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Abstract. Data provides the basis for emerging scientific and interdis-
ciplinary data-centric applications with the potential of improving the
quality of life for the citizens. However, effective data-centric applications
demand data management techniques able to process a large volume of
data which may include sensitive data, e.g., financial transactions, medi-
cal procedures, or personal data. Managing sensitive data requires the en-
forcement of privacy and access control regulations, particularly, during
the execution of queries against datasets that include sensitive and non-
sensitive data. In this paper, we tackle the problem of enforcing privacy
regulations during query processing, and propose BOUNCER, a privacy-
aware query engine over federations of RDF datasets. BOUNCER allows
for the description of RDF datasets in terms of RDF molecule templates,
i.e., abstract descriptions of the properties of the entities in an RDF
dataset and their privacy regulations. Furthermore, BOUNCER imple-
ments query decomposition and optimization techniques able to identify
query plans over RDF datasets that not only contain the relevant en-
tities to answer a query, but that are also regulated by policies that
allow for accessing these relevant entities. We empirically evaluate the
effectiveness of the BOUNCER privacy-aware techniques over state-of-
the-art benchmarks of RDF datasets. The observed results suggest that
BOUNCER can effectively enforce access control regulations at different
granularity without impacting the performance of query processing.

1 Introduction

In recent years, the amount of both open data available on the Web and private
data exchanged across companies and organizations, expressed as Linked Data,
has been constantly increasing. To address this new challenge of effective and
efficient data-centric applications built on top of this data, data management
techniques targeting sensitive data such as financial transactions, medical pro-
cedures, or various other personal data must consider various privacy and access
control regulations and enforce privacy constraints once data is being accessed by
data consumers. Existing works suggest the specification of Access Control on-
tologies for RDF data [5/12] and their enforcement on centralized or distributed
RDF stores (e.g., [2]) or federated RDF sources (e.g., [§]). Albeit expressive,
these approaches are not able to consider privacy-aware regulations during the



whole pipeline of a federated query engine, i.e., during source selection, query
decomposition, planning, and execution. As a consequence, efficient query plans
cannot be devised in a way that privacy-aware policies are enforced.

In this paper, we introduce a privacy-aware federated query engine, called
BOUNCER, which is able to enforce privacy regulations during query processing
over RDF datasets. In particular, BOUNCER exploits RDF molecule templates,
i.e., abstract descriptions of the properties of the entities in an RDF dataset
in order to express privacy regulations as well as their automatic enforcement
during query decomposition and planning. The novelty of the introduced ap-
proach is (1) the granularity of access control regulations that can be imposed;
(2) the different levels at which access control statements can be enforced (at
source level and at mediator level) and (3) the query plans which include phys-
ical operators that enforce the privacy and data access regulations imposed by
the sources where the query is executed. The experimental evaluation of the
effectiveness and efficiency of BOUNCER is conducted over the state-of-the-art
benchmark BSBM for a medium size RDF dataset and 14 queries with different
characteristics. The observed results suggest the effective and efficient enforce-
ment of access control regulations during query execution, leading to minimal
overhead in time incurred by the introduced access policies.

The remainder of the article is structured as follows. We motivate the privacy-
aware federated query engine BOUNCER using a real case scenario from the
medical domain in [Section 2} In [Section 4} we introduce the BOUNCER access
policy model and in we formally define the query decomposition and
query planning techniques applied inside BOUNCER and present the architec-
ture of our federated engine. We perform an empirical evaluation of our approach
and report on the evaluation results in Finally, we discuss the related
work in [Section 7] and conclude with an outlook on future work in

2 DMotivating Example

We motivate our work using a real-world use case from the biomedical domain
where data sources from clinical records and genomics data have been inte-
grated into an RDF graph. For instance, Figll] depicts two RDF subgraphs or
RDF molecules [7]. One RDF molecule represents a patient and his/her clinical
information provided by source (S1), while the other RDF molecule models the
results of liquid biopsy available in a research institute (S2). The privacy policy
enforced at the hospital data source states that projection (view) of values is
not permitted. Properties name, date of birth, and address of a patient (thicker
arrows in Fig are controlled, i.e., query operations are not permitted. Further-
more, it permits a local join operation (on premises of the hospital data server)
of properties, such as ex:mutation_aa - peptide sequence changes that are stud-
ied for a patient, ex:targetTotal - percentage of circulating tumor DNA in the
blood sample of liquid biopsy, ex:egfr_mutated - whether the patient has muta-
tions that lead to EGFR over-expression, and ex:smoking - whether the patient
is a smoker or not. Suppose a user requires to collect the Pubmed ID, muta-
tion name, the genomic coordinates of the mutation and accession numbers of
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Fig.1: Motivating Example. Federation of RDF data sources S1 and S2. (a)
An RDF molecule representing a lung cancer patient; thicker arrows correspond
to controlled properties. (b) An RDF molecule representing the results of a liquid
biopsy of a patient. Servers at the hospital can perform join operations.

the genes associated with non-smoking lung cancer patients whose liquid biopsy
has been studied for somatic mutations that involve EGFR gene amplification
(over-expression). Fig depicts a SPARQL query that represents this request;
it is composed of 11 triple patterns. The first five triple patterns are executed
against S1 while the last six triple patterns are evaluated over S2.

Existing federated query engines are able to generate query plans over these
data sources. Fig shows a query execution plan generated by FedX [II] fed-
erated query engine for the given query. FedX decomposes the query into two
subqueries that are sent to each data source. FedX uses a nested loop join op-
erator to join results from both sources. This operator pushes down the join
operation to the data sources by binding the join variables of the right operand
of the operator with values extracted from the left operand. First, triple patterns
from t1—t5 are executed on S1, extracting values for the variables ?mutation_aa,
?lbiop, ?targetTotal, and ?patient. Then, the shared variable, ?mutation_aa,
is bound and the triple patterns t6 — t11 are executed over S2. However, exe-
cuting this plan yields no answer since the privacy-policy of the hospital does
not allow projection of values from the first subquery. Fig[2d shows the query
execution plan generated by ANAPSID [I] federated query engine. ANAPSID
creates a bushy plan where join operation is performed using GJoin operator
(special type of symmetric hash join operator). This operator executes the left
and right operands and makes join on the federated engine. In order to check
whether the results returned from the subqueries on the left and right operand
can be joined, the values of shared variables from both operands have to be
checked by ANAPSID, which requires extracting all values for all variables in
both sources. This ignores the privacy policy enforced which yields no answer
for the given query. The MULDER [7] federated query engine generates a bushy
plan and decomposes the query by identifying matching RDF Molecule Tem-
plates (PRDF-MTs) as a subquery, as shown in Fig PRDF-MT is a template
that represents a set of RDF molecules that share the same RDF type (rdf:type).
MULDER assigns nested hash join operator to join triple patterns t3 — t5 asso-
ciated with Patient PRDF-MT and triple patterns t1 — ¢2 that are associated
with Liquid_Biopsy PRDF-MT. Like in FedX, this operator extracts values for
join and projection variables from the left operand, and then binds them to the



PREFIX ex: <http://example.com/vocab/>
SELECT DISTINCT ?pubmedid ?loci ?accNum ?mutation

WHERE{

1 ‘?Ibiop ex::mutation_aa ?mutation . |
2 ?Ibiop ex:targetTotal ?targetTotal 1

@3 ?patient  ex:biopsy ?lbiop .

@4 ?patient  ex:smoking “false” .

@5 Dh2patient. __ex:egfr_mutated_ ____ true’ ..l
6 »?cmut ex:mutation_aa ?mutation . .
7 ?cmut ex:mentioned_in ?pubmedid . X
8 »cmut ex:mutation_loci ?loci .
9 »cmut ex:located_in

>

(c) ANAPSID Query Plan (d) MULDER Query Plan

Fig.2: Motivating Example. (a) A SPARQL query composed of four star-
shaped subqueries accessing controlled and public data from S1 and S2. (b) FedX
generates a plan with two subqueries. (¢) ANAPSID decomposed the query into
three subqueries. (d) MULDER identifies a plan with four star-shape subqueries.
None of the query plan respects privacy policies of S1 and S2.

same variables of the right operand. Like FedX and ANAPSID plans, the MUL-
DER plan also ignores the privacy policy enforced at the hospital data source,
which would yield an empty query answer. All of these federated engines fail
to answer the query, because they ignore the privacy policy of the data sources
during query decomposition as well as query execution plan generation (e.g.,
wrong join ordering). Also, MULDER ignores the privacy policy of the hospital
during query decomposition and splits the triple patterns from this source. This
leads to trying to extract results on the federation system which is not possible
because of the restrictions enforced by the hospital. In addition to the join order
problem, ANAPSID selects a wrong join operator which requires data from S1 to
be projected for the restricted properties, i.e., t1 — t5. In this paper, we present
BOUNCER a privacy-aware federated query engine able to identify plans that
respect the above-mentioned privacy and access control policies.

3 Problem Statement and Proposed Solution

In this section, we formalize the problem of privacy-aware query decomposition
over a federation of RDF data sources. First we define a set of privacy-aware
predicates that represent the type of operations that can be performed over an
RDF dataset according to the access regulations of the federation.

Definition 1 (Privacy-Aware Operations). Given a federated query engine
M, a federation F of RDF datasets D, and a dataset D; in D. Let p;; be an RDF



property with domain the RDF class Cy;. The set of operations to be evecuted by
M against F is defined as follows:

o join_local(D;, pij, Ci;) - this predicate indicates that the join operation on
property pi; can be performed on the dataset D;.

o join_fed(D;, pij, Cij) - this predicate indicates that the join operation on
property p;; can be performed by M. The truth value of join_ fed(D;, pij,
C;;) implies to the truth value of join_local(D;, pij, Cij).

o project(D;, pij, Ci;) - this predicate indicates that the values of the property
pi;j can be projected from dataset D;. The truth value of project(D;, pi;, Cij)
implies to the truth value of join_ fed(D;, pij, Cij).

Definition 2 (Access Control Theory). Given a federated query engine M,
a set of RDF datasets D = {D1,..,D,} of a federation F. An Access Control
Theory is defined as the set of privacy-aware operations that can be performed
on property p;; of RDF class Cyj over dataset D; in D.

The access control theory for the federation described in our running example
of Figl2a] can be defined as a conjunction of the following operations:

join_local(s1, ex:mutation_aa, Liquid_ Biopsy),

join_local(s1, ex:biopsy, Patient), project(s2, ex:located in, Mutation),
join_local(s1, ex:targetTotal, Liquid_Biopsy), project(s2, ex:acc_num, Gene),
join_local(s1, ex:smoking, Patient), join_local(s1, ex:eqfr mutated, Patient),
project(s2, ex:mutation_ aa, Mutation),project(s2, ex:gene_name, Gene),
project(s2,ex:mutation_ loci, Mutation),project(s2,ex:mentioned_ in, Mutation,).

Note that the RDF properties :name, :gender, :address, and :birthdate of the
Patient RDF class do not have operations defined in the access control theory.
In our approach this fact indicates that these properties are controlled and any
operation on these properties performed by the federated engine is forbidden.

Property 1. Given a property p;; of an RDF class C; from a dataset D; in a fed-
eration F and an access control theory T If there is no privacy-aware predicate
in T that includes p;;, then p;; is a controlled property and no federation engine
can perform operations over p;; against D;.

A Dbasic graph pattern (BGP) in a SPARQL query is defined as a set of
triple patterns {¢1,...,%,}. A BGP contains one or more triple patterns that
involve a variable being projected from the original SELECT query. We call
these triple patterns projected triple patterns, denoted as PTP = {t1,...,tm}
such that PTP € BGP. A BGP includes at least one star-shaped subquery
(SSQ), ie., BGP = {55Q1,...,55Q,}. A star-shaped subquery is a set of
triple patterns that share the same subject variable or object [I3]. Further-
more, an SSQ may contain zero or more triple patterns that involve a variable
which is being projected from the original SELECT query. We call these triple
patterns projected triple patterns of an SSQ, denoted as PTS = {ti1,...,tx}
where PT'S; € 55@Q;. Let PRJ be a set of triple patterns that involve a vari-
able being projected from the original SELECT query, then projected triple



patterns of a BGP, is a subset of PRJ, i.e., PP < PRJ and a projected
triple pattern of SS@Q); is a subset of PTP, i.e., PT'S; € PTP. For example, in
our running example, there is only one BGP, BGP; = {t1,...,t11}, for which
projected variables belong to triple patterns, PRJ = {tg,t7,ts,t11}. Projected
triple patterns of BGP, are the same as PRJ, PT Pggp, = {ts,t7,ts,t11}, since
there is only one BGP. Furthermore, BGP; can be clustered into four start-
shaped subqueries, SSQspap, = {SSQ1—(t,—t,}, SSQo—fts—t5}> SSQ3—(15—10}
SSQu—(ty9—t1,1}- Out of four SSQs of BG Py, only the last two SSQs have
triple patterns that are also in the projected triple patterns, i.e., PT'Sssg, = <,

Property 2. Given a SPARQL query @ such that a variable ?v is associated
with a property p of a triple pattern ¢ in a BGP and 7v is projected in Q.
Suppose an access control theory T' regulates the access of the datasets in D of
the federation F. A federation engine M accepts @ iff there is a privacy-aware
operation project(D;,p,C) in T for at least an RDF dataset D; in D.

A privacy-aware query decomposition on a federation is defined. This for-
malization states the conditions to be met by a decomposition in order to be
evaluated over a federation by enforcing their access regulations.

Definition 3 (Privacy-Aware Query Decomposition). Let BGP be a basic
graph pattern, PTP a set of projected triple patterns of a BGP, T an access
control theory, and D = {D1,...,D,} a set of RDF datasets of a federation
F. A privacy-aware decomposition P of BGP in D, v(P|BGP,D,T, PTP), is
a set of decomposition elements, ® = {¢1,..,0r}, such that ¢; is a four-tuple,
¢; = (SQ;, SD;, PS;, PTS;), where:

e 5Q; is a subset of triple patterns in BGP, i.e., SQ; € BGP, and SQ; # O,
such that there is no repetition of triple patterns, i.e., If t, € SQ;, then
3t, € SQ;: SQ; « BGP Ai # j,

e SD; is a subset of datasets in D, i.e, SD; € D, and SD; # &,

e PS; is a set of privacy-aware operations that are permitted on triple patterns
in SQ; to be performed on datasets in SD; and PS; € T, and PS; # O,

e PTS; is a set of triple patterns in SQ; that contains variables being projected
from the original SELECT query, i.e., PTS; € SQ; n PTS; € PTP,

e The set composed of SQ; in the decompositions ¢; € & corresponds to a
partition of BGP and

o The selected RDF datasets are able to project out the attributes in the project
clause of the query, i.e., Vt, € SQ; : t, € PTP, then project(Dq, paj, Caj) €
PS; where t, = (8,pq;,0), Do € SD;, and SQ; € ¢;.

After defining what is a decomposition of a query, we state the problem of
finding a suitable decomposition for a query and a given set of data sources.

Privacy-Aware Query Decomposition Problem. Given a SPARQL query
Q, RDF datasets D={Dy,...,D,,} of a federation F, and access control theory T'.
The problem of decomposing @ in D restricted by T is defined as follows. For all
BGPs, BGP={ty,...,t,}in @, find a query decomposition v(P|BGP, D, T, PTP)
that satisfies the following conditions:



e The evaluation of v(P|BGP,D,T, PTP) in D is complete according to the
privacy-aware policies of the federation in T. Suppose D* represents the
maximal subset of D where the privacy policies of each RDF dataset D, €
D* allow for projecting and joining the properties from D; that appear in
Cﬂ Then the evaluation of BGP in D* is equivalent to the evaluation of
~v(P|BGP,D,T, PTP) and the following expression holds:

[[BGP]]D* = [[7(P|BGP7D7T7 PTP)]]D

e The cost of executing the query decomposition v(P|BGP, D, T, PTP) is min-
imal. Suppose the execution time of a decomposition P’ of BGP in D is
represented as cost(y(P'|BGP,D,T, PTP)), then

v(P|BGP,D,T, PTP) = argmin cost(y(P'|BGP,D,T, PTP))
+(P'|BGP,D,T,PTP)

To solve this problem, we present BOUNCER, a federated query engine able
to identify query decompositions for SPARQL queries and query plans that effi-
ciently evaluate SPARQL queries over a federation. Two definitions are presented
for a query plan over a decomposition. The next two functions are presented in
order to facilitate the understanding of the definition of a query plan.

Definition 4 (The property function prop(*)). Given a set of triple pat-
terns, TPS, the function prop(T'PS) is defined as follows:

prop(TPS) ={p| (s,p,0) € TPS A p is constant }

Definition 5 (The variable function var(*)). Given a privacy-aware de-
composition, @, the function var(®) is defined inductively as follows:

1. Base case: & = {41}, then var(®) = {?z | (s,p,0) € SQ1, where ¢1 =
(SQ1,SD1, PS1,PTS1), ¢ = s A s is a variable v 7x = o A 0 s a variable}

2. Inductive case: Let @1 and Py be disjoint decompositions such that @ =1 U
&y then, var(®) = var(P1) v var(Ps).

Definition 6 (A Valid Plan over a Privacy-Aware Decomposition). Given
a privacy-aware decomposition y(P|BGP, D, T, PTP): & = {¢1,...,dn}, a valid
query plan, a(P), is defined inductively as follows:

1. Base Case: If only one decomposition ¢1 belongs to @, i.e., & = {¢1}, the
plan unions all the service graph patterns over the selected RDF sources.
Thus, a(P) = UNIONg,esp, (SERVICE d; SQ1) is a valid plarﬁﬂ where:

e &1 = (5Q1,5Dy, PS1, PTSy) is a valid privacy-aware decomposition;
o All the variables projected in the query have the permission to be pro-
jected, i.e., Vp;1 € prop(PTS1), project(Di, pil,Cil) € PSy.

® Predicates project(Di,pi;, Cij), join_ fed(Di, pij, Ci;) and join_local(Di,pi;, Cij)
are part of T for all properties in triple patterns in @) that can be answered by Di.

5 For readability, UNIONg;csp+i represents SPARQL UNION operator

" SERVICE corresponds to the SPARQL SERVICE clause



2.

Inductive Case: Let @1 and ®o be disjoint decompositions such that ® =P U

Dy. Then, a(P) = (a(P1) * a(P2)) is a valid plan, where:

(a) a(P1) and o(P2) are valid plans.

(b) The join variables appear jointly in the triple patterns of &1 and P, i.e.,
joinVars = var(®1) n var(Ps).

(c) T is a set of joint triple patterns involving join variables in BGP:

o J = {t|variable(t) < joinVars, (t € Pysq) Vv t € Pysq))}
o y50) = {9Qi|Vdi € D1, ¢ = (SQ4, SD;, PS;, PTS;)}, and
* Pysq) = {5Q;|V9; € D2, ¢; = (5Q;,5D;, PS;, PT'S;)}.

(d) The operator * is a JOIN operator, i.e., a(®) =(a(P1) JOIN a(P2))
is a valid plan, iff Vpi; € prop(J), join_ fed(Di, pij, Cij) € (P1(ps) N
@2(}33)), @1(1:)3) = {PS7,|V¢1 € @1, gf)i = (SQi,SDi,PSi,PTSi)}, and
@2(135) = {PS]|V¢j € @2, ¢j = (SQJ,SDJ,PS],PTSJ)}

(e) The operator * is a DJOIN operator, i.e., o(P) =(a(P1) DJOIN o(P3))
is a wvalid plan iff Ypi; € prop(J), join_ fed(D;,pi;, Ci;) € Py(ps)y and
join_local(D;, pij, Cij) € 452(PS)E|.

Next, we define the BOUNCER architecture and the main characteristics of the
query decomposition and execution tasks implemented by BOUNCER.

4

BOUNCER: A Privacy-Aware Engine

Web interfaces provide access to RDF datasets, and can be described in terms
of resources and properties in the datasets. BOUNCER employs privacy-aware
RDF Molecule Templates for describing and enforcing privacy policies.

Definition 7 (Privacy-Aware RDF Molecule Template(PRDF-MT)).
A privacy-aware RDF molecule template (PRDF-MT) is a 5-tuple=<Webl, C,
DTP, IntraL, InterL>, where:

Webl — is a Web service API that provides access to an RDF dataset G via
SPARQL protocol;

C —is an RDF class such that the triple pattern (?s rdf:type C) is true in G;
DTP — is a set of triples (p, T, op) such that p is a property with domain C
and range T, the triple patterns (?s p 20) and (%0 rdf:type T) and (?s rdf:type
C) are true in G, and op is an access control operator that is allowed to be
performed on property p;

IntraL - is a set of pairs (p,C;) such that p is an object property with domain
C and range Cj, and the triple patterns (?s p ?0) and (%0 rdf:type C;) and
(?s rdf:type C) are true in G;

InterL — is a set of triples (p,Cy,SW) such that p is an object property with
domain C' and range Cyx; SW is a Web service API that provides access to
an RDF dataset K, and the triple patterns (?s p 20) and (?s rdf:type C) are
true in G, and the triple pattern (%o rdf:type Cy) is true in K.

8 DJOIN- is a dependent JOIN [T4].
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Fig.3: BOUNCER. Architecture. BOUNCER receives a SPARQL query and
outputs the results of executing the SPARQL query over a federation of SPARQL
endpoints. It relies on PRDF-MT descriptions and privacy-aware policies to
select relevant sources, and perform query decomposition and planning. The
query engine executes a valid plan against the selected sources.

Fig[3] depicts BOUNCER architecture. Given a SPARQL query, the source
selection and query decomposition component solves the problem of identify-
ing a privacy-aware query decomposition; they select PRDF-MTs for subqueries
(SSQs) by consulting PRDF-MT metadata store and the access control evaluator
component. The source selection and decomposition component is privacy-aware
decomposition; it is given to the query planning component for creating a valid
plan, i.e., access policies of the selected data sources should be respected. The
valid plan is executed in a bushy-tree fashion by the query execution.

5 Privacy-Aware Decomposition and Execution

This section presents the privacy-aware techniques implemented by BOUNCER.
They rely on the description of the RDF datasets of a federation in terms of
privacy-aware RDF molecule templates (PRDF-MTs) to identify query plans
that enforce data access control regulations. More importantly, these techniques
are able to generate query execution plans whose operators force the execution
of queries at the dataset sites in case data cannot be transferred or accessed.

5.1 Privacy-Aware Source Selection and Decomposition

The BOUNCER privacy-aware source selection and query decomposition is
sketched in Algorithm [I] Given a BGP in a SPARQL query Q, BOUNCER
first decomposes the query into star-shaped subqueries (SSQs), (Line 2). For
instance, our running example query, in Fig[2a] is decomposed into four SSQs,
as shown in Fig[d] i.e., SSQs around the variables ?lbiop, ?patient, ?cmut, and
?gene, respectively. The first SSQ (denoted ?1biop-SSQ) has two triple patterns,
t1-t2, the second SSQ (?patient-SSQ) is composed of three triple patterns, t3-
t5, the third SSQ (?cmut-SSQ) includes four triple patterns, and the fourth SSQ
(?gene-SSQ) is composed of two triple patterns, t10-t11.
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Fig.4: Example of Privacy-Aware Decompositions. Decompositions for
SPARQL query in the motivating example. Nodes represent SSQs and colors
indicate datasets where they are executed; edges correspond to join variables.
a) Initial query decomposed into four SSQs. b) Decomposition result where the
subqueries ?1biop-SSQ and ?patient-SSQ are composed into a single subquery
to comply with the privacy policy of data source S1, while ?cmut-SSQ and ?gene-
SSQ are also composed to push down the join operation to the data source S2.
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Fig.5: Example of Privacy-aware RDF Molecule Templates (PRDF-
MTs). Two PRDF-MTs for the SPARQL query in the motivating example.
According to the privacy regulations the properties :name, :birthdate, and
:addresss are controlled; they do not appear in the PRDF-MTs.

Fig[da] presents an initial decomposition with the selected PRDF-MTs for
each SSQs. The subquery ?patient-SSQ is joined to the subquery ?1biop-SSQ
via ex:biopsy property. Similarly, ?cmut-SSQ is joined to ?gene-SSQ via the
ex:located_in property. Given the set of properties in each SSQ and the joins
between them, BOUNCER finds a matching PRDF-MT for each SSQs (Line
3), i.e., it matches the subqueries ?patient-SSQ, ?1biop-SSQ, ?cmut-SSQ, and
?2gene-SSQ to the PRDF-MTs Patient, Liquid_Biopsy, Mutation, and Gene, re-
spectively. Once the PRDF-MTs are identified for the SSQs, BOUNCER verifies
the access control policies associated with them (Line 4). A subquery SSQ asso-
ciated with an PRDF-MT(s) that grants the project() permission to all of its
properties is called Independent SSQ; otherwise, it is called Dependent SSQ. An
SSQ in a SPARQL query Q is called dependent iff a property of at least one triple
pattern in SSQ is associated with the privacy-aware operation join_local(). On
the other hand, an SSQ is independent iff the privacy-aware operation project()
is true for the properties of the triple patterns in SSQ.

If the value of the controlled property is in the projection list, i.e., if the
property of a triple pattern in an SSQ have join_local() or join_fed() predi-
cate, then the decomposition process exits with empty result (Line 6). Once the
SSQs are associated with PRDF-MTs, the next step is to merge the SSQs with



Algorithm 1 Privacy-Aware Query Decomposition: BG - Basic Graph Pattern,
Q - Query, PRMT - Access-aware RDF Molecule Templates

1: procedure DECOMPOSE(BGP, Q, PRMT)

2 SS5Qs — getSSQs(BGP) => Partition the BGP to SSQs
3 RES « selectSource(PRMT, PRMT) = RES=[(SSQ, PRMT, DataSource)]
4: A — getAccessPolicies(RES); @ «— [ |; DR « {} = access control statements
5: for (SSQ, RMT,p,ds,pred) € A do
6.
7
8

if pe Query.PRJ A pred! = project(ds,p, RMT.type) then return []
DR[SSQ][PTS].append(t) |t = (s,p,0) At € SSQ | p € Query.PRJ
: DR[SSQ][SD].append(ds) n DR[SSQ][PS].append(pred)
9: end for
10: for (SSQ“SD“PS“PTSJ € DR do

11: ¢ = (SQi, SD;, PS;, PTS;) | SQ; « SSQ;

12: if join_local() € PS; then > If SSQ; contains restricted property
13: for (SSQ;,SD;, PS;, PTS;) € DR do

14: if SD; nSD; # J then

15: ¢i.€$t€nd(SSQj,SDj,PSj,PTSj)

16: DR.remove((55Q;,SD;, PS;, PTS;)) A done «— True

17: end for

18: if NOT done then return [ |

19: end if

20: &.append(¢p;)

21: end for

22: return ¢ > decomposed query

23: end procedure

the same source and push down the join operation to the data source. To comply
with access control policies of a dataset, i.e., when the properties of an SSQ have
only the join_local() permission, the join operation with this SSQ should be
done at the data source. Hence, if two SSQs can be executed at the same source,
then BOUNCER decomposes them as a single subquery (SQ) (Line 10-21). This
technique may also improve query execution time by performing join operation
at the source site. Fig[dh| shows a final decomposition for our running example.
?1biop-SSQ and ?patient-SSQ are merged because they are dependent and the
join operation can be executed at the source.

5.2 BOUNCER Privacy-Aware Query Planning Technique

Algorithm [2] sketches the BOUNCER privacy-aware query planing technique.
Given a privacy-aware decomposition @ of a query Q, BOUNCER finds a valid
plan that respects the privacy-policy of the data sources. For each subquery
in ¢; a service-graph pattern is created (Line 4 & 6) and the SPARQL UNION
operator is used whenever the subquery can be executed over more than one data
source. Then, BOUNCER selects another subquery, ¢; that is joinable with ¢;
(Line 5). If ¢; is composed of dependent SSQ(s) (resp., independent SSQ(s))
and ¢; is composed of an independent SSQ(s) (resp., dependent SSQ(s)), then a
dependent join operator (DJOIN) is selected (Line 9-12). If both ¢, and ¢; are
merged of an independent SSQ(s), then any JOIN operator can be chosen (Line



Algorithm 2 Query Planning over Privacy-Aware Decomposition: @ - Privacy-
Aware query decomposition, Q - SELECT query

1: procedure MAKEPLAN(D, Q)

2: a<—1]

3: for ¢; € ® do

4: 01 «— UNIONgy,esp,n5D;e¢; (SERVICE d; SQ;)

5: for ¢; € D | ¢ # ¢p; Avar(SQi) N var(SQ;) # & do = If joinable
6: 02 <~ UNIONy,esp; (SERVICE d; SQy)

7 J — { t]vari(t) < [var(SQ:) N var(SQ;)] A te [SQ: v SQ;]}

8: p — prop(J) = Properties of join variables
9: if 3join_local() € PS; A Vpredpe, € PS; | predpe, = join_ fed() then
10: a.append((c2 DJOIN o01)); joined «— True > Dependent JOIN
11: if 3join_local() € PS; A Vpredpe, € PS; | predpe, = join_fed() then
12: a.append((c1 DJOIN o03)); joined «— True > Dependent JOIN
13: if Vpredpe, € [PS; U PS;j] | predpe, = join_ fed() then

14: a.append((c1 JOIN 02)); joined < True = Independent JOIN
15: end for

16: if 3join_local() € PS; A NOT joined then return [] = No valid plan
17: end for

18: return o

19: end procedure

13-14). Finally, otherwise, an empty plan is returned indicating that there is no
valid plan for the input query (Line 16).

6 Empirical Evaluation

We study the efficiency and effectiveness of BOUNCER. First, we assess the
impact of access-control policies enforcement and BOUNCER is compared to
ANAPSID, FedX, and MULDER. Then, the performance of BOUNCER is
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Fig.6: Decomposition and Execution Time. BOUNCER decomposition
and planning are more expensive than baseline (MULDER), but BOUNCER
generates more efficient plans and overall execution time is reduced.



evaluated. We study the following research questions: RQ1) Does privacy-aware
enforcement employed during source selection, query decomposition, and plan-
ning impact query execution time? RQ2) Can privacy-aware policies be used to
identify query plans that enhance execution time and answer completeness?
Benchmarks: The Berlin SPARQL Benchmark (BSBM ) generates a dataset of
200M triples and 14 queries; answer size is limited to 10,000 per query.
Metrics: ) Execution Time: Elapsed time between the submission of a query
to an engine and the delivery of the answers. Timeout is set to 300 seconds.
i) Throughput: Number of answers produced per second; this is computed as the
ratio of the number of answers to execution time in seconds.
Implementation: BOUNCER privacy-aware techniques are implemented in
Python 3.5 and integrated into the ANAPSID query engine. The BSBM dataset
is partitioned into 8 parts (one part per RDF type) and deployed on one machine
as SPARQL endpoints using Virtuoso 6.01.3127, where each dataset resides in a
dedicated Virtuoso docker container. Experiments are executed on a Dell Pow-
erEdge R805 server, AMD Opteron 2.4GHz CPU, 64 cores, 256GB RAM.
Experiment 1: Impact of Access Control Enforcement. The impact of
privacy-aware processing techniques is studied, as well as the overhead on source
selection, decomposition, and execution. In this experiment, the privacy-aware
theory enables all the operations over the properties of the federation, i.e.,
all the operations are defined for each property and dataset. MULDER and
BOUNCER are compared; Fig[f] reports on decomposition, planning, and exe-
cution time per query. Both engines generate the same results and BOUNCER
consumes more time in query decomposition and planning. However, the overall
execution time is lower in almost all queries. These results suggest that even
there is an impact on query processing, BOUNCER is able to exploit privacy-
aware polices, and generates query plans that speed up query execution.
Experiment 2: Impact of Privacy-Aware Query Plans. The privacy-aware
query plans produced by BOUNCER are compared to the ones generated by
state-of-the-art query engines. In this experiment, the privacy-aware theory en-
ables local joins for Person, Producer, Product, and ProductFeature, and projec-
tions of the properties of 0ffer, Review, ProductType, and Vendor. Fig[7] reports
on the throughput of each query engine. As observed, the query engines produced
different query plans which allow for high performance. However, many of these
plans are not valid, i.e., they do not respect the privacy-aware policies in the
theory. For instance, ANAPSID produces bushy tree plans around gjoins; albeit
efficient, these plans violate the privacy policies. FedX and MULDER are able to
generate some valid plans—by chance— but fail in producing efficient executions.
On the contrary, BOUNCER generates valid plans that in many cases increase
the performance of the query engine. Results observed in two experiments sug-
gest that efficient query plans can be identified by exploiting the privacy policies;
thus, RQ1 and RQ2 can be positively answered.
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7 Related Work

The data privacy control problem has received extensive attention by the Database
community; approaches by De Capitani et al. [6] and Bater et al. [3] are exem-
plars that rely on an authority network to produce valid plans. Albeit relevant,
these approaches are not defined for federated systems; thus, the tasks of source
selection and query decomposition are not addressed. BOUNCER also generates
valid plans, but being designed for SPARQL endpoint federations, it also ensures
that only relevant endpoints are selected to evaluate these valid plans. The Se-
mantic Web community has also explored access control models for SPARQL
query engines; RDF named graphs [BI8IT2] and quad patterns [9] are used to
enforce access control policies. Most of the work focuses on the specification
of access control ontologies and enforcement on RDF data [BJI2] stored in a
centralized RDF store, while others explore access control specification and en-
forcement on distributed RDF stores [2l4] and federated query processing [S/10]
scenarios. Costabello et al. [5] present SHI3LD, an access control framework for
RDF stores accessed on mobile devices; it provides a pluggable filter for generic
SPARQL endpoints that enforces context-aware access control at named graph
level. Kirane et al. [9] propose an authorization framework that relies on strati-
fied Datalog rules to enforce access control policies; RDF quad patterns are used
to model permissions (grant or deny) on named graphs, triples, classes, and prop-
erties. Ubehauen et al. [I2] propose an access control approach at the level of
named graphs; it binds access control expressions to the context of RDF triples
and uses a query rewriting method on an ontology for enabling the evaluation
of privacy regulations in a single query. SAFE [§] is designed to query statistical
RDF data cubes in distributed settings and also enables graph level access con-



trol. BOUNCER is a privacy-aware federated engine where policies are defined
over RDF properties of PRDF-MTs; it also enables access control statements at
source and mediator level. More important, BOUNCER generates query plans
that both enforce privacy regulations and speed up execution time.

8 Conclusion and Future Work

We presented BOUNCER, a privacy-aware federated query engine for SPARQL
endpoints. BOUNCER relies on privacy-aware RDF Molecule Templates (PRDF-
MTs) for source description and guiding query decomposition and plan gener-
ation. Efficiency of BOUNCER was empirically evaluated, and results suggest
that it is able to reduce query execution time and increase answer complete-
ness by producing query plans that comply with the privacy policies of the data
sources. In future work, we plan to integrate additional Web access interfaces,
like RESTful APIs, and empower PRDF-MTs with context-aware access policies.
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