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Abstract

Wave breaking is a random process that causes extreme hydrodynamic loads on o�shore

structures which lead to structural degradation and destruction. The majority of studies

in literature analysed single wave breaking events in (quasi-)monochromatic wave trains

and focused on energy dissipation and slamming forces on structures. Due to the random

nature of wave breaking, its parameters vary widely and cannot be predicted with an

exact value at a future instant of time, but instead must be described with probabilistic

statements and statistical averages. This thesis analyses the variability of wave breaking

onset, in order to gain deeper knowledge of the frequency and likelihood of occurrence

of wave breaking, providing many applications to a more economic design and safety of

o�shore structures. Breaking onset is de�ned as an instantaneous state of wave dynamics

where a wave has not started to break but cannot return to a stable state either. Present

investigations focus on the evolution of wave trains towards and at breaking onset to

describe the stochastic process of breaking onset, to �nd precursors and indicators of

breaking onset, and to determine the optimal sample size of test runs to get a reliable

result of the parameters of breaking onset. By this means, insights on the variability of

breaking onset and its distribution function are achieved, which have not been available

beforehand. In this context, investigations on breaking onset in irregular wave trains

(JONSWAP sea spectrum) in intermediate water depth are carried out using laboratory

and hydronumerical model tests. The physical model tests are carried out in the wave

�ume of the Ludwig-Franzius-Institute in a length scale of 1:40. In parallel, hydronumer-

ical model tests using a numerical wave �ume developed by Sriram (2008) and Sriram et

al. (2006; 2007; 2010), based on the fully non-linear potential �ow theory (semi-arbitrary

Lagrangian-Eulerian Finite Element Method (SALE-FEM, structured version)), are con-

ducted in the same length scale to complement the laboratory investigations and to

increase the possible test run length and number. As design database the wave measure-

ments of research platform FINO1 in the North Sea for the time period 2004 � 2011 are

used and JONSWAP spectra are selected in such a way that daily and storm events are

covered. By means of the random phase angle distribution, every considered spectrum is

transformed multiple times to arti�cial, but physically-sound time series of water surface

elevations. The cause-e�ect relationship between input wave train and breaking onset is

investigated with a dimensional analysis (Buckingham π theorem) and an analysis of

the uni- and bivariate (copula) distribution functions. The optimal sample size of test

runs is derived by means of a convergence analysis. Indicators of breaking onset are detec-

ted by analysing the surface elevation (over time and over �ume length) and applying the
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threshold method which assumes that breaking onset happens when a parameter exceeds

a certain threshold value. A novel detection indicator based on the Hilbert transform

is introduced. Precursors of breaking onset are presented with Markov chains of the

geometrical and instantaneous parameters, which describe the conditions that had to be

met stochastically for wave instability to occur.

Keywords

wave breaking, breaking onset, variability, detection, prediction, distribution function,

intermediate water, SALE-FEM, physical modeling, numerical modeling, numerical wave

�ume.
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Kurzfassung

Wellenbrechen an O�shore-Bauwerken verursacht extreme hydrodynamische Lasten, die

zur strukturellen Degradation und ggf. Zerstörung führen können. Der Groÿteil der

bisherigen Studien untersuchte einzelne Wellenbrechenereignisse in monochromatischen

bzw. quasi-monochromatischen Wellenzügen und konzentrierte sich dabei auf die Ener-

giedissipation oder Druckschläge auf die Struktur. Da Wellenbrechen ein Zufallsprozess

ist, variieren seine Parameter stark und können nicht mit einem exakten Wert zu einem

bestimmten Zeitpunkt vorhergesagt werden, sondern müssen mit probabilistischen Aus-

sagen und statistischen Mittelwerten beschrieben werden. Diese Arbeit untersucht die

Variabilität des Wellenbrechenanfangs, um neue Erkenntnisse über die Häu�gkeit und

die Wahrscheinlichkeit des Auftretens von Wellenbrechen zu gewinnen, und somit eine

wirtschaftlichere und sichere Konstruktion von O�shore-Bauwerken zu ermöglichen. Der

Wellenbrechenanfang beschreibt den instantanen Zustand der Wellendynamik, bei dem

die Welle noch nicht begonnen hat zu brechen, aber auch nicht in einen stabilen Zustand

zurückkehren kann. Diese Arbeit konzentriert sich auf die Untersuchung der Entwicklung

der Wellenzüge vor Wellenbrechenanfang und der Ganglinien am Ort des Wellenbrechen-

anfangs, um den stochastischen Prozess des Wellenbrechenanfangs zu beschreiben, In-

dikatoren des Wellenbrechens zu �nden, und die optimale Stichprobengröÿe der Testläufe

zu bestimmen, um ein zuverlässiges Ergebnis der Parameter des Wellenbrechenanfangs zu

erhalten. Somit werden Erkenntnisse über die Variabilität des Wellenbrechenanfangs und

dessen Verteilungsfunktion gewonnen, die bisher nicht verfügbar waren. Im Rahmen der

Arbeit wird das Wellenbrechen in irregulären Wellenzügen (JONSWAP Seegangsspek-

tren) im Übergangsbereich mit Hilfe von physikalischen und hydronumerischen Mod-

ellversuchen untersucht. Die physikalischen Modellversuche werden im Wellenkanal des

Ludwig-Franzius-Instituts in einem Längenmaÿstab von 1:40 durchgeführt. Parallel dazu

werden hydronumerische Modellversuche im von Sriram (2008) und Sriram et al. (2006;

2007; 2010) entwickelten numerischen Wellenkanal im gleichen Längenmaÿstab durchge-

führt, um die Laboruntersuchungen zu ergänzen und die mögliche Testlau�änge und

Testanzahl signi�kant zu erhöhen. Der numerische Wellenkanal basiert auf der Theorie

der vollständig nichtlinearen Potentialströmung (semi-arbiträre Lagrange-Euler Finite

Elemente Methode (SALE-FEM, strukturierte Version)). Als Datengrundlage werden

die Seegangsmessungen der Forschungsplattform FINO1 in der Nordsee für den Zeitraum

2004 � 2011 verwendet. Die JONSWAP Seegangsspektren werden so gewählt, dass Tages-

und Sturmereignisse abgedeckt werden. Durch die zufällige Phasenwinkelverteilung wird

jedes betrachtete Spektrum mehrfach in künstliche, aber physikalisch mögliche Zeitreihen
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von Wasserspiegelauslenkungen transformiert. Der Ein�uss des Eingangswellenzuges auf

den Wellenbrechenanfang wird zum einen mit der Dimensionsanalyse (Buckingham

π Theorem) und zum anderen mit der Untersuchung der uni- und bivariaten (copula)

Verteilungsfunktionen bestimmt. Die optimale Stichprobengröÿe der Testläufe wird mit-

tels einer Konvergenzanalyse hergeleitet. Indikatoren des Wellenbrechenanfangs werden

durch Analyse der Wasserspiegelauslenkung (über Zeit und über Ort) ermittelt und die

Grenzwert-Methode wird angewendet, bei der angenommen wird, dass Wellenbrechen

statt�ndet, wenn ein Parameter einen bestimmten Grenzwert überschreitet. Es wird ein

neuartiger Indikator zur Detektion von Wellenbrechen in Zeitreihen eingeführt, der auf

der Hilbert Transformation basiert. Mit Hilfe vonMarkow-Ketten wird das Verhalten

der geometrischen und instantanen Parameter der Wellenzüge vor Wellenbrechenanfang

dargestellt und die Bedingungen beschrieben, die stochastisch erfüllt werden müssen,

damit Wellenbrechen auftritt.

Schlüsselwörter

Wellenbrechen, Wellenbrechenanfang, Variabilität, Detektion, Vorhersage, Verteilungs-

funktion, Übergangsbereich, SALE-FEM, physikalische Modellierung, numerische Mod-

ellierung, numerischer Wellenkanal.
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1. Introduction

1.1. Motivation

For about 50 years the phenomenon of wave breaking has been closely studied with the

aim of the analytical description of the underlying processes and its prediction. Sev-

eral authors (e.g. Ochi (2005); Babanin (2011); Barthélémy et al. (2011); Zakharov

and Shamin (2012)) have investigated the statistical properties of wave breaking by dif-

ferent measurement methods in the �eld, in controlled laboratory environments or by

means of hydronumerical models. Most of the laboratory experiments were performed

with monochromatic waves, few in random seas and only a marginal part is conducted

in three-dimensional seas. However, there is not yet a complete, i.e. universal ana-

lytical description of wave breaking, as the process is highly non-linear, irregular and

intermittent. Despite the random and intermittent nature of wave breaking, it is a sig-

ni�cant phenomenon in the sea state environment as it plays an important role in the

ocean-atmosphere interaction and represents the key role in wave energy dissipation. Fur-

thermore, breaking waves may cause extreme hydrodynamic loads on o�shore structures

or vessels, which induce signi�cant singular stresses and thereby lead to degradation or

destruction of the structure. An estimation of the frequency or likelihood of occurrence

and type of breaking waves in a given sea state are valuable information for the design

engineer in order to enable economical and safe constructions.

It is important to keep in mind that the wave breaking process, as the sea state process

in general, is a random process, and thus, there is no way to predict an exact value at a

future instant of time. The data must be described in terms of probability statements and

statistical averages. Waves do not break at a single well de�ned value of wave steepness,

but instead, break over a wide value range (Kjeldsen and Myrhaug, 1979b; Bonmarin

et al., 1989; Kriebel, 2000; To�oli et al., 2010).

So far the majority of studies focused on the analysis of a single breaking wave to de-

scribe the underlying processes, estimate the energy dissipation, or study the slamming

forces on structures. There are no studies which take into account or analyse the variab-

ility of parameters of the breaking wave. Although previous investigations contributed to
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1. Introduction

the fundamental understanding of wave breaking, there is little consensus on the in�uen-

cing factors that control breaking onset or breaking probability (Nath and Ramsey, 1976;

Melville, 1996; Babanin et al., 2001; Banner et al., 2000). Breaking onset is de�ned as an

instantaneous state of wave dynamics where a wave has not started to break but cannot

return to a stable state either. Furthermore, there is an absence of established breaking

criteria, and therefore a lack of progress in the development of an e�cient method to

detect wave breaking in time series of water surface elevations (Sharkov, 2007; To�oli

et al., 2010; Babanin et al., 2011b; Perlin et al., 2013). Concerning the question how

large a sample size has to be to have a reliable result of the likelihood of wave breaking

and of the geometry of a breaking wave at breaking onset, previous studies recommends

solely that the sample size has to be large enough without specifying the size (Banner

et al. (2000, p. 3156), Goda (2010), Babanin et al. (2011b, p. 176)).

1.2. Objective

Breaking waves are highly non-linear and the result of a certain propagation of multiple

waves. Therefore, it is obvious that the time history of a wave train is essential to describe

such phenomenons like breaking waves. One objective of this thesis was to investigate

the evolution of a wave train (two-dimensional) right before and at breaking onset by

means of laboratory and hydronumerical experiments to describe the stochastic process of

breaking onset. The cause-e�ect relationship between the input wave train and breaking

onset was investigated in two ways: 1) a dimensional analysis (Buckingham π theorem)

and 2) an analysis of the uni- and bivariate (copula) distribution functions.

Another objective of this thesis was to investigate the water surface elevation at break-

ing onset (as a function of the �ume length) to determine the critical geometrical and

instantaneous parameters to detect breaking onset (threshold method). Moreover, the

progress of the geometrical and instantaneous properties of single waves in the wave train

(as a function of time) towards breaking onset was investigated in order to determine

precursors of wave breaking and as such progress indicators of probability of breaking.

This information was used to describe which conditions have to be met stochastically for

wave instability to occur (Markov chain) and, thus, enables to �nd robust indicators,

i.e. precursor of wave breaking onset from times series history.

Because the wave breaking process is highly irregular, the geometrical and instantan-

eous parameters of breaking onset spread. The distributions of those describing paramet-

ers are presented, and their variability and sensitivity are described. Thus, the required

measurement duration and area to determine the properties of breaking onset was de-
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1.2. Objective

Table 1.1.: Overview of objectives of the thesis.

Objective Methodology Results Chapter

Investigate the evolution
of wave trains towards and
at breaking onset to
describe the stochastic
process of breaking onset.

Dimensional analysis
(Buckingham π

theorem)
In�uencing
factors on
breaking onset

4.1 and 4.2

Uni- and bivariate
distribution
functions

5.1 and 5.2

Investigate the optimal
sample size to get a
reliable result of breaking
onset.

Convergence
analysis

Optimal sample
size of test runs

5.3

Investigate the evolution
of wave trains towards and
at breaking onset to �nd
precursors and indicators
of breaking onset.

Threshold method
Detection of
breaking onset

6.1 and 6.2

Markov chain
Prediction and
likelihood of
breaking onset

6.3

termined. The main reason for the variability of breaking onset is the wave sequence in a

wave train (phase angle distribution). Another objective of this thesis was to investigate

the optimal sample size of test runs (convergence analysis), so that the output parameters

(time and location of breaking onset) were independent of the wave sequence and phase

angle distribution respectively, in other words unin�uenced by the initial input signal.

An overview of all objectives of this thesis is given in Tab. 1.1. The more detailed

�owcharts of the work �ow of the data collection, post-processing, and data analysis are

given in chapter 3, see especially Figs. 3.1 and 3.2 and Tabs. 3.4 and 3.5.

The physical model tests were carried out in the wave �ume �Schneiderberg� of the

Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering (WKS, 100

m x 2.2 m x 2.0 m) in a length scale of 1:40. The record length was limited to max. 100

waves to avoid wave re�ections in the testing area. In parallel, hydronumerical model

tests using a numerical wave �ume (NWF) developed by Sriram (2008) and Sriram et al.

(2006; 2007; 2010), based on the fully non-linear potential �ow theory (semi-arbitrary

Lagrangian-Eulerian Finite Element Method (SALE-FEM, structured version)), were

conducted to complement the laboratory investigations and to increase the possible test

run length and number. Although the hydronumerical model tests took a certain com-

puting time, their use had the important advantage that test run length and test number

3



1. Introduction

could be increased signi�cantly, which would not have been possible with the physical

model tests in the same time. The hydronumerical model tests were also conducted

in a length scale of 1:40. Due to potential �ow theory the NWF calculations are ter-

minated when the water surface becomes discontinuous. However, this limitation is not

detrimental because the focus is set on the wave train evolution until breaking onset.

The discontinuity in the NWF may be of numerical or physical nature. To sort out the

test runs with numerical discontinuities, solely the test runs were considered here which

contain wave trains where the maximum wave crest and the maximum wave steepness

were less than one single waves apart. Wave trains were divided into single waves by the

zero-downcrossing method. The point of termination of simulation was characterized by

the two parameters: time to breaking onset tbr (time span from simulation start to end)

and location of breaking onset xbr (spatial distance from inlet to breaking wave crest).

As design database the wave measurements of research platform FINO1 in the North

Sea was used (Neumann et al., 2003), and a scatter diagram for the time period 2004 - 2011

was derived. The signi�cant wave height HS and wave peak period TP for the JONSWAP

spectra was selected in such a way that daily and storm events were considered, and the

initial spectral steepness sZ,i = HS/LP with LP = g/(2π)T 2
P varied between 0.01 ≤

sZ,i ≤ 0.071. Further input parameters were the enhancement factor γ (2 ≤ γ ≤ 7),

water depth h (0.5 m ≤ h ≤ 0.9 m), phase angle distribution ϕ, and the number of

waves in a wave train NW (192≤NW ≤ 3072 ). By means of the random phase angle

distribution, every considered spectrum was transformed multiple times (up to 500 times)

to arti�cial, but physically-sound time series of water surface elevations.

1.3. Outline

In chapter 2 a summary of the background and recent work about wave breaking, with

focus on wave breaking onset in intermediate and deep water, is given.

In chapter 3 the validation, test setup, program and procedure of the hydronumerical

model tests are explained. Especially Figs. 3.1 and 3.2 and Tabs. 3.4 and 3.5 explain the

work �ow of data collection, post-processing, and data analysis.

In chapter 4 the results of the investigation of the cause-e�ect relationship between

input factors and time and location of breaking onset with the dimensional analysis

(Buckingham π theorem) are given. The analysis was based on the results of the

hydronumerical model tests.

In chapter 5 the results of the investigation of the variability of breaking onset with

the uni- and bivariate (copula) distribution functions are given. Furthermore, the con-
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vergence analysis to determine the optimal sample size of test runs is presented. The

analysis was based on the results of the hydronumerical model tests.

In chapter 6 a detection method based on the physical and numerical model tests

is developed with the threshold method; the test setup, program and procedure of the

laboratory model tests are explained in section 6.1. The prediction of breaking onset in

a time series was investigated with the Markov chain.

In chapter 7 the thesis is summarised and an outlook is given.
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2. Background and Recent Work

In this chapter, a synopsis of wave breaking in intermediate and deep water with focus

on breaking onset is given. After a short summary of breaking criteria and mechanisms,

the focus is on the recent work on detection and prediction of wave breaking onset and

its variability and probability.

2.1. Wave Breaking in Intermediate and Deep Water

Wave breaking is the process of the deformation and destabilization of wave crests, fol-

lowed by water-air mixture and wave energy dissipation. The physics that lead to wave

breaking are elusive, but previous studies suggested various criteria which supposedly

indicate a breaking onset and therefore may help to detect it. It is an assumption that

a wave crest has to exceed a critical threshold before the wave can break; this is called

the threshold method. According to Babanin et al. (2007) �a criteria of breaking may be

indicative of a wave approaching an instable state, but is not a reason or a cause for the

breaking�. However, to investigate the wave breaking phenomenon, a criterion to de�ne

the breaking onset of a wave crest has to be chosen. Previous studies show that there

is no universal value, but a value range in which the wave breaking parameters lie. In

the following, the di�erent approaches to de�ne a criterion are summarised. Please note,

that the focus of this thesis is on dominant wave breakers, and not on small breaking

waves; the selection of the measurement and detection method depends on this.

2.1.1. Breaking Criteria and Thresholds

The three main criteria to de�ne the conditions of wave breaking are:

1. geometrical criterion: the wave steepness (sZ = H/L) exceeds a threshold para-

meter.

2. Kinematic criterion: the surface wave orbital velocity u exceeds a threshold para-

meter. At breaking onset, the streamlines of �uid particles stagnate relative to the

wave form.
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c

HaC

aTL'L''

L, T

Figure 2.1.: De�nition of wave parameters based on the recommendations of IAHR
(1989).

3. Dynamic criteria: the downward surface acceleration u̇ exceed a threshold para-

meter.

Geometrical Breaking Criteria

The geometry of a single wave in a time series is described with the following wave para-

meters, see Fig. 2.1. Based on those wave parameters, various ratio values are derived,

which describe steepness and asymmetry of the single wave, see Tab. 2.1.

The most widely known wave steepness threshold is the limiting steepness for a Stokes

wave, analytically derived by Michell (1893), for which a wave crest breaks when the

wave height exceeds sZ = 1/7 of the Stokes limiting wavelength. The wave steepness

threshold for breaking onset has been examined extensively in laboratory and hydronu-

merical experiments. In Tab. 2.2, an overview of the critical wave steepness thresholds

determined by di�erent authors is given. The threshold spreads because of di�erent

methods of wave breaking generation and the ambiguity in de�nition of breaking onset.

The wave steepness sZ may be enough to describe a sinusoidal wave, but not a steep

asymmetric wave, because asymmetric waves can exist with the same wave steepness

sZ . Therefore, Kjeldsen and Myrhaug (1979b, 1981) introduced the crest-front and -rear

steepness (s′C and s′′C), and the vertical and horizontal asymmetry parameters (µV and

µH), see Tab. 2.1. These parameters describe the geometry of a breaking gravity wave

crest, i.e. the sharpened crest, �attened trough and the very steep crest-front face. For a

second-order Stokes wave in deep water, these parameters are s′C = s′′C = 0.40, µV = 1
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2.1. Wave Breaking in Intermediate and Deep Water

Table 2.1.: Wave parameters and ratio values for steepness and asymmetry based on the
recommendations of IAHR (1989).

Symbol Description Unit

H Wave height m

T Wave period s

L Wavelength measured in the direction of wave propagation m

c Wave velocity m/s

aC Zero-crossing wave crest height m

aT Zero-crossing wave trough excursion (positive) m

L′ Crest front wavelength m

L′′ Crest rear wavelength m

sZ Wave steepness by zero-crossing analysis, H/L

sZC
Crest steepness, aC/L, based on Bonmarin and Ramamonjiarisoa
(1985)

sZT
Trough steepness, aT /L, based on Bonmarin and
Ramamonjiarisoa (1985)

s′C Crest front steepness, aC/L′

s′′C Crest rear steepness, aC/L′′

µV Vertical asymmetry factor, L′′/L′

µH Horizontal asymmetry factor, aC/H

9



2. Background and Recent Work

Table 2.2.: Compilation of wave steepness thresholds from literature.

Author sZ = H
L Note

Michell (1893) 0.143 regular Stokes wave

Duncan (1981) 0.200
breaking produced by towed

hydrofoil

Ochi and Tsai (1983) 0.126 irregular wave

Xu et al. (1986) 0.119 irregular wave

Ramberg and Gri�n (1987) 0.132 irregular wave

Rapp and Melville (1990, �g. 21) 0.048 - 0.070 dispersive focusing

Wu (2004) 0.048 - 0.121 dispersive focusing

Tian et al. (2008) 0.089 - 0.137 dispersive focusing

Tian et al. (2012) 0.064 - 0.153
dispersive focusing and
modulational instability

Bonmarin and Ramamonjiarisoa
(1985, �g. 9)

0.120 modulational instability

Tulin and Waseda (1999, �g. 15) 0.070 - 0.131 modulational instability

Babanin et al. (2010) 0.127 modulational instability

Babanin et al. (2010) 0.140
modulational instability

(while breaking)

Babanin (2011, p. 152) 0.146 - 0.153
short-crested directional

waves

Babanin (2011, p. 152) 0.175
short-crested directional
waves (while breaking)

and µH = 0.61. The corresponding thresholds determined by di�erent authors are given

in Tab. 2.3.

The determination of the geometrical parameters in laboratory experiments is non-

trivial, because the wave pro�le is highly irregular and unsteady and the pro�le deforms

rapidly. There are di�culties of spatial surface pro�le measurement. There are no

straightforward transformation between measurements in the temporal domain and those

in the spatial domain available. Temporal measurements may not fully represent the

spatial characteristics. Yao and Wu (2005) showed that the wave steepness ak, with a

as amplitude and k as wave number k = 2π/L and the crest's geometrical parameters of

the same incipient breaking wave may vary up to 50% dependent on the measurement
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2. Background and Recent Work

(temporal or spatial).

Kinematic Breaking Criteria

The kinematic criterion postulates that before the inception of breaking the horizontal

�uid velocity at the surface of the wave crest u exceeds the phase speed of the wave c.

u

c
≥ 1 (2.1)

The di�culties with this breaker criterion are, on the one hand, the calculation of the

phase velocity and, on the other hand, the measurement of the particle velocity in the

laboratory. Linear theory overestimates the magnitude of the phase speed (Skjelbreia

et al., 1991; Gudmestad, 1993), but even local phase speed de�nitions do not satisfy

the kinematic breaking criterion, see Stansell and MacFarlane (2002). The investigation

by Stansell and MacFarlane (2002) showed that the ratio of particle to phase velocity

was between 0.68 ≤ u/c ≤ 0.95. Experimental studies performed by Melville and Rapp

(1988), Kjeldsen (1989), Perlin et al. (1996), Chang and Liu (1998) and Stansell and Mac-

Farlane (2002) did not verify the kinematic criterion. Therefore, the condition described

in Eq. (2.1) may be su�cient condition for breaking but it is not a necessary condition,

and thus, the kinematic criterion is not an universal predictor of wave breaking.

Dynamic Breaking Criteria

The classic dynamic criterion describes the vertical component of surface acceleration

exceeding a certain threshold, see Eq. (2.2).

adownward≥αg (2.2)

with α as an unknown constant and g as acceleration of gravity. The corresponding

thresholds determined by di�erent authors are given in Tab. 2.4.

2.1.2. Breaking Mechanism and Types

When discussing the physical mechanisms behind the wave breaking phenomenon, a

distinction is made between whether the wave breaking is depth induced or wave induced

(induced by wave-wave interaction). Depth induced wave breaking occurs when the ratio

of wave height to water depthH/h comes into a critical range. This happens, for example,

when waves enter from deep into shallow water; the wave height increases (shoaling), the

wave becomes unstable and breaks. The breaking criterion for extreme shallow water

12



2.1. Wave Breaking in Intermediate and Deep Water

Table 2.4.: Compilation of threshold parameter α for the dynamic breaking criterion from
literature.

Author α Note

Stokes (1847) 0.5 monochromatic Stokes wave

Longuet-Higgins and Fox (1977) 0.388 numerical calculations

Snyder et al. (1983) 0.5 dominant waves in the �eld

Longuet-Higgins (1985) 1.0 natural wave �eld

Ochi and Tsai (1983) 0.4 natural wave �eld

Liu and Babanin (2004) 0.3 natural wave �eld

is H/h = 0.89 according to Miche (1944), and H/h = 0.78, respectively, based on the

theory of solitary waves according to McCowan (1891).

Wave-wave induced wave breaking occurs when the wave steepness exceeds a critical

threshold, see section 2.1.1. In intermediate and deep water, on the one hand, super-

position mechanisms such as wave-wave interaction (frequency, amplitude or directional

focusing), or on the other hand instability mechanisms such as modulational instabil-

ity (MI), can lead to wave breaking. The modulational instability, or Benjamin-Feir

instability, is an instability that only occurs to weakly non-linear wave groups in deep

water, and describes amplitude modulation due to sideband instabilities. Dependent on

the initial wave steepness, a wave train with active modulational instability may develop

to a breaking wave or to a very large and steep, but non-breaking wave. Modulational

instability do not always lead to wave breaking (Chalikov, 2007). Wave groups, and thus

the temporal sequence of waves and their superposition, play an immense role in the

breaking of waves in intermediate and deep water, see Banner et al. (2000, p. 3148) and

Babanin et al. (2011b, p. 146). To identify if non-linear wave groups are present in a

wave record, the kurtosis k can be determined. The kurtosis is the fourth-order moment

of the probability density function of the surface elevation. If k > 3, then non-linear wave

groups are present. Once the modulational instability happens, the breaking probability

only depends on steepness regardless of the directional spreading (Babanin et al., 2011b,

p. 154). The steepness de�nes whether and what kind of instability develops (Babanin

et al., 2011b, p. 147).

In general, a distinction is made between �ve di�erent types of wave breakers (Babanin,

2011, p. 40):

1. Spilling breaker: the wave crest destabilises and collapses, spilling the water over

13
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Spilling

Collapsing

Plunging

Surging

Figure 2.2.: Wave breaker types. (Source: Kraaiennest (2015))

the front slope of the wave. Small wave steepness. More frequent than plunging

breakers (Babanin, 2011, p. 40).

2. Plunging breaker: the wave crest curves forward and forms a plunging jet that

impacts the water surface in front of the wave and entrains air and turbulence

under the surface. This leads to gas exchange across the interface, loss of en-

ergy/momentum, and produces acoustic noise, which can be used as a detection

method, see section 2.1.4. Large wave steepness.

3. Collapsing breaker: a cross between plunging and surging, in which the crest never

fully breaks, yet the bottom face of the wave gets steeper and collapses, resulting

in foam.

4. Surging breaker: a wave with a low steepness runs up the steep beach pro�le, its

base swash up the slope, and the wave crest disappears. There is either no breaking

at all or relatively smooth with little foam or bubbles.

5. Micro-breaker: short gravity waves whose breaking intensity is too weak to warrant

air entrainment visible as whitecapping. Their wavelength is less than 0.25 m and

their wave frequency is greater than 2.5 Hz.

The �rst four types of breakers are illustrated in Fig. 2.2.
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2.1. Wave Breaking in Intermediate and Deep Water

2.1.3. Breaking Phases

It is important to de�ne breaking phases to avoid uncertainties and ambiguities in meas-

urement of breaking events and rates. The breaking phases are distinguished from both

the external appearance of breaking and the underlying physics involved. According to

Sharkov (2007) wave breaking is noticeably shorter than the wave period T of the carrier

wave. The detection method depends on the scope of a study and what kind of wave

breaking is investigated. Of course, in�uencing factors are whether the investigation

takes place in the laboratory, numerically or in the �eld, and which means are available.

Since the functioning of the detection methods, as described in subsection 2.1.4, are

based on certain de�nitions of wave breaking, the detection method must be adapted to

the desired examination scope. The four breaking phases de�ned by Babanin (2011) are:

1. Incipient phase (least investigated): the incipient breaker is de�ned as a wave which

has already reached its limiting stability, but has not yet started the irreversible

breaking progress. Lasts according to Sharkov (2007) tenth of seconds and thus is

di�cult to measure.

2. Developing phase: breaking in progress, very rapidly, high loss of energy/wave

height, highly non-linear, di�erent mechanism than those which lead to breaking,

driven by gravity and inertia of moving water mass, �but the pre- and post-breaking

physics are not entirely disconnected�, see Babanin (2011, p. 15). Developing

breaker exhibits an increase in wave front steepness before it subsides.

3. Subsiding / relaxing phase (least investigated): breaking in progress.

4. Residual phase: a follow-up dynamic impact of the breaking event, introduced by

Rapp and Melville (1990), whitecap is already left behind, but the underwater

turbulent front is still moving downstream, not detectable by wavelet or similar

analytical methods based on interpretation of surface elevation, or whitecapping-

oriented measurement. Rapp and Melville (1990) generated the breaking waves

by superposition of linear waves. The outcome of these breakers can be di�erent

to those resulting, for example, of non-linear modulation or superposition of non-

linear waves. It is not clear if residual stage is a general feature of wave breaking.

Diorio et al. (2009), who has generated wave breaking with dispersive focusing,

modulational instability and wind forcing, says that independent of the generation,

the bulge and the capillary waves were self-similar on the crest-front face of the

spillers (at breaking onset). The geometrical similarity is limited to the crest-front
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Figure 2.3.: Measurement methods for wave breaking detection.

pro�les of the spillers. Thus, Diorio et al. do not disagree with Rapp and Melville

(1990).

2.1.4. Breaking Detection Method

When investigating wave breaking, the main question is usually the frequency of occur-

rence (probability) of wave breaking and magnitude of the energy dissipation. The choice

of the measuring method depends on where and what is to be measured. In Fig. 2.3, an

overview of the common measurement methods concerning wave breaking is presented.

All methods, apart from the statistical method, aim to measure individual events of

wave breaking. The statistical method, however, combines the statistical properties of

wave �elds (for example, joint probability distributions of wave height and period) with

breaking criteria in order to be able to make statistical statements about the probability

of wave breaking. This is discussed in section 2.1.5.

The oldest method is the visual observation of a wave �eld and the manual count-

ing of wave breaking events; usually the dominant breakers are counted, which break

with whitecapping. Thus the phase "breaking in progress" is observed. The �rst major

study using this method is from Holthuijsen and Herbers (1986). Holthuijsen and Her-
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bers (1986) observed the wave breaking at/under a buoy in their �eld measurement and

marked the time of the wave breaking with the aid of a trigger signal. Thus, in post-

processing, the corresponding individual wave could be linked to the wave breaker event.

Holthuijsen and Herbers (1986) showed that the wave steepness is not a good parameter

to distinguish breaking and non-breaking waves, and therefore is not a reliable breaking

criterion. Banner et al. (2000) agreed that wave steepness is not a well-founded breaking

criterion because it shows a range of values at the onset of breaking. However, Banner

et al. (2000) said that the front rear steepness is a functional criterion. In contrast to

that, Babanin et al. (2007) stated that wave steepness seemed to be the single robust

criteria for breaking.

An extension of the visual observation method is the use of high-resolution video

recordings and corresponding image recognition software. Although the visual method is

basically reliable and non-invasive, the disadvantages are that it is very time-consuming

in post-processing and is subject to human errors. In addition, it can only be measured

whether or not a wave breaks; further information such as the geometry of the breaking

wave is missing (except there was a buoy or wave gauge at the location of breaking).

The use of video recording and image recognition software is very complex and has not

yet been developed far enough to be a robust, universally applicable measuring method.

Besides, the video evaluations are very sensitive to the local conditions such as light and

the permeability of the water.

In addition to visual observation, there are other remote-sensing methods, such as

radar or infrared measurements of the water surface, where the wave breaking is as-

sociated with a discontinuity or a particular phenomenon in the measured time series

and is thus detected. For example, sea spikes are measured in the backscatter signal

of radar measurements when wave breaking (whitecapping) occurs. Investigations using

this method have been described, for example, by Kwoh and Lake (1984).

Another remote-sensing method is the acoustic method, which is either passive (hydro-

phone) or active (sonar). In the active acoustic method, for example, acoustic Doppler

velocimeters (ADV) or acoustic Doppler current pro�lers (ADCP) are used to measure

the velocity �eld under a wave �eld; in combination with the kinematic breaking criterion

and an empirical threshold wave breaking can be detected. The acoustic method can,

however, also be used to measure the sound of the wave breaking or the air bubbles in

the water; in combination with a critical threshold, the frequency of occurrence of wave

breaking can be measured, see, for example, Ding and Farmer (1994) and Manasseh et al.

(2006). The advantage of this method is that the measuring instruments such as hydro-

phones are relatively cheap, robust and easy to maintain. The disadvantage, however,
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is that wave breaking in the �eld occurs multiscale and the di�erentiation between the

di�erent noises is di�cult. Investigations using a combination of the acoustic and radar

backscatter method have been described, for example, by Melville et al. (1992).

In addition to the remote-sensing methods, there are the contact measurement meth-

ods, in which either physical (geometry, kinematics, dynamics) or rarer chemical prop-

erties of the wave �eld are directly measured. It is searched either for discontinuities

or for physical limits in the measured time series to detect wave breaking. The best

known measuring instruments are buoys in the �eld, wave gauges in the laboratory, and

velocimeters or acceleration sensors. The advantages of this method are that the use

of the measuring instruments is tested and the characteristics of the wave are directly

measured. The disadvantages of the method are that it is invasive, pointwise and it

requires a breaker criterion with a corresponding critical threshold. In this thesis the

contact measurement method with wave gauges was used and is described in section 6.1

in more detail.

In addition to the experimental methods described so far, there are also the analytical

methods, which, like the statistical methods, fall under the theoretical methods. They

are, strictly speaking, not pure theoretical methods, since the analytical methods de-

pend on empirical criteria and are thus semi-empirical. Since a wave breaking event is

non-linear, highly non-stationary and sporadic, the analytic methods aim to �nd such

discontinuities or their derivatives in time series. Such a time series can consist of wa-

ter surface, speed, acceleration or underwater acoustics measurements. An overview of

non-stationary analytical methods is provided by Huang et al. (1998). Often used are

the wavelet method (in combination with the dynamic breaking criterion), see Liu and

Babanin (2004), and theHilbert transformation or the phase-time method, respectively,

see Zimmermann and Seymour (2002). The Hilbert transformation is a method that

can analyse mathematical functions when they are single-valued, see Huang et al. (1999).

In the breaking onset, however, the water surface can become vertical and thus no longer

single-valued. At the same time, a wave gauge measures only single-valued functions,

and air gaps can lead to measurement errors. Thus, the combination of wave gauge meas-

urement and Hilbert transformation contains error sources, which must be taken into

account when interpreting the results. Nonetheless, the Hilbert transformation and

the phase-time method are valuable instruments for the detection of wave breaking in

time series, and a sensible combination of critical parameters enables a robust detection

method. See chapter 2.2 for more information.

When investigating wave breaking or wave breaking onset, the desired objective must

be clear to choose a suitable measuring and detection method. A detection method
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will not be universally applicable in all cases, especially in a natural wave �eld that is

multiscale. A clear target de�nition, for example, dominant wave breaking in irregular

waves, is necessary.

2.1.5. Breaking Probability

There are two general concepts to approach wave breaking probability:

• the breaking probability Pbr is determined for a �xed point, and is the percentage

of breaking crests nbr within a sequence of ntot wave crests according to Babanin

(2011)

• the breaking probability Pbr is the fraction of the area of the sea surface over which

wave breaking occur for a �xed point in time according to Snyder and Kennedy

(1983)

In the �rst approach, the breaking probability Pbr is:

Pbr =
nbr
ntot

=
nbrTD
TR

(2.3)

where TR = ntotTD is the duration of the wave record and TD is the main temporal scale

of the wave �eld. However, because wind-generated waves have a continuous spectrum,

the methods to determine TD and ntot have to be stated very clearly. To de�ne TD, a

spectral bandwidth f ± ∆f has to be speci�ed. In Banner et al. (2000) and Babanin

et al. (2001) the spectral bandwidth was ∆f = ±0.30fp , which was later reassigned as

∆f = ±0.35fp by Manasseh et al. (2006). The physical meaning for the spectral band in

the breaking probability de�nition of dominant waves is, that the width of the spectral

peak de�nes the characteristics of the groups of dominant waves, and the wave breaking

probability depends on these wave groups. Next to TD, the total number of wave crests

in a sequence ntot has to be de�ned clearly as well. For each determined breaker the

frequency f (period T ) of the wave is extracted, for example, by zero-crossing analysis.

Thus, the total number of breaking waves nbr(f) is found for each frequency. The total

number of expected waves at a frequency is according to Babanin et al. (2011a):

ntot(f) = TR/T = TRf (2.4)

ntot(f) is a nominal reference count, and there will be no match between ntot(f) and

the actual counted number of wave crests in each frequency bin ntot,c(f) . The resulting
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count ntot,c(f) would be less than the nominal reference count ntot(f), because in real

seas waves of periods other than 1/f will occupy some part of the duration TR.

For the second approach, Snyder and Kennedy (1983) measured a certain area of the sea

surface by camera and wave array measurements. They introduced a breaking variable

which is set equal to 1 inside a whitecap and 0 outside. Their breaking probability is the

percentage of sea surface covered by breaking waves (whitecaps).

In general, the di�erent statistical approaches to the evaluation of breaking probability,

theoretical as well as experimental studies, can be organized into four models. All of these

model combine a property of the wave �eld with a breaking criterion (limiting steepness,

orbital velocity or downward acceleration, or their derivates).

Model 1 Gaussian Distribution and Stokes' Limit

The Gaussian/normal distribution of surface elevation is used to predict the

appearance of wave heights exceeding the limiting steepness of the Stokes

wave, or its limiting orbital velocity, or its limiting acceleration at the crest.

It is an analytical model proposed by Longuet-Higgins (1969) and further

developed by Yuan et al. (1986), Hua and Yuan (1992) and Yuan et al. (2008,

2009).

Model 2 Probability Function and Empirical (Local) Breaking Criterion

The probability density function of some property of the wave system is

combined with an empirical, rather than theoretical, breaking criterion. Since

wave measurements are most often time series of surface elevations, mostly

the joint probability distribution of wave height H and wave period T is used.

As an empirical breaking criterion, e.g. the local wave steepness or the local

downward wave crest acceleration is used. Studies that used this model are

e.g. Nath and Ramsey (1976), Longuet-Higgins (1983), Ochi and Tsai (1983),

Huang et al. (1984), Hwang et al. (1989), Dawson et al. (1993), Song et al.

(1997) and Zheng and Xu (2004).

Model 3 Spectral Density and Global Breaking Criterion

The spectral density of the sea state is connected with a global breaking

criterion, e.g. the global wave steepness or the global downward wave crest

acceleration. The most important study in this model class are the �eld meas-

urements and analytical considerations conducted by Snyder and Kennedy

(1983), Kennedy and Snyder (1983), and Snyder et al. (1983).

Model 4 Wave Groups
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Wave groups and wave breaking are linked together, and the breaking prob-

ability is concluded from the wave group statistics / occurrence. The most

important studies in this model class are by Donelan et al. (1972), Holthuijsen

and Herbers (1986), Babanin and Polnikov (1995), Babanin et al. (2007), and

Tian et al. (2010).

2.2. Wave Breaking Onset

This section summarises the most important studies on breaking onset, in which analyt-

ical methods were applied.

2.2.1. De�nition of Wave Breaking Onset

Breaking onset is de�ned as an instantaneous state of wave dynamics where a wave

has already reached its limiting stability state, but has not yet started the irreversible

breaking process. That is, breaking onset is the ultimate point where the wave has not

started to break but cannot return to a stable state either. Breaking onset is the �rst

phase, thus the incipient phase, of the breaking process, see 2.1.3. The location of the

wave breaking onset is the peak of the wave crest.

2.2.2. Studies on Wave Breaking Onset

State-of-the-art is that the initial wave steepness (for monochromatic or quasi - mono-

chromatic wave trains), see Babanin et al. (2010), or the spectral peak steepness (for

natural wave �elds), see Banner et al. (2000), or the dimensionless growth rate para-

meter (rate of change of local wave steepness), see Song and Banner (2002), controls

the breaking onset (and thus indirectly the probability of wave breaking). The use of

the kinematic and dynamic criterion do not come into e�ect; presumably the accurate

determination of the velocity �eld or acceleration �eld is too complicated. Babanin et al.

(2007) stated that the wave steepness seemed to be the single robust criteria for breaking;

they then further explained that �a criteria of breaking may be indicative of a wave ap-

proaching an instable state, but is not a reason or a cause for the breaking�. In contrast,

Phillips (1985) and Bonmarin and Ramamonjiarisoa (1985), among others, stated that

a single local wave parameter was not a robust indicator for breaking onset, but instead

the time history of the water surface elevation had to be analysed. However, the vast

majority of previous studies (regarding breaking onset) is based on the investigation of

quasi-monochromatic wave groups, not on irregular wave trains (sea spectra).
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Rapp and Melville (1990) investigated deep water wave breaking generated by dis-

persive focusing and introduced the non-dimensional wave amplitude akc with a = anN

as the amplitudes of each wave, N as the number of components of the wave packet

and kc as the central wave number, which were calculated with the central frequency

fc = 0.5 (fN + f1) and the dispersion relation for intermediate water depths. For wave

groups with constant steepness the global wave steepness is S =
∑
knan, see Drazen

et al. (2008). Tian et al. (2010) introduced the spectrally weighted wave number ks,

which is calculated with the spectrally weighted wave frequency fs, see Eq. (2.5), and

de�ned the global wave steepness as S = ks
∑
an. They also introduced the local wave

steepness Sb, prior to wave breaking, with Sb = kb
∑
an.

fs =

∑(
fna

2
n

)
(∆f)n∑

(a2
n) (∆f)n

(2.5)

A more sophisticated parameter, proposed by Banner and Tian (1998) and further

developed by Song and Banner (2002), is the dimensionless growth rate

δ (t) =
1

ωc

D〈µ (t)〉
Dt

with ωc as the centre angular wave frequency, 〈µ (t)〉 as the mean of the upper and

lower envelopes of µ (t) = [Emax/ρg] k2, and Emax as the local wave energy density at

the maximum surface displacement

E (x, t) =

η∫
−h

1

2
ρw
(
u2 + v2

)
dy +

1

2
ρwgη

2

Song and Banner (2002) calculated the local wave number k from the x derivative of

the unfolded phase function computed from the Hilbert transform of the water surface

elevation. They applied a low-pass �lter to smoothen the development of the local wave

number. With a threshold value of δ (t) = (1.4± 0.1) ∗ 10−3, the criterion was shown to

successfully di�erentiate wave groups that would eventually break from those that would

not, see Tian et al. (2008). Tian et al. (2010) used the characteristic wave frequency

(ωs = 2πfs) instead of ωc to reduce data scatter and calculate the growth rate at breaking

onset δbr. The correlation between the local wave steepness Sb, prior to wave breaking,

and the growth rate at breaking onset δbr based on µ (t) = S2
b was approximated by
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2.2. Wave Breaking Onset

δbr = 8.77 ∗ 10−3S2
b

ωb
ωs

with ωb = 2πfb. Furthermore, Tian et al. (2010) found out that the global wave

steepness threshold S0, which indicated incipient wave breaking, varied between S0 =

0.31− 0.35. When considering the case that no wave breaking occurred, S0 was approx-

imately 0.339. Based on the correlation Sb = 1.237S, the maximum local wave steepness

for incipient wave breaking was roughly (Sb)0 = 0.419, which is sZ = H/L = 0.13 and

thus smaller than the maximum steepness of a deep water Stokes' waves with sZ = 0.14,

compare also Tab. 2.2. However, the application of the dimensionless growth rate δ (t) in

phase-resolving, deterministic prediction of the evolution of non-linear wave �elds may be

limited, as the calculation of the diagnostic parameter is non-trivial and it is not possible

to determine this parameter from routinely available wave data (Banner et al., 2000, p.

3152).

The author's own approach to link the envelope of the water surface elevation and the

wavelength is explained and discussed in subsection 6.1.3.1.

Banner et al. (2000) investigated the breaking probability of dominant waves in the

�eld (Lake Washington, Black Sea, Southern Ocean). They introduced the signi�cant

wave steepness with HSkP /2 . Because of the shorter and higher frequency components

in HS = 4
√
m0 , they also introduced the signi�cant spectral peak steepness ε , see

Eq. (2.6).

ε =
HPkP

2
(2.6)

where

HP = 4


1.3fP∫
0.7fP

S(f)df


1/2

In this thesis, the initial wave steepness sZ,i = HS/LP is introduced with LP = g/(2π)T 2
P ,

and the relation to Banner et al.'s signi�cant wave steepness is HSkP /2 = sZ,i ∗ π.
Banner et al. observed that the spectral peak steepness needs to be ε & 0.05 − 0.06

(sZ,i & 0.016− 0.019) for dominant wave breaking to exist.

Babanin et al. (2007, 2010) carried out a pilot study in which they investigated the

properties of breaking waves and the processes responsible for breaking onset in two-
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dimensional initially monochromatic waves. Focus was on the processes leading to break-

ing, and not on the process of wave collapse itself. They conducted numerical simulations

with the fully non-linear Chalikov-Sheinin model, see Chalikov (2005), and carried out

physical experiments to validate the numerical simulations. The wave trains broke due

to modulational instability. Their main �nding was, see Babanin (2011): �The nearly-

breaking wave is the highest and most skewed, but is almost symmetric. The two waves

immediately preceding and following the breaker are asymmetric: the preceding wave is

tilted backward (positive asymmetry) and the following wave is tilted forward (negative

asymmetry). The preceding wave is smaller than the following wave, and, at least in

these observations, the preceding trough is shallower. This may be a key feature to dis-

tinguish the linear-focusing breaking onset from the modulational-instability breaking,

as the former is not expected to exhibit uneven front and rear troughs.�

Furthermore, Babanin et al. (2007) observed that for their numerical model tests the

wave trains broke within one wavelength and with an initial wave steepness of (ak)0 ≥ 0.3;

no breaking occurred for the wave trains with (ak)0 < 0.1. For their physical model

tests the wave trains always broke with an initial wave steepness of (ak)0 ≥ 0.44 and no

breaking occurred for wave trains with (ak)0 < 0.08. Dold and Peregrine (1986) observed

in their numerical model tests with monochromatic wave trains similar threshold values

((ak)0 ≥ 0.1, H/L ≥ 0.03) for which wave trains developed to breaking. Babanin et al.

further deduced an relationship between the dimensionless distance to breaking xbr/L

and the initial wave steepness (ak)0, see Eq. (2.7)
1.

xbr
L

= −11atanh [5.5 ((ak)0 − 0.26)] + 23 for 0.08 ≤ (ak)0 ≤ 0.44 (2.7)

Babanin et al. (2007) stated that the dimensionless distance to breaking xbr/L was

related to the probability of wave breaking bT with xbr/L = 1/bT . They concluded based

on the Black Sea data set of Babanin et al. (2001) the following relationship between the

initial spectral steepness ε and the probability of breaking, see Eq. (2.8). Their values for

xbr/L ranged from 17 ≤ xbr/L ≤ 21.

1

bT
= −10atanh [13.3 (ε− 0.13) + 17] for 0.055 ≤ ε ≤ 0.205 (2.8)

Babanin (2011) and Babanin et al. (2011b) were concerned with the breaking of waves

1The original equation as found in the publication had the term �+23� inside of the brackets, which is

false, else the equation does not produce the graph described in the quoted publication.
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in three-dimensional wave �elds. Their laboratory model tests showed that modulational

instability is still active in three-dimensional wave �elds and is the most likely cause for

wave breaking in the oceanic wave �elds.

The part of the research, which is concerned with wave trains (or �elds) based on sea

spectra, i.e. irregular waves, consists of the studies of Dawson et al. (1991), Kriebel and

Dawson (1991), Dawson et al. (1993) and Kriebel (2000) who studied the two-dimensional

Bretschneider and JONSWAP wave trains with breaking waves in the laboratory and

compared the results with a self-developed theoretical approach to estimate the breaking

probability. The theoretical approach was based on the Rayleigh distribution and

the distribution function of non-linear amplitudes (modulated Stokes wave). In their

work, Dawson et al. did not investigate the evolution of the descriptive wave parameters

towards breaking onset, but quanti�ed the wave breaking probability. They introduced

the characteristic measure of the wave steepness Rp , see Eq. (2.9).

Rp =
ω2
PHS

g
(2.9)

with the peak angular frequency ωP . The relation to the initial wave steepness introduced

in this thesis here is sZ,i = Rp/(2π). The special feature of their work was that they

studied the wave breaking probability for both a �xed point and a region, and also

measured and analytically predicted the time between two breaking events. Due to the

simpli�cations in its theoretical approach, the study showed weaknesses, e.g. the wave

breaking probability was only so well predicted, because the approach overestimated and

underestimated wave breaking. Nonetheless, the study by Dawson et al. is a good basis

for the author's own work here.

Similar to Dawson et al., Song et al. (1997) also developed a theoretical approach

for the wave breaking probability in JONSWAP sea states, based on the wave breaking

criterion of Ochi and Tsai (1983) and the two-dimensional probability distribution of Fu

(1987).

Nath and Ramsey (1976) developed a theoretical approach to the probability of wave

breaking based on the geometrical wave breaking criterion (wave steepness), the assump-

tion that the wave height and wave period are independent of each other, and �eld data.

The assumption that the wave height and the wave period are independent of one another

is, of course, a highly simpli�ed assumption.

Zimmermann and Seymour (2002), beside Dawson et al. (1993), were the only ones

who generated two-dimensional JONSWAP wave trains in the laboratory and focused

on the detection of wave breaking. With the help of the phase-time method, Zimmer-
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mann and Seymour worked out two parameters with critical thresholds which determined

wave breaking in a time series, namely the water surface elevation (η(t) ≥ 0.38HS) and

the instantaneous frequency (f(t) ≥ 0.8fp ). Their results are opposed to the results of

Gri�n et al. (1996), but Gri�n et al. (1996) investigated wave breaking due to dispersive

focusing. This observation indicates that the breaking criteria depends on the physical

mechanism which leads to breaking, see Chalikov and Babanin (2012). Babanin et al.

(2007) says, however, that �if a critical wave steepness is reached, the wave will break,

independent of the physical reason for the critical wave steepness.� Moreover, Zimmer-

mann and Seymour applied these thresholds to �eld measurements, but had no visual

con�rmation as to whether there were breaking waves in the measured time series, so

only a subjective assessment of the authors was possible, whether the results are realistic

or not. Another �nding regarding the use of wave buoys in the �eld was that buoys fol-

lowing the waves avoid the steepest wave. Thus, the possibility of detecting wave breaks

in time series from �eld measurements is restricted.

The thresholds by Zimmermann and Seymour (2002) and Babanin et al. (2007, 2010)

to detect wave breaking in a time series of water surface elevation is compared with the

results of the thesis in subsection 6.1.3.1.

2.3. Statistical Variability of Wave Breaking

To the author's knowledge, there are no studies in literature solely about the variability

of wave breaking parameters, breaking onset, or breaking probability. Studies about the

deformation of the wave train before breaking onset often only present one exemplary

wave train. However, Kjeldsen and Myrhaug (1979a) stated that the crest front steepness

ε = s′C = aC/L
′ varied between s′C = 0.32− 0.78 and the crest rear steepness δ = s′′C =

aC/L
′′ varied between s′′C = 0.26−0.39 in their experiments. Furthermore, Babanin et al.

(2007) stated that the wave steepness Hk/2 = sZπ varied between Hk/2 = 0.37 − 0.44

(sZ = 0.12 − 0.14), the skewness SK = aC/aT − 1 varied between SK = 0 − 1, and the

asymmetry AS = L′′/L′ − 1 varied between AS = −0.4 − 0.8 in their experiments. A

more detailed analysis, e.g. about the distribution of those parameters or the time and

location of breaking onset were not given.

There are only very few qualitative mentions about the required record length to de-

termine the wave breaking probability in a robust manner, for example by Babanin et al.

(2011a), who wrote: �Measurements of bT [wave breaking probability] require averaging

over a large number of wave groups since the breaking process is characterised by long-

period intermittences [...].� Exact numbers or at least estimations are not available.
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The only source which was a little bit more in-depth was Banner et al. (2000, p.

3156), who gave a short note about the observed long-term variability of wave breaking

probability: �An interesting result on the sensitivity of the correlation to the averaging

time was found during our analysis of the Black Sea data. While 20-min records are

usually regarded as su�cient for determining wave spectra, the number of wave groups

required to provide stable breaking probabilities is found to be longer. The result of

splitting several of the 40-min records into two 20-min records produced signi�cantly more

scatter in the dependence of bT on ε [signi�cant spectral peak steepness ε = HPkP /2, see

Eq. (2.6)]. [...] Our limited duration data records and the relatively infrequent onset of

dominant wave breaking did not allow us to further identify the source of this variability

and future studies involving longer data records are clearly needed.� The presumption

of the author of this thesis is that wave breaking does not occur evenly in a wave train,

therefore wave breaking probability varies for di�erent study areas and investigation

periods.
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The hydronumerical experiments were carried out with the numerical wave �ume (NWF)

developed and veri�ed by Sriram (2008) and Sriram et al. (2006; 2007; 2010). The NWF

is based on the fully non-linear potential �ow theory (semi-arbitrary Lagrangian-Eulerian

Finite Element Method (SALE-FEM, structured version)) and has been applied to study,

for instance:

• numerical and physical speed of non-linear waves

• rogue/freak waves

• sloshing

Due to potential �ow theory the NWF simulations are terminated when the water surface

becomes discontinuous. However, this limitation is not detrimental because focus was

set on the wave train evolution until breaking onset. The discontinuity in the NWF may

be of numerical or physical nature. A form of numerical instability happens, when waves

get steeper, node crossing will take place, leading to negative elements in the free surface,

as the free surface nodes are moved in Lagrangian fashion. To sort out the test runs with

numerical discontinuities, solely the test runs were considered here which contained wave

trains where the waves with the maximum wave crest and the maximum wave steepness

were less than two single waves apart. Wave trains were divided into single waves by the

zero-downcrossing method. The point of termination of simulation was characterized by

the two parameters: time to breaking onset tbr (temporal distance from simulation start

to end) and location of breaking onset xbr (spatial distance from inlet to breaking wave

crest).

The main advantages of the application of hydronumerical simulations with a numerical

wave �ume were the speed of carrying out the simulations and the spatial measurement

of the entire water surface elevation per time step. However, it has to be considered that

the measurement was only quasi-spatial, since the wave �ume was spanned by means of

nodes. Thus, a hydronumerical simulation with the numerical wave �ume was a quasi-

pointwise measurement. The number of nodes and the spatial distance between the nodes
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had an in�uence on the result. The instability of the water surface could only occur there

and thus could only be measured where a node existed. If the spatial distance between

the nodes was changed with the input signal remaining constant, the time and location

of instability varied.

In the following chapter the test setup, program and procedure of the hydronumerical

simulations are presented. Then, the post-processing of the output data is described.

Finally, the validation, limitations, and uncertainties of the hydronumerical model are

investigated.

3.1. Test Setup

Tab. 3.1 summarises the relevant parameters describing the NWF settings. As described

in Sriram (2008, p. 70�), the number of nodes in horizontal direction must be at least 30

nodes per wavelength for simulation of medium steep waves (sZ ≥ 0.03) and at least 60

nodes per wavelength for steep waves (sZ ≥ 0.05). These minimum requirements were

taken into account in this thesis, and nx varied between 51 < nx < 68 per wavelength

depending on the wave period, whereby the distance between nodes was constantly dx =

Lflume/nx = 0.0833 m. As mentioned above, the result may vary if the spatial distance

between the nodes is changed with the input signal remaining constant, for more details

see subsection 3.3.2. According to Sriram (2008, p. 70�), the recommended number

of nodes in vertical direction is nz = 13, independent of water depth. For the thesis, a

constant value of nz = 28 was chosen (recommended by Prof. A. Hildebrandt in personal

communication). With a high number of nodes per wavelength, collisions of nodes may

occur and therefore the mesh must be regridded after a certain number of time steps;

the recommended step size is 40 s, see Sriram (2008, p. 70�).

Based on the smallest selected wave period of TP = 1.42 s the time step of simulation

was chosen ∆tNWT = 0.02 s for all test runs. The maximum duration of simulation tsimul
corresponds to the time length of the input wave train, tsimul = DWT = NW ∗ TP ; the
test runs with small initial spectral steepness sZ,i showed that this maximum duration

of simulation was su�cient and the simulations aborted before due to discontinuities.

It is shown later that only a very small fraction of simulations passed through tsimul.

The �ume length was Lflume = 50 m by default, as the physical tests showed that the

wave trains break beforehand; however, selected experiments were also repeated with

Lflume = 100 m. For more details about the in�uence of the �ume length on the result

see subsection 3.3.2.
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3.2. Test Program and Procedure

Table 3.1.: Parameters for the setting of the numerical wave �ume.

Symbol Description Unit

Lflume Flume lengths m

nx Number of nodes in x-axis direction (along Lflume)

nz Number of nodes in z-axis direction (along �ume height)

dx Distance between nodes in x-axis direction m

∆tNWF Time step of simulation, ∆tNWF ≤ T
60 s

tsimul Maximum duration of simulation s

3.2. Test Program and Procedure

In hydraulic model investigations free-surface �ows, which in principle also involve the

wave motion, are modelled according to the prevailing gravitational and inertial forces

according to Froude's law of similarity. This law requires equal Froude numbers for

�ow processes in the model (index m) and in nature (index n):

Fr =
c√
gL

with wave velocity c, wavelength L and acceleration of gravity g. The length scale λ is:

λ =
ln
lm

The time scale τ is:

τ =
tn
tm

=
√
λ

The velocity scale cr is:

cr =
cn
cm

=
√
λ

Both the numerical and physical model tests, see section 6.1, were carried out in the

length scale λ = 40. The length scale was obtained from the research platform FINO1

in the North Sea with a water depth of approximately 30 m (in the model 0.75 m) and

the boundary conditions of the WKS wave �ume with maximum possible water depth
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3. Hydronumerical Model Tests

1.20 m and a maximum wave height of 0.40 m. The length scale was selected as small

as possible to be as close to nature as possible, but as large as necessary so that water

depth and wave height could be generated in the wave �ume. The dimensions given in

this thesis are to be interpreted as model values, if not speci�cally pointed out otherwise.

Fig. 3.1 shows the basic work �ow of the data generation. Since the measurements of the

research platform FINO1 in the North Sea were used as a design basis, the JONSWAP

spectrum was the chosen input sea spectrum. The input JONSWAP spectrum was

transformed from its frequency domain to time domain, resulting into the input wave

signal ηr(t) for the numerical wave �ume. Each input spectrum S (f) was transformed r-

times to time domain to vary the phase angle distribution ϕr and thereby investigate the

in�uence of the wave sequence in the wave train on breaking onset. In case the simulation

terminated due to a instability, the output data were on the one hand the location and

time of breaking onset (xbr, tbr), and on the other hand the wave trains η(x, t) over

the whole �ume for each time step ∆t=0.02 s. The time of breaking onset tbr was the

time span from simulation start to the last simulated time step tend, and the location

of breaking onset xbr was the spatial distance from inlet to the peak of the breaking

wave crest. Special focus was given to the breaking wave and its deformation within

the last 2 s before breaking onset, resulting into the waves η1(x, tbr), ..., η50(x, tbr − 2 s)

with a time step of ∆t=0.04 s. Further on, special focus was given to the wave train

at the location of breaking onset over time η(xbr, t) to analyse what happened at the

location of breaking onset within the last ten waves before breaking onset. To describe

and analyse the output, the geometrical and instantaneous parameters were determined

for the breaking wave η1(x, tbr), ..., η50(x, tbr−2 s) and the last ten waves of the wave train

at breaking onset η(xbr, t). The parameters are explained in more detail in subsection

3.2.2.

In Fig. 3.2 the main steps of the test procedure are shown, divided into "Data Gen-

eration", "Simulation" and "Post-Processing". The steps are explained in more detail

below. As mentioned in the �gure, the test runs were sorted out by introducing a per-

missible threshold, which was based on the physically possible maximum values of the

geometrical parameters, as measured so far in laboratory tests from other authors, see

Tab. 3.2. This step was necessary to �lter �spurious� waves which came about because

the single waves in the wave trains were determined by the zero-downcrossing method.

The zero-crossings were recognized as such when the minimum excursion of the surface

elevation at at-rest water level was greater than 0.001 ∗ aC,max. It happened, however,

that even small oscillations around the rest water level were recognized as single waves.

These �single waves� led to outliers for the geometrical parameters of the wave crest at
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3. Hydronumerical Model Tests

Table 3.2.: Limit values for geometrical parameters in post-processing of NWF output
data.

Symbol Limit value Based on

sZ = H/L sZ,lim = 10 ∗ 0.18 To�oli et al. (2010)

sZC = aC/L sZC,lim = 10 ∗ 0.10 Bonmarin and Ramamonjiarisoa (1985)

sZT = aT /L sZT,lim = 10 ∗ 0.018 Bonmarin and Ramamonjiarisoa (1985)

s′C = aC/L
′ s′C,lim = 10 ∗ 0.78 Kjeldsen and Myrhaug (1979b)

s′′C = aC/L
′′ s′′C,lim = 10 ∗ 0.39 Kjeldsen and Myrhaug (1979b)

µH = aC/H µH = 10 ∗ 0.95 Kjeldsen and Myrhaug (1979b)

breaking onset, and they needed to be �ltered out.

The generation of the input spectrum and input wave signal is explained in more detail

in subsection 3.2.1. The post-processing and data analysis is explained in more detail in

subsection 3.2.2. An overview where which output parameter is analysed in this thesis

is given in Tab. 3.5, see subsection 3.2.2.

3.2.1. Generation of the Input Spectrum and Wave Train

As design database the wave measurements of research platform FINO1 in the North Sea

were used (Neumann et al., 2003), and a scatter diagram for the time period 2004 - 2011

was derived. The signi�cant wave height HS and wave peak period TP for the JONSWAP

spectra were selected in such a way that daily and storm events were considered, and

the initial spectral steepness sZ,i = HS/LP with LP = g/(2π)T 2
P varied between 0.01 ≤

sZ,i ≤ 0.071. In total, 49 di�erent sea spectra were chosen and, by means of the random

phase angle distribution, were transformed multiple times (up to 500 times) to arti�cial,

but physically-sound time series of water surface elevations. The whole test program

with all 49 JONSWAP sea spectra is given in Tab.A.1 in the annex.

The signi�cant wave height varied between 0.038 m ≤ HS ≤ 0.30 m and 0.043 m ≤
HS ≤ 0.30 m (HS = 0.043 m, 0.083 m, 0.15 m, 0.2 m, 0.225 m, 0.25 m, 0.30 m), respectively,

after test runs with outliers were sorted out. The wave period varied between 1.42 s ≤
TP ≤ 1.90 s and 1.65 s ≤ TP ≤ 1.9 s (TP = 1.65 s, 1.7 s, 1.9 s), respectively, after test runs

with outliers were sorted out. Further input parameters were the enhancement factor

γ (γ = 2, 3.3, 5, 7), water depth h (h = 0.5 m, 0.6 m, 0.7 m, 0.8 m, 0.9 m), phase angle

distribution ϕ, and the number of waves in a wave train NW (NW = 192, 768, 1536, 3072

). The enhancement width σL and σH modulate the width of the spectrum and
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Figure 3.2.: Flowchart of the test procedure of the hydronumerical model tests.

35



3. Hydronumerical Model Tests

Table 3.3.: Combinations of enhancement width σL and σH used in the hydronumerical
simulations.

σL σH

0.070 0.090

0.065 0.095

0.060 0.100

0.055 0.105

were varied in such a way that the spectrum varied from narrow to wider, see Tab. 3.3.

The purpose of this variation was to investigate the in�uence of the spectral form on

the output, since Ochi and Tsai (1983) found that the shape of the spectrum (fourth

moment m4), has a large in�uence on the probability of wave breaking. However, the

chosen variation of the parameters σL and σH were too small to detect an e�ect on the

breaking onset.

The JONSWAP spectrum is described in Eq. (3.1).

S (f) =
αg2f−5

8 arctan (1)4 exp

[
−5

4

(
f

fP

)−4
]
γB (3.1)

with

B = exp

[
− (f − fP )2

2σ2f2
P

]

σ =

σL for f ≤ fP
σH for f > fP

fP =
1

TP

α = 0.0081

When generating a spectrum, there has to be a minimal and maximal frequency con-
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3.2. Test Program and Procedure

sidered; in this thesis they were fmin = fP /4 and fmax = 4 ∗ fP , and ∆f was a constant

range dependent on the number of frequency components. The number of frequency com-

ponents nfreq between fmin and fmax depended on the wanted NW with nfreq ≤ NW /3.

This relation was determined by realizing wave trains with di�erent ratios of nfreq and

NW , and then comparing the distributions of the resulting wave heights in the wave

train with the expected Rayleigh distribution. At the same time, care was taken to

ensure that the length of the wave train on a natural scale lasted at least 30 min, which

corresponds to the recommended duration for short-term statistics of sea state data. The

time length of the input signal or the duration of the wave train DWT = TP ∗NW was

determined over the peak period and the desired number of waves in the wave train. As

described in Eq. (3.1), the spectrum depends on the wave period TP and enhancement

factor γ. The code for the generation of the wave trains took the signi�cant wave height

HS into account by a correction term, with which the once generated spectrum was

multiplied, see Eq. (3.2).

Scorrected (f) = S (f)

(
HS

Hm0

)2

(3.2)

HS is the chosen input parameter and Hm0 is calculated with the 0th moment m0 (area

under the spectrum), see Eqs. (3.3) and (3.4).

Hm0 = 4
√
m0 (3.3)

m0 =

fmax∫
fmin

S (f) f0df (3.4)

In the generation of the wave trains, both 1st and 2nd order of wave generation theory

were considered. The code for generating the input signal converted the desired wave

train into a paddle motion for the wave maker. Both signals, generated wave train and

converted paddle motion, included a �fade in� and �fade out� time span to ensure that

the paddle motion for the wave maker started and ended with zero displacement. The

duration of the �fade in� and �fade out� time span is called tRamp and depends on the

duration of the wave train with tRamp = DWT/30.

The paddle motion was passed along with the internal NWF settings, as described in

section 3.1, to the code of the NWF. The NWF calculated the surface elevation over the

entire �ume for each time step until either a discontinuity occurred and the simulation
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3. Hydronumerical Model Tests

was aborted or the end of the simulation duration was reached. When all test runs for

an input spectrum had been performed, the output data were sorted in post-processing

and processed for subsequent analysis, as described in chapter 4 to 6 in more detail.

3.2.2. Post-Processing of NWF Output Data

In the �rst step of post-processing, a check was carried out to determine whether the

last simulated time step of the test run corresponded to the duration of the simulation

or not. If so, that meant that the simulation was fully carried out and no discontinuity

had occurred. In this thesis, this case was treated as a "non-breaking case"; there was

no instability in the chosen duration of the simulation. It was, however, not known

whether the wave train would had been instable if the duration of the simultaneity had

been chosen to be longer. The study showed that, even at low initial spectral steepness

sZ,i, the majority of the test runs broke before the simulation duration, and thus the

simulation duration was selected to be su�ciently large. If the last simulated time step

was less than the simulation duration, a discontinuity occurred during the simulation,

and it had to be checked whether it was a numeric or physical instability.

For physical instability, the following conditions had to be met: a) The time of breaking

onset tbr had to happen later than the duration of the �fade in� time span tRamp, and b)

The wave with the maximum wave crest and the wave with the maximum wave steepness

were at most one single wave away from each other. That condition was based on the

�ndings from literature, e.g. Bonmarin and Ramamonjiarisoa (1985) and Babanin et al.

(2007), which contributed to the detection of wave breaking in time series. 81% of the

breaking test runs ful�lled the condition that the largest wave was also the steepest wave;

13% of the test runs ful�lled the condition that the largest wave was next to the steepest

wave; 6% of the test runs ful�lled the condition that the largest and steepest waves were

one single wave apart.

In the dimensional analysis, see section 4.2, another condition was added, namely

aC/HS ≥ 0.9, so as to reduce the data sample to the interesting cases of wave breaking,

namely large, steepness-induced wave breaking.

After the test runs with numerical instabilities were sorted out, the time series was

read out at the location of wave breaking η (xbr, t); the location of wave breaking xbr
was the spatial distance from the inlet to the maximum wave crest aC,max. Because of

the regridding of the mesh, the value for xbr varied slightly (O
(
10−3 − 10−4

)
), therefore

when reading out the displacement η (xbr, t) for time steps smaller than tbr, the location

closest to xbr was chosen. Later in chapter 6, these time series are used to develop a

detection and prediction method for breaking onset.

38



3.2. Test Program and Procedure

Furthermore, the water surface elevation of the entire wave �ume η1(x, tbr) to η50(x, tbr−
2 s) were read out at a time interval of ∆t = 0.04 s for the last 2.0 s before termination

of the simulation, where η1 was the water surface elevation at the last simulated time

step tbr. The choice of ∆t = 0.04 s was based on Bonmarin and Ramamonjiarisoa (1985),

who chose the same time step for their experiments. The total investigation time of 2.0 s

was based on the �ndings from literature, which states that the process of wave breaking

takes a fraction of the wave period, see Sharkov (2007) and subsection 2.1.3. With a

maximum peak period of TP = 1.9 s the selected 2.0 s were su�cient. Later on in chapter

6.2, these results are taken to describe the deformation of the wave just before breaking

onset.

In the next step, the geometrical and instantaneous parameters of the individual waves

were calculated from the wave train η(x, tbr) and wave train η(xbr, t). As summarised

in Tab. 3.2, the experimental maximum values for some parameters were known from

literature. These were introduced as limit values and test runs with parameters that

exceeded a multiple of those limit values were sorted out. Finally, the remaining test

runs were saved and were ready for the subsequent analysis. In total, 15,500 simulations

had been carried out. From those 15,500 simulations, 4,412 test runs did not terminate

due to numerical instability, and from those again 4,329 test runs were within the limit

values.

The output data considered in the analysis are

• the location and time of breaking onset (xbr, tbr) or rather their dimensionless

quantities (xbr/Lp, tbr/TP )

• the breaking wave and its deformation within the last 2 s before breaking onset,

resulting into the waves η1(x, tbr), ..., η50(x, tbr − 2 s) with a time step of ∆t=0.04 s

• the wave train at the location of breaking onset over time η(xbr, t) and its last ten

waves before breaking onset

The breaking wave and the single waves in the wave train at the location of breaking

onset are described with the geometrical parameters, based on the recommended wave

parameters by IAHR (1989) and Bonmarin and Ramamonjiarisoa (1985), and the in-

stantaneous parameters computed with the Hilbert transform, see Tab. 3.4. For more

details on the Hilbert parameters see subsection 6.1.3.1. An overview where those

output parameters were analysed in this thesis is given in Tab. 3.5.
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3. Hydronumerical Model Tests

Table 3.4.: Compilation of dimensionless geometrical and instantaneous parameters as
used in the analysis.

Symbol Description

aC/HS dimensionless wave crest amplitude

f0/fP dimensionless wave frequency

sZ = H/L wave steepness

sZC = aC/L crest steepness

sZT = aT /L trough steepness

s′C = aC/L
′ crest front steepness

s′′C = aC/L
′′ crest rear steepness

µV = L′′/L′ vertical asymmetry

µH = aC/H horizontal asymmetry

a(t)/HS dimensionless instantaneous amplitude

f(t)/fP dimensionless instantaneous frequency

sZ(t) = 2a(t)/L(t) instantaneous steepness

3.3. Validation, Limitations and Uncertainties

3.3.1. Validation

The NWF code was extensively validated in Sriram (2008). Nonetheless, in this thesis,

the quality of the NWF was also tested by means of physical model tests with regular

and irregular wave trains. The physical model tests with irregular waves, described in

detail in chapter 6, which were used for the development of the detection method, were

only of limited use for the validation, since the �rst breaking waves occurred in the �rst

few wavelength because the initial steepness was so high (sZ,i = 0.044), but the �rst

wave gauge was only located at 14.9 m in the wave �ume. The wave breaking dissipated

wave energy and modulated the wave train and, thus, limited a direct comparison of

the hydronumerical and laboratory measurements. The physical model tests were never-

theless repeated with the NWF. In Fig. 3.3, three such tests (with di�erent phase angle

distributions) are compared with each other. Despite the modulation of the wave train

by the wave breaking in the physical model tests, the correlation was su�cient.

In Fig. 3.4 the comparison for the regular wave trains (H = 0.15 m, T = 1.5 s, sZ =

0.043) are shown. There was no wave breaking in the physical model tests, so the
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3.3. Validation, Limitations and Uncertainties

Table 3.5.: Overview of the thesis' chapters of results and the covered output data.

Chapter Content Analysed output data

4.1 Development of time of breaking onset tbr/TP

4.2 Dimensional analysis tbr/TP , xbr/Lp

4.3 Likelihood of breaking onset tbr

5.1 Univariate analysis tbr/TP , xbr/Lp

5.2 Bivariate analysis (copula approach) (tbr/TP , xbr/LP )

5.3
Optimal sample size (convergence
analysis)

tbr/TP

6.1
Detection of breaking onset in wave
trains (laboratory model tests)

Geometrical and
instantaneous parameters of
η(xbr, t)

6.2
Deformation of wave crests before
breaking onset

Geometrical and
instantaneous parameters of
η1(x, tbr), ..., η50(x, tbr − 2s)

6.3
Prediction of breaking onset
(hydronumerical model tests)

Geometrical and
instantaneous parameters of
η(xbr, t)

41



3. Hydronumerical Model Tests

20 30 40

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time [s]

η
[m

]

Test 1

 

 

NWF

WKS

20 30 40

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time [s]

Test 2

 

 

NWF

WKS

30 40 50

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time [s]

Test 3

 

 

NWF

WKS

Figure 3.3.: Comparison of wave gauge WG1 (xWG1 = 14.9 m) for numerical (NWF) and
physical model test (WKS). Initial wave steepness sZ,i = 0.044.

wave train was not modulated. The correlation for WG1 was R2 = 0.98 and for WG3

R2 = 0.99. The correlation between experimental measurement and numerical simulation

was good.

3.3.2. Limitations and Uncertainties

The model uncertainty was that due to potential �ow theory simulations with the numer-

ical wave �ume were terminated when the water surface became discontinuous. Again,

this limitation was not detrimental because the focus of this thesis was set on the wave

train evolution until breaking onset. There were two parameter uncertainties that were

investigated in more detail: the in�uence of the distance of nodes dx and the in�uence

of the wave �ume length Lflume on the results.

The analysis showed that the choice of dx had an impact on the output results. This

was understandable, if one imagines that the equations were solved at the nodes; if there

was no node at the location of a possible instability, it could not be found. In the thesis,

care was taken to ensure that the experiments were carried out with a constant distance

dx in order to ensure the comparability of the results.

The second parameter uncertainty was the in�uence of the wave �ume length Lflume

42



3.3. Validation, Limitations and Uncertainties

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

Time [s]

η
[m

]
WG1 (xWG1 = 34.9m)

 

 
NWF

WKS

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

Time [s]

η
[m

]

WG3 (xWG3 = 35.7m)

 

 
NWF

WKS

Figure 3.4.: Comparison of wave gauge WG1 andWG3 for numerical (NWF) and physical
model test (WKS). Wave steepness is sZ = 0.043.

on the water surface elevation. The question was when and how re�ections of the

wave �ume end (outlet) occurred, despite the wave damping of the numerical code

at the outlet. Three di�erent regular wave trains with 150 waves (NW = 150) in

the wave train and increasing wave steepness sZ = 0.009, 0.029, 0.042 were carried

out in the numerical wave �ume with the �ume length Lflume = 50 m and Lflume =

100 m. The water surface elevation were �measured� (read out) at six positions x =

0.0 m, 10.0 m, 20.0 m, 30.0 m, 40.0 m, 49.9 m in the wave �ume. The results for wave gauges

WG1 and WG6 are shown in Fig. 3.5. The comparison showed that di�erences (∆ ≥
0.001 m) in the water surface elevation occurred after approximately 50 s; the steeper

the wave train the larger the di�erences were. Obviously, the di�erences were larger for

WG6, which was just 0.1 m away from the outlet.

The in�uence of the �ume length on the water surface elevation did not a�ect the overall

result of the breaking onset as seen in Fig. 3.6. The �gure shows the development of

normalised time of breaking onset tbr/TP against initial spectral steepness sZ,i = HS/LP .

For small sZ,i = 0.01 and sZ,i = 0.02 only test runs with Lflume = 100 m existed, except

one test run with sZ,i = 0.02, which lie in the same order of magnitude as the test

runs with Lflume = 100 m. As can be seen, the median values for spectrum steepnesses
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Figure 3.5.: Di�erence of water surface elevation for wave �ume length Lflume = 50 m
and Lflume = 100 m for wave gauge WG1 (left, xWG1 = 0.0 m) and WG6
(right, xWG6 = 49.9 m) for three regular wave trains with di�erent wave
steepnesses sZ .
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Figure 3.6.: Development of normalised time of breaking onset tbr/TP against initial spec-
tral steepness sZ,i = HS/LP for each wave �ume length Lflume (top) and
their median values (below).

sZ,i ≥ 0.027 for the data sets with only Lflume = 50 m, only Lflume = 100 m, or both

data sets together resulted in the same values.
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4. In�uencing Factors on Breaking Onset

In the following chapter, the sensitivity, i.e. the cause-e�ect relationship between the

input and output variables of breaking onset is investigated. Input variables were the

characteristic parameters of the sea spectrum and wave train, respectively, (HS , TP , γ,

NW , h) and their dimensionless characteristic values. Output variables were the time

and location of breaking onset tbr and xbr. The in�uence of the input variables was �rstly

examined individually and secondly in a dimensional analysis. The test program for the

hydronumerical model tests was based on the results of the physical model tests, which

served as a �rst sensitivity analysis. Particular attention was paid to the parameters,

which proved to be especially in�uential, namely the initial spectral steepness sZ,i and

the phase angle distribution ϕ (wave sequence in the wave train). The randomness of the

phase angle distribution, and thereby the randomness of the wave sequence in the time

series, had a signi�cant in�uence on the number of breaking waves; di�erent realizations

of the same energy density spectra in time domain did not produce same numbers of

breaking waves. Therefore, each spectrum was repeated with a large sample number

(up to 500 times). In the �rst step the relation between time of breaking onset tbr and

the input variables HS , TP , γ, NW , h was examined. The dimension analysis follows in

section 4.2 and the investigation of the likelihood of breaking onset follows in section 4.4,

where the frequency of non-breaking cases is investigated.

4.1. Development of Time of Breaking Onset

In this section the relation between time of breaking onset tbr, or rather the normalised

time of breaking onset tbr/TP , and the input variables HS , TP , γ, NW , h is examined

to determine the input variable with the greatest in�uence. All breaking test runs were

considered here. For the analysis, the dimension-dependent input variables were sensibly

standardized and yield the following dimensionless input variables:

• sZ,i = HS/LP with LP = g
2πT

2
P

• DWT/TP = NW ∗ TP /TP = NW
1

1The time length of the input signal or the duration of the wave train DWT is determined in the
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4. In�uencing Factors on Breaking Onset

• HS/h

• γ

In Fig. 4.1 the development of normalised time of breaking onset tbr/TP against initial

spectral steepness sZ,i = HS/LP for each number of waves in initial wave train NW is

plotted. For each initial spectral steepness sZ,i, multiple test runs (realizations of the

wave spectrum) were performed which di�ered in their phase angle distribution. It can

be observed that the median and the scattering of tbr/TP decreased with increasing initial

spectral steepness sZ,i (perNW ). In general, the greater the spectral steepness, the earlier

the wave train broke. A scattering of the results (per sZ,i andNW ) showed the signi�cance

of the phase angle distribution, i.e. the signi�cance of the wave sequence in the time

series, to the time of breaking onset. For small spectrum steepnesses sZ,i ≤ 0.044, the

dispersion of the output was relatively high; thus the wave sequence in the time series

has a signi�cant in�uence on the time of breaking onset. This observation was con�rmed

by the physical model tests, see section 6.1. In the case of large spectrum steepnesses

sZ,i ≥ 0.044, the in�uence of the spectral steepness, in particular of the signi�cant wave

height HS , and thus of the energy in the wave spectrum, predominated. The spread of

the output parameters is investigated in more detail in section 5.1.

Banner et al. (2000) observed that the spectral peak steepness needed to be ε =

HPkP /2 & 0.05− 0.06, see Eq. (2.6), for dominant wave breaking in natural wave �elds

to exist. This threshold value transferred to the initial spectral steepness leads to sZ,i ≈
ε/π ≈ 0.016−0.019, which goes along with the author's results. Babanin et al. (2007) and

Dold and Peregrine (1986) observed in their numerical studies with monochromatic wave

trains that wave trains needed an initial wave steepness of (ak)0 ≥ 0.1 (H/L ≥ 0.03) to

develop into a breaking wave train. In this thesis' numerical model tests non-breaking

wave trains occurred for test runs with sZ,i = 0.01 and sZ,i = 0.02, but every test run

with sZ,i ≥ 0.027 ((ak)0 & 0.08) broke, which also goes along with the results from

literature. Babanin et al. (2007) found lower thresholds values in their physical model

tests where monochromatic wave trains needed an initial wave steepness of (ak)0 ≥ 0.08

to break.

For the variation of the spectral steepness, primarily the signi�cant wave height HS

(0.043 m ≤ HS ≤ 0.30 m) was changed. The peak period TP was only minimally changed

(1.65 s ≤ TP ≤ 1.90 s) because on the one hand it had to remain within the range of the

possible values from the scatter diagram, and on the other hand it in�uenced the number

of nodes of the mesh and thus the simulation duration. For the numerical simulation to

numerical code over the peak period and the desired number of waves in the wave train.
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Figure 4.1.: Development of normalised time of breaking onset tbr/TP against initial spec-
tral steepness sZ,i = HS/LP for each number of waves in initial wave train
NW . Median values (black markers) and �tting line (black dashed line).
Minimal duration of simulation (grey dashed line).
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Figure 4.2.: Development of normalised time of breaking onset tbr/TP against number
of waves in initial wave train NW for each initial spectral steepness sZ,i =
HS/LP . Median values (black markers) and �tting line (black dashed line).
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4. In�uencing Factors on Breaking Onset

continue to be e�cient, the peak period was not further increased. Although the peak

period has a quadratic in�uence on the spectral steepness, the signi�cant wave height

HS and thus the energy content of the spectrum was the driving force that caused the

wave breaking. The �tted curve has the Eq. (4.1) and the coe�cient of determination

R2 = 0.72.

tbr
TP

= 0.095s−1.59
Z,i ≈ 0.1s

−π/2
Z,i (4.1)

Banner et al. (2000) investigated breaking onset in an initial nearly uniform wave group

con�guration and concluded that the initial steepness (ak)0 has the strongest in�uence

on the time to breaking onset Tb, with the inverse time to breaking almost quadratically

dependent on (ak)0. This is similar with the author's result of the relation of the initial

spectral steepness sZ,i and the time of breaking onset tbr in this investigations with

irregular wave trains.

In Fig. 4.2 the development of normalised time of breaking onset tbr/TP against number

of waves in initial wave train NW for each initial spectral steepness sZ,i = HS/LP is

shown. It can be observed that the time of breaking onset increased as the number of

waves in the wave train increased. In general, the longer the initial wave train, the later

the wave train broke. When the course of the normalised time of breaking onset tbr/TP
was considered for each initial spectral steepness sZ,i, the number of waves in the wave

train NW showed a linear in�uence. The �tted curve has the Eq. (4.2) and the coe�cient

of determination R2 = 0.14.

tbr
TP

= 0.66N0.57
W (4.2)

In Fig. 4.3 the development of normalised time of breaking onset tbr/TP against the

normalised water depth HS/h (top) and the water depth h (bottom) for each initial

spectral steepness sZ,i = HS/LP is plotted. It can be observed that the time of breaking

onset decreased with increasing ratio HS/h, but the cause was the signi�cant wave height

HS as Fig. 4.3 (bottom) shows. A change in water depth h did not signi�cantly in�uence

the time of breaking onset and no pattern in their behaviour were seen. The �tted

curves have the Eqs. (4.3) and (4.4) and the coe�cients of determination R2 = 0.85 and

R2 = 1.14 ∗ 10−4, respectively.

tbr/TP = 2

(
HS

h

)−1.52

≈ 2

(
HS

h

)−π/2
(4.3)
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Figure 4.3.: Development of normalised time of breaking onset tbr/TP against the nor-
malised water depth HS/h (top) and the water depth h (bottom) for each
initial spectral steepness sZ,i = HS/LP . Median values (black markers) and
�tting line (black dashed line).
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4. In�uencing Factors on Breaking Onset

tbr/TP = 15.46h−0.023 (4.4)

Thus the occurring wave breaking was not depth-induced. To support that statement,

the time of breaking onset is plotted over the normalised water depth H/h, with H as

the wave height of the breaking wave, see Fig. 4.4. The breaking waves had a relative

water depth of 0.027 ≤ H/h ≤ 0.64, and were thus below the breaking criterion of H/h =

0.78, this criterion being based on the theory of solitary waves according to McCowan

(1891). For irregular wave trains, the breaking criterion H/h = 0.78 and the assumption

Hmax/HS = 1.86 leads to a critical threshold of HS/h = 0.42. This theoretical value was

just barely reached from the measurement results of (HS/h)max = 0.429 , see Fig. 4.3.

In Fig. 4.5 the development of normalised time of breaking onset tbr/TP against the

enhancement factor γ of the JONSWAP spectrum for each initial spectral steepness

sZ,i = HS/LP is plotted. The enhancement factor γ describes the peakedness of the

JONSWAP sea spectrum (in relation to the Pierson-Moskowitz spectrum). A change

in the enhancement factor γ did not signi�cantly in�uence the time of breaking onset

and no pattern were seen. The �tted curve has the Eq. (4.5) and the coe�cient of

determination R2 = 8.67 ∗ 10−4.

tbr
TP

= 17.2γ−0.08 (4.5)

Conclusions

• Breaking onset is highly sensitive to the initial spectral steepness sZ,i, to the se-

quence of waves in the input wave train (phase angle distribution), and to the

number of waves in the input wave train NW .

• For small spectral steepnesses sZ,i ≤ 0.044, the sequence of waves in the input wave

train is the main in�uence on breaking onset.

• For larger spectral steepnesses, the initial spectral steepness sZ,i, especially HS

and, thus, the spectral energy, is the main in�uence on breaking onset.

• The inverse time of breaking onset 1/tbr is almost quadratically dependent on sZ,i.
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Figure 4.4.: Development of normalised time of breaking onset tbr/TP against the norm-
alised water depth H/h for each water depth h. H is the wave height of the
breaking wave.
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4.2. Dimensional Analysis

The aim of the dimensional analysis according to Buckingham (1914) is to mathematically

describe the in�uence of the input variables and predict the output value based on the

results of the measurements. The output values to be determined were the time and

the location of breaking onset tbr and xbr, or their dimensionless variants tbr/TP and

xbr/LP . In addition to the input values HS , TP , NW , h and γ, introduced in section 4.1,

the following input variables were introduced for the dimension analysis to describe the

phase angle distribution and the width of the sea spectrum:

• the spectral width νW =
√

m0m2

m2
1
− 1

• time of the �rst wave group in initial wave train WaGoT ime

• number of waves in �rst wave group in initial wave train WaGoNum

The spectral width νW was introduced because the width of the peak of a narrow-banded

spectrum is related to modulational properties in the train of dominant waves. mi is the

spectral moment of order i, see Eq. (4.6).

mi =

fmax∫
fmin

S (f) f idf (4.6)

The spectrum was determined from the input signal of the wave train and the the band-

width was fmin = 0.25 ∗ fP and fmax = 4 ∗ fP ; those cut-o� frequencies were also chosen

to generate the wave train in the numerical code.

As described by Donelan et al. (1972) and Holthuijsen and Herbers (1986) for the �rst

time, wave groups and wave breaking are connected to one another. Therefore the

parameters WaGoT ime and WaGoNum were also taken into account in the following

dimension analysis. For the analysis, the input variables were normalised and yield the

following dimensionless input variables:

• sZ,i = HS/LP

• DWT/TP = NWTP /TP = NW

• HS/h

• γ

• νW
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• WaGoNum/NW

• WaGoT ime/TP

with the time length of the input signal DWT . The power function y = axb was de�ned

as the basic mathematical relation. The considered sample consisted of all test runs

that broke and had the ratio aC/HS ≥ 0.9. The restriction to consider only breaking

waves with a minimum height was introduced to increase the quality of the dimensional

analysis and to focus on the interesting data ranges. To investigate which input variables

were relevant for dimensional analysis, three groups of input variables were used and the

results were compared with one another.

In Group 1 all of the above listed input variables were considered. In Group 2 the

four main input variables sZ,i, NW,, HS/h and γ were considered. As shown in the

previous section 4.1, the initial spectral steepness sZ,i and the number of waves in the

initial wave train NW had the biggest in�uence on the time of breaking onset tbr. The

normalised water depth HS/h and the enhancement factor of the sea spectrum γ were

considered because the water depth generally have an in�uence on wave breaking and γ

is an indicator of the energy content and peakedness of the sea spectrum. Whether the

two last-mentioned input variables were really relevant for dimensional analysis is to be

shown here.

Furthermore, in Group 3 only sZ,i and HS/h were considered; NW and γ were left out

since the number of waves (or the time length of the signal) and the enhancement factor

are not standard information which is measured. In contrast, the variables HS , TP and

h are default measured values, e.g. from the research platform FINO1.

In Fig. 4.6 the dimensional analysis of normalised time of breaking onset tbr/TP is

plotted against its predicted results. The coe�cient of determination was R2 = 0.958

for Group 1 and Group 2, and R2 = 0.885 for Group 3. Whether the spectral width νW
or the wave group parameters WaGoNum/NW and WaGoT ime/TP were considered or

not had no in�uence on the coe�cient of determination. The exclusion of the number of

waves NW and the enhancement factor γ on the other hand decreased the coe�cient of

determination, consequently, NW and γ were important input variables for the time of

breaking onset.

In Fig. 4.7 the dimensional analysis of the normalised location of breaking onset xbr/LP
is plotted against its predicted results. The coe�cient of determination was R2 = 0.901

for Group 1 and R2 = 0.906 for Group 2 and Group 3. Again the spectral width and the

wave group parameters had no in�uence on the output. The spectral steepness sZ,i and

the relative water depth HS/h had the biggest in�uence on the location of breaking onset
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Figure 4.6.: Dimensional analysis of normalised time of breaking onset tbr/TP (plotted
against predicted results). Total number of data points nmax = 291. Normal
(top) and logarithmic (bottom) presentation.
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Figure 4.7.: Dimensional analysis of normalised location of breaking onset xbr/LP (plot-
ted against predicted results). Total number of data points nmax = 291.
Normal (top) and logarithmic (bottom) presentation.
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xbr.

The resulting equation for the time of breaking onset tbr,pred is Eq. (4.7), the equation

for the location of breaking onset xbr,pred is Eq. (4.8).

tbr,pred
TP

= 0.0294s−1.43
Z,i N0.49

W

(
HS

h

)−0.3

γ−0.71

(
WaGoNum

NW

)−0.02

·(
WaGoT ime

TP

)0.002

ν0.76
W (4.7)

xbr,pred
LP

= 0.0053s−2.09
Z,i N0.05

W

(
HS

h

)−0.11

γ−1.36

(
WaGoNum

NW

)−0.01

·(
WaGoT ime

TP

)−0.05

ν0.44
W (4.8)

When only the initial spectral steepness sZ,i and the relative water depth HS/h were

taken into account, then the equation for tbr,pred and xbr,pred were as follows, see Eqs. (4.9)

and (4.10).

tbr,pred
TP

= 0.158s−1.43
Z,i

(
HS

h

)−0.04

(4.9)

xbr,pred
LP

= 0.0008s−2.09
Z,i

(
HS

h

)−0.09

(4.10)

In Fig. 4.8 and 4.9, the resulting curves according to Eq. (4.7) are presented together with

the measured data. The curves were calculated with the �xed parameters γ = 3.3 and

HS/h = 0.061 and then for variable numbers of waves in the initial wave train NW and

variable initial spectral steepnesses sZ,i, respectively. The resulting curves �t the data

good.
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Figure 4.8.: Development of normalised time of breaking onset tbr/TP against initial spec-
tral steepness sZ,i = HS/LP for each number of waves in initial wave train
NW . Median values for the total data points (black markers).
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Conclusions

• The dimensional analyse shows that the initial spectral steepness sZ,i, the number

of waves in the input wave train NW , and the enhancement factor γ are in�uential

variables for the time of breaking onset tbr.

• For the location of breaking onset xbr, only the initial spectral steepness sZ,i is a

in�uential variable.

• The spectral width νW and the wave group parameters WaGoT ime and WaGoNum

show no in�uence on the coe�cient of determination.

4.3. Comparison with Physical Model Tests

In this section, the results of the dimensional analysis, which was based on the data of

the NWF simulations, are compared to the results of the physical model tests of this

thesis, see section 6.1, and the results of the physical model tests by Babanin et al.

(2007). Babanin et al. conducted model tests with two-dimensional initially monochro-

matic waves, which broke due to modulational instability. They deduced an relationship

between the dimensionless distance to breaking xbr/L and the initial wave steepness

(ak)0, see Eq. (2.7).

Fig. 4.10 shows the normalised location of breaking onset xbr/LP against initial spec-

tral steepness sZ,i = HS/LP . The results of the physical model tests in the WKS wave

�ume are shown as a grey area, and not as exact values, because it was not possible to

measure the breaking onset of the �rst breaking wave in the laboratory. In the model

tests, JONSWAP spectra with initial spectral steepnesses between 0.026 ≤ sZ,i ≤ 0.082

were carried out, and the video recordings showed, that the �rst wave breaking usually

happened in the �rst ∼ 10m2 after the wave paddle, but the �rst wave gauge was installed

in 14.9m distance. Nevertheless, the results of the WKS model tests and the NWF sim-

ulations are in good agreement, and the equations from the dimensional analysis follow

the pattern of xbr/LP well.

Please note, to present Babanin et al.'s resulting equation Eq. (2.7) in Fig. 4.10 the

following assumption was made: (ak)0 ≈ π ∗ sZ,i. The resulting curve shows the same

trend as Eq. (4.8) and (4.10), but with a higher o�set. The comparison shows that

monochromatic (regular) waves break spatially later than irregular waves with similar

2xbr/LP ≈ 10m/3.1m ≈ 3.2 with 3.1m as the shortest wavelength in the model tests

60



4.4. Likelihood of Breaking Onset

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

5

10

15

20

25

Figure 4.10.: Development of normalised location of breaking onset xbr/LP against initial
spectral steepness sZ,i = HS/LP in comparison with results from WKS
model tests, NWF simulations, dimensional analysis, and Babanin et al.
(2007).

initial wave steepnesses. Furthermore, the comparison shows the signi�cant in�uences of

the type of wave train and the type of wave breaking generation on the breaking process

and its onset.

4.4. Likelihood of Breaking Onset

In addition to section 4.1, the frequency of occurrence of the breaking wave trains is

investigated in this section. In Tab. 4.1, the number of test runs for the dataset with

non-breaking and breaking wave trains nmax and the dataset with only breaking wave

trains nbreaking is presented for each initial spectral steepness. The frequency of breaking

is:

fbr =
nbreaking
nmax

(4.11)
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4. In�uencing Factors on Breaking Onset

Table 4.1.: Overview of number of test runs for data sets with di�erent initial spectral
steepnesses and the frequency of breaking.

sZ,i All wave trains
Breaking wave

trains
Non-breaking
wave trains

Breaking
Frequency fbr

0.010 88 85 3 0.97

0.020 70 69 1 0.99

0.027 208 208 0 1

0.033 288 288 0 1

0.035 281 281 0 1

0.044 1918 1918 0 1

0.050 142 142 0 1

0.055 473 473 0 1

0.067 676 676 0 1

0.071 185 185 0 1

Sum 4412 4329 4325

The di�erence to Eq. (2.3), Pbr = nbr/ntot, is that Eq. (2.3) considers one wave train in

which nbr wave crests break, but Eq. (4.11) considers nmax wave trains of which nbreaking
wave trains break.

As can be seen in Tab. 4.1, only for the low initial spectral steepnesses sZ,i = 0.01

and sZ,i = 0.02 there were four non-breaking wave trains that propagated without any

discontinuity in the NWF; the breaking frequency was fbr = 0.97 for sZ,i = 0.01 and

fbr = 0.99 for sZ,i = 0.02. For all higher spectral steepnesses, the breaking frequency was

fbr = 1, that is, each wave train broke in the course of the simulation. The result shows

that a wave train also breaks with a low spectral slope, if it has enough running length.

From a spectral steepness of sZ,i ≥ 0.027 all test runs broke; the low scattering of the

results of tbr/TP for high spectral steepnesses suggests that even with an increase in the

number of test runs carried out, no wave train would had passed without instability. In

Fig. 4.11, the corresponding histograms for the datasets with and without non-breaking

wave trains are shown for sZ,i = 0.01 and sZ,i = 0.02. Since, as a whole, only four wave

trains passed through without instability, the di�erence between the histograms was only

minimal.
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Figure 4.11.: Histograms of normalised time of breaking onset tbr/TP for the data sample
with all test runs (non-breaking and breaking wave trains) and with only
breaking wave trains. Number of bins was 10. Initial spectral steepness
sZ,i = 0.01 (top) and sZ,i = 0.02 (bottom).
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5. Variability of Breaking Onset

In this chapter the scattering of the normalised time and location of breaking onset

tbr/TP and xbr/LP , respectively, are investigated as a function of the spectral steepness

sZ,i, both with univariate and bivariate (copula) distribution functions. Thereby, the

in�uence of the phase angle distribution, and thus of the wave sequence in the wave

train, on the output parameters is analysed.

Furthermore, a convergence analysis for the normalised time of breaking onset tbr/TP
is carried out, and the optimum sample size NOpt, that is, the necessary test number to

calculate tbr/TP with a permissible deviation is determined.

5.1. Univariate Distribution Function

In the following, the scattering of the normalised time and location of breaking onset

tbr/TP and xbr/LP , respectively, for every initial spectral steepness sZ,i is analysed.

An overview of the statistical values such as minimum value, maximum value, median

value, standard deviation and total number of test runs for tbr/TP for each sZ,i is given in

Tabs. 5.1 and 5.2. In Tab. 5.1, all test runs that broke are taken into account. In Tab. 5.2,

however, the data set is taken into account with all test runs that broke, but with �xed

boundary conditions for the water depth, number of waves in the initial wave train

and enhancement factor so that only the spectral steepness sZ,i varied. The boundary

conditions were h = 0.7m, NW = 192, and γ = 3.3.

The standard deviations varied between σ ≈ 1 to σ ≈ 23, where the scatter was

particularly large for small spectral steepnesses sZ,i ≤ 0.027, and then decreased rapidly.

As expected, both data sets di�er only for the spectral steepnesses sZ,i, which have

varying water depths h, numbers of waves in the initial wave train NW , or enhancement

factors γ, see Fig. 4.1.

In Tabs. 5.3 and 5.4 the corresponding results for the location of breaking onset xbr/LP
are given. Again, the scatter was the largest for small steepnesses, but the standard

deviation only varied between σ ≈ 0.5 and σ ≈ 5. The location and time of breaking onset

did not need necessarily to correlate, since the breaking wave crest did not necessarily
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5. Variability of Breaking Onset

Table 5.1.: Statistics of normalised time of breaking onset tbr/TP for dataset with all test
runs (breaking wave trains).

sZ,i xmin xmax x̃ σ nmax

0.010 104.21 175.54 133.10 10.44 85

0.020 19.30 133.10 102.27 21.82 69

0.027 7.91 137.01 35.09 23.20 208

0.033 4.75 31.99 15.24 5.58 288

0.035 4.85 94.43 13.66 19.17 281

0.044 3.93 44.75 8.11 3.11 1870

0.050 4.62 11.49 7.13 1.42 142

0.055 3.47 73.87 6.94 12.27 448

0.067 2.75 10.95 5.59 1.17 589

0.071 2.82 8.93 5.07 1.06 185

Table 5.2.: Statistics of normalised time of breaking onset tbr/TP for dataset with all test
runs (breaking wave trains) and h = 0.7 m, NW = 192 and γ = 3.3.

sZ,i xmin xmax x̃ σ nmax

0.010 104.21 175.54 133.10 10.44 85

0.020 19.30 133.10 102.27 21.82 69

0.027 7.91 66.94 21.88 12.30 99

0.033 4.75 31.99 15.24 5.58 288

0.035 4.85 21.39 10.07 2.90 171

0.044 4.67 14.53 8.12 2.02 396

0.050 4.62 11.49 7.13 1.42 142

0.055 3.47 11.12 6.19 1.39 347

0.067 2.77 9.95 5.39 1.18 146

0.071 2.82 8.93 5.07 1.06 185
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5.1. Univariate Distribution Function

Table 5.3.: Statistics of normalised location of breaking onset xbr/LP for dataset with all
test runs (breaking wave trains).

sZ,i xmin xmax x̃ σ nmax

0.010 10.02 22.10 14.47 3.12 85

0.020 0.70 20.90 13.55 4.87 69

0.027 0.09 8.00 1.44 2.04 208

0.033 0.07 5.01 0.81 0.93 288

0.035 0.09 6.11 0.59 0.97 281

0.044 0.07 4.97 0.52 0.57 1870

0.050 0.13 2.27 0.55 0.45 142

0.055 0.09 3.84 0.65 0.54 448

0.067 0.07 3.14 0.68 0.45 589

0.071 0.08 2.51 0.67 0.47 185

Table 5.4.: Statistics of normalised location of breaking onset xbr/LP for dataset with all
test runs (breaking wave trains) and h = 0.7 m, NW = 192 and γ = 3.3.

sZ,i xmin xmax x̃ σ nmax

0.010 10.02 22.10 14.47 3.12 85

0.020 0.70 20.90 13.55 4.87 69

0.027 0.09 7.91 1.40 1.89 99

0.033 0.07 5.01 0.81 0.93 288

0.035 0.09 3.23 0.47 0.57 171

0.044 0.07 3.36 0.55 0.57 396

0.050 0.13 2.27 0.55 0.45 142

0.055 0.09 2.75 0.64 0.47 347

0.067 0.07 3.14 0.67 0.47 146

0.071 0.08 2.51 0.67 0.47 185
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5. Variability of Breaking Onset

Table 5.5.: Probability density functions.

PDF

Gumbel f (x) = a ∗ exp (−a (x− µ)) ∗ exp (− exp (−a (x− µ)))

Gamma f (x) = 1
baΓ (a)x

a−1 exp
(
−x
b

)
Weibull f (x) = b

a

(
x
a

)b−1
exp

(
−
(
x
a

)b)
Gaussian Normal f (x) = 1

σ
√

2π
exp

(
−1

2

(x−µ
σ

)2)
Rayleigh f (x) = x

b2
exp

(
− x2

2b2

)

had to belong to the �rst wave, and thus the location and time were not connected to the

running speed of the wave; due to wave-wave interaction, the location of the breaking

could also be in the centre of the wave train, rather than at the beginning.

In the following, the histograms, empirical probability density functions (PDFs) and

empirical cumulative distribution functions (CDFs) are shown; then they are compared

with the theoretical Gumbel, Gamma, Weibull, Gaussian, and Rayleigh distribu-

tion functions. For the histograms, the class number m was determined according to

Eq. (5.1), where N is the number of characteristic values (Papula, 2002, p. 475).

m = 5 log10 (N) (5.1)

The empirical density function was calculated with the matlab function ksdensity,

which represents an estimate of the density function based on a normal kernel func-

tion (Bowman and Azzalini, 2004). The formulas for the probability density functions

and distribution functions for Gumbel, Gamma, Weibull, Gaussian, and Rayleigh

are summarised in Tabs. 5.5 and 5.6. a is the shape parameter, σ and b are the scale

parameters, and µ is the location parameter.

In Figs. 5.1 to 5.4, the PDFs and CDFs for the normalised time and location of breaking

onset are shown exemplarily for sZ,i = 0.033, 0.044, 0.055, 0.067. It can be seen that the

larger sZ,i the smaller the scatter of tbr/TP and xbr/LP , and the smaller the mean value

of tbr/TP , that is, the sooner the train broke. Furthermore, it can be observed that

the larger sZ,i the better all theoretical distribution functions followed the empirical

distribution functions of tbr/TP (except Rayleigh) and xbr/LP . The Gumbel and

Gamma distributions best described the scattering of tbr/TP , and the Weibull and

Gamma distributions best described the scattering of xbr/LP .
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Figure 5.1.: Histograms of normalised time of breaking onset tbr/TP with di�er-
ent PDFs for the test runs with initial spectral steepness sZ,i =
0.033, 0.044, 0.055, 0.067.
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Figure 5.2.: Empirical cumulative distribution function of normalised time of breaking
onset tbr/TP with di�erent CDFs for the test runs with initial spectral steep-
ness sZ,i = 0.033, 0.044, 0.055, 0.067.
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Figure 5.3.: Histograms of normalised location of breaking onset xbr/LP with dif-
ferent PDFs for the test runs with initial spectral steepness sZ,i =
0.033, 0.044, 0.055, 0.067.
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Figure 5.4.: Empirical cumulative distribution function of normalised location of break-
ing onset xbr/LP with di�erent CDFs for the test runs with initial spectral
steepness sZ,i = 0.033, 0.044, 0.055, 0.067.
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5.1. Univariate Distribution Function

Table 5.6.: Cumulative distribution functions, γ (k, ax) is the lower incomplete Gamma
function.

CDF

Gumbel F (x) = exp (− exp (−a ∗ (x− µ)))
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2
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)2)
dt

Rayleigh F (x) = 1− exp
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x2

2b2

)

Table 5.7.: KS-statistics of two-sample Kolmogorov-Smirnov tests for the normalised
time of breaking onset tbr/TP .

sZ,i Gumbel Gamma Weibull Normal Rayleigh

0.033 0.0632 0.0388 0.043 0.0517 0.1489

0.044 0.0516 0.0789 0.1156 0.1058 0.2942

0.055 0.0636 0.0937 0.1282 0.1192 0.3055

0.067 0.0679 0.0878 0.1405 0.1092 0.3457

In order to perform the goodness of �t (GoF) test not only qualitatively, the KS-

statistics were determined using the two-sample Kolmogorov-Smirnov test, which are

the maximum distance between the empirical and theoretical distribution function. The

results of the KS-statistics of the two-sample Kolmogorov-Smirnov test are given in

Tab. 5.7 for the time of breaking onset tbr/TP and in Tab. 5.8 for the location of breaking

onset xbr/LP . The course of the time of breaking onset tbr/TP was represented well

by the Gumbel and Gamma distribution. The course of the location of breaking onset

xbr/LP was represented well by the Weibull and Gamma distribution.

To complete the GoF test, the output parameters tbr/TP and xbr/LP , respectively,

were visually compared with each other in quantile-quantile-plots (qq-plots ) with di�er-

ent distribution functions, see Figs. 5.5 and 5.6. The comparison showed that the output

parameters followed well the Generalized Extreme Value (Gumbel's Type I),Weibull,

and Gamma distribution. Generally, the time of breaking onset tbr was better represen-

ted by theoretical distribution functions than the location of breaking onset xbr. Since
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5. Variability of Breaking Onset

Table 5.8.: KS-statistics of two-sample Kolmogorov-Smirnov tests for the normalised
location of breaking onset xbr/LP .

sZ,i Gumbel Gamma Weibull Normal Rayleigh

0.033 0.1211 0.0544 0.0613 0.1582 0.2373

0.044 0.1158 0.0966 0.0840 0.1461 0.2302

0.055 0.0875 0.1019 0.0846 0.1063 0.1705

0.067 0.0714 0.0918 0.0714 0.1020 0.1451

Gumbel, Gamma and Weibull are often used in the extreme value statistics, it is

understandable that they represent the extreme values tbr and xbr very well.

Conclusions

• The Gumbel and Gamma distribution functions are well suited to represent the

distribution of the time of breaking onset tbr/TP .

• The Weibull and Gamma distribution functions are well suited to represent the

distribution of the location of breaking onset xbr/LP .

5.2. Bivariate Distribution Function

Since the output parameters time and location of breaking onset tbr and xbr, respectively,

depend on one another and did not follow the same marginal distribution, see Fig. 5.7

and section 5.1, the classical multivariate approach, in which the marginal distribution

functions are multiplied, could not be used to determine the bivariate distribution func-

tion. Instead, the copula functions were used which can represent dependent parameters

with mixed marginal distributions.

Copula models are a relative new method (last ∼15 years) in the �eld of hydraulics,

coastal research and engineering. The advantages of the Archimedean copulas are that

they are �exible and easy to construct. Gumbel, Clayton and Frank were chosen

here because they are applicable for multivariate frequency analyses, that is, the analysis

of the frequency of occurrence of values of a phenomenon less than a reference value,

and they cover the full range of tail behaviour. The Clayton copula has lower tail

dependence, while the Frank copula has no tail dependence and the Gumbel copula

has only upper tail dependence. A brief summary of the theory of copulas is given below
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Figure 5.5.: qq-plots of output parameter time of breaking onset tbr/TP against theoret-
ical distributions for the test runs with initial spectral steepness sZ,i = 0.033.
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Figure 5.6.: qq-plots of output parameter location of breaking onset xbr/LP against
theoretical distributions for the test runs with initial spectral steepness
sZ,i = 0.033.
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Figure 5.7.: qq-plot of output parameter location of breaking onset xbr against time of
breaking onset tbr for the test runs with initial spectral steepness sZ,i = 0.033.

and then demonstrated exemplarily with the value pair (X,Y ) with X = tbr/TP and

Y = xbr/LP for the test runs with a spectral steepness of sZ,i = 0.033. The �nal results

of the cumulative distribution functions H (x, y) and the exceedance probabilities PE for

the other initial spectral steepnesses sZ,i are given in the annex.

5.2.1. Copula Approach

Copulas are multivariate distribution functions whose one-dimensional margins are uni-

form on the interval (0, 1) (Nelsen, 2006). The copula approach to dependence modelling

is rooted in a representation theorem due to Sklar (1959). It states that the joint cumu-

lative distribution function H (x, y) of any pair1 (X,Y ) of continuous random variables

may be written in the form

H (x, y) = C {F (x) , G (y)} , x, y ∈ R (5.2)

where F (x) and G (y) marginal distributions; and C : [0, 1]2 → [0, 1] = copula.

C(u) = H(F−1(x), G−1(y)) (5.3)

with pseudo-inverse F−1 and G−1 (Genest and Favre, 2007).

The name �copula� was chosen to emphasize the manner in which a copula �couples�

1Restricting attention to the bivariate case for the sake of simplicity.
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Figure 5.8.: Value pairs (tbr/TP , xbr/LP ) and their respective histograms for the test runs
with initial spectral steepness sZ,i = 0.033.

a joint distribution function to its univariate margins (Nelsen, 2006, p. 18/28). An

unique copula associated with a random pair (X,Y ) is invariant by monotone increasing

transformations of the marginals (Genest and Favre, 2007). In order to determine the

underlying dependency between two parameters (X,Y ) using a copula function, all ties

(duplicate values) of the pair must be removed in the �rst step since the parameters must

be continuous.

The steps to determine an appropriate copula function were illustrated here exemplarily

using the value pair (X,Y ) with X = tbr/TP and Y = xbr/LP for the test runs with a

spectral steepness of sZ,i = 0.033. The total test number was nmax = 288, so there were

288 value pairs. In Fig. 5.8 the original pairs of values (X,Y ) including their respective

relative frequency as histograms are shown.

Then the value pairs (X,Y ) were sorted according to the parameter X = tbr/TP so

that the parameter increased in magnitude and X = X1, ..., Xn with X1 < Xn; thus, the

value pairs were sorted according to their rank. The resulting ranked values (R,S) are

shown in Fig. 5.9 including their respective histograms. The marginal distributions of R

and S are uniform.

To test the dependence of the two parameters on each other,Kendall's τn and Spear-
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Figure 5.9.: Ranked values (R,S) and their respective histograms for the test runs with
initial spectral steepness sZ,i = 0.033.

man's ρ were used, see Eqs. (5.4) and (5.5). If τn and ρ are close to zero, the parameters

are independent; if they are close to 1, the parameters are dependent.

ρ =

n∑
i=1

(
Ri −R

) (
Si − S

)
√

n∑
i=1

(
Ri −R

)2 n∑
i=1

(
Si − S

)2 ∈ [−1, 1] (5.4)

where

R =
1

n

n∑
i=1

Ri =
n+ 1

2
=

1

n

n∑
i=1

Si = S

τn =
Pn −Qn(

n
2

) =
4

n (n− 1) /2
Pn − 1 (5.5)

For the data sample here Kendall's τ was τ = −0.97 and Spearman's ρ was ρ = 0.4.

Thus the value pair (tbr/TP , xbr/LP ) was dependent on each other.
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Figure 5.10.: Normalised ranked values (U, V ) and their respective histograms for the
test runs with initial spectral steepness sZ,i = 0.033.

In the next step, the axes were re-scaled by normalising the ranked values with 1/(n+

1), so that the marginal distributions of R and S were uniform in the range [0, 1]. The

result of the normalised ranked values (U, V ) is shown in Fig. 5.10. Normalising the

ranked values forms the domain of the so-called empirical copula, see Deheuvels (1979),

formally de�ned by

Cn (u, v) =
1

n

n∑
i=1

1

(
Ri
n+ 1

≤ u, Si
n+ 1

≤ v
)

with 1 (A) denoting the indicator function of set A. The empirical copula can be seen

as the empirical distribution of the rank transformed data.

In the next step, the empirical copula Cn was compared with the theoretical cop-

ula families Frank, Gumbel, and Clayton, and the parameter Θ was estimated. In

Tab. 5.9 the three Archimedean copulas are summarised, which were used in the eval-

uation. The in�uence of the parameter Θ on the form of the copula is shown exemplarily

for the Gumbel copula in Fig. 5.11.

The results of the parameter Θ of the three copula families Frank, Gumbel, and

Clayton are summarised for each spectral steepness sZ,i in Tab. 5.10. In the estimation

80



5.2. Bivariate Distribution Function

Table 5.9.: Summary of the three one-parameter (Θ) Archimedean copulas. t = u or
t = v. s = ϕ(u) + ϕ(v).

Family Generator
Generator inverse or copula

function
Parameter space

ϕ (t) ϕ−1 (s) = CΘ(s)

Frank (1979) − ln e−Θt−1
e−Θ−1

−Θ−1 ln
(
1 + e−s

(
e−Θ − 1

))
Θ ≥ 0

Gumbel (1960) (− ln t)Θ exp
(
−s1/Θ

)
Θ ≥ 1

Clayton (1978) t−Θ − 1 (1 + s)−1/Θ Θ ≥ 0
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Figure 5.11.: The in�uence of the parameter Θ on the form of the copula shown exem-
plarily for the Gumbel copula.
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5. Variability of Breaking Onset

Table 5.10.: Compilation of the results of the parameter Θ for the copula families Frank,
Gumbel, and Clayton for each spectral steepness sZ,i.

sZ,i Frank Gumbel Clayton

0.010 10.23 2.76 1.79

0.020 7.34 2.10 1.89

0.027 4.78 1.77 0.82

0.033 2.60 1.36 0.49

0.035 2.45 1.30 0.50

0.044 1.76 1.22 0.38

0.050 1.11 1.15 0.23

0.055 0.82 1.09 0.27

0.067 0.39 1.14 0.05

0.071 0.19 1.03 0.06

of Θ, the signi�cance level for con�dence intervals was α = 0.05 and the �tting method

was the maximum likelihood method.

The larger the initial spectral steepness sZ,i the smaller the optimal parameter Θ, that

is, that for larger spectral steepnesses the theoretical copula did not need to be adjusted

to the empirical copula as much as for smaller spectral steepnesses.

In order to get a �rst impression which copula family was best suited to represent the

relation between tbr/TP and xbr/LP , the empirical copula Cn (u, v) was compared with

the three theoretical copula families, and their contour plots are shown in Fig. 5.12. It

seems that the empirical copula Cn (u, v) follow the Gumbel copula best.

Another approach to get an impression which copula family was best suited to represent

the relation between tbr/TP and xbr/LP , generic random samples from the copula families

were generated in the copula space, and then transformed into the original scale of the

parameters. The results for the test runs with a spectral steepness of sZ,i = 0.033 is shown

in Fig. 5.13. 500 value pairs were randomly generated based on the copula families. It

seems that the value pairs (tbr/TP , xbr/LP ), follow the Gumbel copula best.

For the other initial spectral steepnesses, in addition to sZ,i = 0.033, generic random

samples from the copula families were also generated and the normalised time of breaking

onset tbr/TP is plotted against the initial spectral steepness sZ,i, see Fig. 5.14. The

random samples generated from the copula families con�rmed the observations that 1)

wave trains break earlier with increasing spectral steepness and 2) the scatter of the
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Figure 5.12.: Contour plots of the empirical copula Cn (u, v) and the three
Archimedean copulas for the test runs with initial spectral steepness
sZ,i = 0.033.

0 10 20 30

0

2

4

tbr/TP

x
br
/L

P

Frank

0 10 20 30

0

2

4

tbr/TP

x
br
/L

P

Gumbel

0 10 20 30

0

2

4

tbr/TP

x
br
/L

P

Clayton

Figure 5.13.: Comparison of original NWF simulated data (red cross markers) and copula
generated data (black round markers) for the test runs with initial spectral
steepness sZ,i = 0.033.
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5. Variability of Breaking Onset

Table 5.11.: RMSEs and values for the KS-statistic from comparing theoretical and em-
pirical copula functions for the parameters tbr/Tp and xbr/LP , and for the
test runs with initial spectral steepness sZ,i = 0.033.

Function RMSE KS-statistic

Frank copula 0.0129 0.0483

Gumbel copula 0.0094 0.0306

Clayton copula 0.0198 0.0373

results decreases with increasing spectral steepness.

In order to determine the goodness of �t more precisely, qq-plots, root-mean-square-

error-values (RMSE), and two-sample Kolmogorov-Smirnov tests (KS-statistics) were

performed. The execution of several GoF tests intended to minimize the uncertainty of

selecting a copula family. Particular attention was paid to which copula family suits the

tail dependency best in the upper right corner, as this is important for probabilities of

exceedance. In Fig. 5.15 the qq-plots for the original NWF simulated data and copula

generated data for tbr/TP and xbr/LP are shown. The qq-plots for tbr/TP were very

similar to each other, with the Gumbel und Clayton copula seeming to be the best

�t. For the output parameter xbr/LP , the di�erences between the copula families were

clearer, but also here the Gumbel and Clayton copula �t best.

In Tab. 5.11, the RMSE values and the values for the KS-statistic are shown. RMSE

values described the deviations between the empirical copula Cn and the theoretical

copula functions. The KS-statistic, on the other hand, described the maximum distance

between two probability distributions, which in turn were based on the NWF simulated

and on the randomly generated data from the copulas; therefore the values of the KS-

statistic varied slightly according to the randomly generated data sample. The observed

trend, however, remained the same: the Gumbel copula showed the lowest RMSEs and

values of the KS-statistic. The di�erences among the copula families, however, were

small.

A convergence analysis regarding the parameter Θ showed that the analysis for the

Gumbel copula was the fastest convergence, that is, less data was needed for the Gum-

bel copula to obtain the optimal parameter Θ. This result supported the choice for the

Gumbel copula.

The resulting cumulative distribution function H (x, y) calculated with the Gumbel

copula, see Eq. (5.2), is represented in Fig. 5.16 for a spectral steepness sZ,i = 0.033. The

results for the other spectral steepnesses are given in the annex, see Figs. B.1 to B.17.
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Figure 5.14.: Development of normalised time of breaking onset tbr/TP against initial
spectral steepness sZ,i = HS/LP for original NWF simulated data (red
cross markers) and copula generated data (black round markers) for Frank,
Gumbel and Clayton copula.
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Figure 5.15.: qq-plots with original NWF simulated data and copula generated data of
tbr/TP and xbr/LP .
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Table 5.12.: Geometrical parameters for the breaking wave crest for the exemplary value
pairs in Fig. 5.17.

tbr/TP xbr/LP sZ s′C µH

13.65 2.34 0.061 0.112 0.63

17.89 1.52 0.059 0.180 0.79

19.81 0.79 0.062 0.105 0.58

The resulting bivariate joint exceedance probability PE is (Wahl et al., 2012, p. 101):

PE = P (X > x ∧ Y > y) = 1− F (x)−G (y) +H (x, y)

= 1− F (x)−G (y) + C [F (x) , G (y)] (5.6)

The contours of some joint exceedance probabilities calculated with the Gumbel cop-

ula are shown in Fig. 5.17 for the test runs with spectral steepness sZ,i = 0.033. The

results for the other spectral steepnesses are given in the annex, see Figs. B.2 to B.18.

The compution of the cumulative distribution function H (x, y) and the bivariate joint

exceedance probability PE was based on 500 randomly generated value pairs whose dis-

tribution follows the Gumbel copula. In Fig. 5.17 three exemplary value pairs from the

numerical simulations, which have an exceedance probability of PE = 0.4, are marked

blue. Although they share the same exceedance probability, the shapes of the underlying

wave are di�erent. The steepness of the breaking wave crest sZ = H/L, the crest front

steepness s′C = aC/L
′ and the horizontal asymmetry µH = aC/H of the three exemplary

value pairs from the numerical simulations are summarised in Tab. 5.12. The de�nition

of the wave parameters can be found in Fig. 2.1.

Conclusions

• The Gumbel copula is well suited to represent the relation between time and

location of breaking onset (tbr/TP , xbr/LP ). However, the di�erences of the GoF

tests among the three analysed copula families are small.

• By means of the computed cumulative distribution functions and joint exceedance

probabilities for every spectral steepness sZ,i, which were considered in this thesis,

one can determine the probability with which a certain combination of time and

location of breaking onset (tbr/TP , xbr/LP ) is undercut or exceeded.
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Figure 5.16.: Cumulative distribution functionH (x, y) calculated with theGumbel cop-
ula for the test runs with spectral steepness sZ,i = 0.033, with original NWF
simulated data (red cross markers) and copula generated data (black round
markers).
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Figure 5.17.: Exceedance probability PE calculated with the Gumbel copula for the test
runs with spectral steepness sZ,i = 0.033, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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5.2.2. Uncertainty assessment

Firstly, uncertainties emerged from estimating the structure of dependence or the copula

parameter, Θ, respectively, from a random sample of the considered parameters. Fur-

ther uncertainties resulted from �tting univariate distribution functions to the marginal

parameters and from choosing certain bivariate models. However, the application of four

GoF tests to choose proper copula functions minimised the uncertainties.

5.3. Optimal Sample Size

Since the phenomenon of wave breaking is random and intermittent, its output para-

meters such as time, location and shape of the breaking wave are strongly scattered. In

order to determine the necessary number of test runs for a robust determination of the

phenomenon, a convergence analysis was carried out on the basis of the output para-

meter time of breaking onset tbr. In the �rst step, only the NWF simulated data was

used for this, and then the existing data base was expanded by the data generated from

the Gumbel copula which represented the relationship of (tbr/TP , xbr/LP ) well. The

result was the optimal sample size Nopt, which was determined for each initial spectral

steepness sZ,i and the permissible deviations 1%, 2%, 5% and 10%. Nopt was determined

dependent upon sZ,i, since the scattering of the parameter tbr depended on sZ,i and thus

the optimal sample size Nopt did, too. The original data basis was extended with the

data generated from the Gumbel copula since the optimal sample size Nopt depended

on the initial sample size.

5.3.1. Optimal Sample Size Based on NWF Data

For the determination of the optimal sample size Nopt, a convergence analysis was per-

formed with the normalised time of breaking onset tbr/TP . The data sample with break-

ing wave trains was selected in which only the input parameter sZ,i was variable and all

other input parameters were �xed2. Since the scatter of tbr/TP depends signi�cantly on

the initial spectral steepness sZ,i, a convergence analysis was performed for each sZ,i. In

the convergence analysis, the median was formed from the normalised time of breaking

onset tbr/TP by increasing the number n of the considered test runs. That is, in the

�rst step, the median from (tbr/TP )n was determined with n = 1, in the second step

from (tbr/TP )n with n = 2, etc. until n equates to the maximum available test run

number nmax. The resulting vectors were projected to zero by subtracting the median

2NW = 192, h = 0.7m,γ = 3.3.
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˜(tbr/TP )nmax
, and then normalised by dividing them by the median, see Eqs. (5.7) and

(5.8).

˜(tbr/TP ) =

xn+1
2

n odd

1
2

(
xn

2
+ xn

2
+1

)
n even

(5.7)

∆ ˜(tbr/TP )∗ (n) =
˜(tbr/TP ) (n)− ˜(tbr/TP )

˜(tbr/TP )
(5.8)

Because the course of ∆ ˜(tbr/TP )∗ depended strongly on the order of values in tbr/TP , the

original vectors of tbr/TP were uniformly random distributed before each analysis. This

process was repeated 10,000 times. In Fig. 5.18 the convergence analysis for the normal-

ised time of breaking onset tbr/TP is shown exemplarily for sZ,i = 0.033, 0.044, 0.055, 0.071

and, for a better representation, with only 3,000 repetitions. It can be observed that the

bandwidth of resulting di�erences between ˜(tbr/TP ) and ˜(tbr/TP ) (n) decreased with in-

creasing number of considered test runs. Furthermore, it can be observed that as the

spectral steepness sZ,i increased, the di�erence of the normalised median ∆ ˜(tbr/TP )∗

converged more rapidly; this was because with increasing spectral steepness, the scatter

of the normalised time of breaking onset tbr/TP decreased.

Then the sample size n for ∆ ˜(tbr/TP )∗ = 0.01, 0.02, 0.05, 0.10 was determined from

the mean value of all convergence curves; these values were the optimal sample size Nopt

with permissible deviations 1%, 2%, 5% and 10%.

Tab. 5.13 summarises the results of Nopt, median value x̃ , standard deviation σ and

the coe�cient of variation cv = σ/x̄ (mean value x̄) .

The results in Tab. 5.13 and Fig. 5.19 show that the larger the permissible deviation

the smaller the optimal sample size Nopt. For example, for sZ,i = 0.033 Nopt = 245 was

required to be able to determine tbr/TP with an deviation of 1%, but only Nopt = 59

with an deviation of 5%.

The dependence of the optimal sample size on the spectral steepness, or rather, on the

scattering of the parameter, on the permissible deviation, and on the initial sample size

nmax was clearly visible. Generally speaking, the optimum sample size Nopt decreased

with increasing spectral steepness sZ,i, i.e. the greater the spectral steepness the fewer

tests were required to determine the time of breaking onset with a certain error. This was

due to the fact that the scatter of tbr/TP decreased with increasing spectral steepness

sZ,i. Please note, that the ratio of standard deviation and mean value, which is the
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Figure 5.18.: Convergence analysis for the normalised time of breaking onset
tbr/TP against the number of considered test runs for sZ,i =
0.033, 0.044, 0.055, 0.071 with mean value of all convergence curves (red).
Repeats: 3,000.
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Table 5.13.: Optimal sample size Nopt for the median value of the normalised time of
breaking onset tbr/TP with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data. Repeats: 10,000.

sZ,i nmax x̃ σ cv 1% 2% 5% 10%

0.010 85 133 10 0.08 4 2 1 1

0.020 69 102 22 0.21 16 10 4 2

0.027 99 22 12 0.49 96 84 50 21

0.033 288 15 6 0.35 245 174 59 17

0.035 171 10 3 0.28 134 96 33 7

0.044 396 8 2 0.24 182 94 24 5

0.050 142 7 1 0.20 95 61 15 3

0.055 347 6 1 0.21 202 93 17 3

0.067 146 5 1 0.21 104 56 11 3

0.071 185 5 1 0.21 172 109 17 3

coe�cient of variation cv, had a signi�cant in�uence on the optimum sample size, which

can be seen for the results for the spectral steepnesses sZ,i = 0.02 and sZ,i = 0.027.

The optimal sample size was largest for the spectral steepness sZ,i = 0.027, although the

scatter of the parameter was larger for sZ,i = 0.02. This observations can be explained by

the coe�cient of variation cv: although the mean value of tbr/TP for sZ,i = 0.027 is only

1.5 times the mean value for sZ,i = 0.044, the coe�cient of variation is six times larger.

In order to investigate the in�uence of the sample size nmax on the optimal sample size

Nopt, the sample size was increased by means of the Gumbel copula function and the

convergence analysis was repeated, see next subsection 5.3.2. Before that, however, the

in�uence of the number of repetitions of the convergence analysis on the optimal sample

size was investigated. As mentioned above, the order of the values in tbr/TP had an

in�uence on the convergence analysis, so the vectors of tbr/TP were uniformly random

distributed for each repetition. It can be observed that for repeats ≥ 1, 000 the number

of repetitions had no signi�cant in�uence on the resulting optimal sample size Nopt.

5.3.2. Optimal Sample Size Based on Copula Generated Data

In section 5.2 it was shown that the output parameters (tbr/TP , xbr/LP ) followed the

Gumbel copula. By means of this copula function, any number of random value pairs

following the Gumbel function can be generated. Thus, the existing sample size was
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Figure 5.19.: Optimal sample size Nopt for the median value of the normalised time of
breaking onset tbr/TP with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data for all sZ,i. Repeats: 10,000.

increased and the convergence analysis repeated with this increased sample to investigate

the in�uence of the initial sample size nmax on the optimal sample size Nopt. In a �rst

step, the same sample sizes per sZ,i as in the NWF simulations were generated by means

of the Gumbel copula function to show that the copula generated data leaded to the

same results for the optimal sample size Nopt as the NWF data. Subsequently, the sample

size nmax with which the convergence analysis was carried out was increased step by step

to show its in�uence on the resulting optimal sample size Nopt.

The optimal sample sizes Nopt for the NWF data and the copula generated data are

shown in Fig. 5.21. The initial sample size for the convergence analysis with the copula

generated data corresponded to the sample size of the NWF data. It can be seen that

the di�erences between the copula generated data and the NWF data were largest with

a permissible deviation of 1%. However, the di�erences of Nopt decreased rapidly with

increasing permissible deviation. Therefore, the Gumbel copula was used to increase the

sample size and to repeat the convergence analysis with an enlarged sample. The optimal

sampling sizes Nopt are shown in Fig. 5.22 depending on the permissible deviation and

the initial sample size. The larger the permissible deviation the lower the in�uence of

the initial sample size on the optimal sample size. For a permissible deviation of 1% and

2%, the initial sample size had a signi�cant in�uence on the resulting optimal sample size

Nopt; the in�uence was negligible only from an initial sample size of n ≥ 5, 000 test runs.

With a permissible deviation of 5% or 10%, the in�uence of the initial sample size on the
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Figure 5.20.: Optimal sample size Nopt for the median value of the normalised time of
breaking onset tbr/TP with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data for di�erent repetitions of the convergence analysis.
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Figure 5.21.: Optimal sample size Nopt for the median value of the normalised time of
breaking onset tbr/TP with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data and copula generated data with the same initial
sample size per spectral steepness. Repeats: 3,000.

optimal sample size was negligible from an initial sample size of n ≥ 1, 000. It is unclear

why the initial sample size had a signi�cant in�uence on the optimal sample size; for

example, with a permissible deviation of 1% an initial sample size of at least 5, 000 test

runs had to be considered to conclude that the optimal sample size was approximately

1, 800 test runs. In Tab. 5.14 the results for the optimal sample sizes Nopt based on the

simulated NWF data and the Gumbel copula generated data are listed. The median

value, the standard deviation, and the coe�cient of variation for the normalised time

of the wave breaking tbr/TP were quasi identical for both data sets; this suggests that

the data generated from the Gumbel copula represented well the behaviour of the time

and location of breaking onset. The resulting optimal sample sizes Nopt from the two

data sets di�ered signi�cantly for a permissible deviation of 1% and 2%; except for a

deviation of 2% and a spectral steepness of sZ,i = 0.055 and sZ,i = 0.071. With a

permissible deviation of 5% and 10%, the di�erences between the two data sets were not

signi�cant. Considering all initial spectral steepnesses and a permissible deviation of 1%,

approximately 1, 800 test runs were su�cient to determine the median of the normalised

time of breaking onset tbr/TP , see Fig. 5.22. With a deviation of 2% it was Nopt = 580,

with a deviation of 5% it was Nopt = 100, and with a deviation of 10% it was Nopt = 25.
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breaking onset tbr/TP with a permissible deviation of 1%, 2%, 5% and 10%
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Repeats: 3,000.
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Table 5.14.: Optimal sample size Nopt for the median value of the normalised time of
breaking onset tbr/TP with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF simulated data and copula generated data (in italic) for
the test runs with initial spectral steepness sZ,i = 0.033, 0.044, 0.055, 0.071.
Repeats: 10,000 (NWF) and 3,000 (Gumbel copula).

sZ,i nmax x̃ σ cv

0.033 288/7,000 15/15 6/6 0.35/0.37

0.044 396/7,000 8/8 2/2 0.24/0.25

0.055 347/7,000 6/6 1/1 0.21/0.22

0.071 185/7,000 5/5 1/1 0.21/0.22

sZ,i 1% 2% 5% 10%

0.033 245/1,495 174/427 59/73 17/17

0.044 182/752 94/196 24/31 5/7

0.055 202/464 93/125 17/19 3/3

0.071 172/453 109/117 17/19 3/3

Conclusions

To determine the median of the normalised time of breaking onset tbr/TP :

• with a permissible deviation of 1%, approximately 1, 800 test runs are su�cient.

• with a permissible deviation of 2%, approximately 580 test runs are su�cient.

• with a permissible deviation of 5%, approximately 100 test runs are su�cient.

• with a permissible deviation of 10%, approximately 25 test runs are su�cient.
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6. Detection and Prediction of Breaking

Onset in Wave Trains

In the following chapter, the deformation and development of breaking and non-breaking

wave crests and wave trains are compared with each other in order to identify indicators

for wave breaking, which were used for the detection and prediction of wave breaking

onset.

The �rst section presents the physical model tests and their results, which were used

to detect and predict wave breaking in time series of water surface elevation. Then the

NWF model tests were used to investigate the deformation of the wave crest shortly

before breaking onset to indicate precursors of breaking onset. In the third section the

wave trains at the location of breaking onset are analysed and by means of the Markov

chain precursors of breaking onset are identi�ed.

6.1. Detection of Breaking Onset in Wave Trains

To develop a detection method of wave breaking in time series, laboratory experiments

in the wave �ume with random and regular wave trains were carried out. The model

tests were carried out in the WKS wave �ume of the Ludwig-Franzius-Institute with its

overall dimensions of 110 m length, 2.2 m width and 2.0 m height. The piston type wave

maker was hydraulically driven and capable of generating regular and irregular waves

with wave heights up to 0.40 m while using a stroke of up to ±0.30 m by a water depth

of up to 1.2 m. In the rear part of the �ume, a beach was installed as a passive wave

absorber in order to minimize re�ections.

It should be noted that parts of the physical and hydronumerical tests were conducted

on the basis of scienti�c investigations in the framework of the research project �Probab-

ilistic Safety Assessment of O�shore Wind Turbines (PSA) - work package 2�, founded

by the Ministry for Science and Culture in Lower Saxony (support code GZZM2547),

see Wilms and Schlurmann (2012), Wilms and Schlurmann (2014), Hansen (2014) and

Hansen (2015).
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6. Detection and Prediction of Breaking Onset in Wave Trains

6.1.1. Test Setup

The water surface elevation were measured using eight capacitive type wave gauges in-

stalled along the �ume and covering a testing area of 45 m. As additional measurement

equipment, three video cameras were installed to record the tests and to determine the

wave breaking in post-processing. A sketch of the test setup is given in Fig. 6.1. The cam-

eras were installed with such a viewing direction, so that they faced wave gauges WG1

(video camera 3), WG2 to WG7 (video camera 2), and WG8 to WG4 (video camera 1).

Wave gauge WG1 was used to determine the incident wave spectrum. The position of

testing area in the �ume was a compromise between minimal distance to the wave maker

(at least 5 times maximum wavelength) and maximum distance to the beach (to avoid

wave re�ections in the testing area).

6.1.2. Test Program and Procedure

The model tests were carried out in a length scale of 1:40, which was a compromise

between possible wave generation and possible water depths. After the wave gauges and

the video cameras were installed, the �ume was �lled to still water level of the required

water depth. A test program with 20 test runs with random waves, and seven tests

with regular waves were compiled, see Tabs. 6.1 and 6.2. As a spectrum, a narrow-

band JONSWAP spectrum with enhancement factor γ = 3.3 and enhancement width

σL = 0.07 and σH = 0.09 were used. The peak period varied between TP = 1.3−2.2 s, the

signi�cant wave height HS varied between HS = 0.2−0.25 m, number of generated waves

was NW = 50 and NW = 100, and the wave maker theory (wmt) was �rst and second

order. The initial spectral steepness sZ,i = HS/LP varied between sZ,i = 0.026− 0.082,

with the peak wavelength LP calculated with LP = g/(2π)T 2
P and g = 9.80655 m/s2

as acceleration of gravity. The water depth to wavelength ratio varied between h/L =

0.13 − 0.31. In Tab. 6.1 the random phase angle ϕ is indicated as �a�, �b�, �c�, �d� and

�e�, and refers to �ve �x sets of random phase angle distributions (uniformly distributed

between 0 and 2π), which were generated before the tests were carried out and stored.

That way, the wave spectrum, characterized with signi�cant wave height HS and peak

period TP , could be transformed repeatedly to time domain and resulting in the same

wave train every time. This means, test number 1, 2 and 3 were the same wave train,

and test number 4 and 5 were the same wave train; they had the same phase angle

distributions. Those retests were done, to analyse the reproducibility of the wave trains

and number of breaking waves accordingly.

During each test run, all wave gauges and video cameras were continuously collecting
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6. Detection and Prediction of Breaking Onset in Wave Trains

data. The wave gauges had an analogue output system (voltage outputs) and the data

were sampled by a HBM analogue-digital converter in digital form. For data storage, the

HBM sampling and control software catmanEasy was used and Mathworks Matlab was

used for post-processing. Based on experience, a waiting time of at least 10 min between

each test ensured no remaining oscillations, thus no interference, from the previous test

run.

6.1.3. Results and Extended Detection Method

In the �rst step, the test runs were analysed in regard to plausibility (comparison of

target value and actual value) and reproducibility (comparison of retests). The analysis

of plausibility showed a mean deviation of 3.5% for the signi�cant wave height HS and

a mean deviation of 1.8% for the peak period TP , both determined in frequency domain

with the Fast Fourier Transform (FFT). The mean deviations were small and the

targeted wave parameters were generated. The analysis of reproducibility showed a

mean coe�cient of determination of R2 = 0.998 for test runs 1, 2 and 3, and R2 =

0.997 for test runs 4 and 5. Fig. 6.2 shows exemplarily the �rst 20 s of the time series

with HS = 0.2 m and phase angle distribution �a�. The analysis showed that the time

series were reproduced very well and therefore the resulting numbers of breaking waves

were reliable. In the second step, the number of breaking waves were determined by

re-watching the video camera data. The observed breakers were classi�ed in �spilling

breaker� and �whitecapping�.

In Tab. 6.3 the results for the number of breaking waves are compiled with their re-

spective time stamp in relation to the start of the wave maker. The results of the retests

2 and 3 were the same as for test 1, as well as the results for the retest 5 is the same as

for test 4; the reproducibility was again veri�ed, which is why the results for retests 2, 3

and 5 are not shown in Tab. 6.3. For direct comparison, the results in Tab. 6.3 are sorted

by phase angle distribution and then signi�cant wave height HS .

The resulting wave breaking probability Pbr = nbr/ntot is summarised in Fig. 6.3 for

all tests with water depth h = 0.7 m. The breaking probability ranged from Pbr = 0% to

Pbr = 6%; the result depended heavily on the phase angle distribution (wave sequence in

the time series). An e�cient investigation of the wave breaking probability in physical

model tests was not possible with this large scatter in the results.

The following results were observed:

1. The initial steepness of the spectrum sZ,i had a great in�uence on the number of

breaking waves, whereby the change of TP had a greater in�uence than the change
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6.1. Detection of Breaking Onset in Wave Trains

Table 6.1.: Compilation of conducted model test runs in the WKS wave �ume with ran-
dom wave trains.

Nr. wmt h TP
h
L HS sZ,i NW ϕ

[-] [-] [m] [s] [-] [m] [-] [-] [-]

1 1st 0.7 1.7 0.18 0.200 0.044 50 a

2 1st 0.7 1.7 0.18 0.200 0.044 50 a

3 1st 0.7 1.7 0.18 0.200 0.044 50 a

4 1st 0.7 1.7 0.18 0.200 0.044 50 b

5 1st 0.7 1.7 0.18 0.200 0.044 50 b

6 1st 0.7 1.7 0.18 0.200 0.044 50 c

7 1st 0.7 1.7 0.18 0.225 0.050 50 a

8 1st 0.7 1.7 0.18 0.250 0.055 50 a

9 1st 0.7 1.7 0.18 0.200 0.044 50 d

10 1st 0.7 1.7 0.18 0.200 0.044 50 e

11 1st 0.7 1.9 0.15 0.200 0.035 50 a

12 1st 0.7 2.2 0.13 0.200 0.026 50 a

13 1st 0.7 1.7 0.18 0.200 0.044 100 a

14 1st 0.7 1.7 0.18 0.200 0.044 100 a

15 2nd 0.7 1.7 0.18 0.200 0.044 50 a

16 2nd 0.7 1.7 0.18 0.200 0.044 50 a

17 1st 0.8 1.7 0.20 0.200 0.044 50 a

18 2nd 0.8 1.7 0.20 0.200 0.044 50 a

19 1st 0.8 1.4 0.27 0.250 0.082 50 a

20 2nd 0.8 1.4 0.27 0.250 0.082 50 a
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6. Detection and Prediction of Breaking Onset in Wave Trains

Table 6.2.: Compilation of conducted model test runs in the WKS wave �ume with reg-
ular wave trains.

Nr. wmt h T h
L H H

L NW ϕ

[-] [-] [m] [s] [-] [m] [-] [-] [-]

21 1 0.7 1.7 0.18 0.20 0.051 50 −π
22 1 0.7 1.7 0.18 0.20 0.051 50 −π
23 1 0.7 1.3 0.27 0.25 0.098 25 −π
24 1 0.7 1.3 0.27 0.25 0.098 12 −π
25 2 0.7 1.3 0.27 0.25 0.098 25 −π
26 1 0.8 1.7 0.20 0.20 0.049 25 −π
27 2 0.8 1.3 0.31 0.25 0.097 25 −π

28 30 32 34 36 38
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Figure 6.2.: Reproducibility of test run with HS = 0.2 m and phase angle distribution
"a".

104



6.1. Detection of Breaking Onset in Wave Trains

Table 6.3.: Compilation of results of number of breaking waves with their respective time
stamp relative to the start of the wave maker.

Nr. HS phase angle Time breaker type

[m] [s]

1 0.200 a 00:47 spilling

00:52 whitecap.

00:55 whitecap.

01:15 spilling

01:20 whitecap.

01:23 whitecap.

7 0.225 a 00:47 spilling

00:52 whitecap.

01:15 spilling

01:19 whitecap.

01:23 whitecap.

8 0.250 a 00:48 spilling

01:10 whitecap.

01:15 spilling

4 0.200 b 00:55 whitecap.

00:59 whitecap.

6 0.200 c 01:03 whitecap.
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Figure 6.3.: Wave breaking probability Pbr for the test runs with h = 0.7 m.

of HS .

2. For the same phase angle distribution ϕ, the number of breaking waves was con-

stant, and the wave breaking occurred temporally and spatially at the same posi-

tions.

3. An increasing signi�cant wave height resulted in a decreasing number of whitecaps.

4. Even the second spilling breaker in a wave train was reproducible, which concluded

that the �rst spilling breaker broke always in the same way, though the breaking

process is a highly non-linear and turbulent process. The reproducibility of the

physical model test is validated.

5. The randomness of the phase angle distribution, and thereby the randomness of

the wave sequence in the time series, had a signi�cant in�uence on the number of

breaking waves; di�erent realizations of the same energy density spectra in time

domain did not produce same numbers of breaking waves; in contrast to phase

angle distribution �a� with two spilling breakers, phase angle distributions �b� and

�c� caused no breaking waves, only whitecapping, although all three spectra had

the same theoretical energy density. There might be two reasons for that: either
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6.1. Detection of Breaking Onset in Wave Trains

the record length were too short (50-100 waves) or an exemplary time series could

not represent all possible time series from one sea spectrum.

6.1.3.1. Extended Detection Method

Indicators to detect wave breaking should have the following features: They are meas-

urable directly in the �eld or can be determined from the standard parameters like HS

and TP . Based on the investigation from Babanin et al. (2007, 2010), the measured time

series were analysed and plotted against the geometrical parameters for every single wave

(zero-downcrossing), namely: wave steepness sZ = H/L, frequency f0 = 1/T , skewness

SK = aC/aT − 1 and asymmetry AS = L′′/L′ − 1 . It should be noted that in contrast

to the experiments from Babanin et al., who used near-monochromatic deep water two-

dimensional wave trains, the wave trains in this thesis were generated from JONSWAP

spectra with large characteristic steepness sZ,i = HS/LP . As an exemplary analysis of

the wave train modulation as a function of time, the time series of wave gauge WG2 for

test run 1 and the corresponding geometrical parameters are given in Fig. 6.4.

The two spilling breakers occurred at approximately 33 s and 61 s; their positions are

marked with dashed lines. The only parameter here with a clear behaviour was the wave

steepness sZ which reached its maximum at the moment of wave breaking (for the �rst

breaker), a behaviour also observed by Babanin et al. (2007). The other geometrical

parameters did not behave in a unique way at breaking onset, in contrast to Babanin's

observations for near-monochromatic wave trains. The second breaker at t = 66 s did not

reach a clear maximum for sZ . The reason is that the second breaking wave was already

in the developed breaking process when reaching wave gauge WG2; the actual incipient

breaker was not measured.

The critical steepness for the conducted model tests was sZ ≈ 0.11, which was smaller

than the thresholds given in literature. Again, the reason is, that not the exact incipient

breaker, but the breaker in progress, was measured. However, these resembling results

with Babanin et al. (2007) were not found for every measured test.

In Fig. 6.5, the results for the alternative steepnesses and asymmetries, as proposed by

the IAHR, see Tab. 2.1 on page 9, are shown. It can be observed that the steepnesses

showed a more de�nite behaviour, especially the crest front steepness s′C and crest rear

steepness s′′C which reached their maximum with s′C = 0.0115 and s′′C = 0.0069. The

critical limits of Kjeldsen and Myrhaug (1979b) were s′C = 0.78 and s′′C = 0.39 and thus

signi�cantly larger than the values of this thesis. Reasons for this could be that 1) the

wave gauges were not exactly at the position of breaking onset and thus the maximum

values were not measured, 2) Kjeldsen and Myhhaug generated wave breaking with wave
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groups.

Babanin et al. (2007) stated, that incipient breaking waves were the steepest waves in

a wave train, their skewness was positive (i.e. peaked up) and asymmetry was small (i.e.

not tilted forward). At the point of breaking, the skewness increased very rapidly and

immediately after the limit was reached the asymmetry became negative (i.e. the wave

starts tilting forward at the point of breaking). Furthermore, at the point of breaking

the frequency f0 increased rapidly (modulation in the frequency). These observations,

especially for the skewness, asymmetry and frequency, were hard to make in the measured

irregular wave trains of this thesis.

Although Babanin postulated, that the wave steepness was the single robust criteria

for wave breaking, it is, in the author's point of view, not a robust indicator in a wave

train, because the time span of an incipient breaker (the exact point of breaking onset) is

so short, and it is very unlikely to measure an incipient breaker (= the maximum/critical

steepness) with a wave gauge. Therefore, further characteristics of a wave train with a

breaking wave had to be established to develop a robust detection method.

Instantaneous parameters, derived from the analytical signal, seemed promising when

describing a sudden and short-term change in the surface elevation, even when the wave

gauge did not measure the exact point of breaking onset. An analytic signal in the signal

theory is a complex-valued time signal whose imaginary part is the Hilbert transform

of the real part. The term analytical expresses that the function is di�erentiable in

the complex. This results in the fact that in the spectrum of an analytical signal no

negative frequencies occur, in contrast to a real signal. In the �eld of signal processing,

the Hilbert transform can be computed in a few steps: Firstly, the Fourier transform

of the given signal Xr(t) is calculated. Secondly, the negative frequencies are rejected.

Finally, the inverse Fourier transform is calculated, and the result will be a complex-

valued signal where the real and the imaginary parts form a Hilbert transform pair. To

describe a signal simultaneously in time and space the instantaneous frequency f(t) can

be used. For that, the analytical signal X(t) is derived, see Eq. (6.1), with Xr(t) as the

real function (original signal) and Xi(t) the Hilbert transform of Xr(t) (Schlurmann,

2005).

X(t) = Xr(t) + iXi(t) (6.1)

The time-variant variables are the instantaneous amplitude a(t), instantaneous phase

Θ(t) and the instantaneous angular frequency ω(t) or instantaneous frequency f(t), see
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Eqs. (6.2) to (6.4).

a(t) =| X (t) | (6.2)

Θ(t) = arg (X (t)) (6.3)

ω (t) =
∂Θ (t)

∂t
⇒ f (t) =

1

2π
ω(t) (6.4)

In order to establish a relationship between instantaneous amplitude a(t) and instantan-

eous frequency f(t) and thus extend the previous detection methods, the inverse of the

instantaneous frequency was considered as an instantaneous period T (t) = 1/f(t) and

based on this the instantaneous �wavelength� L(t) was determined. For the calculation

of L(t) the dispersion relation for intermediate water was used and iteratively calculated.

This resulted in the instantaneous steepness sZ(t), see Eq. (6.5). Please note, that the

Hilbert transform was computed from a water surface elevation over time here, therefore

the instantaneous wavelength L(t) had to be calculated with the approach of a instant-

aneous period T (t) = 1/f(t) and the dispersion relation. When the Hilbert transform

was computed from a water surface elevation over the �ume length, the instantaneous

wavelength was the reciprocal value of the instantaneous frequency L(t) = 1/f(t).

sZ(t) =
2a(t)

L(t)
(6.5)

Comparing the author's own approach to literature, one can see that the instantaneous

wavelength L (t) was calculated in the same way as the local wave number k from Song

and Banner (2002), but without the application of a low-pass �lter. As an envelope

of the surface elevation, the author used the instantaneous amplitude a (t), which was

computed easily from the Hilbert transform as well, instead of the mean of the upper

and lower envelopes µ (t) which was based on the wave energy and not directly on the

wave amplitude.

In Fig. 6.6 the time series of test run 1 for wave gauge WG2 with HS = 0.2 m and its

corresponding instantaneous parameters a(t), f(t) and sZ(t) are shown. The suggested

thresholds to detect the breaking waves were marked with dashed lines, see also Eqs. (6.6)

to (6.8).

η(t) ≥ 0.8HS (6.6)
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6. Detection and Prediction of Breaking Onset in Wave Trains

f(t) ≥ 2.2fP (6.7)

sZ(t) ≥ 0.4 (6.8)

Fig. 6.4 shows that the detection of wave breaking with the wave steepness sZ as an

indicator was only unambiguously possible if the wave gauge was at the location of

breaking onset. On the other hand, the instantaneous wave steepness sZ(t) was even

distinctly developed in the second wave breaking (t ≈ 61 s), which did not take place

directly at the position of the wave gauge.

It can be observed that the instantaneous frequency f(t) and steepness sZ(t) had high

oscillations after a wave breaking. This oscillation was caused by ripples on the surface

elevation, which occurred after wave breaking. Presumably, these ripples were caused

by the breaking process (air entry and impulse of the breaker). A comparison with

measurements carried out in the Large Wave Flume of Forschungszentrum Küste (FZK)

(Hildebrandt (2013)) showed that this phenomenon was not measured by the wave gauges

of the Large Wave Flume. The reasons for this were probably the di�erent kind of used

wave gauges and the position of wave gauges (close to the �ume wall). Therefore, those

oscillations are not an universal indicator for wave breaking.

6.1.3.2. Conditions of the Breaking Detection Method

Taking into account all laboratory tests carried out in this thesis (with an initial spectral

slope of sZ,i = 0.044), the following thresholds were found to detect wave breaking in a

time series:

1. The amplitude of the wave crest has to be at least 80% of HS .

η(t) ≥ 0.8HS

2. The instantaneous wave steepness has to be greater than 0.4

sZ (t) ≥ 0.4

3. The wave steepness has to be greater than 0.08.

sZ ≥ 0.08

112



6.1. Detection of Breaking Onset in Wave Trains

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

-
0
.
1

0

0
.
1

0
.
2

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

024

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

0

0
.
5

1

F
ig
ur
e
6.
6.
:
T
im

e
se
ri
es

of
te
st

ru
n
1
fo
r
w
av
e
ga
ug
e
W
G
2
w
it
h
H
S

=
0.

2
m

an
d
ph

as
e
an
gl
e
di
st
ri
bu

ti
on

�a
�
w
it
h
th
e

in
st
an
ta
ne
ou
s
pa
ra
m
et
er
s
a
(t

)
(i
ns
ta
nt
an
eo
us

am
pl
it
ud

e)
,f

(t
)
(i
ns
ta
nt
an
eo
us

fr
eq
ue
nc
y)

an
d
s Z

(t
)
(i
ns
ta
nt
an
eo
us

st
ee
pn

es
s)
.
T
he

tw
o
sp
ill
in
g
br
ea
ke
rs

oc
cu
r
at

ap
pr
ox
im

at
el
y

33
s
an
d

61
s.

T
he

su
gg
es
te
d
th
re
sh
ol
ds

ar
e
m
ar
ke
d

w
it
h
da
sh
ed

lin
es
.

113



6. Detection and Prediction of Breaking Onset in Wave Trains

4. The instantaneous frequency has to be greater than 2.2fP

f (t) ≥ 2.2fP

5. The crest front steepness has to be greater than 0.009.

s′C ≥ 0.009

6. The crest rear steepness has to be greater than 0.005.

s′′C ≥ 0.005

It must be noted that wave breaking is characterised inevitably not only by �xed values,

but also by the history of the time series. The investigation showed that a breaking

wave crest had a minimum wave amplitude (condition #1) and the maximum steepness

(instantaneous and geometrical) from the entire time series (condition #2 and #3). The

consideration of all these boundary conditions, i.e. a combination of parameters and

thresholds, formed a reliable detection method. A single parameter or threshold is not

su�cient.

Zimmermann and Seymour (2002) carried out model tests with irregular two-dimensional

wave trains in deep water, similar to this thesis. The sea spectrum was a JONSWAP

spectrum with 1.6 s ≤ TP ≤ 2.0 s and 0.23 m ≤ HS ≤ 0.38 m . The phase-time method

was used as the detection method and two conditions were derived: η ≥ 0.38HS and

f(t) ≥ 0.85fP . Further steepnesses and asymmetries had also been investigated, but ac-

cording to Zimmermann and Seymour did not improve the detection method since it was

not possible to distinguish between steep but non-breaking waves and breaking waves.

This result is con�rmed by the author's own comparison of non-breaking and breaking

wave crests, see subsection 6.2.2; the main result was that only the ratios aC/HS and

a(t)/HS di�er signi�cantly between a non-breaking and breaking wave crest.
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6.2. Deformation of Wave Crests before Breaking Onset

Conclusions

• The detection of breaking onset in physical model tests is non-trivial because break-

ing onset is an extreme short-term state of wave dynamics and di�cult to measure

exactly with wave gauges.

• Therefore, the novel parameter of instantaneous steepness is introduced and de�ned

as sZ(t) = 2a(t)/L(t). The instantaneous steepness sZ(t) describes the relation

between the envelope of surface elevation and the rate of change of the surface

elevation, which are both maximal at breaking onset. Even when the wave gauge

did not measure the exact point of breaking onset in the physical model tests, the

instantaneous steepness sZ(t) was able to detect wave breaking in an unambiguous

way.

• Based on the physical model tests with irregular wave trains and an initial spec-

tral steepness of sZ,i = 0.044, the following threshold parameters were found for

a detection method: η(t) ≥ 0.8HS , sZ(t) ≥ 0.4, and sZ ≥ 0.08. But most im-

portantly those indicative parameters reached their maximum at breaking onset.

That means, in order to detect dominant wave breaking in irregular wave trains,

the largest, steepest, and fastest deforming wave has to be found.

6.2. Deformation of Wave Crests before Breaking Onset

In this section, the deformation of the breaking wave crest within the last 2 s before break-

ing onset is investigated more precisely in order to obtain further valuable information

for the detection of breaking onset. The development of the geometrical and instantan-

eous parameters of the wave crest over time towards breaking onset was considered and

the reached thresholds were determined. Subsequently, the results of the breaking wave

crests were compared with the results of non-breaking wave crests in order to determine

indicators that only occur during wave breaking. Finally, the results were compared with

the physical model tests of Bonmarin and Ramamonjiarisoa (1985) and Bonmarin et al.

(1989). Bonmarin et al. conducted model tests with monochromatic wave trains with an

initial wave steepness in the order of magnitude of H/L0 = 0.08, which broke because

of modulational instability. The deformation of the breaking wave crest was recorded

spatially by means of high-speed cameras. These di�erences in the generation and type

of wave breaking had to be taken into account when compared with the results of this
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Figure 6.7.: Computed wave crest evolution (chronological) until breaking onset with
time step ∆t = 0.04 s.

thesis.

6.2.1. Deformation of Wave Crests before Breaking Onset

In Fig. 6.7 the temporal development of a wave crest before breaking onset is plotted

against the �ume length; the last ten time steps (10 ·0.04 s = 0.4 s) before breaking onset

are shown. The �at wave trough and the rapidly rising wave crest can be seen. The

geometrical and instantaneous parameters of these waves which are about to break are

examined in more detail below. For a better representation, the results of the test runs

with the initial spectral steepness between 0.027 ≤ sZ,i ≤ 0.071 are shown separately,

see Fig. 6.8 to Fig. 6.10, and for sZ,i = 0.01, 0.02, see Figs. C.1 to C.3 in the annex. The

�gures show the development of the geometrical and instantaneous parameters within 2 s

before breaking onset with a time step of ∆t = 0.04 s, and the breaking onset as the last

time step.

It can be observed that between time step 30-40, i.e. 0.4 s-0.8 s, before breaking onset,

the wave crest began to deform signi�cantly geometrically. The larger the initial spectral

steepness sZ,i the later the deformation began and the smaller the change. The crest

amplitude aC and the instantaneous amplitude a (t) increased rapidly and reached their

maximum with breaking onset. The crest amplitude aC doubled and the instantaneous

amplitude a(t) tripled within the last 2 s before breaking onset. The wave frequency

f0 did not change signi�cantly, rather decreased slightly, i.e. the wavelength increased

slightly. Thus the increase of the wave amplitude aC was responsible for the increase
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Figure 6.8.: Development of the median of the geometrical parameters against the time
step (∆t = 0.04 s) until breaking onset with the simulated NWF data for
the test runs with di�erent spectral steepnesses sZ,i (part 1, amplitudes and
frequencies).
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Figure 6.9.: Development of the median of the geometrical parameters against the time
step (∆t = 0.04 s) until breaking onset with the simulated NWF data for
the test runs with di�erent spectral steepnesses sZ,i (part 2, steepnesses and
asymmetries).
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step (∆t = 0.04 s) until breaking onset with the simulated NWF data for
the test runs with di�erent spectral steepnesses sZ,i (part 3, steepnesses).
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6. Detection and Prediction of Breaking Onset in Wave Trains

of the wave steepness sZ . It can be observed that approximately 0.7 s before breaking

onset, the wave frequency f0 reached similar values for all initial spectral steepnesses.

The instantaneous frequency f(t) decreased slightly about 0.5 s before breaking onset and

then increased signi�cantly (up to triple) and reached its maximum with breaking onset.

The instantaneous wave steepness sZ (t) was constant up to about 0.4 s before breaking

onset and then increased promptly (up to �ve-fold); in comparison, the geometrical

wave steepness sZ increased slightly already from 2 s before breaking onset, and then

increased twofold 0.8 s before breaking onset. The larger the initial spectral steepness

sZ,i the smaller the wave steepness sZ of the breaking wave crest.

The alternative wave steepnesses besides sZ , which were sZC = aC/L, sZT = aT /L,

s′C = aC/L
′ and s′′C = aC/L

′′, behaved similarly to sZ and doubled in the last 2 s

before breaking onset. Approximately 0.8 s before breaking onset the crest steepness

sZC and the crest rear steepness s′′C reached their maximum at breaking onset. The

trough steepness sCT was 0.4 s before breaking onset almost constant; this indicates that

the through amplitude aT became smaller as the wavelength L increased. The crest

front steepness s′C behaved similar to the wave steepness sZ for large initial spectral

steepnesses sZ,i ≥ 0.044; it increased 0.8 s before breaking onset and reached its maximum

at breaking onset. For small initial spectral steepnesses sZ,i ≤ 0.035, however, the crest

front steepness decreased 0.4 s before breaking onset. This suggests that for small initial

spectral steepnesses, where the wave train had time to develop, the wave crest not only

rose, but also tended forward as the crest front wavelength L′ shortened. This could be

a reference to di�erent types of breakers. With values between 0.04 ≤ s′C ≤ 0.14 and

0.05 ≤ s′′C ≤ 0.2 the wave crest was o� from a symmetric shape with s′C = s′′C = 0.40

(for a second-order Stokes wave in deep water).

In the case of the geometrical parameters for the asymmetry, the horizontal asymmetry

µH = aC/H started to increase approximately from 0.4 s to 0.8 s before breaking onset

and reached its maximum with breaking onset; the larger the initial spectral steepness

sZ,i the earlier the increase started. For the vertical asymmetry µV = L′′/L′, however,

the parameter decreased slightly in the �rst 1.2 s, and then increased until 0.4 s before

breaking onset, reached its maximum and then decreased toward breaking onset. This

also indicates the shortening of the crest front wavelength L′ and thus the inclination

of the wave crest forward. With values between 0.6 ≤ µH ≤ 0.7 and 0.6 ≤ µV ≤ 0.8

the wave crest was o� from a symmetric shape with µH = 0.61 and µV = 1 (for a

second-order Stokes wave in deep water).

In Tab. 6.4 the median values are summarised for all geometrical and instantaneous

parameters for every �fth time step (every 0.2 s). To quantitatively describe the change
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6.2. Deformation of Wave Crests before Breaking Onset

Table 6.4.: Median values for every geometrical and instantaneous parameter for every
5th time step (every 0.2 s) until time of breaking onset (tbo) for the test runs
with initial spectral steepness sZ,i = 0.044.

1st 5th 10th 15th 20th 25th 30th 40th 45th tbo

aC/HS 0.27 0.28 0.27 0.25 0.24 0.26 0.32 0.38 0.45 0.57

f0/fP 1.12 1.11 1.14 1.16 1.18 1.14 1.10 1.10 1.09 1.06

a(t)/HS 0.23 0.24 0.23 0.24 0.25 0.25 0.28 0.34 0.45 0.58

f(t) ∗ LP 1.44 1.38 1.44 1.34 1.32 1.27 1.22 1.21 1.66 2.12

sZ 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05

sZ(t) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.07 0.11

µV 0.69 0.75 0.71 0.67 0.64 0.71 0.80 0.79 0.70 0.64

µH 0.61 0.63 0.62 0.62 0.61 0.61 0.61 0.63 0.65 0.68

sZC 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03

sZT 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02

s′C 0.06 0.06 0.07 0.06 0.06 0.07 0.08 0.09 0.10 0.11

s′′C 0.09 0.08 0.09 0.09 0.09 0.10 0.10 0.12 0.14 0.18

of the median values over the time steps, the absolute values of the gradients of the

median values are summarised in Tab. 6.5. It can be observed how most of the changes

happened in the last 0.4 s - 0.8 s before breaking onset and the parameters reached their

maximum or minimum values with breaking onset.

Tabs. 6.6 and 6.7 summarises the minimum and maximum values of the geometrical and

instantaneous parameters at breaking onset for every initial spectral steepness sZ,i. The

parameters were within those ranges when the breaking onset happened. The maximum

values can be taken as thresholds for detection. Those results con�rm that there is

no universal value to detect wave breaking. All these wave crest broke and covered a

large range of values. The geometrical and instantaneous parameters showed that wave

breaking onset is an absolute immediate phenomenon. The later the wave train broke,

i.e. the more time the wave train had to develop, the less it changed in the last 2 s before

breaking onset. Since the wave frequency did not change signi�cantly, this could be an

indication that the majority of wave crests broke due to wave-wave interaction, i.e. the

wave energy accumulated by the superposition of waves and thereby the waves broke.

This assumption is supported by the fact that just approximately 3% of the test runs

ful�lled the conditions that the kurtosis of the wave trains is k > 3 and the relative water
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6.2. Deformation of Wave Crests before Breaking Onset

Table 6.6.: Minimum and maximum values of the geometrical and instantaneous para-
meters at breaking onset for initial spectral steepness sZ,i = 0.01 − 0.035.

sZ,i 0.01 0.02 0.027 0.033 0.035

aC/HS 0.73 2.11 0.79 1.92 0.16 1.41 0.22 1.21 0.21 1.21

f0/fP 1.02 4.12 1.02 2.26 0.83 1.93 0.76 1.97 0.78 2.28

a(t)/HS 0.74 2.17 0.80 1.92 0.17 1.42 0.22 1.23 0.21 1.21

f(t) ∗ LP 3.00 13.61 2.25 8.14 1.17 7.15 1.02 8.03 1.21 6.54

sZ 0.02 0.26 0.03 0.11 0.01 0.10 0.02 0.12 0.01 0.12

sZ(t) 0.05 0.47 0.07 0.61 0.01 0.42 0.03 0.36 0.02 0.38

µV 0.00 7.00 0.11 4.75 0.14 3.29 0.06 5.67 0.10 2.50

µH 0.49 0.99 0.62 1.00 0.46 1.00 0.48 1.00 0.43 0.97

sZC 0.01 0.25 0.02 0.11 0.01 0.09 0.01 0.11 0.01 0.12

sZT 0.00 0.06 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.03

s′C 0.03 0.58 0.09 0.34 0.02 0.27 0.02 0.37 0.01 0.30

s′′C 0.03 0.98 0.05 0.95 0.03 0.88 0.04 1.47 0.03 0.56

Table 6.7.: Minimum and maximum values of the geometrical and instantaneous para-
meters at breaking onset for initial spectral steepness sZ,i = 0.044 − 0.071.

sZ,i 0.044 0.05 0.055 0.067 0.071

aC/HS 0.08 1.61 0.13 0.83 0.11 1.58 0.06 0.74 0.08 0.61

f0/fP 0.73 2.33 0.80 2.45 0.74 2.22 0.69 2.22 0.76 1.98

a(t)/HS 0.08 1.62 0.14 0.87 0.12 1.60 0.06 0.75 0.09 0.62

f(t) ∗ LP 0.36 8.44 0.89 7.11 0.88 11.56 0.78 7.89 0.84 5.35

sZ 0.01 0.13 0.01 0.15 0.01 0.16 0.00 0.10 0.01 0.10

sZ(t) 0.01 1.22 0.02 0.29 0.02 2.05 0.01 0.35 0.01 0.26

µV 0.04 3.67 0.06 3.50 0.08 3.33 0.04 4.40 0.08 5.25

µH 0.44 1.00 0.47 0.99 0.43 1.00 0.42 1.00 0.41 0.99

sZC 0.00 0.12 0.01 0.14 0.01 0.14 0.00 0.10 0.01 0.10

sZT 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.03 0.00 0.03

s′C 0.01 0.44 0.03 0.32 0.01 0.47 0.01 0.35 0.01 0.27

s′′C 0.02 1.15 0.02 0.55 0.02 0.69 0.01 1.03 0.02 0.51
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6. Detection and Prediction of Breaking Onset in Wave Trains

depth is h/L > 0.5, which are the conditions for modulational instability to be present

which may lead to wave breaking; thus wave breaking due to modulational instability

was unlikely in these test runs. Furthermore, the almost constant wave frequency and

therefore wavelength indicated that the waves did not shorten which rather happens for

depth-induced wave breaking.

Conclusions

• Based on the hydronumerical model tests, the deformation of breaking wave crest

was analysed with a time step of ∆t = 0.04 s and for the time period of 2 s. The

deformation of breaking wave crest began approximately 0.4 s - 0.8 s before breaking

onset.

• The larger the initial spectral steepness sZ,i, the later the deformation began, the

smaller the change of the parameters, and the smaller the wave steepness sZ of the

breaking wave crest. In other words, the earlier the wave train broke, i.e. the less

time the wave train had to develop, the faster the deformation happened.

• The results con�rm that there is no universal value to detect wave breaking. All

breaking wave crests covered a large range of values of geometrical and instantan-

eous parameters.

6.2.2. Comparison of Breaking and Non-Breaking Wave Crests

In Figs. 6.11, 6.12 and 6.13, the normalised instantaneous amplitude a(t)/HS , the nor-

malised instantaneous frequency f (t) ∗ LP and the instantaneous steepness sZ(t) =

2 ∗ a(t)/L(t) are shown for both the breaking and non-breaking wave crests. For the

breaking wave crests, the median value of the corresponding parameter was taken with

all test runs considered. In the case of non-breaking wave crests, there were only four

wave trains (three wave trains with sZ,i = 0.01 and one with sZ,i = 0.02) which had no

instability during their simulation and the simulation ran until the simulation end was

reached. Therefore, one wave crest per initial spectral steepness is plotted exemplarily;

the chosen wave crest was the maximum crest in the wave train at the end of simula-

tion. In the two test runs chosen here, the highest wave was also the steepest wave. It

can thus be judged whether a distinction between a breaking wave and a very steep but

non-breaking wave is possible.

It can be observed that the breaking wave was strongly deformed about 0.4 s before
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6.2. Deformation of Wave Crests before Breaking Onset

Figure 6.11.: Normalised instantaneous amplitude of the breaking and non-breaking wave
crest for the test runs with initial spectral steepness sZ,i = 0.01 and sZ,i =
0.02. In case of the breaking wave crest, the parameter is a median of all
test runs.

Figure 6.12.: Normalised instantaneous frequency of the breaking and non-breaking wave
crest for the test runs with initial spectral steepness sZ,i = 0.01 and sZ,i =
0.02. In case of the breaking wave crest, the parameter is a median of all
test runs. 125
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Figure 6.13.: Instantaneous steepness of the breaking and non-breaking wave crest for
the test runs with initial spectral steepness sZ,i = 0.01 and sZ,i = 0.02. In
case of the breaking wave crest, the parameter is a median of all test runs.

126



6.2. Deformation of Wave Crests before Breaking Onset

breaking onset, and the instantaneous amplitude, frequency and correspondingly steep-

ness increased. The non-breaking wave, on the other hand, increased in amplitude, but

its frequency dropped. Overall, the non-breaking wave crest did not reach the maximum

values of the breaking wave crest. The breaking wave crest reached a three times larger

instantaneous amplitude and a two times greater instantaneous steepness. A clear dis-

tinction between a breaking and a very steep wave was therefore possible in this example.

The breaking wave crest reached the following thresholds for the test runs with an initial

spectral steepness sZ,i = 0.01:

a(t)/HSmax = 1.0

f(t) ∗ LPmax = 6.3

sZ(t)max = 0.14

The following thresholds were reached for the test runs with an initial spectral steepness

sZ,i = 0.02:

a(t)/HSmax = 1.3

f(t) ∗ LPmax = 4.1

sZ(t)max = 0.21

These thresholds di�er from the �ndings in subsection 6.1.3.2, because the initial spectral

steepness sZ,i of the investigated test runs di�er. Comparing Tab. 6.7, one will �nd that

sZ(t) is between 0.01 and 1.22 for sZ,i = 0.044 and thus the �ndings in subsection 6.1.3.2

lay in this value range.

In Tab. 6.8, the geometrical and instantaneous parameters for the non-breaking and

breaking wave crests at the time of simulation end tsimul are shown. It can be ob-

served that only the parameters aC/HS and a(t)/HS di�ered signi�cantly between a

non-breaking and breaking wave crest. Otherwise, the values of the non-breaking wave

crests were in the value ranges of the breaking wave crests. The crest amplitude aC for

a breaking wave was at least 1.5 times larger than for a non-breaking wave. This res-
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6. Detection and Prediction of Breaking Onset in Wave Trains

Table 6.8.: Geometrical and instantaneous parameters for the highest (and steepest) wave
crest at the time of simulation end for non-breaking test runs, and minimum
and maximum values for the breaking test runs.

Non-Breaking Wave Crest Breaking Wave Crest
sZ,i = 0.01 sZ,i = 0.02 sZ,i = 0.01 sZ,i = 0.02

aC/HS 0.48 0.47 0.73 2.11 0.79 1.92

f0/fP 3.57 2.92 1.02 4.12 1.02 2.26

a(t)/HS 0.49 0.48 0.74 2.17 0.80 1.92

f(t) ∗ LP 9.41 5.79 3.00 13.61 2.25 8.14

sZ 0.07 0.09 0.02 0.26 0.03 0.11

sZ(t) 0.09 0.11 0.05 0.47 0.07 0.61

µV 1.00 0.67 0.00 7.00 0.11 4.75

µH 0.88 0.92 0.49 0.99 0.62 1.00

sZC 0.06 0.08 0.01 0.25 0.02 0.11

sZT 0.01 0.01 0.00 0.06 0.00 0.02

s′C 0.25 0.16 0.03 0.58 0.09 0.34

s′′C 0.25 0.24 0.03 0.98 0.05 0.95

ult agrees with the observation from the �eld measurements of Holthuijsen and Herbers

(1986), who observed that the average crest amplitude of breaking waves was about 1.6

times greater than the average crest amplitude of all the measured waves.

Conclusions

It can be observed that only the parameters aC/HS and a(t)/HS di�ered signi�cantly

between a non-breaking and breaking wave crest of a steep wave. The crest amplitude aC
for a breaking wave was at least 1.5 times larger than for a non-breaking wave. Otherwise,

the values of the non-breaking wave crests were in the value ranges of the breaking wave

crests.

6.2.3. Comparison with Physical Model Tests

Bonmarin and Ramamonjiarisoa (1985) and Bonmarin et al. (1989) conducted physical

model tests with monochromatic wave trains with an initial wave steepness in the order

of magnitude of H/L0 = 0.08, which broke because of modulational instability. The
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6.3. Prediction of Breaking Onset

deformation of the breaking wave crest was recorded spatially by means of high-speed

cameras. Those di�erences in the generation and type of wave breaking had to be taken

into account when compared with the results of this thesis.

In Fig. 6.14, the measured values of the geometrical parameters of Bonmarin and Rama-

monjiarisoa (1985) are shown with the simulated NWF data for the tests with an initial

spectral steepness of sZ,i = 0.071. It can be observed that the crest amplitudes aC
were similar for the simulated and measured data and were of the same order of mag-

nitude. For the remaining geometrical parameters, the measured values of Bonmarin et

al. exceeded the simulated values. In addition, the behaviour of the trough steepness

sZT = aT /L and the crest front steepness s′C = aC/L
′ di�ered from the measured values.

The di�erences in the behaviour and in the magnitudes of the values can be explained

by several causes: Bonmarin and Ramamonjiarisoa (1985) investigated monochromatic

wave trains, no sea state spectra, and generated wave breaking through modulational

instabilities rather than wave-wave interaction.

The di�erences between the results of Bonmarin and the NWF data also showed that a

transfer of the model experiments to the nature is not easily possible, since natural waves

are directional seas with a spectrum of frequencies. Bonmarin and Ramamonjiarisoa

(1985), as well as the author of this thesis, concluded that there are no universal values

for the geometrical parameters which de�ne breaking onset.

6.3. Prediction of Breaking Onset

In this section the results of the analysis of the development of the wave train towards

breaking onset are presented, focusing on the geometrical and instantaneous parameters

and their distribution. The wave train, which was analysed, was read out at the location

of the highest wave crest at the time of breaking onset. It contained the ten waves before

the breaking wave; the wave which was about to break itself was not taken into account.

Characteristic phenomena of the wave train before breaking onset were determined in

order to not only detect but also to predict the breaking onset. The threshold method

was applied again to detect breaking onset and the Markov chain method was carried

out to predict breaking onset.

In Figs. 6.15 to 6.17, the median values of the geometrical and instantaneous para-

meters of the single waves in the wave train are plotted for the test runs with an initial

spectral steepness of sZ,i = 0.027, 0.044, 0.067. It can be observed that approximately

�ve to six waves before breaking onset the wave train started clearly to deform. The

crest amplitude aC and the instantaneous amplitude a(t) increased towards breaking on-
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Figure 6.14.: Development of geometrical parameters against time steps (∆t = 0.04 s)
with the simulated NWF data (black circle markers) for the test with sZ,i =
0.071 and the measured data (�lled red circle markers) by Bonmarin and
Ramamonjiarisoa (1985). The breaking onset is marked by a dashed line.
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6.3. Prediction of Breaking Onset

set and reached their maximum with the last wave before the breaking wave. The larger

the initial spectral steepness sZ,i the smaller the median values of aC/HS and aC(t)/HS ,

but the larger the gradient from the 1st to the 10th wave. For small spectral steepnesses

sZ,i the wave train had time to develop and to reach a critical amplitude or steepness.

For large spectral steepnesses this increase of amplitude and steepness happened quickly.

The wave frequency f0 and the instantaneous frequency f(t) did not change signi�cantly

in the wave train and they did not show uniform behaviour for all initial spectral steep-

nesses sZ,i. This behaviour was consistent with the results of the physical model tests,

see section 6.1. Since the frequency did not change signi�cantly indicates that the wave,

which was about to break, was part of a wave group and broke likely due to wave-wave

interaction and not due to modulational instability.

The wave steepness sZ increased towards breaking onset; the larger the initial spectral

steepness sZ,i the larger the gradient. For small spectral steepnesses sZ,i the wave steep-

ness sZ hardly increased. This di�erent behaviour depending on the spectral steepnesssZ,i,

suggests that di�erent physical phenomena caused the wave breaking or di�erent types

of wave breaking occurred.

The instantaneous steepness sZ(t) increased quickly in the last �ve waves before break-

ing onset, whereby the increase was greater for the large initial spectral steepnesses.

The horizontal asymmetry µH = aC/H increased only for the small initial spectral

steepness sZ,i = 0.027 in the last three waves before breaking onset. The vertical steep-

ness µV = L′′/L′ changed signi�cantly for small spectral steepnesses sZ,i. For spectral

steepnesses sZ,i ≥ 0.044 the vertical asymmetry increased in the last four waves before

breaking onset.

The alternative wave steepnesses besides sZ , which were sZC = aC/L, sZT = aT /L,

s′C = aC/L
′ and s′′C = aC/L

′′, behaved similarly to sZ and increased their values 1.5

times for small initial spectral steepnesses sZ,i and doubled them for large initial spectral

steepnesses. For the initial spectral steepnesses sZ,i = 0.044 and sZ,i = 0.067, the steep-

nesses increased clearly in the last four to �ve waves before breaking onset. For the small

initial spectral steepness sZ,i = 0.027, the steepnesses acted slightly di�erent, namely

they did not change signi�cantly in the last three waves before breaking onset. This

indicates a wave group which broke due to modulational instability. That assumption

was also supported by the observation that µH was not pronounced asymmetric as it is

typical for a deep water bore breaking wave with µH = 0.9, which is a highly non-linear

wave-wave interaction, see Kjeldsen and Myrhaug (1981).

Tabs. 6.9 and 6.10 summarises the minimum and maximum values of the geometrical

and instantaneous parameters for the last wave before the breaking wave for every initial
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Figure 6.15.: Development of geometrical and instantaneous parameters (part 1, amp-
litudes and frequencies) of the wave train at location of breaking onset for
the test runs with initial spectral steepness sZ,i = 0.027, 0.044, 0.067 over
the last ten waves before the breaking wave.
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the test runs with initial spectral steepness sZ,i = 0.027, 0.044, 0.067 over
the last ten waves before the breaking wave.
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Figure 6.17.: Development of geometrical and instantaneous parameters (part 3, steep-
nesses) of the wave train at location of breaking onset for the test runs with
initial spectral steepness sZ,i = 0.027, 0.044, 0.067 over the last ten waves
before the breaking wave.
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6.3. Prediction of Breaking Onset

spectral steepness sZ,i. The parameters were within these ranges before the wave broke.

The maximum values can be taken as thresholds for detection. Those results con�rm

that there is no universal value to detect wave breaking. All these wave trains broke and

covered a large range of values.

6.3.1. Markov Chain

In order to allow a prediction of breaking onset, the development of the wave train is

stochastically described by means of the Markov chain in this section. The Markov

chain is a mathematical model that describes the probabilities of observing a certain

sequence of discrete states. At each step of the process, the model may generate an

output, or emission, depending on which state it is in, and then make a transition to

another state. Here, the sets of states i = i1, i2, ..., ir were the ten waves (r = 10)

before the breaking wave and the emissions for every step were the geometrical and

instantaneous parameters. It is possible to determine, for example, the probability that

the 10th wave had a crest amplitude with the median value aC/HS = 0.2, if the 5th

wave had the median value aC/HS = 0.1. The Markov chain starts in the initial

state i0 at step 0. The chain then transition to state i1 with probability T1i1 (transition

probability) and emits an output sk1 with probability Ei1k1 (k = 12, since there are 12

geometrical and instantaneous parameters). Consequently, the probability of observing

the sequence of state i1i2...ir and the sequence of emissions sk1sk2 . . . skr in the �rst r

steps is p = T1i1Ei1k1 ∗ Ti1i2Ei2k2 . . . ∗ Tir−1irEirk. Since the transition from one wave to

the next can only happen in one direction, namely towards the 10th wave, the transition

probability from, for example, state i2 (2nd wave) to state i1 (1st wave) is Ti2i1 = 0. Thus,

the transition probability is Ti1i2 = Ti2i3 = . . . = Ti9i10 = 1. The emission probabilities

Eirkr were the relative frequencies of the geometrical and instantaneous parameters. In

Figs. 6.18 to 6.20 the boxplots of the geometrical and instantaneous parameters of the

single waves in the wave train at the location of breaking onset are plotted for the test

runs with an initial spectral steepness of sZ,i = 0.044. As noted in section 6.3, the wave

train began to alter signi�cantly approximately �ve to six waves before the breaking wave.

The median values of the last six waves before breaking onset are summarised in Tab. 6.11

for all geometrical and instantaneous parameters. In order to quantify the change in the

wave train, the absolute value of the gradients of the median values are summarised in

Tab. 6.12. It is observed that the median values and their gradients increased towards

breaking onset.

As mentioned above, the probability of a particular sequence of events occurring is

the product of their single probabilities. Since the relative frequencies were known here,
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Table 6.9.: Minimum and maximum values of geometrical and instantaneous parameters
for the 10th wave (last wave before the breaking wave) for the test runs with
initial spectral steepness sZ,i = 0.01− 0.035.

sZ,i 0.01 0.02 0.027 0.033 0.035

aC/HS 0.006 1.00 0.009 0.68 0.004 1.04 0.006 0.85 0.001 0.81

f0/fP 0.897 4.58 0.878 3.17 0.709 5.94 0.659 8.50 0.543 7.92

a(t)/HS 0.048 1.45 0.039 0.69 0.033 1.05 0.032 0.86 0.040 0.81

f(t)/fP -2.999 24.67 -0.506 3.40 -2.337 8.71 -0.104 6.23 -1.586 5.94

sZ 0.008 0.31 0.009 0.05 0.005 0.07 0.008 0.12 0.006 0.16

sZ(t) 0.007 2.33 0.001 0.13 0.000 0.30 0.001 0.43 0.001 0.69

µV 0.000 25.00 0.103 15.21 0.000 27.80 0.023 87.11 0.000 26.01

µH 0.017 0.97 0.034 0.62 0.018 0.96 0.021 0.99 0.005 0.99

sZC 0.000 0.21 0.002 0.02 0.001 0.05 0.001 0.11 0.000 0.12

sZT 0.002 0.10 0.004 0.05 0.001 0.05 0.000 0.09 0.000 0.07

s′C 0.004 6.95 0.004 0.04 0.001 0.13 0.001 0.16 0.001 0.39

s′′C 0.003 0.34 0.002 0.12 0.001 0.56 0.001 0.73 0.001 0.27

Table 6.10.: Minimum and maximum values of geometrical and instantaneous parameters
for the 10th wave (last wave before the breaking wave) for the test runs with
initial spectral steepness sZ,i = 0.044− 0.071.

sZ,i 0.044 0.05 0.055 0.067 0.071

aC/HS 0.001 0.79 0.001 0.54 0.002 0.53 0.001 0.53 0.001 0.43

f0/fP 0.518 9.44 0.341 9.44 0.500 7.08 0.423 4.47 0.497 3.93

a(t)/HS 0.005 0.79 0.010 0.54 0.011 0.54 0.008 0.54 0.008 0.43

f(t)/fP -3.989 31.23 -1.741 5.06 -26.271 5.21 -1.538 17.63 -5.032 6.37

sZ 0.003 0.32 0.002 0.11 0.004 0.12 0.003 0.21 0.002 0.12

sZ(t) 0.000 1.49 0.000 0.33 0.000 1.39 0.000 1.38 0.000 0.50

µV 0.000 49.00 0.000 21.16 0.000 49.00 0.000 60.06 0.000 38.21

µH 0.003 1.00 0.012 0.99 0.027 0.99 0.015 1.00 0.011 0.98

sZC 0.000 0.27 0.000 0.10 0.001 0.11 0.000 0.18 0.001 0.09

sZT 0.000 0.15 0.001 0.08 0.000 0.05 0.000 0.09 0.000 0.08

s′C 0.000 1.06 0.000 0.60 0.001 1.14 0.000 0.69 0.000 1.56

s′′C 0.000 1.57 0.002 0.23 0.001 0.23 0.001 1.03 0.001 0.25
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Table 6.11.: Median values for every geometrical and instantaneous parameter for the
last six waves before the breaking wave for the test runs with initial spectral
steepness sZ,i = 0.044.

5th wave 6th wave 7th wave 8th wave 9th wave 10th wave

aC/HS 0.14 0.14 0.16 0.18 0.21 0.26

f0/fP 1.10 1.12 1.09 1.12 1.15 1.12

a(t)/HS 0.14 0.15 0.17 0.19 0.22 0.27

f(t)/fP 1.26 1.29 1.29 1.34 1.39 1.41

sZ 0.02 0.02 0.02 0.02 0.03 0.03

sZ(t) 0.02 0.02 0.03 0.03 0.04 0.05

µV 0.76 0.79 0.73 0.79 0.79 0.86

µH 0.57 0.58 0.59 0.58 0.57 0.59

sZC 0.01 0.01 0.01 0.01 0.02 0.02

sZT 0.01 0.01 0.01 0.01 0.01 0.01

s′C 0.01 0.01 0.02 0.02 0.02 0.03

s′′C 0.02 0.02 0.02 0.02 0.03 0.03

those were taken. The number of classes were calculated with Eq. (5.1) and m = 14

was selected. In Tab. 6.13 the relative frequencies of the medians and their products are

summarised for all parameters and for the six last waves in the wave train. The product

describes the probability that the parameters in the last six waves will take the values of

the medians. In Tab. 6.14, on the other hand, the maximum relative frequencies and their

product are summarised, i.e. the most probable sequence of the parameters is described

here. The corresponding value ranges are summarised in Tab. 6.15. For example, the 5th

wave in the wave train had for its relative crest amplitude aC/HS a maximum relative

frequency of 0.22 and it ranged from 0.05 to 0.1. The median value of the same wave

was aC/HS = 0.14 with a relative frequency of 0.19.
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Figure 6.18.: Boxplots of geometrical and instantaneous parameters (part 1, amplitudes
and frequencies) of the wave train at location of breaking onset for sZ,i =
0.044 over the last ten waves before the breaking wave.
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Table 6.12.: Absolute value of the gradient of the median values for every geometrical
and instantaneous parameter for the last six waves before the breaking wave
for the test runs with initial spectral steepness sZ,i = 0.044.

5th wave 6th wave 7th wave 8th wave 9th wave 10th wave

aC/HS 0.0088 0.0114 0.0186 0.0232 0.0407 0.0543

f0/fP 0.0073 0.0071 0.0000 0.0295 0.0000 0.0302

a(t)/HS 0.0096 0.0116 0.0188 0.0251 0.0415 0.0531

f(t)/fP 0.0072 0.0157 0.0273 0.0492 0.0366 0.0242

sZ 0.0014 0.0013 0.0027 0.0039 0.0037 0.0040

sZ(t) 0.0019 0.0026 0.0044 0.0060 0.0089 0.0119

µV 0.0311 0.0107 0.0019 0.0277 0.0361 0.0721

µH 0.0057 0.0099 0.0012 0.0093 0.0058 0.0175

sZC 0.0007 0.0009 0.0016 0.0020 0.0023 0.0028

sZT 0.0006 0.0003 0.0009 0.0017 0.0015 0.0013

s′C 0.0012 0.0008 0.0027 0.0038 0.0044 0.0060

s′′C 0.0009 0.0015 0.0029 0.0036 0.0039 0.0051
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Table 6.13.: Relative frequency of the median values for every geometrical and instant-
aneous parameter for the last six waves before the breaking wave for the test
runs with initial spectral steepness sZ,i = 0.044.

5th
wave

6th
wave

7th
wave

8th
wave

9th
wave

10th
wave

Product

aC/HS 0.19 0.20 0.22 0.18 0.18 0.18 0.00005

f0/fP 0.99 0.96 0.81 0.87 0.96 0.54 0.34685

a(t)/HS 0.20 0.17 0.21 0.18 0.17 0.17 0.00004

f(t)/fP 0.61 0.87 0.70 0.96 0.93 0.81 0.26778

sZ 0.65 0.97 0.32 0.94 0.68 0.48 0.06282

sZ(t) 0.84 0.87 0.82 0.72 0.82 0.78 0.27650

µV 0.83 0.91 0.95 0.94 0.97 0.87 0.56840

µH 0.25 0.24 0.24 0.23 0.21 0.25 0.00017

sZC 0.67 1.00 0.32 0.97 0.89 0.57 0.10487

sZT 0.59 0.28 0.64 0.56 0.41 0.43 0.01036

s′C 0.76 0.94 0.90 0.94 0.75 0.88 0.40287

s′′C 0.80 0.87 0.95 0.66 0.70 0.93 0.28851
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Table 6.14.: Maximum relative frequency for every geometrical and instantaneous para-
meter for the last six waves before the breaking wave for the test runs with
initial spectral steepness sZ,i = 0.044.

5th
wave

6th
wave

7th
wave

8th
wave

9th
wave

10th
wave

Product

aC/HS 0.22 0.20 0.22 0.18 0.18 0.18 0.00005

f0/fP 0.99 0.96 0.81 0.87 0.96 0.54 0.34685

a(t)/HS 0.22 0.20 0.21 0.18 0.17 0.17 0.00005

f(t)/fP 0.61 0.87 0.70 0.96 0.93 0.81 0.26778

sZ 0.65 0.97 0.32 0.94 0.68 0.48 0.06282

sZ(t) 0.84 0.87 0.82 0.72 0.82 0.78 0.27650

µV 0.83 0.91 0.95 0.94 0.97 0.87 0.56840

µH 0.25 0.24 0.24 0.23 0.23 0.25 0.00018

sZC 0.67 1.00 0.32 0.97 0.89 0.57 0.10487

sZT 0.59 0.38 0.64 0.56 0.41 0.43 0.01408

s′C 0.76 0.94 0.90 0.94 0.75 0.88 0.40287

s′′C 0.80 0.87 0.95 0.66 0.70 0.93 0.28851
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Table 6.15.: Minimum and maximum values of the geometrical and instantaneous para-
meters for their respective maximum relative frequencies (see Tab. 6.14) for
the last six waves before the breaking wave for the test runs with initial
spectral steepness sZ,i = 0.044.

5th wave 6th wave 7th wave 8th wave 9th wave 10th wave

aC/HS 0.05 0.10 0.10 0.14 0.12 0.18 0.15 0.20 0.16 0.22 0.23 0.28

f0/fP 0.51 3.51 0.57 2.55 0.50 1.48 0.39 1.88 0.61 2.59 0.52 1.16

a(t)/HS 0.05 0.10 0.10 0.14 0.06 0.12 0.15 0.20 0.17 0.22 0.23 0.28

f(t)/fP 0.37 1.37 -0.30 1.98 1.06 2.92 0.30 3.64 0.74 3.30 1.04 3.56

sZ 0.00 0.02 0.00 0.06 0.01 0.03 0.00 0.06 0.00 0.04 0.03 0.05

sZ(t) 0.00 0.06 0.00 0.08 0.00 0.07 0.00 0.06 0.00 0.10 0.00 0.11

µV 0.00 1.86 0.00 2.95 0.00 5.07 0.00 5.28 0.00 7.50 0.00 3.50

µH 0.51 0.57 0.57 0.64 0.57 0.64 0.57 0.64 0.50 0.57 0.57 0.64

sZC 0.00 0.01 0.00 0.06 0.01 0.01 0.00 0.05 0.00 0.03 0.00 0.02

sZT 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.02

s′C 0.00 0.03 0.00 0.07 0.00 0.06 0.00 0.08 0.00 0.04 0.00 0.08

s′′C 0.00 0.04 0.00 0.05 0.00 0.09 0.00 0.04 0.00 0.05 0.00 0.11
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6.3. Prediction of Breaking Onset

Conclusions

• The wave train started to deform �ve to six waves before breaking onset. Wave

trains with small initial spectral steepnesses sZ,i had time to develop and reached

large median values for aC/HS and aC(t)/HS . Wave trains with large initial spec-

tral steepnesses sZ,i broke fast, thus, had less time to develop, and reached smaller

median values for aC/HS and aC(t)/HS ; their deformation happened quickly.

• Markov chains were determined for the last six waves before breaking onset and

their median values of geometrical and instantaneous parameters for each initial

spectral steepnesses sZ,i were presented.
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7.1. Summary

The main objective of this study was to analyse the variability of wave breaking onset,

in order to gain deeper knowledge of the frequency and likelihood of occurrence of wave

breaking, allowing many applications to a more economic design and safety of o�shore

structures. Breaking onset is de�ned as an instantaneous state of wave dynamics where a

wave has not started to break but cannot return to a stable state either. In this context,

investigations on breaking onset in irregular wave trains (JONSWAP sea spectrum) in

intermediate water depth were carried out using laboratory and hydronumerical model

tests. A numerical wave tank was applied to generate a large data set of parameters of

breaking onset for a reliable probabilistic analysis, in contrast to many previous studies

in literature which analysed single wave breaking events in mono-/quasi-monochromatic

wave trains and focused on energy dissipation or slamming forces on structures. Present

investigations focused on the evolution of wave trains towards and at breaking onset to

describe the stochastic process of breaking onset, to �nd precursors and indicators of

breaking onset, and to determine the optimal sample size of test runs to get a reliable

result of the parameters of breaking onset. By this means, insights on the variability

of breaking onset and its distribution function could be achieved, which have not been

available beforehand.

The physical model tests were carried out in the wave �ume of the Ludwig-Franzius-

Institute in a length scale of 1:40. In parallel, hydronumerical model tests using a numer-

ical wave �ume developed by Sriram (2008) and Sriram et al. (2006; 2007; 2010), based

on the fully non-linear potential �ow theory (semi-arbitrary Lagrangian-Eulerian Finite

Element Method (SALE-FEM, structured version)), were conducted in the same length

scale to complement the laboratory investigations and to increase the possible test run

length and number. The hydronumerical simulations terminated before simulation end

when the water surface became discontinuous. That point of termination of simulation

was de�ned as physical breaking onset when the wave with the maximum wave crest and

the wave with the maximum wave steepness were the same wave or less than one single
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wave apart. Breaking onset was characterised by the time to breaking onset tbr (tem-

poral distance from simulation start to end) and location of breaking onset xbr (spatial

distance from inlet to peak of breaking wave crest). As design database the wave meas-

urements of research platform FINO1 in the North Sea for the time period 2004 - 2011

were used and JONSWAP spectra were selected in such a way that the initial spectral

steepness sZ,i = HS/LP covered daily and storm events. Further input parameters were

water depth, enhancement factor of JONSWAP spectrum, phase angle distribution, and

number of waves in a wave train. By means of the random phase angle distribution,

every considered spectrum was transformed multiple times (up to 500 times) to arti�cial,

but physically-sound time series of water surface elevations.

The cause-e�ect relationship between input wave train and breaking onset was invest-

igated with a dimensional analysis (Buckingham π theorem) and an analysis of the uni-

and bivariate (copula) distribution functions. The optimal sample size of test runs was

derived by means of a convergence analysis. Indicators of breaking onset were detected

by analysing the surface elevation (over time and over �ume length) and applying the

threshold method which assumed that breaking onset happens when a parameter exceeds

a certain threshold value. Precursors of breaking onset were presented with Markov

chains of the geometrical and instantaneous parameters, which described the conditions

that had to be met stochastically for wave instability to occur.

In�uencing Factors on Wave Breaking Onset

The sensitivity of the input wave train (HS , TP , γ, NW , h, ϕ) to breaking onset (tbr, xbr)

was �rstly analysed individually and subsequently with a dimensional analysis based on

the hydronumerical model tests.

1. The experiments showed that breaking onset was highly sensitive to the sequence

of waves in the input wave train (phase angle distribution ϕ), to the initial spectral

steepness sZ,i = HS/LP , and to the number of waves in the input wave train NW .

Di�erent realizations of the same energy density spectra in time domain resulted

in a large scatter of values for the breaking onset (tbr, xbr). The scattering of the

results showed the in�uence of the sequence of waves in the input wave train.

2. The greater the initial spectral steepness sZ,i, the earlier the wave train broke and

the smaller the scatter of tbr and xbr. For small spectral steepnesses sZ,i ≤ 0.044,

the sequence of waves in the input wave train was the main in�uence on breaking

onset. For larger spectral steepnesses, the initial spectral steepness sZ,i, especially

HS and, thus, the spectral energy, was the main in�uence on breaking onset. Even
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wave trains with low spectral steepness broke when duration of simulation was

chosen long enough. The inverse time of breaking onset 1/tbr is almost quadratically

dependent on sZ,i.

3. The larger the number of waves in the input wave train NW , the later the wave

train broke. For test runs with the same initial spectral steepness sZ,i, the number

of waves in the input wave train NW had a linear in�uence on breaking onset. A

change in water depth h or a change in enhancement factor γ did not in�uence

breaking onset.

4. For the dimensional analysis all breaking test runs with aC/HS ≥ 0.9 were con-

sidered to focus on the interesting data range. The power function y = axb was

used as a basic relation. Because the shape of the input spectrum and wave groups

play an important role in wave breaking phenomenon, they were described with

the spectral width νW , the dimensionless time of the �rst wave group in the input

wave train WaGoT ime/TP , and the dimensionless number of waves in that �rst

wave group WaGoNum/NW .

5. To investigate which input variables were relevant for the dimensional analysis,

three groups of input variables were formed and their results were compared with

one another. Group 1 considered all parameters. Group 2 considered sZ,i, NW ,

HS/h, and γ. Group 3 considered sZ,i and HS/h.

6. The resulting equations for the predicted time and location of breaking onset based

on Group 1 were

tbr,pred
TP

= 0.0294s−1.43
Z,i N0.49

W

(
HS

h

)−0.3

γ−0.71

(
WaGoNum

NW

)−0.02

·(
WaGoT ime

TP

)0.002

ν0.76
W

xbr,pred
LP

= 0.0053s−2.09
Z,i N0.05

W

(
HS

h

)−0.11

γ−1.36

(
WaGoNum

NW

)−0.01

·(
WaGoT ime

TP

)−0.05

ν0.44
W

Coe�cients of determination were for tbr,pred R2 = 0.958 and for xbr,pred R2 = 0.906.

The resulting equations for the predicted time and location of breaking onset based on
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Group 3 were

tbr,pred
TP

= 0.158s−1.43
Z,i

(
HS

h

)−0.04

xbr,pred
LP

= 0.0008s−2.09
Z,i

(
HS

h

)−0.09

Coe�cients of determination were for tbr,pred R2 = 0.885 and for xbr,pred R2 = 0.906.

NW and γ were in�uential variables for the time of breaking onset tbr, but not for the

location of breaking onset xbr. The spectral width νW and the wave group parameters

WaGoT ime and WaGoNum showed no in�uence on the coe�cient of determination.

Variability of Wave Breaking Onset and Optimal Sample Size

The scattering of the normalised time and location of breaking onset tbr/TP and xbr/LP ,

respectively, is analysed with univariate and bivariate (copula) distribution functions.

Because the scatter depended on the initial spectral steepness sZ,i, the analyses were

carried out for each sZ,i separately.

1. For the analysis with univariate distribution functions the probability density func-

tions and cumulative distribution functions forGumbel, Gamma,Weibull,Gaus-

sian Normal, and Rayleigh were considered. The analysis showed that the larger

the initial spectral steepness sZ,i, the better all theoretical distribution functions

followed the empirical distribution functions of tbr/TP and xbr/LP due to the de-

creasing scatter. The normalised time of breaking onset tbr/TP was best described

by the Gumbel distribution functions. The normalised location of breaking onset

xbr/LP was best described by the Weibull distribution function.

2. Because tbr/TP and xbr/LP did not follow the same distribution functions, the

classical multivariate approach could not be used. Instead, the Archimedean

copulasGumbel, Clayton, and Frank were chosen for the analysis. The analysis

showed that the larger the initial spectral steepness sZ,i the smaller the copula

parameter Θ, that is, for larger spectral steepnesses the theoretical copula did

not need to be adjusted to the empirical copula as much as for smaller spectral

steepnesses. The empirical copula for (tbr/TP , xbr/LP ) follows the Gumbel copula

best and data generated from the Gumbel copula represented the behaviour of

the time and location of breaking onset well. Based on the Gumbel copula, the
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cumulative distribution functions and exceedance probabilities for breaking onset

were determined and can be used to estimate where and when breaking onset may

occur.

3. The optimal sample size Nopt is the required number of test runs for a robust de-

termination of breaking onset and was determined based on the normalised time

of breaking onset tbr/TP and for each initial spectral steepness sZ,i and the per-

missible deviations 1%, 2%, 5% and 10%. In the �rst step, only the data from

the hydronumerical model tests was used and then expanded by data generated

from the Gumbel copula. The convergence analysis showed that the larger the

initial spectral steepness sZ,i and the larger the permissible deviation, the smaller

the required number of test runs Nopt. Considering all initial spectral steepnesses,

the optimal sample size with permissible deviation of 1% was Nopt = 1, 800, with a

deviation of 2% it was Nopt = 580, with a deviation of 5% it was Nopt = 100, and

with a deviation of 10% it was Nopt = 25.

Detection of Wave Breaking Onset in a Wave Train

The geometrical deformation and development of breaking and non-breaking wave crests

and wave trains were compared with each other in order to identify indicators for breaking

onset.

1. The detection of breaking onset in physical model tests was non-trivial because

breaking onset is an extreme short-term state of wave dynamics and di�cult to

measure exactly with wave gauges. Therefore, a novel parameter based on the Hil-

bert transform was introduced that established a relationship between instantan-

eous amplitude a(t) and instantaneous frequency f(t). The instantaneous steepness

was de�ned as sZ(t) = 2a(t)/L(t), where L(t) was the instantaneous wavelength,

which was L(t) = 1/f(t) when the Hilbert transform was computed from a water

surface elevation over the �ume length. When the Hilbert transform was com-

puted from a water surface elevation over time, L(t) needed to be calculated using

the dispersion relation and the approach of an instantaneous period T (t) = 1/f(t).

The instantaneous steepness sZ(t) described the relation between the envelope of

surface elevation and the rate of change of the surface elevation, which are both

maximal at breaking onset.

2. Based on the physical model tests with irregular wave trains and an initial spec-

tral steepness of sZ,i = 0.044, the following threshold parameters were found for
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a detection method: η(t) ≥ 0.8HS , sZ(t) ≥ 0.4, and sZ ≥ 0.08. But most im-

portantly those indicative parameters reached their maximum at breaking onset.

That means, in order to detect dominant wave breaking in irregular wave trains,

the largest, steepest, and fastest deforming wave had to be found. Even when the

wave gauge did not measure the exact point of breaking onset, the instantaneous

steepness sZ(t) was able to detect wave breaking in an unambiguous way. The

other geometrical parameters did not behave in a unique way at breaking onset, in

contrast to observations for monochromatic wave trains from literature.

3. Based on the hydronumerical model tests, the deformation of breaking wave crest

was analysed with a time step of ∆t = 0.04 s and for the time period of 2 s. The

deformation of breaking wave crest began approximately 0.4 s - 0.8 s before breaking

onset.

4. The larger the initial spectral steepness sZ,i, the later the deformation began, the

smaller the change of the parameters, and the smaller the wave steepness sZ of the

breaking wave crest. In other words, the earlier the wave train broke, i.e. the less

time the wave train had to develop, the faster the deformation happened.

5. For wave trains with small initial spectral steepnesses, where the wave train had

time to develop, the wave crest not only rose, but also tended forward. The more

time the wave train had to develop, the less it changed in the last 2s before breaking

onset. This could be an indication to di�erent types of breakers. Since the wave

frequency did not change signi�cantly, this could be an indication that the majority

of wave crests broke due to wave-wave interaction, i.e. the wave energy accumulated

by the superposition of waves and thereby the waves broke. This assumption was

supported by the fact that just approximately 3% of the test runs ful�lled the

conditions for the presence of modulational instability, thus, wave breaking due

to modulational instability was unlikely. Furthermore, the almost constant wave

frequency and therefore wavelength indicated that the waves did not shorten which

rather happens for depth-induced wave breaking.

6. When comparing breaking wave crests with steep, but non-breaking wave crests, it

was observed that only the parameters aC/HS and a(t)/HS di�ered signi�cantly

between a non-breaking and breaking wave crest. The crest amplitude aC was at

least 1.5 times larger for a breaking wave than for a non-breaking wave. Those

results con�rm that there is no universal value to detect wave breaking. All these

wave crest broke and covered a large range of values.
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Prediction of Wave Breaking Onset

Based on the hydronumerical model test, the time series of surface elevation were read

out at the location of breaking onset η(xbr, t) and the last ten waves before the breaking

wave were analysed to predict breaking onset. The wave which was about to break was

not taken into account.

1. The wave train started to deform �ve to six waves before breaking onset. Wave

trains with small initial spectral steepnesses sZ,i had time to develop and reached

large median values for aC/HS and aC(t)/HS . Wave trains with large initial spec-

tral steepnesses sZ,i broke fast, thus, had less time to develop, and reached smaller

median values for aC/HS and aC(t)/HS ; their deformation happened quickly. Since

the frequency did not change signi�cantly indicated that the wave, which was about

to break, was part of a wave group and broke likely due to wave-wave interaction

and not due to modulational instability.

2. Markov chains were determined for the last six waves before breaking onset and

their median values of geometrical and instantaneous parameters for each initial

spectral steepnesses sZ,i were presented. Furthermore, Markov chains were de-

termined for the parameter values with the highest relative frequencies. This novel

prediction tool provided insights how irregular wave trains deformed before break-

ing onset, and which median values and value ranges they most probably took

on.

7.2. Outlook

Focus of this thesis was time and location of wave breaking onset and their relation to

the input signal. The data of geometry of the breaking wave was used for detection and

prediction of breaking onset in time series of water surface elevation. In future works, the

relation between input signal and geometry of the breaking wave could be investigated by

means of dimensional analysis and copula functions. Furthermore, the relation between

time of breaking onset and geometry of the breaking wave could be analysed. The

bivariate copula analysis carried out here could be extended to a trivariate analysis in

order to investigate the relationship between time and location of breaking onset and,

for example, the steepness of the breaking wave. Such an analysis would provide deeper

knowledge about the frequency and likelihood of occurrence of di�erent wave breaking

geometries, which is of interest because the geometry of a breaking wave has a signi�cant

in�uence on slamming forces on o�shore structures. Furthermore, determination of the
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distribution functions of the geometrical and instantaneous parameters would provide

their probability density functions and improve the Markov chains.

Besides an extended analysis of the geometrical output data, future works could con-

sider a complete probabilistic approach where the probability of occurrence of the sea

spectra is taken into account to improve the prediction of breaking onset. In addition,

future works could contain tests with di�erent sea spectra than the JONSWAP spectrum

to vary the shape of the spectrum which has an in�uence on wave groups and therefore

on wave breaking.

Finally, the data set of very steep, but non-breaking wave trains could be extended

to improve the comparison of their geometrical di�erences to breaking wave trains and

based on that determine the maximum possible ratio of wave amplitude to signi�cant

wave height and wave steepness. More information on the transitional area of very steep,

but non-breaking wave trains to breaking wave trains would improve the detection and

prediction method.
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A. Test Program of Hydronumerical

Model Tests

Table A.1.: Test program of the hydronumerical model tests.

Nr. sZ,i HS TP γ h NW Lflume σH σL nmax

[-] [m] [s] [-] [m] [-] [m] [-] [-] [-]

1 0.010 0.043 1.65 3.3 0.7 192 50 0.090 0.070 1

2 0.010 0.043 1.65 3.3 0.7 192 100 0.090 0.070 88

3 0.020 0.083 1.65 3.3 0.7 192 50 0.090 0.070 2

4 0.020 0.083 1.65 3.3 0.7 192 100 0.090 0.070 75

5 0.027 0.150 1.90 3.3 0.7 192 50 0.090 0.070 104

6 0.027 0.150 1.90 3.3 0.7 768 50 0.090 0.070 43

7 0.027 0.150 1.90 3.3 0.7 1536 50 0.090 0.070 36

8 0.027 0.150 1.90 3.3 0.7 3072 50 0.090 0.070 30

9 0.033 0.150 1.70 3.3 0.7 192 50 0.090 0.070 81

10 0.033 0.150 1.70 3.3 0.7 192 100 0.090 0.070 212

11 0.035 0.200 1.90 3.3 0.7 192 50 0.090 0.070 174

12 0.035 0.200 1.90 3.3 0.7 768 50 0.090 0.070 40

13 0.035 0.200 1.90 3.3 0.7 1536 50 0.090 0.070 40

14 0.035 0.200 1.90 3.3 0.7 3072 50 0.090 0.070 32

15 0.044 0.200 1.70 2.0 0.7 192 50 0.090 0.070 25

16 0.044 0.200 1.70 2.0 0.7 192 50 0.095 0.065 47

17 0.044 0.200 1.70 2.0 0.7 192 50 0.100 0.060 49

18 0.044 0.200 1.70 2.0 0.7 192 50 0.105 0.055 51
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A. Test Program of Hydronumerical Model Tests

Table A.1.: Test program of the hydronumerical model tests.

Nr. sZ,i HS TP γ h NW Lflume σH σL nmax

[-] [m] [s] [-] [m] [-] [m] [-] [-] [-]

19 0.044 0.200 1.70 3.3 0.5 192 50 0.090 0.070 240

20 0.044 0.200 1.70 3.3 0.6 192 50 0.090 0.070 144

21 0.044 0.200 1.70 3.3 0.7 192 50 0.090 0.070 167

22 0.044 0.200 1.70 3.3 0.7 192 100 0.090 0.070 238

23 0.044 0.200 1.70 3.3 0.7 768 50 0.090 0.070 24

24 0.044 0.200 1.70 3.3 0.7 1536 50 0.090 0.070 3

25 0.044 0.200 1.70 3.3 0.8 192 50 0.090 0.070 267

26 0.044 0.200 1.70 3.3 0.9 192 50 0.090 0.070 368

27 0.044 0.200 1.70 5.0 0.7 192 50 0.090 0.070 68

28 0.044 0.200 1.70 5.0 0.7 192 50 0.095 0.065 47

29 0.044 0.200 1.70 5.0 0.7 192 50 0.100 0.060 39

30 0.044 0.200 1.70 7.0 0.7 192 50 0.095 0.065 35

31 0.044 0.200 1.70 7.0 0.7 192 50 0.100 0.060 49

32 0.050 0.225 1.70 3.3 0.7 192 50 0.090 0.070 143

33 0.055 0.250 1.70 3.3 0.7 192 50 0.090 0.070 110

34 0.055 0.250 1.70 3.3 0.7 192 100 0.090 0.070 239

35 0.055 0.250 1.70 3.3 0.7 768 50 0.090 0.070 48

36 0.055 0.250 1.70 3.3 0.7 1536 50 0.090 0.070 47

37 0.055 0.250 1.70 3.3 0.7 3072 50 0.090 0.070 13

38 0.067 0.300 1.70 2.0 0.7 192 50 0.090 0.070 86

39 0.067 0.300 1.70 2.0 0.7 192 50 0.095 0.065 49

40 0.067 0.300 1.70 2.0 0.7 192 50 0.100 0.060 48

41 0.067 0.300 1.70 2.0 0.7 192 50 0.105 0.055 39

42 0.067 0.300 1.70 3.3 0.7 192 50 0.090 0.070 149
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Table A.1.: Test program of the hydronumerical model tests.

Nr. sZ,i HS TP γ h NW Lflume σH σL nmax

[-] [m] [s] [-] [m] [-] [m] [-] [-] [-]

43 0.067 0.300 1.70 5.0 0.7 192 50 0.090 0.070 25

44 0.067 0.300 1.70 5.0 0.7 192 50 0.095 0.065 48

45 0.067 0.300 1.70 5.0 0.7 192 50 0.100 0.060 49

46 0.067 0.300 1.70 7.0 0.7 192 50 0.090 0.070 45

47 0.067 0.300 1.70 7.0 0.7 192 50 0.095 0.065 42

48 0.067 0.300 1.70 7.0 0.7 192 50 0.100 0.060 49

49 0.071 0.300 1.65 3.3 0.7 192 50 0.090 0.070 186
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B. Additional Figures (copula)

This chapter contains additional �gures of the cumulative distribution function H(x, y)

and of the exceedance probability PE of the normalised time and location of breaking on-

set tbr/TP and xbr/LP , respectively, which were determined with theGumbel copula. All

breaking test runs with initial spectral steepnesses sZ,i = 0.01, 0.02, 0.027, 0.035, 0.044,

0.05, 0.055, 0.067, 0.071 are considered; the results for sZ,i = 0.033 are in the main text

of the thesis.
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B. Additional Figures (copula)
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Figure B.1.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.01, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.2.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.01, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.3.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.02, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.4.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.02, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.5.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.027, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.6.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.027, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).

172



0
.1

0
.1

0.1

0
.2

0.2

0
.3

0.3

0
.4

0.4

0
.5

0
.6

0
.7

0
.8

0
.9

5 10 15 20

0.5

1

1.5

2

2.5

3

Figure B.7.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.035, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.8.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.035, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.9.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.044, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.10.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.044, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.11.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.05, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.12.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.05, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.13.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.055, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.14.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.055, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.15.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.067, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.16.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.067, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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B. Additional Figures (copula)
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Figure B.17.: Cumulative distribution function H (x, y) with the Gumbel copula for the
test runs with spectral steepness sZ,i = 0.071, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.18.: Exceedance probability PE for the test runs with spectral steepness sZ,i =
0.071, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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C. Additional Figures (deformation of

wave crest)
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C. Additional Figures (deformation of wave crest)
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Figure C.1.: Development of the median of the geometrical parameters against time steps
(∆t = 0.04 s) until breaking onset with the simulated NWF data for di�erent
spectral steepnesses sZ,i (part 1, amplitudes and frequencies).

180



0 10 20 30 40 50

0

1

2

Timesteps ∆t = 0.04s until breaking onset

µ
V

0.4

0.6

0.8

µ
H

0

0.1

0.2

s
Z
(t
)

0.02

0.04

0.06

s
Z

 

 
0.01

0.02

Figure C.2.: Development of the median of the geometrical parameters against time steps
(∆t = 0.04 s) until breaking onset with the simulated NWF data for di�erent
spectral steepnesses sZ,i (part 2, steepnesses and asymmetries).
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C. Additional Figures (deformation of wave crest)
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Figure C.3.: Development of the median of the geometrical parameters against time steps
(∆t = 0.04 s) until breaking onset with the simulated NWF data for di�erent
spectral steepnesses sZ,i (part 3, steepnesses).
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