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Abstract

Wave breaking is a random process that causes extreme hydrodynamic loads on offshore
structures which lead to structural degradation and destruction. The majority of studies
in literature analysed single wave breaking events in (quasi-)monochromatic wave trains
and focused on energy dissipation and slamming forces on structures. Due to the random
nature of wave breaking, its parameters vary widely and cannot be predicted with an
exact value at a future instant of time, but instead must be described with probabilistic
statements and statistical averages. This thesis analyses the variability of wave breaking
onset, in order to gain deeper knowledge of the frequency and likelihood of occurrence
of wave breaking, providing many applications to a more economic design and safety of
offshore structures. Breaking onset is defined as an instantaneous state of wave dynamics
where a wave has not started to break but cannot return to a stable state either. Present
investigations focus on the evolution of wave trains towards and at breaking onset to
describe the stochastic process of breaking onset, to find precursors and indicators of
breaking onset, and to determine the optimal sample size of test runs to get a reliable
result of the parameters of breaking onset. By this means, insights on the variability of
breaking onset and its distribution function are achieved, which have not been available
beforehand. In this context, investigations on breaking onset in irregular wave trains
(JONSWARP sea spectrum) in intermediate water depth are carried out using laboratory
and hydronumerical model tests. The physical model tests are carried out in the wave
flume of the Ludwig-Franzius-Institute in a length scale of 1:40. In parallel, hydronumer-
ical model tests using a numerical wave flume developed by Sriram (2008) and Sriram et
al. (2006; 2007; 2010), based on the fully non-linear potential flow theory (semi-arbitrary
Lagrangian-Eulerian Finite Element Method (SALE-FEM, structured version)), are con-
ducted in the same length scale to complement the laboratory investigations and to
increase the possible test run length and number. As design database the wave measure-
ments of research platform FINO1 in the North Sea for the time period 2004 —-2011 are
used and JONSWAP spectra are selected in such a way that daily and storm events are
covered. By means of the random phase angle distribution, every considered spectrum is
transformed multiple times to artificial, but physically-sound time series of water surface
elevations. The cause-effect relationship between input wave train and breaking onset is
investigated with a dimensional analysis (BUCKINGHAM 7 theorem) and an analysis of
the uni- and bivariate (copula) distribution functions. The optimal sample size of test
runs is derived by means of a convergence analysis. Indicators of breaking onset are detec-

ted by analysing the surface elevation (over time and over flume length) and applying the



threshold method which assumes that breaking onset happens when a parameter exceeds
a certain threshold value. A novel detection indicator based on the HILBERT transform
is introduced. Precursors of breaking onset are presented with MARKOV chains of the
geometrical and instantaneous parameters, which describe the conditions that had to be

met stochastically for wave instability to occur.

Keywords

wave breaking, breaking onset, variability, detection, prediction, distribution function,
intermediate water, SALE-FEM, physical modeling, numerical modeling, numerical wave

flume.
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Kurzfassung

Wellenbrechen an Offshore-Bauwerken verursacht extreme hydrodynamische Lasten, die
zur strukturellen Degradation und ggf. Zerstorung filhren kénnen. Der Grofsteil der
bisherigen Studien untersuchte einzelne Wellenbrechenereignisse in monochromatischen
bzw. quasi-monochromatischen Wellenziigen und konzentrierte sich dabei auf die Ener-
giedissipation oder Druckschlige auf die Struktur. Da Wellenbrechen ein Zufallsprozess
ist, variieren seine Parameter stark und kdnnen nicht mit einem exakten Wert zu einem
bestimmten Zeitpunkt vorhergesagt werden, sondern miissen mit probabilistischen Aus-
sagen und statistischen Mittelwerten beschrieben werden. Diese Arbeit untersucht die
Variabilitdt des Wellenbrechenanfangs, um neue Erkenntnisse iiber die Haufigkeit und
die Wahrscheinlichkeit des Auftretens von Wellenbrechen zu gewinnen, und somit eine
wirtschaftlichere und sichere Konstruktion von Offshore-Bauwerken zu ermdglichen. Der
Wellenbrechenanfang beschreibt den instantanen Zustand der Wellendynamik, bei dem
die Welle noch nicht begonnen hat zu brechen, aber auch nicht in einen stabilen Zustand
zuriickkehren kann. Diese Arbeit konzentriert sich auf die Untersuchung der Entwicklung
der Wellenziige vor Wellenbrechenanfang und der Ganglinien am Ort des Wellenbrechen-
anfangs, um den stochastischen Prozess des Wellenbrechenanfangs zu beschreiben, In-
dikatoren des Wellenbrechens zu finden, und die optimale Stichprobengroke der Testldufe
zu bestimmen, um ein zuverlissiges Ergebnis der Parameter des Wellenbrechenanfangs zu
erhalten. Somit werden Erkenntnisse iiber die Variabilitét des Wellenbrechenanfangs und
dessen Verteilungsfunktion gewonnen, die bisher nicht verfiighar waren. Im Rahmen der
Arbeit wird das Wellenbrechen in irreguliren Wellenziigen (JONSWAP Seegangsspek-
tren) im Ubergangsbereich mit Hilfe von physikalischen und hydronumerischen Mod-
ellversuchen untersucht. Die physikalischen Modellversuche werden im Wellenkanal des
Ludwig-Franzius-Instituts in einem Langenmafstab von 1:40 durchgefiihrt. Parallel dazu
werden hydronumerische Modellversuche im von Sriram (2008) und Sriram et al. (2006;
2007; 2010) entwickelten numerischen Wellenkanal im gleichen Léngenmalstab durchge-
fiihrt, um die Laboruntersuchungen zu erginzen und die mdgliche Testlauflinge und
Testanzahl signifikant zu erhohen. Der numerische Wellenkanal basiert auf der Theorie
der vollstdndig nichtlinearen Potentialstrémung (semi-arbitrare Lagrange-Euler Finite
Elemente Methode (SALE-FEM, strukturierte Version)). Als Datengrundlage werden
die Seegangsmessungen der Forschungsplattform FINO1 in der Nordsee fiir den Zeitraum
2004 -2011 verwendet. Die JONSWAP Seegangsspektren werden so gewihlt, dass Tages-
und Sturmereignisse abgedeckt werden. Durch die zuféllige Phasenwinkelverteilung wird

jedes betrachtete Spektrum mehrfach in kiinstliche, aber physikalisch mogliche Zeitreihen
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von Wasserspiegelauslenkungen transformiert. Der Einfluss des Eingangswellenzuges auf
den Wellenbrechenanfang wird zum einen mit der Dimensionsanalyse (BUCKINGHAM
7 Theorem) und zum anderen mit der Untersuchung der uni- und bivariaten (copula)
Verteilungsfunktionen bestimmt. Die optimale Stichprobengréfe der Testldufe wird mit-
tels einer Konvergenzanalyse hergeleitet. Indikatoren des Wellenbrechenanfangs werden
durch Analyse der Wasserspiegelauslenkung (iiber Zeit und iiber Ort) ermittelt und die
Grenzwert-Methode wird angewendet, bei der angenommen wird, dass Wellenbrechen
stattfindet, wenn ein Parameter einen bestimmten Grenzwert iiberschreitet. Es wird ein
neuartiger Indikator zur Detektion von Wellenbrechen in Zeitreihen eingefiihrt, der auf
der HILBERT Transformation basiert. Mit Hilfe von MARKOW-Ketten wird das Verhalten
der geometrischen und instantanen Parameter der Wellenziige vor Wellenbrechenanfang
dargestellt und die Bedingungen beschrieben, die stochastisch erfiillt werden miissen,
damit Wellenbrechen auftritt.

Schliisselworter

Wellenbrechen, Wellenbrechenanfang, Variabilitdt, Detektion, Vorhersage, Verteilungs-
funktion, Ubergangsbereich, SALE-FEM, physikalische Modellierung, numerische Mod-

ellierung, numerischer Wellenkanal.
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1. Introduction

1.1. Motivation

For about 50 years the phenomenon of wave breaking has been closely studied with the
aim of the analytical description of the underlying processes and its prediction. Sev-
eral authors (e.g. Ochi (2005); Babanin (2011); Barthéléemy et al. (2011); Zakharov
and Shamin (2012)) have investigated the statistical properties of wave breaking by dif-
ferent measurement methods in the field, in controlled laboratory environments or by
means of hydronumerical models. Most of the laboratory experiments were performed
with monochromatic waves, few in random seas and only a marginal part is conducted
in three-dimensional seas. However, there is not yet a complete, i.e. universal ana-
lytical description of wave breaking, as the process is highly non-linear, irregular and
intermittent. Despite the random and intermittent nature of wave breaking, it is a sig-
nificant phenomenon in the sea state environment as it plays an important role in the
ocean-atmosphere interaction and represents the key role in wave energy dissipation. Fur-
thermore, breaking waves may cause extreme hydrodynamic loads on offshore structures
or vessels, which induce significant singular stresses and thereby lead to degradation or
destruction of the structure. An estimation of the frequency or likelihood of occurrence
and type of breaking waves in a given sea state are valuable information for the design
engineer in order to enable economical and safe constructions.

It is important to keep in mind that the wave breaking process, as the sea state process
in general, is a random process, and thus, there is no way to predict an exact value at a
future instant of time. The data must be described in terms of probability statements and
statistical averages. Waves do not break at a single well defined value of wave steepness,
but instead, break over a wide value range (Kjeldsen and Myrhaug, 1979b; Bonmarin
et al., 1989; Kriebel, 2000; Toffoli et al., 2010).

So far the majority of studies focused on the analysis of a single breaking wave to de-
scribe the underlying processes, estimate the energy dissipation, or study the slamming
forces on structures. There are no studies which take into account or analyse the variab-

ility of parameters of the breaking wave. Although previous investigations contributed to
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the fundamental understanding of wave breaking, there is little consensus on the influen-
cing factors that control breaking onset or breaking probability (Nath and Ramsey, 1976;
Melville, 1996; Babanin et al., 2001; Banner et al., 2000). Breaking onset is defined as an
instantaneous state of wave dynamics where a wave has not started to break but cannot
return to a stable state either. Furthermore, there is an absence of established breaking
criteria, and therefore a lack of progress in the development of an efficient method to
detect wave breaking in time series of water surface elevations (Sharkov, 2007; Toffoli
et al., 2010; Babanin et al., 2011b; Perlin et al., 2013). Concerning the question how
large a sample size has to be to have a reliable result of the likelihood of wave breaking
and of the geometry of a breaking wave at breaking onset, previous studies recommends
solely that the sample size has to be large enough without specifying the size (Banner
et al. (2000, p. 3156), Goda (2010), Babanin et al. (2011b, p. 176)).

1.2. Objective

Breaking waves are highly non-linear and the result of a certain propagation of multiple
waves. Therefore, it is obvious that the time history of a wave train is essential to describe
such phenomenons like breaking waves. One objective of this thesis was to investigate
the evolution of a wave train (two-dimensional) right before and at breaking onset by
means of laboratory and hydronumerical experiments to describe the stochastic process of
breaking onset. The cause-effect relationship between the input wave train and breaking
onset was investigated in two ways: 1) a dimensional analysis (BUCKINGHAM 7 theorem)
and 2) an analysis of the uni- and bivariate (copula) distribution functions.

Another objective of this thesis was to investigate the water surface elevation at break-
ing onset (as a function of the flume length) to determine the critical geometrical and
instantaneous parameters to detect breaking onset (threshold method). Moreover, the
progress of the geometrical and instantaneous properties of single waves in the wave train
(as a function of time) towards breaking onset was investigated in order to determine
precursors of wave breaking and as such progress indicators of probability of breaking.
This information was used to describe which conditions have to be met stochastically for
wave instability to occur (MARKOV chain) and, thus, enables to find robust indicators,
i.e. precursor of wave breaking onset from times series history.

Because the wave breaking process is highly irregular, the geometrical and instantan-
eous parameters of breaking onset spread. The distributions of those describing paramet-
ers are presented, and their variability and sensitivity are described. Thus, the required

measurement duration and area to determine the properties of breaking onset was de-
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Table 1.1.: Overview of objectives of the thesis.

Objective Methodology Results Chapter
Dimensional analysis

Investigate the evolution (BUCKINGHAM 7t Influencing 4.1 and 4.2

of wave trains towards and theorem) factors on

at breaking onset to
describe the stochastic

Uni- and bivariate breaking onset

- distribution 5.1 and 5.2
process of breaking onset. functions
Investigate the optimal
sample size to get a Convergence Optimal sample 5.3
reliable result of breaking analysis size of test runs ’
onset.
. . Detecti f

Investigate the evolution Threshold method erection o 6.1 and 6.2

. breaking onset
of wave trains towards and
at breaking onset to find Prediction and
precursors and indicators MARKOV chain likelihood of 6.3
of breaking onset. breaking onset

termined. The main reason for the variability of breaking onset is the wave sequence in a
wave train (phase angle distribution). Another objective of this thesis was to investigate
the optimal sample size of test runs (convergence analysis), so that the output parameters
(time and location of breaking onset) were independent of the wave sequence and phase

angle distribution respectively, in other words uninfluenced by the initial input signal.

An overview of all objectives of this thesis is given in Tab. 1.1. The more detailed
flowcharts of the work flow of the data collection, post-processing, and data analysis are

given in chapter 3, see especially Figs. 3.1 and 3.2 and Tabs. 3.4 and 3.5.

The physical model tests were carried out in the wave flume “Schneiderberg” of the
Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering (WKS, 100
m x 2.2 m x 2.0 m) in a length scale of 1:40. The record length was limited to max. 100
waves to avoid wave reflections in the testing area. In parallel, hydronumerical model
tests using a numerical wave flume (NWF) developed by Sriram (2008) and Sriram et al.
(2006; 2007; 2010), based on the fully non-linear potential flow theory (semi-arbitrary
Lagrangian-Eulerian Finite Element Method (SALE-FEM, structured version)), were
conducted to complement the laboratory investigations and to increase the possible test
run length and number. Although the hydronumerical model tests took a certain com-

puting time, their use had the important advantage that test run length and test number
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could be increased significantly, which would not have been possible with the physical
model tests in the same time. The hydronumerical model tests were also conducted
in a length scale of 1:40. Due to potential flow theory the NWF calculations are ter-
minated when the water surface becomes discontinuous. However, this limitation is not
detrimental because the focus is set on the wave train evolution until breaking onset.
The discontinuity in the NWF may be of numerical or physical nature. To sort out the
test runs with numerical discontinuities, solely the test runs were considered here which
contain wave trains where the maximum wave crest and the maximum wave steepness
were less than one single waves apart. Wave trains were divided into single waves by the
zero-downcrossing method. The point of termination of simulation was characterized by
the two parameters: time to breaking onset tp,. (time span from simulation start to end)
and location of breaking onset xp, (spatial distance from inlet to breaking wave crest).
As design database the wave measurements of research platform FINOL1 in the North
Sea was used (Neumann et al., 2003), and a scatter diagram for the time period 2004 - 2011
was derived. The significant wave height Hg and wave peak period Tp for the JONSWAP
spectra was selected in such a way that daily and storm events were considered, and the
initial spectral steepness sz; = Hg/Lp with Lp = g/(2m)T3 varied between 0.01 <
sz; < 0.071. Further input parameters were the enhancement factor ~ (2 <~ <),
water depth h (0.bm < h < 0.9m), phase angle distribution ¢, and the number of
waves in a wave train Ny (192<Ny < 3072 ). By means of the random phase angle
distribution, every considered spectrum was transformed multiple times (up to 500 times)

to artificial, but physically-sound time series of water surface elevations.

1.3. Outline

In chapter 2 a summary of the background and recent work about wave breaking, with
focus on wave breaking onset in intermediate and deep water, is given.

In chapter 3 the validation, test setup, program and procedure of the hydronumerical
model tests are explained. Especially Figs. 3.1 and 3.2 and Tabs. 3.4 and 3.5 explain the
work flow of data collection, post-processing, and data analysis.

In chapter 4 the results of the investigation of the cause-effect relationship between
input factors and time and location of breaking onset with the dimensional analysis
(BUCKINGHAM 1 theorem) are given. The analysis was based on the results of the
hydronumerical model tests.

In chapter 5 the results of the investigation of the variability of breaking onset with

the uni- and bivariate (copula) distribution functions are given. Furthermore, the con-
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vergence analysis to determine the optimal sample size of test runs is presented. The
analysis was based on the results of the hydronumerical model tests.

In chapter 6 a detection method based on the physical and numerical model tests
is developed with the threshold method; the test setup, program and procedure of the
laboratory model tests are explained in section 6.1. The prediction of breaking onset in
a time series was investigated with the MARKOV chain.

In chapter 7 the thesis is summarised and an outlook is given.






2. Background and Recent Work

In this chapter, a synopsis of wave breaking in intermediate and deep water with focus
on breaking onset is given. After a short summary of breaking criteria and mechanisms,
the focus is on the recent work on detection and prediction of wave breaking onset and

its variability and probability.

2.1. Wave Breaking in Intermediate and Deep Water

Wave breaking is the process of the deformation and destabilization of wave crests, fol-
lowed by water-air mixture and wave energy dissipation. The physics that lead to wave
breaking are elusive, but previous studies suggested various criteria which supposedly
indicate a breaking onset and therefore may help to detect it. It is an assumption that
a wave crest has to exceed a critical threshold before the wave can break; this is called
the threshold method. According to Babanin et al. (2007) “a criteria of breaking may be
indicative of a wave approaching an ingtable state, but is not a reason or a cause for the
breaking”. However, to investigate the wave breaking phenomenon, a criterion to define
the breaking onset of a wave crest has to be chosen. Previous studies show that there
is no universal value, but a value range in which the wave breaking parameters lie. In
the following, the different approaches to define a criterion are summarised. Please note,
that the focus of this thesis is on dominant wave breakers, and not on small breaking

waves; the selection of the measurement and detection method depends on this.

2.1.1. Breaking Criteria and Thresholds

The three main criteria to define the conditions of wave breaking are:

1. geometrical criterion: the wave steepness (sz = H/L) exceeds a threshold para-

meter.

2. Kinematic criterion: the surface wave orbital velocity u exceeds a threshold para-
meter. At breaking onset, the streamlines of fluid particles stagnate relative to the

wave form.
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Figure 2.1.: Definition of wave parameters based on the recommendations of IAHR
(1989).

3. Dynamic criteria: the downward surface acceleration @ exceed a threshold para-

meter.

Geometrical Breaking Criteria

The geometry of a single wave in a time series is described with the following wave para-
meters, see Fig.2.1. Based on those wave parameters, various ratio values are derived,
which describe steepness and asymmetry of the single wave, see Tab. 2.1.

The most widely known wave steepness threshold is the limiting steepness for a STOKES
wave, analytically derived by Michell (1893), for which a wave crest breaks when the
wave height exceeds sz = 1/7 of the STOKES limiting wavelength. The wave steepness
threshold for breaking onset has been examined extensively in laboratory and hydronu-
merical experiments. In Tab.2.2, an overview of the critical wave steepness thresholds
determined by different authors is given. The threshold spreads because of different
methods of wave breaking generation and the ambiguity in definition of breaking onset.
The wave steepness sz may be enough to describe a sinusoidal wave, but not a steep
asymmetric wave, because asymmetric waves can exist with the same wave steepness
sz. Therefore, Kjeldsen and Myrhaug (1979b, 1981) introduced the crest-front and -rear
steepness (s; and sg,), and the vertical and horizontal asymmetry parameters (py and
1), see Tab.2.1. These parameters describe the geometry of a breaking gravity wave
crest, i.e. the sharpened crest, flattened trough and the very steep crest-front face. For a

second-order STOKES wave in deep water, these parameters are s, = s¢y = 0.40, py =1
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Table 2.1.: Wave parameters and ratio values for steepness and asymmetry based on the

recommendations of JAHR (1989).

Symbol Description Unit
H Wave height m
T Wave period s
L Wavelength measured in the direction of wave propagation m
c Wave velocity m/s
ac Zero-crossing wave crest height m
ar Zero-crossing wave trough excursion (positive) m
L Crest front wavelength m
r’ Crest rear wavelength m
Sz Wave steepness by zero-crossing analysis, H/L

syc Crest steepness, ac /L, based on Bonmarin and Ramamonjiarisoa
(1985)

syr Trough stefzpr‘less, ar/L, based on Bonmarin and
Ramamonjiarisoa (1985)

S Crest front steepness, ac/L’

sé Crest rear steepness, ac/L”

y Vertical asymmetry factor, L” /L’

WH Horizontal asymmetry factor, ac/H
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Table 2.2.: Compilation of wave steepness thresholds from literature.

Author Sy = % Note
Michell (1893) 0.143 regular STOKES wave
Duncan (1981) 0.200 breaking produced by towed
' hydrofoil
Ochi and Tsai (1983) 0.126 irregular wave
Xu et al. (1986) 0.119 irregular wave
Ramberg and Griffin (1987) 0.132 irregular wave
Rapp and Melville (1990, fig. 21)  0.048-0.070 dispersive focusing
Wu (2004) 0.048-0.121 dispersive focusing
Tian et al. (2008) 0.089-0.137 dispersive focusing
. dispersive focusing and
Tian et al. (2012) 0.064-0.153 modulational instability
Bonmarin and Ramamonjiarisoa . . .
(1985, fig. 9) 0.120 modulational instability
Tulin and Waseda (1999, fig. 15)  0.070-0.131 modulational instability
Babanin et al. (2010) 0.127 modulational instability
. modulational instability
Babanin et al. (2010) 0.140 (while breaking)
Babanin (2011, p. 152) 0.146-0.153  Shert-erested directional
waves
Babanin (2011, p. 152) 0.175 short-crested directional

waves (while breaking)

and pg = 0.61. The corresponding thresholds determined by different authors are given
in Tab.2.3.

The determination of the geometrical parameters in laboratory experiments is non-
trivial, because the wave profile is highly irregular and unsteady and the profile deforms
rapidly. There are difficulties of spatial surface profile measurement. There are no
straightforward transformation between measurements in the temporal domain and those
in the spatial domain available. Temporal measurements may not fully represent the
spatial characteristics. Yao and Wu (2005) showed that the wave steepness ak, with a
as amplitude and k as wave number k£ = 27 /L and the crest’s geometrical parameters of

the same incipient breaking wave may vary up to 50% dependent on the measurement

10
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(temporal or spatial).

Kinematic Breaking Criteria

The kinematic criterion postulates that before the inception of breaking the horizontal

fluid velocity at the surface of the wave crest u exceeds the phase speed of the wave c.

>1 (2.1)

ol

The difficulties with this breaker criterion are, on the one hand, the calculation of the
phase velocity and, on the other hand, the measurement of the particle velocity in the
laboratory. Linear theory overestimates the magnitude of the phase speed (Skjelbreia
et al., 1991; Gudmestad, 1993), but even local phase speed definitions do not satisfy
the kinematic breaking criterion, see Stansell and MacFarlane (2002). The investigation
by Stansell and MacFarlane (2002) showed that the ratio of particle to phase velocity
was between 0.68 < u/c < 0.95. Experimental studies performed by Melville and Rapp
(1988), Kjeldsen (1989), Perlin et al. (1996), Chang and Liu (1998) and Stansell and Mac-
Farlane (2002) did not verify the kinematic criterion. Therefore, the condition described
in Eq. (2.1) may be sufficient condition for breaking but it is not a necessary condition,

and thus, the kinematic criterion is not an universal predictor of wave breaking.

Dynamic Breaking Criteria

The classic dynamic criterion describes the vertical component of surface acceleration

exceeding a certain threshold, see Eq. (2.2).

Adownward= 4 (22)

with a as an unknown constant and g as acceleration of gravity. The corresponding

thresholds determined by different authors are given in Tab. 2.4.

2.1.2. Breaking Mechanism and Types

When discussing the physical mechanisms behind the wave breaking phenomenon, a
distinction is made between whether the wave breaking is depth induced or wave induced
(induced by wave-wave interaction). Depth induced wave breaking occurs when the ratio
of wave height to water depth H/h comes into a critical range. This happens, for example,
when waves enter from deep into shallow water; the wave height increases (shoaling), the

wave becomes unstable and breaks. The breaking criterion for extreme shallow water

12



2.1. Wave Breaking in Intermediate and Deep Water

Table 2.4.: Compilation of threshold parameter « for the dynamic breaking criterion from

literature.
Author o Note
Stokes (1847) 0.5  monochromatic STOKES wave
Longuet-Higgins and Fox (1977) 0.388 numerical calculations
Snyder et al. (1983) 0.5 dominant waves in the field
Longuet-Higgins (1985) 1.0 natural wave field
Ochi and Tsai (1983) 0.4 natural wave field
Liu and Babanin (2004) 0.3 natural wave field

is H/h = 0.89 according to Miche (1944), and H/h = 0.78, respectively, based on the
theory of solitary waves according to McCowan (1891).

Wave-wave induced wave breaking occurs when the wave steepness exceeds a critical
threshold, see section 2.1.1. In intermediate and deep water, on the one hand, super-
position mechanisms such as wave-wave interaction (frequency, amplitude or directional
focusing), or on the other hand instability mechanisms such as modulational instabil-
ity (MI), can lead to wave breaking. The modulational instability, or BENJAMIN-FEIR
instability, is an instability that only occurs to weakly non-linear wave groups in deep
water, and describes amplitude modulation due to sideband instabilities. Dependent on
the initial wave steepness, a wave train with active modulational instability may develop
to a breaking wave or to a very large and steep, but non-breaking wave. Modulational
instability do not always lead to wave breaking (Chalikov, 2007). Wave groups, and thus
the temporal sequence of waves and their superposition, play an immense role in the
breaking of waves in intermediate and deep water, see Banner et al. (2000, p. 3148) and
Babanin et al. (2011b, p. 146). To identify if non-linear wave groups are present in a
wave record, the kurtosis k can be determined. The kurtosis is the fourth-order moment
of the probability density function of the surface elevation. If £ > 3, then non-linear wave
groups are present. Once the modulational instability happens, the breaking probability
only depends on steepness regardless of the directional spreading (Babanin et al., 2011b,
p. 154). The steepness defines whether and what kind of instability develops (Babanin
et al., 2011b, p. 147).

In general, a distinction is made between five different types of wave breakers (Babanin,
2011, p. 40):

1. Spilling breaker: the wave crest destabilises and collapses, spilling the water over

13
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Figure 2.2.: Wave breaker types. (Source: Kraaiennest (2015))

the front slope of the wave. Small wave steepness. More frequent than plunging
breakers (Babanin, 2011, p. 40).

. Plunging breaker: the wave crest curves forward and forms a plunging jet that

impacts the water surface in front of the wave and entrains air and turbulence
under the surface. This leads to gas exchange across the interface, loss of en-
ergy /momentum, and produces acoustic noise, which can be used as a detection

method, see section 2.1.4. Large wave steepness.

. Collapsing breaker: a cross between plunging and surging, in which the crest never

fully breaks, yet the bottom face of the wave gets steeper and collapses, resulting

in foam.

. Surging breaker: a wave with a low steepness runs up the steep beach profile, its

base swash up the slope, and the wave crest disappears. There is either no breaking

at all or relatively smooth with little foam or bubbles.

. Micro-breaker: short gravity waves whose breaking intensity is too weak to warrant

air entrainment visible as whitecapping. Their wavelength is less than 0.25m and

their wave frequency is greater than 2.5 Hz.

The first four types of breakers are illustrated in Fig.2.2.

14



2.1. Wave Breaking in Intermediate and Deep Water

2.1.3. Breaking Phases

It is important to define breaking phases to avoid uncertainties and ambiguities in meas-
urement of breaking events and rates. The breaking phases are distinguished from both
the external appearance of breaking and the underlying physics involved. According to
Sharkov (2007) wave breaking is noticeably shorter than the wave period T of the carrier
wave. The detection method depends on the scope of a study and what kind of wave
breaking is investigated. Of course, influencing factors are whether the investigation
takes place in the laboratory, numerically or in the field, and which means are available.
Since the functioning of the detection methods, as described in subsection 2.1.4, are
based on certain definitions of wave breaking, the detection method must be adapted to

the desired examination scope. The four breaking phases defined by Babanin (2011) are:

1. Incipient phase (least investigated): the incipient breaker is defined as a wave which
has already reached its limiting stability, but has not yet started the irreversible
breaking progress. Lasts according to Sharkov (2007) tenth of seconds and thus is

difficult to measure.

2. Developing phase: breaking in progress, very rapidly, high loss of energy/wave
height, highly non-linear, different mechanism than those which lead to breaking,
driven by gravity and inertia of moving water mass, “but the pre- and post-breaking
physics are not entirely disconnected”, see Babanin (2011, p. 15). Developing

breaker exhibits an increase in wave front steepness before it subsides.
3. Subsiding / relaxing phase (least investigated): breaking in progress.

4. Residual phase: a follow-up dynamic impact of the breaking event, introduced by
Rapp and Melville (1990), whitecap is already left behind, but the underwater
turbulent front is still moving downstream, not detectable by wavelet or similar
analytical methods based on interpretation of surface elevation, or whitecapping-
oriented measurement. Rapp and Melville (1990) generated the breaking waves
by superposition of linear waves. The outcome of these breakers can be different
to those resulting, for example, of non-linear modulation or superposition of non-
linear waves. It is not clear if residual stage is a general feature of wave breaking.
Diorio et al. (2009), who has generated wave breaking with dispersive focusing,
modulational instability and wind forcing, says that independent of the generation,
the bulge and the capillary waves were self-similar on the crest-front face of the

spillers (at breaking onset). The geometrical similarity is limited to the crest-front
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Figure 2.3.: Measurement methods for wave breaking detection.

profiles of the spillers. Thus, Diorio et al. do not disagree with Rapp and Melville
(1990).

2.1.4. Breaking Detection Method

When investigating wave breaking, the main question is usually the frequency of occur-
rence (probability) of wave breaking and magnitude of the energy dissipation. The choice
of the measuring method depends on where and what is to be measured. In Fig. 2.3, an
overview of the common measurement methods concerning wave breaking is presented.
All methods, apart from the statistical method, aim to measure individual events of
wave breaking. The statistical method, however, combines the statistical properties of
wave fields (for example, joint probability distributions of wave height and period) with
breaking criteria in order to be able to make statistical statements about the probability
of wave breaking. This is discussed in section 2.1.5.

The oldest method is the visual observation of a wave field and the manual count-
ing of wave breaking events; usually the dominant breakers are counted, which break
with whitecapping. Thus the phase "breaking in progress" is observed. The first major
study using this method is from Holthuijsen and Herbers (1986). Holthuijsen and Her-
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2.1. Wave Breaking in Intermediate and Deep Water

bers (1986) observed the wave breaking at/under a buoy in their field measurement and
marked the time of the wave breaking with the aid of a trigger signal. Thus, in post-
processing, the corresponding individual wave could be linked to the wave breaker event.
Holthuijsen and Herbers (1986) showed that the wave steepness is not a good parameter
to distinguish breaking and non-breaking waves, and therefore is not a reliable breaking
criterion. Banner et al. (2000) agreed that wave steepness is not a well-founded breaking
criterion because it shows a range of values at the onset of breaking. However, Banner
et al. (2000) said that the front rear steepness is a functional criterion. In contrast to
that, Babanin et al. (2007) stated that wave steepness seemed to be the single robust

criteria for breaking.

An extension of the visual observation method is the use of high-resolution video
recordings and corresponding image recognition software. Although the visual method is
basically reliable and non-invasive, the disadvantages are that it is very time-consuming
in post-processing and is subject to human errors. In addition, it can only be measured
whether or not a wave breaks; further information such as the geometry of the breaking
wave is missing (except there was a buoy or wave gauge at the location of breaking).
The use of video recording and image recognition software is very complex and has not
yet been developed far enough to be a robust, universally applicable measuring method.
Besides, the video evaluations are very sensitive to the local conditions such as light and

the permeability of the water.

In addition to visual observation, there are other remote-sensing methods, such as
radar or infrared measurements of the water surface, where the wave breaking is as-
sociated with a discontinuity or a particular phenomenon in the measured time series
and is thus detected. For example, sea spikes are measured in the backscatter signal
of radar measurements when wave breaking (whitecapping) occurs. Investigations using
this method have been described, for example, by Kwoh and Lake (1984).

Another remote-sensing method is the acoustic method, which is either passive (hydro-
phone) or active (sonar). In the active acoustic method, for example, acoustic Doppler
velocimeters (ADV) or acoustic Doppler current profilers (ADCP) are used to measure
the velocity field under a wave field; in combination with the kinematic breaking criterion
and an empirical threshold wave breaking can be detected. The acoustic method can,
however, also be used to measure the sound of the wave breaking or the air bubbles in
the water; in combination with a critical threshold, the frequency of occurrence of wave
breaking can be measured, see, for example, Ding and Farmer (1994) and Manasseh et al.
(2006). The advantage of this method is that the measuring instruments such as hydro-

phones are relatively cheap, robust and easy to maintain. The disadvantage, however,
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is that wave breaking in the field occurs multiscale and the differentiation between the
different noises is difficult. Investigations using a combination of the acoustic and radar
backscatter method have been described, for example, by Melville et al. (1992).

In addition to the remote-sensing methods, there are the contact measurement meth-
ods, in which either physical (geometry, kinematics, dynamics) or rarer chemical prop-
erties of the wave field are directly measured. It is searched either for discontinuities
or for physical limits in the measured time series to detect wave breaking. The best
known measuring instruments are buoys in the field, wave gauges in the laboratory, and
velocimeters or acceleration sensors. The advantages of this method are that the use
of the measuring instruments is tested and the characteristics of the wave are directly
measured. The disadvantages of the method are that it is invasive, pointwise and it
requires a breaker criterion with a corresponding critical threshold. In this thesis the
contact measurement method with wave gauges was used and is described in section 6.1

in more detail.

In addition to the experimental methods described so far, there are also the analytical
methods, which, like the statistical methods, fall under the theoretical methods. They
are, strictly speaking, not pure theoretical methods, since the analytical methods de-
pend on empirical criteria and are thus semi-empirical. Since a wave breaking event is
non-linear, highly non-stationary and sporadic, the analytic methods aim to find such
discontinuities or their derivatives in time series. Such a time series can consist of wa-
ter surface, speed, acceleration or underwater acoustics measurements. An overview of
non-stationary analytical methods is provided by Huang et al. (1998). Often used are
the wavelet method (in combination with the dynamic breaking criterion), see Liu and
Babanin (2004), and the HILBERT transformation or the phase-time method, respectively,
see Zimmermann and Seymour (2002). The HILBERT transformation is a method that
can analyse mathematical functions when they are single-valued, see Huang et al. (1999).
In the breaking onset, however, the water surface can become vertical and thus no longer
single-valued. At the same time, a wave gauge measures only single-valued functions,
and air gaps can lead to measurement errors. Thus, the combination of wave gauge meas-
urement and HILBERT transformation contains error sources, which must be taken into
account when interpreting the results. Nonetheless, the HILBERT transformation and
the phase-time method are valuable instruments for the detection of wave breaking in
time series, and a sensible combination of critical parameters enables a robust detection

method. See chapter 2.2 for more information.

When investigating wave breaking or wave breaking onset, the desired objective must

be clear to choose a suitable measuring and detection method. A detection method
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will not be universally applicable in all cases, especially in a natural wave field that is
multiscale. A clear target definition, for example, dominant wave breaking in irregular

waves, is necessary.

2.1.5. Breaking Probability

There are two general concepts to approach wave breaking probability:

e the breaking probability P, is determined for a fixed point, and is the percentage
of breaking crests ny,. within a sequence of ng,; wave crests according to Babanin
(2011)

e the breaking probability P, is the fraction of the area of the sea surface over which
wave breaking occur for a fixed point in time according to Snyder and Kennedy
(1983)

In the first approach, the breaking probability Py, is:

Ny Ny I
P, = = 2.3
o Ntot Tr ( )

where Tr = nyo:I'p is the duration of the wave record and Tp is the main temporal scale
of the wave field. However, because wind-generated waves have a continuous spectrum,
the methods to determine T and ns, have to be stated very clearly. To define T, a
spectral bandwidth f + Af has to be specified. In Banner et al. (2000) and Babanin
et al. (2001) the spectral bandwidth was Af = 0.30f, , which was later reassigned as
Af = =£0.35f, by Manasseh et al. (2006). The physical meaning for the spectral band in
the breaking probability definition of dominant waves is, that the width of the spectral
peak defines the characteristics of the groups of dominant waves, and the wave breaking
probability depends on these wave groups. Next to Tp, the total number of wave crests
in a sequence Ny has to be defined clearly as well. For each determined breaker the
frequency f (period T') of the wave is extracted, for example, by zero-crossing analysis.
Thus, the total number of breaking waves ng,.(f) is found for each frequency. The total

number of expected waves at a frequency is according to Babanin et al. (2011a):
niot(f) = Tr/T = Trf (2.4)

Neot(f) 18 a nominal reference count, and there will be no match between ny(f) and

the actual counted number of wave crests in each frequency bin ns o(f) . The resulting
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count ngt o(f) would be less than the nominal reference count ng(f), because in real

seas waves of periods other than 1/f will occupy some part of the duration Tg.

For the second approach, Snyder and Kennedy (1983) measured a certain area of the sea

surface by camera and wave array measurements. They introduced a breaking variable

which is set equal to 1 inside a whitecap and 0 outside. Their breaking probability is the

percentage of sea surface covered by breaking waves (whitecaps).

In general, the different statistical approaches to the evaluation of breaking probability,

theoretical as well as experimental studies, can be organized into four models. All of these

model combine a property of the wave field with a breaking criterion (limiting steepness,

orbital velocity or downward acceleration, or their derivates).

Model 1

Model 2

Model 3

Model 4

20

Gaussian Distribution and STOKES’ Limit

The Gaussian/normal distribution of surface elevation is used to predict the
appearance of wave heights exceeding the limiting steepness of the STOKES
wave, or its limiting orbital velocity, or its limiting acceleration at the crest.
It is an analytical model proposed by Longuet-Higgins (1969) and further
developed by Yuan et al. (1986), Hua and Yuan (1992) and Yuan et al. (2008,
2009).

Probability Function and Empirical (Local) Breaking Criterion

The probability density function of some property of the wave system is
combined with an empirical, rather than theoretical, breaking criterion. Since
wave measurements are most often time series of surface elevations, mostly
the joint probability distribution of wave height H and wave period T is used.
As an empirical breaking criterion, e.g. the local wave steepness or the local
downward wave crest acceleration is used. Studies that used this model are
e.g. Nath and Ramsey (1976), Longuet-Higgins (1983), Ochi and Tsai (1983),
Huang et al. (1984), Hwang et al. (1989), Dawson et al. (1993), Song et al.
(1997) and Zheng and Xu (2004).

Spectral Density and Global Breaking Criterion

The spectral density of the sea state is connected with a global breaking
criterion, e.g. the global wave steepness or the global downward wave crest
acceleration. The most important study in this model class are the field meas-
urements and analytical considerations conducted by Snyder and Kennedy
(1983), Kennedy and Snyder (1983), and Snyder et al. (1983).

Wave Groups



2.2. Wave Breaking Onset

Wave groups and wave breaking are linked together, and the breaking prob-
ability is concluded from the wave group statistics / occurrence. The most
important studies in this model class are by Donelan et al. (1972), Holthuijsen
and Herbers (1986), Babanin and Polnikov (1995), Babanin et al. (2007), and
Tian et al. (2010).

2.2. Wave Breaking Onset

This section summarises the most important studies on breaking onset, in which analyt-

ical methods were applied.

2.2.1. Definition of Wave Breaking Onset

Breaking onset is defined as an instantaneous state of wave dynamics where a wave
has already reached its limiting stability state, but has not yet started the irreversible
breaking process. That is, breaking onset is the ultimate point where the wave has not
started to break but cannot return to a stable state either. Breaking onset is the first
phase, thus the incipient phase, of the breaking process, see 2.1.3. The location of the

wave breaking onset is the peak of the wave crest.

2.2.2. Studies on Wave Breaking Onset

State-of-the-art is that the initial wave steepness (for monochromatic or quasi- mono-
chromatic wave trains), see Babanin et al. (2010), or the spectral peak steepness (for
natural wave fields), see Banner et al. (2000), or the dimensionless growth rate para-
meter (rate of change of local wave steepness), see Song and Banner (2002), controls
the breaking onset (and thus indirectly the probability of wave breaking). The use of
the kinematic and dynamic criterion do not come into effect; presumably the accurate
determination of the velocity field or acceleration field is too complicated. Babanin et al.
(2007) stated that the wave steepness seemed to be the single robust criteria for breaking;
they then further explained that “a criteria of breaking may be indicative of a wave ap-
proaching an instable state, but is not a reason or a cause for the breaking”. In contrast,
Phillips (1985) and Bonmarin and Ramamonjiarisoa (1985), among others, stated that
a single local wave parameter was not a robust indicator for breaking onset, but instead
the time history of the water surface elevation had to be analysed. However, the vast
majority of previous studies (regarding breaking onset) is based on the investigation of

quasi-monochromatic wave groups, not on irregular wave trains (sea spectra).
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Rapp and Melville (1990) investigated deep water wave breaking generated by dis-
persive focusing and introduced the non-dimensional wave amplitude ak. with a = a,, N
as the amplitudes of each wave, N as the number of components of the wave packet
and k. as the central wave number, which were calculated with the central frequency
fe = 0.5(fn + f1) and the dispersion relation for intermediate water depths. For wave
groups with constant steepness the global wave steepness is S = ) kpay,, see Drazen
et al. (2008). Tian et al. (2010) introduced the spectrally weighted wave number kg,
which is calculated with the spectrally weighted wave frequency fs, see Eq.(2.5), and
defined the global wave steepness as S = ks a,. They also introduced the local wave

steepness Sy, prior to wave breaking, with Sy = kY _ ay,.

> (fnaz) (Af),
2 (a3) (Af),

A more sophisticated parameter, proposed by Banner and Tian (1998) and further

fs:

(2.5)

developed by Song and Banner (2002), is the dimensionless growth rate

1 D(u(t))
o(t) = ———=+
(*) we Dt
with w,. as the centre angular wave frequency, (u (t)) as the mean of the upper and
lower envelopes of it (t) = [Emaz/pg] k2, and E,,q. as the local wave energy density at

the maximum surface displacement

n
1 1
E (x,t) :/ §pw (U2 + 'U2) dy + 5:011)9772
—h

Song and Banner (2002) calculated the local wave number k from the z derivative of
the unfolded phase function computed from the HILBERT transform of the water surface
elevation. They applied a low-pass filter to smoothen the development of the local wave
number. With a threshold value of § (t) = (1.4 £ 0.1) * 1073, the criterion was shown to
successfully differentiate wave groups that would eventually break from those that would
not, see Tian et al. (2008). Tian et al. (2010) used the characteristic wave frequency
(ws = 27 f5) instead of w, to reduce data scatter and calculate the growth rate at breaking
onset dp-. The correlation between the local wave steepness Sy, prior to wave breaking,

and the growth rate at breaking onset . based on u(t) = sz was approximated by
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2.2. Wave Breaking Onset

Sy = 8.77 % 10735222
ws

with wp, = 27fy. Furthermore, Tian et al. (2010) found out that the global wave
steepness threshold Sy, which indicated incipient wave breaking, varied between Sy =
0.31 — 0.35. When considering the case that no wave breaking occurred, Sy was approx-
imately 0.339. Based on the correlation S = 1.2375, the maximum local wave steepness
for incipient wave breaking was roughly (Sp), = 0.419, which is sz = H/L = 0.13 and
thus smaller than the maximum steepness of a deep water STOKES’ waves with sz = 0.14,
compare also Tab. 2.2. However, the application of the dimensionless growth rate ¢ (¢) in
phase-resolving, deterministic prediction of the evolution of non-linear wave fields may be
limited, as the calculation of the diagnostic parameter is non-trivial and it is not possible
to determine this parameter from routinely available wave data (Banner et al., 2000, p.
3152).

The author’s own approach to link the envelope of the water surface elevation and the
wavelength is explained and discussed in subsection 6.1.3.1.

Banner et al. (2000) investigated the breaking probability of dominant waves in the
field (Lake Washington, Black Sea, Southern Ocean). They introduced the significant
wave steepness with Hgkp/2 . Because of the shorter and higher frequency components
in Hg = 4,/mq , they also introduced the significant spectral peak steepness € , see
Eq. (2.6).

€ =

. (2.6)

where

135 1/2

=13 [ st

0.7fp

In this thesis, the initial wave steepness sz; = Hg/Lp is introduced with Lp = g/(27r)T123,
and the relation to Banner et al’s significant wave steepness is Hgkp/2 = sz; * .
Banner et al. observed that the spectral peak steepness needs to be € = 0.05 — 0.06
(szi 2 0.016 — 0.019) for dominant wave breaking to exist.

Babanin et al. (2007, 2010) carried out a pilot study in which they investigated the

properties of breaking waves and the processes responsible for breaking onset in two-
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dimensional initially monochromatic waves. Focus was on the processes leading to break-
ing, and not on the process of wave collapse itself. They conducted numerical simulations
with the fully non-linear CHALIKOV-SHEININ model, see Chalikov (2005), and carried out
physical experiments to validate the numerical simulations. The wave trains broke due
to modulational instability. Their main finding was, see Babanin (2011): “The nearly-
breaking wave is the highest and most skewed, but is almost symmetric. The two waves
immediately preceding and following the breaker are asymmetric: the preceding wave is
tilted backward (positive asymmetry) and the following wave is tilted forward (negative
asymmetry). The preceding wave is smaller than the following wave, and, at least in
these observations, the preceding trough is shallower. This may be a key feature to dis-
tinguish the linear-focusing breaking onset from the modulational-instability breaking,
as the former is not expected to exhibit uneven front and rear troughs.”

Furthermore, Babanin et al. (2007) observed that for their numerical model tests the
wave trains broke within one wavelength and with an initial wave steepness of (ak), > 0.3;
no breaking occurred for the wave trains with (ak), < 0.1. For their physical model
tests the wave trains always broke with an initial wave steepness of (ak), > 0.44 and no
breaking occurred for wave trains with (ak), < 0.08. Dold and Peregrine (1986) observed
in their numerical model tests with monochromatic wave trains similar threshold values
((ak)y > 0.1, H/L > 0.03) for which wave trains developed to breaking. Babanin et al.
further deduced an relationship between the dimensionless distance to breaking wy,./L

and the initial wave steepness (ak),, see Eq. (2.7)!.

% — —1latanh [5.5 ((ak), — 0.26)] + 23 for 0.08 < (ak), < 0.44 (2.7)

Babanin et al. (2007) stated that the dimensionless distance to breaking x,/L was
related to the probability of wave breaking by with 23, /L = 1/bp. They concluded based
on the Black Sea data set of Babanin et al. (2001) the following relationship between the

initial spectral steepness € and the probability of breaking, see Eq. (2.8). Their values for
xpr /L ranged from 17 < xp, /L < 21.

1
7~ = —L0atanh [13.3 (¢ — 0.13) + 17] for 0.055 < € < 0.205 (2.8)
T

Babanin (2011) and Babanin et al. (2011b) were concerned with the breaking of waves

!The original equation as found in the publication had the term “+23” inside of the brackets, which is
false, else the equation does not produce the graph described in the quoted publication.

24



2.2. Wave Breaking Onset

in three-dimensional wave fields. Their laboratory model tests showed that modulational
instability is still active in three-dimensional wave fields and is the most likely cause for
wave breaking in the oceanic wave fields.

The part of the research, which is concerned with wave trains (or fields) based on sea
spectra, i.e. irregular waves, consists of the studies of Dawson et al. (1991), Kriebel and
Dawson (1991), Dawson et al. (1993) and Kriebel (2000) who studied the two-dimensional
BRETSCHNEIDER and JONSWAP wave trains with breaking waves in the laboratory and
compared the results with a self-developed theoretical approach to estimate the breaking
probability. The theoretical approach was based on the RAYLEIGH distribution and
the distribution function of non-linear amplitudes (modulated STOKES wave). In their
work, Dawson et al. did not investigate the evolution of the descriptive wave parameters
towards breaking onset, but quantified the wave breaking probability. They introduced

the characteristic measure of the wave steepness R, , see Eq. (2.9).

wlszS

R —
v g

(2.9)
with the peak angular frequency wp . The relation to the initial wave steepness introduced
in this thesis here is sz; = R,/(2m). The special feature of their work was that they
studied the wave breaking probability for both a fixed point and a region, and also
measured and analytically predicted the time between two breaking events. Due to the
simplifications in its theoretical approach, the study showed weaknesses, e.g. the wave
breaking probability was only so well predicted, because the approach overestimated and
underestimated wave breaking. Nonetheless, the study by Dawson et al. is a good basis
for the author’s own work here.

Similar to Dawson et al., Song et al. (1997) also developed a theoretical approach
for the wave breaking probability in JONSWAP sea states, based on the wave breaking
criterion of Ochi and Tsai (1983) and the two-dimensional probability distribution of Fu
(1987).

Nath and Ramsey (1976) developed a theoretical approach to the probability of wave
breaking based on the geometrical wave breaking criterion (wave steepness), the assump-
tion that the wave height and wave period are independent of each other, and field data.
The assumption that the wave height and the wave period are independent of one another
is, of course, a highly simplified assumption.

Zimmermann and Seymour (2002), beside Dawson et al. (1993), were the only ones
who generated two-dimensional JONSWAP wave trains in the laboratory and focused

on the detection of wave breaking. With the help of the phase-time method, Zimmer-
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mann and Seymour worked out two parameters with critical thresholds which determined
wave breaking in a time series, namely the water surface elevation (n(t) > 0.38Hg) and
the instantaneous frequency (f(t) > 0.8f, ). Their results are opposed to the results of
Griffin et al. (1996), but Griffin et al. (1996) investigated wave breaking due to dispersive
focusing. This observation indicates that the breaking criteria depends on the physical
mechanism which leads to breaking, see Chalikov and Babanin (2012). Babanin et al.
(2007) says, however, that “if a critical wave steepness is reached, the wave will break,
independent of the physical reason for the critical wave steepness.” Moreover, Zimmer-
mann and Seymour applied these thresholds to field measurements, but had no visual
confirmation as to whether there were breaking waves in the measured time series, so
only a subjective assessment of the authors was possible, whether the results are realistic
or not. Another finding regarding the use of wave buoys in the field was that buoys fol-
lowing the waves avoid the steepest wave. Thus, the possibility of detecting wave breaks
in time series from field measurements is restricted.

The thresholds by Zimmermann and Seymour (2002) and Babanin et al. (2007, 2010)
to detect wave breaking in a time series of water surface elevation is compared with the

results of the thesis in subsection 6.1.3.1.

2.3. Statistical Variability of Wave Breaking

To the author’s knowledge, there are no studies in literature solely about the variability
of wave breaking parameters, breaking onset, or breaking probability. Studies about the
deformation of the wave train before breaking onset often only present one exemplary
wave train. However, Kjeldsen and Myrhaug (1979a) stated that the crest front steepness
€ = Sy = ac /L' varied between si; = 0.32 — 0.78 and the crest rear steepness § = sf, =
ac/L" varied between s{, = 0.26—0.39 in their experiments. Furthermore, Babanin et al.
(2007) stated that the wave steepness Hk/2 = sz varied between Hk/2 = 0.37 — 0.44
(sz = 0.12 — 0.14), the skewness Sk = ac/ap — 1 varied between Sx = 0 — 1, and the
asymmetry Ag = L”/L’ — 1 varied between Ag = —0.4 — 0.8 in their experiments. A
more detailed analysis, e.g. about the distribution of those parameters or the time and
location of breaking onset were not given.

There are only very few qualitative mentions about the required record length to de-
termine the wave breaking probability in a robust manner, for example by Babanin et al.
(2011a), who wrote: “Measurements of br [wave breaking probability| require averaging
over a large number of wave groups since the breaking process is characterised by long-

period intermittences [...|.” Exact numbers or at least estimations are not available.
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2.3. Statistical Variability of Wave Breaking

The only source which was a little bit more in-depth was Banner et al. (2000, p.
3156), who gave a short note about the observed long-term variability of wave breaking
probability: “An interesting result on the sensitivity of the correlation to the averaging
time was found during our analysis of the Black Sea data. While 20-min records are
usually regarded as sufficient for determining wave spectra, the number of wave groups
required to provide stable breaking probabilities is found to be longer. The result of
splitting several of the 40-min records into two 20-min records produced significantly more
scatter in the dependence of by on € [significant spectral peak steepness ¢ = Hpkp/2, see
Eq.(2.6)]. [...] Our limited duration data records and the relatively infrequent onset of
dominant wave breaking did not allow us to further identify the source of this variability
and future studies involving longer data records are clearly needed.” The presumption
of the author of this thesis is that wave breaking does not occur evenly in a wave train,
therefore wave breaking probability varies for different study areas and investigation

periods.
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3. Hydronumerical Model Tests

The hydronumerical experiments were carried out with the numerical wave flume (NWF)
developed and verified by Sriram (2008) and Sriram et al. (2006; 2007; 2010). The NWF
is based on the fully non-linear potential flow theory (semi-arbitrary Lagrangian-Eulerian
Finite Element Method (SALE-FEM, structured version)) and has been applied to study,

for instance:
e numerical and physical speed of non-linear waves
e rogue/freak waves
e sloshing

Due to potential flow theory the NWF simulations are terminated when the water surface
becomes discontinuous. However, this limitation is not detrimental because focus was
set on the wave train evolution until breaking onset. The discontinuity in the NWF may
be of numerical or physical nature. A form of numerical instability happens, when waves
get steeper, node crossing will take place, leading to negative elements in the free surface,
as the free surface nodes are moved in Lagrangian fashion. To sort out the test runs with
numerical discontinuities, solely the test runs were considered here which contained wave
trains where the waves with the maximum wave crest and the maximum wave steepness
were less than two single waves apart. Wave trains were divided into single waves by the
zero-downcrossing method. The point of termination of simulation was characterized by
the two parameters: time to breaking onset ¢, (temporal distance from simulation start
to end) and location of breaking onset x3, (spatial distance from inlet to breaking wave
crest).

The main advantages of the application of hydronumerical simulations with a numerical
wave flume were the speed of carrying out the simulations and the spatial measurement
of the entire water surface elevation per time step. However, it has to be considered that
the measurement was only quasi-spatial, since the wave flume was spanned by means of
nodes. Thus, a hydronumerical simulation with the numerical wave flume was a quasi-

pointwise measurement. The number of nodes and the spatial distance between the nodes

29



3. Hydronumerical Model Tests

had an influence on the result. The instability of the water surface could only occur there
and thus could only be measured where a node existed. If the spatial distance between
the nodes was changed with the input signal remaining constant, the time and location

of instability varied.

In the following chapter the test setup, program and procedure of the hydronumerical
simulations are presented. Then, the post-processing of the output data is described.
Finally, the validation, limitations, and uncertainties of the hydronumerical model are

investigated.

3.1. Test Setup

Tab. 3.1 summarises the relevant parameters describing the NWF settings. As described
in Sriram (2008, p. 70ff), the number of nodes in horizontal direction must be at least 30
nodes per wavelength for simulation of medium steep waves (sz > 0.03) and at least 60
nodes per wavelength for steep waves (sz > 0.05). These minimum requirements were
taken into account in this thesis, and nz varied between 51 < nax < 68 per wavelength
depending on the wave period, whereby the distance between nodes was constantly dx =
Lflume/nx = 0.0833m. As mentioned above, the result may vary if the spatial distance
between the nodes is changed with the input signal remaining constant, for more details
see subsection 3.3.2. According to Sriram (2008, p. 70ff), the recommended number
of nodes in vertical direction is nz = 13, independent of water depth. For the thesis, a
constant value of nz = 28 was chosen (recommended by Prof. A. Hildebrandt in personal
communication). With a high number of nodes per wavelength, collisions of nodes may
occur and therefore the mesh must be regridded after a certain number of time steps;

the recommended step size is 40's, see Sriram (2008, p. 70ff).

Based on the smallest selected wave period of Tp = 1.42s the time step of simulation
was chosen Aty = 0.02s for all test runs. The maximum duration of simulation ¢
corresponds to the time length of the input wave train, tgmy = DWT = Nw * Tp; the
test runs with small initial spectral steepness sz; showed that this maximum duration
of simulation was sufficient and the simulations aborted before due to discontinuities.
It is shown later that only a very small fraction of simulations passed through tgmui-
The flume length was L fjyme = 50m by default, as the physical tests showed that the
wave trains break beforehand; however, selected experiments were also repeated with
L fiyme = 100m. For more details about the influence of the flume length on the result

see subsection 3.3.2.
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Table 3.1.: Parameters for the setting of the numerical wave flume.

Symbol  Description Unit
L¢jyme  Flume lengths m
nx Number of nodes in x-axis direction (along L fjyme)
nz Number of nodes in z-axis direction (along flume height)
dx Distance between nodes in x-axis direction m
Atywr  Time step of simulation, Atyw e < % S
tsimul Maximum duration of simulation S

3.2. Test Program and Procedure

In hydraulic model investigations free-surface flows, which in principle also involve the
wave motion, are modelled according to the prevailing gravitational and inertial forces
according to FROUDE’s law of similarity. This law requires equal FROUDE numbers for

flow processes in the model (index m) and in nature (index n):

Cc

V9L

F =

with wave velocity ¢, wavelength L and acceleration of gravity g. The length scale A is:

The time scale 7 is:

The velocity scale ¢, is:

o= =/
Cm
Both the numerical and physical model tests, see section 6.1, were carried out in the
length scale A = 40. The length scale was obtained from the research platform FINO1
in the North Sea with a water depth of approximately 30m (in the model 0.75m) and

the boundary conditions of the WKS wave flume with maximum possible water depth
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3. Hydronumerical Model Tests

1.20m and a maximum wave height of 0.40m. The length scale was selected as small
as possible to be as close to nature as possible, but as large as necessary so that water
depth and wave height could be generated in the wave flume. The dimensions given in

this thesis are to be interpreted as model values, if not specifically pointed out otherwise.

Fig. 3.1 shows the basic work flow of the data generation. Since the measurements of the
research platform FINO1 in the North Sea were used as a design basis, the JONSWAP
spectrum was the chosen input sea spectrum. The input JONSWAP spectrum was
transformed from its frequency domain to time domain, resulting into the input wave
signal 7,(t) for the numerical wave flume. Each input spectrum S (f) was transformed r-
times to time domain to vary the phase angle distribution ¢, and thereby investigate the
influence of the wave sequence in the wave train on breaking onset. In case the simulation
terminated due to a instability, the output data were on the one hand the location and
time of breaking onset (xp,,tp.), and on the other hand the wave trains n(z,t) over
the whole flume for each time step At=0.02s. The time of breaking onset ¢, was the
time span from simulation start to the last simulated time step t.,q, and the location
of breaking onset xp. was the spatial distance from inlet to the peak of the breaking
wave crest. Special focus was given to the breaking wave and its deformation within
the last 2s before breaking onset, resulting into the waves ny(x, tp), ..., n50(x, tpr — 28)
with a time step of At=0.04s. Further on, special focus was given to the wave train
at the location of breaking onset over time 7(xp-,t) to analyse what happened at the
location of breaking onset within the last ten waves before breaking onset. To describe
and analyse the output, the geometrical and instantaneous parameters were determined
for the breaking wave 0y (x, tp), ..., D50(Z, tp —2's) and the last ten waves of the wave train
at breaking onset 7(xp,t). The parameters are explained in more detail in subsection
3.2.2.

In Fig. 3.2 the main steps of the test procedure are shown, divided into "Data Gen-
eration", "Simulation" and "Post-Processing". The steps are explained in more detail
below. As mentioned in the figure, the test runs were sorted out by introducing a per-
missible threshold, which was based on the physically possible maximum values of the
geometrical parameters, as measured so far in laboratory tests from other authors, see
Tab. 3.2. This step was necessary to filter “spurious” waves which came about because
the single waves in the wave trains were determined by the zero-downcrossing method.
The zero-crossings were recognized as such when the minimum excursion of the surface
elevation at at-rest water level was greater than 0.001 * ac mq.. It happened, however,
that even small oscillations around the rest water level were recognized as single waves.

These “single waves” led to outliers for the geometrical parameters of the wave crest at
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3. Hydronumerical Model Tests

Table 3.2.: Limit values for geometrical parameters in post-processing of NWF output

data.
Symbol Limit value Based on
sy =HJL 571im = 10 % 0.18 Toffoli et al. (2010)

szc =ac/L  Szcum =10%0.10 Bonmarin and Ramamonjiarisoa (1985)

szr =ar/L  Szr1im = 10%0.018 Bonmarin and Ramamonjiarisoa (1985)

sg=ac/L"  sg i, =10%0.78 Kjeldsen and Myrhaug (1979b)
s¢=ac/L" 8¢, =10%0.39 Kjeldsen and Myrhaug (1979b)
ug =ac/H i = 10%0.95 Kjeldsen and Myrhaug (1979b)

breaking onset, and they needed to be filtered out.

The generation of the input spectrum and input wave signal is explained in more detail
in subsection 3.2.1. The post-processing and data analysis is explained in more detail in
subsection 3.2.2. An overview where which output parameter is analysed in this thesis

is given in Tab. 3.5, see subsection 3.2.2.

3.2.1. Generation of the Input Spectrum and Wave Train

As design database the wave measurements of research platform FINO1 in the North Sea
were used (Neumann et al., 2003), and a scatter diagram for the time period 2004 - 2011
was derived. The significant wave height Hg and wave peak period Tp for the JONSWAP
spectra were selected in such a way that daily and storm events were considered, and
the initial spectral steepness sz; = Hg/Lp with Lp = g/(27)T3 varied between 0.01 <
sz < 0.071. In total, 49 different sea spectra were chosen and, by means of the random
phase angle distribution, were transformed multiple times (up to 500 times) to artificial,
but physically-sound time series of water surface elevations. The whole test program
with all 49 JONSWAP sea spectra is given in Tab. A.1 in the annex.

The significant wave height varied between 0.038m < Hg < 0.30m and 0.043m <
Hg <0.30m (Hg = 0.043m,0.083 m, 0.15m, 0.2m, 0.225m, 0.25 m, 0.30 m), respectively,
after test runs with outliers were sorted out. The wave period varied between 1.42s <
Tp <1.90s and 1.65s <Tp < 1.9s (Tp = 1.65s,1.7s,1.958), respectively, after test runs
with outliers were sorted out. Further input parameters were the enhancement factor
v (v = 2,3.3,5,7), water depth A (h = 0.5m,0.6m,0.7m,0.8m,0.9m), phase angle
distribution ¢, and the number of waves in a wave train Ny (Ny = 192,768, 1536, 3072

). The enhancement width o7 and oy modulate the width of the spectrum and
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Table 3.3.: Combinations of enhancement width o, and oy used in the hydronumerical

simulations.

oL og
0.070 0.090
0.065 0.095
0.060 0.100
0.055 0.105

were varied in such a way that the spectrum varied from narrow to wider, see Tab. 3.3.

The purpose of this variation was to investigate the influence of the spectral form on
the output, since Ochi and Tsai (1983) found that the shape of the spectrum (fourth

moment my), has a large influence on the probability of wave breaking. However, the

chosen variation of the parameters oy, and oy were too small to detect an effect on the

breaking onset.

The JONSWAP spectrum is described in Eq. (3.1).

with

LTS - [—i (fi)] )8 (3.1)

When generating a spectrum, there has to be a minimal and maximal frequency con-
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3.2. Test Program and Procedure

sidered; in this thesis they were fin = fp/4 and fiae = 4% fp , and Af was a constant
range dependent on the number of frequency components. The number of frequency com-
ponents ny,.q between fy,;, and fqae depended on the wanted Ny with np.eq < Ny /3.
This relation was determined by realizing wave trains with different ratios of n .., and
Ny, and then comparing the distributions of the resulting wave heights in the wave
train with the expected RAYLEIGH distribution. At the same time, care was taken to
ensure that the length of the wave train on a natural scale lasted at least 30 min, which
corresponds to the recommended duration for short-term statistics of sea state data. The
time length of the input signal or the duration of the wave train DWT = Tp * Ny was
determined over the peak period and the desired number of waves in the wave train. As
described in Eq.(3.1), the spectrum depends on the wave period Tp and enhancement
factor . The code for the generation of the wave trains took the significant wave height
Hg into account by a correction term, with which the once generated spectrum was
multiplied, see Eq. (3.2).

2
Scorrected (f) =S (f) <I‘.}’€nso> (32)

Hg is the chosen input parameter and H,, is calculated with the Oth moment mg (area
under the spectrum), see Egs. (3.3) and (3.4).

Hyno = 44/ (33)

Sfmaz
mo = / S () fodf (3.4)

fmin

In the generation of the wave trains, both 1st and 2nd order of wave generation theory
were considered. The code for generating the input signal converted the desired wave
train into a paddle motion for the wave maker. Both signals, generated wave train and
converted paddle motion, included a “fade in” and “fade out” time span to ensure that
the paddle motion for the wave maker started and ended with zero displacement. The
duration of the “fade in” and “fade out” time span is called trqmp and depends on the
duration of the wave train with trgm, = DWT/30.

The paddle motion was passed along with the internal NWF settings, as described in
section 3.1, to the code of the NWF. The NWF calculated the surface elevation over the

entire flume for each time step until either a discontinuity occurred and the simulation
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was aborted or the end of the simulation duration was reached. When all test runs for
an input spectrum had been performed, the output data were sorted in post-processing

and processed for subsequent analysis, as described in chapter 4 to 6 in more detail.

3.2.2. Post-Processing of NWF Output Data

In the first step of post-processing, a check was carried out to determine whether the
last simulated time step of the test run corresponded to the duration of the simulation
or not. If so, that meant that the simulation was fully carried out and no discontinuity
had occurred. In this thesis, this case was treated as a "non-breaking case"; there was
no instability in the chosen duration of the simulation. It was, however, not known
whether the wave train would had been instable if the duration of the simultaneity had
been chosen to be longer. The study showed that, even at low initial spectral steepness
sz, the majority of the test runs broke before the simulation duration, and thus the
simulation duration was selected to be sufficiently large. If the last simulated time step
was less than the simulation duration, a discontinuity occurred during the simulation,
and it had to be checked whether it was a numeric or physical instability.

For physical instability, the following conditions had to be met: a) The time of breaking
onset tp, had to happen later than the duration of the “fade in” time span trgmp, and b)
The wave with the maximum wave crest and the wave with the maximum wave steepness
were at most one single wave away from each other. That condition was based on the
findings from literature, e.g. Bonmarin and Ramamonjiarisoa (1985) and Babanin et al.
(2007), which contributed to the detection of wave breaking in time series. 81% of the
breaking test runs fulfilled the condition that the largest wave was also the steepest wave;
13% of the test runs fulfilled the condition that the largest wave was next to the steepest
wave; 6% of the test runs fulfilled the condition that the largest and steepest waves were
one single wave apart.

In the dimensional analysis, see section 4.2, another condition was added, namely
ac/Hg > 0.9, so as to reduce the data sample to the interesting cases of wave breaking,
namely large, steepness-induced wave breaking.

After the test runs with numerical instabilities were sorted out, the time series was
read out at the location of wave breaking 1 (zy,,t); the location of wave breaking xy,
was the spatial distance from the inlet to the maximum wave crest ac mq.. Because of
the regridding of the mesh, the value for zy, varied slightly (O(107% — 10~%)), therefore
when reading out the displacement 7 (4., t) for time steps smaller than t,., the location
closest to xzp,. was chosen. Later in chapter 6, these time series are used to develop a

detection and prediction method for breaking onset.
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Furthermore, the water surface elevation of the entire wave flume n; (z, ty,) to 950 (2, tp—
2s) were read out at a time interval of At = 0.04s for the last 2.0s before termination
of the simulation, where n; was the water surface elevation at the last simulated time
step ty-. The choice of At = 0.04s was based on Bonmarin and Ramamonjiarisoa (1985),
who chose the same time step for their experiments. The total investigation time of 2.0s
was based on the findings from literature, which states that the process of wave breaking
takes a fraction of the wave period, see Sharkov (2007) and subsection 2.1.3. With a
maximum peak period of Tp = 1.9 the selected 2.0 s were sufficient. Later on in chapter
6.2, these results are taken to describe the deformation of the wave just before breaking

onset.

In the next step, the geometrical and instantaneous parameters of the individual waves
were calculated from the wave train n(x,t,.) and wave train n(zp,,t). As summarised
in Tab. 3.2, the experimental maximum values for some parameters were known from
literature. These were introduced as limit values and test runs with parameters that
exceeded a multiple of those limit values were sorted out. Finally, the remaining test
runs were saved and were ready for the subsequent analysis. In total, 15,500 simulations
had been carried out. From those 15,500 simulations, 4,412 test runs did not terminate
due to numerical instability, and from those again 4,329 test runs were within the limit

values.

The output data considered in the analysis are

e the location and time of breaking onset (., ty.) or rather their dimensionless
quantities (xp,/Lp, tor/Tp)

e the breaking wave and its deformation within the last 2s before breaking onset,

resulting into the waves 1 (x, ty), ..., N50(x, tp — 28) with a time step of At=0.04s

e the wave train at the location of breaking onset over time 7(zy,, t) and its last ten

waves before breaking onset

The breaking wave and the single waves in the wave train at the location of breaking
onset are described with the geometrical parameters, based on the recommended wave
parameters by IAHR (1989) and Bonmarin and Ramamonjiarisoa (1985), and the in-
stantaneous parameters computed with the HILBERT transform, see Tab.3.4. For more
details on the HILBERT parameters see subsection 6.1.3.1. An overview where those

output parameters were analysed in this thesis is given in Tab. 3.5.
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3. Hydronumerical Model Tests

Table 3.4.: Compilation of dimensionless geometrical and instantaneous parameters as
used in the analysis.

Symbol Description
ac/Hg dimensionless wave crest amplitude
fo/fp dimensionless wave frequency

sy =H/L wave steepness

Szc = ac / L crest steepness

szr =ar/L trough steepness

se =ac/L crest front steepness

s¢ =ac/L" crest rear steepness

py =L"/L vertical asymmetry

ug =ac/H horizontal asymmetry
a(t)/Hg dimensionless instantaneous amplitude
f@®)/fp dimensionless instantaneous frequency

sz(t) =2a(t)/L(t) instantaneous steepness

3.3. Validation, Limitations and Uncertainties

3.3.1. Validation

The NWF code was extensively validated in Sriram (2008). Nonetheless, in this thesis,
the quality of the NWF was also tested by means of physical model tests with regular
and irregular wave trains. The physical model tests with irregular waves, described in
detail in chapter 6, which were used for the development of the detection method, were
only of limited use for the validation, since the first breaking waves occurred in the first
few wavelength because the initial steepness was so high (sz; = 0.044), but the first
wave gauge was only located at 14.9m in the wave flume. The wave breaking dissipated
wave energy and modulated the wave train and, thus, limited a direct comparison of
the hydronumerical and laboratory measurements. The physical model tests were never-
theless repeated with the NWF. In Fig. 3.3, three such tests (with different phase angle
distributions) are compared with each other. Despite the modulation of the wave train

by the wave breaking in the physical model tests, the correlation was sufficient.

In Fig. 3.4 the comparison for the regular wave trains (H = 0.15m, T' = 1.5s, sz =

0.043) are shown. There was no wave breaking in the physical model tests, so the
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3.3. Validation, Limitations and Uncertainties

Table 3.5.: Overview of the thesis’ chapters of results and the covered output data.

Chapter Content Analysed output data
4.1 Development of time of breaking onset tyr/Tp
4.2 Dimensional analysis tor /TP, Tor/ Ly
4.3 Likelihood of breaking onset tor
5.1 Univariate analysis tor /TP, Tpr/Lyp
5.2 Bivariate analysis (copula approach) (tor /TP, xpr/Lp)
5.3 Optim.al sample size (convergence tyr/ Tp
analysis)
ical
Detection of breaking onset in wave geometrlca and
6.1 . instantaneous parameters of
trains (laboratory model tests)
n(xbm t)
Deformation of wave crests before Geometrlcal and
6.2 . instantaneous parameters of
breaking onset
M (T, tpr)s o5 150 (T, tor — 28)
. . trical and
Prediction of breaking onset Geome rieat an
6.3 instantaneous parameters of

(hydronumerical model tests)

n(l‘bﬁ t)
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3. Hydronumerical Model Tests
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Figure 3.3.: Comparison of wave gauge WG1 (zwg1 = 14.9m) for numerical (NWF) and
physical model test (WKS). Initial wave steepness sz; = 0.044.

wave train was not modulated. The correlation for WG1 was R? = 0.98 and for WG3
R? = 0.99. The correlation between experimental measurement and numerical simulation

was good.

3.3.2. Limitations and Uncertainties

The model uncertainty was that due to potential flow theory simulations with the numer-
ical wave flume were terminated when the water surface became discontinuous. Again,
this limitation was not detrimental because the focus of this thesis was set on the wave
train evolution until breaking onset. There were two parameter uncertainties that were
investigated in more detail: the influence of the distance of nodes dx and the influence
of the wave flume length L ¢y, on the results.

The analysis showed that the choice of dr had an impact on the output results. This
was understandable, if one imagines that the equations were solved at the nodes; if there
was no node at the location of a possible instability, it could not be found. In the thesis,
care was taken to ensure that the experiments were carried out with a constant distance
dz in order to ensure the comparability of the results.

The second parameter uncertainty was the influence of the wave flume length L f1yme
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Figure 3.4.: Comparison of wave gauge WG1 and WGS3 for numerical (NWF) and physical
model test (WKS). Wave steepness is sz = 0.043.

on the water surface elevation. The question was when and how reflections of the
wave flume end (outlet) occurred, despite the wave damping of the numerical code
at the outlet. Three different regular wave trains with 150 waves (Ny = 150) in
the wave train and increasing wave steepness sz = 0.009,0.029,0.042 were carried
out in the numerical wave flume with the flume length Lfjme = 50m and Lyjyme =
100m. The water surface elevation were “measured” (read out) at six positions z =
0.0m, 10.0m, 20.0 m, 30.0 m, 40.0 m, 49.9 m in the wave flume. The results for wave gauges
WG1 and WG6 are shown in Fig.3.5. The comparison showed that differences (A >
0.001m) in the water surface elevation occurred after approximately 50s; the steeper
the wave train the larger the differences were. Obviously, the differences were larger for

WG6, which was just 0.1 m away from the outlet.

The influence of the flume length on the water surface elevation did not affect the overall
result of the breaking onset as seen in Fig.3.6. The figure shows the development of
normalised time of breaking onset ¢, /7Tp against initial spectral steepness sz; = Hg/Lp.
For small sz; = 0.01 and sz; = 0.02 only test runs with L f,m. = 100 m existed, except
one test run with sz; = 0.02, which lie in the same order of magnitude as the test

runs with L fjyme = 100m. As can be seen, the median values for spectrum steepnesses
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Figure 3.5.: Difference of water surface elevation for wave flume length L fjyme = 50m
and L frume = 100m for wave gauge WGI1 (left, zwe1 = 0.0m) and WG6
(right, zwge = 49.9m) for three regular wave trains with different wave

steepnesses sz.
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Figure 3.6.: Development of normalised time of breaking onset ¢, /Tp against initial spec-
tral steepness sz; = Hg/Lp for each wave flume length L fjyme (top) and
their median values (below).

sz; > 0.027 for the data sets with only L fjyme = 50m, only Lfjyme = 100m, or both

data sets together resulted in the same values.
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4. Influencing Factors on Breaking Onset

In the following chapter, the sensitivity, i.e. the cause-effect relationship between the
input and output variables of breaking onset is investigated. Input variables were the
characteristic parameters of the sea spectrum and wave train, respectively, (Hg, Tp, v,
Nw, h) and their dimensionless characteristic values. Output variables were the time
and location of breaking onset ¢y, and x,.. The influence of the input variables was firstly
examined individually and secondly in a dimensional analysis. The test program for the
hydronumerical model tests was based on the results of the physical model tests, which
served as a first sensitivity analysis. Particular attention was paid to the parameters,
which proved to be especially influential, namely the initial spectral steepness sz; and
the phase angle distribution ¢ (wave sequence in the wave train). The randomness of the
phase angle distribution, and thereby the randomness of the wave sequence in the time
series, had a significant influence on the number of breaking waves; different realizations
of the same energy density spectra in time domain did not produce same numbers of
breaking waves. Therefore, each spectrum was repeated with a large sample number
(up to 500 times). In the first step the relation between time of breaking onset t;, and
the input variables Hg, Tp, v, Nw, h was examined. The dimension analysis follows in
section 4.2 and the investigation of the likelihood of breaking onset follows in section 4.4,

where the frequency of non-breaking cases is investigated.

4.1. Development of Time of Breaking Onset

In this section the relation between time of breaking onset ty,., or rather the normalised
time of breaking onset ty,./Tp, and the input variables Hg, Tp, v, Nw, h is examined
to determine the input variable with the greatest influence. All breaking test runs were
considered here. For the analysis, the dimension-dependent input variables were sensibly

standardized and yield the following dimensionless input variables:
e szi=Hg/Lp with Lp = ££T3

e DWT/Tp = Ny * Tp/Tp = Ny'!

'The time length of the input signal or the duration of the wave train DWT is determined in the
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4. Influencing Factors on Breaking Onset

e Hg/h
*

In Fig. 4.1 the development of normalised time of breaking onset ¢, /Tp against initial
spectral steepness sz; = Hg/Lp for each number of waves in initial wave train Ny is
plotted. For each initial spectral steepness sz;, multiple test runs (realizations of the
wave spectrum) were performed which differed in their phase angle distribution. It can
be observed that the median and the scattering of t,. /Tp decreased with increasing initial
spectral steepness sz ; (per Ny ). In general, the greater the spectral steepness, the earlier
the wave train broke. A scattering of the results (per sz; and Ny ) showed the significance
of the phase angle distribution, i.e. the significance of the wave sequence in the time
series, to the time of breaking onset. For small spectrum steepnesses sz; < 0.044, the
dispersion of the output was relatively high; thus the wave sequence in the time series
has a significant influence on the time of breaking onset. This observation was confirmed
by the physical model tests, see section 6.1. In the case of large spectrum steepnesses
sz > 0.044, the influence of the spectral steepness, in particular of the significant wave
height Hg, and thus of the energy in the wave spectrum, predominated. The spread of
the output parameters is investigated in more detail in section 5.1.

Banner et al. (2000) observed that the spectral peak steepness needed to be e =
Hpkp/2 2 0.05 — 0.06, see Eq.(2.6), for dominant wave breaking in natural wave fields
to exist. This threshold value transferred to the initial spectral steepness leads to sz; ~
e/m ~ 0.016—0.019, which goes along with the author’s results. Babanin et al. (2007) and
Dold and Peregrine (1986) observed in their numerical studies with monochromatic wave
trains that wave trains needed an initial wave steepness of (ak), > 0.1 (H/L > 0.03) to
develop into a breaking wave train. In this thesis’ numerical model tests non-breaking
wave trains occurred for test runs with sz; = 0.01 and sz; = 0.02, but every test run
with sz; > 0.027 ((ak), 2 0.08) broke, which also goes along with the results from
literature. Babanin et al. (2007) found lower thresholds values in their physical model
tests where monochromatic wave trains needed an initial wave steepness of (ak), > 0.08
to break.

For the variation of the spectral steepness, primarily the significant wave height Hg
(0.043m < Hg < 0.30m) was changed. The peak period Tp was only minimally changed
(1.65s < Tp < 1.90s) because on the one hand it had to remain within the range of the
possible values from the scatter diagram, and on the other hand it influenced the number

of nodes of the mesh and thus the simulation duration. For the numerical simulation to

numerical code over the peak period and the desired number of waves in the wave train.
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4.1. Development of Time of Breaking Onset
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Figure 4.1.: Development of normalised time of breaking onset ¢, /Tp against initial spec-
tral steepness sz; = Hg/Lp for each number of waves in initial wave train
Ny. Median values (black markers) and fitting line (black dashed line).
Minimal duration of simulation (grey dashed line).
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Hg/Lp. Median values (black markers) and fitting line (black dashed line).
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4. Influencing Factors on Breaking Onset

continue to be efficient, the peak period was not further increased. Although the peak
period has a quadratic influence on the spectral steepness, the significant wave height
Hg and thus the energy content of the spectrum was the driving force that caused the
wave breaking. The fitted curve has the Eq. (4.1) and the coefficient of determination
R? =0.72.

t _
2 0.0955,5% & 0.1,/ (4.1)
TP b b

Banner et al. (2000) investigated breaking onset in an initial nearly uniform wave group
configuration and concluded that the initial steepness (ak)o has the strongest influence
on the time to breaking onset T3, with the inverse time to breaking almost quadratically
dependent on (ak)g. This is similar with the author’s result of the relation of the initial
spectral steepness sz; and the time of breaking onset t;. in this investigations with

irregular wave trains.

In Fig. 4.2 the development of normalised time of breaking onset 3, /Tp against number
of waves in initial wave train Ny for each initial spectral steepness sz; = Hg/Lp is
shown. It can be observed that the time of breaking onset increased as the number of
waves in the wave train increased. In general, the longer the initial wave train, the later
the wave train broke. When the course of the normalised time of breaking onset ¢y, /Tp
was considered for each initial spectral steepness sz;, the number of waves in the wave
train Ny showed a linear influence. The fitted curve has the Eq. (4.2) and the coefficient
of determination R? = 0.14.

t
b~ 0.66 NG (4.2)
Tp

In Fig. 4.3 the development of normalised time of breaking onset t,./Tp against the
normalised water depth Hg/h (top) and the water depth h (bottom) for each initial
spectral steepness sz; = Hg/Lp is plotted. It can be observed that the time of breaking
onset decreased with increasing ratio Hg/h, but the cause was the significant wave height
Hg as Fig. 4.3 (bottom) shows. A change in water depth & did not significantly influence
the time of breaking onset and no pattern in their behaviour were seen. The fitted
curves have the Eqgs. (4.3) and (4.4) and the coefficients of determination R? = 0.85 and
R? = 1.14 x 10™%, respectively.

He\ 152 Heo\ /2
ty/Tp = 2 < hs> ~ 2 <hs> (4.3)

90



4.1. Development of Time of Breaking Onset
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Figure 4.3.: Development of normalised time of breaking onset t;./Tp against the nor-
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initial spectral steepness sz; = Hg/Lp. Median values (black markers) and
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4. Influencing Factors on Breaking Onset

tye/Tp = 15.46h~ 0023 (4.4)

Thus the occurring wave breaking was not depth-induced. To support that statement,
the time of breaking onset is plotted over the normalised water depth H/h, with H as
the wave height of the breaking wave, see Fig.4.4. The breaking waves had a relative
water depth of 0.027 < H/h < 0.64, and were thus below the breaking criterion of H/h =
0.78, this criterion being based on the theory of solitary waves according to McCowan
(1891). For irregular wave trains, the breaking criterion H/h = 0.78 and the assumption
Hppax/Hs = 1.86 leads to a critical threshold of Hg/h = 0.42. This theoretical value was

just barely reached from the measurement results of (Hg/h) = 0.429 , see Fig. 4.3.

max

In Fig.4.5 the development of normalised time of breaking onset tp,./Tp against the
enhancement factor v of the JONSWAP spectrum for each initial spectral steepness
szi = Hg/Lp is plotted. The enhancement factor v describes the peakedness of the
JONSWAP sea spectrum (in relation to the PIERSON-MOSKOWITZ spectrum). A change
in the enhancement factor v did not significantly influence the time of breaking onset
and no pattern were seen. The fitted curve has the Eq.(4.5) and the coefficient of
determination R? = 8.67  10~4.

tor ~0.08
— = 17.2 : 4.
T 7.2y (4.5)

Conclusions

e Breaking onset is highly sensitive to the initial spectral steepness sz;, to the se-
quence of waves in the input wave train (phase angle distribution), and to the

number of waves in the input wave train Nyy.

e For small spectral steepnesses sz; < 0.044, the sequence of waves in the input wave

train is the main influence on breaking onset.

e For larger spectral steepnesses, the initial spectral steepness syz;, especially Hg

and, thus, the spectral energy, is the main influence on breaking onset.

e The inverse time of breaking onset 1/ty, is almost quadratically dependent on sz ;.

92



4.1. Development of Time of Breaking Onset

water depth h [m]
180 :

< ' ' ' ' . 05

160k ) | 0.6

. 07

e [ ]

mob . | 0.8

_”:.: ° . O 9
0] T .
. 100} LT '.°. . ]

i ° ° : ° o o ®e ¢
< 80} e 1
60} 1
40} .-
20} 1
ols .
0 0.6 0.7

Figure 4.4.: Development of normalised time of breaking onset ¢y, /Tp against the norm-
alised water depth H/h for each water depth h. H is the wave height of the
breaking wave.
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steepness sz; = Hg/Lp. Median values (black markers) and fitting line
(black dashed line).
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4. Influencing Factors on Breaking Onset

4.2. Dimensional Analysis

The aim of the dimensional analysis according to Buckingham (1914) is to mathematically
describe the influence of the input variables and predict the output value based on the
results of the measurements. The output values to be determined were the time and
the location of breaking onset ¢ and xp,, or their dimensionless variants t./Tp and
Zp/Lp. In addition to the input values Hg, Tp, Ny, h and ~, introduced in section 4.1,
the following input variables were introduced for the dimension analysis to describe the

phase angle distribution and the width of the sea spectrum:

e the spectral width vy = | /7072 — 1
1

e time of the first wave group in initial wave train WaGorjme
e number of waves in first wave group in initial wave train WaGonuym

The spectral width vy was introduced because the width of the peak of a narrow-banded
spectrum is related to modulational properties in the train of dominant waves. m; is the

spectral moment of order i, see Eq. (4.6).

fmaz
mi= [ s (4.6)

fmin

The spectrum was determined from the input signal of the wave train and the the band-
width was finin = 0.25% fp and fra: = 4% fp; those cut-off frequencies were also chosen
to generate the wave train in the numerical code.

As described by Donelan et al. (1972) and Holthuijsen and Herbers (1986) for the first
time, wave groups and wave breaking are connected to one another. Therefore the
parameters WaGorime and WaGonym,m were also taken into account in the following
dimension analysis. For the analysis, the input variables were normalised and yield the

following dimensionless input variables:
e sz;=Hgs/Lp

° DWT/TP = Npr/Tp = NW

Hs/h
® 7

OZ/W
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4.2. Dimensional Analysis

e WaGonym/Nw
b WaGOTime/TP

with the time length of the input signal DWT. The power function y = az? was defined
as the basic mathematical relation. The considered sample consisted of all test runs
that broke and had the ratio ac/Hg > 0.9. The restriction to consider only breaking
waves with a minimum height was introduced to increase the quality of the dimensional
analysis and to focus on the interesting data ranges. To investigate which input variables
were relevant for dimensional analysis, three groups of input variables were used and the
results were compared with one another.

In Group1 all of the above listed input variables were considered. In Group2 the
four main input variables sz;, Nw,, Hg/h and vy were considered. As shown in the
previous section 4.1, the initial spectral steepness sz; and the number of waves in the
initial wave train Ny had the biggest influence on the time of breaking onset tp,.. The
normalised water depth Hg/h and the enhancement factor of the sea spectrum - were
considered because the water depth generally have an influence on wave breaking and ~
is an indicator of the energy content and peakedness of the sea spectrum. Whether the
two last-mentioned input variables were really relevant for dimensional analysis is to be
shown here.

Furthermore, in Group 3 only sz; and Hg/h were considered; Ny and « were left out
since the number of waves (or the time length of the signal) and the enhancement factor
are not standard information which is measured. In contrast, the variables Hg, Tp and
h are default measured values, e.g. from the research platform FINOI1.

In Fig.4.6 the dimensional analysis of normalised time of breaking onset t;,/Tp is
plotted against its predicted results. The coefficient of determination was R? = 0.958
for Group 1 and Group 2, and R? = 0.885 for Group 3. Whether the spectral width vy
or the wave group parameters WaGonym/Nw and WaGopime/Tp were considered or
not had no influence on the coefficient of determination. The exclusion of the number of
waves Ny and the enhancement factor v on the other hand decreased the coefficient of
determination, consequently, Ny and -y were important input variables for the time of
breaking onset.

In Fig. 4.7 the dimensional analysis of the normalised location of breaking onset x4,/ Lp
is plotted against its predicted results. The coefficient of determination was R? = 0.901
for Group 1 and R? = 0.906 for Group 2 and Group 3. Again the spectral width and the
wave group parameters had no influence on the output. The spectral steepness sz; and

the relative water depth Hg/h had the biggest influence on the location of breaking onset
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Figure 4.6.:
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Dimensional analysis of normalised time of breaking onset t./Tp (plotted
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(top) and logarithmic (bottom) presentation.
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ted against predicted results). Total number of data points n,q, = 291.
Normal (top) and logarithmic (bottom) presentation.
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4. Influencing Factors on Breaking Onset

Tpy-

The resulting equation for the time of breaking onset tp, preq is Eq. (4.7), the equation
for the location of breaking onset ;. preq is Eq. (4.8).

—-0.3 —0.02
tb?;fred _ 0-0294521{43]\78{/49 <HS> 4071 <W(IGONum> )

P h Nw
WaGOTime 0.002
< irp) 7/1(/]"/76 (4 . 7)

~0.11 ~0.01
Lor,pred _ 0.00535 5,209 N 305 Hs ~136 WaGonum _
LP o h, NW

—0.05
<W“C;OT””€) 04 (48)
P

When only the initial spectral steepness sz; and the relative water depth Hg/h were

taken into account, then the equation for ty, preq and 2y, preq were as follows, see Egs. (4.9)
and (4.10).

—0.04

tor pred _143 [ Hs

Ti’; = 0.158s, % | == (4.9)
—0.09

Lor,pred —2.00 ( Hs

# = 0.00085, <h> (4.10)

In Fig. 4.8 and 4.9, the resulting curves according to Eq. (4.7) are presented together with
the measured data. The curves were calculated with the fixed parameters v = 3.3 and
Hg/h = 0.061 and then for variable numbers of waves in the initial wave train Ny and
variable initial spectral steepnesses sz ;, respectively. The resulting curves fit the data

good.
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4.2. Dimensional Analysis
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Figure 4.8.: Development of normalised time of breaking onset ¢, /Tp against initial spec-
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Ny. Median values for the total data points (black markers).
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4. Influencing Factors on Breaking Onset

Conclusions

e The dimensional analyse shows that the initial spectral steepness sz;, the number
of waves in the input wave train Ny, and the enhancement factor v are influential

variables for the time of breaking onset tp,.

e For the location of breaking onset x,, only the initial spectral steepness sz; is a

influential variable.

e The spectral width vy and the wave group parameters WaGorime and WaGonym

show no influence on the coefficient of determination.

4.3. Comparison with Physical Model Tests

In this section, the results of the dimensional analysis, which was based on the data of
the NWF simulations, are compared to the results of the physical model tests of this
thesis, see section 6.1, and the results of the physical model tests by Babanin et al.
(2007). Babanin et al. conducted model tests with two-dimensional initially monochro-
matic waves, which broke due to modulational instability. They deduced an relationship
between the dimensionless distance to breaking xp,./L and the initial wave steepness
(ak)y, see Eq. (2.7).

Fig. 4.10 shows the normalised location of breaking onset x,/Lp against initial spec-
tral steepness sz ; = Hg/Lp. The results of the physical model tests in the WKS wave
flume are shown as a grey area, and not as exact values, because it was not possible to
measure the breaking onset of the first breaking wave in the laboratory. In the model
tests, JONSWAP spectra with initial spectral steepnesses between 0.026 < sz; < 0.082
were carried out, and the video recordings showed, that the first wave breaking usually
happened in the first ~ 10m? after the wave paddle, but the first wave gauge was installed
in 14.9m distance. Nevertheless, the results of the WKS model tests and the NWF sim-
ulations are in good agreement, and the equations from the dimensional analysis follow
the pattern of xy,/Lp well.

Please note, to present Babanin et al.’s resulting equation Eq. (2.7) in Fig. 4.10 the
following assumption was made: (ak), = 7 * sz;. The resulting curve shows the same
trend as Eq. (4.8) and (4.10), but with a higher offset. The comparison shows that

monochromatic (regular) waves break spatially later than irregular waves with similar

22pr/Lp =~ 10m/3.1m = 3.2 with 3.1m as the shortest wavelength in the model tests
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4.4. Likelihood of Breaking Onset
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Figure 4.10.: Development of normalised location of breaking onset x4,/ L p against initial
spectral steepness sz; = Hg/Lp in comparison with results from WKS
model tests, NWF simulations, dimensional analysis, and Babanin et al.
(2007).

initial wave steepnesses. Furthermore, the comparison shows the significant influences of
the type of wave train and the type of wave breaking generation on the breaking process

and its onset.

4.4. Likelihood of Breaking Onset

In addition to section 4.1, the frequency of occurrence of the breaking wave trains is
investigated in this section. In Tab.4.1, the number of test runs for the dataset with
non-breaking and breaking wave trains n,,q,; and the dataset with only breaking wave
trains nyreqking is presented for each initial spectral steepness. The frequency of breaking
is:

fbr _ Nbreaking (411)

Nmax
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4. Influencing Factors on Breaking Onset

Table 4.1.: Overview of number of test runs for data sets with different initial spectral
steepnesses and the frequency of breaking.

sz: Al wave trains Breakin.g wave Non—breal.iing Breaking

’ trains wave trains Frequency fp,
0.010 88 85 3 0.97
0.020 70 69 1 0.99
0.027 208 208 0 1
0.033 288 288 0 1
0.035 281 281 0 1
0.044 1918 1918 0 1
0.050 142 142 0 1
0.055 473 473 0 1
0.067 676 676 0 1
0.071 185 185 0 1
Sum 4412 4329 4325

The difference to Eq. (2.3), Py = nyr /Mo, 1s that Eq. (2.3) considers one wave train in
which nyp,. wave crests break, but Eq. (4.11) considers n,,q; wave trains of which Nreaking
wave trains break.

As can be seen in Tab.4.1, only for the low initial spectral steepnesses sz; = 0.01
and sz; = 0.02 there were four non-breaking wave trains that propagated without any
discontinuity in the NWF; the breaking frequency was fp, = 0.97 for sz; = 0.01 and
for = 0.99 for sz; = 0.02. For all higher spectral steepnesses, the breaking frequency was
for = 1, that is, each wave train broke in the course of the simulation. The result shows
that a wave train also breaks with a low spectral slope, if it has enough running length.
From a spectral steepness of sz; > 0.027 all test runs broke; the low scattering of the
results of ¢y, /Tp for high spectral steepnesses suggests that even with an increase in the
number of test runs carried out, no wave train would had passed without instability. In
Fig.4.11, the corresponding histograms for the datasets with and without non-breaking
wave trains are shown for sz; = 0.01 and sz; = 0.02. Since, as a whole, only four wave
trains passed through without instability, the difference between the histograms was only

minimal.
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4.4. Likelihood of Breaking Onset
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Figure 4.11.: Histograms of normalised time of breaking onset ¢, /Tp for the data sample
with all test runs (non-breaking and breaking wave trains) and with only
breaking wave trains. Number of bins was 10. Initial spectral steepness
sz = 0.01 (top) and sz; = 0.02 (bottom).
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5. Variability of Breaking Onset

In this chapter the scattering of the normalised time and location of breaking onset
tyr/Tp and xy,/Lp, respectively, are investigated as a function of the spectral steepness
sz, both with univariate and bivariate (copula) distribution functions. Thereby, the
influence of the phase angle distribution, and thus of the wave sequence in the wave
train, on the output parameters is analysed.

Furthermore, a convergence analysis for the normalised time of breaking onset t,./Tp
is carried out, and the optimum sample size No, that is, the necessary test number to

calculate tp,./Tp with a permissible deviation is determined.

5.1. Univariate Distribution Function

In the following, the scattering of the normalised time and location of breaking onset
tyr/Tp and . /Lp, respectively, for every initial spectral steepness sz; is analysed.
An overview of the statistical values such as minimum value, maximum value, median
value, standard deviation and total number of test runs for ¢, /Tp for each sz ; is given in
Tabs. 5.1 and 5.2. In Tab. 5.1, all test runs that broke are taken into account. In Tab. 5.2,
however, the data set is taken into account with all test runs that broke, but with fixed
boundary conditions for the water depth, number of waves in the initial wave train
and enhancement factor so that only the spectral steepness sz; varied. The boundary
conditions were h = 0.7m, Ny = 192, and v = 3.3.

The standard deviations varied between o = 1 to o = 23, where the scatter was
particularly large for small spectral steepnesses sz; < 0.027, and then decreased rapidly.
As expected, both data sets differ only for the spectral steepnesses sz;, which have
varying water depths h, numbers of waves in the initial wave train Ny, or enhancement
factors v, see Fig.4.1.

In Tabs. 5.3 and 5.4 the corresponding results for the location of breaking onset zy,./Lp
are given. Again, the scatter was the largest for small steepnesses, but the standard
deviation only varied between o ~ 0.5 and ¢ ~ 5. The location and time of breaking onset

did not need necessarily to correlate, since the breaking wave crest did not necessarily
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5. Variability of Breaking Onset

Table 5.1.: Statistics of normalised time of breaking onset t,./Tp for dataset with all test
runs (breaking wave trains).

$Z,i Tmin Tmaz x o Nmazx
0.010 104.21 175.54 133.10 1044 85

0.020 19.30 133.10 102.27 21.82 69

0.027 791 137.01 35.09 23.20 208
0.033  4.75 31.99 1524 558 288
0.035  4.85 9443 13.66 19.17 281

0.044  3.93 44.75 8.11 3.11 1870
0.060  4.62 11.49 7.13 142 142
0.055  3.47 73.87 6.94 12.27 448
0.067  2.75 10.95 5.59 1.17 589
0.071  2.82 8.93 5.07 1.06 185

Table 5.2.: Statistics of normalised time of breaking onset ¢, /Tp for dataset with all test
runs (breaking wave trains) and h = 0.7m, Ny = 192 and v = 3.3.
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8Zi Tmin Tmaz x o Nmazx
0.010 104.21 175.54 133.10 1044 85

0.020 19.30 133.10 102.27 21.82 69

0.027 791 66.94 21.88 1230 99

0.033 4.75 31.99 1524 558 288
0.035  4.85 21.39 10.0v 290 171
0.044  4.67 14.53 8.12 2.02 396
0.050  4.62 11.49 7.13 142 142
0.055  3.47 11.12 6.19 1.39 347
0.067  2.77 9.95 5.39 1.18 146
0.071  2.82 8.93 2.07 1.06 185




5.1. Univariate Distribution Function

Table 5.3.: Statistics of normalised location of breaking onset xy,. /L p for dataset with all

test runs (breaking wave trains).

$Z.i Tmin  Tmaz x a Nmaz
0.010 10.02 22.10 1447 3.12 85

0.020 0.70 20.90 13.55 487 69

0.027 0.09 800 144 2.04 208
0.033 0.07 5.01 0.81 093 288
0.035 0.09 611 059 097 281
0.044 0.07v 497 0.52 0.57 1870
0.060 0.13 227 0.55 045 142
0.065 0.09 3.84 0.65 054 448
0.067 0.07 3.14 0.68 045 589
0.071 0.08 251 0.67 047 185

Table 5.4.: Statistics of normalised location of breaking onset w3, /Lp for dataset with all
test runs (breaking wave trains) and A = 0.7m, Ny = 192 and v = 3.3.

S$Z Tmin  Tmaz T o Nmazx
0.010 10.02 22.10 1447 3.12 85
0.020 0.70 20.90 13.55 487 69
0.02r 009 791 140 189 99
0.033 0.07 5.01 0.81 093 288
0.035 0.09 323 047 057 171
0.044 0.07 336  0.55 0.57 396
0.060 013 227 055 045 142
0.065 0.09 275 064 047 347
0.067 0.07v 3.14 0.67 047 146
0.071 0.08 251 0.67 047 185
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5. Variability of Breaking Onset

Table 5.5.: Probability density functions.

PDF
GUMBEL f(x)=axexp(—a(x—p))*exp(—exp(—a(x — pn)))
Gamma f(z)= ﬁw)xkl exp (—%)
WEIBULL f@)=2(2)""exp (— (%)b>
GAUSSIAN Normal f@) =~ 127r exp <—% (%)2>
RAYLEIGH f(x) = jzexp (—%)

had to belong to the first wave, and thus the location and time were not connected to the
running speed of the wave; due to wave-wave interaction, the location of the breaking

could also be in the centre of the wave train, rather than at the beginning.

In the following, the histograms, empirical probability density functions (PDFs) and
empirical cumulative distribution functions (CDFs) are shown; then they are compared
with the theoretical GUMBEL, Gamma, WEIBULL, GAUSSIAN, and RAYLEIGH distribu-
tion functions. For the histograms, the class number m was determined according to
Eq. (5.1), where N is the number of characteristic values (Papula, 2002, p. 475).

m = 5logg (N) (5.1)

The empirical density function was calculated with the matlab function ksdensity,
which represents an estimate of the density function based on a normal kernel func-
tion (Bowman and Azzalini, 2004). The formulas for the probability density functions
and distribution functions for GUMBEL, Gamma, WEIBULL, GAUSSIAN, and RAYLEIGH
are summarised in Tabs.5.5 and 5.6. a is the shape parameter, ¢ and b are the scale
parameters, and g is the location parameter.

In Figs. 5.1 to 5.4, the PDFs and CDFs for the normalised time and location of breaking
onset are shown exemplarily for sz; = 0.033,0.044,0.055,0.067. It can be seen that the
larger sz; the smaller the scatter of ¢4, /Tp and xp,/Lp, and the smaller the mean value
of ty./Tp, that is, the sooner the train broke. Furthermore, it can be observed that
the larger sz; the better all theoretical distribution functions followed the empirical
distribution functions of ¢,./Tp (except RAYLEIGH) and xp./Lp. The GUMBEL and
Gamma distributions best described the scattering of tp./Tp, and the WEIBULL and
Gamma distributions best described the scattering of xy,/Lp.
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5.1. Univariate Distribution Function
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Figure 5.1.: Histograms of normalised time of breaking onset t,./Tp with differ-

ent PDFs for the test runs with initial spectral steepness sz; =
0.033, 0.044, 0.055, 0.067.
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5. Variability of Breaking Onset
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Figure 5.2.: Empirical cumulative distribution function of normalised time of breaking
onset ty,. /Tp with different CDFs for the test runs with initial spectral steep-
ness sz; = 0.033, 0.044, 0.055, 0.067.
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5.1. Univariate Distribution Function
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Figure 5.3.: Histograms of normalised location of breaking onset zy,./Lp with dif-
ferent PDFs for the test runs with initial spectral steepness sz; =

0.033, 0.044, 0.055, 0.067.
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5. Variability of Breaking Onset
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Figure 5.4.: Empirical cumulative distribution function of normalised location of break-
ing onset xp,./Lp with different CDFs for the test runs with initial spectral
steepness sz; = 0.033, 0.044, 0.055, 0.067.
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5.1. Univariate Distribution Function

Table 5.6.: Cumulative distribution functions, 7 (k, azx) is the lower incomplete Gamma

function.
CDF
GUMBEL F(z)=exp(—exp(—ax*(x—pn)))
Gamma F(x)= 71(“62(1%))
WEIBULL F(z)=1—exp [— (%)b
1 1 (t—p\2
GAUssIAN Normal  F (z) = ——— [ exp (—§ (=4) )dt
RAYLEIGH F(z)=1—exp (é%)

Table 5.7.: KS-statistics of two-sample KOLMOGOROV-SMIRNOV tests for the normalised
time of breaking onset t,./Tp.

szi GUMBEL Gamma WEIBULL Normal RAYLEIGH

0.033 0.0632  0.0388 0.043 0.0517 0.1489
0.044 0.0516 0.0789 0.1156 0.1058 0.2942
0.055 0.0636 0.0937 0.1282 0.1192 0.3055
0.067 0.0679 0.0878 0.1405 0.1092 0.3457

In order to perform the goodness of fit (GoF) test not only qualitatively, the KS-
statistics were determined using the two-sample KOLMOGOROV-SMIRNOV test, which are
the maximum distance between the empirical and theoretical distribution function. The
results of the KS-statistics of the two-sample KOLMOGOROV-SMIRNOV test are given in
Tab. 5.7 for the time of breaking onset t;,./Tp and in Tab. 5.8 for the location of breaking
onset xp,./Lp. The course of the time of breaking onset t,,./Tp was represented well
by the GUMBEL and Gamma distribution. The course of the location of breaking onset
xp/Lp was represented well by the WEIBULL and Gamma distribution.

To complete the GoF test, the output parameters t./Tp and xz,./Lp, respectively,
were visually compared with each other in quantile-quantile-plots (qq-plots ) with differ-
ent distribution functions, see Figs. 5.5 and 5.6. The comparison showed that the output
parameters followed well the Generalized Extreme Value (GUMBEL’s Type I), WEIBULL,
and Gamma distribution. Generally, the time of breaking onset t, was better represen-

ted by theoretical distribution functions than the location of breaking onset xp,. Since
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5. Variability of Breaking Onset

Table 5.8.: KS-statistics of two-sample KOLMOGOROV-SMIRNOV tests for the normalised
location of breaking onset xp,/Lp.

szi GUMBEL Gamma WEIBULL Normal RAYLEIGH

0.033  0.1211 0.0544 0.0613 0.1582 0.2373
0.044  0.1158 0.0966 0.0840 0.1461 0.2302
0.055  0.0875 0.1019 0.0846 0.1063 0.1705
0.067 0.0714 0.0918 0.0714 0.1020 0.1451

GUMBEL, Gamma and WEIBULL are often used in the extreme value statistics, it is

understandable that they represent the extreme values tp,. and xy, very well.

Conclusions

e The GUMBEL and Gamma distribution functions are well suited to represent the

distribution of the time of breaking onset t,./Tp.

e The WEIBULL and Gamma distribution functions are well suited to represent the

distribution of the location of breaking onset xy,./Lp.

5.2. Bivariate Distribution Function

Since the output parameters time and location of breaking onset ¢, and xy,., respectively,
depend on one another and did not follow the same marginal distribution, see Fig.5.7
and section 5.1, the classical multivariate approach, in which the marginal distribution
functions are multiplied, could not be used to determine the bivariate distribution func-
tion. Instead, the copula functions were used which can represent dependent parameters
with mixed marginal distributions.

Copula models are a relative new method (last ~15 years) in the field of hydraulics,
coastal research and engineering. The advantages of the ARCHIMEDEAN copulas are that
they are flexible and easy to construct. GUMBEL, CLAYTON and FRANK were chosen
here because they are applicable for multivariate frequency analyses, that is, the analysis
of the frequency of occurrence of values of a phenomenon less than a reference value,
and they cover the full range of tail behaviour. The CLAYTON copula has lower tail
dependence, while the FRANK copula has no tail dependence and the GUMBEL copula

has only upper tail dependence. A brief summary of the theory of copulas is given below
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Figure 5.5.: qg-plots of output parameter time of breaking onset ¢y, /Tp against theoret-
ical distributions for the test runs with initial spectral steepness sz; = 0.033.
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5. Variability of Breaking Onset

Figure 5.6.: qg-plots of output parameter location of breaking onset xp./Lp against
theoretical distributions for the test runs with initial spectral steepness
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5.2. Bivariate Distribution Function
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Figure 5.7.: qg-plot of output parameter location of breaking onset xy,. against time of
breaking onset tp, for the test runs with initial spectral steepness sz ; = 0.033.

and then demonstrated exemplarily with the value pair (X,Y) with X = t3,./Tp and
Y = xy,/Lp for the test runs with a spectral steepness of sz; = 0.033. The final results
of the cumulative distribution functions H (z,y) and the exceedance probabilities Pg for

the other initial spectral steepnesses sz; are given in the annex.

5.2.1. Copula Approach

Copulas are multivariate distribution functions whose one-dimensional margins are uni-
form on the interval (0, 1) (Nelsen, 2006). The copula approach to dependence modelling
is rooted in a representation theorem due to Sklar (1959). It states that the joint cumu-
lative distribution function H (z,y) of any pair! (X,Y) of continuous random variables

may be written in the form
H(z,y) = C{F(2),G(y)}, z,y €R (5.2)
where F (z) and G (y) marginal distributions; and C : [0,1]* — [0,1] = copula.
C(u) = H(F~}(z),G"(y)) (5.3)

with pseudo-inverse F~! and G~! (Genest and Favre, 2007).

The name “copula” was chosen to emphasize the manner in which a copula “couples”

'Restricting attention to the bivariate case for the sake of simplicity.
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Figure 5.8.: Value pairs (¢, /Tp, xp-/Lp) and their respective histograms for the test runs
with initial spectral steepness sz; = 0.033.

a joint distribution function to its univariate margins (Nelsen, 2006, p. 18/28). An
unique copula associated with a random pair (X,Y") is invariant by monotone increasing
transformations of the marginals (Genest and Favre, 2007). In order to determine the
underlying dependency between two parameters (X,Y') using a copula function, all ties
(duplicate values) of the pair must be removed in the first step since the parameters must
be continuous.

The steps to determine an appropriate copula function were illustrated here exemplarily
using the value pair (X,Y) with X = t,,,/Tp and Y = x3,./Lp for the test runs with a
spectral steepness of sz; = 0.033. The total test number was n,,q, = 288, so there were
288 value pairs. In Fig. 5.8 the original pairs of values (X,Y") including their respective
relative frequency as histograms are shown.

Then the value pairs (X,Y’) were sorted according to the parameter X = t,./Tp so
that the parameter increased in magnitude and X = Xy, ..., X, with X; < X,,; thus, the
value pairs were sorted according to their rank. The resulting ranked values (R, S) are
shown in Fig. 5.9 including their respective histograms. The marginal distributions of R
and S are uniform.

To test the dependence of the two parameters on each other, KENDALL’S 7,, and SPEAR-
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Figure 5.9.: Ranked values (R, S) and their respective histograms for the test runs with
initial spectral steepness sz; = 0.033.

MAN’s p were used, see Egs. (5.4) and (5.5). If 7, and p are close to zero, the parameters

are independent; if they are close to 1, the parameters are dependent.

> (Ri—R) (S - 5)

=1

o= €-1,1] (5.4)
n — o —.9
\/z (R—R)* 3 (5.~ 9)
i=1 =1
where
RS gttt _1$g_ 3
n 2 n 4
=1 =1
P, —Q, 4
S T, P—1 (5.5)

For the data sample here KENDALL’s 7 was 7 = —0.97 and SPEARMAN’s p was p = 0.4.
Thus the value pair (¢y,/Tp,xy-/Lp) was dependent on each other.
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Figure 5.10.: Normalised ranked values (U, V) and their respective histograms for the
test runs with initial spectral steepness sz; = 0.033.

In the next step, the axes were re-scaled by normalising the ranked values with 1/(n+
1), so that the marginal distributions of R and S were uniform in the range [0, 1]. The
result of the normalised ranked values (U,V') is shown in Fig.5.10. Normalising the
ranked values forms the domain of the so-called empirical copula, see Deheuvels (1979),

formally defined by

n
Cp (u,v) = % 2 1 (n]—%i—zl < u, nffl < v)

with 1 (A) denoting the indicator function of set A. The empirical copula can be seen
as the empirical distribution of the rank transformed data.

In the next step, the empirical copula C,, was compared with the theoretical cop-
ula families FRANK, GUMBEL, and CLAYTON, and the parameter © was estimated. In
Tab. 5.9 the three ARCHIMEDEAN copulas are summarised, which were used in the eval-
uation. The influence of the parameter © on the form of the copula is shown exemplarily
for the GUMBEL copula in Fig. 5.11.

The results of the parameter © of the three copula families FRANK, GUMBEL, and

CLAYTON are summarised for each spectral steepness sz ; in Tab. 5.10. In the estimation
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5.2. Bivariate Distribution Function

Table 5.9.: Summary of the three one-parameter (©) ARCHIMEDEAN copulas. ¢t = u or
t=v. s=p(u)+ pv).

Generator inverse or copula

Family Generator function Parameter space
o (t) ¢~ (s) = Cols)

Frank (1979) —Ine3=l  —@ ' In(1+e*(e© 1)) >0
Gumbel (1960)  (—1Int)® exp (—s/9) >
Clayton (1978) ¢ © —1 (14s)7/© >0

. o=1 . h=15
N N
0.8 % 0.8 \
0.6 0.6
> >
0.4 0.4
0.2 0.2
0 0
0 0.5 1 0 0.5 1
u u
) h=3 . H="6
‘ U .
0.8 L 0.8 L
0.6 0.6
> >
0.4 0.4
0.2 o2f
0 0
0 0.5 1 0 0.5 1

Figure 5.11.: The influence of the parameter © on the form of the copula shown exem-
plarily for the GUMBEL copula.
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5. Variability of Breaking Onset

Table 5.10.: Compilation of the results of the parameter © for the copula families FRANK,
GUMBEL, and CLAYTON for each spectral steepness sz ;.

szi FRANK GUMBEL CLAYTON

0.010  10.23 2.76 1.79
0.020 7.34 2.10 1.89
0.027  4.78 1.77 0.82
0.033 2.60 1.36 0.49
0.035 2.45 1.30 0.50
0.044 1.76 1.22 0.38
0.050 1.11 1.15 0.23
0.055 0.82 1.09 0.27
0.067 0.39 1.14 0.05
0.071 0.19 1.03 0.06

of O, the significance level for confidence intervals was o = 0.05 and the fitting method
was the maximum likelihood method.

The larger the initial spectral steepness sz; the smaller the optimal parameter ©, that
is, that for larger spectral steepnesses the theoretical copula did not need to be adjusted
to the empirical copula as much as for smaller spectral steepnesses.

In order to get a first impression which copula family was best suited to represent the
relation between t,./Tp and xy,./Lp, the empirical copula C), (u,v) was compared with
the three theoretical copula families, and their contour plots are shown in Fig.5.12. It
seems that the empirical copula C,, (u,v) follow the GUMBEL copula best.

Another approach to get an impression which copula family was best suited to represent
the relation between ty,. /Tp and x4, / L p, generic random samples from the copula families
were generated in the copula space, and then transformed into the original scale of the
parameters. The results for the test runs with a spectral steepness of sz ; = 0.033 is shown
in Fig.5.13. 500 value pairs were randomly generated based on the copula families. It
seems that the value pairs (ty./Tp, xp-/Lp), follow the GUMBEL copula best.

For the other initial spectral steepnesses, in addition to sz; = 0.033, generic random
samples from the copula families were also generated and the normalised time of breaking
onset ty./Tp is plotted against the initial spectral steepness sz;, see Fig.5.14. The
random samples generated from the copula families confirmed the observations that 1)

wave trains break earlier with increasing spectral steepness and 2) the scatter of the

82



5.2. Bivariate Distribution Function

Frank Gumbel Clayton
0.8 0.8 0.8
0.6 0.6 0.6
> S >
0.4 0.4 0.4
0.2 0.2 0.2
0 0.5 1 0 0.5 1 0 0.5 1
u u u

Figure 5.12.: Contour plots of the empirical copula C), (u,v) and the three
ARCHIMEDEAN copulas for the test runs with initial spectral steepness
SZi = 0.033.
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Figure 5.13.: Comparison of original NWF simulated data (red cross markers) and copula
generated data (black round markers) for the test runs with initial spectral
steepness sz; = 0.033.
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Table 5.11.: RMSEs and values for the KS-statistic from comparing theoretical and em-
pirical copula functions for the parameters ty,/T}, and x,./Lp, and for the
test runs with initial spectral steepness sz; = 0.033.

Function RMSE KS-statistic

FrANK copula 0.0129 0.0483
GUMBEL copula  0.0094 0.0306
CLAYTON copula  0.0198 0.0373

results decreases with increasing spectral steepness.

In order to determine the goodness of fit more precisely, qq-plots, root-mean-square-
error-values (RMSE), and two-sample Kolmogorov-Smirnov tests (KS-statistics) were
performed. The execution of several GoF tests intended to minimize the uncertainty of
selecting a copula family. Particular attention was paid to which copula family suits the
tail dependency best in the upper right corner, as this is important for probabilities of
exceedance. In Fig.5.15 the qg-plots for the original NWF simulated data and copula
generated data for t,./Tp and xy./Lp are shown. The qg-plots for t,./Tp were very
similar to each other, with the GUMBEL und CLAYTON copula seeming to be the best
fit. For the output parameter xy,./Lp, the differences between the copula families were
clearer, but also here the GUMBEL and CLAYTON copula fit best.

In Tab.5.11, the RMSE values and the values for the KS-statistic are shown. RMSE
values described the deviations between the empirical copula C,, and the theoretical
copula functions. The KS-statistic, on the other hand, described the maximum distance
between two probability distributions, which in turn were based on the NWF simulated
and on the randomly generated data from the copulas; therefore the values of the KS-
statistic varied slightly according to the randomly generated data sample. The observed
trend, however, remained the same: the GUMBEL copula showed the lowest RMSEs and
values of the KS-statistic. The differences among the copula families, however, were
small.

A convergence analysis regarding the parameter © showed that the analysis for the
GUMBEL copula was the fastest convergence, that is, less data was needed for the GUM-
BEL copula to obtain the optimal parameter ©. This result supported the choice for the
GUMBEL copula.

The resulting cumulative distribution function H (z,y) calculated with the GUMBEL
copula, see Eq. (5.2), is represented in Fig. 5.16 for a spectral steepness sz; = 0.033. The

results for the other spectral steepnesses are given in the annex, see Figs. B.1 to B.17.
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Figure 5.14.: Development of normalised time of breaking onset t,./Tp against initial
spectral steepness sz; = Hg/Lp for original NWF simulated data (red
cross markers) and copula generated data (black round markers) for FRANK,
GUuMBEL and CLAYTON copula.
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Figure 5.15.: qg-plots with original NWF simulated data and copula generated data of
tbr/Tp and xbr/Lp.
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Table 5.12.: Geometrical parameters for the breaking wave crest for the exemplary value
pairs in Fig.5.17.

to/Tp  xpr/Lp Sz Sc BH
13.65 2.34 0.061 0.112 0.63
17.89 1.52 0.0569 0.180 0.79
19.81 0.79 0.062 0.105 0.58

The resulting bivariate joint exceedance probability Pg is (Wahl et al., 2012, p. 101):

Pp=P(X>zAY >y)=1—F(x)—G(y)+ H (z,y)
=1-F(z)-G(y)+C[F(z),G(y)] (5.6)

The contours of some joint exceedance probabilities calculated with the GUMBEL cop-
ula are shown in Fig.5.17 for the test runs with spectral steepness sz; = 0.033. The
results for the other spectral steepnesses are given in the annex, see Figs. B.2 to B.18.
The compution of the cumulative distribution function H (z,y) and the bivariate joint
exceedance probability Pr was based on 500 randomly generated value pairs whose dis-
tribution follows the GUMBEL copula. In Fig.5.17 three exemplary value pairs from the
numerical simulations, which have an exceedance probability of Pp = 0.4, are marked
blue. Although they share the same exceedance probability, the shapes of the underlying
wave are different. The steepness of the breaking wave crest s; = H/L, the crest front
steepness s, = ac/L' and the horizontal asymmetry pg = ac/H of the three exemplary
value pairs from the numerical simulations are summarised in Tab.5.12. The definition

of the wave parameters can be found in Fig.2.1.

Conclusions

e The GUMBEL copula is well suited to represent the relation between time and
location of breaking onset (t./Tp,xp-/Lp). However, the differences of the GoF

tests among the three analysed copula families are small.

e By means of the computed cumulative distribution functions and joint exceedance
probabilities for every spectral steepness sz ;, which were considered in this thesis,
one can determine the probability with which a certain combination of time and

location of breaking onset (t,./Tp, xy-/Lp) is undercut or exceeded.
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Figure 5.16.: Cumulative distribution function H (z,y) calculated with the GUMBEL cop-
ula for the test runs with spectral steepness sz; = 0.033, with original NWF
simulated data (red cross markers) and copula generated data (black round
markers).

Figure 5.17.: Exceedance probability Pg calculated with the GUMBEL copula for the test
runs with spectral steepness sz; = 0.033, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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5.2.2. Uncertainty assessment

Firstly, uncertainties emerged from estimating the structure of dependence or the copula
parameter, ©, respectively, from a random sample of the considered parameters. Fur-
ther uncertainties resulted from fitting univariate distribution functions to the marginal
parameters and from choosing certain bivariate models. However, the application of four

GoF tests to choose proper copula functions minimised the uncertainties.

5.3. Optimal Sample Size

Since the phenomenon of wave breaking is random and intermittent, its output para-
meters such as time, location and shape of the breaking wave are strongly scattered. In
order to determine the necessary number of test runs for a robust determination of the
phenomenon, a convergence analysis was carried out on the basis of the output para-
meter time of breaking onset t;.. In the first step, only the NWF simulated data was
used for this, and then the existing data base was expanded by the data generated from
the GUMBEL copula which represented the relationship of (ty./Tp,xp./Lp) well. The
result was the optimal sample size N, which was determined for each initial spectral
steepness sz; and the permissible deviations 1%, 2%, 5% and 10%. Nop: was determined
dependent upon sz ;, since the scattering of the parameter ¢, depended on sz; and thus
the optimal sample size N, did, too. The original data basis was extended with the
data generated from the GUMBEL copula since the optimal sample size Ny, depended

on the initial sample size.

5.3.1. Optimal Sample Size Based on NWF Data

For the determination of the optimal sample size N, a convergence analysis was per-
formed with the normalised time of breaking onset ¢y, /Tp. The data sample with break-
ing wave trains was selected in which only the input parameter sz; was variable and all
other input parameters were fixed?. Since the scatter of t;,/Tp depends significantly on
the initial spectral steepness sz ;, a convergence analysis was performed for each sz ;. In
the convergence analysis, the median was formed from the normalised time of breaking
onset ty./Tp by increasing the number n of the considered test runs. That is, in the
first step, the median from (t,/7p), was determined with n = 1, in the second step
from (ty/Tp), with n = 2, etc. until n equates to the maximum available test run

number n,,4,. The resulting vectors were projected to zero by subtracting the median

*Nw =192, h = 0.7m,y = 3.3.
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(ter/Tp),,,.., and then normalised by dividing them by the median, see Egs. (5.7) and
(5.8).

T ntl n odd

1
3 (72 —l—w%H) n even

(tbr/TP) (’I’L) — (tbr/TP)
(tor/Tp)

Aty /Tp)" (n) = (5.8)

Because the course of A(ty,./Tp)" depended strongly on the order of values in ty, /Tp, the
original vectors of t,./Tp were uniformly random distributed before each analysis. This
process was repeated 10,000 times. In Fig.5.18 the convergence analysis for the normal-
ised time of breaking onset ¢, /Tp is shown exemplarily for sz; = 0.033,0.044, 0.055, 0.071
and, for a better representation, with only 3,000 repetitions. It can be observed that the
bandwidth of resulting differences between (tm) and (ty-/Tp) (n) decreased with in-

creasing number of considered test runs. Furthermore, it can be observed that as the

spectral steepness sz; increased, the difference of the normalised median A(ty,/Tp)”
converged more rapidly; this was because with increasing spectral steepness, the scatter
of the normalised time of breaking onset t;,/Tp decreased.

Then the sample size n for A(t;ﬁ’;)* = 0.01,0.02,0.05,0.10 was determined from
the mean value of all convergence curves; these values were the optimal sample size Ny
with permissible deviations 1%, 2%, 5% and 10%.

Tab. 5.13 summarises the results of Ny, median value Z , standard deviation o and
the coefficient of variation cv = ¢/Z (mean value ) .

The results in Tab.5.13 and Fig.5.19 show that the larger the permissible deviation
the smaller the optimal sample size N, For example, for sz; = 0.033 Ny = 245 was
required to be able to determine t,/Tp with an deviation of 1%, but only Ny, = 59
with an deviation of 5%.

The dependence of the optimal sample size on the spectral steepness, or rather, on the
scattering of the parameter, on the permissible deviation, and on the initial sample size
Nmaz Was clearly visible. Generally speaking, the optimum sample size N,,; decreased
with increasing spectral steepness sz;, i.e. the greater the spectral steepness the fewer
tests were required to determine the time of breaking onset with a certain error. This was
due to the fact that the scatter of ¢,./Tp decreased with increasing spectral steepness

szi. Please note, that the ratio of standard deviation and mean value, which is the
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sz; = 0.033, Ny = 288 sz; = 0.044, 1y = 396

Figure 5.18.: Convergence analysis for the normalised time of breaking onset
ty/Tp against the number of considered test runs for sz, =
0.033, 0.044, 0.055, 0.071 with mean value of all convergence curves (red).
Repeats: 3,000.
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Table 5.13.: Optimal sample size N,y for the median value of the normalised time of
breaking onset ty./Tp with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data. Repeats: 10,000.

$zi Mmaz T o cw 1% 2% 5% 10%
0.010 85 133 10 0.08 4 2 1 1
0.020 69 102 22 0.21 16 10 4 2
0.027 99 22 12 049 96 84 50 21

0.033 288 15 6 035 245 174 39 17
0.035 171 10 3 028 134 96 33 7
0.044 396 8 2 024 182 94 24 )
0.050 142 7 1 020 95 61 15 3
0.055 347 6 1 021 202 93 17 3
0.067 146 5 1 021 104 56 11 3
0.071 185 5 1 021 172 109 17 3

coefficient of variation cv, had a significant influence on the optimum sample size, which
can be seen for the results for the spectral steepnesses sz; = 0.02 and sz; = 0.027.
The optimal sample size was largest for the spectral steepness sz; = 0.027, although the
scatter of the parameter was larger for sz; = 0.02. This observations can be explained by
the coefficient of variation cv: although the mean value of ¢, /Tp for sz; = 0.027 is only
1.5 times the mean value for sz; = 0.044, the coefficient of variation is six times larger.
In order to investigate the influence of the sample size 1,4, on the optimal sample size
Nopt, the sample size was increased by means of the GUMBEL copula function and the
convergence analysis was repeated, see next subsection 5.3.2. Before that, however, the
influence of the number of repetitions of the convergence analysis on the optimal sample
size was investigated. As mentioned above, the order of the values in t,./Tp had an
influence on the convergence analysis, so the vectors of t,./Tp were uniformly random
distributed for each repetition. It can be observed that for repeats > 1,000 the number

of repetitions had no significant influence on the resulting optimal sample size Ngp;.

5.3.2. Optimal Sample Size Based on Copula Generated Data

In section 5.2 it was shown that the output parameters (ty./Tp, zy/Lp) followed the
GUMBEL copula. By means of this copula function, any number of random value pairs

following the GUMBEL function can be generated. Thus, the existing sample size was
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Figure 5.19.: Optimal sample size N,y for the median value of the normalised time of
breaking onset t,./Tp with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data for all sz;. Repeats: 10,000.

increased and the convergence analysis repeated with this increased sample to investigate
the influence of the initial sample size 7,4, on the optimal sample size Ngp;. In a first
step, the same sample sizes per sz; as in the NWF simulations were generated by means
of the GUMBEL copula function to show that the copula generated data leaded to the
same results for the optimal sample size N, as the NWF data. Subsequently, the sample
size nyq: With which the convergence analysis was carried out was increased step by step

to show its influence on the resulting optimal sample size Nop.

The optimal sample sizes N,y for the NWF data and the copula generated data are
shown in Fig.5.21. The initial sample size for the convergence analysis with the copula
generated data corresponded to the sample size of the NWF data. It can be seen that
the differences between the copula generated data and the NWF data were largest with
a permissible deviation of 1%. However, the differences of N,y decreased rapidly with
increasing permissible deviation. Therefore, the GUMBEL copula was used to increase the
sample size and to repeat the convergence analysis with an enlarged sample. The optimal
sampling sizes N, are shown in Fig. 5.22 depending on the permissible deviation and
the initial sample size. The larger the permissible deviation the lower the influence of
the initial sample size on the optimal sample size. For a permissible deviation of 1% and
2%, the initial sample size had a significant influence on the resulting optimal sample size
Nopt; the influence was negligible only from an initial sample size of n > 5,000 test runs.

With a permissible deviation of 5% or 10%, the influence of the initial sample size on the
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Figure 5.20.: Optimal sample size N,y for the median value of the normalised time of
breaking onset ty, /Tp with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data for different repetitions of the convergence analysis.
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Figure 5.21.: Optimal sample size N,y for the median value of the normalised time of
breaking onset t,./Tp with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF data and copula generated data with the same initial
sample size per spectral steepness. Repeats: 3,000.

optimal sample size was negligible from an initial sample size of n > 1,000. It is unclear
why the initial sample size had a significant influence on the optimal sample size; for
example, with a permissible deviation of 1% an initial sample size of at least 5,000 test
runs had to be considered to conclude that the optimal sample size was approximately
1,800 test runs. In Tab.5.14 the results for the optimal sample sizes N,,; based on the
simulated NWF data and the GUMBEL copula generated data are listed. The median
value, the standard deviation, and the coeflicient of variation for the normalised time
of the wave breaking t,./Tp were quasi identical for both data sets; this suggests that
the data generated from the GUMBEL copula represented well the behaviour of the time
and location of breaking onset. The resulting optimal sample sizes N,y from the two
data sets differed significantly for a permissible deviation of 1% and 2%; except for a
deviation of 2% and a spectral steepness of sz; = 0.055 and sz; = 0.071. With a
permissible deviation of 5% and 10%, the differences between the two data sets were not
significant. Considering all initial spectral steepnesses and a permissible deviation of 1%,
approximately 1,800 test runs were sufficient to determine the median of the normalised
time of breaking onset t,/Tp, see Fig. 5.22. With a deviation of 2% it was Nop: = 580,
with a deviation of 5% it was Nyp: = 100, and with a deviation of 10% it was Nop = 25.
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Figure 5.22.: Optimal sample size N,y for the median value of the normalised time of
breaking onset ty, /Tp with a permissible deviation of 1%, 2%, 5% and 10%
based on copula generated data with different initial sample sizes nqz-
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5.3. Optimal Sample Size

Table 5.14.: Optimal sample size N,y for the median value of the normalised time of
breaking onset ty./Tp with a permissible deviation of 1%, 2%, 5% and 10%
based on the NWF simulated data and copula generated data (in italic) for
the test runs with initial spectral steepness sz; = 0.033, 0.044, 0.055, 0.071.

Repeats: 10,000 (NWF) and 3,000 (GUMBEL copula).

57 Nymaz z o cv
0.033 288/7,000 15/15 6/6 0.35/0.37
0.044 396/ 7,000 8/8 2/2 0.24/0.25
0.055 347/7,000 6/6 1/1 0.21/0.22
0.071 185/7,000 5/5 1/1 0.21/0.22
57 1% 2% 5% 10%
0.033 245/1,495 174/427 59/73 17/17
0.044 182/752 94/196 24/81 5/7
0.055 202/464 93/125 17/19 3/3
0.071 172/453 109/117 17/19 3/3
Conclusions

To determine the median of the normalised time of breaking onset ¢y, /Tp:

e with a permissible deviation of 1%, approximately 1,800 test runs are sufficient.

e with a permissible deviation of 2%, approximately 580 test runs are sufficient.

e with a permissible deviation of 5%, approximately 100 test runs are sufficient.

e with a permissible deviation of 10%, approximately 25 test runs are sufficient.
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6. Detection and Prediction of Breaking

Onset in Wave Trains

In the following chapter, the deformation and development of breaking and non-breaking
wave crests and wave trains are compared with each other in order to identify indicators
for wave breaking, which were used for the detection and prediction of wave breaking
onset.

The first section presents the physical model tests and their results, which were used
to detect and predict wave breaking in time series of water surface elevation. Then the
NWF model tests were used to investigate the deformation of the wave crest shortly
before breaking onset to indicate precursors of breaking onset. In the third section the
wave trains at the location of breaking onset are analysed and by means of the MARKOV

chain precursors of breaking onset are identified.

6.1. Detection of Breaking Onset in Wave Trains

To develop a detection method of wave breaking in time series, laboratory experiments
in the wave flume with random and regular wave trains were carried out. The model
tests were carried out in the WKS wave flume of the Ludwig-Franzius-Institute with its
overall dimensions of 110 m length, 2.2 m width and 2.0 m height. The piston type wave
maker was hydraulically driven and capable of generating regular and irregular waves
with wave heights up to 0.40 m while using a stroke of up to £0.30 m by a water depth
of up to 1.2m. In the rear part of the flume, a beach was installed as a passive wave
absorber in order to minimize reflections.

It should be noted that parts of the physical and hydronumerical tests were conducted
on the basis of scientific investigations in the framework of the research project “Probab-
ilistic Safety Assessment of Offshore Wind Turbines (PSA) - work package 2", founded
by the Ministry for Science and Culture in Lower Saxony (support code GZZM2547),
see Wilms and Schlurmann (2012), Wilms and Schlurmann (2014), Hansen (2014) and
Hansen (2015).
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6.1.1. Test Setup

The water surface elevation were measured using eight capacitive type wave gauges in-
stalled along the flume and covering a testing area of 45m. As additional measurement
equipment, three video cameras were installed to record the tests and to determine the
wave breaking in post-processing. A sketch of the test setup is given in Fig. 6.1. The cam-
eras were installed with such a viewing direction, so that they faced wave gauges WG1
(video camera 3), WG2 to WGT (video camera 2), and WGS8 to WG4 (video camera 1).
Wave gauge WG1 was used to determine the incident wave spectrum. The position of
testing area in the flume was a compromise between minimal distance to the wave maker
(at least 5 times maximum wavelength) and maximum distance to the beach (to avoid

wave reflections in the testing area).

6.1.2. Test Program and Procedure

The model tests were carried out in a length scale of 1:40, which was a compromise
between possible wave generation and possible water depths. After the wave gauges and
the video cameras were installed, the flume was filled to still water level of the required
water depth. A test program with 20 test runs with random waves, and seven tests
with regular waves were compiled, see Tabs.6.1 and 6.2. As a spectrum, a narrow-
band JONSWAP spectrum with enhancement factor v = 3.3 and enhancement width
or = 0.07 and oy = 0.09 were used. The peak period varied between Tp = 1.3—2.25s, the
significant wave height Hg varied between Hg = 0.2 —0.25 m, number of generated waves
was Ny = 50 and Ny = 100, and the wave maker theory (wmt) was first and second
order. The initial spectral steepness sz; = Hg/Lp varied between sz; = 0.026 — 0.082,
with the peak wavelength Lp calculated with Lp = ¢/(2m)T% and g = 9.80655m/s?
as acceleration of gravity. The water depth to wavelength ratio varied between h/L =
0.13 — 0.31. In Tab.6.1 the random phase angle ¢ is indicated as “a”, “b”, “c”, “d” and
“e”, and refers to five fix sets of random phase angle distributions (uniformly distributed
between 0 and 27), which were generated before the tests were carried out and stored.
That way, the wave spectrum, characterized with significant wave height Hg and peak
period Tp, could be transformed repeatedly to time domain and resulting in the same
wave train every time. This means, test number 1, 2 and 3 were the same wave train,
and test number 4 and 5 were the same wave train; they had the same phase angle
distributions. Those retests were done, to analyse the reproducibility of the wave trains
and number of breaking waves accordingly.

During each test run, all wave gauges and video cameras were continuously collecting
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6. Detection and Prediction of Breaking Onset in Wave Trains

data. The wave gauges had an analogue output system (voltage outputs) and the data
were sampled by a HBM analogue-digital converter in digital form. For data storage, the
HBM sampling and control software catmanFasy was used and Mathworks Matlab was
used for post-processing. Based on experience, a waiting time of at least 10 min between
each test ensured no remaining oscillations, thus no interference, from the previous test

run.

6.1.3. Results and Extended Detection Method

In the first step, the test runs were analysed in regard to plausibility (comparison of
target value and actual value) and reproducibility (comparison of retests). The analysis
of plausibility showed a mean deviation of 3.5% for the significant wave height Hg and
a mean deviation of 1.8% for the peak period Tp, both determined in frequency domain
with the Fast FOURIER Transform (FFT). The mean deviations were small and the
targeted wave parameters were generated. The analysis of reproducibility showed a
mean coefficient of determination of R? = 0.998 for test runs 1, 2 and 3, and R?> =
0.997 for test runs 4 and 5. Fig.6.2 shows exemplarily the first 20s of the time series
with Hg = 0.2m and phase angle distribution “a”. The analysis showed that the time
series were reproduced very well and therefore the resulting numbers of breaking waves
were reliable. In the second step, the number of breaking waves were determined by
re-watching the video camera data. The observed breakers were classified in “spilling
breaker” and “whitecapping”.

In Tab. 6.3 the results for the number of breaking waves are compiled with their re-
spective time stamp in relation to the start of the wave maker. The results of the retests
2 and 3 were the same as for test 1, as well as the results for the retest 5 is the same as
for test 4; the reproducibility was again verified, which is why the results for retests 2, 3
and 5 are not shown in Tab. 6.3. For direct comparison, the results in Tab. 6.3 are sorted
by phase angle distribution and then significant wave height Hg.

The resulting wave breaking probability Py, = np- /Nt is summarised in Fig. 6.3 for
all tests with water depth A~ = 0.7m. The breaking probability ranged from P, = 0% to
Py, = 6%; the result depended heavily on the phase angle distribution (wave sequence in
the time series). An efficient investigation of the wave breaking probability in physical
model tests was not possible with this large scatter in the results.

The following results were observed:

1. The initial steepness of the spectrum sz; had a great influence on the number of

breaking waves, whereby the change of Tp had a greater influence than the change
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6.1. Detection of Breaking Onset in Wave Trains

Table 6.1.: Compilation of conducted model test runs in the WKS wave flume with ran-
dom wave trains.

Nr. wmt h Tp Hg Sz, Nw
[l fmf [s] [ [m [ [ [

==

]
[

1 Ist 07 1.7 0.18 0.200 0.044 50 a
2 Ist 0.7 1.7 0.18 0.200 0.044 50 a
3 st 0.7 1.7 018 0.200 0.044 50 a
4 Ist 07 17 0.18 0.200 0.044 50 b
5 Ist 07 1.7 0.18 0.200 0.044 50 b
6 st 0.7 1.7 0.18 0.200 0044 50 ¢
7 Ist 07 1.7 018 0225 0.050 50 a
8 Ist 0.7 1.7 0.18 0.250 0.065 50

9 Ist 0.7 1.7 0.18 0.200 0.044 50

10 1st 0.7 1.7 0.18 0.200 0.044 50 e
11 1st 07 19 0.15 0.200 0.035 50 a
12 1st 0.7 22 0.13 0.200 0.026 50 a
13 1st 0.7 1.7 0.18 0.200 0.044 100 a
14 1st 0.7 1.7 0.18 0.200 0.044 100 a
15 2nd 0.7 1.7 0.18 0.200 0.044 50 a
16 2nd 07 17 0.18 0.200 0.044 50 a
17 1st 0.8 1.7 020 0.200 0.044 50 a
18 2nd 08 1.7 0.20 0.200 0.044 50 a
19 1st 08 14 027 0250 0.082 50 a
20 2nd 0.8 1.4 027 0250 0.082 50 a

103



6. Detection and Prediction of Breaking Onset in Wave Trains

Table 6.2.: Compilation of conducted model test runs in the WKS wave flume with reg-
ular wave trains.

Nr. wmt A T 2 @m 2 Ny o
I ) ) = - I I & I =

21 1 0.7 1.7 0.18 020 0.061 50 —m
22 1 0.7 1.7 018 020 0.051 50 -—m
23 1 0.7 13 027 025 0.098 25 -—m
24 1 0.7 13 027 025 0.098 12 —m
25 2 0.7 13 027 025 0.098 25 —m
26 1 0.8 1.7 020 020 0.049 25 —m
27 2 0.8 13 031 025 0.097 25 —m

Test 1
— — —Test2
— — Test3

28 30 32 34 36 38
Time [s]

Figure 6.2.: Reproducibility of test run with Hg = 0.2m and phase angle distribution
Hall'
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6.1. Detection of Breaking Onset in Wave Trains

Table 6.3.: Compilation of results of number of breaking waves with their respective time
stamp relative to the start of the wave maker.

Nr. Hg phase angle Time breaker type
[m] [s]

1 0.200 a 00:47 spilling
00:52 whitecap.
00:55 whitecap.
01:15 spilling
01:20 whitecap.
01:23 whitecap.

7 0.225 a 00:47 spilling
00:52 whitecap.
01:15 spilling
01:19 whitecap.
01:23 whitecap.

8 0.250 a 00:48 spilling
01:10 whitecap.
01:15 spilling

4 0.200 b 00:55 whitecap.
00:59 whitecap.
6 0.200 c 01:03 whitecap.
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Figure 6.3.: Wave breaking probability P, for the test runs with h = 0.7 m.

of HS.

For the same phase angle distribution ¢, the number of breaking waves was con-
stant, and the wave breaking occurred temporally and spatially at the same posi-

tions.

. An increasing significant wave height resulted in a decreasing number of whitecaps.

. Even the second spilling breaker in a wave train was reproducible, which concluded

that the first spilling breaker broke always in the same way, though the breaking
process is a highly non-linear and turbulent process. The reproducibility of the

physical model test is validated.

. The randomness of the phase angle distribution, and thereby the randomness of

the wave sequence in the time series, had a significant influence on the number of
breaking waves; different realizations of the same energy density spectra in time
domain did not produce same numbers of breaking waves; in contrast to phase
angle distribution “a” with two spilling breakers, phase angle distributions “b” and
.

¢” caused no breaking waves, only whitecapping, although all three spectra had

the same theoretical energy density. There might be two reasons for that: either



6.1. Detection of Breaking Onset in Wave Trains

the record length were too short (50-100 waves) or an exemplary time series could

not represent all possible time series from one sea spectrum.

6.1.3.1. Extended Detection Method

Indicators to detect wave breaking should have the following features: They are meas-
urable directly in the field or can be determined from the standard parameters like Hg
and Tp. Based on the investigation from Babanin et al. (2007, 2010), the measured time
series were analysed and plotted against the geometrical parameters for every single wave
(zero-downcrossing), namely: wave steepness sz = H/L, frequency fo = 1/T, skewness
Sk = ac/ar — 1 and asymmetry Ag = L”/L' — 1 . It should be noted that in contrast
to the experiments from Babanin et al., who used near-monochromatic deep water two-
dimensional wave trains, the wave trains in this thesis were generated from JONSWAP
spectra with large characteristic steepness sz; = Hg/Lp. As an exemplary analysis of
the wave train modulation as a function of time, the time series of wave gauge WG2 for
test run 1 and the corresponding geometrical parameters are given in Fig. 6.4.

The two spilling breakers occurred at approximately 33s and 61 s; their positions are
marked with dashed lines. The only parameter here with a clear behaviour was the wave
steepness sz which reached its maximum at the moment of wave breaking (for the first
breaker), a behaviour also observed by Babanin et al. (2007). The other geometrical
parameters did not behave in a unique way at breaking onset, in contrast to Babanin’s
observations for near-monochromatic wave trains. The second breaker at t = 66 s did not
reach a clear maximum for sz. The reason is that the second breaking wave was already
in the developed breaking process when reaching wave gauge WG2; the actual incipient
breaker was not measured.

The critical steepness for the conducted model tests was sz =~ 0.11, which was smaller
than the thresholds given in literature. Again, the reason is, that not the exact incipient
breaker, but the breaker in progress, was measured. However, these resembling results
with Babanin et al. (2007) were not found for every measured test.

In Fig. 6.5, the results for the alternative steepnesses and asymmetries, as proposed by
the TAHR, see Tab. 2.1 on page 9, are shown. It can be observed that the steepnesses
showed a more definite behaviour, especially the crest front steepness s, and crest rear
steepness sg, which reached their maximum with sj, = 0.0115 and s7, = 0.0069. The
critical limits of Kjeldsen and Myrhaug (1979b) were s;- = 0.78 and st = 0.39 and thus
significantly larger than the values of this thesis. Reasons for this could be that 1) the
wave gauges were not exactly at the position of breaking onset and thus the maximum

values were not measured, 2) Kjeldsen and Myhhaug generated wave breaking with wave
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Figure 6.4.: Time series of test run 1 for wave gauge WG2 with Hg = 0.2m and phase

angle distribution “a” with the geometrical parameters wave steepness sz,
frequency f, skewness Sk = Z—g — 1 and asymmetry Ag = % — 1. Position

of wave breaking is marked with dashed lines.
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groups.

Babanin et al. (2007) stated, that incipient breaking waves were the steepest waves in
a wave train, their skewness was positive (i.e. peaked up) and asymmetry was small (i.e.
not tilted forward). At the point of breaking, the skewness increased very rapidly and
immediately after the limit was reached the asymmetry became negative (i.e. the wave
starts tilting forward at the point of breaking). Furthermore, at the point of breaking
the frequency fp increased rapidly (modulation in the frequency). These observations,
especially for the skewness, asymmetry and frequency, were hard to make in the measured

irregular wave trains of this thesis.

Although Babanin postulated, that the wave steepness was the single robust criteria
for wave breaking, it is, in the author’s point of view, not a robust indicator in a wave
train, because the time span of an incipient breaker (the exact point of breaking onset) is
so short, and it is very unlikely to measure an incipient breaker (= the maximum/critical
steepness) with a wave gauge. Therefore, further characteristics of a wave train with a

breaking wave had to be established to develop a robust detection method.

Instantaneous parameters, derived from the analytical signal, seemed promising when
describing a sudden and short-term change in the surface elevation, even when the wave
gauge did not measure the exact point of breaking onset. An analytic signal in the signal
theory is a complex-valued time signal whose imaginary part is the HILBERT transform
of the real part. The term analytical expresses that the function is differentiable in
the complex. This results in the fact that in the spectrum of an analytical signal no
negative frequencies occur, in contrast to a real signal. In the field of signal processing,
the HILBERT transform can be computed in a few steps: Firstly, the FOURIER transform
of the given signal X, (¢) is calculated. Secondly, the negative frequencies are rejected.
Finally, the inverse FOURIER transform is calculated, and the result will be a complex-
valued signal where the real and the imaginary parts form a HILBERT transform pair. To
describe a signal simultaneously in time and space the instantaneous frequency f(¢) can
be used. For that, the analytical signal X (¢) is derived, see Eq. (6.1), with X,.(¢) as the
real function (original signal) and X;(t) the HILBERT transform of X, (¢) (Schlurmann,
2005).

X(t) = X, (t) +iX;(t) (6.1)

The time-variant variables are the instantaneous amplitude a(t), instantaneous phase

O(t) and the instantaneous angular frequency w(t) or instantaneous frequency f(t), see
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dashed lines.
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Egs. (6.2) to (6.4).

a(t) =| X (t) | (6.2)
O(t) = arg (X (1) (63)
w(t) = 86;t(t) =) = %w(t) (6.4)

In order to establish a relationship between instantaneous amplitude a(t) and instantan-
eous frequency f(t) and thus extend the previous detection methods, the inverse of the
instantaneous frequency was considered as an instantaneous period T'(t) = 1/f(t) and
based on this the instantaneous “wavelength” L(t) was determined. For the calculation
of L(t) the dispersion relation for intermediate water was used and iteratively calculated.
This resulted in the instantaneous steepness sz(t), see Eq.(6.5). Please note, that the
HILBERT transform was computed from a water surface elevation over time here, therefore
the instantaneous wavelength L(¢) had to be calculated with the approach of a instant-
aneous period T'(t) = 1/f(t) and the dispersion relation. When the HILBERT transform
was computed from a water surface elevation over the flume length, the instantaneous

wavelength was the reciprocal value of the instantaneous frequency L(t) = 1/f(t).

sz(t) = (6.5)

Comparing the author’s own approach to literature, one can see that the instantaneous
wavelength L (t) was calculated in the same way as the local wave number & from Song
and Banner (2002), but without the application of a low-pass filter. As an envelope
of the surface elevation, the author used the instantaneous amplitude a (¢), which was
computed easily from the HILBERT transform as well, instead of the mean of the upper
and lower envelopes p (t) which was based on the wave energy and not directly on the
wave amplitude.

In Fig.6.6 the time series of test run 1 for wave gauge WG2 with Hg = 0.2m and its
corresponding instantaneous parameters a(t), f(t) and sz(t) are shown. The suggested
thresholds to detect the breaking waves were marked with dashed lines, see also Eqs. (6.6)
to (6.8).

n(t) > 0.8Hg (6.6)
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f(t) =2.2fp (6.7)

Sz(t) > 0.4 (68)

Fig. 6.4 shows that the detection of wave breaking with the wave steepness sz as an
indicator was only unambiguously possible if the wave gauge was at the location of
breaking onset. On the other hand, the instantaneous wave steepness sz(t) was even
distinctly developed in the second wave breaking (¢ ~ 61s), which did not take place
directly at the position of the wave gauge.

It can be observed that the instantaneous frequency f(t) and steepness sz(t) had high
oscillations after a wave breaking. This oscillation was caused by ripples on the surface
elevation, which occurred after wave breaking. Presumably, these ripples were caused
by the breaking process (air entry and impulse of the breaker). A comparison with
measurements carried out in the Large Wave Flume of Forschungszentrum Kiiste (FZK)
(Hildebrandt (2013)) showed that this phenomenon was not measured by the wave gauges
of the Large Wave Flume. The reasons for this were probably the different kind of used
wave gauges and the position of wave gauges (close to the flume wall). Therefore, those

oscillations are not an universal indicator for wave breaking.

6.1.3.2. Conditions of the Breaking Detection Method

Taking into account all laboratory tests carried out in this thesis (with an initial spectral
slope of sz; = 0.044), the following thresholds were found to detect wave breaking in a

time series:
1. The amplitude of the wave crest has to be at least 80% of Hg.

n(t) > 0.8Hg

2. The instantaneous wave steepness has to be greater than 0.4

sz (t) >04

3. The wave steepness has to be greater than 0.08.

sz > 0.08
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4. The instantaneous frequency has to be greater than 2.2 fp

f(t)>22fp

5. The crest front steepness has to be greater than 0.009.

s > 0.009

6. The crest rear steepness has to be greater than 0.005.

st > 0.005

It must be noted that wave breaking is characterised inevitably not only by fixed values,
but also by the history of the time series. The investigation showed that a breaking
wave crest had a minimum wave amplitude (condition #1) and the maximum steepness
(instantaneous and geometrical) from the entire time series (condition #2 and #3). The
consideration of all these boundary conditions, i.e. a combination of parameters and
thresholds, formed a reliable detection method. A single parameter or threshold is not

sufficient.

Zimmermann and Seymour (2002) carried out model tests with irregular two-dimensional
wave trains in deep water, similar to this thesis. The sea spectrum was a JONSWAP
spectrum with 1.6s < Tp < 2.0s and 0.23m < Hg < 0.38m . The phase-time method
was used as the detection method and two conditions were derived: n > 0.38Hg and
f(t) > 0.85fp. Further steepnesses and asymmetries had also been investigated, but ac-
cording to Zimmermann and Seymour did not improve the detection method since it was
not possible to distinguish between steep but non-breaking waves and breaking waves.
This result is confirmed by the author’s own comparison of non-breaking and breaking
wave crests, see subsection 6.2.2; the main result was that only the ratios ac/Hg and

a(t)/Hg differ significantly between a non-breaking and breaking wave crest.
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6.2. Deformation of Wave Crests before Breaking Onset

Conclusions

e The detection of breaking onset in physical model tests is non-trivial because break-
ing onset is an extreme short-term state of wave dynamics and difficult to measure

exactly with wave gauges.

e Therefore, the novel parameter of instantaneous steepness is introduced and defined
as sz(t) = 2a(t)/L(t). The instantaneous steepness sz(t) describes the relation
between the envelope of surface elevation and the rate of change of the surface
elevation, which are both maximal at breaking onset. Even when the wave gauge
did not measure the exact point of breaking onset in the physical model tests, the
instantaneous steepness sz(t) was able to detect wave breaking in an unambiguous

way.

e Based on the physical model tests with irregular wave trains and an initial spec-
tral steepness of sz; = 0.044, the following threshold parameters were found for
a detection method: n(t) > 0.8Hg, sz(t) > 0.4, and sz > 0.08. But most im-
portantly those indicative parameters reached their maximum at breaking onset.
That means, in order to detect dominant wave breaking in irregular wave trains,

the largest, steepest, and fastest deforming wave has to be found.

6.2. Deformation of Wave Crests before Breaking Onset

In this section, the deformation of the breaking wave crest within the last 2 s before break-
ing onset is investigated more precisely in order to obtain further valuable information
for the detection of breaking onset. The development of the geometrical and instantan-
eous parameters of the wave crest over time towards breaking onset was considered and
the reached thresholds were determined. Subsequently, the results of the breaking wave
crests were compared with the results of non-breaking wave crests in order to determine
indicators that only occur during wave breaking. Finally, the results were compared with
the physical model tests of Bonmarin and Ramamonjiarisoa (1985) and Bonmarin et al.
(1989). Bonmarin et al. conducted model tests with monochromatic wave trains with an
initial wave steepness in the order of magnitude of H/Ly = 0.08, which broke because
of modulational instability. The deformation of the breaking wave crest was recorded
spatially by means of high-speed cameras. These differences in the generation and type

of wave breaking had to be taken into account when compared with the results of this
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Figure 6.7.: Computed wave crest evolution (chronological) until breaking onset with
time step At = 0.04s.

thesis.

6.2.1. Deformation of Wave Crests before Breaking Onset

In Fig.6.7 the temporal development of a wave crest before breaking onset is plotted
against the flume length; the last ten time steps (10-0.04 s = 0.4 s) before breaking onset
are shown. The flat wave trough and the rapidly rising wave crest can be seen. The
geometrical and instantaneous parameters of these waves which are about to break are
examined in more detail below. For a better representation, the results of the test runs
with the initial spectral steepness between 0.027 < sz; < 0.071 are shown separately,
see Fig. 6.8 to Fig.6.10, and for sz; = 0.01,0.02, see Figs. C.1 to C.3 in the annex. The
figures show the development of the geometrical and instantaneous parameters within 2's
before breaking onset with a time step of At = 0.04 s, and the breaking onset as the last
time step.

It can be observed that between time step 30-40, i.e. 0.4s-0.8s, before breaking onset,
the wave crest began to deform significantly geometrically. The larger the initial spectral
steepness sz; the later the deformation began and the smaller the change. The crest
amplitude ac and the instantaneous amplitude a (¢) increased rapidly and reached their
maximum with breaking onset. The crest amplitude ac doubled and the instantaneous
amplitude a(t) tripled within the last 2s before breaking onset. The wave frequency
fo did not change significantly, rather decreased slightly, i.e. the wavelength increased

slightly. Thus the increase of the wave amplitude ac was responsible for the increase
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the test runs with different spectral steepnesses sz; (part 1, amplitudes and
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6. Detection and Prediction of Breaking Onset in Wave Trains

of the wave steepness sz. It can be observed that approximately 0.7 s before breaking
onset, the wave frequency fy reached similar values for all initial spectral steepnesses.
The instantaneous frequency f(t) decreased slightly about 0.5 s before breaking onset and
then increased significantly (up to triple) and reached its maximum with breaking onset.
The instantaneous wave steepness sz () was constant up to about 0.4s before breaking
onset and then increased promptly (up to five-fold); in comparison, the geometrical
wave steepness sz increased slightly already from 2s before breaking onset, and then
increased twofold 0.8s before breaking onset. The larger the initial spectral steepness

sz, the smaller the wave steepness sz of the breaking wave crest.

The alternative wave steepnesses besides sz, which were syc = ac/L, sz = ar/L,
s = ac/L' and s, = ac/L”, behaved similarly to sz and doubled in the last 2s
before breaking onset. Approximately 0.8s before breaking onset the crest steepness
szc and the crest rear steepness s’é reached their maximum at breaking onset. The
trough steepness scr was 0.4 s before breaking onset almost constant; this indicates that
the through amplitude ar became smaller as the wavelength L increased. The crest
front steepness si, behaved similar to the wave steepness sz for large initial spectral
steepnesses sz,; > 0.044; it increased 0.8 s before breaking onset and reached its maximum
at breaking onset. For small initial spectral steepnesses sz; < 0.035, however, the crest
front steepness decreased 0.4 s before breaking onset. This suggests that for small initial
spectral steepnesses, where the wave train had time to develop, the wave crest not only
rose, but also tended forward as the crest front wavelength L’ shortened. This could be
a reference to different types of breakers. With values between 0.04 < s < 0.14 and
0.05 < s{. < 0.2 the wave crest was off from a symmetric shape with s, = s7, = 0.40

(for a second-order STOKES wave in deep water).

In the case of the geometrical parameters for the asymmetry, the horizontal asymmetry
wp = ac/H started to increase approximately from 0.4s to 0.8 s before breaking onset
and reached its maximum with breaking onset; the larger the initial spectral steepness
sz, the earlier the increase started. For the vertical asymmetry puy = L”/L’, however,
the parameter decreased slightly in the first 1.2, and then increased until 0.4s before
breaking onset, reached its maximum and then decreased toward breaking onset. This
also indicates the shortening of the crest front wavelength L’ and thus the inclination
of the wave crest forward. With values between 0.6 < pg < 0.7 and 0.6 < uy < 0.8
the wave crest was off from a symmetric shape with uyg = 0.61 and py = 1 (for a

second-order STOKES wave in deep water).

In Tab.6.4 the median values are summarised for all geometrical and instantaneous

parameters for every fifth time step (every 0.2s). To quantitatively describe the change
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6.2. Deformation of Wave Crests before Breaking Onset

Table 6.4.: Median values for every geometrical and instantaneous parameter for every
5th time step (every 0.2s) until time of breaking onset (tbo) for the test runs
with initial spectral steepness sz; = 0.044.

Ist  5th 10th 15th 20th 25th 30th 40th 45th tbo

ac/Hs 027 0.28 027 025 024 026 032 038 045 0.57
fo/fp 112 111 114 116 118 114 1.10 1.10 1.09 1.06
a(t)/Hs 023 024 023 024 025 025 028 034 045 0.58
f)y«Lp 144 138 144 1.34 132 127 122 121 166 2.12
Sz 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05
sz(t) 0.03 0.03 0.03 0.03 003 0.03 003 0.03 0.07 011
3% 0.69 075 071 067 064 071 080 079 070 0.64
1523 0.61 063 062 062 061 061 061 063 065 0.68
szcC 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
SzT 0.01 001 0.01 0.01 001 0.01 001 0.02 001 0.02
S 0.06 0.06 0.07 0.06 006 0.07 008 0.09 010 0.11
S¢s 0.09 0.08 0.09 0.09 009 010 010 0.12 0.14 0.18

of the median values over the time steps, the absolute values of the gradients of the
median values are summarised in Tab. 6.5. Tt can be observed how most of the changes
happened in the last 0.4s - 0.8 s before breaking onset and the parameters reached their
maximum or minimum values with breaking onset.

Tabs. 6.6 and 6.7 summarises the minimum and maximum values of the geometrical and
instantaneous parameters at breaking onset for every initial spectral steepness sz ;. The
parameters were within those ranges when the breaking onset happened. The maximum
values can be taken as thresholds for detection. Those results confirm that there is
no universal value to detect wave breaking. All these wave crest broke and covered a
large range of values. The geometrical and instantaneous parameters showed that wave
breaking onset is an absolute immediate phenomenon. The later the wave train broke,
i.e. the more time the wave train had to develop, the less it changed in the last 2s before
breaking onset. Since the wave frequency did not change significantly, this could be an
indication that the majority of wave crests broke due to wave-wave interaction, i.e. the
wave energy accumulated by the superposition of waves and thereby the waves broke.
This assumption is supported by the fact that just approximately 3% of the test runs

fulfilled the conditions that the kurtosis of the wave trains is k£ > 3 and the relative water
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6. Detection and Prediction of Breaking Onset in Wave Trains

Table 6.5.: Absolute value of the gradient of the median values for every geometrical and instantaneous parameter for every 5th
time step (every 0.2s) until time of breaking onset (tbo) for the test runs with initial spectral steepness sz; = 0.044.

1st oth 10th 15th 20th 25th 30th 40th 45th tbo

ac/Hs  0.0099 0.0014 0.0145 0.0123 0.0066 0.0384 0.0560 0.0669 0.0953 0.1132
fo/fp 0.0132 0.0102 0.0271 0.0206 0.0101 0.0405 0.0196 0.0054 0.0210 0.0303
a(t)/Hs 0.0110 0.0021 0.0020 0.0076 0.0073 0.0138 0.0454 0.0870 0.1199 0.1312
f(t)«Lp 0.0570 0.0011 0.0210 0.0560 0.0351 0.0540 0.0284 0.2197 0.4519 0.4602
Sz 0.0012 0.0008 0.0001 0.0005 0.0009 0.0028 0.0034 0.0040 0.0056 0.0067
sz(t) 0.0001 0.0003 0.0007 0.0007 0.0001 0.0003 0.0032 0.0188 0.0399 0.0473
wy 0.0577 0.0110 0.0417 0.0390 0.0238 0.0818 0.0357 0.0500 0.0747 0.0636
WH 0.0112 0.0037 0.0045 0.0042 0.0039 0.0027 0.0092 0.0228 0.0253 0.0244
Szc 0.0013 0.0005 0.0006 0.0007 0.0004 0.0018 0.0028 0.0036 0.0050 0.0060
SzT 0.0002 0.0000 0.0001 0.0000 0.0007 0.0015 0.0011 0.0002 0.0002 0.0007
Se 0.0039 0.0026 0.0002 0.0025 0.0008 0.0099 0.0132 0.0111 0.0089 0.0070
sé 0.0038 0.0004 0.0032 0.0033 0.0035 0.0058 0.0098 0.0198 0.0344 0.0409
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6.2. Deformation of Wave Crests before Breaking Onset

Table 6.6.: Minimum and maximum values of the geometrical and instantaneous para-
meters at breaking onset for initial spectral steepness sz; = 0.01 — 0.035.

87, 0.01 0.02 0.027 0.033 0.035

ac/Hsg 0.73 211 0.79 192 0.16 141 0.22 121 021 1.21
fo/fp 1.02 412 1.02 226 083 193 076 197 0.78 2.28
a(t)/Hs 0.74 217 080 1.92 0.17 142 022 1.23 0.21 1.21
fit)«Lp 3.00 13.61 225 814 1.17 7.15 1.02 8.03 1.21 6.54
Sz 0.02 0.26 0.03 011 0.01 0.10 0.02 0.12 0.01 0.12
sz(t) 0.06  0.47 0.07 061 0.01 042 0.03 036 0.02 0.38
wy 0.00 7.00 011 475 014 3.29 0.06 567 0.10 250
WH 049 099 062 100 046 1.00 048 1.00 043 0.97
Szc 0.01 0.25 0.02 0.11 0.01 0.09 0.01 011 0.01 0.12
Szr 0.00 0.06 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.03
S¢ 0.03 058 0.09 034 002 027 002 037 0.01 0.30
sE 0.03 098 0.05 095 0.03 088 0.04 147 0.03 0.56

Table 6.7.: Minimum and maximum values of the geometrical and instantaneous para-
meters at breaking onset for initial spectral steepness sz; = 0.044 — 0.071.

57 0.044 0.05 0.055 0.067 0.071
ac/Hs 0.08 1.61 0.13 083 0.11 158 0.06 074 0.08 0.61
fo/fp 073 233 080 245 074 222 0.69 222 0.76 198

a(t)/Hs 0.08 1.62 0.14 0.87 0.12 1.60 0.06 0.75 0.09 0.62
ft)yxLp 036 844 0.89 7.11 0.88 11.56 0.78 7.89 0.84 5.35

Sz 0.01 0.13 0.01 015 0.01 016 0.00 0.10 0.01 0.10
sz(t) 0.01 122 0.02 029 0.02 205 0.01 035 0.01 0.26

wy 0.04 3.67 0.06 3.50 0.08 3.33 0.04 440 0.08 5.25

WH 044 1.00 047 099 043 100 042 1.00 0.41 0.99

szc 0.00 0.12 0.01 014 0.01 014 0.00 0.10 0.01 0.10

szT 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.03 0.00 0.03

e 0.01 044 0.03 032 0.01 047 0.01 035 0.01 027

S¢s 0.02 1.15 0.02 055 0.02 069 0.01 1.03 0.02 0.51
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depth is h/L > 0.5, which are the conditions for modulational instability to be present
which may lead to wave breaking; thus wave breaking due to modulational instability
was unlikely in these test runs. Furthermore, the almost constant wave frequency and
therefore wavelength indicated that the waves did not shorten which rather happens for

depth-induced wave breaking.

Conclusions

e Based on the hydronumerical model tests, the deformation of breaking wave crest
was analysed with a time step of At = 0.04s and for the time period of 2s. The
deformation of breaking wave crest began approximately 0.4 s - 0.8 s before breaking

onset.

e The larger the initial spectral steepness sz;, the later the deformation began, the
smaller the change of the parameters, and the smaller the wave steepness sz of the
breaking wave crest. In other words, the earlier the wave train broke, i.e. the less

time the wave train had to develop, the faster the deformation happened.

e The results confirm that there is no universal value to detect wave breaking. All
breaking wave crests covered a large range of values of geometrical and instantan-

eous parameters.

6.2.2. Comparison of Breaking and Non-Breaking Wave Crests

In Figs.6.11, 6.12 and 6.13, the normalised instantaneous amplitude a(t)/Hg, the nor-
malised instantaneous frequency f(¢) * Lp and the instantaneous steepness sz(t) =
2 x a(t)/L(t) are shown for both the breaking and non-breaking wave crests. For the
breaking wave crests, the median value of the corresponding parameter was taken with
all test runs considered. In the case of non-breaking wave crests, there were only four
wave trains (three wave trains with sz; = 0.01 and one with sz; = 0.02) which had no
instability during their simulation and the simulation ran until the simulation end was
reached. Therefore, one wave crest per initial spectral steepness is plotted exemplarily;
the chosen wave crest was the maximum crest in the wave train at the end of simula-
tion. In the two test runs chosen here, the highest wave was also the steepest wave. It
can thus be judged whether a distinction between a breaking wave and a very steep but
non-breaking wave is possible.

It can be observed that the breaking wave was strongly deformed about 0.4s before
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Figure 6.11.: Normalised instantaneous amplitude of the breaking and non-breaking wave
crest for the test runs with initial spectral steepness sz; = 0.01 and sz; =
0.02. In case of the breaking wave crest, the parameter is a median of all

test runs.
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Figure 6.12.: Normalised instantaneous frequency of the breaking and non-breaking wave
crest for the test runs with initial spectral steepness sz; = 0.01 and sz; =
0.02. In case of the breaking wave crest, the parameter is a median of all
test runs. 125



6. Detection and Prediction of Breaking Onset in Wave Trains
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Figure 6.13.: Instantaneous steepness of the breaking and non-breaking wave crest for
the test runs with initial spectral steepness sz; = 0.01 and sz; = 0.02. In
case of the breaking wave crest, the parameter is a median of all test runs.
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breaking onset, and the instantaneous amplitude, frequency and correspondingly steep-
ness increased. The non-breaking wave, on the other hand, increased in amplitude, but
its frequency dropped. Overall, the non-breaking wave crest did not reach the maximum
values of the breaking wave crest. The breaking wave crest reached a three times larger
instantaneous amplitude and a two times greater instantaneous steepness. A clear dis-
tinction between a breaking and a very steep wave was therefore possible in this example.
The breaking wave crest reached the following thresholds for the test runs with an initial

spectral steepness sz ; = 0.01:

a(t)/Hs gy = 1.0

ft)* Lp,,,, = 6.3

57(8)maw = 0-14

The following thresholds were reached for the test runs with an initial spectral steepness
sz, = 0.02:

a(t)/HSma:r =1.3

ft)*Lp,,,, =41

57(8) e = 0-21

These thresholds differ from the findings in subsection 6.1.3.2, because the initial spectral
steepness sz; of the investigated test runs differ. Comparing Tab. 6.7, one will find that
sz(t) is between 0.01 and 1.22 for sz ; = 0.044 and thus the findings in subsection 6.1.3.2

lay in this value range.

In Tab.6.8, the geometrical and instantaneous parameters for the non-breaking and
breaking wave crests at the time of simulation end ¢, are shown. It can be ob-
served that only the parameters ac/Hg and a(t)/Hg differed significantly between a
non-breaking and breaking wave crest. Otherwise, the values of the non-breaking wave
crests were in the value ranges of the breaking wave crests. The crest amplitude ac for

a breaking wave was at least 1.5 times larger than for a non-breaking wave. This res-
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Table 6.8.: Geometrical and instantaneous parameters for the highest (and steepest) wave
crest at the time of simulation end for non-breaking test runs, and minimum
and maximum values for the breaking test runs.

Non-Breaking Wave Crest Breaking Wave Crest
572:=001  s7,=002 sz,=001 sz;=0.02

ac/Hg 0.48 0.47 0.73 211 0.79 1.92
fo/fp 3.57 2.92 1.02 412 1.02 2.26
a(t)/Hg 0.49 0.48 0.74 217 0.80 1.92
F(t)* Lp 9.41 5.79 3.00 13.61 2.25 8.14
sz 0.07 0.09 0.02 026 0.03 0.11
sz(t) 0.09 0.11 0.05 047 0.07 0.61
py 1.00 0.67 0.00 7.00 0.11 4.75
[ 0.88 0.92 049 0.99 0.62 1.00
sz 0.06 0.08 0.01 025 0.02 0.11
SzT 0.01 0.01 0.00 0.06 0.00 0.02
s 0.25 0.16 0.03 058 0.09 0.34
s, 0.25 0.24 0.03 0.98 0.05 0.95

ult agrees with the observation from the field measurements of Holthuijsen and Herbers
(1986), who observed that the average crest amplitude of breaking waves was about 1.6

times greater than the average crest amplitude of all the measured waves.

Conclusions

It can be observed that only the parameters ac/Hg and a(t)/Hg differed significantly
between a non-breaking and breaking wave crest of a steep wave. The crest amplitude ac
for a breaking wave was at least 1.5 times larger than for a non-breaking wave. Otherwise,
the values of the non-breaking wave crests were in the value ranges of the breaking wave

crests.

6.2.3. Comparison with Physical Model Tests

Bonmarin and Ramamonjiarisoa (1985) and Bonmarin et al. (1989) conducted physical
model tests with monochromatic wave trains with an initial wave steepness in the order
of magnitude of H/Ly = 0.08, which broke because of modulational instability. The
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6.3. Prediction of Breaking Onset

deformation of the breaking wave crest was recorded spatially by means of high-speed
cameras. Those differences in the generation and type of wave breaking had to be taken
into account when compared with the results of this thesis.

In Fig. 6.14, the measured values of the geometrical parameters of Bonmarin and Rama-
monjiarisoa (1985) are shown with the simulated NWF data for the tests with an initial
spectral steepness of sz; = 0.071. It can be observed that the crest amplitudes ac
were similar for the simulated and measured data and were of the same order of mag-
nitude. For the remaining geometrical parameters, the measured values of Bonmarin et
al. exceeded the simulated values. In addition, the behaviour of the trough steepness
szr = ar/L and the crest front steepness s;, = ac /L’ differed from the measured values.
The differences in the behaviour and in the magnitudes of the values can be explained
by several causes: Bonmarin and Ramamonjiarisoa (1985) investigated monochromatic
wave trains, no sea state spectra, and generated wave breaking through modulational
instabilities rather than wave-wave interaction.

The differences between the results of Bonmarin and the NWF data also showed that a
transfer of the model experiments to the nature is not easily possible, since natural waves
are directional seas with a spectrum of frequencies. Bonmarin and Ramamonjiarisoa
(1985), as well as the author of this thesis, concluded that there are no universal values

for the geometrical parameters which define breaking onset.

6.3. Prediction of Breaking Onset

In this section the results of the analysis of the development of the wave train towards
breaking onset are presented, focusing on the geometrical and instantaneous parameters
and their distribution. The wave train, which was analysed, was read out at the location
of the highest wave crest at the time of breaking onset. It contained the ten waves before
the breaking wave; the wave which was about to break itself was not taken into account.
Characteristic phenomena of the wave train before breaking onset were determined in
order to not only detect but also to predict the breaking onset. The threshold method
was applied again to detect breaking onset and the MARKOV chain method was carried
out to predict breaking onset.

In Figs.6.15 to 6.17, the median values of the geometrical and instantaneous para-
meters of the single waves in the wave train are plotted for the test runs with an initial
spectral steepness of sz; = 0.027,0.044,0.067. It can be observed that approximately
five to six waves before breaking onset the wave train started clearly to deform. The

crest amplitude a¢ and the instantaneous amplitude a(t) increased towards breaking on-

129



6. Detection and Prediction of Breaking Onset in Wave Trains
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Figure 6.14.: Development of geometrical parameters against time steps (At = 0.04s)
with the simulated NWF data (black circle markers) for the test with sz; =
0.071 and the measured data (filled red circle markers) by Bonmarin and
Ramamonjiarisoa (1985). The breaking onset is marked by a dashed line.
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set and reached their maximum with the last wave before the breaking wave. The larger
the initial spectral steepness sz ; the smaller the median values of ac/Hg and ac(t)/Hg,
but the larger the gradient from the 1st to the 10th wave. For small spectral steepnesses
sz, the wave train had time to develop and to reach a critical amplitude or steepness.
For large spectral steepnesses this increase of amplitude and steepness happened quickly.
The wave frequency fo and the instantaneous frequency f(t) did not change significantly
in the wave train and they did not show uniform behaviour for all initial spectral steep-
nesses sz ;. This behaviour was consistent with the results of the physical model tests,
see section 6.1. Since the frequency did not change significantly indicates that the wave,
which was about to break, was part of a wave group and broke likely due to wave-wave
interaction and not due to modulational instability.

The wave steepness sz increased towards breaking onset; the larger the initial spectral
steepness sz; the larger the gradient. For small spectral steepnesses sz ; the wave steep-
ness sz hardly increased. This different behaviour depending on the spectral steepnesssz ;,
suggests that different physical phenomena caused the wave breaking or different types
of wave breaking occurred.

The instantaneous steepness sz(t) increased quickly in the last five waves before break-
ing onset, whereby the increase was greater for the large initial spectral steepnesses.

The horizontal asymmetry pg = ac/H increased only for the small initial spectral
steepness sz; = 0.027 in the last three waves before breaking onset. The vertical steep-
ness py = L”/L" changed significantly for small spectral steepnesses sz;. For spectral
steepnesses sz; > 0.044 the vertical asymmetry increased in the last four waves before
breaking onset.

The alternative wave steepnesses besides sy, which were sy¢c = ac/L, szr = ar/L,
so = ac/L’ and s = ac/L", behaved similarly to sz and increased their values 1.5
times for small initial spectral steepnesses sz ; and doubled them for large initial spectral
steepnesses. For the initial spectral steepnesses sz; = 0.044 and sz; = 0.067, the steep-
nesses increased clearly in the last four to five waves before breaking onset. For the small
initial spectral steepness sz; = 0.027, the steepnesses acted slightly different, namely
they did not change significantly in the last three waves before breaking onset. This
indicates a wave group which broke due to modulational instability. That assumption
was also supported by the observation that py was not pronounced asymmetric as it is
typical for a deep water bore breaking wave with pg = 0.9, which is a highly non-linear
wave-wave interaction, see Kjeldsen and Myrhaug (1981).

Tabs. 6.9 and 6.10 summarises the minimum and maximum values of the geometrical

and instantaneous parameters for the last wave before the breaking wave for every initial
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Figure 6.15.: Development of geometrical and instantaneous parameters (part 1, amp-
litudes and frequencies) of the wave train at location of breaking onset for
the test runs with initial spectral steepness sz; = 0.027, 0.044, 0.067 over
the last ten waves before the breaking wave.
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initial spectral steepness sz; = 0.027, 0.044, 0.067 over the last ten waves
before the breaking wave.
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spectral steepness sz ;. The parameters were within these ranges before the wave broke.
The maximum values can be taken as thresholds for detection. Those results confirm
that there is no universal value to detect wave breaking. All these wave trains broke and

covered a large range of values.

6.3.1. Markov Chain

In order to allow a prediction of breaking onset, the development of the wave train is
stochastically described by means of the MARKOV chain in this section. The MARKOV
chain is a mathematical model that describes the probabilities of observing a certain
sequence of discrete states. At each step of the process, the model may generate an
output, or emission, depending on which state it is in, and then make a transition to
another state. Here, the sets of states i = 11,49,...,%, were the ten waves (r = 10)
before the breaking wave and the emissions for every step were the geometrical and
instantaneous parameters. It is possible to determine, for example, the probability that
the 10th wave had a crest amplitude with the median value ac/Hg = 0.2, if the 5th
wave had the median value ac/Hg = 0.1. The MARKOV chain starts in the initial
state ig at step 0. The chain then transition to state iy with probability T;, (transition
probability) and emits an output si; with probability E; r, (k = 12, since there are 12
geometrical and instantaneous parameters). Consequently, the probability of observing
the sequence of state i1i2...7,, and the sequence of emissions Sp1Sk ... Sk in the first r
ok T

the next can only happen in one direction, namely towards the 10th wave, the transition

steps is p = T4, By, * Tiyio Bigky 1ir i k. Since the transition from one wave to

probability from, for example, state i (2nd wave) to state i; (1st wave) is T;,;, = 0. Thus,
the transition probability is Tj,i, = Tiyis = ... = Tjgi,, = 1. The emission probabilities
E; k, were the relative frequencies of the geometrical and instantaneous parameters. In
Figs.6.18 to 6.20 the boxplots of the geometrical and instantaneous parameters of the
single waves in the wave train at the location of breaking onset are plotted for the test
runs with an initial spectral steepness of sz; = 0.044. As noted in section 6.3, the wave
train began to alter significantly approximately five to six waves before the breaking wave.
The median values of the last six waves before breaking onset are summarised in Tab. 6.11
for all geometrical and instantaneous parameters. In order to quantify the change in the
wave train, the absolute value of the gradients of the median values are summarised in
Tab.6.12. It is observed that the median values and their gradients increased towards
breaking onset.

As mentioned above, the probability of a particular sequence of events occurring is

the product of their single probabilities. Since the relative frequencies were known here,
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Table 6.9.: Minimum and maximum values of geometrical and instantaneous parameters
for the 10th wave (last wave before the breaking wave) for the test runs with
initial spectral steepness sz; = 0.01 — 0.035.

87 0.01 0.02 0.027 0.033 0.035

ac/Hs 0.006 1.00 0.009 0.68 0.004 1.04 0.006 0.85 0.001 0.81
fo/fp 0897 458 0878 3.17 0.709 594 0.659 850 0.543 7.92
a(t)/Hs 0.048 145 0.039 0.69 0.033 1.05 0.032 0.86 0.040 0.81
f@®)/fp -2.999 24.67 -0.506 3.40 -2.337 871 -0.104 6.23 -1.586 5.94
Sz 0.008 0.31 0.009 0.05 0.006 0.07 0.008 0.12 0.006 0.16
sz(t) 0.007 233 0.001 0.13 0.000 0.30 0.001 043 0.001 0.69
Wy 0.000 25.00 0.103 15.21 0.000 27.80 0.023 8v.11 0.000 26.01
WH 0.017 097 0.034 062 0.018 096 0.021 0.99 0.005 0.99
szc 0.000 0.21 0.002 0.02 0.001 0.06 0.001 0.11 0.000 0.12
SzT 0.002 0.10 0.004 0.05 0.001 0.06 0.000 0.09 0.000 0.07
S 0.004 6.95 0.004 0.04 0.001 0.13 0.001 0.16 0.001 0.39
St 0.003 0.34 0.002 0.12 0.001 0.56 0.001 0.73 0.001 0.27

Table 6.10.: Minimum and maximum values of geometrical and instantaneous parameters
for the 10th wave (last wave before the breaking wave) for the test runs with
initial spectral steepness sz; = 0.044 — 0.071.

57 0.044 0.05 0.055 0.067 0.071

ac/Hs 0.001 0.79 0.001 0.54 0.002 0.53 0.001 0.53 0.001 0.43
fo/fp 0518 944 0341 944 0500 7.08 0423 447 0497 3.93
a(t)/Hs 0.005 0.79 0.010 0.54 0.011 0.54 0.008 0.54 0.008 0.43
ft)/fp -3.989 31.23 -1.741 5.06 -26271 521 -1.538 17.63 -5.032 6.37
Sy 0.003 0.32 0.002 0.1 0.004 0.12 0.003 021 0.002 0.12
sz(t)  0.000 149 0.000 0.33 0.000 1.39 0.000 1.38 0.000 0.50
I 0.000  49.00 0.000 21.16 0.000 49.00 0.000 60.06 0.000 38.21
[ 0.003 1.00 0.012 0.99 0.027 0.99 0.015 1.00 0.011 0.98
szc  0.000 027 0.000 0.10 0.001 0.1 0.000 0.18 0.001 0.09
szr 0.000 0.15 0.001 0.08 0.000 0.05 0.000 0.09 0.000 0.08
spy 0.000 1.06 0.000 0.60 0.001 1.14 0.000 0.69 0.000 1.56
st 0.000 1.57 0.002 023 0.001 023 0.0001 1.03 0.001 025
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Table 6.11.: Median values for every geometrical and instantaneous parameter for the
last six waves before the breaking wave for the test runs with initial spectral
steepness sz; = 0.044.

5th wave 6th wave 7th wave 8th wave 9th wave 10th wave

ac/Hs  0.14 0.14 0.16 0.18 0.21 0.26
fo/ fp 1.10 1.12 1.09 1.12 1.15 1.12
a(t)/Hg  0.14 0.15 0.17 0.19 0.22 0.27
f®)/fe 1.26 1.29 1.29 1.34 1.39 1.41
sz 0.02 0.02 0.02 0.02 0.03 0.03
sz(t) 0.02 0.02 0.03 0.03 0.04 0.05
[y 0.76 0.79 0.73 0.79 0.79 0.86
[iE 0.57 0.58 0.59 0.58 0.57 0.59
szc 0.01 0.01 0.01 0.01 0.02 0.02
SzT 0.01 0.01 0.01 0.01 0.01 0.01
s, 0.01 0.01 0.02 0.02 0.02 0.03
s 0.02 0.02 0.02 0.02 0.03 0.03

those were taken. The number of classes were calculated with Eq.(5.1) and m = 14
was selected. In Tab. 6.13 the relative frequencies of the medians and their products are
summarised for all parameters and for the six last waves in the wave train. The product
describes the probability that the parameters in the last six waves will take the values of
the medians. In Tab.6.14, on the other hand, the maximum relative frequencies and their
product are summarised, i.e. the most probable sequence of the parameters is described
here. The corresponding value ranges are summarised in Tab. 6.15. For example, the 5th
wave in the wave train had for its relative crest amplitude ac/Hg a maximum relative
frequency of 0.22 and it ranged from 0.05 to 0.1. The median value of the same wave

was ac/Hg = 0.14 with a relative frequency of 0.19.
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Figure 6.18.: Boxplots of geometrical and instantaneous parameters (part 1, amplitudes
and frequencies) of the wave train at location of breaking onset for sz; =
0.044 over the last ten waves before the breaking wave.
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Figure 6.19.: Boxplots of geometrical and instantaneous parameters (part 2, steepnesses
and asymmetries) of the wave train at location of breaking onset for sz; =
0.044 over the last ten waves before the breaking wave.
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Figure 6.20.: Boxplots of geometrical and instantaneous parameters (part 3, steepnesses)
of the wave train at location of breaking onset for sz ; = 0.044 over the last
ten waves before the breaking wave.
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Table 6.12.: Absolute value of the gradient of the median values for every geometrical
and instantaneous parameter for the last six waves before the breaking wave
for the test runs with initial spectral steepness sz; = 0.044.

5th wave 6th wave 7th wave 8th wave 9th wave 10th wave

ac/Hg ~ 0.0088  0.0114  0.0186  0.0232  0.0407  0.0543

fo/fp  0.0073  0.0071  0.0000  0.0295  0.0000 0.0302
a(t)/Hs 0.0096  0.0116  0.0188  0.0251  0.0415 0.0531
f®)/fp  0.0072  0.0157  0.0273  0.0492  0.0366 0.0242

Sz 0.0014 0.0013 0.0027 0.0039 0.0037 0.0040
sz(t) 0.0019 0.0026 0.0044 0.0060 0.0089 0.0119
1A% 0.0311 0.0107 0.0019 0.0277 0.0361 0.0721
WH 0.0057 0.0099 0.0012 0.0093 0.0058 0.0175

Szc 0.0007 0.0009 0.0016 0.0020 0.0023 0.0028
SzT 0.0006 0.0003 0.0009 0.0017 0.0015 0.0013
Se 0.0012 0.0008 0.0027 0.0038 0.0044 0.0060
S¢s 0.0009 0.0015 0.0029 0.0036 0.0039 0.0051
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Table 6.13.: Relative frequency of the median values for every geometrical and instant-
aneous parameter for the last six waves before the breaking wave for the test
runs with initial spectral steepness sz; = 0.044.

5th 6th 7th 8th 9th 10th
wave wave wave wave wave wave Product
ac/Hg 019 0.20 0.22 0.18 0.18 0.18  0.00005
fo fr 0.99 0.96 0.81 0.87 0.96 054  0.34685
a(t)/Hg  0.20 0.17 0.21 0.18 0.17 0.17  0.00004
f®)/fe 061 0.87 0.70 0.96 0.93 081  0.26778
sz 0.65 0.97 0.32 0.94 0.68 048  0.06282
sz(t) 0.84 0.87 0.82 0.72 0.82 0.78  0.27650
Ly 0.83 0.91 0.95 0.94 0.97 087  0.56840
e 0.25 0.24 0.24 0.23 0.21 025  0.00017
szc 0.67 1.00 0.32 0.97 0.89 057 0.10487
SzT 0.59 0.28 0.64 0.56 0.41 043  0.01036
s 0.76 0.94 0.90 0.94 0.75 088  0.40287
s, 0.80 0.87 0.95 0.66 0.70 093  0.28851
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Table 6.14.: Maximum relative frequency for every geometrical and instantaneous para-
meter for the last six waves before the breaking wave for the test runs with
initial spectral steepness sz; = 0.044.

5th 6th 7th 8th 9th 10th
wave wave wave wave wave wave Product
ac/Hg — 0.22 0.20 0.22 0.18 0.18 0.18  0.00005
fo fr 0.99 0.96 0.81 0.87 0.96 0.54  0.34685
a(t)/Hg — 0.22 0.20 0.21 0.18 0.17 0.17  0.00005
f@®)/fp 061 0.87 0.70 0.96 0.93 081  0.26778
sz 0.65 0.97 0.32 0.94 0.68 0.48  0.06282
sz(t) 0.84 0.87 0.82 0.72 0.82 0.78  0.27650
[y 0.83 0.91 0.95 0.94 0.97 0.87  0.56840
e 0.25 0.24 0.24 0.23 0.23 025  0.00018
szc 0.67 1.00 0.32 0.97 0.89 0.57  0.10487
SzT 0.59 0.38 0.64 0.56 0.41 0.43  0.01408
s 0.76 0.94 0.90 0.94 0.75 0.88  0.40287
s, 0.80 0.87 0.95 0.66 0.70 0.93  0.28851
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Table 6.15.: Minimum and maximum values of the geometrical and instantaneous para-
meters for their respective maximum relative frequencies (see Tab.6.14) for
the last six waves before the breaking wave for the test runs with initial
spectral steepness sz; = 0.044.

5th wave 6th wave 7th wave 8th wave 9th wave  10th wave

ac/Hs 0.05 010 0.10 014 0.12 0.8 0.15 0.20 0.16 0.22 023 0.28
fo/fp 051 351 057 255 050 1.48 0.39 1.88 0.61 259 052 1.16
a(t)/Hs 0.05 0.0 0.10 0.14 0.06 0.12 0.15 020 0.17 0.22 023 0.28
f®)/fp 037 1.37 -0.30 198 1.06 2.92 030 3.64 074 330 1.04 3.56
sz 0.0 0.02 000 0.06 0.0l 0.03 000 0.06 0.00 0.04 0.03 0.05
sz(t)  0.00 0.06 0.0 0.08 0.00 007 0.00 0.06 0.00 0.10 0.00 0.11
gy 0.00 1.86 0.00 295 0.00 507 0.00 528 0.00 7.50 0.00 3.50
pg 051 057 057 064 057 064 057 0.64 050 057 0.57 0.64
sze 0.00 0.01 000 006 001 001 0.00 0.05 000 003 000 0.02
syr 0.00 0.01 0.00 001 000 0.01 0.00 0.01 0.01 002 0.0 0.02
sy, 0.00 0.03 0.00 0.07 0.00 006 0.00 0.08 0.00 0.04 0.0 0.08
st 0.00 0.04 000 0.05 0.00 009 0.00 004 000 005 0.00 0.11
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Conclusions

e The wave train started to deform five to six waves before breaking onset. Wave
trains with small initial spectral steepnesses sz; had time to develop and reached
large median values for ac/Hg and ac(t)/Hs. Wave trains with large initial spec-
tral steepnesses sz; broke fast, thus, had less time to develop, and reached smaller

median values for ac/Hg and ac(t)/Hg; their deformation happened quickly.

e MARKOV chains were determined for the last six waves before breaking onset and
their median values of geometrical and instantaneous parameters for each initial

spectral steepnesses sz; were presented.
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7. Summary & Outlook

7.1. Summary

The main objective of this study was to analyse the variability of wave breaking onset,
in order to gain deeper knowledge of the frequency and likelihood of occurrence of wave
breaking, allowing many applications to a more economic design and safety of offshore
structures. Breaking onset is defined as an instantaneous state of wave dynamics where a
wave has not started to break but cannot return to a stable state either. In this context,
investigations on breaking onset in irregular wave trains (JONSWAP sea spectrum) in
intermediate water depth were carried out using laboratory and hydronumerical model
tests. A numerical wave tank was applied to generate a large data set of parameters of
breaking onset for a reliable probabilistic analysis, in contrast to many previous studies
in literature which analysed single wave breaking events in mono-/quasi-monochromatic
wave trains and focused on energy dissipation or slamming forces on structures. Present
investigations focused on the evolution of wave trains towards and at breaking onset to
describe the stochastic process of breaking onset, to find precursors and indicators of
breaking onset, and to determine the optimal sample size of test runs to get a reliable
result of the parameters of breaking onset. By this means, insights on the variability
of breaking onset and its distribution function could be achieved, which have not been
available beforehand.

The physical model tests were carried out in the wave flume of the Ludwig-Franzius-
Institute in a length scale of 1:40. In parallel, hydronumerical model tests using a numer-
ical wave flume developed by Sriram (2008) and Sriram et al. (2006; 2007; 2010), based
on the fully non-linear potential flow theory (semi-arbitrary Lagrangian-Eulerian Finite
Element Method (SALE-FEM, structured version)), were conducted in the same length
scale to complement the laboratory investigations and to increase the possible test run
length and number. The hydronumerical simulations terminated before simulation end
when the water surface became discontinuous. That point of termination of simulation
was defined as physical breaking onset when the wave with the maximum wave crest and

the wave with the maximum wave steepness were the same wave or less than one single
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wave apart. Breaking onset was characterised by the time to breaking onset tp,. (tem-
poral distance from simulation start to end) and location of breaking onset xp, (spatial
distance from inlet to peak of breaking wave crest). As design database the wave meas-
urements of research platform FINO1 in the North Sea for the time period 2004 -2011
were used and JONSWAP gspectra were selected in such a way that the initial spectral
steepness sz; = Hg/Lp covered daily and storm events. Further input parameters were
water depth, enhancement factor of JONSWAP spectrum, phase angle distribution, and
number of waves in a wave train. By means of the random phase angle distribution,
every considered spectrum was transformed multiple times (up to 500 times) to artificial,
but physically-sound time series of water surface elevations.

The cause-effect relationship between input wave train and breaking onset was invest-
igated with a dimensional analysis (BUCKINGHAM 7 theorem) and an analysis of the uni-
and bivariate (copula) distribution functions. The optimal sample size of test runs was
derived by means of a convergence analysis. Indicators of breaking onset were detected
by analysing the surface elevation (over time and over flume length) and applying the
threshold method which assumed that breaking onset happens when a parameter exceeds
a certain threshold value. Precursors of breaking onset were presented with MARKOV
chains of the geometrical and instantaneous parameters, which described the conditions

that had to be met stochastically for wave instability to occur.

Influencing Factors on Wave Breaking Onset

The sensitivity of the input wave train (Hg, Tp, v, Nw, h, @) to breaking onset (¢, zp)
was firstly analysed individually and subsequently with a dimensional analysis based on

the hydronumerical model tests.

1. The experiments showed that breaking onset was highly sensitive to the sequence
of waves in the input wave train (phase angle distribution ¢), to the initial spectral
steepness sz; = Hg/Lp, and to the number of waves in the input wave train Nyy.
Different realizations of the same energy density spectra in time domain resulted
in a large scatter of values for the breaking onset (¢, xp-). The scattering of the

results showed the influence of the sequence of waves in the input wave train.

2. The greater the initial spectral steepness sz ;, the earlier the wave train broke and
the smaller the scatter of ¢, and xy,. For small spectral steepnesses sz; < 0.044,
the sequence of waves in the input wave train was the main influence on breaking
onset. For larger spectral steepnesses, the initial spectral steepness sz ;, especially

Hg and, thus, the spectral energy, was the main influence on breaking onset. Even
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wave trains with low spectral steepness broke when duration of simulation was
chosen long enough. The inverse time of breaking onset 1/t, is almost quadratically

dependent on sz ;.

3. The larger the number of waves in the input wave train Ny, the later the wave
train broke. For test runs with the same initial spectral steepness sz ;, the number
of waves in the input wave train Ny, had a linear influence on breaking onset. A
change in water depth h or a change in enhancement factor v did not influence

breaking onset.

4. For the dimensional analysis all breaking test runs with ac/Hg > 0.9 were con-

b was

sidered to focus on the interesting data range. The power function y = ax
used as a basic relation. Because the shape of the input spectrum and wave groups
play an important role in wave breaking phenomenon, they were described with
the spectral width vy, the dimensionless time of the first wave group in the input
wave train WaGorpime/Tp, and the dimensionless number of waves in that first

wave group WaGonym /Nw -

5. To investigate which input variables were relevant for the dimensional analysis,
three groups of input variables were formed and their results were compared with
one another. Groupl considered all parameters. Group2 considered sz;, Ny,
Hg/h, and . Group 3 considered sz; and Hg/h.

6. The resulting equations for the predicted time and location of breaking onset based

on Group 1 were

—0.3 ~0.02
forpred _ ) 09945,143 N9A9 <}£S> o (Waf[oN “m> .
P ’ w
WaGoTime 0.002 076
Tp w
~0.11 —0.01
Lor,pred —2.09 7005 { Hs —136 { WaGonum
Zomprea g -09 =2 o vum .
T = 0.00535, 5 Ny ( . ) v < N

—0.05
WaGorime 1/0‘44
Tp w

Coefficients of determination were for ty, preq R? = 0.958 and for Tbr pred R? = 0.906.

The resulting equations for the predicted time and location of breaking onset based on
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Group 3 were

—0.04
tbnpred -0 158521'43 <HS>
—_— . i —_—

Tp h
—0.09
Lbr,pred —2.09 ( Hs
# = 0.00085, <h>

Coefficients of determination were for ty, preq R? = (0.885 and for Tpr pred R? = 0.906.

Ny and v were influential variables for the time of breaking onset ¢, but not for the

location of breaking onset xp,.. The spectral width vy and the wave group parameters

WaGorime and WaGonym showed no influence on the coefficient of determination.

Variability of Wave Breaking Onset and Optimal Sample Size

The scattering of the normalised time and location of breaking onset ¢y, /Tp and xy,./Lp,

respectively, is analysed with univariate and bivariate (copula) distribution functions.

Because the scatter depended on the initial spectral steepness sz ;, the analyses were

carried out for each sz; separately.

1. For the analysis with univariate distribution functions the probability density func-
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tions and cumulative distribution functions for GUMBEL, Gamma, WEIBULL, GAUS-
SIAN Normal, and RAYLEIGH were considered. The analysis showed that the larger
the initial spectral steepness sz;, the better all theoretical distribution functions
followed the empirical distribution functions of t,,./Tp and xy,./Lp due to the de-
creasing scatter. The normalised time of breaking onset ¢y, /Tp was best described
by the GUMBEL distribution functions. The normalised location of breaking onset
xpr/Lp was best described by the WEIBULL distribution function.

. Because ty,./Tp and xp,./Lp did not follow the same distribution functions, the

classical multivariate approach could not be used. Instead, the ARCHIMEDEAN
copulas GUMBEL, CLAYTON, and FRANK were chosen for the analysis. The analysis
showed that the larger the initial spectral steepness sz; the smaller the copula
parameter O, that is, for larger spectral steepnesses the theoretical copula did
not need to be adjusted to the empirical copula as much as for smaller spectral
steepnesses. The empirical copula for (¢, /Tp, xp-/Lp) follows the GUMBEL copula
best and data generated from the GUMBEL copula represented the behaviour of

the time and location of breaking onset well. Based on the GUMBEL copula, the



7.1. Summary

cumulative distribution functions and exceedance probabilities for breaking onset
were determined and can be used to estimate where and when breaking onset may

occur.

3. The optimal sample size N, is the required number of test runs for a robust de-
termination of breaking onset and was determined based on the normalised time
of breaking onset t,/Tp and for each initial spectral steepness sz, and the per-
missible deviations 1%, 2%, 5% and 10%. In the first step, only the data from
the hydronumerical model tests was used and then expanded by data generated
from the GUMBEL copula. The convergence analysis showed that the larger the
initial spectral steepness sz; and the larger the permissible deviation, the smaller
the required number of test runs N,p;. Considering all initial spectral steepnesses,
the optimal sample size with permissible deviation of 1% was Ny = 1,800, with a
deviation of 2% it was Nop = 580, with a deviation of 5% it was Ny = 100, and
with a deviation of 10% it was Ny = 25.

Detection of Wave Breaking Onset in a Wave Train

The geometrical deformation and development of breaking and non-breaking wave crests
and wave trains were compared with each other in order to identify indicators for breaking

onset.

1. The detection of breaking onset in physical model tests was non-trivial because
breaking onset is an extreme short-term state of wave dynamics and difficult to
measure exactly with wave gauges. Therefore, a novel parameter based on the HiL-
BERT transform was introduced that established a relationship between instantan-
eous amplitude a(t) and instantaneous frequency f(t). The instantaneous steepness
was defined as sz(t) = 2a(t)/L(t), where L(t) was the instantaneous wavelength,
which was L(t) = 1/f(t) when the HILBERT transform was computed from a water
surface elevation over the flume length. When the HILBERT transform was com-
puted from a water surface elevation over time, L(t) needed to be calculated using
the dispersion relation and the approach of an instantaneous period T'(t) = 1/ f(t).
The instantaneous steepness sz(t) described the relation between the envelope of
surface elevation and the rate of change of the surface elevation, which are both

maximal at breaking onset.

2. Based on the physical model tests with irregular wave trains and an initial spec-

tral steepness of sz; = 0.044, the following threshold parameters were found for
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a detection method: 7(t) > 0.8Hg, sz(t) > 0.4, and sz > 0.08. But most im-
portantly those indicative parameters reached their maximum at breaking onset.
That means, in order to detect dominant wave breaking in irregular wave trains,
the largest, steepest, and fastest deforming wave had to be found. Even when the
wave gauge did not measure the exact point of breaking onset, the instantaneous
steepness sz(t) was able to detect wave breaking in an unambiguous way. The
other geometrical parameters did not behave in a unique way at breaking onset, in

contrast to observations for monochromatic wave trains from literature.

. Based on the hydronumerical model tests, the deformation of breaking wave crest

was analysed with a time step of At = 0.04s and for the time period of 2s. The
deformation of breaking wave crest began approximately 0.4 s - 0.8 s before breaking

onset.

The larger the initial spectral steepness sz;, the later the deformation began, the
smaller the change of the parameters, and the smaller the wave steepness sz of the
breaking wave crest. In other words, the earlier the wave train broke, i.e. the less

time the wave train had to develop, the faster the deformation happened.

. For wave trains with small initial spectral steepnesses, where the wave train had

time to develop, the wave crest not only rose, but also tended forward. The more
time the wave train had to develop, the less it changed in the last 2s before breaking
onset. This could be an indication to different types of breakers. Since the wave
frequency did not change significantly, this could be an indication that the majority
of wave crests broke due to wave-wave interaction, i.e. the wave energy accumulated
by the superposition of waves and thereby the waves broke. This assumption was
supported by the fact that just approximately 3% of the test runs fulfilled the
conditions for the presence of modulational instability, thus, wave breaking due
to modulational instability was unlikely. Furthermore, the almost constant wave
frequency and therefore wavelength indicated that the waves did not shorten which

rather happens for depth-induced wave breaking.

. When comparing breaking wave crests with steep, but non-breaking wave crests, it

was observed that only the parameters ac/Hg and a(t)/Hg differed significantly
between a non-breaking and breaking wave crest. The crest amplitude ac was at
least 1.5 times larger for a breaking wave than for a non-breaking wave. Those
results confirm that there is no universal value to detect wave breaking. All these

wave crest broke and covered a large range of values.
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Prediction of Wave Breaking Onset

Based on the hydronumerical model test, the time series of surface elevation were read
out at the location of breaking onset n(xp,,t) and the last ten waves before the breaking
wave were analysed to predict breaking onset. The wave which was about to break was

not taken into account.

1. The wave train started to deform five to six waves before breaking onset. Wave
trains with small initial spectral steepnesses sz; had time to develop and reached
large median values for ac/Hg and ac(t)/Hg. Wave trains with large initial spec-
tral steepnesses sz ; broke fast, thus, had less time to develop, and reached smaller
median values for a¢/Hg and ac(t)/Hg; their deformation happened quickly. Since
the frequency did not change significantly indicated that the wave, which was about
to break, was part of a wave group and broke likely due to wave-wave interaction

and not due to modulational instability.

2. MARKOV chains were determined for the last six waves before breaking onset and
their median values of geometrical and instantaneous parameters for each initial
spectral steepnesses syz; were presented. Furthermore, MARKOV chains were de-
termined for the parameter values with the highest relative frequencies. This novel
prediction tool provided insights how irregular wave trains deformed before break-
ing onset, and which median values and value ranges they most probably took

OIl.

7.2. Outlook

Focus of this thesis was time and location of wave breaking onset and their relation to
the input signal. The data of geometry of the breaking wave was used for detection and
prediction of breaking onset in time series of water surface elevation. In future works, the
relation between input signal and geometry of the breaking wave could be investigated by
means of dimensional analysis and copula functions. Furthermore, the relation between
time of breaking onset and geometry of the breaking wave could be analysed. The
bivariate copula analysis carried out here could be extended to a trivariate analysis in
order to investigate the relationship between time and location of breaking onset and,
for example, the steepness of the breaking wave. Such an analysis would provide deeper
knowledge about the frequency and likelihood of occurrence of different wave breaking
geometries, which is of interest because the geometry of a breaking wave has a significant

influence on slamming forces on offshore structures. Furthermore, determination of the
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distribution functions of the geometrical and instantaneous parameters would provide
their probability density functions and improve the MARKOV chains.

Besides an extended analysis of the geometrical output data, future works could con-
sider a complete probabilistic approach where the probability of occurrence of the sea
spectra is taken into account to improve the prediction of breaking onset. In addition,
future works could contain tests with different sea spectra than the JONSWAP spectrum
to vary the shape of the spectrum which has an influence on wave groups and therefore
on wave breaking.

Finally, the data set of very steep, but non-breaking wave trains could be extended
to improve the comparison of their geometrical differences to breaking wave trains and
based on that determine the maximum possible ratio of wave amplitude to significant
wave height and wave steepness. More information on the transitional area of very steep,
but non-breaking wave trains to breaking wave trains would improve the detection and

prediction method.
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A. Test Program of Hydronumerical

Model Tests

Table A.1.: Test program of the hydronumerical model tests.

Nr. szi; Hs Tp v h  Nw Lfiume 0H 0L Mmaz
-] [m] fs] [ [m] [] [m] [-] [-] [-]
1 0.010 0.043 165 3.3 07 192 50 0.090 0.070 1
2 0010 0.043 165 3.3 0.7 192 100 0.090 0.070 88
3 0.020 0.083 1.65 3.3 0.7 192 50 0.090 0.070 2
4 0.020 0.083 165 3.3 07 192 100 0.090 0.070 75
5 0.027 0.150 1.90 3.3 0.7 192 50 0.090 0.070 104
6 0.027 0.150 1.90 3.3 0.7 768 50 0.090 0.070 43
7 0.027 0.150 190 3.3 0.7 1536 50 0.090 0.070 36
8§ 0.027 0.150 1.90 3.3 0.7 3072 50 0.090 0.070 30
9 0.033 0.150 1.70 3.3 0.7 192 50 0.090 0.070 81
10 0.033 0.150 1.70 3.3 0.7 192 100 0.090 0.070 212
11 0.035 0.200 1.90 3.3 0.7 192 50 0.090 0.070 174
12 0.035 0.200 1.90 3.3 0.7 768 50 0.090 0.070 40
13 0.035 0.200 1.90 3.3 0.7 1536 50 0.090 0.070 40
14 0.035 0.200 1.90 3.3 0.7 3072 50 0.090 0.070 32
15 0.044 0.200 1.70 2.0 0.7 192 a0 0.090 0.070 25
16 0.044 0.200 1.70 2.0 0.7 192 50 0.095 0.065 47
17 0.044 0.200 1.70 2.0 0.7 192 50 0.100 0.060 49
18 0.044 0.200 1.70 2.0 0.7 192 a0 0.105 0.055 ol

165



A. Test Program of Hydronumerical Model Tests

166

Table A.1.: Test program of the hydronumerical model tests.

Nr. szi Hs Tp v h  Nw Lfiume 0H 0L  Mmaz
[-] [m] [s] [] [m] [] [m] [-] [-] [-]
19 0.044 0.200 1.70 3.3 0.5 192 50 0.090 0.070 240
20 0.044 0.200 1.70 33 0.6 192 a0 0.090 0.070 144
21 0.044 0200 1.70 33 0.7 192 50 0.090 0.070 167
22 0.044 0200 1.70 33 0.7 192 100 0.090 0.070 238
23 0.044 0200 1.70 3.3 0.7 768 a0 0.090 0.070 24
24 0.044 0200 1.70 3.3 0.7 1536 50 0.090 0.070 3
25 0.044 0200 1.70 33 0.8 192 50 0.090 0.070 267
26 0.044 0200 1.70 33 09 192 a0 0.090 0.070 368
27 0.044 0200 1.70 5.0 0.7 192 50 0.090 0.070 68
28 0.044 0.200 1.70 5.0 0.7 192 50 0.095 0.065 47
29 0.044 0.200 1.70 5.0 0.7 192 a0 0.100 0.060 39
30 0.044 0200 1.70 7.0 0.7 192 50 0.095 0.065 35
31 0.044 0200 1.70 7.0 0.7 192 50 0.100 0.060 49
32 0.050 0.225 1.70 33 0.7 192 50 0.090 0.070 143
33 0.065 0.250 1.70 33 0.7 192 50 0.090 0.070 110
34 0.055 0.250 1.70 33 0.7 192 100 0.090 0.070 239
35 0.055 0.250 1.70 33 0.7 768 50 0.090 0.070 48
36 0.0565 0.250 1.70 3.3 0.7 1536 50 0.090 0.070 47
37 0.065 0250 1.70 3.3 0.7 3072 50 0.090 0.070 13
38 0.067 0.300 1.70 2.0 0.7 192 50 0.090 0.070 86
39 0.067 0.300 1.70 2.0 0.7 192 a0 0.095 0.065 49
40 0.067 0.300 1.70 2.0 0.7 192 50 0.100 0.060 48
41 0.067 0.300 1.70 2.0 0.7 192 50 0.105 0.055 39
42 0.067 0.300 1.70 3.3 0.7 192 a0 0.090 0.070 149




Table A.1.: Test program of the hydronumerical model tests.

Nr. szi; Hs Tp v h  Nw Lfiume 0H 0L  Mmaz
-] [m] [s] [] [m] [ [m] [-] [-] [-]
43 0.067 0.300 1.70 5.0 0.7 192 50 0.090 0.070 25
44 0.067 0.300 1.70 5.0 0.7 192 50 0.095 0.065 48
45 0.067 0.300 1.70 5.0 0.7 192 a0 0.100 0.060 49
46 0.067 0.300 1.70 7.0 0.7 192 50 0.090 0.070 45
47 0.067 0300 1.70 7.0 0.7 192 50 0.095 0.065 42
48 0.067 0.300 1.70 7.0 0.7 192 a0 0.100 0.060 49
49 0.071 0300 1.65 3.3 0.7 192 a0 0.090 0.070 186
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B. Additional Figures (copula)

This chapter contains additional figures of the cumulative distribution function H(x,y)
and of the exceedance probability Pg of the normalised time and location of breaking on-
set ty./Tp and xy,. / L p, respectively, which were determined with the GUMBEL copula. All
breaking test runs with initial spectral steepnesses sz; = 0.01, 0.02, 0.027, 0.035, 0.044,
0.05, 0.055, 0.067, 0.071 are considered; the results for sz; = 0.033 are in the main text

of the thesis.
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Figure B.1.: Cumulative distribution function H (x,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.01, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.2.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.01, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.3.: Cumulative distribution function H (x,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.02, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.4.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.02, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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zy/Lp

Figure B.5.: Cumulative distribution function H (x,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.027, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).
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Figure B.6.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.027, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.7.: Cumulative distribution function H (x,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.035, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).

Figure B.8.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.035, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.9.: Cumulative distribution function H (x,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.044, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).

ty /TP

Figure B.10.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.044, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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zp/Lp

Figure B.11.: Cumulative distribution function H (z,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.05, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).

to /TP

Figure B.12.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.05, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.13.: Cumulative distribution function H (z,y) with the Gumbel copula for the
test runs with spectral steepness sz ; = 0.055, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).

12
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Figure B.14.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.055, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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Figure B.15.: Cumulative distribution function H (z,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.067, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).

Figure B.16.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.067, with original NWF simulated data (red cross markers) and copula

generated data (black round markers).
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Figure B.17.: Cumulative distribution function H (z,y) with the Gumbel copula for the
test runs with spectral steepness sz; = 0.071, with original NWF simulated
data (red cross markers) and copula generated data (black round markers).

Figure B.18.: Exceedance probability Pg for the test runs with spectral steepness sz; =
0.071, with original NWF simulated data (red cross markers) and copula
generated data (black round markers).
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C. Additional Figures (deformation of

wave crest)
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Figure C.1.: Development of the median of the geometrical parameters against time steps
(At = 0.04 s) until breaking onset with the simulated NWF data for different
spectral steepnesses sz; (part 1, amplitudes and frequencies).
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Figure C.2.: Development of the median of the geometrical parameters against time steps
(At = 0.04 s) until breaking onset with the simulated NWF data for different
spectral steepnesses sz ; (part 2, steepnesses and asymmetries).
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Figure C.3.: Development of the median of the geometrical parameters against time steps
(At = 0.04 s) until breaking onset with the simulated NWF data for different
spectral steepnesses sz ; (part 3, steepnesses).
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