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Abstract

he Laser Interferometer Space Antenna (LISA) is a planned gravitational wave
detector to be positioned in space. It consists of three spacecrats that use Long
Range Interferometry (LRI) to measure relative distance changes between them.
An important component of LISA is the LISA Metrology System (LMS) which is
responsible for the distance measurements as well as various auxiliary functions:
he beatnote acquisition allows the LMS to lock to an incoming beatnote signal
with an unknown frequency and amplitude. It measures both with a Fast Fourier
Transform (FFT) and controls the starting frequencies and gains of the Digital
Phase Locked Loops (DPLLs) accordingly. he laser locking algorithm is used to
lock the frequency of one laser to the frequency of another laser. his is done by
locking the diference frequency between two lasers to a constant target and thus
enabling heterodyne interferometry. he amplitude of the incoming beatnote
signal can vary greatly over time. To compensate for that, the Automatic Gain
Control (AGC) functionality observes the amplitudes and reconigures the gains of
the DPLLs accordingly. In LISA the pointing will be measured using an advanced
Diferential Wavefront Sensing (DWS) scheme, which track the diferential phases
between the segments of a Quadrant Photo Diode (QPD) directly instead of
calculating them from the measured phases of the segment DPLLs. his improves
the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. he
absolute distance between the spacecrats is also measured to enable Time-Delay
Interferometry (TDI) in post-processing. his is done by sending a Pseudo Random
Noise (PRN) code via the laser link to a distant spacecrat, where it is correlated
with a local copy of the same PRN code to determine the travel distance from the
measured delay. Since only one of the three LISA spacecrats has a radio link to
earth, data has to be transferred between the three spacecrats. his functionality
is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN
code. In the course of this thesis, all the necessary auxiliary functions will be
developed, thoroughly described and measured.
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Zusammenfassung

Die Laser Interferometer Space Antenna (LISA) ist ein geplanter Gravitation-
swellendetektor, der im Weltraum stationiert werden soll. Sie besteht aus drei
Satelliten, die Long Range Interferometry (LRI) nutzen um relative Abstandsmn-
derungen zwischen ihnen zu messen. Eine wichtige Komponente von LISA ist das
LISA Metrology System (LMS), welches für die Abstandsmessungen sowie diverse
Hilfsfunktionen zustmndig ist: Die Beatnote Acquisition ermöglicht dem LMS sich
auf eine eingehende Beatnote unbekannter Frequenz und Amplitude zu locken.
Sie misst beides mit einer Fast Fourier Transform (FFT) und kontrolliert damit die
Startfrequenz und Gains der Digital Phase Locked Loops (DPLLs). Der Laser Lock
Algorithmus wird benutzt um die Frequenz eines Lasers auf die eines anderen
zu stabilisieren. Dies wird erreicht indem der Frequenzunterschied beider Laser
konstant gehalten wird, wodurch Heterodyninterferometrie ermöglicht wird. Die
Amplitude des Eingangssignals variiert stark im Laufe der Zeit. Um dem entge-
genzuwirken folgt der Automatic Gain Control (AGC) der Amplitude und passt
die Gains der DPLLs laufend an. In LISA wird die Richtung der Laserstrahlen mit
Hilfe eines weiterentwickelten Diferential Wavefront Sensing (DWS) Schemas
gemessen, das die diferentiellen Phasen zwischen den Segmenten der Quadrant
Photo Diode (QPD) direkt misst. Dies verbessert die Carrier to Noise Density
Ratio (CNR) in den DPLLs um einen Faktor . Der absolute Abstand zwischen den
Satelliten wird ebenfalls gemessen um im Postprocessing Time-Delay Interferom-
etry (TDI) zu ermöglichen. Dies wird erreicht indem ein Pseudo Random Noise
(PRN) Code über die Laserverbindung zu einem entfernten Satelliten geschickt
wird, wo er mit einer lokalen Version davon korreliert und so die Entfernung
aus der gemessenen Verzögerung berechnet wird. Da nur einer der drei LISA
Satelliten eine Funkverbindung zur Erde hat, müssen die Daten zwischen den
Satelliten transferiert werden. Diese Funktionalitmt ist Teil der Delay Locked
Loop (DLL), indem die Daten auf den PRN Code aufmoduliert werden. Im Laufe
dieser Doktorarbeit werden alle nötigen Hilfsfunktionen entwickelt, vollstmndig
vorgestellt und vermessen.

Schlagworte: Interferometrie, Messtechnik, Hilfsfunktionen
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Chapter

Introduction

. Gravitational Waves

More than a hundred years ago, Albert Einstein developed his General heory of
Relativity[ ]. his theory extends Newton’s laws of gravitation[ ] to incorporate
the efects of high velocities and strong gravitational ields. According to this
theory, mater and energy bend the fabric of space-time itself, which in turn tells
the contained mater how to move. Among other efects, the theory predicted
the existence of so-called gravitational waves[ ]. hese waves are small ripples
in space-time, which are generated by systems with accelerated and spherically
asymmetric motion. Two objects orbiting each other is an example of such a
system.

Just like electromagnetic waves, gravitational waves carry energy, although
this energy has a much smaller impact on the visible mater. his makes it very
hard to measure them. Even Einstein believed that a direct measurement could
probably never be achieved. Despite this, gravitational waves have inally been
measured directly at the Laser Interferometer Gravitational Wave Observatory
(LIGO) in September in the USA[ ], origination from the collision and merger
of two massive black holes.

. Gravitational Wave Detectors

LIGO is one of several gravitational wave detectors currently in operation on
Earth. Others include Virgo[ ] in Italy and GEO [ ] in Germany. All those
gravitational wave detectors operate using the same basic principles of Long
Range Interferometry (LRI). A coherent light beam is generated by a Laser and
split into two beams using a half-transparent mirror, a so-called beam-spliter.
Both beams travel orthogonally to each other to a distant mirror in each arm,



. I

where they are relected back to the beam-spliter mentioned above. he distance
that both beams travel is the so-called arm length of the detector. At the beam-
spliter, both beams are superimposed and generate constructive or destructive
interference, depending on the phase diference between both beams.

If both beams travelled the same distance, this phase diference would be
zero. When a gravitational wave hits the detector, the space-time will be slightly
stretched or compressed in one direction with the opposite efect in the other
direction. his leads to the beams travelling diferent distances and therefore
having diferent phases at the beam-spliter. he emerging interference patern is
measured with a photodiode and converted into an electrical signal. For small
phase diferences, this electrical signal is proportional to the phase diference of
both beams. his measurement method is called homodyne interferometry.

he signals generated by a gravitational wave have usually varying frequen-
cies ranging from the mHz range up to the kHz range[7]. Depending on the
construction and other environmental factors, gravitational wave detector are
limited to a particular range of frequencies. his is known as the bandwidth of
the gravitational wave detector.

. Laser Interferometer Space Antenna

he ground-based gravitational wave detectors are severely limited in bandwidth.
At the lower end of their frequency spectrum, they are limited by environmental
noise such as gravity gradient noise and seismic noise[8]. hat means that they
are only able to measure gravitational waves of high frequencies in the range of

Hz to kHz.
To be able to measure gravitational waves of lower frequencies, a gravitational

wave detector needs to be positioned far away from the disturbances of Earth, i.e.
in space. Such a gravitational wave detector in space, the Laser Interferometer
Space Antenna (LISA), is currently being developed[9] and its launch is planned
for . LISA will consist of three instead of two interferometer arms, forming
an equilateral triangle with an edge length of . Gm. LISA will be able to measure
gravitational waves of low frequencies in the range from . mHz to Hz.

In contrast to the gravitational wave detectors on Earth, LISA will not use
the traditional homodyne interferometry mentioned above. Instead, LISA will be
using heterodyne interferometry. In contrast to homodyne interferometry, where
two beams that have been split of a single Laser beam interfere, in heterodyne
interferometry two beams originating from two separate Lasers interfere. he
lasers have diferent frequencies, and the frequency diference between them
is held constant. hus they generate a sinusoidal signal on the photodiode, the
so-called beatnote. he phase diference information is embedded in the phase of



. LISA M y Sy

this beatnote.

. LISA Metrology System

In comparison to homodyne interferometry, heterodyne interferometry requires
substantial more complex measurement electronics to extract the phase signal
out of the beatnote. In the case of LISA, this measurement electronics is called the
LISAMetrology System (LMS). A prototype of the LMS has been jointly developed
by the Albert Einstein Institute (Max Planck Institute for Gravitational Physics)
in Hannover, the National Space Institute (Technical University of Denmark) as
well as Axcon ApS (he FPGA Power House) in Denmark.

he core functionality of the LMS is digital. It uses Analogue to Digital
Converters (ADCs), which are converting the analogue signal from the photodi-
odes into a digital signal. Furthermore, it consists of 8 Field Programmable Gate
Arrays (FPGAs) which are used to process these digital signals. he results can
either be transferred to a Personal Computer (PC) or be converted back to an
analogue signal using four Digital to Analog Converters (DACs).

he primary function of the LMS consists of measuring the relative phase of
an electronic sinusoidal signal as accurately as possible. his phase measurement
is done using a so-called Digital Phase Locked Loop (DPLL), which takes the
beatnote as its input and outputs its frequency as well as its amplitude and
relative phase. herefore it is also called a phase meter, albeit it has a large
number of auxiliary functions[ ].

. Auxiliary Functions Outline

his thesis will discuss the auxiliary functions of the LMS.

. . Beatnote acquisition

For the DPLL to function correctly, it needs three additional parameters: An ap-
proximate value of the beatnote frequency as well as loop gain parameters, which
depend on the amplitude of the beatnote. In Chapter , a beatnote acquisition
system will be developed, which is used to determine these three parameters from
the beatnote. his is done using a Fast Fourier Transform (FFT), which will be
explained in more detail.
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. . Automatic gain control

When the beatnote signal changes its amplitude, the gain parameters of the DPLL
have to be adapted to ensure continued functionality of the DPLL. In Chapter ,
an Automatic Gain Control (AGC) system will be developed, which continuously
updates the gain parameters without using the FFT from Chapter .

. . Laser Locking

As explained earlier, in contrast to homodyne interferometry, heterodyne inter-
ferometry requires two lasers to be kept at a speciic diference frequency. In
Chapter , a Laser locking system will be developed, that continuously measures
the beatnote frequency between two lasers and changes the frequency of one of
the two lasers if the measured frequency deviates from the speciied target.

. . Diferential Wavefront Sensing

In an interferometer, the two interfering beams are usually not perfectly parallel
to each other due to misalignment of the optical components of the interferometer
or the spacecrat. his leads to diferent relative phases on diferent parts on
the photodiode. herefore these diferent phased need to be measured to allow
correction of the alignment. In Chapter an eicient system to measure these
phase diferences will be developed. It is called Diferential Wavefront Sensing
(DWS).

. . Ranging

In the case of LISA, the absolute distance between the spacecrat also needs to be
measured. his data is required during post-processing to eliminate Laser noise.
In Chapter 7 a ranging system to measure absolute distance using heterodyne
interferometry is developed. his used a so-called Delay Locked Loop (DLL),
which can also be used to transfer measurement data between the spacecrats.

In the following chapters, each of these auxiliary functions will be developed,
its purpose explained, and its performance measured.



Chapter

LISA Metrology System

he LMS is an essential component of the LISA mission. Among other things, it
is responsible for scientiic measurements, laser control and data transfer. he
primary function is the precise phase measurement of various heterodyne signals,
including the main beatnote, sidebands and the pilot tone. In this chapter, the
basic structure of the current prototype of the LMS will be presented. It is also
called Elegant Bread Board (EBB) and can be seen in Figure . . It is used as the
primary hardware platform for all technologies that are developed in this thesis.
he functions of its key components will be explained in the following sections.
More information about the EBB can be found at [ ].

Figure . : he EBB is the current prototype of the LMS on the LISA spacecrat.



. LISA M y Sy

. Overview

A schematic representation of the EBB can be seen in Figure . . It consists of the
following building blocks:

• Mainboard

• Bridge module

• Clock module

• Five ADC modules

• DAC module

• FFT module

• Micro controller module

he presented modules will be described in more detail in the following sections.

Personal
Computer

Micro
controller

Bridge

Clock
module

FFT
modue

ADC
module

ADC
module

DAC
module

ADC
module

ADC
module

ADC
module

Figure . : A schematic representation of the LMS, including the bridge module,
the clock module, ive ADC modules, the DAC module, the FFT module and the
microcontroller. Red arrows are serial GBit interfaces, the blue arrow is a parallel
memory interface, and the green arrow are Ethernet and RS interfaces.

. Mainboard

he mainboard provides the underlying infrastructure, such as power supplies for
digital and analogue circuits as well as digital interconnects. Most interconnects
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are realised as serial GBit links, which are marked with red arrows in Figure . .
hey have a maximum bandwidth of . Gbit s− . he interconnect between the
microcontroller and the bridge is a bit parallel memory interface, marked
with a blue arrow. External interfaces are BASE-T Ethernet and RS ,
both provided by the microcontroller, marked with a green arrow. Scientiic
measurement data is read out through the Ethernet port, which is also used to
control the LMS by seting various parameters. he RS port is used primarily
for debugging and reprogramming purposes of the microcontroller.

he FFT module and the bridge module are soldered onto the mainboard. All
other modules have the form of Add-In cards and can be replaced when deemed
necessary.

. Micro controller

he microcontroller module used in the EBB is the Embedded Artists’ LPC ,
which is built around the NXP LPC microcontroller. Among other things, it
features a fast bit ARM core with an Floating Point Unit (FPU), MB Random
Access Memory (RAM), 8MB Flash storage as well as a BASE-T Ethernet
transceiver and an external bit parallel memory bus.

he primary task of the microcontroller is to ilter the measurement data
using loating-point arithmetic and transmit them to a PC via Ethernet. Other
responsibilities include the control of various functions of the EBB autonomously,
e.g. the laser lock algorithm which will be explained in Chapter , as well as the
readout of temperature sensors mounted on the mainboard and the modules and
connected via I²C.

. Bridge

he primary function of the bridge is to interface the parallel memory interface
of the microcontroller with the serial GBit interfaces of the other modules. It
collects the measurement data from the ADC, DAC and FFT modules, reformats
them and forwards them to the microcontroller. At the same time, it receives
commands from the microcontroller and sends them to the modules mentioned
above. Another essential function is to forward measurement data from the ADC
modules to the DAC module to build a closed loop used by the laser locking
facility explained in Chapter .

he bridge module consists of a Xilinx Spartan XC SLX7 T FPGA, featuring
eight GBit Transceivers. Seven of those are used to connect to the ADC, DAC
and FFT modules.

7
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. Clock Module

he clock module is used to generate an 8 MHz system clock for the digital
part of the EBB (except the microcontroller, which has its own MHz crystal
oscillator) as well as a highly phase stable 7 MHz pilot tone for jiter correction
in post-processing. Both clocks are generated from a . GHz clock, which is
divided by 30 and 32 to produce the system clock and the pilot tone, respectively.
More information about the clock module can be found in [ ].

. DAC Module

he DAC module is used to convert digital signals back to analogue signals. It
consists of four Texas Instruments DAC 7 A DACs with an appropriate analogue
back end as well as a Xilinx Spartan XC SLX7 T FPGA connected to them. he
DAC is mainly used to control a laser with the laser lock explained in Chapter .
It is also part of the ranging system, which is explained in Chapter 7.

. FFT Module

he FFT module is solely used by the beatnote acquisition system described in
Chapter . It is connected to two of the ive ADC modules and is used to get a
rough estimate of the frequency and amplitude of the heterodyne signals. As the
name suggests, this is done using the FFT algorithm, which will be explained
in greater detail in the chapter mentioned above. he FFT module consists of a
Xilinx Spartan XC SLX T FPGA, which is the largest variant in the Xilinx
Spartan series of FPGAs to provide enough space for the resource-hungry FFTs.

.8 ADC Modules

he ADC module consists of the four-channel ADC Texas Instruments ADS
with an appropriate analogue front end as well as the Xilinx Spartan XC SLX7 T
FPGA connected to it. On the FPGA several Digital Signal Processing (DSP)
algorithms are being run. Its primary function is the measurement of the phase
and frequency of the heterodyne signals mentioned above. Several DPLLs are used
for this purpose, which is described in more detail in Subsection .8. . Another
function is ranging, which is explained in Chapter 7.

8
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.8. Digital Phase Locked Loop

A schematic representation of a standard DPLL can be seen in Figure . . It mainly
consists of the following parts:

• Phase detector

• Low pass ilter

• loop controller

• Start frequency adder

• Phase accumulator

• Sine/Cosine Look-Up Table (LUT)

he phase detector consists of a multiplier, which multiplies a cosine by the
input signal. It produces a signal consisting of the sum and the diference of the
frequencies of the input signal and the cosine. his signal is low-pass iltered to
remove the sum frequency component. he resulting output is called the value
and describes the phase diference between the cosine and the input signal. If the
input signal and the cosine have a phase diference of 2�4 , the value is zero.

herefore the value is used as an error signal and is fed into the loop
controller, which calculates the so-called actuator signal. he loop controller is a
Proportional-Integral (PI) controller with adjustable gains P and I in this case.
A starting frequency �start which must be near the actual heterodyne frequency
is added to the actuator signal, and the result �out is fed into an Numerically
Controlled Oscillator (NCO).

An NCO consists of a Phase Accumulator (PA), which integrates the input
frequency to a phase �. his phase is then converted to a sine or cosine signal
using a LUT, which assigns a sine and cosine value to every possible phase value.
his NCO generates the cosine mentioned above, which is multiplied by the input
signal.

By controlling the actuator signal and thereby the NCO, the PI controller tries
to minimise the error signal in such a way that the phase of the cosine tracks the
phase of the input signal with a phase diference of 2�4 .

Typically, a sine is also generated by the NCO and multiplied with the input
signal in a separate signal chain. When the DPLL is locked, this sine is in-phase
with the input signal and can be used to obtain its amplitude (also called the
value) when multiplied. However, this part has been let out from the schematic
for the sake of simplicity. It is not essential for the proper function of the DPLL,
but will be useful for the AGC algorithm in Chapter .

More information about the DPLL can be fount in [ ].

9
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Input PI
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clock
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�

Figure . : A standard DPLL without the I part, showing the phase detector, loop
controller (PI), the starting frequency �start, the phase accumulator (PA) and the
look-up table (LUT).



Chapter

Beatnote Acquisition

he beatnote acquisition functionality of the LMS is used to ind the frequency
and amplitude of an unknown beatnote signal. he frequency is used as a starting
frequency for the DPLLs in the phase measurement system, and the amplitude is
used to determine the correct gains used in the DPLLs. he DPLL is described in
greater detail in the PhD thesis of Oliver Gerberding[ ].

To detect the frequency and amplitude of an unknown beatnote signal, it is
transformed into its frequency spectrum. In this form, the beatnote frequency
peak should stand out from the surrounding noise and can easily be detected. Its
height denotes the amplitude of the beatnote signal. he decomposition into a
frequency spectrum is performed by an accelerated discrete version of a Fourier
Transform (FT)[ ], which is called FFT and is described in the next subsection.

he FFT constitutes the heart of the beatnote acquisition system, alongside
a simple peak inding algorithm, a gain calculation algorithm and some miscel-
laneous helper functionality. An essential feature of the beatnote acquisition
system is also the ability to exclude speciic frequencies from detection. hese
include multiples of MHz, which are commonly found in a lab environment,
due to its frequent use as reference frequency in electronic equipment, as well as
its harmonics. his frequency exclusion feature is implemented inside the peak
inding algorithm mentioned above, which will be described in more detail later.

. Fast Fourier Transform

he FFT is a high-speed algorithm that is used to calculate the frequency spectrum
of an equidistantly sampled digitised signal. Even though the ADC samples are
real numbers, the FFT input has the form of complex numbers representing the
discrete amplitudes in the time domain. hese numbers are transformed in such
a way that the result also yields complex numbers but representing discrete
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amplitudes in the frequency domain. herefore such an FFT is also called point
FFT.

Its most popular variant has been developed by James Cooley and John W.
Tukey in 9 [ ] and will be used throughout the thesis. his particular algo-
rithm has been chosen, because it is very fast, relatively easy to implement and
straightforward to parallelise, which is a huge beneit in an FPGA based phase
meter.

here are many variants of the FFT[ ][ ][ 7]. Most of them are tailored
towards a speciic , being very eicient at that . However, the exact is not
very important and should be changeable in any case. Hence, we will concentrate
on the fundamental FFT algorithm in the following.

he LMS does not need a particular high because the DPLL will also lock,
if the starting frequency is a few kHz away from the actual signal frequency.
herefore, an = 1024 has been chosen in this thesis. his results in a frequency
resolution of 78. kHz at a sampling rate of 8 MHz. his will be explained in
greater detail, later.

. . heory of Operation

he FFT algorithm works by recursively dividing the processing of the input
data points into smaller FFTs. In each step, the number of points to be computed
gets divided into two as equally sized parts as possible. In each of the smaller
FFTs, this process is repeated until the number of points in an FFT is a small prime
number.

he FFT algorithm from James Cooley and John W. Tukey only works for
the prime number 2, which means that has to be an integer power of 2. his
prime number is also called the radix of the FFT, and the described particular FFT
algorithm is therefore also called a radix-2 FFT. Other FFT algorithms work for
diferent radices, but they are not as simple to implement and do not have any
signiicant advantages over the radix-2 FFT.

he inal 2 point FFTs are simple 2 point Discrete Fourier Transforms (DFTs)
and are called buterlies in the context of FFTs. An FFT of the length consists
of

b = 2 log2 ( ) ( . )

such buterlies and therefore has a complexity of �( log2 ). As a comparison, a
DFT that directly implements its deining formula has a complexity of �( 2)[ 8],
which is much worse.

Each buterly takes two complex numbers 1 and 2 as input and has two
complex numbers 1 and 2 as output, as shown in Figure . . he buterly also
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is associated with an additional parameter � that depends on the position of the
buterly in the FFT. It will be explained later.

1 1
2 2−� +

Figure . : Schematic of a buterly. 1 and 2 are the input numbers of the
buterly and 1 and 2 are the output numbers. � is the exponent of the twiddle
factor.

A buterly looks as follows:

1(�) = 1 + �
� 2

2(�) = 1 − �
� 2 , ( . )

with

� = e− 2�i . ( . )

� is the so-called twiddle-factor. his factor only depends on the size of the FFT.
he computation of an 8 point FFT is exemplarily shown in Figure . .
On the let, the time-dependent input values 0 to 7 are shown. hey are

arranged in bit reversed order. his is done by reversing the binary representations
of the input ordinal numbers. For example in an 8 point FFT, the ordinal numbers
range from 0 to 7 and can be represented using three bits. To calculate the input
number required, e.g. at the third input of the FFT, irst, the binary representation
of 3 has to be writen down: 011. hen the numbers are reversed leading to 110,
which represents the number 6. herefore the third input of the FFT expects the
sixth input number.

he input values traverse through several stages of the FFT that are marked
by red rectangles. Each stage is further divided into one or more buterly groups,
marked by blue rectangles, and every group of buterlies consists of one or
more buterlies, represented by a cross. As can be seen, an 8 point FFT consists
of 12 buterlies in accordance with Equation . . On the right side, frequency
dependent output values 0 to 7 are shown. hey are in ascending order.

he whole point FFT is divided into

s = log2 ( . )

stages. hese stages are further divided into

gs = 2 +1 ( . )
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Figure . : Schematic of an 8 point FFT. Each cross represents one buterly. Each
blue rectangle is one group, and each red rectangle is one stage. Labelled in green
are exponents � of the twiddle factors.

groups of buterlies, where is the stage number, beginning at = 0. Each stage
consists of

bs = b

s
= 2 ( . )

buterlies. herefore, each group consists of

bg = bs

gs
= 2 ( .7)

buterlies.
Using these numbers, we can inally calculate the exponent of the twiddle-

factor: � = 2 bg
, ( .8)

where is the buterly number in its group, beginning at = 0. E.g. for the
second buterly in a group of four buterlies, = 1 and bg = 4. With = 8,
this results in � = 1. In Figure . , the parameter � is marked in green.
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In contrast to an FT, the DFT and FFT are not computing an integral due to its
discrete nature. herefore, the input and output units are the same. In case of a
signal from an AGC, this would be volts. he output of the FFT is not multiplied
by any additional normalising factors.

. Real value Input Data

In our case, the input to the FFT is the Alternating Current (AC) from a photodiode
that is digitised by the ADCs, as described in Section . , and is completely real
data. herefore, only a real data FFT would be needed, but the FFT algorithm is
intrinsically an algorithm dealing with complex numbers. To solve this problem,
two approaches have been tried. hey will be discussed in the following.

. . Padding the Input

As a irst approach, the imaginary part of the input data was padded with zeros.
However, the output data � still consists of complex numbers. hey are in this
case symmetrical around the Nyquist-Frequency[ 9]

�ny = �s2 , ( .9)

where �s is the sampling frequency of the FFT. herefore,

−� = � , ( . )

with being the number of input data points and � the number of an arbitrary
data point.

his symmetry shows that a real FFT does not have more independent output
data points than input data points. herefore the number of resulting frequency
bins is

fb = 2 . ( . )

However, the more important frequency resolution �� is not afected by this
condition, because it only depends on the number of input values and not on the
number frequency bins. he frequency resolution describes the distance between
two frequency bins in an FFT and can be calculated as

�� = �s . ( . )

For example, an FFT with = 1024 points and an input signal with a sampling
frequency of �s = 80MHz results in a frequency resolution of

�� = 80MHz1024 = 78.125 kHz . ( . )
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For fb = 512 frequency bins, the available frequency bins are numbered from 0
to Nfb−1 = 511. herefore the frequencies range from

�0 = 0�� = 0Hz ( . )

to �Nfb−1 = �511 = 511�� = 39.921 875MHz . ( . )

To get a real spectrum from an FFT, the absolute value of its complex output
has to be obtained by multiplying it by its complex conjugate and then taking
the square root. his, however, has the side efect of the phase information loss
of the input signal, since there are now less real output numbers than real input
numbers ( instead of ). Fortunately, the phase information is not relevant
for the beatnote acquisition.

. . Increasing Eiciency

he process mentioned above is not very eicient since only half of the input
data of the FFT gets illed with the input signal, and the other half of the FFT
stays unused. Fortunately, there are ways to optimise this misuse of precious
computational resources.

One approach is to exploit the symmetry in Equation . . Additionally, there
is another symmetry when an FFT has purely imaginary input data:

−� = − � . ( . )

Using both symmetries, either an point FFT can be used to compute the

spectrum of two sets of real data points or an 2 point FFT can be used to
compute the spectrum of real data points[ ].

Computing two separate real FFTs with a single complex FFT can result in
cross-talk between both real FFTs if the computations are carried out with limited
precision, as it is the case on an FPGA. he ADC signal is represented in two’s
complement format with, in the case of the LMS, a bit-width of bit. his
ixed bit-width limits accuracy, since arithmetic operations such as addition
and multiplication produce numbers with greater bit-widths, which must be
shortened before further processing can happen. E.g., the multiplication of two
numbers of the length results in a number of length 2 . Trimming this number
back two a length of bits for further processing results in an information loss of

%. Having said that, two 2 point FFTs require more logic space than a single
point FFT, because of the additional surrounding logic that is part of every FFT.

Since for the beatnote acquisition we are only interested in the rough ampli-
tude of a signal, there is no need for high precision spectra. Also, the FPGA logic
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space is limited, and there is more than one ADC anyway. herefore, the irst
method, where an point FFT is used to compute the spectrum of two sets of
real data points, will be used in the following.

he irst set of real data points are illed into the real part of the FFT input,
and the second set of real data points are illed into the imaginary part of the
same FFT input. hen a standard FFT is computed. Extracting the two separate
results from the output of the FFT requires some more computation:

a = 12 + −
b = − i2 − − , ( . 7)

where ∈ ℕ+, � < 2 , is the original output from the FFT and and
are the extracted results for the irst ( a) and second ( b) real FFT.

Since the FPGA does not know about imaginary numbers and the results get
squared in a later step, the factor −i in the calculation of b can be omited to
reduce the required computational resources. Finally, the same steps as described
in Section . . can be executed to obtain a real spectrum.

Note that the Direct Current (DC) part cannot be obtained using this method.
According to Equation . 7, the computation of a0 and b0 would require the
output value which does not exist, because there are only output values.
Fortunately, the DC part is not relevant for the beatnote acquisition.

. Implementation

he FFT was writen in Very high speed integrated circuit Hardware Description
Language (VHDL) and features synthesis-time coniguration of the bit-widths of
its inputs and the number of frequency bins. It consists of three basic parts:

• One buterly

• dual-port memory blocks

• control logic

he FFT reaches a duty cycle of approximately %. hat means, assuming the
input data is sampled with the same frequency that the FFT is clocked with, the
FFT can compute spectra of roughly half of the input data if it runs continuously.
his is more than enough for beatnote acquisition since it will only run at a
frequency of a few Hertz.

Ater the processing by the FFT, the absolute value of the output signal is
calculated. In this case, however, the square root is omited, and the output is only

7
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multiplied by its complex conjugate. he reason is that the square root cannot
be easily implemented on an FPGA. Since the amplitude from the FFT is now
the square of the real amplitude, this has to be considered in the gain calculation
algorithm, which will be described in Section . .

he result of the FFT is inally transferred to the peak inding algorithm, which
will be described in Section . and then to the gain calculation algorithm.

he whole implementation will be presented in full detail in this section.

. . he Butterly

As stated in the previous section, an point FFT consists of = 2 log2 ( )
buterlies. he required powers of the twiddle factors from Equation . are
calculated at synthesis-time for a given since they do not depend on the input
data. hey are loaded into a RAM at the initialisation-time of the FPGA.

Equation . contains two complex multiplications (�� 2) as well as two com-
plex additions. Since both complex multiplications are the same multiplication,
its result can be reused and only counts as a single multiplication. his results in
a total of one complex multiplication and two complex additions.

Since the FPGA can only perform real calculations, Equation . had to be
divided into real and imaginary parts:

ℜ 1 = ℜ 1 + ℜ�
�ℜ 2 − ℑ�

�ℑ 2ℑ 1 = ℑ 1 + ℑ�
�ℜ 2 + ℜ�

�ℑ 2ℜ 2 = ℜ 1 − ℜ�
�ℜ 2 − ℑ�

�ℑ 2
ℑ 2 = ℑ 1 − ℑ�

�ℜ 2 + ℜ�
�ℑ 2 . ( . 8)

Ignoring redundant calculations, this contains four real multiplications and six
real additions:

rtrx = ℜ�
�ℜ 2

itix = ℑ�
�ℑ 2

rtix = ℜ�
�ℑ 2

itrx = ℑ�
�ℜ 2�1 = rtrx − itix�2 = rtix + itrxℜ 1 = ℜ 1 + �1ℑ 1 = ℑ 1 + �2ℜ 2 = ℜ 1 − �1

8
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ℑ 2 = ℑ 1 − �2 , ( . 9)

where rxtx, itix, rtix, itrx, �1 and �2 are temporary variables.
Figure . gives a schematic overview of how such a buterly is implemented

in an FPGA.

ℑ�
� ℜ�

� ℑ 2 ℜ 2 ℑ 1 ℜ 1

- -

-

ℑ 2 ℜ 2 ℑ 1 ℜ 1

Figure . : Schematic of a buterly implementation in an FPGA. Red is a complex
multiplier, green is a complex subtractor, and blue is a complex adder

he red box shows how a complex multiplication is implemented using real
multipliers and real adders. he green and the blue boxes show the implementa-
tion of complex addition and subtraction using real adders and subtractors.

According to Equation . , an FFT with = 1024 data points would consist
of b = 5120 buterlies and would therefore need 20480 real multiplications and30720 real additions. Unfortunately, this is way out of the capabilities of any
modern FPGA . herefore, our FFT implementation only uses a single buterly
which is geting reused in every computation step. he VHDL source of the
buterly implementation can be found in Section B. . .

. . Dual7port Memory Blocks

Another vital part of an FFT implementation is the memory arrangement. here
are two diferent variants of how the memory can be arranged in an FFT imple-
mentation. Both have in common that dual-port RAM blocks are used. Dual-port

E.g. a Xilinx Virtex- has only up to multipliers and adders[ ]

9
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memory is commonly used in Video Memory (VRAM)[ ] and register iles. It
has the advantage that any two memory cells can be read or writen to at the
same time, as opposed to single-port RAM, which only allows a single read or
write operation at a time. his is useful since every buterly operation always
works on two numbers ( 1 and 2) at the same time. herefore, these numbers
can be retrieved from and stored in the dual-port memory in a single step, thus
saving time as well as complexity in the control logic.

In the irst variant, one dual-port RAM block is used for the input numbers.
Each time a buterly is computed both input numbers are read simultaneously
from the dual-port RAM block. he buterly processes them and writes the, back
to the same memory locations. A schematic overview of this variant can be seen
in Figure . a.

In the second variant, two dual-port RAM blocks are used, with one of them
holding the initial values of the input numbers. Each time a buterly is computed,
both input numbers are read from one dual-port RAM block. he buterly pro-
cesses them, and the result is stored in the other dual-port RAM block. Ater each
stage, the dual-port RAM blocks are exchanged by the control logic. A schematic
overview of this variant can be seen in Figure . b.
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(a) FFT implementation with only one dual-
port RAM block. In each stage the numbers
are read from the dual-port RAM block,
processed by a buterly and stored in the
same dual-port RAM block.
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(b) FFT implementation with two dual-port
memories. In each stage, the numbers are
read from one dual-port RAM block, pro-
cessed by the buterly and stored in the
other dual-port RAM block. hen both
dual-port RAM blocks are exchanged.

Figure . : Common memory arrangements in FFT implementations

he second variant is faster than the irst variant but comes at the cost of
twice the memory usage and more complex logic. here are also variants, where
only a single-port memory is used, but this is slower since the input numbers
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have to be read out sequentially. he later setup requires even more complex
logic and takes much longer.

he single dual-port memory arrangement has been chosen in this implemen-
tation to keep space requirements for the FPGA low. he availability of dual-port
memory on modern FPGAs was very beneicial to the speed of our FFT imple-
mentation.

Memory usage

his particular FFT implementation has been writen to be used on the LMS.
herefore it accepts input signals with a width of = 14 bit, which is the resolution
of the used ADCs. he number of samples can be conigured at synthesis time. In
the lab, it has been found to be suicient to use = 1024 samples. his results in
a block RAM usage of ×2× = 28 kbit per FFT for sample storage. Additionally,

Read Only Memory (ROM) for the storage of 2 complex twiddle-factors is needed,

which equates to 2 × 2 × = 14 kbit. Since the FPGA uses block RAM to store
large amounts of ROM data, this leads to a total of kbit of block RAM per FFT.
Since one FFT can be used to process two real ADC channels, this amounts to

kbit of block RAM per ADC channel. As a comparison, the proprietary FFT
core from Xilinx uses kbit of block RAM per FFT or 7 kbit of block RAM per
channel. his is slightly more, but in return the proprietary FFT features a %
duty cycle.

. . Control Logic

he operation of the FFT is controlled by an Finite State Machine (FSM) together
with a bin counter and a buterly counter. he bin counter is used when reading
new input data or writing the result. It counts from zero to − 1 and stores
input values in the dual-port RAM block and reads output values from the dual-
port RAM block, while the buterly counter is used to coordinate the buterly
computations. It counts from zero to b − 1 and sets the memory addresses for 1,
2, 1 and 2 as well as the � parameter of the buterly according to the current

buterly number. he inite state machine consists of six states. A schematic
overview of the state machine can be seen in Figure . .

he initial state is the idle state, in which the FFT resides when the reset signal
to the FFT is low . Once the reset signal rises, the state machine changes into the
Input state. In this state, data is read from the input port of the FFT and saved
in the dual-port memory blocks. he bin counter counts each input number to

he reset signal is always active low. hat means it is active when it is low (logical zero), and
it is not active when it is high (logical one)
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Figure . : Schematic overview of the FFT inite state machine.

make sure that the correct number of input values are read. Ater the last input
number has been read and saved into its corresponding memory bin, the actual
FFT computation loop starts. his loop consists of three states.

In the irst state, the RAM read state, two complex numbers are read from
the dual-port RAM block and given to the buterly. Ater that, in the Busy state,
the actual buterly computation takes place. his is a separate state because
the computation is somewhat complicated and takes quite some time. he third
state in the computation loop is the RAM write state, in which the result from
the buterly is writen back to the dual-port memory blocks. If this was the
last buterly to compute the inite state machine changes into the Output state,
otherwise it increases the buterly counter and continues the computation cycle.

In the Output state, the results are read from the dual-port RAM blocks and
writen to the output port of the FFT. Again, the bin counter makes sure to output
the correct number of complex numbers. From there on, the FFT restarts at the
Input state to accept the next data set.

he VHDL source of the control logic implementation can be found in Sec-
tion B. . .
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. Peak Finder

he peak inder receives a serial stream of frequency/amplitude pairs and outputs
the frequency/amplitude pair with the highest amplitude. It also evaluates the
user-deined list of ignored frequencies.

he peak inder irst initialises an internal frequency/amplitude pair with 0/0.
It replaces this frequency/amplitude pair with a new pair, whenever the ampli-
tude of the new pair is higher than the amplitude of the existing pair and if the
frequency is not on the list of ignored frequencies. he internal frequency/ampli-
tude pair is reset, whenever a frequency/amplitude pair with a frequency value
of 0 arrives, and thus a new spectrum begins.

he frequency/amplitude pair with the highest amplitude found so far is
output and can be used as the starting frequency and for the gain calculation for
a DPLL later.

he VHDL source of the peak inder implementation can be found in Sec-
tion B. . .

. Gain Calculation

To understand the gain calculation algorithm, the inluence of gains on the func-
tion of a DPLL must be understood. A linear model will be presented to provide
a basic understanding of the relationship between amplitude and gain. To get
absolute values for the gain, a proper non-linear low-level simulation will be
performed.

. . Linear Model

A general linear model of a DPLL looks as follows:[ ]

( ) = �2⏟
PD

2⏟
PG

(2 ′
P −1 + 2 ′

I
−1

1 − −1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
PI

2� −1
1 − −1⏟⏟⏟⏟⏟⏟⏟

NCO

1 + −1 + −2 + −3
4⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
LPF

, ( . )

where PD is the transfer function of the phase detector, with � being the ampli-
tude of the incoming signal. PG is a pre-gain that is applied just before the PI
controller. PI is the transfer function of the PI controller, with ′

P and ′
I being

the gains of the PI controller itself. NCO is the transfer function of the NCO.

LPF is the transfer function of the low pass ilter, which computes the moving
average of the last four values.
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he pre-gain 2 can be factored into the gains of the PI controller, which
leaves us with the following linear model:

( ) = �2 (2 P −1 + 2 I
−1

1 − −1) 2� −1
1 − −1 1 +

−1 + −2 + −3
4 , ( . )

consisting only of the amplitude � of the signal as well as the gains P and I
for the PI controller.

From Equation . one can already see how the amplitude inluences the
gains. When the amplitude halves both gains have to increase by one and when
the amplitude doubles, both gains have to decrease by one to keep the loop output
the same.

Since according to Section . , the amplitude signal coming from the FFT is
already squared, the square root has to be taken before this signal can be used in
the gain calculation.

With Pf being the P gain for the maximum amplitude, If being the I gain
for the maximum amplitude, �S being the squared amplitude from the FFT, the
corresponding P and I gains can be calculated as follows:

P = Pf+ log2 ( 1
√�S

)

I = If+ log2 ( 1
√�S

) , ( . )

assuming that �s < 1 and 0 ≤ �S.
To identify proper values for Pf and If, a closer look at the linear model

has to be taken. Since the inluence of relative amplitude changes on the gains is
already known, an amplitude of �S = 1 will be assumed in the following.

To examine the loop stability, the Nyquist stability criterion will be used[ ].
herefore, the phase margin at the unity gain frequency has to be determined.
For a control loop to be stable, the phase margin should be as large as possible.

Figure . shows the phase margin for a range of diferent P and I gains.
he darker areas are areas of higher phase margins. here seems to be a triangular
area, where the phase margin is particularly large. It is safe to assume that all
values of P and I outside of this triangle will lead to an unstable phase locked
loop.

. . Low Level Simulation

Since a real DPLL is not entirely linear, a P and I gain resulting in a large phase
margin in the linear model is not a suicient criterion for loop stability. herefore
further investigation with a low-level simulation has been performed.
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Figure . : Phase margin of a DPLL respect to P and I gains. he darker an
area, the greater the phase margin.

he simulation has been writen in C++ and can be found in Appendix A. . . It
consists of a DPLL that is locked to an NCO. he NCO outputs a sinusoidal signal,
whose frequency slowly changes over time. he simulation has been performed
multiple times with diferent P and I gains and the output of the phase locked
loop has been measured. he result can be seen in Figure .7.

Compared to the analysis of the phase margin of the linear model in the
previous section, the region where a stable operation is possible is diferent.
his is because of numerous non-linear efects in a low-level simulation that are
not respected in the linear model. he examination of these non-linear efects is
outside the scope of this thesis.

For a beter comparison, both measurements have been put on top of each
other in Figure .8.

Although the dark areas of both measurements mostly overlap, they are not
quite the same. hat means that non-linear efects play an important role and
should not be neglected in these calculations. he actual gains, where the phase
locked loop runs stable and the phase locked loop has enough phase margin lie
within the dark overlap of both measurements. Good gain values should be taken
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Figure .7: Measurement of the output of a DPLL in a low-level simulation with
diferent P and I gains. he darker, the greater the value (arbitrary units).

from this overlapping area. Choosing greater gains results in a higher bandwidth,
therefore Pf = −4 as well as If = −8 have been chosen. hese gains will be used
in Equation . in the rest of this chapter.

. . Bandwidth and Phase Margin

By inserting the calculated gains from the last section into the Equation . the
corresponding Bode plots can be graphed. Figure .9 shows the amplitude part of
the Bode plot. his can be used to measure the unity gain frequency, at which
the ampliication is precisely dB:

As it can be seen, the unity gain frequency is approximately . MHz. his
also means, that the bandwidth of the DPLL is . MHz, which should be plenty
to follow a free-running Laser. In the presence of plentiful white noise, this
bandwidth might not be enough, but can easily be adjusted if needed. Using this
frequency, we can derive the phase margin from the phase part of the Bode plot.
his can be seen in Figure . .

Examining the plot at the frequency point of . MHz, this leads to a phase
margin of approximately °. According to the Nyquist stability criterion, the
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Figure .8: Overlay of phase margin calculation and low-level simulation. he
overlapping dark area represents the usable gains.

phase margin should be greater than °[ ]. herefore this value should be
suicient for a stable control loop.

Outside a simulation, the real unity gain frequency may be lower due to noise
present in the system, e.g. kHz- Hz.

7
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Figure .9: he amplitude part of the Bode plots of a phase locked loop using the
gains calculated in the previous section.
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gains calculated in the previous section.

9



. B A

. Measurements

To test the beatnote acquisition system, the heterodyne signal of two free-running
Non-Planar Ring Oscillator (NPRO) lasers has been connected to the LMS. A DPLL
has been locked to this beatnote signal using the beatnote acquisition system, with
the FFT running continuously. he experimental set-up can be sen in Figure . .

Master Laser

Slave Laser ADC

FFT and
Peak Finder

Beatnote
Acquisition
Algorithm

PLL PC

Figure . : Schematic overview of the beatnote acquisition measurement set-up.
he red lines denote the path of the laser beam whereas the blue arrows denote
analogue electrical signals and the black arrows denote digital signals.

he resulting amplitude and frequency as measured by the FFT, as well as the
frequency measured by the DPLL can be seen in Figure . . As it can be seen,
the DPLL can successfully lock to the heterodyne frequency and follow it.

More measurements of the beatnote acquisition can be seen in Chapter .
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Figure . : he FFT Amplitude (red line) and the FFT Frequency (blue line) of an
incoming beatnote signal are used to lock a DPLL (green line).
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Chapter

Laser Locking

For the phase measurement of the LMS to work, heterodyne interferometry
is required. Heterodyne interferometry can be accomplished by two diferent
methods. he irst method is using one Laser and an Acoustic-Optic Modulator
(AOM) to create a second laser beam with a slightly diferent frequency[ ].
he second method is using two lasers, which are being adjusted in such a way
that they have a ixed frequency diference. In both cases, both beams can then
interfere with a beam spliter, and the heterodyne frequency can be measured
with a photodiode[ ].

he current baseline for LISA is to use frequency-locked lasers to establish
the heterodyne scheme. Due to varying Doppler shits between the spacecrats,
a frequency plan has been created that provides the laser lock frequencies to
be used at any given time[ ]. Since this cannot be accomplished with the irst
approach, the second method has been chosen to be implemented in the LMS.
Having two lasers at a ixed frequency diference is called a laser lock. How this
laser lock is accomplished will be discussed in the following sections.

. Traditional approach

Traditionally, a laser lock has been achieved using an analogue Phase Locked Loop
(PLL). In this scheme, two free-running lasers are interfered using a beam spliter,
creating a heterodyne signal. his heterodyne signal can then be measured with
a photodiode. It is mixed with a constant reference frequency, which is usually
generated using a signal generator. his generates the sum frequency as well as
the diference frequency of both signals. he sum frequency is iltered out using
a low-pass ilter, and the remaining signal form the error of the PLL. To keep the
phase diference between the heterodyne signal and the reference signal at 2�4 , the
PLL aims to minimise the error signal. he value is processed by a PI controller
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generating a suitable actuator signal to achieve this, which is used to actuate
one of the two free-running lasers to shit its phase to match the phase of the
reference signal. his stabilises the phase of the heterodyne signal at the phase of
the constant reference. A schematic representation can be seen in Figure . .

Master Laser

Slave Laser Reference

PI

Figure . : Schematic overview of an analogue laser lock. he red lines denote
the path of the laser beam whereas the black arrows denote analogue electrical
signals. hee slave laser is controlled by keeping the measured diference phase
at a constant target.

here are two signiicant drawbacks to this approach: Firstly, the frequency
of the laser already has to be very close to the reference frequency, otherwise, the
PLL will not lock. his is very hard to automate in analogue circuitry. Secondly,
the analogue PLL is very prone to cycle slips. hey can happen when the phase
diference between the reference signal and the heterodyne signal is greater than
8 ° or lower than − 8 °. For the PI controller, this looks like a phase diference
of the opposite sign and the phase of the heterodyne signal is shited in the wrong
direction.

herefore this approach is not suitable for LISA. In the following section, a
digital frequency lock will be developed instead. It compares the heterodyne fre-
quency and the reference frequency directly instead of its phases. his eliminates
the issues of the analogue laser lock.
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. Building Blocks

To create a laser lock, the irst step is to interfere two free-running lasers using
a beam spliter. his creates a heterodyne signal, that can then be measured
with a photodiode. he diference frequency of the two lasers must lie within
the bandwidth of the photodiode. Since we are using the entirely digital LMS
to accomplish the laser lock, the heterodyne frequency also has to lie below the
Nyquist frequency of the LMS, which is MHz[ ]. herefore the lasers have
to be tuned to a small frequency diference in the order of MHz. his rough
tuning is done in sotware on a microcontroller, which is explained in further
detail in Section . . Since the frequencies of free-running lasers tend to drit a
lot, the lasers should also have been warmed-up for some time to minimise this
drit and allow for an easier lock acquisition.

he heterodyne frequency will then be digitised by one of the ADCs on the
LMS. Its frequency and amplitude will be determined using the beatnote acqui-
sition algorithm discussed in Chapter . To get a more precise measurement, a
DPLL will be locked to the heterodyne frequency. he rough frequency deter-
mined by the beatnote acquisition algorithm will be used as starting frequency for
the DPLL, and the amplitude will be used to set the corrects gains for the DPLL.

he user has to supply a target frequency diference to which the two lasers
shall be locked. his target frequency is then compared to the measured hetero-
dyne frequency. he result of this comparison is called the error value. his value
is a measure of the deviation of the current heterodyne frequency from the target.

A controller is then used to calculate the so-called actuator value from the
error value. his actuator value is designed in such a way, that the error value
gets minimised. he controller has a second actuator output, whose purpose will
be described later. he implementation of the controller will be described in full
detail in Section . .

Both actuator values will be sent to two DACs, where they are converted back
to analogue signals. hese analogue signals are used to control one of the two
lasers. he laser that is being controlled is called the slave laser, and the laser that
is not being controlled is called the master laser since it is still free running and
the frequency of the slave laser depends on the frequency of the master laser.

he NPRO laser used in the laboratory experiments can be tuned by either
varying the temperature of the laser crystal or by actuating a piezo that slightly
changes the geometry of the laser crystal[ 7]. he irst method is used for a
coarse adjustment of the laser frequency, whereas the second method is used for
ine-tuning the laser frequency[ 8]. Also, the temperature-based actuation has a
bandwidth of under Hz whereas the piezo-based actuation has a bandwidth of
up to kHz. he two actuator signals mentioned above are used to actuate the
slave laser in both ways.
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Ater being actuated the slave laser will change its frequency accordingly.
his leads to a change in the heterodyne frequency of the two lasers. If the con-
troller works correctly, the heterodyne frequency should draw near to the target
frequency. his whole laser locking mechanism forms a closed loop, allowing
the heterodyne frequency to stabilise very close the target frequency. Even if the
frequency of the master laser changes, the slave laser frequency should follow
very fast.

A schematic overview of the whole laser lock can be seen in Figure . .

Master Laser

Slave Laser ADC DPLL

target
frequencyControllerDACs

−

Figure . : Schematic overview of a laser lock. he red lines denote the path of
the laser beam whereas the blue arrows denote analogue electrical signals and
the black arrows denote digital signals. he slave laser is controlled by keeping
the measured diference frequency at a constant target.

As is can be seen, the path of the various optical and electrical signals form a
closed loop. herefore this setup is also called a control loop.

. Laser Lock Controller

he laser lock controller transforms the error signal produced by the subtraction of
the current frequency and the target frequency into two actuator signals tailored
to minimise the error signal.

In control theory, there are four diferent base types of controllers, from which
any other linear time-invariant controller can be constructed[ 9]:

• Bang-Bang controller

• Proportional controller
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• Integral controller

• Derivative controller

In the laser lock controller, only the proportional and the integral controller types
are used. When used together these two are called a PI controller.

he proportional controller works by multiplying its input signal by some
constant factor �P. his factor is also called the gain. he transfer function P( )
of such an proportional controller with the gain �P can be writen as:

P( ) = �P . ( . )

If the gain is �P = 1, the proportional controller does not change the signal. his
situation is called unity gain, since | | = 1.

he integral controller works by irst integrating its input signal over time
and then multiplying the result with a gain �I. he transfer function I( ) of such
an integral controller with the gain �I can be writen as:

I( ) = �I −1
1 − −1 . ( . )

he unity gain frequency of an integral controller is at = �I + 1:
I( ) = �I (�I + 1)−1

1 − (�I + 1)−1
= �I
(�I + 1)(1 − 1�I+1)

= �I(�I + 1) − 1
= �I�I = 1 .

( . )

regardless of the value of �I.
When combining these two controllers to form a PI controller, the transfer

functions are added:

PI( ) = �P + �I −1
1 − −1 . ( . )

hat means that the input signal is fed to both controllers at the same time and
the results of both controllers are added together.

However, in this implementation, an additional delay is added to the propor-
tional controller in such a way that both paths through the PI controller have the

7
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same delay. his is done by multiplying the proportional part t with −1. his
leads to the following equation:

′
PI( ) = �P −1 + �I −1

1 − −1 = �P + �I1 − −1 −1 . ( . )

A schematic overview of a PI controller can be seen in Figure . .

Input −1 �I

Output

�P−1

Figure . : Schematic overview of a PI controller used in the laser lock controller

he laser lock controller uses two PI controllers to generate the two actuator
signals for the piezo input and the temperature input of the slave laser. he irst
PI controller uses the error signal to generate the actuator signal for the piezo
input of the laser. Hence it is also called piezo controller. Since the piezo input
only has a small dynamic range and the temperature input, on the other hand,
has a very wide dynamic range[ 8], the actuator signal for the piezo shall be kept
near zero. herefore, the output of the piezo controller can directly be used as an
error signal for the second PI controller . he output of the second PI controller
can then be used as the actuator signal for the temperature input of the slave
laser. Hence it is also called temperature controller. Whenever the piezo actuator
signal gets too large, it will be compensated by the temperature controller by
adjusting the temperature actuator signal. A schematic overview of the laser lock
control circuit can be seen in Figure . .

he transfer function of the piezo controller is identical to Equation . :

pzt( ) = (�Ppzt
+ �Ipzt1 − −1) −1 , ( . )

where �Ppzt
is the gain of the proportional controller for the piezo and �I� ℎ

is the gain of the integral controller for the piezo. For the temperature controller

As if it were compared against zero.

8
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Input PI Piezo

PI Temperature

Figure . : Schematic overview of the PI controller arrangement in the laser lock
controller

the transfer function can be writen as a concatenation of two PI controllers:

tmp( ) = (�Ppzt
+ �Ipzt1 − −1) −1 (�Pmpt

+ �Itmp1 − −1) −1 , ( .7)

where �Ptmp
is the gain of the proportional controller for the temperature and�Itmp

is the gain of the integral controller for the temperature.

For an overview how this laser lock controller its into the bigger picture see
Figure . .

. . Gains

Due to the much lower bandwidth of the temperature actuator in comparison to
the piezo actuator, the gains of the temperature controller are much lower than
the gains of the piezo controller. he gains in Table . have been found to work
reliably.

�P �I
First PI controller −5 −1
Second PI controller −7 −4

Table . : Gains for the individual PI controllers of the Laser Lock.

By inserting these gains into the transfer functions, the corresponding Bode
plots can be graphed. hey can be seen in Figure . and Figure . . he laser lock
controller shows a clean integrator-type response and doesn’t show a signiicant
phase drop until about MHz. his should not afect the bandwidth of the laser
lock, which mainly originates from the bandwidth of the DPLL as the frequency
sensor as well as the bandwidth of the piezo and temperature actuator in the laser.

9
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Figure . : he amplitude part of the Bode plots of the laser lock controller.
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Figure . : he phase part of the Bode plots of the laser lock.



. L L k

. Automatic Algorithm

As stated in Section . , the heterodyne frequency must be within the bandwidth
of the photodiode and below the Nyquist frequency of the LMS, to successfully
establish a laser lock. Since this is not always the case and there might not be the
possibility to manually adjust the frequency of the slave laser in the future, there
is the need for an automatic algorithm to acquire a proper heterodyne signal.

To fulil this requirement, an algorithm in the form of an FSM has been
developed to accomplish this task. his FSM algorithm does not rely on any
previous adjustments of the laser heterodyne frequency and only expects two
free-running lasers, one of which can be controlled by the LMS.

he FSM is roughly divided into ive parts:

• Temperature scan

• Temperature set

• Piezo adjustments

• Lock

• Check

hese parts will be described in more detail in the following sections.

. . Temperature Scan

he temperature scan is the irst stage ater the LMS is powered up and has
initialised itself. A given temperature range will be scanned on the slave laser
while the beatnote frequency and amplitude are observed using the FFT from
Chapter . his has to be done slowly, because of the low bandwidth of the
temperature actuator of a few Hz. During the temperature scan, the temperature
with the highest beatnote amplitude will be determined. his is the point where
the beatnote frequency lies within the bandwidth of the photodiode, which is

MHz is this experimental set-up, and below the Nyquist frequency of the
LMS.

he temperature scan has two parameters, which are the begin and the end
of the temperature range that should be scanned. his range has to be chosen in
such a way that the temperature, at which the beatnote frequency lies within the
measurement bandwidth, is within this temperature range. he more extensive
this temperature range is, the longer the scan takes. herefore for testing purposes
in the context of this thesis, a rather small range of approximately ±0.5 ∘C has
been chosen.

A schamatic overview can be seen in Figure .7.
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Figure .7: A temperature range is scanned for the maximum FFT amplitude. If it
is over a given threshold, the Laser is set to the corresponding temperature.

. . Temperature Set

Ater the temperature scan has completed the whole range, the found amplitude
will be compared against a user set threshold. If the amplitude is higher than the
threshold, the corresponding temperature will be set at the slave laser. Otherwise,
the temperature scan will start from the beginning.

Ater the temperature value has been set, the phase meter will wait for s
to let the temperature setle and the beatnote frequency stabilise. he beatnote
frequency should now lie within the measurement bandwidth of the phase meter.
If not, the temperature scan will start from the beginning.

. . Piezo Adjustments

Ater making sure that the beatnote frequency lies within the measurement
bandwidth of the phase meter, iner adjustments have to be performed. he
beatnote frequency has to be shited near the desired locking frequency using
the piezo in the slave laser. To determine how the voltage has to be changed to
achieve a particular change in beatnote frequency, the piezo voltage is increased
by approximately . V while observing changes in the beatnote frequency. If
the beatnote frequency increases, the coeicient between voltage and frequency
is positive, otherwise it is negative. Whether the voltage of the piezo has to be
lowered or increased to shit the heterodyne frequency in a given direction will
be memorised for later use.

At this point, the sign of the current frequency is also determined. his is
done by XNORing the direction of the change in voltage with the direction of the
change in heterodyne frequency. If both directions are the same, the heterodyne
frequency is positive. Otherwise, it is negative. he signedness of the heterodyne
frequency is essential for the LISA heterodyne frequency plan[ ].
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Ater that, the target frequency will be approached step by step. In that
process, the sign of the target frequency is taken into account. he beatnote
frequency should then be within approximately MHz of the target frequency. If
these adjustments fail, the process will be retried from the temperature set step.
Ater repeated fails, the temperature scan will be re-initiated.

A schamatic overview can be seen in Figure .8.

= 0= 1
�last = FFT

last == + ⋅ step

< last &�FFT > �last
> last &�FFT < �last = 1

= −1

||�FFT − �target||< threshold ?
done

yes

no

yes

no yes

no

Figure .8: Calculate the signedness of the piezo. Draw the heterodyne frequency
near the target frequency.

. . Lock

Ater the beatnote frequency has been brought near enough to the target fre-
quency, a DPLL is locked to the beatnote frequency using the frequency and gains
from the beatnote acquisition algorithm from Chapter . Once the DPLL has
successfully established a lock, which means the frequency output of the DPLL is
close to the frequency measured by the FFT, the laser lock controller is turned on
and should lock the slave laser to the master laser in a small amount of time. In
case of failure, the process will be restarted at the point of seting the temperature.
Ater repeated fails, the temperature scan will be re-initiated.

. . Check

Once the laser lock has been established, it will regularly be checked for validity.
his is done by comparing the frequency output of the DPLL with the frequency
measured by the FFT. If their diference is greater than . MHz, the lock will be
re-initiated.

A schematic overview of this algorithm can be found in Figure .9.
he source code for the automatic lock acquisition algorithm can be found in

Section A. . .
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Figure .9: Schematic overview of the laser lock FSM.
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. Measurements

In this section, various phase meter signals from diferent acquisition phases will
be shown and further analysed. his will also demonstrate the correct function
of the beatnote acquisition system.

. . Temperature Scan

During the temperature scanning phase, the temperature signal of the slave
laser is slowly monotonically increased from a predeined lower bound to a
predeined upper bound. his can be seen as a green line in Figure . . While
the temperature of the master laser is raised, its frequency and therefore also the
frequency diference between the master laser and the slave laser changes. his
frequency diference is measured by the FFT in the beatnote acquisition system
and is depicted by the blue line. Alongside the frequency of the input signal,
its amplitude is also measured by the FFT in the beatnote acquisition system,
which can be seen as a red line in the igure mentioned above. he closer the
frequency diference draws to zero, the higher its measured amplitude gets due
to the limited bandwidth of the photodiode, the LMS and other components.
Whenever the frequency diference is outside of the bandwidth of the phase meter
or the photodiode, the FFT does not measure anything useful anymore, which
translates to random frequency changes and a near zero amplitude. his makes
the detection of a useful heterodyne signal very easy.

. . Temperature Set

Ater a useful heterodyne signal has been found in the previous step, its corre-
sponding frequency is set. his change in the temperature signal of the slave
laser is mostly a step function and results in some ringing in the frequency of the
slave laser. herefore, the phase meter will wait a few seconds until the diference
frequency stabilised itself at a value of a few MHz. his can be seen in Figure . .

. . Piezo Adjustments

Once the diference frequency is inside the bandwidth of the photodiode and
the LMS, the piezo signal of the slave laser will be used to bring the diference
frequency as close as possible to the target locking frequency, which is 9MHz in
this case. he piezo signal activity is depicted as a yellow line in Figure . . As it
can be seen, the diference frequency changes proportionally to the piezo signal.
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. . Lock

Ater the diference frequency has been brought near the target frequency, a DPLL
is locked to this frequency. he frequency measured by the DPLL is depicted by
the black line in Figure . . As it can be seen the lock of the DPLL is acquired very
fast, and its measured frequency is almost identical to the frequency measured by
the FFT. he small diference between both measured frequencies is mainly due
to the limited precision of the frequency measurement of the FFT. Once the DPLL
has acquired a proper lock, both laser lock PI controllers are turned on, and the
diference frequency stabilises quite fast at the target lock frequency.

As it can be seen in Figure . the lock controlling the laser piezo reacts much
faster than the lock controlling the temperature of the laser. On the other hand,
the piezo signal has only a limited actuator range. herefore, larger ofsets are
being compensated by the temperature signal, to keep the piezo signal near zero.

7



. L L k

40 60 80 100 120 140 160−10

0

10

20

30

40

Time [ s]

FFT frequency [MHz]
FFT amplitude [ ]

Temperature Signal [ ]

Figure . : he temperature scanning phase of the automatic laser locking
algorithm. he green curve shows the slow increasing of the temperature actuator
signal of the slave laser. he blue and red coloured curve show the frequency and
amplitude measured by the FFT in the beatnote acquisition system.
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Figure . : When the temperature is set, it behaves like a step function (green
line). his results in a lot of ringing in the frequency diference (blue line), which
will eventually setle at a usable heterodyne frequency.

9



. L L k

185 185.5 186 186.5 187 187.5 188 188.5 189 189.5 190−2

0

2

4

6

8

10

Time [ s]

FFT frequency [MHz]
FFT amplitude [ ]
Piezo Signal [ ]

Figure . : he piezo signal (yellow line) is adjusted to bring the frequency
diference (blue line) as close as possible to the target locking frequency, which is
9MHz in this case.
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Figure . : First the DPLL is locked to the diference frequency (black line) and
then the laser locks for the piezo and temperature control of the laser are turned
on to keep the diference frequency at the target frequency.
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Figure . : he temperature signal keeps the piezo signal near zero.
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. Performance

To have a look at the performance of the laser lock, the deviation of the measured
lock frequency from the target lock frequency has been ploted. his can be seen
in Figure . .

200 205 210 215 220 225 230 235 240 245 250−80
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Figure . : Performance of the laser lock: Diference between measured lock
frequency and target lock frequency.

As it can be seen, the diference between the measured lock frequency and
the target lock frequency is at all times less than kHz, which is about . % of
the target lock frequency of 9MHz. On average the deviation is even less than
kHz, which corresponds to about . %.

he spectrum of this signal can be seen in Figure . . As expected from a
mostly constant signal, there is a reasonably large DC part. Also, the amplitude
at the Nyquist frequency is higher than the average, but this does not seem to
afect the performance of the laser lock.
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Figure . : Performance of the laser lock: Spectrum of the diference between
measured lock frequency and target lock frequency.

he laser lock could be held in its locked state for multiple weeks. herefore
this is a very stable lock.



Chapter

Automatic Gain Control

If the amplitude of an incoming signal changes signiicantly over time, the gains
of the DPLL have to be slowly adjusted according to the current amplitude of the
input signal. his is called AGC. AGC has traditionally been used in Amplitude
Modulation (AM) radio receivers to adapt to changing signal strength[ ], which
is what is needed here.

Due to the binary logarithmic nature of the DPLL gains in the current im-
plementation of the DPLL (see Equation . ), these will only be adjusted if the
input amplitude doubles or halves. Fortunately, as the following measurements
show, this does not seem to be a problem. Otherwise, there would also be the
possibility to implement more ine-grained control of the gains. he amplitude of
the incoming signal can be obtained in two ways, either from the FFT described
in the previous chapter or from the value of the DPLL. Both methods will be
looked at in the following.

. FFT Amplitude

he FFT has been used in the previous chapter to calculate the initial gains for
the DPLL. Unfortunately, the amplitude calculated by the FFT heavily depends
on the input frequency. If the signal frequency lies precisely between two FFT
frequency bins its measured amplitude is halved in comparison to the measured
amplitude of a signal which frequency lies precisely in the middle of a frequency
bin. his is because the signal power is distributed amongst both frequency bins.
his efect is illustrated in Figure .

As it can be seen, the position of a frequency relative to the frequency bins of an
FFT spectrumhas a signiicant efect on themeasured amplitude of the peak aswell
as on the form of the spectrum. his could lead to random luctuations in the gains
and potential performance issues. When applying a lat-top window function for
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Figure . : he frequency of the red spectrum lies in the middle of a frequency
bin, the frequency of the blue spectrum lies in the middle between two frequency
bins. his has a huge efect on the measured amplitude.

the FFT input signal, this efect can be reduced[ ]. Also, the amplitude loss due
to the ofset from the bin centre is deterministic and could be corrected using an
appropriate algorithm. However, both methods cannot be easily implemented
in the LMS. herefore the FFT cannot reliably be used to perform continuous
adjustments of the DPLL gains.

. Phase Locked Loop I Value

On the other hand, the value of the DPLL is not frequency dependent and will,
therefore, be used in the following.

he current gains P and I can be calculated using the value and the full
amplitude gains Pf and If calculated in Section . :
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P = Pf+ log2 1
I = If+ log2 1 . ( . )

his result is similar to Equation . with the diference, that the value
from the DPLL is not squared in contrast to the amplitude value of the FFT which
eliminated the need for an additional square root.

To simplify the above design, instead of recalculating each gain from the
current amplitude, a common additional gain can be computed. his additional
gain has the following form:

= log2 ( 1|�|) . ( . )

With this additional gain, the P and I gains could stay ixed at their full-
amplitude values Pf and If, and only the new pre-gain needs to be modiied at
runtime.

his method works because of the properties of the logarithm. Whenever
the absolute Amplitude |�| halves, its inverse 1|�| doubles. herefore, when the

argument of the logarithm to the base two doubles, its result increased by one:

log2 (2 ) = ln (2 )
ln (2) = ln (2) + ln ( )

ln (2) = 1 + ln ( )
ln (2) = log2 ( ) + 1 . ( . )

. . Additional Gain Calculation

Ater the startup of the AGC algorithm, it will wait for a ms to let the value
of the DPLL setle. he currently set gains for the DPLL are assumed to be the
correct gains for the current amplitude. herefore the current amplitude is saved.
All further gain calculations will use this ampliication as a reference.

Unfortunately, equation . cannot be implemented directly in VHDL. To
calculate the additional gain from the value, irst, its absolute value is taken.
hen the leading zeros of the two’s complement representation are counted[ ].
From this, the amount of leading zeros of the two’s complement of the reference
amplitude is subtracted. he resulting value is then used as the additional gain.

. . Applying the Additional Gain

here are three possible ways to apply the additional gain to the system:

• Apply directly to the input signal just before the phase detector.

7
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• Apply directly to the error signal just ater the phase detector and before
the PI controller.

• Add to the P and I gains.

All of these ways are equivalent because the phase detector is a multiplier just
like a gain. Multiplication is a linear operation and therefore commutative[ ].
Hence, the order of the multiplications does not mater in principle. However,
when using inite precision arithmetic, the multiplication order does mater in
practice. In this thesis, the additional gain will be added to the P and I gains,
because this is the most straightforward way to implement. he current gains
can, therefore, be calculated with:

P = Pf +
I = If + . ( . )

. . Averaging the I Value

For a given input signal intensity, the value of the DPLL is not constant. Instead
it has the form of a cos ( )2 function as shown in Figure . . If the AGC would
directly use this signal, the pre-gain would rapidly change its value, which
would lead to an unstable or non-functional DPLL.

here are two possibilities to convert this periodical signal into a usable slowly
varying signal for the AGC:

• Take the maximum from a given number of samples.

• Moving average over a given amount of time.

he irst method would only work with a perfectly sinusoidal input signal. Unfor-
tunately, in the real world, there will be noise on top of the input signal. herefore,
any transients or spikes that are bigger than the average amplitude will directly
be visible to the AGC and cause the same problems as with the raw amplitude.

he second method acts as a low-pass ilter and would remove any transients
and spikes. his would result in a much more smooth signal for the AGC. On
the downside, the averaged amplitude would only be about half as big as the
unprocessed amplitude. However, this can easily be accounted for in the AGC
algorithm. herefore this method has been chosen in this thesis.

his inally leads to the AGC scheme presented in Figure . .
he averaging is done with a Cascaded Integrator Comb (CIC) ilter[ ] of

order and a reduction rate of 1 ∶ 210. At a sampling rate of 8 MHz, this results
in a new set of gains every .8 µs.

8
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Figure . : he DPLL value is a cos ( )2.
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Figure . : DPLL with AGC. he value is averaged, processed by the AGC
algorithm and the result is applied as an additional gain to the PI controller.
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. C55 Simulation

To prove that this approach to AGC is actually working, a simulation has been
performed. he simulation has been writen in C++ and can be found an Ap-
pendix A. . .

he simulation consists of an NCO, whose amplitude is varied over time from
approximately % to %, a DPLL to track the the output of the NCO as well as
the AGC block as explained above.

Figure . shows the amplitude of the amplitude modulated signal from the
NCO as well as the amplitude measured by the DPLL that tracks the signal. Both
values match quite well.
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Figure . : Input and output amplitude of a DPLL with AGC

Figure . shows the frequency of the NCO as well as the measured frequency
of the DPLL. As it can be seen, both frequencies match each other very well. hat
means that the DPLL can track the signal from the NCO very well, even at very
low amplitudes, thanks to the AGC.

As a comparison, Figure . shows the measured frequency of the DPLL with
the AGC block disabled. As it can be seen, the DPLL fails at very low amplitudes.
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Figure . : Input and output frequency of a DPLL with AGC
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. Implementation

he AGC algorithm has been implemented in VHDL for use in the LMS. he
implementation can be found in Section B. . .

It takes the amplitude of the input signal, which is calculated as described
in Section . . and emits the processed gains as described in Section . . as its
output.

. . VHDL Simulation

Before using the VHDL implementation in the LMS it has been simulated to
ensure its proper function and to make further small optimisations along the way.
he corresponding VHDL testbench that is used to test the VHDL implementation
can be found in Section B. . . he test conditions were identical to those in the
C++ simulation.

Figure .7 shows the amplitude of the amplitude modulated signal from the
NCO as well as the amplitude measured by the DPLL that tracks the signal. As in
the C++ simulation, both values match quite well.

Figure .8 shows the frequency of the NCO as well as the measured frequency
of the DPLL. As with the C++ simulation, both frequencies match each other very
well. hat means that the DPLL can track the signal from the NCO very well,
even at very low amplitudes, thanks to the AGC.

As a comparison, Figure .9 shows the measured frequency of the DPLL with
the AGC block disabled. As with the C++ simulation, the DPLL fails at very low
amplitudes. Also, in contrast to the C++ simulation, the DPLL does not regain
control over the lock and stays unlocked.

. . Performance Measurement

To test the AGC algorithm in an experiment, a signal generator is used to generate
a 9MHz sine signal, that can be tracked by the DPLL. his sine signal is slowly
decreased in amplitude using a simple variable voltage divider. he result is
tracked by an AGC enabled DPLL.

Figure . shows the frequency measured by the DPLL as well as the ampli-
tude of the input signal as measured by an FFT. As it can be seen, the DPLL has
no problems tracking the input signal down to very low amplitudes, thanks to
the AGC.

For a comparison, Figure . shows the same setup but with the AGC disabled.
As it can be seen, the DPLL fails to track the input signal at low amplitudes. hat
means that the AGC algorithm is working correctly.
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Figure .7: Input and output amplitude of a DPLL with AGC

he reason for the failing lock is the PI controller of the DPLL. When its gains
are too low for the current amplitude, the error signal is not ampliied enough,
resulting in a too small actuator signal. In this case, the NCO is not able to follow
the input frequency fast enough, and the lock fails. When the gains are too high
for the current amplitude, the error signal is ampliied too much, resulting in
substantial overshoot in the NCO frequency. his also results in the lock failing.
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Figure .8: Input and output frequency of a DPLL with AGC
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Chapter

Diferential Wavefront Sensing

For LRI and LISA in particular, heterodyne interferometry is the method of choice
for phase measurements. In these applications, proper pointing is very important
to achieve high measurement performance. Pointing is sensed using DWS, which
works by interfering the local reference laser and the remote laser on a Quadrant
Photo Diode (QPD)[ ]. his results in diferent phases on each segment, which
can be read out as phase diferences ��. his is illustrated in Figure . .

��

Figure . : Interfering two laser beams on a QPD results in phase diferences ��
between the segments.

DWS has numerous advantages in comparison with the also commonly used
Diferential Power Sensing (DPS). Instead of measuring the diferences in phase
between the quadrants of the QPD, in DPS the diferences in power between

7
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the quadrants of the photodiode are measured. his has the disadvantage of a
lower optical gain as well as more susceptibility to amplitude noise. Also, with
DWS, it is precisely measured what is needed to increase the heterodyne contrast.
herefore LISA is using DWS.

Phase diferences can be read out with a phase meter using a DPLL in an
FPGA. Up until now, this is implemented with four independent DPLLs. Each
DPLL detects the phase of a single quadrant of a QPD. hese four phases are then
linearly combined to calculate the DWS signals:

� = �A − �B + �C − �D� = �A + �B − �C − �D , ( . )

where � is the phase diference in the direction and � is the phase dif-
ference in the direction. �A to �D are the relative phases on the respective
segments of the QPD as denoted in Figure . .

A B

C D

Figure . : Arrangement and names of the segments of a QPD

Each of the signals has a power � and a noise density of 0. his leads to a
Carrier to Noise Density Ratio (CNR) for a single signal of:

= �
0 . ( . )

Since the frequency measured in those four DPLLs (hereater called segment
DPLLs) is approximately the same when used with a QPD, the overall frequency
can be measured by feeding the sum of the four signals from the QPD into a
separate DPLL (hereater called common DPLL). Assuming the noise in the four
channels are uncorrelated to each other and the signal, this will result in the noise
geting added incoherently. herefore the overall CNR equates to:[ ]

= � + � + � + �
√ 20 + 20 + 20 + 20

= 4�
√4 20

= 4�2 0 = 2 �
0

7
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= 2 . ( . )

Ater adding the four signals from the QPD, the CNR increases by a factor of2. his greatly improves the stability of the common DPLL, assuming that the
DWS signals are small. Otherwise destructive interference in the summation of
the segment signals can reduce the CNR.

Unfortunately, the segment DPLLs do not beneit at all from this higher CNR
of the common DPLL even though the individual frequencies are very close to
each other and not of great interest. Furthermore, these ive DPLLs take up
a signiicant amount of space inside the FPGA. herefore the question arises
whether these ive DPLLs can be merged so that the DWS subsystem beneits
from the improved CNR of the common DPLL.

he new method (initial idea by Prof. Dr. Gerhard Heinzel) described in this
chapter aims to improve this situation signiicantly by combining these ive
DPLLs into a single so-called DWS DPLL. his features high signal to noise
ratio measurements resulting in a more stable operation as well as lower space
requirements in the FPGA while still being able to measure the overall frequency
as well as the DWS signals. his new approach also will allow Equation . to
hold for larger DWS signals. Due to its construction, no destructive interference
can happen in the DWS DPLL.

. New Approach

Instead of tracking the phase of each individual quadrant of the QPD like in a
traditional DWS setup as described above, the DWS phase diferences � and �
as deined in Equation . as well as the average phase �avg of the whole QPD are
tracked directly. he average phase is deined as:

�avg = 14 (�A + �B + �C + �D) . ( . )

Since the signals from a QPD have four degrees of freedom in phase, which
would all be tracked by a traditional DWS system, a fourth phase value has to be
tracked here as well to have the same amount of degrees of freedom. his fourth
phase value is called the ellipticity � of the QPD signals and is deined as:

� = �A − �B − �C + �D . ( . )

he ellipticity usually is not measured as it is roughly constant and of litle
interest, since it cannot be controlled. However, its value is necessary for the
function of the DWS DPLL design.

7
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To understand how the DWS DPLL design works, a standard DPLL as used
in [ ] will be extended step by step in the next section, until the DWS DPLL has
been constructed.

. Design

he DPLL presented in Section .8. will be extended in the following subsections
until the alternative DWS DPLL design has been constructed.

. . Phase Detector

To extract the phase error information from all four channels of a quadrant
photodiode, four separate cosines, as well as four separate phase detectors in the
form of multipliers, are needed instead of just one of each. his can be seen in
Figure . .

Input A,B,C,D

cosA,B,C,D

A,B,C,D

Figure . : he phase detector of the DWS DPLL design consists of a multiplier
and a low pass ilter.

hese four phase error signals are then summed up to obtain the average
phase error, which is processed as before. Analogue to the calculation of the
average phase error, the DWS error signals x, y as well as the additional phase
error signal are also calculated. his can be seen in Figure . .

. . Phase Calculation

In a traditional DWS design, the phases of each QPD segment are tracked sepa-
rately and therefore have their corresponding DPLLs and PI controllers. In the
new DWS design, each DWS phase is tracked independently of the others. here-
fore each phase error signal is connected to a PI controller.

Additionally, the PI controller for the average phase also accepts the starting
frequency as the starting value for its integrator. It does not have to be added
separately, anymore. herefore the output of this PI controller is the actuator
frequency, which is then fed into the phase accumulator to obtain the actuator

7
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phase. All other PI controllers have starting values of zero and therefore directly
output their respective actuator phases. his can be seen in Figure . .

hese actuator phases then have to be recombined to be fed to the sine/cosine
look-up table of each QPD channel. To calculate the phases for each QPD channel,
Equation . , Equation . and Equation . can be inverted. his leads to:

�A = �avg + � + � + �
�B = �avg − � + � − �
�C = �avg + � − � − �
�D = �avg − � − � + � . ( . )

A schematic representation of the implementation can be seen in Figure . .

. . Complete Picture

Puting all the components that have been developed in the course of the last
section together leads to a DWS DPLL design. A schematic overview of that
design can be seen in Figure .7.

In the next sections, the DWS DPLL will be implemented in C++ and VHDL,
several simulations will be performed to validate the design, and some perfor-
mance measurements will be performed to conirm its performance.
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Figure . : Phase Error Calculation in of the DWS DPLL design.
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. C55 Simulation

To prove that this new approach to DWS is working, a low-level simulation has
been performed. he simulation has been writen in C++ and can be found an
Appendix A. . .

he simulation implements the DWS DPLL as well as four additional NCOs,
each simulating one channel of a QPD.

Over the run time of 106 time steps, the average frequency of the four NCOs
is varied between 0.1�S and 0.3�S in a sinusoidal manner with a frequency of 10−5
cycles per time step. Also the DWS phase is varied between 0.12� and 0.32� in a
sinusoidal manner with a variation frequency of 10−6 cycles per time step.

Using the following values for the gains of the PI controllers, the DPLL could
successfully track each DWS phase as well as the overall frequency:

Controlled phase P gain I gain

�avg −10 −12� −12 −14� −12 −14� −12 −14
Table . : Gains for the individual PI controllers of the DWS PLL.

he result of the simulation can be seen in the following two igures. Figure .8
shows a comparison of the overall input frequency to the measured frequency of
the simulation. he diference between both can be seen in Figure .9, which is in
the order of . % of the sampling frequency. Figure . shows a comparison of
the simulated DWS phase to the measured phase of the simulation.

As it can be seen, the DPLL can successfully track the overall frequency of
the input signal, and the DWS phase can successfully be followed.

As mentioned before, there is no such thing as a starting phase in the DWS
DPLL as there is a starting frequency in a DPLL. herefore the phase tracking
always starts at zero. Due to the lower gains in the PI controllers for the DWS
phases, the measured phase diference lags behind the input phase diference by
a smidgen. his is not a problem since the DWS signals are expected to change
slowly compared to the frequency. Even lower gains are therefore possible.
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Figure .8: Simulation of the DWS DPLL, showing the ability to successfully track
the average input frequency.
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Figure .9: Simulation of the DWS DPLL, showing diference between its input
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Figure . : Simulation of the DWS DPLL, showing the ability to successfully
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. Implementation

Since the underlying idea has been proven to work in a low-level simulation, the
DWS DPLL needs to be implemented in actual VHDL code. he implementation
can be seen in Appendix B. . .

. . VHDL Simulation

his implementation has also been simulated with a test bench similar to the
low-level C++ simulation. he test bench can be found in Appendix B. . . he
result of the simulation can be seen in the following two igures. Figure .
shows a comparison of the simulated overall input frequency to the measured
overall frequency of the simulation. he diference between both can be seen in
Figure . , which is in the order of . % of the sampling frequency. Figure .
shows a comparison of the simulated DWS phase to the measured DWS phase of
the simulation.

As it can be seen, that the DPLL can successfully track the overall frequency
of the input signal and the DWS phase can successfully be followed.

As expected, the results of the VHDL simulation are identical to the results
of the C++ simulation. herefore the code can now be tested in a circuit in the
following section.
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. Measurements

Multiple measurements have been performed, which will be described in the
following subsections.

. . Functional Measurements

he irst measurement has been performed with all four ADC inputs being tied
to the same Single Element Photo Diode (SEPD) using a four-way signal spliter.
Using the digital laser lock described in Section , two lasers have been locked to
a diference frequency of 9MHz, interfered with a beam spliter and measured
with the SEPD mentioned above. he results of this measurement can be seen in
Figure . . Both DWS values show deviation of less than 5 ⋅ 10−4 ⋅ 2� from zero.
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Figure . : Measurement of the DWS DPLL with an SEPD.

It can be seen that the DWS DPLL can successfully track the overall frequency
of the input signal. Since all four ADC inputs are measuring the very same signal,
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there are no diferential phases.
he second measurement has been performed with the four ADC inputs

connected to a QPD, while both laser beams were not perfectly parallel. he
beatnote frequency is let at 9MHz. he results of this measurement can be seen
in Figure . .
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Figure . : Measurement of the DWS DPLL with a QPD.

As it can be seen, the DWS angles have been measured successfully.
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. . Performance Measurements

he increased CNR should improve the overall stability of the DWS DPLL in
contrast to a single DPLL. his should result in being able to lock onto signals
with smaller amplitude and a lower CNR in comparison with a single DPLL.

Varying Amplitude

To test the ability to lock onto signals with a smaller amplitude, the DWS DPLL as
well as a single DPLL have been fed with signals of varying amplitudes ranging
from mV up to mV (peak to peak). he single DPLL could acquire a proper
lock down to 8 mV, which corresponds to a digital signal with a width of about
bit. he DWS DPLL, on the other hand, could acquire a proper lock down to
mV, which corresponds to a digital signal with a width of about bit.
his is an increase of a factor of approximately two as expected.

Varying Noise

To test the ability to lock onto signals with a lower CNR, the DWS DPLL as well as
a single DPLL have been fed with signals of varying CNRs ranging from 8 . dBHz
down to .9 dBHz. his has been accomplished by adding noise onto a signal
with a constant amplitude using a simple op-amp based circuit. he single DPLL
could acquire a proper lock down to .7 dBHz, while the DWS DPLL, on the
other hand, could acquire a proper lock down to .8 dBHz.

his is an increase of approximately 8 dB, which is even more than expected.
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Chapter

Ranging and Data Transfer

Ranging allows the LMS to measure absolute distances between the LISA space-
crats. heses absolute distances are needed in post-processing for Time-Delay
Interferometry (TDI) to remove laser frequency noise[ 7]. Also, there is a need
for data transfer between the three LISA spacecrats, because only one of them
has a connection to the earth at a given time. he ranging and data transfer
functionality of the LMS is accomplished through the already existing laser links
between the satellites and is implemented through a DLL. Initial development
has been done by Juan Josr Esteban Delgado[ 8] on diferent hardware using
he MathWorks Simulink . he VHDL implementation, further development,
optimisations and extensions will be shown in the next sections. In the course of
its development, it has been subsequently extended to increase its reliability and
performance to fulil the strict requirements of LISA.

. Operational Principle

To make ranging possible, a Pseudo Random Noise (PRN) code is phase modulated
onto the laser beam on the transmiting side. his phase modulation generates
multiple sidebands, whose collective power does not exceed more than % of the
carrier power. he PRN code has been hand-crated using numerical optimisation
techniques with an even length of 1024 so-called chips[ 9]. Each chip can have a
value of either +1 or −1 and is 32 clock cycles in length, which means the chip
rate is . MHz at a clock frequency of �S = 8 MHz. his leads to signals of at
least . MHz in the phase modulation as well as its harmonics.

he DPLL on the receiving side does not track those megahertz signals. hey
are directly visible in the quadrature output of the IQ-demodulator of the DPLL,
i.e. in its error signal. he DPLL, therefore, demodulates the PRN code from the
error signal of the DPLL, where they are insigniicantly suppressed.

9
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On the receiving side, the remote PRN code will then be correlated with a
locally generated one. he ofset in time between the local PRN code and the
remote PRN code that maximises the correlation thus equals to the travel time of
the transmission. Using this technique, the time which the PRN code needs to
travel from the transmiter to the receiver can be measured absolutely.

A block diagram of the whole set-up can be seen in Figure 7. .

Laser EOM

PRN code × data

Laser

PLL

DLL

Figure 7. : Schematic block diagram of the ranging subsystem of the LMS. On
the transmiting side (let) a PRN code is modulated onto the laser beam. his
laser beam is interfered with a second laser beam on the receiving side (right),
generating a heterodyne signal. his signal is measured by a photodiode, and its
frequency is tracked by a DPLL. he PRN code is demodulated by the DLL from
the quadrature output of the DPLL. he Laser beams are marked as red, analogue
signals are marked in blue and digital signals are marked in black.

Four spectra of a PRN code modulated signal with typical modulation indices
can be seen in Figure 7. . his igure has been generated with the C++ code in
Appendix A. . . he diferent PRN codes that can be used can also be found there.

In addition to ranging, the DLL is also used to transfer data. With each PRN
sequence, 32 data bits can be transmited, where each data bit is 32 chips in length.
he data to be transmited is irst transformed into values of +1 and −1, where
a 0 corresponds to a −1 and a 1 corresponds to a +1. hen it is atached to the
PRN code by using multiplication. he data modulated PRN code will then be
phase modulated onto the laser beam on the transmiting side.

On the receiving side, a simple multiplication of the local PRN code and the
remote PRN code reveals the transmited data. At the end of this process, the data
has to be transformed back to 0s and 1s before it can be further processed using
the same mapping as on the transmiting side. he actual modulated data does not

9
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Figure 7. : Linear spectrum of a PRN code modulated MHz carrier with four
diferent modulation indices

have any inluence on the performance and stability of theDLL. However, without
the presence of data, a higher performance DLL could be built. An explanation
for this can be found in Section 7. . .

. Structural Overview

A DLL consists of four basic parts:

• he local PRN code generation

• he PRN code correlator

• he loop controller

• he control FSM

and can operate in two diferent modes:

9
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• Acquisition mode

• Tracking mode

he diferent modes will be described later.
he generation of the local PRN code starts with a counter which is continu-

ously counting. To its value a static start ofset determined during the acquisition
phase as well the actuator ofset calculated by the servo loop controller is added.
he origin of these ofsets will be described in more detail below. he result is
then used as an address for a LUT that contains six diferent PRN codes, one for
each of the six one-way links of LISA. he same code as used on the transmit-
ting side is selected and fed into the correlators. he result of the correlators is
then used in the servo loop controller as well as in the control FSM during the
acquisition phase.

. . PRN Code Correlator

hePRN correlator is used to correlate the input signal with the local PRN code and
to recover the embedded data. To accomplish that, the input signal is multiplied
by the locally generated PRN code, and its result is then sent through a series of
two Integrate-And-Dump (IAD) ilters to calculate the correlation and recover
the data.

In this implementation, the input of a correlator has a width of bit. Ater
the multiplication with the PRN code, the signal has a width of bit, which stays
constant for the rest of the correlator.

An IAD ilter continuously integrates over its input signal. Ater a ixed period
it dumps its integration value to its output and resets its integration value to
zero. hen the process starts from the beginning.

he irst IAD ilter dumps every data period, which is every .8 µs. his
results in a data rate of 78. kbit s− . To recover the transmited data, the sign
of the output of this irst IAD ilter is read and transformed back to binary data
as described earlier.

Ater the irst IAD ilter, the absolute value of the output is calculated and sent
to the second IAD ilter. Due to the usage of the absolute value, the modulated
data is not present anymore has no impact on the rest of the DLL.

he second IAD ilter then dumps every PRN code period, which is approxi-
mately every . ms. Since the absolute ilter eliminated the sign, the output of
the second IAD ilter is always positive and corresponds to the amount of correla-
tion between the input signal and the locally generated PRN code.

Without the presence of data, the irst IAD ilter could be omited, resulting
in a single longer coherent IAD ilter, and thus improving the performance of the
DLL.

9
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A schematic block diagram of the correlator can be seen in Figure 7. .

Input signal

PRN
LUT

PRN code
address

Integrate
and dump

Data bit clock

| |
Data

Integrate
and dump

PRN code clock

Correlation

Figure 7. : Schematic block diagram of a PRN correlator. he Input signal gets
multiplied with the local PRN code and travels through a series of two IAD ilters
to extract the transmited data and calculate the correlation.

here are three of these correlators inside the DLL. One is the punctual
correlator, which functions as described above, and the other two are the early
and late correlators. he diference between the early and late correlators and
the punctual correlator is that the former ones use a local PRN positively or
negatively delayed by half a chip, which corresponds to ns. In case the
punctual correlator has the maximal correlation, the early and the late correlator
output the same amount of correlation. If the ofset of the punctual correlator is
slightly of, one of the early and late correlators has a slightly higher correlation
than the other one. herefore the diference of the correlation of the early and
late correlator is a measure for the direction in which the ofset of the punctual
correlator has to be shited to achieve maximum correlation. his can thus be
used as an error signal for the loop controller. A schematic block diagram of the
error signal generation can be seen in Figure 7. .

. . Loop Controller

he loop controller consists of a simple PI controller, which takes the diference
between the early and late correlator as its input error signal. his error signal
is ploted as a function of the delay in Figure 7. . As it can be seen, the loop
controller only works for a limited amount of delay. herefore the control FSM is
used to set a rough delay as a starting point. his is described in greater detail in
the next subsection. he output of the PI controller is used as actuator signal and
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PRN code address
punctual
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Correlator

early
Correlator

Correlation and data

−12 chip

+12 chip Error

Input signal

PRN code & data bit clocks

Figure 7. : hree correlators are used in the DLL. One gives the correlation and
the other two combined give the error signal for the loop controller. Delay signals
are represented as solid lines, the input signal is represented as a thick line, clocks
are represented by doted lines and correlation signals are represented by dashed
lines.

is added as an ofset to the PRN code address counter as described earlier. In this
implementation width of the input and output width of the PI controller is bit.

. . Control Finite State Machine

he control FSM controls the transition between acquisition mode and tracking
mode. When the DLL starts, the FSM is in acquisition mode. In this mode all
possible PRN code ofsets are scanned through until an ofset with a correlation
above % is found. Ater that, the FSM switches to tracking mode where the
ofset mentioned above is not modiied anymore. In tracking mode, the loop
controller as well as the early and late correlators are switched on to form a closed
loop. It is possible to leave the tracking mode and switch back to acquisition
mode when the measured correlation falls below %. However, this does only
happen when the DPLL unlocks or the transmited PRN code changes or vanishes.

As a side function, the control FSM also generates the timing signals for the
IAD ilters in the correlators. For that purpose, it is using the clock of the glsPRN
code address counter mentioned above as a time base. To generate the dump
signals for the irst IAD ilter, the clock is divided by . he resulting clock is
divided by a second time to generate the dump signals for the second IAD

9
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Figure 7. : he diference between the early and late correlator as a function of
the delay.

ilter.
A complete block diagram of the DLL can be seen in Figure 7. .
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Figure 7. : Schematic block diagram of a DLL. his includes the counters for the
local PRN code address, the early, punctual and late correlators, the loop ilter and
the control FSM. Delay signals are represented as solid lines, the input signal is
represented as a thick line, clocks are represented by doted lines and correlation
signals are represented by dashed lines.

. Detailed Enhancements

To improve the performance and reliability of the DLL to a level that meets the
requirements of LISA, numerous modiications and optimisations to the DLL had
to be made, especially to the data recovery part.

. . Data Recovery Improvements

Data recovery in the DLL as presented up until now has been found to only work
for small delays without a big dynamic range. he reason for this is that the
timing signals used by the correlators are directly derived from the PRN code
address counter, without taking any ofset from the acquisition phase or the loop
controller into account. If the measured delay now approaches chips, which is
half a data bit, each local data period contains half of two diferent remote data
bits, which causes many errors. his is illustrated in Figure 7.7.

To prevent this from happening, the current implementation of the DLL has
been modiied. he timing signals are now being derived ater the ofsets from the
acquisition phase, and the loop controller has been added to the PRN code address
counter. his corresponds to the efective PRN code address, which is also used
to drive the PRN code LUT. With these modiications, the timing signals and the
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Figure 7.7: If the delay between the local and remote PRN code approaches
chips, the mismatch between remote data bits and local data timing signals can
lead to a high Bit Error Rates (BERs)

data bits are in sync at all times. A version of Figure 7. with this implemented
can be seen in Figure 7.8.
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Figure 7.8: To ix the high BERs originating from the mismatch between the
local data timing signals and the remote data bit boundaries, the ofsets from the
acquisition mode and the loop controller are taken into account when generating
the data clock signal. he change from Figure 7. is marked in red.

. . Timing Glitches

Now that the ofsets from the acquisition mode and the loop controller are taken
into account, every time the delay is recalculated by the loop controller, this also
afects the timing signals and leads to another problem that can be a source of
bit errors. his problem has its roots in the particular way the timing signals are
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derived from the PRN code address. he data timing signal is a clock and should
have a rising edge every 32 chips. herefore the th bit of the efective PRN code
address is used for this purpose. Every time the address passes a multiple of 32,
there is a rising edge in the data timing signal. If the delay calculated by the loop
controller gets smaller, the chance that the PRN code address jumps from just
over a multiple of 32 to just under a multiple of 32 gets higher. his causes an
extra rising edge in the data timing signal and therefore an extra (erroneous) data
bit. he higher the dynamic range of the delay of the remote PRN code is, the
higher is the possibility for this to happen. his efect is illustrated in Figure 7.9
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Figure 7.9: When the PRN address gets smaller, in certain circumstances this can
cause an additional rising edge in the timing signal for the data and therefore in
erroneous data.

To prevent this efect, a ilter was developed and installed between the output
of the loop controller and the ofset adder. At each clock cycle, the output of this
ilter can only change by no more than ±1. Since the PRN code address counter

A signal change from 0 to 1
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only counts up by one per clock cycle, this leads to a lat line, if the output of the
loop controller gets smaller, thus not allowing the PRN address counter to have a
negative slope. he source code of this ilter can be found in Appendix B. . . he
efect of this ilter to the PRN code address can be seen in Figure 7.
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Figure 7. : By not allowing the PRN code address to have a negative slope, the
glitch in the data timing signal can be prevented. his results in a low BERs.

. Measurements

In the following section, the performance of the DLL implementation will be
examined. To do this, the LMSwill be fed with an artiicial signal that mimics a real
signal that is to be expected on the LISA spacecrat. It contains the main beatnote,
sidebands, pilot tone, the PRN code modulation, which will be demodulated by
the DLL as well as some noise.

he artiicial signal is generated by the so-called Digital Signal Simulator (DSS).
his device has been developed by Iouri Bykov at the Albert-Einstein-Institute
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in Hanover in the context of the development of the LMS[ ]. It can be seen in
Figure 7. .

Figure 7. : he DSS is use to create artiicial signals that mimic those expected in
the LISA spacecrat.

. . Timing Performance

he timing performance is measured by comparing the change in the delay
measured by the DLL with the change in the measured frequency of the DPLL.
Due to the slight diference in the clock frequencies of the DSS and the LMS[ ],
there is a measurable frequency shit on the LMS. his frequency can also be used
to calculate the change in the delay, which can be compared to the change in the
delay measured by the DLL.

Change in delay from the DPLL

To calculate the change in the delay from the measured frequency of the DPLL,
irst the diference between the clock frequencies of the DSS and the LMS must
be determined.

In an experiment, the DSS has been set to a carrier frequency of �D = 7MHz.
he frequency measured by the DPLL on the LMS can be seen in Figure 7. .
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Figure 7. : Frequency diference measured by the DPLL

It is approximately �L = 7. 87 MHz. Since the clock frequency of both
systems is �clk ≈ 8 MHz, this leads to a clock frequency diference ��clk of:

��clk = (�L − �D) �D�clk ≈ 882Hz . (7. )

his means that a PRN code sequence is
�clk+��clk�clk ≈ 1.000011 times longer on

the DSS compared to the LMS. Since each PRN code consists of chips, each
with a length of clock cycles, this leads to an accumulation of delay of

� PRN = 1024 × 32�clk − 1024 × 32�clk + ��clk ≈ 4.52 ns (7. )

each PRN code sequence. At a PRN code sequence rate of PRN = �clk1024×32 ≈2441Hz, this leads to a change in delay of:

� = PRN� PRN ≈ 11 µs s−1 . (7. )
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Change in delay from the DLL

he delay measured by the DLL in the same period can be seen in Figure 7. .
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Figure 7. : Delay measured by theDLL

he delay curve is linear and has a slope of approximately � = µs s− , which
its quite well to the result from the DPLL.

. . Bit Error Rate

In the presence of noise, the data recovery in the DLL can produce incorrect bits
from time to time. A measure for the amount of these errors is the BER, which
is measured in bit s− . he requirements for the LMS state, that at a bit rate of

kbit s− , the BER shall not be higher than µbit s− [ ].
In our implementation, the bit rate is = 78. kbit s− , which leave a lot

of room for Forward Error Correction (FEC) codes. A so-called (n,k) FEC code
encodes data bits with � code bits. his reduces the usable data rate by a factor
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of = � . his factor is also called the reduction rate. Due to our high bit rate, we
can use (n,k) FEC codes with a reduction rate as low as = 0.192.

Every set of � code bits that represents data bits is called a valid codeword.
Every other set of � code bits is called an invalid codeword. An invalid codeword
should not appear in FEC encoded data and indicates an error, that may be
correctable depending on the particular FEC code and the number of erroneous
bits. he so-called codeword distance � of an (n,k) FEC code is the number of
bits that need to be changed to get from one valid codeword to another valid
codeword. Generally speaking, the higher the codeword distance �, the beter the
ability to correct errors. With a given bit rate the maximum BER an (n,k) FEC
is able to correct is[ ]:

= � − 12 ⋅ (7. )

Table 7. lists a selection of FEC codes that could be used in the LMS along
with their reduction rate as well as their codeword distance � and the resulting
maximum BER they are able to correct.

Name Reduction rate Code word distance� Bit error rate

( , ) Hamming[ ] 0.333 3 1.28 ⋅ 10−5
( , ) Repetition 0.2 5 2.56 ⋅ 10−5
( , ) Hadamard 0.25 8 4.48 ⋅ 10−5
( , )
Reed-Solomon[ ]

0.192 22 1.34 ⋅ 10−4

Table 7. : An incomplete list of FEC codes, that can be used in the LMS to reduce
the BER of the data demodulated by the DLL.

In lab measurements with our enhanced DLL with a CNR of up to 7 dBHz
without any FEC, a BER of up to µbit s− have been measured. hat means
with any of the above FEC code applied the requirements could easily be achieved.
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Chapter 8

Summary

In the course of this thesis, many technologies have been developed for the LMS.
All of these auxiliary functions of the LMS will help to make LISA possible.

In Chapter a system to acquire a DPLL lock to an unknown beatnote fre-
quency has been developed. It uses an FFT to compute a frequency spectrum of
the input signal of the LMS. he peak in this frequency spectrum is then used
to get the approximate frequency of the input signal as well as its amplitude. Its
frequency is used as the starting frequency for the DPLL, and the amplitude is
used to calculate its initial gains. his has turned out to be very reliable, being
able to establish a DPLL lock to LISA-like signals automatically.

In Chapter a fully digital laser frequency ofset lock has been developed. Two
separate lasers are being interfered on a beam spliter, and the resulting beatnote is
measured with a photodiode and digitised with an ADC. he diference frequency
of the two lasers is then continuously measured with a DPLL. It is compared to
a target frequency, and the resulting error value is further processed by two PI
controllers. he resulting actuator values are used to change the frequency of
one of the two lasers. his leads to the frequencies of the two lasers being locked
to one another and thus a constant diference frequency. All this is governed
by a FSM, which uses the beatnote acquisition from the last chapter to control
the DPLL and the PI controllers he system performs very well, being able to
establish a frequency lock between free running NPRO lasers automatically. his
enables heterodyne interferometry for LISA.

In Chapter the DPLL has been extended with an AGC algorithm. he
amplitude of the input signal can change signiicantly during the operation of
the LMS. herefore the amplitude is measured continuously through the output
of the IQ-Demodulator in the DPLL. When the measured amplitude changes, the
gains of the DPLL are regularly adjusted accordingly. his results in a stable lock
of the DPLL even down to very small input amplitudes. It has been shown that
this could not have been achieved without the AGC.

7
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In Chapter the DPLL has been developed further to directly track DWS
signals. he DWS is an integral part of the LMS that tracks diferential phases
between the segments of a QPD. he diferential phases usually are calculated
by adding and subtracting the measured phases from four independent DPLLs,
with each of them being connected to a separate segment of the QPD. he new
so-called DWS DPLL developed in this chapter can track these phases directly.
Apart from that it also tracks the ellipticity � of the laser beam as well as the
overall phase on the QPD. hat results in a twice as high CNR in the DWS DPLL
as compared to the traditional approach. his means that the new DWS DPLL is
more resistant to noise, as several measurements have shown.

In Chapter 7 a system for absolute distance measurements as well as data
transfer over the laser links has been developed. he absolute distance measure-
ment between spacecrats is called ranging. In the case of LISA, ranging is needed
in post-processing for TDI. he data transfer function is needed because only one
of the three LISA spacecrats has a radio link to the earth. Both functionalities
have been implemented using a DLL. he transmiting spacecrat modulates a
PRN onto the laser beam, which is demodulated by a DPLL on the receiving space-
crat. In the DLL the demodulated PRN code is then correlated with a local copy
of the same PRN code shited by a speciic delay. From the delay that results in the
highest correlation, the distance between the two spacecrats can be calculated.
To transfer data between spacecrats, data bits can be modulated onto the PRN
code without interfering with the ranging. hey are extracted by the DLL. In the
course of this chapter, there have also been made many improvements in compar-
ison to a previous DLL implementation writen in he MathWorks Simulink .
Also FEC have been looked at to reduce the BER to meet the requirements of
LISA. his allowed the DLL to operate with high stability and reliability as well
as at the data rate required by LISA.

8



Appendix A

C55 Source Code

A. Beatnote Acquisition

A. . C55 Simulation

#include <iomanip>
#include <iostream>
#include <fstream>
#include <sstream>
#include <tuple>

#include <hdlsim.hpp>

using namespace hdl

//#define SINGLE

template<unsigned int freq_bits = ,
unsigned int bits = ,
unsigned int int_bits = *bits,
unsigned int n = ,
unsigned int r = >

class gain_sim
{
private

// declare signals
wire<std_logic> clk
wire<std_logic> clk
wire<std_logic> reset
wire<fixed_t<false, , freq_bits>> freq
wire<fixed_t<false, , freq_bits>> freq_start
wire<fixed_t<false, , freq_bits>> freq_out
wire<fixed_t<false, , freq_bits>> freq_out_slow
wire<fixed_t<true, log ceil int_bits + , >> p_gain
wire<fixed_t<true, log ceil int_bits + , >> i_gain
wire<fixed_t<false, , freq_bits>> phase
wire<fixed_t<true, , bits>> sine
wire<fixed_t<true, , bits>> factor
wire<fixed_t<true, , *bits>> i
wire<fixed_t<true, , *bits>> q
wire<fixed_t<true, , *bits>> i_slow

9
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wire<fixed_t<true, , *bits>> q_slow

// implement testbench
part testbench
void tb_func uint _t time
{
switch time %

{
case

clk =
break

case
clk =
// slowly vary frequency
freq = . l*sin .l*std acos − .l *static_cast<long double> time

/ .l + . l
#ifdef SINGLE

std cout << time << " "
<< sine << " "
<< freq << " "
<< freq_out_slow << " "
<< i_slow << " "
<< q_slow << " "
<< std endl

#endif
break

}

if time <
{

reset =
freq = freq_start

}
else

reset =
}

public
gain_sim
{
// set initial values
freq_start = .
factor = .

// connect components
nco clk,

reset,
wire<std_logic> ,
freq,
wire<fixed_t<false, , freq_bits>> . ,
sine,
wire<fixed_t<true, , bits>> ,
wire<fixed_t<false, , freq_bits>>

pll< , int_bits> clk,
reset,
wire<std_logic> ,
sine,
freq_start,
p_gain,
i_gain,
freq_out,
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i,
q,
q

clkdiv<power , r > clk,
reset,
wire<std_logic> ,
clk

cic_down<n, r> clk,
clk ,
reset,
wire<std_logic> ,
freq_out,
freq_out_slow

cic_down<n, r> clk,
clk ,
reset,
wire<std_logic> ,
i,
i_slow

cic_down<n, r> clk,
clk ,
reset,
wire<std_logic> ,
q,
q_slow

// create testbench part
testbench = part { }, { clk, reset, freq }, [this] uint _t time { this−>

tb_func time }
}

~gain_sim
{

hdl cleanup
}

void run unsigned int duration, int pgain, int igain
{

p_gain = pgain
i_gain = igain
simulator sim testbench
sim.run duration

#ifndef SINGLE
std cout << pgain << " " << igain << " " << i_slow << " " << std endl

#endif
}

}

int main
{

wire<int> freq
wire<int> freq_start
freq = freq_start

#ifdef SINGLE
int pgain = −
int igain = −

#else
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// loop through gains
int lower = −
int upper =
for int pgain = lower pgain <= upper pgain++

for int igain = lower igain <= upper igain++
#endif

{
gain_sim<> sim
sim.run , pgain, igain

}
return

}

A. Automatic Gain Control

A. . C55 Simulation

#include <array>
#include <iomanip>
#include <iostream>
#include <fstream>
#include <sstream>
#include <tuple>

#include <hdlsim.hpp>

using namespace hdl

// automatic gain control module
template <typename B, bool sign, unsigned int fbits, unsigned int fbits >
void agc wire<B> clk,

wire<B> reset,
wire<fixed_t<sign, , fbits>> amp,
wire<fixed_t<sign, , fbits >> in,
wire<fixed_t<sign, , fbits >> out

{
wire<B> reset
wire<fixed_t<true, log ceil fbits + , >> gain

// wait for amplitude to be non−NULL until reset is lifed.
part { clk, reset, },

{ reset },
[=] uint _t
{
if reset == static_cast<B> false

reset = static_cast<B> false
else if amp != fixed_t<sign, , fbits>

reset = static_cast<B> true
}, ""

part { clk, reset , amp},
{ gain },
[=] uint _t
{
if reset == static_cast<B> false

gain = fixed_t<true, log ceil fbits + , >
else
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{
gain = fixed_t<true, log ceil fbits + , >
// increase gain if amplitude halves.
for unsigned int c = c < fbits c++
if !amp.get .at fbits− −c

gain = fixed_t<true, log ceil fbits + , > signed c−
else

break
}

}, "agc"

// apply gain
barrel_shift in, gain, out

}

// testbench class
template <unsigned int freq_bits = ,

unsigned int bits = ,
unsigned int int_bits = *bits,
unsigned int n = ,
unsigned int r = >

class test
{
private

// declare signals
wire<std_logic> clk
wire<std_logic> clk
wire<std_logic> reset
wire<fixed_t<false, , freq_bits>> freq
wire<fixed_t<false, , freq_bits>> freq_start
wire<fixed_t<false, , freq_bits>> freq_out
wire<fixed_t<false, , freq_bits>> freq_out_slow
wire<fixed_t<true, log ceil int_bits + , >> p_gain
wire<fixed_t<true, log ceil int_bits + , >> i_gain
wire<fixed_t<true, log ceil *bits + , >> gain
wire<fixed_t<true, , bits>> amplitude
wire<fixed_t<true, , bits>> sine_tmp
wire<fixed_t<true, , *bits>> sine_long
wire<fixed_t<true, , bits>> sine
wire<fixed_t<true, , *bits>> i
wire<fixed_t<true, , *bits>> q_out
wire<fixed_t<true, , *bits>> q_in
wire<fixed_t<true, , *bits>> i_slow
wire<fixed_t<true, , *bits>> q_slow

// implement testbench
part testbench
void tb_func uint _t time
{

switch time %
{
case

clk =
break

case
clk =
freq = . + . l*sin .l*std acos − .l *static_cast<long double> time

/ .l
amplitude = . l+ . l*cos .l*std acos − .l *static_cast<long double>

time / .l
break

}
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if time % ==
std cout << time << " "

<< freq << " "
<< freq_out_slow << " "
<< i_slow << " "
<< q_slow << " "
<< amplitude << " "
<< std endl

if time <
{

reset =
freq = freq_start
amplitude = .

}
else

reset =
}

public
test
{
// set initial values
freq_start = .
p_gain = −
i_gain = −
// connect components
nco clk,

reset,
wire<std_logic> ,
freq,
wire<fixed_t<false, , freq_bits>> . ,
sine_tmp,
wire<fixed_t<true, , bits>> ,
wire<fixed_t<false, , freq_bits>>

mul sine_tmp, amplitude, sine_long // amplitude modulation
round sine_long, sine

pll< , int_bits> clk,
reset,
wire<std_logic> ,
sine,
freq_start,
p_gain,
i_gain,
freq_out,
i,
q_out,
q_in

clkdiv<power , r > clk,
reset,
wire<std_logic> ,
clk

cic_down<n, r> clk,
clk ,
reset,
wire<std_logic> ,
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freq_out,
freq_out_slow

cic_down<n, r> clk,
clk ,
reset,
wire<std_logic> ,
i,
i_slow

cic_down<n, r> clk,
clk ,
reset,
wire<std_logic> ,
q_out,
q_slow

#ifdef NOAGC
assign q_out, q_in

#else
// automatic gain control
agc clk, reset, i_slow, q_out, q_in

#endif

// create testbench part
testbench = part { }, { clk, reset, freq, amplitude }, [this] uint _t time

{ this−>tb_func time }
}

void run unsigned int duration
{

simulator sim testbench
sim.run duration

}
}

int main
{

test<> t
t.run
return

}

A. Laser Locking

A. . Automatic Algorithm

#include <cmath>
#include <cstdio>

#include "state_machine.h"
#include "utils.h"

#define DEBUG

// register defs
uint _t dac _ctrl = xFFFFFFFF // slot
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uint _t adc _ctrl = xFFFFFFFF // slot
uint _t adc _ctrl = xFFFFFFFF // slot
uint _t adc _ctrl = xFFFFFFFF // slot
uint _t adc _ctrl = xFFFFFFFF // slot
uint _t adc _ctrl = xFFFFFFFF // slot

void update_dac _ctrl
{
// carry out changes to CTRL registers
write_reg , sRegw_dac_dsp_DSP_CTRL , dac _ctrl

}

void update_adc _ctrl
{
// carry out changes to CTRL registers
write_reg , sRegw_adc_dsp_DSP_CTRL , adc _ctrl

}

void update_adc _ctrl
{
// carry out changes to CTRL registers
write_reg , sRegw_adc_dsp_DSP_CTRL , adc _ctrl

}

void update_adc _ctrl
{
// carry out changes to CTRL registers
write_reg , sRegw_adc_dsp_DSP_CTRL , adc _ctrl

}

void update_adc _ctrl
{
// carry out changes to CTRL registers
write_reg , sRegw_adc_dsp_DSP_CTRL , adc _ctrl

}

void update_adc _ctrl
{
// carry out changes to CTRL registers
write_reg , sRegw_adc_dsp_DSP_CTRL , adc _ctrl

}

// ADC
#define MAIN_A <<
#define MAIN_B <<
#define MAIN_C <<
#define MAIN_D <<
#define PILOT_A <<
#define PILOT_B <<
#define PILOT_C <<
#define PILOT_D <<
#define SB_ <<
#define SB_ <<
#define DLL_ <<
#define DLL_ <<

// DAC
#define LOCK_ <<
#define LOCK_ <<

void laser_lock write_pzt uint _t value
{
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if channel ==
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_OFF, value

else if channel ==
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_OFF, value

}

void laser_lock write_temp uint _t value
{

if channel ==
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_OFF, value

else if channel ==
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_OFF, value

}

void laser_lock update_plls int _t p, int _t i, int _t i
{

int slot = channel == ?
write_reg slot, sRegw_adc_dsp_MAIN_PLL_A_GAIN_P, p
write_reg slot, sRegw_adc_dsp_MAIN_PLL_B_GAIN_P, p−
write_reg slot, sRegw_adc_dsp_MAIN_PLL_C_GAIN_P, p−
write_reg slot, sRegw_adc_dsp_MAIN_PLL_D_GAIN_P, p−
write_reg slot, sRegw_adc_dsp_MAIN_PLL_A_GAIN_I, i
write_reg slot, sRegw_adc_dsp_MAIN_PLL_B_GAIN_I, i−
write_reg slot, sRegw_adc_dsp_MAIN_PLL_C_GAIN_I, i−
write_reg slot, sRegw_adc_dsp_MAIN_PLL_D_GAIN_I, i−
write_reg slot, sRegw_adc_dsp_MAIN_PLL_A_GAIN_I , i
write_reg slot, sRegw_adc_dsp_MAIN_PLL_B_GAIN_I , i −
write_reg slot, sRegw_adc_dsp_MAIN_PLL_C_GAIN_I , i −
write_reg slot, sRegw_adc_dsp_MAIN_PLL_D_GAIN_I , i −

}

void laser_lock lock_plls uint _t pir, int _t p, int _t i, int _t i
{

int slot = channel == ?
write_reg slot, sRegw_adc_dsp_MAIN_PLL_A_FREQ, pir
write_reg slot, sRegw_adc_dsp_MAIN_PLL_B_FREQ, pir
write_reg slot, sRegw_adc_dsp_MAIN_PLL_C_FREQ, pir
write_reg slot, sRegw_adc_dsp_MAIN_PLL_D_FREQ, pir
update_plls p, i, i

if channel ==
{

adc _ctrl &= ~ MAIN_A | MAIN_B | MAIN_C | MAIN_D
update_adc _ctrl

}
else if channel ==

{
adc _ctrl &= ~ MAIN_A | MAIN_B | MAIN_C | MAIN_D
update_adc _ctrl

}
}

void laser_lock unlock_plls
{

if channel ==
{

adc _ctrl |= MAIN_A | MAIN_B | MAIN_C | MAIN_D
update_adc _ctrl

}
else if channel ==

{
adc _ctrl |= MAIN_A | MAIN_B | MAIN_C | MAIN_D
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update_adc _ctrl
}

}

void laser_lock lock_pid uint _t pir, int _t pzt_p, int _t pzt_i, int _t
temp_p, int _t temp_i

{
if channel ==

{
write_reg , sRegw_dac_dsp_LOCK_CH _PIR_OFF, pir
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_GAIN_P, pzt_p
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_GAIN_I, pzt_i
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_GAIN_P, temp_p
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_GAIN_I, temp_i
dac _ctrl &= ~LOCK_

}
else if channel ==

{
write_reg , sRegw_dac_dsp_LOCK_CH _PIR_OFF, pir
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_GAIN_P, pzt_p
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_GAIN_I, pzt_i
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_GAIN_P, temp_p
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_GAIN_I, temp_i
dac _ctrl &= ~LOCK_

}
update_dac _ctrl

}

void laser_lock unlock_pid
{

if channel ==
dac _ctrl |= LOCK_

else if channel ==
dac _ctrl |= LOCK_

update_dac _ctrl
}

void laser_lock write_sign int sign
{

if channel ==
{

write_reg , sRegw_dac_dsp_LOCK_CH _PZT_SIGN, sign > ?
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_SIGN, sign > ?

}
else if channel ==

{
write_reg , sRegw_dac_dsp_LOCK_CH _PZT_SIGN, sign > ?
write_reg , sRegw_dac_dsp_LOCK_CH _TEMP_SIGN, sign > ?

}
}

laser_lock laser_lock int channel
channel channel , state init

{
}

void laser_lock reset
{

state = init
}

void laser_lock state_machine std shared_ptr<str_data> sdata, uint _t cpu_cnt

8
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{
if !sdata return

float fft_freq
float fft_amp
float pll_i
double pll_freq

if channel ==
{

fft_freq = sdata−>s_float.fft_dsp_ _freq +
sdata−>s_float.fft_dsp_ _freq +
sdata−>s_float.fft_dsp_ _freq +
sdata−>s_float.fft_dsp_ _freq / .

fft_amp = sdata−>s_float.fft_dsp_ _amp +
sdata−>s_float.fft_dsp_ _amp +
sdata−>s_float.fft_dsp_ _amp +
sdata−>s_float.fft_dsp_ _amp / .

pll_i = minimum minimum sdata−>s_float.adc _dsp_main_a_i,
sdata−>s_float.adc _dsp_main_b_i ,

minimum sdata−>s_float.adc _dsp_main_c_i,
sdata−>s_float.adc _dsp_main_d_i

pll_freq = sdata−>s_double.adc _dsp_main_a_pir +
sdata−>s_double.adc _dsp_main_b_pir +
sdata−>s_double.adc _dsp_main_c_pir +
sdata−>s_double.adc _dsp_main_d_pir / .

}
else if channel ==

{
fft_freq = sdata−>s_float.fft_dsp_ _freq +

sdata−>s_float.fft_dsp_ _freq +
sdata−>s_float.fft_dsp_ _freq +
sdata−>s_float.fft_dsp_ _freq / .

fft_amp = sdata−>s_float.fft_dsp_ _amp +
sdata−>s_float.fft_dsp_ _amp +
sdata−>s_float.fft_dsp_ _amp +
sdata−>s_float.fft_dsp_ _amp / .

pll_i = minimum minimum sdata−>s_float.adc _dsp_main_a_i,
sdata−>s_float.adc _dsp_main_b_i ,

minimum sdata−>s_float.adc _dsp_main_c_i,
sdata−>s_float.adc _dsp_main_d_i

pll_freq = sdata−>s_double.adc _dsp_main_a_pir +
sdata−>s_double.adc _dsp_main_b_pir +
sdata−>s_double.adc _dsp_main_c_pir +
sdata−>s_double.adc _dsp_main_d_pir / .

}
else

return

cpu_cnt /= * *
fft_freq *= e
pll_freq *= e

#ifdef DEBUG
printk "[llk %d] FFT frequency %d kHz, FFT amplitude %d, PLL freqency %d kHz

, PLL I %d\n",
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channel, static_cast<int _t> fft_freq/ , static_cast<int _t>
fft_amp* ,

static_cast<int _t> pll_freq/ , static_cast<int _t> pll_i*
#endif

switch state
{
case init

#ifdef DEBUG
printk "[llk %d] Initialization.\n", channel

#endif

// reset ADC/DAC
unlock_plls
unlock_pid

// initital piezo/temp values
cur_pzt =
write_pzt cur_pzt
cur_temp = temp_min
write_temp cur_temp
maximum_temp =
maximum_amp = .
sign =

old_cpu_cnt = cpu_cnt
state = test

break
case test

#ifdef DEBUG
printk "[llk %d] Test.\n", channel

#endif

// test outputs
if cpu_cnt − old_cpu_cnt ==

cur_pzt = −pzt_step
else if cpu_cnt − old_cpu_cnt ==

cur_pzt =
else if cpu_cnt − old_cpu_cnt ==

cur_pzt = pzt_step
else if cpu_cnt − old_cpu_cnt ==

cur_pzt =
else

{
old_cpu_cnt = cpu_cnt
wait_cnt =
state = scan_temp

}

write_pzt cur_pzt
break

case scan_temp
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Scanning Temperature.\n", channel

#endif

// find maximum
if fft_amp > maximum_amp
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{
maximum_amp = fft_amp
maximum_temp = cur_temp

#ifdef DEBUG
printk "[llk %d] New Maximum.\n", channel

#endif
}

if cur_temp < temp_max
{

cur_temp += temp_step
write_temp cur_temp

}
else

state = set_temp

// wait for temperature to change
old_cpu_cnt = cpu_cnt
wait_cnt =

break
case set_temp
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Setting Temperature.\n", channel

#endif

// reset pzt
cur_pzt =
write_pzt cur_pzt

// go to maximum
cur_temp = maximum_temp
write_temp cur_temp

// wait for temperature to settle
old_cpu_cnt = cpu_cnt
wait_cnt =
state = adjust_pzt

break
case adjust_pzt
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Adjust PZT.\n", channel

#endif

// calculate current sign
if cur_pzt > last_pzt

sign = fft_freq >= last_freq ? −
else if cur_pzt < last_pzt

sign = fft_freq >= last_freq ? −
// save last value
last_freq = fft_freq
last_pzt = cur_pzt

// ajust pzt
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if target_freq − sign*fft_freq > pzt_diff
cur_pzt += pzt_step

else if target_freq − sign*fft_freq < −pzt_diff
cur_pzt −= pzt_step

else
state = lockpll

// we're at the wrong temperature
if cur_pzt <= pzt_min || cur_pzt >= pzt_max

{
#ifdef DEBUG

printk "[llk %d] Wrong Temperature.\n", channel
#endif

state = init
break

}

write_pzt cur_pzt

// wait for piezo to change
old_cpu_cnt = cpu_cnt
wait_cnt =

break
case lockpll
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Lock PLL.\n", channel

#endif

if fft_amp > amp_threshold
{

// set initial frequency
uint _t pir = static_cast<uint _t> fft_freq/ e *pow ,

// calculate gain
float add_gain = log ./fft_amp

#ifdef DEBUG
printk "[llk %d] Add Gain %d.\n", channel, add_gain

#endif

// set gains
cur_p_gain = p_base_gain + add_gain
cur_i_gain = i_base_gain + add_gain

// start PLLs
lock_plls pir , cur_p_gain, cur_i_gain,

// save for later
last_p_gain = cur_p_gain
last_i_gain = cur_i_gain

// wait for PLLs to stabilize
old_cpu_cnt = cpu_cnt
wait_cnt =
state = lock_laser

}
else

state = init
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break
case lock_laser
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Lock Laser.\n", channel

#endif

// try again if PLLs unlocked
if std abs fft_freq − pll_freq > check_freq_diff

{
#ifdef DEBUG

printk "[llk %d] PLL unlocked.\n", channel
#endif

unlock_pid
unlock_plls
state = set_temp
break

}

// set signs and enable locks
write_sign sign
lock_pid static_cast<uint _t> std fabs target_freq / e *std pow . ,

,
pzt_p, pzt_i, temp_p, temp_i

// wait for lock loop to stabilize
old_cpu_cnt = cpu_cnt
state = reset_pzt
wait_cnt =

break
case reset_pzt
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Reset PZT offset.\n", channel

#endif

// try again if PLLs unlocked
if std abs fft_freq − pll_freq > check_freq_diff

{
#ifdef DEBUG

printk "[llk %d] PLL unlocked.\n", channel
#endif

unlock_pid
unlock_plls
state = set_temp
break

}

// slowly remove pzt offset
if cur_pzt >

cur_pzt −= *
else if cur_pzt < −

cur_pzt += *
else

state = reset_temp
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write_pzt cur_pzt

// wait for lock to follow
old_cpu_cnt = cpu_cnt
wait_cnt =

break
case reset_temp
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Reset Temperature offset.\n", channel

#endif

// try again if PLLs unlocked
if std abs fft_freq − pll_freq > check_freq_diff

{
#ifdef DEBUG

printk "[llk %d] PLL unlocked.\n", channel
#endif

unlock_pid
unlock_plls
state = set_temp
break

}

// slowly remove temp offset
if cur_temp >

cur_temp −= *
else if cur_temp < −

cur_temp += *
else

state = check
write_temp cur_temp

// wait for lock to follow
old_cpu_cnt = cpu_cnt
wait_cnt =

break
case check
if cpu_cnt − old_cpu_cnt < wait_cnt

break

#ifdef DEBUG
printk "[llk %d] Check.\n", channel

#endif

// try again if PLLs unlocked
if std abs fft_freq − pll_freq > check_freq_diff

{
#ifdef DEBUG

printk "[llk %d] PLL unlocked.\n", channel
#endif

unlock_pid
unlock_plls
state = set_temp
break

}
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// Wait a bit
old_cpu_cnt = cpu_cnt
wait_cnt =

break
default
// This shouldn't happen
state = init
break

}

#ifdef DEBUG
printk "[llk %d] cur_temp %d, cur_pzt %d, sign %d\n",

channel, cur_temp, cur_pzt, sign
#endif
}

A. Diferential Wavefront Sensing

A. . C55 Simulation

#include <iostream>

#include <hdlsim.hpp>

using namespace hdl

template<unsigned int int_mbits, unsigned int int_fbits,
typename B, unsigned int mbits, unsigned int fbits, unsigned int

freq_bits>
void qpd_pll wire<B> clk,

wire<B> reset,
wire<B> enable,
wire<fixed_t<true, mbits, fbits>> inputa,
wire<fixed_t<true, mbits, fbits>> inputb,
wire<fixed_t<true, mbits, fbits>> inputc,
wire<fixed_t<true, mbits, fbits>> inputd,
wire<fixed_t<false, , freq_bits>> freq_start, // f/fs
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> pgain_sum,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> igain_sum,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> pgain_dx,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> igain_dx,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> pgain_dy,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> igain_dy,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> pgain_ell,
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> igain_ell,
wire<fixed_t<false, , freq_bits>> freq_out, // f/fs
wire<fixed_t<true, *mbits, *fbits>> ia,
wire<fixed_t<true, *mbits, *fbits>> qa,
wire<fixed_t<true, *mbits, *fbits>> ib,
wire<fixed_t<true, *mbits, *fbits>> qb,
wire<fixed_t<true, *mbits, *fbits>> ic,
wire<fixed_t<true, *mbits, *fbits>> qc,
wire<fixed_t<true, *mbits, *fbits>> id,
wire<fixed_t<true, *mbits, *fbits>> qd,
wire<fixed_t<true, *mbits, *fbits>> errora,
wire<fixed_t<true, *mbits, *fbits>> errorb,



A. C++ S C

wire<fixed_t<true, *mbits, *fbits>> errorc,
wire<fixed_t<true, *mbits, *fbits>> errord,
wire<fixed_t<false, , freq_bits>> phase_sum,
wire<fixed_t<false, , freq_bits>> phase_dx,
wire<fixed_t<false, , freq_bits>> phase_dy,
wire<fixed_t<false, , freq_bits>> phase_ell,
wire<fixed_t<false, , freq_bits>> phasea,
wire<fixed_t<false, , freq_bits>> phaseb,
wire<fixed_t<false, , freq_bits>> phasec,
wire<fixed_t<false, , freq_bits>> phased

{
wire<fixed_t<true, mbits, fbits>>

sinea, cosinea,
sineb, cosineb,
sinec, cosinec,
sined, cosined

// IQ demodulation
mul inputa, sinea, ia
mul inputa, cosinea, qa
mul inputb, sineb, ib
mul inputb, cosineb, qb
mul inputc, sinec, ic
mul inputc, cosinec, qc
mul inputd, sined, id
mul inputd, cosined, qd

// divide error signals by before adding to prevent overflow
wire<fixed_t<true, *mbits, *fbits>> errora , errorb , errorc , errord
barrel_shift_fixed errora, − , errora
barrel_shift_fixed errorb, − , errorb
barrel_shift_fixed errorc, − , errorc
barrel_shift_fixed errord, − , errord

// combine error signals
wire<fixed_t<true, *mbits, *fbits>> error_sum, error_dx, error_dy, error_ell,

tmp , tmp , tmp , tmp , tmp , tmp , tmp , tmp
add errora , errorb , tmp
add errorc , errord , tmp
add tmp , tmp , error_sum
sub errora , errorb , tmp
sub errorc , errord , tmp
add tmp , tmp , error_dx
sub errora , errorc , tmp
sub errorb , errord , tmp
add tmp , tmp , error_dy
sub errora , errorb , tmp
sub errord , errorc , tmp
add tmp , tmp , error_ell

// PID filter
wire<fixed_t<true, int_mbits, int_fbits>> pidout_sum, pidout_dx, pidout_dy,

pidout_ell
wire<fixed_t<true, log ceil int_mbits+int_fbits + , >> dgain .
pidctl<true, true, false, int_mbits, int_fbits>

clk, reset, enable, error_sum, pgain_sum, igain_sum, dgain, pidout_sum
pidctl<true, true, false, int_mbits, int_fbits>

clk, reset, enable, error_dx, pgain_dx, igain_dx, dgain, pidout_dx
pidctl<true, true, false, int_mbits, int_fbits>

clk, reset, enable, error_dy, pgain_dy, igain_dy, dgain, pidout_dy
pidctl<true, true, false, int_mbits, int_fbits>

clk, reset, enable, error_ell, pgain_ell, igain_ell, dgain, pidout_ell
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// resize pid results
wire<fixed_t<true, , freq_bits>> pidout_sum , pidout_dx , pidout_dy ,

pidout_ell
resize pidout_sum, pidout_sum
resize pidout_dx, pidout_dx
resize pidout_dy, pidout_dy
resize pidout_ell, pidout_ell

// add start frequency
add pidout_sum , freq_start, freq_out

// integrate frequency to phase
integrator clk, reset, enable, freq_out, phase_sum

wire<fixed_t<true, , freq_bits>> phase_dx , phase_dy , phase_ell
reg clk, reset, enable, pidout_dx , phase_dx
reg clk, reset, enable, pidout_dy , phase_dy
reg clk, reset, enable, pidout_ell , phase_ell
assign phase_dx , phase_dx
assign phase_dy , phase_dy
assign phase_ell , phase_ell

// combine phases
wire<fixed_t<false, , freq_bits>> tmp , tmp , tmp , tmp , tmp , tmp ,

tmp , tmp
add phase_sum, phase_dx, tmp
add phase_dy, phase_ell, tmp
add tmp , tmp , phasea
sub phase_sum, phase_dx, tmp
sub phase_dy, phase_ell, tmp
add tmp , tmp , phaseb
sub phase_sum, phase_dy, tmp
sub phase_dx, phase_ell, tmp
add tmp , tmp , phasec
sub phase_sum, phase_dx, tmp
sub phase_ell, phase_dy, tmp
add tmp , tmp , phased

// LUTs
sincos phasea, sinea, cosinea
sincos phaseb, sineb, cosineb
sincos phasec, sinec, cosinec
sincos phased, sined, cosined

}

template <unsigned int bits = ,
unsigned int freq_bits = ,
unsigned int int_bits = *bits>

class test
{
private

// declare signals
wire<std_logic> clk
wire<std_logic> clk
wire<std_logic> reset
wire<fixed_t<true, , bits>> sine, sine
wire<fixed_t<true, , bits>> factor
wire<fixed_t<false, , freq_bits>> freq
wire<fixed_t<false, , freq_bits>> phase
wire<fixed_t<false, , freq_bits>> freq_start
wire<fixed_t<false, , freq_bits>> freq_out

7
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wire<fixed_t<true, , *bits>> ia, qa, ib, qb, ic, qc, id, qd
wire<fixed_t<false, , freq_bits>> phase_sum, phase_dx, phase_dy, phase_ell,

phasea, phaseb, phasec, phased

// implement testbench
part testbench
void tb_func uint _t time
{
switch time %

{
case

clk =
break

case
clk =
// slowly vary frequency and differential phase
freq = . l*sin .l*std acos − .l *static_cast<long double> time

/ .l + . l
phase = . l*sin .l*std acos − .l *static_cast<long double> time

/ .l + . l
if time+ % ==

{
std cout << time << " " << freq << " " << freq_out << " "

<< phase << " " << phase_dx << " " << phase_dy << " " <<
phase_ell << " "

<< std endl
}

break
}

if time <
reset =

else
reset =

}

public
test
{
// set initial values
freq_start = .
factor = .

// connect components
nco clk,

reset,
wire<std_logic> ,
freq,
wire<fixed_t<false, , freq_bits>> . ,
sine,
wire<fixed_t<true, , bits>> ,
wire<fixed_t<false, , freq_bits>>

nco clk,
reset,
wire<std_logic> ,
freq,
phase,
sine ,
wire<fixed_t<true, , bits>> ,
wire<fixed_t<false, , freq_bits>>

8
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qpd_pll< , int_bits> clk,
reset,
wire<std_logic> ,
sine , sine,
sine , sine,
freq_start,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
wire<fixed_t<true, log ceil int_bits + , > > − ,
freq_out,
ia, qa, ib, qb, ic, qc, id, qd,
qa, qb, qc, qd,
phase_sum,
phase_dx,
phase_dy,
phase_ell,
phasea,
phaseb,
phasec,
phased

// create testbench part
testbench = part { }, { clk, reset, freq, phase }, [this] uint _t time {

this−>tb_func time }
}

void run unsigned int duration
{

simulator sim testbench
sim.run duration

}
}

int main
{

test<> t
t.run
return

}

A. Ranging and Data Transfer

A. . Ranging Spectra Generator

/*
* Copyright c , Nils Christopher Brause

* All rights reserved.

*
* Permission to use, copy, modify, and/or distribute this software for any

* purpose with or without fee is hereby granted, provided that the above

* copyright notice and this permission notice appear in all copies.

*

9
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* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

*
* The views and conclusions contained in the software and documentation are

* those of the authors and should not be interpreted as representing official

* policies, either expressed or implied, of the Max Planck Institute for

* Gravitational Physics Albert Einstein Institute .

*/

#include <array>
#include <cmath>
#include <complex>
#include <fstream>
#include <functional>
#include <iostream>
#include <limits>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include <fftw .h>

long double pi = std acos − .l

enum fft_type { PS, LS, PSD, LSD }

// real fft
template <typename T, unsigned long int N>
void rfft std array<T, N> &input, std array<T, N> &output, fft_type type,

long double fs, std function<T T > window
{
// convert to long double
T ldn = N

// Window sums
T s =
T s =
for unsigned int c = c < N c++

{
T ldc = c
s += window ldc/ldn
s += std pow window ldc/ldn ,

}

// initialize fftw
static fftw_complex *in = NULL
static fftw_complex *out = NULL
static fftw_plan p
in = fftw_complex* fftw_malloc sizeof fftw_complex * N
out = fftw_complex* fftw_malloc sizeof fftw_complex * N
p = fftw_plan_dft_ d N, in, out, FFTW_FORWARD, FFTW_ESTIMATE

// multiply data with window
for unsigned int c = c < N c++

{
T ldc = c



A. R D T

in[c][ ] = input.at c *window ldc/ldn
in[c][ ] = .

}

// actual fft
fftw_execute p

// Create PS D /LS D
for unsigned int c = c < N/ c++

{
std complex<T> tmp out[c][ ], out[c][ ]
switch type

{
case PS
output.at c = .l*std norm tmp /std pow s , .l
break

case LS
output.at c = std sqrt .l*std norm tmp /std pow s , .l
break

case PSD
output.at c = .l*std norm tmp / fs*s
break

case LSD
output.at c = std sqrt .l*std norm tmp / fs*s
break

}
}

}

///////////////////////////////////////////////////////////////////////////////

std array<std string, > prn_lut = {
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
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" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
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" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", " ", " ", " ", " "

}

// standard hanning window
long double hanning long double x
{

return . * . −cos . *pi*x
}

// Flat−Top window from GEO
long double hft d long double x
{

long double z = .l*pi*x
return .l − . l*cos z + . l*cos .l*z− . l*cos .l*z + . l*cos .l*z− . l*cos .l*z + . l*cos .l*z− . l*cos .l*z + . l*cos .l*z− . l*cos .l*z + . l*cos .l*z

}

int main int argc, char *argv[]
{

const int size =
const int mul =
const long double fs = e
const long double freq = e
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const int code =
const long double rate = . e

std array<long double, size*mul> signal
std vector<std array<long double, size*mul>> spectra

for auto &depth { . l*pi, . l*pi, . l*pi, . l*pi}
{
// create a signal
long double time =
for int c = c < size*mul c++, time += .l/fs

{
int prn = prn_lut.at static_cast<unsigned int> time*rate % .at code

== ' ' ?
long double phase = *pi*freq*time + prn*depth*pi // no data
signal.at c = sin phase

}

// do the fft
std array<long double, size*mul> spectrum
rfft<long double, size*mul> signal, spectrum, PS, fs, hft d
spectra.push_back spectrum

}

// output
for int c = c < size/ − c++

{
std cout << static_cast<long double> c /size*fs << " "
for auto &spectrum spectra

{
// reduce points
long double max =
for int d = d < mul− d++

max = spectrum.at c*mul+d > max ? spectrum.at c*mul+d max
std cout << .l*std log max << " "

}
std cout << std endl

}

return
}



Appendix B

VHDL Source Code

B. Beatnote Acquisition

B. . Fast Fourier Transform

−− Copyright c , Nils Christopher Brause−− All rights reserved.−−−− Permission to use, copy, modify, and/or distribute this software for any−− purpose with or without fee is hereby granted, provided that the above−− copyright notice and this permission notice appear in all copies.−−−− THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES−− WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF−− MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR−− ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES−− WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN−− ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF−− OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.−−−− The views and conclusions contained in the software and documentation are−− those of the authors and should not be interpreted as representing official−− policies, either expressed or implied, of the Max Planck Institute for−− Gravitational Physics Albert Einstein Institute .

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all
use ieee.math_real.all
use work.utils.all

entity sfft is
generic

bits natural =
radix natural = −−! only supported value atm.
logbins natural =
single boolean = false
stage natural =

port
clk in std_logic
reset in std_logic
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input_real in std_logic_vector bits− downto
input_imag in std_logic_vector bits− downto
input_valid in std_logic
output_real out std_logic_vector bits− downto
output_imag out std_logic_vector bits− downto
output_valid out std_logic
output_bin out std_logic_vector log ceil radix**logbins − downto

end entity sfft

architecture behav of sfft is

constant bins natural = radix**logbins
constant log bins natural = log ceil bins −− needed for vector widths
constant butterflys natural = sel single, bins/radix, logbins*bins/radix
constant bfs_bits natural = log ceil butterflys
constant phase_bits natural = log ceil radix**logbins

type bin_array is array natural range<>
of std_logic_vector log bins− downto

type phase_array is array natural range<>
of std_logic_vector phase_bits− downto

type bits_array is array natural range<>
of std_logic_vector bits− downto

type flycfg_t is record
x bin_array to radix−
phase phase_array to radix−
sin bits_array to radix−
cos bits_array to radix−

end record flycfg_t

type flycfgs_t is array to **bfs_bits− of flycfg_t

function make_flycfgs return flycfgs_t is
variable result flycfgs_t
variable n natural =
variable cmax natural =

begin
n =
if single = false then

cmax = logbins−
else

cmax = stage
end if
for c in stage to cmax loop
for d in to radix** logbins−c− − loop

for e in to radix**c− loop
for f in to radix− loop

result n .x f
= std_logic_vector to_unsigned radix** c+ *d+e+f*radix**c,

logbins
result n .phase f

= std_logic_vector to_unsigned f*e* **phase_bits/radix** c+ ,
phase_bits

result n .cos f = icos f*e, radix** c+ , bits
result n .sin f = std_logic_vector −signed

isin f*e, radix** c+ , bits
end loop −− f
n = n +

end loop −− e
end loop −− d

end loop −− c
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return result
end make_flycfgs

constant flycfgs flycfgs_t = make_flycfgs

constant last_bf std_logic_vector bfs_bits− downto
= std_logic_vector to_unsigned butterflys− , bfs_bits

signal bf_counter std_logic_vector bfs_bits− downto
signal bf_counter_reset std_logic
signal bf_counter_reset_tmp std_logic
signal bf_counter_enable std_logic
signal bf_counter_enable_tmp std_logic

signal cur_bf flycfg_t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant state_bits natural =
subtype state_t is std_logic_vector state_bits− downto

signal state state_t
signal next_state state_t

constant idle state_t = x" "
constant inp state_t = x" "
constant wait state_t = x" "
constant ramread state_t = x" "
constant busy state_t = x" "
constant busy state_t = x" "
constant ramwrite state_t = x" "
constant wait state_t = x" "
constant outp state_t = x" "
constant wait state_t = x" "

signal busy std_logic

signal bin_counter std_logic_vector logbins− downto
signal bin_counter_reset std_logic
signal bin_counter_reset_tmp std_logic
signal bin_counter_enable std_logic
signal bin_counter_enable_tmp std_logic

constant bin_max std_logic_vector logbins− downto
= others => ' '

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
signal we std_logic
signal we std_logic
signal sel std_logic_vector log bins− downto
signal sel std_logic_vector log bins− downto
signal real_in std_logic_vector bits− downto
signal real_in std_logic_vector bits− downto
signal imag_in std_logic_vector bits− downto
signal imag_in std_logic_vector bits− downto
signal real_out std_logic_vector bits− downto
signal real_out std_logic_vector bits− downto
signal imag_out std_logic_vector bits− downto
signal imag_out std_logic_vector bits− downto

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7
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signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal output _real std_logic_vector bits− downto
signal output _imag std_logic_vector bits− downto
signal output _real std_logic_vector bits− downto
signal output _imag std_logic_vector bits− downto

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
signal output_real_tmp std_logic_vector bits− downto
signal output_imag_tmp std_logic_vector bits− downto
signal output_valid_tmp std_logic
signal output_valid_tmp std_logic
signal bin_num_tmp std_logic_vector log bins− downto
signal bin_num_tmp std_logic_vector log bins− downto

begin −− architecture behav

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− State Machine−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
state_reg entity work.reg
generic map

bits => state_bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => next_state,
data_out => state

−− status signals
output_valid_tmp <= ' ' when state = outp else

' '

bin_num_tmp <= bin_counter

−− memory control
we <= ' ' when state = inp and input_valid = ' ' or state = ramwrite else

' '

we <= ' ' when state = ramwrite else
' '

sel <= bitreverse bin_counter when state = inp
and single = false or stage = else
bin_counter when state = inp and single = true and stage > else
cur_bf.x when state = ramread or busy = ' '
or state = ramwrite else
others => ' '

sel <= bin_counter when state = outp else
cur_bf.x when state = ramread or busy = ' '
or state = ramwrite else
others => ' '

−− data flow to ram
real_in <= input_real when state = inp else

8
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output _real when state = ramwrite else
others => ' '

real_in <= output _real when state = ramwrite else
others => ' '

imag_in <= input_imag when state = inp else
output _imag when state = ramwrite else
others => ' '

imag_in <= output _imag when state = ramwrite else
others => ' '

−− data flow from ram
input _real <= real_out
input _imag <= imag_out

input _real <= real_out
input _imag <= imag_out

output_real_tmp <= real_out when output_valid_tmp = ' ' else
others => ' '

output_imag_tmp <= imag_out when output_valid_tmp = ' ' else
others => ' '

−− counter control

bin_counter_reset <= ' ' when state = inp or state = outp else
' '

bin_counter_enable <= ' ' when state = inp and input_valid = ' '
or state = outp else
' '

bf_counter_reset <= ' ' when state = ramread or busy = ' '
or state = ramwrite else
' '

bf_counter_enable <= ' ' when state = ramwrite else
' '

−− state stransitions
next_state <= idle when reset = ' ' else−− input data

inp when state = idle and reset = ' ' or state = wait else−− wait
wait when state = inp and bin_counter = bin_max else−− do fft
ramread when state = wait or state = ramwrite

and bf_counter /= last_bf else
busy when state = ramread else
busy when state = busy else
ramwrite when state = busy else−− wait
wait when state = ramwrite and bf_counter = last_bf else−− output data
outp when state = wait else−− wait
wait when state = outp and bin_counter = bin_max else
state

−− busy flag

9
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busy <= ' ' when state = busy or state = busy else ' '

−− bin counter
counter_ entity work.counter
generic map

bits => log bins,
direction => ' '

port map
clk => clk,
reset => bin_counter_reset,
enable => bin_counter_enable,
output => bin_counter

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Buttefly control−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− butterfly counter
counter_ entity work.counter
generic map

bits => bfs_bits,
direction => ' '

port map
clk => clk,
reset => bf_counter_reset,
enable => bf_counter_enable,
output => bf_counter

−− make synthesizable RAM
lutram process clk, reset is
begin

if rising_edge clk then
cur_bf <= flycfgs to_integer unsigned bf_counter

end if
end process lutram

−− the magic happens here
butterfly_ entity work.butterfly
generic map

bits => bits,
use_registers => ' '

port map
clk => clk,
reset => reset,
cos_in => cur_bf.cos ,
msin_in => cur_bf.sin ,
input _real => input _real,
input _imag => input _imag,
input _real => input _real,
input _imag => input _imag,
output _real => output _real,
output _imag => output _imag,
output _real => output _real,
output _imag => output _imag

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Memory−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− real part
ram_ entity work.ram
generic map
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bits => bits,
bytes => bins

port map
clk => clk,
clk => clk,
we => we ,
we => we ,
addr => sel ,
addr => sel ,
data _in => real_in ,
data _out => real_out ,
data _in => real_in ,
data _out => real_out

−− imaginary part
ram_ entity work.ram
generic map

bits => bits,
bytes => bins

port map
clk => clk,
clk => clk,
we => we ,
we => we ,
addr => sel ,
addr => sel ,
data _in => imag_in ,
data _out => imag_out ,
data _in => imag_in ,
data _out => imag_out

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− synchronize output RAM takes one clock period−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
reg _valid entity work.reg
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => output_valid_tmp,
data_out => output_valid_tmp

reg _valid entity work.reg
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => output_valid_tmp ,
data_out => output_valid

reg _bin_num entity work.reg
generic map

bits => logbins
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => bin_num_tmp,
data_out => bin_num_tmp

reg _bin_num entity work.reg
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generic map
bits => logbins

port map
clk => clk,
reset => reset,
enable => ' ',
data_in => bin_num_tmp ,
data_out => output_bin

reg_out_real entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => output_real_tmp,
data_out => output_real

reg_out_imag entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => output_imag_tmp,
data_out => output_imag

end architecture behav

B. . Butterly

−− Copyright c , Nils Christopher Brause−− All rights reserved.−−−− Permission to use, copy, modify, and/or distribute this software for any−− purpose with or without fee is hereby granted, provided that the above−− copyright notice and this permission notice appear in all copies.−−−− THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES−− WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF−− MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR−− ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES−− WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN−− ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF−− OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.−−−− The views and conclusions contained in the software and documentation are−− those of the authors and should not be interpreted as representing official−− policies, either expressed or implied, of the Max Planck Institute for−− Gravitational Physics Albert Einstein Institute .

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all
use ieee.math_real.all

entity butterfly is
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generic
bits natural
k natural =
N natural =
use_kn bit = ' '
signed_arith bit = ' ' −−! use signed arithmetic
use_registers bit = ' ' −−! use additional regs on slow FPGAs
use_kogge_stone bit = ' ' −−! use an optimized Kogge Stone adder

port
clk in std_logic
reset in std_logic
cos_in in std_logic_vector bits− downto
msin_in in std_logic_vector bits− downto
input _real in std_logic_vector bits− downto
input _imag in std_logic_vector bits− downto
input _real in std_logic_vector bits− downto
input _imag in std_logic_vector bits− downto
output _real out std_logic_vector bits− downto
output _imag out std_logic_vector bits− downto
output _real out std_logic_vector bits− downto
output _imag out std_logic_vector bits− downto

end entity butterfly

architecture behav of butterfly is

−− sin *pi*k/N
function isin k integer N integer return std_logic_vector is

variable tmp real
begin

tmp = sin real k /real N *MATH_PI*real *real ** bits− −
return std_logic_vector to_signed integer tmp , bits

end isin

−− cos *pi*k/N
function icos k integer N integer return std_logic_vector is

variable tmp real
begin

tmp = cos real k /real N *MATH_PI*real *real ** bits− −
return std_logic_vector to_signed integer tmp , bits

end icos

signal cos std_logic_vector bits− downto
signal msin std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto
signal input _real std_logic_vector bits− downto
signal input _imag std_logic_vector bits− downto

begin −− architecture behav−− wk = exp − *pi*i*k = cos *pi*k − i*sin *pi*k−− t = x * wk−− y = x + t−− y = x − t
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−− calculate wk = exp − *pi*i*k = cos *pi*k − i*sin *pi*k
cos <= icos k, N when use_kn = ' ' else cos_in
msin <= std_logic_vector −signed isin k, N when use_kn = ' ' else msin_in

−− calculate t = x * wk
cmplx_mul_ entity work.cmplx_mul
generic map

bits => bits,
bits => bits,
out_bits => bits,
signed_arith => signed_arith,
use_registers => ' ',
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input _real => input _real,
input _imag => input _imag,
input _real => cos ,
input _imag => msin ,
output_real => input _real ,
output_imag => input _imag

input _real <= input _real
input _imag <= input _imag

use_registers_yes if use_registers = ' ' generate
reg_input _real entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => input _real ,
data_out => input _real

reg_input _imag entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => input _imag ,
data_out => input _imag

reg_input _real entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => input _real ,
data_out => input _real

reg_input _imag entity work.reg
generic map

bits => bits
port map

clk => clk,
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reset => reset,
enable => ' ',
data_in => input _imag ,
data_out => input _imag

end generate use_registers_yes

use_registers_no if use_registers = ' ' generate
input _real <= input _real
input _imag <= input _imag
input _real <= input _real
input _imag <= input _imag

end generate use_registers_no

−− attenuation to prevent overflow
input _real <= input _real bits− & input _real bits− downto
input _imag <= input _imag bits− & input _imag bits− downto
input _real <= input _real bits− & input _real bits− downto
input _imag <= input _imag bits− & input _imag bits− downto

−− calculate y = x + t
cmplx_add_ entity work.cmplx_add
generic map

bits => bits,
use_registers => ' ',
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input _real => input _real ,
input _imag => input _imag ,
input _real => input _real ,
input _imag => input _imag ,
output_real => output _real,
output_imag => output _imag,
overflow => open

−− calculate y = x − t
cmplx_sub_ entity work.cmplx_sub
generic map

bits => bits,
use_registers => ' ',
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input _real => input _real ,
input _imag => input _imag ,
input _real => input _real ,
input _imag => input _imag ,
output_real => output _real,
output_imag => output _imag,
underflow => open

end architecture behav

B. . Peak Finder

−− Copyright c , Nils Christopher Brause−− All rights reserved.−−
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−− Permission to use, copy, modify, and/or distribute this software for any−− purpose with or without fee is hereby granted, provided that the above−− copyright notice and this permission notice appear in all copies.−−−− THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES−− WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF−− MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR−− ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES−− WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN−− ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF−− OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.−−−− The views and conclusions contained in the software and documentation are−− those of the authors and should not be interpreted as representing official−− policies, either expressed or implied, of the Max Planck Institute for−− Gravitational Physics Albert Einstein Institute .

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all

−−! Maximum detector

−−! The maximum detector receives a set of number−value pairs and gives out the−−! the number of the highest value and the value itself.
entity maximum is
generic

value_bits natural
num_bits natural

port
clk in std_logic −−! clock input
reset in std_logic −−! asynchronous reset active low
input_value in std_logic_vector value_bits− downto −−! value
input_num in std_logic_vector num_bits− downto −−! number
input_valid in std_logic −−! value and number are valid
input_first in std_logic −−! first value−number pair resets max
input_last in std_logic −−! last value−number pair outputs max
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
exclude in std_logic_vector num_bits− downto −−! excluded num
maximum out std_logic_vector num_bits− downto −−! max. number
max_value out std_logic_vector value_bits− downto −−! max. value
new_maximum out std_logic −−! maximum computation finished

end entity maximum

architecture behav of maximum is

signal max_val_in std_logic_vector value_bits− downto
signal max_val_out std_logic_vector value_bits− downto
signal max_num_in std_logic_vector num_bits− downto
signal max_num_out std_logic_vector num_bits− downto
signal last std_logic
signal done std_logic
signal found_new_max std_logic

begin −− architecture behav
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found_new_max <= ' ' when unsigned input_value > unsigned max_val_out
or input_first = ' ' and input_valid = ' '

and input_num /= exclude and input_num /= exclude
and input_num /= exclude and input_num /= exclude
and input_num /= exclude and input_num /= exclude
and input_num /= exclude and input_num /= exclude
else ' '

max_val_in <= input_value when found_new_max = ' ' else
max_val_out

max_num_in <= input_num when found_new_max = ' ' else
max_num_out

reg_val entity work.reg
generic map

bits => value_bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => max_val_in,
data_out => max_val_out

reg_num entity work.reg
generic map

bits => num_bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => max_num_in,
data_out => max_num_out

last <= input_last and input_valid

−− 'done' asserts just after the last number−value pair.
reg _last entity work.reg
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => last,
data_out => done

reg _new_max entity work.reg
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => done,
data_out => new_maximum

reg_val entity work.reg
generic map

bits => value_bits
port map

clk => clk,
reset => reset,
enable => done,
data_in => max_val_out,
data_out => max_value

7
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reg_num entity work.reg
generic map

bits => num_bits
port map

clk => clk,
reset => reset,
enable => done,
data_in => max_num_out,
data_out => maximum

end architecture behav

B. Automatic Gain Control

B. . Implementation

−− Copyright c , Nils Christopher Brause−− All rights reserved.−−−− Permission to use, copy, modify, and/or distribute this software for any−− purpose with or without fee is hereby granted, provided that the above−− copyright notice and this permission notice appear in all copies.−−−− THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES−− WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF−− MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR−− ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES−− WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN−− ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF−− OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.−−−− The views and conclusions contained in the software and documentation are−− those of the authors and should not be interpreted as representing official−− policies, either expressed or implied, of the Max Planck Institute for−− Gravitational Physics Albert Einstein Institute .

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all
use work.log .all

−−! Automatic Gain controller

entity agc is
generic

bits natural
gainbits natural

port
clk in std_logic
reset in std_logic
amplitude in std_logic_vector bits− downto
pgain_in in std_logic_vector gainbits− downto
igain_in in std_logic_vector gainbits− downto
pgain_out out std_logic_vector gainbits− downto
igain_out out std_logic_vector gainbits− downto

end entity agc

8
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architecture behav of agc is

−− state machine
constant statebits natural =
subtype state_t is std_logic_vector statebits− downto
constant rst state_t = " "
constant idle state_t = " "
constant wait state_t = " "
constant wait state_t = " "
constant wait state_t = " "
constant wait state_t = " "
constant scan state_t = " "
constant run state_t = " "
signal state state_t = idle
signal next_state state_t = idle

signal amplitude std_logic_vector bits− downto
signal amount_tmp std_logic_vector log ceil bits downto
signal full_enable std_logic
signal full std_logic_vector log ceil bits downto
signal amount std_logic_vector log ceil bits downto
signal shift std_logic_vector log ceil bits downto
signal shift std_logic_vector gainbits− downto
signal shift std_logic_vector gainbits− downto

function clz input std_logic_vector bits− downto
return std_logic_vector is

begin
for c in to bits− loop
if input bits− −c = ' ' then

return std_logic_vector to_unsigned c, gainbits
end if

end loop −− c
return std_logic_vector to_unsigned bits, gainbits

end clz

begin −− architecture behav

amplitude_reg entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => amplitude,
data_out => amplitude

−− count leading zeros
amount_tmp <= clz amplitude

state_reg entity work.reg
generic map

bits => statebits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => next_state,
data_out => state

9
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next_state <= rst when reset = ' ' else
idle when state = rst and reset = ' ' else
wait when state = idle and unsigned amplitude /= to_unsigned

, bits else
wait when state = wait else
wait when state = wait else
wait when state = wait else
scan when state = wait else
run when state = scan else
state

full_enable <= ' ' when state = scan else ' '

full_reg entity work.reg
generic map

bits => log ceil bits +
port map

clk => clk,
reset => reset,
enable => full_enable,
data_in => amount_tmp,
data_out => full

sub_ entity work.sub
generic map

bits => log ceil bits + ,
use_registers => ' ',
use_kogge_stone => ' '

port map
clk => clk,
reset => reset,
input => amount_tmp,
input => full,
output => amount,
borrow_in => ' ',
borrow_out => open,
underflow => open

shift <= amount when state = run else
others => ' '

shift log ceil bits − downto <= shift log ceil bits − downto
shift gainbits− downto log ceil bits <= others => shift log ceil bits

pgain_add entity work.add
generic map

bits => log ceil bits + ,
use_registers => ' ',
use_kogge_stone => ' '

port map
clk => clk,
reset => reset,
input => pgain_in,
input => shift ,
output => pgain_out,
carry_in => ' ',
carry_out => open,
overflow => open

igain_add entity work.add
generic map

bits => log ceil bits + ,
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use_registers => ' ',
use_kogge_stone => ' '

port map
clk => clk,
reset => reset,
input => igain_in,
input => shift ,
output => igain_out,
carry_in => ' ',
carry_out => open,
overflow => open

end architecture behav

B. . Testbench

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all
use ieee.math_real.all
use std.textio.all
use work.log .all

entity testbench is

end entity testbench

architecture behav of testbench is

constant bits natural =
constant nco_bits natural = bits
constant lut_bits natural = bits
constant int_bits natural = *bits
constant freq_bits natural =

constant n natural =
constant r natural =

constant signed_arith bit = ' '
constant use_registers bit = ' '
constant use_kogge_stone bit = ' '

signal clk std_logic = ' '
signal clk std_logic
signal reset std_logic
signal t natural =

signal freq std_logic_vector freq_bits− downto
signal amp std_logic_vector bits− downto
signal sin std_logic_vector bits− downto
signal sin std_logic_vector *bits− downto
signal sin std_logic_vector bits− downto

signal i std_logic_vector bits+nco_bits− downto
signal i_slow std_logic_vector bits+nco_bits− downto
signal i_abs std_logic_vector bits+nco_bits− downto
signal q std_logic_vector bits+nco_bits− downto
signal pgain std_logic_vector log ceil int_bits − downto
signal igain std_logic_vector log ceil int_bits − downto
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signal pgain std_logic_vector log ceil int_bits − downto
signal igain std_logic_vector log ceil int_bits − downto
signal start_freq std_logic_vector freq_bits− downto
signal freq_out std_logic_vector freq_bits− downto

file log text open write_mode is "log"

begin −− architecture bhav

clk <= not clk after . ns
t <= t + after . ns
reset <= ' ' when t < else ' '

logger process clk, reset is
variable l line

begin
if rising_edge clk then

write l, t
write l, " "
write l, real to_integer unsigned freq /real **freq_bits−
write l, " "
write l, real to_integer unsigned freq_out /real **freq_bits−
write l, " "
write l, real to_integer unsigned amp /real **bits−
write l, " "
write l, real to_integer signed i_slow /real **bits−
write l, " "
write l, to_integer unsigned pgain
writeline log, l

end if
end process logger

−− modulation
freq <= std_logic_vector to_unsigned integer sin real t /real *real *

MATH_PI *real . +real . *real **freq_bits− , freq_bits
amp <= std_logic_vector to_signed integer cos real t /real *real *

MATH_PI *real . +real . *real ** bits− − , bits

start_freq <= std_logic_vector to_unsigned integer real . *real **freq_bits− , freq_bits
pgain <= std_logic_vector to_signed − , log ceil int_bits
igain <= std_logic_vector to_signed − , log ceil int_bits

nco_ entity work.nco
generic map

freq_bits => freq_bits,
lut_bits => lut_bits,
bits => bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
freq => freq,
pm => others => ' ' ,
sin => sin ,
cos => open,
saw => open

mul_ entity work.mul
generic map

bits => bits,
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bits => bits,
signed_arith => ' ',
use_registers => ' ',
use_kogge_stone => ' '

port map
clk => clk,
reset => reset,
input => sin ,
input => amp,
output => sin

sin <= sin *bits− downto bits−
pll _ entity work.pll
generic map

bits => bits,
int_bits => int_bits,
lut_bits => lut_bits,
nco_bits => nco_bits,
freq_bits => freq_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => sin ,
i => i,
q => q,
error => q,
pgain => pgain ,
igain => igain ,
start_freq => start_freq,
freq_out => freq_out,
freq_in => freq_out,
phase => open

clkdiv_ entity work.clkdiv
generic map

div => **r,
duty_cycle => ' ',
use_kogge_stone => ' '

port map
clk => clk,
reset => reset,
enable => ' ',
clk_out => clk

gcic_ entity work.gcic
generic map

bits => bits+nco_bits,
out_bits => bits+nco_bits,
r => r,
n => n,
signed_arith => ' ',
use_kogge_stone => ' '

port map
clk => clk,
clk => clk ,
reset => reset,
input => i,
output => i_slow
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absolute_ entity work.absolute
generic map

bits => bits+nco_bits,
use_registers => ' ',
use_kogge_stone => ' '

port map
clk => clk,
reset => reset,
input => i_slow,
output => i_abs

agc_ entity work.agc
generic map

bits => bits+nco_bits,
gainbits => log ceil int_bits

port map
clk => clk ,
reset => reset,
amplitude => i_abs,
pgain_in => pgain,
pgain_out => pgain ,
igain_in => igain,
igain_out => igain

end architecture behav

B. Diferential Wavefront Sensing

B. . Implementation

−− Copyright c , Nils Christopher Brause−− All rights reserved.−−−− Permission to use, copy, modify, and/or distribute this software for any−− purpose with or without fee is hereby granted, provided that the above−− copyright notice and this permission notice appear in all copies.−−−− THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES−− WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF−− MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR−− ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES−− WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN−− ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF−− OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.−−−− The views and conclusions contained in the software and documentation are−− those of the authors and should not be interpreted as representing official−− policies, either expressed or implied, of the Max Planck Institute for−− Gravitational Physics Albert Einstein Institute .

library ieee
use ieee.std_logic_ .all
use work.log .all

−−! phase locked loop for QPDs
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entity qpd_pll is
generic

bits natural −−! width of input
int_bits natural −−! internal signal width
lut_bits natural −−! width of LUT input
nco_bits natural −−! width of nco output
freq_bits natural −−! width of frequency input/output
signed_arith bit = ' ' −−! assume input is signed
use_registers bit = ' ' −−! use additional registers on slow

FPGAs
use_kogge_stone bit = ' ' −−! use an optimized Kogge Stone adder

port
clk in std_logic −−! clock input
reset in std_logic −−! asynchronous reset active low
enable in std_logic −−! enable component
inputa in std_logic_vector bits− downto −−! input signal
inputb in std_logic_vector bits− downto −−! input signal
inputc in std_logic_vector bits− downto −−! input signal
inputd in std_logic_vector bits− downto −−! input signal
ia out std_logic_vector bits+nco_bits− downto −−! intensity

output
qa out std_logic_vector bits+nco_bits− downto −−! quality

output
ib out std_logic_vector bits+nco_bits− downto −−! intensity

output
qb out std_logic_vector bits+nco_bits− downto −−! quality

output
ic out std_logic_vector bits+nco_bits− downto −−! intensity

output
qc out std_logic_vector bits+nco_bits− downto −−! quality

output
id out std_logic_vector bits+nco_bits− downto −−! intensity

output
qd out std_logic_vector bits+nco_bits− downto −−! quality

output
errora in std_logic_vector bits+nco_bits− downto −−! error input

connect to q
errorb in std_logic_vector bits+nco_bits− downto −−! error input

connect to q
errorc in std_logic_vector bits+nco_bits− downto −−! error input

connect to q
errord in std_logic_vector bits+nco_bits− downto −−! error input

connect to q
pgain_sum in std_logic_vector log ceil int_bits − downto −−!

proportional gain
igain_sum in std_logic_vector log ceil int_bits − downto −−!

integral gain
pgain_dx in std_logic_vector log ceil int_bits − downto −−!

proportional gain
igain_dx in std_logic_vector log ceil int_bits − downto −−!

integral gain
pgain_dy in std_logic_vector log ceil int_bits − downto −−!

proportional gain
igain_dy in std_logic_vector log ceil int_bits − downto −−!

integral gain
pgain_ell in std_logic_vector log ceil int_bits − downto −−!

proportional gain
igain_ell in std_logic_vector log ceil int_bits − downto −−!

integral gain
start_freq in std_logic_vector freq_bits− downto −−! start frequency
freq_out out std_logic_vector freq_bits− downto −−! measured

frequency
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freq_in in std_logic_vector freq_bits− downto −−! frequency input
connect to freq_in

phase_sum out std_logic_vector freq_bits− downto −−! phase output
phase_dx out std_logic_vector freq_bits− downto −−! phase output
phase_dy out std_logic_vector freq_bits− downto −−! phase output
phase_ell out std_logic_vector freq_bits− downto −−! phase output

end entity qpd_pll

architecture behav of qpd_pll is

signal sinea std_logic_vector nco_bits− downto
signal sineb std_logic_vector nco_bits− downto
signal sinec std_logic_vector nco_bits− downto
signal sined std_logic_vector nco_bits− downto
signal cosinea std_logic_vector nco_bits− downto
signal cosineb std_logic_vector nco_bits− downto
signal cosinec std_logic_vector nco_bits− downto
signal cosined std_logic_vector nco_bits− downto

signal errora std_logic_vector bits+nco_bits− downto
signal errorb std_logic_vector bits+nco_bits− downto
signal errorc std_logic_vector bits+nco_bits− downto
signal errord std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal tmp std_logic_vector bits+nco_bits− downto
signal error_sum std_logic_vector bits+nco_bits− downto
signal error_dx std_logic_vector bits+nco_bits− downto
signal error_dy std_logic_vector bits+nco_bits− downto
signal error_ell std_logic_vector bits+nco_bits− downto

signal pidout_sum std_logic_vector int_bits− downto
signal pidout_dx std_logic_vector int_bits− downto
signal pidout_dy std_logic_vector int_bits− downto
signal pidout_ell std_logic_vector int_bits− downto
signal pidout_sum std_logic_vector freq_bits− downto
signal pidout_dx std_logic_vector freq_bits− downto
signal pidout_dy std_logic_vector freq_bits− downto
signal pidout_ell std_logic_vector freq_bits− downto

signal phase_sum_tmp std_logic_vector freq_bits− downto
signal phase_dx_tmp std_logic_vector freq_bits− downto
signal phase_dy_tmp std_logic_vector freq_bits− downto
signal phase_ell_tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal tmp std_logic_vector freq_bits− downto
signal phasea std_logic_vector freq_bits− downto
signal phaseb std_logic_vector freq_bits− downto
signal phasec std_logic_vector freq_bits− downto
signal phased std_logic_vector freq_bits− downto
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begin −− architecture behav

−− IQ demodulation

mul_ia entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputa,
input => sinea,
output => ia

mul_ib entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputb,
input => sineb,
output => ib

mul_ic entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputc,
input => sinec,
output => ic

mul_id entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputd,
input => sined,
output => id

mul_qa entity work.mul
generic map

7
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bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputa,
input => cosinea,
output => qa

mul_qb entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputb,
input => cosineb,
output => qb

mul_qc entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputc,
input => cosinec,
output => qc

mul_qd entity work.mul
generic map

bits => bits,
bits => nco_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => inputd,
input => cosined,
output => qd

−− divide error signals by before adding to prevent overflow

barrel_shift_int_a entity work.barrel_shift_int
generic map

bits => bits+nco_bits,
value => ,
signed_arith => signed_arith,
direction => ' '

8
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port map
input => errora,
output => errora

barrel_shift_int_b entity work.barrel_shift_int
generic map

bits => bits+nco_bits,
value => ,
signed_arith => signed_arith,
direction => ' '

port map
input => errorb,
output => errorb

barrel_shift_int_c entity work.barrel_shift_int
generic map

bits => bits+nco_bits,
value => ,
signed_arith => signed_arith,
direction => ' '

port map
input => errorc,
output => errorc

barrel_shift_int_d entity work.barrel_shift_int
generic map

bits => bits+nco_bits,
value => ,
signed_arith => signed_arith,
direction => ' '

port map
input => errord,
output => errord

−− combine error signals

add_sum entity work.add
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errora ,
input => errorb ,
output => tmp ,
carry_in => ' ',
carry_out => open,
overflow => open

add_sum entity work.add
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errorc ,
input => errord ,
output => tmp ,

9
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carry_in => ' ',
carry_out => open,
overflow => open

add_sum entity work.add
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => error_sum,
carry_in => ' ',
carry_out => open,
overflow => open

sub_dx entity work.sub
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errora ,
input => errorb ,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

sub_dx entity work.sub
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errorc ,
input => errord ,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

add_dx entity work.add
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => error_dx,
carry_in => ' ',
carry_out => open,
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overflow => open

sub_dy entity work.sub
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errora ,
input => errorc ,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

sub_dy entity work.sub
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errorb ,
input => errord ,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

add_dy entity work.add
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => error_dy,
carry_in => ' ',
carry_out => open,
overflow => open

sub_ell entity work.sub
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errora ,
input => errorb ,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open
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sub_ell entity work.sub
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => errord ,
input => errorc ,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

add_ell entity work.add
generic map

bits => bits+nco_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => error_ell,
carry_in => ' ',
carry_out => open,
overflow => open

−− PID filter

pidctrl_sum entity work.pidctrl
generic map

bits => bits+nco_bits,
int_bits => int_bits,
signed_arith => signed_arith,
gains_first => ' ',
use_prop => ' ',
use_int => ' ',
use_diff => ' ',
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
enable => enable,
input => error_sum,
pgain => pgain_sum,
igain => igain_sum,
dgain => others => ' ' ,
output => pidout_sum

pidctrl_dx entity work.pidctrl
generic map

bits => bits+nco_bits,
int_bits => int_bits,
signed_arith => signed_arith,
gains_first => ' ',
use_prop => ' ',
use_int => ' ',
use_diff => ' ',
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use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
enable => enable,
input => error_dx,
pgain => pgain_dx,
igain => igain_dx,
dgain => others => ' ' ,
output => pidout_dx

pidctrl_dy entity work.pidctrl
generic map

bits => bits+nco_bits,
int_bits => int_bits,
signed_arith => signed_arith,
gains_first => ' ',
use_prop => ' ',
use_int => ' ',
use_diff => ' ',
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
enable => enable,
input => error_dy,
pgain => pgain_dy,
igain => igain_dy,
dgain => others => ' ' ,
output => pidout_dy

pidctrl_ell entity work.pidctrl
generic map

bits => bits+nco_bits,
int_bits => int_bits,
signed_arith => signed_arith,
gains_first => ' ',
use_prop => ' ',
use_int => ' ',
use_diff => ' ',
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
enable => enable,
input => error_ell,
pgain => pgain_ell,
igain => igain_ell,
dgain => others => ' ' ,
output => pidout_ell

−− resize pid results

round_sum entity work.round
generic map

inp_bits => int_bits,
outp_bits => freq_bits,
signed_arith => signed_arith,
use_registers => use_registers,
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use_kogge_stone => use_kogge_stone
port map

clk => clk,
reset => reset,
input => pidout_sum,
output => pidout_sum

round_dx entity work.round
generic map

inp_bits => int_bits,
outp_bits => freq_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => pidout_dx,
output => pidout_dx

round_dy entity work.round
generic map

inp_bits => int_bits,
outp_bits => freq_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => pidout_dy,
output => pidout_dy

round_ell entity work.round
generic map

inp_bits => int_bits,
outp_bits => freq_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => pidout_ell,
output => pidout_ell

−− add start frequency

add_freq entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => pidout_sum ,
input => start_freq,
output => freq_out,
carry_in => ' ',
carry_out => open,
overflow => open
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−− integrate frequency to phase

accumulator_sum entity work.accumulator
generic map

bits => freq_bits,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
enable => enable,
input => freq_in,
output => phase_sum_tmp

phase_sum <= phase_sum_tmp

reg_dx entity work.reg
generic map

bits => freq_bits
port map

clk => clk,
reset => reset,
enable => enable,
data_in => pidout_dx ,
data_out => phase_dx_tmp

phase_dx <= phase_dx_tmp

reg_dy entity work.reg
generic map

bits => freq_bits
port map

clk => clk,
reset => reset,
enable => enable,
data_in => pidout_dy ,
data_out => phase_dy_tmp

phase_dy <= phase_dy_tmp

reg_ell entity work.reg
generic map

bits => freq_bits
port map

clk => clk,
reset => reset,
enable => enable,
data_in => pidout_ell ,
data_out => phase_ell_tmp

phase_ell <= phase_ell_tmp

−− combine phases

add_a entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_sum_tmp,
input => phase_dx_tmp,
output => tmp ,
carry_in => ' ',
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carry_out => open,
overflow => open

add_a entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_dy_tmp,
input => phase_ell_tmp,
output => tmp ,
carry_in => ' ',
carry_out => open,
overflow => open

add_a entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => phasea,
carry_in => ' ',
carry_out => open,
overflow => open

sub_b entity work.sub
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_sum_tmp,
input => phase_dx_tmp,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

sub_b entity work.sub
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_dy_tmp,
input => phase_ell_tmp,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open
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add_b entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => phaseb,
carry_in => ' ',
carry_out => open,
overflow => open

sub_c entity work.sub
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_sum_tmp,
input => phase_dy_tmp,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

sub_c entity work.sub
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_dx_tmp,
input => phase_ell_tmp,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

add_c entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => phasec,
carry_in => ' ',
carry_out => open,
overflow => open

sub_d entity work.sub
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generic map
bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_sum_tmp,
input => phase_dx_tmp,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

sub_d entity work.sub
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => phase_ell_tmp,
input => phase_dy_tmp,
output => tmp ,
borrow_in => ' ',
borrow_out => open,
underflow => open

add_d entity work.add
generic map

bits => freq_bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => tmp ,
input => tmp ,
output => phased,
carry_in => ' ',
carry_out => open,
overflow => open

−− look up tables

sincos_a entity work.sincos
generic map

phase_bits => freq_bits,
bits => nco_bits,
use_registers => use_registers,
lut_type =>

port map
clk => clk,
reset => reset,
phase => phasea,
sinout => sinea,
cosout => cosinea

sincos_b entity work.sincos
generic map

phase_bits => freq_bits,

8
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bits => nco_bits,
use_registers => use_registers,
lut_type =>

port map
clk => clk,
reset => reset,
phase => phaseb,
sinout => sineb,
cosout => cosineb

sincos_c entity work.sincos
generic map

phase_bits => freq_bits,
bits => nco_bits,
use_registers => use_registers,
lut_type =>

port map
clk => clk,
reset => reset,
phase => phasec,
sinout => sinec,
cosout => cosinec

sincos_d entity work.sincos
generic map

phase_bits => freq_bits,
bits => nco_bits,
use_registers => use_registers,
lut_type =>

port map
clk => clk,
reset => reset,
phase => phased,
sinout => sined,
cosout => cosined

end architecture behav

B. . Testbench

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all
use ieee.math_real.all
use std.textio.all
use work.log .all

entity testbench is

end entity testbench

architecture behav of testbench is

constant bits natural =
constant nco_bits natural = bits
constant lut_bits natural = bits
constant int_bits natural = *bits
constant freq_bits natural =

9



B. VHDL S C

constant signed_arith bit = ' '
constant use_registers bit = ' '
constant use_kogge_stone bit = ' '

signal clk std_logic = ' '
signal reset std_logic
signal t natural =

signal freq std_logic_vector freq_bits− downto
signal pm std_logic_vector freq_bits− downto
signal sin std_logic_vector bits− downto
signal sin std_logic_vector bits− downto

signal inputa std_logic_vector bits− downto
signal inputb std_logic_vector bits− downto
signal inputc std_logic_vector bits− downto
signal inputd std_logic_vector bits− downto
signal ia std_logic_vector bits+nco_bits− downto
signal qa std_logic_vector bits+nco_bits− downto
signal ib std_logic_vector bits+nco_bits− downto
signal qb std_logic_vector bits+nco_bits− downto
signal ic std_logic_vector bits+nco_bits− downto
signal qc std_logic_vector bits+nco_bits− downto
signal id std_logic_vector bits+nco_bits− downto
signal qd std_logic_vector bits+nco_bits− downto
signal errora std_logic_vector bits+nco_bits− downto
signal errorb std_logic_vector bits+nco_bits− downto
signal errorc std_logic_vector bits+nco_bits− downto
signal errord std_logic_vector bits+nco_bits− downto
signal pgain_sum std_logic_vector log ceil int_bits − downto
signal igain_sum std_logic_vector log ceil int_bits − downto
signal pgain_dx std_logic_vector log ceil int_bits − downto
signal igain_dx std_logic_vector log ceil int_bits − downto
signal pgain_dy std_logic_vector log ceil int_bits − downto
signal igain_dy std_logic_vector log ceil int_bits − downto
signal pgain_ell std_logic_vector log ceil int_bits − downto
signal igain_ell std_logic_vector log ceil int_bits − downto
signal start_freq std_logic_vector freq_bits− downto
signal freq_out std_logic_vector freq_bits− downto
signal freq_in std_logic_vector freq_bits− downto
signal phase_sum std_logic_vector freq_bits− downto
signal phase_dx std_logic_vector freq_bits− downto
signal phase_dy std_logic_vector freq_bits− downto
signal phase_ell std_logic_vector freq_bits− downto

file log text open write_mode is "log"

begin −− architecture bhav

clk <= not clk after . ns
t <= t + after . ns
reset <= ' ' when t < else ' '

logger process clk, reset is
variable l line

begin
if clk'event and clk = ' ' then

write l, t
write l, " "
write l, real to_integer unsigned freq /real **freq_bits−
write l, " "
write l, real to_integer unsigned freq_out /real **freq_bits−
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write l, " "
write l, real to_integer unsigned pm /real **freq_bits−
write l, " "
write l, real −to_integer signed phase_dx /real **freq_bits−
writeline log, l

end if
end process logger

freq <= std_logic_vector to_unsigned integer sin real t /real *real *
MATH_PI *real . +real . *real **freq_bits− , freq_bits

pm <= std_logic_vector to_unsigned integer sin real t /real *real *
MATH_PI *real . +real . *real **freq_bits− , freq_bits

start_freq <= std_logic_vector to_unsigned integer real . *real **freq_bits− , freq_bits
pgain_sum <= std_logic_vector to_signed − , log ceil int_bits
igain_sum <= std_logic_vector to_signed − , log ceil int_bits
pgain_dx <= std_logic_vector to_signed − , log ceil int_bits
igain_dx <= std_logic_vector to_signed − , log ceil int_bits
pgain_dy <= std_logic_vector to_signed − , log ceil int_bits
igain_dy <= std_logic_vector to_signed − , log ceil int_bits
pgain_ell <= std_logic_vector to_signed − , log ceil int_bits
igain_ell <= std_logic_vector to_signed − , log ceil int_bits

nco_ entity work.nco
generic map

freq_bits => freq_bits,
lut_bits => lut_bits,
bits => bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
freq => freq,
pm => others => ' ' ,
sin => sin ,
cos => open,
saw => open

nco_ entity work.nco
generic map

freq_bits => freq_bits,
lut_bits => lut_bits,
bits => bits,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
freq => freq,
pm => pm,
sin => sin ,
cos => open,
saw => open

inputa <= sin inputb <= sin
inputc <= sin inputd <= sin

qpd_pll_ entity work.qpd_pll
generic map

bits => bits,

7
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int_bits => int_bits,
lut_bits => lut_bits,
nco_bits => nco_bits,
freq_bits => freq_bits,
signed_arith => signed_arith,
use_registers => use_registers,
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
enable => ' ',
inputa => inputa,
inputb => inputb,
inputc => inputc,
inputd => inputd,
ia => ia,
qa => qa,
ib => ib,
qb => qb,
ic => ic,
qc => qc,
id => id,
qd => qd,
errora => errora,
errorb => errorb,
errorc => errorc,
errord => errord,
pgain_sum => pgain_sum,
igain_sum => igain_sum,
pgain_dx => pgain_dx,
igain_dx => igain_dx,
pgain_dy => pgain_dy,
igain_dy => igain_dy,
pgain_ell => pgain_ell,
igain_ell => igain_ell,
start_freq => start_freq,
freq_out => freq_out,
freq_in => freq_in,
phase_sum => phase_sum,
phase_dx => phase_dx,
phase_dy => phase_dy,
phase_ell => phase_ell

errora <= qa
errorb <= qb
errorc <= qc
errord <= qd
freq_in <= freq_out

end architecture behav

B. Ranging and data transfer

B. . Actuator signal ilter

−− Copyright c , Nils Christopher Brause−− All rights reserved.
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−−−− Permission to use, copy, modify, and/or distribute this software for any−− purpose with or without fee is hereby granted, provided that the above−− copyright notice and this permission notice appear in all copies.−−−− THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES−− WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF−− MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR−− ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES−− WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN−− ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF−− OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.−−−− The views and conclusions contained in the software and documentation are−− those of the authors and should not be interpreted as representing official−− policies, either expressed or implied, of the Max Planck Institute for−− Gravitational Physics Albert Einstein Institute .

library ieee
use ieee.std_logic_ .all
use ieee.numeric_std.all

entity slowlyadd is
generic

bits natural −−! width of input
use_registers bit = ' ' −−! use additional registers on slow

FPGAs
use_kogge_stone bit = ' ' −−! use an optimized Kogge Stone adder

port
clk in std_logic −−! input clock
reset in std_logic −−! asynchronous reset
input in std_logic_vector bits− downto −−! first summand
input in std_logic_vector bits− downto −−! second summand slow
output out std_logic_vector bits− downto −−! output sum
carry_in in std_logic −−! carry imput unused
carry_out out std_logic −−! carry output
overflow out std_logic −−! signed overflow

end entity slowlyadd

architecture behav of slowlyadd is

constant one std_logic_vector bits− downto = std_logic_vector to_signed
, bits

signal slow std_logic_vector bits− downto
signal slow_next std_logic_vector bits− downto
signal slow_plus std_logic_vector bits− downto
signal slow_minus std_logic_vector bits− downto

begin −− architecture behav

slow_add_one entity work.add
generic map

bits => bits,
use_registers => ' ',
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => slow,
input => one,
output => slow_plus,
carry_in => ' ',
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carry_out => open,
overflow => open

slow_sub_one entity work.sub
generic map

bits => bits,
use_registers => ' ',
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => slow,
input => one,
output => slow_minus,
borrow_in => ' ',
borrow_out => open,
underflow => open

slow_next <= slow_plus when signed slow < signed input else
slow_minus when signed slow > signed input else
slow

slow_reg entity work.reg
generic map

bits => bits
port map

clk => clk,
reset => reset,
enable => ' ',
data_in => slow_next,
data_out => slow

slow_add entity work.add
generic map

bits => bits,
use_registers => ' ',
use_kogge_stone => use_kogge_stone

port map
clk => clk,
reset => reset,
input => input ,
input => slow,
output => output,
carry_in => ' ',
carry_out => carry_out,
overflow => overflow

end architecture behav
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Acronyms

AC Alternating Current.

ADC Analogue to Digital Converter. , –8, , – 7, , , 79, 88, 89, 7

AGC Automatic Gain Control. , 9, , , 8, – 9, 7, III, V

AM Amplitude Modulation.

AOM Acoustic-Optic Modulator.

BER Bit Error Rate. 99, , , , 8

CIC Cascaded Integrator Comb. 8

CNR Carrier to Noise Density Ratio. 7 , 7 , 9 , , 8, III, V

DAC Digital to Analog Converter. , –8,

DC Direct Current. 7,

DFT Discrete Fourier Transform. ,

DLL Delay Locked Loop. , 9 –98, , , , , 8, III, V

DPLL Digital Phase Locked Loop. , , 8– , – , , , , 9, , 7, – 9,
7 –9 , 9 , – , 7, 8, III, V

DPS Diferential Power Sensing. 7

DSP Digital Signal Processing. 8

DSS Digital Signal Simulator. –

DWS Diferential Wavefront Sensing. , 7 –9 , 8, III, V

EBB Elegant Bread Board. –8
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FEC Forward Error Correction. , , 8

FFT Fast Fourier Transform. , , –8, – , , , , , – 8, – 7, , 7,
III, V

FPGA Field Programmable Gate Array. , 8, , – 9, , 7 , 7

FPU Floating Point Unit. 7

FSM Finite State Machine. , , , 9 –9 , 98, 7

FT Fourier Transform. ,

IAD Integrate-And-Dump. 9 –9

LIGO Laser Interferometer Gravitational Wave Observatory.

LISA Laser Interferometer Space Antenna. – , , , , 7 , 7 , 9 , 9 , 98, ,
, 7, 8, III, V

LMS LISA Metrology System. , –7, , , , , , , , , , , , 9 , 9 ,
– , 7, 8, III, V

LRI Long Range Interferometry. , 7 , III, V

LUT Look-Up Table. 9, , 79, 9 , 9 , 98

NCO Numerically Controlled Oscillator. 9, , , , , , 8

NPRO Non-Planar Ring Oscillator. , , 7

PA Phase Accumulator. 9, , 77

PC Personal Computer. , 7

PI Proportional-Integral. 9, , , , , , 7– 9, 7, 8, , , 7 , 7 , 77, 79,
8 , 9 , 9 , 7

PLL Phase Locked Loop. , , 8

PRN Pseudo Random Noise. 9 –9 , 98– , , 8, III, V

QPD Quadrant Photo Diode. 7 –7 , 78, 8 , 89, 8, III, V

RAM Random Access Memory. 7, 8–

ROM Read Only Memory.
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SEPD Single Element Photo Diode. 88

TDI Time-Delay Interferometry. 9 , 8, III, V

VHDL Very high speed integrated circuit Hardware Description Language. 7,
9, , , 7, , 7 , 8

VRAM Video Memory.
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