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Kurzzusammenfassung

Zu einer gegebenen G-invarianten, holomorphen 1-Form auf dem Keim einer komplex-
analytischen G-Varietét, die einen isolierten singuldren Punkt aufweist, lassen sich der
dquivariante homologische und der (reduzierte) dquivariante radiale Index als Elemente
im Ring der komplexen Darstellungen der (endlichen) Gruppe G definieren. Wir zeigen,
dass diese Indizes auf einer glatten, komplex-analytischen G-Varietét libereinstimmen.
Das ermdglicht uns, die Differenz zwischen diesen beiden Indizes als eine Version der
dquivarianten Milnorzahl eines Keims einer G-Varietét mit isoliertem singuldren Punkt
zu betrachten. Fiir zyklische Gruppen der Ordnung zwei und drei geben wir aufferdem
einen alternativen Ansatz, um die Gleichheit der beiden Indizes zu zeigen. Dieser Ansatz
liefert uns dann eine Klassifikation singuldrer Punkte, die man nicht ausschliefen kann,
indem man Deformationen von 1-Formen, die invariant beziiglich der Wirkung einer zyk-
lischen Gruppe der Ordnung 3 sind, betrachtet.

Stichworte: endliche Gruppenwirkungen, Invariante Vektorfelder, Invariante 1-Formen,
Indizes, dquivariante Deformationen

Abstract

Given a G-invariant holomorphic 1-form with an isolated singular point on a germ of
a complex analytic G-variety with an isolated singular point, its equivariant homologi-
cal index and (reduced) equivariant radial index are defined as elements of the ring of
complex representations of the finite group G. We show that these indices coincide on
a germ of a smooth complex analytic G-variety. This makes it possible to consider the
difference between them as a version of the equivariant Milnor number of a germ of a
G-variety with an isolated singular point. For cyclic groups of order two and three we
additionally describe another approach to prove the coincidence. This gives us a classifi-
cation of singular points which cannot be excluded by deformations of 1-forms invariant
with respect to an action of a cyclic group of order 3.

Key words: finite group actions, invariant vector fields, invariant 1-forms, indices,
equivariant deformations.
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Chapter 1

Introduction

An isolated singular point of a (continuous) vector field or a 1-form on a smooth manifold
has a well-known integer invariant, the index. It has been an important topological
invariant since the classical works of Poincaré [29] and Hopf [24] on the result, which
is now known as Poincaré-Hopf theorem and which states that the sum of indices of
isolated singular points of a vector field on a smooth compact manifold is equal to the
Euler characteristic of the manifold.

For more than half a century there is a lively interest in generalization of the funda-
mental results for smooth (real or complex) manifolds to the case of singular varieties. In
particular, there are several types of indices of isolated singular points of vector fields or
1-forms on singular (real or complex) analytic varieties [3, 10]. One of these generaliza-
tions is radial index. The idea of this index was inspired by the Poincaré-Hopf theorem.
The first definition of the radial index was introduced for so-called radial vector fields by
M.-H. Schwartz [30, 31, 32|. Later it was defined for vector fields or 1-forms on arbitrary
real or complex analytic varieties by W. Ebeling and S. M. Gusein-Zade in [13, 14].

In [17] X. Goméz-Mont introduced the so-called homological index for a germ of a
complex analytic variety with an isolated singular point at the origin and a holomorphic
vector field on it. It was used to obtain a generalization of the algebraic formula for the
index of a vector field [26, 28] to the case of a hypersurface with an isolated singularity.
The homological index was defined for 1-forms in [15]. For a germ of a variety with an
isolated singular point and a holomorphic 1-form on it the authors suggested to consider
the difference between the homological and the radial indices as a version of the Milnor
number of the singular point of the variety. It was motivated by the fact that the
difference of these two indices does not depend on the 1-form and is equal to zero in the
non singular case, as both indices are equal to the classical index.

For a finite group G acting on a variety, a G-variety, there are several versions of
the Euler characteristic, called the equivariant Euler characteristic. For instance, in [34]
it was introduced as an element of the representation ring R(G) of the group G, and
in |5, 8] as an element of the Burnside ring A(G). As the sum of the radial indices of
a vector field or 1-form on a compact variety with isolated singularities is equal to its
Euler characteristic [13, 14], it is natural to try to obtain the same result for the case of
a G-variety. That was done in [8]. The equivariant radial index of a G-invariant vector
field or 1-form there was defined as an element of the Burnside ring A(G) of the group.
There is a natural homomorphism from the Burnside ring A(G) to the ring R(G) of
(complex) representations of the group G. It sends the equivariant Euler characteristic
defined in [34] to the equivariant Euler characteristic from [5, 8] and gives a version of



2 Chapter 1. Introduction

the equivariant radial index, the reduced equivariant radial index, with values in the ring
R(G).

There are very natural generalizations of the notions of the homological index of a
vector field or of a 1-form to the equivariant setting (see Section 3.4). These generaliza-
tions take values in the ring R(G) of representations. For a holomorphic vector field on a
germ of a smooth complex analytic manifold, the equivariant homological index and the
equivariant “usual” (radial) index with values in the ring R(G) of representations coincide
(see Section 5.1). It follows from the fact that there exists a G-invariant deformation of
a G-invariant vector field with only non degenerate singular points. On the other hand,
a similar argument does not work for 1-forms. G-invariant deformations of a G-invariant
holomorphic 1-form on (C",0) have, as a rule, complicated singular points.

Aiming to prove that the equivariant homological index and the equivariant radial
index of a holomorphic 1-form coincide, we might try to describe all singular points which
can appear in generic G-invariant deformations and to compare these indices for them.
This approach was used in the current work for 1-forms invariant under actions of groups
of order two and three (Chapter 4). However, in the general setting this seems to be a
rather involved task and it is not clear to which extent this program can be implemented.

Using another approach, we prove that the equivariant homological index and the
reduced equivariant radial index of a singular point of a holomorphic 1-form on a smooth
complex-analytic manifold coincide. The proof is by induction on the dimension of the
manifold and on the order of a (cyclic) group. This statement allows us to consider the
difference between these indices as a version of the equivariant Milnor number of a germ
of a G-variety with an isolated singular point.

Structure of the Thesis

In Chapter 2 we recall the definitions of the classical index of a vector field or 1-form
on a smooth manifold and of its generalizations to the case of vector fields and 1-forms
on singular varieties. We discuss the main results for these notions and mention several
advantages of 1-forms over vector fields.

In Chapter 3 we give the necessary definitions of the Burnside ring and the ring of
representations, discuss the equivariant analogues of the indices defined in the previous
chapter and the equivariant Euler characteristic. In Section 3.4 we introduce the notion
of the equivariant homological index and prove the law of conservation for it.

In Chapter 4 for the case of cyclic groups of order two and three we prove the equiv-
alence of the reduced equivariant radial and homological indices and classify simplest
zeros of 1-forms which cannot be excluded by deformations with respect to these group
actions.

Chapter 5 is mostly based on the article [22] and dedicated to the proof of the
coincidence of equivariant homological and reduced equivariant radial indices for G-
invariant 1-forms (Theorem 5.3). Section 5.1 contains the same result for vector fields.

In Chapter 6 we discuss the equivariant version of the generalized Milnor number
and obtain an algebraic formula for the radial index of a 1-form on a quotient singularity
as a corollary of Theorem 5.3.



Chapter 2

Indices of Vector Fields and 1-Forms

2.1 The Classical Poincaré-Hopf Index

Let & be a vector field on a smooth manifold M™ C RY, i.e. a section of its tangent
bundle TM™. A neighborhood of a point on M"™ may be identified with a neighborhood
of the origin in R™. We can therefore present the vector field using local coordinates

n
in the form: & = ) fi%. The vector field is continuous, smooth, analytic, etc. if the
i=1 ’

components {&1,...,&,} are continuous, smooth, analytic, etc.
Definition: A point p € M" is called singular (or zero) for the vector field £ if all of its
components {&1, ..., &, } vanish simultaneously at p. A singular point p is called isolated
if there are no other singular points of £ in a neighborhood of p.

Let Bl be the ball of a small radius € centered at the origin in R" such that the vector
field ¢ has no other singular points in B” except the origin itself. Let S*~1 := OB be
the (n — 1)-dimensional sphere corresponding to BY.

Definition: The Poincaré-Hopf index (or just the indezr) of the vector field £ at the
point p € M™ is the degree of the map

& SISO (2.1)

e

from the (n — 1)-dimensional sphere of radius ¢ centered at the origin in R™ (which
corresponds to p € M™) to the unit sphere S{l_l.

As one may see, it is independent of the choice of coordinates.

Definition: A singular point p of the vector field £ is called non-degenerate if the Jacobi

matrix of the map (&1, ...,&,) is non-degenerate at p:
3
Jep = et (5 )) 0.
J

Then the (Poincaré-Hopf) index is equal to the sign of the Jacobian, i.e., ind (§, M;p) =
1,if Je,, > 0, and ind (€, M; p) = —1, if J¢,, < 0.

The index satisfies the law of conservation of number.

Proposition 2.1 Let p be an isolated singular point of the vector field § on a manifold
M. If € is a small perturbation of & with isolated singular points, then the sum of indices
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of the singular points ofg near p is equal to the index of & at p:

ind(&M,p)= Y ind(§M,p),
pESing ENU (p)

where U(p) is a small neighborhood of p in M.

From the law of conservation it follows that the index of an arbitrary singular point p
is equal to the number of non-degenerate singular points of a generic deformation of the
vector field € in a neighborhood of the point p counted with the corresponding signs of
the determinant of the Jacobi matrix of &.

The following statement is one of the main properties of the index.

Theorem 2.1 (Poincaré-Hopf theorem) Let M be a closed manifold (i.e. compact
without boundary) and & is a vector field with finitely many singular points on it. The
sum of indices of singular points of the vector field & is equal to the Euler characteristic
of the manifold M :

> ind (&M, p) = x(M).

pESing &

In case of a holomorphic vector field there is an algebraic formula for the index of
an isolated singular point, which was first proved by V. Palamodov in 1967. Namely, in

n
local coordinates centered at the singular point p let & = ) {i%. Denote by Ocn )
i=1 ’

the ring of germs of holomorphic functions of n variables.

Theorem 2.2 [28]

ind (5) Cnvp) = dim¢ O(C",O)/(gla s 7£n)a

where (&1, ...,&,) is the ideal generated by &1,...,&,

2.2 Advantages of 1-Forms

In [1] Arnold suggested to consider indices of 1-forms instead of indices of vector fields.
For the case of smooth manifolds there is no difference between indices of vector fields
and indices of 1-forms. Vector fields and 1-forms on smooth manifolds can be identified
via a Riemannian metric. Therefore, one can define the Poincaré-Hopf index of a 1-form
w as the degree of the map "
. aon—1 n—1
el SiTh = 5]

between the spheres in the dual space.
n
In the local complex-analytic case the vector field @% corresponds to the 1-form
i=1 '

n
> &dz;, where (z1,...,z,) are local coordinates. The Poincaré-Hopf theorem in this
i=1
case is formulated in a slightly different way: the sum of indices of singular points of a
1-form on a complex manifold M is equal to (—1)"x(M"), where n := dim M. (See the

explanation of the sign in the next section.) Also, in the case of odd-dimensional smooth
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complex-analytic manifolds non-trivial holomorphic vector fields can exist only if the
Euler characteristic of the manifold is non-negative. Whereas, non-trivial holomorphic
1-forms exist only on manifolds with non-positive Euler characteristic.

In the case of singular varieties the difference between vector fields and 1-forms
becomes more essential. For example, complex-analytic vector fields with isolated zeros
exist on germs of complex-analytic varieties with an isolated singularity, but not in
general (see [10, Example 1]). One can say that the tangency condition for vector fields
on singular varieties is a very restrictive one. We can see it directly for the GSV-indices
(see Section 2.4). The GSV-index of an isolated singular point of a holomorphic 1-form
on a complex isolated complete intersection singularity (i.e. a complex variety V given
by simultaneous vanishing of codim V' holomorphic functions) may be expressed as the
dimension of an appropriate local algebra [9]. On the other hand, the algebraic formula
for the GSV-index of a vector field in the same case becomes more complicated [20].

2.3 The Radial Index

Let V be a (real or complex) analytic variety of dimension n in some manifold M.

Definition:|3] An analytic stratification of V' is a locally finite family (V;);er of non-
singular analytic subspaces of V' such that:

(1) Vi’s are pairwise disjoint and |J V; covers V.
el
(2) For each V;, the closures in V of both V; and V; \ V; are analytic in V.

(3) For each pair (V;,V;) such that V; NV; # () one has V; C V.

Definition:[3] A stratification (V;);er of V is called Whitney stratification if it further
satisfies Whitney (a) and (b) conditions for every pair (V;, V;) such that V; C Vj.

Let {zo} € Vj be an arbitrary sequence converging to some point y € V; and {y} € Vi
a sequence that also converges to y € V;. Suppose these sequences are such that the
sequence of secant lines [, = T ¥, also converges to some limiting line [, and the tangent
planes T}, V; converge to some limiting plane 7. The Whitney conditions (a) and (b) are
the following:

(a) The limit space 7 contains the tangent space of the stratum V; at y: T,,V; C 7.

(b) The limit space contains all the limits of secants: [ C 7.

Definition:[19] Let Z C M be a Whitney stratified subspace of a manifold M. Denote
by D(p) a small disk centered at a point p € Z in M transverse to the stratum S C Z
containing p, such that:

1) D(p)N S =np,

2) dim S 4 dim D(p) = dim M.
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The normal slice to S at p is the intersection of D(p) with Z:
N(p):=D(p)n Z.

Its boundary L(p) = 0D(p) N Z is called the link of the stratum S.

Let (X,0) be a germ of a closed real analytic variety in (RY,0) and X = U%_, X; be
an analytic Whitney stratification of X.
Definition:[3| A stratified vector field on X = J!_; X; is a vector field such that at each
point z € X it is tangent to the stratum containing x.

Definition:[3] A vector field on (X,0) is called radial if it is transverse (outwards-
pointing) to all the spheres of small enough radii around the origin.

Let us prove explicitly the following statement from [8] for a stratified vector field &
on (X,0) with an isolated singular point at the origin.

Proposition 2.2 There exists a (continuous) stratified vector field E on X with the
following properties:

1) the vector field E coincides with & on a neighborhood of the intersection of X with
the sphere Se = B¢ of a small radius € around the origin;

2) the vector field E has a finite number of singular points (zeros);

8) In a neighborhood of each singular point xo € B\ {0} there exists a (local) analytic
diffeomorphism h which identifies & with the vector field of the form

gXi + éradv

where gxi is a germ of a vector field on X; with an isolated singular point at the
origin, &raq 1S a radial vector field on the normal slice N; of X to the stratum X;
at the point x.

Proof. Such a vector field may be constructed by induction over the dimensions of
the strata X;, ¢ = 1,...,q. If there is a zero-dimensional stratum (which is the origin
itself), we take the radial vector field ylaiyl + ...+ yNayiN on it (y1,...,yn are the

local coordinates around the origin in R™). If the smallest possible dimension of the
strata is m > 0, we first perturb the restriction of £ to the stratum of dimension m in
such a way that it has only non-degenerate zeros and then add the radial vector field
ylaiyl 4+ ...+ yN—may]%m' We extend the new field to B, in such a way that near
the neighborhood 9B; it coincides with £. Wherein, generally speaking, we obtain new
singular points (zeros) in B \ {0}.

The step of induction is the following. Assume that we already have a stratified
vector field £ which satisfies the conditions 1) and 2), and the condition 3) holds for all
the singular points on the union of all the strata of dimension less than k.

At each of the singular points on the union X* of strata of dimension k we take the
vector field

& 4y 0 +...+y
— +... —k ,
er T By, Nk Oy
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where & is the restriction of the vector field ¢ to X*, (y1,...,yn_z) are local coor-
|k Yy Yy
X

dinates on the complement to X*. We extend it to the whole ball B, in such a way
that it coincides with £ near 9B;. Therein, we obtain a vector field which satisfies the
properties 1) and 2), and the property 3) now holds for the points on the union of the
strata of dimensions less or equal to k. [J

Definition:[10| The radial indez of the vector field £ on X at the origin is defined as
the following sum:

indraa(§; X,0) := Y ind (§x,,,; X(p): D),
pESing§~

where ind (5‘ X' X(p),p) is the classical index of the restriction of the vector field € to
the smooth manifold X,).

Well-definition (i.e. independence of the choice of the vector field §~) of the radial
index follows directly from |8, Proposition 1].

Let now w be a continuous 1-form on the germ (X,0) C (RY,0).
Definition: A singular point of a 1-form w on (X,0) is a singular point (zero) of its
restriction to a stratum of the Whitney stratification of (X,0). If the stratum is zero-
dimensional its point is assumed to be singular.

Definition: A 1-form w is called radial on (X, 0) if, for an arbitrary nontrivial analytic
arc ¢ : (R,0) — (X,0) on (X,0), the value of the 1-form w on the tangent vector ¢(t) is
positive for positive ¢ (small enough).

Let € > 0 be small enough so that in the closed ball B. of radius € centered at the
origin in RY the 1-form w has no singular points on X \ {0}. As in the case for vector
fields one can show that on a neighborhood of B. there exists a 1-form w possessing the
following properties.

1) The 1-form @ coincides with w on a neighborhood of the sphere S, = 9B..
2) The 1-form w is radial on (X,0) at the origin.

3) In a neighborhood of each singular point zg € (X N B;) \ {0}, 29 € X;, dim X; =
k, the 1-form w looks as follows. There exists a (local) analytic diffeomorphism
h: (RN R* 0) — (RN, X;, z0) such that h*@ = 7@ + T5We, where m; and 7y are
the natural projections w1 : RN — R* and 75 : RY — RN=F respectively, @; is the
germ of a 1-form on (R¥,0) with an isolated singular point at the origin, and &y is
a radial 1-form on (RY=* 0).

We therefore can define the radial index of a 1-form in the same way as we did for
vector fields.

Definition:[10] The radial index of the 1-form w is the following sum

indrad(w;X,O) = Z ind(cI)|X(p);X(p),p).

peSing @
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Remark. According to its definition the radial index of a vector field or a 1-form on a
smooth manifold is equal to the classical Poincaré-Hopf index.

In the case of complex-analytic varieties the radial index of a (complex valued) vector
field is equal to the radial index of its real part, whereas for (complex valued) 1-forms
the situation is slightly different. The classical index of a continuous complex valued
1-form w on a smooth complex-analytic manifold of pure dimension n is (—1)" times
the index of its real part. For example, one can see it if one considers the complex
1-form w = Z?Zl zjdz; with (z1,...,2,) being local coordinates in a neighborhood of
the origin in C™. In this case the Poincaré-Hopf index of w is equal to 1, whereas for
Re(w) = 377 (zjdr; — yjdy;), where z; = x; +1dy;, j = 1,...,n, it is equal to (=1)".
Therefore, we have the following definition:

Definition:[10] The complex radial index of a complex 1-form w on an n-dimensional
variety X at the origin is (—1)" times the index of the real 1-form Re(w) on X:

ind;aq(w; X,0) = (—1)"ind;aq(Re(w); X, 0).

From the definition of the radial index one obtains directly the law of conservation
of number:

Proposition 2.3 Let & (or w) be a stratified vector field (or 1-form) with an isolated
singular point at the origin on a germ of a wvariety (X,0) C (RN,0) (with Whitney
stratification X = JI_, X;) and let & (or ') be a stratified vector field (or a 1-form)
close to & (or w) with only isolated singular points. Then

indmd (67 X, 0) = Z indmd (f/; X7p/)
p’€Sing &’
(indraq(w; X,0) = > indyaa(w’; X, 7).
p’€Sing w’

Proof. We prove the statement for vector fields. For 1-forms it is proved in a similar
way.

Let Ep/ be vector fields satisfying the properties 1) - 3) from Proposition 2.2 in neigh-
borhoods of each of the singular points p’ of &. Denote by & the vector field on (X, 0)
that coincides with ép/ inside each closed ball B./(p') and with & near the boundaries
O0B.(p') and outside of them. Note that it also satisfies the properties 2) and 3) from
Proposition 2.2. Let & be a vector field satisfying the properties 1) - 3) for the vector
field £&. We can always chose ¢ (the radius of the closed ball B.(0) around the origin)
in such a way that there are no singular points of £ in a neighborhood of the boundary
0B:(0) of the ball B.(0) and outside of it.

Fix a stratum X; of X. Denote by Y; the manifold that is obtained by an appropriate
smoothing of the intersection with the boundary 0B.(0) of the complement in X; of a
small tubular neighborhood of 8X;. On the tubular neighborhood of 8X;, € and & are
homotopy equivalent, in the class of non-vanishing vector fields on the boundary, to vector
fields pointing inside Y;. It suffices to add the normal vector of a corresponding (large)
length, multiplied by a coefficient varying from 0 to 1. On the other part of the boundary,
which is the intersection Y; 9B, € and £ are equal to £ and & correspondingly, and are
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also homotopy equivalent (as fields close to each other) in the class of non-vanishing fields
on the boundary (due to the choice of €). Therefore from the classical Poincaré-Hopf
index theory for manifolds with boundary (see [27]) one has the equality:

> ind(§x; X)) = Y, ind(§x,; Xip)
P €(Sing &NX;) PE(Sing £NX;)

of sums of indices of two homotopic vector fields on a manifold with boundary.
Therefore:

q
Y indma(€3 X p) =D > ind(§yx; Xi )

p'€Sing ¢’ =1 j/e(Sing £/NX;)

q
=5 Y ind(Gx; X ) = indpa(& X, 0).

=1 pe(Sing€nX;)

O

2.4 The GSV-Index

The notion of the GSV-index (named after X. Gémez-Mont, J. Seade and A. Verjovsky)
was first introduced for vector fields on hypersurfaces with isolated singularities in [18],
then generalized to vector fields on isolated complete intersection singularities (ICIS) in
[33], and to 1-forms in |9, 12].

Let (X,0) C (C™* 0) be a germ of an isolated complete intersection singularity
(ICIS) of dimension n, given as the common zero set of k (germs of) holomorphic func-
tions:

X={fi=...=fr=0}

Let & be a continuous vector field tangent to X \ {0} with an isolated zero at the origin.
Let € be small enough, so that the sphere S; of radius € centered at the origin intersects
X transversally and & has no other singular points except the origin inside the ball B..
Consider the intersection K, = X NS.. It is a real smooth (2n — 1)-dimensional oriented
manifold, called the link of the ICIS X.

Definition: The GSV-index indgsv(&; X,0) of the vector field £ at the origin is the
degree of the map:

V= (f)gradflv ... 7gradfk) K — Wn+k,k+1

from the link K to the Stiefel manifold W, 4 11 of collections of k + 1 linearly inde-

pendent vector fields. By grad f; we denote the gradient vector field <8d£’ ey affik),
whose j-th component is the complex conjugate of df;/0z;.

There is an alternative way to define the GSV-index. First, let us introduce an
important notion. Consider the map f = (f1,..., fx) : (C"** 0) — (C,0). Denote by
A C (C*,0) the discriminant of f. For 0 < & < & small enough the restriction of f to
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the closed ball of radius § around the origin in C"** is a locally trivial fibration over
B2\ A, where B2 is the closed ball of radius ¢ around the origin in CF.

Definition: The fiber Xz = f~1(2) N Bg(nJrk), where £ = (1,...,6x) € B2\ A, is a
smooth complex manifold with boundary, called the Milnor fiber of the ICIS (X,0).

One can construct a vector field on a neighborhood of the boundary of the Milnor
fiber Xz approximating the vector field £ on a neighborhood of X N 3B§(n+k): see in [3].
We extend this vector field to a vector field £ on the entire fiber Xz with only isolated
ZETos.

Definition: The GSV-index of the vector field £ at the origin is the following sum:

indesv (& X,0) = Y ind (& Xz, p). (2:2)
15€Sing§~

Let now X be a compact variety with only local ICIS’s as singularities and let £ be
a vector field on X with isolated singular points. (The set of singular points of a vector
field £ (or of a 1-form w) on a variety X with only isolated singularities is the union of
the set of singular points S of X and the set of singular points (i.e. zeros) of £ (or of w)
on X\S.)

Proposition 2.4 The sum of the GSV-indices of a vector field on the compact variety
X is equal to the Euler characteristic of a smoothing X of X.

Y indasv(§ X, P) = x(X),
PeSing &

Let w be a germ of a continuous 1-form on (C™*, 0) such that, when considered on
an ICIS (X,0), it has at most an isolated zero at the origin.

Definition:|9] The GSV-index of the 1-form w on the ICIS X at the origin is the degree

of the map:
U = (w, dfl, e ,dfk) K — Wn+k,k+l'

The GSV-index of a 1-form on an ICIS X is defined in terms of the Milnor fiber of
X just in the same way, as it was done for vector fields in the formula (2.2). One has
also an analogue of Proposition 2.4.

2.5 The Homological Index

Let (X,0) € (CV,0) be a germ of a complex-analytic variety of pure dimension n with
an isolated singular point at the origin. Let £ be a holomorphic vector field tangent to
(X,0) with an isolated zero at the origin. Consider the complex (2% ,§):

0= Q%o — Ay — .. = Q%o —0, (2.3)
where Qfx,o are the modules of germs of differential i-forms on (X,0) <Q()J(,0 = Oxp)
and the arrows are given by the contraction of germs of differential forms on (X, 0) with
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the vector field £&. This complex has finite-dimensional cohomology groups H Z'((23(70, §).
(This follows from the fact that the corresponding complex of sheaves consists of coherent
sheaves and its cohomologies are concentrated at the origin.)

Definition:[17] The homological index of the vector field € on (X,0) is the Euler char-
acteristic of the complex (2% g, §):

n

indpom (& X,0) = > (=1)! dime Hj(Q% 0, €)-
j=0

From Lemma 1.1 in [17] it follows that in the case of smooth varieties , i.e. when the
germ (X, 0) is equivalent to (CV,0), for the complex (2.3) there is only one non-trivial
cohomology group, which is in the dimension 0. Therefore:

indhom(g;(CN)O) = HO(Q(.CN707€) = O(CN70/(§17 .. 75]\7)7

where £ = Zf\il {i%, and (z1,...,2y) are local coordinates in (CV,0).

Hence, if X is smooth, then, using the algebraic formula for the classical index
(Theorem 2.2), one obtains, that the homological index of a vector field with an isolated
zero at the origin on (X, 0) is equal to the classical Poincaré-Hopf index:

indhom(g; X, 0) = ind (g» X, 0)
The homological index satisfies the following law of conservation of number.

Proposition 2.5 [17] Let & have only one isolated singular point at the origin on (X,0),
and £ be a holomorphic vector field on X close to &, then:

indhom(€§ X, 0) = indhom(fIS X, O) + Z indhom(’sl; Xyp)7
p€ESing £'N(X\{0})

where the sum is taken over all the singular points (zeros) of £ in a small punctured
neighborhood of the origin in X.

In [17] it was shown that the homological index of a zero point of a vector field on
a hypersurface singularity is equal to the GSV-index. The result was generalized to
isolated complete intersection singularities in [20].

The notion of homological index also exists for holomorphic 1-forms: [15]. Let w be
a holomorphic 1-form with an isolated singular point at the origin on (X,0). One can
consider the complex (2%, Aw) dual to (2.3):

0= o= Vg — .. = Qxo—0, (2.4)

where the arrows denote the exterior multiplication Aw by the 1-form w.
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Definition:|15] The homological indez of the 1-form w on (X, 0) is (—1)" times the Euler
characteristic of the complex ((23(70, Aw):

indhom (w; X,0) = > _(=1)7*" dime H;(Q% o, Aw).
j=0

It was shown in [15] that in the case of smooth varieties the homological index of a
1-form is equal to the classical Poincaré-Hopf index, and in the case of isolated complete
intersection singularity it coincides with the GSV-index. The authors have also pointed
out that the law of conservation of number, which is formulated in the same way as it
was done for vector fields, is a particular case of the main theorem in [16].
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Chapter 3

Equivariant Indices

In this chapter we discuss the main points in the theory of equivariant indices, recall
the definition of the equivariant radial index and introduce the equivariant homological
index.

3.1 The Representation Ring and the Burnside Ring

Most of the current section is based on extracts from the book [25].

Definition: For a finite group G and a vector space V a (linear) representation of G
on V is a homomorphism p: G — Aut V. V is called a (left) G-module and p is said to
give an action of G on V.

Definition: A map of G-modules f : (V1,p1) — (Va, p2) is a linear map of vector spaces
f: Vi — Va satisfying, for any v € V and g € G, f(gv) = gf(v). It is an isomorphism
if there is a map of G-modules f’: (Va, p2) — (Vi, p1) so that the compositions ff" and
f'f are the identity maps on V5 and V1. (Vi,p1) and (Va, p2) are isomorphic if there
exists such an isomorphism.

Definition: The sum V @ W of the two representations is constructed by taking the
vector space sum V @ W and letting G act by, for g € G,

g(v,w) = (gv, gw).

The product V - W of the two representations V and W is the vector space V @ W on
which g € G acts by
g(v®w) = gv® guw.

Proposition 3.1 [25] Let U, V and W be G-modules. Then there are isomorphisms:

i) UaV)eW=Uag(VeWw) v) U-VEV.-U

i) UsV=ValU

i) 0V =2Vaoox2V

w) (U-V) - W=2U-(V-W) vis) U-(VeW)2U - VoUW,

vi) U-121-U>U

where 0 is the zero representation of G and 1 the trivial one-dimensional representa-
tion.
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Consider the set of all formal sums > n;[V;], where V; are representations of G and n;

(2
are integers. This set is a group under the operation

an[%] + Zmz[m] = Z(nz +m;)[Vi].

Require that
a) If V and W are isomorphic representations, [V] = [W].
b) For all Vand W, [V]+ [W] = [V & W].

Denote the resulting set R(G). Parts i), ii), iii) of the above proposition imply that
R(G) is an abelian group under the operation +. Define the multiplication in R(G) as

V]-Wl:=[V-Ww]

From iv), v), vi), vii) of the same proposition we can then obtain that R(G) is a com-
mutative ring. We call it the representation ring of the group G.

For a subgroup H C G there are natural maps: the restriction map Rfl : R(G) —
R(H) and the induction map 1§ : R(H) — R(G). The restriction map sends each
representation p : G — Aut V to its restriction R%(p) : H — Aut V. The induction map
sends each representation p : H — Aut V' to the induced representation Ifl(p) of H (we
will also use the equivalent notation: I§(V)), which is defined as follows: H acts on G
as a set of permutations by h(g) = gh. More explicitly, let CG be the vector space with
basis the elements of G. This action makes CG a right H-module. 1% (V) is then defined
as the vector space

IF(V) = ((CG®V)/<gh®v—g®hv)7

where (gh ® v — g ® hv) is the subspace generated by all the elements of the form
gh®v—g®hv,ge G, he H. G acts on IE(V) by g1(g ® v) = (g19) ®v for g1 € G.

Definition: A representation V of a group G is called reducible if there is a subspace
W cV (W #{0},V), with gw € W for all w € W, g € G. Otherwise V is irreducible.
V is called decomposable if V' is isomorphic to the sum of two representations of G:
Vevol.

From Maschke’s Theorem about decomposition of reducible representations it follows
directly that any representation V of G can be written as a finite sum of irreducible
representations. Therefore, the representation ring R(G) can be considered as a free
abelian group of isomorphism classes of irreducible representations.

Definition: The group algebra C[G] of the group G is a vector space over C with the
basis {eg} corresponding to the elements of G and multiplication induced by the group
operation: ey, - €g, = €g,g,-

Definition: An action of a finite group G on a finite set S is a homomorphism of G to
the group of permutations of S. S is called a finite G-set. If S and T are two G-sets

then a G-map is a map of sets f : S — T such that f(g(s)) = g(f(s)), for all g € G,
s € 5. A G-map f is an isomorphism if it is an isomorphism as map of sets.
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Let S and T be G-sets. Then the disjoint union S UT is a G-set (under the obvious
action: G acts on each component), called the sum of S and T. G also acts on the
Cartesian product S x T by g(s,t) = (g(s), g(t)), giving the product S x T.

The Burnside ring, A(G), of a group G, consists of all finite formal sums,

i
where n; € Z, [S;] are the isomorphism classes of the G-sets S;, modulo the relation:

[S1] + [S2] = [S1 + Sa.

The product, defined above, makes A(G) a ring.

Definition: An orbit of the action of G on S is any subset of S of the form {gs | g € G}
for some s € S. The action is called transitive if all of S is one orbit. S is then called
rreducible.

It is not difficult to see, that any finite G-set can be written (uniquely up to order)
as a finite sum of irreducible G-sets (or G-orbits). On the other hand, every irreducible
G-set S is of the form G/H for some subgroup H C G (One can take the subgroup
H={ge€ G| g(s)=s,for all s € S} and the G-isomorphism ¢ : G/H — S, gH > gs.)
Isomorphism classes of irreducible G-sets are in one-to-one correspondence with the
elements of the set Conjsub G of conjugacy classes of subgroups of G: If G/U and
G/V are isomorphic as G-sets, then U and V are conjugate subgroups of G. Therefore
one obtains the following statement:

Proposition 3.2 As an abelian group, the Burnside ring is free of rank k, where k is
the number of conjugacy classes of subgroups of G, i.e. each element of A(G) can be
written in a unique way as

Z a[H] [G/H]

[H]eConjsub G

with ajp) € Z.

Definition:[4] A G-set (not necessarily finite) is a set with an action of the group G,
ie. a set X together with a continuous map G x X — X, (g,x2) — gz, such that
(gh)x = g(hx), ex = x.

This definition agrees with the definition of a finite G-set. Moreover, the definition
of a G-map for any two (not necessarily finite) G-sets is the same as before.

For a point z in a G-set X let G, = {g € G | gx = '} be the isotropy subgroup (i.e.
stabilizer) of the point x. For a subgroup H C G let

X% ={zeX|Hz =2z}
be the H-fixed point set of X and let
XH ={reX |G, =H}
be the set of points with the isotropy group H. For a conjugacy class h := [H] €

Conjsub G, let X" = |J X% and X" = |J X&),
Keh Keh
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As for the representation rings, there are restriction and induction maps for Burnside
rings. For a subgroup H C G the restriction map RS : A(G) — A(H) sends a G-set
X to the same set considered with H-action. The induction map Ig sends an H-set X
to the product G x X factorized by the natural equivalence: (g1,x1) = (g2, x2) if there
exists g € H such that go = g1g, 2 = g~ 'x; with the natural (left) action of G.

To each permutation representation of G (i.e. to each action of G on a finite set S) one
can associate a linear representation of G' by considering the corresponding permutations
of the basis {es | s € S} of the C-vector space CS. This gives us a natural homomorphism
re ("reduction” ) from the Burnside ring A(G) to the representation ring R(G) of the
group G.

Another way to see the same homomorphism is by sending a G-set to the vector
space of complex valued functions on it with the induced representation of the group G.

3.2 The Equivariant Euler Characteristics

There are different versions of equivariant Euler characteristic. In this section we will
discuss only two of them.

Definition: Let X be a "sufficiently good" topological space (e.g. a real or complex
analytic variety). Then its Fuler characteristic is defined as the following sum

X(X) =) (=1)* dim HE(X; R),
k

where H*(X:R) are the cohomology groups of X with compact support.

Unlike the Euler characteristic, which is defined as alternating sum of dimensions of
the cohomology groups of X, this Euler characteristic is additive, i.e.

X(XUY) =x(X) +x(Y)

for a disjoint union of two "sufficienty good" spaces.

The construction of the equivariant Euler characteristic as an element of the repre-
sentation ring follows the lines of [34].

Let X be a finite simplicial complex and the finite group G acts on it in such a way,
that if g € G leaves any simplex ¢ of X invariant, then it fixes it pointwise. The action
of G on the chain complex of X,

0—=Cph(X)—=Cpho1(X) = ... > C1(X) = Cy(X) — 0,

with complex coefficients, is induced by the permutation of the simplices. Therefore, the
chain complex can be regarded as a sequence of C[G]-modules.

Definition:|34| The equivariant Euler characteristic is the alternating sum

n

xG(X) =Y (-1)'[Ci(X)] € R(Q).
1=0
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Using the standard arguments one can rewrite the definition:

n

ve(X) = S (-1 [H,(X: 0)] € R(G)
i=0

where the action of G on H;(X;C) is induced by the action on X.
On the other hand, we have the following

Definition: The equivariant Fuler characteristic is the element of the Burnside ring of
G defined by (see, e.g., [5])

XX)= Y x(x®W/a)G/H] € AG),
heConjsub G

where H € h is a representative of the class h. The reduced equivariant Euler character-
1stic is
XO(X) = x(X) - [6/G] € A(G).

Remark.[8] The natural homomorphism from the Burnside ring to the representation
ring described above sends the equivariant Euler characteristic x(X) € A(G) to the
equivariant Euler characteristic xg(X) € R(G).

Remark.[8| There is a natural homomorphism |- | : B(G) — Z sending a (virtual) G-set
A to the number of elements of A. This homomorphism sends the equivariant Euler
characteristic (X)) to the usual Euler characteristic y(X).

3.3 The Equivariant Radial Index

We recall the notion of the equivariant radial index of a G-invariant vector field or 1-form
on a (real or complex) analytic variety from [8].

Let the space (RY,0) be endowed with a smooth action of a finite group G. Without
loss of generality we may assume that the action is linear. Let (X,0) c (RV,0) be a
germ of a G-invariant real analytic variety at the origin. There exists an analytic Whit-
ney stratification X = (J!_, X; of the germ (X, 0) such that each X; is G-invariant, the
isotropy subgroups St(z) = {g € G : gz = x} of all points = of X; are conjugate to
each other and X;/G is connected. The stratification with these properties is called G-
invariant Whitney stratification. One can obtain it if one considers an analytic Whitney
stratification of (X, 0) and then takes intersections/unions of the strata and their trans-
forms by the elements of G. If the stratum is zero-dimensional, its points are assumed
to be singular.

Let & be a (continuous) G-invariant stratified vector field on (X, 0) with an isolated
singular point (zero) at the origin. The following statement from [8] is the G-invariant
version of the Proposition 2.2.

Proposition 3.3 There exists a (continuous) G-invariant stratified vector field E on X
with the following properties:
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1) the vector field { coincides with & on a neighbourhood of the intersection of X with
the sphere S, = 0B of a small radius € around the origin;

2) the vector field 5 has a finite number of singular points (zeros);

8) In a neighbourhood of each singular point xo € B:\{0} there exists a (local) analytic
diffeomorphism h which identifies & with the vector field of the form

gXi + éa(h

where EXi is a germ of a vector field on X; with an isolated singular point at the
origin, &aq s a radial vector field on the normal slice N; of X to the stratum X;
at the point x.

Proof. The statement is proved in exactly the same way as Proposition 2.2. However,
the induction is conducted over the dimensions of the strata, corresponding to the classes
h € Conjsub G of conjugate subgroups of G. Another difference is that, in order to obtain
a G-invariant vector field, we take the mean of the vector field over the group action. O

Definition: [8] The equivariant radial index indS 4(&; X,0) of the vector field £ on X at
the origin is the element of the Burnside ring which is equal to the following sum

indgd (67 X: 0) = Z ind (gX(p) ) X(p) ) p) [Gp]7
PE(Sing&)/G

where p is a point of the preimage of p under the canonical projection, X, is the stratum
containing p and Gp = G/ St(p) is the G-set corresponding to the orbit p.

Now let the space (C,0) be endowed with an analytic action of the group G and
(X,0) C (CY,0) be a germ of a G-invariant analytic variety of pure dimension n, and
let £ be a (continuous, complex-valued) G-invariant vector field on (X, 0).

Definition: The equivariant radial index indgd(f ; X,0) of the complex vector field on

the variety X at the origin is the equivariant radial index of the real part of &:

ind$,(& X, 0) := indGq(Re(£); X, 0).

Definition: The reduced equivariant radial index rindgd(f ; X,0) of a (real or complex)

vector field £ on a (real or complex) analytic variety (X, 0) is the image of the equivariant
radial index of £ under the reduction map

rind$4 (& X,0) = rg (ind%q (& X, 0)) € R(G).

rad

Consider again a germ (X,0) C (RY,0) of a G-invariant real analytic variety at the
origin, and let w be a (continuous) G-invariant 1-form on (RY,0). We assume that w
has an isolated singular point at the origin on (X, 0).

Let € > 0 be small enough so that in the closed ball B. of radius € centered at the
origin in RV the 1-form w has no singular points on X \ {0}. As in the case for vector
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fields one can show that there exists a G-invariant 1-form @ on a neighborhood of B,
possessing the properties 1) - 3) from the Section 2.3.

The usual index ind () x,; X, p) of the restriction of the 1-form w to the corresponding
stratum (a smooth manifold) will be called the multiplicity of the 1-form w at the point
xo. If the origin is a stratum of the stratification itself (the zero-dimensional one), the
multiplicity of @ at the origin is assumed to be equal to 1.

Definition: [8] The equivariant radial index ind (w; X, 0) of the 1-form w on the variety

X at the origin is the element of the Burnside ring A(G) of the group G represented by
the set of singular points of the 1-form w regarded with the multiplicities.

Remark. It is possible to assume that the restrictions of the 1-form @ to the strata have
only non-degenerate singular points. In this case all the multiplicities are equal to £1.

Let the space (CV,0) be endowed with an (analytic) action of a finite group G.
(Without loss of generality we may assume that the action is linear.) Let (X,0) c (CV,0)
be a germ of a G-invariant complex analytic variety of pure dimension n and let w be a
(continuous, complex-valued) G-invariant 1-form on (C¥,0).

Definition: The equivariant radial index ind  (w; X, 0) of the complex 1-form w on the

variety X at the origin is defined by the equation

ind% ;(w; X,0) = (=1)"nd% 4 (Rew; X,0) € A(G),
where Rew is the real part of the 1-form w (see the explanation of the sign in Section
2.3).

Definition: The reduced equivariant radial index rindgd(w; X,0) of a (real or complex)

1-form w on a (real or complex) analytic variety (X, 0) is the image under the reduction
map of the equivariant radial index

rind$y (w; X, 0) = rg (indGy(w; X,0)) € R(G).

rad rad

The equivariant radial index of a vector field (or of a 1-form) on a germ of a G-variety
(X, 0) satisfies the law of conservation of number in the following sense:

Proposition 3.4 [8] For a G-invariant deformation 13 (or @) of a vector field & (or of
a 1-form w) in a neighborhood of the origin we have the following equality:

ndy (& X,00= Y TG, (md (& X, q)
ge(Sing€) /G (3.1)
(orimndGy(wi X,0)= > I§, (md (@ X, q))),

g€ (Sing @) /G

where q is a point of the preimage of the orbit ¢ under the canonical projection,
ISGt(p) : A(St(q)) — A(G) is the induction map described before.
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3.4 The Equivariant Homological Index

As in the previous section, let the space (CV,0) be endowed with a linear action of a
finite group G and let (X,0) C (CV,0) be a germ of a G-invariant complex analytic
variety of pure dimension n. Let us assume that X has an isolated singular point at the
origin. Let £ be a G-invariant holomorphic vector field tangent to (X, 0) without singular
points (zeroes) outside of the origin. All the spaces Q&,O in the complex (2% ,§) (2.3)
and thus the cohomology groups H 1(93(70, €) carry natural representations of the group
G. The definition of the “usual” (non-equivariant) homological index of a vector field
(see Section 2.5) inspires the following definition.

Definition: The equivariant homological index ind$_(&; X,0) of the vector field & on
(X,0) is defined by the relation

n

indf),, (& X,0) = Y (—1)'[H (9%, 9)] € R(G) (3.2)
=0

where [H (0% o, €)] is the class of the (finite-dimensional) G-module H*(Q% ,, &) in the
ring R(G) of complex representations of the group G.

Let w be a G-invariant holomorphic 1-form on (X, 0) (that is the restriction to (X, 0)
of a (G-invariant) holomorphic 1-form on (C¥,0)) with an isolated zero at the origin.
We have the following definition.

Definition: The equivariant homological index ind$ _(w; X,0) of the 1-form w on (X, 0)
is defined by the equation

i, (w; X, 0) = 3 (~ 1" [H (% g, Aw)] € R(G), (3.3)
=0

where [Hi(QB(7O, Aw)] is the class of the G-module Hi(QBQO, Aw) in the ring R(G).

One has a law of conservation for the equivariant homological index as well. We
will formulate and prove it for vector fields. The statement and the proof for 1-forms is
exactly the same with obvious changes.

Let ¢ be a small G-invariant holomorphic deformation of the vector field £&. For a
singular point x of the vector field £ in a punctured neighbourhood of the origin 0 in
X, denote by indizg) (¢'; X, z) € R(G;) the equivariant homological index of the vector
field ¢’ at the point .

Proposition 3.5
indf,, (& X,0) = indf},, (€ X, 0) + > I, @) (mdiﬁ) (€5 X, f”)) ’
[z]€(Sing(¢'\{0}))/G

where the sum on the right hand side is over all orbits [x] of singular points of the vector
field & in a small punctured neighbourhood of the origin 0 in X, x is a representative of
the orbit [x].

Proof. The proof of this proposition can be obtained from the proof of a more general
statement in [16] by considering all sheaves and modules with the corresponding actions
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(representations) of the group G. In this case all modules are in fact C[G]-modules,
and the projective resolution from the proof of one of the main statements [16, Lemma
1] is the resolution of sheaves of C[G]-modules. Therefore, all isomorphisms that are
considered in the article commute with the group action. In particular, the isomorphism
in homology induced from the map S, in [16, Proposition 4] is the isomorphism of C[G]-
modules, that provides us with the complex whose homology groups are isomorphic as
C[G]-modules to the homologies of our complex. Moreover, the alternating sum of the
representations on the homologies does not depend on the parameter of the deformation
of the vector field, what proves the law of conservation in our case. [

Remark. If X is non-singular (i.e. (X,0) = (C",0)), the only non-trivial cohomology
group of the complex (2% (, &) is in the dimension 0. If the vector field { on (C",0) is

n
equal to > fia%w where z1,..., 2, are local coordinates near the origin in C", one has
i=1

indf,, (& C",0) = [Ocn o/ (f1 - -, f)] € R(G). (3-4)

In this case the statement can be reduced to an equivariant version of the law of
conservation of number for the multiplicity dimc(Ocn o/(f1,. .., fn)) of the map F =

(f1,---, fn) £ (C7,0) = (C,0).
Let &\ = fu%, where X € [0,1] C C!, be a G-invariant holomorphic deformation
3=0 ’

of &, suchthat & =&, & =& andlet Z .= {f1x =0,..., fux =0},and ¢t : Z — C"x]0,1]
be the natural inclusion. Denote by ¢ the composition of ¢ and the projection to the
second factor. Consider the function

v\ = Y dime(C®o ,, Oz,2)-
z€p~t(N)

Note that v(0) is equal to the multiplicity dimc(Ocno/(f1,--., fn)). According to the
law of conservation [2, Theorem 5.10] v()) is locally constant. Therefore, using the re-
sults discussed in [6] we obtain that Z is flat over C and, therefore, ¢.Oy is a locally free
sheaf, which corresponds to some vector bundle £, whose fibers are the C[G]-modules

C®o @) . The group acts fiber-wise on the bundle, hence the represen-
(Cl A) (sz) g
z€p~1(N) ’
tations of the group action on the fibers are equivalent.

3.5 The Equivariant GSV-index

In this section we discuss the equivariant version of the GSV-index for G-invariant 1-
forms on G-invariant isolated complete intersection singularities. Analogous definitions
and statements exist for G-invariant vector fields as well. However, in the current work
we focus on equivariant GSV-index of 1-forms only.

Let (X,0) = {fi = ... = fr = 0} C (C"**,0) be a G-invariant ICIS defined by
relations with G-invariant left-hand sides fi,..., fx.The notion of the equivariant GSV-
index of a G-invariant 1-form w on (X,0) was introduced by Ebeling and Gusein-Zade
in [8]. It was defined as an element of the Burnside ring A(G) of the group G. One
way to define it is the following. Let us take a G-invariant representative of the 1-form
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w defined in a neighborhood of the origin in C"**. We will denote it by w as well.
Let Xz = f (&) N BX™™(0) be the Milnor fiber of the ICIS (X,0) (f = (f1,..., fx),
z=(e1,...,6r), 0 < ||E]]| < 4, § is small enough). One may assume that the set Sing w of
the singular points of the restriction of the 1-form w to Xz is finite (i.e., this restriction
has only isolated singular points (zeroes)).

Definition:|8] The equivariant GSV-index of the 1-form w at the origin is defined as the
following sum:

) - 1S
indggy (w; X, 0) := Z ISGt(p(mdr;élp) (w; Xz,p)),
[p]€Singw/G

where p is a representative of the G-orbit [p].

Let X be a compact complex analytic G-variety with only local ICIS’s as singular
points and £ be a G-invariant vector field on V' with isolated singular points. If p € X is
a singular point of £, then the whole G-orbit [p] of the point p consists of singular points
of £&. One defines (see in [8]) the equivariant GSV-index of the orbit [p] as the image
under the induction map Igt(p) of the St(p)-equivariant GSV-index of the point p:

. .15t
indffgy (6 X, ) = IS}, (indgi?) (€ X.p)). (35)
The equivariant analogue of the Proposition 2.4 follows directly from (3.5).

Proposition 3.6 [8] The sum of the equivariant GSV-indices of the singular orbits of a
G-invariant vector field § on the compact G-variety X is equal to the equivariant Euler
characteristic of a G-smoothing X of X.

> indEsy (& X, [p]) = x9(X) € AG).
[p]€Sing £/G
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Chapter 4

Simplest zeros of 1-forms invariant
under actions of Zo and Zs

As it was mentioned in the Introduction (Chapter 1), G-invariant deformations of a G-
invariant holomorphic 1-form on (C",0) have, as a rule, complicated singular points (at
least for a group G with more than two elements). In order to prove the equivalence
of the homological index and the reduction of the equivariant radial index it is natural
to try to describe the simplest singularities of G-invariant deformations of generic G-
invariant 1-forms and compare the indices for them. This approach seems to be rather
complicated for the general case. In this chapter we realize this program for the cyclic
groups Zo and Zs.

Remark. All the germs of 1-forms considered in this chapter are germs of holomorphic
1-forms with only isolated singularities.

Definition: A deformation of a (germ of a) 1-form w on (C",0) is a 1-form 2 on
(C™ x Cy,0) such, that £ (%) =0 (i. e. the 1-form €2 can be considered as a family wy
of 1-forms on a neighborhood of the origin in C™ for small enough \) and Qcr0) = w-

Let C" be endowed with an action of the group Zs of order 2. Without loss of
generality we can assume that:

(21, 2n) = (21, -+, Zsgy —Zsgtls - -y —2n),s

where o represents the generator of Zg, so € Z>g.

It is easy to show that every Zs-invariant holomorphic 1-form on C™ with an isolated
zero at the origin has a deformation with only non-degenerate zeros. The set of germs
of 1-forms with non-degenerate zero at the origin is connected and contains the 1-form

wo = z1dz1 + ...+ zpdzy,.
Computations of the equivariant radial index and of the equivariant homological index

of the 1-form wy give the same result. This implies the following statement.

Theorem 4.1 For a Zz-invariant 1-form on (C",0) one has:

ind%2

e (W, 0) = rind”2

rad

(w,0).

Now let C™ be endowed with an action of the group Zs of order 3. There exist
coordinates on C™ such that the action may be presented in the following way:

_ 2 2
(21, 2n) = (21, -+, Zsgr €Zsgt1s - - - 1 EZ50+515 € Zsgts1+1y - -« € Zsgtsi+sa)-
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where o is the generator of Zs, e := exp(2mi/3), so, s1, 2 € Z>0 and so+s1+52 = n. For
our convenience we assume that s > s1. (It could be done by changing the generator of
the group.)

Proposition 4.1 For every Zs-invariant holomorphic 1-form w on (C™,0) there exists
a Zs-invariant holomorphic deformation & such that it has only non-degenerate zeros
outside the invariant subspace (z1,...,zs,), and for each of the zeros p € (z1,..., zs,)
we have the following picture: in coordinates (which we denote by the same variables)
centered at point p it is of the form:

S0

S1
Z(Zi(zl, ceey 2s0) + Ri)dzi + Z(l50+j(250+1, ey Bsotsy) + R50+j)d2’30+31+j

i—1 j=1

S1

Z(l50+81+k(280+81+17 s 7Zn) + R80+81+k)dZ80+k+ (41>

k=1

S2—S1

Z (pl(zso-i-Qsl—i-l, ey Zn) + Rso+2$1+l)dzso+2s1+17

=1

where ly, ..., ls,+2s, are linear functions, p1,...,Pp—s,—2s, are homogeneous polynomials

of degree 2, Ry, ..., Ry are the terms of higher order, and the system:

ll = 07
l50+251 — O)
b1 = Oa

( Pso—s; =0

has only one solution: (0,...,0).

Proof. First we perturb the 1-form in the following way: w;, = w + tjw;, where

S0 S1 §2—81
2
w1 = Z zidz; + Z(Zso+jd280+81+j + Zso+51+jdzso+j) + Z Zso+2sl+ldzso+281+la
i=1 j=1 =1

choosing t; and changing the coordinates in such a way that the perturbation is of the
form (4.1) at the origin. The new 1-form w;, may have zero points outside the origin.

For each new zero (ai,...,as,,0,...,0) on the invariant subspace (z1,...,z2s,) Wwe
perform similar perturbations: w,’h = w + t1w', where

S0 S1 §2—S1

/I 2
W = (23— ai)dzi+ Y (Zegti@Zsorsnts + Zsoter 1i0Zs045) D Zoovasy 11070428+
i=1 j=1 =1

choosing again the parameters and changing the coordinates in such a way that the
perturbations are of the form (4.1) at each of the zeros including the origin. We repeat
the same procedure for each of the new occurring zero points on (z1, . .., zs,). The process
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will stop after a finite amount of iterations. At the end we obtain the 1-form & which is
of the form (4.1) at each of the zeros on the invariant subspace.

Let (b1, ...,by) be a representative of one of the orbits of zeros of @ outside the invari-
ant subspace. Consider the 1-form w) such that wh, = ((z1—b1)+R1)dz1+. . .+ ((zn—bn)+
R,)dz,, where R;, i = 1,...,n, are terms of higher order, at (by,...,b,), and its compo-
nents do not contain the first order terms (z; —b;), i = 1,...,n, at the other two points of
the orbit. After taking the mean over the group action we obtain a Zg-invariant 1-form wo
with non-degenerate zeros at (by, ..., bn), (b1, .-, bsgy Thsgi1y - -+ Obsgtsys T bsgtsyt1s - s
o2b,) and (by, ..., bsy, 2bsg i1, - -5 02bsgr sy Obsgrsy41,---50b,). Now we can construct
the new Zg-invariant perturbation w;, = @ + tawy with only non-degenerate zeros, where
to and the coordinates are chosen in such a way that wy, is of the form (4.1) at the origin.

Applying the same procedure to the other orbits of zeros (in each case choosing
the perturbing parameter and the coordinates in such a way, that the perturbation has
the form (4.1) at the zero points on (z1,...,2s,)) We obtain a G-invariant holomorphic
deformation, which has only non-degenerate zeros outside the space (z1, ..., 2s,), and is
of the form (4.1) at the zero points on (z1,...,2s,). O

Proposition 4.2 In a neighbourhood of the origin the 1-form (4.1) and the 1-form

S0 S1 §2—381

2
> zidzi+ Y (Zsoridzsotsiti + Zsorsiti@Zsori) T D ZegrosiiZsorasiti- (4.2)
i=1 j=1 =1

can be connected by a continuous family of holomorphic 1-forms that turn to zero only
at the origin.

Proof. First let us construct a continuous family between the 1-form (4.1) and the
1-form:

S0 S1
Z zidz; + Z (Zs0+50Zso+s145 + Zsotsi+i0Zso+5) +
i=1 j=1 (43)

§2—S1

+ Z (pl<z$0+251+17 sy Zn) + R80+281+l)d280+251+l'
=1

Let Sfj}) be a sphere of a small radius ¢ centered at the origin. For the vector of linear
components 1, ..., ls,+2s, of the 1-form we have the following inequality:
||(l1’ R l80+251)|52%|| > €c
for some ¢ > 0. On the other hand, for the vector of higher order terms we have
[|(R1,. .., Rsg+2s,) O(g?). Therefore

|53%|| =

So+2s1 §2—51
ws= Y (li+(1=0)R)dzi+ > (9 + Regras+5)d2s0 1251151 (4.4)
i=1 j=1
where l;, i = 1,...,50 + 251, and p;, j = 1,...,82 — 51 are the same as in (4.2), is the

continuous family of holomorphic 1-forms we need.
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Applying the idea above but for the vector (pi1,...,ps,—s,) We can also eliminate the
higher order terms of the last so — s; components of the 1-form.

Using proposition 4.3 we finally obtain the continuous family of holomorphic 1-forms
between the 1-form (4.3) and the 1-form (4.2). O

Proposition 4.3 In the (vector) space V' of all the n-tuples (p1, . ..,pn) of homogeneous
polynomials of degree 2 the set M of all the n-tuples vanishing simultaneously only at the
origin 1s connected.

Proof. The complement V \ M of M is a proper complex-analytic subspace of V.
Therefore its complement M is connected. [

Theorem 4.2 For a Zs-invariant 1-form on (C",0) one has:

ind%3

b (w,0) = rind”

rad

(w,0). (4.5)

Proof. According to the Propositions 4.1 and 4.2 (and to the fact, that for the indices
in both parts of (4.5) the sum of indices of singular points of a deformation is equal to
the index of the 1-form w at the origin) it is sufficient to check the equality (4.5) for the
1-form (4.2). For the equivariant homological index we have:

ind” (w,0) =[Q"/Q""! A W]
=[{Zg0 105,41 -+ 2027 (an, . Gsysy) € ZE2T5Vdzy AL A dzy)
=([+[e*]+...+ [+ oY+ ...+ [0+ [0 +... + [0%] +... »
o (+37) (+5%) o
+[02(52—51)])[051+232]

:(Aszfsl [1] + Csy—s [U] + Bsy—s, [0.2])[0_51—&—252]’

where by [ak] we denote the corresponding class in the representation ring of the group,
Asy—sy, Bsy—s; and Cs,_g, are integer numbers that we calculate below.

Note that the class [1] in (4.6) is obtained from classes of those degrees of o2 that
are divisible by 3. Therefore,

S9 — 81 S9 — 81 S9 — 81 S9 — 81
As_s: _ .
2o ( 0 )*( 3 >+< 6 )+ +(3-L323“J>

The class [0] in (4.6) is obtained from classes of those degrees of o2 that are congruent
to 1 modulo 3. Therefore:

82 — 81 82 — 81 82 — 81 82 — 81
B = (7 (P77 (7)o (),

where b=1 mod 3 and 0 < sy —s1 —b<2.
The class [02] in (4.6) is obtained from classes of those degrees of o2 that are congruent
to 2 modulo 3. Therefore:

S9 — 81 S9 — 81 S9 — 81 S9 — 81
o= (75 7)+ (757) (057 2+ (007)
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where c=2 mod 3 and 0 < s9 — 51 —c < 2.

Let f(z):= (1 + z)™. Using binomial expansion and the fact that the sum of roots

of unity is equal to 0 we have:

S+ flo)+f(e®) A+D)"+(10+0)"+(1+0%)"

A, = =
3 3
2"+ (CD™2 e — 0 mod 3
2m —_ 2ym — m m 3 m’ B 7
_ + ( 02)) + (—0) _ )2 —(3_1) , ifm=1 mod 3,
w7 if m=2 mod 3.

On the other hand:

A + By + Cpp = Z <7:) =(1+1)m=2m

0<k<m

(4.7)

Using Pascal identity for each of the summands in the sums for A,,, By, and Cy, together

with (4.7) we get the following:
Apn=An1+Cp1 = 2™ — Bp1,

Bm = Bm—l + Am—l =2"— m—1,
Cm =Cm-1+ Bm—l =2 — Am—l-

And finally:
w’ if m=0 mod 3,
B,, = 27'1—(#, ifm=1 mod 3,
2m+(g1)m 2 ifm=2 mod 3,
2’”—(#, ifm=0 mod 3,
C, = 2m+(g1)m-27 ifm=1 mod 3,
W’ ifm=2 mod 3.

Note that:
[1], ifsy—s1=0 mod 3,
0_31+282 — [0_2]7 if So — 81 = 1 mod 3,
[0], ifsy—s1=2 mod 3,
Therefore:

Agy—sy[1] + Csy—s,[0] + Bsy—s,[0%], if s2—s1 =0 mod 3,

ind%gm = Csy_s,[1] + Bsy—s,[0] + Asy—s,[0?], ifs2—s1=1 mod 3,

Bsy—s,[1] + Asy—s,[0] + Csy—5,[0?], if 52 —51 =0 mod 3,

| 9mms g (—1)nms0 .2
3

2 DT (o] + 10,

[+

(4.9)

(4.10)
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In the last equality we replaced the signs due to the following:
(_1)82—81 _ (_1)82—1-81—281 — (_1)82+81 _ (_1)n—80.
On the other hand, we have the equivariant radial index:

indG 4 (Re(w),0) = aZ3/Z3) + BZ3/{e}],

where a + 30 = (—1)"2%27%1 o = (—1)* (as the index of the 1-form Re(z1dz; + ...

Zsodzs,)). Therefore B = $(—1)"(2527% — (=1)%~"). And, finally:

rind% 4 (w, 0) = r((—1)"ind% 4 (Re(w), 0))

rad
_1\2n(9s2—s1 _ (_1)So—n
Z(—l)s°+n[1]+( D72 3 =L )([1]+[U]+[0’2])

= PRy P 0 o4 02)

what coincides with (4.10). O

_.|_

Remark. Propositions 4.1 - 4.3 imply that for G = Zy or Zj3 the set of germs of
G-equivariant 1-forms with the minimal multiplicity is connected and contains the dif-
ferential of a G-invariant function. One can conjecture that this holds for an arbitrary

finite group.
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Chapter 5

Coincidence of Equivariant Radial
and Homological Indices

5.1 Coincidence for Vector Fields

As we mentioned before a neighbourhood of a point on a smooth complex analytic variety
can be identified with a neighbourhood of the origin in C™. Therefore we may consider
(C™,0) instead of a germ of a smooth complex analytic variety. Let a finite group G act
on (C™,0).

Lemma 5.1 For every G-invariant holomorphic vector field § on (C™,0) there exists a
G-invariant holomorphic deformation £ with only non-degenerate zeros.

Proof. We construct such a deformation using the same method as in Proposition 4.1.
First we perturb the vector field in the following way:

- 0
§t, = 5"‘“2%@
=1
choosing t; such that at the origin &, is of the form

<1
A| ¢ | + terms of higher order, (5.1)

Zn

where A is a non-degenerate constant matrix. For the new occurring singular points we
perform similar deformations choosing parameters in the same way as we chose t;. The
process will stop after a finite amount of iterations.

We eliminate the higher order terms for each of the singular points by the same
method as in Proposition 4.2. At the end we obtain a vector field with only non-
degenerate zeros. [

Theorem 5.1 For a G-invariant holomorphic vector field & on (C™,0)

rind% (& C",0) = ind$ _(&;C",0).
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Proof. Let f be the holomorphic deformation of ¢ from Lemma 5.1. By the law of
conservation (Proposition 3.4) for the equivariant radial index

: n . .S Z
indS,(6:C"0) = > I§, (ind (€:C",p)). (5.2)
ﬁESingé/G
On the other hand, from the definition of the equivariant radial index one obtains
that:

indyEC ) = Y ind (g, X)) [SH)/ St
p’€Sing ¢/ St(p)
= ind (€ x,,,; X(p)» ) - [St(p)/ St(p)] = [St(p)/ St(p)] = [1] € A(St(p)),

as p is a non-degenerate singular point of the vector field fN .
We can therefore rewrite (5.2) for the reduced equivariant radial index:

rind?ad(g; cn, 0) = Z ISGt(p)([l]St(p)) € R(G)v (53>
pE(Sing€)/G
where by [1]gy(,) we denote the class of trivial representation in the representation ring

R(St(p)).

By the law of conservation for the equivariant homological index (Proposition 3.5):
. n . S c.mn
1ndfom (57 C ) O) = Z Ig;(p) (lndh(t)(rﬁ) (6, C 7p)) (54)
pe(Singé)/G

For (C",0) the only non trivial cohomology group of the complex (2% (,&) (2.3) is in

the dimension 0. Therefore for any singular point p of {

ind}")(&;,C", p) = [Ocn )/ Ers -+ €)sim) € R(SE(D)), (5.5)

where &1, ...,&, are the components of €. .
On the other hand, for a non-degenerate singular point p of the vector field £ there
is a C-algebra isomorphism

O(C”,p)/(gb s 7571) = O((C",p)/(zlv s 7Zﬂ)7 (5'6)
where 21, ..., 2, are local coordinates centered in p. Therefore:
indfom(g; cr, 0) = Z Ig;(p)qo(tcn,p)/(zh R Zn)])
pE(Singé)/G (5.7)
= Y ISp (s € REG)
pE(Sing€)/G

From (5.3) and (5.7) we obtain the statement of the theorem. O
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5.2 Equivariant Radial and Homological Indices in the One-
dimensional Case.

A finite group G acting faithfully on the line (C,0) is cyclic; let it be Z,,, and let o
be a generator of Z,,. Without loss of generality we can assume that o acts on C as
multiplication by o := exp(2mi/m). (The coincidence of notations for a generator of Z,,
and for exp(2mi/m) here and below does not lead to a confusion. Moreover, we shall
use the same notation for the representation of the group Z,, on C, which we describe)
A (non-trivial) Z,-invariant 1-form on (C,0) is right-equivalent to 2™ !dz (i.e., can be
reduced to the latter by a change of variable on C).

Proposition 5.1 The reduced equivariant radial index and the equivariant homological
index of the 1-form ws = 2™~ 'dz (as elements of the ring R(Z,,)) are equal to s(1 +
o+oi+...+om™ -1

Proof. The usual (non-equivariant) index of this (complex) 1-form is equal to sm — 1.
Therefore, the index of its real part is equal to 1 — sm. The G-equivariant 1-form ws in
the definition of the radial index of the 1-form Rewy is radial at the origin of C = R?,
and the orbits of its singular points outside of the origin are free. Therefore,

rind$ 4 (Rew,; R?,0) = 1 — SI(Ze“S@(l) =1-s(l+o+o*+...+0™ 1.

Thus rind?ad(“é’? C,0)=s(14+0+ o+ ..+ Jmfl) —1.
A basis of Q<1c o/Ws A Q?C o consists of the (monomial) 1-forms dz, zdz, ..., 25Mm 2.
On the element z/dz the generator o acts by the representation ¢/*!'. This gives

indgom(ws;(:,()) = S(l +o+ o2 +... 4+ O.m—l) 1.0

Proposition 5.2 The reduced radial and the homological equivariant index of the 1-form
ws = 2"z, i. e, ind = s(1 +0 + 02 +... +0™ 1) — 1, is not a divisor of zero in
R(Zm).

Proof. The table of multiplication of the basis elements o?, i = 0,1,...,m — 1, by the
element ind is given by the m x m-matrix sI — F, where I is the matrix all of whose
entries are equal to 1, F is the identity matrix. This matrix is non-degenerate (since its
eigenvalues are s(m — 1) and —1, the latter one with multiplicity m — 1). O

5.3 A Sebastiani-Thom Formula for the Equivariant In-
dices.

Let C™ and C™ be spaces with actions (representations) of the group G, and let w and n
be G-invariant 1-forms on (C™,0) and (C™,0), respectively, with isolated singular points
at the origin. The Sebastiani-Thom sum (the direct sum) w & n of the 1-forms w and 7
(a 1-form on (C™ @ C™,0) = (C"*™,0)) is defined by (w @ 1) (4,y) (1, v) = we(u) + 1y(v)
(zeCyeC" ueT,C"=C" ve T, C"=CM).
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Theorem 5.2 (a version of the Sebastiani—Thom theorem) The following relation holds:

indgd(w ©n;C"T0) = inerad(w; c",0) - indgd(n; Cc™0) € A(G),
ind¢ (w®n;C""™ 0) = indS  (w;C",0)-indS (9;C™,0) € R(G).

Proof. For the radial index, this is a consequence the following construction. Let w
and 77 be the 1-forms in the definition of the equivariant radial index (which correspond
to the 1-forms w’ := Rew and 1’ := Ren, respectively). Without loss of generality we
may assume that w and 7] of the same radius ¢ (centered at the origin) are defined on
the balls B?" and B?™ in C" and C™, respectively, and that they coincide with w’ and
n’, respectively, outside the balls of radius /4. Let 1(r) be a (continuous) function on
[0, €] such that 0 < ¢(r) < 1, 9(r) =1 for r <e/2, ¢(r) =0 for r > 3¢/4. Consider the

1-form @ & n on B2 (ntm) - crtm defined by

w b Na,y) = (1 - ¢(T))w§: ©® 77;/ + w<r)‘:}z S?] ﬁy )

where x € C", y € C™, and r := /[|z||? + ||y|]|>. One can see that the 1-form wdn

considered on the ball Bg (ntm) - ©n+m i suited for the definition of the equivariant
radial index of the 1-form Re (w @ n) =W’ @ (i. e., satisfies the conditions 1)-3) from
Section 2.3). Moreover, the set of its singular points (considered as a G-set) is the direct
product of the sets of singular points of the 1-forms w and 7. This follows from the fact

that, for a point (z,y) outside 35272 X Bg;g either w, = W), or 7, = 77?; and, therefore, the

1-form 075577 does not vanish.

For the homological index, this follows from the fact that, for a 1-form on a non-
singular manifold, the only non-trivial cohomology group of the complex (2.4) is in the
highest dimension, we have

Ot o/ (w @ m) AQEETTS = (Qn o/w A QG ) @ (Um o/1 A Q)

(as spaces with G-representations). [J

Remark. For the radial index, the same relation holds for two 1-forms on (singular)
varieties and for the corresponding 1-form (the direct sum) on the product of these
varieties. For the homological index defined here, the corresponding relation does not
make sense. Here the homological index is defined for a 1-form on a variety with an
isolated singular point, while the product of two varieties with isolated singular points
has non-isolated singular points.

Corollary. The following relation holds

rind%  (w @ n; C"*™, 0) = rind% 4 (w; C*, 0) - rind% 4 (n; C™,0) € R(G).

rad

5.4 Destabilization of Singular Points

Let C™ = C™ % @ CF be a G-invariant decomposition of the space C™ with a represen-
tation of the group G such that the kth exterior power of the action of G on C* (i.e., the
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action of G on the space of k-forms on CF) is trivial. Let w be a G-invariant holomorphic
I-form on (C™,0) such that its restriction to (C*,0) is non-degenerate.

Proposition 5.3 There exists a G-invariant complex analytic 1-form n on (C™F,0)
such that indS (w;C™,0) = ind$  (n;C™F,0), ind 4 (w; C™,0) = ind% 4 (n; C™*,0),
and therefore rind$ 4 (w; C™, 0) = rindG 4 (n; C™%,0).

Proof. For small z € C™ %, the restriction of the I-form w to the affine subspace
{2} xCF has one non-degenerate zero {x} x f(x) in a neighborhood of {2} x {0}, where f is
a G-equivariant analytic map from (C™~%,0) to (C¥,0). Let H : C"*@CF — C™*aC*
be defined by H(z,y) = (x,y + f(x)). This map is a local G-equivariant holomorphic
automorphism of C™ % @ C*. The 1-form H*w has the same equivariant radial and
homological indices as w. Moreover, for any = € (C™*,0), the restriction of H*w to
{z} x CF has a non-degenerate singular point at the origin {z} x {0}. If ;(%), i =

m

1,...,m, are the components of the 1-form H*w (H*w = > ¢i(Z)dzi, Z = (21, .., 2m)),
i=1

then the ideal in Oc,, o generated by the elements gpm,kH(E), ..+, om(Z) coincides with
the ideal (z—k+1,-- -, 2m). Therefore,

Ocmo/{p1,- -+ Pm) = OCT"*’“,O/“OH((CW*’C,O)? e ,wm—k\(cm—k,oﬂ .

This implies that indS, (w; C™,0) = indfom(<H*(U)‘((Cmfk70); Cc™=*.0).

Let m and w2 be the natural projections of T,C™ = C™ to Tp(Cm*”c >~ Cm—k and
to T,C* = CF, respectively, (p € (Cy,,0)). Let w; = 7 H*w, i = 1,2. One has H*w =
w1 + wy. (Note that 71 and 75 are not maps from (C™,0) to (C™*,0) and to (C¥,0).)
Let € > 0 be small enough, and let ¥ (r) be the function described in the proof of
Theorem 5.2. Let & be the 1-form defined by &)z z) = wi|z0) + waz"), Where
7' € (C™k 0), 2" € (C*,0). One can see that the 1-form ()& + (1 — (7)) H*w has no
zeros in the ball of radius & outside of the origin, coincides with H*w in a neighborhood
of the boundary of this ball, and coincides with (H*w)cm-k o) © (H*w) ¢k gy in the ball
of radius /2. According to Theorem 5.2, this implies that

ind{(w; €™, 0) = indGy (H*w) (cm—r 0y: C™ %, 0) - ind{q (H*w) cx g); C*, 0)

rad rad

= ind, (H*w)cm—r g); ™%, 0).

g

5.5 Coincidence for 1-Forms
Theorem 5.3 For a G-invariant holomorphic 1-form w on (C™,0)
rind% (w; C",0) = ind%_ (w; C",0).

Proof. For a subgroup H of the group G, the indices rindgd (w;C™,0) and ind{’ (w;C™,0)

hom

are the images of the indices rind%;(w; C*,0) and ind$  (w; C™,0) under the reduction
homomorphism Rg. A representation of a finite group is determined by its character:

the trace of the corresponding operator as a function on the group. Each element of
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a finite group is contained in a cyclic subgroup. Therefore it is sufficient to prove the
statement for G being a cyclic group Zg.

The proof is by the induction both on the dimension n of the space and on the number
d of elements of the group G = Zg4. For n = 1 (the 1-dimensional case), the statement
is proved in Section 5.4. For the trivial group G (i. e., in the non-equivariant setting),
the statement is well known (see, e. g., [15]). Assume first that the representation of
the group G on C" has a non-trivial summand C* with the trivial representation of G
and C* = C» % @ C* is a decomposition of the representation space. There exists a
G-invariant holomorphic deformation @ of the 1-form w such that, at each singular point
(zero) p € {0} x C¥ (that is, p = (0,y0)) of the 1-form @, the restriction of this form to
the (affine) subspace {0} x C* has a non-degenerate zero. Proposition 5.3 implies that
there exists a G-invariant 1-form w’ on (C"~*,0) such that

rmdrad(w C"p) = rlndrad( ’;(C"ik,O),
1ndhom(("‘); (C 7p) = lndhom (w/; (Cn_ka O)

According to the induction hypothesis, one has rlndmd( L.Crk0) = 1ndhom( .C"k,0)
and, therefore,
rindgd (w;C™, p) = 1ndhom(w; C", p).

For a singular point p of the 1-form @ outside {0} x C¥, one has G, & G. The induction
hypothesis gives rmdrad(w; C™p) = mdhom(w; C™, p) and, therefore,

IG rlndra’(’i(w C"p) = IG 1ndh0m(w;(C”,p).
The laws of conservation of number for the equivariant radial and equivariant homological
indices imply rind%,(w; C™,0) = ind< _ (w;C",0). Therefore, we can assume that the
representation of G on the space C™ has no trivial summands.

Let o be a generator of the group G = Zgy, and let o act on C" by o x (21,...,2,) =
(% z1,...,0™2,), where (on the right-hand side) o = exp 22 and 0 < k; < d for
i=1,...,n. Let the space C"*! = C" @ C! be endowed with the representation

* (21, Zny Zng1) = (0P 21, .. 0™ 2, 07 R 20

of the group Zg, and let & = w @ 24 dzn+1 One has

n+1

rind% 4 (@; C"*1, 0) = rind% 4 (w; C*, 0) - rind 4 ( nﬁdznﬂ;(Cl,O),

ind$ (@;C" 0) = indS _ (w;C"™,0) - indhom(znﬁdzn_i_l; c',0)

(by Theorem 5.2). Since rind% 4( n+}dzn+1,(C 0) = indZ ( anan,(Cl,O) is not
a divisor of zero (see Section 5.2), it is sufficient to show that rind%  (@;C"*1,0) =
indfom(@;C"H,O). Let & = @ 4+ Mznt1dzn + zndzni1) be a deformation of the 1-
form & (where ) is small enough). The restriction of the 1-form &’ to the subspace C2
corresponding to the last two coordinates has a non-degenerate singular point at the
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origin. By Proposition 5.3 there exists a holomorphic 1-form 7 on (C"~!,0) such that

ind® (@;C",0) = ind$ _(n:C"71,0),

hom

rind$ 4 (&'; C"*,0) = rindS (7; €L, 0).

rad

According to the induction hypothesis, we have
rindgq (; €1, 0) = indif,p, (1 €1, 0).

For a singular point p of the 1-form &’ outside the origin, we have G, & G. The induction

hypothesis gives rindi’(’j(@’ ;CHL p) = indﬁfm(@’ ;C"*1 p) and, therefore,

rad hom

16, rind3(@' C" ) = I, ind 7, (&€ p).

The laws of conservation of number for the equivariant radial and equivariant homological
indices imply
rind¥  (&; C"*1,0) = ind"_(@;C"*L,0).

rad

O
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Chapter 6

Applications

6.1 An Equivariant Version of the Milnor Number

The Milnor number is a well-known topological invariant, defined in [26] as the multiplic-
ity of an isolated zero of a complex map between complex spaces of the same dimensions.
In the same work it was showed, that the Milnor fiber of an isolated hypersurface sin-
gularity, given by the equation f = 0 (where f : (C"*!,0) — (C,0) is a holomorphic
function germ), has the homotopy type of a bouquet of u spheres, where y is the Milnor
number (multiplicity) of the zero point of the map (0f/dz1,...,0f/0fn+1) (or the sin-
gular point of the hypersurface {f = 0}). In [23] Hamm extended this result to isolated
complete intersection singularities. The Milnor number for a germ (V,0) of an isolated
hypersurface singularity at the origin may also be expressed in algebraic terms (see in
[28]) as the dimension of the local algebra of the singular point of the function germ f,
that defines the hypersurface at 0 (cf. Theorem 2.2):

,U,(V, 0) = dlm(c O((Cn+l70)/l7

where [ is the ideal in O(cn+1 ) generated by the partial derivatives of f.

For a 1-form w on an isolated complete intersection singularity (X, 0) with an isolated
zero at the origin it was proved in [15], that the difference between its GSV-index and
radial index does not depend on the 1-form w and is equal to the Milnor number of the
ICIS:

indgsv(w; X,0) — indyaq(w; X,0) = (X, 0).

Also, in [15] was shown that this difference may be considered as a generalized Milnor
number of an isolated singularity of a germ of a complex analytic space. Here we give
an equivariant analogue of these results.

In [9] an algebraic formula for the GSV-index of a holomorphic 1-form was given.
(The proof given in [9] contained a minor mistake corrected in [11, Theorem 4].) In [15]
it was shown that in this case the GSV-index coincides with the homological one. In fact,
this follows directly from the algebraic formula for the GSV-index given in [9] and the
fact that for a holomorphic 1-form w with an isolated singular point on an n-dimensional
ICIS (X,0) the only non-trivial (co)homology group of the complex (2.3) is the one in
dimension n: [21]. Strictly speaking, in [21]| this was proved for w = df, where f is a
holomorphic function on (X,0); however, G.-M. Greuel explained that, in the general
case, the same result holds.

Denote by

rindgsy (w; X, 0) := r (indgsy (w; X,0)) € R(G)
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the reduction of the equivariant GSV-index to the ring R(G) of representations of G.

An argument in [11, Theorem 4| (together with the fact that the only non-trivial
(co)homology group of the complex (2.4) is the one in the dimension n) proves the
following statement.

Proposition 6.1 For a holomorphic G-invariant 1-form w on the G-invariant 1CIS
(X,0), the equivariant homological index is equal to the reduction of the equivariant
GSV-index:

ind$ (w, X,0) = rind&qy (w; X, 0).

Let x%(Xz) € A(G) be the equivariant Euler characteristic of the Milnor fiber Xz
and let Y% (Xz) := x“(Xz) — 1 be the reduced equivariant Euler characteristic of this
fiber. For a G-invariant radial (real) 1-form wyaq on the ICIS (X,0), the equivariant
GSV-index indgsv (wrad; X,0) is equal to x(Xz). This implies the following statement
(an equivariant analogue of Proposition 5.3 in [§] for 1-forms).

Proposition 6.2 For a G-invariant real 1-form w on the ICIS (X,0),

ind@sy (w; X, 0) — ind{4 (w; X, 0) = X(Xz).

rad

For a G-invariant complex 1-form w on the ICIS (X,0),

indGgy (w; X, 0) — indgq (w; X, 0) = (~1)"x%(Xz).

The reduction rg((—1)"¥%(Xz)) € R(G) is the equivariant Milnor number of the
ICIS (X,0) in the sense of [34], i.e., it is equal to the class in R(G) of the G-module
H"(X7).

Let (X,0) be a complex analytic G-variety of pure dimension n with an isolated
singular point at the origin. The laws of conservation of number for the equivariant radial
and for the equivariant homological indices, together with the fact that they coincide on
a smooth manifold, imply the following statement.

Proposition 6.3 For a G-invariant holomorphic 1-form w on (X,0) with an isolated
singular point at the origin, the difference

ind® (w; X,0) — rindS,(w; X,0) € R(G)

rad

does not depend on the 1-form w.

As shown above, for a G-invariant ICIS, this difference is its equivariant Milnor
number. This allows us to regard

ind® (w; X,0) — rind$ 4 (w; X, 0)

rad

as a version of the equivariant Milnor number of a germ of the G-variety (X,0) with an
isolated singular point.
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6.2 Index of a 1-Form on a Quotient Singularity

Let C™ be endowed with a linear action of a finite group G. Consider a germ of a
G-invariant holomorphic function f : (C",0) — (C,0). It induces an analytic function
f:(C"/G,0) = (C,0) on the quotient C" /G, such that f = fom, where 7 : C* — C"/G.
Let(Q;(c: ::) Q?cn,o) /df /\Q?(C_nl,o)’ where Q?C",o) is the module of germs of differential j-forms
on (C™,0).

Theorem 6.1 In the setting described above the following relation holds:
indraa(df; C"/G,0) = dim(QF),
where (Q‘%)G is the G-invariant part of Q?.

Proof. Consider the map (¥ : A(G) — Z, that sends a G-set Y am|G/H] € A(G)
(where, as before, aj) € Z, [G//H] is the class of the G-set G/H in A(G), and the sum is
over all the classes of conjugate subgroups of G) to the integer ) a(g). From Proposition
1 of |7] one has:

indyaq(df; C"/G, 0) = r@ind& ,(df; C", 0). (6.1)

rad

On the other hand, by Theorem 5.3:

rind¥ ;(df; C",0) = ind$ _(df;C",0) € R(G).
In Section 3.4 we have already discussed, that, in the case of (C™,0), the only non trivial
cohomology group of the complex (2.4) is the one in the dimension n. Therefore,

indf,,, (df; C", 0) = [2F] € R(G).

Recall, that, rindG,(df; C",0) = r¢(ind% (df; C",0), where ¢ : A(G) — R(G) is the
reduction map. Note, that the image of any class [G/H] € A(G) under r¢ may be
considered as the permutation representation of the set G/H. On the other hand, the
trivial representation is a direct summand of each permutation representation, and the
sum ) ap is, in fact, the multiplicity of the trivial representation in r¢()_ ajm[G/ H]).
Therefore, r©ind% ,(df;C,0) is the multiplicity of the trivial representation in [Q?],
which is exactly the dimension of the G-invariant part of the space Q?. O
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