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Rainfall time series of high temporal resolution and spatial density are crucial for urban hydrology. The
multiplicative random cascade model can be used for temporal rainfall disaggregation of daily data to
generate such time series. Here, the uniform splitting approach with a branching number of 3 in the first
disaggregation step is applied. To achieve a final resolution of 5 min, subsequent steps after disaggrega-
tion are necessary. Three modifications at different disaggregation levels are tested in this investigation
(uniform splitting atDt = 15 min, linear interpolation atDt = 7.5 min andDt = 3.75 min). Results are com-
pared both with observations and an often used approach, based on the assumption that a time steps
with Dt = 5.625 min, as resulting if a branching number of 2 is applied throughout, can be replaced with
Dt = 5 min (called the 1280 min approach). Spatial consistence is implemented in the disaggregated time
series using a resampling algorithm. In total, 24 recording stations in Lower Saxony, Northern Germany
with a 5 min resolution have been used for the validation of the disaggregation procedure. The urban-
hydrological suitability is tested with an artificial combined sewer system of about 170 hectares.
The results show that all three variations outperform the 1280 min approach regarding reproduction of

wet spell duration, average intensity, fraction of dry intervals and lag-1 autocorrelation. Extreme values
with durations of 5 min are also better represented. For durations of 1 h, all approaches show only slight
deviations from the observed extremes.
The applied resampling algorithm is capable to achieve sufficient spatial consistence. The effects on the

urban hydrological simulations are significant. Without spatial consistence, flood volumes of manholes
and combined sewer overflow are strongly underestimated. After resampling, results using disaggregated
time series as input are in the range of those using observed time series.
Best overall performance regarding rainfall statistics are obtained by the method in which the disaggre-

gation process ends at time steps with 7.5 min duration, deriving the 5 min time steps by linear interpo-
lation. With subsequent resampling this method leads to a good representation of manhole flooding and
combined sewer overflow volume in terms of hydrological simulations and outperforms the 1280 min
approach.
� 2018 The Authors. Published by Elsevier B.V. Published by Elsevier B.V. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Rainfall time series of high temporal resolution and sufficient
station density are crucial for urban hydrology (Schilling, 1991).
Bruni et al. (2015) analyzed the influence of spatial and temporal
resolution of rainfall on intensities and simulated runoff. With
decreasing resolution, the variability of rainfall intensities was
reduced and the runoff behavior changed regarding maximum
water depth and runoff peaks. Emmanuel et al. (2012) extracted
different types of rainfall from radar data in Western France with
5 min-resolution and analyzed their spatial extension with vari-
ograms. They found that for an adequate spatial representation,
rainfall gauges should have a maximum distance of 6.5 km for light
rain events and 2.5 km for showers. Berne et al. (2004) found sim-
ilar values by an investigation of intensive Mediterranean rainfall
events. They recommended temporal resolutions of 3–6 min and
a station density of 2–4 km for urban catchments with an area of
1–10 km2. Ochoa-Rodriguez et al. (2015) analyzed the effect of
different combinations of temporal (1–10 min) and spatial
(100–3000 m) resolutions for different catchments (up to drainage
areas of 8.7 km2). They found that for drainage areas greater than
100 ha spatial resolution of 1 km is sufficient, if the temporal
resolution is fine enough (<5 min).
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Radar-measured rainfall data would meet these requirements.
Unfortunately, the direct measurement with a radar device is not
possible, only reflected energy from hydrometeors at a certain
height above the ground can be measured. Thus, radar data can
be affected by different sources of errors, e.g. variations in the rela-
tionship between reflected energy and rainfall intensity depending
on rainfall type, changes in the precipitation particles before reach-
ing the ground, anomalous beam propagation and attenuation
(Wilson and Brandes, 1979). Hence, it could be expected that the
use of uncorrected radar data is not acceptable for many hydrolog-
ical applications. However, after correction radar data can be an
useful input for e.g. urban hydrological applications (Ochoa-
Rodriguez et al., 2015).

On the other hand, direct rainfall measurement is possible with
rain gauges. The measurement is also affected by errors, e.g. wind
induced errors, losses from surface wetting or evaporation from
collectors, but these can be quantified and corrected (Richter,
1995; Sevruk, 2005).

However, the availability of observed time series for rain gauges
meeting the aforementioned requirements concerning temporal
and spatial resolution is rare. On the contrary, time series with
lower temporal resolution (e.g. daily measurements) exist for
much longer periods and denser networks. Disaggregation of the
time series from these non-recording stations using information
from the recording stations is a possible solution to this data
sparseness problem.

Several methods are available that can be used for this disaggre-
gation e.g. method of fragments (e.g. Wójcik and Buishand, 2003),
Poisson-cluster models (e.g. Onof et al., 2000), cascade models or a
combination of different methods (e.g. Paschalis et al., 2014).

For a theoretical introduction to cascade models and the under-
lying theory of scale-invariance the reader is referred to Serinaldi
(2010) and the reviews of Veneziano et al. (2006), Veneziano and
Langousis (2010) and Schertzer and Lovejoy (2011). An advantage
of micro-canonical cascade models is their exact conservation of
rainfall volume of the coarse time series at each disaggregation
step (Olsson, 1998). The total rainfall amount of each coarse time
step is distributed on the number of finer time steps, whereby
the number of resulting wet time steps and their rainfall amount
(as fraction of the total rainfall amount of the coarser time step)
depends on the cascade generator. An aggregation of the disaggre-
gated time series results in exactly the same time series that was
used as a starting point for the disaggregation. Accordingly, all
required parameters for the disaggregation process can also be
estimated from the aggregation of the recording time series
(Carsteanu and Foufoula-Georgiou, 1996) and can then be applied
to the disaggregation of time series from surrounding non-
recording stations (Koutsoyiannis et al., 2003).

Cascade models are widely applied in urban hydrology. One
structural element of the cascade models is the branching number
b, which determines the number of finer time steps generated from
one coarser time step. In most cases b = 2, which means that a
starting length of 24 h will result in an inapplicable temporal res-
olution of 11.25 or 5.625 min. So a direct disaggregation from daily
values to 5- or 10-min values is not possible. One established solu-
tion is to preserve the rainfall amount of a day, but the length is
reduced to 1280 min, instead of 1440 min (Molnar and Burlando,
2005, 2008; Paschalis et al., 2014; Licznar et al., 2011a,b, 2015).
Under this assumption, temporal resolutions of 5- or 10-min can
be achieved. However, this is a very coarse assumption and missing
time steps have to be infilled with dry intervals for applications
such as the continuous modeling of sewer systems. If b is changed
during the disaggregation process, other temporal resolutions can
be achieved. Lisniak et al. (2013) introduce a cascade model with
b = 3 to reach the first and b = 2 to reach all further disaggregation
levels, which leads to time steps with 1 h duration. A parameter
sparse version of their model is applied in Müller and Haberlandt
(2015).

The application of cascade models for generation of high-
resolution time series is recommended by several authors.
Segond et al. (2007) suggest a cascade model for the disaggregation
of hourly time series, although other methods were also tested in
their investigation. Onof et al. (2005) disaggregated hourly values
with b = 2 to 3.75 min intervals and transformed them into 5 min
intervals by a linear interpolation (similar to the diversion process
to achieve hourly resolutions described in Güntner et al., 2001).
Hingray and Ben Haha (2005) tested several models for disaggrega-
tion from 1 h to 10 min. Micro-canonical models have shown best
performance regarding rainfall statistics, but also for modeled dis-
charge results.

Considering these previous studies, the testing of different cas-
cade model variations for the disaggregation of daily values is the
first novelty of this investigation. The impact on time series char-
acteristics like average wet spell duration and amount, dry spell
duration, fraction of dry intervals, average intensity, autocorrela-
tion function and also extreme values will be analyzed.

Furthermore, the impact on overflow occurrence and volume
within an artificial sewer network will be analyzed. Although rain-
fall time series are often disaggregated for this purpose, analyzes of
the impact on runoff in sewer systems are rare. An artificial sewer
system in combination with real recording rainfall gauges will be
used for this study. As time series of different stations are disaggre-
gated without taking into account time series of surrounding sta-
tions, this per station or single-point procedure results in
unrealistic spatial patterns of rainfall. Since the spatial resolution
is also important for high-resolution rainfall (Berne et al. 2004;
Emmanuel et al. 2012), the spatial distribution of rainfall has to
be considered. Müller and Haberlandt (2015) introduced a resam-
pling algorithm to implement spatial consistence into time series
after disaggregation for hourly resolutions. A similar procedure
will be used in this study for the first time to the author’s knowl-
edge for 5 min values. Also, it will be analyzed if there is a necessity
for spatial heterogeneous rainfall (resulting from more than one
station) to represent extreme events in such a small catchment,
or if uniform rainfall resulting from one station is sufficient.

The paper is organized as follows. In the ‘‘Data” section the inves-
tigation area, the rainfall stations and the artificial sewer system are
described. In the next section the applied methods are discussed in
three parts. In the first part different possibilities for the rainfall dis-
aggregation are explained. The second part concerns the implemen-
tation of spatial consistence in the disaggregated time series. The
implementation in the sewer system and the analysis of the model
resultsaredescribed in the thirdpart. In the ‘‘Results andDiscussion”
section the results for all three parts are shown and discussed. A
summary and outlook are given in the final section.

2. Data

2.1. Rainfall data

The stations used for this investigation are located in and
around Lower Saxony, Germany (47614 km2, see Fig. 1). The inves-
tigation area can be divided into three different regions, the Harz
middle mountains with altitudes up to 1141 m in the south, the
coastal area around the North Sea in the north and the flatland
around the Lüneburger Heide in between. Some areas of the Harz
mountains have average annual precipitation greater than
1400 mm. Furthermore, the study area can be divided climatolog-
ically according to the Köppen–Geiger classification into a temper-
ate climate in the north and a cold climate in the mountainous
region. Both climates exhibit hot summers, but no dry season
(Peel et al., 2007).
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Fig. 1. Recording stations in and around the federal states of Lower Saxony, Hamburg and Bremen. The city of Brunswick is also shown.
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In Fig. 1, 24 recording stations from the German Weather Ser-
vice (DWD) with long term time series (9–20 years) are shown.
These stations are used for the validation of the cascade model
variants, concerning the representation of different rainfall charac-
teristics. These are overall characteristics like average intensity and
fraction of wet hours, but also event characteristics like dry spell
duration, wet spell duration and wet spell amount as well as
extreme values. Events are defined as having a minimum of one
dry time step before and after the rainfall occurrence (after
Dunkerley, 2008). A dry time step is defined with a rainfall inten-
sity of 0 mm/5 min. The measurement devices are either tipping
buckets, drop counters or weighting gauges, with accuracies of
0.1 mm or 0.01 mm. Time series of single stations from different
data bases with different temporal resolutions (1 and 5 min) have
been combined to extend their time series length, so the resulting
temporal resolution is 5 min. This enables also comparisons with
previous microcanonical cascade studies (see discussion in
Licznar et al., 2015) These characteristics and further information
of the rainfall stations are given in Table 1.

Additionally five recording stations from the city of Brunswick
are used (see Table 1, station I–V). These stations are not shown
in Fig. 1 due to their proximity with distances to each other less
than 5 km. However, the city of Brunswick is shown. The time ser-
ies lengths of these stations are shorter (02.01.2000–24.12.2006),
so that they have not been used for the validation of the cascade
model variants. Due to their proximity, these stations are used
for the estimation of the bivariate characteristics, for the validation
of the resampling algorithm and as input for the validation within
an urban-hydrological model. The measurement devices are tip-
ping buckets with accuracies of 0.1 mm and temporal resolutions
of 1 min. However, to enable comparisons to the aforementioned
stations the time series are aggregated to 5 min.

2.2. Combined sewer system

An artificial combined sewer system was constructed in order
to compare the different disaggregation approaches (Fig. 2). The
application of artificial systems is a common approach for the val-
idation of synthetic rainfall (Kim and Olivera, 2012). The sewer sys-
tem consists of 22 sub-catchments with a mean area size of 7.6 ha,
ranging from 1.1 ha to 16 ha (with a standard deviation of 4.6 ha),
and a cumulative total of 168.1 ha. Each catchment has a fraction
imperviousness of 65%. A uniform slope of 0.25 is used for all pipes.
A tank before the outfall of the sewer system was implemented. It
has a storage capacity of 2184 m3, equal to 20 m3 per hectare of
impervious area and is a typical value after Imhoff and Imhoff
(2007).

Three rain gauges are implemented. They have been arranged
with the same distances to each other as three rain gauges in the
city Brunswick (station I, II and IV). This allows a direct comparison
between simulated discharges and flood volumes resulting from
observed and disaggregated time series. With a maximum distance
of about 3 km for these three stations, the rainfall data meets the
requirements suggested by Berne et al. (2004) and Emmanuel



Table 1
Attributes of rainfall stations for a temporal resolution of 5 min.

ID Name Altitude
(m.a.s.l.)

Mean annual
precipitation (mm)

Fraction of wet
5 min-intervals (%)

Average wet spell
duration (min)

Average wet spell
amount (mm)

Average dry spell
duration (min)

1 Braunlage 607 1397 8.1 15.5 0.51 175.3
2 Braunschweig-Voel. 81 638 4.4 15.7 0.43 336.8
3 Cuxhaven 5 869 6.2 19.1 0.51 291.9
4 Diepholz 39 690 4.6 15.2 0.43 314.8
5 Emden 0 825 5.2 15.5 0.47 281.2
6 Freiburg/Elbe 2 888 6.4 18.5 0.49 272.9
7 Gardelegen 47 581 6.2 22.7 0.40 340.2
8 Göttingen 167 631 4.3 14.1 0.40 315.3
9 Hannover 55 641 3.9 13.2 0.41 323.0

10 Harzgerode 404 612 7.3 23.9 0.38 304.3
11 Jork-Moorende 1 727 5.7 18.4 0.44 302.0
12 Leinefelde 356 942 8.0 25.5 0.57 291.1
13 Lingen 22 789 5.5 16.6 0.46 286.6
14 Lüchow 17 569 3.9 14.3 0.39 349.3
15 Magdeburg 76 496 5.5 22.1 0.38 373.3
16 Norderney 11 744 4.5 14.6 0.46 309.5
17 Oldenburg 11 809 6.4 18.1 0.43 263.1
18 Osnabrück 95 874 5.4 14.8 0.45 258.3
19 Bad Salzuflen 135 825 5.0 13.5 0.42 253.0
20 Soltau 76 804 5.3 15.4 0.44 274.1
21 Uelzen 50 643 5.5 17.5 0.39 300.1
22 Ummendorf 162 549 5.9 23.6 0.41 367.2
23 Wendisch Evern 62 686 5.8 18.0 0.40 290.2
24 Wernigerode 234 625 7.1 23.6 0.39 305.1

I Prinzenweg 77 628 3.3 11.0 0.39 318.4
II Bürgerpark 77 606 3.1 11.1 0.41 344.1
III Fremersdorfer Straße 83 577 3.0 10.9 0.39 347.9
IV Weststadt 91 597 3.1 11.1 0.41 346.9
V Grünewaldstraße 76 623 3.4 10.9 0.38 310.5
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et al. (2012). Additionally, each of the rain gauges influences
similar fractions of the sewer system (station I: 32.7%, station II:
31.2%, station IV: 36.0%), whereby to each subcatchment only the
one rain gauge is assigned, which is closest to the centroid of the
subcatchment (see Fig. 2). If one of the rain gauges would be situ-
ated more central than the other two, it would affect a higher frac-
tion of the area due to a higher distance of other stations. If so, the
rainfall input would be uniform for also a higher fraction of the
area. So due to the central position of all three rain gauges the
effect of the spatial consistence will be emphasized.

3. Methods

In this section, the cascade model for the disaggregation of the
rainfall time series will be described first. Afterwards, the imple-
mentation of the spatial consistence and the application to an arti-
ficial urban hydrological case are explained.

3.1. Cascade model

The principle of a multiplicative micro-canonocal cascade
model, as it was introduced by Olsson (1998) for temporal rainfall
disaggregation, is illustrated in Fig. 3. One coarse time step is split
into b finer time steps of equal duration, where b is the branching
number, with b = 2 in Fig. 3. For the splitting, the weights W1 and
W2 are used to determine the rainfall volume in the two finer time
steps. The sum of W1 and W2 is 1 in each split, so that the rainfall
volume is conserved exactly. An aggregation of the disaggregated
rainfall would result in the same time series that has been used
for the disaggregation. Possible combinations of W1 and W2 are
given in (1), the so-called cascade-generator:

W1;W2 ¼
0 and 1 with Pð0=1Þ
1 and 0 with Pð1=0Þ
x and 1� x with Pðx=ð1� xÞÞ;0 < x < 1

8><
>: ð1Þ
where P is the probability of each combination of weights. The
probability P(0/1) denotes a splitting with no rainfall volume
assigned to the first time step (W1) and 100% of the rainfall volume
(W2 = 1 �W1) in the second time step. The probability P(1/0) causes
a vice versa result. The rainfall volume could also be distributed
over both time steps with a x/(1 � x)-splitting. The relative fraction
x of rainfall assigned to the first time step is defined as 0 < x < 1.
Considering x as a random variable for all disaggregation steps, a
probability density function f(x) with the empirical probabilities
for each value of x is estimated. Theoretical density functions are
not fitted.

It has been shown by several authors that the parameters are
volume and position dependent (Olsson, 1998; Güntner et al.,
2001; Rupp et al., 2009). For the cascade model in general, four dif-
ferent positions in the time series (starting, enclosed, isolated, end-
ing) and two volume classes for each position are used. Güntner
et al. (2001) analyzed different thresholds for the differentiation
of the two volume classes. They proved that the mean rainfall
intensity of all rainfall intensities of the actual cascade level for
one position is an acceptable threshold for this differentiation. It
has therefore also been applied in this study. The probabilities
are shown exemplary for rain gauge Göttingen in Appendix A for
aggregation steps from 5 min to 1280 min.

Marshak et al. (1994) analyzed estimated parameters based on
different aggregation levels and compared them. Differences
between the parameter sets are significant and should be taken
into account, especially if the disaggregation process is carried
out over a high number of cascade levels. Furthermore, it can be
distinguished between unbounded and bounded cascade models.
In unbounded cascade model the parameters are assumed to be
scale-independent, which means that the same parameter set is
applied over all disaggregation levels. However, it was found that
the cascade-generator exhibits a scale dependency (see Serinaldi,
2010, and references therein), so for each disaggregation step a dif-
ferent parameter set has to be applied. It should be mentioned, that



Fig. 2. Map of the sewer system (168.1 ha) with three implemented rain gauges.
The affected sub-catchments for each station are illustrated by different shades
(Weststadt, upper part; Bürgerpark, lower part; Prinzenweg, middle part).
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Rupp et al. (2009) found only minor improvements using scale-
dependent parameter sets by an application over a small range of
time scales (daily to hourly). Although unbounded cascade models
are still used (Jebari et al., 2012), bounded cascade models can be
found more frequently in the recent literature (Rupp et al., 2009;
Licznar et al., 2011a,b; Lombardo et al., 2012; Lisniak et al.,
2013). This increases the amount of parameters with each disag-
gregation level. The similarity of P(0/1) for starting boxes and
P(1/0) for ending boxes (and vice versa) as well as P(0/1) � P(1/0)
for enclosed and isolated boxes (Güntner et al., 2001) could be used
to reduce the parameter count in order to keep the model as
parameter parsimonious as possible. However, to isolate the effects
of the approaches described below, this was not applied in this
study. For the sake of completeness it should be mentioned, that
other cascade models less parameters exist, e.g. universal multi-
fractals with three parameters valid on various successive cascade
steps (the interested reader is referred to the review of Schertzer
and Lovejoy, 2011). However, a multiplicative micro-canonical,
bounded cascade model is applied for this study.

In most cases, disaggregation starts with daily values from time
series of non-recording stations, since the network density is
higher and time series are longer for these types of stations in com-
parison to recording stations. However with the method explained
above, a final resolution of 5 min cannot be achieved directly. One
day lasts per definition 24 h, which is 1440 min in total. Using a
branching number of b = 2 throughout the whole disaggregation
process results in temporal resolutions of 5.625 min after eight dis-
aggregation steps. This is not a very useful resolution if these time
series are to be used for further applications such as urban water
management models. Different alternatives to reach a 5 min reso-
lution are explained and discussed in the following two
subsections.

Method A – 1280 min approach

One possibility is to assume, that the complete daily rainfall
amount occurs in only 1280 min. Using this assumption, a final res-
olution of 5 min can be achieved by a complete conservation of the
rainfall amount. This assumption is common for generating rainfall
for urban applications (Licznar et al., 2011a,b; 2015; Molnar and
Burlando, 2005; Serinaldi, 2010; Paschalis et al., 2014). However,
the final time series length is reduced due to this underlying
assumption. There exist different possibilities how to avoid this
reduction, e.g. inserting missing time steps as dry time steps in
each day or only between two successive dry days. However, each
of these methods would directly influence the time series charac-
teristics. For further processing the disaggregated, shortened time
series was used without any changes. Another alternative would
be a disaggregation down to a very fine scale and then aggregate
time steps to the temporal resolution most similar to 5 min. Possi-
ble disaggregation levels would be 42.2 s (11 disaggregation steps),
respectively 5.3 s (14 disaggregation steps), which can be aggre-
gated to 4.922 min, respectively 5.01 min. However, the scale-
dependent parameters cannot be estimated from observations for
this high resolution, so this alternative could not be applied in
the investigation.

Method B – Uniform splitting approach

The uniform splitting approach was introduced by Müller and
Haberlandt (2015) and uses a branching number b = 3 only in the
first disaggregation step, resulting in three 8 h-intervals. One,
two or all three of these 8 h-intervals can be wet. The probabilities
for the number of wet intervals can also be estimated from obser-
vations (see Table 2). The threshold for the volume classes in this
first step is a quantile q chosen with respect to very high daily rain-
fall intensities (q = 0.998 as in Müller and Haberlandt, 2015). The
probabilities in Table 2 show a clear dependency on the volume
class. While for the lower volume class, the probability is highest
for one wet 8 h-interval, for the upper volume class it is for three
wet 8 h-intervals. Due to the chosen threshold, only a small num-
ber of wet days are used for the parameter estimation for the upper
volume class. For the majority of those days all three 8 h-intervals
are wet. Only a minority, if at all, shows just one or two wet 8 h-
intervals. This confirms the findings of Müller and Haberlandt
(2015) and underlines the importance of the implementation of
an upper volume class.



Fig. 3. Multiplicative cascade model scheme (adapted from Olsson (1998)), starting with a rainfall height of 24 mm.

Table 2
Probabilities for number of wet 8 h-intervals in the first disaggregation step using
Method B for rain gauge Göttingen.

Volume class Probabilities for number of wet 8 h-intervals

1 2 3

Lower 43% 35% 22%
Upper 25% 0% 75%
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The application of b = 3 in the first disaggregation step has been
done before by Lisniak et al. (2013) to achieve a target resolution of
1 h, which is a suitable temporal resolution as input for rainfall-
runoff-models for rural catchments. The daily rainfall volume is
distributed uniformly among the number of randomly as wet iden-
tified 8 h-intervals. This uniform distribution on the before chosen
number of wet 8 h-intervals is a compromise between the param-
eter intensive approach proposed by Lisniak et al., who have used
up to 8 empirical distribution functions to represent the splitting
behavior from daily to 8 h-time steps, and the quality of the disag-
gregation results.

For the second and all following disaggregation steps, the
branching number is reduced to b = 2. It is obvious that to achieve
a target resolution of 5 min, additional modifications have to be
introduced. The disaggregation levels delivering time steps of
Dt = 15, 7.5 or 3.75min therefore were used to introduce these
modifications. It should be mentioned, that the parameters for
the disaggregation steps for resolutions finer than 15 min with
b = 2 cannot be estimated from observations directly, since only
5 min values are available. For disaggregations from 15 to 7.5
and consequently 3.75 min, the parameter set from the aggrega-
tion of 5 to 10 min was used throughout.

Method B1 – modification for Dt = 15min

Similar to the first disaggregation step, a uniform splitting with
a branching number b = 3 is applied. The threshold for the differen-
tiation into two volume classes was chosen as the mean of all rain-
fall intensities at the 15 min-level. The parameters of the two
volume classes differ significantly from each other.

Method B2 – modification for Dt = 7.5min

Firstly, the rainfall volume of each time step is distributed
uniformly on three time steps with 2.5 min. Afterwards, two
non-overlapping time steps are aggregated always.
Method B3 – modification for Dt = 3.75min

The applied method is similar to B2 and was used by Onof et al.
(2005) and Onof and Arnbjerg-Nielsen (2009) for the disaggrega-
tion from 1 h down to 5 min. The rainfall volume is distributed uni-
formly on three finer time steps with 1.25 min duration, followed
by an aggregation of four non-overlapping time steps.

The disaggregation is a random process, which leads to different
results, depending on the initialization of the random number gen-
erator. This random behavior is covered by a certain number of dis-
aggregation runs. It was found that after 30 disaggregation runs
the average values of the main characteristics (see ‘‘Section 4.1
Temporal disaggregation”) did not change significantly by an
increasing number of disaggregation runs. Accordingly, 30 disag-
gregations were carried out for each method.

A comparison of the rainfall characteristics RC of disaggregated
time series (Dis) with the observations (Obs) is carried out regard-
ing the relative error rE. The objective criterion is calculated for
each station i over all realizations n of the disaggregation and aver-
aged afterwards over all stations:
rE ¼ 1
n
�
Xn
i¼1

ðRCDis;i � RCObs;iÞ
RCObs;i

; ð2Þ

For the investigation of the rainfall extremes resulting from the
different methods partial duration series, also known as peaks-
over-threshold, are extracted for all time series. The threshold is
chosen in a way to obtain two values per year on average from
each time series (DWA-A 531, 2012). Based on 30 realisations for
each method, the median of the extreme values was determined
for further processing. Since the time series lengths of the stations
differ, also elements in the partial duration series and hence return
periods are different. In order to include all stations in an objective
comparison of extreme values, an exponential distribution was fit-
ted to the medians. The exponential distribution, which is a stan-
dard distribution function in Germany for partial duration series
of rainfall (DWA-A 531, 2012), was chosen for this purpose. The
deviations of the fitted extreme values between disaggregated
and observed rainfall are calculated using the relative root mean
square error rRMSE. The deviations between disaggregated and
observed rainfall intensities I for single return periods T of the
fitted distribution function for each station i are calculated and
averaged afterwards over all stations N:
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Fig. 4. Spatial bivariate characteristics for the city Brunswick, Lower Saxony.
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rRMSEðTÞ ¼ 1
N
�
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIðTÞDis;i � IðTÞObs;iÞ2

IðTÞObs;i

s
with

T ¼ 0:5;1;2;5;10 years; ð3Þ
This criterion was used for the evaluation of rainfall disaggrega-

tion products before by Güntner et al. (2001) for single stations.
They evaluate deviations of up to 10% as accurately generated,
up to 15% as well reproduced and higher than 40% as overesti-
mated, respectively more than 200% as severe overestimated.
These values are based on the disaggregation results in their manu-
script and are provided here to give a general feeling for the crite-
rion as well as for the rE, whose absolute values are comparable to
rRMSE.

3.2. Spatial consistence

The disaggregation of the rainfall time series is a pointwise pro-
cedure. This yields unrealistic spatial patterns of rainfall. A resam-
pling procedure introduced by Müller and Haberlandt (2015) is
applied to implement spatial consistence into the disaggregated
time series z. Three bivariate characteristics are assumed to repre-
sent spatial consistence, namely, probability of occurrence, coeffi-
cient of correlation and continuity ratio (Wilks, 1998).

1. Probability of occurrence

The probability of occurrence Pk,l describes the probability of
rainfall occurrence at two stations k and l at the same time:

Pk;lðzk > 0jzl > 0Þ � n11

n
; ð4Þ

where n is the total number of non-missing observation hours at
both stations k and l, and n11 represents the number of simultane-
ous rainfall occurrence at both stations. A differentiation for convec-
tive and stratiform events as in Cowpertwait (1995) was not
applied.

2. Pearson’s coefficient of correlation
The Pearson’s coefficient of correlation is used to describe the

relationship between simultaneously occurring rainfall at two sta-
tions k and l. It is a measure of the linear relation between both
rainfall time series (Eq. (4)). This coefficient was used previously
for multisite rainfall generation by Breinl et al. (2013, 2014):

qk;l ¼
covðzk; zlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var zkð ÞxvarðzlÞ
p ; zk > 0; z1 > 0: ð5Þ

3. Continuity measure
The continuity measure compares the expected rainfall amount

at one station for cases with and without rain at the neighboring
station (E. is the expectation operator):

Ck;l ¼ Eðzkjzk > 0; zl ¼ 0Þ
Eðzkjzk > 0; zl > 0Þ : ð6Þ

It is possible to estimate the prescribed values of these charac-
teristics as functions of the separation distance between two sta-
tions from observed data (see Fig. 4). For the estimation, all
stations from the city Brunswick are used (stations I–V from
Table 1). The results for stations 1–24 are not shown here, because
the spatial scale with distances up to 350 km is not useful for the
aim of urban hydrologic modeling.

The resampling procedure involves a bivariate objective func-
tion Ok,l that has to be minimized:

Ok;l ¼ w1 � Pk;l � P�
k;l

� �
þw2 � qk;l � q�

k;l

� �
þw3 � ðCk;l � C�

k;lÞ ð7Þ

The parameters indicated by ⁄ are the prescribed values for two
stations (resulting from the regression lines in Fig. 4), and the other
parameters are the actual values. The fit of the regression lines to
the observations are also validated with Pearson’s coefficient of
correlation. To avoid confusion with the spatial characteristic, here
the symbol R2 is used for the goodness-of-fit. While for the proba-
bility of occurrence and the continuity ratio only a small R2-value is
achieved (due to the variation of these parameters), for the coeffi-
cient of correlation a R2-value of 0.8462 is determined. However,
the general behavior for all three characteristics (increasing or
decreasing with increasing distance) can be represented by the
regression lines. The weights w1, w2 and w3 are necessary to adjust
the scale of the rainfall characteristics and to consider their impor-
tance. The regression lines are necessary to determine prescribed
values for distances not available from the recording rain gauges.

For the minimization a resampling algorithm, namely simulated
annealing, is implemented (Kirkpatrick et al., 1983; Aarts and
Korst, 1965). The algorithm has been used for rainfall generation
processes before (Bardossy, 1998; Haberlandt et al., 2008).

For the resampling, two conditions are considered. The struc-
ture of the disaggregated time series (combination of position
and volume classes) should not be changed. Also, the rainfall
amount of each day should not be changed. Therefore, only the rel-
ative diurnal cycles of the disaggregated time series are resampled
preserving the structure of the disaggregated time series described
by position and volume class of the daily time step.

One disaggregated time series is chosen randomly as a refer-
ence time series. The relative diurnal cycles of a second randomly
chosen time series will be resampled until the objective function is
minimized, so it cannot be improved for a certain number of
attempts. Swaps are only possible between days with the same
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position and volume class. At the beginning of the algorithm, also
‘bad swaps’ (worsening of the objective function) are accepted
with a certain probability p. The parameter p decreases with the
run time of the resampling algorithm. This allows to leave a local
optimumtofind the globalminimum. After the resampling, the time
series serves as a new reference station alongwith the first one. Fur-
ther time series have to be resampled with respect to all reference
time series andwill be added afterwards to the set of reference time
series. For detailed information on the applied resampling algorithm
the reader is referred to Müller and Haberlandt (2015).

Since the cascade model is based on the scaling theory, it could
be questioned if there is a discrepancy in the temporal dimension
of the disaggregation process due to the spatial dimension of the
resampling algorithm. Therefore, scaling behavior of the disaggre-
gated time series is analyzed before and after the resampling with
the relation described in Eq. (8)

Mq ¼ kKðqÞ ð8Þ

with moments M, moments order q, the moments scaling exponent
K(q) and the scale ratio k.

Analyzing the scaling behavior with log–log-plots of Mq and k,
indicating different durations, is a common method in the field
of rainfall disaggregation with cascade models (see e.g. Over and
Gupta, 1994; Svensson et al., 1996; Burlando and Rosso, 1996;
Serinaldi 2010). The scale ratio represents a dimensionless ratio
of two temporal resolutions of one time series. Dry time steps
are neglected for the scaling analyzes. For the moments estimation
probability-weighted moments (PWM) as in Yu et al. (2014) and
Ding et al. (2015) are applied. An advantage of the PWM is their
relative robustness against large rainfall intensities (Kumar et al.,
1994; Hosking and Wallis, 1997). According to Kumar et al.
(2014) and Lombardo et al. (2014) the investigation is limited to
1 6 q 6 3. The PWM of different temporal resolutions will be com-
pared before and after the resampling process.
3.3. Urbanhydrological modeling

3.3.1. Model SWMM
The sewer system has been constructed in the EPA Storm Water

Management Model 5.1 (SWMM) (Rossman, 2010). With SWMM
dynamic rainfall-runoff simulations can be carried out continu-
ously or event-based to determine runoff quantity and quality
from urban areas.

A constructed sewer system in SWMM is split horizontally into
subcatchments. Each subcatchment is characterized by a number
of parameters, e.g. total area, fraction of impervious area and slope.
Connecting main pipes of the subcatchments are represented by
‘links’. Furthermore, the sewer system can be complemented by
storage/treatment devices, pumps and regulators.

The application of a semi-distributed model like SWMM limits
the ability to reflect spatial variability due to the fact, that for each
subcatchment the rainfall is assumed to be uniform for its area.
However, since disaggregated time series from rain gauges are
used in this study, there is no degradation of spatial variability.
Nevertheless, it could be a negative aspect, especially when high-
resolution spatial rainfall data is used (Gires et al., 2015).

For each subcatchment, flow is generated from both, dry
weather flow (representing domestic and industrial wastewater
flow) and rainfall runoff from pervious and impervious areas. Rain-
fall is assumed to be uniform for each subcatchment. For infiltra-
tion the equations of (modified) Horton, Green Ampt and Curve
Number are selectable, here the Curve Number equation was used.
The dynamic wave equation as approximation of the St. Venant-
equations is used for the calculation of the flows through the
sewer system. As forcing main equation for the dynamic wave,
Hazen-Williams equation has been chosen. Pondage of flooded
nodes can be allowed or not, here it was permitted. Overland flow
does not occur.

3.3.2. Influence of number of recording stations
It could be questioned whether one station is enough to repre-

sent rainfall for such a small catchment (168.1 ha). So the impact of
one or more implemented stations (we apply three stations) on the
combined sewer system runoff has to be analyzed.

For this analysis the following procedure was applied, using
observed data only. For three stations, the partial duration series
of extreme values were derived (as described in Section 4.1 for
the extremes of the other stations in Lower Saxony). This results
in 14 total extreme values for each station using the time period
01.01.2000–24.12.2006 that is available for the stations Prinzen-
weg, Bürgerpark und Weststadt.

The return periods Tk of these extreme values can be calculated
with the Weibull plotting position. Comparisons are carried out for
extreme values with 30 min duration and for return periods of
Tk = 4.4 years and Tk = 0.9 years, respectively. These are representa-
tive return periods for the dimensioning of sewer system elements
(DWA-A 118, 2006; DIN EN 752-2, 1996).

If only one station is used, the extreme value is considered to be
uniform throughout the whole catchment. This procedure is car-
ried out for the extremes of each station, so in total three extreme
values are analyzed for each return period.

If three stations are used, the time steps of an extreme value of
one station (this station is the so-called master station) and the
simultaneous time steps from the other two stations are used as
spatial heterogeneous input. Again, the procedure is carried out
for each station as a master station, in total three events are ana-
lyzed. Here ‘events’ are defined as an extreme value at the master
station and simultaneous time steps at the other two stations.

3.3.3. Influence of disaggregation method
The aim of the second investigation based on the sewer system

is to investigate, if there is a need for the implementation of spatial
consistence using more than one station in addition to the choice
of the disaggregation method. Therefore, three rainfall stations
are implemented throughout.

For each disaggregation method the time series of all 30 realiza-
tions are resampled (res) to implement spatial consistence. For
each method (A, A-res, B1, B1-res, B2, B2-res, B3, B3-res) and each
realization (1–30), the partial duration series of extreme values
were derived. Again, for one event the time steps of an extreme
value of one station and the simultaneous time steps from the
other two stations are used as spatial heterogeneous input (as car-
ried out for three stations before, see Section 3.3.2). In total 90
events for each return period based on the 30 realizations of each
method are used for simulation.
4. Results and discussion

The results section is organized as follows. The univariate rain-
fall characteristics of the disaggregation will be discussed in Sec-
tion 4.1, while the multivariate characteristics will be analyzed
in Section 4.2. All results of the urban hydrological modeling will
be discussed in Section 4.3.

4.1. Temporal disaggregation

In total, four different variations of the micro-canonical cascade
model were tested to disaggregate time series from daily to 5-min
values. Seven basic rainfall characteristics were chosen for ana-
lyzes: wet spell duration and amount, average intensity, dry spell
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duration, fraction of dry intervals, autocorrelation and extreme val-
ues. A wet period is defined as the duration with rainfall volume
continuously greater than 0 mm in each time step. The rainfall
characteristics are illustrated in Figs. 5–8 and in Table 3 as obser-
vations vs. disaggregations for each station and as averages result-
ing from Eq. (2). Molnar and Burlando (2005) and Müller and
Haberlandt (2015) identified a high fraction of rainfall intensities
in the disaggregated time series smaller than the accuracy of the
measuring instrument and hence the minimum resolution in the
observed time series, which have been used for the parameter esti-
mation. These time steps are from a hydrological point of view
negligible. To reduce the impact on the results due to these small
time steps, an additional analyzes of the rainfall characteristics
with a minimum intensity of higher than 0.1 mm as threshold
was introduced. This threshold value has additionally the advan-
tage to exclude single tips from the measurement device. The
results are shown in Fig. 6.

For stations with wet spell durations wsd shorter than 17.5 min
(Fig. 5),method B2 and B3 show acceptable over- underestimations.
The results are similar for B2 for wet spell durations shorter than
14 min, if a threshold is taken into account (Fig. 6). For stations with
longer wsd all methods show underestimations, respectively.
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Fig. 5. Observed vs. Disaggregated rainfa
An underestimation of the wsd was identified before by Olsson
(1998). This can be explained by the definition of a wet period.
Every dry spell, regardless of its length, terminates a wet spell. So
the reproduction of wsd becomes more and more complicated with
an increasing length of observedwsd, because a single dry time step
would divide a long wet spell into two shorter wet spells. The
generation of dry intervals depends on the probabilities of P(1/0)
and P(0/1). These probabilities are significant lower for all positions
for the higher volume class in comparison to the lower correspond-
ing volume class (see Appendix A). The influence of the rainfall
intensity on the generation of dry intervals has been identified
before by Rupp et al. (2009). It can also be confirmed, that the vari-
ation of the probabilities is higher between the volume classes in
comparison to the variation between different scales.

The results for the average intensity also show a clear structure
and trend, if no threshold is taken into account. All methods over-
estimate the intensities, with the largest deviations shown for
method A (+63% on average). One reason for this lies in the reduc-
tion of the day duration by 160 min � 2.7 h (=1440 – 1280 min). If
a threshold is introduced, deviations are smaller for all methods.
Method B2 shows the smallest deviations for the average intensity
in both analyzes.
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The results for the wet spell amount wsa do not show a clear
trend for all methods like that for wsd and average intensity
(Fig. 5). The underestimation of wsd and the overestimation of
average intensities compensate each other and lead to a decep-
tively good fit for method A with only slightly underestimations
of wsa. Method B1 underestimates the observations more strongly,
while method B2 and B3 overestimate wsa for most of the stations.
If time steps with small rainfall intensities are neglected, different
results can be identified (Fig. 6). Method A and B3 show strong
underestimations, while B1 and B2 show acceptable agreements
with 3% and 1%, respectively. It should be noticed that the absolute
values of wsd are slightly decreasing with an introduction of the
threshold, while wsa and average intensity are strongly increasing.

For the dry spell duration dsd, methods B2 and B3 show similar
results, if all values are taken into account. Both overestimate the
observations by 8% and 5%, respectively, while method A and B1
underestimate the observations by 13% and 10%, respectively. With
the introduction of the threshold single tips of the measurement
device are ignored, which increases the dsd significantly. All meth-
ods lead to underestimations, with the worst representation by
method A.
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Fig. 8. Rainfall extreme values for a temporal resolution of 5 min for station Osnabrück resulting from method A, B1, B2 and B3 (January 1993 – November 2010).

Table 3
Relative error of rainfall characteristics between disaggregated and observed time
series (mean for 24 stations).

Rainfall characteristic Relative error (%)

A B1 B2 B3

Wet spell duration (min)
Average �41 �32 �3 �16
Standard deviation �66 �70 �52 �53
Skewness �46 �59 �47 �49

Average intensity (mm/5 min) 63 30 11 23

Wet spell amount (mm)

Average �4 �11 8 4
Standard deviation �24 �29 �19 �20
Skewness 3 �1 �12 �10

Dry spell duration (min)
Average �13 �10 8 5
Standard deviation �18 �12 �3 �5
Skewness 10 15 5 7

Fraction of dry intervals (–) 2 1 1 1

Autocorrelation (–)

lag 1 �50 �3 �4 �30
lag 12 �52 �42 �49 �56
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The underestimation of both durations, wsd and dsd, by method
A is a systematic error due to the shortening of the total length of
the time series. The underestimation of dsd could be reduced by
inserting dry intervals for the missing time steps of this method.
However, the fraction of dry intervals is overestimated by method
A as well as by the other methods, if all values are included. The
differences between the methods are much smaller in comparison
to wsd (see Table 3), since all dry days which are not influenced by
the chosen disaggregation method, are also taken into account.
With the threshold introduction the fraction of dry intervals is
underestimated by all methods. However, the deviations between
the methods themselves as well as in comparison to the observa-
tions are very small (>1%) and can be neglected.
Furthermore, the autocorrelation function is shown in Fig. 7 for
the observed time series for station Harzgerode and as median of
the autocorrelation functions resulting from 30 realisations for
each method, taking into account all values of the disaggregated
time series. The autocorrelation is underestimated by all methods.
The relative errors are determined as average of all stations for lag-
1 and lag-12, representing temporal shifts of 5 min and 1 h, respec-
tively (see Table 3). The lag-1 autocorrelation is underestimated by
method A with 50%, while method B1 (�3%) and B2 (�4%) show
smaller underestimations. For lag-12, all methods show significant
underestimation of the autocorrelation function of approximately
�50%. The autocorrelation function for B1 shows peaks periodi-
cally in a 3-lags distance due to the applied uniform splitting
approach for disaggregation of 15 min to 5 min. The underestima-
tion of the autocorrelation function is a well-known problem and
has been identified before by e.g. Olsson (1998), Güntner et al.
(2001), Pui et al. (2012) and Paschalis et al. (2012, 2014).

A comparison of the observed empirical extreme values with
the range, the 0.05% and 95% quantileand the median of the 30 dis-
aggregations for station Osnabrück is given in Fig. 8. The median
and both quantiles represent typical results for all stations. For
the illustration the Weibull-plotting position was used. The medi-
ans of all 30 realisations for B2 and B3 show a good fit to the
observed values, while the median for A tends to overestimate
the observations. The range and quantiles of B2 and B3 are similar,
while A shows strong overestimations and B1 underestimations,
respectively. For the highest return period (T = 35 years), overesti-
mations of the observed values can be identified by a factor of 6 for
method A, if the range is taken into account. For other stations,
overestimations for method B1 can be identified from the range
as well (not shown here). The results shown regarding median
and both quantiles are representative for most of the stations.

For comparisons exponential distributions were fitted to the
median of all realizations for each station. Rainfall intensities are
analyzed for the return periods of 0.5 (twice a year), 1, 2, 5 and
10 years and for durations of 5 min and 1 h. Fig. 9 shows the rela-
tive errors as box-whisker-plots for rainfall intensities of 5 min
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duration with return periods of 1 and 5 years for each method.
Method A leads to the highest overestimation for both return peri-
ods. Hence the shortening of the day duration to 1280 min also
affects the extremes with 5 min duration. Extreme values are also
overestimated by B3. Due to the disaggregation down to a very fine
temporal resolution of 3.75 min, the splitting of the daily rainfall
amount can potentially be reduced onto only a small number of
fine time steps. This leads to an overestimation of the extreme
values.

Concerning the medians, B2 overestimates the observations
slightly, while B1 underestimates them. In B1, rainfall at a tempo-
ral resolution of 15 min is split with one disaggregation step into
three finer final time steps, while in B2, two disaggregation steps
follow. This causes a higher intensity of rainfall (similar to the
overestimation of B3). However, the range of rainfall quantiles
with 5 year return periods resulting from B2 is much higher than
for B1.

For longer durations, the differences between the methods
decrease (see Fig. 10). For B1, B2 and B3 the results for 1 h are sim-
ilar, because the disaggregation process is exactly the same until
this duration. Minor differences are only caused by adjacent time
steps of extreme events. For a return period of 1 year, the median
of A, B1, B2 and B3 show the same slight overestimation of the
observed values. For a 5 year return period, A also leads to a slight
overestimation, while B1, B2 and B3 underestimate the extreme
values of the observations. It should be noted that the deviations
for 1 h rainfall duration are much smaller than for 5 min for all
methods. However, the smallest ranges for both return periods
result from A, which delivers the best performance for an hourly
target time step.

The relative root mean square errors (rRMSE) for all rainfall
quantiles and 5 min time step are given in Table 4. The rRMSE for
all return periods is highest for method A, followed by B3. B2 is
slightly higher than B1 for all return periods except 0.5 years. From
3
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Fig. 9. Mean relative errors of simulated rainfall extreme values for 5 min durations
for a return period of 1 year (upper part) and 5 years (lower part) for all stations,
based on fitted exponential distributions. The dashed line marks a deviation of 0.
a practical point of view, using the medians of B2 as design values
would lead to a dimensioning ‘on the safe side’.

4.2. Spatial consistence

Spatial consistence was assumed to be represented by matching
three bivariate characteristics, namely probability of occurrence,
Pearson’s coefficient of correlation and continuity ratio. In
Fig. 11, values for these characteristics resulting from the observa-
tions, after the disaggregation (without resampling) and after
resampling are shown. For the coefficient of correlation, values
similar to the observations could be achieved, although before
resampling an underestimation independent from station dis-
tances could be identified.

For the continuity ratio, the results are more complex to inter-
pret. Due to the definition of this characteristic (Eq. (6)), for each
pair of stations two different values exist, depending on which sta-
tion is defined as k and l. During the resampling only the time ser-
ies combinations of the actual station k and the reference stations l
are taken into account, not vice versa. The resulting values are the
three well-fitted values from the resampled dataset for each dis-
tance in Fig. 11. For higher distances, values comparable to those
from observations could be achieved. For a distance of 1.4 km, a
slight worsening can be identified. Continuity ratios with values
Ck,l > 0.8 represent the combinations that have not been considered
during the resampling process. These values are worsening by the
resampling for all distances. An omitting of continuity ratio would
cause a worsening of all values for this characteristic (Müller and
Haberlandt, 2015), so the continuity ratio remained included in
the objective function.

The probability of occurrence was underestimated for the disag-
gregated, non-resampled time series for all distances. After the
resampling all values could be improved significantly. However,
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Table 4
Relative root mean square error rRMSE of rainfall extremes with 5 min durations
based on all 24 stations.

Return period (a) rRMSE (%)

A B1 B2 B3

0.5 0.44 0.19 0.16 0.33
1 0.51 0.15 0.16 0.34
2 0.58 0.15 0.19 0.36
5 0.64 0.15 0.23 0.39
10 0.67 0.16 0.25 0.40
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values resulting from the observations could not be reached and
are still underestimated. Due to the shortness of the time series
only a limited number of relative diurnal cycles is available. The
number is too small to find matching relative diurnal cycles, espe-
cially for a temporal resolution of 5 min with 288 time steps each
day. Although a strong weighting of this characteristic in the objec-
tive function (w1 = 0.899 in comparison to w2 = 0.002 for Pearson’s
coefficient of correlation and w3 = 0.099 for continuity ratio), a bet-
ter fit was not possible. However, it can be assumed that this char-
acteristic improves with increasing time series length.

It is further analyzed, if the resampling algorithm influences the
scaling behavior of the disaggregated time series. Therefore the
first three moments have been calculated for all realizations before
and after the resampling. The means are shown in Fig. 12. The first
probably-weighted moment represents the mean value of the time
series. It is not changed by the resampling algorithm, since the
total rainfall amount and the number of wet time steps are not
changed. However, the second and the third moment show slight
increases, indicating minor changes of the standard deviation and
the skewness of the average intensity. The increases are stronger
for finer temporal resolutions and can be identified for all methods.
However, the deviations from the not resampled time series are
smaller than 5% and hence accepted.

4.3. Urban hydrological modeling

For the urban model two investigations are carried out. In the
first part the necessity for the implementation of more than one
rainfall station will be analyzed. This investigation is carried out
using observed time series only. Secondly, the benefit for the
implementation of spatial consistence using more than one station
in addition to the choice of the disaggregation method is analyzed.
For both investigations two criteria will be used for the validation.
The flood volume represents the water volume that leaves the sew-
age system temporary through manholes. The combined sewer
overflow volume is the cumulative volume of the sewage system,
which is released from the tank to the receiving water and not to
the treatment plant.

It should be mentioned that a variation of the SWMM model
parameter would influence the simulation results. As sensitive
parameters have been identified the imperviousness and the sur-
face depression storage (Barco et al., 2008; Goldstein et al.,
2010). Also slope and the capacity of the main pipes would affect
the resulting flood volumes and combined sewer overflow volume,
a different tank volume would affect combined sewer overflow
volume. For more information about the parameter sensitivity
the reader is referred to Krebs et al. (2014).

4.3.1. Influence of number of recording stations
For this investigation only observed time series are used. In

Fig. 13 the resulting flood volumes from using one (uniform rain-
fall) or three stations (heterogeneous rainfall) are shown for an
observed extreme event at the master station with 30 min duration
and a return period of Tk = 4.4 years. The heterogeneous case is
assumed to represent the reference with small differences between
results based on different extreme events. However, there are high
deviations using uniform rainfall as input in comparison to spatial
heterogeneous rainfall. The flood volume is overestimated by 143%
on average if only one station is used as input in comparison to
using all three stations (representing the reference through its spa-
tial coverage). However, using only one station can lead to larger
overestimations of 384% (station Bürgerpark), but also to underes-
timations (station Weststadt by 15%).

The same investigation was carried out for events with a return
period of Tk = 0.9 years. For all three events, no flooding occurs
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using three stations as input (not shown here). However, using one
station leads to flooding for the station Weststadt, so again an
overestimation of flooding volume occurs using spatial uniform
rainfall.

The results for the combined sewer overflow volume (the over-
flow of the tank) are similar. It is overestimated by using only one
station as input. Results are the same for both return periods
(Fig. 14).

It can be concluded that one station is not sufficient to repre-
sent the rainfall behavior adequately, although only the effects
for a small catchment (168.1 ha) are analyzed. This confirms the
results of e.g. Schilling (1991), Berne et al. (2004), Emmanuel
et al. (2012), Gires et al. (2015), Bruni et al. (2015) and Ochoa-
Rodriguez et al. (2015), that for the representation of spatial vari-
ability of rainfall a high station network density is crucial.

These results are conformable to the theory of areal reduction
factors, which should be mentioned in this context. The basic idea
of this concept is that extreme point values cannot be used uni-
formly for applications requiring spatial rainfall. Therefore, the
point values have to be reduced with an areal reduction factor. This
is indicated by the results, since without a reduction of the point
rainfall values overstimations of 67% (Tk = 4.4 a) respectively 71%
(Tk = 0.9 a) of the combined sewer overflow volume occur compar-
ing the average results of using 1 and 3 stations. Sivapalan and
Blöschl (1998) found that these factors depend on the return per-
iod of the events and the applied catchment area. Veneziano and
Langousis (2005) investigate the areal reduction factors in context
of a multifractal analysis. For a critical review of areal reduction
factors and methods to estimate them the reader is referred to
Wright et al. (2013).

For further investigations spatial heterogeneous rainfall is
applied throughout the study.

4.3.2. Influence of disaggregation methods and spatial consistence
For this investigation observed time series are used as reference

for the validation of the disaggregated time series. For the compar-
ison of the disaggregationmethods before and after the resampling,
the flood volumes of all nodes in the sewer system (Fig. 15) and the
corresponding combined sewer overflow (Fig. 16) are analyzed
event-based (see Section 3.3.3 for the event selection).

In Fig. 15 the total flood volume of each method is higher after
resampling than before. First, the results for events with Tk =
4.4 years are discussed. After the disaggregation, but before the
resampling, wet time steps are located ‘‘randomly” within the days
of the time series. After resampling, the probability of simultane-
ously rainfall occurrence is much higher, which results in higher
areal rainfall amounts and accordingly an increase in flood volume.
Without resampling, the total flood volume is underestimated by
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Fig. 13. Total flood volume resulting from spatial heterogeneous (white) or uniform
(grey) rainfall (return period at master station Tk = 4.4 years, 30 min duration).
all methods. So if more than one station is used in the urban hydro-
logical model, the disaggregated time series have to be resampled.
Without resampling, unrealistic spatial patterns occur and the sim-
ulated flood volumes are not representable.

For method A, an overestimation of the average rainfall inten-
sity and the extreme values has been identified before. Also, the
total flood volume is overestimated after resampling by about.
240%. The overestimation of B1 and underestimation of B3 seem
to be contrary to the findings of the extreme values (underestima-
tion of B1 and overestimation of B3).

In B1, rainfall is split uniformly from time steps with 15 min
duration to 5 min duration. This leads to an underestimation of
the extreme values with 5 min duration, but results in continuous
rainfall events. In B3, extreme values are overestimated, but rain-
fall events may be interrupted by dry intervals. Concerning the
total flood volume, the continuity of extreme rainfall events seems
to have a greater influence than short extreme values. The resam-
pled time series of B2 show the best fit to the observations with an
underestimation of 20%, but only slightly better than B3.

For the smaller events (Tk = 0.9 years), using observed rainfall
does not lead to any flooding for all simulations. Also, for all non-
resampled time series, no nodes are flooded. However, this should
not be interpreted as being a good fit of all disaggregated time series
without the subsequent resampling. An additional investigation of
the combined sewer overflow volume is carried out to analyze this
possible interpretation. Nevertheless, it should be noted that nodes
are flooded after the resampling. The highest total volumeoccurs for
A, the lowest for B2. A higher total flood volume of B3 in comparison
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duration (average of 90 event-based simulations for A, B1, B2, B3 (and resampled
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to B2 can be identified for the smaller event, and vice versa for the
higher event. This is consistent with the relationship of the extreme
values for short durations (see Fig. 9).

In Fig. 16, the corresponding combined sewer overflow volumes
during the events with return periods of Tk = 4.4 years and Tk = 0.9
years are shown. For the non-resampled time series almost no
overflow occurs, which results in high underestimations in com-
parison to the observed time series. Concerning the resampled
time series, for the event with Tk = 4.4 years, the results are quite
similar to the total flood volumes of the nodes. A and B1 lead to
overestimations, while B2 and B3 show underestimations. The best
fit can be identified with a slight underestimation of 3.4% for B2.

For the smaller event (Tk = 0.9 years), all methods show under-
estimations. Again, combined sewer overflow volume cannot be
reproduced by the time series without spatial consistence. After
the resampling, A leads to the strongest underestimation, while
the results for B1, B2 and B3 are similar (about 21% underestima-
tion). It should be noted, that although no nodes were flooded by
these events, an overflow volume of the tank occurs which is
underestimated by all disaggregation methods. This can be
explained by fraction of dry time steps during the event (Table 5).
For the three observed extreme events, no dry time steps occur at
the master station, while for the resampled time series the fraction
ranges between 18% (B1) and 31%. For the other two stations the
fraction of dry time steps are even stronger overestimated with
50–66% in comparison to 6% for the observations. So although
the total rainfall amount of an extreme event is well-represented,
the distribution of the rainfall amount in the event can have a sig-
nificant influence on the modeling results. Hence the validation of
applicability of extreme values from generated time series cannot
be carried out without urban hydrological modeling.

The higher rainfall intensity of single time steps due to a higher
fraction dry time steps in an extreme event leads to an overestima-
tion of the flood volume for all disaggregation methods. For the
observations, the water elevation in the system remains com-
pletely below the manhole cover level. Hence, no delayed flows
Table 5
Fraction of dry intervals for the extreme events with return periods of Tk = 0.9 years
with 30 min duration (average of 90 events for resampled, disaggregated time series;
3 events for observations).

Master station Other stations

Obs A-res B1-res B2-res B3-res Obs A-res B1-res B2-res B3-res

Fraction of dry time intervals (%)
0 31 18 20 21 6 66 50 56 58
occur and the whole water volume reaches the tank immediately,
causing the combined sewer overflow.

5. Conclusions and outlook

In this study, two different investigationswere presented to gen-
erate 5 min rainfall time series and apply them for urban hydrologic
modeling. First, three modifications of the multiplicative random
cascade model are introduced. All three modifications are further
developments of the ‘‘uniform splitting”-approach introduced by
Müller and Haberlandt (2015). A branching number b = 3 is applied
in the first disaggregation step, while for all disaggregation steps
b = 2 is applied. Toachieveafinal resolutionof5 min,differentmeth-
ods are tested, implementedat thedisaggregation level 6 (calledB1),
7 (B2) and 8 (B3), which represent 15, 7.5 and 3.75 min intervals,
respectively. In B1 a uniform splitting is applied, while for the other
two the final resolution is achieved by linear interpolation. The per-
formance of the model was compared with observed values from
Lower Saxony (Germany) and an existing modification of the cas-
cade model, the so-called 1280 min approach (called A). Different
criteria regarding time series statistics and extreme values were
taken into account for the evaluation.

Molnar and Burlando (2008) analyzed the influence for param-
eter estimation using 1440 min (starting and ending of each day
were discarded) or continuous usage of 1280 min and could find
no large difference. However, it could be shown that for the disag-
gregated time series, differences are crucial. The investigations
have been carried out twice, once taking all values of the time ser-
ies into account and once including a threshold to neglect the influ-
ence of single tips in the observed time series and too small rainfall
intensities in the disaggregated time series. The following conclu-
sions can be drawn:

1. Method A is outperformed by B1, B2 and B3 regarding wet and
dry spell duration, average intensity, lag-1 autocorrelation and
fraction of dry intervals. For wet spell amount, A and B3 show
better results than B1 and B2 taking into account all time steps.
With the threshold-cleaned time series best results are pro-
vided by method B1 and B2.

2. Extreme values of 5 min duration are highly overestimated by A
and B3. B1 shows slight underestimations, while B2 tends to
overestimate the observations slightly. For extreme values of
1 h duration, only minor differences can be identified.

3. Altogether B2 shows the best performance. Most of the charac-
teristics are only slightly overestimated (wet spell amount 8%,
dry spell duration 8%, average intensity 11% and fraction of
dry intervals 1%), wet spell durations are slightly underesti-
mated (3%). The relative root mean square error for extreme
values of 5 min duration is rRMSE = 16%.

The overestimation for extreme values with 5 min duration can
also be found by Onof et al. (2005) for B3. Molnar and Burlando
(2005) show also overestimations resulting from A, while in
Licznar et al. (2011a), extreme values of 5 min duration are
underestimated.

The autocorrelation of the time series is underestimated by all
methods. Lombardo et al. (2012) proved that the autocorrelation
cannot be reproduced by the micro-canonical cascade model. An
underestimation of the autocorrelation was identified before by
e.g. Olsson (1998), Güntner et al. (2001), Pui et al. (2012) and
Paschalis et al. (2012, 2014). Lisniak et al. (2013) show a good rep-
resentation of the autocorrelation function for a validation period,
while for the calibration period underestimations occur for all lags.
Rupp et al. (2009) analyzed four different kinds of cascade models.
Depending on the model choice, autocorrelation function was
under- or overestimated.
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One possibility to improve the results of method A could be a
dressed cascade model (see Schertzer et al., 2002; Paulson and
Baxter, 2007), which includes a continuation of the disaggregation
process to very fine time scales and subsequently aggregation to
the scale of interest. Another possibility would be to implement
an additional disaggregation step from 5.625 min to 2.8125 min
and subsequently an averaged weighting to achieve a final resolu-
tion of 5 min.

Since the disaggregation process is carried out station-based,
spatial consistence is missing in between the disaggregated time
series. The implementation of spatial consistence for 5 min rainfall
is the second novelty of this study. A resampling algorithm is
applied for the implementation of spatial consistence Müller and
Haberlandt (2015), defined by the distance-dependent bivariate
characteristics probability of occurrence, Pearson’s coefficient of
correlation and continuity ratio (Wilks, 1998). These characteris-
tics have been analyzed before and after the resampling procedure.

4. The resampling algorithm is capable of implementing spatial
consistence for time series with 5 min resolution.

5. The probability of occurrence and Pearson’s coefficient of corre-
lation could be improved significantly. Continuity ratio shows a
slight worsening.

The disaggregated time series with and without spatial consis-
tence as well as observed time series have been used as input for
an artificial urban hydrological system. The main findings are:

6. Using spatial uniform rainfall (one station) as input does not
ensure an adequate representation of node flooding and tank
overflow, therefore spatial heterogeneous rainfall (three sta-
tions) has been applied for all further simulations.

7. The resampled time series lead to comparable results to those
from the observations. Without resampling, unrealistic results
regarding the volume of flooded nodes or combined sewer over-
flow volume occur.
Table A1
The probabilities (%), resulting from the aggregation of the observed time series of rain ga

Aggregation (temporal resolution in min) Position and volume class

Starting Enc

Lower Upper Low

5–10 36 3 22
10–20 20 2 16
20–40 14 2 16
40–80 14 4 19
80–160 13 4 23
160–320 15 4 26
320–640 18 6 29
640–1280 20 7 28

5–10 49 27 21
10–20 56 30 16
20–40 57 32 14
40–80 58 33 17
80–160 58 31 21
160–320 60 28 23
320–640 55 32 27
640–1280 57 35 28

5–10 15 70 58
10–20 24 68 68
20–40 29 66 70
40–80 28 63 64
80–160 29 65 56
160–320 25 67 51
320–640 27 62 44
640–1280 23 58 44
8. The resampled version of B2 leads to the best fit to observa-
tions. Method A results in the worst representation among all
resampled versions.

The overall performance of B2 was better in comparison to A,
although the latter one can be seen as the standard disaggregation
variant of the cascade model for urban-hydrological investigations
(Licznar et al., 2011a,b; 2015; Molnar and Burlando, 2005;
Serinaldi, 2010; Paschalis et al., 2014). The potential of the resam-
pling algorithm has been proven for time series with 5 min resolu-
tion. However, the reproduction of bivariate characteristics can be
improved. Further investigations of the proposed methods should
be carried out for other regions with different rainfall characteris-
tics and climate.
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Appendix A

See Table A1.
uge Göttingen, which were used for disaggregation in method A.

losed Ending Isolated

er Upper Lower Upper Lower Upper

P(1/0)
1 48 20 46 45
1 57 27 46 21
1 60 27 44 22
2 60 29 42 24
3 59 29 45 24
6 59 28 43 21
8 58 31 38 25
10 56 26 34 16

P(0/1)
1 40 2 46 44
1 28 3 47 19
2 18 3 43 21
4 16 6 44 23
4 17 7 41 23
6 18 8 40 25
10 19 8 40 18
12 18 6 44 21

P(x/(1�x))
98 13 78 8 11
98 16 70 7 60
97 21 69 13 57
95 25 66 14 53
92 24 64 14 53
88 24 65 17 54
82 23 61 21 57
78 26 68 23 63



H. Müller, U. Haberlandt / Journal of Hydrology 556 (2018) 847–864 863
References

Aarts, E., Korst, J., 1965. Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing. John Wiley &
Sons, Chichester.

Barco, J., Wong, K.M., Stenstrom, M.K., 2008. Automatic calibration of the U.S. EPA
SWMM model for a large urban catchment. J. Hydraul. Eng. 134, 466–474.

Bardossy, A., 1998. Generating precipitation time series using simulated annealing.
Water Resour. Res. 34 (7), 1737–1744.

Berne, A., Delrieu, G., Creutin, J.-D., Obled, C., 2004. Temporal and spatial resolution
of rainfall measurements required for urban hydrology. J. Hydrol. 299, 166–179.

Breinl, K., Turkington, T., Stowasser, M., 2013. Stochastic generation of multi-site
daily precipitation for applications in risk management. J. Hydrol. 498, 23–35.

Breinl, K., Turkington, T., Stowasser, M., 2014. Simulating daily precipitation and
temperature: a weather generation framework for assessing
hydrometeorological hazards. Meteorol. Appl. 22 (3), 334–347.

Bruni, G., Reinoso, R., van de Giesen, N.C., Clemens, F.H.L.R., ten Veldhuis, J.A.E.,
2015. On the sensitivity of urban hydrodynamic modelling to rainfall spatial
and temporal resolution. Hydrol. Earth Syst. Sci. 19 (2), 691–709.

Burlando, P., Rosso, R., 1996. Scaling and multiscaling of depth-duration-frequency
curves for storm precipitation. J. Hydrol. 187, 45–64.

Carsteanu, A., Foufoula-Georgiou, E., 1996. Assessing dependence among weights in
a multiplicative cascade model of temporal rainfall. J. Geophys. Res. 101 (D21),
26363–26370.

Cowpertwait, P.S.P., 1995. A generalized spatial-temporal model of rainfall based on
a clustered point process. Proc. R. Soc. Lond. A. 450, 163–175.

Ding, J., Haberlandt, U., Dietrich, J., 2015. Estimation of instantaneous peak flow
from maximum daily flow: a comparison of three methods. Hydrol. Res. 46 (5),
671–688.

Dunkerley, D., 2008. Identifying individual rain events from pluviograph records: a
review with analysis of data from an Australian dryland site. Hydrol. Process. 22
(26), 5024–5036.

DIN EN 752, 1996. Drain and sewer systems outside buildings, German Institute for
Standardization, Berlin.

DWA-A 118, 2006. Hydraulische Bemessung und Nachweis von
Entwässerungssystemen, Arbeitsblatt der DWA, Hennef.

DWA-A 531, 2012. Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer,
Arbeitsblatt der DWA, Hennef.

Emmanuel, I., Andrieu, H., Leblois, E., Flahaut, B., 2012. Temporal and spatial
variability of rainfall at the urban hydrological scale. J. Hydrol. 430–431, 162–
172.

Gires, A., Giangola-Murzyn, A., Abbes, J.B., Tchiguirinskaia, I., Schertzer, D., Lovejoy,
S., 2015. Impacts of small scale rainfall variability in urban areas: a case study
with 1D and 1D/2D hydrological models in a multifractal framework. Urban
Water J. 12 (8), 607–617.

Goldstein, A., DiGiovanni, K., Montalto, F., 2010. Resolution and sensitivity analysis
of a block-scale urban drainage model. In: Palmer, R.N. (Ed.), World
Environmental and Water Resources Congress 2010: Challenges of Change,
Providence, Rhode Island, 16–20 May 2012. ASCE, Reston, VA, USA, pp. 4720–
4729.

Güntner, A., Olsson, J., Calver, A., Gannon, B., 2001. Cascade-based disaggregation of
continuous rainfall time series: the influence of climate. Hydrol. Earth Syst. Sci.
5 (2), 145–164.

Haberlandt, U., Ebner von Eschenbach, A.D., Buchwald, I., 2008. A space-time hybrid
hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst.
Sci. 12 (6), 1353–1367.

Hingray, B., Ben Haha, M., 2005. Statistical performance of various deterministic and
stochastic models for rainfall series disaggregation. Atmos. Res. 77, 152–175.

Hosking, J.R.M., Wallis, J.R., 1997. Regional frequency analysis. Cambridge
University Press, Cambridge.

Kim, Dongkyun, Olivera, F., 2012. Relative Importance of the Different Rainfall
Statistics in the Calibration of Stochastic Rainfall Generation Models. J. Hydrol.
Eng. 17 (3), 368–376.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Science 220 (4598), 671–680.

Imhoff, K., Imhoff, K.R., 2007. Taschenbuch der Stadtentwässerung, Oldenburg
Industrieverlag, 30. Auflage, 508 p.

Jebari, S., Berndtsson, R., Olsson, J., Bahri, A., 2012. Soil erosion estimation based on
rainfall disaggregation. J. Hydrol. 436–437, 102–110.

Krebs, G., Kokkonen, T., Valtanen, M., Setälä, H., Koivusalo, H., 2014. Spatial
resolution considerations for urban hydrological modeling. J. Hydrol. 512, 482–
497.

Koutsoyiannis, D., Onof, C., Wheater, H.S., 2003. Multivariate rainfall disaggregation
at a fine time scale. Water Resour. Res. 39 (7), 1173.

Kumar, P., Guttarp, P., Foufoula-Georgiou, E., 1994. A probability-weighted moment
test to assess simple scaling. Stoch. Hydrol. Hydraul. 8, 173–183.

Licznar, P., Lomotowski, J., Rupp, D.E., 2011a. Random cascade driven rainfall
disaggregation for urban hydrology: an evaluation of six models and a new
generator. Atmos. Res. 99 (3–4), 563–578.

Licznar, P., Schmitt, T.G., Rupp, D.E., 2011b. Distributions of micro-canonical
cascade weights of rainfall at small time scales. Acta Geophys. 59 (5), 1013–
1043.

Licznar, P., De Michele, C., Adamowski, W., 2015. Precipitation variability within an
urban monitoring network via microcanonical cascade generators. Hydrol.
Earth Syst. Sci. 19 (1), 485–506.
Lisniak, D., Franke, J., Bernhofer, C., 2013. Circulation pattern based
parameterization of a multiplicative random cascade for disaggregation of
observed and projected daily rainfall time series. Hydrol. Earth Syst. Sci. 17 (7),
2487–2500.

Lombardo, F., Volpi, E., Koutsoyiannis, D., 2012. Rainfall downscaling in time:
theoretical and empirical comparison between multifractal and Hurst-
Kolmogorov discrete random cascades. Hydrol. Sci. J. 57 (6), 1052–1066.

Lombardo, F., Volpi, E., Koutsoyiannis, D., Papalexiou, S.M., 2014. Just two
moments! A cautionary note against use of high-order memonts in
multifractal models in hydrology. Hydrol. Earth Syst. Sci. 18, 243–255.

Marshak, A., Davis, A., Cahalan, R., Wiscombe, W., 1994. Bounded cascade models as
nonstationary multifractals. Phys. Rev. E 49 (1), 55–69.

Molnar, P., Burlando, P., 2005. Preservation of rainfall properties in stochastic
disaggregation by a simple random cascade model. Atmos. Res. 77 (1–4), 137–
151.

Molnar, P., Burlando, P., 2008. Variability in the scale properties of high-resolution
precipitation data in the Alpine climate of Switzerland. Water Resour. Res. 44
(10), W10404.

Müller, H., Haberlandt, U., 2015. Temporal rainfall disaggregation with a cascade
model: from single-station disaggregation to spatial rainfall. J. Hydrol. Eng. 20
(11), 04015026.

Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R.D., Reinoso-Rondinel, R., Bruni, G.,
Ichiba, A., Gaitan, S., Cristiano, E., Assel, J.v., Kroll, S., Murlà-Tuyls, D., Tisserand,
B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., ten Veldhuis, M.-C.,
2015. Impact of spatial and temporal resolution of rainfall inputs on urban
hydrodynamic modelling outputs: a multi-catchment investigation. J. Hydrol.
531 (Part 2), 389–407.

Olsson, J., 1998. Evaluation of a scaling cascade model for temporal rainfall
disaggregation. Hydrol. Earth Syst. Sci. 2 (1), 19–30.

Onof, C., Chandler, R.E., Kakou, A., 2000. Rainfall modelling using Poisson-cluster
processes: a review of developments. Stoch. Env. Res. Risk. A 14 (6),
384–411.

Onof, C., Townend, J., Kee, R., 2005. Comparison of two hourly to 5-min rainfall
disaggregators. Atmos. Res. 77 (1–4), 176–187.

Onof, C., Arnbjerg-Nielsen, K., 2009. Quantification of anticipated future changes in
high resolution of design rainfall for urban areas. Atmos. Res. 92 (3), 350–363.

Over, T.M., Gupta, V.K., 1994. Statisitcal Analysis of mesoscale rainfall: dependence
of a random cascade generator on large-scale forcing. J. Appl. Meteorol. 33,
1526–1542.

Paulson, K.S., Baxter, P.D., 2007. Downscaling of rain gauge time series by
multiplicative beta cascade. J. Geophys. Res.-Atmos. 112 (D9), D09105.

Paschalis, A., Molnar, P., Burlando, P., 2012. Temporal dependence structure in
weights in a multiplicative cascade model for precipitation. Water Resour. Res.
48 (1), W01501.

Paschalis, A., Molnar, P., Fatichi, S., Burlando, P., 2014. On temporal stochastic
modeling of precipitation, nesting models across scales. Adv. Water Resour. 63,
152–166.

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the
Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11 (5), 1633–
1644.

Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., Jeremiah, E., 2012. A comparison of
alternatives for daily to sub-daily rainfall disaggregation. J. Hydrol. 470–471,
138–157.

Richter, D., 1995. Ergebnisse methodischer Untersuchungen zur Korrektur des
systematischen Messverfahrens des Hellman-Niederschlagsmessers. Berichte
des Deutschen Wetterdienstes, 194, Selbstverlag des DWD, Offenbach a.M.

Rupp, D.E., Keim, R.F., Ossiander, M., Brugnach, M., Selker, J., 2009. Time scale and
intensity dependency in multiplicative cascades for temporal rainfall
disaggregation. Water Resour. Res. 45 (7), W07409.

Rossman, L.A., 2010. Storm water management model – User’s manual version 5.0,
Environmental Protection Agency, EPA/600/R-05/040.

Schertzer, D., Lovejoy, S., Hubert, P., 2002. An introduction to stochastic multifractal
fields. In: Ern, A., Liu, W., (Eds.). Isfma Symp. Environmental Science and
Engineering with related mathematical problems, High Education Press, Bejing,
pp. 106–179.

Schertzer, D., Lovejoy, S., 2011. Multifractals, generalized scale invariance and
complexity in Geophysics. Int. J. Bifurc. Chaos 21 (12), 3417–3456.

Schilling, W., 1991. Rainfall data for urban hydrology: What do we need? Atmos.
Res. 27 (1–3), 5–21.

Segond, M.-L., Neokleous, N., Makropoulos, C., Onof, C., Maksimovic, C., 2007.
Simulation of spatio-temporal disaggregation of multi-site rainfall data for
urban drainage applications. Hydrolog. Sci. J. 52, 917–935.

Serinaldi, F., 2010. Multifractality, imperfect scaling and hydrological properties of
rainfall time series simulated by continuous universal multifractal and discrete
random cascade models. Nonlin. Processes Geophys. 17 (6), 697–714.

Sevruk, B., 2005. Rainfall measurement: gauges. In: M. G. Anderson (Ed.).
Encyclopedia of Hydrological Sciences, Wiley & Sons Ltd., Chichester, pp.
529–535.

Sivapalan, M., Blöschl, G., 1998. Transformation of point to areal rainfall: Intensity-
duration-frequency curves. J. Hydrol. 204 (1–4), 150–167.

Svensson, C., Olsson, J., Berndtsson, R., 1996. Multifractal properties of daily rainfall
in two different climates. Water Resour. Res. 32 (8), 2463–2472.

Veneziano, D., Langousis, A., 2005. The areal reduction factor: a multifractal
analysis. Water Resour. Res. 41 (7), W07008.

Veneziano, D., Langousis, A., Furloco, P., 2006. Multifractality and rainfall extremes:
a review. Water Resour. Res. 42 (6), W06D15.

http://refhub.elsevier.com/S0022-1694(16)00049-4/h0005
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0005
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0005
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0010
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0010
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0015
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0015
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0020
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0020
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0025
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0025
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0030
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0030
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0030
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0035
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0035
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0035
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0040
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0040
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0045
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0045
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0045
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0050
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0050
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0055
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0055
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0055
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0060
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0060
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0060
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0080
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0080
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0080
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0090
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0090
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0090
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0090
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0095
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0095
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0095
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0095
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0095
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0100
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0100
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0100
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0105
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0105
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0105
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0110
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0110
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0115
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0115
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0120
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0120
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0120
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0125
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0125
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0135
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0135
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0140
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0140
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0140
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0145
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0145
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0150
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0150
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0155
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0155
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0155
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0160
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0160
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0160
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0165
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0165
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0165
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0170
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0170
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0170
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0170
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0175
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0175
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0175
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0180
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0180
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0180
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0185
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0185
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0190
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0190
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0190
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0195
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0195
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0195
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0200
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0200
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0200
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0205
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0205
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0205
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0205
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0205
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0205
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0210
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0210
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0215
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0215
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0215
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0220
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0220
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0225
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0225
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0230
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0230
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0230
http://refhub.elsevier.com/S0022-1694(16)00049-4/h9000
http://refhub.elsevier.com/S0022-1694(16)00049-4/h9000
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0235
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0235
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0235
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0240
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0240
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0240
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0245
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0245
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0245
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0250
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0250
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0250
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0260
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0260
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0260
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0275
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0275
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0280
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0280
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0285
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0285
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0285
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0290
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0290
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0290
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0300
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0300
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0305
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0305
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0310
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0310
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0315
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0315


864 H. Müller, U. Haberlandt / Journal of Hydrology 556 (2018) 847–864
Veneziano, D., Langousis, A., 2010. Scaling and Fractals in Hydrology. In: Sivakumar,
B., Berndtsson, R., (Eds.). Advances in Data-based Approaches for Hydrologic
Modeling and Forecasting. World Scientific Publishing, Hackensack, 145p.

Wilks, D.S., 1998. Multisite generalization of a daily stochastic precipitation
generation model. J. Hydrol. 210 (1–4), 178–191.

Wilson, J.W., Brandes, E.A., 1979. Radar measurement of rainfall – a summary. Bull.
Amer. Meteor. Soc. 60 (9), 1048–1058.
Wójcik, R., Buishand, T.A., 2003. Simulation of 6-hourly rainfall and temperature by
two resampling schemes. J. Hydrol. 273 (1–4), 69–80.

Wright, D.B., Smith, J.A., Baeck, M.L., 2013. A critical examination of area reduction
factors. J. Hydrol. Eng. 19 (4), 769–776.

Yu, P.-S., Yang, T.-C., Lin, C.-S., 2014. Regional rainfall intensity formulas based on
scaling property of rainfall. J. Hydrol. 295, 108–123.

http://refhub.elsevier.com/S0022-1694(16)00049-4/h0330
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0330
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0335
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0335
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0340
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0340
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0345
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0345
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0350
http://refhub.elsevier.com/S0022-1694(16)00049-4/h0350

	Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology
	1 Introduction
	2 Data
	2.1 Rainfall data
	2.2 Combined sewer system

	3 Methods
	3.1 Cascade model
	3.2 Spatial consistence
	3.3 Urbanhydrological modeling
	3.3.1 Model SWMM
	3.3.2 Influence of number of recording stations
	3.3.3 Influence of disaggregation method


	4 Results and discussion
	4.1 Temporal disaggregation
	4.2 Spatial consistence
	4.3 Urban hydrological modeling
	4.3.1 Influence of number of recording stations
	4.3.2 Influence of disaggregation methods and spatial consistence


	5 Conclusions and outlook
	Acknowledgements
	Appendix A
	References


