in Bremerhaven, Germany. In cold environments,

ice may be accumulated along the rotor blade starting from the blade tip (see

Figure 4.9). This behavior is typical, caused by the high speed at the blade tip due

to the angular motion of the rotor. The added masses cause mass imbalances and

hence additional structural loads that may not be considered during the design

process of the turbine. If the ice masses get too big, pieces with masses up to

several kilograms may be thrown off the blade due to the angular movement of

the rotor, causing danger within the surroundings of turbines [150]. A detailed

description of the blade test is given in [163]. The classical objective function

employing modal properties (ρω+φ) is employed and compared to a new metric

based on transmissibility functions (ρτ ) throughout this section for quantification

of the deviation between measurement and simulation data. In contrast to the

approaches presented in [163] that detect if ice is present on the blade, the focus

of this section is on ice mass localization and quantification.

3Adding stiffness if there is contact is a linearization for two different system states.
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4.2. Ice accretion at a full-scale rotor blade

Figure 4.9.: Heavy icing at a wind turbine rotor blade [150].
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Figure 4.10.: Nomenclature at a cross-section of a wind turbine rotor blade.

4.2.1. Experimental set up of the rotor blade test

The rotor blade (see Figure 4.11) is made from glass fiber composite. Six sensors

are mounted along the rotor blade to account for its dynamic behavior, each mea-

suring in edgewise and flapwise direction. The measurement setup comprises two

geophones measuring vibration velocities and four accelerometers (see Table 4.9

and Figure 4.12). Incoming velocity signals are derived with respect to time, yield-

ing a total of twelve acceleration signals. All sensors are mounted along the web

toward the trailing edge (see Figure 4.10) of the blade and operated with a sam-

pling frequency of 100Hz. Three sensors being close to the tip of the blade are

mounted on the outside of the blade because these sections are not accessible from

the inside due to the blade geometry. The dynamic behavior of the blade is inves-

tigated for different states. After the initial recording of the unmodified blade, ice
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4. Concept Validation for Parameter Identification

Figure 4.11.: Rotor blade installed in test rig. Load frame connected to blade at 17.5m
from blade root [163].

Figure 4.12.: Sensor positions on rotor blade [163].

Table 4.9.: Positions of geophones and accelerometers on rotor blade.

Sensor position P1 P2 P3 P4 P5 P6

Distance from root in m 3.7 12 15.5 20.5 27.4 34.2
Measured quantity Vel. Vel. Acc. Acc. Acc. Acc.
Location In In In Out Out Out
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4.2. Ice accretion at a full-scale rotor blade

(a) Ice accumulation steps (b) Steel sheets mounted on blade
surface to simulate ice accretion

Figure 4.13.: Ice accretion steps and installation of additional masses for simulation of
ice accretion [163].

accretion is simulated using steel plates added to the structure in four steps (see

Figure 4.13). Copying the behavior of natural ice accretion, ice is accumulated in

a pseudo-triangular shape, starting from the blade tip at the leading edge and on

the pressure side. Each added plate has a mass of 4.8kg, summing up to a total

mass of 43.2kg in step four. This accounts to 0.9% of the total blade mass.

The structure is excited using a load frame (see Figure 4.11), hand excitation of

the first eigenmodes and impulse hammer excitations at different locations. The

analysis presented here focuses on flapwise hammer excitations at a position 33m

from the blade root.

4.2.2. Numerical model of the blade

Due to confidentiality reasons, only the bending stiffnesses and chord lengths of the

rotor blade are given at certain points along the blade. Furthermore, all informa-

tion concerning the blade geometry is normalized throughout this section. Based

on this information, a beam model is built with boxed cross-sectional properties.

This assumption is valid, because the load transport in a blade is done by the

girders and webs to a large extent, whereas the shape of the airfoil is designed for

optimum aerodynamic performance. The moment of inertia of such a box frame

is given as

I1 =
bh3

12
; I2 =

hb3

12
. (4.12)
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Table 4.10.: Normalized geometry properties of the blade and the according numerical model.
z Mass EI1 EI2 Width Height Element- Element Element Element Element

in m in kg in kNm2 in kNm2 in m in m number height in m width in m Volume in m3 Density in kg

m3

0 100 100 100 0.8308 0.8308
1 0.7399 0.7493 0.4158 36.9534

1 84.634 40.5766 38.3307 0.6491 0.6678
2 0.6331 0.6626 0.4195 16.8477

2 77.5666 36.7961 32.4351 0.6172 0.6573
3 0.5867 0.6603 0.3874 15.7553

3 71.4629 34.0757 23.9610 0.5562 0.6633
4 0.5203 0.6533 0.3399 13.9125

3.7 66.734 27.0690 15.3402 0.4843 0.6433
5 0.4666 0.6602 0.3081 12.5626

5 62.8638 29.2558 12.8557 0.4489 0.6771
6 0.4447 0.6557 0.2916 12.9793

7 59.0794 23.5947 11.3768 0.4405 0.6343
7 0.4177 0.6406 0.5352 13.6237

8 51.7884 22.4487 8.3646 0.3949 0.6470
8 0.3863 0.6392 0.2470 14.3233

9 48.251 19.9728 7.1466 0.3778 0.6315
9 0.3616 0.6109 0.4418 15.0221

11 41.6142 14.9143 5.1062 0.3454 0.5903
10 0.3210 0.5566 0.6253 16.7758

14.5 31.1235 8.8988 2.8647 0.2966 0.5228
11 0.2795 0.4998 0.3493 19.1356

17 24.4396 5.9703 1.8091 0.2624 0.4768
12 0.2550 0.4665 0.1189 20.7154

18 21.9756 4.9341 1.4519 0.2475 0.4562
13 0.2358 0.4381 0.1808 21.7094

19.75 18.0504 3.4863 0.9926 0.2241 0.4200
14 0.2159 0.4082 0.1101 23.1028

20.5 15.506 2.7124 0.7442 0.2076 0.3963
15 0.2019 0.3870 0.0781 24.2392

22 13.6122 2.2192 0.5984 0.1961 0.3777
16 0.1848 0.3577 0.1322 25.5269

24 10.2369 1.402 0.3703 0.1735 0.3376
17 0.1683 0.3269 0.0550 27.3233

25 8.7336 1.0815 0.2881 0.1631 0.3161
18 0.1581 0.3041 0.0481 28.8889

26 7.3451 0.8002 0.2194 0.1530 0.2921
19 0.1470 0.2881 0.0423 30.2486

27.4 6.0646 0.6782 0.1669 0.1409 0.2841
20 0.1349 0.2802 0.0378 31.2057

28 4.8852 0.5705 0.1240 0.1288 0.2763
21 0.1230 0.2720 0.0335 32.2500

29 3.8062 0.4721 0.0905 0.1172 0.2677
22 0.1117 0.2635 0.0294 32.5896

30 2.8469 0.3884 0.0652 0.1062 0.2592
23 0.1007 0.2551 0.0257 33.6832

31 1.9818 0.3155 0.0454 0.0952 0.2509
24 0.0905 0.2458 0.0223 34.7012

32 1.2096 0.2514 0.0320 0.0859 0.2407
25 0.0813 0.2350 0.0191 35.2095

33 0.5366 0.1944 0.0218 0.0767 0.2293
26 0.0498 0.1573 0.0098 54.8067

34.2 0 0.003 0.0002 0.0228 0.0853
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4.2. Ice accretion at a full-scale rotor blade

Element
number

Distance to
blade root

Figure 4.14.: Discretization of the model according to blade construction plans.

Rearranging these equations yields

h =
12I2
b3

; b =
8

√
122I3

2

I1
. (4.13)

With the information on the geometry (see Table 4.10 and Figure 4.14), a model

of the blade is created using 26 linear two-node Timoshenko beam elements using

the engineering software Ansys APDL. The mass of each element is known (see Ta-

ble 4.10). Hence, the material density of each element needed to set up a numerical

model can be computed using the geometry information. Since the cross-sectional

properties do not coincide with the real blade, these densities vary and are not in

a realistic range, only the overall mass of the element is considered to be decisive

for the global dynamic behavior. The structure is assumed to be clamped at the

base. Damping is considered using material damping. The damping is adjusted to

the measured time series, yielding a damping of 10%. A signal of sensor P6 under

impulse load at 33m from the blade root in flapwise direction is drawn in Fig-

ure 4.15. The according power spectral density is illustrated in Figure 4.16. This

load is also the load that is considered in the updating process. This plot reveals

the flapwise eigenfrequencies of the structure around 3.1Hz, 6.6Hz and 11.5Hz.

Data-driven Stochastic Subspace Identification is used to identify eigenfrequencies

and mode shapes needed for model updating from the measured signals. In addi-

tion to those frequencies visible in Figure 4.16, the identification locates another

eigenmode at 1.069Hz. Furthermore, edgewise eigenmodes are identified at 1.679,

5.643 and 13.140Hz. The numerical model coincides with these identified results

(see Table 4.11), regardless of the limited information available to formulate the

numerical model.

Although there is good coincidence between measured data and numerical model,

the model is updated to achieve maximum agreement between numerical model

and measured data in baseline condition prior to using the algorithm for ice ac-

cretion. The optimization problem for updating the model to baseline condition is
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4. Concept Validation for Parameter Identification
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Figure 4.15.: Time series of sensor P6 (flapwise) after impulse load at 33m of the
blade.
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Figure 4.16.: Power spectral density of sensor P6 in flapwise direction after impulse
load at 33m of the blade.

Table 4.11.: Comparison of rotor blade eigenfrequencies and mode shapes identified
from measurement data and simulation model prior and after updating.

ωm in Hz ωs in Hz ± in % ωus in Hz ± in % Dir. MAC MACu

1. 1.069 1.109 3.6 1.048 2.0 flap 0.99957 0.99895
2. 1.679 1.829 8.2 1.726 2.7 edge 0.99618 0.99747
3. 3.113 3.186 2.3 3.128 0.5 flap 0.99558 0.99731
4. 5.643 5.497 3.1 5.390 4.5 edge 0.99515 0.99727
5. 6.644 6.923 4.0 6.811 2.5 flap 0.99674 0.99847
6. 11.536 12.412 7.1 11.999 3.9 flap 0.99198 0.99712
7. 13.140 12.635 3.8 12.383 5.8 edge 0.98728 0.99118
M 4.58 3.12 0.99478 0.99682

u=updated
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4.2. Ice accretion at a full-scale rotor blade

min
θ

ρω+φ(θ) (4.14a)

subject to θi ≥ 0.85 ∀ i ∈ [1...n] (4.14b)

θi ≤ 1.15 ∀ i ∈ [1...n] . (4.14c)

Since both masses and stiffnesses may slightly vary, both quantities are added to

the set of parameters. Hence, θ contains 26 parameters that modify the stiffnesses

and masses4 of each section as illustrated in Figure 4.17 in the numerical model.

Table 4.11 reveals that the mean deviation of eigenfrequencies is reduced to 3%

whereas the values of the modal assurance criterion are raised, meaning that the

updated model builds a better representation of the measured signals than the ini-

tial one. Since the initial model is a quite good representation of the eigensystem

identified from the measured data, the accordance can only be raised marginally.

The updating process is always a trade-off, the deviation of some frequencies after

updating may be bigger than in the initial model (see Table 4.11, eigenmodes 4

and 7). The parameters of the updated model are listed in Table 4.12, revealing

small deviations of eigenfrequencies and mode shapes.

The model is still erroneous. These errors may be caused by several reasons,

compare section 1.1: errors in the modeling approach (model inadequacy), errors

in the modeling assumptions or parameter uncertainty (since only cross-sectional

and mass properties of the blade are known, the information on the blade geom-

etry is limited), errors in the evaluation of the time series and observation errors.

The summation of all error sources is quantified by the metrics used to compare

numerical model and measurement data (ρ). Limited information on the error

sources makes a differentiation between these errors hard or even impossible. As

mentioned in section 1.1, model updating influences the parameter uncertainties,

all other uncertainties remain untouched and are within the responsibility of the

executive engineer. These uncertainties are the reason why the metrics can never

be reduced to zero by model updating in practical environments. In case no dam-

ages occur, these uncertainties may be considered to remain constant. If structural

changes (such as damages) occur, these damages may increase the modeling error

due to the imprecise consideration of these alterations, for instance, using mod-

ified stiffnesses of elements as done within this thesis. This can usually be seen

in objective function values being higher after the algorithm is applied to damage

localization than if employed to estimate parameters of baseline condition.

4The stiffness is altered using Young’s modulus and the masses using the material density of
the elements
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Parameter
number

Distance to
blade root

Figure 4.17.: Parameterization of the blade model according to blade construction
plans and discretization.

Table 4.12.: Parameters after updating the numerical model to measured properties,
using ρω+φ as objective function.

Section
1 2 3 4 5 6 7 8 9 10 11 12 13

Young’s mod. 0.854 0.908 0.856 0.927 0.937 1.120 1.127 1.008 0.991 1.059 1.075 1.042 1.024

Density 1.038 0.998 1.040 0.862 0.992 0.915 0.952 1.035 1.008 1.018 0.998 1.123 1.146

4.2.3. Model updating for ice detection and quantification

Updating using modal properties

To reduce the number of parameters for model updating, several beam elements

are grouped as illustrated in Figure 4.17. It is known that ice accretion initiates

at the blade tip. Therefore, the parameterization is refined in the area close to

the tip. In this study, the parameters modify the densities of elements in order to

account for changes in the mass of the sections. The optimization problem solved

to localize ice assembles to

min
θ

ρω+φ(θ) (4.15a)

subject to θi ≥ 0.99 ∀ i ∈ [1...n] (4.15b)

θi ≤ 1.75 ∀ i ∈ [1...n] . (4.15c)

A small decrease of 1% is allowed for numerical reasons for each parameter. The

maximum increase is constrained to 75%. The analysis of each ice step consists of

10 optimization runs. In the first step, a mass of 4.8kg is attached to the tip of the

blade. Adaptive reduction of the parameter set is applied after running Simulated

Quenching. Thus, many parameters are set to 1.0 in the results (see Table 4.13).
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Table 4.13.: Results of ten runs, using Simulated Quenching and Sequential Quadratic Programming adaptively, employing
ρω+φ as objective function for investigation of ice step 1. Objective function values are normalized to the initial
values.

SQP run ρω+φ Parameter
number 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0304 1.024 1.049 0.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.0305 1.014 1.031 1.010 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.0300 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.047 1.053

4 0.0305 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.018 1.045 0.995 1.00

5 0.0305 1.00 1.00 1.00 1.00 1.00 1.00 0.990 1.013 0.999 1.00 1.00 1.00 1.00

6 0.0300 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.047 1.053

7 0.0300 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.993 1.038 1.065

8 0.0305 1.056 1.012 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 0.0301 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.994 1.075 1.120

10 0.0306 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.020 1.028 1.012 1.00 1.00
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4. Concept Validation for Parameter Identification

In order to illustrate the results comprehensively, the vector parameter ψ is

introduced, averaging the mean deviation of the parameters from the initial value

1.0 for all optimization runs.

ψi =
|Mpi − 1|
max(ψ)

, (4.16)

where pi denotes the vector of parameter i in all optimum solutions. This vector

parameter is useful to illustrate results from the parameter tables comprehensively,

but interpretation is also possible without this parameter. However, it is applied to

some examples presented in this thesis. The according values for ψ of ice steps 1 to

4 are illustrated in Figure 4.18. The plot reveals a clear location of added masses

in parameters 12 and 13, which represents the blade tip. In ice sets 1 and 3, ψ is

also raised in the root section of the blade (parameter number 1 and 2), caused

by single solutions that locate the additional mass here (compare Table 4.13, runs

number 1,2 and 8). Quantification of additional masses provides useful information

for turbine operators regarding possible shutdowns of wind turbines due to critical

icing conditions. The parameter vectors generated using model updating are used

to quantify the added mass. The masses added in the experiment are contrasted

with the averaged masses determined using model updating in Figure 4.19. Both

the added masses of the experiment and the masses identified using model updating

reveal a behavior close to linearity within the range considered. The identified

masses overestimate the masses added during the experiment by the factor two

to three. However, this linear relationship may be used to estimate the real mass

growth on the structure with a correction factor. This factor must be adjusted

with big care.

Updating using transmissibility functions

As introduced in equation (2.31), measurement data and numerical model may

also be compared using transmissibility functions. The following section shows the

application of model updating using transmissibility functions to the rotor blade

and ice detection. Starting from the tip, transmissibility functions are built for all

possible measurement combinations towards the root of the blade (see Figure 4.20).

For the six measurement sensors, this results in a total of 30 transmissibility func-

tions, 15 flapwise and 15 edgewise. Although model updating using transmissibility

functions is successful theoretically (see [158] and Section 5.2), it is not successful

for the localization of additional masses. Results for the different ice steps applied

to the structure even locate the additional mass in different elements. In ice step

1, the mass is located in element 2, step 2 locates it in element 12, step 3 in 11 and
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4.2. Ice accretion at a full-scale rotor blade
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Figure 4.18.: Overview of the vector parameter ψ for all four ice steps using ρω+φ.
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Figure 4.19.: Comparison of added masses during experiment and average additional
mass determined using model updating.
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4. Concept Validation for Parameter Identification

Figure 4.20.: Combination of transmissibility functions starting from measurement
point five. To capture all possible combinations,

∑n−1
i i transmissibility

functions are computed, with n being the number of sensors. Since two
channels are measured for each sensor, the number of transmissibility
functions is doubled.

4 in 10. Transmissibility functions are formulated using time series that are trans-

ferred to the frequency domain using Welch’s method, see section 2.2.2. Hence,

transient analysis is needed to evaluate these metrics. Especially the damping

plays a substantial role in these analyses. Since the damping of this structure is

not known precisely, it is modeled using material damping, which is an approach

probably being too simple to capture the real damping behavior.

4.3. Conclusion

This section investigates the functionality of the algorithm for practical examples.

The first example is a laboratory model of a three-story frame structure being

excited by random noise. While model updating using modal domain data is

successful in linear cases, it is not possible to include nonlinearities to this approach.

If ρs is used as objective function, model updating is successful for both linear and

nonlinear cases, although the parameter estimation is not as exact as when using

ρω+φ. If the effect of nonlinearity is getting stronger, even the frequency domain

approach is struggling to approximate parameters correctly. This may be caused

by inaccurate modeling of the nonlinearity in this model. Surprisingly, updating

using ρl2 does not perform as good as using ρs. The parameters are not identified

as exactly, and the identification does not show good results if nonlinearity is added

to the system. Any structural response is the result of loads acting on the structure

in combination with the mechanical system. If loads are too big, the influence of

the system may be small and cannot be seen in measured time series easily. Both

modal and power spectral density approaches focus on the dynamic system itself,

leading to changes in the system being recognizable more easily.
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4.3. Conclusion

The second example adopts the algorithm to the investigation of ice accretion at a

real scaled, 34m long rotor blade. Both ρω+φ and ρτ are employed for comparison of

model and measurement to test the new metric ρτ and compare it to a conventional

metric. Model updating using modal properties is successful for added masses,

locating them at the tip of the blade, exactly where masses are fixed during testing.

Though the masses added during the experiment are drastically overestimated,

there seems to be a linear relationship between the mass added in experiment

and identified by model updating. Hence, the results may be used to quantify

ice accretion, being an important tool for wind turbine operators for decisions on

shutdowns due to ice. Results presented here are valid for the investigated blade

only and small masses. It has to be checked if linear scaling of the masses estimated

using model updating is still valid for bigger masses accreting on the blade. An

online application of the algorithm is feasible, although each run takes several

hours. A possible implementation of an online system could be the real-time ice

detection using the approach presented in [163]. If ice is detected, this could be

quantified within a few hours using the methodology presented within this chapter.

The successful application of the algorithm for parameter identification is presented

in this chapter. Since damage localization demands a different interpretation of

model updating and its results, the application of model updating to damage

localization is demonstrated in the next chapter.

101





5. Concept Validation for Damage

Localization

In this chapter, the application of finite element model updating for damage lo-

calization is presented using three examples. It starts with the demonstration of

the methodology at a scaled model of a tripile-structure, a foundation type used

for offshore wind turbines. Since measurement data for different damage severi-

ties are available, the sensitivity of the method to different damage severities is

investigated using this example. The subsequent section illustrates the applica-

tion of damage localization to the full-scale rotor blade introduced in chapter 4.

Difficulties and possible reasons for the malfunction of model updating algorithms

and vibration-based structural health monitoring are illustrated and discussed us-

ing this example. The chapter closes with the application of model updating to

a model of a prestressed concrete tower, a new manufacturing concept for wind

turbine towers aiming to reach higher nacelle heights with reduced costs.

5.1. Damage localization at a scaled tripile model

A geometrically scaled model of a tripile structure (see Figure 5.1(a)) is used to

investigate the damage localization capabilities of the model updating approach at

offshore wind turbine support structures. In this section, the metrics ρω+φ, ρl2 and

ρs are used as objective functions to quantify the deviation between model and

measurement. After an initial updating of the model to the undamaged configura-

tion, the model is updated to locate the damaged area. Results from this section

are partially presented in [147], supplemented by the use of ρs and a sensitivity

analysis.
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5. Concept Validation for Damage Localization

5.1.1. Experimental set up and numerical modeling of the
tripile

The investigated structure (see Figure 5.1(a)) comprises a tower that is based on a

tripile structure. The tripile consists of three legs. In real offshore environments,

these piles are driven into the soil [143]. In the considered structure, the piles are

represented by tubes welded on a steel plate. These three tubes are connected by

square tubes which are called the braces. A head mass is installed on top of the

tower to emulate inertial effects of the rotor nacelle assembly. The structure has

a total height of 2.65m, the tower has an outer diameter of 114mm and a wall

thickness of 3.2mm, whereas the vertical legs have an outer diameter of 48.3mm

and a wall thickness of 3.2mm. The braces provide cross-sectional properties of a

square tube with a wall thickness of 3.0mm and a lateral length of 50mm. A mass

of 150kg is attached to the top to emulate the translational inertia of the rotor-

nacelle assembly. One leg is equipped with flanges to enable reversible damage to

specific parts of the structure (see Figure 5.1(a)). The structure is excited using

an impulse hammer at the height of 2m for excitation of at least both the first and

second eigenmode simultaneously, resulting in a free decay of the system. This

procedure is widely used practice in analyses of dynamic structures, degenerating

the structural response to a stationary system, no forces are acting on the system

during the transient decay. With this type of response, it may be compared to an

idling wind turbine in calm environmental conditions (e.g., zero velocity wind and

no waves) or a bridge after excitation by a wind gust, a train or a truck crossing.

The vibration of the structure is measured using seven triaxial 3g-accelerometers,

five attached to the tower, one to an undamaged leg and one to the damaged leg.

Vibrations in vertical directions are small. Hence only the horizontal acceleration

signals are recorded. Signals are recorded with a sampling frequency of 600Hz.

Damage is imposed as a gradually increased saw cut in one of the braces (see

Figure 5.1(b) and Table 5.1). Resulting eigenfrequencies of the structure for a

cutting depth for damage step 7 are drawn in Table 5.2. The first dominant

side-side eigenmode is neglected because it cannot be obtained from the measured

signals repeatedly. It is not excited with sufficient energy. The second eigenmode is

considered in both dominantly fore-aft and side-side direction. Higher eigenmodes

are not considered since they are not excited with enough energy and the limited

measurement set up is designed to capture the lower eigenmodes. Especially the

third eigenmode has a deflection close to zero at the excitation area. Hence, it

is challenging to excite this mode using an impulse at this location. The same is

valid for higher eigenmodes. Consequently, the third and higher eigenmodes are

omitted. Modal properties of the structure are derived from the measurement
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5.1. Damage localization at a scaled tripile model

(a) Design drawing of the trip-
ile model with sensor locations

(b) Damage imposed to one of
the braces

Figure 5.1.: Overview of sensor locations and saw cut induced to the tripile model.

data using Frequency Domain Decomposition [24].

The corresponding numerical model consists of ten Timoshenko beam elements,

where elements one to three denote the vertical piles of the tripile, elements four

to six represent the braces and the remaining elements are used to model the tower

(see Figure 5.2(a)). Since the welding of the tubes seems to have minor influence

regarding clamping conditions (compare Figure 5.2(c)), all three legs are modeled

to be connected to the ground by fixed bearings. This rather simple model is

found to be sufficient to reproduce the lower eigenmodes identified from measured

data. The load is modeled by a short-term force acting on the structure. Prior

to the analysis, the magnitude of this load is modified to cause the same initial

acceleration as in the measured time series. This model is then updated to match

the eigenfrequencies and mode shapes (see Table 5.2 and Figure 5.2(b) and (c))

of the damaged tripile using the adaptive model updating algorithm described in

section 2.3.3. Element number four represents the area where the saw cut is applied

(see Figure 5.1(b)). Hence, the stiffness of this element should be reduced. Each
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5. Concept Validation for Damage Localization

Table 5.1.: Overview on investigated damage steps.

Damage step Cutting depth in mm

1 4.4
2 10.4
3 18.9
4 29.1
5 37.6
6 43.6
7 45.5

Table 5.2.: Comparison of undamaged and damaged (step 7) eigenfrequencies of the
tripile model. (FA=Fore-Aft; SS=Side-Side Eigenmode w.r.t. the excita-
tion direction)

undamaged damaged Deviation in %

1st 3.00 2.31 29.8
2nd FA 31.81 31.45 1.14
2nd SS 31.87 31.52 1.11

stiffness parameter modifies both Young’s and shear modulus simultaneously, to

account for the full stiffness of the element.

5.1.2. Damage localization at the tripile

Table 5.3 provides an overview of the results of ten Simulated Quenching runs

using ρω+φ. The damaged area is covered by element number four. The Simulated

Quenching algorithm indicates the correct solution in five runs. In two runs, dam-

age is located in element five, which is another brace, and in one run, damage is

located in the other brace (element six). Tower sections have the lowest stiffness

value in two runs. In case damage is localized in one of the braces by Simulated

Quenching, only the affected legs are considered to be variable in the adaptive

Sequential Quadratic Programming runs, according to the adaptive strategy intro-

duced in section 2.3.3. Every other constellation would not be reasonable because

adjacent elements belong to another assembly. Hence, the Sequential Quadratic

Programming algorithm is started with only two parameters in this case. The re-

sulting objective function values are illustrated in Figure 5.3. In all ’wrong’ cases

(runs number 2,3,4,5 and 9), the correct element (element number four is the el-
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5.1. Damage localization at a scaled tripile model

(a) Element numbering (b) 1st SS Eigenmode (c) 2nd SS Eigenmode

Figure 5.2.: Element numbering of the investigated tripile structure and illustration of
two eigenmodes. For graphical reasons, only the damaged leg is plotted
here (the deformed mode shapes are drawn in red).
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5. Concept Validation for Damage Localization

Table 5.3.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from ten Simulated Quenching runs using ρω+φ at the tripile
model for damage step 7.

SQ run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1 0.8334 0.944 0.985 1.001 0.942 0.944 0.972 1.004 0.957 0.968 0.993

2 0.8482 0.937 0.999 0.984 0.946 0.946 0.927 0.970 0.985 0.963 1.006

3 0.8829 0.986 0.984 0.985 0.969 0.968 0.989 0.983 0.967 0.986 1.008

4 0.8295 0.965 1.000 0.988 0.974 0.912 0.989 0.963 1.005 0.979 0.952

5 0.8947 0.978 0.991 0.990 0.985 1.009 0.985 0.986 0.986 0.984 0.973

6 0.8661 0.963 0.991 0.996 0.942 0.999 0.998 1.003 0.967 0.991 0.973

7 0.8884 1.000 0.998 1.003 0.943 0.996 0.944 0.969 1.005 1.002 0.970

8 0.8780 0.958 0.984 0.978 0.931 0.994 1.002 0.987 1.001 0.974 0.959

9 0.8911 0.998 0.949 0.955 0.986 0.939 0.949 0.999 0.972 0.980 0.988

10 0.9006 1.004 1.002 1.004 0.967 0.990 0.970 0.980 0.999 1.007 1.005

Table 5.4.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from Sequential Quadratic Programming runs using ρω+φ at the
tripile model for damage step 7, starting adaptively with the results from
Table 5.3.

SQP run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1,6,7,8,10 0.601 1.01 1.0 1.0 0.749 1.0 1.0 1.0 1.0 1.0 1.0

4,9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 0.7245 1.0 1.0 1.0 1.0 1.0 1.0 0.995 0.953 0.985 1.0

5 0.7513 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.01 0.741

ement that modifies the stiffness of the area damaged in the experiment) is also

lowered, indicating the sensibility of the objective function to the correct parame-

ter. In other words, parameter 4 must be low to achieve small objective function

values.

Based on the results of the Simulated Quenching-method, Sequential Quadratic

Programming is initiated adaptively starting with the original stiffness values. In

case the lowest stiffness value is found in one of the ’wrong’ braces, the algorithm

does not converge, whereas it does for the right element, having the lowest ob-

jective function value of all solutions (see Figure 5.3). If Sequential Quadratic

Programming is started in the tower area (runs number three and five), it con-

verges, but returns a higher final objective function value.
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Figure 5.3.: Final objective function values after running ten Simulated Quenching runs
and Sequential Quadratic Programming adaptively using modal properties
as objective function at the tripile model.

Time series can be used instead of modal properties as an objective function for

model updating using ρl2 . Figure 5.4 illustrates an exemplary time series of the

undamaged model at the tower top node. After the initial transient procedure fol-

lowing the impulse, the highly damped oscillation turns to a sinusoidal oscillation

with very low damping. It is assumed that this behavior is caused by the complex

damping of the structure due to friction (see [76]) at the flanges at the replaceable

section where the saw cut is inserted (see Figure 5.1(b)). The vibrations immedi-

ately after the impulse are ignored for damage localization in a first study, whereas

they are considered in a second analysis (see Figure 5.4) because skipping the phase

immediately after the impulse does not return accurate results for damage local-

ization. The beam model from the preceding section is reformulated for damage

localization using time series, two-stage damping is included, as described in [76].

The metric ρl2 is employed to compare the time series. Results from Simulated

Quenching runs for the first analysis (window 1) are listed in Table 5.5, results

of the respective adaptive Sequential Quadratic Programming optimizations are

shown in Table 5.6. The minimal value is located in element seven in seven runs,

which is the tower base element. It follows that the damage localization returns a

wrong damage spot. If Sequential Quadratic Programming is started from these

solutions, damage localization remains at that spot and converges to a minimum,
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Figure 5.4.: Acceleration time series, measured by the uppermost accelerometer (Chan-
nel 1) at the undamaged tripile model under impulse load. In a first study,
the transient decay is considered (solid box, Window 1), whereas in a
second analysis the impulse loading is included (dashed box, Window 2).

and it confirms the location as a minimum with a lower objective function value

than approximated by Simulated Quenching. Obviously, the objective function

has another local minimum here. Damage is localized in the damaged brace only

in Simulated Quenching run number 1. If Sequential Quadratic Programming is

started from here, no convergence is reached, the objective function value remains

at the same level.

Results of the second analysis with the impulse phase included and a shorter win-

dow (see Figure 5.4, Window 2) are given in Tables 5.7 and 5.8. The Simulated

Quenching algorithm locates damage both in the correct brace and one undamaged

brace, the objective function cannot be used to distinguish the solutions. The stiff-

ness of element number four is also quite small when the algorithm locates damage

in element six, giving strong indication that element four is the correct location.

If Sequential Quadratic Programming is started adaptively, results reveal a more

distinct behavior (see Table 5.8). If Simulated Quenching located damage in the

wrong brace, Sequential Quadratic Programming is not able to reduce the objec-

tive function value distinctly, whereas it is reduced below 0.66 for all runs with a

correctly located adaptive window (runs 1, 3, 4, and 8), highlighting the impor-

tance of the local algorithm. Instead of comparing the time series directly, these

may be transferred to frequency domain before comparing them. In this case, the

metric ρs is applied. Results of this analysis are drawn in Table 5.9. In this case,
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5.1. Damage localization at a scaled tripile model

Table 5.5.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from eight Simulated Quenching runs using ρl2 at the tripile model
for damage step 7, including only transient decay (window 1).

SQ run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1 0.987 0.984 0.983 0.990 0.980 1.000 0.650 0.821 0.885 0.969 0.985

2 0.986 0.879 0.924 0.927 0.990 0.903 0.986 0.687 0.977 0.992 0.991

3 0.979 0.987 0.969 0.983 1.008 0.968 0.985 0.555 0.932 0.990 0.996

4 0.986 0.879 0.984 0.976 0.992 0.879 0.948 0.683 0.995 0.998 0.984

5 0.986 1.001 0.994 0.923 0.941 0.963 0.956 0.611 0.974 0.935 0.982

6 0.987 0.944 0.937 0.975 0.884 0.993 0.970 0.767 0.944 1.006 0.868

7 0.986 0.986 0.945 0.972 0.987 0.879 0.952 0.691 0.904 1.003 0.953

8 0.987 0.871 0.998 0.993 0.927 0.979 0.944 0.771 0.929 0.980 0.925

Table 5.6.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from Sequential Quadratic Programming runs using ρl2 at the
tripile model for damage step 7, including only the transient decay (win-
dow 1) and starting adaptively with the results from Table 5.5.

SQP run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1 0.988 1.000 0.976 1.000 1.000 1.000 0.659 1.000 1.000 1.000 1.000

2 0.490 1.000 1.000 1.000 1.000 1.000 1.000 0.718 1.000 1.000 1.000

3 0.536 1.000 1.000 1.000 1.000 1.000 1.000 0.815 1.000 1.000 1.000

4 0.551 1.000 1.000 1.000 1.000 1.000 1.000 0.688 1.000 1.000 1.000

5 0.518 1.000 1.000 1.000 1.000 1.000 1.000 0.602 1.000 1.000 1.000

6 0.992 1.000 1.000 1.000 1.000 1.000 1.000 0.960 1.000 1.000 1.000

7 0.987 1.000 1.000 1.000 1.000 1.000 1.000 0.441 1.000 1.000 1.000

8 0.987 1.000 1.000 1.000 1.000 1.000 1.000 0.250 1.000 1.000 1.000
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Table 5.7.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from eight Simulated Quenching runs using ρl2 at the tripile model
for damage step 7, including transient procedure (window 2).

SQ run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1 0.752 0.859 0.945 0.951 0.677 0.990 0.989 0.866 1.003 1.004 0.985

2 0.755 1.009 0.983 0.890 0.819 0.982 0.715 0.982 0.979 0.973 0.998

3 0.758 0.834 0.974 0.996 0.759 0.922 0.997 0.985 0.969 0.997 0.878

4 0.757 0.831 0.988 0.905 0.711 0.983 0.992 0.993 0.973 0.992 0.987

5 0.763 1.000 0.919 0.924 0.849 1.006 0.682 0.924 0.998 0.931 0.997

6 0.755 0.998 0.988 0.956 0.832 0.996 0.745 0.982 1.002 0.935 0.922

7 0.793 1.006 0.888 0.963 0.928 0.903 0.746 0.985 1.005 0.884 1.007

8 0.806 0.802 0.991 0.943 0.746 0.988 0.954 0.943 0.981 0.987 0.984

Table 5.8.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from Sequential Quadratic Programming runs using ρl2 at the
tripile model for damage step 7, including transient procedure (window 2)
and starting adaptively with the results from Table 5.7.

SQP run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1 0.621 0.817 1.000 1.000 0.400 1.000 1.000 1.000 1.000 1.000 1.000

2 0.725 1.000 1.000 0.985 1.000 1.000 0.734 1.000 1.000 1.000 1.000

3 0.658 0.744 1.000 1.000 0.212 1.000 1.000 1.000 1.000 1.000 1.000

4 0.631 0.761 1.000 1.000 0.411 1.000 1.000 1.000 1.000 1.000 1.000

5 0.725 1.000 1.000 0.921 1.000 1.000 0.729 1.000 1.000 1.000 1.000

6 0.712 1.000 1.000 0.984 1.000 1.000 0.733 1.000 1.000 1.000 1.000

7 0.746 1.000 1.000 0.888 1.000 1.000 0.748 1.000 1.000 1.000 1.000

8 0.637 0.660 1.000 1.000 0.535 1.000 1.000 1.000 1.000 1.000 1.000
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5.1. Damage localization at a scaled tripile model

Table 5.9.: Resulting minimal objective function values and corresponding stiffness pa-
rameters from Simulated Quenching and adaptive Sequential Quadratic
Programming runs using ρs at the tripile model for damage step 7.

SQP run Objective element number
number Function Value 1 2 3 4 5 6 7 8 9 10

1 0.174 0.963 1.000 1.000 0.887 1.000 1.000 1.000 1.000 1.000 1.000

2 0.173 0.985 1.000 1.000 0.883 1.000 1.000 1.000 1.000 1.000 1.000

3 0.183 0.948 1.000 1.000 0.901 1.000 1.000 1.000 1.000 1.000 1.000

4 0.251 1.000 1.000 0.761 1.000 1.000 0.745 1.000 1.000 1.000 1.000

5 0.264 1.000 1.000 0.931 1.000 1.000 0.729 1.000 1.000 1.000 1.000

6 0.176 0.984 1.000 1.000 0.863 1.000 1.000 1.000 1.000 1.000 1.000

7 0.258 1.000 1.000 0.888 1.000 1.000 0.748 1.000 1.000 1.000 1.000

8 0.260 1.000 1.000 0.829 1.000 1.000 0.792 1.000 1.000 1.000 1.000

the wrong and correct results can again be distinguished using the final objective

function value. Runs number 1,2,3 and 6 point to the correct element, whereas

runs 4,5,7 and 8 are wrong solutions. The parameters of the wrong solutions differ

more than the correct ones. All results presented in this section are evaluated for

damage step 7 with a cutting depth of 45.5mm. This damage is a cut through the

upper flange and the webs and represents a quite severe damage.

Figure 5.5 illustrates results of all damage steps investigated comprehensively.

Since the focus is on damage localization here, there is only right or wrong lo-

calization. Hence, the interpretation of Figure 5.5 differs from Figure 4.8. The

plot reveals that a direct comparison of time series works for damage step 7 only

(and only if the right transient data is used using window 2), whereas modal prop-

erties provide higher sensitivity to damage. Transformation of the time signals to

frequency domain via application of ρs yields best results. A cut depth of 18.9mm

is correctly located. Smaller damages cannot be located with any of the metrics

used here due to the decreasing effect on the global dynamic behavior which is

used to locate damages throughout this thesis. Cuts with a smaller depth reveal

no clear identification due to the small changes in the vibrational behavior. In these

cases, correct and wrong solutions cannot be distinguished distinctively using the

minimum objective function values.
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Figure 5.5.: Overview on success of damage localization using different metrics at the
tripile structure for different cut depths.

5.2. Damage localization at a full scale rotor

blade

The rotor blade investigated in section 4.2.3 is driven to fatigue failure in the test

facility. A crack occurs at 6m from the blade root at the trailing edge of the airfoil.

The damage has a length of 440mm and propagates through both pressure and

suction side as well as the bondline. This section aims to demonstrate errors in the

application of model updating that may occur when damages are too small to lo-

calize them and gives possible reasons. For validation of the localization approach,

the damage is modeled in the numerical model firstly and then located. Afterward,

the model is updated to reproduce the measurement data of the damaged rotor

blade to perform damage localization using both ρω+φ and ρτ .

The parameterization is slightly changed in comparison to the model of section 4.2.3.

While the aim of that section is to locate changes close to the blade tip, the ex-

act location of structural change is unknown here. Hence, the parameterization is

chosen to contain two elements for each parameter, see Figure 5.6.
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Figure 5.6.: Parameterization of the blade model according to blade construction plans
and discretization for damage localization.

5.2.1. Damage localization at the rotor blade using artificial
data

A stiffness reduction of 0.5% is introduced in the numerical model to evaluate if

even small stiffness changes can be located theoretically in the investigated struc-

ture. Therefore, the stiffness of element seven is reduced (for the element numbers,

refer to Figure 4.14), the structural responses of the numerical model are recorded

and used as ’measured’ quantities. Afterwards, the initial, undamaged numerical

model is updated to reproduce this ’measured’ response. A stiffness reduction that

small has an only minor influence on the time series or modal properties, but it

affects the structural dynamics to a certain degree, which can be captured by the

metrics. The optimization problem solved to localize damage is written as

min
θ

ρω+φ(θ) (5.1a)

subject to θi ≥ 0.5 ∀ i ∈ [1...n] (5.1b)

θi ≤ 1.01 ∀ i ∈ [1...n] (5.1c)∑
i

(1− θi) ≤ 0.5. (5.1d)

A small stiffness increase is allowed for numerical reasons. The stiffness decrease

is restricted to a maximum of 50%. The last constraint equation ensures that only

a single parameter can reach the maximum stiffness decrease. Results of model

updating using the two-step optimization algorithm are drawn in Table 5.10. Only

run number three locates damage at the correct location, parameter four. All other

runs locate damage at a wrong location. Again, the final objective function value

is employed to distinguish wrong from right solutions, see Figure 5.7. Problem

(5.1) is solved again for localization of the artificial damage using transmissibility

functions, using ρτ as objective function. Results of this analysis are drawn in

Table 5.11. Again, the final objective function value may be used to distinguish

wrong from right solutions.
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Table 5.10.: Final results after running Simulated Quenching and adaptive Sequential
Quadratic Programming to solve problem (5.1) using ρω+φ as objective
function, stiffness reduction 0.5%.

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 7.266 10-08 1.00 1.00 1.00 1.00 0.999 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00

2 1.206 10-07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 1.000

3 1.088 10-09 1.00 1.00 1.00 0.996 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 6.908 10-08 1.009 0.989 1.003 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 1.184 10-07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 1.000 1.000 1.00

6 1.07 10-07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 1.000

7 3.482 10-07 0.997 0.994 1.010 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 9.059 10-06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.991 0.981 1.010 1.00 1.00 1.00
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Figure 5.7.: Final objective function values after running eight Simulated Quenching
runs and Sequential Quadratic Programming adaptively using ρω+φ as
objective function at the blade model with an artificial stiffness reduction
of 0.5%.
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Table 5.11.: Final results after running Simulated Quenching and adaptive Sequen-
tial Quadratic Programming to solve problem (5.1) using ρτ as objective
function, stiffness reduction 0.5%.

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0085 1.00 1.00 0.999 0.997 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.0678 1.00 1.00 1.00 0.967 1.005 1.007 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.0741 1.00 1.00 1.00 1.00 1.00 1.00 0.999 0.999 1.001 1.00 1.00 1.00 1.00

4 0.0771 1.00 1.00 1.00 1.00 1.00 1.000 0.999 1.000 1.00 1.00 1.00 1.00 1.00

5 0.0773 1.00 1.00 1.00 1.00 1.00 1.000 0.999 1.000 1.00 1.00 1.00 1.00 1.00

6 0.0745 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.002 0.999 1.00 1.00 1.00

7 0.0085 1.00 1.00 0.999 0.997 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 0.0779 1.00 1.00 1.00 1.00 1.000 1.000 0.999 1.00 1.00 1.00 1.00 1.00 1.00

9 0.0914 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 1.000 1.000 1.00

10 0.1874 0.991 1.010 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The same analysis is repeated for different damage severities, namely stiffness

reductions of 10%,5%,4%,3%,2%,1% and 0.5%. Figure 5.8 is used to determine,

if a damage quantification is possible with this approach. The parameters of the

damaged section seem to underestimate the real stiffness decrease, although they

are close to the real value. Thus, a tendency can be seen in the results, more severe

stiffness reductions result in smaller stiffnesses identified by the algorithm. The use

of both ρω+φ and ρτ returns similar results in this study. The number of correct

solutions varies with ongoing damage severities, no tendency is apparent. There

is an outlier at two percent stiffness reduction. This outlier can be assorted by

the final objective function value. Hence, it is demonstrated that model-to-model

updating performs well to localize damage with both transmissibility functions and

modal properties.

5.2.2. Damage localization at the rotor blade using
experimental data

After the functionality for localization of small stiffness changes in the rotor blade

is shown in the previous section, the algorithm is applied to the real damaged

rotor blade in this section. An initial model updating to the undamaged configu-

ration yields modal assurance criterion values bigger than 0.992 for all first seven

eigenmodes. These are considered in this study because they are identified in all

experiments. Eigenfrequencies and mode shapes are averaged from several excita-

tions. The measured and simulated eigenfrequencies differ by a maximum of 5%.
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Figure 5.8.: Overview on stiffness parameter 4 for all investigated damage states at
the rotor blade. Only the correct solutions are listed here, thus there are
different numbers of solutions for each step.

The optimization problem solved to locate the damage accounts to

min
θ

ρω+φ(θ) (5.2a)

subject to θi ≥ 0.25 ∀ i ∈ [1...n] (5.2b)

θi ≤ 1.01 ∀ i ∈ [1...n] (5.2c)∑
i

(1− θi) ≤ 0.75. (5.2d)

The solutions of this problem using the adaptive optimization algorithm are drawn

in Table 5.12. The vector parameter ψ applied to the results of model updating

(see Figure 5.9) reveals that damage is most likely located in element 5. The

correct location would be in parameter 4, which is not found in a single run of the

algorithm. Results are different if ρτ is used as objective function, see Table 5.13.

If the vector parameter ψ is applied to these results (Figure 5.10), a7 localization in

element number 1 or 6 is revealed, which are also wrong solutions. Similar results

are achieved, if ρs or ρl2 are employed as objective functions, the damage is not

located correctly.
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5.2. Damage localization at a full scale rotor blade

Table 5.12.: Results of Simulated Quenching and adaptive Sequential Quadratic Pro-
gramming using ρω+φ to locate damage in the rotor blade. Minimum
values are highlighted in gray.

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0210 1.00 1.00 1.00 0.998 0.785 0.950 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.0212 1.00 1.00 1.00 0.900 0.781 0.959 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.0222 0.896 0.778 0.946 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.0211 1.00 1.00 1.00 0.964 0.780 0.984 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 0.0219 0.747 0.898 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 0.0211 1.00 1.00 1.00 0.922 0.779 0.979 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 0.0212 1.00 1.00 1.00 1.00 0.861 0.829 1.010 1.00 1.00 1.00 1.00 1.00 1.00

8 0.0211 1.00 1.00 1.00 0.974 0.813 0.960 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 0.0211 1.00 1.00 1.00 0.931 0.813 0.983 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.0211 1.00 1.00 1.00 0.971 0.811 0.937 1.00 1.00 1.00 1.00 1.00 1.00 1.00

11 0.0212 1.00 1.00 1.00 0.896 0.822 0.944 1.00 1.00 1.00 1.00 1.00 1.00 1.00

12 0.0210 1.00 1.00 1.00 1.005 0.755 1.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00

13 0.0219 0.759 0.879 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

14 0.0220 0.788 0.984 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

15 0.0222 0.896 0.778 0.946 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 5.9.: Vector parameter ψ applied to results of damage localization at the blade
using ρω+φ.

119



5. Concept Validation for Damage Localization

Table 5.13.: Results of Simulated Quenching and adaptive Sequential Quadratic Pro-
gramming using ρτ to locate damage in the rotor blade. Minimum values
are highlighted in gray.

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 14.8480 1.00 1.00 1.00 1.00 0.524 0.676 0.928 1.00 1.00 1.00 1.00 1.00 1.00

2 14.7066 1.00 1.00 1.00 1.00 0.611 0.524 0.701 1.00 1.00 1.00 1.00 1.00 1.00

3 14.9196 1.00 1.00 1.00 1.00 0.851 0.583 0.663 1.00 1.00 1.00 1.00 1.00 1.00

4 14.2878 0.42 0.956 1.007 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 14.6926 0.573 0.666 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 14.4508 1.00 1.00 1.00 1.00 0.939 0.732 0.991 1.00 1.00 1.00 1.00 1.00 1.00

7 14.4848 1.00 1.00 1.00 1.00 0.932 0.743 0.973 1.00 1.00 1.00 1.00 1.00 1.00

8 14.4804 1.00 1.00 1.00 1.00 0.933 0.693 0.994 1.00 1.00 1.00 1.00 1.00 1.00

9 14.9700 0.663 1.010 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 14.7138 0.552 0.653 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

11 14.4145 0.485 0.934 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

12 15.2727 1.00 1.00 1.00 1.00 0.987 0.954 0.554 1.00 1.00 1.00 1.00 1.00 1.00

1 2 3 4 5 6 7 8 9 10 11 12 13
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Figure 5.10.: Measure ψ applied to results of damage localization at the blade using
ρτ .
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5.3. Damage localization at a scaled prestressed concrete tower

5.3. Damage localization at a scaled prestressed

concrete tower

During the last decade, hybrid towers emerged as an alternative to conventional

steel wind turbine towers. Recent development led to the construction of hybrid

towers made partially from precast and prestressed concrete segments that are

assembled on site. A conventional steel tower is then installed on top of the

prestressed concrete construction [103]. This method enables higher hub heights.

The lower part of the tower is made from premanufactured concrete tube segments

that are stacked without adhesive materials between them, solely being fixed by

the friction between the segments caused by prestressing forces [19]. Since the

dynamic behavior of these structures is not known in detail, structural health

monitoring is a useful supplement to ensure long-term service of these structures.

This section aims to validate the damage localization approach at a scaled model

of a prestressed concrete tower being installed in the Test Center for Support

Structures Hanover.

5.3.1. Experimental set up and numerical modeling of the
tower

The investigated structure is an externally prestressed concrete tower (see Figure

5.11(a)), based on a concrete foundation. A head mass of 470kg, a subassembly

needed to transfer the prestressing force from the prestressing rod to the upper-

most concrete segment, is attached on top of the tower. The model itself consists of

twelve tubular concrete segments with a height of 0.5m each (see Figure 5.11(b)),

an outer diameter of 0.6m and a wall thickness of 0.05m. The segments are num-

bered in ascending order, starting from the bottom. The mass of all concrete

segments and the head mass is given in Table 5.14. According to the technical

approval, the threaded rod has a cross-sectional area of 1735mm2. Specimens of

the concrete used for the segments are tested according to DIN EN 12390-13. The

tests reveal the compressive strength to 75.1 N
mm2 , a density of 2291 kg

m3 and Young’s

modulus to 33170 N
mm2 . The compressive strength is close to a C70/85 concrete,

whereas Young’s modulus is close to a C30/37.

Accelerometers are installed on all concrete segments with an uneven number as

well as the top segment to track dynamic responses of the tower. Besides, two

accelerometers are attached to the tower at segment 7 and segment 12 contorted

by 90◦ to account for torsional vibrations.

The structure is excited using three different excitation types, impulse excitation

with a hammer, free decay with bigger amplitudes and swept sine excitation using
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(a) Experimental structure
installed in the test facility

X Y

Z

Clamping 
Wall

(b) Schematic overview on experimental
tower structure

Figure 5.11.: Overview on the experimental prestressed concrete tower structure.

Table 5.14.: Mass distribution of the tower.

Segment Number Mass [kg]
1 - 1

2 100.5
3 102.6
4 102.0
5 101.8
6 106.5
7 104.0
8 104.8
9 103.7

10 104.0
11 106.0
12 142.0

Head Mass 470.0
1 The mass of this segment is irrelevant because it is clamped to the foundation.
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5.3. Damage localization at a scaled prestressed concrete tower

22mm

Figure 5.12.: Damage degree 1 applied to the experimental structure between segments
2 and 3, a 22mm deep cut.

an electrodynamic shaker. Only the hammer excitation is considered here because

each periodic excitation is running several hours. Simulation of these time series

would cause too long computational times. The free decay experiments are not

considered due to the small number of these tests being performed, making a sim-

ulation of the contact nonlinearities being activated in these tests difficult. Hence,

the impulse tests are used for model updating in this analysis.

The impulse excitation is applied using hammer strokes on the head mass and

centric on segments 11, 8 and 5 in y-direction and on the head mass and segment

8 in x-direction. Furthermore, a torsional impulse is applied by strokes on the

side of the outer plate of the head mass (compare Figure 5.11(a)). Every test is

repeated 10 times to account for statistical variance and is also repeated for all

configurations of the experimental structure, which is varied first in the parameter

of the prestressing force and second in the extent of the damage applied to the

structure (see Table 5.16). During the first configuration, the prestressing force

is set to 23 % of the compressive strength of the concrete. Afterwards, it is re-

duced to 19 %, 15 % and finally 11 % of the compressive strength of the concrete.

Then the force is increased to 20 % of the compressive strength of the concrete and

damage is applied to the structure. Damage is imposed by gradually increasing

parts being removed from the cross-sectional area in the x-y-plane of the tower

in four steps (step 1, see Figure 5.12) between segments 2 and 3. The maximum

degree of damage results in a reduction of one third of the geometrical moment of

inertia. The depth of the straight cuts into the tower and the resulting percentage

of the remaining geometrical moment of inertia are listed in Table 5.15. A typ-
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Table 5.15.: Damage degrees applied to the experimental structure.

Damage degree Depth of the cut h
Remaining geometrical
moment of inertia I1

mm %
1 22 91.7
2 33 83.2
3 42 75.3
4 51 66.2

1 This can be determined using the formula given in Appendix A.2.

Table 5.16.: Configurations investigated at the experimental structure.

Configuration No. Description Parameter varied
1 23% fck, No damage

Prestressing
2 19% fck, No damage
3 15% fck, No damage

force
4 11% fck, No damage
5 20% fck, No damage

Damage
6 20% fck, damage degree 1
7 20% fck, damage degree 2
8 20% fck, damage degree 3
9 20% fck, damage degree 4
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Figure 5.13.: Acceleration time series of a test conducted at the tower with a prestress-
ing force of 11%fck, no damage, measured at segment 9.

ical response of the conducted experiment is illustrated in Figure 5.13, revealing

a decent signal to noise ratio. Modal analysis using stochastic subspace identifi-

cation reveals decreasing eigenfrequencies, if the prestressing force is reduced or

if the structure is damaged, whereas it remains stable within the configuration.

The first eigenfrequencies identified for configurations 5 and 6 from the time series

are given in Figure 5.14, revealing a drop of the eigenfrequency of 2.2%. This

is similar to higher eigenfrequencies. Another noteworthy result is a drop of the

eigenfrequency during tests conducted in configuration 1 (see Figure 5.15). This

change is attributed to the screws that ensure clamping of the baseplate. These

loosen during a free decay experiment conducted between impulse tests, possibly

changing the clamping conditions.

The simulation model is built using three different element types. Timoshenko

beam elements are employed for the concrete segments of the tower, taking shear

deformation effects into account. Even though shell and volume elements are more

precise than beam elements, beams are chosen due to computational costs. The

material properties of these elements are listed in Table 5.17. The element densi-

ties are adjusted according to measured masses of the segments (see Table 5.14)

as given in Table 5.18. The head mass is simulated using a mass element without

consideration of rotational inertia. The clamping of the base plate is modeled by

rotational spring-damper elements at two axes.
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Figure 5.14.: First eigenfrequencies of configurations 5 and 6 identified from the im-
pulse tests
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Figure 5.15.: First eigenfrequencies of all tests conducted for configuration 1
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5.3. Damage localization at a scaled prestressed concrete tower

Table 5.18.: Locations of elements in simulation model of the tower and their density.
Element No. z-Coordinate in m Element Type Density Material

Start End kgm−3 Parameter
1 0 0.25 Timoshenko Beam 2291 1
2 0.25 0.5 Timoshenko Beam 2291 1
3 0.5 1.25 Timoshenko Beam 2337 2
4 1.25 1.5 Timoshenko Beam 2386 3
5 1.5 2 Timoshenko Beam 2372 4
6 2 2.25 Timoshenko Beam 2367 5
7 2.25 2.5 Timoshenko Beam 2367 5
8 2.5 3 Timoshenko Beam 2477 6
9 3 3.25 Timoshenko Beam 2419 7

10 3.25 3.5 Timoshenko Beam 2419 7
11 3.5 3.75 Timoshenko Beam 2437 8
12 3.75 4 Timoshenko Beam 2437 8
13 4 4.25 Timoshenko Beam 2412 9
14 4.25 4.5 Timoshenko Beam 2412 9
15 4.5 5 Timoshenko Beam 2477 10
16 5 5.25 Timoshenko Beam 2465 11
17 5.25 5.5 Timoshenko Beam 2465 11
18 5.5 5.75 Timoshenko Beam 3302 12
19 5.75 6 Timoshenko Beam 3302 12
20 6 Mass
21 0 Spring-Damper
22 0 Spring-Damper

Table 5.17.: Material properties of the concrete in the simulation model
Property Value

Young’s modulus E 2.32 · 1010 Nm−2

Shear modulus G 9.67 · 109Nm−2

Rayleigh Damping Coefficient
α 0.0437
β 3.3070 · 10−4

Damping is considered using Rayleigh damping (see equation (2.2)). The val-

ues α and β are given in Table 5.17. A force of 1.3 · 106N is used to model the

prestressing force. Since the impulse force is not measured during the experiment,

it is approximated according to the maximum acceleration after the impulse, indi-

vidually for each time series.

5.3.2. Damage localization at the tower

Since the application of ρl2 does not deliver satisfying results in the tripile and the

three-story frame presented so far, another, new time-domain based comparison

127



5. Concept Validation for Damage Localization

method shall be employed within this section. Namely, this is the Mahalanobis

norm which is used to formulate the metric ρµ (see equation (2.35)). Hence, time

domain metrics are compared in this section solely.

Configuration 1: Localization of failure at basement clamping

A failure at the clamping occurs during the experiments. In real applications

of the method, the location of this failure would be unknown. Therefore, this

modification of the structural behavior is located in this section. The numerical

model is parameterized using 13 parameters. Parameters two to thirteen represent

the stiffnesses of the tower elements whereas parameter one is used to modify the

stiffness of rotational springs connecting the tower to the ground. The optimization

problem solved to locate the investigated damage is

min
θ

ρl2(θ) (5.3a)

subject to θi ≥ 0.9 ∀ i ∈ [2...13] (5.3b)

θ1 ≥ 0.05 (5.3c)

θi ≤ 1.01 ∀ i ∈ [2...13] (5.3d)∑
i

(1− θi) ≤ 0.95. (5.3e)

The stiffness of the rotational springs connecting the tower to the ground is ex-

pected to change more distinctively in the investigated case. Therefore, the re-

striction of parameter one is chosen to be relatively free (see eqn. (5.3c)), whereas

the maximum stiffness decrease of the beam elements is restricted to 10% (see eqn.

(5.3b)). A small increase is allowed for numerical reasons (eqn. (5.3d)) as before.

Equation (5.3e) is employed again to ensure only one parameter being reduced,

though its influence is expected to be small here, because it is adjusted to the high

expected stiffness decrease of the rotational springs (eqn. (5.3c)).

Results from ten runs to solve problem (5.3) are listed in Table 5.19. While pa-

rameter one is expected to be reduced, it is raised by a medium of 13% in all runs.

The stiffness parameters of the beam elements remain close to the initial value,

although the stiffness of the beam element at the base (parameter 2) is reduced in

all solutions. This may be interpreted as the damage being in this area. Obviously,

there is an optimum here that is different from the expected one, with parameter

one being reduced. On the other hand, the normalized objective function values

remain close to the initial value.

If problem (5.3) is solved again applying ρµ, results are different (see Table 5.20).
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5.3. Damage localization at a scaled prestressed concrete tower

Table 5.19.: Results of Simulated Quenching and Sequential Quadratic Programming
using ρl2 to locate clamping failure in the tower (config. 1).

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.993 1.122 0.98 0.959 0.994 1.01 1.01 1.01 1.01 1.01 1.01 0.948 0.98 0.98

2 0.993 1.137 0.972 0.964 0.991 1.01 1.01 1.01 1.01 1.01 1.01 0.954 0.972 0.972

3 0.993 1.134 0.972 0.965 0.991 1.01 1.01 1.01 1.01 1.01 1.01 0.955 0.972 0.972

4 0.993 1.134 0.972 0.965 0.991 1.01 1.01 1.01 1.01 1.01 1.01 0.955 0.972 0.972

5 0.993 1.121 0.98 0.959 0.995 1.01 1.01 1.01 1.01 1.01 1.01 0.949 0.98 0.98

6 0.993 1.135 0.972 0.965 0.992 1.01 1.01 1.01 1.01 1.01 1.01 0.955 0.972 0.972

7 0.993 1.136 0.972 0.964 0.991 1.01 1.01 1.01 1.01 1.01 1.01 0.955 0.972 0.972

8 0.993 1.136 0.972 0.964 0.991 1.01 1.01 1.01 1.01 1.01 1.01 0.955 0.972 0.972

9 0.993 1.122 0.98 0.959 0.994 1.01 1.01 1.01 1.01 1.01 1.01 0.948 0.98 0.98

10 0.993 1.135 0.972 0.964 0.99 1.01 1.01 1.01 1.01 1.01 1.01 0.955 0.972 0.972

M 0.993 1.131 0.975 0.963 0.992 1.01 1.01 1.01 1.01 1.01 1.01 0.953 0.975 0.975
σ 0 0.006 0.004 0.003 0.002 0 0 0 0 0 0 0.003 0.004 0.004

Table 5.20.: Results of Simulated Quenching and Sequential Quadratic Programming
using ρµ to locate clamping failure in the tower (config. 1).

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.766 0.98 1.053 1.025 0.961 0.997 0.979 1.034 1.095 1.085 1.052 0.991 0.986 0.964

2 0.687 0.165 0.95 1.013 1.005 1.057 1.054 0.951 0.937 0.978 1.051 0.944 1.038 0.923

3 0.769 1.052 0.938 0.988 0.999 1.02 0.986 1.032 0.967 1.068 1.099 1.085 1.067 0.931

4 0.762 0.807 0.903 0.966 0.969 0.987 0.952 1.014 1.014 1.069 1.013 1.05 1.019 0.91

5 0.763 0.828 0.977 0.947 1.072 0.956 1.035 1.041 1.087 1.064 0.933 0.951 1.056 1.014

6 0.647 0.097 1.024 1.022 1.039 1.013 0.921 1.028 1.088 0.987 1.067 1.079 1.034 0.936

7 0.749 0.557 0.932 0.998 1.095 1.005 1.043 1.086 1.062 0.97 1.083 0.96 1.058 1.049

8 0.74 0.483 0.904 1.036 0.966 0.958 0.961 1.007 1.072 1.084 1.061 1.047 1.067 1.053

9 0.765 1.003 0.946 1.001 0.912 0.981 1.014 1.036 1.037 1.09 1.048 1.07 1.085 1.021

10 0.767 0.997 1.014 1.014 0.958 0.91 1.055 1.085 1.077 0.987 1.014 1.087 0.968 0.969

M 0.742 0.697 0.964 1.001 0.998 0.989 1 1.031 1.044 1.038 1.042 1.027 1.038 0.977
σ 0.039 0.336 0.049 0.026 0.054 0.039 0.045 0.037 0.052 0.048 0.044 0.056 0.035 0.051

129



5. Concept Validation for Damage Localization

In this case, the algorithm detects several local optima. All these solutions have in

common, that the final objective function is small, if parameter one is small (see

especially runs 2 and 6 in Table 5.20). The standard deviation of parameter 1 is

quite high (0.336), making possible quantifications questionable.

Configuration 6: Localization of small saw cut

Since the basement screws are fixed in subsequent experiments, the rotational

springs connecting the tower to the ground are removed from the parameter set.

Hence, parameters one to twelve denote the stiffnesses of the elements used to

model the tower in Tables 5.21 and 5.22. The smallest damage applied to the

structure is to be located here (configuration 6, damage degree 1). This configu-

ration is characterized by a saw cut with a cutting depth of 22mm, resulting in a

stiffness decrease of 8.3% (determined using Appendix A.2). The correct solutions

provide slightly smaller objective function values, and the stiffness decrease is un-

derestimated. In the experiment, the damage is applied in the section modified by

parameter 2. Hence, this value should be reduced to locate damage in the correct

spot.

If ρl2 is applied for damage localization (Table 5.21), localization is successful

in three runs (solutions 3,7 and 8). Again, objective function values may be used

to distinguish wrong from right solutions, although the difference between correct

and wrong solutions is marginal in this case. The correct stiffness change of 8.3%

is underestimated in all three correct solutions. If ρµ is employed for damage lo-

calization (Table 5.22), six of ten solutions locate the damage in the correct area

(runs 2,3,4,5,7,10). The difference between correct and wrong solutions can be

seen in the objective function values, which are around 0.9, whereas the wrong

solutions provide associated objective function values close to 1. An exception

is solution 9, where the initial adaptive window is set to parameters 3, 4 and 5,

making it impossible to point to the correct solution. However, it points towards

the neighbored parameter. A move of the adaptive window as described earlier in

section 3.3 helps to find the correct solution. This intermediate solution has a final

objective function value of 0.95, which is in the middle between the correct and

the wrong solutions. The value of parameter 2 is between 0.908 and 0.931 which

is fairly close to the real stiffness decrease of 8.3% in all correct solutions. A local

optimum seems to be achieved if parameter 12 is reduced (runs 1,6 and 8). Hence,

the localization of the saw cut is possible using the presented approach, but only

if ρµ is employed as objective function.
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Table 5.21.: Results of Simulated Quenching and adaptive Sequential Quadratic Pro-
gramming using ρl2 to locate damage in the tower (configuration 6).

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12

1 0.998 0.975 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 0.998 0.983 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 0.991 1.01 0.951 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 0.997 1.01 1.01 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 0.998 1.01 1.01 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6 0.998 1.01 1.01 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7 0.992 1.01 0.981 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

8 0.993 1.01 0.987 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

9 0.998 1.001 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 0.998 0.998 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

M 0.996 1.002 0.999 1.006 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
σ 0.003 0.013 0.020 0.005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.22.: Results of Simulated Quenching and adaptive Sequential Quadratic Pro-
gramming using ρµ to locate damage in the tower (configuration 6).

SQP run Objective Parameter number
number Function Value 1 2 3 4 5 6 7 8 9 10 11 12

1 0.991 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.01 0.931

2 0.899 0.981 0.910 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 0.903 0.976 0.920 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 0.874 0.961 0.911 0.926 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 0.906 0.983 0.904 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6 0.991 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.01 0.942

7 0.921 1.0 0.931 0.977 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

8 0.991 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.01 0.918

9 0.951 1.0 1.0 0.906 1.01 1.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10 0.900 0.982 0.908 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

M 0.925 0.988 0.948 0.981 1.002 1.001 1.0 1.0 1.0 1.0 1.0 1.003 0.985
σ 0.040 0.014 0.045 0.035 0.004 0.003 0 0 0 0 0 0.005 0.027

131



5. Concept Validation for Damage Localization

5.4. Conclusion

A saw cut is inserted into a brace of a scaled tripile structure to prove the func-

tionality of the algorithm using real measured data. In case modal properties are

employed as the objective function, the Simulated Quenching algorithm approxi-

mates correct solutions in 50% of the examples. If the damage is located in one of

the undamaged braces by Simulated Quenching, Sequential Quadratic Program-

ming does not converge, and it is obvious, that damage can only be present in one

of the other braces. The objective function seems to have another local optimum

in the upper section of the tower, but the respective objective function values are

25% bigger than those of the correct damage location. Furthermore, the fact that

50% of all solutions locate damage in one single brace is a strong indication of

the damage to be in this area. In practice, this would imply to instruct a mainte-

nance crew to look for damages in the brace first. If no damage is found here, the

maintenance team should move on to the upper section of the tower and check for

damages there. The final objective function values are bigger than in the numeri-

cal example, which presumably has two reasons: The initial model is not a perfect

representation of the undamaged system, and the damage is not modeled correctly,

raising the uncertainty (see section 1.1 and compare section 4.2.2). The validity

of the simplified modeling approach for damage is presented in section 3.2. If time

series are employed as an objective function for damage localization with a window

that excludes the impulse phase, the algorithm locates damage in the wrong spot,

the tower base element instead of the brace, which is the real damaged area. It

is assumed that the system mainly vibrates in the first eigenmode, whereas the

transient procedure immediately after the impulse load is skipped. Including the

impulse phase in the time series considered in the objective function has a concise

effect on the performance of the algorithm. With the complete transient procedure

included in the evaluation of the objective function, the algorithm locates damage

in the correct location in 50 percent of all optimization runs, allowing the use of

the final objective function value to distinguish right from wrong solutions. This

analysis underlines the importance of choosing the right data basis for model up-

dating. A sensitivity analysis reveals that damages can be located at every cut

depth above 18.9mm. In this example, ρs returns best results whereas ρl2 performs

worst, only the most severe damage can be located reliably using this metric.

Although the functionality in the rotor blade is proven using simulated data, the

damage cannot be localized using this approach if applied to measurement data.

Several reasons come into account for the malfunction of the damage localization

algorithm in the rotor blade. The first and most important is the fact that dam-

age occurs at the airfoil of the rotor blade and hence not at the load carrying
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5.4. Conclusion

frame. This damage affects the global dynamic behavior of the blade only subor-

dinately. Though being caused by mechanical loading, the effect of this damage

on the global structural behavior is negligible, the damage is too small regarding

decreased stiffness to be located. Comparison of measured eigenvectors before and

after damage results in an average modal assurance criterion value of 0.99989, the

sum of the deviations of the first seven eigenfrequencies is only 8.05%, meaning

that each frequency differs by an average of 1.15%. These numbers quantify the

diminutiveness of the occurred damage regarding the global structural behavior.

Another reason may be the sensor set up (see Table 4.9). Damage occurs 6m from

the blade root, whereas the next sensor is installed at 12m. This may affect the

ability to determine structural changes only starting from the region of the sensor

towards the blade tip. If ρω+φ is used, and the damage is located in the area of

this sensor. The results of using ρτ also reveal a tendency towards this area being

the damaged section. In the use of transmissibility functions presented here, only

ten out of thirty functions are affected by the damage. The remaining contain

relationships between sensors that do not cover the damaged area. Hence, the

algorithm may fail because the effect of damage may be obliterated between all

functions used.

Prestressed concrete towers are a new and economic construction for onshore wind

turbines, enabling higher hub heights and more freedom in the design of new tow-

ers. The algorithm is applied to two different damage scenarios at a 6m high scaled

prestressed concrete tower for testing its damage localization capabilities in these

structures. The two investigated damages include modified clamping conditions,

and a 22mm deep saw cut induced to one of the segments. The metrics ρl2 and

ρµ, used for quantification of the difference between measured data and numer-

ical results, are compared concerning their performance for damage localization.

These employ the Euclidean and Mahalanobis distance and are hence both time

domain methods. Both damages can be located with ρµ, but ρl2 is not effective

in the location of the changing clamping conditions. This failure may indicate

a too simple numerical model. In reality, the modified clamping causes a tilting

foundation block, whereas it is modeled with rotational springs here, ignoring the

contact nonlinearity between foundation block and ground. This may be an ex-

planation why the modified clamping, which is much bigger damage, cannot be

located thoroughly. Even with ρµ, this damage is located in a few cases, but the

parameter values modifying the rotational stiffness scatter heavily. The saw cut,

which is much smaller damage regarding altering the global structural dynamics is

successfully located with both metrics, and this damage does not cause nonlinear

structural behavior. If ρµ is employed, the parameter values are close to the real

stiffness decrease.
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6. Summary, Conclusion and

Outlook

6.1. Summary

One of the major drawbacks of the growing complexity of sophisticated computa-

tional models for structural systems is their need for more parameters that may

be unknown. In many cases, these parameters are hardly measurable which leads

to numerical models that are heavily influenced by engineering assumptions and

therefore simulation results that do not represent measured data recorded on the

investigated structures. Model updating is an inverse strategy used for adaption

of these parameters to contribute to better approximations of numerical models to

measured data. In this thesis, the major challenges and tasks are addressed, and a

new algorithm for model updating is presented to contribute to the research field

of computational modeling of structural systems and model updating.

A general scheme for model updating is introduced, and the mathematical formu-

lation of the model updating problem as a constrained optimization problem is

given. The optimization problems are demonstrated to provide several local min-

ima, both from a theoretical perspective as well as using practical examples. This

section illustrates the need for global optimization algorithms in model updating.

Constraints ensure the numerical model to remain within meaningful ranges. The

proposed two-step method is a numerically efficient implementation of this scheme,

employing Simulated Quenching to approximate the global solution and Sequential

Quadratic Programming to find the exact solution locally. Various examples are

employed to demonstrate the functionality of the proposed algorithm. These exam-

ples include both theoretical studies aiming to verify the general performance and

practical examples used to confirm the efficiency using real measured data. The

successful application of the algorithm for parameter identification is demonstrated

using two examples, and the utilization of the algorithm for damage localization is

explained. However, it is shown that damages must be big enough to be located

successfully. In some examples, an outlook towards damage quantification is given,

but damage quantification is beyond the scope of this thesis.
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6.2. Conclusion

Different metrics are employed to compare simulation results and measured data.

Metrics based on eigenfrequencies in combination with mode shapes, time domain,

and frequency domain are implemented and compared concerning their perfor-

mance for parameter identification and damage localization.

The first example comprises a simulated cantilever beam that is partially modeled

by shell elements. Several shell elements are deleted to simulate a more realistic

damage representation than the usual beam representation used in model updat-

ing. The same structure is simulated using beam elements. This beam model is

then updated to responses of the damaged shell model. This investigation proves

the applicability of beam elements for damage localization, even for small dam-

ages. Results are compared using a metric formulated based on power spectral

densities, which is capable of efficiently reducing measurement noise. A second

example applies the algorithm to a more complex representation of a virtual wind

turbine, with complex loads acting on the structure and simulated damage. Dam-

age is successfully located and can even be quantified using the presented approach

based on a direct comparison of time series.

Furthermore, the framework is applied to a lab-scaled frame structure excited by a

shaker, using real measured data. Acceleration signals are measured on each floor

of the structure. The frame is modified using added masses, reduced stiffnesses

and a supplementary nonlinearity with varying impact on the dynamic behavior.

Comparing eigenfrequencies and mode shapes delivers best results in this analysis.

As long as the nonlinearity is not activated, all parameters are identified success-

fully. Even their quantity is nearly matched. Modal properties are not used in case

the nonlinearity is activated. Instead, time series are compared directly or using a

metric in the frequency domain. The metric in the frequency domain delivers best

results. However, the success of parameter identification decreases as the effect of

the nonlinearity increases, prompting the need for more accurate modeling of the

nonlinearity.

A metric based on transmissibility functions is applied to ice quantification at a

34.2m long wind turbine rotor blade and compared to the classical metric based

on eigenfrequencies and mode shapes. Additional masses are applied to the tip

of a rotor blade during an experiment in a real-scaled blade installed in a test rig

to emulate icing, which usually starts at the blade tip. Successful localization of

ice masses is demonstrated with modal properties only. The added ice masses are

overestimated by this approach nearly linearly by factor two to three. A correction

factor may be introduced that adjusts the identified additional mass to the real ice

mass accreted on the blade. Although working fine in numerical analyses, model
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updating using the metric based on transmissibility functions as presented in this

thesis seems to be inefficient if measurement data are employed.

The application of model updating to damage localization is another interpreta-

tion of model updating and its results. The same algorithms and methods may be

reused for this utilization. After an initial updating to undamaged measurement

data and a damage event, the element stiffnesses of beam elements are set to be

variable. The model is updated to the new measurement data recorded on a dam-

aged structure. The application to a lab-scaled tripile structure, excited by impulse

hammer strokes, reveals the importance of using the correct set of measurement

data. Updating based on time series is not successful if the initial, complex vibra-

tions after the excitation are not considered in model updating, whereas this is the

case if these vibrations are included in the evaluation of the metric. The structure

is damaged by gradually increasing damages. A sensitivity analysis confirms the

observation that a transfer of time series to the frequency domain is beneficial

because model updating is more sensitive using this approach. Saw cuts up to a

depth of 18.9mm can be localized using this technique, whereas only the most se-

vere damage is localized using a direct comparison of time series. Modal properties

perform on a medium level. A cut depth of 37.6mm is successfully localized.

In a second experiment, the 34.2m long wind turbine rotor blade is damaged. Fa-

tigue damage occurs at 6m from the blade root in the airfoil on both suction and

pressure side. The damage cannot be localized because it is restricted to the air-

foil. The airfoil has a minor influence on the global structural dynamic behavior,

which is dominantly affected by the webs and girders of the rotor blade. Hence,

the effect of this damage on the global structural behavior of the blade is limited

and can hence not be located using the approach presented in this thesis.

Due to the limited success of the direct comparison of measured data and sim-

ulated results based on time series in the previous examples, a new time series

comparison method is introduced and tested on a scaled model of a prestressed

concrete tower. This metric is based on the Mahalanobis distance, and it is suc-

cessfully applied to localize both artificially induced damage and a malfunction at

the basement clamping that arose during the experiments. Because the clamping

causes a nonlinearity, success is limited. The ’classical’ metric employing ρl2 fails

in locating this damage. Both metrics are successful in locating an artificial saw

cut that reduces the bending stiffness locally by 8.3%.

Different metrics are used throughout this text to compare numerical results and

measured data in both frequency and time domain. For linear cases, the classical

approach using eigenfrequencies and mode shapes performs adequately, whereas a

direct comparison of time series does not yield as good results. If nonlinearities

exist, a transformation to the frequency domain seems beneficial. Alternatively,
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the Mahalanobis distance may be employed for comparison of transient signals in

the time domain. A conclusion would be to use modal properties in case a linear

behavior of the model is expected and switch to frequency domain or employ the

Mahalanobis-distance, if nonlinearities are awaited. If none of these approaches

yields expected results, it seems to be a good advice to check if all physical pro-

cesses that influence the dynamics of the investigated structure are considered

adequately in the numerical model.

Since the algorithm takes long time periods to identify structural changes, it is not

feasible to apply it to real-time evaluations in structures being in service. How-

ever, an online application in structures is still imaginable, being started if other

approaches, for instance, [70] and [163], detect damages. Then, damage localiza-

tion may be started. Parameter identification should be repeated on a regular

basis to account for changing conditions.

6.3. Outlook

Except for the structures excited by hammer strokes, loads acting on the struc-

tures are known in all examples examined throughout this thesis, either from free

decay processes or measured shaker loads. Even if the structures are excited by

a hammer, the load can be assumed known to some extent since the exact time

and location are known. This assumption is often not the case in real environ-

ments, where complex load scenarios have a significant influence on the structural

response measured by sensors on the structure. A way to tackle this is the use of

Kalman filtering to approximate the loads and then update the models. The loads

may be an additional factor during the updating process. Furthermore, environ-

mental and operational conditions that heavily influence the structural dynamics

of structures, especially in wind turbines, must be taken into account. A possible

way to handle these would be to cluster measurement data to certain combinations

of environmental and operational conditions and update individual models for each

of these clusters.

Robust optimization methods may be beneficial to account for different uncer-

tainty levels of the parameters. On the other hand, these have the drawback that

more information on the parameters is needed to implement this approach. A

combination of metrics from different domains may have a positive influence on

the model updating results since more information would be considered by this ap-

proach. Although updating results from different metrics should be similar, Pareto

optimization may help to compromise between results from different domains.

Although damage localization at the rotor blade is not successful due to the lim-

ited influence on the global dynamic behavior, there are condition parameters that
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successfully detect this damage [163], based on residues from stochastic subspace

identification or autoregressive models. These residues may also be employed to

quantify differences between numerical results and measured data, especially in the

time domain. Furthermore, a state-space representation is built during stochastic

subspace identification. This model may replace a ’conventional’ finite element

model that is updated to newly incoming measurement data.

To the best knowledge of the author, there is no reference data set for model up-

dating that may be employed to test different updating approaches methods. For

model updating, both construction and measurement data are needed. Access to

these data is often restricted due to confidentiality reasons by operators and man-

ufacturers of structural systems. Hence, creating a fully described reference data

set for model updating would be beneficial for the research community because

this would enable researchers to test new methods on this data set, making results

comparable to previous results gained with different methods.

Although many examples in the text derive from applications in wind turbine

structures, this is not the main focus of the thesis. All methods presented are

intended to apply to all kinds of structural systems such as bridges, skyscrapers,

and all other vibratory systems. Furthermore, the approach presented here could

be transferred to other applications than structural dynamics. In fact, every nu-

merical model that is validated using measurement data could be calibrated with

the approach presented in this thesis.
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A. Calculation of stiffness

reductions in circular cross

sections

A.1. Straight elimination of cross sectional area

The geometrical moment of inertia of a circular cross section is

Idamage =
π

4
·
(
R4 − r4) , (A.1)

with R and r denoting the outer and the inner radius of the tower, see Figure A.1.

Two different states have to be considered, if the difference of moments of inertia

after a straight cut shall be determined. The first state is a cut depth being smaller

than the wall thickness. The geometrical moment of inertia of the removed area

based on the center of mass of the removed area, IcircleSegment is calculated using

IcircleSegment = R4 ·
(

4α− sin(4α)

16
− 8 sin6(α)

9 · (2α− sin(2α))

)
. (A.2)

α denotes the angle between center line and outermost point of the cut, compare

Figure A.1. Adding Steiner’s theorem, the full influence of the reduction of the

cross-section area yields

∆I = IcircleSegment +

(
4

3
· R · sin3(α)

2α− sin(2α)

)2

· R
2

2
(2α− sin(2α)) . (A.3)
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α
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y

z

h

α2

t

Figure A.1.: Geometrical properties of circle cross section in case of a straight cut.
Removed area is marked in red.

Equation A.3 is valid, if the depth of the cut is smaller than the wall thickness t

of the tower. If the depth is bigger than t, ∆I is obtained using

∆I =IcircleSegment +

(
4

3
· R · sin3(α)

2α− sin(2α)

)2

· R
2

2
(2α− sin(2α))

− r4 ·
(

4α2 − sin(4α2)

16
− 8 sin6(α2)

9 · (2α2 − sin(2α2))

)
−
(

4

3
· r · sin3(α2)

2α2 − sin(2α2)
+ zs

)2

· r
2

2
(2α2 − sin(2α2)),

(A.4)

where zs denotes the deflection of the center of mass, which is determined using

zs =
2
(
R3 − r3

)
sin(Π− α)

3 (R2 − r2) (Π− α)
. (A.5)

The angles α and α2 are defined as

α = arccos

(
1− h

R

)
(A.6a)

α2 = arccos

(
1− h− t

R− t

)
, (A.6b)

with h denoting the depth of the cut.
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A.2. Angular elimination of cross sectional area

R
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y

z zs

e

2α

Figure A.2.: Geometrical properties of circle cross section in case of a angular elimina-
tion of area. Removed area is marked in red.

A.2. Angular elimination of cross sectional area

The geometrical moment of inertia of a removed circle segment described by an

angle α (see Figure A.2) referred to the center of mass of this area is determined

using

IyLocal =

(
R4 − r4

)
(2α+ sin (2α))

8
− e2α

(
R2 − r2) , (A.7)

with R and r denoting the outer and the inner radius and e denoting the distance

from the center of the circle to the center of mass of the removed area (Fig. A.2).

This distance is computed using

e =
2
(
R3 − r3

)
sin (α)

3 (R2 − r2)α
. (A.8)

To consider a displacement of the removed area from the z axis by the angle β,

the local coordinate system of the circle segment is transformed to the global one

IyGlobal =
1

2
(IyLocal + IzLocal) +

1

2
(IyLocal − IzLocal) cos (2β) + IxyLocal · sin (2β) ,

(A.9)

with

IzLocal =

(
R4 − r4

)
(2α− sin (2α))

8
(A.10)

143



A. Calculation of stiffness reductions in circular cross sections

and IxyLocal = 0 due to symmetry. Furthermore, Steiner’s theorem is added.

Hence, the influence of the reduction of the cross-section area yields

IcircleSegment = IyGlobal + z2
s ·A . (A.11)

zs denotes the distance from the y axis to the center of mass of the removed circle

segment. It is calculated using

zs = e · sin
(

Π

4
− β

)
. (A.12)

A denotes the removed area which is determined by

A =
(
R2 − r2)α . (A.13)
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