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Abstract

The simulation of open quantum systems is an urgent but challenging task in theoretical
physics. We apply a variational principle to calculate the steady state and the time
evolution of open quantum systems. The variational approach is based on minimizing
the trace norm of the density matrix and its time derivatives according to the quantum
master equation. This approach allows us to reduce the problem of calculating the states
of open quantum many-body systems to a modest number of variational parameters.
We perform a variational analysis of the steady state of a dissipative transverse-field
Ising model that preserves the Z2- symmetry. An experimental realization of the model
based on Rydberg atoms is suggested. We expand the variational norm with respect to
a suitable order parameter corresponding to the Landau theory of closed quantum
systems. It turns out that the phase diagram is significantly altered compared to its
equilibrium counterpart, exhibiting inter alia a multicritical point. As the true steady
state in general is outside of the variational class, we estimate the validity of the
variational product state by including spatial inhomogeneities in the analysis. The
underlying fluctuations are tightly connected to an effective temperature that is defined
via the variational norm at the variational minimum. Knowing the effective temperature
enables us to make use of the analogue of the Ginzburg criterion to calculate the upper
critical dimension of the system. We also perform a perturbative one loop
renormalization group analysis. Higher order terms of the expansion are considered as
perturbations which lead to a shift of the position of the tricritical point compared to
the product state result, with the shift decreasing exponentially with dimension.
The next chapter deals with the variational time evolution of a two-level dissipative Ising
model based on product states and states that include nearest-neighbour correlations.
The superiority of correlated states to product states we observe can be traced back to
non-Markovian effects present at every time during the relaxation dynamics and even
after the steady state is reached. We connect that non-Markovianity to a quantity that
is easier accessible in experiments and that is based on the linear quantum entropy.
In the next chapter we analyse a liquid-gas transition of the steady state of the two-level
model. In close analogy to the Ginzburg-Landau analysis of the multicritical regime, the
time evolution now includes fluctuations whose strength is determined by the variational
norm at the variational minimum. The resulting spatial inhomogeneities lead to
qualitatively different dynamics compared to the homogeneous case. The efficiency of
our variational approach allows us to calculate the time evolution of quite large systems,
suppressing the influence of finite size effects.
In the last part of this thesis, we investigate the polarization transfer mechanisms
between a Nitrogen Vacancy (NV) center and remote 13C nuclei in diamond. Based on a
NV- 13C state mixing mediated by the hyperfine interaction, the polarization transfer
can be observed close to the so-called ground state level anti crossing. We calculate the
steady state polarization of the NV center and the nuclei and investigate the influence of
the strength of the hyperfine interaction and the number of nuclei on it.



Abstract (deutsch)

Die computerbasierte Simulation von offenen Quantensystemen ist relativ anspruchsvoll.
In dieser Arbeit werden wir ein Variationsprinzip anwenden, mithilfe dessen sich
stationäre Zustände und die Zeitentwicklung offener Quantensysteme berechnen lassen.
Dem Variationsprinzip liegt die Spur-Norm der Dichtematrix und ihrer Zeitableitung
gemäß der Quanten-Mastergleichung zugrunde. Dieser Ansatz reduziert das Problem der
Berechnung von Quantenzuständen von offenen Vielteilchensystemen auf einige wenige
Parameter.
Wir führen eine variationelle Berechnung des stationären Zustandes eines dissipativen
Ising-Modells durch, welches die Z2- Symmetrie aufweist. Zudem beschreiben wir eine
experimentelle Realisierung mithilfe von Rydberg Atomen. Unsere Vorgehensweise zur
Berechnung des Phasendiagrammes entspricht der Landau-Theorie. Das
Phasendiagramm weist qualitative Unterschiede im Vergleich zum Gleichgewichts-Ising
Modell auf. So ist in diesem Phasendiagramm u.a. ein multikritischer Punkt enthalten.
Um die Genauigkeit unseres Produktzustand-Ansatzes zu bestimmen, lassen wir
Inhomogenitäten zu. Die zugrunde liegenden Fluktuationen können mit einer effektiven
Temperatur in Verbindung gebracht werden, welche wiederum von der minimalen
variationellen Norm bestimmt ist. Über diese effektive Temperatur lässt sich ferner das
Ginzburg-Kriterium anwenden, mithilfe dessen wir die obere kritische Dimension
bestimmen. Desweiteren führen wir eine Renormalisierungsgruppen-Analyse durch.
Hierbei werden Terme höherer Ordnung der Entwicklung als Störung angesehen, welche
zu einer Verschiebung des trikritischen Punktes aus der Landau-Theorie führen.
Quantitativ fällt die Verschiebung exponentiell mit der Dimension ab.
Im nächsten Kapitel wird die variationelle Methode auf die zeitliche Entwicklung eines
dissipativen Ising-Modells angewendet, zum einen basierend auf Produktzuständen, zum
anderen basierend auf Zuständen, die Nächste-Nachbar-Korrelationen beinhalten. Die
höhere Genauigkeit der korrelierten Zustände gegenüber Produktzuständen erklärt sich
durch nicht-markovsche Effekte, die zu jedem Zeitpunkt der Evolution, auch nach
Erreichen des stationären Zustandes, vorhanden sind. Außerdem wird ein
Zusammenhang zwischen der nicht-Markovianität und eines Maßes der
Quanteninformation hergestellt, welches experimentell leichter zu messen ist.
In dem nächsten Kapitel analysieren wir einen Phasenübergang erster Ordnung zwischen
einer Gas- und einer Flüssigphase. Analog zur Ginzburg-Landau Theorie des stationären
Zustandes werden Fluktuationen in die Zeitentwicklung eingefügt. Die entstehenden
Inhomogenitäten führen zu einer qualitativ veränderten Zeitentwicklung verglichen mit
homogenen Zuständen. Die Effizienz unserer variationellen Minimierung erlaubt es uns,
relativ große Systeme zu berechnen.
Im letzten Teil dieser Arbeit wird die Polarisationsübertragung zwischen einem
Nitrogen-vacancy (NV) center und entfernt liegenden 13C Atomen in Diamant
untersucht. Der Polarisationsübertrag basiert auf einer Mischung der Zustände des NV
centers und der Kerne durch die Hyperfein-Wechselwirkung im Bereich des Ground State
Level Anti Crossing. Wir berechnen die Polarisation des stationären Zustandes, welche
von der Stärke der Hyperfein-Wechselwirkung und der Anzahl der Kerne abhängt.
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1. Introduction

No real physical system, whether quantum or not, can be totally decoupled from its
environment. This fact makes the theory of open systems crucial in modern physics. As
many of the concepts from quantum theory and statistical physics are based on the
assumption of perfect isolation, the analysis of open quantum systems poses challenges.
The interaction with the uncontrolled environment results in an infinite number of
degrees of freedom, which makes the use of an effective theory necessary. This theory
neglects all parts of the environment that are supposed to have no or a negligible effect
on the evolution of the system of interest. For an accurate description of the state of the
system, statistical ensembles of elements of the Hilbert space are needed rather than
pure quantum states [1].
Experimental and simulation data indicates that the dynamics of open quantum systems
exhibit features whose investigation could push the application of quantum mechanics.
While quantum dissipation and accompanying phenomena like decoherence had long
been considered an undesired process, dissipative quantum many-body systems offer
new possibilites e.g. the controlled preparation of quantum many-body states [2–10].
Through the manipulation of atomic quantum gases, experimentalists reached a regime
of strong interactions and controllable dissipation [11–15], providing the basis for such
quantum state engineering.
Various approaches for the analysis and calculation of open quantum systems exist.
Those methods used for quantum optics [16–19] usually differ from those used in
condensed matter and chemical phyiscs [20–23]. There are some major challenges these
approaches face: In closed systems, all thermodynamic quantities of interest can be
derived from the partition function [24]. A corresponding concept is missing for open
systems. Additionally, as in the equilibrium case, the dimensionality of the Hilbert space
grows exponentially with the number of particles. Many calculations of dissipative
many-body systems are based on mean-field approaches [4, 25–30], even though it has
been shown that this ansatz is problematic for open quantum systems [31–33]. These
controversies concern even the most simple model for a dissipative quantum many-body
system, the dissipative Ising model [26, 31,34,35].
Another important aspect of the investigation of open quantum systems is
non-Markovianity and its measurement. The assumption of non-Markovianity is based
on simplifications that tend to lead to wrong predictions [1].
The natural dissipative element due to the radiative decay of the Rydberg state and the
tunability of the interaction and dissipation of Rydberg atoms [36,37] make ultracold
Rydberg gases ideal candidates for the investigation of dissipative quantum many-body
systems and the construction of an universal quantum simulator [38]. Rydberg atoms
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1. Introduction

Figure 1.1.: Experimental visualisation of the interaction of dressed Rydberg atoms [64].
In the initial state, all atoms are distributed equally (left side). As the dynam-
ics is highly influenced by long-range interactions, the atoms at the edge of
the sample evolve differently, leading to inhomogeneous interference patterns
(middle and right side).

are excited to the Rydberg state via a one or two-photon excitation, with their
properties showing unusual strong scaling with the principal quantum number [36].
Techniques like Rydberg dressing make the lifetime and the interaction of Rydberg
atoms even more controllable [39] and have various applications in theoretical works as
well as in experiments [40,41]. In experiments with Rydberg gases, the interplay of
coherent dynamics and dissipation can be studied [42–45]. These dynamics exhibit
features not known from equilibrium systems, such as interaction mediated laser
cooling [37,46], dissipative binding mechanisms [47,48], and the stationary state
undergoing phase transitions [12,25,26,35,49–55].
Another quantum system with dissipative elements are color centers, or defects, in
diamond. Among these defects, especially Nitrogen-Vacancy centers consisting of a
Nitrogen atom and a vacancy in the diamond structure, attracted much attention. They
are promising candidates for various applications, e.g. in quantum photonic
technologies [56–58], quantum information [59,60] and electromagnetic field
sensing [61–63].

In the first part of this thesis, we will use a generic variational principle for the analysis
of dissipative quantum manby-body systems. The variational principle first arised with
Hamilton’s principle of stationary action in classical mechanics [65]. Since then,
variational approaches have been commonly used e.g. for the minimization of an energy
functional to calculate the ground state of a quantum system [66]. Based on a suitable
norm of the density matrix and its time derivative, our variational approach reduces
computationally intractable problems to just a few variational parameters allowing us to
calculate the steady state as well as the time evolution of dissipative Ising models. In
both cases, we perform a detailed analysis of the properties of the underlying dynamics
and also compare the results for different variational classes. A focus will be on
dissipative phase transitions that the steady state undergoes.
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In the second part of the thesis, we study the effects of the hyperfine interaction
mediated state mixing of an NV center and 13C nuclei in diamond on the transition
spectra. Beside the hyperfine interaction, our model includes radio frequency irradiation
acting on the NV center and the nuclei and laser illumination as the dissipative process.
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1. Introduction

1.1. Structure of the thesis

In the following chapter of this thesis, the theoretical concepts, i.e. the mathematical
and physical fundaments of the topics presented in this thesis, are described. Among
these are the calculus of variations, physical properties of Rydberg atoms, the theory of
phase transitions, the foundations of open quantum systems, and, tightly connected to
the latter, quantum measures for entropy and non-Markovianity. Additionally, we
present an introduction to NV centers in diamond and its electronic properties.
In the third chapter “Variational principle for open quantum systems”, we will introduce
the method that is used for the analysis of the systems we investigate in this thesis,
namely the variational principle, for the steady state and the time evolution. We also
present a specific example of how to use it.
The fourth chapter “Multicriticality of the non-equilibrium steady state” deals with
spontaneous symmetry breaking in Ising models. In the first part of that chapter, we
briefly present the common Ising model in closed quantum systems and its most
important properties. Then, we analyse the multicritical properties of the steady state
of a dissipative Ising model via the variational principle presented in the previous
chapter. In the second part of the chapter, we estimate the validity of the variational
product state ansatz by including fluctuations and by performing a renormalization
group analysis.
In the fifth chapter we analyse another dissipative Ising model that does not exhibit the
Z2 symmetry. We apply the variational principle of the time evolution, that has been
explained in the second part of chapter 3, and compare the evolution based on different
variational classes.
The sixth chapter “First order liquid-gas transition” deals with a liquid-gas transition of
the two-level dissipative Ising model. Here, we show results of the variational analysis
concerning the steady state undergoing a liquid gas transition. In the second part of this
chapter, we combine the method of the fluctuation-analysis presented in the fourth
chapter with the variational time evolution presented in the fifth chapter. We
investigate the properties of the time evolution close to the transition via adding
fluctuations to the variational solution.
In the seventh part “Spin bath polarization in nitrogen-vacancy centers”, we describe
the Hamiltonian of the NV-13C system and the mixing of states close to the Ground
state level anti crossing (GSLAC). Finally, we show the steady state polarization of the
NV center and the 13C nuclei.

14



2. Theoretical concepts

In this chapter, we provide the theoretical basis of the work presented in this thesis. In
the first part, we introduce the mathematical and physical basis for the variational
principle. In the next section, Rydberg atoms and their most important properties are
presented. The part ’Open quantum systems’ deals with the quantum mechanical
description of systems coupled to an uncontrolled environment and the derivative of the
quantum master equation. The chapter provides a mathematical definition of
(non-)Markovianity. Furthermore, a quantity that measures non-Markovianity in open
quantum systems is introduced. In the last part of this chapter, we describe the
electronic structure of Nitrogen-Vacancy centers in diamond and briefly explain the
ground state state level anti crossing phenomenon.

2.1. Variational principle

Arising with Bernoulli’s problem of the brachistochrone, the calculus of variations deals
with finding extrema of functionals, i.e. functions of elements of the function space [67].
In this chapter we will introduce the variational principle and its applications in
theoretical physics, especially in quantum mechanics. Then, we give a mathematical
description of matrix norms on which the functional used in this thesis is based.

2.1.1. Variational principle in classical and quantum mechanics

In classical mechanics, the calculation of the trajectory of a system is based on the
minimization of the action S which can be written as [68]

S[q] =

∫ b

a

L(t, q(t), q̇(t))dx. (2.1)

with the Lagrange function L, the time t and the trajectory q(t) and its time derivative
q̇(t). Hamilton’s principle states that the configuration {t, q, q̇} of the system is realized
such that the action is stationary (i.e. minimal) and thus fullfils

δS ≡ 0. (2.2)

with the infinitessimal change δS of the action. For a proper choice of the Langrange
function, the resulting Euler-Lagrange equations correspond to Newton’s equation of
motion.

15



2. Theoretical concepts

This kind of variational approach and Hamilton’s principle of stationary action also
finds applications in fields such as electrodynamics and thermodynamics [69].
In a closed quantum system described by a Hamiltonian H, the true ground state can be
approximated via a variational approach. The crux of that approach is the minimization
of the energy functional [70]

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 . (2.3)

To be explicit, the trial state Ψ depends on intrinsic parameters, which are varied during
the minimization process. The true ground state is approximated by the wave function
Ψ0 following from the parameter configuration that leads to the lowest value of the
energy-functional, with E[Ψ0] being the upper bound for the true ground state energy.
Variational methods are also used for the computational investigation of quantum
many-body phyiscs. One famous example from condensed matter physics is the density
functional theory (DFT) [71]. In the scope of DTF theory, the energy is regarded as a
functional of the electron density. The minimization of the energy functional leads to
the ground state energy, the corresponding electron density comes from the
self-consistent solution of the Kohn-Sham equations. Other examples of the application
of the variational principle are the matrix product state formalism [72] and machine
learning [73].

2.1.2. The trace norm and trace distance

The norm of vectors can be generalized to a norm of matrices. In this thesis, the
functional of the variational principle is given as such a matrix norm. A matrix norm
fullfils the axioms of vector norms. i.e. the semi positive definitness, linearity and the
triangular inequality. Let K be a field of real or complex numbers. If a vector norm
||x||V of the vector x, x ∈ Kn, is given, the common induced norm (or operator norm) of
the matrix A ∈ Km×n is defined as [74]

||A|| = sup
x 6=0

||Ax||V
||x||V

. (2.4)

Another possibility of defining the norm of a matrix is via the singular values. The
Schatten norms are important representatives of such norms. The Schatten p-norm is
defined as

||A||p =

min{m,n}∑
i

ςpi

1/p

. (2.5)

Here, the ςi denote the singular values of A. The Schatten norm is unitarily invariant,
i.e.

||A||p = ||UAV ||p (2.6)

16



2.2. Phase transitions

for any unitary matrices U and V . In particular, the Schatten norm is invariant under
the unitary transformation A→ UAU †. For p = 2, we get the so called Frobenius norm
which corresponds to the induced matrix norm if A is a rank-one matrix or a zero
matrix. For p =∞, we have the spectral norm, which corresponds to the absolute value
of the largest singular value of A. The case p = 1 leads to the so called trace-norm or
nuclear norm and can be written as

||A||1 = Tr{
√
A†A}. (2.7)

If A is hermitian, the trace norm corresponds to the sum of the absolute value of the
eigenvalues of A, i.e.

||A||1 = Tr{|A|}. (2.8)

Among the Schatten norms, the trace norm is the only norm fullfilling the condition

||A|| = ||κA||/κ. (2.9)

with κ > 0.
The properties of the trace norm makes it an appropriate candidate for applications in
quantum mechanics, particularly in quantum information theory. The trace distance D
of two different quantum states represented by ρ and σ is given by [75]

D =
1

2
||ρ− σ||1. (2.10)

This trace distance tells us about the distinguishability of the two states [76]. The
mathemical properties and the physical meaning of the trace norm makes it the norm of
choice for our variational analysis.

2.2. Phase transitions

Matter exists in different thermodynamics phases that have different physical and
chemical properties. The phases can be classified for example by the aggregate
conditions of water or the magnetization of a solid (ferromagnetic and paramagnetic).
Since the fundament for the theory of statistical mechanics and the thermodynamics of
phase transitions has been laid by Gibbs [77,78], scientific research has produced at
least a partial understanding of phases and phase transitions in both classical and
quantum systems. Classical phase transitions can be understood as being driven by
temperature fluctuations, whereas quantum phase transitions are driven by quantum
fluctuations and strictly speaking can only accur at zero temperature T = 0 K [79].
Mathematically, phase transitions are tightly connected to singular behaviour of a
thermodynamic quantity. Ehrenfest classified phase transitions by the quantities that
show discontinuity, resulting in numbering the different kinds of phase transitions as
first order, second order etc. [80]. In modern research of phase transitions, one

17



2. Theoretical concepts

distinguishes only between first oder transitions and continuous transitions. In this
chapter, we will give a brief overview of the concepts of the classical theory of phase
transitions and then switch to its quantum counterpart and explain important concepts
and methods of quantum phase transitions.

2.2.1. Classification of phase transitions

In classical thermodynamics, a large number of properties of a thermodynamic system
can be drived from the partition function Z. It reads [81]

Z =
∑
i

e−βH(si) (2.11)

with the Hamiltonian H of the system configuration si and β = 1/kBT , where kB is the
Boltzmann constant and T is the temperature. The so called internal energy U can be
derived from the partition function via the derivative to β and reads

U = −∂ logZ

∂β
. (2.12)

Then, the Helmhotz free energy A is defined as

A = U − TS = −β logZ (2.13)

with the entropy S. A thermodynamic system aims to minimize the free energy. Phase
transitions occur if the free energy becomes non-analytic.
According to the Ehrenfest classification, the order of the phase transition corresponds
to the lowest order of the derivative of the free energy that shows a discontinuity. So at
a first order transition this concerns first order derivatives like the entropy and the
volume, for a second order transition the response functions like the compressibility and
the specific heat show a discontinuous jump [82].
Modern classifications of phase transitions include only two types of phase transitions:
First order transitions and continuous transitions. A general description is given in [83].
Consider the bulk free energy density FB and generalized couplings Ki of the system. If
FB is non-analytic and at least one derivative ∂FB/∂Ki is discontinuous one speaks of a
first order transition.
If FB is non-analytic while all first derivatives are continous one speaks of a continuous
transition.

2.2.2. Quantum phase transitions

Thermal fluctuations vanish at zero temperature, instead quantum fluctuations arising
from the uncertanity principle dominate [79]. Figure (2.1) shows an example of quantum
and classical phase transitions in a phase diagram: The second order phase transition
line terminates at a critical point at a critical g = gc and T = 0K, where the phase
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2.2. Phase transitions

Figure 2.1.: For T = 0K there is a quantum phase transition at g = gc. For T > 0, there
is a continuous transition that terminates at the quantum critical point. In
the shaded region, the classical theory of phase transitions can be applied.

transition is purely quantum. In the immediate area of a quantum critical point, one
can study the interplay of quantum and thermal fluctuations. In this case, thermal
fluctuations dominate the shaded region around the transition line and the classical
theory of phase transitions can be applied. Another more advanced example of the
coexistence of a quantum and a classical phase transition in one phase diagram is the
Bose-Hubbard-Model [84], where at T = 0K, there is a quantum phase transition
between a superfluid phase and a Mott insulator. For T > 0K, there is a superfluid -
normal fluid transition.

Figure 2.2.: (a): Level crossing of the two lowest eigenenergies of the Hamiltonian H =
H0 + gH1 causing a non-analyticity at g = gc. (b): More common case of an
avoided level crossing in a finite system if [H0, H1] 6= 0.

Corresponding to the classical case, a phase transition occurs in a quantum system if the
ground state energy becomes non-analytic. Consider the Hamiltonian

H = H0 + gH1 (2.14)
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with the coupling constant g and H0 and H1 not depending on g. If H0 and H1

commute, there can be a level crossing of the two lowest eigenenergies, which means an
excited states becomes the ground state when passing a critical g = gc [79]. In the more
general case of H0 and H1 not commuting, there will be an avoided level crossing, see
Fig. (2.2 (b)). If we let the system size go to infnity, however, the gap closes leading to
a nonanalyticity of the ground state energy.

2.2.3. Landau Theory

Landau’s approach to the description of phase transitions is based on the concept of
spontaneous symmetry breaking [85]. In more recent work, other classes of phase
transitions were discovered, like for instance topological transitions [86]. Landau
constructed a generalized mathematical theory making use of the similarities between
phase transitions of very different systems. Crucially, a quantity called the order
parameter Ψ is introduced to express the status of the symmetry in the system.
In the case of a system described by the classical Ising model, an appropriate order
parameter is the magnetization. The low temperature phase has a finite magnetization
meaning that the symmetry of the Hamiltonian (invariance under flip of all spins) is
broken [79].
Another example of a broken symmetry expressed by an order parameter is the solid
phase of matter, where the rotational and translational symmetry are broken. Here, one
uses the amplitude of the density wave as the order parameter.
The transition to a superfluid happens when the gauge symmetry of the quantum
Hamiltonian is broken. For a strong interacting system, the corresponding order
parameter is given by the expectation value of the annihilation operator ψ(r) [87].
In Landau theory, the free energy can be expressed via an expansion in the order
parameter Ψ(r), which exhibits a spatial dependence due to for instance thermal
fluctuations. As a result, we can regard the free energy F as a functional depending on
Ψ(r) and write

F =

∫
drA+Bh(r)Φ(r) + CΦ(r)2 +DΦ(r)4 + E [∇Φ(r)]2 . (2.15)

The cubic term mostly vanishes due to the presence of a symmetry. The first order
term, however, is assumed to decrease more rapid than any other term in the expansion
approaching the critical point. The free energy funtional F is then minimized via a
variational approach and one gets the ordinary equation [88]

0 = h(r) + (C/B)Φ(r) + 4(D/B)Φ(r)3 + 2(E/B)∇2Φ(r) (2.16)

that can be solved with respect to the order parameter. Landau theory claims that this
most probable state minimizing the free energy functional is the true state. Landau
theory is on the same level as mean field theory as it ignores all fluctuations around this
most probable state.
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As explained in the following section, the universality class does not only depend on the
symmetry of the order parameter, but also on the spatial dimension. The second
criterion of equal spatial dimension is not fully included in Landau’s theory, but still the
gradient term in Eq. (2.15) connects the thermodynamics to the spatial dependence.

2.2.4. Critical exponents and universality

Close to a phase transition, a system can be characterized by its scaling limit. The
scaling limit is reached either by sending small lengths, like the lattice spacing in a
lattice, to zero while holding ’large’ lengths, like the correlation length determinig for
example the decay of ground state correlations, fixed. The other way is sending the
correlation length to infinity, holding the lattice spacing constant [79]. Close to a critical
point with the critical value gc of a generalized coupling g, the charateristic length scale
ξ of a system, diverges as

ξ−1 = Λ|g − gc|ν , (2.17)

that is, the system is governed by its long range physics. Here, ν is a critical exponent
and Λ is an inverse length scale. Approaching the critical point, an observable Θ
vanishes as

Θ = Θ0|g − gc|zν (2.18)

That behaviour of Θ is valid for both sides of the critical point g > gc and g < gc.
Combining Eq. (2.17) and (2.18), we can directly connect the observable Θ to the length
scale ξ close to the transition via

Θ ∝ ξ−z (2.19)

with the dynamic critical exponent z.
Crucially, the scaling limit is independent of the microscopic properties of the system.
In the context of a phase transition, this means that the value of the critical exponent
zν is often independent of the microscopic properties of the model that is under
consideration. This phenomenon is often refered to as universality [79].
Famous examples are the curve of the liquid/gas coexistence of a fluid and the
magnetization of an Ising antiferromagnet. In both cases, the temperature T plays the
role of the coupling. Surprisingly, the experimentally measured critical exponents for the
density difference and the magnetization, respectively, are the same in both cases, even
though the microscopic properties of the systems could not be more different.
This independence of the critical exponent from microscopic details lead to the
definition of so called universality classes. An universality class contains physical
systems exhibiting the same critical exponents. Even though the microscopic details of
these systems within a universality class can differ largely, they have three things in
common: Either forces are short ranged for all members or not, the symmetry group of
the Hamiltonian and the dimensionality [83].

21



2. Theoretical concepts

Tightly connected to the concept of universality classes is the concept of the critical
dimension: Above the upper critical the mean-field predicted exponents become
correct [89] as in high dimensionality, correlations are negligible.
Below the lower critical dimension fluctuations become strong and destroy the ordered
phase. As a consequence, there is no phase transition.

2.3. Markovian processes

Originating in stochastic mathematics, the investigation of Markovianity of processes
became an issue of great interest also in fields like condensed matter physics and
quantum optics. A Markovian process is characterized by the indenpendence of the
future evolution from the past behaviour of the process, i.e. predictions can be done
solely on basis of the current state and do not become better even if taking the past
evolution into account. Examples of non-Markovian behaviour in physical systems are
scattering processes in a solid or a damped harmonic oscillator [1, 90].
Connected to the emergent research on open quantum systems, see next chapter, the
characterization and measurement of (non-)Markovianity has become an important task,
as in open quantum systems, the information flow between the system and its
environment has to be taken into account, creating the basis for non-Markovian effects.
Thus, the assumption of Markovian behaviour is in general done on the cost of drastic
simplifications. Not surprisingly, the actual time evolution of quantum systems differs
qualitatively from predictions based on the assumption of a Markovian time
evolution [1].
It is well knwon that non-Markovianity is closely connected to the concept of quantum
correlations and entanglement [91–93]. However, various approaches of measuring
(non-)Markovianity exist, some of which are related to a generalization of the quantum
master equation [94], linear maps [95], the increase of distinguishability (measured by
the trace distance) between two evolving states [96,97], the divisibility property [98] or
the Fisher information [99,100].
In this chapter, we will give a mathematical definition of Markovianity. We will draw a
connection to non-Markovian behaviour in physical systems and find a measure of the
degree of non-Markovianity based on a generalization of the quantum master equation.

2.3.1. Markovian stochastic processes

The property of (non-) Markovianity is usually related to a stochastic process X(t), that
is, a map

X : Ω× T → R. (2.20)

Here, Ω is the sample space containing all possible events ω ∈ Ω and T can be
intepreted as an intervall of the real time axis. Mathematically, a stochastic process
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2.3. Markovian processes

X(t) is called Markovian if it obeys [1]

µ(X(t) ∈ B|X(tm) = xm, ..., X(t1) = x1) = µ(X(t) ∈ B|X(tm) = xm) (2.21)

for all Borel sets B and for all m = 1, 2, 3, ... with the ordered set of times,
t1 < t2 < ... < tm < t. Here, µ(A) is the probability of the event A. Definition (2.21)
tells us that the probability for X(t) ∈ B is the same either under the condition that the
system realized to x1, x2, ..., xm before or under the solely condition that the system
realized to xm at time tm. Thus the probability just depends on the latest realization
and is independent of the past. One might speak of rapid decrease of memory effects.
The prime example of a Markovian process is the so called Wiener process or Brownian
motion, that is, a continuous stochastic process with independent increments obeying
the normal distribution [101].

2.3.2. Measure of Non-Markovianity

Our approach to the measurement of non-Markovianity is based on a generalization of
the quantum master equation, which largely follows the work of [94].
The time evolution in the most general case can be written in the form [102]

ρ̇ = Λt[ρ] =
∑
k

Ak(t)ρB
†
k(t), (2.22)

with the linear map Λt acting on ρ. Expanding Λt eventually leads to a generalized form
of the quantum master equation given by [94]

d

dt
ρ = −i[H(t), ρ] (2.23)

+
d2−1∑
k=1

γk(t)

(
Lk(t)ρL

†
k(t)−

1

2
{Lk(t)L†k(t), ρ}

)
.

For a detailed derivation see App. (C). Here d is the dimension of the state space. The
generalized time dependent jump operators Lk(t) are orthonormalized according to

Tr[Lk(t)] = 0, Tr[L†j(t)Lk(t)] = δjk. (2.24)

The Hermitian operator H(t), the effective decay rates γk(t), and the Lk(t)’s are time
dependent and differ from their counterparts in the Master equation in Markovian
Lindblad form according to Eq. (2.57). Crucially, the generalized decay rates γk(t) can
become negative during the time evolution, reversing previous decay processes. This
leads to the definition of non-Markovianity: If and only if one or more of the γk(t) is
negative, the time evolution is non-Markovian.
A quantitative measure for the degree of non-Markovianity is given by the sum of all
negative generalized decay rates, which reads [94]

f(t) =
1

2

d2−1∑
k=1

[|γk(t)| − γk(t)]. (2.25)
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The challenge of the analysis is to transform the effective time evolution into the shape
of (2.24) and calculate the generalized decay rates γk(t).

2.4. Open quantum systems

An open quantum system is a quantum system coupled to an uncontrolled environment.
For the description of such systems, the Schroedinger equation is not appropriate.
Furthermore, the state of the open quantum system will in general not be a pure state
in Hilbert space, but rather a mixed state. This results in the definition of measures for
quantum entropy, giving information about the degree of mixture and irreversibility of
the quantum dynamics. In the following chapter, we will describe an approach of
investigating open quantum systems via a Markovian master equation approach. Doing
so, we will first give a definition of the density matrix that is used to describe mixed
states of quantum systems. In the second part of the chapter, we will derive an equation
of motion for the density matrix that includes the coupling of the system of interest to
the uncontrolled environment. In the last part, two different measures of quantum
entropy, describing to which extend a state is mixed, are introduced.

2.4.1. Pure and mixed states

For the statistical formulation of quantum mechanics, e.g. for calculating expectation
values, one uses the so called density matrix. In its most easiest form, we can express
the density matrix as

ρ = |Ψ〉〈Ψ| (2.26)

where |Ψ〉 ∈ H is an element (pure state) of the Hilbert space. The density matrix is
unique for a physical state, while the ket of the state that can be written as exp(iθ)|Ψ〉,
with the arbitrary phase θ ∈ [0, 2π).
Some important properties of the density matrix stem from the trace function. The
trace of an operator O, i.e. of a map O : H → H, is given by [103]

Tr{O} =
d∑

k=1

〈ak|O|ak〉 (2.27)

with the complete orthonormal basis |ak〉 of the d-dimensional Hilbert space H.
With this definition of the trace, the mean value of an operator O can be expressed as

〈O〉 = 〈Ψ|O|Ψ〉 = Tr{ρO}. (2.28)

In a more general case, one can consider a system consisting of several ensembles, each
described by a vector in the Hilbert space |Ψk〉. In that case, the expectation value of an
operator reads 〈O〉 =

∑
k λk〈Ψk|O|Ψk〉 and it is then convenient to define the density

matrix as
ρ =

∑
k

λk|Ψk〉〈Ψk| (2.29)
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so that 〈O〉 = Tr{ρO} holds. Here, the λk’s can be understood as the weights of each
ensemble [1] with ∑

k

λk = 1. (2.30)

Moreover, the density matrix fulfills

Tr{ρ2} ≤ Tr{ρ} = 1 (2.31)

where the equal sign holds if and only if the system is in a pure state according to Eq.
(2.26). Furthermore, the density matrix is hermitian and positive, i.e.

ρ† = ρ; ρ ≥ 0. (2.32)

Diagonalizing ρ and expressing it in terms of eigenstates and eigenvalues leads to the
same form of ρ as shown Eq. (2.29), with λk the eigenvalues and |Ψk〉 the
orthonormalized eigenstates.

2.4.2. Composite systems and the partial trace

Consider a composite system of two Hilbert spaces H = HA ⊗HB. In certain cases, one
might be rather interested in the properties of one subsystem, and thus aims to get rid
of the degrees of freedom of the second subsystem. This can be achieved through the
partial trace function. The partial trace over the subsystem B is a linear map
TrB : G(H)→ G(HA), where G(H) is the space of operators acting on H. It can be
explicitly expressed as [75]

TrB{|a〉〈a′| ⊗ |b〉〈b′|} = |a〉〈a′|TrB{|b〉〈b′|}. (2.33)

Here, |a〉, |a′〉 and |b〉, |b′〉 are generic vectors of the Hilbert spaces HA and HB,
respectively.
In the next step, we apply the partial trace to the density matrix. A general expression
for the density matrix ρAB acting on H is given by

ρAB =
∑
ijkl

cijkl|ai〉〈aj| ⊗ |bk〉〈bk| (2.34)

with cijkl = 〈aibk|ρAB|ajbl〉. Here, the ai form a complete orthonormal basis of HA and
correspondingly for the bi and HB.
Applying the partial trace operation according to Eq. (2.33) to ρAB, we get

TrB{ρAB} = Tr 6A{ρAB} =
∑
ijk

cijkl|ai〉〈aj|. (2.35)
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2.4.3. Liouville-von Neumann equation

A vector in Hilbert space obeys the Schroedinger equation

i
d

dt
|Ψk(t)〉 = H(t)|Ψk(t)〉 (2.36)

with the Hamiltonian H(t) and ~ = 1. Letting a time evolution operator U(t, t0) act on
the state, we have

U(t, t0)|Ψk(t0)〉 = |Ψk(t)〉. (2.37)

It is then easy to show that the time evolution operator also obeys the Schroedinger
equation as the Hilbert space vector.
One can generalize that formalism to the time evolution of the density matrix
introduced in chapter (2.4.1) and get the Liouville-von-Neumann equation for the time
dependent density matrix [1]

d

dt
ρ(t) = −i[H(t), ρ(t)]. (2.38)

In analogy to the Liouville formalism in classical statistical mechanics, one often
rewrites Equation (2.38) as

d

dt
ρ(t) = Lρ(t), (2.39)

with the Liouville superoperator L that maps the operator ρ(t) to its time derivative.
Via the unitary transformation of an explicitly time dependent operator A(t) according
to

AH(t) = U(t, t0)†A(t)U(t, t0) (2.40)

one can shift the time dependence from the density matrix to the operators, which is the
so called Heisenberg picture. Both the Schroedinger and the Heisenberg picture follow
from the more general interaction picture, where the dynamics is governed by the von
Neumann equation for the interaction picture density matrix [1].

2.4.4. Markovian quantum master equation

The following considerations follow to large extends the reference [1]. Consider a system
that is composed of a subsystem of interest S and the environment E coupled to S.
While the whole system S + E still follows unitary, Hamiltonian dynamics, the open
system S has different properties due to the interaction and therefore energy transfer
with the environment E. The corresponding Hilbert space has a tensor product
structure according to

H = HS ⊗HE (2.41)
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where HS and HE are the Hilbert spaces of the system S and E, respectively. The
Hamiltonian of the composed system can be expressed as

H = HS ⊗ IE + IS ⊗HE +HI , (2.42)

with HS being the Hamiltonian of the open system S, HE the Hamiltonian of the
environment E and HI the interaction term between these two parts. One can express

Figure 2.3.: Scheme of an open system and the coupling to its environment: The system
of interest S described by the Hamiltonian HS is coupled to its environment
E (a heat bath for instance) via the interaction Hamiltonian HI .

the density matrix of the composed system in the form

ρ = ρS ⊗ ρE + CSE (2.43)

where CSE stands for the correlation between S and E. Consequently, the density
matrix of the subsystem S can be written as

ρS = TrE{ρ} (2.44)

where TrE is the partial trace over all degrees of freedom of the environment E. The
composed system S + E evolves unitarily and therefore obeys the von Neumann
equation introduced in the previous chapter (2.4.3). In the same spirit of tracing out the
environment from ρ, we can write the time evolution of the density matrix of the open
system S as

d

dt
ρS(t) = −iTrE[H(t), ρ(t)], (2.45)

For the next step, we assume that correlations between the systems S and E can be
neglected and therefore equation (2.43) can be written as a product of ρS and ρE. The
transformation of the open system from the initial time t = 0 to t > 0 can be written in
the form

ρS(t) = TrE{U(t, 0)ρS(t)⊗ ρE(t)U †(t, 0)} = V (t)ρS(0). (2.46)
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The map V (t) replaces the unitary time evolution of the composed system ρS × ρE, that
was governed by the evolution operators U(t, t0). We can write

V (t)ρS(0) =
∑
µν

Ωµν(t)ρSΩµν(t). (2.47)

Here, Ωµν(t) is defined by

Ωµν(t) =
√
λν〈Φµ|U(t, 0)|Φν〉 (2.48)

with λν being the eigenvalues and Φν being the eigenstates of ρE. It can be shown that
V (t) is a positive and trace-preserving map and, for markovian time evolution, fullfils
the semigroup property [1]

V (t1)V (t2) = V (t1 + t2) t1, t2 > 0 (2.49)

and therefore represents a quantum dynamical semigroup. We continue expressing the
semigroup in terms of a linear map L as

V (t) = eLt, (2.50)

where now L takes the position of a generator of the semigroup. Equation (2.50)
directly leads to

d

dt
ρS = LρS. (2.51)

The above Equation follows the structure of formula (2.39). The superoperator L can be
considered as an generalization Liouville operator introduced in Equation (2.39).
Consider the Liouville space of the N -dimensional Hilbert space HS with the
orthonormal basis operators Fi, i ∈ {0, 1, ..., N2} and F0 being the identity. We express
the Ωµν from formula (2.47) as

Ωµν(t) =
N2∑
i

FiTrS{FiΩµν(t)}. (2.52)

Inserting the latter into Eq. (2.47), we get

V (t)ρS =
N2∑
i,j=1

cij(t)Fi ρSF
†
j (2.53)

with

cij(t) =
∑
µν

TrS{FiΩµν(t)}TrS{FiΩµν(t)}∗. (2.54)
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Inserting the expression (2.53) into the derivative of ρS, that according to Eq. (2.51) can
be written as

LρS = lim
ε→0

1

ε
{V (ε)ρS − ρS} (2.55)

we get the standard form of the generator

LρS = −i[H, ρS] +
N2−1∑
i,j=1

aij

(
Fi ρSF

†
j −

1

2
{F †j Fi , ρS}

)
. (2.56)

with aij = lim
ε→0

cij
ε

. Diagonalizing (aij) leads to the diagonal form of the generator that

reads

LρS = −i[H, ρS] +
N2−1∑
k=1

γk

(
AkρSA

†
k −

1

2
{A†kAk, ρS}

)
. (2.57)

The γk, which are the eigenvalues of (aij), are the decay rates. The corresponding Ak
operators given in terms of a linear combination of the Fi are usually refered to as
Lindblad or jump operators in Lindblad form. The first part consisting of the
commutator of ρS and the Hamiltonian stands for the coherent dynamics.

2.4.5. Quantum entropy

Analogously to classical systems, one can define a quantum entropy measure providing
information about the degree of uncertainity present in a quantum system. In the
definition of these measures, the classical probability distributions are replaced by the
density operator ρ. In the following, we will briefly give the definition and most
important properties of two common measures of entropy in a quantum system.

Von Neumann entropy One quite common measure of entropy in quantum
information is the von Neumann entropy. It is defined via the density matrix ρ of a
system and reads [104]

S(ρ) = −Tr{ρlnρ}. (2.58)

Expressing ρ by its spectral decomposition

ρ =
∑
i

pi|φi〉〈φi| (2.59)

we can rewrite the von Neumann entropy as [75]

S(ρ) = −
∑
i

pilnpi (2.60)
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which is a more useful expression for concrete calculations This corresponds to the
Shannon information entropy [1] for a distribution that maps an integer number i to a
probability pi: i→ pi. In a mixture made of pure states |φi〉 that are weighted with the
corresponding probabilities pi, S(ρ) describes the uncertainity about the realization of a
particular state of the ensemble.
Important properties of the von Neumann entropy are the semi-positive definiteness,
S(ρ) ≥ 0. The equal sign holds if and only if the system is in a pure state. Furthermore
the von Neumann entropy is invariant under a unitary transformation of the Hilbert
space. One can also define an upper bound given by S(ρ) ≤ ln{D}, with D being the
dimension of the Hilbert space. The von Neumann entropy reaches its maximum value if
and only if the system is in the maximally mixed state ρ = I/D.
Consider a system ρij with subsystems ρi = Trj{ρij} and ρj = Tri{ρij}. The von
Neumann entropy is always smaller than the sum of the entropy of the subsystems, i.e.

S(ρij) ≤ S(ρi) + S(ρj). (2.61)

We can interpret this in the way that the uncertainity about the system grows by
looking at the single subsystems as the information contained in the correlation between
i and j is lost.

Linear entropy Another measure of quantum entropy is given by the linear
entropy, that reads [1]

Sl(ρ) = Tr{ρ− ρ2} = 1− Tr{ρ2}. (2.62)

This functional is also a measure for the purity of states with the limits

0 ≤ Sl(ρ) ≤ 1− 1

D
. (2.63)

According to Eq. (2.62), the linear entropy is zero if and only if the system is in a pure
state. Sl reaches its highes possible value for a maximally mixed state [1].

2.5. Rydberg atoms

Atoms that are highly excited with the electron being in a state with a high principal
quantum number n >> 10 are so called Rydberg atoms [105]. The excited electrons are
weakly bound (almost ionized) to the core of the atom. This reults in a strong
interaction between excited atoms, leading to phenomena such as the
Rydberg-blockade [106] and its counterpart, the Rydberg-antiblockade [107], see Fig.
(2.4).
This behaviour makes Rydberg atoms to promising candidates in applications of
quantum simulation and quantum information. For example, the Rydberg blockade
mechanism can be used for the construction of two-qubit gates [38]. Also an
experimental implementation of a Controlled-NOT gate has been succesfully
demonstrated [108]. In the followingsections, we will review the most important
properties of Rydberg atoms.
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Figure 2.4.: Left side: Simplified scheme of a Rydberg atom: The ground state |g〉 is
coupled to the excited Rydberg state |r〉 with a Rabi frequency Ω. The
Rydberg state can be detuned with the detuning ∆ and decays with the
decay rate γ. Right side: Mechanism of the Rydberg blockade. The system
is described by the |g, g〉 state (both atoms are in the ground state), the
|+〉 = (|gr〉 + |rg〉)/

√
2-state and the doubly excited |r, r〉-state. The latter

is driven out of resonance if the distance of the atoms is smaller than rb, the
so called Rydberg blockade radius.

2.5.1. Rydberg wavefunctions

For large orbital quantum numbers l, an electron in the Rydberg state essentially sees
the atom core as a point charge, so that the trajectory and the binding energy of the
electron corresponds to those of a hydrogen atom. For low l, however, the electron gets
close to the core and the electron feels the unscreened charge of the core. Therefore, the
total energy is surpressed compared to the hydrogen energy levels. The eigenenergies of
the Rydberg state read [109]

En = − −Ry

(n− δl)2
(2.64)

with the principal quantum number n and the Rydberg constant
Ry = 109737.315685/cm. Here, δl is the quantum defect depending on l. The
Schrödinger equation with an 1/r Coulomb potential of the hydrogen atom can be
seperated into an angular and a radial part. The full solution are wave functions of the
form

Ψnlm(r, φ, θ) =
ψlm(φ, θ)f(r)

r
(2.65)

with the spherical harmonic function ψlm(φ, θ) solving the angular part and the solution
of the radial part f(r). Note that there is another independent solution of the radial
equation g(r) which we will use later on.
In the case of e.g. an alkali atom, the potential of the electron close to the core is lower
than in the case of a hydrogen atom due to the multiple charge of the nucleus.
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Consequently, the 1/r potential of the hydrogen atom is replaced by an effective
potential Veff (r) with a lower potential for small distances r between atom core and
electron [105]. The corresponding Schrödinger equation is still seperable into a angular
and a radial part. The modification of the potential leads to a phase shift τ to the radial
part of the hydrogen atom. Accordingly, the radial function f(r) of the hydrogen atom
is replaced by

ρ(r) = f(r) cos(τ)− g(r) sin(τ) (2.66)

Finally, the full wave function of theRydberg state reads [105]

Ψnlm(r, φ, θ) =
ψlm(φ, θ) [f(r) cos(πδl)− g(r) sin(πδl)]

r
(2.67)

with δl = τ/π. Note that the wave function (2.67) is only valid for r > r0, where the Na
potential Veff and the 1/r Coulomb potential are equivalent.

2.5.2. Van-der-Waals interaction

Assuming the distance between two Rydberg atoms to be much larger than the principal
quantum number of the atoms times the Bohr radius, i.e. R >> na0, the leading term of
interaction potential is the dipol-dipol interaction that can be written as [110]

Vdd = e2/R3 (a · b− 3azbz) . (2.68)

Here, a and b is the position of the Rydberg electron of the atom A and B, respectively,
with respect to the atom core. We suppose that both atoms are in the state nlj, where
n is the principal quantum number, l is the azimuthal quantum number and j is the
total angular momentum quantum number. The dipole-dipole interaction then leads to
the reaction

nlj + nlj → nslsjs + ntltjt. (2.69)

According to the dipol selection rules, we have ls, lt = l ± 1 and js, jt = j ± 0, 1. In the
case of Rubidium around the |60p/s〉 state, for example, the coupling between the
|60p3/260p3/2〉 state and the |60s1/261s1/2〉 state dominates [109]. The energy difference
bewteen the initial and the final states is called the Förster defect F given by

F = E(nslsjs) + E(ntltjt)− 2E(nlj). (2.70)

In the case of large distances R, a nonzero Förster defect leads to a van der Waals like
interaction in second order of Vdd with an 1/R6 dependence. For small distances up to
5µm, the interactions become resonant with the electronic levels and show a 1/R3

dependence. Between these limits, the van der Waals interaction leads to a mixing of
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2.5. Rydberg atoms

the hyperfine structure of the two levels. If the fine structure is not affected by the
interaction, the degenerate van der Waals Hamiltonian can be written as [110]

HvW =
C6

R6

∑
msmt

M†|msmt〉〈msmt|M (2.71)

where the operator M includes the angular mommentum properties of Vdd. The C6

coefficient reads

C6 =
∑
nsnt

e4

−δst
(Rnsls

nl Rntlt
nl )2. (2.72)

with Rn′l′

nl =
∫
drPn′l′(r)rPnl(r) and the radial wave functions Pnl(r). Applying HvW to

the two-atom eigenstate |φ〉, we get

HvW |φ〉 =
C6

R6
Dφ|φ〉. (2.73)

with the van der Waals potential C6

R6Dφ. The eigenvalues Dφ of the M†M operator
usually range from 0 to 1. Having several channels contributing to the interaction, the
corresponding HvW for each channel must be added together before being
diagonalized [109].

2.5.3. Dressed states

The investigation of Rydberg atoms is limited by the short lifetime of the Rydberg
state. For a Rydberg state with a principal quantum number of n = 50 one has a
lifetime of around 100µs [105]. A quantum many-body system, however, needs more
time to reach equilibrium. Through the so-called dressing of a Rydberg atom, one
achieves the admixture of the ground state and the Rydberg state, leading to a longer
lifetime and the possibility to e.g. tune the dipolar coupling between two atoms. A
general description of an atom that is dressed by laser light is given in [111]. Here, we
consider a Hamiltonian of the form

H = εR|r〉〈r|+ (Ω cos(ωLt)|g〉〈r|+ h.c.) (2.74)

with the highly excited Rydberg state |r〉, the ground state |g〉 and the corresponding
energy difference εR. The laser parameters are the Rabi frequency Ω and the frequency
ωL of the laser light. Shifting to the rotating frame of the Hamiltonian, and applying a
rotating wave approximation, as explained in App. (F.2) for another example, leads to

H = ∆|r〉〈r|+ Ω/2 (|g〉〈r|+ h.c.) , (2.75)

where ∆ is the detuning with ∆ = εR − ωL. In the case of Rydberg atoms, one usually
uses a weak dressing Ω� ∆. Consequently, the eigenstates of the Hamiltonian can be
written as a dressed state |s〉 given by

|s〉 = |g〉+
Ω

2∆
|r〉 (2.76)
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The decay rate of the dressed state can be calculated by [39]

γ =
Ω2

4∆2
γr

with γr being the decay rate of the Rydberg state. For example, if the dressed state has
a 1% share of the Rydberg state, the lifetime of the dressed state τ = 1/γ is extended to
about 10ms. In such a situation, the interaction given by [40,112]

V =
Ω4

8∆3

(
1 + (r/ξ0)6

)
is still strong enough to study many-particle physics. Here, we use ξ6

0 = C6/2|∆| with
the van-der-Waals coefficient C6. Rydberg dressing has become a common tool for the
investigation of many-body interactions [39, 113] and quantum magnetism [114,115]. In
recent years, the technique of Rydberg dressing has also been succesfully applied a
number of experiments [41,64,116].

2.6. Nitrogen-Vacancy centers in diamond

Color centers observed in diamonds are lattice defects that have a unique absorption
and emission spectra. These defects lead to fascinating coloration of diamonds and thus
have been intensively studied [117]. The Nitrogen vacancy (NV) center has a special
position among these color centers due to its outstanding properties, like read out and
control of the ground state of the spin at room temperature [118] and long coherence
times of the spin states of several ms [119–121]. Possible applications range from
quantum computing [122–126] to magnetometry [127,128].
In a Nitrogen vacancy center, one Carbon atom is replaced by a Nitrogen atom, and an
adjacent Carbon atom is removed, causing a vacancy, see Fig (2.5). One can further
distinguish between a neutral NV center NV0 with electron spin S = 1

2
in the ground

state and a negative NV center NV− with total electron spin of S = 1 [129,130]. The
NV0 compromises five electrons from the bounds to the neighbouring electrons (three
electrons from the dangling bond to the carbon atoms, two from the nitrogen atom).
The NV− inherits an additional electron from the lattice [117]. As the NV− exhibits
some interesting features like the measurability via electron paramagnetic spin
resonance due to its paramagnetic ground state [118] and the C3v-symmetry, scientific
research usually refers to this kind of NV center. In the following, NV will refer to NV−.

2.6.1. Optical and electronic properties

The NV defect including the Nitrogen atom, the vacancy and the three neighbouring
carbon atoms of the vacancy exhibit the C3v-symmetry. i.e. invariance under a 2π

3

rotation around the vertical symmetry axis [131]. The transformation under operations
such as rotations and reflections provide information about the electronic states of the
NV center [132].
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2.6. Nitrogen-Vacancy centers in diamond

N

MW

Figure 2.5.: Left side: An NV center consisting of a Nitrogen atom (N) and a vacancy
(V) with sourrounding carbon atoms (C) in the diamond structure. There
is a lone pair of electrons, i.e. unbonded valence electrons, indicated by the
line between the nitrogen atom and the vacancy. Right side: Level scheme of
an NV− center with the 3

2A triplet state as the ground state and the triplet
3E excited state. The sublevels are |0〉 and | ± 1〉, denoted here for the
ground state. NV centers show strong absorption of green at light at 532 nm,
the relaxation to the phonon sidebands at 650 − 800 nm. The relaxation
also happens through the singlet metastable states 1A and 1E via ISC. An
external field B0 lifts the degeneracy of the | ± 1〉 states.

The electronic states of the NV center consist of a 3A2 triplet ground state [133,134], a
3E2 triplet excited state [131] and the singlet metastable states 1A and 1E, see Fig.
(2.5). The states of the triplets can be given as eigenstates of the Sz operator with
ms = 0; ms = ±1 and the corresponding eigenstates |0〉 and | ± 1〉. The degeneracy of
the ms = 0 and ms = ±1 states is lifted by a zero field splitting with D = 2.87 GHz for
the ground state and D = 1.27 GHz for the excited state [135].
NV centers show strong absorption for 532nm, light with this wavelength excites the NV
from the ground state to the electronically and vibronically excited states. Phonon
assisted relaxation then brings it back to the electronically excited states.
The excited electron can decay to the ground state by fluoresence, i.e. the emission of a
photon. The zero phonon line between the ground state and the excited state is 637 nm
or 1.945 eV [136]. If there is energy lost to the vibration of the lattice, the fluoresence
ranges from 650− 800 nm.
The electrons in the excited state can also cross over to the metastable 1A-state via
inter-system crossing (ISC). The ISC between the 3E state and the 1A state is spin
orientation dependent, with lifetimes of τ = 23 ns for the |0〉 state and τ = 12.7 ns for
the | ± 1〉 state [135]. This transition is called shelving, and the metastable states 1A
and 1E are also called ’shelving’ states. The singlet states have an infrared emission
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2. Theoretical concepts

band of 1046 nm. The decay from the 1E state to the 3A ground state also happens via
inter-state crossing. The lifetime for this process is τ = 300 ns [137]. Due to this higher
decay rate of the | ± 1〉 state, the transition is spin non-conserving, flipping | ± 1〉 ↔ |0〉.
As a result, the NV center is polarized into the |0〉 state, with polarization up to
90% [138]. The long lifetime of the shelving state allows applications concerning single
spin readout. As the | ± 1〉 states go through the spin non-conserving, non-radiative
relaxation process more often, they have a weaker fluorescence [122].
Due to the Zeeman effect, the degeneracy of the | ± 1〉 states is lifted if an external
magnetic field B0 is applied along the NV symmetry axis. Using microwave irradiation,
one can trigger ground state transitions |0〉 ↔ | − 1〉 or |0〉 ↔ |+ 1〉 with the Rabi
frequency Ω = γeB1. Here, γe is the gyromagnetic ratio of the NV electronic spin and B1

is the component of the MW excitation that is perpendicular to the NV symmetry axis.
This cycling transition between the spin-substates lowers the fluoresence of the NV
center, raising possibilites to measure the NV resonance via the Optical Detected
Magnetic Resonance [139].
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Figure 2.6.: Sketch of the energy of the eigenstates in a NV-13C nucleus system, where
|0〉 and | − 1〉 refer to the NV ground states and | ↑〉 and | ↓〉 to the spin
1/2 states of the 13C nucleus. At around B = 1023.7 Gauss, the states get
mixed and there is a level-anticrossing. The circle indicates the area close to
the GSLAC shown on the right side. In this region, the |0, ↓〉 and | − 1, ↑〉
become mixed and therefore are labeled ′.

Ground state level anticrossing A ground state level anti-crossing (GSLAC), see
right side of Fig. (2.6), was first discovered in NV centers in diamond in [140]. It occurs
if the |0〉 ↔ | − 1〉 transition of the NV center and the transition of the nucleus become
resonant. The transition frequency of the NV transition is given by γeB0 −D, and that
one of the nucleus by γnB0. Here, γe is the gyromagnetic ratio of the electronic spin and
γn the gyromagnetic ratio of the nucleus. D is the zero field splitting. The condition for
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2.6. Nitrogen-Vacancy centers in diamond

resonance then reads

D − γeBG = γnBG. (2.77)

Inserting the values of γe/2π = 2.802MHz/Gauss, γn/2π = −10.705e−4MHz/Gauss and
D = 2870GHz, we get BG = 1023.7Gauss. If B0 is close to BG, the states of the NV
center and the nucleus becoming highly mixed due to the hyperfine interaction. In this
situation, the polarization of the NV center affects the polarization of the nucleus and
vice versa.

37





3. Variational principle for open
quantum systems

In this chapter, we will review the variational principle for the steady state [141] and
extend it to the time evolution of open quantum systems. This is analogous to the
variational principle for closed quantum systems, where an energy functional is
minimized to find the ground state. In our approach, the energy is replaced by a trace
norm based variational norm of the density matrix and its time derivative. Additionally,
we show a concrete example of its application to a dissipative transverse field Ising
model.

3.1. Variational principle for the steady state

In the first part of this chapter, we will describe the variational principle to calculate the
non-equilibrium steady state. For the concrete calculation, we will construct an upper
bound of the variational norm that has a compact form and allows us to reduce the
complexity of the variational minimization.

3.1.1. Upper bound of the variational norm

In the scope of the variational principle a trial state ρ is taken. The underlying time
derivative ρ̇ = L(ρ) is given according to the quantum master equation (2.57). The true
steady state is approximated by that state ρvar which minimizes the trace norm of ρ̇,
i.e. [141]

ρvar = argρmin||ρ̇||, (3.1)

with ||...|| being the trace norm, see chapter (2.1.2). In the following, ||ρ̇|| will be called
the variational norm. Due to limitations in our variational manifold, the variational
norm will in general not be equal to zero at the variational minimum, as it is the case
for the true steady state. In the most simple case, the varitional class is restricted to
product states that can be written as

ρ =
∏
i

ρi, (3.2)
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3. Variational principle for open quantum systems

with the single site density matrix ρi = Tr 6i {ρ}, where Tr6i {x} is the partial trace over
all sites except site i. The time derivative of a product state can be expressed as

ρ̇ =
∑
i

Rρ̇i +
∑
〈ij〉

RĊij. (3.3)

Here, R is the superoperator transforming the identity at site i, 1i, to the density
matrix ρi and Cij is the correlation between site i and j with the time derivative Ċij.
From Eq. (3.3), we can already see the difference between the variational approach and
mean-field decoupling: Even though our variational manifold is restricted to product
states, the derivative contains correlations Cij stemming from the interaction terms in
the Hamiltonian. These are not considered in mean-field theory at all, where only the
first term of the right side of (3.3) is set to zero. In contrast to other common numerical
procedures like a Runge-Kutta algorithms, the Liouvillian is applied only one time to
the product state within the variational principle, creating only the lowest order of
correlations. For the actual minimization, we use an upper bound of the variational
norm which reads

||ρ̇|| ≤
∑
〈ij〉

||ρ̇ij||. (3.4)

In a translational invariant system, the sum over neighbouring sites gives a constant
factor. Consequently, in such systems it is even sufficient to minimize the variational
norm of a single bond ||ρ̇ij||. For a detailed derivation of the upper bound of the
variational norm see App. (A).
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Figure 3.1.: Trace norm of the difference of the variational states ρfull, which is gained
by minimizing ||ρ̇||, and ρup, for which the upper bound

∑
〈ij〉 ||ρ̇ij|| was

minimized.
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3.1. Variational principle for the steady state

To validate the accurateness of minimizing the upper bound instead of the full
variational norm ||ρ̇||, we can consider a small system for which the variational
minimization (3.1) is still evaluable. In this case, we consider a two dimensional
dissipative Ising model on a 2× 2-lattice. The Hamiltonian reads

H =
Ω

2

∑
i

σ(i)
x +

V

4

∑
〈ij〉

σ(i)
z σ

(j)
z (3.5)

with the transverse field Ω and the interaction strength V . The dissipative part is
governed by the jump operators ci =

√
γσ

(i)
− . In the basis where σz is diagonal, the Pauli

matrices σµ are given by

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (3.6)

We can then calculate the steady state according to (3.1) and by minimizing the upper
bound given by Eq. (3.4). As a suitable distance between the two variational states, we
calculate the trace distance (i.e. the trace norm of the difference of the two variational
states). The result is shown in Fig. (3.1).
In the case of this small system, the deviation between the two states is relatively low.
For larger system sizes, one finds that the scaling of the variational norm ||ρ̇|| is
independent of the variational class and the model that is investigated. For a
non-interacting model, one can explicitly show the ∝

√
N dependence of the variational

norm by making usage of the central limit theorem, where N is the number of
particles [142].
Correlated variational trial states including nearest neighbour correlations can be
written in the form

ρcorr = ρprod +
∑
〈ij〉

RCij +
∑
〈ij〉6=〈kl〉

RCijCkl + ..., (3.7)

where ρprod is the product state given by Eq. (3.2). Applying the Liouvillian to ρcorr,
the interactions terms in the Hamiltonian generate higher orders of correlations, leading
to the upper bound including three-site subsystems. We get

||ρ̇corr|| ≤
∑
〈ijk〉

||ρ̇corrijk ||. (3.8)

Again, for a translational invariant system, the sum reduces to a constant factor and
there is a single three-site minimization problem.

3.1.2. Application of the variational principle

Concretely, the variational minimization according to Eq. (3.1) can be done as follows:
We parametrize the one-site density matrix ρi via

ρi =
1

2
+

∑
µ∈{x,y,z}

α(i)
µ σ

(i)
µ (3.9)
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with the variational parameters

(α(i)
x , α

(i)
y , α

(i)
z ) =

(
〈σ(i)

x 〉, 〈σ(i)
y 〉, 〈σ(i)

z 〉
)
,

where the σµ, µ ∈ {x, y, z}, are the pauli matrices. Restricting our variational class to
product states, the reduced two-site density matrix ρij is given as the product of the
single-site density matrices

ρij = ρi ⊗ ρj. (3.10)

The trial state ρij consists of six variational parameters, three per lattice site. We
consider a dissipative Ising model with the Hamiltonian according to Eq. (3.5) and the
quantum jump operators cκ = σκ− acting on site κ. According to the master equation
(2.57), we can then construct the αµ-dependent time derivative of ρij

ρ̇ij({αµ}) = Tr6i 6j {ρ̇} =− i[Hint +Hloc +Heff, ρij] (3.11)

+ γ
∑
κ∈{i,j}

(
cκρijc

†
κ −

1

2
{cκc†κ, ρij}

)
.

Here, Tr6i 6j {ρ̇} means that all sites except i and j, which form our subsystem of interest,
are traced out. The single parts of the Hamiltonian in formula (3.12) read

Hloc =
Ω

2

(
σ(i)
x + σ(j)

x

)
(3.12)

Hint =
V

4
σ(i)
z σ

(j)
z

Heff =
V

4
(2d− 1)

(
〈σ(k)

z 〉σ(i)
z + 〈σ(l)

z 〉σ(j)
z

)
.

The trace operation over the interaction with the neighbouring sites k and l lead to the
mean-field like terms in Heff, see also Fig. (3.2). Calculating the derivative of ρij
according to Eq. (3.12) and taking the trace norm we get ||ρ̇ij||. For the final
constrained minimization procedure with respect to the variational parameters

argρij({αµ})min{||ρ̇ij||}, (3.13)

efficient numerical algorithms exist, for example in the Scientific Computing Tools for
Python library [143–145].
Including correlations in the variational manifold demands more variational parameters.
We can express a correlated density matrix in terms of variational parameters and pauli
matrices as

ρcorrij =
1

4
+

∑
µ,ν∈{x,y,z}

αµνσ
(i)
µ ⊗ σ(j)

ν , (3.14)

where again the αµν denote the variational parameters. Here, the correlation between
site i and j is taken into account according to ρcorrij = ρi ⊗ ρj + Cij. In principle, it is
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Figure 3.2.: Visualisation of the two-dimensional lattice. Each Rydberg atom (represented
by the blue dots) occupies one site of the lattice with a lattice spacing a. A
single bond consists of two atoms at sites i and j, each interacting with its
adjacent atoms at sites k and l, respectively.

possible to include even higher-order or long-range correlations, if the ansatz for the
variational state is modified accordingly. Even though this will make the calculation
more complicated, the basic idea of the variational principle remains unchanged. The
construction of the variational norm ||ρ̇ijk|| for correlated states works accordingly to the
product-state case. For a single bond ρcorrij , we have nine variational parameters in the
case of correlated states according to Eq. (3.14) compared with six in the case of
product states. Consequently, we have higher computational cost finding the minimum
of the variational norm.

3.2. Variational principle for the time evolution

In the previous chapter, we reviewed the variational principle for calculating the
non-equilibrium steady state. We also aim for calculating the relaxation dynamics of the
open quantum system taking place before steady state is reached. For that reason we
will replace the norm of the time derivative used for calculating the steady state by the
norm of an integration expression. Analogue to the steady state case we will construct
an upper bound of the variational norm for the variational classes of product states and
nearest-neighbour correlations. We also want to stress that the technique proposed here
is similar to other variational approaches based on matrix product states [146–148].

3.2.1. Variational norm of the time evolution

In the most simple case, the integration of the quantum master equation can be done by
the common Euler method, where ρ(t+ τ) is given by

ρ(t+ τ) = ρ(t) + τL (ρ(t)) +O(τ 2) (3.15)

with integration step size τ .
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We can further minimize the integration error due to the finite size of τ by using the
implicit midpoint method [149]. As the Liouvillian L is linear, we can write the
integration expression in implicit midpoint form as

ρ(t+ τ) = ρ(t) +
τ

2
L [ρ(t) + ρ(t+ τ)] +O(τ 3). (3.16)

Using this integration method, we have an integration error of the order of τ 3, compared
with τ 2 in the case of the euler integration.
Accordingly, we use the implicit midpoint method to define the variational norm D for
the time evolution as

D ≡ ||ρ(t+ τ)− ρ(t)− τ

2
L [ρ(t) + ρ(t+ τ)] ||1. (3.17)

Here, ρ(t+ τ) denotes the trial state, parametrized by the variational parameters. The
true state ρ(t+ τ) is then approximated by the variational state ρvar(t+ τ) that
minimizes the functional D, i.e.

ρvar(t+ τ) = argρ(t+τ)min{D}. (3.18)

Given an initial state ρ0 = ρ(t = tmin), the time evolution in an intervall [tmin, tmax] is
calculated by interating over time in τ - steps and minimize D with respect to ρ(t+ τ) in
each iteration. The variational result ρvar(t+ τ) is the initial state ρ(t) for the next
iteration and so forth.
The largest share of the error of this integration process will in general be rooted in the
limitation of the variational manifold. The value of the variational norm at the
variational minimum is a measure for this error. On the other hand, the error
originating from the finite integration step τ is small in comparison.
Finally, we want to stress that integration schemes such as the common Runge Kutta
method [150] generate higher order of correlations and are therefore more difficult to
handle than our variational approach.

3.2.2. Upper bound

For the concrete calculation of the variational time evolution we use an upper bound of
the functional D given by Eq. (3.17) which reads

D ≤
∑
〈ij〉

||ρij(t+ τ)− ρij(t)−
τ

2
L[ρij(t) + ρij(t+ τ)]||1, (3.19)

for product states. In a translational invariant system the problem is reduced to a single
two-site problem.
If nearest-neighbour correlations are included in the variational manifold, the upper
bound of the variational norm includes three sites

D ≤
∑
〈ijk〉

||ρijk(t+ τ)− ρijk(t)−
τ

2
L[ρijk(t) + ρijk(t+ τ)]||1, (3.20)
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corresponding to the steady-state analysis. For the derivation of the upper bounds see
App. (A). The parametrization of ρij(t+ τ) and ρijk(t+ τ) works analogue to the
variational steady state analysis described in chapter (3.1.2).
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4. Multicriticality of the
non-equilibrium steady state

In the following chapter, we will investigate the critical properties of a dissipative Ising
model that preserves the Z2-symmetry.
In the first part, we will review the equilibrium quantum Ising model and show its most
important results.
In the second part, we investigate a dissipative Ising model. The content of the
subsections (4.4-4.6) are based on the publication [151]. Our analysis is based on the
variational ansatz for product states described in chapter (3.1.1), from which we
construct a Landau theory for open quantum systems. Effective classical theories using
product states have been succesfully applied to the investigation of open quantum
systems, e.g. in [35,44,54,152,153]. We identify one variational parameter as the order
parameter describing the paramagnet-ferromagnet transition. We will show that the
non-equilibrium steady state phase diagram includes, beside a continuous transition
known from the equilibrium Ising model, a first order transition and a tricritical point.
As our variational manifold is limited to product states, we will verify in detail the
accurateness of our ansatz by estimating the strength of fluctuations via a
Ginzburg-Landau analysis and renormalization group corrections.

4.1. The equilibrium Ising model

The many-particle Ising model is one of the most basic models of statsitical physics. In
two dimensions, it exhibits a continuous ferromagnetic transition, which is , next to the
condensation of steam or freezing of water, one of the most famous examples for a phase
transition [154].
The Hamiltonian of the quantum mechanical equivalent of the transverse field Ising
model is written in terms of operators, in this case pauli matrices σ

(i)
{x,y,z}, and reads

H = −∆
∑
i

σ(i)
x − J

∑
〈ij〉

σ(i)
z σ

(j)
z (4.1)

with the interaction strength J and the transverse magnetic field ∆.
The σ

(i)
z σ

(j)
z part of the Hamiltonian has the ±1 eigenvalues with the corresponding spin

states | ↑〉i and | ↓〉i. Without the off-diagonal σx-part, the quantum Ising model thus
reduces to its classical counterpart. The transverse field, however, perturbs the magnetic
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4. Multicriticality of the non-equilibrium steady state

order. The expectation value of σz will serve as the order parameter, defining the status
of order and symmetry in the system.
The symmetry properties of the Hamiltonian play a crucial role concerning the
investigation of phases and phase transitions. We see that the Z2 transformation

σ(i)
z → −σ(i)

z ; σ(i)
x → σ(i)

x , (4.2)

that is generated by the application of the σx operator to each site (“spin flip”), leaves
the Ising Hamiltonian invariant. In a phase, where the ground state is not left invariant
under the

∏
i

σx transformation, this symmetry is not present anymore, one speaks of

spontaneous symmetry breaking [79]. These considerations will be crucial in the
identification of the different phases of the Ising model and their transition into one
another.
With regard to the paramter ∆, we can basically distinguish betweent two different
cases: In the leading order of ∆� J , the ground state is given by

|0〉 =
∏
i

(| ↑〉i − | ↓〉i) ≡
∏
i

| ←〉i (4.3)

with the corresponding −1 eigenvalue of σx. From definition (4.3), we can readily see

that 〈0|σ(i)
z |0〉 = 0, i.e. in this parameter regime, we are in the unordered phase.

Correlations between different sites i and j vanish as 〈0|σ(i)
z σ

(j)
z |0〉 = δij. An expansion

in 1/∆ gives [79]

〈0|σ(i)
z σ

(j)
z |0〉 ∝ e−|ri−rj |/ξ, (4.4)

i.e. they remain short-ranged. Here, ξ corresponds to the correlation length introduced
in (2.17).
In the opposite case of ∆� J , the σz part of the Hamiltonian with the corresponding
eigenvalues and eigenstates dominates. For ∆ = 0, we get the degenerate ground state

| ↑〉 =
∏
i

| ↑〉; | ↓〉 =
∏
i

| ↓〉. (4.5)

Regarding these ground states, one immediately notices that the Z2 symmetry is broken
as the transformation does not leave the ground state invariant, but instead maps one
ground state into the other one. Also the correlations behave different compared to the
large ∆-case. Assuming a small g perturbation leads to

lim
|xi−xj |→∞

〈0|σ(i)
z σ

(j)
z |0〉 = n2. (4.6)

Accordingly, the order parameter is given by 〈0|σz|0〉 = ±n with n being the
spontaneous magnetization. Due to the finite value of the order paramater, we are in the
ordered phase. At some critical value ∆ = ∆c, there is the phase transition between the
ordered and the unordered phase, transforming the power law of correlations according
to (4.4) into (4.6) in a nonanalytic way with respect to ∆, as indicated in Fig. (4.1).
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ferromagnetic phase paramagnetic phase

Figure 4.1.: On top: Continous transition between the paramagnetic and the ferromag-
netic phase according to the transverse field Ising model with the transverse
field Ω and the single-spin energy ∆. The picture below shows the degenerate
ground states of the ferromagnet.

4.2. A Z2 symmetric dissipative Ising model

In the dissipative Ising model studied in the previous chapter (3.1.2) with the
variational approach, the Z2 symmetry of the Hamiltonian is broken externally due to
the Lindblad terms in the master equation. In the following, we will study an Ising
model in which the dissipation acts in the eigenbasis of the transverse field, leading to
an invariance of the master equation with respect to the Z2 transformation. The
transverse field Ising Hamiltonian reads

H = ∆
∑
i

σ(i)
z − J

∑
〈ij〉

σ(i)
x σ

(j)
x , (4.7)

with the transverse field in z-direction with strength ∆ and interaction strength J . The
Z2-transformation [32]

σx → −σx σy → −σy (4.8)

leaves the master equation invariant as the Lindblad part is bilinear in the Lindblad
operators ci = σ−. The overall sign is unchanged and we have a global Z2 symmetry,
which then might be spontaneously broken in a ferromagnetic phase. Calculations of
this model have already been done by a Keldysh approach, where findings indicate that
the continous transition becomes instable for sufficiently large dissipation rates [32]. We
will investigate phase transitions of the steady state of the model via our variational
principle.
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4. Multicriticality of the non-equilibrium steady state

Figure 4.2.: Left side: Eigenstates of H0, where each atom has a level scheme shown
on the right side. We also denoted the corresponding eigenenergies and the
subspaces of the Hilbert space the eigenstates belong to. Right side: The
spin configurations |↑〉 and |↓〉 form the ground state manifold, the Rydberg
state |r〉 is dressed with Rydberg dressing δr. Both dissipation processes are
realized via the |e〉-state.

4.3. Level scheme

For the experimental realization of the Z2-preserving dissipative Ising model, we use a
level scheme of dressed Rydberg atoms with the Rydberg state being weakly admixed to
the ground state. In the level scheme we propose, the states |↑〉 and |↓〉 correspond to
the ground states are coupled to the Rydberg state |r〉 with a Rabi frequency Ωr.
Additionally, the ground states are coupled to each other via a frequency Ω, see Fig.
(4.2). This admixing of the Rydberg state to the ground states allows us to effectively
integrate out the Rydberg state using a perturbative approach. We assume that the full
Hamiltonian of the two-atom system can be written as

H = H0 +H1 (4.9)

with the perturbative part H1. We divide the Hilbert space into two subspaces, the
model space D [155], which contains the low-energy eigenstates of H0, namely all
possible combinations of the |↑〉 and |↓〉-states, and the complementary high energy
subspace H/D containing the Rydberg state |r〉, see Fig. (4.2). H1 represents the
coupling between the low-energy and the high-energy states, i.e. it contains all
Ωr-terms. Here, we expand the full Hamiltonian H in Ωr/δr up to k−th order via
Lindgren’s perturbation theory for almost degenerate states [156]. A more detailed
description of that procedure can be found in App. (D). The resulting effective

Hamiltonian H
(k)
eff acts on the D-subspace eigenstates |ΨD〉 of H0 as

H
(k)
eff |ΨDn 〉 = E(k)

n |ΨDn 〉 (4.10)
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4.4. Landau theory for open quantum systems

with the eigenenergies E
(k)
n being the exact eigenenergies of H0 up to the k-th order of

Ωr/δr. In the most general case, the effective Hamiltonian can be written in terms of
Pauli matrices as

Heff = ∆
∑
i

σ(i)
z + Ω′

∑
i

σ(i)
x −

∑
ij

Jijσ
(i)
x σ

(j)
x + const. (4.11)

The parameters ∆ and Ω′ of the Hamiltonian contain the parameters from the level
scheme according to Fig. (4.2). We can get rid of the Z2 symmetry breaking σx-term by
changing the coupling Ω of the two ground states. Note that Heff is only Hermitian up
to k−th order of Ωr/δr. Here, we expand to the fourth order and find that for
Ωr = δr/10 and ∆ ∼ |J〈ij〉| ∼ Ω4

r/δ
3
r , the σx-term is strongly suppressed compared to the

σz- and σx σx-terms. The Rydberg interaction strength V , on the other hand, has to be
fixed at a value small enough to justify our cut off beyond nearest-neighbour
interactions. We found V = 3 δr as a reasonable value. The dissipative terms ∼ σ− in
the Liouvillian of the master equation are realized by optical pumping from the spin-up
into the spin-down state. The corresponding atomic states in the case of 87Rb are
|↑〉 = |5S1/2, F = 2,mF = 2〉, |↓〉 = |5S1/2, F = 2,mF = 1〉, and
|e〉 = |5P3/2, F = 3,mF = 2〉. For this choice, we have an additional dephasing into the
|↑〉 state. The corresponding jump operator P↑ = |↑〉〈↑| preserves the Z2 symmetry and
is also weaker than the dissipative spin flip. [157].

4.4. Landau theory for open quantum systems

Following the description in chapter (3.1.2) for a translationally invariant system, we
parametrize the product state density matrix ρij = ρi ⊗ ρj with ρi ≡ ρj via the
variational parameters

α = (〈σx〉, 〈σy〉, 〈σz〉) ≡ (φ, cφ, λ). (4.12)

The non-analyticity is contained in φ. Consequently, the seperation of c and φ in the
σy-coefficient makes c an analytic function. We identify φ as the order parameter which
has a finite value in the ferromagnetic (ordered) phase. Then, the time derivative ρ̇ij is
given by the master equation, where we use the Z2-preserving dissipative Ising model
with the Hamiltonian (4.7) and the jump operators ci =

√
γσ

(i)
− . The variational

minimization with respect to the trial state ρij is applied according to

||ρ̇ij|| → min. (4.13)

In the region of interest, the variational state gained via the numerical minimization of
||ρ̇ij|| is close to purity with α2 = 1. Therefore we set λ to λ2 = 1− φ2 − (cφ)2 in our
analytic calculation and keep φ and c as variational parameters. We can now begin with
the analysis in close analogy to Landau theory for equilibrium systems. Compared to
the Landau expression for closed systems introduced in Eq. (2.15), the energy functional
is replaced by the variational norm. As we assume a homogeneous system, there is no
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4. Multicriticality of the non-equilibrium steady state

spatial dependence of the order parameter and we drop the gradient term. Finally the
expansion of the variational norm ||ρ̇ij|| in the order parameter φ = 〈σx〉 up to sixth
order leads to

||ρ̇ij|| = u0 + u2φ
2 + u4φ

4 + u6φ
6. (4.14)

The coefficients un are functions of the parameters of the Hamiltonian as well as of the
coordination number z = 2d and the variational parameter c. The full expression of the
coefficients is given in App. (E). We can now see the advantage of separating c from φ
in the σy- coefficient: Any non-analytic behaviour is contained in φ, whereas c and the
coefficients un are smooth functions. Accordingly, we can classify the phase transition
by the behaviour of φ. A discontinuous jump of φ indicates a first order transition,
whereas a discontinuity of the derivative is connected to a second order transition. The
analytic part c of the variational parameters can be determined directly from the
following considerations: Far away from a phase transition, the variational norm is
dominated by the φ2-term of the expansion. Consequently, the variational solution is
found by minimizing the u2 coefficient with respect to c, which results in

c =
Jγz

(γ/2)2 + 4∆2
. (4.15)

The order parameter φ, which is left as an independent variational parameter,
determines the phase of the steady state: For a finite value of φ, there is an ordered
phase with a broken Z2 symmetry, whereas for φ = 0, there is an unordered phase.

4.5. Spontaneous symmetry breaking of the variational
steady state

The possible different kinds of phase transitions of a φ6 theory according to Eq. (4.14)
are known: They range from a continuous transition to a first order transition, which
would be an extension to the phase diagram known from the equilibrium case, and a
tricritical point, where the lines of first and second order meet. For the second order
transition, we have the condition [158]

u2 = 0; u4 > 0. (4.16)

The behaviour of the variational norm at the second order transition is shown at the left
side of Fig. (4.3). The global minimum of the variational norm at φ = 0 in the
paramagnetic phase is turned into two symmetric minima, indicating a second order
transition. The condition for the first order transition is ||ρ̇ij|| = 0 and ∂||ρ̇ij||/∂φ = 0.
Solving these equations with respect to u2, one gets

u2 =
|u4|
6u6

; u4 < 0. (4.17)
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Figure 4.3.: Expansion in the variational norm ||ρ̇ij|| to the sixth order in φ over φ in the
paramagnetic (dashed) and the ferromagnetic (solid) phase. One notices that
close to the second order transition (left), there is single minimum at φ = 0
in the PM phase, which is transformed into two symmetric minima in the FM
phase. Close to the first order transition (right) there are three distinct local
minima. The global minimum moves from the minimum at φ = 0 in the PM
phase to the minima at finite φ in the FM phase.

We see that in the case of a first order transition, u4 becomes negative and the φ6-term
becomes relevant for the stability of the expansion of the variational norm. Close to the
first order transition, there are three different minima (right side of Fig. (4.3). At the
transition, the global minimum is shifted from φ = 0 in the paramagnetic phase to φ 6= 0
in the ferromagnetic phase. First and second order line meet at the tricritical point,
which accordingly fullfils u2 = 0; u4 = 0. The non-equilibrium steady state phase
diagram exhibits all these phenomena, see Fig. (4.4). We can conclude that adding
dissipation to the dynamics significantly alters the phase diagram, including the
appearance of a first order transition and a tricritical point. In addition to that, the
order parameter behaves as φ ∼ ±(−u2/3u6)1/4 in the tricritical regime, which means
that we have a critical exponent of 1/4 instead of 1/2 known from the equilibrium Ising
phase diagram.

4.6. Fluctuations of the system

The construction of the Landau expansion in chapter (4.5) is based on product states.
The true steady state will deviate from this product state as indicated by the finite
value of the variational norm at the variational minimum. In this chapter, we will
address the question how strong fluctuations influence the system and at which point
they lead to a breakdown of the product state ansatz. In the first part, we will introduce
spatial inhomogeneities. Then, we will make use of Ginzburg’s criterion to calculate the
upper critical dimension, that tells us at which dimension the product state solution
becomes self-consistent at the tricritical regime.
In the second part, corrections of the Landau coefficients are calculated via a
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4. Multicriticality of the non-equilibrium steady state

second order transition

first order transition

Tricritical point

Figure 4.4.: Steady state phase diagram of the three-dimensional dissipative Ising model.
We find a first order and a second order transition between ferromagnetic
(FM) and paramagnetic (PM) phases. First and second order line meet at a
tricritical point.

renormalization group analysis. In the last part, we analyze the behaviour of the
variational solution for infinite spatial dimensions. In this limit, there are no correlations
and the variational approach becomes equivalent to mean field theory.

4.6.1. Spatial inhomogeneities

Fluctuations will generally produce spatial inhomogeneities. Including spatial
inhomogeneities in our analysis means that the value of the order parameter φi depends
on the site i. According to Eq. (3.4), the variational norm of an inhomogeneous lattice
consists of a sum over the bonds ρij. An expansion of the variational norm leads to

D =
∑
〈ij〉

||ρ̇ij|| =
∑
〈ijkl〉

J

2
(z − 1) (φi − φk)2 +

J

2
(z − 1) (φj − φl)2 + J ′(φi − φj)2 (4.18)

+
∑
〈ij〉

[
u0 + u2φ

2
i + u4φ

4
i + u6φ

6
i

]
.

Here, the coefficients un correspond to the coefficients of the expansion (4.14) from the
homogeneous case. Due to the inhomogeneities, there are additional terms of the form
∼ (φi − φk)2 with neighbouring sites i and k. The coefficient J ′ is given by

J ′ = −J
4

+

(
γ
4

)2
+ ∆2

4J
+

Jγ2

γ2 + 16∆2
. (4.19)
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For a finite value of φi, there is also a σx and a σy component of the one-site density
operator ρi according to the ansatz (4.12) and the eigenbasis of ρi is not just the σz
eigenbasis. Consequently, the coupling J ′ also depends on γ and ∆ beside the interaction
strength J . In the long wavelength limit, we have φi − φk = φj − φl = φi − φj, and after
factoring out the coordination number z we arrive at

D =
∑
〈ij〉

z

[
J

2

(
1− 1

z

)
+
J ′

z

]
(φi − φj)2 +

∑
i

z
[
u0 + u2φ

2
i + u4φ

4
i + u6φ

6
i

]
. (4.20)

We see that even in the presence of spatial inhomogeneities, the variational norm can be
written in a relatively compact form, allowing us to further analyse its behaviour near to
criticality.
Taking the continuum limit of the variational norm according to Eq. (4.20) the (φi − φj)
term transforms to a gradient and the summation over the sites becomes an integral
over the spatial variable x. This leads to

D[Φ] = z

∫
ddx u0 + v2(∇Φ)2 + u2Φ2 + u4Φ4 + u6Φ6. (4.21)

with the gradient coefficient v2 given by

v2 =

[
J ′

z
+
J

2

(
1− 1

z

)]
a2. (4.22)

4.6.2. Ginzburg’s criterion

In this section, we will apply the so-called Ginzburg criterion to analyze the strength of
fluctuations and at which point they lead to a breakdown of the product state ansatz.
We consider the continuum limit of the variational norm according to Eq. (4.21) as a
Ginzburg-Landau functional [159]. The squared length scale of correlations can be
calculated via

ξ2 = v2/2|u2|. (4.23)

The order parameter φ from the previous section is the spatial average of the fluctuating
field Φ(x). The mean square deviation of the field reads [159]

〈[φ− Φ]2〉 =
Teff

2v2

ξ2−dwd. (4.24)

Here, w is the reduced patch version of the Yukawa potential and 〈...〉 stands for the
averaging over different realizations of the Gaussian fluctuations.
The next step is to evaluate the quantities appearing on the right side of Eq. (4.24) to
find an analytic expression for the strength of fluctuations related to the variational
solution.
The fluctuations in our system exhibit thermal statistics [32] due to the existence of a
dynamical symmetry [54] and therefore can be characterized by an effective temperature
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4. Multicriticality of the non-equilibrium steady state

Teff. This effective temperature is directly connected to the variational norm of the
product state solution as the variational norm measures the fluctuation-induced
deviation of the true steady state from the variational state. Normalizing the variational
norm by a factor of z/2 we get an intensive quantity, which reads

Teff =
z

2
||ρ̇ij||. (4.25)

According to Eq. (4.25), the value of the effetive temperature is given by zJ at the Ising
transition line, which corresponds to the result found via field-theoretical calculations
within a Keldysh formalism [32]. We can now start to evaluate the mean square
deviation of the order parameter field Φ at the tricritical point. At the u4 = 0-line, the
order parameter behaves as

φ = ±(−u2/3u6)1/4. (4.26)

Remarkably, the critical exponent of the order parameter becomes β = 1/4 rather than
1/2, which indicates that there is a different universality class than in the case of the
equilibrium Ising transition. Inserting the expressions of ξ2 and Teff in Eq. (4.24), we get

〈[φ− Φ]2〉
φ2

=

√
3

4
wdv

−d/2
2 u0

√
u6u

(d−3)/2
2 (4.27)

as the relative mean square deviation of φ. We can now see the special role of d = 3
dimensions: Approaching the tricritical point, i.e. u2 → 0, fluctuations will increase for
d < 3. For d > 3, on the other hand, the u2-exponent is positive and fluctuations
decrease. So, in above 3 dimensions, our product state ansatz becomes self-consistent
and the mean field exponents become correct. For the experimental case of three
dimensions, there are logarithmic corrections of these exponents [160], which should not
qualitatively change the results.

4.6.3. One loop renormalization-group corrections

So far, we neglected potentially influential renormalizations of the u4-term, which can
lead to large shifts of the position of the tricritial point. In this chapter, we will
calculate the one-loop renormalization group corrections of the u4 term. The
renormalization group analysis combined with a perturbative treatment of higher order
terms in a Ginzburg-Landau-Wilson functional allows us to calculate corrections of the
position of the tricritial point systematically. In this sense it is an extension of the
analysis of fluctuations done in the previous chapter.
As a starting point, the variational norm D

D[Φ] = z

∫
ddx u0 + v2(∇Φ)2 + u2Φ2 + u4Φ4 + u6Φ6, (4.28)

is considered equivalent to an effective Ginzburg-Landau-Wilson
(GLW)-functional [161], where the higher order terms, in this case the Φ6- term, are
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Figure 4.5.: One-loop correction of the u4-term in the momentum space intergral. There

are
(

6
2

)
possibilities of contracting (the circle) two order parameter fields in a

φ6-term.

treated as a perturbation. Transforming the GLW-functional (4.28) into momentum
space, one can apply the steps of the renormalization group, that is, modifying the
length scale, rescaling and renormalization. Here, we use a differential RG
transformation, obtaining differential equations for the renormized coefficients rather
than recursion formulas [83]. We get to the linear flow equations [161]

du2

dl
= 2u2 + c1u4 + c2u6 (4.29)

du4

dl
= (4− d)u4 + c3u6 (4.30)

du6

dl
= (3− d)u6. (4.31)

Of special interest is the renormalized u4(l)-term as its fixed point characterizes the
phase transition. The c3-term is calculated as follows: Transformed into Fourier space,
we can split up D[Φ(q)] into a part for which we have the familiar Gaussian solution:

D[Φ]0 =

∫
dq

(2π)d
(u2 + v2q

2)Φ2
q + u4Φ4

q. (4.32)

and the higher order perturbative part

V =
u6

(2π)5d

∫
dq1dq2dq3dq4dq5Φq1Φq2Φq3Φq4Φq5Φ−q1−q2−q3−q4−q5 (4.33)

that leads to deviations from the Gaussion solution. In Fig. 4.5, we show the origin of
the c3u6-term: Two order parameter fields in the momentum space integral V are
contracted which leads to an additional fourth order term. The contraction of the
perturbation V reads [161]

〈Φq1Φq2〉 =
(2π)dδd(q1 + q2)

2(u2 + v2q2
1)

. (4.34)
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Integrating out the contracted part in Eq. (4.33) we find for c3

c3 =
2−d15Sd
π2v2

, (4.35)

where Sd is the surface area of the d-dimensional unit sphere. The prefactor 15 stems
from the number of possible contractions.
As a solution for the flow equations (4.29-4.31), we get

u4(l) = u4(0)e(ε+1)l + c3u6(0)
[
e(ε+1)l − eεl

]
(4.36)

u6(l) = u6(0)eεl, (4.37)

where ε = 3− d. The critical behaviour and the first order line of the system is
determined by the fixed point u∗i of the renormalization group transformation [83].
Choosing a suitable initial condition u2(0), the fixed point u∗2 corresponds to the Ising
critical line.
There are three different cases for the fixed point of u4: If u∗4 =∞, the renormalized u4

is positive and there is a continuous transition. For u∗4 = −∞, we end up at a first order
transition. The tricritial point in d ≥ 3 is found for u∗4 = 0. Eq. (4.36) tells us that the
value of the fixed point u∗4 depends on the sign of u4(0) + c3u6(0). Consquently, the
microscopic coupling constants u4(0) and u6(0) characterize the phase transition.
Therefore we have a shift of the tricritial point from u4 = 0 to u4 = −c3u6.
For d = 3 dimensions, the renormalized tricritial point is located at
(∆/Jz, γ/Jz)TC = (0.023, 0.35). The c3 coefficient decreases exponentially with
dimension and so does the shift of the tricritial point due to renormalization corrections.

4.6.4. Relation to mean-field theory

The mean-field equations for the time derivative of the Pauli operators read

d

dt
〈σx〉 = −γ

2
〈σx〉 − 2∆〈σy〉 (4.38)

d

dt
〈σy〉 = −γ

2
〈σy〉+ 2∆〈σx〉+ 2zJ〈σx〉〈σz〉 (4.39)

d

dt
〈σz〉 = −γ − γ〈σz〉 − 2zJ∆〈σx〉〈σy〉. (4.40)

The expectation value of σx of the steady state with d
dt
〈σx〉 = d

dt
〈σy〉 = d

dt
〈σz〉 = 0 is

given by

〈σx〉 = ±<
{√

γ2 + 16zJ∆− 16∆2

2
√

2zJ

}
(4.41)

Expression (4.41) gives a second order transition at [32]

γ2
c − 16(zJ∆ + ∆2) = 0. (4.42)
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Figure 4.6.: Mean field solution for the order parameter φ = 〈σx〉 for ∆/Jz = 0.5 and
z = 6. There is a continuous transition at γc given by Eq. (4.42). For γ < γc,
we have two symmetric solutions of 〈σx〉 according to Eq. (4.41).
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Figure 4.7.: Jump of the order parameter δφ versus ∆TC−∆
Jz

along the first order line for
z = 4, 6, 20 and 200. Via double logarithmic fitting, we obtain the prefactor
b from to Eq. (4.43). In the inset, the logarithm of b is plotted against the
logarithm of z. The corresponding fit (solid line) confirmes the b ∝ 1/

√
z

behaviour.

between the phases with 〈σx〉 = 0 and 〈σx〉 6= 0, see Fig. (4.6). Crucially, 〈σx〉 shows no
discontinuities within mean-field theory and thus there is no first order transition.
Consquently, mean field theory predictions are qualitatively wrong even above the upper
critical dimension. On the other hand, we know that in the limit of z →∞,
correlations vanish and mean field theory becomes correct. One might expect the
position of the tricritical point to converge towards ∆ = 0 in the limit of infinite
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dimensions, so that there is no first order transition in the phase diagram anymore. In
our variational analysis, however, we find that the formal solution of the tricritical point,
that is, u2 = 0; u4 = 0 approaches (∆/zJ, γ/zJ)TC = (0.22, 1.66) in the limit of infinite
dimensions. Instead, we find that the mean-field result is recovered in another way: The
jump of the order parameter δφ at the first order transition can be expressed as

δφ = b

(
∆TC −∆

Jz

)1/2

. (4.43)

Fitting the jump of the order parameter along the first order transition line for several
values of the spatial dimension d = z/2, we find that the prefactor b behaves as
b ∝ 1/

√
z, see Fig. (4.7). Consequently, the jump δφ is suppressed with increasing

dimension. In the case of infinite dimensions, there is effectively no first order transition
and the mean-field result is recovered. Incontrast to equilibrium systems, though,
mean-field is qualitatively wrong for any finite dimension.
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5. Time evolution of Rydberg gases

In this chapter, we will extend the variational analysis of the steady state to the time
evolution of a driven-dissipative Rydberg gas. We integrate the quantum master
equation within the variational manifold including both only product states and
correlated states. Furthermore, we will investigate the intrinsic properties of the
dynamics. We will apply a measure for the degree of non-Markovianity and draw a
connection to a quantum information measure, which is more easy to handle
experimentally. The results presented in this chapter are based on the publication [162].

5.1. Time evolution

We will first briefly introduce the Hamiltonian and the dissipative terms of the system
under consideration. In the second part, we show results of the variational analysis of
the time evolution introduced in chapter (3.2) and compare them to the full solution of
the quantum master equation.

5.1.1. The Hamiltonian

We consider a many-particle system consisting of ultracold Rydberg atoms being placed
on an optical lattice with one atom per lattice site. The interaction is van der
Waals-like. As each atom is described by a two-level system with the ground state |g〉
and the Rydberg state |r〉, the Hamiltonian can be written in the spin 1/2 formalism
with the pauli matrices σµ. The ground state is represented by the spin down state, the
excited rydberg state corresponds to the spin up state. Accordingly, the quantum jump
operators ci =

√
γσ

(i)
− appearing in the incoherent part of the master equation describe a

spin flip from the excited state to the ground state with decay rate γ. In the rotating
frame, the Hamiltonian is given by

H =
g

2

∑
i

σ(i)
x +

h

2

∑
i

σ(i)
z +

V

4

∑
〈ij〉

σ(i)
z σ

(j)
z (5.1)

with the interaction strength V following from a repulsive van der Waals interaction,
and the laser paramaters g corresponding to the transverse field Ω = g, and the
longitudinal field h, related to the detuning ∆ by h = ∆ + zV/2. Our focus will be on
the pure transverse field model with h = 0.
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5. Time evolution of Rydberg gases

Figure 5.1.: We plot the Rydberg density nr versus time for h = 0, Ω = γ and V =
2γ. The initial state with zero density corresponds to the electronic ground
state. The calculation is done via the quantum trajectory method in a 4× 4
lattice (solid), the variational method including correlations ρcorr (dashed)
and variational product states ρprod (dashed-dotted).

5.1.2. Time evolution based on different variational classes

Considering the Hamiltonian (5.1) and the dissipative terms with ci =
√
γσ

(i)
− , the time

derivative of the density matrix ρ is given by the master equation (2.57). As variational
states we use product states ρprodij = ρi ⊗ ρj and states including nearest neighbour
correlations with ρcorrij = ρi ⊗ ρj + Cij. In the case of product states and a homogeneous
system, the variational norm

D = ||ρij(t+ τ)− ρij(t)−
τ

2
L[ρij(t) + ρij(t+ τ)]||

is minimized with respect to ρij(t+ τ) and correspondingly for correlated states, as
described in chapter (3.2). The initial state ρ(t = 0) of the time evolution corresponds
to the state of all atoms being in the electronic ground state (all spins pointing down).
We compare the results of the variational analysis to the solution of the full quantum
master equation calculated via a quantum trajectory method [163,164]. As we can
readily see from Fig. (5.1), it is worth accepting more variational parameters for
correlated states and the resulting higher computational cost of the variational analysis:
The correlated states ρcorr quantitatively agree much better with the quantum
trajectory solution than the product state solution ρprod does.
Iterating the time evolution calculation over different values of Ω and V with h = 0, we
see that in certain parameter regimes, especially for large Ω and V , the deviation
between the two methods becomes quite large, see Appendix (B). We can connect this
behaviour to the presence of a first order liquid-gas transition close to this parameter

62



5.2. Properties of the time evolution

regime [141], where long-range correlations become important. Therefore our variational
description including only nearest- neighbour correlations becomes less accurate. For a
more accurate description the variational class has to be extended beyond
nearest-neighbour correlations, at the cost of more variational parameters. In chapter
(6), in which the liquid-gas transition is intensively studied, we choose another way and
investigate the influence of classical fluctuations on the time evolution. On the other
hand, the quantum trajectory method is limited to finite lattices (a 4× 4 lattice in this
case) which is increasingly problematic as finite size effects become stronger approaching
the phase transition.

5.2. Properties of the time evolution

As we have seen in the previous chapter, the variational principle using correlated states
delivers an appropriate description of the time evolution in the regime of small Ω/γ. In
this chapter, we will thus concentrate on the properties of the variational solution for
the correlated two-site subsystem ρcorrij .

5.2.1. Non-Markovian behaviour

Through interactions of the subsystem of interest and its environment, further coherent
and incoherent terms that are not included in the Markovian master equation according
to Eq. (2.57) possibly emerge and influence the time evolution. For the two-site
subsystem ρij, the generic shape of the quantum master equation introduced in section
(2.3.2) is given by

d

dt
ρij = −i[H(t), ρij] (5.2)

+
d2−1∑
k=1

γk(t)

(
Lk(t)ρijL

†
k(t)−

1

2
{Lk(t)L†k(t), ρij}

)
,

If the time evolution is non-Markovian or not is determined by the values of the
generalized dissipation rates γk(t). Equivalently to the generalized master equation
(5.2), we can write

ρ̇ij =
N−1∑
k,l=0

cklGkρijGl. (5.3)

Here, the Gk operators stand for the tensor product of all possible combinations of Pauli
matrices, so that N = 16. The γk(t) are the eigenvalues of the decoherence matrix d
with the entries dkl = ckl for k, l > 0.
For one ρij and its derivative ρ̇ij, Eq. (5.3) is highly under-determined, as the tensor c
consists of N2 4× 4 matrices. In order to uniquely determine cαβ, we solve the Eq. (5.3)
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5. Time evolution of Rydberg gases

Figure 5.2.: Lattice structure for the calculation of the non-Markovianity f(t). The vari-
ational state ρij ≡ ρmn is being iterated over a complete set of initial states.
The environment interacting with the sites i and j is given by the solution to
the time evolution of the system for correlated states ρc; see Fig. 5.1.

for each state of the full set of states

ρ00 =
σ0 ⊗ σ0

4
; ρmn =

1 + σm ⊗ σn
4

(5.4)

m,n ∈ {0, x, y, z}; m+ n 6= 0.

To compute ρ̇ij(t), we take the ρmn as our initial variational states ρij(t). Then, we can
variationally calculate ρij(t+ τ) and ρij(t+ 2τ), holding the surrounding sites fixed to
ρcorr from the time evolution of the previous chapter at the corresponding time, see Fig.
(5.2). This way, we take the correlations contained in ρcorr and its interaction with the
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Figure 5.3.: Sum of negative generalized decay rates f(t) for V = γ/2 (solid) and V = γ
(dashed). The Rabi frequency is Ω = γ.
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5.2. Properties of the time evolution

environment into account. The time derivative of ρij is approximated according to

ρ̇ij(t+ τ) =
ρij(t+ 2τ)− ρij(t)

2τ
+O(τ 3). (5.5)

Iterating over all states in the set (5.4), we find a unique solution for the entries of the
cαβ-matrix and finally for the γk(t) and for f(t). The results for f(t) that is calculated
according to Eq. (2.25) are shown in Fig. (5.3). We see that for Ω = γ, the
non-Markovianity is always finite, remarkably even in the regime of the stationary state
(“eternal non-Markovianity” , [94]). We are now able to understand the role of
correlations for the time evolution: Neglecting correlations means neglecting
non-Markovian behaviour that, however, plays a crucial role for the dynamics. This is
the reason why the correlated variational states describe the time evolution
quantitatively much better than simple product states.

5.2.2. Quantum linear mutual information

In the previous chapter we saw that the preparation of the lattice to measure the
non-Markovianity is quite complicated, as we have to control the two site system
independent from its environment and iterate over all 16 states ρm,n. The aim of this
subchapter is drawing a connection between the non-Markovianity and a quantity of
quantum information, which is easier accessable. While such a connection at a first
glimpse seems pretty far-fetched, we will show that the so called quantum linear mutual
information (QLMI) reproduces the bilinear dependence on the variational parameters
of the variational norm.
The QLMI is defined by [165]

I = Sl(ρi ⊗ ρj)− Sl(ρij), (5.6)

where Sl(A) is the linear entropy given by Eq. (2.62). The QLMI can thus be
interpreted as a measure of the strength of correlations, giving the difference of the
entropy of the product state of sites i and j, ρi ⊗ ρj, and the correlated state ρij. For
small interaction-values, we find a good agreement of the non-Markovianity and the
QLMI, whereas for larger V , the two quantities deviate from each other. This behviour
can be verified by expanding ρij around product states and writing it as

ρij = ρi ⊗ ρj + εA. (5.7)

Here, ε is the expansion parameter and A is the product of any two Pauli matrices.
Using the ansatz 5.7 we find the following expression for the QLMI:

I = εακαλ +O(ε2). (5.8)

Remarkably, the QLMI is bilinear in the variational parameters αµ. The
non-Markovianity, on the other hand, is based on the variational solution ρvarij following
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5. Time evolution of Rydberg gases

from the minimization of D. We find that both the variational norm D and ρvarij are
bilinear in the variational parameters α, too. Consquently, the non-Markovianity shows
the same behaviour with respect to the α as the QLMI.
If we take another measure of information, namely the von-Neumann mutual
information IVN, with S = −Tr{ρ ln ρ}, we arrive at

IVN = εTr{A ln(ρi ⊗ ρj)}+O(ε2), (5.9)

which has a logarithmic dependence on the variational parameters. This is not
consistent with the bilinear dependence of the variational norm and thus, unlike the
QMLI, cannot give an accurate description of the non-Markovianity.
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Figure 5.4.: Non-Markovianity f and the quantum linear mutual information (QLMI) I
for t→∞ over the interaction strength V with Ω = γ.

These considerations explain why, in the case of small V/γ, we find that the QLMI and
only the QLMI deviates from the non-Markovianity just by a constant. In figure (5.4)
we show the QLMI and the non-Markovianity of the steady state versus the interaction
strength V . For larger V/γ, however, the variational steady state tends towards the pure
state with all atoms in the electronic ground state as one sees in Figures (B.1) to (B.4).
With regard to the expansion (5.8), this means that the variational parameters except
αz go to zero and the first order term vanishes, making the expansion in ε less accurate.
Indeed, for V > 0.6γ, the QLMI decreases much faster than the non-Markovianity,
leading to nontrivial deviations.

66



6. First order liquid-gas transition

In this section, we will perform a variational calculation of the steady state of a
dissipative Ising model [141]. The steady state of that model has been intensively
studied, and several predictions of the behaviour of the steady state have been made:
Some works predict a bistable phase in the steady state phase diagram [26,35,166]. In
one dimensional systems, numerical solutions of the full quantum master equation based
on monte carlo simulations and exact diagonalization predict a unique solution [47,166].
Also the existence of an antiferromagnetic phase has been claimed [31]. We will now
review the model with the variational approach for the steady state [141,142,167] and
the time evolution.

6.1. Steady state phase diagram

We calculate the steady state of the dissipative Ising model governed by the
Hamiltonian (5.1) and the jump operators ci =

√
γσ

(i)
− using the variational principle

according to Eq. (3.1). Assuming a translationally inviariant system the variational
minimization procedure reads

||ρ̇ij|| → min (6.1)

for product states and

||ρ̇ijk|| → min (6.2)

for correlated states (nearest-neighbour correlations). The time derivative of the density
matrix ρ̇ = Lρ is given by the quantum master equation according to Eq. (2.57) with
the Lindbladian L. In the following chapters, the longitudinal field is assumed to be
zero, i.e. h = 0.
In the equilibrium transverse field Ising model, the Z2 symmetry is spontaneously
broken in an ordered phase leading to a continuous transition between the unordered
and the ordered phase. In the dissipative Ising model under consideration, this
symmetry is broken externally in the quantum master equation even for h = 0 due to
the dissipative terms. Counting the Rydberg excitations as particles, however, with the
dissipation being considered as a particle loss process, it is possible to find the
equivalent of the liquid-gas transition [168] if a corresponding symmetry arises.
For all values of the interaction strength V and the strength of the transverse field g, the
variational analysis provides a unique steady state. The variational steady state can be
identified either as a high density state (liquid state) with n↑ ∼ 0.5 or as a low density
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6. First order liquid-gas transition

state (gas) with n↑ ∼ 0.1. Each of these variational states corresponds to a local
minimum of the variational norm. Which of the minima has the lower variational norm
depends on the parameters of the model.
For V = 5 γ, we find a discontinuous jump of the Rydberg density at a critical value of
gc = 4.5 γ in the case of product states, whereas including nearest
neighbour-correlations shifts the jump to gc = 5.9 γ, see left side of Fig. (6.1).
Again, we compare the results of the variational analysis with the quantum trajectory
method, that solves the full master equation on a 4× 4-lattice. Due to the finite size of
the system, we observe a rather smooth transition from the lattice gas to the lattice
liquid. If we take the largest value of ∂n↑/∂g as a basis, the transition according to the
quantum trajectory method takes place at gc = 5.5.
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Figure 6.1.: Left side: Rydberg density of the steady state according to the variational
principle for product states (dashed line), correlated state (solid line) and for
the full solution of the master equation on a 4 × 4 lattice (dashed-dotted).
Right side: Variational norm of the two local minima close to the first order
transition again for product states (dashed) and correlated states (solid). In
the case of product states, the variational norm corresponds to ||ρ̇ij||, whereas
for correlated states we have ||ρ̇ijk||. Both figures are calculated at V = 5γ.

Analogously to equilibrium systems, this first order jump is accompanied by a level
crossing of the underlying functional. In our analysis, the free energy functional is
replaced by the variational norm. At the right side Fig (6.1), we show the variational
norm of the lattice-gas state and the lattice-liquid state for product states and
correlated states, repectively. For small g, the variational norm of the liquid is higher.
As a consequence, the system prefers the lattice gas as the steady state. When g passes
gc, the variational norm of the lattice liquid becomes smaller than the norm of the gas
state, and the system is in the high density state.
Evaluating the g-V phase diagram with the variational principle, we find the first order
liquid-gas transition in an intervall of V . Analogously to the classical liquid-gas
transition, the transition line ends in a critical point, as shown in the phase diagram
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Figure 6.2.: Non equilibrium steady state phase diagram for h = 0γ [141]. The first order
transition between the lattice gas and the lattice liquid ends in a critical point.

(6.2). Around the critical point, that is located at (g, V ) = (2.28, 1.40)γ), the system
forms a critical fluid [141].
For small interactions strength V , there is no non-analyticity according to perturbation
theory in V and consequently no phase transition. Thus one can state that the
interaction strength takes the role of the inverse temperature β of the classical liquid-gas
transition.

6.2. Time evolution of inhomogeneous states

For a further investigation of the liquid-gas transition described in the previous chapter,
we will look at the time evolution close to the transition. In chapter (5.1.2), we saw that
including correlations in the variational manifold substantially increases the quality of
the variational time evolution. Nevertheless, we also noticed that further improvements
are required, especially in parameter regimes close to the liquid-gas transition and for
higher values of the Rabi frequency. In this part of the thesis, we extend our variational
analysis of product states via including fluctuation-induced spatial inhomogeneities of
the lattice. This is done in the same way as it was done for the Ginzburg-Landau
analysis in chapter (4.6.2), that allowed us to estimate the accuracy of the product state
ansatz. We noticed that under certain conditions fluctuations lead to a breakdown of
our product state ansatz.
The strength of these classical fluctuations is given by the variational norm at the
variational minimum which in turn defines an effective temperature. In this chapter, we
will investigate how such fluctuations influence the dynamics and if there are qualitative
changes compared to the homogeneous case. Particularly in the regime of the first order
liquid-gas phase transition [141,142], we will find out which of the two local variational
minima of the steady state is favoured by the inhomogeneous time evolution.
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6. First order liquid-gas transition

6.2.1. A master equation including noise terms

In order to include fluctuations in the analysis, we will now extend the master equation
by noise terms of stochastic character. Following the general expression of a stochastic
differential equation in the Itô formalism [169], the evolution of ρ(t) is split into two
parts and can be written as

dρ = L{ρ(t)}dt+ ξ(t)dW (t). (6.3)

where the first part on the right side is governed by the quantum master equation
represented by the Liouvillian L. This part is solved by the variational approach.
Additionally, there is the stochastic Wiener process W (t) and its time increment
dW (t) = W (t+ τ)−W (t). The strength of the noise is controlled via the
time-dependent coefficient ξ(t). Using dρ = ρ(t+ τ)− ρ(t) with the integration time
step τ , we can rewrite Eq. (6.3) as

ρ(t+ τ) = ρ(t) + L{ρ(t)}τ + ξ(t)dW (t). (6.4)

Assuming that the variational analysis solves the master equation, we can express
ρ(t+ τ) as

ρ(t+ τ) = ρvar(t+ τ) + ξ(t)dW (t). (6.5)

Having found the variational solution ρvar(t+ τ) that can be calculated as described in
the previous chapter, we have to add the noise terms to get the full solution for the time
increment.
The Wiener process W (t) appearing in Eq. (6.3) is simulated by

W (t) =
√
τ

t∑
tj=0

Ztj , (6.6)

where Ztj are random numbers obeying the standard normal distribution N (0, 1). Here,
tj is the time with the time increment tj+1 − tj = τ . Then, the differential of the Wiener
process reads

dW (t) = W (t+ τ)−W (t) =
√
τZt+τ , (6.7)

i.e. it obeys the standard normal distribution. Accordingly, the prefactor ξ(t) appearing
the stochastic master equation (6.3) corresponds to the standard deviation of the noise
terms.

6.2.2. Variational analysis of inhomogeneous states

For solving the variational part of the stochastic equation (6.3), we use product states,
i.e. we make an ansatz according to Eq. (3.9) for the single site density matrix. The
variational parameters then read

α(i)(t) =
(
α(i)
x , α

(i)
y , α

(i)
z

)
=
(
〈σ(i)

x 〉, 〈σ(i)
y 〉, 〈σ(i)

z 〉
)

(6.8)
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6.2. Time evolution of inhomogeneous states

for ρi(t) at site i.
In chapter (3.2.2) we found that, in a homogeneous lattice, a single bond ρij is required
for calculating the time evolution via the variational principle. For the inhomogeneous
case, we variationally parametrize ρij(t+ τ) and perform the minimization with respect
to ρij(t+ τ) according to∑

〈ij〉

||ρij(t+ τ)− ρij(t)−
τ

2
L [ρij(t) + ρij(t+ τ)] ||1 → min (6.9)

with the trace norm ||...||1 of the implicit midpoint integration term. Each bond ij has a
different spin configuration and therefore gives another contribution to the variational
norm. Using product states, however, we have 3N2 independent variational parameters
in the case of a N ×N -lattice. Our goal here will be to calculate relatively large system
sizes with N = 8 or even N = 16, resulting in a high computational effort for the
minimization of each time step τ . Thus the calculation of the variational time evolution
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Figure 6.3.: Comparison of the time evolution of a two-spin system calculated via min-
imizing all variational parameters at once (dotted line) and via holding one
spin constant and minimize the other one, respectively (dashed line). The
calculation is done for the Hamiltonian (5.1) with h = 0, Ω = 2γ and V = 4γ
and the jump operator c = σ−.

is intractable for the desired system sizes.
Our approach used here will be not to use equation (6.9) for the variational
minimization, i.e. minimize the full variational norm with respect to the variational
parameters of all lattice sites at once. Instead, we evolve each site from time t to t+ τ
via a minimization with respect to the parameters of that specific site, holding all other
sites constant. The corresponding variational norm for a single site i then reads

Di =
∑
j

||ρi(t+ τ)ρj(t)− ρij(t)−
τ

2
L [ρij(t) + ρi(t+ τ)ρj(t)] ||1 (6.10)

71



6. First order liquid-gas transition

with adjacent sites j and #j = 2d. The minimization procedure accordingly reads

ρvari (t+ τ) = arg{ρi(t+τ)}min{Di}. (6.11)

One iterates this single-site minimization procedure over each site i to evolve the system
from time t to time t+ τ . Consequently, instead of minimizing 3N2 parameters at once,
we perform N2 independent minimizations with respect to 3 parameters for each
minimization, making the variational solution computable also for larger system sizes.
Due to the product state structure of our variational manifold, that procedure
corresponds to the minimization of all variational parameters at once according to Eq.
(6.9). Indeed we find no numerical deviation of the iterative minimization of the spins to
the full minimization, see Fig.(6.3). That approach allows us to analyze relatively large
system sizes, suppressing finite size effects.

6.2.3. Simple noise terms

In this section we show how to integrate the stochastic master equation (6.3) by
including rather simple noise terms. In conformity with the seperation of ρ(t) into a
variational part and a noise part according to Eq. (6.5), we can split the coefficients of

the pauli matrices α
(i)
µ (t) into a variational part solving the quantum master equation
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Figure 6.4.: The time evolution of the average Rydberg density of the lattice is shown.
Left side: Comparison of the full solution of the QME with the variational
solution (product states) and including noise terms (inhomogeneous states)
for g = 4γ. These calculations were done on a 4× 4 lattice. Right side: Time
evolution of the homogeneous and the inhomogeneous state for g = 5.6γ on
a 16 × 16-lattice. We plot the Rydberg density averaged over all 256 sites.
The calculations for both figures were done for h = 0 and V = 5γ, with the
atoms being polarized into the electronic ground state as the intial state. The
finite lattice has periodic boundary conditions. The Rydberg density of the
inhomogeneous states were calculated by averaging over 10 trajectories.
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6.2. Time evolution of inhomogeneous states

and the noise part. Here, the quantum master equation part consists of the Hamiltonian
(5.1) and the quantum jump operators ci = σ− and the decay rate γ. A simple approach
to add a noise term to the variational solution is given by

α(i)
µ (t) = α(i)var

µ (t) +
√
τ ′
[
Dmin
i Z(i)

µ (t)
]
. (6.12)

Here, Z
(i)
µ (t) is a standard normally distributed random number and the dimensionless

τ ′ = γτ . The strength of the noise term is controlled by the prefactor ξ(t) = Dmin
i (t)

which corresponds to the variational norm according to Eq. (6.10) at the variational
minimum. According to Fig. (6.4), including noise terms leads to a qualitatively
different time evolution compared to the variational product state solution. At a certain
paramter regime, we see that the inhomogeneous variational solution agrees better with
the full solution than the product state solution does, see left side of Fig. (6.4).
Closer to the phase transition, one observes two different time scales of the
inhomgeneous time evolution. For smaller times, there is a rather fast oscillation of the
inhomogeneous state, which is also observed for the product state solution. At about
t = 4/γ, however, a metastable state with a rather high Rydberg density arises. This
state then decays exponentially on a longer time scale, see right side of Fig. (6.4).
We can conclude that already this simple ansatz of taking fluctuations into account
highly influences the time evolution and the steady state that is reached. Even though
the comparison to the full solution of the quantum master equation looks quite
promising, the question remains whether including this kind of classical fluctuations
provide an accurate description of the time evolution and which role quantum
fluctuations play in the system.

6.2.4. Differentiated Noise Terms

For the further investigation of the time evolution, we will use more differentiated noise
terms than those described in the previous chapter (6.2.3). According to Eq. (6.5), we

seperate the α
(i)
µ (t) into a variational part and a noise part. The ansatz for the noise

terms read

α(i)
µ (t) = α(i)var

µ (t) +
√
τ ′Λ

(
ε(i)
µ (t)Z(i)

µ (t) +
∑
j, ν

εijµν(t)Z
ij
µν(t)

)
(6.13)

with adjacent sites j of site i, and the coefficients ε
(i)
µ (t) = Tr{Dij(t)σ

(i)
µ σ

(j)
0 } and

εijµν = Tr{ (Dij+Dij)
2

σ
(i)
µ σ

(j)
ν }. Here, Dij(t) is the midpoint integration expression

Dij(t+ τ) = ρvari (t+ τ)ρj(t)− ρij(t)−
τ

2
L [ρij(t) + ρvari (t+ τ)ρj(t)] (6.14)

where ρvari (t+ τ) is that variational state that minimizes Di(t+ τ) according to Eq.
(6.11). Dij(t) is defined accordingly with respect to site j and ρvarj (t+ τ). This way we
can connect a noise strength εijµν with the corresponding contribution to Dij +Dij in µν
direction.
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6. First order liquid-gas transition

Figure 6.5.: Unit sphere in the (αx, αy, αz)- space of site i. Through the noise terms ζ,

the variational solution α
(i)
var can be driven out of the unit sphere, hurting the

positivity of ρi. The final α(i) lays on that point of the connecting vector of

α
(i)
var and α

(i)
var + ζ(t), that is on the border of the unit sphere, restoring the

positivity.

The random numbers Z
(i)
µ (t) and Zij

µν(t) obey the standard normal distribution. These
random numbers are fixed to a link between adjacent sites i and j, i.e. the same random
number Zij

µν appears in the noise terms of the parameter α
(j)
ν (t+ τ).

By adjusting the prefactor Λ = KΛ′ we make sure that the effective noise strength is on
the order of the variational norm at the variational minimum

∑
j ||Dij||. Consequently,

the normalization factor Λ′ is determined according to

Λ′

(∑
µ

|ε(i)
µ |+

∑
j, µν

|εijµν |
)

=
∑
j

||Dij||. (6.15)

The K factor will in general be larger than 1, as the random numbers Zij
µν(t) partly

compensate each other when being summed up. Additionally, the positivity constraint
of ρ(i) effectively weakens the noise, as described in the next section.

Preservation of positivity The positivity of ρvari can be guaranteed through the
application of contraints to the variational minimization process. The noise terms

ζ(i)
µ =

√
τ ′Λ

(
ε(i)
µ (t)Z(i)

µ (t) +
∑
j, ν

εijµν(t)Z
ij
µν(t)

)
; ζ(i) =

(
ζ(i)
x , ζ

(i)
y , ζ

(i)
z

)
, (6.16)

however, may drive the final result into a forbidden region with |α(i)| > 1.

In order to restore the positivity, α(i)(t+ τ) is shifted along the connection vector of α
(i)
var

and α
(i)
var + ζ(t) to the border of the unit sphere in the α(i)-space, see Fig (6.5). As this
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6.2. Time evolution of inhomogeneous states
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Figure 6.6.: The variational norm
∑
〈ij〉Dij (solid line) and the noise (dotted) versus time

γt for g = 5.7γ. Insets: Value of K versus time and the corresponding time
evolution of the Rydberg density n↑.

procedure effectively weakens the noise, the K-factor defined in the paragraph below Eq.
(6.13) will be in general larger than 1, such that the effective strength of the noise
corresponds to the effective temperature determined by the variational norm. In Fig.
(6.6), we plot the noise terms and the variational norm for h = 5.7γ and V = 5γ. The
factor K plotted in the inset is adjusted such that the noise is comparable to the
variational norm and ranges from 1.2 to 3.5.
With regard to the full solution via quantum trajectories, we did not find a substantial
improvement of the time evolution using these differentiated noise compared to the
primitive noise terms presented in section (6.2.3). Still, these noise terms give rise to
further interesting phenomena, as described in the next section.

6.2.5. Time evolution

In this chapter we show results with regard to the time evolution according to the
stochastic master equation (6.3) with the noise terms introduced in chapter (6.2.4). The
quantum master equation part of Eq. (6.3) is governed by the Hamiltonian (5.1) and the

quantum jump operators ci = σ
(i)
− . In the following, we calculate the time evolution of

an 8× 8 lattice with periodic boundary conditions. Due to the stochastic character of
the noise processes, a Monte Carlo approach is appropriate. In concrete, several
realizations of the time evolution are calculated. The observables like the Rydberg
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6. First order liquid-gas transition

density is gained via averaging over these realizations, or trajectories.
We calculate the time evolution of the average Rydberg density of the lattice in a purely
transverse field model, i.e. h = 0, V = 5γ and different values of g. Of particular
interest for us is in which steady state the system ends up and if it depends on the
choice of the initial state.

Electronic ground state as the inital state In this first part the initial state is
chosen such that all atoms are polarized into their electronic ground states, i.e. n↑ = 0
for t = 0. For g ≤ 5.7γ, the relaxation dynamics reaches the steady state that
corresponds to the lattice gas in the phase diagram (6.2), with a low Rydberg density.
For g = 5.8γ, however, the relaxation dynamics drives the system into the variational
state with a higher Rydberg density, corresponding to the lattice liquid phase, see Fig.
(6.7). So, according to the time evolution starting in the electronic ground state, the
liquid-gas transition is located between g = 5.8γ and g = 5.7γ. This is a shift compared
to the critical value of gc = 4.5γ found via the variational steady state analysis based on
product states [141].
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Figure 6.7.: The time evolution of the average Rydberg density of the lattice is shown
for g = 5.7γ (left side) and g = 5.8γ (right side). In both cases, all atoms are
polarized into the electronic ground state as the initial state. The Rydberg
density was calculated by averaging over ntraj = 10 trajectories.

Variational steady state as the initial state We will now calculate the time
evolution starting from the lattice gas (low-density state) and the lattice liquid
(high-density state), each state corresponding to a local minimum of the variational
norm of the steady state, as described in chapter (6.1). For each value of g, we calculate
the time evolution of 20 trajectories, with 10 trajectories starting from one of the two
minima, respectively.
We see that up to a value of g = 5.7γ, the steady state that is reached for long times
does not depend on the initial state. For 5.8γ ≤ g ≤ 7.4γ, however, there is a region of
bistability and the steady state that is reached indeed depends on the initial state.
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6.2. Time evolution of inhomogeneous states

For g ≤ 5.8γ, the time evolution of the system prefers the low-density state, even if the
time evolution starts at the variational minimum of the steady state corresponding to
the high-density state.
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Figure 6.8.: Average Rydberg density of the lattice over time for ntraj = 10 trajectories
and g = 5.7γ (left side) and g = 5.8γ (right side). For both values of g, we
start in the two distinct variational minima of the steady state. For g = 5.7γ,
both time evolutions end up the same steady state. For g = 5.8γ, however,
there is bistability.
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Figure 6.9.: The time evolution of the average Rydberg density of the lattice is shown.
Left side: Time evolution starting from the two variational states for g =
7.4γ. Right side: Time evolution starting from the two variational states for
g = 7.5γ.

For g ≥ 5.8γ, the high-density steady state has the lower variational norm. Still, the
time evolution does not reach this state if the system is initialized at the low-density
state, see left side of Fig.(6.9). For g = 7.4γ, for example, the variational norm of the
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6. First order liquid-gas transition

state connected to a low Rydberg density is significantly higher than the norm of the
high-density state. This leads to strong fluctuations included in the dynamics. The
variational minimization, however, drives the system back into the low-density
minimum. In that sense, one can say that our approach including classical fluctuations
is biased towards the low-density, or lattice gas, state which leads to a relatively large
bistable regime.
For g ≥ 7.5γ fluctuations of the low-density state are even stronger, and the system
reaches the high-density state with a lower variational norm.
As a summary, we state that the time evolution of the semiclassical approach does not
provide a unique steady state, which shows that quantum fluctuations are relevant for
reproducing the correct steady state.
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7. Spin bath polarization in
nitrogen-vacancy centers

7.1. The Hamiltonian and laser illumination

For the description of the 13C atoms we use a spin one-half representation with the
Pauli matrices I

(j)
µ at site j and µ ∈ {x, y, z}. The Sµ operators represent the NV’s

electron in spin one description. Here, we omit the |1〉 state, so that Sµ represents the
{|0〉; | − 1〉}-subspace. Close to the GSLAC condition, the Hamiltonian can be written
as

H = DGS
2
z +B0

(
γeSz + γn

∑
j

I(j)
z

)
+
∑
j

SAI(j) + 2B1 cos(ωRF t)

(
γeSx + γn

∑
j

I(j)
x

)
(7.1)

with the zero field splitting DG = 2.87 GHz. The Zeeman effect concerning the 13C
atoms and the NV center contributes to the Hamiltonian with the gyromagnetic ratios
of γe = 2.802 MHz/Gauss for the NV electron and γn = −10.705 · 10−4 MHz/Gauss for
the nuclei. The interaction between the 13C nuclei and the NV center is given in terms
of a hyper-fine interaction SAI(j) with the hyperfine tensor A. Additionally, we have
radio frequency irradation acting on both the NV center and the nuclei.
The hyperfine interaction is dominated by the Fermi contact interaction and the dipole
interaction. In the following, we consider nuclei that are far away from the NV center, so
that we only take the dipole interaction, i.e. the interaction due to the magnetic moment
of the nucleus and the electron, into account. The full dipolar Hamiltonian consists of
six parts, most of them can be neglected assuming a weak interaction strength, see App.
(F.1). It turns out that the SAI-term in the Hamiltonian (7.1) can be replaced by

Hhf = a

(
2SzIz −

1

2
(S−I+ + S+I−)

)
(7.2)

for the hyper-fine interaction. Here, the interaction strength a reads

a = −µ0

8π

γnγeh

r3
(7.3)

with the permeability µ0.
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7. Spin bath polarization in nitrogen-vacancy centers

Transforming the Hamiltonian to the rotating frame and applying the rotating wave
approximation under the assumption B1γe � ωRF leads to [170]

H =∆eSz + ∆n

∑
j

I(j)
z +

∑
j

aj
(
2SzI

(j)
z − SxI(j)

x − SyI(j)
y

)
+

1√
2

Ω(Sx +

√
2γn
γe

∑
j

I(j)
x ). (7.4)

For the details of the transformation and the the rotating wave approximation see App.
(F.2). Here, ∆e = γeB0 −D + ωRF is the off resonant irradiation of the |0〉 ↔ | − 1〉
transition and ∆n = γnB0 + ωRF is the off resonant nuclear transition. Ω = B1γe is the
Rabi frequency of the NV ground state transition.
Using the Hamiltonian H given by equation (7.4), the density matrix ρ obeys the
quantum master equation

d

dt
ρ = −i[H, ρ] + Γρ (7.5)

with the laser illumination Γ acting as the dissipation. It can be expressed as

Γ =
rL√

2

(
S+ρS− −

1

2
(S−S+ρ+ ρS−S+)

)
. (7.6)

This kind of dissipation only couples the NV’s electron. In general, also the nuclei
couple to dissipative terms via relaxation. The laser illumination drives the NV electron
into its |0〉 state with a rate of rL.

7.2. Steady state polarization

We will now let several 13C nuclei interact with the NV center. The additional hfi terms
of the Hamiltonian might lead to a shift of the double quantum and the NV transition
with respect to wRF . We calculate 〈Sz〉 and 〈Iz〉 of the steady state, where the latter is
referring to the first nucleus or an average value of all nuclei.
As parameters, we choose a Rabi frequency of Ω = 0.1 MHz and a magnetic field of
B = B0 − 0.15 Gauss. The rate of the laser illumination is r−1

L = 20 µs. In Fig. (7.1) we
plot the polarization of the NV center 〈Sz〉 and the polarization of the first nucleus

〈I(1)
z 〉 in a system with two nuclei. We vary the strength of the coupling to the second

nucleus a2 from a2 = 0 to a2 = 100 kHz.
We notice that the transition of the NV center is shifted slightly, from wRF = 1.5 MHz
for a2 = 0 kHz to about wRF = 1.42 MHz for a2 = 100 kHz. The transition of the first
nucleus is affected only very weakly by the change of the interaction strength. The peak
remains at wRF ≈ 1.1 MHz, except for the highest value of a2 (blue line). For this
highest value of a2, non trivial effects influence the polarization, and we get transitions
of higher order in the spectrum.
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7.2. Steady state polarization
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Figure 7.1.: Left side: Expectation value of Sz over wRF for two 13C nuclei and different
values of hyper fine coupling a2. The coupling to the first nucleus is set to
a1 = 20 kHz. Right side:Polarization 〈Iz〉 of the first nucleus with the same
configuration as on the left side.
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Figure 7.2.: The polarization 〈Sz〉 on the left side, and the average nuclear polarization
〈Iz〉 for one, two and four and six nuclei, respectively. The coupling strengths
are 35, 30, 25, 20, 15 and 10kHz.

For a2 up to 20kHz we notice a peak at about wRF = 1.33 MHz. The corresponding
transition is affecting both the NV center and the nuclei. In the following, we call it the
double quantum transition. In Figure (7.2) on the left side, we plot the polarization 〈Sz〉
and the average nucleus polarization 〈Iz〉 versus the frequency ωRF . We see an influence
of the number of nuclei interacting with the NV center on the NV polarization, with the
NV transition shifting to smaller values of ωRF . As in the previous case, the single
quantum transition of the nuclei is rather unaffected by the additional hyperfine terms.
The double quantum transition is broadened and the value of the peak decreases with
increasing particle number. For values of ωRF between the single quantum and double
quantum transition, we see new transitions appearing in the spectrum for the number of
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7. Spin bath polarization in nitrogen-vacancy centers

nuclei N ≥ 4. With increasing particle number, these new transitions become more
broadened.
In Ref. [171] a related central spin model including hyperfine interaction and dissipation
was investigated. The authors suggest NV centers in diamond interacting with 13C
nuclei as a possible experimental realization. The corresponding phase diagram inter
alia exhibits a first and a second order transition between a low-effective temperature
phase, where the nuclei are polarized in the direction of the electron dissipation, and a
high-effective temperature phase, where the nucleus polarization is opposed to the
electron dissipation.
As a result, we showed that due to the hyperfine interaction, the NV polarization affects
the polarization of the sourrounding nuclei, laying the bases for an effective spin bath
polarization. The particular transitions could be well identified in the spectra. Future
theoretical work could include more nuclei in the analysis, what might lead to further
interesting observations.
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8. Summary and outlook

In this thesis, we investigated phase transitions and the time evolution of dissipative
spin models, especially dissipative Ising models. For the analysis, we used a variational
principle that is based on the minimization of the trace norm of the density matrix.
Additionally, we investigated the polarization transfer in a spin system realized by an
Nitrogen Vacancy center in diamond.
We investigated a dissipative Ising model exhibiting the Z2- symmetry known from the
equilibrium Ising model. We succesfully applied the analogue of the Landau theory to
the open quantum system, expanding the variational norm in the order parameter. The
phase diagram is significantly altered compared to the equilibrium case. Between the
paramagnetic phase and the ferromagnetic phase, we found a first order as well as a
second order transition, which meet at a tricritical point.
We varified the validity of our product state ansatz via a Ginzburg-Landau analysis. In
the scope of this theory, we could define an effective temperature via the variational
norm at the variational minimum as it is a measure of the strength of fluctuations.
According to Ginzburg’s criterion, we find that the upper critical dimension is the same
as in the equilibrium system, namely d = 3. Above that dimension, the variational
product state ansatz is self consistent. In the case of d = 3 dimensions, the corrections
of the Landau exponents are logarithmic, suggesting the measurability of our results in
experiments. We could also show that our approach is in line with mean-field theory in
the limit of infinite dimensions, as the jump of the order paramater at the first order
transition decreases with one over square root of the dimension. Additionally, we
systematically calculated corrections of the Landau theory combining a renormalization
group analysis with perturbation theory. It turned out that due to corrections of the
fourth order term of the expansion, the position of the tricritical point is shifted. The
size of the shift, however, decreases exponentially with growing dimension.
For the experimental realization of this model, we propose a level scheme with two
ground states being coupled to the dressed Rydberg state.
Modifying the functional, the variational principle was applied also to the time evolution
of a dissipative Ising model that does not exhibit the Z2 symmetry. For the variational
ansatz we used product states and correlated states, whereby the latter include
nearest-neighbour correlations. We compared the results with the full solution of the
quantum master equation calculated via a the quantum trajectory method. It turned
out that including correlations in the variational manifold significantly improves the
result. Over a large parameter regime, the time evolution of the full solution and of the
correlated variational states agree very well. We could show that the worse performance
of product states is based on non-Markovian effects. The time evolution of the
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8. Summary and outlook

correlated variational two-site subsystem inheres non-Markovian behaviour that
remarkably stays after the steady state is reached. We could show that for weak
interactions, the non-Markovianity scales like the quantum linear mutual information,
which is more easily accessible experimentally.
In the last part of this thesis, we investigated a first order transition of the two-level
dissipative Ising model. Counting excitations as particles, this transition can be mapped
onto a liquid-gas transition. The variational steady state analysis showed that there are
two distinct variational minima, one corresponding to the gas state, the other one to the
liquid state. We calculated the variational time evolution including classical
fluctuations. As in the Ginzburg-Landau approach, these cause spatial inhomogeneities
that qualitatively modify the time evolution. In a parameter regime close to the
predicted transition point, we find a bistable regime, i.e. the steady state depends on
the choice of the initial state of the time evolution.
As a summary of this first part of the thesis, we proposed a concept corresponding to
the minimization of the free energy functional for open quantum systems. Our
variational ansatz proved to be computationally very efficient, while the full knowledge
of the variational parameters gave us detailed insight into the time evolution and the
critical properties of dissipative Rydberg gases.
We noticed that the appropriateness of the results highly depend on the variational
ansatz. In that sense, it might be worth extending the variational states beyond
nearest-neighbour correlations to many-particle correlations in future works. The
variational principle could furthermore be applied to other systems in the field of
dissipative quantum systems. Also, the experimental progress in investigating dissipative
quantum systems and and particularly Rydberg gases will continue. The Z2-preserving
dissipative Ising model investigated in this thesis is an obvious candidate for an
experimental realization. The successful measurement of the tricritical point could then
stimulate even more experimental and theoretical work and applications in that field.

In the second part of this thesis, we considered a dissipative spin model of an NV center
in diamond, coupled to 13C nuclei via hyperfine interaction. Close to the ground state
level anti crossing, where the NV transition is in resonance with the transition of the
nuclei, the polarization of the NV center and the nuclei effect each other. Beside the
single quantum transition of the NV center and the nuclear spins, the effect of the
double quantum transition can be identified in the polarization of the steady state. We
investigated both the influence of the interaction strength and the number of nuclei to
the transitions. We found that increasing the hfi strength between one nucleus and the
NV center in an NV-two nuclei system shifts the NV transition with respect to the
irradiation frequency, whereas the effects on the nuclear transition are quite weak. The
polarization of the double quantum transition is slightly reduced by an increasing
interaction strength. We also calculated the polarization of the NV center and the nuclei
for a one-, two-, four- and six-nuclei system. Again we observe a shift of the NV
transition with respect to the irradiation frequency. The double quantum transition is
rather broadened and in the case of more particles, higher order transitions emerge.
The polarization transfer in Nitrogen vacancy centers in Diamond have already been
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proofen useful for the realization of radio frequency free detection and polarization
transfer. The mechanisms of NV-bath polarization investigated here lay the basis for
further applications of NV centers like quantum state engineering.
For future work, it might be interesting to study the effect of more nuclei interacting
with the NV center. Due to its computational efficiency, the variational principle for
open quantum systems is a candidate for this purpose.
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A Upper bound of the trace norm of
the master equation

In this chapter, we will give a detailed calculation of the upper bound of the trace norm
functional that is used for the variational procedure concerning the steady state in
chapter (4) and for the time evolution in chapter (5). We will further distinguish
between variational classes consisting of product states and variational classes including
nearest-neighbour correlations. The first part “Steady state” part follows the analysis
presented in [142]. The second part extends the calculation of the upper bound to the
time evolution.

A.1. Steady state

A.1.1. Product states

We start with a product state ansatz for the density matrix, i.e.

ρprod = Πiρi. (A.1)

Differentiating ρprod with respect to time according to the quantum master equation,
one gets [142]

ρ̇prod =
∑
i

Rρ̇i +
∑
〈ij〉

RĊij. (A.2)

Here, Cij accounts for the correlation between sites i and j that is generally created by
interactions terms in the Hamiltonian or correlated jump operators. Taking the trace
norm of Eq. (A.2) we get

||ρ̇prod|| = ||
∑
i

Rρ̇i +
∑
〈ij〉

RĊij|| (A.3)

We now get an upper bound of the trace norm by pulling out the i-sum and making use
of the triangle inequality:

||ρ̇prod|| ≤
∑
i

||Rρ̇i +
∑
〈j〉

RĊij||. (A.4)
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In the next step, we extend the right side by a ρ̇j- term which leads to

||ρ̇prod|| ≤
∑
i

||Rρ̇i +
∑
〈j〉

R
(
ρiρ̇j + Ċij

)
||. (A.5)

The value of the variational norm will not be lowered by this extension as ρ̇i and ρ̇j act
on different parts of the Hilbert space.
Applying the triangle inequality a second time we get

||ρ̇prod|| ≤
∑
〈ij〉

||R
(
ρ̇iρj + ρiρ̇j + Ċij

)
|| =

∑
〈ij〉

||ρ̇ij||. (A.6)

As result, the upper bound reduces the intractable problem of calculating ||ρ̇|| to a sum
of single bonds ||ρ̇ij||.

A.1.2. Correlated states

Including nearest neighbours, the density matrix can be written as

ρcorr = Πiρi +
∑
〈ij〉

Cij (A.7)

where the first part Πiρi corresponds to product states introduced in the previous
section and Cij stands for the correlation between adjacent sites i and j. Differentiating
ρcorr with respect to time, one obtains [142]

ρ̇corr =
∑
i

Rρ̇i +
∑
〈ij〉

RĊij +
∑
〈ijk〉

R
(
ρ̇iCjk + Ċijk

)
(A.8)

where three particle correlations of the form Cijk are created by the differentiation of the
correlations in the ansatz (A.7). The trace norm reads

||ρ̇corr|| = ||
∑
i

Rρ̇i +
∑
〈ij〉

RĊij +
∑
〈ijk〉

R
(
ρ̇iCjk + Ċijk

)
|| (A.9)

As a next step, we apply the triangle inequality which results in

||ρ̇corr|| ≤
∑
i

||Rρ̇i +
∑
j

RĊij +
∑
〈jk〉

R
(
ρ̇iCjk + Ċijk

)
||. (A.10)

Analogue to the product state case, we can now extend the expression in the trace norm
according to

||ρ̇corr|| ≤
∑
i

||Rρ̇i +
∑
j

R
(
ρiρ̇j + Ċij

)
+
∑
〈jk〉

R
(
ρ̇iCjk + Ċijk

)
||. (A.11)
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and apply the triangle inequality with respect to the j-sum. Then, the upper bound
reads

||ρ̇corr|| ≤
∑
〈ij〉

||Rρ̇iρj +R
(
ρiρ̇j + Ċij

)
+
∑
k

R
(
ρ̇iCjk + Ċijk

)
||. (A.12)

In the next step, we again make use of the fact that the ρ̇ν , with ν ∈ {i, j, k}, act on
different parts of the Hilbert space, whereas correlation terms Cij aswell as their
derivatives are traceless. Therefore extending the right side of Eq. (A.12) with therms
like ρ̇iCjk will never decrease the trace norm. Consequently, we can write

||ρ̇corr|| ≤
∑
〈ij〉

||Rρ̇iρj +R
(
ρiρ̇j + Ċij

)
(A.13)

+
∑
k

R
(
ρiρj ρ̇k + ρ̇iCjk + ρ̇jCik + Cij ρ̇k + ρiĊjk + ρ̇iĊjk + Ċijk

)
||.

(A.14)

As a last step, we pull out the k-sum and obtain

||ρ̇corr|| ≤
∑
〈ijk〉

||R(ρ̇iρjρk + ρiρ̇jρk + ρiρj ρ̇k + Ċijρk + ρiĊjk (A.15)

+ ρ̇iĊjk + ρ̇iCjk + ρ̇jCik + Cij ρ̇k + Ċijk)|| (A.16)

=
∑
〈ijk〉

||ρ̇ijk||. (A.17)

One notices that the problem is now reduced to a three-site problem, which is different
to the sum of two-site problems in the upper bound for product states.

A.2. Time evolution

In this section, we will derive an upper bound for the variational norm of the time
evolution. We start with the trace norm

||ρ(t+ τ)− ρ(t)− τLρ(t)|| (A.18)

where the term in the trace norm brackets corresponds to the explicit euler integration.
The derivation of the upper bound for the midpoint integration works analogue. Using
the superoperator R and assuming a product state for ρ, we can write

||R(t+ τ)−R(t)− τ

∑
i

Rρ̇i +
∑
〈ij〉

RĊij

 ||. (A.19)
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A. Upper bound of the trace norm of the master equation

Making the same steps as in the chapters (A.1.1), i.e. exploiting the triangle inequality
and adding a ρ̇j-term, we arrive at

||ρ(t+ τ)− ρ(t)− τ ρ̇(t)|| ≤
∑
ij

||ρij(t+ τ)− ρij(t)− τ ρ̇ij||. (A.20)

For density matrices including nearest-neighbour correlations, one starts again with Eq.
(A.18) and makes the step discussed in chapter (A.1.2). Correspondingly to the steady
state, one ends up at a sum of three-site terms

||ρ(t+ τ)− ρ(t)− τ ρ̇(t)|| ≤
∑
ijk

||ρijk(t+ τ)− ρijk(t)− τ ρ̇ijk||. (A.21)
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B Comparison between the variational
time evolution and the full solu-
tion

In chapter (5.1.2), we noticed a good agreement between the variational time evolution
and the quantum trajectory method on a 4× 4 lattice with periodic boundary
conditions for Ω = γ and V = 2γ. Close to the liquid-gas transition for larger Ω,
however, the deviation between the two solutions becomes larger. This can be traced
back to long-range correlations becoming more important. On the other hand, finite size
effects become stronger close to the phase transition. Here, we show a comparison
between the variational states including nearest-neighbour correlations and the full
solution according to the quantum trajectory method for different values of Ω and V .
While we still find a good agreement for Ω = 3γ and 4γ and lower values of V , the
solutions deviate in general.
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Figure B.1.: Time evolution calculated via the quantum trajectory method (dashed line)
and the variational principle (solid line) for Ω = γ.
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B. Comparison between the variational time evolution and the full solution
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Figure B.2.: Time evolution of the Rydberg density nr for Ω = 2 γ and V = γ to V = 5γ.
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Figure B.3.: Time evolution of the Rydberg density nr for Ω = 3 γ and V = γ to V = 5γ.
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Figure B.4.: Time evolution of the Rydberg density nr for Ω = 4 γ and V = γ to V = 5γ.
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C Generalized form of the quantum
master equation

Via the time-convolutionless projection operator method [172,173], it has been shown
that even if non-Markovian effects are present, the time evolution can often be expressed
in time-local form as

ρ̇(t) = Λt [ρ(t)] (C.1)

where Λt is a linear map and Λt [ρ(t)] hermitian and tracesless. In the following, all
quantities will be time dependent and we will not explcitly write down the time
dependence. One can now expand the expression in operators Bk and Ak, so that we
can write [94]

ρ̇(t) =
∑
k

AkρB
†
k. (C.2)

The operators Ak and Bk can be written in terms of basis operators Gn that fullfil

G0 = 1̂
√
d; Gm = G†m; Tr{GmGn} = δmn (C.3)

with 1̂ being the identity. In our case, d is equal to 4 and the Gm are all possible
combinations of the Pauli matrices.
The expansion of Ak and Bk gives

Ak =
∑
j

Gjajk; Ak =
∑
j

Gjajk. (C.4)

Then, we get for ρ̇ [102]

ρ̇ =
N−1∑
i,j=0

cijGiρGj. (C.5)

Exploiting the hermiticity of ρ, one can show that the matrix c with the the entries cij
is also hermitian so that cij = c∗ji [94].
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C. Generalized form of the quantum master equation

Seperating out the c0j and ci0-terms, the right side of Eq. (C.5) can be rewritten as

ρ̇ = Cρ+ ρC +
N−1∑
i,j=1

dijGiρGj. (C.6)

with the decoherence (N − 1)× (N − 1)-matrix dij ≡ cij for i, j > 0.

In the next step, we make use of the fact that C + C† = −∑N−1
i,j=1 dijGjGi and define the

time dependent operator H ≡ 1
2
i~
(
C − C†

)
. This leads to the expression

ρ̇ = − i
~

[H, ρ] +
N−1∑
i,j=1

dij(t)

(
GiρGj −

1

2
{GjGi, ρ}

)
. (C.7)

Finally, we make use of the fact that d is hermititan and rewrite it as

dij =
∑
k

UikγkU
∗
jk (C.8)

with the time dependent eigenvalues γk(t) of d and unitary U matrix that is constructed
by the eigenvectors of d and fullfils

∑
k UikU

∗
jk = δij. Together with the definition

Lk ≡
∑
i

UikGjGi (C.9)

we eventually arrive at the canonical form of the master equation given by in Eq. (2.24).
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D Effective Hamiltonian within de-
generate perturbation theory

In this chapter, we derive an effective Hamiltonian according to level scheme (4.2) based
on a perturbation theory of almost degenerate states. As a start, the full Hamiltonian is
decomposed into two parts:

H = H0 +H1, (D.1)

where H1 is considered as the (small) perturbation. Considering the two ground states
| ↑〉 and | ↓〉 and the rydberg state |r〉, the unperturbed part of the two-atom
Hamiltonian can be written as

H0 =

∆ Ω 0
Ω 0 0
0 0 δr

⊗ I + I⊗

∆ Ω 0
Ω 0 0
0 0 δr

+ V |rr〉〈rr|, (D.2)

where ∆ is the detuning of the | ↑〉-state, Ω is the coupling between the ground states
| ↑〉 and | ↓〉, δr is the Rydberg dressing and V is the interaction strength between two
excited atoms. The perturbative part H1 of the Hamiltonian from formula (D.1)
describing the transition between the subspaces D and H/D of the Hilbert space H reads

H1 =

 0 0 Ωr

0 0 Ωr

Ωr Ωr 0

⊗ I + I⊗

 0 0 Ωr

0 0 Ωr

Ωr Ωr 0

 (D.3)

The eigenenergies of H0 assigned to the low-energy subspace (or model space) D of the
Hilbert space, where no energy scale connected to the Rydberg state appears, are given
by

Ep1 = Ep2 = ∆ (D.4)

Ep3 = ∆−
√

∆2 + 4Ω2

Ep4 = ∆ +
√

∆2 + 4Ω2
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D. Effective Hamiltonian within degenerate perturbation theory

with the corresponding eigenstates

|p1〉 =

− 1√
∆2

Ω2 + 2
;

∆√
∆2

Ω2 + 2Ω
; 0; 0;

1√
∆2

Ω2 + 2
; 0; 0; 0; 0

T

(D.5)

|p2〉 =

−∆Ω
√

2− ∆2

∆2+2Ω2

∆2 + 4Ω2
;−

2Ω2
√

2− ∆2

∆2+2Ω2

∆2 + 4Ω2
; 0;

1√
2− ∆2

∆2+2Ω2

;
∆Ω
√

2− ∆2

∆2+2Ω2

∆2 + 4Ω2
; 0; 0; 0; 0

T

|p3〉 =

(
Ω2Γ√

2 (∆2 + 4Ω2)
;
∆−

√
∆2 + 4Ω2

√
2ΩΓ

; 0;
∆−

√
∆2 + 4Ω2

√
2ΩΓ

;

√
2

Γ
; 0; 0; 0; 0

)T

|p4〉 =

(
Ω2Ξ√

2 (∆2 + 4Ω2)
;

ΩΛΞ

2
√

2 (∆2 + 4Ω2)3/2
; 0;

ΩΛΞ

2
√

2 (∆2 + 4Ω2)3/2
;

√
2

Ξ
; 0; 0; 0; 0

)T

with Γ =

√
(∆2+4Ω2)(∆2−

√
∆2+4Ω2∆+2Ω2)

Ω4 , Ξ =

√
(∆2+4Ω2)(2Ω2+∆(∆+

√
∆2+4Ω2))

Ω4 and

Λ =
(
∆2 −

√
∆2 + 4Ω2∆ + 4Ω2

)
.

For the complementary high-energy subspace H/D we find the eigenenergies

Eq1 = V + 2δr (D.6)

Eq2 = Eq3 =
1

2

(
∆ + 2δr −

√
∆2 + 4Ω2

)
Eq4 = Eq5 =

1

2

(
∆ + 2δr +

√
∆2 + 4Ω2

)
where the energy scale of the Rydberg state, δr, appears. The correponding eigenstates
of H0 in the high energy subspace are given by

|q1〉 = (0; 0; 0; 0; 0; 0; 0; 0; 1)T (D.7)

|q2〉 =

(
0; 0; 0; 0; 0; 0;−

√
2ΩΣ√

∆2 + 4Ω2
;

1√
2Σ

; 0

)T

|q3〉 =

(
0; 0;−

√
2ΩΣ√

∆2 + 4Ω2
; 0; 0;

1√
2Σ

; 0; 0; 0

)T

|q4〉 =

(
0; 0; 0; 0; 0; 0;

∆ +
√

∆2 + 4Ω2

Ω
√

2Θ
;

1

Θ
; 0

)T

|q5〉 =

(
0; 0;

∆ +
√

∆2 + 4Ω2

Ω
√

2Θ
; 0; 0;

1

Θ
; 0; 0; 0

)T
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with the abbreviations Σ =
√

1
∆√

∆2+4Ω2
+1

and Θ =

√
∆(∆+

√
∆2+4Ω2)

Ω2 + 8. We see that the

energy difference in the eigenstates of the two subspaces are essentially δr (per atom). In
our perturbation analysis, we assume that all other energy scales (except the interaction
V ) are small compared to δr, so that the use of an perturbation theory for almost
degenerate states is well justified [156].
The projections onto the subspaces are given by [174]

P =
∑
p∈D

|p〉〈p| (D.8)

Q =
∑
q∈H/D

|q〉〈q|

for the low-energy and the high-energy subspace, respectively. With these projectors,
the effective Hamiltonian derrived within our perturbation can be written as [174]

H
(i)
eff = PH0P + PH1

(
Ω(0) + Ω(1) + Ω(2) + ...+ Ω(i−1)

)
(D.9)

with the wave operator Ω given by the recursion formula [156]

Ω(0) = P ;
[
Ω(l), H0

]
= QH1Ω(l−1) −

l−1∑
m=1

Ωl−mH1Ω(m−1) (D.10)

In our case, the expansion of the Hamiltonian in Ω according to formula (D.9)

corresponds to an expansion in Ωr
δr

. Here, we will go to the fourth order, i.e. H
(4)
eff . Note

that H
(i)
eff fullfils hermiticity only up to the i′th order in Ωr

δr
. The wave operators needed

for that can be extracted from Lindgren’s formula (D.10) and read

Ω(1) =
∑
j

∑
i

|qj〉〈pi|
〈qj|H1|pi〉
Epi − Eqj

(D.11)

Ω(2) =
∑
j

∑
i

|qj〉〈pi|
〈qj|H1Ω(1) − Ω(1)H1|pi〉

Epi − Eqj

Ω(3) =
∑
j

∑
i

|qj〉〈pi|
〈qj|H1Ω(2) − Ω(1)H1Ω(1) − Ω(2)H1|pi〉

Epi − Eqj

The resulting H
(3)
eff can be written as

H
(3)
eff = ∆′

∑
i

σ(i)
z + Ω′

∑
i

σ(i)
x −

∑
ij

Jijσ
(i)
x σ

(j)
x + const. (D.12)

The σx term breaks the Z2 symmetry. Choosing δr = −1, V = 3δr, Ωr = δr/10 and
∆ = Ω4

r/δ
3
r , we can get rid of the Z2-symmetry breaking term by tuning Ω. For

Ω ≈ 0.0092δr, we find that Ω′ becomes small compared to ∆′ and Jij. Therefore the
σx-part is negligible and the Z2 symmetry is restored.
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E The coefficients of the Landau ex-
pansion

Here, we are showing the full expression of the variational norm in the Z2-preserving
dissipative Ising model described chap. (4.2). The expansion coefficients of the
variational norm according to

||ρ̇ij|| = u0 + u2φ
2 + u4φ

4 + u6φ
6 (E.1)

are given by

u0 = 2J, (E.2)

u2 =
γ2

16
+ ∆2

J
+ J

(
16∆2z2

γ2 + 16∆2
− 1

)
− 2∆z, (E.3)

u4 = − 1

512J3 (γ2 + 16∆2)4

[(
γ2 + 16∆2

)6
+ 8192γ5J7z4 + 131072γ4∆2J6z4 (E.4)

− 1024γ2J5z2
(
γ2 + 16∆2

)2
(8∆z − γ) + 16384∆2J4z2

(
γ2 + 16∆2

)2 (
γ2 + 4∆2z2

)
+ 32J3

(
γ2 + 16∆2

)3 (
γ3 + 16γ∆2 + 256∆3z

(
1− 2z2

)
+ 16γ2∆z

)
− 64J2

(
γ2 + 16∆2

)4 (
γ2 + 8∆2

(
1− 3z2

))
− 64∆Jz

(
γ2 + 16∆2

)5
]
,
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E. The coefficients of the Landau expansion

u6 =− 1

24576J5(γ2 + 16∆2)6

[
−(γ2 + 16∆2)9 + 1048576γ7J11z6 (E.5)

− 524288γ6J10z6(γ2 − 16∆2)

− 65536γ4J9z4(γ2 + 16∆2)(−3γ3 + 16γ∆2(2z2 − 3) + 8γ2∆z + 128∆3z)

− 131072γ4J8z4(γ2 + 16∆2)(γ4 − 8γ2∆2 + 128∆4(2z2 − 3)− 2γ3∆z − 32γ∆3z)

+ 4096γ2J7z2(γ2 + 16∆2)2(γ5(3− 2z2)− 96γ3∆2(z2 − 1) + 1536γ2∆3z(z2 − 1)

+ 256γ∆4(3− 4z2) + 4096∆5z(2z2 − 3)− 48γ4∆z)

− 2048J6z2(γ2 + 16∆2)3(5γ6 + 64γ4∆2(3z2 − 1)

+ 256γ2∆4(14z2 − 9) + 8192∆6z2(z2 − 1)− 16γ5∆z − 256γ3∆3z)

− 256J5(γ2 + 16∆2)4(γ5(4z2 − 1)− 8γ4∆z(4z2 + 3) + 32γ3∆2(3z2 − 1)

− 256γ2∆3z(4z2 + 3) + 256γ∆4(2z2 − 1)− 6144∆5z(1− 2z2)2)

− 256J4(γ2 + 16∆2)5(5γ4 + 16γ2∆2(7− 10z2) + 256∆4(15z4 − 12z2 + 2)

− 4γ3∆z − 64γ∆3z)

− 32J3(γ2 + 16∆2)6(γ3 + 16γ∆2 + 1280∆3z(1− 2z2) + 112γ2∆z)

+ 16J2(γ2 + 16∆2)7(5γ2 + 48∆2(1− 5z2)) + 96∆Jz(γ2 + 16∆2)8

]
.
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F NV center and 13C spin bath

In this part of the appendix, we will introduce in detail the hyperfine interaction terms
of the NV-13C interaction and transform the Hamiltonian of the NV-nuclei system to
derive the Hamiltonian (7.1), which includes a rotating wave approximation. In the last
part, we investigate in detail the effects of the state mixing due to the hyperfine
interaction close to the GSLAC, particularly on the RF irradiation and laser
illumination. The content of this chapter follows the calculations done in [170].

F.1. Hyperfine interaction of the NV-nucleus
Hamiltonian

The main contributions to the electron-nucleus interaction are the Fermi contact
interaction [175] and the dipole-dipole interaction.
The Fermi contact interaction occurs if an electron is very close to the nucleus. In that
case, the magnetic field of the nucleus is no longer dipolar. Thus the interaction of the
magnetic moments of the electron and the nucleus is very different from dipolar
interaction.
The corresponding interaction Hamiltonian including both kinds of interaction can be
expressed as [176]

Hhf = SAI (F.1)

with the hyperfine interaction matrix A. S refers to the spin angular momentum of the
electron, I to that one of the nucleus.
As we assume a large distance between the nuclei and the NV center, we only take the
traceless T -matrix into account, which corresponds to the dipole-dipole interaction.
The dipole-tdipole interaction can be written as

HDD = −µ0

4π
γIγSh

(
I · S
r3
− 3(I · r)(S · r)

r5

)
≡ −µ0

4π

γeγn
r3

[A+B + C +D + E] (F.2)
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F. NV center and 13C spin bath

The single parts of the dipol-dipol interaction can be expressed as [177]

A = SzIz (3 cos 2θ − 1) (F.3)

B = −1

4

(
S−I+ + SxI−

)
(3 cos 2θ − 1)

C = −3

2
− (Iz + S+ + SzI+) sin θ cos θe−iφ

D = −3

2
− (Iz + S− + SzI−) sin θ cos θeiφ

E = −3

4
(S+I+) sin2 θe−2iφ

F = −3

4
(S−I−) sin2 θe2iφ

The A term and under certain conditions also the B term are secular, i.e. they commute
with the Zeeman Hamiltonian. The other terms C-F are always non-secular. Close to
the GSLAC condition, the Zeeman splitting of the NV center and the nucleus are equal,
i.e. in this case B is secular. All other terms can be neglected due to the weak
interaction a� γnB, γeB −D with a = −µ0

8π
γeγn~
r3 . The resulting hyperfine interaction

Hamiltonian reads

HDD = a

(
2SzIz −

1

2
(S−I+ + S+I−)

)
(F.4)

F.2. Rotating frame and rotating wave approximation of
the Hamiltonian

For the denotion of the 13C atoms we use a spin one-half representation with the Pauli
matrices I

(j)
µ at site j and µ ∈ {x, y, z}. The Sµ operators represent the NV’s electron in

spin one description. Close to the GSLAC condition, the Hamiltonian can be written as

H = DGS
2
z +B0

(
γeSz + γn

∑
j

I(j)
z

)
+
∑
j

SAI(j) + 2B1 cos(ωRF t)

(
γeSx + γn

∑
j

I(j)
x

)
(F.5)

with the zero field splitting DG = 2.87GHz. The Zeeman effect concerning the 13C
atoms and the NV center contributes to the Hamiltonian with the gyromagnetic ratios
of γe = 2.802MHz/Gauss for the NV electron and γn = −10.705 · 10−4MHz/Gauss for
the nuclei. The interaction between the 13C nuclei and the NV center is given in terms
of a hyper-fine interaction SAI(j) with the hyperfine tensor A. Additionally, we have
irradation acting on the NV center and the nuclei. Here, we omit the |1〉 state of the NV
ground state subspace, so that Sµ represents the {|0〉; | − 1〉}-subspace. The Sµ read

Sx =
1√
2

(
0 1
1 0

)
; Sy = i

1√
2

(
0 −1
1 0

)
; Sz =

1√
2

(
0 0
0 −1

)
(F.6)
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F.2. Rotating frame and rotating wave approximation of the Hamiltonian

There is no interaction with the 14N or 15N included which we consider to be fully
polarized.
We will now transform the Hamiltonian to the rotating frame of the drive wRF following
the calculation done in [170] H is transformed according to

HR = R†(t)HL(t)R()− iR†(t) d
dt
R(t) (F.7)

with the unitary transformation

R(t) = eiωRF t(Sz+Iz). (F.8)

We use R†(t)1
2
(I+S− + I−S+)R(t) = (IxSx + IySy) and R†(t) cos(ωRF t)R(t) =

(Sx − cos(2ωRF tSx)− sin(2ωRF t)Sy) + (Ix − cos(2ωRF tIx)− sin(2ωRF t)Iy) [170]. This
procedure leads to

HR =DS2
z + (γeB0 + ωRF )Sz + (γnB0 + ωRF )

∑
j

I(j)
z (F.9)

+
∑
j

aj

(
2SzI

(j)
z −

1

2
(S−I

(j)
+ + S+I

(j)
− )

)
+B1(γeSx + γn

∑
j

I(j)
x ).

−B1

(
cos(2wRF t)(γeSx + γn

∑
j

I(j)
x ) + sin(2ωRF t)(γeSy +

∑
j

I(j)
y )

)
.

HR is the Hamiltonian in the rotating frame of the |0〉 ↔ | − 1〉 transition, as the RF
irradiation is far away from the |0〉 ↔ |1〉 transition. The fast rotating parts going like
2ωRF average out to zero and are therefore neglected (rotating wave approximation).
Then, the Hamiltonian reads

HR =DS2
z + (γeB0 + ωRF )Sz + (γnB0 + ωRF )

∑
j

I(j)
z (F.10)

+
∑
j

aj

(
2SzI

(j)
z −

1

2
(S−I

(j)
+ + S+I

(j)
− )

)
+B1(γeSx + γn

∑
j

I(j)
x ).

As the RF irradiation only acts on the |0〉 ↔ | − 1〉 transition and the |1〉 state is
unpopulated through the laser illumination, we can restrict ourselves to the |0〉 − |1〉
subspace. As a result, H can be written as

H =∆eSz + ∆n

∑
j

I(j)
z +

∑
j

aj
(
2SzI

(j)
z − SxI(j)

x − SyI(j)
y

)
+

1√
2

Ω(Sx +

√
2γn
γe

∑
j

I(j)
x ) (F.11)

with ∆e = γeB0 −D + ωRF being the off resonant irradiation of the |0〉 ↔ | − 1〉
transition and ∆n = γnB0 + ΩRF being the off resonant nuclear transition. Ω = B1γe is
the Rabi frequency of the NV transition.
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